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Overview

            Prerequisites:
	Knowledge of university physics: electricity and magnetism




            Objectives of Section 1.1:
	Show that the electric voltage and the electric potential may be treated as two equivalent quantities

	Define the electric voltage—work per unit charge—in the form of a line integral and show its independence on the integration path for conservative fields

	Relate voltage to the potential energy of the electric field

	Introduce three-dimensional potential distributions and realize the guiding function of metal wires

	Formulate and understand major conditions of electrostatics of conductors

	Visualize surface charge distributions in the electrostatic case




            Objectives of Section 1.2:
	Introduce electric current density as a function of the applied electric field

	Visualize steady-state current flow in a single conductor along with the associated electric potential/voltage distribution

	Visualize electric and magnetic-field distributions for a two-wire DC transmission line

	Obtain initial exposure to the Poynting vector

	Realize that electric power is transferred via Poynting vector even in DC circuits

	Indicate a path toward circuit problems where the field effects become important




            Objectives of Section 1.3:
	Review basic hydraulic (fluid mechanics) analogies for DC circuit elements

	Present major hydraulic analogies for dynamic circuit elements in AC circuits

	Briefly discuss hydraulic analogies for semiconductor components




            Application Examples:
	Human body subject to applied voltage

	Human body in an external electric field




          

1.1 Electrostatics of Conductors
This introductory chapter is optional in the sense that the reader does not need its content as a prerequisite for the subsequent chapters. The aim of this chapter is to illustrate why electric circuits trace their origin to electromagnetic fields. The chapter highlights several field concepts which form the theoretical foundation of electric circuits. At the same time it makes clear why, for the majority of electric circuits, the electric and magnetic fields are often ignored without affecting the final results. When this is the case, the electric circuits and components follow useful and simple hydraulic analogies discussed below.
1.1.1 Charges, Coulomb Force, and Electric Field
Electric Charges

The smallest 

electric charge is known as the elemental charge of an electron, [image: 
$$ q=-1.60218\times 1{0}^{-19}\mathrm{C} $$
] (coulombs). In electrical engineering, we deal with much larger charges, which, for this reason, are assumed to be infinitely divisible. There are no positive movable charges in metal conductors. Therefore, when we talk about positive charges, it is implied that we have a lack of electrons at a certain location, e.g., at the surface. Oppositely, the negative charge is the excess of electrons at a certain location.

Definition of the Electric Field

Electrostatics plays a key role in 


explaining the operations of electric capacitors and all semiconductor devices. The word electricity is derived from the Greek word for amber. Probably Thales of Miletus was the first who discovered, about 600 B.C., that amber, when rubbed, attracts light objects. An electrostatic force acting on a charge q is known as the 
                  Coulomb force
                  
                . This Coulomb force is a vector; it is measured in newtons (or N)[image: 
$$ \overrightarrow{F}=q\overrightarrow{E}\kern0.6em \left[\mathrm{N}\right] $$
]

 (1.1)

Equation (1.1) is the definition of the 

electric field intensity vector, [image: 
$$ \overrightarrow{E} $$
], often called the electric field. This electric field is created by other (remote or nearby) charges. In the general case, the electric field exists both in free space and within material objects, whether conductors or dielectrics. The electric field [image: 
$$ \overrightarrow{E} $$
] is measured in volts (V) per meter (V/m). The field magnitude, [image: 
$$ E=\sqrt{E_x^2+{E}_y^2+{E}_z^2}=\left|\overrightarrow{E}\right| $$
], has the same units. From Eq. (1.1),[image: 
$$ 1\mathrm{V}=\frac{1\kern0.5em \mathrm{N}\times 1\mathrm{m}}{1\kern0.5em \mathrm{C}}=\frac{1\kern0.5em \mathrm{J}}{1\kern0.5em \mathrm{C}} $$
]

 (1.2)


                            

Electric Field of a Laboratory Power Source
As an example, we consider an 


electric field generated by a laboratory voltage source turned on. Figure 1.1 shows the realistic electric field distribution modeled numerically. The power supply has two output terminals shaped as two metal cylinders. The plastic cover is ignored. Nothing is connected to the terminals yet. Still, the power supply already performs a “charge separation”: the plus (+) terminal is charged positively (total charge is +Q), whereas the minus (−) terminal is charged negatively (total charge is −Q). Those charges are schematically shown in Fig. 1.1. As a result, an electric field is created. The electric field in Fig. 1.1 is directed along particular lines, which we call 

lines of force. This electric field surrounds the power supply terminals. 
                  
                  
                  
                Every line of force starts at the positive terminal and ends at the negative terminal. The strength of the electric field everywhere in space is linearly proportional to the supply voltage as studied next. However, the field shape always remains exactly the same.[image: A331468_1_En_1_Fig1_HTML.gif]
Fig. 1.1Electric field emanating from a voltage supply with open-circuit output terminals




                            


1.1.2 Electric Potential and Electric Voltage

The electric potential φ measured in volts (V) and electric voltage V measured in volts (V) are two identical quantities once they refer to the same observation point A and to the same reference point A′. Both terms may be used; the electric potential is frequently denoted by V. The potential is more common in physics. Work is done against the electric forces when a charge is moved in an electric field. The 



electric potential or electric voltage [image: 
$$ {V}_{A{A}^{\prime }} $$
] between points A (#1) and A′ (#2) is work in joules per coulomb (per unit charge) to bring a positive charge from reference point A′ (#2) to observation point A (#1), i.e., against the electric field—see Fig. 1.1. The work per unit charge over a short straight vector distance [image: 
$$ d\overrightarrow{l} $$
] is[image: 
$$ -\frac{1}{q}\overrightarrow{F}\cdot d\overrightarrow{l}=-\overrightarrow{E}\cdot d\overrightarrow{l}=-Edl \cos \theta $$
]

 (1.3)

where θ is the angle between [image: 
$$ \overrightarrow{E} $$
] and [image: 
$$ d\overrightarrow{l} $$
], [image: 
$$ E=\left|\overrightarrow{E}\right| $$
] , and [image: 
$$ dl=\left|d\overrightarrow{l}\right| $$
]. The total work or [image: 
$$ {V}_{A{A}^{\prime }} $$
] is the sum of all such small contributions conventionally written in the form of an integral[image: 
$$ {V}_{A{A}^{\prime }}=-{\displaystyle \underset{A^{\prime }}{\overset{A}{\int }}\overrightarrow{E}\cdot d\overrightarrow{l}}={\displaystyle \underset{A}{\overset{A^{\prime }}{\int }}\overrightarrow{E}\cdot d\overrightarrow{l}} $$
]

 (1.4)

The integral in Eq. (1.4) is a 

line integral, also called a 

contour integral. In the general case, it is evaluated along a curve connecting points A and A′. In the particular case of Fig. 1.1, this curve is just a straight line.
Exercise 1.1
Assume for simplicity that the electric field along the line of force from A to A′ in Fig. 1.1 is strictly uniform and has the magnitude of 50 V/m. The line length is 0.02 m. Find voltage (or potential) [image: 
$$ {V}_{A{A}^{\prime }} $$
].

Answer: [image: 
$$ {V}_{A{A}^{\prime }}=-{\displaystyle {\int}_{A^{\prime}}^A\overrightarrow{E}\cdot d\overrightarrow{l}}=-{\displaystyle {\int}_0^{0.02\mathrm{m}}50\times \cos \pi \times dl}=50\frac{\mathrm{V}}{\mathrm{m}}\times 0.02\kern0.5em \mathrm{m}=1\kern0.5em \mathrm{V} $$
].

The electrostatic field (and any slowly varying electric field) is called a 

conservative field. There are two equivalent definitions of a conservative field:	1.Electric voltage or electric potential [image: 
$$ {V}_{A{A}^{\prime }} $$
] is path independent; it only depends on the position of A and A′, but not on the shape of the curve between A and A′.


 

	2.The line integral in Eq. (1.4) over any closed contour is zero.


 




                        
The equivalence of these definitions is proved by treating two different integration contours between A and A′ as two parts of one closed contour. The independence of the integration path suggests that the voltage is equal to the potential energy of a unit charge in the electric field. Strictly speaking, it is the change in the potential energy.

1.1.3 Electric Voltage Versus Ground

The voltage between 


two arbitrary points [image: 
$$ {V}_{A{A}^{\prime }} $$
] (e.g., between two terminals of a resistor) is a convenient measure when analyzing electric circuits with discrete circuit components. In this case, it is called the 

voltage drop (or 
voltage difference) 
across a circuit element. At the same time, it is equally convenient to define the “global” or absolute voltage between an arbitrary point in space A and some fixed point A′, which is assigned the voltage value zero. This fixed point (or the set of points) is called the 

ground reference. In general, the ground reference may be chosen arbitrarily. In physics of localized conductors, it is customary to choose the ground at infinity. In electrical engineering, the ground reference is either the physical (earth) ground or some neutral (common) conductor assigned to zero volts. Thus, the absolute voltage versus ground denoted by [image: 
$$ V\left(\overrightarrow{r}\right) $$
] is still defined by Eq. (1.4) where point A is now characterized by the position vector [image: 
$$ \overrightarrow{r} $$
]. By definition, it becomes zero when [image: 
$$ \overrightarrow{r} $$
] approaches ground, i.e., A′. The equivalent representation of Eq. (1.4) for conservative fields may be shown to be[image: 
$$ \overrightarrow{E}\left(\overrightarrow{r}\right)=-\mathrm{grad}V\left(\overrightarrow{r}\right)=-\nabla V\left(\overrightarrow{r}\right) $$
]

 (1.5)

Thus, the electrostatic field is expressed as the gradient of the electric potential or of the (absolute) electric voltage everywhere in space. In other words, it means the electric field does not have closed loops, but starts and ends at the charges. Equation (1.5) is of significant value since it replaces a complicated vector [image: 
$$ \overrightarrow{E} $$
] by the single scalar voltage V.
Exercise 1.2
Electric voltage/potential with respect to ground is given in Cartesian coordinates by [image: 
$$ V\left(\overrightarrow{r}\right)=-y\kern0.5em \left[\mathrm{V}\right] $$
]. Determine the electric field everywhere in space.

Answer: [image: 
$$ {E}_y=1\mathrm{V}/\mathrm{m},\kern0.5em {E}_x={E}_z=0 $$
].

As an example, we choose the x-axis in Fig. 1.1 as the 
ground reference. The positive supply terminal is chosen to have a voltage equal to +0.5 V versus ground, and the negative terminal is assigned a voltage equal to −0.5 V versus ground. Those values will uniquely determine charges ±Q in Fig. 1.1. The function [image: 
$$ V\left(\overrightarrow{r}\right) $$
] is now plotted using the lines of equal potential, or 

equipotential lines. The result is shown in Fig. 1.2. It will be proved next that the surface of any metal (or other) conductor in electrostatics is an 

equipotential surface. All points on this surface have the same value of the electric potential: +0.5 V for the plus terminal and −0.5 V for the minus terminal in Fig. 1.2. Using Eq. (1.5) it can be verified that the equipotential lines and the lines of force are always perpendicular to each other; you can see this in Fig. 1.2.[image: A331468_1_En_1_Fig2_HTML.gif]
Fig. 1.2Electric field and electric potential (electric voltage) of a 1-V voltage supply. Equipotential lines are thin solid curves, while the lines of force are the thicker curves




                        
Exercise 1.3

In Fig. 1.2, determine voltage differences: [image: 
$$ {V}_{B{B}^{\prime }},\kern0.3em {V}_{A^{\prime }A},\kern0.3em {V}_{AB},\kern0.3em {V}_{AC} $$
], [image: 
$$ {V}_{B^{\prime }C} $$
].

Answer: [image: 
$$ {V}_{B{B}^{\prime }}=1\kern0.5em \mathrm{V},\kern0.5em {V}_{A^{\prime }A}=-1\kern0.5em \mathrm{V},\kern0.5em {V}_{AB}=0\kern0.5em \mathrm{V},\kern0.5em {V}_{AC}=0.5\kern0.5em \mathrm{V},\kern0.5em {V}_{B^{\prime }C}=-0.5\kern0.5em \mathrm{V} $$
].


1.1.4 Equipotential Conductors

Consider a conductor, which is characterized by a sufficient number of free charges. The conductor is subject to an applied electric voltage, or to an applied electric field, or to those effects combined. The charge density in the conductor is the difference between the concentration of ions (positive charges) and electrons (negative charges) multiplied by the charge of an electron. The charge density can be either volumetric, measured in C/m3, or surface, measured in C/m2. The following is true when dealing with electrostatics:
	1.The electric field everywhere within the conductor is zero, [image: 
$$ \overrightarrow{E}=\overrightarrow{0} $$
]. Otherwise, the Coulomb force given by Eq. (1.1) will act on free charges and cause permanent charge motion (current flow), which is impossible.


 

	2.The volumetric charge density everywhere within the conductor is zero. If this were not true, then according to 

Gauss’ theorem, there would be a nonzero electric field within the conductor, which is impossible based on statement #1.


 

	3.The surface charge density is not zero. In fact, the surface charge is distributed so as to assure that statement #1 is satisfied.


 

	4.
For the electric field given by Eq. (1.5), the tangential component of the electric field [image: 
$$ {\overrightarrow{E}}_t $$
] is continuous across an interface. Since [image: 
$$ {\overrightarrow{E}}_t=\overrightarrow{0} $$
] inside the conductor, [image: 
$$ {\overrightarrow{E}}_t $$
] must be zero over the entire surface of the conductor too. This is seen in Figs. 1.1 and 1.2 where the lines of force are perpendicular to the conductor surface.


 

	5.
Since [image: 
$$ {\overrightarrow{E}}_t=\overrightarrow{0} $$
] on the conductor surface, any line integral between two points on this surface is zero. Consequently the potential or voltage remains the same for any point on this surface. The conductor surface is thus an 

equipotential surface.


 




                        
These statements have an immediate practical application. Consider two conductors (wires) attached to the power supply terminals as seen in Fig. 1.3.[image: A331468_1_En_1_Fig3_HTML.gif]
Fig. 1.3Voltage source from Fig. 1.2 with two wires connected. There is still no current flow




                        
Everywhere along the upper wire, the voltage is +0.5 V with respect to ground. Furthermore, along the lower wire, the voltage is −0.5 V with respect to ground. Everywhere in space the voltage difference between the two wires is therefore 1 V. The wires may be extremely long. The charge [image: 
$$ \pm {Q}^{\prime } $$
] required to maintain the corresponding voltage difference of 1 V increases when the combined area of the metal conductors increases. The conducting wires thus “guide” the electric field to a remote point. Without the attached wires, the field would be spread out in space as seen in Figs. 1.1 and 1.2.
Exercise 1.4
In Fig. 1.3, two wires happen to be very close to each other at a certain location; they are separated by 1 mm. What is approximately the electric field strength at this location?

Answer: On the order of 1000 V/m, the wire isolation has little influence.

Exercise 1.5
In Fig. 1.3, a human body is in 

contact with the upper wire. What is the body’s voltage versus ground?

Answer: Since the human body is still a conductor, its voltage is +0.5 V.


1.1.5 Use of Coulomb’s Law to Solve Electrostatic Problems

The theory of electrostatics solely relies upon the distribution of surface charges, since no other charges exist. An important case is a conductor subject to voltage V applied from one terminal of the voltage source; the connection position does not matter. The other terminal is usually located very far away, ideally at infinity; it is customarily assigned a value of 0 V. As a result, the conductor acquires an extra positive charge Q if V is positive. The quantities of interest are the value of Q itself and the resulting surface charge distribution. The ratio Q/V is the 

self-capacitance of the conductor. Consider a complicated conductor—a human body. The idea of the solution is simple and elegant. The entire body surface is divided into many small elements with a constant charge density each. We assign an unknown charge q

                i
               to every such element with number i (
[image: 
$$ i=1,\dots, N $$
]) and center position [image: 
$$ {\overrightarrow{r}}_i $$
]. Charge q

                i
               is very similar to the point charge. It follows from Coulomb’s law that it generates the electric potential in space given by[image: 
$$ V\left(\overrightarrow{r}\right)=\frac{q_i}{4\pi {\varepsilon}_0\left|\overrightarrow{r}-{\overrightarrow{r}}_i\right|} $$
]

 (1.6)

Here, [image: 
$$ {\varepsilon}_0=8.85419\times {10}^{-12}\kern0.5em \mathrm{F}/\mathrm{m} $$
] is the 

electric permittivity of air. The net voltage of the jth element is the sum of all such voltage contributions, i.e.,[image: 
$$ V\left({\overrightarrow{r}}_j\right)={\displaystyle \sum_{i=1}^N\frac{q_i}{4\pi {\varepsilon}_0\left|{\overrightarrow{r}}_j-{\overrightarrow{r}}_i\right|}}=1\kern0.5em \mathrm{V},\kern1em j=1,..,N $$
]

 (1.7)


Equation (1.7) forms a system of N equations for N unknown charges. The diagonal terms need a special treatment. By solving this algebraic system of equations using linear algebra, we obtain the unknown charges; their sum is the net charge Q. Figure 1.4 shows the surface charge distribution found this way for two human subjects. Emphasize that the charge (and the strongest electric field) concentrates at the sharpest parts of the body: elbows, hands, feet, and the head. The total excess body charge Q in both cases is approximately [image: 
$$ 50\times {10}^{-12}\kern0.5em \mathrm{C} $$
]. This is a very small charge; the same charge is stored in a 50 pF capacitor at 1 V. The method of this example is widely used in electrostatic simulations including modeling electrostatic discharge and its effect on integrated circuits.[image: A331468_1_En_1_Fig4_HTML.gif]
Fig. 1.4Surface charge distribution over the human body based on an applied voltage of 1 V. Both subjects are ECE graduate students




                        

A human beneath the power 

line is subject to an electric field. A similar solution applies given that the body surface is still the equipotential surface. Figure 1.5 shows the surface charge distribution for two human subjects in a vertical electric field of 1 V/m. The negative charges concentrate close to the head, whereas the positive charges concentrate in the lower body. Figure 1.5 also shows the electric potential distribution around the body. Dense equipotential lines mean a high local electric field. The local field may exceed the external field by a factor of 10 or more. All results are linearly scaled with the applied electric field.[image: A331468_1_En_1_Fig5_HTML.gif]
Fig. 1.5Human body subject to an applied electric field: surface charge and potential distribution




                        


1.2 Steady-State Current Flow and Magnetostatics
1.2.1 Electric Current

An electric current in a 

material is the directed motion of free positive charges. Consequently, the electrons, which are often the only free charges in the conductor, move in the opposite direction. The 

electric current density [image: 
$$ \overrightarrow{j} $$
] everywhere in the material is a vector, and it is measured in amperes per meter square, i.e., A/m2. The total current I through a conductor with the uniform current density is the product of the current density magnitude and the conductor cross section A; I is measured in amperes. Circuits with lumped components deal with the total currents only. The current density (and the total current) is directly proportional to the applied electric field,[image: 
$$ \overrightarrow{j}\left(\overrightarrow{r}\right)=\sigma \kern0.1em \overrightarrow{E}\left(\overrightarrow{r}\right) $$
]

 (1.8a)


at any point of interest [image: 
$$ \overrightarrow{r} $$
]. Here, σ is the material conductivity with units of siemens/m, i.e., S/m. Note that 1 S = 1/Ω. If there is no electric field, there is no electric current in the material and vice versa. In metals, the conductivity σ is very high. Therefore, even a 


vanishingly small electric field inside a metal conductor creates a large electric current.
Exercise 1.6
An AWG #00 (American Wire Gauge) aluminum wire has the conductivity of 4.0 × 107 S/m and the diameter of 9.266 mm. Determine the total current in the wire when the electric field inside the wire is 0.01 V/m. This value is more than 10,000 times less than the field between the terminals of a 5-V laboratory supply separated by 2 cm.

Answer: 27 A.


For steady-state current flow, an 

electrostatic potential exists; it is given by Eq. (1.5). Therefore, the current density can be expressed as the gradient of the potential,[image: 
$$ \overrightarrow{j}\left(\overrightarrow{r}\right)=-\sigma \nabla V\left(\overrightarrow{r}\right) $$
]

 (1.8b)


                        

1.2.2 Difference Between Current Flow Model and Electrostatics

In electrostatics, there are no 

charges and there is no electric field within conductors; only the surface charges exist. The steady-state current problem is quite different. The volumetric uncompensated charge density still does not exist within the conductor, but the electric field does. Along with this, the surface charge density is always present, similar to electrostatics. Physically, the difference arises from the different boundary conditions. The conductor surface is divided into two distinct parts: the surface of electrodes, S
e, where the voltage (or current) is applied, and the rest of conductor surface, S
c, which is in contact with air. The following is true for the steady-state current flow:	1.Everywhere on the surface S
c, the current density component perpendicular to the surface is zero, i.e., [image: 
$$ \overrightarrow{j}\cdot \overrightarrow{n}=0 $$
], where [image: 
$$ \overrightarrow{n} $$
] is the unit normal vector to the surface, and dot denotes the scalar product of two vectors. In other words, no current can flow from the conductor into air.


 

	2.On the surface of electrodes S
e, the voltage is given: for example, +0.5 V on the left electrode and −0.5 V on the right electrode. Alternatively, the inflowing current, [image: 
$$ \overrightarrow{j}\cdot \overrightarrow{n} $$
], may be given.


 




                        
How Does the Conductor “Guide” the Electric Field?

We consider the current flow in a 

conducting cylinder with two circular electrodes shown in Fig. 1.6b. The electrostatic counterpart of the problem is given by the same coaxial electrode pair in air, see Fig. 1.6a. The electrodes have the radius a; they are separated by 25a. The electrode voltages are ±0.5 V. The exact value of the cylinder conductivity does not matter; the same results will be obtained. The electrostatic problem and the steady-state current problem are both solved as described in the previous section. Results of both solutions are given in Fig. 1.6 where the equipotential lines and the electric field vectors are plotted. Some general observations from this figure are worthy of note:[image: A331468_1_En_1_Fig6_HTML.gif]
Fig. 1.6(a) Two electrodes subject to ±0.5 V in free space; (b) the same electrodes but with a conducting cylinder between them. Equipotential lines and electric field vectors are shown




	1.The current-carrying conductor “guides” the electric field as shown in Fig. 1.6a which, otherwise, would be spread out in space; see Fig. 1.6b.


 

	2.In the long conductor, the electric field and the electric current are both directed along the conductor axis; they are uniform across any conductor cross section, which is simultaneously an equipotential surface. In other words, current flow in the long conductor is one dimensional, like water flow in a pipe. This is also true if the conductor is bent or has a noncircular cross section


 

	3.The voltage decreases linearly along the conductor from the most positive to the most negative value. The voltage drop per unit length is constant; it is only a function of the applied voltage.


 




                            
It is seen from Fig. 1.6b that within in a current-carrying conductor of length l:[image: 
$$ E=\frac{V}{l} $$
]

 (1.9)


where E is the magnitude of the electric field (its direction is along the conductor axis), and V is the voltage across the conductor (1 V in the present case). Equation (1.9) is a simplified version of Eq. (1.4) for uniform fields. In many textbooks, it is used to derive Ohm’s law. Note that the electric field in Fig. 1.6b is not continuous across the conductor-air interface. A component of the electric field perpendicular to the conductor boundary suddenly appears. This component is due to the surface charges on the conductor–air interface (not shown in the figure).
Exercise 1.7
A common AWG #22 copper wire is used in the laboratory to form a coil with the radius of 0.1 m and 100 turns. This coil is subject to an applied voltage of 0.5 V. Determine the total current in the wire if its diameter is 0.64516 mm; the copper conductivity is 5.8 × 107 S/m. Hint: find the electric field in the wire first.

Answer: 0.1509 A.



1.2.3 Physical Model of an Electric Circuit

Thus far, we have considered the 

current flow in only one wire. However, a simple electric circuit uses two wires and it includes at least three elements:	1.A voltage power supply, which in steady-state (direct current or DC) case generates a constant voltage between its terminals.


 

	2.An electric load that consumes electric power. The load may be modeled as a resistant material of a much smaller conductivity.


 

	3.
Two wires, which extend from the source to the load. Those wires form a 

transmission line. In laboratory settings, both wires may be arbitrarily bent.


 




                        
Figure 1.7 shows a physical model of the simple circuit. We study its electric part first. In Fig. 1.7a, the highest electric field magnitude is observed exactly between the two conducting wires, at the line connecting its centers. At the same time, the electric field in the wires is usually very small. Still, sufficient current flows there due to the high material conductivity; see Eq. (1.8a). However, the electric field in the load cylinder is not small. This is indicated by denser equipotential surfaces. In Fig. 1.7a, the equipotential surfaces are all separated by 0.05 V. There is a net voltage drop of 0.3 V along each wire and the voltage drop of 0.4 V across the load, resulting in a total potential drop of 1 V. This equality is 
                
              KVL (Kirchhoff’s voltage law). Ideally, when the conductivity of the wires is infinitely high, the entire source voltage appears across the load cylinder. The field in the wires becomes vanishingly small, but enough current still flows. The wire of infinite conductivity, or the ideal wire, is a useful abstraction.[image: A331468_1_En_1_Fig7_HTML.gif]
Fig. 1.7Accurate physical model of an electric circuit




                        
Exercise 1.8
If the voltage drop along each wire in Fig. 1.7a were 0.01 V, what would be the value of the voltage across the load?

Answer: 0.98 V.

Exercise 1.9
In contrast to Fig. 1.7b, the field within the wire in Fig. 1.6b is not small, regardless of its conductivity. Why is it so?

Answer: There is no load in Fig. 1.6b; the entire voltage drop is purposely forced to occur across the wire.


1.2.4 Magnetostatics and Ampere’s Law

We next study the magnetic part of the circuit in Fig. 1.7b. The same electric current I flows in the entire circuit. The current in one of the conductors in Fig. 1.7b creates the magnetic field (magnetic-field intensity) [image: 
$$ \overrightarrow{H} $$
] with units of A/m around the conductor. If the conductors are considered to be sufficiently long, the magnitude (absolute value) of the field [image: 
$$ \overrightarrow{H}\left(\overrightarrow{r}\right) $$
] anywhere in space, except within the conductor, is given by[image: 
$$ H\left(\overrightarrow{r}\right)=\frac{I}{2\pi \left|\overrightarrow{r}\right|} $$
]

 (1.10)

Equation (1.10) is a particular form of Ampere’s law for an infinite straight wire of the total current I. The vector [image: 
$$ \overrightarrow{H} $$
] forms concentric circles around the wire; its direction follows the right-hand rule. When two wires are present, as in Fig. 1.7b, the resulting combined magnetic field is the vector sum of two solutions given by Eq. (1.10) for two conductors having the opposite current directions, respectively. The lines of the combined magnetic field are shown in Fig. 1.7b. They are always perpendicular to the lines of force for the electric field. The magnetic-field magnitude in Fig. 1.7b also has its maximum exactly between the two conducting wires, at the line connecting its centers.
Exercise 1.10
Determine the magnetic-field magnitude in the middle between two parallel long wires carrying current of ±1 A each and separated by 2 cm.

Answer: [image: 
$$ H\left(\overrightarrow{r}\right)= $$
] 31.8 A/m.

Another useful form of 

Ampere’s law is the magnetic field of an infinite “current sheet,” i.e., when current flows in a thin conducting sheet in one direction. The sheet may be thought of as an infinite number of parallel thin wires carrying the same current. If j [A/m] is the current density per unit of sheet width, then the resulting constant field is
[image: 
$$ H=\frac{1}{2}j=\mathrm{const} $$
]

 (1.11)


                        

1.2.5 Origin of Electric Power Transfer

We know from physics classes that electric power P delivered to the load is given by the product [image: 
$$ P=VI $$
] where V is the voltage across the load and I is the current through it. How exactly is this power transferred to the load? To answer this question, we assume a transmission line in the form of two parallel sheets of width W and spacing l shown in Fig. 1.8. Each sheet carries current density with the magnitude j per unit of sheet length.[image: A331468_1_En_1_Fig8_HTML.gif]
Fig. 1.8Transmission line in the form of two current sheets




                        
When the material conductivity is infinite, the voltage between the two sheets is the load voltage V. For [image: 
$$ l/W<<1 $$
], Eq. (1.9) yields the electric field within the transmission line, [image: 
$$ E=V/l $$
]. The magnetic field is found using Eq. (1.11). The result is [image: 
$$ H=j $$
] since both sheets contribute to the field within the line. Next, we define a vector[image: 
$$ \overrightarrow{S}=\overrightarrow{E}\times \overrightarrow{H} $$
]

 (1.12)

where the symbol × stands for the cross product or vector product. The vector [image: 
$$ \overrightarrow{S} $$
] is called the 

Poynting vector; it is shown in Fig. 1.8. The units for the Poynting vector are given by power per unit area, i.e., [image: 
$$ 1\mathrm{V}/\mathrm{m}\times 1\kern0.5em \mathrm{A}/\mathrm{m}=1\kern0.5em \mathrm{W}/{\mathrm{m}}^2 $$
]. Thus, the Poynting vector characterizes the directional energy flux density in space. Its magnitude in Fig. 1.8 is given by [image: 
$$ S=EH=Vj/l=VI/(lW) $$
] where [image: 
$$ I=jW $$
] is the net current in every conductor. Multiplying the Poynting vector by the area [image: 
$$ A=lW $$
] where the fields are concentrated, we obtain the remarkable result,[image: 
$$ AS=VI=P $$
]

 (1.13)

In other words, the power is transferred by the fields. This result is perhaps less important for wired circuits where the fields are directly linked to charges and currents. However, it is important for the transition from wired to wireless circuits. At a sufficiently high frequency, significant electric and magnetic fields will be radiated by an antenna into empty space. These fields will carry power flux density given by Eq. (1.12).
Exercise 1.11
Two conductors 

extending from the source to the load are parallel 1-cm-wide perfectly conducting sheets separated by 1 mm. The (vertical) electric field between the plates is 100 V/m; the (horizontal) magnetic field is 100 A/m. Determine electric power delivered to the load. Assume no field fringing.

Answer: [image: 
$$ P=0.1\mathrm{W} $$
].



1.3 Hydraulic and Fluid Mechanics Analogies
1.3.1 Hydraulic Analogies in the DC Steady State
In DC and low-frequency 

alternating circuits, the electric and magnetic fields outside conductors may be ignored without affecting the final results. When this is the case, the electric circuits follow rather precisely useful fluid mechanics (or hydraulic) analogies. Major hydraulic analogies are depicted in Fig 1.9. Let us consider a water pump connected to a filter in Fig. 1.9a—left. The water pump creates a constant pressure difference p between its terminals, which forces water to move through the filter. Although the constant pressure (torque) pump is less common than a water pump of constant flux, we can use it as an analogy since it exactly corresponds to the voltage source, which maintains constant voltage difference V in Fig. 1.9a—right. The filter can be thought of as an electric resistance: it opposes the water flow, and a certain pressure difference, or voltage, is required to overcome this resistance. Electric current corresponds to fluid velocity times the tube cross section which constitutes the total water flux. For the entirely closed pumping system in Fig. 1.9a, the water pressure inside the system can have an arbitrary reference level p
0. This level may be quite different from the ambient atmospheric pressure. Similarly, an isolated electric circuit may have an arbitrary voltage V
0 versus ground, due to static charge accumulation.[image: A331468_1_En_1_Fig9_HTML.gif]
Fig. 1.9Hydraulic analogies in the DC steady state




                        
The condition [image: 
$$ {V}_0=0 $$
] will be achieved by grounding the circuit. Figure 1.9b–d also specifies hydraulic analogies for the separate circuit elements. We consider steady-state flow of incompressible fluid. Emphasize that the 

DC voltage source in Fig. 1.9c is analogous to a constant-torque water pump, which creates a constant pressure difference between its terminals, whereas a DC electric current source in Fig. 1.9d is similar to a constant-speed water pump, which creates constant fluid flux.

1.3.2 Analogies for Alternating-Current (AC) Circuits

This case illustrated in 
Fig. 1.10 corresponds to 

alternating flow of incompressible fluid in a piping system. The AC voltage source corresponds to a harmonically (sinusoidally) oscillating piston in Fig. 1.10a, with a constant-torque amplitude. A capacitance in Fig. 1.10b is represented by a flexible membrane. The capacitance value, C, corresponds to the inverse stiffness, 1/k, of the membrane, also called the compliance. When [image: 
$$ k\to \infty $$
] and [image: 
$$ C\to 0 $$
] (a rigid membrane), the capacitance value tends to zero. The membrane becomes a solid wall, which blocks the alternating fluid flow entirely. In another limiting case ([image: 
$$ k\to 0 $$
] or [image: 
$$ C\to \infty $$
]), the membrane has no effect on the fluid flow. Intermediate cases correspond to a partial blocking. A massive wheel with a rotational inertia in Fig. 1.10c represents an inductance. The inductance value, L, corresponds to the mechanical mass m of the wheel.[image: A331468_1_En_1_Fig10_HTML.gif]
Fig. 1.10Hydraulic analogies for alternating-current (AC) circuit elements




                        
When [image: 
$$ m\to \infty $$
] or [image: 
$$ L\to 0 $$
], the wheel does not respond to fluid oscillations and blocks the alternating fluid flow entirely. In the opposite case ([image: 
$$ m\to 0 $$
] or [image: 
$$ L\to \infty $$
]), the wheel has no effect on the fluid flow. Intermediate cases correspond to a partial blocking. An electric transformer shown in Fig. 1.10d operates with alternating currents. One mechanical analogy is a gear transmission or gearbox. In terms of angular speed ω [rad/s] and developed torque [image: 
$$ T\kern0.5em \left[\mathrm{N}\cdot \mathrm{m}\right] $$
], one has [image: 
$$ {T}_2=\left({D}_2/{D}_1\right){T}_1 $$
], and [image: 
$$ {\omega}_2=\left({D}_1/{D}_2\right){\omega}_1 $$
], where D
1,2 are pitch diameters of gear wheels. Here, torque is the voltage and speed is the current. D
1,2 are similar to the number of turns, N
1,2, of the primary 

and 

secondary coils of the transformer, respectively. This analogy ignores the field effect—magnetic coupling between the coils. Therefore, it will fail in the DC case. A more realistic transformer analogy is shown in Fig. 1.10e. The model with four pistons transforms power from one circuit to another in the AC case only. It is drawn for a 1:1 transformer. When a transformer with a turn ratio of 2:1 is required, the area of output pistons is doubled. This doubles the output current, but the output voltage (the force) will be halved.

1.3.3 Analogies for Semiconductor Circuit Components

Semiconductor circuit components are similar to fluid valves,
                
                
               which are either externally controlled or are controlled by the fluid-flow pressure itself. Figure 1.11a shows a hydraulic analogy for a 

diode. This picture highlights its major function: a one-way valve. Fig. 1.11b illustrates the operation of an 
n-channel metal-oxide-semiconductor field-effect transistor, or NMOS transistor. This transistor is a valve controlled by a third voltage terminal. For another 

bipolar junction transistor or BJT in Fig. 1.11c, not only the control voltage but also the control current is important. In other words, to keep the valve open, we must also supply a small amount of current (fluid) at the control terminal.[image: A331468_1_En_1_Fig11_HTML.gif]
Fig. 1.11Analogies for semiconductor circuit components




                        


Summary

              	
                          Electrostatics
                        

	
                          Electric voltage/electric potential
                          [image: A331468_1_En_1_Figa_HTML.gif]
                        
	
[image: 
$$ {V}_{A{A}^{\prime }}=1\kern0.5em \mathrm{V} $$
] ⇒Work of 1 J is necessary to bring the 1 C of charge from point A′ to point A against the field; [image: 
$$ {V}_{A{A}^{\prime }}=-{\displaystyle \underset{A^{\prime }}{\overset{A}{\int }}\overrightarrow{E}\cdot d\overrightarrow{l}} $$
] for any contour 1, 2, or 3; [image: 
$$ \overrightarrow{E}\left(\overrightarrow{r}\right)=- gradV\left(\overrightarrow{r}\right)=-\nabla V\left(\overrightarrow{r}\right) $$
] for potential [image: 
$$ V\left(\overrightarrow{r}\right) $$
] everywhere in space including materials; [image: 
$$ V=lE $$
] in uniform fields (most important).

	
                          Coulomb force on charge q
                          [image: A331468_1_En_1_Figb_HTML.gif]
                        
	
[image: 
$$ \overrightarrow{F}=q\overrightarrow{E} $$
] [N]The force is directed along the field for positive charges and against the field for negative charges

	
                          Gauss law
                          [image: A331468_1_En_1_Figc_HTML.gif]
                        
	Total flux of the electric field through closed surface S times the permittivity is the total charge enclosed by S.
[image: 
$$ \frac{Q}{\varepsilon_0}={\displaystyle \underset{S}{\int}\overrightarrow{E}\cdot \overrightarrow{n}\kern0.2em dS} $$
] (ε
0 =8.854×10−12 F/m)

	
                          Equipotential conductors
                          [image: A331468_1_En_1_Figd_HTML.gif]
                        
	
Within conductor(s) with applied voltage:
 – Electric field is exactly zero;
 – Volumetric charge density (C/m3) is exactly zero.

                                                    On surface(s) of conductor(s) with applied voltage:
 – Every point has the same voltage (conductor surface is equipotential surface);
 – Surface charge density (C/m2) exists;
 – Emanating electric field is perpendicular to the surface (tangential field is zero: [image: 
$$ {\overrightarrow{E}}_t=0 $$
])

                                                    Outside conductor(s):
 – Equipotential lines and lines of force are perpendicular to each other

	
                          Voltage between two wires
                          [image: A331468_1_En_1_Fige_HTML.gif]
                        
	 – Metal wires “guide” the electric field/voltage to a remote point 
 – Given the same voltage, charges on wires increase when their length increases.

	
                          Electrical induction in electrostatics
                          [image: A331468_1_En_1_Figf_HTML.gif]
                        
	 – Conductors 1 and 2 are subject to applied voltages V
1, V
2;
 – Conductor 3 has zero net charge;
 – Conductor 3 acquires certain voltage V
3;
 – Surface charges in conductor 3 are separated as shown in the figure.

	
                          Steady-state current flow
                        

	
                          Associated electric field
                          [image: A331468_1_En_1_Figg_HTML.gif]
                        
	 – Current density (A/m2) and total current I exist if and only if there is an electric field within the material; [image: 
$$ \overrightarrow{j}\left(\overrightarrow{r}\right)=\sigma \kern0.1em \overrightarrow{E}\left(\overrightarrow{r}\right) $$
];
 – There is little field in the conductor wires of a high conductivity;
 – The field is high in air gap between two wires;
 – The field is equally high within the load;
 – Both wires carry total surface charges [image: 
$$ \pm Q $$
] defined by supply voltage, wire separation, and wire length

	
                          Simple formulas for wire conductors
                          [image: A331468_1_En_1_Figh_HTML.gif]
                        
	
                          [image: 
$$ \begin{array}{l}I=AE\sigma \\ {}I=\pi \kern0.1em {r}^2E\sigma \\ {}E=\left({V}_1-{V}_2\right)/l\end{array} $$
]
                        

	
                          Non-uniform current flow
                          [image: A331468_1_En_1_Figi_HTML.gif]
                        
	Compare:
In the steady-state current-flow model:
 – Electric field within the conductor is not zero;
 – The conductor surface is not the equipotential surface
In the electrostatic model:
 – Electric field within the conductor is zero;
 – The conductor surface is the equipotential surface.

	
                          Current conservation law
                          [image: A331468_1_En_1_Figj_HTML.gif]
                        
	
[image: 
$$ {\displaystyle \underset{S}{\int}\overrightarrow{j}\cdot \overrightarrow{n}\kern0.2em dS}=0 $$
] There are no sources and sinks of electric current within a conductor except the surface electrodes

	
                          Magnetostatics
                        

	
                          Ampere’s law in a general form
                          [image: A331468_1_En_1_Figk_HTML.gif]
                        
	Line integral of the magnetic field over a closed contour is the total current enclosed by this contour
[image: 
$$ {\displaystyle \underset{S}{\int}\overrightarrow{H}\cdot d\overrightarrow{l}}={\displaystyle \underset{S}{\int}\overrightarrow{j}\cdot \overrightarrow{n}\kern0.2em dS}={I}_{\mathrm{enc}} $$
], j is measured in A/m2
                                                

	
                          Particular forms of Ampere’s law
                          [image: A331468_1_En_1_Figl_HTML.gif]
                        
	Wire: [image: 
$$ H\left(\overrightarrow{r}\right)=\frac{I}{2\pi \kern0.1em r},\kern1em r=\left|\overrightarrow{r}\right| $$
] (particular form)Sheet of current: [image: 
$$ H=\frac{j}{2}= const $$
], j is in A/m




            

Problems
1.1 Electrostatics of Conductors

                1.1.2 Electric Potential and Electric Voltage
              

                1.1.3 Electric Voltage Versus Ground
              

                1.1.4 Equipotential Conductors
              
Problem 1.1
Determine voltage (or potential) V

                    AB
                   and V

                    BA
                   (show units) given that the electric field between points A and B is uniform and has the value of 5 V/m. Point A has coordinates (0, 0); point B has coordinates (1, 1).
[image: A331468_1_En_1_Figm_HTML.gif]


                                

Problem 1.2
Determine voltages V

                    AB
                  , V

                    BD
                  , and V

                    BC
                   given that the electric field shown in the figure that follows is uniform and has the value of (A) 10 V/m, (B) 50 V/m, and (C) 500 V/m.
[image: A331468_1_En_1_Fign_HTML.gif]


                                

Problem 1.3
Assume that the electric field along a line of force AA′ has the value 1×l V/m where [image: 
$$ 0\le l\le 1\kern0.5em \mathrm{m} $$
] is the distance along the line. Find voltage (or potential) [image: 
$$ {V}_{A{A}^{\prime }} $$
].

Problem 1.4

The electric potential versus ground is given in Cartesian
coordinates by [image: 
$$ V\left(\overrightarrow{r}\right)=-x+y-z $$
] [V]. Determine the corresponding electric field everywhere in space.

Problem 1.5
The figure below shows the electric potential distribution across the semiconductor pn-junction of a Si diode. What kinetic energy should the positive charge (a hole) have in order to climb the potential hill from anode to cathode given that the hill “height” (or the built-in voltage of the pn-junction) is [image: 
$$ {V}_{bi}=0.7\kern0.5em \mathrm{V} $$
]? The hole charge is the opposite of the electron charge. Express your result in joules.
[image: A331468_1_En_1_Figo_HTML.gif]


                                

Problem 1.6
Is the electric field shown in the figure that follows conservative? Justify your answer.
[image: A331468_1_En_1_Figp_HTML.gif]


                                

Problem 1.7
List all conditions for voltage and electric field used in electrostatic problems.

Problem 1.8
The figure below shows a 345 kV power tower used in MA, USA—front view. It also depicts electric potential/voltage and electric field distributions in space:	A.Determine which figure corresponds to the electric potential and which to the magnitude of the electric field.


 

	B.Provide a detailed justification of your answer.


 




[image: A331468_1_En_1_Figq_HTML.gif]


                                

Problem 1.9

Figure that follows shows some isolated conductors. Determine the following voltage differences: V

                    AB
                  , V

                    AC
                  , V

                    CB
                  .
[image: A331468_1_En_1_Figr_HTML.gif]


                                

Problem 1.10

In your circuit, two wires connected to a 10-V voltage supply happen to be very close to each other at a certain location; they are separated by 2 mm.	A.What is the voltage between the wires at this location?


 

	B.What is approximately the electric field strength at this location?


 






Problem 1.11
Is the figure that follows correct? Black curves indicate metal conductors. Why yes or why not?
[image: A331468_1_En_1_Figs_HTML.gif]


                                


1.2 Steady-state Current Flow and Magnetostatics

                1.2.1 Electric Current
              

                1.2.2 Difference Between Current Flow Model and Electrostatics
              

                1.2.3 Physical Model of an Electric Circuit
              
Problem 1.12
List the conditions for voltage and electric field used in the steady-state electric current problems.

Problem 1.13
Figure that follows shows the lines of force and equipotential lines for a DC current flow in a conductor due to two electrodes. List all mistakes of this drawing.
[image: A331468_1_En_1_Figt_HTML.gif]


                                

Problem 1.14
An AWG #10 (American Wire Gauge) aluminum wire has the conductivity of 4.0×107 S/m and the diameter of 2.58826 mm. Determine the total current in the wire when the electric field inside the wire is (A) 0.001 V/m; (B) 0.005 V/m.

Problem 1.15
A copper wire (AWG #24) in the form of a coil with the radius of 0.1 m and 1000 turns is subject to applied voltage of 5 V. Determine the total current in the wire if its diameter is 0.51054 mm; the copper conductivity is 5.8 × 107 S/m.

Problem 1.16

The figure below shows a conducting cylinder of radius [image: 
$$ R=1\ \mathrm{cm} $$
], length [image: 
$$ L=5\ \mathrm{cm} $$
], and conductivity [image: 
$$ {\sigma}_1=1.0\ \mathrm{S}/\mathrm{m} $$
] in air. Two electrodes are attached on both cylinder sides; the electrode radius is exactly the cylinder radius. Electrode voltages are exactly ±1 V:
[image: A331468_1_En_1_Figu_HTML.gif]


	A.Determine and sketch to scale the electric potential everywhere inside the cylinder and on its surface.


 

	B.Determine and sketch to scale the electric field everywhere inside the cylinder.


 

	C.Attempt to sketch the electric potential distribution outside the cylinder.


 

	D.
Repeat tasks A and B when the voltage electrodes are replaced by current electrodes with the applied electric current density of ±1 A/m2.


 




                                


                1.2.4 Magnetostatics/Ampere’s Law
              

                1.2.5 Origin of Electric Power Transfer
              
Problem 1.17
A DC magnetic field of 1000 A/m is measured between two parallel wires of an electric circuit separated by 0.5 m. What is the circuit current?

Problem 1.18
Two conductors running from the source to the load are two parallel 0.5-cm-wide thin plates of infinite conductivity. The (vertical) electric field between the plates is 100 V/m; the (horizontal) magnetic field between the plates is 100 A/m. The load power is 0.1 W. Assuming no field fringing, determine (A) plate separation, (B) load voltage, and (C) load current.

Problem 1.19
Repeat the previous problem when the electric field between the plate electrodes increases by a factor of two, but the magnetic field decreases by a factor of two.


1.3 Hydraulic and fluid mechanics analogies
Problem 1.20
For the hydraulic setup shown in the figure, draw its electrical counterpart (an electric circuit) using the circuit symbols.
[image: A331468_1_En_1_Figv_HTML.gif]


                                

Problem 1.21
For the hydraulic setup shown in the figure, present its electrical counterpart (an electric circuit). Note a connection to a large reservoir with atmospheric pressure.[image: A331468_1_En_1_Figw_HTML.gif]
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Overview

              Prerequisites:
	Knowledge of university physics: electricity and magnetism (optional)

	Knowledge of vector calculus (optional)




              Objectives of Section 2.1:

	Realize the difference between circuit elements and circuit components

	Review (derive) Ohm’s law

	Become familiar with the υ-i characteristic of the resistance including limiting cases

	Realize the importance of ohmic losses in long cables

	Become familiar with discrete fixed resistors and with resistive sensing elements




              Objectives of Section 2.2:

	Realize the meaning of a passive nonlinear circuit element and its υ-i characteristic

	Define two resistance types (static and dynamic) for a nonlinear passive circuit element

	Present two examples of nonlinear elements: ideal diode and a threshold switch




              Objectives of Section 2.3:

	Introduce the concept of independent voltage and current sources and become familiar with their υ-i characteristics

	Introduce the concept of practical voltage/current sources including their υ-i characteristics

	Obtain initial exposure to the operation principles of voltage sources including specific examples




              Objectives of Section 2.4:

	Become familiar with the concept of a dependent source

	Become familiar with four major types of dependent sources

	Obtain initial exposure to transfer characteristics of dependent sources

	Become familiar with ideal time-varying and AC sources




              Objectives of Section 2.5:

	Formalize the meaning of voltmeter and ammeter from the viewpoint of open and short circuits

	Obtain a clear understanding of the circuit ground and its role in the circuit

	Review different ground types




              Application Examples:
	Power loss in transmission lines and cables

	Resistive sensing elements

	DC voltage generator with permanent magnets

	Chemical battery




            

2.1 Resistance: Linear Passive Circuit Element
2.1.1 Circuit Elements Versus Circuit Components
Circuit Elements
Similar to mechanical mass,
                    
                    
                   spring, and damper used in analytical dynamics, circuit elements are simple hypothetic ideal models. Every circuit element is characterized by its unique voltage/current dependence called the 
υ-i characteristic. Most 

of the υ-i characteristics reflect general physical laws. A list of the circuit elements

 includes:	1.Resistance


 

	2.Capacitance


 

	3.Inductance


 

	4.Ideal electric transformer


 

	5.Voltage source (independent and dependent)


 

	6.Current source (independent and dependent)


 

	7.Ideal switch


 

	8.Ideal (Shockley) diode


 

	9.Logic gates (NOT, AND, OR).
                            
                            
                          



 





Circuit elements may be linear (resistance) or 
                    nonlinear
                    
                  (ideal diode), passive (resistance) or active (voltage source), static (resistance) or dynamic (capacitance/inductance), or both. Although all circuit elements studied here are static ones, the extension to the case of time-varying voltage and current is 

often trivial.

Circuit Components

Circuit components are numerous hardware counterparts of the circuit elements. Examples of the circuit components include resistor, capacitor, inductor, battery, etc. The circuit components may be modeled as

 combinations of the ideal circuit elements with one dominant desired element (e.g., resistance) and several parasitic ones (e.g., parasitic inductance and capacitance of a physical resistor). Another example is a battery, which is modeled as an ideal voltage source in series with a (small) resistance. In practice, we attempt to model any existing or newly discovered circuit component 

as a combination of the well-known circuit elements. The same is valid for more complicated structures targeted by electrical, mechanical, and biomedical engineers. An example is a human body, the response of which is modeled as a combination of resistance and capacitance.


2.1.2 Resistance
Symbols and Terminals
Figure 2.1 shows the circuit symbol for resistance with current direction and 
voltage polarity: positive voltage applied to the left terminal and a negative voltage applied to the right terminal cause a current to flow from left to right, as depicted in Fig. 2.1b. As a circuit element, the resistance is fully symmetric: terminals 1 and 2 in Fig. 2.1 may be interchanged without affecting its operation. Thus, the resistance does not have a polarity.[image: A331468_1_En_2_Fig1_HTML.gif]
Fig. 2.1Resistance symbol along with the voltage and current






Voltage Across the Resistance
The voltage difference (
                    
                  or voltage drop or simply voltage) across the 
resistance, V, in Fig. 2.1 is a signed quantity. The voltage is measured in volts (V), named in honor of Italian physicist Alessandro Volta (1745–1827), who invented the first battery. Plus and minus signs across the resistance indicate the 
                    voltage
                    
                    
                   polarity. Specifically, a plus sign denotes a (presumably) higher absolute voltage level versus ground than the minus sign; see Fig. 2.1b. For example, let us assume that the value V in Fig. 2.1a is positive and equal to 1 V. This means that the electric field spends positive work equal to[image: 
$$ 1\mathrm{V}\times 1\mathrm{C}=\kern0.5em 1\mathrm{J} $$
]

 (2.1)

when moving the charge of 1 C through the resistance from left to right in Fig. 2.1a. Similarly, the positive work of one joule is to be spent by an external force to move one coulomb of charge across a potential difference of one volt against the electric field. In power electronics, quantities of 1 kV (1000 V), even 1 MV (106 V) for voltage, are customary. In sensors and cellular phone circuits, for example, voltages are usually much lower. Values of 1 mV (10−3 V) or even 1 μV (10−6V) may be recorded. Voltage applied to the resistance 

causes electric current flow.

Current Through Resistance: Passive Reference Configuration
The net current I flowing through the resistance is shown in Fig. 2.1a by an arrow. The current is measured in amperes (A), named in honor of French physicist and mathematician André-Marie Ampère (1775–1836). For example, the value of I in Fig. 2.1a is 1 A. This means that one coulomb of charges passes through the resistance in one second:[image: 
$$ 1\mathrm{A}\times 1\mathrm{s}=1\mathrm{C} $$
]

 (2.2)


The electric current flow through the resistance (and any other circuit element) is a directed quantity; the arrow shows its direction. A useful fluid mechanics analogy for the resistance is water (electric current) that flows down the “voltage” hill in Fig. 2.1b. The relation between 
voltage polarity and current direction depicted in Fig. 2.1b is known as the passive reference configuration. It is commonly used for all passive circuit elements such as resistances, diodes, capacitances, and inductances. Physically, the passive reference configuration means that the resistance consumes electric power, but does not create it. In power electronics, currents of several A, even kA (1000 A), are customary. In digital and communication

 circuits, however, currents are usually low; therefore, units of 1 μA (10−6A) or 1 mA (10−3A) are commonly used.

Ohm’s Law: Resistance and Conductance
According to Ohm’s law, the voltage V across the resistance and the current I through the resistance are related by a simple linear expression[image: 
$$ V=RI $$
]

 (2.3)

with the proportionality constant R known as the resistance. This expression was first established by German mathematician and physicist Georg Simon Ohm (1789–1854) in 1827 but was coldly received by the scientific community at that time. It took nearly 14 years before the Royal Society of London finally recognized his work and his discovery is now known as Ohm’s law. The unit of resistance R carries his name ohm and the Greek symbol Ω. The unit follows from Eq. (2.3) as volt over ampere:[image: 
$$ \Omega =\frac{1\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{A}} $$
]

 (2.4)

The resistance is the 
                    linear passive
                    
                    
                   circuit element. Resistance values 

vary typically between 1 Ω and 100 MΩ. The reciprocal of the resistance is the conductance, G:[image: 
$$ G=\frac{1}{R} $$
]

 (2.5)


The unit of conductance, Ω−1, is called 
                    siemens
                    
                  (S) in honor of Ernst Werner von Siemens (1816–1892), a German inventor and the founder of what is today Europe’s largest electrical engineering 
company (Siemens AG). An older American 

equivalent of that unit 
is mho (Ω) or ohm spelled backwards! Conductance is useful in the circuit analysis.
Exercise 2.1
A voltage of 20 V is applied to a 1-MΩ resistance. Determine the current through the resistance.

Answer: 20 μA.

Exercise 2.2
A voltage of 20 V is applied to a 1-mS 

conductance. 
                      
                    
Determine 

current through the 

conductance.

Answer: 20 mA.



2.1.3 
υ-i Characteristic of the Resistance: Open and Short Circuits
Figure 2.2 plots the linear dependence given by Eq. (2.3) for two distinct resistances. The corresponding plot is known as the υ-i characteristic (or the υ-i dependence). We use small letters υ-i to maintain consistency with the following study of time-varying circuits. The υ-i characteristic is the “business card” of the circuit element—every circuit element has its own υ-i characteristic. Once the υ-i characteristic

 is known, the circuit element is characterized completely. The following is true with reference to Fig. 2.2a:[image: A331468_1_En_2_Fig2_HTML.gif]
Fig. 2.2
υ-i Characteristics for resistances and for the short and open circuits, respectively




	1.The slope of the υ-i dependence for the resistance is equal to 1/R or G.


 

	2.Smaller resistance leads to a stepper υ-i dependence (large currents).


 

	3.Larger resistance leads to a flatter υ-i dependence (small currents).


 

	4.The negative part of the υ-i dependence simply means simultaneous switching voltage

 polarity and 

current direction, respectively, in Fig. 2.1.


 





Open and Short Circuits
Two limiting cases of the resistance υ-i characteristics are 
the short circuit and 
the open circuit, as seen in Fig. 2.3.[image: A331468_1_En_2_Fig3_HTML.gif]
Fig. 2.3Transformation of resistance to a short and an open circuit, respectively





When [image: 
$$ R\to 0 $$
], the resistance becomes a short circuit, or an ideal wire. There is no voltage drop V across the wire, but any current I can flow through it. Therefore, the υ-i characteristic of the short circuit is the straight vertical line in Fig. 2.2b. When [image: 
$$ R\to \infty $$
], the resistance becomes an open circuit, or an ideal vacuum gap. There is no current I through the gap at any value of the applied voltage V. Therefore, the υ-i characteristic of the open circuit is the straight horizontal 

line in Fig. 2.2b.
Exercise 2.3
Every vertical division in Fig. 2.2a is 0.1 A; every horizontal division is 1 V. Find resistances

 for two υ-i dependencies in the figure.

Answer: [image: 
$$ R=4 $$
] Ω and [image: 
$$ R=25 $$
] Ω, respectively.

Exercise 2.4
An 
                      ideal switch
                      
                      
                     is open when [image: 
$$ V<0 $$
] and is 

closed when [image: 
$$ V\ge 0 $$
]. Plot the υ-i characteristic given that only a positive current [image: 
$$ I>0 $$
] can flow.

Answer: Horizontal line [image: 
$$ I=0 $$
] when [image: 
$$ V<0 $$
] and vertical 

line [image: 
$$ V=0 $$
] when [image: 
$$ I>0 $$
].



2.1.4 Power Delivered to the Resistance
Voltage V across the resistance is work in joules necessary to pass 1 C of charge through the resistance. Since there are exactly I coulombs passing through the resistance in one second, the power P delivered to the resistance must be the product of work per unit charge and the number of charges passing through the element in one second: [image: 
$$ P=VI $$
]. The power P has indeed the units of watts ([image: 
$$ \mathrm{V}\times 1\kern0.15em \mathrm{A}=1\kern0.15em \mathrm{J}/1\kern0.15em \mathrm{s}=1\kern0.15em \mathrm{W} $$
]). When the υ-i characteristic of the resistance is examined, the power is equal to the area of the shaded rectangles in Fig. 2.4. Using 
Ohm’s law, Eq. (2.3) gives us three equivalent definitions of the absorbed power by a resistance:[image: A331468_1_En_2_Fig4_HTML.gif]
Fig. 2.4
υ-i Characteristics for the resistances and power rectangles. P
1,2 are absorbed powers




[image: 
$$ P=VI \,\,\mathrm{Basic}\, \mathrm{definition},\ \,\mathrm{valid}\ \,\mathrm{for}\ \,\mathrm{any}\ \,\mathrm{passive}\ \,\mathrm{circuit}\ \mathrm{element} $$
]

 (2.6)


[image: 
$$ P=\frac{V^2}{R} \,\mathrm{Power}\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{r}\mathrm{esistance}\ \mathrm{in}\ \mathrm{terms}\ \mathrm{o}\mathrm{f}\ \mathrm{voltage} $$
]

 (2.7)


[image: 
$$ P=R{I}^2 \,\mathrm{Power}\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{r}\mathrm{esistance}\ \mathrm{in}\ \mathrm{terms}\ \mathrm{o}\mathrm{f}\ \mathrm{current} $$
]

 (2.8)


Despite their obvious nature, all three equations are useful in practice. In particular, Eq. (2.7) indicates that a small resistance absorbs more power than the large 

resistance at the same applied voltage; this is seen in Fig. 2.4. Imagine for a moment that we know the voltage across the resistance, but do not know the current. This happens if a number of circuit elements are connected in parallel to a known voltage source. Then Eq. (2.7) is used to find the power. However, if the current is known, but the voltage is not (a number of elements connected in series to a current source), then Eq. (2.8) is employed.
Example 2.1
A voltage of 10 V is applied to a 2.5-Ω resistance. Determine the absorbed electric power in three possible ways as stated by Eqs. (2.6) through (2.8).

Solution: To apply two of the three equations, current through the resistance is needed.

From 
Ohm’s law, [image: 
$$ I=V/R=4\kern0.5em \mathrm{A} $$
]. The electric power delivered to the resistance can thus be 

determined in three ways:[image: 
$$ P=VI=40\;\mathrm{W}\kern1em \mathrm{Basic}\ \mathrm{power}\ \mathrm{definition},\ \mathrm{passive}\ \mathrm{reference}\ \mathrm{configuration} $$
]



[image: 
$$ P=\frac{V^2}{R}=40\;\mathrm{W} \, \mathrm{Power}\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{r}\mathrm{esistance}\ \mathrm{in}\ \mathrm{terms}\ \mathrm{o}\mathrm{f}\ \mathrm{voltage} $$
]



[image: 
$$  P=R{I}^2=40\;\mathrm{W}\kern1em \mathrm{Power}\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{r}\mathrm{esistance}\ \mathrm{in}\ \mathrm{terms}\ \mathrm{o}\mathrm{f}\ \mathrm{current} $$
]






2.1.5 Finding Resistance of Ohmic Conductors
An ohmic conductor satisfies Ohm’s law given by Eq. (2.3). Finding its resistance is equivalent to the derivation of Ohm’s law under certain assumptions. Let us consider a conducting circular cylinder subject to an applied voltage V in Fig. 2.5. The cylinder has length l and a cross-sectional area A.[image: A331468_1_En_2_Fig5_HTML.gif]
Fig. 2.5Finding the resistance of a conducting cylinder





Finding Total Current
The net electric current in a metal or other conductor is defined as the net flux of positive charge carriers directed along the conductor axis x:[image: 
$$ I=Aqn\ \upsilon $$
]

 (2.9)

Here, nq is the volumetric charge density of free charges q with concentration n in coulombs per cubic meter, C/m3, and υ is the magnitude of the average charge velocity in m/s. In the one-dimensional model of the current flow, the average velocity vector is directed along the x-axis seen in Fig. 2.5. Since the electrons have been historically assigned a negative charge, the electric current direction is opposite to the direction of electron motion in a conductor. The electron carries an elemental charge of [image: 
$$ -q= $$
] −1.60218 × 10−19 C. Because A and nq are constants for a given conductor, the electric current is simply associated with the charge’s mean velocity υ.

Finding Average Carrier Velocity
In order to find υ, we use the following method. The total 
voltage drop V applied to a sufficiently long, conducting cylinder is uniformly distributed along its length following the equally spaced equipotential surfaces; this is schematically shown in Fig. 2.5. This fact has been proved in Chapter 1. Such a voltage distribution corresponds to a constant uniform electric field 

within the cylinder, which is also directed along the cylinder axis. The magnitude of the field, E, with the units of V/m, is given by[image: 
$$ E=V/l $$
]

 (2.10)

The electric field creates a 
Coulomb force acting on an individual positive charge q. The Coulomb force is directed along the field; its magnitude F is given by[image: 
$$ F=qE $$
]

 (2.11)


The key is a linear relation between the charge velocity υ and force F or, which is the same, a linear relation between the charge velocity υ and the applied electric field E, i.e.,[image: 
$$ \upsilon =\mu \kern0.1em E $$
]

 (2.12)


where μ is the so-called 
mobility of charge carriers, with the units of m2/(V⋅s). Carrier mobility plays an important role in semiconductor physics. With the help of Eqs. (2.10) and (2.12), the expression for the total current Eq. (2.9) is transformed to[image: 
$$ V=\left(\frac{l}{Aqn\mu}\right)I=\left(\frac{l}{A\sigma}\right)I=RI,\kern1em \sigma =qn\mu, \kern1em R=\frac{l}{A\sigma } $$
]

 (2.13)

This is the expression for the resistance of a cylindrical 
conductor. Material conductivity σ is measured in S/m. Its reciprocal 
is the material resistivity [image: 
$$ \rho =1/\sigma $$
] measured in Ω⋅m.
Example 2.2
Estimate resistance R of a small doped Si disk with the length l of 5 μm, cross section of A = 10−4 cm2, uniform electron, 


concentration
 (carrier concentration) of [image: 
$$ n={10}^{17}\kern0.5em {\mathrm{cm}}^{-3} $$
], and carrier mobility of [image: 
$$ {\mu}_n=1450 $$
] cm2/(V⋅s).

Solution: Resistance calculations are usually simple when the one-dimensional model of a conducting cylinder or a disk is used. However, one must be careful with the units. Units of cm are customary in semiconductor physics. Therefore, one should first convert all different units of length to meters (or to centimeters). After that, we use the definition of the resistance given by Eq. (2.13) and obtain (units of meters are used):[image: 
$$ R=\frac{l}{Aqn{\mu}_n}=\frac{5\times {10}^{-6}}{10^{-8}\times 1.602\times {10}^{-19}\times {10}^{23}\times 0.145}=0.215\kern0.5em \Omega $$
]

 (2.14)




Table 2.1 lists conductivities of common materials. What is the major factor that determines the conductivity of a particular conducting material? According to Eq. (2.13), there are two such parameters: charge concentration and charge
 mobility. It is mostly the different concentration of free charge carriers n that makes the resistance of two materials quite different. For example, [image: 
$$ n=8.46\times {10}^{28}{\mathrm{m}}^{-3} $$
] in copper (a good conductor), whereas it may be [image: 
$$ n={10}^{16}{\mathrm{m}}^{-3} $$
] in a moderately doped silicon crystal (doped semiconductor). However, it is also the difference in mobility μ that represents the “friction” experienced by the “gas” of free charges with density n that is moving 

through the solid or liquid conductor under the applied voltage (electric field).
Table 2.1DC conductivities of conductors, semiconductors, and insulators (25 °C, multiple sources)


	Material
	Class
	σ (S/m)
	Material
	Class
	σ (S/m)

	Silver
	Conductor
	6.1 × 107

	Seawater
	Semiconductor
	4

	Copper
	Conductor
	5.8 × 107

	Human/animal tissues
	Semiconductor
	0.1–2.0

	Gold
	Conductor
	4.1 × 107

	Germanium
	Semiconductor
	2

	Aluminum
	Conductor
	4.0 × 107

	Fresh water
	Semiconductor
	0.01

	Brass
	Conductor
	2.6 × 107

	Wet soil
	Semiconductor
	0.01–0.001

	Tungsten
	Conductor
	1.8 × 107

	Dry soil
	Semiconductor
	0.001–0.0001

	Zinc
	Conductor
	1.7 × 107

	Intrinsic silicon (Si)
	Semiconductor
	4.4×10−4


	Nickel
	Conductor
	1.5 × 107

	Gallium arsenide (GaAs)
	Semiconductor
	10−6


	Iron
	Conductor
	1.0 × 107

	Glass
	Insulator
	10−12


	Tin
	Conductor
	0.9 × 107

	Porcelain
	Insulator
	10−14


	Lead
	Conductor
	0.5 × 107

	Hard rubber
	Insulator
	10−15


	Graphite
	Conductor
	0.003 × 107

	Fused quartz
	Insulator
	10−17


	Carbon
	Conductor
	0.003 × 107

	Teflon
	Insulator
	10−23


	Magnetite
	Conductor
	0.002 × 107

	 	 	 




Exercise 2.5
Using Table 2.1 in chapter’s summary, determine the total resistance of an aluminum wire having a length of 100 m and a cross-sectional
 area of 1 mm2.

Answer: 2.5 Ω.



2.1.6 Application Example: Power Loss in Transmission Wires and Cables
All metal wires and cables are ohmic conductors. Electric power absorbed by an ohmic conductor is transformed into heat. This is known as electric power loss. We can apply Eqs. (2.6)–(2.8) and Eq. (2.13) in order to determine the loss of electric power in transmission lines and/or cables. This question has 

significant practical importance. Figure 2.6 outlines the 
corresponding electric circuit. The electric circuit is a closed path for electric current. Resistance R
L characterizes the load. Only 
Ohm’s law is used to analyze this circuit, along with the current continuity. No other circuit laws are necessary. We also consider a voltage source in Fig. 2.6. The voltage sources will be studied next.[image: A331468_1_En_2_Fig6_HTML.gif]
Fig. 2.6A long transmission power line carrying a steady-state current I to the load resistance





According to Eq. (2.13), the wire resistance is inversely proportional to its diameter. In the USA, the 
American Wire Gauge (AWG) 
system was developed to classify the wire diameters of conductors. You probably have heard an electrician refer to a gauge 12 household wiring. This implies a wire diameter of about 2 mm, or 0.08″. Table 2.2 reports common AWG numbers and

 maximum current strengths.Table 2.2American Wire Gauge (AWG) wire parameters. The maximum current is given for solid copper (Source: Handbook of Electronic Tables and Formulas for American Wire Gauge)


	AWG #
	Diameter (inches)
	Diameter (mm)
	Resistance per 1000 ft or 304.8 m (Ω)
	Maximum current in (A) for power transmission

	24
	0.0201
	0.51054
	25.67
	0.577

	22
	0.0254
	0.64516
	16.14
	0.92

	20
	0.0320
	0.81280
	10.15
	1.50

	18
	0.0403
	1.02362
	6.385
	2.30

	16
	0.0508
	1.29032
	4.016
	3.70

	14
	0.0640
	1.62814
	2.525
	5.90

	12
	0.0808
	2.05232
	1.588
	9.30

	10
	0.1019
	2.58826
	0.999
	15.0

	Gauges 10 through 1 are not shown

	0 (1 aught)
	0.3249
	8.252
	0.09827
	150

	00 (2 aught)
	0.3648
	9.266
	0.07793
	190

	000 (3 aught)
	0.4096
	10.404
	0.06180
	239

	0000 (4 aught)
	0.4600
	11.684
	0.04901
	302





Example 2.3
An AWG 0 aluminum transmission grid cable schematically shown in Fig. 2.6 has a wire diameter of 8.25 mm and a cross-sectional area of 53.5 mm2. The conductivity of aluminum is 4.0 × 107 S/m. The total cable length (two cables must run to a load) is 40 km. The system delivers 1 MW of DC power to the load. Determine the power loss in the cable when load voltage V and load current I are given by:	1.
                          [image: 
$$ V=40\ \mathrm{kV}\ \mathrm{and}\ I=25\kern0.5em \mathrm{A} $$
]
                        


 

	2.
                          [image: 
$$ V=20\ \mathrm{kV}\ \mathrm{and}\ I=50\kern0.5em \mathrm{A} $$
]
                        


 

	3.
                          [image: 
$$ V=10\ \mathrm{kV}\ \mathrm{and}\ I=100\kern0.5em \mathrm{A} $$
]
                        


 





Why is high-voltage power transmission important in power electronics?

Solution: We find the total cable resistance from Eq. (2.13):[image: 
$$ R=\rho \frac{L}{A}=\frac{L}{\sigma A}=\frac{40\times {10}^3}{4.0\times {10}^7\times 53.5\times {10}^{-6}}=18.7\;\Omega $$
]

 (2.15)



The same load current I flows through the load modeled by a 
resistor R
L and through the cables in Fig. 2.6. Therefore, power loss in the cables may be found using Eq. (2.8). Knowing the load voltage (or the voltage across the 

cable) is not necessary. The power loss in the cables is thus given by [image: 
$$ P=R{I}^2 $$
]. For the three different cases corresponding to the same load power, we obtain	1.
[image: 
$$ P=R{I}^2=11.7\;\mathrm{kW} $$
] or 1.17 % of the load power


 

	2.
                          [image: 
$$ P=R{I}^2=46.8\; \mathrm{ \  kW \  or \  4.68 \% \ of \ the \ load power }   $$
]

 (2.16)


                        


 

	3.
[image: 
$$ P=R{I}^2=187\;\mathrm{kW} $$
] or 18.7 % of the load power


 





Clearly, the high-voltage power transmission allows us to reduce the power loss in long cables very significantly while transmitting the same power to the load. Therefore, the high-voltage transmission lines passing through the country have typical voltages between 100 kV and 800 kV.

In circuit analysis in the laboratory, we usually consider ideal or perfectly conducting wires whose resistance is zero. This is justified since the wire lengths for most practical circuit applications are 

so short that the voltage drop is negligibly small.

2.1.7 Physical Component: Resistor
Fixed Resistors
Resistance is constructed intentionally, as a separate circuit component. This component is called the resistor. A common axial leaded carbon film 0.25-W resistor deployed on a solderless protoboard is seen in Fig. 2.7a. Those carbon film resistors are typically manufactured by coating a homogeneous layer of pure carbon on high-grade ceramic rods. After a helical groove is cut into the resistive layer, tinned connecting leads of electrolytic copper are welded to the end-caps. The resistors are then coated with layers of tan-colored lacquer. The common Surface Mount Device (SMD) thin-film resistor is shown in Fig. 2.7b. Manufacturing process variations result in deviations from the normal resistor values; they are known as tolerances and reported to the end user through an extra color ring (for leaded axial resistors) or an extra digit (for SMD resistors). Typical power ratings for the axial resistors are 1/6 W, ¼ W, ½ W, 1 W, 2 W, and 3 W. When the power delivered to the resistor considerably exceeds the particular rating, the resistor may burn out, releasing a prominent “carbon” smell. The axial resistors have color codes shown in Fig. 2.7c. To find the value of the resistor depicted in Fig. 2.7a, we first encounter the tolerance code, which will typically be gold, 
                    
                    
                  implying a 5 % tolerance value. Starting from the opposite end, we identify the first band, and write down the number associated with that color; in Fig. 2.7a it is 9 (white). Then, we read the next band (brown) and record that number; it is 1. After this we read the multiplier black, which is 0. The resistor value in Fig. 2.7a is consequently [image: 
$$ R=91\times {10}^0=91\kern0.5em \Omega $$
].[image: A331468_1_En_2_Fig7_HTML.gif]
Fig. 2.7(a) A leaded axial resistor, (b) a thin-film resistor, and (c) color codes for leaded resistors





The surface mount resistors, also known as SMD resistors, do not have color codes. The SMD resistors are labeled numerically as [image: 
$$ \mathbf{102}=10\times {10}^2=\kern0.5em 1\kern0.5em \mathrm{k}\Omega $$
], [image: 
$$ \mathbf{271}=27\times {10}^1=\kern0.5em 270\kern0.5em \Omega $$
], etc. Along with this, the SMD resistors, similar to other SMD components, do have codes corresponding to their geometry size. 
                    
                  Each size is described as a four-digit number. The first two digits indicate length, and the last two digits indicate width 

(in 0.01″, or 10 mils units). 
                    
                  Some popular SMD resistor sizes are 0603 (0.06″ × 0.03″, or 60 × 30 mils, or 1.6 × 0.8 mm), 0805 (0.08″ × 0.05″), and 1206 (0.12″ × 0.06″).

Variable Resistors (Potentiometers)
The simplest variable resistor is a potentiometer. A picture is shown in Fig. 2.8a along with its equivalent electric schematic in Fig. 2.8b. The potentiometer is used either as a voltage divider, discussed later in the text, or as a variable resistor. By rotating the potentiometer shaft, it is possible to obtain any resistance value up to the maximum potentiometer value. The adjustable resistance is obtained between terminals 1 and 2 or 2 and 3 of the potentiometer, respectively. You should remember that the potentiometer is a nonpolar device. This means that it can be placed into the circuit in any orientation. With this 
knowledge the joking engineer telling you that “all resistors in your circuit
 are backwards”
                    
                    
                   should not cause any fear.[image: A331468_1_En_2_Fig8_HTML.jpg]
Fig. 2.8A rotary 25-kΩ potentiometer rated at 0.25 W and its equivalent circuit schematic







2.1.8 Application Example: Resistive Sensors
There are a variety of sensor types—resistive sensors—which use electric resistance variation to measure a mechanical or a thermal quantity. Some of them are shown in Fig. 2.9. As a first example, we consider a temperature sensor based on a thermistor (a resistor), with a resistance that varies when ambient temperature changes; see Fig. 2.9a. The word thermistor is a contraction of the words “thermal”

 and “resistor.” As a second example of a resistance subject to ambient conditions, we will consider 
a photoresistor (
photocell) shown 
in Fig. 2.9b. The final 
example is a strain gauge shown in Fig. 2.9c.[image: A331468_1_En_2_Fig9_HTML.gif]
Fig. 2.9Sensing elements which change their resistances when ambient conditions change





Thermistor
The thermistor changes its resistance as temperature increases or decreases. General-purpose thermistors are made out of metal oxides or other semiconductors. Successful semiconductor thermistors were developed almost simultaneously with the first transistors (1950s). For a metal-oxide thermistor, its resistance decreases with increasing temperature. Increasing the temperature increases the number of free carriers (electrons) and thus increases the sample conductivity (decreases its resistance). Shown in Fig. 2.9a is a very inexpensive NTC—negative temperature coefficient—leaded thermistor. According to the 
manufacturer’s datasheet, it reduces its resistance from approximately 50 kΩ at room temperature (about 25 °C) by 4.7 % for every degree Celsius (or Kelvin) and reaches about 30 kΩ at body temperature according 
to the thermistor equation:[image: 
$$ {R}_1={R}_2\ \exp \left[B\left(\frac{1}{T_1}-\frac{1}{T_2}\right)\right] $$
]

 (2.17)

where T
1, T
2 are two absolute temperatures always given in degrees K. Temperature T
2 corresponds to a room temperature of 25 °C so that R
2=R
25°C, temperature T
1 is the observation temperature, and B is 
the thermistor constant, which is equal to 4200 K in the present case. Equation (2.17) is a nontrivial result of the solid-state physics theory. We emphasize that Eq. (2.17) is more accurate than the temperature coefficient of the thermistor—the above referenced value of −4.7 %. Typical applications include temperature measurement, control, 
                    
                  compensation, power supply fan control, and printed circuit board (PCB) temperature monitoring. Inexpensive thermistors operate from −30 °C to approximately +130 °C. At higher temperatures, 
                    
                    
                  thermocouples should be used.

Thermocouple
Figure 2.9 does 
not show one more important temperature sensor—the thermocouple—which is used to measure large temperatures and large temperature differences. It operates based on a completely different principle. The thermocouple does not significantly change its resistance when temperature changes. Instead, it generates an electric current and the associated voltage, when the junction of the two metals is heated or cooled, known 
as the Peltier-Seebeck effect; this voltage can be correlated to temperature. Therefore, the thermocouple, strictly speaking, is
 not a resistive sensor.

Photoresistor (Photocell)
An idea similar to the thermistor design applies. Quanta of light incident upon the 
photocell body create new free charge carriers—new electron-hole pairs in a semiconductor. If the concentration of free charges increases, the resistance of the sample decreases according to Eq. (2.13). The resistance is inversely proportional to the concentration. The photocell in Fig. 2.9b is

 characterized by very large nonlinear variations of the resistance in response to ambient light.

Strain Gauge
The strain gauge measures mechanical strain. The operation is based on Eq. (2.13), which defines the resistance through
 material conductivity σ, the length of the resistor l, and its cross section A. When the resistor, which may be a trace on the base of a metal alloy, is stretched, its length l increases and its cross section A decreases. Hence, the resistance R increases due to both of these effects simultaneously; changes in the resistance may be made visible for small strains. Shown in Fig. 2.9c is an inexpensive

 uniaxial strain gauge with a nominal resistance of 350 Ω; typical resistances are 120, 350, 600, 700, and 1000 Ω. The gauge changes its resistance R in proportion to 
the strain sensitivity S
G of the wire’s resistance, also called the 
gauge factor (GF)
. For a strain gauge, the relative resistance variation, ΔR/R, is estimated based on known values of the strain sensitivity, S
G, and strain, ε. 
                    
                  The strain gauge equation has the form[image: 
$$ \Delta R/R={S}_{\mathrm{G}}\varepsilon $$
]

 (2.18)


The dimensionless 
strain sensitivity S
G varies around 2. The strain (a relative elongation) is a dimensionless quantity. It is measured in micro-strains, με, where one με is 10−6. Typical strain values under study are on the order of 1000 με. Using Eq. (2.18) this yields a relative resistance variation as small as 0.2 %. Because
 of this, the circuits for the strain measurements should be designed and built with great care. Temperature compensation efforts are also required. Since the relative resistance changes are very small, the strain gauge is a linear device: the strain is directly proportional to resistance variations.

Potentiometric Position Sensor
Another general resistive sensor is a potentiometric (or potentiometer) position sensor. Its operation becomes apparent when we rotate the potentiometer dial in Fig. 2.8a. A change in the resistance is directly proportional to the rotation angle. The resistance variation can be converted to voltage 

variation and then measured.
                    
                   Similar potentiometer sensors for measuring linear motion also exist.

Sensitivity of Resistive Sensors
One major difference between different resistive sensing elements is a very different degree of the relative resistance variations. For the 
photocell, the resistance variation is up to 100 times. For the thermistor, the resistance variation can be as much as 50 %. For the strain gauge, the resistance variations do not exceed 0.5 %.

Circuit Symbols
There are several similar but not identical standards for circuit symbols related to resistance: International standard IEC 60617, American ANSI 
standard Y32 (IEEE Std 315), etc. Figure 2.10 shows popular circuit symbols for variable resistances.[image: A331468_1_En_2_Fig10_HTML.gif]
Fig. 2.10Circuit symbols for variable resistances: (a) generic variable resistance, (b) potentiometer, (c) thermistor, (d) photoresistor, and (e) strain gauge








2.2 Nonlinear Passive Circuit Elements
2.2.1 Resistance as a Model for the Load
It might appear at first glance that the resistance causes mainly power loss and heating. However, the concept of heating elements in household appliances or power losses in long cables covers only a small subset of applications. Important resistance applications are related to the resistive sensors studied previously. Resistances are widely used in the circuits to provide different voltage values, i.e., bias circuit components such as diodes and transistors. Last but not least, resistances model an arbitrary power-absorbing device, the load, which can be mechanical, acoustical, microwave, optical, etc. From a circuit point of view it does not matter how the electric power supplied to a load is eventually transformed. The circuit delivers certain power to the load, but cares little about whether the power is converted into heat to warm a heating pan, light to illuminate our house, mechanical power to drive a motor, or electromagnetic radiation generated by a cell phone. 
                  
                  
                Circuit analysis is concerned with the power delivered to a power-absorbing device, the load, leaving its utilization and conversion to other engineering disciplines. Therefore, many practical loads can be replaced by a simple load resistance R
L. Such a resistance is often called the equivalent resistance, [image: 
$$ {R}_{\mathrm{L}}={R}_{\mathrm{eq}} $$
]. It is also valid for AC circuits. For AC circuits it is convenient to use rms (root mean square) voltages, which are equivalent to DC voltages and thus provide us with the same power value delivered to the load. Figure 2.11 shows two examples of the load replacement with the equivalent resistance: a light source radiating visible light and an antenna radiating microwaves.[image: A331468_1_En_2_Fig11_HTML.gif]
Fig. 2.11(a) Radiating monopole antenna is modeled as a resistance. (b) Light source is approximately modeled as a resistance





Example 2.4
A small commercial monopole antenna shown in Fig. 2.11a is rated at [image: 
$$ {R}_{\mathrm{eq}}= $$
] 50 Ω in the ISM band of 902–928 MHz. When an rms voltage of 10 V is applied to the antenna, what is the total amount of power radiated by the antenna?

Solution: We use Eq. (2.7) and obtain [image: 
$$ P={V}_{\mathrm{rms}}^2/{R}_{\mathrm{eq}}=2\ \mathrm{W} $$
]. All of this power is radiated in the form of an outgoing electromagnetic wave. There is no heat loss. The resistance R
eq is called 
the radiation resistance in such a case. The above analysis is valid only in a certain frequency range.

A load that exactly follows Ohm’s law Eq. (2.3) is called the linear load. While the transmitting antenna in Fig. 2.11a is a linear load, an incandescent 

light bulb in Fig. 2.11 is not. Most of the 

loads deviate from the 
linear Ohm’s law.

2.2.2 Nonlinear Passive Circuit Elements

Nonlinear passive circuit elements do not satisfy 

Ohm’s law with the constant resistance R over a wide range of voltages. Therefore, they are also called 

non-ohmic circuit elements. The non-ohmic elements may be described by a similar expression:[image: 
$$ V=R(V)I\iff R(V)\equiv \frac{V}{I(V)} $$
]

 (2.19)

but with a variable resistance R(V). For passive elements, [image: 
$$ R(V)>0 $$
]. The resistance R
(V) is known as the static or DC resistance. Figure 2.12 depicts the υ-i characteristics for three distinct passive circuit elements

.[image: A331468_1_En_2_Fig12_HTML.gif]
Fig. 2.12Three υ-i characteristics: (a) linear—resistance; (b) nonlinear—incandescent light bulb; and (c) nonlinear—ideal or Shockley diode





The first element is an ohmic element (
                  ohmic conductor
                  
                  
                ) with a constant resistance R. The corresponding υ-i characteristics is a straight line—the circuit element is linear. The second element corresponds to an incandescent light bulb. Its resistance R increases when the applied voltage V increases (the conductivity of the radiating filament of wire decreases with increasing absorbed power and wire temperature). Hence, the υ-i characteristic bends down and deviates from the straight line—see Fig. 2.12b. This element only approximately follows Ohm’s law

. It is therefore the nonlinear circuit element. The third element in Fig. 2.12 corresponds to an 
                  ideal (Shockley) diode
                  
                  
                . The diode does not conduct at negative applied voltages. At positive voltages, its υ-i characteristic is very sharp (exponential). The diode is also the nonlinear circuit element. Strictly speaking, the υ-i characteristic of the incandescent light bulb does not belong to the list of circuit elements due to its limited applicability. However, the ideal diode is an important nonlinear circuit element. The nonlinear elements 

are generally polar (non-symmetric) as Fig. 2.12c shows.

2.2.3 Static Resistance of a Nonlinear Element
Once the υ-i characteristic is known, we can find the static resistance

 R(V) of the nonlinear circuit element at any given voltage V
0. For example, the υ-i characteristic of the 

ideal diode

 shown in Fig. 2.12c is described by the 
exponential Shockley equation:[image: 
$$ I={I}_{\mathrm{S}}\left[ \exp \left(\frac{V}{V_T}\right)-1\right] $$
]

 (2.20)

In Eq. (2.20), the constant I
S [A] is the diode saturation current. The saturation current is very small. The constant V
T [V] is called the thermal voltage.
Example 2.5
Give a general expression for the diode resistance R(V) using Eq. (2.20) and find its terminal values at [image: 
$$ V\to 0 $$
] and [image: 
$$ V\to \infty $$
], respectively. Then, calculate static diode resistance R
0 and diode current I
0 when the voltage across the diode is V
0 = 0.55 V. Assume that [image: 
$$ {I}_{\mathrm{S}}=1\times {10}^{-12}\kern0.5em \mathrm{A} $$
] and [image: 
$$ {V}_{\mathrm{T}}=25.7 $$
] mV.

Solution: Using Eq. (2.20) we obtain[image: 
$$ R(V)=\frac{V}{I_{\mathrm{S}}\left[ \exp \left(\frac{V}{V_{\mathrm{T}}}\right)-1\right]} $$
]

 (2.21)



When [image: 
$$ V\to 0 $$
], we can use a Taylor series expansion for the exponent. Keeping only the first 

nontrivial term, one has [image: 
$$ \exp \left(V/{V}_{\mathrm{T}}\right)\approx 1+V/{V}_{\mathrm{T}} $$
]. Therefore,[image: 
$$ R(V)\to \frac{V_{\mathrm{T}}}{I_{\mathrm{S}}}\kern.5em \mathrm{when}\kern.5em V\to 0\kern0.5em \left(\mathrm{or}\ V/{V}_{\mathrm{T}}<<1\right) $$
]

 (2.22)



This value is very large, in excess of 1 GΩ. The diode is thus the open circuit with a good degree of accuracy.
On the other hand, at large V, the exponential factor in Eq. (2.21) greatly increases. Therefore,[image: 
$$ R(V)\to 0\kern.5em \mathrm{when}\kern0.5em V\to \infty $$
]

 (2.23)



The diode becomes virtually a short circuit as indicated by the almost vertical slope in Fig. 2.12c. Finally, we obtain the particular values for [image: 
$$ {V}_0=0.55\;\mathrm{V} $$
]:[image: 
$$ {R}_0=275\kern0.5em \Omega, \kern1em {I}_0=2.00\kern0.5em \mathrm{m}\mathrm{A} $$
]

 (2.24)





2.2.4 Dynamic (Small-Signal) Resistance of a Nonlinear Element
Equally, and perhaps even more important, is the concept of a dynamic (or small-signal) resistance, r, of the nonlinear circuit element. Other equivalent names 
include differential resistance or 
incremental resistance. Quite 
often the voltage across the element and the current

 through it are given by[image: 
$$ V={V}_0+\upsilon, \kern1em I={I}_0+i $$
]

 (2.25)

where V
0 and I
0 are the DC (constant-value) voltage and current related to each other through the static resistance, [image: 
$$ {V}_0={R}_0{I}_0 $$
]. These values are set with the help of an external DC circuit. On the other hand, quite small components υ and i describe a very weak time-varying (AC or pulse) signal. Though weak, this signal contains the major information to be processed. A receiver circuit in your cell phone is an example. Now, how are υ and i related to each other? The answer is still given by 
                  
                Ohm’s law but written in terms 
of the dynamic resistance, i.e.,[image: 
$$ \upsilon =r\kern0.1em i,\kern1em r\equiv {\left.\frac{dV}{dI}\right|}_{V={V}_0,\kern0.5em I={I}_0} $$
]

 (2.26)

This derivative is to be evaluated at 
the operating point V
0, I
0 (also called 
the quiescent point or Q-point). Figure 2.13 provides a graphical proof of Eq. (2.26) using the example of an ideal diode. The zoomed-in version of Fig. 2.12c has been used. The dynamic (small-signal) resistance is thus the 
                  inverse slop
                  
                  
                
e of the υ-i characteristic at the operating point. The exact mathematical proof is performed using a Taylor 

series expansion.[image: A331468_1_En_2_Fig13_HTML.gif]
Fig. 2.13Finding dynamic resistance for an ideal diode





Exercise 2.6
Determine the 
small-signal resistance r for the ohmic circuit element with [image: 
$$ V=RI,\kern0.5em R=\mathrm{const} $$
].

Answer: [image: 
$$ r=R $$
] for any operating point.

The dynamic diode resistance plays a decisive role in the design of amplifiers based on junction transistors. The ideal-diode

 circuit element becomes a part of the transistor circuit model. The dynamic resistance
 is also critical for amplifiers which use other transistor types. From the mathematical point of view, finding the static and dynamic resistance is simply finding the function and its first derivative at the operating point.
Example 2.6
Give a general expression for the dynamic diode resistance r using Eq. (2.20) at an arbitrary 
operating point with current I
0. Then, calculate the dynamic diode resistance r when the voltage across the diode is V
0 =0.55 V. Assume that [image: 
$$ {I}_{\mathrm{S}}=1\times {10}^{-12}\kern0.5em \mathrm{A} $$
] and [image: 
$$ {V}_{\mathrm{T}}=25.7 $$
] mV.

Solution: Using Eq. (2.20) we obtain[image: 
$$ V={V}_{\mathrm{T}} \ln \left[1+\frac{I}{I_{\mathrm{S}}}\right]\Rightarrow r(I)=\frac{V_{\mathrm{T}}}{I+{I}_{\mathrm{S}}}\Rightarrow r\approx \frac{V_{\mathrm{T}}}{I_0} $$
]

 (2.27)



since the saturation current I
S may be neglected. At V
0 = 0.55 V we 

obtain I
0 = 2.00 mA—see Eq. (2.24). Therefore,[image: 
$$ r=12.8\kern0.5em \Omega \kern.5em \mathrm{when}\kern.5em {V}_0=0.55\ \mathrm{V}. $$
]

 (2.28)





2.2.5 Electronic Switch
In an electronic switch (or a 
solid-state switch), 
an electric quantity (voltage or current) acts as a stimulus—it opens and closes the switch. The electronic switch is inherently a nonlinear device. Figure 2.14 shows 
a 
                  two-terminal switch
                  
                  
                 and its (idealized) υ-i characteristic. The voltage across the switch V is generated by the main circuit. When this voltage reaches 
a certain switch threshold voltage V
Th, the switch becomes closed, it can conduct any current. Further, the voltage across the switch does not change. Switches of this type usually involve pn-junction diodes. For example, the diode υ-i characteristic from Fig. 2.12c may approximate the step function in Fig. 
                  
                
2.14b. The unidirectional switch shown in Fig. 2.14 can pass the current only in one direction. 
Bidirectional switches can 
pass current in both directions.[image: A331468_1_En_2_Fig14_HTML.gif]
Fig. 2.14(a) Two-terminal unidirectional threshold switch and (b) its ideal υ-i characteristic





Figure 2.15 shows another, three-terminal electronic switch. The voltage V controlling the switch operation is now generated by a separate (control) circuit. It is still referenced to the common circuit ground. When the control voltage reaches a certain switch threshold voltage V
Th or exceeds it, the switch closes. The switches of this type involve transistors, either junction or field effect. A distinct feature of the switch in Fig. 2.15 is that the control voltage may have arbitrary values, including [image: 
$$ V>{V}_{\mathrm{Th}} $$
]. Therefore, its υ-i characteristic involves all states to the right of the vertical line in Fig. 2.14.[image: A331468_1_En_2_Fig15_HTML.gif]
Fig. 2.15Three-terminal unidirectional threshold switch (pull-down switch)





The switch shown in Fig. 2.15 and its pull-up counterpart are the “heart” of any digital circuit, which is essentially a nonlinear switching circuit. Chapter 15 provides an introduction to digital switching circuits.
Exercise 2.7
Based on conditions of example 2.5, determine when a diode switch closes. This condition approximately corresponds to the diode current of 10 mA.

Answer: The diode voltage 
should be equal to 0.594 V or approximately 0.6 V.



2.3 Independent Sources
2.3.1 Independent Ideal Voltage Source
An 
                  independent ideal voltage source
                  
                  
                 is an important circuit element. Figure 2.16a shows the corresponding circuit symbol for the DC (steady-state) source. As a circuit element, the voltage source is not symmetric: terminals 1 and 2 (commonly labeled as plus and minus or red and black) may not be interchanged without affecting its operation. In other words, the voltage source is a polar device. The voltage source generates a 
positive voltage difference (or voltage drop or simply voltage) across its terminals, [image: 
$$ {V}_{\mathrm{S}}>0 $$
], the polarity of which is shown in Fig. 2.16. The term 
                  independent
                  
                  
                 means that voltage V
S does not vary because of different parameters of an electric circuit (not shown in the figure), which is implied to be connected to the voltage source.[image: A331468_1_En_2_Fig16_HTML.gif]
Fig. 2.16Symbol for an ideal voltage source along with the voltage and current behavior





Current Through the Voltage Source: Active Reference Configuration


The current I flowing through the voltage source is shown in Fig. 2.16 by an arrow. The relation between voltage polarity
 and current direction depicted in Fig. 2.16 is known as the 
                    active reference configuration
                    
                    
                  . It is commonly used for all active circuit elements such as voltage and current sources, either dependent or independent. A useful fluid mechanics analogy for the voltage source is water (electric current) that is pushed up the “voltage” hill in Fig. 2.16b by external means. Alternatively, one may think of a water pump that is characterized by a constant pressure drop. The active reference configuration means that the voltage source
 supplies electric power to the circuit. This configuration is the opposite of the passive reference configuration for the resistance.

υ-i Characteristic of the Voltage Source



Figure 2.17a plots the υ-i characteristic of the ideal voltage source. The term ideal literally means that the υ-i characteristic is a straight vertical line: the ideal voltage source is capable of supplying any current to any circuit while keeping the same voltage V
S across its terminals. In reality, it is not the case since the high currents mean high powers. Therefore, a laboratory power supply—the physical counterpart of the ideal voltage source—will be eventually overloaded as shown in Fig. 2.17b. Figure 2.17c shows a common way of drawing the υ-i characteristic for the voltage source with the axes interchanged. For the purposes of consistency, the x-axis will always be used as the voltage axis throughout the text.[image: A331468_1_En_2_Fig17_HTML.gif]
Fig. 2.17
υ-i Characteristics for (a) ideal voltage source used in the circuit analysis and (b) its physical counterpart—a regulated laboratory power supply. (c) Typical way of drawing the υ-i characteristic for the voltage source with the axes interchanged






Symbols for Independent Voltage Source
Multiple symbols may be used in a circuit diagram to designate the independent ideal voltage source—see Fig. 2.18. All these symbols are equivalent from the circuit point of view, as long as we imply the ideal source. However, their physical counterparts are quite different. The general symbol in Fig. 2.18a implies either an AC to DC converter (the laboratory power source) or a battery. The symbol in Fig. 2.18b relates to a battery and Fig. 2.18c–d depicts battery banks.[image: A331468_1_En_2_Fig18_HTML.gif]
Fig. 2.18(a) Generic DC voltage source, (b) single battery, and (c) and (d) battery banks. All symbols in the circuit diagram are equivalent





Example 2.7
Solve an 
electric circuit shown in Fig. 2.19—determine circuit current I and voltage across the resistance V.[image: A331468_1_En_2_Fig19_HTML.gif]
Fig. 2.19Electric circuit solution in graphical form






Solution: We use the graphical
 solution—plot

 the υ-i characteristic of the 2 kΩ resistance and the υ-i characteristic of the voltage source on the same graph to scale—see Fig. 2.19b. The intersection point is the desired solution: [image: 
$$ V=3\kern0.5em \mathrm{V} $$
], [image: 
$$ I=1.5\kern0.5em \mathrm{m}\mathrm{A} $$
]. Indeed, this simple solution implicitly uses circuit laws (KVL and KCL) studied next.



2.3.2 Circuit Model of a Practical Voltage Source


Any practical voltage source is modeled as a combination of an ideal voltage source V
S and an ideal resistance R in series—see Fig. 2.20a. The resistance R reflects the non-ideality of the practical source: it limits 
the maximum available source current and 
the maximum available source power by (similar to the current-limiting resistor):[image: A331468_1_En_2_Fig20_HTML.gif]
Fig. 2.20Circuit model of a practical voltage source and its υ-i characteristic




[image: 
$$ {I}_{\max }={V}_{\mathrm{S}}/R,\kern1em {P}_{\max }={V}_{\mathrm{S}}{I}_{\max }={V}_{\mathrm{S}}^2/R $$
]

 (2.29)

Voltage V
S is called 
the open-circuit voltage of the source for an obvious reason. Similarly, current I
max is called 
the short-circuit current of the source. Once both quantities are measured in laboratory, resistance R (called 
the internal source resistance) may be found using Eq. (2.29).
Exercise 2.8
The open-circuit voltage of a voltage source is 9 V; the short-circuit current is 2 A. Determine the internal source resistance.

Answer: 4.5 Ω.

The υ-i characteristic of the practical voltage source

 is the plot of source current I versus voltage V available from 
the source in Fig. 2.20a. This voltage is generally less than V
S since any nonzero current I causes 
a voltage drop of RI across resistance R. One has[image: 
$$ V={V}_{\mathrm{S}}-RI\Rightarrow I=\frac{V_{\mathrm{S}}-V}{R} $$
]

 (2.30)

This υ-i characteristic is plotted in Fig. 2.20b by a solid line. The deviation from the straight vertical line characterizes the degree of non-ideality. Emphasize that any laboratory power supply is indeed a practical voltage source. However, using a special circuit, its input is regulated so that the output voltage does depend on the output current, at least over a reasonable range of 
currents. Therefore, instead of Fig. 2.20b we arrive at a more reliable voltage source from Fig. 2.17b.
Exercise 2.9

Determine 
internal source resistance for the source illustrated in Fig. 2.20b given that every horizontal division is 3 V and every 
vertical division is 1 A.

Answer: 0.6 Ω.


2.3.3 Independent Ideal Current Source
An 
independent ideal current source is

 dual of the ideal voltage source. Figure 2.21a shows the corresponding circuit symbol for the DC (constant-current) source. As a circuit element, the constant-current source is directional: terminals 1 and 2 indicate the direction of the current flow. The current source generates a positive constant current, [image: 
$$ {I}_{\mathrm{S}}>0 $$
], which flows from terminal 2 to terminal 1 in Fig. 2.21. The term independent means that current I
S does not vary because of different parameters of an electric circuit (not shown in the figure), which is implied to be connected to the current source.[image: A331468_1_En_2_Fig21_HTML.gif]
Fig. 2.21Symbol for the ideal current source along with voltage and current designations





Voltage Across the Current Source: Active Reference Configuration



Once the current source is connected to a circuit, a voltage V will be created across it. The 
voltage polarity is indicated in Fig. 2.21a. The relation between voltage polarity and current direction shown in Fig. 2.21 is again the 
                    active reference configuration
                    
                    
                  , similar to the voltage source. A useful fluid mechanics analogy for the electric current source is a water pump that creates a constant water supply (e.g., 0.5 ft3/s). Indeed, this water pump will be characterized by a certain pressure difference across its terminals, which is the analogy of voltage V in Fig. 2.21.


υ-i Characteristic

 of the Current Source



Figure 2.22a plots the υ-i characteristic of an ideal 
current source. Compared to the ideal voltage source, the graph is rotated by 90 degrees. The term ideal again means that the υ-i characteristic is the straight horizontal line: the ideal current source is capable of creating any voltage across its terminals while keeping the same current I
S flowing into the circuit. In reality, it is not the case since high voltages mean high powers. Therefore, a laboratory current power supply—the physical counterpart of the ideal current source—will eventually be overloaded as shown in Fig. 2.17b. The current laboratory supplies are rarely used (one common use relates to transistor testing); they are less common than the voltages supplies. However, the current sources are widely used in transistor circuits, both integrated and discrete. There, the current sources are created using 

dedicated transistors. Furthermore, photovoltaic sources are essentially current sources.[image: A331468_1_En_2_Fig22_HTML.gif]
Fig. 2.22
υ-i Characteristics of (a) an ideal current source and (b) its physical counterpart







Symbols

 for Independent Current Source
A few equivalent symbols may be used in a circuit diagram to designate the independent ideal current source; see Fig. 2.23. All these symbols are equivalent as long as we imply the ideal source. The symbol in Fig. 2.23a is used in North America, the symbol in Fig. 2.23b is European, and the symbol in Fig. 2.23 may be also found in older texts.[image: A331468_1_En_2_Fig23_HTML.gif]
Fig. 2.23Equivalent symbols of the current source in the circuit diagram





Example 2.8
Solve an 
electric circuit shown in Fig. 2.24—determine voltage V across the source and the resistance.[image: A331468_1_En_2_Fig24_HTML.gif]
Fig. 2.24Electric circuit solution in the graphical form






Solution: Similar to the voltage source, we use a graphical solution—plot the υ-i characteristic of the 2-kΩ resistance and the υ-i characteristic of the current source on 
the same graph to scale; see Fig. 2.24b. The intersection point gives us the desired solution: [image: 
$$ V=3\kern0.5em \mathrm{V} $$
]. Note that the solutions for this example and the solution for Example 2.7 coincide. This means that, under certain conditions, we can interchange both sources without affecting the circuit performance. Indeed, the graphical solution

 implicitly uses the 
circuit laws (KVL and KCL) studied in detail next.



2.3.4 Circuit Model of a Practical Current Source
Any 
practical current source is 

modeled as a combination of the ideal current source I
S and the ideal resistance R in parallel—see Fig. 2.25a. The resistance R reflects the non-ideality of the practical source: it limits the maximum available source voltage and the maximum available source power by[image: A331468_1_En_2_Fig25_HTML.gif]
Fig. 2.25Circuit model of a practical current source and its υ-i characteristic




[image: 
$$ {V}_{\max }=R{I}_{\mathrm{S}},\kern1em {P}_{\max }={V}_{\max }{I}_{\mathrm{S}}=R{I}_{\mathrm{S}}^2 $$
]

 (2.31)

Voltage V
max is again called 
the 
                  open-circuit voltage
                  
                  
                 of the source. Similarly, current I
S is 
called the 
                  short-circuit current
                  
                  
                 of the source. Once both the quantities are measured, resistance R (called 
the internal source resistance) may be found using Eq. (2.31).
Exercise 2.10
The open-circuit voltage of a current source is 9 V; the short-circuit current is 2 A. Determine the internal source resistance.

Answer: 4.5 Ω.

The 
υ-i characteristic

 of the practical current source

 is the plot of current I available from the source versus voltage V across the source in Fig. 2.25b. This current is generally less than I
S since a portion of I
S flows through the internal resistance R, i.e.,[image: 
$$ I={I}_{\mathrm{S}}-\frac{V}{R} $$
]

 (2.32)

This υ-i characteristic is plotted in Fig. 2.25b by a solid line

. The deviation from the straight horizontal line characterizes the degree of non-ideality.
Exercise 2.11
Determine the 
internal source resistance for the source illustrated in Fig. 2.25b given that every horizontal 

division is 3 V and every vertical division is 1 A.

Answer: 15 Ω.


2.3.5 Operation of the Voltage Source
Operation of a voltage power supply of any kind (an electric generator, a chemical battery, a photovoltaic cell, etc.) might be illustrated based on 
the charge separation principle very schematically depicted in Fig. 2.26. We need to deliver electric power to a load modeled by an equivalent resistance R
L. First, we consider in Fig. 2.26 a charged capacitor with a charge Q connected to a load resistor R
L at an initial time moment. The capacitor voltage V is related to charge by [image: 
$$ V=Q/C $$
] where C is the (constant) capacitance. The capacitor starts to discharge and generates a certain load current I
L. At small observation times, the change in Q is small, so is the change in V. Therefore, the capacitor initially operates as a voltage power supply with voltage V. However, when time progresses, the capacitor discharges and the voltage V eventually decreases.[image: A331468_1_En_2_Fig26_HTML.gif]
Fig. 2.26Power source schematically represented as a capacitor continuously charged by a charge separation mechanism—the charge pump






How could we keep V constant, i.e., continuously charge the capacitor? A charge separation mechanism should be introduced between the hypothetic capacitor plates to continuously compensate for the charge leakage. That mechanism may have the forms:	1.For an electromechanical generator, this is 
the Lorentz force that acts on individual electrons in a conductor and pushes them to one conductor terminal while creating the opposite charge density on the opposite conductor terminal. The macroscopic effect of the Lorentz force is 
the Faraday’s law of induction.



 

	2.For a battery, these are chemical reactions at the electrodes which cause a charge separation, i.e., positive metal ions dissolve in the electrolyte and leave excess electrons in the metal electrode on the left in Fig. 2.26.


 

	3.For the photovoltaic cell, this is a built-in potential of the semiconductor pn-junction that separates light-generated negative carriers (electrons) and positive carriers (holes) as shown in Fig. 2.26.


 





Indeed, the capacitor analogy in Fig. 2.26 is only an illustrative approach, especially for electromechanical power generation. Below, we will consider a few specific examples.

2.3.6 Application Example: DC Voltage Generator with Permanent Magnets
A realistic electromechanical voltage source—a basic DC generator with permanent magnets—is shown in Fig. 2.27. This generator setup makes use of the Lorentz force:[image: A331468_1_En_2_Fig27_HTML.gif]
Fig. 2.27Charge separation in a DC electromechanical generator




[image: 
$$ \overrightarrow{f}\equiv q\left(\overrightarrow{\upsilon}\times \overrightarrow{B}\right) $$
]

 (2.33)


The Lorentz force acts 
on charge q moving with a velocity [image: 
$$ \overrightarrow{\upsilon} $$
] in an external magnetic field with the vector flux [image: 
$$ \overrightarrow{B} $$
] measured in tesla (T). The force itself is measured in newtons. The cross symbol in Eq. (2.33) denotes the vector product of two vectors evaluated according to the right-hand rule. Shown in Fig. 2.27a are two permanent magnets (stator of the generator) responsible for creating the magnetic flux [image: 
$$ \overrightarrow{B} $$
] emanating from the north pole (N) and terminating at the south pole (S). The armature (rotor) rotates clockwise in Fig. 2.27b with the armature velocity [image: 
$$ \overrightarrow{\upsilon} $$
].
When the flux density [image: 
$$ \overrightarrow{B} $$
] is applied, every positive charge +q in the armature segment l will experience a Lorentz force with the magnitude [image: 
$$ f=+q\upsilon B $$
] which will move this charge toward the right terminal of the armature in Fig. 2.27b. Similarly, every negative charge –q in the armature would experience the equal but oppositely directed 
Lorentz force [image: 
$$ f=-q\upsilon B $$
] which will move this charge toward the left terminal. Hence, a charge separation occurs along the armature which will give rise to an induced voltage V. Total work W of the Lorentz force on a charge q along the entire armature path in Fig. 2.27b is given by [image: 
$$ W=2lf $$
]. This work divided by the amount of charge determines the equivalent voltage that will be developed on the generator terminals, i.e., 
                  
                the instantaneous generator voltage [image: 
$$ V=W/q=2l\upsilon B $$
]. If the armature rotates at an angular speed ω (rad/s), the charge velocity perpendicular to the field is given by [image: 
$$ \upsilon =d/2\omega \cos \theta $$
] (m/s). Plugging in this expression and averaging over angles θ from 0 to π/2, we obtain 
the average generator voltage in the form[image: 
$$ V=ldB\left\langle  \cos \theta \right\rangle =\left(2/\pi \right)AB\omega \kern1em \left[\mathrm{V}\right] $$
]

 (2.34)

where A is the armature area. If the rotor has N turns, the result is multiplied by N. The same expression for the voltage is obtained using 
the Faraday’s law of induction. A regulator circuit is necessary to obtain a flat DC voltage without ripples. Any brushed DC motor operates as a generator when its shaft is rotated with a certain speed. The generated 
open-circuit voltage may be observed in laboratory with the oscilloscope.
Exercise 2.12
Determine average open-circuit generator voltage in Fig. 2.27 given [image: 
$$ A=0.1\kern0.5em {\mathrm{m}}^2 $$
], [image: 
$$ B=0.2\kern0.5em \mathrm{T} $$
], [image: 
$$ \omega = $$
] 20 rad/s (191 rpm), and the armature with 20 turns.

Answer: 5.1 V.


2.3.7 Application Example: Chemical Battery
A chemical reaction in a battery induces a continuous charge separation. The “charge pump” so constructed, once connected to a load, is able to create a continuous electric current into a load and a 
voltage difference across it. You are probably aware of the quest to improve the venerable battery. Extensive coverage in the media and in technical journals frequently reports on new chemical compounds and control circuits. They target smaller, more powerful rechargeable batteries for such diverse devices as portable computers, cell phones, sensors, and automobiles. Specifically, it is the automotive sector which implements hybrid vehicle technology where powerful electro motors in conjunction with high-performance batteries are supplementing, even completely replacing, conventional combustion engines. For a standard chemical battery, the two important parameters 
are battery voltage and 
battery capacity. The 
capacity, Q, is a new quantity that is needed because of a battery’s inability to provide constant current and power for an infinite time duration. How a battery behaves over time is illustrated in Fig. 2.28 where we monitor the power and current as a function of time. A key time constant is the so-called discharge time, which is critically dependent on the attached load.[image: A331468_1_En_2_Fig28_HTML.gif]
Fig. 2.28Generic plots of delivered power, P
B, and electric current, I
B, for two different loads labeled #1 and #2. The discharge times T
1 and T
2 correspond to the loads #1 and #2, respectively





When a load of resistance R
L is connected to the battery, and the battery’s internal resistance R is negligibly small compared to that resistance, the circuit current, I
B, and the power delivered by the battery, P
B, are determined based on Ohm’s law:[image: 
$$ {I}_{\mathrm{B}}=\frac{V_{\mathrm{B}}}{R},\kern1em {P}_{\mathrm{B}}={V}_{\mathrm{B}}{I}_{\mathrm{B}} $$
]

 (2.35)

The total energy, E
B, stored in the battery and then delivered to the circuit is a fixed constant. Its value depends on the battery type and size. The total energy in joules is given by the time integral of delivered power over time, i.e.,[image: 
$$ {E}_{\mathrm{B}}={\displaystyle \underset{0}{\overset{\infty }{\int }}{P}_{\mathrm{B}}\left(t\kern0.09em ^{\prime}\right)dt\kern0.09em ^{\prime }} $$
]

 (2.36)

We can assume that the total energy is a finite constant; it follows from Eq. (2.36) that the delivered power must drop to zero at a finite time T. This is schematically shown in Fig. 2.28 for two different load resistances, #1 and #2, which require two different circuit currents. Even though the two power curves in Fig. 2.28a are different, the area under those curves, denoting the total energy stored in the battery, remains the same to a sufficient degree of accuracy. The battery’s terminal voltage V
B also remains approximately constant over the entire operation cycle and even afterwards. It is the battery’s current I
B that finally sharply decreases with time and causes a drop in power, as seen in Fig. 2.28b. Let us consider the simplest case where the current is a constant for [image: 
$$ t<T $$
] and at t = T drops to zero and stays zero for t > T. From Eq. (2.36), it follows that[image: 
$$ {E}_{\mathrm{B}}={\displaystyle \underset{0}{\overset{\infty }{\int }}{P}_{\mathrm{B}}\left(t\kern0.09em ^{\prime}\right)dt^{\prime }}={\displaystyle \underset{0}{\overset{T}{\int }}{V}_{\mathrm{B}}{I}_{\mathrm{B}}dt\kern0.09em ^{\prime }}=\left[T{I}_{\mathrm{B}}\right]\;{V}_{\mathrm{B}} $$
]

 (2.37)

The expression in the square brackets is the definition of 
the battery capacity, Q:[image: 
$$ Q\equiv T{I}_{\mathrm{B}}=\frac{E_{\mathrm{B}}}{V_{\mathrm{B}}} $$
]

 (2.38)

Since the battery terminal voltage is always known, its capacity determines the total energy stored in the battery. The capacity is measured in A·h (Ah) or for small batteries in mA·h (mAh). The capacity rating that manufacturers print on a battery is based on the product of 20 h multiplied by the maximum constant current that a fresh battery can supply for 20 h at 20°C while keeping the required terminal voltage. The physical size of batteries in the USA is regulated by the American National Standards Institute (ANSI) and the International Electrotechnical Commission (IEC). Table 2.3 lists the corresponding parameters of some common batteries.Table 2.3Characteristics of batteries (from multiple datasheets)


	Battery size/type
	Rechargeable
	Voltage (cell)
	Capacity (A⋅h)
	Resistance (R)

	AAA
	No
	1.5
	1.3
	100–300mΩ for alkaline battery per cell

	AA
	No
	1.5
	2.9

	C
	No
	1.5
	8.4

	D
	No
	1.5
	20.5

	9 V
	No
	9.0
	0.6
	~400 mΩ

	Lithium batteries
	Yes
	3.6–3.7
	0.7–1.5
	~300 mΩ

	Lead acid starter battery (automotive, deep cycle)
	Yes
	12.6
	~600A for 30 s at 32 °F before voltage drops to 7.20 V
	<100 mΩ

	Deep-cycle marine, electric vehicles
	Yes
	Variable: ~ 30 W⋅h per kg of weight, or ~ 108 kJ per kg of weight
	~200 mΩ





Example 2.9
A 12-V battery rated at a capacity of Q = 100 A·h may deliver 5 A over a 20-h period, 2.5 A over a 40-h period, or 10 A over a 10-h period. Find the total energy delivered by the battery provided that its internal resistance is negligibly small.

Solution: The total energy delivered by the battery is equal to[image: 
$$ {E}_{\mathrm{B}}={V}_{\mathrm{B}}Q=12\cdot 100\kern0.5em \mathrm{V}\cdot \mathrm{A}\cdot \mathrm{h}=1200\kern0.5em \mathrm{W}\cdot \mathrm{h}=4.32\;\mathrm{M}\mathrm{J} $$
]

 (2.39)



It remains constant for each case. This example shows that the electric energy can be measured either in joules or in Wh or more often in kWh. Clearly, 1 Wh = 3600 J.

Circuit Model of a Battery
As a practical voltage source, a battery always has a small, but finite internal resistance, R. Battery’s equivalent circuit therefore includes the ideal voltage source and the internal resistance in series—see Fig. 2.29. Even though the values of R are small, the internal resistance has critical implications affecting both the battery’s efficiency and its ability to provide a high instantaneous power output. In general, it is difficult to directly measure the internal resistance of batteries, you would need a calibrated load resistor and sophisticated measurement equipment to precisely measure voltages and currents.[image: A331468_1_En_2_Fig29_HTML.gif]
Fig. 2.29Circuit model of a battery: the ideal voltage source in series with an internal resistor





Exercise 2.13
A 12-V battery has an internal resistance of 10 Ω. What are the maximum current and the maximum power that the battery can output?

Answer: [image: 
$$ {I}_{\max }=1.2\kern0.5em \mathrm{A} $$
], [image: 
$$ {P}_{\max }=14.4\kern0.5em \mathrm{W} $$
]


Many battery types have been developed for a wide range of applications. They differ 
both in battery energy storage per kg of weight, or unit volume, and in power delivery per kg of weight, or per unit volume. In particular, modern heavy-duty, deep-cycle batteries may sport the following properties:[image: 
$$ \mathrm{Energy}\ \mathrm{storage}:\kern1em 150\;\mathrm{W}\cdot \mathrm{h}/\mathrm{l}, $$
]

 (2.40)


[image: 
$$ \mathrm{Power}\ \mathrm{density}:\kern1em 2\kern0.5em \mathrm{kW}/\mathrm{l}. $$
]

 (2.41)

You can compare Eqs. (2.40) and (2.41) with the last row of Table 2.3 and establish the approximate density of the battery device.



2.4 Dependent Sources and Time-Varying Sources
2.4.1 Dependent Versus Independent Sources



If the strength of the source (voltage or current) does not vary because of variation of the circuit parameters, the source is an independent source. The voltage and current sources considered previously are the independent sources. However, if the strength of the source is controlled by some dedicated circuit parameters, the sources are called dependent sources. Figure 2.30 shows circuit symbols (diamonds) for the dependent voltage and current sources. The ideal dependent sources are the important circuit elements, along with the independent sources. We explain the notations in Fig. 2.30 as follows.[image: A331468_1_En_2_Fig30_HTML.gif]
Fig. 2.30Circuit symbols for ideal independent and dependent sources, respectively. Lowercase notations for voltages and currents are used to underscore possible time variations




	1.The ideal independent and dependent sources may generate not only the steady-state (DC) voltages and currents, but also arbitrary time-varying voltages and currents. To underscore this fact, we will use the lowercase notations for voltages and currents, respectively.


 

	2.The dependent sources generate (or output) voltage or current in response to some input voltage or current—the stimulus. To underscore this fact, we will use the subscript OUT for the generated voltage or current strengths. This is in contrast to the subscript S, which always denotes

 the independent sources.


 

	3.The stimulus voltage and the stimulus current (not yet shown in Fig. 2.30) will be denoted by υ
in and i
in, respectively.


 






2.4.2 Definition of Dependent Sources
The stimulus voltage υ
in is the voltage across a certain resistance. Likewise, the stimulus current i
in is the current through a certain resistance. Figure 2.31 shows four major types of dependent sources where the stimulus and the response are combined into one block—the shaded rectangle. Such a combination reflects the physical reality since this block usually corresponds to a single circuit component—a transistor or an amplifier. Emphasize that the resistances in Fig. 2.31 may be reduced to an open circuit for dependent voltage sources

 or to a short circuit for dependent current sources, respectively, if required. Also note that another circuit element may be present in place of the resistance, for example, the ideal diode. The bottom (ground) nodes in every circuit in Fig. 2.31 may be interconnected to emphasize the same voltage reference.[image: A331468_1_En_2_Fig31_HTML.gif]
Fig. 2.31Four major types of dependent sources







                    
                  Voltage-Controlled Voltage Source
This dependent source is shown in Fig. 2.31a. The source voltage or the output voltage follows the input voltage according to a linear law[image: 
$$ {\upsilon}_{\mathrm{out}}=A{\upsilon}_{\mathrm{in}} $$
]

 (2.42)

where the dimensionless constant A is called 
the open-circuit voltage gain of the dependent source. However, units of V/V or V/mV are often used. For example, the expressions [image: 
$$ A=5\kern0.75em \mathrm{V}/\mathrm{mV} $$
] and [image: 
$$ A=5000 $$
] are equivalent. Equation (2.42) is valid irrespective of the circuits connected to the dependent source to the right and to the left in Fig. 2.31a. In this sense, the voltage-controlled voltage source is the ideal circuit element. Such a source is 
a voltage amplifier.


                  Voltage-Controlled Current Source

                
This dependent source is shown in Fig. 2.31b. The source current or the output current follows the input voltage according to a linear law:[image: 
$$ {i}_{\mathrm{out}}=G\kern0.1em {\upsilon}_{\mathrm{in}} $$
]

 (2.43)




where the constant G with units of [image: 
$$ \mathrm{A}/\mathrm{V}={\Omega}^{-1}=\mathrm{S} $$
] is 
called the 
                    transconductance
                    
                    
                   of the dependent source, similar to the name conductance. For example, the expressions
[image: 
$$ G=0.5\kern0.75em \mathrm{A}/\mathrm{mV} $$
] and [image: 
$$ G=500\kern0.5em \mathrm{S} $$
] are equivalent. Emphasize that the transconductance has nothing in common with the conductance (inverse resistance) of a passive resistor. Equation (2.43) is also valid irrespective of the circuits connected to the dependent source to the right and to the left in Fig. 2.31b. In this sense, the voltage-controlled current source is again the ideal circuit element. Such a
 source is 


                    
                  a 
                    transconductance amplifier
                    
                    
                  .


                  Current-Controlled Voltage Source

                
This dependent source is shown in Fig. 2.31c. The source voltage or the output voltage follows the input current through the resistance in Fig. 2.31c according to a linear law:[image: 
$$ {\upsilon}_{\mathrm{out}}=R\kern0.1em {i}_{\mathrm{in}} $$
]

 (2.44)

where the constant R with units of [image: 
$$ \mathrm{V}/\mathrm{A}=\Omega $$
] is called the transresistance of the dependent source, similar to the name resistance. For example, the expressions [image: 
$$ R=5\mathrm{V}/\mathrm{m}\mathrm{A} $$
] and [image: 
$$ R=5000\kern0.5em \Omega $$
] are equivalent. Emphasize that the transresistance has nothing in common with the resistance of a passive resistor. Equation (2.44) is again valid irrespective of the circuits connected to the dependent source to the right and to the left in Fig. 2.31c. In this sense, the current-controlled voltage source is also an ideal circuit element. Such a source is 
a 
                    transresistance amplifier
                    
                    
                  .


                  Current-Controlled Current Source

                
The last dependent source is shown in Fig. 2.31d. The source current or the output current follows the input current according to a linear law:[image: 
$$ {i}_{\mathrm{out}}=A\kern0.2em {i}_{\mathrm{in}} $$
]

 (2.45)

where the dimensionless constant A is called 
the short-circuit current gain of the dependent source. However, units of A/A or A/mA are often used. For example, the expressions [image: 
$$ A=0.5\kern0.75em \mathrm{A}/\mathrm{m}\mathrm{A} $$
] and [image: 
$$ A=500 $$
] are equivalent. We repeat that Eq. (2.45) is valid irrespective of the circuits connected to the dependent source to the right and to the left in Fig. 2.31d—the voltage-controlled voltage source
 is the ideal circuit element. Such a source 
is a 
                    current amplifier
                    
                    
                  .


2.4.3 
Transfer Characteristic
s
The dependent sources do not possess the υ-i characteristic. Instead, a 
                  transfer characteristic
                  
                  
                 of the source is used, which relates the output voltage or current to the input voltage or current. For example, the transfer characteristic of the voltage-controlled voltage source follows Eq. (2.42). It is a straight line in the υ
in, υ
out plane (the xy-plane), with the slope equal to A. Other linear transfer characteristics are obtained similarly.
Example 2.10
Solve a circuit shown in Fig. 2.32a—determine current i through the 1-kΩ resistance. The independent voltage source is given by [image: 
$$ {\upsilon}_{\mathrm{S}}=0.5+2 \cos 2t\kern0.5em \left[\mathrm{V}\right] $$
]; the
 open-circuit voltage gain of the dependent voltage source is 5 V/V.[image: A331468_1_En_2_Fig32_HTML.gif]
Fig. 2.32Two circuits with the dependent voltage-controlled voltage source






Solution: The input voltage is simply the independent-source voltage, [image: 
$$ {\upsilon}_{\mathrm{in}}={\upsilon}_{\mathrm{S}} $$
]. The output voltage is [image: 
$$ {\upsilon}_{\mathrm{out}}=5{\upsilon}_{\mathrm{in}}=5{\upsilon}_{\mathrm{S}} $$
]. The output current follows 
Ohm’s law:[image: 
$$ i=\frac{\upsilon_{\mathrm{OUT}}}{1\kern0.5em \mathrm{k}\Omega}=2.5+10 \cos 2t\kern1em \left[\mathrm{m}\mathrm{A}\right] $$
]

 (2.46)



Note that all circuit parameters now become time dependent. 
                    
                  However, this does not change the solution compared to the steady-state case.

Exercise 2.14
Solve an electric circuit shown in Fig. 2.32b—determine current i through the 1-kΩ resistance. The independent current source is given by [image: 
$$ {i}_{\mathrm{S}}=0.5+2 \cos 2t\kern0.5em \left[\mathrm{m}\mathrm{A}\right] $$
]; the open-circuit voltage gain of the dependent source is 5 V/V. The leftmost resistance in Fig. 2.32b (often called the input resistance) is 1 kΩ.

Answer: [image: 
$$ i=2.5+10 \cos 2t\ \left[\mathrm{m}\mathrm{A}\right] $$
] (the same answer 
as in Example 2.10).


2.4.4 Time-Varying Sources
Figure 2.33 shows a number of commonly used symbols for the voltage source—the ideal circuit element—which differentiate its time-related behavior. Figure 2.33a shows the steady-state ideal DC voltage source. Figure 2.33b indicates an arbitrary (either steady-state or variable) ideal voltage source. Figure 2.33c–d indicates a time-harmonic ideal AC (alternating current) voltage source described by a cosine function in the form[image: A331468_1_En_2_Fig33_HTML.gif]
Fig. 2.33Symbols for independent voltage source which imply (a) the DC source (capital V
S), (b) an arbitrary source (lowercase υ
S), and (c) and (d) AC time-harmonic sources (lowercase υ
S)




[image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \cos \left(\omega \kern0.1em t+\varphi \right)\kern0.5em \left[\mathrm{V}\right] $$
]

 (2.47)

where V
m is the AC source amplitude with the units of volts, ω is the AC source angular frequency, and φ is the phase in degrees or radians. The AC current sources do not have special symbols—the symbols from Fig. 2.30 are used. The same is valid for the dependent AC sources, both voltage and current.

AC Source

 Polarity
Since the voltage in Eq. (2.47) is alternating, the polarity of 
the AC voltage source is also variable. This circumstance is reflected in Fig. 2.33d where the source polarity is not shown at all. However, for reference purposes, and when the multiple sources of the same frequency are present in the circuit, it is always useful to designate the source polarity. Reversing the AC source polarity means changing the phase in Eq. (2.47) by ±180°.



2.5 Ideal Voltmeter and Ammeter: Circuit Ground
2.5.1 Ideal Voltmeter and Ammeter



The ubiquitous voltmeter and ammeter are devices designed to measure voltages and currents. Both devices are usually assembled in one unit known as a digital multimeter (DMM). From the circuit point of view, the ideal voltmeter is an open circuit which conducts zero current as shown in Fig. 2.34. 
                  
                An ideal ammeter is a short circuit which conducts any current with zero resistance—see the same figure. In reality, the voltmeter will conduct a small leakage current, and the ammeter will exhibit a small resistance.[image: A331468_1_En_2_Fig34_HTML.gif]
Fig. 2.34Circuit equivalencies for ideal voltmeter and ammeter





These features guarantee that the connection of the measurement device will not change the circuit operation. Figure 2.35 shows the proper connection of the voltmeter and ammeter to measure current through circuit element A and voltage across this element.[image: A331468_1_En_2_Fig35_HTML.gif]
Fig. 2.35Correct connection of voltmeter and ammeter for voltage and current measurements





The ammeter is always connected in series with element X. In other words, to connect the ammeter we must break the circuit either before or after element X. Since the ammeter has no resistance, it acts just like an ideal wire and thus does not perturb the 
electric circuit. On the other hand, the voltmeter is always connected in parallel with element X. The circuit current I in Fig. 2.35 cannot flow through the voltmeter

, which acts as an open circuit. As required, it will flow through element X. We conclude that an ideal voltmeter does not perturb the circuit either. Generally, voltage measurements are simpler to perform than current measurements.
Wrong Connections of Ammeter and Voltmeter
The ammeter connected in parallel will short out the element A: the current will flow through the ammeter. If the element A were a load, there would no longer be a load resistance in the circuit. And with no attached load, the power supply will deliver the largest possible current, which will likely burn out the ammeter fuses or destroy other circuit elements. The voltmeter is an open circuit. Connecting it in series is equivalent to physically breaking the circuit. The circuit will no longer properly function.


2.5.2 Circuit Ground: Fluid Mechanics Analogy
Consider first a fluid mechanics analogy of an ungrounded electric circuit shown in Fig. 2.36a.[image: A331468_1_En_2_Fig36_HTML.gif]
Fig. 2.36A large reservoir at atmospheric pressure attached to a pumping system serves as an analogy to the ground connection in an electric circuit





A water pump creates a constant pressure difference p between its terminals, which forces water to move through the filter. The pressure water pump is less common than a water pump of a constant flux; however, it exactly corresponds to the voltage power supply of the 
electric circuit. For entirely closed (isolated) pumping systems, such as those shown in Fig. 2.36a, the water pressure inside the system can in principle have an arbitrary pressure deviation p
0 from the ambient atmospheric pressure. A large p
0 is in practice undesirable since if the system breaks, then a large pressure difference with regard to atmospheric pressure will cause high-speed water leakage. Similarly, an isolated electric circuit may have an arbitrary voltage V
0 versus ground voltage, due to static charge accumulation. We could make the reference level equal to atmospheric pressure (make p
0 equal to zero) if we connect tubing to a large water reservoir at atmospheric pressure as shown in Fig. 2.36b. There is indeed no water flow through such a connection; but the pressure level is normalized. A similar situation takes place for the electric ground shown in Fig. 2.36b. By connecting a point in the circuit to a ground, we normalize the circuit voltage to the earth’s voltage level, which we define to be 0 V, and eliminate any static charges. There is no current flow through the ground connection, except, maybe, for the first time moment. Therefore, this connection is only a voltage reference point. A similar analogy holds for a current source (pump of a constant flux).

2.5.3 Types of Electric Ground
Figure 2.37 shows three different types of electric ground connections. The first one is 
the earth ground. A true earth ground, as defined by the National Electrical Code (USA), physically consists of a conductive pipe or rod driven into the earth to a minimum depth of 8 feet. Obviously, it is not always possible to physically connect the circuit directly to the earth. Some examples include a cell phone, an automobile, or an airplane.[image: A331468_1_En_2_Fig37_HTML.gif]
Fig. 2.37Different ground types: earth ground, 
                          
                        chassis ground, and common (neutral) ground





The second ground type is 
the chassis ground. It is the physical metal frame or structure of an automobile, an airplane, a desktop computer, a cell phone, or other electrical devices; the term case is very similar in meaning. The chassis ground primarily involves a connection to the metal case. It is implied that the case should eventually discharge due to contact with other objects or with earth. The term ground plane for planar printed circuits, which is usually the copper bottom of a printed circuit board, is equivalent to chassis ground. The third ground type in Fig. 2.37 is 
the common terminal or common ground. The word common is typical for many circuits including the amplifier circuits considered next, when a dual-polarity power supply is used. Here two identical batteries are connected in series, plus to minus. The common terminal of the dual power supply so designed serves as the reference ground; even a metal case is not necessarily required. The AC analog of the common ground is the neutral terminal of your wall plug. Frequently, different ground types may be interconnected. For example, the neutral terminal of the wall plug should be connected to earth ground at a certain location. The chassis ground of a large truck may be connected to the physical ground by a little flexible strip nearly touching the asphalt.

2.5.4 Ground and

 Return Current
We have already seen that electric current in a circuit always flows in closed loops. This is a simple and yet a very critical property of an 
electric circuit. The steady-state current that flows to a load is sometimes 
called forward current, whereas the current that returns to the power supply is the return current. Can the chassis ground itself be used as a part of this loop for the return current? The answer is yes, and Fig. 2.38a depicts this situation as an example. Here a 9 V battery is powering an incandescent light bulb. For the 
chassis ground in Fig. 2.38a, the circuit is correctly drawn, but putting two wires into the soil, as shown in Fig. 2.38b, will fail owing to the high resistance of the earth. The use of the ground to establish a path for the return current is quite common for the chassis ground (automotive electronics) and also for the common ground. However, it should not be attempted for the earth ground connection. Emphasize that, in many circuit diagrams, the difference between the chassis ground, the common ground, and the true 
earth ground is often ignored. Namely, 
                  
                  
                the symbol of the earth ground used in the circuit often implies either the chassis ground or the common ground, i.e., the (physically grounded or not) current return path.[image: A331468_1_En_2_Fig38_HTML.gif]
Fig. 2.38(a) The return current path for the chassis ground is metal; it can be replaced by a wire. (b) There is no current return path, since soil (dry or wet) is a very poor conductor. The circuit is therefore open and not functioning






2.5.5 
Absolute Voltage

 and Voltage Drop

 Across 
a Circuit Element
The electric ground serves as a voltage reference point in a circuit. It allows us to use two types of voltages in the circuit:	1.The absolute voltage at a certain circuit node


 

	2.The voltage drop or simply the voltage across a circuit element



 





Figure 2.39 shows the concept. Voltages V
a,b,c,d are absolute voltages measured versus ground at nodes a, b, c, d in Fig. 2.39. Voltages V
A,B,C give the voltage drop across the circuit elements A, B, and C. Indeed, the ideal wires remain the equipotential surfaces (have the same absolute voltage). Taking into account the polarity of the voltages V
A,B,C shown in Fig. 2.39, one has for the node voltages[image: A331468_1_En_2_Fig39_HTML.gif]
Fig. 2.39Absolute voltages measured versus ground in a grounded electric circuit and voltages across individual circuit elements. Note that there is no voltage drop across ideal wires




[image: 
$$ {V}_{\mathrm{a}}=0\kern0.5em \mathrm{V},\kern.15em {V}_{\mathrm{b}}={V}_{\mathrm{a}}+{V}_{\mathrm{A}}=10\kern0.5em \mathrm{V},\kern.15em {V}_{\mathrm{c}}={V}_{\mathrm{b}}-{V}_{\mathrm{B}}=5\kern0.5em \mathrm{V},\kern.15em {V}_{\mathrm{d}}={V}_{\mathrm{c}}-{V}_{\mathrm{C}}=0\kern0.5em \mathrm{V} $$
]

 (2.48)


Note that both voltage types—absolute voltage and voltage across a circuit element—are often denoted by the same letter V (in the DC case) and may be easily misplaced. Both of them are widely used in electric circuit analyses. The hint is that the voltage across a circuit element 
always has the

 polarity labeled with ± sign, whereas the absolute voltage 

often has not.
Exercise 2.14
Determine the absolute voltages at nodes 1 through 6 in the circuit shown in Fig. 2.40.[image: A331468_1_En_2_Fig40_HTML.gif]
Fig. 2.40Voltages across circuit elements in a grounded electric circuit






Answer: Clearly, [image: 
$$ {V}_1=0\mathrm{V} $$
] since node 1 is directly connected 

to ground. Then,[image: 
$$ \begin{array}{l}{V}_2={V}_1+{V}_{\mathrm{A}}=6\kern0.5em \mathrm{V},\kern0.5em {V}_3={V}_2+{V}_{\mathrm{B}}=12\kern0.5em \mathrm{V},\kern0.5em {V}_4={V}_3-{V}_{\mathrm{C}}=9\kern0.5em \mathrm{V},\\ {}{V}_5={V}_4-{V}_{\mathrm{D}}=3\kern0.5em \mathrm{V},{V}_6={V}_5-{V}_{\mathrm{E}}=0\kern0.5em \mathrm{V}\end{array} $$
]







Summary

                	Passive circuit elements

	Name and symbol
	
υ–i Characteristic
	Physical counterpart (component)

	
                            Resistance
                          

                            [image: A331468_1_En_2_Figau_HTML.gif]
                          
	
                            [image: A331468_1_En_2_Figav_HTML.gif]
                          
	
                            Resistor
                          

                            [image: A331468_1_En_2_Figaw_HTML.gif]
                          

                            [image: 
$$ V=RI,\kern0.5em \sigma =qn\mu, \kern0.5em R=\frac{l}{A\sigma } $$
]
                            [image: 
$$ P=VI=R{I}^2={V}^2/R $$
]
                          

	
                            Short circuit:
                          

                            [image: A331468_1_En_2_Figax_HTML.gif]
                          
	
                            [image: A331468_1_En_2_Figay_HTML.gif]
                          
	
                            Short wire of almost zero resistance
                          

                            Ammeter
                          

	
                            Open circuit:
                          

                            [image: A331468_1_En_2_Figaz_HTML.gif]
                          
	
                            [image: A331468_1_En_2_Figba_HTML.gif]
                          
	
                            Air gap of almost infinite resistance
                          

                            Voltmeter
                          

	
                            Ideal diode
                          

                            [image: A331468_1_En_2_Figbb_HTML.gif]
                          
	
                            [image: A331468_1_En_2_Figbc_HTML.gif]
                          
	
                            Electronic diode
                            Transistor junctions
                            Solar cell
                          

[image: 
$$ I={I}_S\left[ \exp \left(\frac{V}{V_T}\right)-1\right] $$
]
Static resistance: [image: 
$$ {R}_0\equiv {V}_0/I\left({V}_0\right) $$
]
Dynamic resist.: [image: 
$$ r\equiv {\left.dV/dI\right|}_{V_0,\kern0.15em {I}_0} $$
]


	
                            Threshold switch
                          

                            [image: A331468_1_En_2_Figbd_HTML.gif]
                          
	
                            [image: A331468_1_En_2_Figbe_HTML.gif]
                          
	
                            Diode
                            Transistor
                          
Open circuit when [image: 
$$ V<{V}_{Th} $$
]
Short circuit when [image: 
$$ V={V}_{Th} $$
]


	Active circuit elements

	Name and symbol
	
υ–i Characteristic
	Physical counterpart (component)

	
                            Independent voltage source
                          

                            [image: A331468_1_En_2_Figbf_HTML.gif]
                          
	
                            [image: A331468_1_En_2_Figbg_HTML.gif]
                          
	
                            Practical voltage source
                          

                            [image: A331468_1_En_2_Figbh_HTML.gif]
                          

	
                            Independent current source
                          

                            [image: A331468_1_En_2_Figbi_HTML.gif]
                          
	
                            [image: A331468_1_En_2_Figbj_HTML.gif]
                          
	
                            Practical current source
                          

                            [image: A331468_1_En_2_Figbk_HTML.gif]
                          

	
                            Voltage-controlled voltage source
                          

                            [image: A331468_1_En_2_Figbl_HTML.gif]
                          
	
                            [image: A331468_1_En_2_Figbm_HTML.gif]
                          
	
                            Transistor
                          

                            Amplifier
                          

                            [image: 
$$ {\upsilon}_{out}=A{\upsilon}_{in} $$
]
                          

A—open-circuit voltage gain [V/V, V/mV] (dimensionless)

	
                            Current-controlled voltage source
                          

                            [image: A331468_1_En_2_Figbn_HTML.gif]
                          
	
                            [image: A331468_1_En_2_Figbo_HTML.gif]
                          
	
                            Transistor
                          

                            Amplifier
                          

                            [image: 
$$ {\upsilon}_{out}=R\kern0.1em {i}_{in} $$
]
                          

R—transresistance [V/A, V/mA]
(units of resistance, Ω)

	
                            Voltage-controlled current source
                          

                            [image: A331468_1_En_2_Figbp_HTML.gif]
                          
	
                            [image: A331468_1_En_2_Figbq_HTML.gif]
                          
	
                            Transistor
                          

                            Amplifier
                          

                            [image: 
$$ {i}_{out}=G\kern0.1em {\upsilon}_{in} $$
]
                          

G—transconductance [A/V]
(units of conductance, Ω−1)

	
                            Current-controlled current source
                          

                            [image: A331468_1_En_2_Figbr_HTML.gif]
                          
	
                            [image: A331468_1_En_2_Figbs_HTML.gif]
                          
	
                            Transistor
                          

                            Amplifier
                          

                            [image: 
$$ {i}_{out}=A\kern0em {i}_{in} $$
]
                          

A—short-circuit current gain [A/A, A/mA] (dimensionless)




              

Problems
2.1 Resistance: Linear Passive Circuit Element

                  2.1.2 Resistance
                

                  2.1.3
                  υ
                  -
                  i
                  Characteristic of the Resistance: Open and Short Circuits
                

                  2.1.4 Power Delivered to the Resistance
                

                  2.1.5 Finding Resistance of Ohmic Conductors
                
Problem 2.1
Plot υ-i characteristics of the following resistances: (A) 8 kΩ, (B) 2 kΩ, (C) 1 kΩ, and (D) 500 Ω. Clearly label each characteristic.
[image: A331468_1_En_2_Figc_HTML.gif]




Problem 2.2
Plot υ-i characteristics of the following resistances: (A) 1.667 Ω. (B) Open circuit on the same graph.
[image: A331468_1_En_2_Figd_HTML.gif]




Problem 2.3
Plot υ-i characteristics of the following resistances: (A) 2.5 Ω. (B) Short circuit on the same graph.
[image: A331468_1_En_2_Fige_HTML.gif]




Problem 2.4
Given υ-i characteristics of a resistance determine the corresponding conductance. Show units.
[image: A331468_1_En_2_Figf_HTML.gif]




Problem 2.5
An incandescent energy-saving light bulb (“soft white”) from General Electric is rated to have the wattage of 57 W when the applied AC voltage is 120 V rms (root mean square). This means that the corresponding DC voltage providing the same power to the load is exactly 120 V. When the bulb is modeled as a resistance, what is the equivalent resistance value?
[image: A331468_1_En_2_Figg_HTML.gif]




Problem 2.6
The power absorbed by a resistor from the ECE laboratory kit

 is 0.2 W. Plot the υ-i characteristics of the corresponding resistance to scale given that the DC voltage across the resistor was 10 V.
[image: A331468_1_En_2_Figh_HTML.gif]




Problem 2.7
The number of free electrons in copper per unit volume is [image: 
$$ n=8.46\times {10}^{28}\frac{1}{{\mathrm{m}}^3} $$
]. The charge of the electron is −1.60218 × 10−19 C. A copper wire of cross section 0.25 mm2 is used to conduct 1A of electric current.	A.Sketch the wire, the current direction, and the direction of electron motion.


 

	B.How many coulombs per one second is transported through the conductor?


 

	C.How fast do the electrons really move? In other words, what is the average electron velocity?


 






Problem 2.8
Repeat the above problem when the conductor’s cross section is increased to 5 mm2.

Problem 2.9
A copper wire having a length of 1000 ft and a diameter of 2.58826 mm is used to conduct an electric current of 5 A.	A.What is wire’s total resistance? Compare your answer to the corresponding result of Table 2.2.


 

	B.What is the power loss in the wire?


 






Problem 2.10
 	A.A copper wire having a length of 100 m and a cross section of 0.5 mm2 is used to conduct an electric current of 5 A. What is the power loss in the wire? Into what is this power loss transformed?


 

	B.Solve task A when the wire cross section is increased to 2.5 mm2.


 






Problem 2.11
Determine the total resistance of the following conductors:	A.A cylindrical silver rod of radius 0.1 mm, length 100 mm, and conductivity 6.1×107 S/m.


 

	B.A square graphite bar with the side of 1 mm, length 100 mm, and conductivity 3.0×104 S/m.


 

	C.A semiconductor doped Si wafer with the thickness of 525 μm. Carrier mobility is [image: 
$$ \mu =0.15 $$
] m2/(V⋅s). Carrier concentration is [image: 
$$ n={10}^{23}\kern0.5em {\mathrm{m}}^{-3} $$
]. Carrier charge is 1.6 × 10−19 C. The resistance is measured between two circular electrodes with the radius of 1 mm each, which are attached on the opposite sides of the wafer. Assume uniform current flow between the electrodes.
[image: A331468_1_En_2_Figi_HTML.gif]





 






Problem 2.12
A setup prepared for a basic wireless power-transfer experiment utilizes a square multi-turn loop schematically shown in the figure, but with 40 full turns. A #22 gauge copper wire with the diameter of 0.645 mm is used. Total loop resistance, R, is needed. Please assist in finding the loop resistance (show units).
[image: A331468_1_En_2_Figj_HTML.gif]




Problem 2.13
Estimate resistance, R

                      n
                     (show units), of the n-side of a Si pn-junction diode in the figure that follows. We model the n-side by a Si bar having the following parameters:	1.Length of L = 0.0005 cm = 5 μm.


 

	2.Cross section of A = 0.01 cm × 0.01 cm = 1 × 10−4 cm2.


 

	3.
Uniform electron concentration (carrier concentration) of [image: 
$$ n={10}^{17}{\mathrm{cm}}^{-3} $$
]. This value is typical for a Si diode pn-junction. Carrier mobility is [image: 
$$ {\mu}_n=1450 $$
] cm2/(V⋅s).
[image: A331468_1_En_2_Figk_HTML.gif]





 






Problem 2.14
Estimate resistance, R
p (show units), of the p-side of a Si pn-junction diode in the figure that follows. We model the p-side by a Si bar having the following parameters:	1.Length of L = 0.0005 cm = 5 μm.


 

	2.Cross section of A = 0.01 cm × 0.01 cm = 1 × 10−4 cm2.


 

	3.
Uniform hole concentration (carrier concentration) of [image: 
$$ n={10}^{17}\kern0.5em {\mathrm{cm}}^{-3} $$
]. This value is typical for a Si diode pn-junction. Carrier mobility is [image: 
$$ {\mu}_n=500 $$
] cm2/(V⋅s).
[image: A331468_1_En_2_Figl_HTML.gif]





 






Problem 2.15
A cross section of the most popular NMOS transistor is shown in the following figure.
[image: A331468_1_En_2_Figo_HTML.gif]



The transistor has three terminals (metal contacts): drain (with voltage [image: 
$$ {V}_{\mathrm{DS}}>0 $$
] vs. source), gate (with voltage [image: 
$$ {V}_{\mathrm{GS}}>0 $$
] vs. source), and source itself (grounded). The source is also connected to a metal conductor on the other side of the semiconductor body. Accordingly, there are two types of the electric field within the semiconductor body: the horizontal field created by V
GS, and the vertical field created by V
DS. The horizontal field fills a conducting channel between the drain and the source with charge carriers, but has no effect on the vertical charge motion. The resulting carrier concentration in the channel is given by [image: 
$$ n=N\left({V}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)>0,\kern0.15em N=\mathrm{const},\kern0.15em {V}_{\mathrm{Th}}=\mathrm{const}. $$
] The individual carrier charge is q. Given the channel cross section A, the carrier mobility μ, and the channel length L, determine transistor current I
D and transistor resistance (drain-to-source resistance) R
DS. Express both results in terms of quantities listed above including V
GS and V
Th.


                  2.1.6 Application Example: Power Loss in Transmission Wires and Cables
                
Problem 2.16

An 
AWG 0000 aluminum transmission grid cable has the wire diameter of 11.68 mm and the area of 107 mm2. The conductivity of aluminum is 4.0 × 107 S/m. The total cable length (two cables must run to a load) is 100 km. The system delivers 10 MW of DC power to a load. Determine the power loss in the cable (show units) when load voltage and current are given by:	1.
V = 200 kV and I = 50 A


 

	2.
V = 100 kV and I = 100 A


 

	3.
V = 50 kV and I = 200 A


 





Why do you think the high-voltage power transmission is important in power electronics?
[image: A331468_1_En_2_Fign_HTML.gif]




Problem 2.17
Solve the previous problem when the total cable length (two cables must run to a load) is increased to 200 km.

Problem 2.18

An 
AWG 00 aluminum transmission grid cable has the wire diameter of 9.266 mm. The conductivity of aluminum is 4.0 × 107 S/m. A power transmission system that uses this cable is shown in the figure that follows. The load power is 1 MW. Determine the minimum necessary load voltage V that guarantees us a 1 % relative power loss in the cables.
[image: A331468_1_En_2_Figm_HTML.gif]




Problem 2.19
An AC-direct micro-hydropower system
 is illustrated in the figure that follows.
[image: A331468_1_En_2_Figp_HTML.gif]



Reprinted from Micro-Hydropower Systems Canada 2004, ISBN 0-662-35880-5.
The system uses a single phase induction generator with the rms voltage (equivalent DC voltage) of 240 V. The system serves four small houses, each connected to the generator via a separate transmission line with the same length of 1000 m. Each line uses 
AWG#10 aluminum wire with the diameter of 2.59 mm. The conductivity of aluminum is 4.0 × 107 S/m. The house load is an electric range with the resistance of 20 Ω. Determine total power delivered by the generator, P
total, total power loss in the transmission lines, P
loss, and total useful power, P
useful (show units).


                  2.1.7 Physical Component: Resistor
                
Problem 2.20
A leaded resistor has color bands in the following sequence: brown, black, red, gold. What is the resistor value?

Problem 2.21
Potentiometer operation may be schematically explained as moving sliding contact #2 in the following figure along a uniform conducting rod with the total resistance of 20 kΩ. Determine resistance between terminals 1 and 2 as well as between terminals 2 and 3 of the potentiometer, when the sliding contact is at one fifth of the rod length.
[image: A331468_1_En_2_Figq_HTML.gif]





2.2 Nonlinear Passive Circuit Elements

                  2.2.2 Nonlinear Passive Circuit Elements
                

                  2.2.3 Static Resistance
                

                  2.2.4 Dynamic (Small-Signal) Resistance
                

                  2.2.5 Electronic Switch
                
Problem 2.22
A nonlinear passive circuit element—the 
ideal diode—is characterized by the υ-i characteristic in the form [image: 
$$ I={I}_{\mathrm{S}}\left[ \exp \left(\frac{V}{V_{\mathrm{T}}}\right)-1\right] $$
] with [image: 
$$ {I}_{\mathrm{S}}=1\times {10}^{-13}\kern0.5em \mathrm{A} $$
] and [image: 
$$ {V}_{\mathrm{T}}=25.7 $$
] mV. Find the static diode resistance R
0 and the diode current I
0 when (A) V
0 = 0.40 V, (B) V
0 = 0.50 V, (C) V
0 = 0.55 V, and (D) V
0 = 0.60 V.

Problem 2.23
Find the dynamic (small-signal) resistance r of a nonlinear passive circuit element—the ideal diode—when the operating DC point V
0, I
0 is given by the solutions to the previous problem. Consider all four cases.

Problem 2.24
A nonlinear passive circuit element is characterized by the υ-i characteristic in the form [image: 
$$ I={I}_{\mathrm{S}}\frac{V/{V}_{\mathrm{S}}}{\sqrt{1+{\left(V/{V}_{\mathrm{S}}\right)}^2}} $$
] with [image: 
$$ {I}_{\mathrm{S}}=1\kern0.5em \mathrm{A} $$
] and [image: 
$$ {V}_{\mathrm{S}}=1\kern0.5em \mathrm{V} $$
]. Plot the υ-i characteristic to scale. Next, find the static element resistance R
0, the element current I
0, and the corresponding dynamic element resistance r when (A) V
0 = 0.1 V, (B) V
0 = 1.0 V, and (C) V
0 = 5.0 V.
[image: A331468_1_En_2_Figr_HTML.gif]




Problem 2.25
Repeat the previous problem when [image: 
$$ {I}_{\mathrm{S}}=0.5\kern0.5em \mathrm{A} $$
] and [image: 
$$ {V}_{\mathrm{S}}=0.5\kern0.5em \mathrm{V} $$
]. All other parameters remain the same. Consider the following DC operating points: (A) V
0 = 0.05 V, (B) V
0 = 0.50 V, and (C) V
0 = 2.50 V.

Problem 2.26
A DC circuit shown in the following figure includes two interconnected passive elements: an ideal diode and a resistance. One possible circuit solution is given by an intersection of two υ-i characteristics marked by a circle in the same figure. This solution predicts a non-zero circuit current and a positive voltage across both circuit elements.	A.Is this solution an artifact (a mistake has been made somewhere)?


 

	B.Is this solution true (the circuit so constructed might function)?


 





Justify your answer.
[image: A331468_1_En_2_Figs_HTML.gif]





2.3 Independent Sources

                  2.3.1 Independent Ideal Voltage Source
                

                  2.3.2 Circuit Model of a Practical Voltage Source
                
Problem 2.27
In the following figure, determine if the element is a resistance or a voltage source. Find the power delivered to element A or taken from element A in every case.
[image: A331468_1_En_2_Figt_HTML.gif]




Problem 2.28
Based on voltage and current measurements, determine if the circuit element is a resistance or a voltage source. Readings of the ammeter and voltmeter are shown in the following figure.
[image: A331468_1_En_2_Figu_HTML.gif]




Problem 2.29
The figure that follows shows a circuit with a passive nonlinear circuit element shown by a rectangle.
[image: A331468_1_En_2_Figv_HTML.gif]




The polarity
 (direction of current inflow for passive reference configuration) of the element is labeled by a sign plus. The υ-i characteristic of the element is also shown in the figure. Determine current I and voltage V.

Problem 2.30
Repeat the previous problem for the circuit shown in the figure that follows.
[image: A331468_1_En_2_Figw_HTML.gif]




Problem 2.31
Plot to scale the υ-i characteristic of the practical voltage source shown in the following figure.
[image: A331468_1_En_2_Figx_HTML.gif]




Problem 2.32
The following figure shows a circuit with a passive nonlinear circuit element labeled by a rectangle. Element’s polarity (direction of current inflow for passive reference configuration) of the element is indicated by a sign plus. The υ-i characteristic of the element is also shown in the figure. Determine circuit current I.
[image: A331468_1_En_2_Figy_HTML.gif]





                  2.3.3 Independent Ideal Current Source
                

                  2.3.4 Circuit Model of a Practical Current Source
                
Problem 2.33
Readings of the ammeter and voltmeter are shown in the following figure.
[image: A331468_1_En_2_Figz_HTML.gif]



Based on voltage and current measurements, determine if the element is a resistance or a current source. Then, find the power delivered to the circuit element or taken from it in every case.

Problem 2.34
The following figure shows a circuit with a passive nonlinear circuit element shown by a rectangle. Element’s polarity (direction of current inflow for passive reference configuration) of the element is labeled by a sign plus. The υ-i characteristic of the element is also shown in the figure. Determine current I and voltage V.
[image: A331468_1_En_2_Figaa_HTML.gif]




Problem 2.35
Repeat the previous problem for the circuit shown below.
[image: A331468_1_En_2_Figab_HTML.gif]




Problem 2.36
Plot to scale the υ-i characteristic of the practical current source shown in the following figure.
[image: A331468_1_En_2_Figac_HTML.gif]





Review Problems
Problem 2.37
For every circuit element shown in the following figure, plot its υ-i characteristic on the same graph.
[image: A331468_1_En_2_Figad_HTML.gif]




Problem 2.38
Repeat the previous problem: for every circuit element shown in the figure below, plot its υ-i characteristic on the same graph.
[image: A331468_1_En_2_Figae_HTML.gif]





                  2.3.7 Application Example: Chemical Battery
                
Problem 2.39
The electronics aboard a certain sailboat consume 96 W when operated from a 24 V source.	A.If a certain fully charged deep-cycle marine battery is rated for 24 V and 100 A h, for how many hours can the electronics be operated from the battery without recharging? (The ampere-hour rating of the battery is the battery capacity—the operating time to discharge the battery multiplied by the current).


 

	B.How much energy in kilowatt hours is initially stored in the battery?


 






Problem 2.40
A motor of a small, unmanned electric vehicle consumes 120 W and operates from a 24-V battery source. The source is rated for 200 Ah.	A.For how many hours can the motor be operated from the source (a battery bank) without recharging?


 

	B.How much energy in kilowatt hours is initially stored in the battery source?


 






Problem 2.41
A certain sensing device operates from a 6-V source and consumes 0.375 W of power over a 20-h time period. The source is a combination of four fully charged AAA batteries, 1.5 V each, assembled in series. The batteries discharge by the end of the 20-h period.	A.What is the expected capacity of a typical AAA battery used, in mAh?


 

	B.How much energy in Joules was stored in each AAA battery?


 






Problem 2.42
How many Joules are in 1 kWh and how many N⋅m does this correspond to?


2.4 Dependent Sources and Time-Varying Sources

                  2.4.1 Dependent Versus Independent Sources
                

                  2.4.2 Definition of Dependent sources
                

                  2.4.3 Transfer Characteristics
                

                  2.4.4 Time-Varying Sources
                
Problem 2.43
Draw circuit diagrams for four major types of dependent sources, label stimulus voltage/current and output voltage/current. Describe operation of each dependent source.

Problem 2.44
Solve an 
electric circuit shown in the following figure—determine current i through the 2-kΩ resistance. The independent current source is given by [image: 
$$ {i}_{\mathrm{S}}=0.2-1.5 \cos 5t\kern0.5em \left[\mathrm{m}\mathrm{A}\right] $$
]; the open-circuit voltage gain 
of the dependent source is 12 V/V.
[image: A331468_1_En_2_Figaf_HTML.gif]




Problem 2.45
Solve an 
electric circuit shown in the following figure—determine current i through the 2-kΩ resistance. The independent voltage source is given by [image: 
$$ {\upsilon}_{\mathrm{S}}=-0.3+0.7 \cos 6t\kern0.5em \left[\mathrm{V}\right] $$
]; the transresistance of the dependent source is 250 V/A.
[image: A331468_1_En_2_Figag_HTML.gif]




Problem 2.46
Solve an 
electric circuit shown in the following figure—determine voltage υ through the 30-Ω resistance. The independent current source is given by [image: 
$$ {i}_{\mathrm{S}}=-0.05-0.2 \cos 2t\kern0.5em \left[\mathrm{m}\mathrm{A}\right] $$
]; the transconductance 
of the dependent source is 10 A/V.
[image: A331468_1_En_2_Figah_HTML.gif]




Problem 2.47
Solve an electric circuit shown in the following figure—determine voltage υ through the 1-kΩ resistance. The independent voltage source is given by [image: 
$$ {\upsilon}_{\mathrm{S}}=0.05+0.1 \cos 4t\kern0.5em \left[\mathrm{V}\right] $$
]; the 
short-circuit current gain of the dependent source is 10 A/A.
[image: A331468_1_En_2_Figai_HTML.gif]




Problem 2.48
Solve an electric circuit shown in the following figure—determine current i through a nonlinear passive circuit element shown by a rectangle. Element’s polarity (direction of current inflow for passive reference configuration) is labeled by a sign plus. The υ-i characteristic of the element is also shown in the figure. The independent current source is given by [image: 
$$ {i}_{\mathrm{S}}=0.1\kern0.5em \mathrm{A} $$
]; the open-circuit voltage gain of the dependent source is 5 V/V.
[image: A331468_1_En_2_Figaj_HTML.gif]




Problem 2.49
Solve the electric circuit shown in the following figure—determine voltage υ across the 1-kΩ resistance.
[image: A331468_1_En_2_Figak_HTML.gif]



A nonlinear passive circuit element is shown by a rectangle. Element’s polarity (direction of current inflow for passive reference configuration) of the element is labeled by a sign plus. The υ-i characteristic of the element is also shown in the figure. The independent voltage source is given by [image: 
$$ {\upsilon}_{\mathrm{S}}=0.6\kern0.5em \mathrm{V} $$
]; the short-circuit current gain of the dependent source is 100 A/A.


2.5 Ideal Voltmeter and Ammeter: Circuit Ground

                  2.5.1 Ideal Voltmeter and Ammeter
                

                  2.5.3 Types of Electric Ground
                

                  2.5.4 Ground and Return Current
                
Problem 2.50
You attempt to measure electric current through a resistance as part of a circuit. Is the following figure appropriate? What is the current across the 51-Ω resistor?
[image: A331468_1_En_2_Figal_HTML.gif]




Problem 2.51
You attempt to measure voltage across a resistance in the circuit. Is the following figure correct? What is the voltmeter’s reading, assuming an ideal instrument?
[image: A331468_1_En_2_Figam_HTML.gif]




Problem 2.52
Two circuits with an incandescent light bulb are shown in the following figure. Will they function? Explain.
[image: A331468_1_En_2_Figan_HTML.gif]




Problem 2.53
A 9-V battery is connected to a 7.5-kΩ resistor shown in the following figure. Find current I in every case. (a) The negative terminal is left disconnected; (b) the negative terminal is connected to the positive terminal through the resistor; (c) both terminals are connected to chassis ground.
[image: A331468_1_En_2_Figao_HTML.gif]




Problem 2.54
What is the voltmeters’ (ammeter’s) reading in the figure below?
[image: A331468_1_En_2_Figap_HTML.gif]





                  2.5.5 Absolute Voltage and Voltage Drop Across a Circuit Element
                
Problem 2.55
Determine if the circuit element shown in the following figure is a resistance, a voltage source, or a wire (short circuit). Absolute voltages at points a and b are measured versus ground.
[image: A331468_1_En_2_Figaq_HTML.gif]


	1.
                            [image: 
$$ {V}_{\mathrm{a}}=3\;\mathrm{V},\kern0.75em {V}_{\mathrm{b}}=3\mathrm{V},\kern0.5em I=1\;\mathrm{A} $$
]
                          


 

	2.
                            [image: 
$$ {V}_{\mathrm{a}}=3\;\mathrm{V},\kern0.75em {V}_{\mathrm{b}}=1\mathrm{V},\kern0.5em I=-1\;\mathrm{A} $$
]
                          


 

	3.
                            [image: 
$$ {V}_{\mathrm{a}}=-2\;\mathrm{V},\kern0.75em {V}_{\mathrm{b}}=-5\;\mathrm{V},\kern0.5em I=2\;\mathrm{A}. $$
]
                          


 






Problem 2.56
Determine if the circuit element shown in the following figure is a resistance, a voltage source, or a wire (short circuit). Absolute voltages at points a and b are measured versus ground.
[image: A331468_1_En_2_Figar_HTML.gif]


	1.
                            [image: 
$$ {V}_{\mathrm{a}}=6\;\mathrm{V},\kern0.75em {V}_{\mathrm{b}}=3\;\mathrm{V},\kern0.5em I=1\;\mathrm{A} $$
]
                          


 

	2.
                            [image: 
$$ {V}_{\mathrm{a}}=1\;\mathrm{V},\kern0.75em {V}_{\mathrm{b}}=1\;\mathrm{V},\kern0.5em I=-1\;\mathrm{A} $$
]
                          


 

	3.
                            [image: 
$$ {V}_{\mathrm{a}}=-7\mathrm{V},\kern0.75em {V}_{\mathrm{b}}=-5\mathrm{V},\kern0.5em I=-2\;\mathrm{A}. $$
]
                          


 






Problem 2.57
Determine absolute voltages at nodes 1 through 6 in the circuit shown in the following figure.[image: A331468_1_En_2_Figas_HTML.gif]




Problem 2.58
Determine voltages across circuit elements A, B, C, D, and E in the circuit shown in the following figure.

                    [image: A331468_1_En_2_Figat_HTML.gif]


                  





© Springer International Publishing Switzerland 2016
Sergey N. Makarov, Reinhold Ludwig and Stephen J. BitarPractical Electrical Engineering10.1007/978-3-319-21173-2_3

3. Circuit Laws and Networking Theorems

Sergey N. Makarov1 , Reinhold Ludwig2 and Stephen J. Bitar3
(1)ECE Department, Worcester Polytechnic Institute, Worcester, Washington, USA

(2)ECE Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA

(3)Worcester Polytechnic Institute, Worcester, Massachusetts, USA

 


Keywords
Electric networkBranches of electric networkNodes of electric networkLoops of electric networkMeshes of electric networkEssential meshBranch currentsBranch voltagesSeries connectionParallel connectionShunt connectionKirchhoff’s current lawKirchhoff’s voltage lawMaxwell’s minimum heat theoremTellegen’s theoremPower conservation law for electric networksOne-port networkEquivalent electric networksEquivalent electric circuitsSeries battery bankBattery packDual-polarity power supplyCommon ground of the dual-polarity power supplyVirtual ground of the dual-polarity power supplyParallel battery bankSeries and parallel combinations (of resistances of conductances)Equivalent resistanceEquivalent circuit elementReduction of resistive networksVoltage divider circuitVoltage division ruleSensor circuit sensitivityMaximum sensitivity of the voltage divider circuitCurrent limiterCurrent-limiting resistorCurrent divider circuitCurrent division ruleWheatstone bridge (definition of difference signal difference voltage balanced)Linear circuit (definition of homogeneity additivity superposition)Nonlinear circuit (definition of linearization dynamic or small-signal resistance)Superposition theoremSuperposition principleY networkΔ networkTwo-terminal networksThree-terminal networksConversion between Y and Δ networksReplacing a node by a loopΔ to Y transformationY to Δ transformationBalanced Y networkBalanced Δ networkStar to delta transformationT networkT padΠ networkΠ padTwo-terminal network (definition of input port output port)
Overview

              Prerequisites:
	Knowledge of circuit elements, their υ-i characteristics, and Ohm’s law (Chapter 2)




              Objectives of Section 3.1:

	Understand the meaning of an electric network and its topology (nodes, branches, loops, meshes)

	Review the Kirchhoff’s current law, its use and value

	Review the Kirchhoff’s voltage law, its use and value

	Become familiar with the Tellegen’s theorem and Maxwell’s minimum heat theorem




              Objectives of Section 3.2:

	Be able to combine sources and resistances in series and parallel

	Practice in the reduction of resistive networks using series/parallel equivalents

	Realize the function and applications of the voltage divider circuit

	Realize the function of the current divider circuit

	Understand the function and applications of the Wheatstone bridge




              Objectives of Section 3.3:

	Understand the role and place of linear circuit analysis

	Learn the superposition theorem

	Understand the decisive value of superposition theorem for linear circuit analysis

	Learn about immediate applications of the superposition theorem

	Obtain the initial exposure to Y and Δ networks and to T and Π networks




              Application examples:
	Voltage divider as a sensor circuit

	Voltage divider as an actuator circuit

	Superposition theorem for a cell phone




            

3.1 Circuit Laws: Networking Theorems
Electric components are interconnected to design functional electric circuits that can perform specific tasks like driving a motor or monitoring a power plant. Interconnected circuit components form 

an electric network. In turn, any electric network is solved using two simple yet very general laws: Kirchhoff’s current law (KCL)
 and Kirchhoff’s voltage law (KVL). Series, parallel, and other combinations of any circuit elements, whether linear or not, can be explained and solved using these laws.1 They were established by Gustav Kirchhoff (1824–1887), a German physicist and mathematician, in 1845, while Kirchhoff was a 21-year-old student at the University of Koenigsberg in East Prussia. The circuit analysis of all circuits is based on KCL and KVL.
3.1.1 Electric Network and Its Topology



An electric network can be studied from a general mathematical point of view. If the specific electrical properties are abstracted, there remains a geometrical circuit, characterized by sets of nodes, branches, and loops. These three items form the topology of an electric network, and the interconnection of its elements can be represented as a graph. The study of electric network topology makes it possible to:	A.Identify identical circuit blocks in electric circuits which might be drawn in a variety of ways. Examples include series/parallel connections, as well as wye (Y or T) and delta (Δ or Π) blocks as considered in this chapter.


 

	B.Analyze general properties of very large electric circuits such as electric power grids. For example, there are important relationships between the power grid topology and risk identification and mitigation.


 

	C.Relate electric circuits to other disciplines. For example, there is a remarkable ability of electric networks to model the dynamical behavior of complicated biological systems.


 







                    
                  Nodes, 
                    
                  Branches, 
                    
                  Loops, and
 Meshes
Consider an electric network with four arbitrary circuit elements A to D shown in Fig. 3.1a. A branch is a two-terminal circuit element. All four two-terminal elements in Fig. 3.1a are therefore branches.[image: A331468_1_En_3_Fig1_HTML.gif]
Fig. 3.1An electric network and assigning branch voltages/currents





A node is a point of interconnection of two or more branches. All six circles in Fig. 3.1a are formally identified as nodes. Every node i can be assigned a certain voltage V

                    i
                   with respect to circuit ground. If a short circuit (a connecting wire) connects two or more nodes, these nodes constitute a single node since they have the same voltage. The circuit may be redrawn to reduce the number of nodes and keep only the meaningful nodes 

(single nodes) with the distinct voltages as shown in Fig. 3.1b. The circuits in Fig. 3.1a and b are identical. A loop is any closed path between two or more branches. There are three loops in Fig. 3.1b. A 
                    mesh
                    
                  (or essential mesh) is a loop that does not contain any other loops within it. There are two meshes in Fig. 3.1b. A planar (or two-dimensional) electric network with b branches, n nodes, and m meshes satisfies, after keeping only nodes with distinct voltages (single nodes), the equality[image: 
$$ b=n+m-1 $$
]

 (3.1)

which is sometimes called the fundamental theorem of network topology. It is proved by considering the electric network as a polygonal 
graph in two dimensions, where each edge is a branch and each
 single 
node is a 
vertex.


Branch Currents
 and 
Voltages
The branch currents and their directions may be assigned arbitrarily; see Fig. 3.1c. The physical currents either coincide with them or are directed in opposite directions. This can easily be found by checking the sign of the current value once the analysis is complete. If the branch voltage polarities have to be assigned afterward, they should satisfy the same reference configuration for all branches. Let us say the passive reference configuration with regard to the previously assigned current directions is seen in Fig. 3.1d. The branch voltages (voltage drops) in Fig 3.1d are expressed through the node voltages according to[image: 
$$ {V}_{\mathrm{A}}={V}_1-{V}_3,\kern1.5em {V}_{\mathrm{B}}={V}_1-{V}_2,\kern1.5em {V}_{\mathrm{C}}={V}_{\mathrm{D}}={V}_2-{V}_3 $$
]

 (3.2)

Conversely, the branch voltages may be assigned arbitrarily at first. If the directions of the branch currents have to be assigned afterward, they should again satisfy the 

same reference configuration.
Exercise 3.1
Establish whether or not the networks in Fig. 3.1a and b satisfy Eq. (3.1).

Answer: The answer is yes for both figures if 
we consider single nodes. However, if we consider every small circle in Fig. 3.1a as a node, Eq. (3.1) will not be 
satisfied.


Series and Parallel Connections
Two or more branches (circuit element) are in series if they exclusively share a common node. Elements A and B in Fig. 3.1d are in series. Elements B and C are not since node 2 is also shared by element D. Two or more branches (circuit elements) are in parallel if they are connected to the same two nodes. Elements C and D in Fig. 3.1d are in parallel. The parallel connection 

is also called 
the shunt connection; the parallel element may be called shunt (or shunting) elements.


3.1.2 Kirchhoff’s Current Law


Let us begin our investigation with KCL. KCL specifically applies to the nodes in an electric network. The Kirchhoff’s current law simply states that the net current entering the node is zero. In other words, the sum of inflowing currents is equal to the sum of outflowing currents. This statement is also known as the current conservation law, which is the electrical counterpart of the mass conservation law in fluid mechanics. For N currents entering a node, KCL can be cast in the form[image: 
$$ {\displaystyle \sum_{i=1}^N{I}_i=0} $$
]

 (3.3)

where N denotes the total number of nodal currents. The current directions may be assigned arbitrarily; the same results will eventually be obtained. The nodal current is taken with a plus sign if it is entering the node, i.e., the current arrow is directed toward the node. It carries a minus sign if it is leaving the node, i.e., the current arrow points in the opposite direction. The current value itself (positive or negative) is substituted afterward. If this law did not hold, an uncompensated charge could accumulate in a node over time. This uncompensated charge and its associated Coulomb force would eventually destroy the operation of an underlying electric circuit. To illustrate the use of KCL, we consider Fig. 3.2 with four different node types for a collection of branches A, B, C, and D which could be arbitrary circuit elements.[image: A331468_1_En_3_Fig2_HTML.gif]
Fig. 3.2Different types of the nodes in an electric network subject to KCL





While the node in Fig. 3.2a is simple, more complicated node configurations may be observed in a circuit—see the following figures. You should note that, in a node, we may move individual joints to one common joint without affecting the circuit operation. A 
node transformation to a single joint is a convenient tool used when working with more complicated nodes.
Exercise 3.2
Write KLC for the nodes shown in Fig. 3.2.

Answer: In the case of Fig. 3.2a, [image: 
$$ {I}_{\mathrm{A}}+{I}_{\mathrm{C}}={I}_{\mathrm{B}} $$
] for any values of I
A, I
B, I
C. In the case of Fig. 3.2b, [image: 
$$ {I}_{\mathrm{A}}+{I}_{\mathrm{C}}={I}_{\mathrm{B}}+{I}_{\mathrm{D}} $$
] for any values of I
A, I
B, I
C, I
D. In the case of Fig. 3.2c, [image: 
$$ {I}_{\mathrm{A}}+{I}_{\mathrm{B}}={I}_{\mathrm{C}}+{I}_{\mathrm{D}} $$
] for any values of I
A, I
B, I
C. In the case of Fig. 3.2d, [image: 
$$ 2\;\mathrm{A}+{I}_{\mathrm{C}}=5A+{I}_{\mathrm{E}} $$
] for any values of I
C, I
E.

Example 3.1
In some cases, the use of KCL may be sufficient to determine all currents in an electric network. Solve for the unknown currents I
A, I
C, I
D in the network shown in Fig. 3.3.[image: A331468_1_En_3_Fig3_HTML.gif]
Fig. 3.3Solving in a network using KCL






Solution: First, we note that the wire connection on the left states that the current along the wire is preserved. This implies [image: 
$$ {I}_{\mathrm{A}}=-1\kern0.5em \mathrm{A} $$
]. KCL for node 1 gives[image: 
$$ 1\;\mathrm{A}+{I}_{\mathrm{C}}=5\kern0.5em \mathrm{A}\Rightarrow {I}_{\mathrm{C}}=4\kern0.5em \mathrm{A} $$
]

 (3.4a)

Next, KCL 
applied to node 2 yields[image: 
$$ 5\kern0.5em \mathrm{A}={I}_{\mathrm{D}}+2A\Rightarrow {I}_{\mathrm{D}}=3\kern0.5em \mathrm{A} $$
]

 (3.4b)

Thus, the circuit is solved. Node 3 has not been used; it can be employed to check the correction of the solution: [image: 
$$ {I}_{\mathrm{A}}+{I}_{\mathrm{D}}+2A={I}_{\mathrm{C}} $$
] or [image: 
$$ 4\kern0.5em \mathrm{A}=4\kern0.5em \mathrm{A} $$
].


3.1.3 

                  
                Kirchhoff’s Voltage Law
KVL specifically applies to the loops in an electric network. Kirchhoff’s voltage law states that the sum of voltages for any closed loop is zero. In other words, the total amount of work needed to move a unit electric charge one loop turn is zero.2 If this law were not applicable, a charge moving in a closed loop would constantly accelerate and eventually escape the circuit or constantly decelerate and eventually stop moving. In order to formulate KVL for a closed loop, we need to identify the loop direction. It is usually chosen to be clockwise, see the dotted arrows in Figs. 3.4 and 3.5. KVL in its general form reads[image: A331468_1_En_3_Fig4_HTML.gif]
Fig. 3.4KVL applied to a closed loop with one voltage source and three passive circuit elements. The dotted arrow indicates current flow in clockwise direction




[image: A331468_1_En_3_Fig5_HTML.gif]
Fig. 3.5KVL applied to a network with three loops, two meshes, and five circuit elements




[image: 
$$ {\displaystyle \sum_{i=1}^N{V}_i=0} $$
]

 (3.5)


where N is the total number of circuit elements in a loop. The voltage V

                  i
                 is taken with a plus sign if the loop arrow is entering the positive voltage polarity and with a minus sign otherwise. The polarities of voltages V

                  i
                 may be assigned arbitrarily; the same result will eventually be obtained. To demonstrate this fact, we consider a simpler network with different voltage polarities in Fig. 3.4 first. One network branch is purposely designated as a voltage source, the rest are arbitrary circuit elements.
Example 3.2
Write KVL for the circuit shown in Fig. 3.4 which includes an ideal voltage source and three other circuit elements.

Solution: In the case of Fig. 3.4a, we start with the source and strictly apply our convention of positive and negative polarity based on the prescribed loop arrow direction:[image: 
$$ -5\mathrm{V}+{V}_{\mathrm{A}}+{V}_{\mathrm{B}}-{V}_{\mathrm{C}}=0 $$
]

 (3.6a)

In the case of Fig. 3.4b, we have to change signs of V
A, V
B, V
C, and thus obtain[image: 
$$ -5\mathrm{V}-{V}_{\mathrm{A}}-{V}_{\mathrm{B}}+{V}_{\mathrm{C}}=0 $$
]

 (3.6b)

Note that these two cases only differ by voltage polarities.
Since reversing voltage polarities
 in Fig. 3.4b was taken into account by changing the sign of the voltage, both figures yield the identical result after substituting numbers:
[image: 
$$ -5\kern0.5em \mathrm{V}+3\kern0.5em \mathrm{V}+3\kern0.5em \mathrm{V}-1\kern0.5em \mathrm{V}=0 $$
]

 (3.6c)

This observation highlights the fact that the voltage polarities for circuit elements may initially be assigned arbitrarily: applying KVL will ultimately lead to the correct signs of the voltage values.

Figure 3.5 shows another electric network with all branches now consistently labeled; the voltages in red denote the actual values with respect to the initially assigned directions.
Exercise 3.3
Determine the number of branches, nodes, loops, and meshes in the network in Fig. 3.5.

Answer: There are five branches, four nodes, three loops, and two meshes.

Example 3.3
In some cases, the use of KVL may be sufficient to determine all voltages in an electric network. Solve for the unknown voltages in the network shown in Fig. 3.5.

Solution: KVL for loop 1 (mesh 1) has the form[image: 
$$ -5\;\mathrm{V}-7\;\mathrm{V}+{V}_{\mathrm{C}}=0\Rightarrow {V}_{\mathrm{C}}=12\;\mathrm{V} $$
]

 (3.6d)

KVL for loop 2 (mesh 2) has 
the form (V
C is already known)[image: 
$$ -12\;\mathrm{V}+6\;\mathrm{V}+{V}_{\mathrm{E}}=0\Rightarrow {V}_{\mathrm{E}}=6\;\mathrm{V} $$
]

 (3.6e)

KVL for loop 3 is the solution check:[image: 
$$ -5\kern0.5em \mathrm{V}-7\kern0.5em \mathrm{V}+6\kern0.5em \mathrm{V}+6\kern0.5em \mathrm{V}=0 $$
]

 (3.6f)


If at least one of the voltages V
A, V
B, V
D in Fig. 3.5 is unknown, then a unique solution does not exist.
                    
                   Through the use of KCL, more information must be acquired.


3.1.4 
                Power-Related Networking Theorems

              
The results of this section would be incomplete without an introductory discussion of two power-related networking theorems. The first one is Maxwell’s minimum heat theorem formulated by James Clerk Maxwell in 1891. It states that, for a linear electric network of resistive circuit elements and voltage/current sources, the currents distribute themselves in such a way that the total dissipated power (generated heat) in the resistances is a minimum. If there are N
R resistive circuit elements, we can state[image: 
$$ {\displaystyle \sum_{i=1}^{N_{\mathrm{R}}}{V}_i{I}_i}={\displaystyle \sum_{i=1}^{N_{\mathrm{R}}}{R}_i{I}_i^2}={\displaystyle \sum_{i=1}^{N_{\mathrm{R}}}\frac{V_i^2}{R_i}= \min } $$
]

 (3.7a)

where voltages V

                  i
                 and currents I

                  i
                 must all satisfy the passive reference configuration. Indeed, Eq. (3.7a) is equivalent to the condition that the net power generated by all sources is also minimized. Maxwell’s minimum heat theorem can be proved using KCL, KVL, and Ohm’s law. The second theorem 
is Tellegen’s theorem formulated by Bernard D. H. Tellegen in 1952. It postulates that, for an arbitrary electric network with total N circuit elements of arbitrary (linear or nonlinear, passive or active) nature, the equality[image: 
$$ {\displaystyle \sum_{i=1}^N{V}_i{I}_i=}0 $$
]

 (3.7b)

must hold if all voltages V

                  i
                 and currents I

                  i
                 satisfy one (let’s say the passive) reference configuration. Tellegen’s theorem serves as a power (or energy) conservation law for all electric networks. It 
can be proved based on KCL and KVL only. 
                  
                Tellegen’s theorem has other important implications and generalizations. To illustrate both theorems, we consider two simple examples.
Example 3.4
Use Maxwell’s minimum heat theorem and determine the unknown current x through resistance R
1 in Fig. 3.6a.[image: A331468_1_En_3_Fig6_HTML.gif]
Fig. 3.6Examples for Maxwell’s minimum heat theorem and Tellegen’s theorem






Solution: Eq. (3.7a) yields[image: 
$$ {R}_1{x}^2+{R}_2{\left(x-{I}_{\mathrm{S}}\right)}^2= \min $$
]

 (3.8a)

This function is minimized when its derivative
 with respect to x is zero. Therefore,
[image: 
$$ x=\frac{R_2}{R_1+{R}_2}{I}_{\mathrm{S}} $$
]

 (3.8b)

which is the current division principle studied in the next section. The voltage division principle may be established similarly.

Example 3.5
Prove Tellegen’s theorem for the network shown in Fig. 3.6b.

Solution: Both elements follow the passive reference configuration. By KCL we conclude [image: 
$$ {I}_{\mathrm{B}}=-{I}_{\mathrm{A}} $$
]. By KVL, [image: 
$$ {V}_{\mathrm{B}}={V}_{\mathrm{A}} $$
]. Therefore, [image: 
$$ {V}_{\mathrm{A}}{I}_{\mathrm{A}}+{V}_{\mathrm{B}}{I}_{\mathrm{B}}=0 $$
], which is the simple proof. In practice, element A may be a voltage source, and element B may be a resistance. We can also use the active reference configuration for the source but need to define its power to be negative in 
such a case.


3.1.5 Port of a Network: Network Equivalence
So far we have studied only the closed electric networks. An electric network may have a port, through which it is interconnected to another network as shown in Fig. 3.7. The network may be active or passive. This network has two (input or output) terminals a and b, which form a single port. The network in Fig. 3.7 is 
a one-port network. All series/parallel combinations of the sources and resistances are one-port networks.[image: A331468_1_En_3_Fig7_HTML.gif]
Fig. 3.7Generic system for establishing a network equivalence





Two arbitrary one-port networks in the form of Fig. 3.7 are said to 
be equivalent networks (or 
equivalent electric circuits) when 
their υ-i characteristics at terminals a and b coincide. This means that for any given voltage, there is the same current into the network or out of it and vice versa. Therefore, these networks are non-distinguishable.


3.2 Series and Parallel Network/Circuit Blocks
3.2.1 Sources in Series and in Parallel
Series-Connected Battery Bank
The simultaneous use of KCL and KVL allows us to analyze the behavior of combinations of active circuit elements and establish their equivalence. The physical counterparts are various battery banks, which are interconnections of the identical batteries. Figure 3.8 shows 
a series battery bank, also called 
a battery pack, with two or more batteries connected in series. The battery symbol implies an ideal voltage source.[image: A331468_1_En_3_Fig8_HTML.gif]
Fig. 3.8Series combinations of battery cells and their equivalent representations





We intend to find the resulting voltage and current of this combination. To determine the equivalent voltage, we close the circuit loop shown in Fig. 3.8a by introducing a virtual circuit element with terminals a and b, with an unknown voltage V between these terminals. This element simulates the rest of the circuit, which closes the current path. KVL for the loop shown in Fig. 3.8a results in[image: 
$$ -V+9\kern0.5em \mathrm{V}+9\kern0.5em \mathrm{V}=0\Rightarrow V=18\kern0.5em \mathrm{V} $$
]

 (3.9)

Using KCL, we obtain the same current flows throughout the left-handed circuit of Fig. 3.8a; this current is exactly equal to I
B
.
3 Therefore, the series combination of two batteries in Fig. 3.8a is equivalent to one battery bank that provides double the voltage, or 18 V, compared to the unit cell. However, it delivers a current of a single cell. The same method can now be applied to multiple battery cells connected in series; one such battery bank is shown in Fig. 3.8b.

Dual-Polarity Voltage Power Supply
Two batteries, or other voltage sources, connected in series can be used 
as a dual-polarity power supply as shown in Fig. 3.9. The middle terminal gives us 
the virtual ground for the circuit or 
the common ground. Both negative and positive voltages with respect to the common port can now be created in the circuit. Such a source is of particularly importance for operational amplifier circuits and for transistor circuits. Every multichannel laboratory power supply may operate as a dual power supply. The common terminal may (but does not have to) additionally be connected to the earth ground.[image: A331468_1_En_3_Fig9_HTML.gif]
Fig. 3.9A dual-polarity power supply constructed with two battery cells






Parallel-Connected Battery Bank
As an alternative to the series-connected battery bank, we also investigate 
the parallel battery bank shown in Fig. 3.10. To determine the equivalent voltage of the combination, we again close the circuit loop by introducing a virtual circuit element with terminals a and b and with an unknown voltage V between these terminals. The use of KVL gives[image: A331468_1_En_3_Fig10_HTML.gif]
Fig. 3.10A parallel combination of battery cells and its equivalent single battery representation




[image: 
$$ V=9\kern0.5em \mathrm{V} $$
]

 (3.10)


Thus, the voltage of the battery bank in Fig. 3.10 is still equal to the unit cell voltage. However, applying KCL to both nodes shown in black in Fig. 3.10 indicates that the current doubles. Therefore, the parallel combination of two batteries is equivalent to one battery bank that provides the same voltage of 9 V as one unit cell but at twice the current strength.

Series Versus Parallel Connection
What is the difference between 
series and parallel combinations of two 9-V batteries? First, let us find the power delivered to the circuit. We assume [image: 
$$ {I}_{\mathrm{B}}=1\kern0.5em \mathrm{A} $$
] in both cases, even though the specific value of the current is not really important. For the series combination in Fig. 3.8a, the delivered power is 18 V × 1 A = 18 W. For the parallel combination in Fig. 3.10, the delivered power is again 9 V × 2 A = 18 W. Thus, as far as the power rating is concerned, there is no difference. You should, however, remember that we always deliver power to a load. For the series combination, the implied load resistance is 18 V/1 A = 18 Ω. For the parallel combination, the anticipated load resistance should be 9 V/2 A = 4.5 Ω. Thus, it is the load resistance that determines which combination should be used. This question is of great practical importance.

Combinations of Current Sources
Combinations of current sources are studied similarly. They are important for photovoltaic and thermoelectric semiconductor devices.


3.2.2 Resistances in Series and in Parallel

Series 
Connection
After the sources have been analyzed, we turn our attention 
to series and parallel combinations of resistances (or conductances). Their physical counterparts are various circuit loads, for example, individual households connected to the same power grid or individual motors driven by the same source. Figure 3.11 depicts the series combination of two resistances R
1 and R
2.[image: A331468_1_En_3_Fig11_HTML.gif]
Fig. 3.11Two resistances in series and their equivalent single resistance representation





Note that the current direction for both resistances corresponds to a passive reference configuration: current flows “down the voltage hill.” Again, we close the circuit loop by introducing a virtual circuit element with terminals a and b and with an unknown voltage V between those terminals. This virtual circuit element, which simulates the rest of the circuit, allows us to close the current path. KVL for the loop shown in Fig. 3.11 results in[image: 
$$ V={V}_1+{V}_2=I{R}_1+I{R}_2=I\left({R}_1+{R}_2\right)=I{R}_{\mathrm{eq}}\Rightarrow {R}_{\mathrm{eq}}={R}_1+{R}_2 $$
]

 (3.11a)


Thus, two resistances can be replaced 
by one equivalent resistance, which is the sum of the individual resistances. It follows from Eq. (3.11a) that the equivalent resistance gives us the same circuit current (and the same power into the load) as the original resistance combination does, for any applied voltage. This is the formal description of the equivalent resistance to be generalized later. Equation (3.11a) can easily be extended to any arbitrary number of resistances 
connected in series. Equation (3.11a) may also be formulated in terms of conductances, the reciprocals of resistances,[image: 
$$ \frac{1}{G_{\mathrm{eq}}}=\frac{1}{G_1}+\frac{1}{G_2} $$
]

 (3.11b)





                  Parallel Connection

                
Next, we consider the parallel combination of resistances shown in Fig. 3.12. KVL for the loop shown in the figure and for another loop between two resistances indicates that the voltages across every resistance are equal to V. KCL applied to either node shown in black results in[image: A331468_1_En_3_Fig12_HTML.gif]
Fig. 3.12Two resistances connected in parallel and the equivalent resistance




[image: 
$$ I={I}_1+{I}_2=\frac{V}{R_1}+\frac{V}{R_2}=\frac{V}{R_{\mathrm{eq}}}\Rightarrow \frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_1}+\frac{1}{R_2}\Rightarrow {G}_{\mathrm{eq}}={G}_1+{G}_2 $$
]

 (3.12)

Therefore, the parallel combination of two resistances is equivalent to one resistance, which has a value equal to the reciprocal of the sum of the reciprocal values of both. The 
equivalent resistance again gives us the same circuit current as the original resistance combination does, for any applied voltage. Emphasize that the equivalent resistance is always smaller in value than each of the resistances to be combined in parallel. Note that the conductances simply add up for the
 parallel combinations. Equation (3.12) can again easily be extended to any arbitrary number of resistances connected in parallel.

Meaning of Equivalent Circuit Element


In summary, the study of series/parallel active and passive circuit elements leads us to the following simple definition of an equivalent circuit element, either passive or active. The equivalent circuit element possesses the same υ-i characteristic as the υ-i characteristic of the original circuit, for which voltage and current are acquired at its terminals a and b.


3.2.3 
Reduction 
of Resistive Networks
The reduction of a network of many resistances to a single 
equivalent resistance is a topic of practical importance. There are many examples of distributed resistive networks. A contemporary example is a rear window defroster in an automobile, which is a distributed resistive heater. The corresponding solution is usually based on
	1.Step-by-step use of series/parallel equivalents


 

	2.Moving, splitting, or reducing modes


 

	3.Reliance on fluid mechanics analogies, which may be helpful for resistive networks


 





Although a unique solution always exists, its practical realization may be quite difficult. The following examples outline the procedure for the reduction of resistive networks.
Example 3.6
Find the equivalent resistance between terminals a and b for the resistive network shown in Fig. 3.13a.[image: A331468_1_En_3_Fig13_HTML.gif]
Fig. 3.13Step-by-step circuit reduction via series and parallel resistance combinations






Solution: We should not start with terminals a and b, but with the opposite side of the circuit. First, the three resistances furthest to the right are combined in series in Fig. 3.13a. The next step is the parallel combination of the resulting resistance and the 1.5 kΩ resistance in Fig. 3.13b. The final step is another series combination; this results in the final equivalent resistance value of 1875 Ω. We need to point out again that it is impossible to:	1.Combine in series two resistances separated by a node.


 

	2.Move the resistance through a node or move the node through a resistance.


 





Those observations hold for other 
than resistance circuit elements.

Example 3.7
Find the equivalent resistance
 between terminals a and b for the resistive network shown in Fig. 3.14a.[image: A331468_1_En_3_Fig14_HTML.gif]
Fig. 3.14Step-by-step circuit reduction to a single equivalent resistance






Solution: First, we can split and move a node along the wire, leading to a circuit shown in Fig. 3.14b. Next, we combine two pairs of resistances in parallel. The next step, in Fig. 3.14c, is the series combination of three resistances. The last step is the solution of a parallel circuit, leading to the equivalent resistance of 66.67 Ω.

Exercise 3.4
Using a fluid-mechanics analogy of identical water flow in two symmetric channels, find the equivalent resistance 
of the network 
shown in Fig. 3.15.[image: A331468_1_En_3_Fig15_HTML.gif]
Fig. 3.15The resistive network discussed in Exercise 3.4






Answer: 2.5 kΩ.


3.2.4 
                Voltage Divider Circuit

              
The purpose of the voltage divider circuit is to provide a voltage different from the supply voltage. The voltage divider circuit is associated with resistances in series. It is perhaps the most important basic electric circuit or a block of another circuit. The voltage division principle is used in sensor circuits, actuator circuits, and bias circuits. Furthermore, any input and output port of a (transistor) amplifier is essentially a voltage divider. We consider a particular voltage divider form, shown in Fig. 3.16, connected to a DC voltage supply. This circuit, as with any other electric circuit, can be analyzed by using KCL and KVL simultaneously. We prefer using this method, although the combination of two resistances in series will provide an equivalent solution.[image: A331468_1_En_3_Fig16_HTML.gif]
Fig. 3.16A conventional voltage divider consists of two resistances and an ideal voltage source





KCL states that the current I through both resistance and the voltage supply is the same. Applying KVL to the circuit loop allows us to find the circuit current[image: 
$$ -{V}_{\mathrm{S}}+{V}_1+{V}_2=0\Rightarrow {V}_{\mathrm{S}}={V}_1+{V}_2=I\left({R}_1+{R}_2\right)\Rightarrow I=\frac{V_{\mathrm{S}}}{R_1+{R}_2} $$
]

 (3.13)

Once the circuit current I is known, then Ohm’s laws can be used. This 
yields the voltage division rule
[image: 
$$ {V}_1=\frac{R_1}{R_1+{R}_2}{V}_{\mathrm{S}},\kern1em {V}_2=\frac{R_2}{R_1+{R}_2}{V}_{\mathrm{S}} $$
]

 (3.14)

Equation (3.14) says that the major function 
of the voltage divider is to divide the voltage of the power source between two resistances in a direct proportion so that:	1.The larger resistance always acquires a higher voltage, and the smaller resistance acquires a smaller voltage.


 

	2.The individual voltages always add up to the supply voltage, i.e., [image: 
$$ {V}_1+{V}_2={V}_{\mathrm{S}} $$
].


 





Exercise 3.5
A voltage divider circuit uses a 10 V DC source and two resistances: [image: 
$$ {R}_1=5\kern0.5em \Omega $$
] and [image: 
$$ {R}_2=100\kern0.5em \Omega $$
]. What are the voltages V
1, V
2 across the resistances?

Answer: [image: 
$$ {V}_1=0.48\kern0.5em \mathrm{V},\kern1em {V}_2=9.52\kern0.5em \mathrm{V},\kern1em {V}_1+{V}_2=10\kern0.5em \mathrm{V} $$
].

The voltage divider with multiple 
resistances R
1, R
2, …, R

                  N
                 is solved in the form[image: 
$$ {V}_{\mathrm{S}}={V}_1+{V}_2+\dots +{V}_{\mathrm{N}}\Rightarrow I=\frac{V_{\mathrm{S}}}{R_1+{R}_2+\dots +{R}_N}\mathrm{and}\ {V}_i=\frac{R_i}{R_1+{R}_2+\dots +{R}_N}{V}_{\mathrm{S}} $$
]

 (3.15)




3.2.5 Application Example: Voltage Divider as a Sensor Circuit
Consider a resistive sensing element (thermistor, strain gauge, photoresistor, etc.) denoted by R
2(x) in Fig. 3.17. The element changes its resistance R
2(x) when an external parameter x changes. Parameter x could be temperature, pressure, humidity, solar radiation, or any other physical parameter that undergoes process changes. A simple sensor configuration is a direct connection to a voltage source and to the DMM for voltage measurements; see Fig. 3.17a. No matter how the sensor resistance changes, the sensor will always output the source voltage. A solution to the third problem is a voltage divider circuit shown in Fig. 3.17b. The extra resistance R
1 is fixed. According to Eq. (3.14), voltage V
2 in Fig. 3.17b varies depending on the influence of R
2(x);[image: A331468_1_En_3_Fig17_HTML.gif]
Fig. 3.17(a) Incorrect sensor circuit. (b) A sensor circuit on the basis of a resistive voltage divider where R
2(x) changes its resistance depending on the process parameter x





[image: 
$$ {V}_2={V}_2(x)=\frac{R_2(x)}{R_1+{R}_2(x)}{V}_{\mathrm{S}} $$
]

 (3.16)


The variable voltage V
2(x) is measured by the voltmeter. The dependence of V
2 on R
2 is clearly nonlinear in Eq. (3.16). Although Eq. (3.16) can be linearized by choosing a sufficiently large R
1 to make the denominator nearly constant, we will show later that such an operation greatly decreases device sensitivity. Let us assume that the external parameter x in Eq. (3.16) changes from a lower limit x
1 to an upper limit x
2, i.e., [image: 
$$ {x}_1\le x\le {x}_2 $$
]. As a result, the sensing resistance changes monotonically, but not necessarily linearly, from [image: 
$$ R^{\prime }={R}_2\left({x}_1\right) $$
] to [image: 
$$ R^{{\prime\prime} }={R}_2\left({x}_2\right) $$
]. We also assume that if [image: 
$$ {x}_1\le x\le {x}_2 $$
] then [image: 
$$ R^{\prime }>R^{{\prime\prime} } $$
]. The sensor circuit’s sensitivity, S, is 
given by[image: 
$$ S=\frac{V_2\left({x}_1\right)-{V}_2\left({x}_2\right)}{x_2-{x}_1}\kern1em \left[\frac{\mathrm{V}}{\mathrm{units}\ \mathrm{of}\ x}\right] $$
]

 (3.17)

The sensitivity is expressed in terms of voltage variation per one unit of x. A higher sensitivity implies a larger voltage variation and thus provides a better sensor resolution and improved robustness against noise.
Design of the 
Sensor Circuit for 
Maximum Sensitivity
Let us pose the following question: what value should the fixed resistance R
1 assume in order to achieve the highest sensitivity of the voltage divider sensor? It is clear that R
1 cannot be very small (otherwise the voltage reading will always be V
S and the sensitivity will be zero) and that R
1 cannot be very large (otherwise the voltage reading will be always 0 V and the sensitivity will be zero). The sensitivity is thus a positive function that is zero at [image: 
$$ {R}_1=0 $$
] and at [image: 
$$ {R}_1=\infty $$
]. According to the extreme value theorem, a global maximum should exist between these two values. We denote the unknown resistance R
1 with variable t, substitute V
2 from Eq. (3.14), and rewrite Eq. (3.17) in the form[image: 
$$ S=\frac{V_{\mathrm{S}}}{x_2-{x}_1}\left(\frac{R^{\prime }}{t+R^{\prime }}-\frac{R^{{\prime\prime} }}{t+R^{{\prime\prime} }}\right) $$
]

 (3.18a)

It is convenient to transform this result into a simpler expression [image: 
$$ S={V}_{\mathrm{S}}{S}_0f(t) $$
], where a constant S
0 is called the intrinsic sensitivity of the resistive sensing element, and f(t) is the sole function of the first resistance, i.e.,[image: 
$$ {S}_0=\left[\frac{R^{\prime }-R^{{\prime\prime} }}{x_2-{x}_1}\right],\kern1em f(t)=\frac{t}{\left(R^{\prime }+t\right)\left(R^{{\prime\prime} }+t\right)} $$
]

 (3.18b)

This function f(t) is to be maximized. At the function’s maximum, the derivative of f
(t) versus t should be zero. Using the quotient rule for the differentiation of a fraction, it follows from Eq. (3.18b) that[image: 
$$ f^{\prime }(t)=\frac{R^{\prime }R^{{\prime\prime} }-{t}^2}{{\left(R\prime +t\right)}^2{\left(R{\prime\prime} +t\right)}^2} $$
]

 (3.18c)

The final result following from the condition [image: 
$$ f^{\prime }(t)=0 $$
] is surprisingly simple[image: 
$$ t={R}_1=\sqrt{R^{\prime }R^{{\prime\prime} }} $$
]

 (3.18d)

In other words, the fixed resistance of
 the voltage divider circuit should be equal to the geometric mean of two extreme resistances
 of the sensing element itself.
Example 3.8
For the NTC-503 thermistor sensing element, [image: 
$$ {x}_1=25\;{}^{\circ}\mathrm{C} $$
] (room temperature), [image: 
$$ {x}_2=37\;{}^{\circ}\mathrm{C} $$
] (approximate temperature of a human body), [image: 
$$ R^{\prime }=50\kern0.5em \mathrm{k}\Omega $$
], and [image: 
$$ R^{{\prime\prime} }=30\kern0.5em \mathrm{k}\Omega $$
]. What is the sensitivity of the voltage divider sensor if [image: 
$$ {V}_S=9\kern0.5em \mathrm{V} $$
] and (A) [image: 
$$ {R}_1=5\kern0.5em \mathrm{k}\Omega $$
], (B) [image: 
$$ {R}_1=500\kern0.5em \mathrm{k}\Omega $$
], and (C) [image: 
$$ {R}_1=\sqrt{30\cdot 50}\approx 39\kern0.5em \mathrm{k}\Omega $$
]?

Solution: We substitute the numbers in Eq. (3.18) and find the sensitivity. The corresponding sensitivity plot as a function of R
1 is given in Fig. 3.18a. The particular sensitivity values are:[image: A331468_1_En_3_Fig18_HTML.gif]
Fig. 3.18Sensitivity curves for the divider sensor circuits with a thermistor and a strain gauge





(A) [image: 
$$ S=39 $$
] mV/°C, (B) [image: 
$$ S=26 $$
] mV/°C, and (C) [image: 
$$ S=95 $$
] mV/°C.

Example 3.9
For the SGT-1/350-TY11 strain gauge, the nominal resistance
 is 350 Ω. The resistance variation of ±0.1 % for the tensile strain ε is observed; the intrinsic device sensitivity is [image: 
$$ {S}_0=700\kern0.5em \Omega /\varepsilon $$
]. What is the sensitivity of the voltage divider sensor if [image: 
$$ {V}_{\mathrm{S}}=4.5\kern0.5em \mathrm{V} $$
] and (A) [image: 
$$ {R}_1=50\kern0.5em \Omega $$
], (B) [image: 
$$ {R}_1=5\kern0.5em \mathrm{k}\Omega $$
], and (C) [image: 
$$ {R}_1=350\kern0.5em \Omega $$
]? For positive sensitivity numbers, interchange x
1,2 in Eq. (3.18).

Solution: In this example, [image: 
$$ R^{\prime }=350.35\kern0.5em \Omega $$
] and [image: 
$$ R^{{\prime\prime} }=349.65\kern0.5em \Omega $$
]. We use Eq. (3.18b) and plot the sensitivity as a function of R
1 is in Fig. 3.18b. The particular 
values are (με are the micro-strain units):
(A) [image: 
$$ S=0.24 $$
] mV/1000με, (B) [image: 
$$ S=0.55 $$
] mV/1000με, and (C) [image: 
$$ S=2.25 $$
] mV/1000με.



3.2.6 Application Example: Voltage Divider as an Actuator Circuit
The circuit shown in Fig. 3.19 contains a voltage divider circuit block with one resistive sensing element; it is resistance R
1 in the present case. The block is connected to a three-terminal electronic switch (a transistor). A variable voltage V controlling the switch operation is created by the voltage divider. When the control voltage V reaches a certain switch threshold voltage V
Th or exceeds it, the switch closes. A DC motor is now connected to the source; it starts to spin. The switches of this type involve field-effect transistors. We emphasize that there is no current into the control switch terminal, only the control voltage counts. If R
1 is a thermistor and the DC motor is a fan motor, the entire circuit may operate as a basic temperature controller in an enclosure or in a room. The control voltage versus circuit ground, the reference point, is given by (cf. Eq. (3.16))[image: A331468_1_En_3_Fig19_HTML.gif]
Fig. 3.19An actuator circuit based on the voltage divider principle




[image: 
$$ V(x)\equiv {V}_2(x)=\frac{R_2}{R_1(x)+{R}_2}{V}_{\mathrm{S}} $$
]

 (3.19)

where variable x corresponds to the ambient temperature.
Example 3.10
The circuit in Fig. 3.19 uses the NTC-503 thermistor sensing element with [image: 
$$ {R}_1=50\kern0.5em \mathrm{k}\Omega $$
] at 25 °C (room temperature), and [image: 
$$ {R}_1=30\kern0.5em \mathrm{k}\Omega $$
] at 37 °C. The fixed resistance is [image: 
$$ {R}_2=12\ \mathrm{k}\Omega $$
]. The threshold voltage of the switch is [image: 
$$ {V}_{\mathrm{Th}}=2\kern0.5em \mathrm{V} $$
]. The supply voltage is 9 V. Determine circuit behavior at 25 °C and at 37 °C, respectively.

Solution: According to Eq. (3.19), the control voltage at 25 °C is equal to 1.74 V. This value is below the threshold voltage. The switch is open; the motor is not connected to the source. However, the control voltage at 37 °C is 2.57 V. This value is above the threshold voltage. The switch is closed; the motor is connected to the source and is spinning. Figure 3.20 shows the corresponding laboratory setup. Note that in reality the threshold voltage of the transistor switch is not quite constant; it depends on the motor current.[image: A331468_1_En_3_Fig20_HTML.gif]
Fig. 3.20Laboratory realization of the circuit shown in Fig. 3.19








3.2.7 
                Current Limiter

              
The current limiter (or simply the current-limiting resistor) is a particular case of the voltage divider circuit with significant practical importance. Its concept is shown in Fig. 3.21. A load resistance R
L is connected to the ideal voltage source in series with another (smaller) resistance R, the physical counterpart of which is 
the current-limiting resistor.[image: A331468_1_En_3_Fig21_HTML.gif]
Fig. 3.21Voltage divider circuit in the current-limiting configuration. The 10-Ω resistance is used to limit the circuit current





If the load resistance is fixed at a rather high value, the circuit in Fig. 3.21 does not pose any problem, and the current-limiting resistance of 10 Ω becomes redundant. For example, in Fig. 3.21 the circuit current is 100 mA in the absence of the first resistance R. The power delivered to the load resistance is [image: 
$$ P={R}_{\mathrm{L}}{I}^2=1\kern0.5em \mathrm{W} $$
]. However, the load resistance may be variable, and it may attain really small values. When this happens, the circuit current increases. In Fig. 3.21, it becomes equal to 10 A when the load resistance decreases to 1 Ω and the current-limiting resistor is missing. The power delivered to the load resistance also increases: [image: 
$$ P=10\kern0.5em \mathrm{W} $$
]. This large power may overheat and eventually destroy the small-scale load (a thermistor is one example). The role of resistance R is to limit the total circuit current when the load resistance is either variable or constant but small. For example, in the circuit from Fig. 3.21, the maximum possible circuit current is[image: 
$$ I=\frac{V_{\mathrm{S}}}{R+{R}_{\mathrm{L}}}<\frac{V_{\mathrm{S}}}{R}=1\;\mathrm{A} $$
]

 (3.20)

irrespective of the value of the load resistance. Therefore, the power delivered to a 1 Ω-load becomes always less than 1 W instead of the initial value of 10 W.

3.2.8 
                Current Divider Circuit

              
The current divider circuit shown in Fig. 3.22 is associated with resistances in parallel. It is dual to the voltage divider circuit in the sense that the roles of voltage and current are interchanged. Figure 3.22 shows the concept.[image: A331468_1_En_3_Fig22_HTML.gif]
Fig. 3.22A current divider circuit with an ideal current source





To solve the circuit, we again prefer to use KCL and KVL simultaneously. KCL gives[image: 
$$ {I}_{\mathrm{S}}={I}_1+{I}_2 $$
]

 (3.21)

Based on KVL for both loop 1 and loop 2, the voltage across the current source (voltage between its terminals a and b) is equal to the voltage across either resistor and is equal to V. Application of Ohm’s law gives the expression for this voltage,[image: 
$$ {I}_{\mathrm{S}}=\frac{V}{R_1}+\frac{V}{R_2}\Rightarrow V=\frac{I_{\mathrm{S}}}{\frac{1}{R_1}+\frac{1}{R_2}}=\frac{R_1{R}_2}{R_1+{R}_2}{I}_{\mathrm{S}} $$
]

 (3.22)

Therefore, we obtain 
the current division rule in the form:[image: 
$$ {I}_1=\frac{V}{R_1}=\frac{R_2}{R_1+{R}_2}{I}_{\mathrm{S}},\kern1em {I}_2=\frac{V}{R_2}=\frac{R_1}{R_1+{R}_2}{I}_{\mathrm{S}} $$
]

 (3.23)

Equation (3.23) teaches us that the major function of the current divider is to divide the current of the power source between two resistances in an inverse proportion so that:	1.The larger resistance always acquires a smaller current, and the smaller resistance acquires a larger current.


 

	2.The individual currents add up to the source current, i.e., [image: 
$$ {I}_1+{I}_2={I}_{\mathrm{S}} $$
].


 





In other words, the electric current always chooses a path of least resistance. If one resistance is replaced by a wire, the entire source current will flow through the wire; the second resistance will be shorted out by the wire.
Exercise 3.6
A current divider uses a 3-mA current source and two resistances: [image: 
$$ {R}_1=200\kern0.5em \Omega $$
] and [image: 
$$ {R}_2=600\kern0.5em \Omega $$
]. What are the currents I
1, I
2 through the resistances?

Answer: [image: 
$$ {I}_1=2.25\kern0.5em \mathrm{m}\mathrm{A},\kern0.5em {I}_2=0.75\kern0.5em \mathrm{m}\mathrm{A} $$
]. The smaller resistance acquires the larger current.

Example 3.11
The current divider circuit can be assembled
 with a voltage source as shown in Fig. 3.23. Find currents I
1, I
2 and the total circuit current I.[image: A331468_1_En_3_Fig23_HTML.gif]
Fig. 3.23A current divider circuit with the voltage source






Solution: The circuit in Fig. 3.23 can be analyzed in a number of ways. Perhaps the simplest way is to recognize that, according to KVL, the voltages across all three elements in Fig. 3.23 are equal to each other and equal to 10 V. Therefore,[image: 
$$ {I}_1=\frac{10\;\mathrm{V}}{R_1},\kern1em {I}_2=\frac{10\;\mathrm{V}}{R_2},\kern1em I={I}_1+{I}_2=\frac{10\;\mathrm{V}}{R_{\mathrm{eq}}},\kern1em {R}_{\mathrm{eq}}=\frac{R_1{R}_2}{R_1+{R}_2} $$
]

 (3.24)

Another way to solve the same circuit is
 to combine resistances in parallel, find the circuit current I, and then apply the current division principle.


3.2.9 Wheatstone Bridge
The Wheatstone bridge was 
invented by the British scientist and mathematician, Samuel Christie (1784–1865) and first used for resistance measurements by Sir Charles Wheatstone in 1843. It is shown in Fig. 3.24. From Fig. 3.24, we can recognize that the Wheatstone bridge is, in fact, a combination of two independent voltage divider blocks: one with two fixed resistances R
1, R
2 and another with one fixed resistance R
3 and some other resistance R
4 denoted here by [image: 
$$ {R}_4=R(x) $$
]. When the resistance measurements are implied, R
4 is the fixed unknown resistance. However, common modern applications use the Wheatstone bridge as a part of the sensor circuit. In this case, R(x) is a variable resistance (a sensing element), where x is a physical quantity to be measured. The second voltage divider is the voltage divider sensor circuit; the first voltage divider is fixed. Circuit ground (absolute voltage reference) may be introduced as shown in Fig. 3.24.[image: A331468_1_En_3_Fig24_HTML.gif]
Fig. 3.24The Wheatstone bridge is a combination of two independent voltage dividers connected to the same voltage source. The second voltage divider is a sensor circuit





It was shown that the voltage divider circuit is already a basic sensor circuit. Now, why do we need two voltage dividers? The answer to this question will be based on the fact that, with the help of the fixed divider, we can eliminate a DC voltage offset in the sensor voltage reading of the “master” voltage divider and thus enable the use of a difference signal (and a difference amplifier) to amplify the likely very weak sensor voltages. The key point is that the output voltage of the Wheatstone bridge is not V
a or V
b but the differential voltage between terminals a and b in Fig. 3.24, [image: 
$$ {V}_{\mathrm{a}\mathrm{b}}={V}_{\mathrm{a}}-{V}_{\mathrm{b}} $$
].
Example 3.12
 	A.A simple voltage divider
 circuit with [image: 
$$ {R}_3=350\kern0.5em \Omega $$
] and [image: 
$$ R(x)=350\kern0.5em \Omega \pm 0.1\% $$
] (the strain gauge) in Fig. 3.24b is used for strain measurements with a 4.5 V voltage power supply. What is the output voltage V
b of the sensor circuit?


 

	B.The same voltage divider circuit is augmented with another fixed voltage divider having [image: 
$$ {R}_1={R}_2=350\kern0.5em \Omega $$
] to form the Wheatstone bridge shown in Fig. 3.24c. What is the output voltage V
ab of the sensor circuit now?


 






Solution: In case A, we use the voltage division rule and obtain[image: 
$$ {V}_{\mathrm{b}}=2.25\kern0.5em \mathrm{V}\pm 1.125\ \mathrm{mV} $$
]

 (3.25a)

It is difficult to process such voltages since we cannot easily amplify them. Amplification of 2.251125 V by a factor of 100 gives 225.1125 V; such a large voltage simply cannot be obtained with common amplifier circuits. In case B, however, the value of V
b should be subtracted from [image: 
$$ {V}_{\mathrm{a}}=2.25\kern0.5em \mathrm{V} $$
], which yields the sensor voltage in the form[image: 
$$ {V}_{\mathrm{ab}}= \mp 1.125\ \mathrm{mV} $$
]

 (3.25b)

If we now amplify 1.125 mV by a factor of 100, a conventional
 value of 0.1125 V would be obtained. Along with this fact, the differential sensor voltage has another significant advantage, which is its immunity against circuit noise.

General Model of Wheatstone Bridge
Using the voltage division rule twice, the differential voltage V
ab of the Wheatstone bridge in Fig. 3.24c becomes ([image: 
$$ {R}_4=R(x) $$
])[image: 
$$ {V}_{\mathrm{ab}}=\left(\frac{R_2}{R_1+{R}_2}-\frac{R_4}{R_3+{R}_4}\right){V}_{\mathrm{S}} $$
]

 (3.26)

The Wheatstone bridge is balanced when [image: 
$$ {V}_{\mathrm{ab}}=0 $$
]. From Eq. (3.26) one obtains the necessary and sufficient 
condition for the balanced Wheatstone bridge,[image: 
$$ \frac{R_1}{R_2}=\frac{R_3}{R_4} $$
]

 (3.27)






3.3 Superposition Theorem and Its Use
3.3.1 
                Linear and Nonlinear Circuits


              

Linear 
Circuit
The superposition theorem studied in this section is only valid for linear circuits. A linear circuit is a circuit that includes only linear circuit elements (elements with a linear or straight υ-i characteristic):	1.Resistance


 

	2.Capacitance (υ-i relationship is time-dependent but still linear)


 

	3.Inductance (υ-i relationship is time-dependent but still linear)


 

	4.Voltage source (independent and linear dependent)


 

	5.Current source (independent and linear dependent)


 





Every linear circuit satisfies both the homogeneity and additivity properties. To explain those properties, we consider a linear circuit with an input parameter x (input voltage or current) and an output parameter f(x) (output voltage or current). A function f is the characteristic of the circuit itself; it must be a linear function. Namely, 
                    
                    
                  when an input 
parameter is a linear superposition [image: 
$$ a{x}_1+b{x}_2 $$
] of two individual stimuli x
1, x
2, the output is also a linear superposition of two individual responses, i.e.,[image: 
$$ f\left(a{x}_1+b{x}_2\right)=af\left({x}_1\right)+bf\left({x}_2\right) $$
]

 (3.28)

For example, if we double all source strengths in a linear circuit, voltages across every passive circuit element and currents through every circuit element will also double.

Nonlinear Circuit 
and Circuit Linearization
A nonlinear circuit will include nonlinear circuit elements, e.g. elements with a nonlinear υ-i characteristic. Any circuit with semiconductor components (such as diodes, transistors, solar cells) is a nonlinear circuit. Since the vast majority of electronic circuits include semiconductor components, a legitimate question to ask is what value do the linear circuits have in this case? One answer is given by a linearization procedure, which makes it possible to reduce the nonlinear circuit to a linear one, in a certain domain of operating parameters. Mathematically, circuit linearization means that a nonlinear relationship V(I) is expanded into a Taylor series,[image: 
$$ V(I)={V}_0+{\left.\frac{dV}{dI}\right|}_{V={V}_0,\kern0.5em I={I}_0}\left(I-{I}_0\right)+\dots $$
]

 (3.29)


about a certain operating point V
0, I
0, where only the constant and the linear terms are retained. The derivative in Eq. (3.29), the so-called dynamic or small-signal resistance r, is now used in place of the familiar 

resistance R for the linear ohmic circuit elements.


3.3.2 Superposition Theorem or 
Superposition Principle



The superposition theorem, often called the superposition principle, applies to circuits with more than one voltage and/or source. It states that the complete circuit solution is obtained as a linear superposition of particular solutions, for every power source separately. In other words, we are zeroing (or turning off) all the power sources except for one, find the solution, and then add up all such solutions. The following rules apply:	1.To turn off a voltage source, we replace it by a short circuit or an ideal wire—see Fig. 3.25. The voltage across the ideal wire is exactly 0 V.[image: A331468_1_En_3_Fig25_HTML.gif]
Fig. 3.25Application of the superposition principle to voltage sources







 

	2.To turn off a current source, we replace it by an open circuit or an air gap—see Fig. 3.26. The current through the gap is exactly 0 A.[image: A331468_1_En_3_Fig26_HTML.gif]
Fig. 3.26Application of the superposition principle to current sources







 

	3.The dependent sources do not need to be zeroed. They remain the same for every particular solution and may
 affect every particular solution.


 





Example 3.13
Find current I
1 in the circuit shown in Fig. 3.25.

Solution: The first step is shown in the figure; we apply

 the superposition theorem and obtain two simpler circuits. Each of those circuits is solved using series/parallel equivalents. For the circuit with the 15-V power source,[image: 
$$ {R}_{\mathrm{eq}}=1\kern0.5em \mathrm{k}\Omega +3\kern0.5em \mathrm{k}\Omega +0.75\kern0.5em \mathrm{k}\Omega =4.75\kern0.5em \mathrm{k}\Omega $$
]

 (3.30)

The circuit current is 3.1579 mA; i
1 is 75 % of this value (from current division). For the circuit with the 10 V source, [image: 
$$ {R}_{\mathrm{eq}}=3.8\kern0.5em \mathrm{k}\Omega $$
] and i
2 is 2.1053 mA. Thus,[image: 
$$ {I}_1={i}_1+{i}_2=4.4737\kern0.5em \mathrm{m}\mathrm{A} $$
]

 (3.31)

Circuit voltages across every resistance may be found by addition as well.

Example 3.14
Find current I
1 in the circuit shown in Fig. 3.26.

Solution: The first step is shown in the
 figure; we apply the superposition theorem and obtain two simpler circuits by disconnecting current

 sources. The first circuit predicts [image: 
$$ {i}_1=15\kern0.5em \mathrm{m}\mathrm{A} $$
], while the second circuit predicts [image: 
$$ {i}_2=10\kern0.5em \mathrm{m}\mathrm{A} $$
]. Therefore,[image: 
$$ {I}_1={i}_1+{i}_2=25\;\mathrm{m}\mathrm{A} $$
]

 (3.32)

In other words, each of the currents i
1, i
2 flows in its own loop. The solution does not depend on any particular resistor value.

The superposition theorem is a direct consequence of circuit linearity. Interestingly, the superposition theorem is applicable not only to DC circuits but also to AC circuits. The superposition theorem does not hold for electric power, since power is the product 
of voltage and current. The circuit power and the power delivered to individual elements may be correctly

 obtained only from the final solution.

Application

 Example: Superposition Theorem for a Cell Phone
Why do we ultimately need to solve circuits with multiple sources? Look at your cell phone. There is a circuit inside, which receives a very weak radio frequency input voltage signal from the antenna. This is the first source. The signal is processed and amplified by transistors powered by the cell phone battery. This is the second source (or sources). The signal is then demodulated by interaction with an internal high-frequency generator. This is the third source. Moreover, every component in that circuit is in fact “noisy”; it creates a small thermal noise voltage, which is modeled by its own tiny voltage source. A careful solution of the entire circuit with multiple voltage and current sources, including noise sources, is done by superposition. This solution allows electrical engineers to extract the weak input signal from otherwise overwhelming noise and properly design the cell phone circuitry.


3.3.3 
Y (Wye) and Δ (Delta) Networks

: Use of Superposition
The series and parallel resistance configurations are not the only meaningful network blocks. Situations often arise when the resistances are neither in parallel nor in series. In Fig. 3.27a, b, we introduce two new networking blocks, which have the value second to the series/parallel equivalents.[image: A331468_1_En_3_Fig27_HTML.gif]
Fig. 3.27(a) Y (wye) and (b) Δ (delta) networks; (c) and (d) applying the superposition theorem to establish network equivalence





The first block is known as the Y (wye) network. It represents a nodal connection of three arbitrary resistances. The second block is known as the Δ (delta) network. It represents a loop connection of three arbitrary resistances. Both Y and Δ networks have three terminals 1, 2, and 3; they are 
known as three-terminal networks. This is in contrast 
to series/parallel resistance circuits, which are 
usually two-terminal networks. The Y and Δ networks occur either independently or as part of a larger network. Important applications include three-phase power electronics circuits, filter circuits,
                  
                  
                 and impedance-matching networks in high-frequency circuits. The theory that follows holds for AC circuits too, when the resistances become general impedances.
Conversion Between Y and Δ Networks


A problem of significant practical importance is the conversion between the Y and Δ networks in Fig. 3.27a, b. This conversion is equivalent 
to replacing a node by a loop (strictly speaking, by a mesh) and vice versa in a more complicated circuit or network. Such a replacement may significantly simplify the overall circuit analysis. The conversion is established based on the superposition theorem. Two arbitrary networks are equivalent if their υ-i characteristics are the same. In other words, by connecting three arbitrary sources to terminals 1, 2, and 3 of the Y network, we must obtain terminal voltages and currents identical to those of the Δ network with the same sources. We select three current sources I
1, I
2, I
3 in Fig. 3.27c, d. The solution with three sources is obtained as a superposition of three partial solutions, with two sources open-circuited at a time. Let’s keep the source I
1 and replace I
2, I
3 by open circuits first. Voltages V
12 for both networks will be the same when 
the equivalent resistances R
12 between terminals 1 and 2 will be the same. A similar treatment holds 
for terminals 1 and 3 (source I
3 is kept) and

 terminals 2 and 3 (source I
2 is kept), respectively. Therefore, with reference to Fig. 3.27c, d, we have[image: 
$$ {R}_{12}={R}_1+{R}_3={R}_{\mathrm{b}}\left|\right|\left({R}_{\mathrm{a}}+{R}_{\mathrm{c}}\right)=\frac{R_{\mathrm{b}}\left({R}_{\mathrm{a}}+{R}_{\mathrm{c}}\right)}{R_{\mathrm{a}}+{R}_{\mathrm{b}}+{R}_{\mathrm{c}}} $$
]

 (3.33a)


[image: 
$$ {R}_{13}={R}_1+{R}_2={R}_{\mathrm{c}}\left|\right|\left({R}_{\mathrm{a}}+{R}_{\mathrm{b}}\right)=\frac{R_{\mathrm{c}}\left({R}_{\mathrm{a}}+{R}_{\mathrm{b}}\right)}{R_{\mathrm{a}}+{R}_{\mathrm{b}}+{R}_{\mathrm{c}}} $$
]

 (3.33b)


[image: 
$$ {R}_{23}={R}_2+{R}_3={R}_{\mathrm{a}}\left|\right|\left({R}_{\mathrm{b}}+{R}_{\mathrm{c}}\right)=\frac{R_{\mathrm{a}}\left({R}_{\mathrm{b}}+{R}_{\mathrm{c}}\right)}{R_{\mathrm{a}}+{R}_{\mathrm{b}}+{R}_{\mathrm{c}}} $$
]

 (3.33c)

Next, we add Eq. (3.33a) and Eq. (3.33b) and subtract from this result Eq. (3.33c). This gives us the expression for R
1. To obtain R
2, we add Eq. (3.33b) and Eq. (3.33c) and subtract Eq. (3.33a). R
3 is obtained by adding Eq. (3.33a) and Eq. (3.33c) and subtracting Eq. (3.33b). The result has the form 
of Δ to Y transformation:[image: 
$$ {R}_1=\frac{R_{\mathrm{b}}{R}_{\mathrm{c}}}{R_{\mathrm{a}}+{R}_{\mathrm{b}}+{R}_{\mathrm{c}}},\kern1em {R}_2=\frac{R_{\mathrm{a}}{R}_{\mathrm{c}}}{R_{\mathrm{a}}+{R}_{\mathrm{b}}+{R}_{\mathrm{c}}},\kern1em {R}_3=\frac{R_{\mathrm{a}}{R}_{\mathrm{b}}}{R_{\mathrm{a}}+{R}_{\mathrm{b}}+{R}_{\mathrm{c}}} $$
]

 (3.34)

The inverse 
transformation, 
Y to Δ transformation, f
ollows[image: 
$$ {R}_{\mathrm{a}}=\frac{R_1{R}_2+{R}_1{R}_3+{R}_2{R}_3}{R_1},\kern0.5em {R}_{\mathrm{b}}=\frac{R_1{R}_2+{R}_1{R}_3+{R}_2{R}_3}{R_2},{R}_{\mathrm{c}}=\frac{R_1{R}_2+{R}_1{R}_3+{R}_2{R}_3}{R_3} $$
]

 (3.35)





                  Balanced Y and Δ Networks

                
When all resistances of the Y network are equal to R
Y, the Y network is said to be balanced. When all resistances 

of the Δ network are equal to R

                    Δ
                  , the Δ network is also balanced. For balanced networks, two previous equations reduce to[image: 
$$ {R}_{\mathrm{Y}}=\frac{R_{\varDelta }}{3},\kern1.5em {R}_{\varDelta }=3{R}_{\mathrm{Y}} $$
]

 (3.36)



Example 3.15
Find equivalent resistance of a network between terminals a and b in Fig. 3.28a.[image: A331468_1_En_3_Fig28_HTML.gif]
Fig. 3.28Network simplification 
using Δ to Y transformations






Solution: To simplify the network, we use 
the Δ to Y transformation and obtain the network shown in Fig. 3.28b. Since all resistances of the bottom Δ network are equal, we can use the simplified Eq. (3.36) to find the new resistance values. The remaining circuit is solved using series/parallel combinations, which give us: [image: 
$$ {R}_{\mathrm{eq}}=2.2\kern0.5em \mathrm{k}\Omega $$
].

The conversions
 between Y and Δ networks go back to Arthur E. Kennelly (1861–1939), an Indian American engineer who established

 them in 1899
. Note that the transformation between Y and Δ networks is also 

called 
the star to delta transformation.


3.3.4 
T and Π Networks


                  
                  
                : Two-Port Networks


The Y and Δ networks are equivalent to T and Π networks, respectively, which are shown in Fig. 3.29. The T and Π networks are predominantly used as two-port networks or two-port networking blocks. Every port should have two terminals. To create the two ports with two terminals each, we simply split terminal 2 in Fig. 3.29a, c into two terminals: 2 and 4 in Fig. 3.29b, d, respectively. Port #1 is the input port to the network. Port #2 is the output port of the network. Multiple two-port networks may be connected in chains. Equations (3.34), (3.35), and (3.36) allow us to establish the connections between the T and Π networks, which are the same as the connections between the Y and Δ networks. Hence, 
                  
                any two-port T network may be replaced by the two-port Π network and vice versa. The T network is sometimes called 
the T pad and the Π network the Π pad. Both networks are used as attenuators, filters, and antenna tuners. In the last two cases, capacitances and inductances
 replace resistances.[image: A331468_1_En_3_Fig29_HTML.gif]
Fig. 3.29Conversion of Y and Δ three-terminal networks to equivalent T and Π two-port, four-terminal networks





Exercise 3.7
A two-port T network in Fig. 3.29c is
 characterized by [image: 
$$ {R}_1=3\kern0.5em \mathrm{k}\Omega $$
], [image: 
$$ {R}_2={R}_3=5\kern0.5em \mathrm{k}\Omega $$
]. Establish resistance

 values for the equivalent Π network in Fig. 3.29d.

Answer: [image: 
$$ {R}_{\mathrm{a}}=18.33\kern0.5em \mathrm{k}\Omega $$
], [image: 
$$ {R}_{\mathrm{b}}={R}_{\mathrm{c}}=11\kern0.5em \mathrm{k}\Omega $$
].


3.3.5 
General Character

 of Superposition Theorem


The superposition theorem makes it possible to analyze not only two-port electric networks but also various networks with multiple ports such as sensor arrays, antenna arrays, multiple-input and multiple-output (MIMO) communications systems, arrays of magnetic resonance imaging (MRI) coils, etc. It is so widely used that, quite often, we do not even 
mention its 

name and consider 
the corresponding result as “obvious.”


Summary

                	Name
	Circuit
	Meaning

	Network topology
	
                            [image: A331468_1_En_3_Figbo_HTML.gif]
                          
	– Any electric network consists of b branches,

n single nodes (with distinct voltages),

l loops,
and m (essential) meshes (loops that do not contain any other loops)

	Network topology theorem
	
                            [image: 
$$ b=n+m-1 $$
]
                          
	Valid for two-dimensional (planar) electric networks

	Kirchhoff’s Current Law (KCL)
	
                            [image: A331468_1_En_3_Figbp_HTML.gif]
                          
	All currents flowing into a circuit node add to zero:

                            [image: 
$$ {\displaystyle \sum_{i=1}^N{I}_i=0} $$
]
                          

                            Valid for all circuits: linear and nonlinear, passive and active
                          

	Kirchhoff’s Voltage Law (KVL)
	
                            [image: A331468_1_En_3_Figbq_HTML.gif]
                          
	All voltage drops over the elements in a loop add to zero:

                            [image: 
$$ {\displaystyle \sum_{i=1}^N{V}_i}=0 $$
]
                          

                            Valid for all circuits: linear and nonlinear, passive and active
                          

	Maxwell’s minimum heat theorem
Tellegen’s theorem
	
                            [image: A331468_1_En_3_Figbr_HTML.gif]
                          
	
                            [image: 
$$ {\displaystyle \sum_{i=1}^{N_R}{R}_i{I}_i^2}={\displaystyle \sum_{i=1}^{N_R}{V}_i^2/{R}_i= \min } $$
]
                          

                            Valid only for lin. circuits
                          

                            [image: 
$$ {\displaystyle \sum_{i=1}^N{V}_i{I}_i=}0 $$
]
                          

                            Valid for all circuits
                          

	One-port network and network equivalence
	
                            [image: A331468_1_En_3_Figbs_HTML.gif]
                          
	Two electric one-port networks are equivalent when their complete υ-i characteristics coincide

                            Valid for all circuits: linear and nonlinear, passive and active
                          

	Series and parallel source combinations (one-port networks)
	
                            [image: A331468_1_En_3_Figbt_HTML.gif]
                          
	– Voltages are added for series combinations;
– Currents are added for parallel combinations;
– Current sources are combined similarly

Valid only for ideal voltage and current sources—circuit elements

	Series and parallel resistance or conductance combinations (one-port networks)
	
                            [image: A331468_1_En_3_Figbu_HTML.gif]
                          
	Series combinations:

                            [image: 
$$ \begin{array}{l}{R}_{eq}={R}_1+{R}_2+\dots {R}_N\\ {}\frac{1}{G_{eq}}=\frac{1}{G_1}+\frac{1}{G_2}+\dots +\frac{1}{G_N}\end{array} $$
]
                          
Parallel combinations:

                            [image: 
$$ \begin{array}{l}\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}+\dots +\frac{1}{R_N}\\ {}{G}_{eq}={G}_1+{G}_2+\dots {G}_N\end{array} $$
]
                          

	Voltage divider circuit
	
                            [image: A331468_1_En_3_Figbv_HTML.gif]
                          
	
                            [image: 
$$ \begin{array}{l}{V}_1=\frac{R_1}{R_1+{R}_2}{V}_{\kern-0.15em S}\kern1em \\ {}{V}_2=\frac{R_2}{R_1+{R}_2}{V}_{\kern-0.15em S}\\ {}{V}_1+{V}_2={V}_{\kern-0.15em S}\end{array} $$
]
                          
May also be used with arbitrary circuit elements

	Voltage divider circuit as a sensor
	
                            [image: A331468_1_En_3_Figbw_HTML.gif]
                          
	Variable sensor voltage:

                            [image: 
$$ {V}_2={V}_2(x)=\frac{R_2(x)}{R_1+{R}_2(x)}{V}_{\kern-0.15em S} $$
]
                          
Maximum sensitivity:

                            [image: 
$$ {R}_1=\sqrt{R^{\prime }{R}^{{\prime\prime} }},\kern0.5em {R}^{\prime }<{R}_2<{R}^{{\prime\prime} } $$
]
                          

	Current-limiting resistor
	
                            [image: A331468_1_En_3_Figbx_HTML.gif]
                          
	Maximum circuit current at arbitrary load resistance:

                            [image: 
$$ \kern3.5pc I<\frac{V_S}{R} $$
]
                          

                            Valid for all circuits
                          

	Current divider circuit
	
                            [image: A331468_1_En_3_Figby_HTML.gif]
                          
	
                            [image: 
$$ \begin{array}{l}{I}_1=\frac{V}{R_1}=\frac{R_2}{R_1+{R}_2}{I}_S\\ {}{I}_2=\frac{V}{R_2}=\frac{R_1}{R_1+{R}_2}{I}_S\\ {}{I}_1+{I}_2={I}_S\end{array} $$
]
                          

	Wheatstone bridge
	
                            [image: A331468_1_En_3_Figbz_HTML.gif]
                          
	Bridge equation (from two voltage dividers):

                            [image: 
$$ {V}_{ab}=\left(\frac{R_2}{R_1+{R}_2}-\frac{R_4}{R_3+{R}_4}\right){V}_S $$
]
                          
Balanced: [image: 
$$ \frac{R_1}{R_2}=\frac{R_3}{R_4} $$
]


	Linear circuits
	Linear response:

                            [image: 
$$ f\left(a{x}_1+b{x}_2\right)=af\left({x}_1\right)+bf\left({x}_2\right) $$
]
                          
	Circuits with resistances, independent sources, and linear dependent sources

	Superposition theorem (central theorem in linear circuit analysis)
	
                            [image: A331468_1_En_3_Figca_HTML.gif]
                          
	Complete circuit solution is obtained as a linear superposition of particular solutions, for every source separately. We turn off all the sources expect for one, find the solution, and then add up all such solutions

                            Valid only for lin. circuits
                          

	Y (Wye or star) and Δ (Delta) three-terminal network equivalence
	
                            [image: A331468_1_En_3_Figcb_HTML.gif]
                          
	
                            [image: 
$$ \begin{array}{l}{R}_1=\frac{R_b{R}_c}{\Delta},\kern0.5em {R}_2=\frac{R_a{R}_c}{\Delta},\\ {}{R}_3=\frac{R_a{R}_b}{\Delta},\kern0.5em \Delta ={R}_a+{R}_b+{R}_c\end{array} $$
]
                          

                            [image: 
$$ \begin{array}{l}{R}_a=\frac{\Delta}{R_1},\kern0.5em {R}_b=\frac{\Delta}{R_2},\kern0.5em {R}_c=\frac{\Delta}{R_3}\\ {}\Delta ={R}_1{R}_2+{R}_1{R}_3+{R}_2{R}_3\end{array} $$
]
                          
Node to loop transformation

	T and Π two-port networks—derivatives of Y and Δ networking blocks
	
                            [image: A331468_1_En_3_Figcc_HTML.gif]
                          
	
                            [image: 
$$ \begin{array}{l}{R}_1=\frac{R_b{R}_c}{\Delta},\kern0.5em {R}_2=\frac{R_a{R}_c}{\Delta},\\ {}{R}_3=\frac{R_a{R}_b}{\Delta},\kern0.5em \Delta ={R}_a+{R}_b+{R}_c\end{array} $$
]
                          

                            [image: 
$$ \begin{array}{l}{R}_a=\frac{\Delta}{R_1},\kern0.5em {R}_b=\frac{\Delta}{R_2},\kern0.5em {R}_c=\frac{\Delta}{R_3}\\ {}\Delta ={R}_1{R}_2+{R}_1{R}_3+{R}_2{R}_3\end{array} $$
]
                          
Conversion is the same as for Y to Δ networks




              

Problems
3.1 Circuit Laws: Networking Theorems

                  3.1.1 Electric Network and Its Topology
                
Problem 3.1
In the network graph shown in the figure below:	A.Find the number of branches, single nodes (nodes with distinct voltages), and meshes.


 

	B.Prove the equality [image: 
$$ b=n+m-1 $$
] for the number of branches b, meshes m, and single nodes n.[image: A331468_1_En_3_Figd_HTML.gif]





 






Problem 3.2
Repeat problem 3.1 for the circuits shown in the following figure:[image: A331468_1_En_3_Fige_HTML.gif]




Problem 3.3
Repeat problem 3.1 for the circuit shown in the following figure. Each straight segment is now a branch.[image: A331468_1_En_3_Figf_HTML.gif]





                  3.1.2 Kirchhoff’s Current Law
                
Problem 3.4
Find current I
B for the node shown in the following figure:[image: A331468_1_En_3_Figg_HTML.gif]




Problem 3.5
 	A.Find current I
D for the node shown in the following figure.


 

	B.Redraw this node (and the circuit between terminals a and b) in an equivalent form eliminating the horizontal wire.[image: A331468_1_En_3_Figh_HTML.gif]





 






Problem 3.6
Determine current i
C for the circuit shown in the following figure:[image: A331468_1_En_3_Figi_HTML.gif]




Problem 3.7
Find a relation between currents i
C, i
E for the circuit shown in the following figure. Does the problem have a unique solution?[image: A331468_1_En_3_Figj_HTML.gif]




Problem 3.8
Find currents i
A, i
B, i
D, i
H for the circuit shown in the following figure:[image: A331468_1_En_3_Figk_HTML.gif]




Problem 3.9
Determine currents i
C, i
F, i
H for the circuit shown in the following figure:[image: A331468_1_En_3_Figl_HTML.gif]




Problem 3.10
Determine currents i
C, i
F, i
H in the following figure:[image: A331468_1_En_3_Figm_HTML.gif]




Problem 3.11
Find all unknown currents for the circuit shown in the following figure:[image: A331468_1_En_3_Fign_HTML.gif]





                  3.1.3 Kirchhoff’s Voltage Law (KVL)
                
Problem 3.12
 	A.Find voltage V
C for the circuit shown in the following figure.


 

	B.How would the solution change if V
D were equal to 0 V?


 

	C.Could the value V
E = 0 V be used in this problem?[image: A331468_1_En_3_Figo_HTML.gif]





 






Problem 3.13
Determine voltage V
F in the circuit shown in the figure below.[image: A331468_1_En_3_Figp_HTML.gif]




Problem 3.14
Find the unknown voltages V
A, V
B, V
G, V
H for the circuit shown in the figure below.[image: A331468_1_En_3_Figq_HTML.gif]




Problem 3.15
Determine voltage V
E for the circuit shown in the following figure.[image: A331468_1_En_3_Figr_HTML.gif]




Problem 3.16
Equipotential lines for a human body subject to a vertical electric field with the strength of 1 V/m are shown in the following figure.	A.Determine voltages V
AB, V
BC, V
CA.


 

	B.Establish the KVL loop and formulate KVL for these three voltages.[image: A331468_1_En_3_Figs_HTML.gif]





 







                  3.1.4 Power-related theorems
                
Problem 3.17
For the circuit shown in the following figure:	1.Determine which circuit elements are the resistances and which are the sources.


 

	2.Find the power (delivered to the circuit or taken from the circuit) for every circuit element.


 

	3.Assuming that the powers of the sources are negative, find the sum of all powers in the circuit.[image: A331468_1_En_3_Figt_HTML.gif]





 






Problem 3.18
For the circuit shown in the figure below:	1.Use KVL and KCL to solve for unknown currents and voltages.


 

	2.Find the power (delivered to the circuit or taken from the circuit) for every circuit element.


 

	3.Assuming that the powers of the sources are negative, find the algebraic sum of all powers in the circuit.[image: A331468_1_En_3_Figu_HTML.gif]





 






Problem 3.19
For the circuit shown in the figure below:	1.Use KVL to solve for unknown voltages.


 

	2.Use KCL to solve for unknown currents.


 

	3.For each of six circuit elements, determine if the element is a resistance or a source.


 

	4.Assuming that the source powers are negative, find the algebraic sum of all powers in the circuit.[image: A331468_1_En_3_Figv_HTML.gif]





 







3.2 Series and Parallel Network/Circuit Blocks

                  3.2.1 Sources in Series and in Parallel
                
Problem 3.20
The electronic circuits onboard an 18-foot long Parker motor boat consume 96 W when operated from a 24-V source. The source is a combination of two fully charged deep-cycle batteries, each of which is rated for 12 V and 100 ampere hours:	1.Should the batteries be connected in series or in parallel?


 

	2.For how many hours can the electronics be operated from the battery bank without recharging?


 

	3.How much energy in kilowatt hours is initially stored in each battery?


 






Problem 3.21
A certain sensing device consumes 0.375 W of power over a 20-hour period and operates from a 6-V source. The source is a combination of four fully charged AAA batteries, 1.5 V each. The batteries discharge by the end of the 20-h period:	1.Should the batteries be connected in series or in parallel?


 

	2.What is a typical capacity of the AAA battery?


 

	3.How much energy in watt hours is initially stored in each battery?


 






Problem 3.22
A load has the resistance of 1.5 Ω and requires the applied voltage of 3 V. A number of battery cells are given, each of which is rated for 1.5 V. Each cell may deliver no more than 1 A of current:	1.Construct and draw a battery bank that could be used to drive the load.


 

	2.Is the solution to the problem unique?


 






Problem 3.23
Repeat the previous problem when the required load voltage is changed to 6 V.


                  3.2.2 Resistances in Series and in Parallel
                

                  3.2.3 Reduction of Resistive Networks
                
Problem 3.24
Determine the equivalent resistance between terminals a and b.[image: A331468_1_En_3_Figw_HTML.gif]




Problem 3.25
The equivalent electric circuit for a car rear window defroster is shown in the figure. All resistances are equal: [image: 
$$ {R}_1=\dots ={R}_{15}=10\kern0.5em \Omega $$
]. Determine the heat power (power delivered to the defroster).[image: A331468_1_En_3_Figx_HTML.gif]




Problem 3.26
Find the equivalent resistance between terminals a and b.[image: A331468_1_En_3_Figy_HTML.gif]




Problem 3.27
Find the equivalent resistance between terminals a and b.[image: A331468_1_En_3_Figz_HTML.gif]




Problem 3.28
Find the equivalent resistance between terminals a and b.[image: A331468_1_En_3_Figaa_HTML.gif]




Problem 3.29
Determine the equivalent resistance between terminals a and b.[image: A331468_1_En_3_Figab_HTML.gif]




Problem 3.30
Find the equivalent resistance between terminals a and b.[image: A331468_1_En_3_Figac_HTML.gif]




Problem 3.31
Determine the equivalent resistance (resistance between ports a and b) of the network shown in the following figure:[image: A331468_1_En_3_Figad_HTML.gif]




Problem 3.32
Determine the equivalent resistance between terminals a and b.[image: A331468_1_En_3_Figae_HTML.gif]




Problem 3.33
Find the equivalent resistance between terminals a and b.[image: A331468_1_En_3_Figaf_HTML.gif]




Problem 3.34
Determine the equivalent resistance of the network (resistance between terminals a and b) shown in the following figure:[image: A331468_1_En_3_Figag_HTML.gif]




Problem 3.35
Determine the equivalent resistance between terminals a and b (show units).[image: A331468_1_En_3_Figah_HTML.gif]




Problem 3.36
A network shown in the figure below is known as a ladder. The ladder network includes one particular section with a series ([image: 
$$ {R}_1=1\kern0.5em \Omega $$
]) and a shunt ([image: 
$$ {R}_2=1\kern0.5em \Omega $$
]) resistance, known as the L-section. This section is then repeated an infinite number of times to the right. Determine the equivalent resistance between terminals a and b of the ladder network.[image: A331468_1_En_3_Figai_HTML.gif]




Hint: For the semi-infinite ladder network in the previous figure, the equivalent resistance R
eq will not change after adding a new section up front as shown in the figure that follows:[image: A331468_1_En_3_Figaj_HTML.gif]




Problem 3.37
 	A.Repeat the previous problem for the semi-infinite ladder network circuit shown in the same figure when [image: 
$$ {R}_1={R}_3=10\kern0.5em \Omega $$
], [image: 
$$ {R}_2=25\kern0.5em \Omega $$
].


 

	B.How different is your result from the equivalent resistance of the finite ladder network with only four sections?


 






Problem 3.38
Another important ladder network type (with the T-section) is shown in the following figure.	A.Determine the equivalent resistance between terminals a and b of the ladder network when [image: 
$$ {R}_1=2{R}_3=10\kern0.5em \Omega $$
], [image: 
$$ {R}_2=10\kern0.5em \Omega $$
].


 

	B.How different is your result from the equivalent resistance of the finite ladder network with only four sections?[image: A331468_1_En_3_Figak_HTML.gif]





 







                  3.2.4 Voltage Divider Circuit
                
Problem 3.39
Redraw the circuit shown in the figure below and plot the distribution of the circuit voltage versus ground reference point to scale between two circuit points a and b as a function of distance x from point a.[image: A331468_1_En_3_Figal_HTML.gif]




Problem 3.40
Repeat the task of the previous problem for the disconnected circuit shown in the following figure:[image: A331468_1_En_3_Figam_HTML.gif]




Problem 3.41
For the circuit shown in the following figure, use the voltage division principle to calculate V
1, V
2, V
3.[image: A331468_1_En_3_Figan_HTML.gif]




Problem 3.42
For the circuit shown in the figure below:	A.Calculate V
1, V
2, V
3.


 

	B.Find the voltage across the current source.[image: A331468_1_En_3_Figao_HTML.gif]





 






Problem 3.43
For the circuits shown in the following figure, determine voltages V
1, V
2, absolute voltage V
a at node a versus ground (show units), and circuit current I.[image: A331468_1_En_3_Figap_HTML.gif]





                  3.2.5 Application Example: Voltage Divider as a Sensor Circuit
                

                  3.2.6 Application Example: Voltage Divider as an Actuator Circuit
                
Problem 3.44
An NTC thermistor-based temperature sensor should operate between 25 °C and 65 °C from a 6-V DC power supply. The thermistor’s resistance changes from [image: 
$$ R^{\prime }=50\ \mathrm{k}\Omega $$
] to [image: 
$$ R^{{\prime\prime} }=20\kern0.5em \mathrm{k}\Omega $$
] in this temperature range:	A.Present a circuit diagram for the simple temperature sensor.


 

	B.Determine the value of the unknown resistance for the maximum circuit sensitivity.


 

	C.Determine the maximum circuit sensitivity.


 

	D.What is the circuit sensitivity when the unknown resistance is set to 1 kΩ?


 






Problem 3.45
In the previous problem, using software of your choice (MATLAB is recommended), plot the circuit sensitivity to scale as a function of the value of the unknown resistance in the range from 1 kΩ to 100 kΩ.

Problem 3.46
A strain gauge with nominal resistance of 120 Ω is used in conjunction with a 2.5-V DC voltage source. Its nominal resistance changes by ±0.2 % when the gauge operates in the permissible strain range, which is ±1000με:	A.Present a circuit diagram for the simple strain gauge sensor.


 

	B.Determine the value of the unknown resistance for the maximum circuit sensitivity.


 

	C.Determine the maximum circuit sensitivity.


 

	D.What is the circuit sensitivity when the unknown resistance is set to 1 kΩ?


 






Problem 3.47
In the previous problem, using software of your choice (MATLAB is recommended), plot the circuit sensitivity to scale as a function of the value of the unknown resistance in the range from 10 Ω to 1000 Ω.

Problem 3.48
A voltage divider circuit with [image: 
$$ {R}_1=700\kern0.5em \Omega $$
] (the fixed resistance) and [image: 
$$ {R}_2=700\ \Omega \pm 0.1\;\% $$
] (the strain gauge) is used. The voltage power supply is rated at 4.5 V:	A.Show that voltage across the strain gauge varies in the range 2.25 V ± 1.125 mV.


 

	B.Could you derive an analytical formula that gives the voltage variation across [image: 
$$ {R}_2={R}_1\pm \varDelta $$
] as a linear function of an arbitrary (but very small) resistance variation Δ?

[Hint: use your calculus background—the Maclaurin series versus a small parameter].


 







                  3.2.7 Current Limiter
                
Problem 3.49
A thermistor is connected to an ideal voltage power source of 9 V. Determine the value of 
the current-limiting resistor R based on the requirement that the power delivered to the thermistor should be always less than 0.1 W. The lowest possible value of R should be chosen. Consider two cases:	1.Thermistor resistance is exactly 100 Ω.


 

	2.Thermistor resistance changes from 200 Ω to 100 Ω.[image: A331468_1_En_3_Figaq_HTML.gif]





 







                  3.2.8 Current Divider Circuit
                
Problem 3.50
For the circuit shown in the following figure:	A.Calculate the voltage between terminals a and b. Show its polarity on the figure.


 

	B.Use the current division principle to calculate branch currents i
1, i
2.[image: A331468_1_En_3_Figar_HTML.gif]





 






Problem 3.51
Find branch currents i
1, i
2 for the circuit shown in the following figure:[image: A331468_1_En_3_Figas_HTML.gif]




Problem 3.52
Find branch currents i
1, i
2 for the circuit shown in the following figure:[image: A331468_1_En_3_Figat_HTML.gif]




Problem 3.53
Find the voltage between terminals a and b (voltage across the current power source) for the circuit shown in the following figure:[image: A331468_1_En_3_Figau_HTML.gif]




Problem 3.54
The voltage source in the circuit is delivering 0.2 W of electric power. Find R.[image: A331468_1_En_3_Figav_HTML.gif]





                  3.2.9 Wheatstone Bridge
                
Problem 3.55
Describe in your own words the function and the scope of the Wheatstone bridge.

Problem 3.56
Find the voltage between terminals a and b for the circuit shown in the figure that follows:[image: A331468_1_En_3_Figaw_HTML.gif]




Problem 3.57
Find the voltage between terminals a and b for the circuits shown in the figure that follows:[image: A331468_1_En_3_Figax_HTML.gif]




Problem 3.58
You are given:	1.A photoresistor that changes its resistance from 20 kΩ for brightness to 500 kΩ for darkness


 

	2.A 9-V battery


 

	3.A voltmeter (DMM)


 

	4.Any other necessary precise resistors


 





Construct (present the circuit diagram) a Wheatstone bridge sensor circuit that:	1.Has zero voltage reading for brightness


 

	2.Has maximum possible voltage reading for darkness (has maximum sensitivity)


 






Problem 3.59
You are given:	1.A SGT-1/350-TY11 uniaxial strain gauge with the nominal resistance of 350 Ω (no strain)


 

	2.A 4.5-V voltage source


 

	3.Any number of precise resistors, of any value


 





When tensile strain is applied, the resistance variation up to +0.1 % is observed. Present the circuit diagram for the Wheatstone bridge sensor circuit that:	1.Has zero voltage reading at no strain


 

	2.Has maximum possible voltage response when strain is present (has maximum sensitivity)


 

	3.Outputs positive voltages when the resistance of the strain gauge increases


 






Problem 3.60
Resistance of a strain gauge increases when its length increases (a bended surface under test becomes convex) and decreases when its length decreases (a bent surface under test becomes concave). The corresponding strains are the tensile strain and the compressive strain. You are given two strain gauges (#1 and #2), which are attached to opposite sides of a thin bent surface under test, at the same position. The gauge resistance at normal conditions (no bending) is R = 100 Ω. You are also given any number of fixed resistors, of any value:	1.Suggest and sketch a sensor circuit which will convert changes in the resistance into measurable voltage changes. This circuit should possibly have:	(a)Zero sensor output voltage at normal sensor conditions (no bending)


 

	(b)Maximum voltage sensitivity to changes in resistance (sensitivity to the strain)


 







 

	2.Label one (or two) strain gauge used, and specify the values of all used resistances.


 

	3.Show power supply and DMM connections.


 







                  Combined Voltage and Current Dividers
                
Problem 3.61
For the circuit shown in the following figure:	A.Find currents i, i
1, i
2 (show units).


 

	B.Find power P delivered by the voltage source to the circuit.


 

	C.Find voltages V
1, V
2.[image: A331468_1_En_3_Figay_HTML.gif]





 






Problem 3.62
Find voltage V across the 20-kΩ resistance and current i for the circuit shown in the following figure:[image: A331468_1_En_3_Figaz_HTML.gif]




Problem 3.63
For the circuit that follows, determine:	A.Current i
2 through the 0.25 kΩ resistance


 

	B.Power P absorbed by the 600 Ω resistance[image: A331468_1_En_3_Figba_HTML.gif]





 






Problem 3.64
For the circuit shown in the figure below, determine:	A.Current i
2 through the 0.25-kΩ resistance


 

	B.Power P absorbed by the 0.3-kΩ resistance[image: A331468_1_En_3_Figbb_HTML.gif]





 






Problem 3.65
Determine current i (show units) in the circuit that follows:[image: A331468_1_En_3_Figbc_HTML.gif]




Problem 3.66
Determine current i and voltage υ for the circuit shown in the figure (show units).
[image: A331468_1_En_3_Figbd_HTML.gif]





3.3 Superposition Theorem and Its Use

                  3.3.2 Superposition Theorem or Superposition Principle
                
Problem 3.67
For the circuit shown in the figure below, determine the absolute voltage (versus chassis ground) and the electric current at the circuit point a.
[image: A331468_1_En_3_Figbe_HTML.gif]




Problem 3.68
Determine the absolute voltage (versus chassis ground) and the current i at the circuit point a.[image: A331468_1_En_3_Figbf_HTML.gif]




Problem 3.69
For the circuit shown in the figure below, find the current across the 10-Ω resistance. Show its direction on the figure.[image: A331468_1_En_3_Figbg_HTML.gif]




Problem 3.70
Determine the unknown current I in the circuit (solve by superposition).[image: A331468_1_En_3_Figbh_HTML.gif]




Problem 3.71
Determine the unknown current I in the circuit (solve by superposition).[image: A331468_1_En_3_Figbi_HTML.gif]





                  3.3.3 Y (Wye) and Δ (Delta) Networks: Use of Superposition
                

                  3.3.4 T and Π Networks: Two-Port Passive Networks
                
Problem 3.72
Convert the network shown in the following figure from Y to Δ:	A.Draw the corresponding Δ network.


 

	B.Label its terminals.


 

	C.Determine and label the corresponding resistance values in the figure.[image: A331468_1_En_3_Figbj_HTML.gif]





 






Problem 3.73
Convert the network shown in the following figure from Δ to Y:	A.Draw the corresponding Y network.


 

	B.Label its terminals.


 

	C.Determine and label the corresponding resistance values.[image: A331468_1_En_3_Figbk_HTML.gif]





 






Problem 3.74
Convert the two-port network shown in the following figure from T to Π:	1.Draw the corresponding Π network.


 

	2.Label its terminals and ports.


 

	3.Determine and label the corresponding resistance values.[image: A331468_1_En_3_Figbl_HTML.gif]





 






Problem 3.75
Convert the two-port network shown in the following figure from Π to T:	A.Draw the 
corresponding T network.


 

	B.Label its terminals and ports.


 

	C.Determine and label the corresponding resistance values.[image: A331468_1_En_3_Figbm_HTML.gif]





 






Problem 3.76
For the bridge network shown below, determine the equivalent resistance between terminals a and b.[image: A331468_1_En_3_Figbn_HTML.gif]







Footnotes
1The KCL and KVL concepts are so powerful they even find applications in equivalent form in magnet systems such as transformers and motors. For example, the magnetic flux in a yoke with air gaps can be modeled according to KCL and KVL.

 

2The physical counterpart of KVL is Faraday’s law of induction in the static case. When there is a variable magnetic field penetrating a wire loop, KVL is no longer valid.

 

3If the realistic battery cells are capable of delivering different currents when short circuited, then the lowest cell current will flow under short circuit condition.
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Overview

              Prerequisites
	Knowledge of major circuit elements, their υ-i characteristics, and Ohm’s law (Chapter 2)

	Knowledge of basic networking theorems (Chapter 3)




              Objectives of Section 4.1:
	Become familiar with the nodal analysis and be able to apply it to solve in arbitrary linear circuits

	Become familiar with the mesh analysis and be able to apply it to solve in arbitrary linear circuits




              Objectives of Section 4.2:
	Become familiar with the method of short/open circuit

	Establish and prove the source transformation theorem

	Establish and prove Thévenin’s and Norton’s theorems




              Objectives of Section 4.3:
	Establish the maximum power theorem and become familiar with the power efficiency concept

	Be able to apply the concepts of Thévenin and Norton’s equivalents and maximum power theorem in practice




              Objectives of Section 4.4:
	Obtain an initial exposure to nonlinear circuit analysis

	Be able to solve in a simple nonlinear circuit




              Application examples:
	Reading and using data for solar panels

	Power radiated by a transmitting antenna

	Maximum power extraction from solar panel

	Solving the circuit for a generic solar cell




            

4.1 Nodal/Mesh Analysis
4.1.1 Importance of Circuit Simulators
The series and parallel equivalents along with Y and Δ transformations provide a practical tool for solving simple circuits involving typically only a few elements. However, for more elaborate circuits, circuit simulators such as SPICE (Simulation Program with Integrated Circuit Emphasis) and its various modifications become indispensable tools for the professional engineer. SPICE was developed by the Electronics Research Laboratory at the University of California, Berkeley, and first presented in 1973. These circuit simulators are quite general and allow us to model circuits with passive and active elements including semiconductor components such as diodes, transistors, and even solar cells. Since those elements typically exhibit nonlinear current–voltage behaviors, elaborate solution strategies are needed. The circuit simulators use quite interesting algorithms: they often operate in the time domain, even for DC circuits. For example, a solution for a DC circuit is obtained as the steady-state limit of a transient solution, for voltage and/or current sources turned on at a certain time instance. The key of the time-domain approach is its inherent ability to solve nonlinear problems, with passive and active circuit elements. In this section, we are unable to discuss in detail the principles of the numerical circuit simulation. However, we will provide the foundation 
of the nodal analysis (or node analysis) and the mesh analysis (or the mesh-current analysis), which 
are two important features of a professional circuit simulator. The nodal and mesh analyses in its pure form do not involve time-domain methods. They are primarily applicable only to linear circuits, also referred to as linear networks.

4.1.2 Nodal Analysis for Linear Circuits



The nodal analysis is a general method of solving linear networks of arbitrary complexity, which is based on KCL and Ohm’s law. Let us consider a circuit shown in Fig. 4.1a, which is a resistive bridge circuit with a bridging resistance. This circuit may be solved using Δ to Y conversion; see, for instance, example 3.15 of Chapter 3. Here, we prefer to use the nodal analysis directly. The nodal analysis operates with the absolute values of the node voltages in the circuit with respect to ground reference. It may be divided into a number of distinct steps:[image: A331468_1_En_4_Fig1_HTML.gif]
Fig. 4.1Major steps of the nodal analysis applied to a bridge circuit




	1.A ground reference needs to be assigned first: a node where the voltage is set to 0 V. To this end, we ground the negative terminal of the voltage power supply.


 

	2.Next, we select nontrivial (also called 
                          non-reference
                          
                        ) nodes for which we do not know the voltages. These are nodes 1 and 2 in Fig. 4.1b. The two additional nodes are eliminated from the analysis since the voltages there are already known.


 

	3.We label absolute node voltages versus ground reference as V
1, V
2—see Fig. 4.1c.


 

	4.We label currents for every nontrivial node, assuming that all currents are outflowing; see Fig. 4.1c. The last condition may be replaced by all inflowing currents.


 

	5.Next, KCL is written for every nontrivial node. We express the currents as the difference of two absolute voltages: the voltage at the beginning of the current arrow (voltage at the master node) minus the voltage at the end of the current arrow (voltage at any other node) and then divide this difference by the appropriate resistance. Hence, we arrive at a system of linear equations for the nodal voltages. Currents are no longer involved.


 

	6.After the resulting system of linear equations is solved, all circuit parameters are determined as necessary.


 





The following two examples will apply the nodal

 analysis to a circuit with a voltage source.
Example 4.1
Solve the circuit shown in Fig. 4.1a using the nodal analysis—find the supply current.

Solution: Steps 1–4 are indicated in Fig. 4.1b, c. Applying KCL to node 1 and then to node 2 (order is not important), one has[image: 
$$ \frac{V_1-5\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}+\frac{V_1-0\kern0.5em \mathrm{V}}{3\kern0.5em \mathrm{k}\Omega}+\frac{V_1-{V}_2}{1\kern0.5em \mathrm{k}\Omega}=0 $$
]

 (4.1a)


[image: 
$$ \frac{V_2-5\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}+\frac{V_2-0\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}+\frac{V_2-{V}_1}{1\kern0.5em \mathrm{k}\Omega}=0, $$
]

 (4.1b)



i.e., a system of the linear equations for two unknown voltages. Its simplification[image: 
$$ 7/3{V}_1-{V}_2=5\kern0.5em \mathrm{V} $$
]

 (4.2a)


[image: 
$$ 3{V}_2-{V}_1=5\kern0.5em \mathrm{V} $$
]

 (4.2b)



is solved via Gaussian elimination of unknowns, which

 yields[image: 
$$ {V}_1=3.33\kern0.5em \mathrm{V}\ \mathrm{and}\ {V}_2=2.78\kern0.5em \mathrm{V} $$
]

 (4.3)



The circuit current (current of the voltage source) is[image: 
$$ \left(5\kern0.5em \mathrm{V}-{V}_1\right)/1\ \mathrm{k}\Omega +\left(5\kern0.5em \mathrm{V}-{V}_2\right)/1\ \mathrm{k}\Omega =3.89\kern0.5em \mathrm{m}\mathrm{A}. $$
]





Example 4.2
Solve the circuit shown in Fig. 4.2a using the nodal analysis.[image: A331468_1_En_4_Fig2_HTML.gif]
Fig. 4.2Major steps of the nodal analysis applied to a circuit with a voltage source






Solution: Steps 1–4 are indicated in Fig. 4.2b. Applying KCL to node 1 and then to node 2, one obtains a system of equations with two unknown voltages:[image: 
$$ \frac{V_1-10\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}+\frac{V_1-0\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}+\frac{V_1-{V}_2}{1\kern0.5em \mathrm{k}\Omega}=0 $$
]

 (4.4a)


[image: 
$$ \frac{V_2-10\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}+\frac{V_2-0\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}+\frac{V_2-{V}_1}{1\kern0.5em \mathrm{k}\Omega}=0 $$
]

 (4.4b)



In setting up the equations, it does not matter which sequence of nodes are selected. Simplifying Eq. (4.4) gives[image: 
$$ 3{V}_1-{V}_2=10\kern0.5em \mathrm{V} $$
]

 (4.5a)


[image: 
$$ 3{V}_2-{V}_1=10\kern0.5em \mathrm{V} $$
]

 (4.5b)



The solution is obtained by symmetry, i.e., [image: 
$$ {V}_1={V}_2=5\kern0.5em \mathrm{V} $$
]. The circuit current provided by the power supply is 10 mA. All other branch currents can then be found using Ohm’s law. An interesting feature of the circuit shown in Fig. 4.2a is that the marked 1-kΩ resistor can be considered as “dead,” since there is no current flowing through

 it (the voltage difference across this resistor is exactly zero). This resistor can be removed from the circuit without affecting the behavior of the circuit in terms of voltages and currents. It might appear at first sight that the circuits shown in Figs. 4.1 and 4.2 have a different network topology. In fact, they do not. To prove this, attempt to redraw the circuit in Fig. 4.2a; the result will coincide with the circuit in Fig. 4.1a.

Circuits with a Current Source
When a current source is present in a circuit, the solution becomes even simpler: one makes use of the existing current and substitutes its value into KCL equation written for a certain node. For example, KLC for node 1 in Fig. 4.3 includes the outflowing current of −1 mA. The current sign must be taken into account. The same idea may be applied to circuits with multiple current power supplies. When only the current sources are present, the ground may be connected to the incoming terminal of a current source.[image: A331468_1_En_4_Fig3_HTML.gif]
Fig. 4.3A circuit with a current source solved via nodal analysis





Exercise 4.1
Determine voltage across the current source in Fig. 4.3 using the nodal analysis.

Answer: 8.6 V.



4.1.3 
                Supernode

              
The nodal analysis requires a “good” eye to see possible simplifications when labeling the nodes. Let us examine a particular case and point out a few useful subtleties.1 Figure 4.4a depicts a network with two voltage sources. The property of the 5 V source is such that it is not fixed to a particular ground connection—we therefore call it a floating source. Setting up the node method becomes a little tricky, since we do not know the current through this source. However, a supernode may be formed as shown in Fig. 4.4b.[image: A331468_1_En_4_Fig4_HTML.gif]
Fig. 4.4A network with a floating voltage source between nodes 1 and 2





KCL may be applied to any closed contour around the supernode: the net current must still be zero in such a case. With reference to Fig. 4.4b, this yields[image: 
$$ \frac{V_1-10\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}+\frac{V_1-0\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}+\frac{V_2-0\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}+\frac{V_2-10\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}=0 $$
]

 (4.6a)


What is the second equation for two unknowns V
1 and V
2 (just the relation between the supernode voltages themselves)? Since [image: 
$$ {V}_2-{V}_1 $$
] is the voltage 
of the power source, one has[image: 
$$ {V}_2={V}_1+5\kern0.5em \mathrm{V} $$
]

 (4.6b)

Equations (4.6) can now be solved even without a calculator, eliminating one of the unknowns yields[image: 
$$ {V}_1=2.5\kern0.5em \mathrm{V},\kern1em {V}_2=7.5\kern0.5em \mathrm{V} $$
]

 (4.7)

The circuit is solved. All currents are found using the node voltages and Ohm’s law.
Example 4.3
Now, solve the circuit shown in Fig. 4.4a using the standard nodal analysis, without the supernode concept.

Solution: We have to specify an unknown current I

                    x
                   through the 5-V source, which flows, say, from left to right in Fig. 4.4a. It results
 in the following two nodal equations for the two nodes:[image: 
$$ \frac{V_1-10\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}+\frac{V_1-0\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}+{I}_x=0 $$
]

 (4.8a)


[image: 
$$ \frac{V_2-0\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}+\frac{V_2-0\kern0.5em \mathrm{V}}{1\kern0.5em \mathrm{k}\Omega}-{I}_x=0 $$
]

 (4.8b)



Now, we can add both equations and thereby eliminate I

                    x
                  . The result is exactly Eq. (4.6a) for the supernode. We must add one more condition to solve this equation. Equation (4.6b) is the only choice, i.e.,[image: 
$$ {V}_2={V}_1+5\kern0.5em \mathrm{V} $$
]

 (4.8c)



With this in mind, we arrive at
 the supernode concept again but in a more complicated way. This is why the supernode approach is a useful tool.


4.1.4 Mesh Analysis for Linear Circuits



The mesh analysis (or the mesh-current analysis) is using loops instead of nodes. Only loops that do not contain any other loops—the meshes—are employed. The meshes as elements of the networking topology were defined in Section 3.​1. Accordingly, instead of KCL, the mesh analysis makes use of KVL. Hence, we need to choose mesh currents for every mesh. Figure 4.5 depicts the concept for a circuit with three meshes. Note that this circuit is identical to the circuit from Fig. 4.1. A ground connection does not have to be introduced for the mesh method. Let us denote the mesh current for mesh 1 in Fig. 4.5 by I
1, the mesh current for mesh 2 by I
2, and the mesh current for mesh 3 by I
3.[image: A331468_1_En_4_Fig5_HTML.gif]
Fig. 4.5Circuit solution using the mesh analysis. Circuits in Figs. 4.5 and 4.1 coincide





KVL equations for the three meshes are based on Ohm’s law for this passive reference configuration. We do not need the fourth (large) loop encompassing the entire circuit. For resistances that are shared by two adjacent meshes, we combine either the difference or the sum of the two adjacent-mesh currents. The mesh equations become[image: 
$$ \mathrm{Mesh}\ 1:\kern0.24em 1\kern0.5em \mathrm{k}\Omega \cdot \left({I}_1-{I}_3\right)+1\kern0.5em \mathrm{k}\Omega \cdot {I}_1+1\kern0.5em \mathrm{k}\Omega \cdot \left({I}_1-{I}_2\right)=0 $$
]

 (4.9a)


[image: 
$$ \mathrm{Mesh}\ 2:\kern0.24em 3\kern0.5em \mathrm{k}\Omega \cdot \left({I}_2-{I}_3\right)+1\kern0.5em \mathrm{k}\Omega \cdot \left({I}_2-{I}_1\right)+1\kern0.5em \mathrm{k}\Omega \cdot {I}_2=0 $$
]

 (4.9b)


[image: 
$$ \mathrm{Mesh}\ 3:-5\mathrm{V}+1\kern0.5em \mathrm{k}\Omega \cdot \left({I}_3-{I}_1\right)+3\kern0.5em \mathrm{k}\Omega \cdot \left({I}_3-{I}_2\right)=0 $$
]

 (4.9c)

We have arrived at a system of three equations for the three unknown mesh currents I
1
, I
2
, and I
3. It is simplified to (after division by 1 kΩ and combining similar terms)[image: 
$$ \mathrm{Mesh}\ 1:+3{I}_1-{I}_2-{I}_3=0 $$
]

 (4.10a)


[image: 
$$ \mathrm{Mesh}\ 2:-{I}_1+5{I}_2-3{I}_3=0 $$
]

 (4.10b)


[image: 
$$ \mathrm{Mesh}\ 3:-{I}_1-3{I}_2+4{I}_3=5\kern0.5em \mathrm{m}\mathrm{A} $$
]

 (4.10c)

In contrast, the nodal analysis

 applied to the same circuit requires only two equations for two unknown node voltages; see Example 4.1. The final solution is indeed the same. Thus, the nodal analysis is more beneficial for small networks when a voltage source or sources are present. If, however, a current source were present in Fig. 4.5 instead of the voltage source, the nodal analysis would require three equations. At the same time, the mesh analysis would require only two equations, because I
3 is defined by the current source. Reasoning like this gives us clues which method is most suitable. When mixed power supplies like voltage and current sources are involved, there is usually no real difference between the two methods. The choice often

 becomes a matter of taste.
Exercise 4.2
Determine mesh currents for the circuit in Fig. 4.5.

Answer: [image: 
$$ {I}_1=-0.833\kern0.5em \mathrm{m}\mathrm{A} $$
], [image: 
$$ {I}_2=+0.833\kern0.5em \mathrm{m}\mathrm{A} $$
], [image: 
$$ {I}_3=+1.667\kern0.5em \mathrm{m}\mathrm{A} $$
].


4.1.5 
                Supermesh

              
Consider a circuit shown in Fig. 4.6. The straightforward mesh analysis should use KVL written for meshes 1 and 2. However, KVL cannot be formulated directly since we do not know the voltage across the current source. A solution is to combine meshes 1 and 2 into a supermesh and write KVL around its periphery. Mesh equations become[image: A331468_1_En_4_Fig6_HTML.gif]
Fig. 4.6Circuit solved with the supermesh method




[image: 
$$ \mathrm{Supermesh}:\kern0.24em 1\kern0.5em \mathrm{k}\Omega \cdot \left({I}_1-{I}_3\right)+1\kern0.5em \mathrm{k}\Omega \cdot {I}_1+1\kern0.5em \mathrm{k}\Omega \cdot {I}_2+3\kern0.5em \mathrm{k}\Omega \cdot \left({I}_2-{I}_3\right)=0 $$
]

 (4.11a)


[image: 
$$ \mathrm{Mesh}\ 3:-5\kern0.5em \mathrm{V}+1\kern0.5em \mathrm{k}\Omega \cdot \left({I}_3-{I}_1\right)+3\kern0.5em \mathrm{k}\Omega \cdot \left({I}_3-{I}_2\right)=0 $$
]

 (4.11b)

KCL for the central branch of the source:[image: 
$$ {I}_1-{I}_2=1\kern0.5em \mathrm{m}\mathrm{A} $$
]

 (4.11c)

After division by 1 kΩ and combining similar terms, the system of equations (4.11) is simplified to[image: 
$$ \begin{array}{l}+2{I}_1+4{I}_2-4{I}_3=0\\ {}-{I}_1-3{I}_2+4{I}_3=5\kern0.5em \mathrm{m}\mathrm{A}\\ {}+{I}_1-{I}_2=1\kern0.5em \mathrm{m}\mathrm{A}\end{array} $$
]

 (4.12)



Exercise 4.3
Determine mesh
 currents for the circuit in Fig. 4.6.

Answer: [image: 
$$ {I}_1=2.5\kern0.5em \mathrm{m}\mathrm{A} $$
], [image: 
$$ {I}_2=+2.5\kern0.5em \mathrm{m}\mathrm{A} $$
], [image: 
$$ {I}_3=3.75\kern0.5em \mathrm{m}\mathrm{A} $$
].

Example 4.4
Outline the solution approach for the circuit shown in Fig. 4.6 using the standard mesh analysis, without the supermesh concept.

Solution: The voltage across the current source is introduced as an extra unknown, V

                    x
                  . Then, we write three KVL equations for three meshes in Fig. 4.6, which will contain four unknowns: I
1, I
2, I
3, and V

                    x
                  . An extra equation is needed, which is KCL for the central branch: [image: 
$$ {I}_1-{I}_2=1\kern0.5em \mathrm{m}\mathrm{A} $$
]. Now, we need to solve a system of four simultaneous equations. This is considerably more work than in the previous case. This is why the supermesh approach is a useful tool
 for the mesh analysis.



4.2 Generator Theorems
4.2.1 Equivalence of Active One-Port Networks: Method of Short/Open Circuit
In Chapter 3, we considered passive linear networks with only resistances, and we have transformed them into equivalent circuits. Active linear networks, which include sources 

and resistances simultaneously, can undergo similar transformations. We know that two electric single-port networks are equivalent when their terminal υ-i characteristics are identical. For passive resistive networks studied in Chapter 3, we connected 
                  arbitrary source(s)
                  
                  
                 across the network terminals and checked the resulting υ-i characteristics. For active networks with sources and resistances, we can use the same method. Alternatively, we could connect arbitrary resistance(s) across

 the network terminals and check either the resulting voltage or current. A test resistance to be connected will be denoted here by R. If for two networks the voltages across the resistance R (or currents through it) coincide for all values of R, the networks are equivalents.
Method of Short/Open Circuit
In general, testing all possible values of resistance

 R connected to terminals a and b of a network in Fig. 4.7 is not necessary. Note that an active linear network may ultimately have only two elements: a source and a resistance. To uniquely determine the two elements (their values), only two equations are necessary. It is therefore customary to check only two (limiting) values of the test resistance:[image: A331468_1_En_4_Fig7_HTML.gif]
Fig. 4.7Method of short/open circuit for an active, one-port network




[image: 
$$ R\to \infty\ \mathrm{and}\ R=0 $$
]

 (4.13)

Conveniently, this corresponds to open- and short-circuit conditions. In the first case, the voltage between terminals a and b is the 
                    open-circuit network voltage
                    
                    
                   V
OC. In the second case, the current flowing from terminal a to terminal b is the 
                    short-circuit network current
                    
                    
                   I
SC. The pair V
OC, I
SC is key for the method of short/open circuit. This method states that two active linear circuits are equivalent when

 their V
OC and I
SC coincide. Network equivalency relates not only to the linear active networks with two components, but, as will be shown soon, it is valid for all active linear networks.


4.2.2 Application Example: Reading and Using Data for Solar Panels
The method of short/open circuit is also very useful for active nonlinear networks, including nonlinear sources. An example is a solar cell or a combination thereof, a solar panel. Every solar panel has the measured data for V
OC and I
SC listed on its backside. The short-circuit current is simultaneously the photocurrent of the solar cell. Table 4.1 collects this data for common crystalline silicon (or c-Si) solar panels. It is organized in such way that V
OC is given per cell in the panel and I
SC is given in terms of photocurrent density, J
P, per unit cell area. The cells in the panel are connected in series.Table 4.1Manufacturers’ specified parameters for different c-Si solar panels from five different manufacturers (1–230 W output power range). The cell area is either measured directly or extracted from the datasheet


	Solar panel
	Cells, N

	
V
OC/N, V
	Cell area A, cm2

	
[image: 
$$ {J}_{\mathrm{P}}={I}_{\mathrm{SC}}/A $$
]
A/cm2


	1-W BSPI-12 Power Up c-Si panel
	36
	0.59
	2.36
	0.030

	10-W BSP-1012 Power Up c-Si panel
	36
	0.59
	~22.0
	0.030

	65-W BSP-1012 Power Up c-Si panel
	36
	0.61
	121.7
	0.032

	230-W Sharp ND-U230C1 c-Si panel
	60
	0.62
	241.0
	0.034

	175-W BP Solar SX3175 c-Si panel
	72
	0.61
	156.25
	0.033

	6-W Global Solar GSE-6 c-Si panel
	44
	0.52
	16.6
	0.027

	200-W GE Energy GEPVp-200 c-Si panel
	54
	0.61
	249.3
	0.032

	Average
	NA
	0.593
	NA
	0.0311





Table 4.1 demonstrates that c-Si solar cells have approximately the same open-circuit voltage of 0.6 V per cell. The open-circuit voltage does not depend on the area of the cell. The short-circuit photocurrent density is also approximately the same for c-Si solar cells from different manufacturers. On average, it is given by [image: 
$$ {J}_{\mathrm{P}}=0.03\ \mathrm{A}/{\mathrm{cm}}^2 $$
]. These values correspond to an incident light intensity of 1000 W/m2 at [image: 
$$ T=25\;{}^{\circ}\mathrm{C} $$
]. The photocurrent density does not depend on the area of the cell. However, the total photocurrent does.
Exercise 4.4
A c-Si solar panel (or solar module) has the open-circuit voltage of 23.4 V? How many individual solar cells does it have?

Answer: Approximately 39.

Exercise 4.5
A c-Si solar panel is needed with the open-circuit voltage of 12 V and the short-circuit current of 3 A. Design the panel: find the number of cells to be connected in series and the required unit cell area.

Answer: 20 cells with the area of 100 cm2 (10 × 10 cm) each.


4.2.3 
                Source Transformation Theorem

              
The most fundamental transformation of active linear networks is the subject of the source transformation theorem. The source transformation theorem is a substitution of an independent voltage source V
T in series with resistance R
T for an independent current source I
N with resistance R
N and vice versa; see Fig. 4.8a, b. The meaning of indexes N and T will become apparent soon. The identical theorem applies to the dependent sources shown in Fig. 4.8c, d.[image: A331468_1_En_4_Fig8_HTML.gif]
Fig. 4.8Transformation of dependent and independent sources





Let us prove this theorem by establishing the circuit equivalence. The pair V
OC, I
SC is to be found for every network. For the two networks in Fig. 4.8a, b, we have[image: 
$$ {V}_{\mathrm{OC}}={V}_{\mathrm{T}},\;{I}_{\mathrm{SC}}=\frac{V_{\mathrm{T}}}{R_{\mathrm{T}}} $$
]

 (4.14a)


[image: 
$$ {V}_{\mathrm{OC}}={R}_{\mathrm{N}}{I}_{\mathrm{N}},\;{I}_{\mathrm{SC}}={I}_{\mathrm{N}} $$
]

 (4.14b)

Equation (4.14) has a unique solution in the form
 of the source transformation theorem[image: 
$$ {R}_{\mathrm{N}}={R}_{\mathrm{T}},\kern0.24em {I}_{\mathrm{N}}=\frac{V_{\mathrm{T}}}{R_{\mathrm{T}}} $$
]

 (4.15)

If Eq. (4.15) is satisfied, both networks in 4.8a, b have equal V
OC and I
SC. This ensures that their entire υ-i characteristics are also the same. To confirm this fact, an arbitrary resistance R could be connected across the port. The resulting voltages may be found directly, by solving the voltage divider and the current divider circuits, respectively. Both voltages are equal to [image: 
$$ {V}_{\mathrm{T}}R/\left(R+{R}_{\mathrm{T}}\right) $$
]. Thus, the source transformation theorem is proved.
Exercise 4.6
A network has a 10-V voltage source in series with a 20-Ω resistance. It is replaced by a current source I
N in parallel 
with resistance R
N. Find I
N and R
N.

Answer: [image: 
$$ {I}_{\mathrm{N}}=0.5\kern0.5em \mathrm{A} $$
], [image: 
$$ {R}_{\mathrm{N}}=20\kern0.5em \Omega $$
].

Exercise 4.7
A linear active circuit measures the open-circuit voltage of 5 V and the short-circuit current of 1 mA. Determine its equivalents in the form of a voltage source in series with a resistance and in the form of a current source in parallel with a resistance.

Answer: [image: 
$$ {V}_{\mathrm{T}}=5\kern0.5em \mathrm{V} $$
], [image: 
$$ {R}_{\mathrm{T}}=5\kern0.5em \mathrm{k}\Omega $$
] and [image: 
$$ {I}_{\mathrm{N}}=1\kern0.5em \mathrm{m}\mathrm{A} $$
], [image: 
$$ {R}_{\mathrm{N}}=5\kern0.5em \mathrm{k}\Omega $$
].

Often, the source transformation theorem allows us to simplify the circuit analysis through network manipulations.
Example 4.5
Find current I
1 in the circuit shown in Fig. 4.9a.[image: A331468_1_En_4_Fig9_HTML.gif]
Fig. 4.9Circuit modifications using the source transformation theorem






Solution: The circuit may be solved using the
 superposition theorem. Another way is to use the source transformation theorem. The corresponding steps are outlined in Fig. 4.9b, c. We use the source transformation three times and end up with the parallel combination of two current sources and three resistances. The three resistances in parallel are equivalent to the [image: 
$$ 0.75\ \mathrm{k}\Omega $$
] resistance; the voltage across every element in parallel is then[image: 
$$ 0.75\ \mathrm{k}\Omega \times 2\kern0.5em \mathrm{m}\mathrm{A}=1.5\kern0.5em \mathrm{V} $$
]. Therefore, [image: 
$$ {I}_1=0.75\kern0.5em \mathrm{m}\mathrm{A} $$
].

Example 4.6
The circuit in Fig. 4.10a includes a current-controlled voltage source with the strength of 4000i

                    x
                   [V]. Find current i

                    x
                   using the source transformation.[image: A331468_1_En_4_Fig10_HTML.gif]
Fig. 4.10Using source transformation for a circuit with dependent sources






Solution:
The corresponding circuit transformation is shown in Fig. 4.10b. The circuit with the current-controlled current source in Fig. 4.10b is solved using KCL and KVL. KCL written for the bottom node states that the current of [image: 
$$ 3\kern0.5em \mathrm{m}\mathrm{A}+3{i}_x $$
] flows through the rightmost 1-kΩ resistance (directed down). Since, by KVL, the voltages across both resistances must be equal, one has[image: 
$$ 3\kern0.15em \mathrm{m}\mathrm{A}+3{i}_x={i}_x\Rightarrow {i}_x=-1.5\kern0.15em \mathrm{m}\mathrm{A} $$
]

 (4.16)



Alternatively, one might convert the independent
 current source to the independent voltage source. However, this method would hide i

                    x
                  .


4.2.4 
Thévenin’s and Norton’s Theorems
: Proof Without Dependent Sources
The origin of Thévenin’s theorem is due to Léon Charles Thévenin, a French engineer (1857–1926). The theorem is illustrated in Fig. 4.11a, b and can be expressed in the following form:[image: A331468_1_En_4_Fig11_HTML.gif]
Fig. 4.11Thévenin’s and Norton’s theorems: replacing linear active circuits by its Thévenin and Norton equivalents




	1.Any linear network with independent voltage and current sources, dependent linear sources, and resistances, as shown in Fig. 4.11a, can be replaced by a simple equivalent network: a voltage source V
T in series with resistance R
T.


 

	2.The equivalent network in Fig. 4.11b is called the 
                          Thévenin equivalent
                          
                        .


 

	3.Voltage V
T is the open-circuit voltage V
OC of the original network.


 

	4.When dependent 
sources are not present, Thévenin resistance R
T is an equivalent resistance R
eq of the original network with all independent sources turned off (voltage sources are replaced by short circuits and current sources by open circuits).


 

	5.When both dependent and independent sources are present, the independent sources are not turned off. Resistance R
T is given by [image: 
$$ {R}_{\mathrm{T}}={V}_{\mathrm{OC}}/{I}_{\mathrm{SC}} $$
], where I
SC is the short-circuit current of the original network.


 

	6.When only the dependent sources are present, a current (or voltage) source is connected to the network terminals. Thévenin or equivalent resistance is given by [image: 
$$ {R}_{\mathrm{T}}=V/I $$
] where I is the source current and V is the voltage across the source. Thévenin voltage is, strictly speaking, not defined in this case.


 





The Norton’s theorem is dual to the Thévenin’s theorem. It was named in honor of Edward L. Norton (1898–1983), an engineer at Bell Labs in New Jersey.2 Norton’s theorem is illustrated in Fig. 4.11c, d. The equivalent circuit (Norton’s equivalent) is now the current source in
 parallel with the resistance as shown in Fig. 4.11d. Since the equivalence of both networks in Fig. 4.11b, d has already been established, the Norton’s theorem will follow from the Thévenin’s theorem and vice versa.
Proof of Thévenin’s Theorem for Active Networks Without Dependent Sources
The proof is based on circuit linearity. The υ-i characteristics of both networks will be established using a current source of strength I connected as shown in Fig. 4.12.[image: A331468_1_En_4_Fig12_HTML.gif]
Fig. 4.12Derivation of Thévenin’s theorem by establishing the υ-i characteristics





Since the entire circuit is still linear, the υ-i characteristic of the current source in Fig. 4.12a must have the form of a linear function,[image: 
$$ V= AI+B, $$
]

 (4.17)

where V is the voltage across the current source. A and B are some “constant” coefficients, which do not depend on I, but do depend on the network parameters. Our goal is to find A and B, respectively. First, we check the value [image: 
$$ I=0 $$
] when the external current source is turned off, i.e. replaced by an open circuit. From Eq. (4.17), voltage V equals B. On the other hand, it equals of V
OC the original network. Therefore,[image: 
$$ B={V}_{\mathrm{OC}} $$
]

 (4.18)

Now, let us turn off all the internal sources. The network becomes an equivalent resistance R
eq. The
 constant B (its open-circuit voltage) is zero. Equation (4.17) therefore yields [image: 
$$ V= AI $$
], for any value of I. On the other hand, for the current source I connected to the resistance R
eq, it must be [image: 
$$ V={R}_{\mathrm{eq}}I $$
]. Comparing the two expressions, we obtain[image: 
$$ A={R}_{\mathrm{eq}} $$
]

 (4.19)

The simpler network in Fig. 4.12b is also described by the υ-i characteristic in the form of Eq. (4.17). In this case, [image: 
$$ B={V}_{\mathrm{OC}}={V}_{\mathrm{T}} $$
], [image: 
$$ A={R}_{\mathrm{eq}}={R}_{\mathrm{T}} $$
]. We finally compare two υ-i characteristics,[image: 
$$  \begin{array}{c}V={R}_{\mathrm{eq}}I+{V}_{\mathrm{OC}}\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{linear}\ \mathrm{active}\ \mathrm{network}\ \mathrm{and}\\ {} V={R}_{\mathrm{T}}I+{V}_{\mathrm{T}}\kern0.5em \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{T} \mathrm{h} \acute{e}\mathrm{venin}\ \mathrm{equivalent},\end{array} $$
]

 (4.20)

and establish the Thévenin’s theorem. A test voltage source could be used in place of the current source in Fig. 4.12, with the same result obtained. The physical background of the Thévenin’s theorem is thus the fact that the terminal response of any linear network is a linear υ-i characteristic—a linear function with only two independent coefficients, A and B. A simpler network with exactly two independent
 parameters—V
T and R
T – is just right to model this response.

Equivalence of Arbitrary Linear Networks with Identical
 V
OC, I
SC

On one hand, linear active networks with only two elements (a source and a resistance) are equivalent when their V
OC, I
SC coincide. On the other hand, any active linear network is equivalent to a linear network with only two elements. Therefore, we conclude that two arbitrary linear networks are equivalent when their V
OC and I
SC coincide.
Exercise 4.8
Establish Thévenin equivalent 
circuits for the two networks shown in Fig. 4.13. In the first case, [image: 
$$ {R}_1={R}_2={R}_3=1\kern0.5em \mathrm{k}\Omega $$
] and [image: 
$$ {V}_{\mathrm{S}}=10\kern0.5em \mathrm{V} $$
]. The second network is a battery bank—a network of
 series-connected practical voltage sources—with [image: 
$$ {R}_{B1}={R}_{B2}={R}_{B3}=1\kern0.5em \Omega $$
], [image: 
$$ {V}_{B1}={V}_{B2}={V}_{B3}=6\kern0.5em \mathrm{V} $$
].[image: A331468_1_En_4_Fig13_HTML.gif]
Fig. 4.13Two active linear networks






Answer: [image: 
$$ {V}_{\mathrm{T}}=5\kern0.5em \mathrm{V} $$
], [image: 
$$ {R}_{\mathrm{T}}=0.5\kern0.5em \mathrm{k}\Omega $$
] and [image: 
$$ {V}_{\mathrm{T}}=18\kern0.5em \mathrm{V} $$
], [image: 
$$ {R}_{\mathrm{T}}=3\kern0.5em \Omega $$
], respectively.

Example 4.7
A two-terminal network shown in Fig. 4.14a is a 
two-bit R-2R ladder network used for digital-to-analog conversion. Express[image: A331468_1_En_4_Fig14_HTML.gif]
Fig. 4.14Two-bit and three-bit R-2R ladder networks




	1.Thévenin (or equivalent) voltage V
T



 

	2.Thévenin (or equivalent) resistance R
T



 





in terms of (digital) voltages D
0, D
1 and resistance R.

Solution: One way to solve this problem is to find V
T and R
T directly from the circuit in Fig. 4.14a. While the solution for R
T is straightforward, finding V
T requires more work. Yet another method is to apply
 the Thévenin equivalent to the leftmost section of the ladder network first. The result is the circuit shown in Fig. 4.14b. The final Thévenin equivalent has the form [image: 
$$ {R}_{\mathrm{T}}=R,\kern0.5em {V}_{\mathrm{T}}=\frac{D_1}{2}+\frac{D_0}{4} $$
].
This method may be applied to ladder networks with multiple sections.

Exercise 4.9
Repeat the previous example for the ladder shown in Fig. 4.14c.

Answer: [image: 
$$ {R}_{\mathrm{T}}=R,\kern0.5em {V}_{\mathrm{T}}=\frac{D_2}{2}+\frac{D_1}{4}+\frac{D_0}{8} $$
].

Example 4.8
Find Thévenin and Norton equivalent circuits for the network in Fig. 4.15a.[image: A331468_1_En_4_Fig15_HTML.gif]
Fig. 4.15A network with dependent sources to be converted to its equivalent forms






Solution: The network includes a voltage-controlled voltage source. Therefore, its analysis should be performed in a general form, by finding the pair V
OC, I
SC. The short-circuit current I
SC is found straightforwardly. Since the rightmost resistance is shorted out, [image: 
$$ {\upsilon}_x=0 $$
], and [image: 
$$ {I}_{\mathrm{SC}}=10\kern0.5em \mathrm{m}\mathrm{A} $$
]. To find the open-circuit voltage, which is equal to υ

                      x
                    , we use the source transformation theorem and arrive at the equivalent circuit in Fig. 4.15b. Next, we solve this circuit. By KVL, the voltage across the leftmost resistance is equal to [image: 
$$ 10\kern0.15em \mathrm{V}-4{\upsilon}_x $$
]. By 
KCL, the currents through both resistances must be the same. Since the resistances are equal, we obtain the equality [image: 
$$ 10\kern0.15em \mathrm{V}-4{\upsilon}_x={\upsilon}_x $$
] so that [image: 
$$ {\upsilon}_x=2\kern0.15em \mathrm{V} $$
]. The open-circuit voltage has the same value. Thévenin and Norton equivalents are[image: 
$$ {V}_{\mathrm{T}}={V}_{\mathrm{OC}}=2\ \, \mathrm{V},\ \, {R}_{\mathrm{T}}=\frac{V_{\mathrm{OC}}}{I_{\mathrm{SC}}}=200\ \, \Omega $$
]

 (4.21a)


[image: 
$$ {I}_{\mathrm{N}}={I}_{\mathrm{SC}}=10 \, \mathrm{m}\mathrm{A},\, {R}_{\mathrm{N}}=\frac{V_{\mathrm{OC}}}{I_{\mathrm{SC}}}=200 \, \Omega $$ 
]

 (4.21b)






4.2.5 Application Example: Generating Negative Equivalent Resistance
Consider a circuit shown in Fig. 4.16a. It includes only a dependent source: the voltage-controlled voltage source

; it does not have independent sources. Therefore, the circuit analysis has to be done by connecting a current (or voltage) source between terminals a and b as shown in Fig. 4.16b. Quantity of interest is Thévenin (or equivalent) resistance. KVL for the circuit in Fig. 4.16b gives [image: 
$$ -A{\upsilon}_x-RI+{\upsilon}_x=0 $$
]. Therefore, by definition,[image: A331468_1_En_4_Fig16_HTML.gif]
Fig. 4.16Thévenin equivalent circuits for basic networks with dependent sources




[image: 
$$ {R}_{\mathrm{T}}\equiv \frac{\upsilon_x}{I}=\frac{R}{1-A} $$
]

 (4.22)

As long as the open-circuit voltage gain of the dependent source

, A, is greater than one, Eq. (4.22) states the negative equivalent or Thévenin resistance. Physically, this means that the Thévenin equivalent
 circuit is delivering power instead of absorbing it.

Construction and Use

 of Negative Equivalent Resistance
A circuit block, which is equivalent to the negative resistance, may be constructed using the operational amplifier studied in the next chapter. This block may be used for different purposes including signal generation. The difference between the negative resistance and the power source is that the negative resistance may supply power of any type (DC, AC, or an arbitrary waveform), i.e., support the self-oscillating circuits. Figure 4.16c summarizes Thévenin resistances generated by the basic networks with the only dependent sources. The same method of analysis (simultaneous use of KCL and KVL) has 

been applied to every network. Although all of the networks may in principle generate negative equivalent resistance values, the realization of some particular circuits may be difficult.


4.2.6 Summary of Circuit Analysis Methods


In summary, a linear circuit can be solved using any of the methods studied in this and in the previous chapters:	Superposition theorem

	Nodal/mesh analysis

	Source transformation theorem

	Thévenin and Norton equivalent circuits





or a combination of those. While the nodal/mesh analysis is always applicable, other methods may even be more useful since they often provide physical insight into the circuit behavior.
Exercise 4.10
How could you find the open-circuit voltage V
ab in Fig. 4.14a?

                  Answer:
                  	A.When the superposition theorem is applied, shorting out D
0 gives [image: 
$$ {V}_{\mathrm{ab}}={D}_1/2 $$
]. Shorting out D
1 gives [image: 
$$ {V}_{\mathrm{ab}}={D}_0/4 $$
].


 

	B.When the nodal analysis is applied, we ground negative terminals of both sources and find the unknown voltage of the upper left
 node via the KCL. Only one equation needs to be solved. This is perhaps the simplest solution method.


 

	C.The source transformation theorem can hardly be applied.


 

	D.The method of Thévenin equivalent circuits has been described in Example 4.7.


 




                



4.3 Power Transfer
4.3.1 Maximum Power Transfer
The principle of maximum power transfer from a source to a load will now be quantified. This principle is also known 
as a maximum power theorem. The circuit under study is shown in Fig. 4.17. It involves an arbitrary linear source 
(a battery, generator, etc.), which is represented by its 
Thévenin equivalent, and a load, which is characterized by its equivalent resistance R
L. All other load parameters (dynamic, mechanical, and thermal) are implicitly included in the load’s resistance.[image: A331468_1_En_4_Fig17_HTML.gif]
Fig. 4.17A battery (or another practical voltage source) connected to a load





The key question you have to ask yourself is this: for a given ideal voltage source V
T and a given internal resistance R
T, can the electric power delivered to the load be maximized, and at which value of R
L does the maximum occur? The answer is found 
by solving the circuit in Fig. 4.17. First, the current is determined from the given voltage source V
T and the total resistance using the series equivalent,[image: 
$$ I=\frac{V_{\mathrm{T}}}{R_{\mathrm{T}}+{R}_{\mathrm{L}}} $$
]

 (4.23)

This allows us to compute the power at the load based on[image: 
$$ {P}_{\mathrm{L}}={R}_{\mathrm{L}}{I}^2=\frac{R_{\mathrm{L}}{V}_{\mathrm{T}}^2}{{\left({R}_{\mathrm{T}}+{R}_{\mathrm{L}}\right)}^2} $$
]

 (4.24)

When V
T and R
T are fixed, the magnitude of the load resistance determines the delivered power P
L. This power tends to zero when [image: 
$$ {R}_{\mathrm{L}}\to 0 $$
] or [image: 
$$ {R}_{\mathrm{L}}\to \infty $$
]; moreover, it is always positive. Therefore, according to Rolle’s theorem of calculus, the power must have a maximum at a certain value of R
L. For example, Fig. 4.18 shows a plot of the load power as a function of R
L when V
T=9 V and R
T=5 Ω.[image: A331468_1_En_4_Fig18_HTML.gif]
Fig. 4.18Load power as a function of the load resistance for fixed [image: 
$$ {V}_{\mathrm{T}}=9\kern0.5em \mathrm{V},\kern0.5em {R}_{\mathrm{T}}=5\kern0.5em \Omega $$
]






We will find the maximum of the load power analytically. We treat P
L in Eq. (4.24) as a function of R
L, i.e., [image: 
$$ {P}_{\mathrm{L}}={P}_{\mathrm{L}}\left({R}_{\mathrm{L}}\right) $$
]. It is known that a function has a 
maximum when its first derivative is zero. Consequently, differentiating P
Lwith respect to R
L gives[image: 
$$ \frac{d{P}_{\mathrm{L}}}{d{R}_{\mathrm{L}}}={V}_{\mathrm{T}}^2\left[\frac{1}{{\left({R}_{\mathrm{T}}+{R}_{\mathrm{L}}\right)}^2}-2\frac{R_{\mathrm{L}}}{{\left({R}_{\mathrm{T}}+{R}_{\mathrm{L}}\right)}^3}\right]={V}_{\mathrm{T}}^2\left[\frac{R_{\mathrm{T}}-{R}_{\mathrm{L}}}{{\left({R}_{\mathrm{T}}+{R}_{\mathrm{L}}\right)}^3}\right]=0 $$
]

 (4.25)

The necessary and sufficient condition for Eq. (4.25) to hold is[image: 
$$ {R}_{\mathrm{L}}={R}_{\mathrm{T}}\Rightarrow {P}_{\mathrm{L}}=0.25{V}_{\mathrm{T}}^2/{R}_{\mathrm{T}} $$
]

 (4.26)

This result is of significant practical value despite, or maybe thanks to, its simplicity. The maximum output power is achieved when the load resistance is equal to the internal resistance of the power source. In other words, the load is matched to the source; it is called the 
                  matched load
                  
                . In power engineering and in RF and microwave engineering, the problem of load matching is very important. However, it must be clearly stated that no more than 50 % of the total circuit power can be extracted even in the best case. This statement makes sense if we again examine the circuit in Fig. 4.17 with two equal resistances. The power is divided equally; half of the total power is spent to heat up the power source. The power maximum in Fig. 4.18 is relatively flat over the domain [image: 
$$ {R}_{\mathrm{L}}>{R}_{\mathrm{T}} $$
]; however, the power drops sharply when [image: 
$$ {R}_{\mathrm{L}}<{R}_{\mathrm{T}} $$
]. This last condition should be avoided if at all possible.
Example 4.9
An audio amplifier produces
 an rms output of 20 V. Amplifier’s output resistance is rated at 4 Ω. You are given four 4-Ω speakers. How should you connect the speakers for the maximum acoustic power—in series, parallel, or a single speaker only?

Solution: The rms voltage simply means the equivalent DC voltage that provides the same power to the load as the average power of the primary AC voltage. Hence, the sophisticated AC audio amplifier circuit is essentially replaced by its DC Thévenin equivalent with V
T = 20 V and R
T = 4 Ω. Similarly, the dynamic speakers are replaced by a DC load with R
L = 16 Ω if connected in series combination or with R
L = 1 Ω if connected in parallel or with R
L = 4 Ω if only a single speaker is employed. The output (audio) powers are as follows:[image: 
$$ {P}_{\mathrm{L}}=\frac{1\times 400}{{\left(4+1\right)}^2}=16\kern0.5em \mathrm{W}\kern0.49em \mathrm{four}\ \mathrm{speakers}\ \mathrm{in}\ \mathrm{parallel} $$
]

 (4.27a)


[image: 
$$ {P}_{\mathrm{L}}=\frac{4\times 400}{{\left(4+4\right)}^2}=25\kern0.5em \mathrm{W}\kern0.49em \mathrm{single}\ \mathrm{speaker} $$
]

 (4.27b)


[image: 
$$ {P}_{\mathrm{L}}=\frac{16\times 400}{{\left(4+16\right)}^2}=16\kern0.5em \mathrm{W}\kern0.49em \mathrm{four}\ \mathrm{speakers}\ \mathrm{in}\ \mathrm{series} $$
]

 (4.27c)



The best (loudest) choice would be
 surprisingly one single speaker.


4.3.2 
                Maximum Power Efficiency

              
A power analysis would be incomplete without discussing the efficiency of the power transfer. Consider an electric boat driven by a marine battery. The optimization of the battery-motor system for maximum power transfer implies that we will move fast but perhaps not very far. Another optimization is possible for maximum power efficiency. In this case, we could tolerate a smaller speed in order to travel a longer distance. The circuit to be analyzed is again shown in Fig. 4.17. The useful power delivered to the load is given by Eq. (4.24). The total power delivered by the source is[image: 
$$ P=\left({R}_{\mathrm{T}}+{R}_{\mathrm{L}}\right){I}^2=\frac{V_{\mathrm{T}}^2}{R_{\mathrm{T}}+{R}_{\mathrm{L}}} $$
]

 (4.28)

The power efficiency E is defined as the ratio of the useful power to the total power:[image: 
$$ E=\frac{P_{\mathrm{L}}}{P}=\left({R}_{\mathrm{T}}+{R}_{\mathrm{L}}\right){I}^2=\frac{R_{\mathrm{L}}}{R_{\mathrm{T}}+{R}_{\mathrm{L}}} $$
]

 (4.29)

Thus, the power efficiency is a simple function of the load resistance and the source resistance. It does not depend on the source voltage. The efficiency is zero when the load resistance is zero. It monotonically increases and approaches maximum (the maximum value is unity, which corresponds to an efficiency of 100 %) when the load resistance becomes large enough when compared to
 the source resistance. For example, Fig. 4.19 augments the load power graph from Fig. 4.18 with the corresponding efficiency curve.[image: A331468_1_En_4_Fig19_HTML.gif]
Fig. 4.19Load power and power efficiency for fixed [image: 
$$ {V}_{\mathrm{T}}=9V,\kern0.5em {R}_{\mathrm{T}}=5\;\Omega $$
]






Example 4.10
A battery with the stored energy of E
B = 0.1 MJ, V
T = 12 V, and R
T = 5 Ω delivers its entire energy during the time period [image: 
$$ 0\le t\le T $$
] and discharges with a constant output voltage/current. Two loads are used: R
L = 5 Ω and R
L = 50 Ω. Determine discharge time T and total energy delivered to the load in each case.

Solution: The discharge time, [image: 
$$ T={E}_{\mathrm{B}}/P $$
], is determined first where the total power P follows Eq. (4.28). Assuming constant battery discharge rate, we obtain[image: 
$$ \begin{array}{c}T\approx 1.9\kern0.5em \mathrm{h}\kern1em \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{the}\ 5\ \Omega\ \mathrm{load}\ \mathrm{and}\\ {} T\approx 10.6\kern0.5em \mathrm{h}\kern1em \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{the}\ 50\ \Omega\ \mathrm{load}\end{array} $$
]

 (4.30)



The total energy delivered to the load, [image: 
$$ E=T{P}_{\mathrm{L}} $$
], in each case is given by[image: 
$$ {E}_{5\;\Omega}=50\kern0.5em \mathrm{kJ}\kern1em \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{the}\ 5\ \Omega\ \mathrm{load}\kern0.45em \mathrm{and}{E}_{50\;\Omega}=91\kern0.5em \mathrm{kJ}\kern1em \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{the}\ 50\ \Omega\ \mathrm{load} $$
]

 (4.31)



Thus, the total energy extracted from the battery
 is nearly twice as high in the second case. However, it takes about five times longer to extract this energy.


4.3.3 Application Example: Power Radiated by a Transmitting Antenna


A transmitting antenna in a radio handset features a monopole antenna. It is connected to a source that has the same basic form as in Fig. 4.17 but with an AC generator instead of the DC source and with an internal (generator) resistance of 50 Ω. The antenna as a load also has a “radiation” resistance of 50 Ω. This resistance describes power loss in terms of electromagnetic radiation from the antenna. Thus, the antenna, if properly matched to the power source, will radiate 50 % of the total power as electromagnetic waves into space. Now a young electrical engineer decides to “modify” the handset by cutting the monopole antenna and leaving only one third of its length. In this case, the antenna’s radiation resistance is reduced to one ninth of its original value. How does this affect the radiated signal? To answer this question, we find the instantaneous load power, which also follows Eq. (4.24), i.e.,[image: 
$$ {P}_{\mathrm{L}}(t)=\frac{R_{\mathrm{L}}{V}_{\mathrm{T}}^2(t)}{{\left({R}_{\mathrm{T}}+{R}_{\mathrm{L}}\right)}^2} $$
]

 (4.32)

The ratio of the power levels for the two antenna configurations does not depend on time:[image: 
$$ \frac{P_{\mathrm{L}-\mathrm{short}}}{P_{\mathrm{L}-\mathrm{original}}}=\frac{50/9}{{\left(50+50/9\right)}^2}/\frac{50}{{\left(50+50\right)}^2}=\frac{0.0018}{0.0050}=0.36 $$
]

 (4.33)

Thus, for the shorter antenna, we will only 
achieve about 36 % of the radiated power compared to the original handset. In practice, this estimate becomes even lower due to the appearance of a very significant antenna capacitance.

4.3.4 Application Example: Maximum Power Extraction from Solar Panel


Every solar panel has the measured data for V
OC and I
SC listed on its backside. For linear circuits, [image: 
$$ {V}_{\mathrm{T}}={V}_{\mathrm{OC}},\kern1em {R}_{\mathrm{T}}={V}_{\mathrm{OC}}/{I}_{\mathrm{SC}} $$
]. If the solar panel were a linear circuit, the maximum extracted power would be exactly equal to 0.25V
OC
I
CS according to Eq. (4.26). Fortunately, this is not the case. The maximum extracted power is significantly greater than this value. However, it is still less than the “best” possible value of V
OC
I
CS. To quantify the maximum power output, every solar panel has another set of measured data, V
MP and I
MP, also listed on its backside. V
MP stands for maximum power load voltage and I
MP stands for the maximum power load current. The maximum extracted power is the product V
MP
I
MP, which is always less than V
OC
I
CS. The ratio of these two powers,[image: 
$$ F=\frac{V_{\mathrm{MP}}{I}_{\mathrm{MP}}}{V_{\mathrm{OC}}{I}_{\mathrm{SC}}}<1, $$
]

 (4.34)

is known as the fill factor of the solar panel (or solar module). We will derive the theoretical value of the fill factor in the next section. Table 4.2 lists some experimental data for crystalline (c-Si) solar panels. The experimental fill factor not only accounts for the nonlinear physics of the cell, but it also includes some resistive losses in an individual cell and in the entire solar module. Equation (4.34) approximates the fill factor of a cell too.Table 4.2Manufacturer-provided circuit parameters for twelve different c-Si solar panels from five different manufacturers (1-W to 230-W output power range)


	Solar panel
	Cells (series)
	
V
MP/
V
OC

	
I
MP/I
SC

	
                            F
                          
	$/Watt (2010)

	1-W BSPI-12 Power Up c-Si panel
	36
	0.81
	0.86
	0.70
	24.00

	10-W BSP-1012 Power Up c-Si panel
	36
	0.81
	0.88
	0.71
	8.80

	65-W BSP-1012 Power Up c-Si panel
	36
	0.80
	0.94
	0.75
	6.35

	80-W Sharp NE-80EJEA c-Si panel
	36
	0.80
	0.88
	0.70
	4.29

	176-W Sharp ND-176U1Y c-Si panel
	48
	0.80
	0.91
	0.73
	4.68

	230-W Sharp ND-U230C1 c-Si panel
	60
	0.82
	0.92
	0.75
	3.51

	5-W BP Solar SX-305M c-Si panel
	36
	0.80
	0.90
	0.72
	15.00

	20-W BP Solar SX-320M c-Si panel
	36
	0.80
	0.92
	0.74
	8.30

	175-W BP Solar SX3175N c-Si panel
	72
	0.83
	0.92
	0.76
	4.19

	65-W Kyocera KC65T c-Si panel
	36
	0.80
	0.94
	0.75
	5.22

	165-W SolarWorld SW230 c-Si panel
	72
	0.80
	0.90
	0.72
	4.72

	230-W SolarWorld SW230 c-Si panel
	60
	0.80
	0.92
	0.74
	3.18

	Average
	 	0.806
	0.908
	0.73
	NA





Exercise 4.11
A REC SCM220 220 Watt c-Si solar panel has the following readings on the back: the short-circuit current of 8.20 A, the open-circuit voltage V
OC of 36.0 V, the maximum power voltage of 28.7 V, and the maximum power current of 7.70 A. Estimate the load resistance required for the maximum power
 transfer to the load.

Answer: 3.72 Ω.

Table 4.2 demonstrates that different c-Si solar cells have approximately the same values of V
MP/V
OC, I
MP/I
SC, and the same fill factor. Using the photocurrent density estimate and the open-circuit cell voltage estimate given at the beginning of this section, we may assume approximate generic values for c-Si solar cells at normal irradiation conditions:[image: 
$$ \begin{array}{c}{V}_{\mathrm{MP}}=0.8{V}_{\mathrm{OC}},\kern1.25em {I}_{\mathrm{MP}}=0.9{I}_{\mathrm{SC}},\kern1em F=0.72,\kern1em {V}_{\mathrm{OC}}=0.6\kern0.5em \mathrm{V}\left(\mathrm{cell}\right),\\ {} {J}_{\mathrm{P}}=0.03\kern0.5em \mathrm{A}/{\mathrm{cm}}^2\end{array} $$
]

 (4.35)

These values are not exact; they are meant as a convenient tool for engineering estimates. Equation (4.35) may be used to address an important task: identify the proper panel configuration and its approximate size in order to provide enough power for a given load.
Example 4.11
A 3-Ω load (for instance, a hot plate in a camp) is rated at 23 V and is to be powered by a solar panel. A c-Si photovoltaic sheet material is your material of choice. Outline parameters of a solar module that is capable of powering the load and estimate the overall module size.

Solution: First, we need to find the required load current. It is given by [image: 
$$ I=23\kern0.5em \mathrm{V}/3\kern0.5em \Omega =7.67\kern0.5em \mathrm{A} $$
]. Thus, the maximum power
 parameters of the module must be equal to [image: 
$$ {V}_{\mathrm{MP}}=23\kern0.5em \mathrm{V} $$
] and [image: 
$$ {I}_{\mathrm{MP}}=6.67\kern0.5em \mathrm{A} $$
]. Next, we the find the measurable parameters, V
OC, I
SC of the module. According to Eq. (4.35),[image: 
$$ {V}_{\mathrm{OC}}=\frac{V_{\mathrm{MP}}}{0.8}=28.75\;\mathrm{V},\kern1.25em {I}_{\mathrm{SC}}=\frac{I_{\mathrm{MP}}}{0.9}=8.52\;\mathrm{A} $$
]

 (4.36)



Then we find the number of cells N and the area of an individual cell A, assuming a series combination of individual cells:[image: 
$$ N=\frac{V_{\mathrm{OC}}}{0.6\mathrm{V}}=\mathrm{round}\;(47.9)=48,\kern1em A=\frac{I_{\mathrm{SC}}}{0.03\;\mathrm{A}/{\mathrm{cm}}^2}=284\;{\mathrm{cm}}^2 $$
]

 (4.37)



The overall module (panel) size for closely spaced cells is then 1.36 m2.

Example 4.12
Compare the theoretical design of Example 4.11 with a real solar module having nearly the same output power (176 W) and nearly the same maximum power voltage (23 V).

Solution: We choose a Sharp ND-176U1Y, 176-watt solar panel from Table 4.2 for comparison. Its maximum power voltage is 23.4 V. Table 4.3 lists the parameters of both panels. The designs agree with the number of cells and with the size of the unit cell. The overall panel size for closely spaced cells is also quite similar: 1.36 m2 versus 1.32 m2.
Table 4.3Parameters of a theoretically designed 176 W solar panel versus the corresponding 176 W hardware prototype


	Example 4.11 (theory estimates)
	176-watt Sharp ND-176U1Y panel

	
                              [image: 
$$ {V}_{\mathrm{MP}}=23.0\;\mathrm{V},\;{P}_{\mathrm{L}}=176\;\mathrm{W} $$
]
                            
	
                              [image: 
$$ {V}_{\mathrm{MP}}=23.4\;\mathrm{V},{P}_{\mathrm{L}}=176\;\mathrm{W} $$
]
                            

	No. of cells: 48
	No. of cells: 48

	Unit cell area: 284 cm2

	Unit cell area: 275 cm2







Exercise 4.12
A 9.6 W DC motor in an
 autonomous robot is rated at 17 V and is to be powered by a solar panel. A c-Si photovoltaic sheet material is your material of choice. Outline parameters of a solar module that is capable of powering the load and estimate the overall module size.

Answer: The module should include 36 cells in series, with the area of [image: 
$$ A=21.0\;{\mathrm{cm}}^2 $$
] each. The overall module (panel) size 
for closely spaced cells is then 0.0756 m2.



4.4 Analysis of Nonlinear Circuits: Generic Solar Cell
4.4.1 Analysis of 

Nonlinear Circuits

: Load Line
 Method
Consider a nonlinear passive circuit element which possesses a particular υ-i characteristic. It is shown in Fig. 4.20 by a rectangle. Examples of such elements were given in Chapter 2. Element’s polarity (direction of current inflow for passive reference configuration) is labeled by a plus sign. Figure 4.20 presents four basic nonlinear circuits (networks) encountered in practice: a linear active network given by its 
Thévenin equivalent and connected to a nonlinear load, a practical nonlinear voltage source connected to a linear load, a linear active network in the form of the Norton equivalent connected to a nonlinear load, and a practical nonlinear current source connected to a linear load. Interchanging the place of the nonlinear element and resistance if necessary and using the source transformation theorem, we can state that all four circuits in Fig. 4.20 are topologically equivalent. Therefore, only one of them will be studied, for example, the network shown in Fig. 4.20a. The υ-i characteristic of the practical voltage source between terminals a and b in Fig. 4.20a is given, according to KVL, by[image: A331468_1_En_4_Fig20_HTML.gif]
Fig. 4.20Four basic nonlinear circuits




[image: 
$$ I=\frac{V_{\mathrm{T}}-V}{R_{\mathrm{T}}} $$
]

 (4.38)


This linear function given by Eq. (4.38) is known as the load line. It is plotted in Fig. 4.21 and intersects the voltage axis at [image: 
$$ V={V}_{\mathrm{T}} $$
] and the current axis at [image: 
$$ I={V}_{\mathrm{T}}/{R}_{\mathrm{T}} $$
]. The υ-i characteristic of a nonlinear element is plotted in the same figure. Both υ-i characteristics must give the identical values of voltage and current. Thus, the intersection of the load line with the υ-i characteristic is the circuit solution. 
                  
                This is the essence of the load line method. Though primarily graphical, the load line method provides a great
 insight into the problem under study.[image: A331468_1_En_4_Fig21_HTML.gif]
Fig. 4.21Load line method for a nonlinear circuit





Example 4.13
The circuit in Fig. 4.20a is characterized by [image: 
$$ {V}_{\mathrm{T}}=3\kern0.5em \mathrm{V},\kern0.5em {R}_{\mathrm{T}}=1\kern0.5em \mathrm{k}\Omega $$
]. The υ-i characteristic of the nonlinear element (the ideal Shockley diode) is [image: 
$$ I=1\times {10}^{-9}\left[ \exp \left(\frac{V}{0.0257\kern0.5em \mathrm{V}}\right)-1\right]\kern0.5em \left[\mathrm{A}\right] $$
]. The goal is to 

solve the circuit using the load line method.

Solution: Figure 4.22 plots two dependencies: the load line of Eq. (4.38) and the υ-i characteristic of the ideal diode specified by the present example. Using visual inspection, the intersection is evaluated as [image: 
$$ I\approx 2.6\kern0.5em \mathrm{m}\mathrm{A} $$
], [image: 
$$ V\approx 0.4\kern0.5em \mathrm{V} $$
]. This is the solution for the circuit current and for the load voltage, respectively. The solution accuracy improves when the scale of the plot is adjusted. In particular, we
 usually do not have to extend the voltage axis all the way from 0 V to the supply voltage; only a small
 interval may be

 sufficient.[image: A331468_1_En_4_Fig22_HTML.gif]
Fig. 4.22Load line method applied to a nonlinear circuit with an ideal diode







4.4.2 Iterative Method for Nonlinear Circuit

s



Assume that the nonlinear circuit element is characterized by an explicit function [image: 
$$ I=I(V) $$
]. Then, according to Eq. (4.38), the load line method is equivalent to the graphical solution of the transcendental algebraic equation in the form[image: 
$$ \frac{V_{\mathrm{T}}-V}{R_{\mathrm{T}}}=I(V)\Rightarrow V={V}_{\mathrm{T}}-{R}_{\mathrm{T}}I(V) $$
]

 (4.39)


An alternative is to solve this equation iteratively, starting with some initial guess [image: 
$$ V={V}^0 $$
]. The iterative method for nonlinear circuits may be formulated as follows. Two iterative schemes (explicit and implicit) may formally be used. The first (explicit) scheme follows from the second Eq. (4.39), and the second (implicit) scheme from the first Eq. (4.39):[image: 
$$ {V}^{n+1}={V}_{\mathrm{T}}-{R}_{\mathrm{T}}I\left({V}^n\right),\kern1em n=0,\kern0.5em 1,\kern0.5em 2,\kern0.5em \dots \mathrm{or}\ {V}^{n+1}={I}^{-1}\left(\frac{V_{\mathrm{T}}-{V}^n}{R_{\mathrm{T}}}\right),\kern1em n=0,\kern0.5em 1,\kern0.5em 2,\kern0.5em \dots $$
]

 (4.40)

where [image: 
$$ {I}^{-1} $$
] denotes the inverse function of I(V). The first (explicit) scheme is simpler when I(V) is given. However, only the second scheme is recommended in practice since the first scheme may not converge for typical nonlinear circuit elements, which model semiconductor devices.
Example 4.14
Solve the previous example 
using the iterative solution of the transcendental circuit equation.

Solution: We find the inverse υ-i characteristic of the nonlinear element first. It is[image: 
$$ V=0.0257\times \ln \left[\frac{I}{1\times {10}^{-9}\kern0.5em \mathrm{A}}+1\right]\kern0.5em \left[\mathrm{V}\right],\kern1em I=\frac{3\kern0.5em \mathrm{V}-V}{1\kern0.5em \mathrm{k}\Omega} $$
]

 (4.41)



The iterative scheme has the 

form (the second method of Eq. (4.40) is used)[image: 
$$ {V}^{n+1}=0.0257\times \ln \left[\frac{3\kern0.5em \mathrm{V}-{V}^n}{1\times {10}^{-6}\kern0.5em \mathrm{V}}+1\right],\kern1em n=0,\kern0.5em 1,\kern0.5em 2,\kern0.5em \dots $$
]

 (4.42)



with the initial guess [image: 
$$ {V}^0=0\kern0.5em \mathrm{V} $$
]. It converges very fast; the corresponding iterations are [image: 
$$ {V}^0=0\kern0.5em \mathrm{V} $$
], [image: 
$$ {V}^1=0.3833\kern0.5em \mathrm{V} $$
], [image: 
$$ {V}^2=0.3798\kern0.5em \mathrm{V} $$
], and [image: 
$$ {V}^3=0.3798\kern0.5em \mathrm{V} $$
].
Therefore, only a few iterations are usually sufficient. The final result is [image: 
$$ I=2.62\kern0.5em \mathrm{m}\mathrm{A} $$
], [image: 
$$ V=0.380\kern0.5em \mathrm{V} $$
], which improves the solution obtained with the load line method—see the

 previous example. The initial guess of the iterative solution may vary widely,
                    
                   but it should not exceed the source voltage.


4.4.3 
Application

 Example: Solving the Circuit for a Generic Solar Cell
Figure 4.23a shows a simplified physical composition of the solar cell in the form of a pn-junction (a junction of two semiconductor materials), which essentially forms a semiconductor diode.[image: A331468_1_En_4_Fig23_HTML.gif]
Fig. 4.23(a) Simplified physical composition of the solar cell in the form of a pn-junction—a semiconductor diode. (b) Simplified (lossless single-diode) equivalent circuit





Free charge carries generated by sunlight are separated by a built-in voltage or potential φ(x) within the diode, which is the cause of an equivalent current source—the photocurrent of the solar cell I
P. The photocurrent mostly flows through the load. At the same time, a certain portion of it, I
D, could still flow through the pn-junction diode itself as a forward diode current. Therefore, the load current I in Fig. 4.23 is less than the photocurrent. Figure 4.23b shows a simplified equivalent circuit of a solar cell. This circuit coincides with the nonlinear circuit in Fig. 4.20d and can be solved in the same way once the υ-i characteristic of the equivalent diode is known. It is often given by[image: 
$$ {I}_{\mathrm{D}}={I}_{\mathrm{S}}\left[ \exp \left(\frac{V}{n{V}_{\mathrm{T}}}\right)-1\right],\kern1em {V}_{\mathrm{T}}=0.0257\kern0.5em \mathrm{V} $$
]

 (4.43)

with an effective ideality factor n and an effective saturation current I

                  S
                 of the corresponding diode. The characteristic equation of the cell is the KCL in Fig. 4.23b:[image: 
$$ I={I}_{\mathrm{P}}-{I}_{\mathrm{S}}\left[ \exp \left(\frac{V}{n{V}_{\mathrm{T}}}\right)-1\right] $$
]

 (4.44)

Figure 4.24 plots the I(V) dependence of the characteristic equation (4.44). The horizontal straight asymptote is the photocurrent I
P or the short-circuit current I
SC. The vertical straight asymptote is the open-circuit voltage V
OC, [image: 
$$ {V}_{\mathrm{OC}}\approx {V}_{\mathrm{T}}n \ln \left({I}_{\mathrm{P}}/{I}_{\mathrm{S}}\right) $$
] when [image: 
$$ {I}_{\mathrm{P}}/{I}_{\mathrm{S}}>>1 $$
]. The area of the shaded

 rectangle is the load power; it is clearly maximized at a certain operating point Q, where [image: 
$$ V={V}_{\mathrm{MP}} $$
], [image: 
$$ I={I}_{\mathrm{MP}} $$
].[image: A331468_1_En_4_Fig24_HTML.gif]
Fig. 4.24Finding operating point Q of the solar cell for the maximum power transfer





Finding maximum power parameters is a straightforward but lengthy procedure. The load power is found as a function of V; its derivative must be equal to zero to maximize the load power. This is
 essentially the maximum power theorem for nonlinear circuits. The final expressions are[image: 
$$ {V}_{\mathrm{MP}}={V}_{\mathrm{OC}}-n{V}_{\mathrm{T}} \ln \left(1+\frac{V_{\mathrm{OC}}}{n{V}_{\mathrm{T}}}\right),\kern0.24em {I}_{\mathrm{MP}}={I}_{\mathrm{SC}}\left(1-\frac{n{V}_{\mathrm{T}}}{V_{\mathrm{MP}}}\right)\approx 90\;\%\ \mathrm{of}\ {I}_{\mathrm{SC}} $$
]

 (4.45)


For [image: 
$$ n=1.75 $$
] and [image: 
$$ {V}_{\mathrm{OC}}=0.6\;\mathrm{V} $$
], [image: 
$$ {V}_{\mathrm{MP}}\approx 80\;\%\ \mathrm{of}\ {V}_{\mathrm{OC}} $$
], [image: 
$$ {I}_{\mathrm{MP}}\approx 90\;\%\ \mathrm{of}\ {I}_{\mathrm{SC}} $$
] which is close to the data from

 Table 4.2 given that the fill factors for the cell and the panel are approximately the same. Note that the load resistance is finally found as [image: 
$$ {R}_{\mathrm{L}}={V}_{\mathrm{MP}}/{I}_{\mathrm{MP}} $$
].


Summary

                	
                            Circuit analysis techniques: nodal/mesh analysis
                          

	Nodal analysis
	
                            [image: A331468_1_En_4_Figbh_HTML.gif]
                          
	Based on KCL and Ohm’s law:

                            [image: 
$$ \frac{V_1-{V}_{\mathrm{S}}}{R_1}+\frac{V_1-0\kern0.5em \mathrm{V}}{R_3}+\frac{V_1-{V}_2}{R_2}=0 $$
]
                          

                            [image: 
$$ \frac{V_2-{V}_{\mathrm{S}}}{R_5}+\frac{V_2-0\kern0.5em \mathrm{V}}{R_4}+\frac{V_2-{V}_1}{R_2}=0 $$
]
                          

	Supernode
	
                            [image: A331468_1_En_4_Figbi_HTML.gif]
                          
	KCL for the supernode:

                            [image: 
$$ \begin{array}{l}\frac{V_1-{V}_{\mathrm{S}}}{R_1}+\frac{V_1}{R_3}\\ {}+\frac{V_2}{R_4}+\frac{V_2-{V}_{\mathrm{S}}}{R_5}=0\end{array} $$
]
                          
plus KVL: [image: 
$$ {V}_2={V}_1+{V}_0 $$
]


	Mesh analysis
	
                            [image: A331468_1_En_4_Figbj_HTML.gif]
                          
	Based on KVL and Ohm’s law:

                            [image: 
$$ {R}_1\left({I}_1-{I}_3\right)+{R}_3{I}_1+{R}_5\left({I}_1-{I}_2\right)=0 $$
]
                          

                            [image: 
$$ {R}_2\left({I}_2-{I}_3\right)+{R}_5\left({I}_2-{I}_1\right)+{R}_4{I}_2=0 $$
]
                            [image: 
$$ -{V}_S+{R}_1\left({I}_3-{I}_1\right)+{R}_2\left({I}_3-{I}_2\right)=0 $$
]
                          
for meshes 1, 2, and 3

	Supermesh
	
                            [image: A331468_1_En_4_Figbk_HTML.gif]
                          
	KVL for the supermesh:

                            [image: 
$$ \begin{array}{l}{R}_1\left({I}_1-{I}_3\right)+{R}_3{I}_1+{R}_4{I}_2+\\ {}{R}_2\left({I}_2-{I}_3\right)=0\end{array} $$
]
                          
plus Eq. for mesh 3 and the KCL:
[image: 
$$ {I}_1-{I}_2={I}_{\mathrm{S}} $$
]


	
                            Circuit analysis techniques: source transformation theorem
                          

	Source transformation theorem
	
                            [image: A331468_1_En_4_Figbl_HTML.gif]
                          
	Substitution of voltage source V
T in series with resistance R
T for current source I
N with resistance R
N:
[image: 
$$ {R}_{\mathrm{N}}={R}_{\mathrm{T}} $$
] , [image: 
$$ {I}_{\mathrm{N}}=\frac{V_{\mathrm{T}}}{R_{\mathrm{T}}} $$
]


[image: 
$$ {V}_{\mathrm{OC}}={V}_{\mathrm{T}} $$
] , [image: 
$$ {I}_{\mathrm{SC}}=\frac{V_{\mathrm{T}}}{R_{\mathrm{T}}} $$
]


	
                            Circuit analysis techniques: Thévenin/Norton theorems/equivalents
                          

	Thévenin and Norton theorems
	
                            [image: A331468_1_En_4_Figbm_HTML.gif]
                          
	Any linear network with independent sources, dependent linear sources, and resistances can be replaced by a simple equivalent network in the form:
 i. a voltage source V
T in series with resistance R
T;
ii. a current source I
N in parallel with resistance R
N


	
                            Summary of major circuit analysis methods (linear circuits)
                          
– Superposition theorem (previous chapter);
– Nodal/mesh analysis (this chapter);
– Source transformation theorem (this chapter);
– Thévenin and Norton equivalent circuits (this chapter)

	
                            Linear networks: measurements/equivalence
                          

	Method of short/open circuit
	
                            [image: A331468_1_En_4_Figbn_HTML.gif]
                          
	– Two arbitrary linear networks are equivalent when their V
OC and I
SC coincide.
– This method is also used for nonlinear circuits

	
                            Linear networks: maximum power theorem
                          

	Maximum power theorem (load matching)
	
                            [image: A331468_1_En_4_Figbo_HTML.gif]
                          
	– Power delivered to the load is maximized when [image: 
$$ {R}_{\mathrm{L}}={R}_{\mathrm{T}} $$
];
– For high-frequency circuits it also means no “voltage/current wave reflection” from the load

	
                            Linear networks: maximum power efficiency
                          

	Power efficiency is maximized when the load resistance is very high (load bridging)
	
                            [image: A331468_1_En_4_Figbp_HTML.gif]
                          
	Power transfer efficiency:

                            [image: 
$$ E=\frac{P_{\mathrm{L}}}{P}=\frac{R_{\mathrm{L}}}{R_{\mathrm{T}}+{R}_{\mathrm{L}}} $$
]
                          

	
                            Linear networks: dependent sources and negative equivalent resistance
                          

	Equivalent resistances of basic linear networks with dependent sources
	
                            [image: A331468_1_En_4_Figbq_HTML.gif]
                          
	Case a): [image: 
$$ {R}_{\mathrm{T}}=\frac{R}{1-A} $$
]

Case b): [image: 
$$ {R}_{\mathrm{T}}=R-Z $$
]

Case c): [image: 
$$ {R}_{\mathrm{T}}=\frac{R}{1-GR} $$
]

Case d): [image: 
$$ {R}_{\mathrm{T}}=R\left(1-A\right) $$
]

Equivalent resistance may become negative

	
                            Nonlinear networks: four basic topologies
                          

	Basic nonlinear circuits
	
                            [image: A331468_1_En_4_Figbr_HTML.gif]
                          
	– Linear voltage source connected to a nonlinear load (diode circuit);
– Linear current source connected to a nonlinear load;
– Nonlinear voltage source connected to a linear load;
– Nonlinear current source connected to a linear load (photovoltaic circuit)

	
                            Nonlinear networks: circuit analysis via load line method
                          

	Load line method
	
                            [image: A331468_1_En_4_Figbs_HTML.gif]
                          
	Solution: The load line (υ-i characteristic of the linear source, which is [image: 
$$ I=\frac{V_{\mathrm{T}}-V}{R_{\mathrm{T}}} $$
]) intersects the υ-i characteristic of the nonlinear load, I
(V)

	
                            Nonlinear networks: iterative solution
                          

	Finding the intersection point iteratively
	For the circuit in the previous row:

                            [image: 
$$ I(V)=\frac{V_{\mathrm{T}}-V}{R_{\mathrm{T}}}\Rightarrow {V}^{n+1}={I}^{-1}\left(\frac{V_{\mathrm{T}}-{V}^n}{R_{\mathrm{T}}}\right),\kern0em n=0,\kern0.5em 1,\kern0.5em \dots $$
]
                          
	Implicit scheme:
initial guess V
0may be 0 V

	
                            Nonlinear networks: finding resistive load for maximum power extraction
                          

	Finding maximum load power for the equivalent model of a solar cell
	
                            [image: A331468_1_En_4_Figbt_HTML.gif]
                          
	Load power is computed as [image: 
$$ {P}_{\mathrm{L}}=V\times I(V) $$
]. Then, it is maximized, which is equivalent to solving equation:

                            [image: 
$$ \frac{d{P}_{\mathrm{L}}}{dV}(V)=0 $$
]
                          
for unknown voltage V





                	
                            Some useful facts about power extraction from solar cells/modules
                          

	Typical values of open-circuit voltage V
OC and photocurrent density J
P of a c-Si cell
	Crystalline silicon or c-Si cell:

[image: 
$$ {V}_{\mathrm{OC}}\approx 0.6\kern0.5em \mathrm{V} $$
]; [image: 
$$ {J}_{\mathrm{P}}\approx 0.03\ \mathrm{A}/{\mathrm{cm}}^2 $$
]


	– Open-circuit module voltage is N times the cell voltage, [image: 
$$ N\cdot {V}_{\mathrm{OC}} $$
]

– Short-circuit module current I
SC is the cell short-circuit current [image: 
$$ {I}_{\mathrm{SC}}=A{J}_{\mathrm{P}} $$
] where A is cell area
	
                            [image: A331468_1_En_4_Figbu_HTML.gif]
                          

	Typical values of maximum-power parameters and fill factor for c-Si cells/modules; the load resistance must be [image: 
$$ {R}_{\mathrm{L}}={V}_{\mathrm{MP}}/{I}_{\mathrm{MP}} $$
]

	
[image: 
$$ {\left.F\right|}_{\mathrm{module}}=\frac{V_{\mathrm{MP}}{I}_{\mathrm{MP}}}{V_{\mathrm{OC}}{I}_{\mathrm{SC}}}\approx {\left.F\right|}_{\mathrm{cell}} $$
] (for low-loss
modules)

                            [image: 
$$ {V}_{\mathrm{MP}}\approx 0.8\kern0.1em {V}_{\mathrm{OC}},\kern0.75em {I}_{\mathrm{MP}}\approx 0.9{I}_{\mathrm{SC}},\kern0.5em F\approx 0.72 $$
]
                          

	Lossless single-diode model of a solar cell:

[image: 
$$ {I}_{\mathrm{P}}=A{J}_{\mathrm{P}} $$
]—photocurrent (A);

A—cell area (cm2);

V
T—thermal volt. (0.0257 V);

n—ideality factor ([image: 
$$ 1<n<2 $$
]);

[image: 
$$ {I}_{\mathrm{S}}\approx {I}_{\mathrm{P}} \exp \left(-\frac{V_{\mathrm{OC}}}{n{V}_{\mathrm{T}}}\right) $$
] (A)
	
                            [image: A331468_1_En_4_Figbv_HTML.gif]
                          

                            [image: 
$$ I={I}_{\mathrm{P}}-{I}_{\mathrm{S}}\left[ \exp \left(\frac{V}{n{V}_{\mathrm{T}}}\right)-1\right] $$
]
                          

	Maximum-power analytical solution for lossless single-diode model of a solar cell
	
[image: 
$$ {V}_{\mathrm{MP}}\approx {V}_{\mathrm{OC}}-n{V}_{\mathrm{T}} \ln \left(1+\frac{V_{\mathrm{OC}}}{n{V}_{\mathrm{T}}}\right) $$
], [image: 
$$ {I}_{\mathrm{MP}}={I}_{\mathrm{SC}}\left(1-\frac{n{V}_{\mathrm{T}}}{V_{\mathrm{MP}}}\right) $$
]





              

Problems
4.1 Nodal/Mesh Analysis

                  4.1.2
                  
                    Nodal analysis
                    
                  
                
Problem 4.1

                    	A.Using the nodal analysis, determine the supply current I


 for the circuit shown in the figure.


 

	B.Show the current 

directions for every resistance in the circuit.[image: A331468_1_En_4_Fige_HTML.gif]





 




                  

Problem 4.2

                    	A.Using the nodal analysis, determine the total circuit current I


 for the circuit shown in the following figure.


 

	B.Show the current directions for every resistance in the circuit.[image: A331468_1_En_4_Figf_HTML.gif]





 




                  

Problem 4.3
Introduce the ground termination, write the nodal equations, and solve for the node voltages for the circuit shown in the following figure. Calculate the current I shown in the figure.[image: A331468_1_En_4_Figg_HTML.gif]




Problem 4.4

Introduce
 the ground termination, write the nodal equations, and solve for the node voltages for the circuit shown in the figure. Calculate the current through the resistance R

                      x
                     and show its direction in the figure.[image: A331468_1_En_4_Figh_HTML.gif]




Problem 4.5
For the circuit shown in the following figure,	1.Determine current i

                              x
                             through resistance R

                              x
                            .


 

	2.Show its direction on the figure.[image: A331468_1_En_4_Figi_HTML.gif]





 






Problem 4.6
For the circuit shown in the following figure,	A.Write nodal equations and solve for the node voltages
. Then, find the value of i
1.


 

	B.Could this problem be solved in another (simpler) way?[image: A331468_1_En_4_Figj_HTML.gif]





 






Problem 4.7

                    	A.Write the nodal equations and solve for the node voltages for the circuit shown in the following figure. Then, find the value of i
1.


 

	B.Use MATLAB or other software of your choice for the solution of the system of linear equations; attach the code to the solution.[image: A331468_1_En_4_Figk_HTML.gif]





 




                  

Problem 4.8
The following figure 
                      
                    shows the DC equivalent of a residential three-wire system, which operates at 240 V rms (do not confuse it with the three-phase system, which carries a higher current). Two 120-V rms power supplies are connected as one dual-polarity power supply, i.e., in series. The 10-Ω load and the 20-Ω load are those driven by the two-wire (and one ground) standard wall plug with 120 V rms—the lights, a TV, etc. The 6-Ω load consumes more power and it is driven with 240 V rms using a separate bigger wall plug (+/− and neutral (not shown))—the stove, washer, dryer, etc. Determine the power delivered to each load. Hint: Use a calculator or
 software of your choice for the solution of the system of linear equations (MATLAB is recommended).[image: A331468_1_En_4_Figl_HTML.gif]





                  4.1.3
                  
                    Supernode
                    
                  
                
Problem 4.9
Introduce the ground terminal, write the nodal equations, and solve for the node voltages for the circuit shown in the figure. Calculate the current I shown in the figure.[image: A331468_1_En_4_Figm_HTML.gif]




Problem 4.10
Introduce the ground terminal, write the nodal equations, and solve for the node voltages for the circuit shown in the figure. Calculate the current I shown in the figure.[image: A331468_1_En_4_Fign_HTML.gif]





                  4.1.4 Mesh analysis
                

                  4.1.5
                  
                    Supermesh
                    
                  
                
Problem 4.11
For the circuit shown in the figure, determine current i
1
	A.Using the mesh analysis


 

	B.Using the nodal analysis


 





Which method is simpler?[image: A331468_1_En_4_Figo_HTML.gif]




Problem 4.12
For the circuit shown in the figure, determine voltage V

                      x
                    
	A.Using the mesh analysis


 

	B.Using the nodal analysis


 





Which method appears to be simpler?[image: A331468_1_En_4_Figp_HTML.gif]




Problem 4.13
For the circuit shown in the figure	A.Determine the circuit current I using either the nodal analysis or the mesh analysis.


 

	B.Explain your choice
 for the selected method.[image: A331468_1_En_4_Figq_HTML.gif]





 






Problem 4.14
For the circuit shown in the figure, determine its equivalent resistance between terminals a and b. Hint: Connect a power source and use a mesh-current analysis or the nodal analysis.[image: A331468_1_En_4_Figr_HTML.gif]




Problem 4.15
For the circuit shown in the figure, determine the current i
1 of the 20-V voltage source.[image: A331468_1_En_4_Figs_HTML.gif]




Problem 4.16
Determine voltage
 across the current source for the circuit shown in the figure that follows using the mesh analysis and the supermesh concept.[image: A331468_1_En_4_Figt_HTML.gif]





4.2 Generator Theorems

                  4.2.1 Equivalence of
                  
                    Active One-Port Networks
                    
                  
                  . Method of Short/Open Circuit
                
Problem 4.17
A linear active network with two unknown circuit elements measures [image: 
$$ {V}_{\mathrm{OC}}=5\kern0.5em \mathrm{V} $$
], [image: 
$$ {I}_{\mathrm{SC}}=10\kern0.5em \mathrm{m}\mathrm{A} $$
].	A.Determine parameters V
T, R
T and I
N, R
N of two equivalent networks shown in the figures below.


 

	B.Could you identify which exactly network is it?[image: A331468_1_En_4_Figu_HTML.gif]





 






Problem 4.18
Given two networks shown in the figure that follows:	A.Determine their open-circuit voltage V
OC and short-circuit current I
SC for each of them.


 

	B.Are the 
networks equivalent?[image: A331468_1_En_4_Figv_HTML.gif]





 







                  4.2.2 Application example: reading and using data for
                  
                    solar panels
                    
                  
                
Problem 4.19
The area of a single cell in the 10-W BSP-1012 Power Up c-Si panel is ~22 cm2. Predict:	A.Open-circuit voltage of the solar cell, V
OC



 

	B.Photocurrent density of the cell, J
P



 

	C.Short-circuit current of the cell, I
SC



 





Compare the above value with the value [image: 
$$ {I}_{\mathrm{SC}}=0.66\kern0.5em \mathrm{A} $$
] reported by the manufacturer.

Problem 4.20
The area of a 
single cell in the 175-W BP Solar SX3175 c-Si panel is 156.25 cm2. Predict:	A.Open-circuit voltage of the solar cell, V
OC



 

	B.Photocurrent density of the cell, J
P



 

	C.Short-circuit current of the cell, I
SC



 





Compare the above value with the value [image: 
$$ {I}_{\mathrm{SC}}=5.1\;\mathrm{A} $$
] reported by the manufacturer. What value should the photocurrent density have in order to exactly match the short-circuit current reported by the manufacturer?

Problem 4.21
Are the solar cells in
 the solar module connected in parallel or in series? Why is one particular connection preferred?

Problem 4.22
You are given three c-Si solar cells shown in the figure that follows, each of area A/3. Draw wire connections for a cell bank, which has the performance equivalent to that of a large solar cell with the area A.[image: A331468_1_En_4_Figw_HTML.gif]




Problem 4.23
Individual solar cells in the figure to the previous problem are to be connected into a standard solar module. Draw the corresponding wire connections.

Problem 4.24
A 10-W BSP1012 PV c-Si module shown in the figure has 36 unit cells connected in series, the short-circuit current of 0.66 A, and 
the open-circuit voltage of 21.3 V.[image: A331468_1_En_4_Figx_HTML.gif]


	A.Estimate the area of the single solar cell using the common photocurrent density value for c-Si solar cells.


 

	B.Estimate the open-circuit voltage for the single cell.


 






Problem 4.25
A 20-W BSP2012 PV c-Si module shown in the figure has 36 unit cells connected in series, the short-circuit current of 1.30 A, and the open-circuit voltage of 21.7 V.[image: A331468_1_En_4_Figy_HTML.gif]


	A.Estimate the area of the single solar cell using the common photocurrent density value for c-Si solar cells.


 

	B.Estimate the open-circuit voltage for the single cell.


 






Problem 4.26
A c-Si solar

 module is needed with the open-circuit voltage of 10 V and the short-circuit current of 1.0 A. A number of individual solar cells are available; each has the area of 34 cm2, the open-circuit voltage of 0.5 V, and the short-circuit current of 1.0 A. Identify the proper module configuration (number of cells) and estimate the module’s approximate size.

Problem 4.27
A c-Si solar module is needed with the open-circuit voltage of 12 V and the short-circuit current of 3.0 A. A number of individual solar cells are available; each has the area of 34 cm2, the open-circuit voltage of 0.5 V, and the short-circuit 
current of 1.0 A. Identify the proper module configuration (number of cells) and estimate the module’s approximate size.


                  4.2.3
                  
                    Source Transformation Theorem
                    
                  
                
Problem 4.28
Find voltage V in the circuit shown in the figure that follows using source transformation.[image: A331468_1_En_4_Figz_HTML.gif]




Problem 4.29
The circuit shown in the following figure includes a current-controlled voltage source. Find current i

                      x
                     using source transformation.[image: A331468_1_En_4_Figaa_HTML.gif]




Problem 4.30
The circuit shown in the following figure includes a voltage-controlled voltage source. Find voltage υ

                      x
                     using source transformation.[image: A331468_1_En_4_Figac_HTML.gif]




Problem 4.31
Repeat the previous problem for the circuit shown in the figure
 below.[image: A331468_1_En_4_Figab_HTML.gif]





                  4.2.4
                  
                    Thévenin’s and Norton’s Theorems
                    
                  
                
Problem 4.32
Find:	1.Thévenin (or equivalent) voltage


 

	2.Thévenin (or equivalent) resistance


 





for the two-terminal network shown in the figure that follows. Assume three 9-V sources separated by resistances of 1 Ω each.[image: A331468_1_En_4_Figad_HTML.gif]




Problem 4.33
Find:	1.Thévenin (or equivalent) voltage


 

	2.
Thévenin 
(or equivalent) resistance


 





for the two-terminal network shown in the figure that follows (three practical voltage sources in series) when[image: 
$$ {R}_{B1}=2\Omega, {R}_{B2}=3\kern0.5em \Omega, {R}_{B3}=0.5\Omega, {V}_{B1}=3\kern0.5em \mathrm{V},\kern0.5em {V}_{B2}=6\kern0.5em \mathrm{V},{V}_{B3}=3\kern0.5em \mathrm{V}. $$
]



[image: A331468_1_En_4_Figae_HTML.gif]




Problem 4.34
Find:	1.Thévenin (or equivalent) voltage;


 

	2.Thévenin (or equivalent) resistance


 





for the two-terminal networks shown in
 the following figures.[image: A331468_1_En_4_Figaf_HTML.gif]




Problem 4.35
Find:	1.Thévenin voltage


 

	2.Thévenin resistance


 





for the two-terminal network shown in the following figure when

                    [image: 
$$ {R}_1={R}_2={R}_3=1\mathrm{k}\Omega,  {V}_{S1}={V}_{S2}=10\kern0.5em \mathrm{V}. $$
]
                    [image: A331468_1_En_4_Figag_HTML.gif]


                  

Problem 4.36
A two-terminal network shown in the figure is a starting section of a ladder network used for digital-to-analog conversion. Express:	1.Thévenin (or
 equivalent) voltage


 

	2.Thévenin (or equivalent) resistance


 





in terms of (digital) voltage D
0 and resistance R.[image: A331468_1_En_4_Figah_HTML.gif]




Problem 4.37
A two-terminal circuit network in the figure is a two-bit ladder network used for digital-to-analog conversion. Express parameters of the corresponding Norton equivalent circuit in terms of (digital) voltages D
0, D
1 and resistance R.[image: A331468_1_En_4_Figai_HTML.gif]




Problem 4.38
A two-terminal network shown in the figure is a four-bit ladder network used for digital-to-analog conversion. Express:	1.Thévenin (
                              
                            or equivalent) voltage


 

	2.Thévenin (or equivalent) resistance


 





in terms of four (digital) voltages D
0, D
1, D
2, D
3 and resistance R.[image: A331468_1_En_4_Figaj_HTML.gif]




Problem 4.39
Determine the Norton equivalent for the circuit shown in the figure. Express your result in terms of I and R.[image: A331468_1_En_4_Figak_HTML.gif]




Problem 4.40
Each of three identical batteries is characterized by its 
Thévenin equivalent circuit with [image: 
$$ {V}_{\mathrm{T}}=9\ \mathrm{V} $$
] and [image: 
$$ {R}_{\mathrm{T}}=1\ \Omega $$
]. The batteries are connected in parallel. The parallel battery bank is again replaced by its Thévenin equivalent circuit with unknown V
TBank and R
TBank. Find those parameters (show units). Hint: This is a tricky problem; double-check the connecting nodes when drawing the circuit diagram.

Problem 4.41
Establish Thévenin and Norton 
equivalent circuits for the network shown in the following figure.[image: A331468_1_En_4_Figal_HTML.gif]





                  4.2.5 Application Example: Generating
                  
                    Negative Equivalent Resistance
                    
                  
                
Problem 4.42
Establish the equivalent (Thévenin) resistance for the network shown in the following figure. Carefully examine the sign of the equivalent resistance.[image: A331468_1_En_4_Figam_HTML.gif]




Problem 4.43
Derive the equivalent (Thévenin) resistance 
for the networks shown in the figure that follows (confirm Fig. 4.16 of the main text).[image: A331468_1_En_4_Figan_HTML.gif]





                  4.2.6 Summary of
                  
                    Circuit Analysis Methods
                    
                  
                
Problem 4.44
Solve the circuits shown in the following figure—determine current I (show units). You can use any of the methods studied in class:
	Superposition theorem

	Nodal/mesh analysis

	Source transformation theorem

	Thévenin and Norton equivalent circuits





Attempt to apply two different methods of your choice to every circuit.[image: A331468_1_En_4_Figao_HTML.gif]




Problem 4.45
Solve the circuits
 shown in the following figure—determine unknown voltage V or current I (show units). You can use any of the methods studied in class:
	Superposition theorem

	Nodal/mesh analysis

	Source transformation theorem

	Thévenin and Norton 
equivalent circuits[image: A331468_1_En_4_Figap_HTML.gif]










4.3 Power Transfer

                  4.3.1 Maximum Power Transfer
                

                  4.3.2
                  
                    Maximum Power Efficiency
                    
                  
                
Problem 4.46
A deep-cycle marine battery is modeled by an ideal voltage source of 24 V in series with a 1-Ω resistance shown in the figure that follows. The battery is connected to a load, and the load’s resistance, R
L, needs to be optimized. Power delivered to the load has a maximum at exactly one value of the load resistance. Find that value and prove your answer graphically using software of your choice (MATLAB is recommended).[image: A331468_1_En_4_Figaq_HTML.gif]




Problem 4.47
A power supply for an electric heater can be modeled by an ideal voltage source of unknown voltage in series with the internal resistance [image: 
$$ {R}_{\mathrm{T}}=4\kern0.5em \Omega $$
].	A.Can you still determine when the power delivered to a load (a heating spiral with resistance R
L) is maximized?


 

	B.Does the answer depend on the source voltage?


 






Problem 4.48
For the circuit shown
 in the figure, when is the power delivered to the load maximized?[image: A331468_1_En_4_Figar_HTML.gif]




Problem 4.49
A battery can be modeled by an ideal voltage source V
T in series with a resistance R
T.[image: A331468_1_En_4_Figas_HTML.gif]


	1.For what value of the load resistance R
L is the power delivered to the load maximized?


 

	2.What percentage of the power taken from the voltage source V
T is actually delivered to a load (assuming R
L is chosen to maximize the power delivered)?


 

	3.What percentage of the power taken from the voltage source V
T is delivered to a load when [image: 
$$ {R}_{\mathrm{L}}=0.1{R}_{\mathrm{T}} $$
]?


 






Problem 4.50
A micro-power
 photovoltaic device can be modeled under certain conditions as an ideal current power source and a resistance in parallel—see the figure that follows. At which value of the load resistance, R
L, is the power delivered to the load maximized?[image: A331468_1_En_4_Figat_HTML.gif]




Problem 4.51
A low-cost polycrystalline Power Up BSP1-12 1-W solar panel lists ratings for the output voltage and current, which give maximum load power: V
L max = 17.28 V, I
L max = 0.06 A. Based on these cell specifications, which value of the equivalent resistance should the load to be connected to the solar cell have for maximum power output?

Problem 4.52
The solar panel from
 the previous problem generates a significant voltage of ~13 V in a classroom without direct sunlight, but the resulting current is small, ~1 mA.	A.Now, what value of the equivalent resistance should the load have for maximum power output?


 

	B.How is the maximum load power different, compared to the previous problem?


 






Problem 4.53
The heating element of an electric cooktop has two resistive elements, [image: 
$$ {R}_1=50\ \Omega $$
] and [image: 
$$ {R}_2=100\ \Omega $$
], that can be operated separately, in series, or in parallel from a certain voltage source that has a Thévenin (rms) voltage of 120 V and internal (Thévenin) resistance of 30 Ω. For the highest power output, how should the elements be operated? Select and explain one of the 
following: 50 Ω only, 100 Ω only, series, or parallel.

Problem 4.54
You are given two speakers (rated at 4 Ω and 16 Ω, respectively) and an audio amplifier with the output resistance(impedance) equal to 8 Ω.[image: A331468_1_En_4_Figau_HTML.gif]


	A.Sketch the circuit diagram that gives the maximum acoustic output with the available components. Explain your choice.


 

	B.Sketch the 
circuit diagram for the maximum power efficiency. Explain your choice.


 







                  4.3.4 Application Example:
                  
                    Maximum Power Extraction
                    
                    
                  
                  from Solar Panel
                
Problem 4.55

                    	A.Describe in your own words the meaning of the fill factor of a solar cell (and solar module).


 

	B.A 200-W GE Energy GEPVp-200 c-Si panel has the following reading on its back: [image: 
$$ {V}_{\mathrm{OC}}=32.9\kern0.5em \mathrm{V} $$
], [image: 
$$ {I}_{\mathrm{SC}}=8.1\kern0.5em \mathrm{A} $$
], [image: 
$$ {V}_{\mathrm{MP}}=26.3\kern0.5em \mathrm{V} $$
], and [image: 
$$ {I}_{\mathrm{MP}}=7.6\kern0.5em \mathrm{A} $$
]. What is the module fill factor? What is approximately the fill factor of the individual cell?


 




                  

Problem 4.56
Using two Web links

                    http://​powerupco.​com/​site/​
                  

http://​www.​affordable-solar.​com/​,
identify the solar panel that has the greatest fill factor to date.

Problem 4.57
A 10-W BSP1012 PV c-Si module shown in the figure has 36 unit cells connected in series, the short-circuit current of 0.66 A,
                      
                      
                     and the open-circuit voltage of 21.3 V. The maximum power parameters are [image: 
$$ {V}_{\mathrm{MP}}=17.3\kern0.5em \mathrm{V} $$
] and [image: 
$$ {I}_{\mathrm{MP}}=0.58\kern0.5em \mathrm{A} $$
].[image: A331468_1_En_4_Figav_HTML.gif]


	A.Estimate the area of the single solar cell using the common photocurrent density value for c-Si solar cells (show units).


 

	B.Estimate the open-circuit voltage for the single cell.


 

	C.Estimate the fill factor of the module and of the cell.


 

	D.Estimate the value of the equivalent load resistance R required for the maximum power transfer from the module to the load.


 






Problem 4.58
A 20-W BSP2012 PV c-Si module shown in the figure has 36 unit cells connected in series, the short-circuit current of 1.30 A, the open-circuit voltage of 21.7 V, the maximum power voltage V
MP of 17.3 V, and the 

maximum power current I
MP of 1.20 A. Repeat the four tasks of the previous problem.[image: A331468_1_En_4_Figaw_HTML.gif]




Problem 4.59
A REC SCM220 220-watt 20V c-Si solar panel shown in the figure has the following readings on the back: the short-circuit current I
SC of ~8.20 A, the open-circuit voltage V
OC of ~36.0 V, the maximum power voltage V
MP of ~28.7 V, and the maximum power current I
MP of ~7.70 A. Repeat the four tasks of problem 4.57.[image: A331468_1_En_4_Figax_HTML.gif]




Problem 4.60
A 14.4-W load (a DC motor) rated at 12 V is to be driven by a solar panel. A c-Si photovoltaic sheet material is given, which has the open-circuit voltage of 0.6 V and the photocurrent density of [image: 
$$ {J}_{\mathrm{P}}=0.03\ \mathrm{A}/{\mathrm{cm}}^2 $$
].[image: A331468_1_En_4_Figay_HTML.gif]



Outline parameters of a solar module (number 

of cells, cell area, and overall area) which is capable of driving the motor at the above conditions and estimate the overall panel size.

Problem 4.61
A custom 100-W load (a DC motor) rated at 24 V is to be driven by a solar panel. A c-Si photovoltaic sheet material is given, which has the open-circuit voltage of 0.6 V and the photocurrent density of [image: 
$$ {J}_{\mathrm{P}}=0.03\ \mathrm{A}/{\mathrm{cm}}^2 $$
]. Outline parameters of a solar module (number of cells, cell area, and overall area) which is capable of driving the motor at the above conditions and estimate the overall panel size.

Problem 4.62
You are given: the generic fill factor [image: 
$$ F=0.72 $$
] for a c-Si solar panels, the generic open-circuit voltage [image: 
$$ {V}_{\mathrm{OC}}=0.6\mathrm{V} $$
] of a c-Si cell, and the generic photocurrent

 density [image: 
$$ {J}_{\mathrm{P}}=0.03\kern0.5em \mathrm{W}/{\mathrm{cm}}^2 $$
].	A.Derive an analytical formula that expresses the total area A
module in cm2 of a solar panel, which is needed to power a load, in terms of the required load power P
L.


 

	B.Test your result by applying it to the previous problem.


 






Problem 4.63
You are given a low-cost low-power flexible (with the thickness of 0.2 mm) a-Si laminate from PowerFilm, Inc., with the following parameters: a fill factor of [image: 
$$ F=0.61 $$
], a single-cell open-circuit voltage of [image: 
$$ {V}_{\mathrm{OC}}=0.82\kern0.5em \mathrm{V} $$
], and a photocurrent density of [image: 
$$ {J}_{\mathrm{P}}=0.0081\kern0.5em \mathrm{A}/{\mathrm{cm}}^2 $$
].	A.Derive an analytical formula that expresses the total module area A
module in cm2, which is needed to power a load, in terms of the required load power P
L.


 

	B.Compare your

 solution with the solution to the previous problem.[image: A331468_1_En_4_Figaz_HTML.gif]





 







4.4 Analysis of Nonlinear Circuits. Generic Solar Cell

                  4.4.1 Analysis of Nonlinear Circuits: Load Line Method
                

                  4.4.2 Iterative Solution
                  
                    for
                    
                    
                  
                  Nonlinear Circuits
                
Problem 4.64
A circuit shown in the following figure contains a nonlinear passive element. Using the load line method, approximately determine the voltage across the element and the current through it for the two types of the υ-i characteristic, respectively.[image: A331468_1_En_4_Figba_HTML.gif]




Problem 4.65
A circuit shown in the following figure contains a nonlinear passive element as part of a current source. Using the load line method, approximately determine the voltage across the element and the current through it for the υ-i characteristic of the nonlinear element shown in the same figure.[image: A331468_1_En_4_Figbb_HTML.gif]




Problem 4.66
Repeat the previous problem for the circuit shown in the following figure.[image: A331468_1_En_4_Figbc_HTML.gif]




Problem 4.67
A circuit shown in the following figure contains a nonlinear passive element. The υ-i characteristic of the nonlinear element (the ideal Shockley diode) is

                    [image: 
$$ I=5\times {10}^{-10}\left[ \exp \left(\frac{V}{0.025\kern0.5em \mathrm{V}}\right)-1\right]\kern0.5em \left[\mathrm{A}\right]. $$
]



                  
Using the iterative solution, determine the voltage across the element and the current through it.[image: A331468_1_En_4_Figbd_HTML.gif]




Problem 4.68
Repeat the previous

 problem for the circuit shown in the following figure. The υ-i characteristic of the nonlinear element is the same.[image: A331468_1_En_4_Figbe_HTML.gif]





                  4.4.3
                  
                    Application
                    
                    
                  
                  Example: Solving the Circuit for a Generic Solar Cell
                
Problem 4.69
The I(V) dependence for a resistive load in a circuit is shown in the figure that follows.[image: A331468_1_En_4_Figbf_HTML.gif]


	A.At which value of the load voltage is the power delivered to the load maximized?


 

	B.What is the related value of load resistance?


 






Problem 4.70
A hypothetic thermoelectric engine developed by the US Navy has the I
(V) dependence shown in the figure that follows.[image: A331468_1_En_4_Figbg_HTML.gif]


	1.At which value of the load voltage is the power, P
L, delivered to the load maximized?


 

	2.What is the related value of load resistance for maximum power transfer?


 






Problem 4.71
Estimate the values of V
MP and I
MP versus V
OC and I
SC for a set of 

generic c-Si solar cells. Every cell has [image: 
$$ {V}_{\mathrm{T}}=0.026\;\mathrm{V} $$
] (room temperature of 25 °C) and [image: 
$$ {V}_{\mathrm{OC}}=0.6\kern0.5em \mathrm{V} $$
]. The ideality factor n in Eqs. (4.43)–(4.45) is allowed to vary over its entire range as shown in the table that follows.

	
                            n
                          
	
V
MP/V
OC,%
	
I
MP/I
OC,%
	
                            F
                          

	1.00
	 	 	 
	1.25
	 	 	 
	1.50
	 	 	 
	1.75
	 	 	 
	2.00
	 	 	 





Footnotes
1Subtleties are often euphemism for “playing” around with the circuit, like redrawing the wire connections and rearranging the circuit elements. This is done to find simpler solution approaches.

 

2The first publication that discusses this equivalent circuit concept is actually due to Hans F. Mayer (1895–1980) who made the discovery in 1926 while a researcher at Siemens Company.
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Overview

              Prerequisites:
	Knowledge of major circuit elements (dependent sources) and theirυ-i characteristics (Chapter2)

	Knowledge of basic circuit laws (Chapter3) and Thévenin equivalent (Chapter4)




              Objectives of Section 5.1:
	Learn and apply the model of an operational amplifier including principle of operation, open-circuit gain, power rails, and input and output resistances

	Correlate the physical operational amplifier with the amplifier circuit model

	Establish the ideal-amplifier model

	Learn the first practical amplifier circuit—the comparator




              Objectives of Section 5.2:
	Understand and apply the concept of negative feedback to an operational amplifier circuit

	Construct three canonic amplifier circuit configurations with negative feedback: the non-inverting amplifier, the inverting amplifier, and the voltage follower

	Understand the current flow in the amplifier circuit including the power transfer from the power supply to the load




              Objectives of Section 5.3:
	Choose the proper resistance values for the feedback loop and learn how to cascade multiple amplifier stages

	Learn about input/output resistances of the amplifier circuit and establish load bridging and load matching conditions important in practice

	Find ways to eliminate the DC imperfections of the amplifier that become very apparent at high amplifier gains

	Use an amplifier IC with a single voltage supply (a battery)




              Objectives of Section 5.4:
	Obtain the initial exposure to differential signals and difference amplifiers

	Build an instrumentation amplifier

	Connect an instrumentation amplifier to a resistive sensor




              Objectives of Section 5.5:
	Learn a general feedback system including closed-loop gain and error signal

	Apply the general feedback theory to voltage amplifier circuits

	Construct current, transresistance, and transconductance amplifiers with the negative feedback




              Application Examples:
	Operational amplifier comparator

	Instrumentation amplifier in laboratory




            

5.1 Amplifier Operation and Circuit Models
The low-power amplifier
integrated circuit (IC)
 is arguably the most widely employed discrete circuit component encountered in common electronic audio, control, and communication systems. Among amplifiers, the differential input, high-gain amplifiercalled

theoperational amplifier (or simplyop-amp) has become a popular choice in many circuit applications. At this point, it is impossible for us to understand the internal operation of the amplifier IC without basic knowledge of semiconductor electronics, especially the junction transistor studied in the following chapters. Fortunately, the circuit model of an operational amplifier does not require knowledge of the IC fabrication steps, nor does it require an understanding of the internal transistor architecture. Conceptually, operational amplifiers can be introduced early in the book, which enables us to immediately proceed toward our goal of designing and building practical circuits.
5.1.1 Amplifier Operation

                  Symbol and Terminals


                
After the amplifier chip is fabricated as an integrated circuit and the bond wires are attached, it is permanently sealed in a plastic package. Often the encasing is done in a
dual in-line (DIP-N)package

 withN denoting the number of IC pins. Figure 5.1 on the right shows an example of a DIP package. One IC chip may contain several independent individual amplifiers. We start analyzing the amplifier model by first labeling the terminals and introducing the amplifier circuit symbol (a triangle) as shown in Fig. 5.1 on the left. The amplifier is typically powered by a dual-polarity voltage power supply with three terminals:[image: 
$$ \pm {V}_{\mathrm{CC}} $$
] and common (ground) port of 0 V, see Section3.​2. The indexC refers to the collector voltage of the internal transistors.[image: A331468_1_En_5_Fig1_HTML.gif]
Fig. 5.1Terminals of the operation amplifier (left); they also denote pins of the amplifier IC package (see a common LM 741 chip on theright). All voltages are referenced with respect to a common port of the dual-polarity voltage supply





The amplifier has a total offive terminals, notably:	1.A
non-inverting input with
the input voltage[image: 
$$ {\upsilon}^{+} $$
] with respect to common


 

	2.Aninverting input with the input voltage[image: 
$$ {\upsilon}^{-} $$
] with respect to common


 

	3.An
                            output terminal
                            
                          with the output voltageυ

                            out
                           with respect to common


 

	4.
Power
                                                    
                            terminal
                            
                          
                                                    [image: 
$$ +{V}_{\mathrm{CC}} $$
] with a positive voltageV
CC (+9 V) with respect to common


 

	5.
Power terminal
                                                    [image: 
$$ -{V}_{\mathrm{CC}} $$
] with the negative voltage[image: 
$$ -{V}_{\mathrm{CC}} $$
] (−9 V) with respect to common


 





Each of the five terminals corresponds to a particular metallic pin of the IC package.All of the amplifier’s terminals are used in an amplifier circuit andnone of them should be left disconnected. However, the chip itself could have somenot connected (NC) terminals that maintain symmetry and which are used as heat sinks, see Fig. 5.1 on the left. Also note that a number of amplifier ICs,
                    
                    
                   including the LM74, may have extra terminals or pins, the so-called offsetor
offset-null terminals. These terminals are used to control theinput offset voltage (an imperfection) of the amplifier.
Historical
The abbreviation for the operational amplifier isop-amp; this abbreviation is not quite official but is used by most practitioners. The termoperational amplifier first appeared in a 1943 paper by John R. Ragazzini, an American electrical engineer and ECE professor. One of his students introduced the terms
                      inverting
                      
                    andnon-inverting inputs. One of his mostnotable

students was Rudolf Kalman who became famous for the invention of the Kalman filters.


Open-Circuitor
Open-Loop VoltageGain



Once the amplifier chip is properly powered, its operation is quite simple: the output voltage is expressed through the two input voltages in the form[image: 
$$ {\upsilon}_{\mathrm{out}}=A\left({\upsilon}^{+}-{\upsilon}^{-}\right) $$
]

 (5.1)

 which isidentical to the operation of the voltage-controlled voltage source introduced in Section2.​4. Here,[image: 
$$ {\upsilon}^{+}-{\upsilon}^{-} $$
]
                                    is
thedifferential input voltage to the amplifier. The dimensionless constantA iscalled
theopen-circuit voltage gain of the amplifier. Quite frequently,the
termopen-loop gain is used andA is replaced byA
OL. Equation (5.1), which will be called theamplifier equation, is always valid. It does not matter if the amplifier isin
theopen-loop configuration, (i.e., no feedback loop is present) or in a
closed-loop configuration (
afeedback loop
 is present; see the next section). The amplifier IC is intentionally built in such a way as to provide the highest possible open-circuit gain; it is achieved using transistors connected in series such as the Darlington pair. Typically,[image: 
$$ A\approx {10}^5-{10}^8 $$
]

 (5.2)

 The exact gain value cannot be controlled precisely due to manufacturing tolerances. The open-circuit gain is often measured in V/mV. For example, thevalue

of 160 V/mV corresponds to the gain value of 160,000. The open-circuit gain is difficult to measure.


Power Rails
 andVoltage Transfer Characteristic


                    
                    
                   in the Open-Loop Configuration
Two power interconnects of the amplifier are often calledrails. The term “rail” appears simply because the power interconnections are represented by two long horizontal wires in the circuit diagram connected to[image: 
$$ +{V}_{\mathrm{CC}} $$
] and[image: 
$$ -{V}_{\mathrm{CC}} $$
], respectively, which resemble long metal rails. The positive rail is[image: 
$$ +{V}_{\mathrm{CC}} $$
], and the negative rail is[image: 
$$ -{V}_{\mathrm{CC}} $$
].The
 power rails are interfaced to a laboratory dual-polarity voltage power supply that also provides a common (ground) port to be used later. The output amplifier voltage can never exceed the positive rail voltage or be less than the negative rail voltage. In other words,[image: 
$$ -{V}_{\mathrm{CC}}\le {\upsilon}_{\mathrm{out}}\le {V}_{\mathrm{CC}} $$
]

 (5.3)

Should the output voltage found in Eq. (5.1) exceedV
CC, it will be forced toV
CC. Likewise, should the output voltage drop to less than[image: 
$$ -{V}_{\mathrm{CC}} $$
], it will be forced to[image: 
$$ -{V}_{\mathrm{CC}} $$
]. In view of these physical constraints, Eq. (5.1) may be rewritten in the form[image: 
$$ \begin{array}{l}{\upsilon}_{\mathrm{out}}=A\left({\upsilon}^{+}-{\upsilon}^{-}\right),\kern3em \left|{\upsilon}_{\mathrm{out}}\right|<{V}_{\mathrm{CC}}\\ {}{\upsilon}_{\mathrm{out}}=+{V}_{\mathrm{CC}},\kern5em A\left({\upsilon}^{+}-{\upsilon}^{-}\right)>+{V}_{\mathrm{CC}}\\ {}{\upsilon}_{\mathrm{out}}=-{V}_{\mathrm{CC}},\kern5em A\left({\upsilon}^{+}-{\upsilon}^{-}\right)<-{V}_{\mathrm{CC}}\end{array} $$
]

 (5.4)



Example 5.1
Plot to scale the output voltage of an operational amplifier with an open-circuit gain of[image: 
$$ A={10}^5 $$
] when thenon-inverting input
 voltage[image: 
$$ {\upsilon}^{+} $$
] changes from −1 mV to +1 mV and the inverting input voltage[image: 
$$ {\upsilon}^{-} $$
] is setto
zero.The
amplifier is powered by a ±16-V dual voltage supply. This plot will give us thevoltage transfer characteristic of the open-loop amplifier.

Solution: Amplifier Eq. (5.4) gives the result shown in Fig. 5.2 by a thick piecewise-linear curve. Due to the extremely high open-loop gain, the amplifieroutput

 is almost alwayssaturated.This
 means that, except for a very narrow domain of input voltages on the order of ±0.2 mV, the output simply follows the power rail voltage, either positive or negative. This is a very remarkable featureof
the open-loop amplifier.[image: A331468_1_En_5_Fig2_HTML.gif]
Fig. 5.2Amplifier output voltage in the open-loop configuration. The open-loop gain is[image: 
$$ {A}_{\mathrm{OL}}={10}^5 $$
] and the supply voltage is ±16 V. Note that the scale for the input voltage is in mV







Power Rails in Practice
The power rail(s) of the amplifier or the supply voltage is specified in the datasheet. For example, the LM358 amplifier IC operates using a single supply 3 V to 32 V or dual supplies ±1.5 V to ±16 V. As we can see from this data, the amplifier does not necessarily operate using a dual voltage supply; a single supply (“single rail”) can be used as well. The same amplifier chip (e.g., LM358) can be used either with the single voltage supply or with a dual supply. This question, although less important in theory, is very important in practice. Also note that, in practice, the output never exactlyreaches

the

 positive or negative rail voltages; there is always a voltage offset; it can vary from a minimum value of between 0.01 V and 0.05 V for certain special ICs (called the
                    rail-to-rail amplifiers
                    
                  ) all the way up to 1.8 V for common amplifiers (e.g., LM741).


5.1.2 
Application

 Example: Operational Amplifier Comparator
A
                  comparator
                  
                 is a circuit or a device that comparestwo input voltages and outputs adigital voltage (e.g., ±10 V) as an indication of which input voltage is larger. Due to a very high gain, the operational amplifier in the open-loop configuration shown in Fig. 5.3a may operate as a basic comparator. Figure 5.3b shows one possible application of the comparator:
                  
                
a digital repeater. We assume that[image: 
$$ {\upsilon}^{-}={V}_{\mathrm{threshold}}=0 $$
]. Theinput voltage to the comparator
                                [image: 
$$ {\upsilon}^{+}(t) $$
] is a weak noisy digital signal shown in Fig. 5.3b. This signal is compared to a threshold level of zero volts (the threshold voltage in Fig. 5.3).[image: A331468_1_En_5_Fig3_HTML.gif]
Fig. 5.3A simple operational amplifier as a voltage comparator





When the amplifier open-circuit gain tends to infinity (the transfer characteristic in Fig. 5.2 becomes a straight vertical line), Eq. (5.4) applied to the present case is reduced to[image: 
$$ \begin{array}{l}{\upsilon}_{\mathrm{out}}=+{V}_{\mathrm{CC}},\kern5em {\upsilon}^{+}(t)>0\\ {}{\upsilon}_{\mathrm{out}}=-{V}_{\mathrm{CC}},\kern5em {\upsilon}^{+}(t)<0\end{array} $$
]

 (5.5)



Figure 5.3b shows the resulting output voltage for[image: 
$$ {V}_{\mathrm{CC}}=10\kern0.5em \mathrm{V} $$
]. The weak input digital signal will thus be amplified and cleaned from noise, which is one major function of adigital repeater. In practice, dedicated comparators are used instead of this simple setup, which are much faster and have useful additional features.The

                                comparator

amplifier may also be employed for other purposessuch
as azero-level detector.
Exercise 5.1
In Fig. 5.3, the threshold voltage of the comparator amplifier is changed to +5 V. What will be the output of the comparator circuit?

Answer: −10 V at any time instant.


5.1.3 Amplifier Circuit Model

                  Circuit Model


                
An equivalent circuit model of an amplifier is shown in Fig. 5.4. This circuit model is a two-port electric network. It includes three single circuit elements: an ideal voltage-controlled voltage source[image: 
$$ A\left({\upsilon}^{+}-{\upsilon}^{-}\right) $$
] (Section2.​4),input resistance R
in
                                    of the amplifier, andoutput resistance R
out
                                    of the amplifier.[image: A331468_1_En_5_Fig4_HTML.gif]
Fig. 5.4Equivalent circuit model of an amplifier is in the shadow box as a two-port network. No load is connected. The ground ofthe
output terminal is the common port






Analysis of the Amplifier Circuit Model: Effect of Input/Output Resistances
The input/output resistances of an amplifier in Fig. 5.4 impose rather severe limitations on its desired operation. First, a large but finite input resistance always implies that someinput current,[image: 
$$ {i}_{\mathrm{in}}=\left({\upsilon}^{+}-{\upsilon}^{-}\right)/{R}_{\mathrm{in}} $$
], will flow into the amplifier as long as the input voltage signal is different from zero. Consequently, the amplifier would require not only the input voltage but also a certain amount of input power. As a result, the amplifier may appreciablyload a sensor connected to its input, i.e., require more power than (a tiny) sensor can actually provide. Second, a finite output resistance limits theoutput current i
out to the amplifier; this resistance operates as a current limiting resistor which is studied in Chapter3. Along with this, it also leads to the fact that the voltage across any load connected to the amplifier’s output willnot beequal

 to the desired output voltage given by Eq. (5.1), except for an open circuit. These limitations are quantified when we consider a circuit shown in Fig. 5.5. The circuit includes the amplifier model, an arbitrary source represented by its Thévenin equivalentυ
S, R
S, and a load represented by its equivalent resistanceR
L.[image: A331468_1_En_5_Fig5_HTML.gif]
Fig. 5.5Amplifier circuit model with connected source and load resistances





Using the voltage division principle twice, the output voltage in Fig. 5.5 is expressed as[image: 
$$ {\upsilon}_{\mathrm{out}}=\underset{\upsilon_X}{\underbrace{\upsilon_{\mathrm{S}}\times \left(\frac{R_{\mathrm{in}}}{R_{\mathrm{in}}+{R}_{\mathrm{S}}}\right)}}\times A\times \left(\frac{R_{\mathrm{L}}}{R_{\mathrm{L}}+{R}_{\mathrm{out}}}\right) $$
]

 (5.6)



This result is quite different from the ideal behavior of the amplifier described by the perfect amplification of the source signal[image: 
$$ {\upsilon}_{\mathrm{out}}=A{\upsilon}_{\mathrm{S}} $$
]

 (5.7)

using the available open-circuit gainA of the amplifier.
Exercise 5.2
For the amplifier circuit in Fig. 5.5 with[image: 
$$ A=1000 $$
], determine the output voltage given that[image: 
$$ {\upsilon}_{\mathrm{S}}=1\kern0.5em \mathrm{mV} $$
],[image: 
$$ {R}_{\mathrm{S}}=50\kern0.5em \Omega $$
], and[image: 
$$ {R}_{\mathrm{L}}=50\kern0.5em \Omega $$
] for two cases:	A.
[image: 
$$ {R}_{\mathrm{in}}=1\kern0.5em \mathrm{M}\Omega $$
] and[image: 
$$ {R}_{\mathrm{out}}=1\kern0.5em \Omega $$
].


 

	B.
[image: 
$$ {R}_{\mathrm{in}}=50\kern0.5em \Omega $$
] and[image: 
$$ {R}_{\mathrm{out}}=50\kern0.5em \Omega $$
].


 






                    Answer:
                  
Case A:[image: 
$$ {\upsilon}_{\mathrm{out}}=0.98\kern0.5em \mathrm{V} $$
] (which is close to the ideal behavior,[image: 
$$ {\upsilon}_{\mathrm{out}}=1.00\kern0.5em \mathrm{V} $$
]).
Case A:[image: 
$$ {\upsilon}_{\mathrm{out}}=0.25\kern0.5em \mathrm{V} $$
] (three quarters ofthe

voltage gain are lost).

According to Eq. (5.6),[image: 
$$ {\upsilon}_{\mathrm{out}}<A{\upsilon}_S $$
] for any positive finite values ofR
in andR
out. In order to make use of the full available open-circuit gainA of the amplifier, we should:	1.DesignR
in as large as possible, ideally an open circuit, that is,


 




[image: 
$$ {R}_{\mathrm{in}}=\infty $$
]

 (5.8)


	2.DesignR
out as small as possible, ideally a short circuit, that is,


 




[image: 
$$ {R}_{\mathrm{out}}=0 $$
]

 (5.9)

In this and only this case,the

equality[image: 
$$ {\upsilon}_{\mathrm{out}}=A{\upsilon}_{\mathrm{S}} $$
] will be satisfied exactly.


5.1.4 
Ideal-Amplifier Model
 andFirst Summing-Point Constraint


                  
                  
                

The amplifier IC can then be described with a high degree of accuracy by using the so-called ideal-amplifier model. It is based on the best possible choices for input/output resistances as described by Eqs. (5.8) and (5.9), respectively. It is also based on the assumption that the open-loop gain in Eq. (5.1) is made as high as possible, i.e., equal to infinity. The ideal-amplifier model is an important theoretical and practical tool for the analysis of microelectronic amplifier circuits. This model will be used in the following sections of this chapter and in subsequent chapters. We can summarize the model of an ideal operational amplifier in concise form:	1.No current can flow into the amplifier (into either input terminal).


 

	2.The open-loop gainA is infinitely high.


 

	3.The input resistanceR
in is infinitely high.


 

	4.The output resistanceR
out is zero.


 





Property 1 follows from property 3 and vice versa. One more condition of the ideal-amplifier model could be added, namely, that the power rails[image: 
$$ \pm {V}_{\mathrm{CC}} $$
] are exactly reached when operated in saturation. The ideal-amplifier model does not use the accurate internal amplifier circuit shown in Fig. 5.4 or in Fig. 5.5, respectively. Instead, a simple triangle symbol may be used forthe
ideal amplifier, which is shown in Figs. 5.1 and5.3.
Exercise 5.3
Solve the previousexercise

 for the ideal-amplifier model.

Answer: Case A, B:[image: 
$$ {\upsilon}_{\mathrm{out}}=1.00\kern0.5em \mathrm{V} $$
].

First Summing-Point Constraint
Thesumming point of an amplifier is the connection of the two inputs to the amplifier.
                    
                  Thecommon-mode input signal is the half sum of the two input voltages,[image: 
$$ \left({\upsilon}^{+}+{\upsilon}^{-}\right)/2 $$
]. The
differential input signal is
the input voltage difference,[image: 
$$ {\upsilon}_x={\upsilon}^{+}-{\upsilon}^{-} $$
]. Conditions applied to theamplifier’s
 input are calledsumming-point constraints. The firstsumming-point constraint is applied to the ideal-amplifier model. It states that no current can flow into either of the amplifier terminals as shown in Fig. 5.6.[image: A331468_1_En_5_Fig6_HTML.gif]
Fig. 5.6The first summing-point constraint stipulates that no current flows into the ideal amplifier





This is consistent with aninfinitely
high input resistance. The condition of no input current into the amplifier means that virtually no input power is necessary. For example, a tiny sensor, which does not deliver any appreciable power, could directly be connected to the input. The voltage from the sensor will still be accepted as the input of the amplifier. This condition is a convenient abstraction of the ideal-amplifier model. In reality, a very small input current does exist, typically on the order of nanoamperes (nA)for

common amplifier ICs or picoamperes (pA) for ICs with an input JFET stage.

Realistic Values ofInput/Output Resistances and Output Current



How far off from reality is the assumption of infinite input resistance? A review of the datasheets reveals that the input resistance of the common amplifier IC (e.g., LM741, LM1458) varies from 0.3 to 6 MΩ. The input resistance of JFET-input stage amplifiers (TL082) is on the order of 1 TΩ (1012 Ω). Now, how realistic is the assumption of zero output resistance? Note that if the output resistance were exactly zero, the amplifier would be able to source an infinite current (power) into a low-resistance load. Clearly, we cannot expect a large output power from a physically small amplifier IC. Therefore, we have to introduce a small internal output resistance, which appears to be on the order of 1–100 Ω. The correspondingoutput short-circuit current of the common amplifier ICs (LM741, LM1458, LM358) cannot exceed 40–60 mA; the current into a load is smaller. The output current of faster amplifier ICs (TL082) iseven
smaller.If
the load requires more current than the chip can provide, then the output voltage will notably be clipped.



5.2 Negative Feedback
In most practical circuits, the amplifier IC is not usedin
open-loop configuration. Engineers have modified the open-loop condition into anegative
feedback loop in order to set the gain to a desired value and ensure theamplifier’s stability

. This section provides you with all the essential knowledge needed to design an amplifier with negative feedback. The mathematical model introduced in this section is based on two conditions imposed at the amplifier’s input; we term them the
                summing-point constraints
                
                
              :	a)No electric current flows into or out of the amplifier inputs.


 

	b)The differential voltage at the amplifier’s input is zero.


 





The first summing-point constraint has already been introduced in the previous section. The second summing-point constraint has yet to be derived. We will show that the two summing-point constraints, along with KCL and KVL, will enable us to solveany amplifier circuit that involves a negative feedback, no matter what the specific nature of the feedback loop is and regardless of whether it is DC, AC, or a transient circuit.
5.2.1 
Idea of

 the Negative Feedback
The idea of thenegative feedback goes way back—we may say almost to the Stone Age. Take a wooden rod of 1–2 feet in length. Hold the rod in the vertical position at the tip of your finger. You will probably succeed. Now, close your eyes and try to do the same. You will most likely fail. The reason for the failure is a breakdown of thefeedback loop
. This loop is created by visual control of the rod’s position; you automatically apply a compensating acceleration to the bottom tip of the rod when it begins to fall. Another good example is driving a car and trying to stay in the center of the lane. The negative feedback for electronic amplifiers was first invented and realized by Harold S. Black (1898–1983), a 29-year-old American electrical engineer at Bell Labs. To many electrical engineers, this invention is considered perhaps the most important breakthrough of the twentieth century in the field of electronics because of its wide applicability. We will construct simple amplifier circuits of a given gain, using a resistive feedback loop. Being ableto

perform this task is already critical from the practical point of view.

5.2.2 Amplifier Feedback Loop:Second Summing-Point Constraint


                  
                  
                


We
constructthe feedback loop, as shown in Fig. 5.7, by connecting the output to the inverting input terminal. This was exactly the idea of Harold Black. The shadowed box in the feedback loop may represent one or more circuit elements. The feedback loop may be a simple wire, a resistance, a network of circuit elements (resistances, inductances, capacitances), etc. Thenegative feedback simply means thatthe output voltage, or rather a portion of it, is returned back to the inverting input.[image: A331468_1_En_5_Fig7_HTML.gif]
Fig. 5.7A feedback loop around an amplifier





Feedback as a Dynamic Process
According to Eq. (5.1) of the previous section, the output voltage is proportional to[image: 
$$ {\upsilon}_x={\upsilon}_{\mathrm{in}}^{+}-{\upsilon}_{\mathrm{in}}^{-} $$
]

 (5.10)

whereυ

                    x
                   isthe
differential input voltage. Hence,υ

                    x
                   orυ

                    x
                   multiplied by a constant is returned to the input during a very short period of time. The feedback effect is inherently a very fastdynamic process, which leads to astatic
solution with quite remarkable properties. In the example that follows, we will attempt to model the effect of the feedback loop using several very simplifying assumptions.
Example 5.2
An amplifier with a feedback loop in Fig. 5.7 has[image: 
$$ {\upsilon}^{+} $$
] fixed at +10 V.[image: 
$$ {\upsilon}^{-} $$
] is equal to 0 V at[image: 
$$ t=0 $$
]. We shall assume that 50 % of[image: 
$$ {\upsilon}^{+} $$
] is returned back to the input in 1 μs. How does the differential voltageυ

                      x
                     change with time?

                    Solution:
                    	1.At[image: 
$$ t=0 $$
],[image: 
$$ {\upsilon}_x=10\;\mathrm{V}-0\;\mathrm{V}=10\;\mathrm{V} $$
]. Next, 50 % of 10 V is returned in 1 μs. The voltage[image: 
$$ {\upsilon}^{-} $$
] becomes equal to[image: 
$$ 0\;\mathrm{V}+5\;\mathrm{V}=5\;\mathrm{V} $$
] after 1 μs.


 

	2.At[image: 
$$ t=1\kern0.5em \upmu \mathrm{s} $$
],[image: 
$$ {\upsilon}_x=10\;\mathrm{V}-5\;\mathrm{V}=5\;\mathrm{V} $$
]. Next, 50 % of 5 V is returned in 1 μs. The voltage[image: 
$$ {\upsilon}^{-} $$
] becomes equal to[image: 
$$ 5\;\mathrm{V}+2.5\;\mathrm{V}=7.5\;\mathrm{V} $$
] after 2 μs.


 

	3.At[image: 
$$ t=2\kern0.5em \upmu \mathrm{s} $$
],[image: 
$$ {\upsilon}_x=10\;\mathrm{V}-7.5\mathrm{V}=2.5\;\mathrm{V} $$
]. Next, 50 % of 2.5 V is returned in 1 μs. The voltage[image: 
$$ {\upsilon}^{-} $$
] becomes equal to[image: 
$$ 7.5\;\mathrm{V}+1.25\;\mathrm{V}=8.75\;\mathrm{V} $$
] after 3 μs.


 




                  
The processfurther
continues so that voltageυ

                      x
                     halves every microsecond. The process dynamic is shown in Table 5.1 and visualized in Fig. 5.8.Table 5.1Dynamics of the differential input voltage as a function of time for Example5.2



	Time, μs
	
                                [image: 
$$ {\upsilon}^{+} $$
]
                              
	
                                [image: 
$$ {\upsilon}^{-} $$
]
                              
	
                                [image: 
$$ {\upsilon}_x={\upsilon}^{+}-{\upsilon}^{-} $$
]
                              

	0
	10 V
	0 V
	10 V

	1
	10 V
	5 V
	5 V

	2
	10 V
	7.5 V
	2.5 V

	3
	10 V
	8.75 V
	1.25 V

	4
	10 V
	9.375 V
	0.625 V




[image: A331468_1_En_5_Fig8_HTML.gif]
Fig. 5.8Dynamics of the differential input voltage as a function of time






Both Table 5.1 and Fig. 5.8 make clear that the differential voltageυ

                    x
                   decays to zero very rapidly, once the feedback loop is introduced. Hence we arrive at thesecond summing-point constraint, which is valid only for the amplifiers with the negative feedbackloop
:the differential input voltage to the amplifier is exactly equal to zero. The second summing-point constraint is a close approximation to reality. Its accuracy depends on the value of the open-loop gain of the amplifier. If the open-loop gainwere
infinite, the second summing-point constraint would be exact.


5.2.3 Amplifier Circuit Analysis Using Two Summing-Point Constraints
Next, we will solve an amplifier circuit with negativefeedback

using the two summing-point constraints (SPC): (i) no current into or out of the input amplifier terminals and (ii) the differential input voltage is zero. The method of two summing-point constraints is an accurate solution method for a wide variety of amplifier circuits with the negative feedback. For amplifier circuits with asingle input, we will denote theinput voltage to the amplifier circuit byυ
in. Voltageυ
in may be equal to[image: 
$$ {\upsilon}^{+} $$
] or to[image: 
$$ {\upsilon}^{-} $$
], depending on amplifier type to be used.

                  Non-inverting Amplifier

                  
                    
                    
                  
                
The first amplifier configuration is the so-called non-inverting amplifier shown in Fig. 5.9. The feedback loop contains one resistanceR
2. Another resistanceR
1 shunts theinverting input
 to ground. The input voltage to the amplifier circuit is the voltageυ
in with respect to ground, or common in this case, which implies the use of the dual-polarity voltage power supply. The output voltage with respect to common isυ
out. We apply the first summing-point constraint and KCL to the node “*” in Fig. 5.9 and obtain[image: A331468_1_En_5_Fig9_HTML.gif]
Fig. 5.9Circuit diagram of the non-inverting amplifier. A dual power supply is not shown




[image: 
$$ {i}_1={i}_2 $$
]

 (5.11)

Equation (5.11) is further transformed using Ohm’s law in the form[image: 
$$ \frac{\upsilon *-0}{R_1}=\frac{\upsilon_{\mathrm{out}}-\upsilon *}{R_2} $$
]

 (5.12)


Thesecond
summing-point

constraint yields[image: 
$$ \upsilon *={\upsilon}_{\mathrm{in}} $$
]

 (5.13)

since[image: 
$$ {\upsilon}_x=0 $$
]. Equation (5.12) thus reads[image: 
$$ \frac{\upsilon_{\mathrm{in}}}{R_1}=\frac{\upsilon_{\mathrm{out}}-{\upsilon}_{\mathrm{in}}}{R_2}\Rightarrow \frac{\upsilon_{\mathrm{out}}}{R_2}=\frac{\upsilon_{\mathrm{in}}}{R_1}+\frac{\upsilon_{\mathrm{in}}}{R_2} $$
]

 (5.14)

As a result, we find that the voltage input-to-output relation becomes[image: 
$$ {\upsilon}_{\mathrm{out}}=\left(1+\frac{R_2}{R_1}\right){\upsilon}_{\mathrm{in}} $$
]

 (5.15)

The amplifier circuit is solved: we have expressed the output voltage in terms of the input voltage and a resistor ratio. Equation (5.15) is the basic result in amplifier theory. It shows that the feedback loop allows us to precisely control the gain with two arbitrary resistances. One chooses the proper resistance combination to achieve any finite gain between one (settingR
2 = 0) and the open-loop (infinite) gain (settingR
1 = 0). In the last case, the negative input terminal becomes grounded; the feedback loop is irrelevant and can be replaced by anopen
circuit so that the amplifier again becomes thecomparator. The gain expression[image: 
$$ {A}_{\mathrm{CL}}=\left(1+\frac{R_2}{R_1}\right)\ge 1 $$
]

 (5.16)


iscalled
theclosed-loop gain of the amplifier; it clearly relates the output voltage to the input voltage. Equation (5.16) is a dramatic illustration of the negative feedback. We started with an amplifier having a very large yet loosely predictable open-loop gain.Through

applying the negative feedback, we arrived at a gain that is much smaller than the open-loop gain; however, it is controllable and stable. Equation (5.16) can be derived more simply using the voltage divider concept. Namely, resistorsR
1, R
2 form a voltage divider between 0 V and the output voltage. Hence, the voltage at node (*) may be found. Equating this voltage to the input voltage gives us Eq. (5.16).
Exercise 5.4
Solve the circuit shown in Fig. 5.10, i.e., find the output voltageυ
out withrespect
 to common.[image: A331468_1_En_5_Fig10_HTML.gif]
Fig. 5.10A non-inverting amplifier circuit with an input voltage of 1 mV






Answer:
                                        [image: 
$$ {\upsilon}_{\mathrm{out}}=\left(1+\frac{R_2}{R_1}\right){\upsilon}_{\mathrm{in}}=\left(1+\frac{1\times {10}^6}{5.1\times {10}^3}\right)\times 1\kern0.5em \mathrm{mV}=197\kern0.5em \mathrm{mV} $$
].



                  Inverting Amplifier

                  
                    
                    
                  
                
The next amplifier circuit configuration is theinverting amplifier shown in Fig. 5.11. Note that the input terminals are now flipped. The negative feedback loop is still present; it involves resistanceR
2. Another resistance,R
1, shuntsthe
non-inverting input to ground.[image: A331468_1_En_5_Fig11_HTML.gif]
Fig. 5.11Circuit diagram of the inverting amplifier; a dual power supply is used (not shown)





The input voltage to the amplifier circuit is the voltageυ
in with respect to ground or common. The output voltage with respect to common isυ
out. To solve the amplifier circuit, we use the same solution procedure as for the non-inverting amplifier. However, the final result will be quite different. We apply the first summing-point constraint and KCL to the node labeled “*” in Fig. 5.11 and again obtain[image: 
$$ {i}_1={i}_2 $$
]

 (5.17)

Equation (5.17) is transformed using Ohm’s law,[image: 
$$ \frac{\upsilon_{\mathrm{in}}-\upsilon *}{R_1}=\frac{\upsilon *-{\upsilon}_{\mathrm{out}}}{R_2} $$
]

 (5.18)


The second summing-point constraint yields[image: 
$$ \upsilon *=0 $$
] since[image: 
$$ {\upsilon}_x=0 $$
]. Equation (5.18) then gives[image: 
$$ {\upsilon}_{\mathrm{out}}=-\frac{R_2}{R_1}{\upsilon}_{\mathrm{in}} $$
]

 (5.19)

The amplifier circuit is solved:we

have expressed the output voltage in terms of theinput
voltage. Equation (5.19) is another key result in amplifier theory. The expression[image: 
$$ {A}_{\mathrm{CL}}=-\frac{R_2}{R_1} $$
]

 (5.20)

is also called theclosed-loop gain of the inverting amplifier; the gain again relates the output voltage to the input voltage. It is now negative, which means that the output voltage is inverted. This circumstance is hardly important for the AC signals where the voltage inversion is equivalent to a phase shift of π radians or 180 degrees. The feedback loop of the inverting amplifier also enables us to control the gain of the amplifier with two standard resistors. We can choose the proper resistance combination to achieve any finite gain between zero (R
2 = 0) and negative infinity (R
1 = 0). In Fig. 5.11 we clearly see how the amplifier gain is controlled by the voltage divider with resistorsR
1 andR
2.
Exercise 5.5
Solve the inverting-amplifier circuit shown in Fig. 5.12, i.e., find the output voltageυ
out
                                        with
respectto

common.[image: A331468_1_En_5_Fig12_HTML.gif]
Fig. 5.12An inverting amplifier circuit with an applied input voltage of 1 mV






Answer:
                                        [image: 
$$ {\upsilon}_{\mathrm{out}}=-\frac{R_2}{R_1}{\upsilon}_{\mathrm{in}}=-\frac{1\times {10}^4}{51}\times 1\kern0.5em \mathrm{mV}=-196\kern0.5em \mathrm{mV} $$
].




                    
                  Voltage Follower or BufferAmplifier



The third important member of the amplifier family is thevoltage follower orbuffer amplifier whose circuit is shown in Fig. 5.13. The negative feedback loop is just a wire.[image: A331468_1_En_5_Fig13_HTML.gif]
Fig. 5.13Circuit diagram of the buffer amplifier; a dual power supply is used





The use of the second summing-point constraint immediately leads to[image: 
$$ {\upsilon}_{\mathrm{out}}={\upsilon}_{\mathrm{in}},\kern1em {A}_{\mathrm{CL}}=1 $$
]

 (5.21)

so that the gain of this amplifier type is simply unity. Why do we need a unity-gain amplifier? The reason is that, while the buffer amplifier in Fig. 5.13 passes the voltage without change, it requires virtually no current at the input (virtually no input power) but, at the same time, could source a significant current (on the order of 20–40 mA) at the output, i.e., provide significant output power. In order words, it becomes in a certain sense apower amplifier. A simple example would be a capacitive sensor that cannot deliver currents on the order of 10 mA or even smaller currents; otherwise, the corresponding capacitor would immediately discharge. Such a sensor cannot directly be connected to an LED indicator that requires at least 10 mA. However, this sensor may deliver significant voltages, on the order of 1–5 V, which do not need to be amplified. The use of a buffer amplifier can nicely solve this connection problem. The above discussion directly leads us to the concept ofinput resistance of the amplifier circuit studied in the next section.
Exercise 5.6
Solve the voltage-follower circuit shown in Fig. 5.13, i.e., find the output voltageυ
out with respect to commonwhen

the inputvoltage
 with respect to common is a) 1 V and b) 10 V. The amplifier is powered by a ±6-V dual supply.

Answer: a)[image: 
$$ {\upsilon}_{\mathrm{out}}=1\kern0.5em \mathrm{V} $$
]; b)[image: 
$$ {\upsilon}_{\mathrm{out}}=6\kern0.5em \mathrm{V} $$
].



5.2.4 
Mathematics

 Behind the Second Summing-Point Constraint
The second summing-point constraint might appear to be mysterious, at least at first sight. How does the amplifier accept the input signal if there is no current at the input and the differential input voltage is zero? Can we avoid using the second SPC, and at what cost? We will show that the second SPC is nothing but a handy tool to solve the amplifier circuit with the negative feedback, with a high degree of accuracy. Mathematically, the second SPC gives a leading (and usually very accurate) term of what is known as anasymptotic expansion with regard to a small parameter, here the inverse open-loop gain[image: 
$$ {A}^{-1} $$
]. Let us now ignore the second SPC and derive the gain equation for the buffer amplifier exactly. A similar derivation for the non-inverting amplifier is given as a homework problem. Looking at Fig. 5.13, we conclude that[image: 
$$ {\upsilon}^{-}={\upsilon}_{\mathrm{out}} $$
] since the negative amplifier terminal is directly connected to the output. According to the amplifier equation, Eq. (5.1) of the previous section, we have[image: 
$$ {\upsilon}_{\mathrm{out}}=A\left({\upsilon}^{+}-{\upsilon}^{-}\right)=A\left({\upsilon}_{\mathrm{in}}-{\upsilon}_{\mathrm{out}}\right) $$
]

 (5.22)

Solving Eq. (5.22) for the output voltage yields[image: 
$$ {\upsilon}_{\mathrm{out}}=A\left({\upsilon}_{\mathrm{in}}^{+}-{\upsilon}_{\mathrm{in}}^{-}\right)=\frac{A}{1+A}{\upsilon}_{\mathrm{in}} $$
]

 (5.23)

Using a Maclaurin series expansion, we obtain with[image: 
$$ A>>1 $$
] the result[image: 
$$ \frac{A}{1+A}=\frac{1}{1+1/A}\approx 1-1/A\approx 1 $$
]

 (5.24)

which is consistent with Eq. (5.21) and is very accurate since typically[image: 
$$ A>{10}^5 $$
]. A similarderivation

 holds for the non-inverting (or the inverting) amplifier configuration. With this in mind, the second SPC is clearly optional. Instead, the amplifier definition Eq. (5.1) may be used, along with the condition of the high open-loop gain. However, it is rather tedious to repeat the asymptotic analysis every time; so we prefer to use the accurate and simple summing-point constraint. The finite value of the open-circuit gainA becomes important for high-speed amplifiers with the feedback loop; see Chapter10.

5.2.5 
Current Flow

 in the Amplifier Circuit
The current flow in the complete amplifier circuit is illustrated in Fig. 5.14. The output current through the load resistanceR
L of the amplifier circuit in Fig. 5.14 is provided by the dual-polarity power supply. In this sense, the amplifier is also a “valve” (similar to its building block, the transistor), which “opens” the power supply in response to the low-power (or virtually no-power) input voltage signal. In Fig. 5.14, you should note that standard resistor values (5 % or 1 % tolerance) may be slightly different from the values used in this figure for convenience. We consider the positive input voltage of 100 mV in Fig. 5.14a first. The non-inverting amplifier has a closed-loop gainA
CL equal to 50. The output voltage is thus +5 V, which is the push mode. The load current of 10 mA is found from Ohm’s law. The feedback current of 0.1 mA is found using the second SPC and Ohm’s law. The power supply current is the sum of both. The feedback current controls the gain of the amplifier, and the load current drives the load. The overall amplifier circuit efficiency (neglecting the loss in the IC itself) depends on the ratio of these two currents. Therefore, we should keep the feedback current small. The power current path is shown in Fig. 5.14a by a thick trace. The current at nodeA can only enter the upper power supply. Thus, it is the upper power supply being used. The amplifier is operating in the “push” mode, i.e., theamplifier sources the current. When the input voltage is negative as in Fig. 5.14b, the lower power supply is delivering power. Now, theamplifier sinks the current; it is operating in the “pull” mode. However, the ratio of the load current and feedback loop current remains the same, at least for the ideal amplifier. Similar results are obtained for the inverting amplifier and the voltage follower, respectively.[image: A331468_1_En_5_Fig14_HTML.gif]
Fig. 5.14Current flow in the non-inverting amplifier circuit operating in the (a) push mode and (b) pull mode. The path of the (relatively high) load current is marked in bold






5.2.6 
Multiple-Input

 Amplifier Circuit: Summing Amplifier
Figure 5.15 shows an important amplifier type on the basis of the inverting amplifier—thesumming amplifier. A summing amplifier performs a simple mathematical operation: it sums several weighted input voltages. The summing amplifier is a prototype of thebinary-weighted-input digital-to-analog converterstudied
in Chapter14. According to the KCL and to the first summing-point constraint, one has with reference to Fig. 5.15
[image: A331468_1_En_5_Fig15_HTML.gif]
Fig. 5.15(a) Circuit diagram of a summing amplifier. (b) and (c) Typical input and output voltages




[image: 
$$ {i}_{\mathrm{F}}={i}_1+{i}_2+{i}_3 $$
]

 (5.25)

On the other hand, the second summing-point constraint (the differential voltage to the amplifier is zero and theinverting input
 is the common or virtual ground) yields[image: 
$$ {i}_1=\frac{\upsilon_1}{R_1},\kern0.62em {i}_2=\frac{\upsilon_2}{R_2},\kern1em {i}_3=\frac{\upsilon_3}{R_3} $$
]

 (5.26)

in terms of input voltagesυ
1, υ
2, υ
3. Therefore, voltageυ
out in Fig. 5.15 found from Eq. (5.25) is now written in the form[image: 
$$ \begin{array}{l}{i}_{\mathrm{F}}=\frac{0-{\upsilon}_{\mathrm{out}}}{R_{\mathrm{F}}}={i}_1+{i}_2+{i}_3=\left(\frac{\upsilon_1}{R_1}+\frac{\upsilon_2}{R_2}+\frac{\upsilon_3}{R_3}\right)\Rightarrow {\upsilon}_{\mathrm{out}}=-\frac{R_{\mathrm{F}}}{R_1}{\upsilon}_1-\frac{R_{\mathrm{F}}}{R_2}{\upsilon}_2-\frac{R_{\mathrm{F}}}{R_3}{\upsilon}_3\end{array} $$
]

 (5.27)



Example 5.3
An input tothe

 amplifier circuit in Fig. 5.15a is a timing sequence shown in Fig. 5.15b. Such a sequence isknown
as abinary counter; it represents all three-bit binary numbers in an ascending order, with the time interval of 1 μs. The amplifier circuit is characterized by[image: 
$$ {R}_{\mathrm{F}}=2\kern0.5em \mathrm{k}\Omega $$
],[image: 
$$ {R}_1=40\kern0.5em \mathrm{k}\Omega $$
],[image: 
$$ {R}_2=20\;\mathrm{k}\Omega $$
], and[image: 
$$ {R}_3=10\;\mathrm{k}\Omega $$
]. Plot the absolute output voltage to scale.

Solution: After plugging in the numbers, Eq. (5.27) is transformed to[image: 
$$ \left|{\upsilon}_{\mathrm{out}}\right|=0.05{\upsilon}_1+0.1{\upsilon}_2+0.2{\upsilon}_3 $$
]

 (5.28)



Figure 5.15c shows the result. This is a staircase approximation of the straight line.

A large collection of practical amplifier circuits with the negative feedback exists. Someof
them areDC-coupled amplifiers (considered here), some are intendedfor

amplification of AC voltage signals with zero mean (the so-
                  
                called AC-coupled amplifiers).


5.3 Amplifier Circuit Design
Now that the theory of the negative feedback loop has been established, we can turn our attention to the laboratory. Our hope is to be immediately successful with our designs. However, a number of questions will arise almost instantly. They raise issues such as how to choose the resistor values, how to connect the sensor as part of the input load, and how to use an amplifier chip with a single power supply (a battery).
5.3.1 Choosing ProperResistance Values



There are several rules regarding how to choose resistancesR
1, R
2 controlling the feedback loop in both non-inverting and inverting configurations. They are:	1.ResistancesR
1, R
2 cannot be too small. Imagine that in Fig. 5.14 of Section 5.2, the resistor values are changed to[image: 
$$ {R}_1=1\kern0.5em \Omega, \kern0.5em {R}_2=49\kern0.5em \Omega $$
]. The same non-inverting gain will be achieved and the same output voltage will be obtained. However, the feedback loop current now becomes 100 mA instead of 0.1 mA. The general-purpose op-ampchips
 are not capable of delivering such large currents. Furthermore, the ohmic losses in the feedback loop become high. Therefore, one should generally use[image: 
$$ {R}_1,{R}_2\ge 50-100\kern0.5em \Omega $$
]

 (5.29a)





 

	2.ResistancesR
1, R
2 cannot be too large. Let us assume that resistanceR
2 equals 100 MΩ. This means that this physical resistor and the feedback loop represent almost an “open circuit.”Unwanted

electromagnetic signals may couple into such a circuit through the related electric field difference across its terminals. This effectis
known ascapacitive coupling. Furthermore, the very large resistances increase the parasitic effect of the input offset current. Plus, very large resistances are unstable—their values depend on moisture, temperature, etc. Therefore, one should generally use[image: 
$$ {R}_1,{R}_2\le 1\;\mathrm{M}\Omega $$
]

 (5.29b)





 

	3.When a precision design is not warranted, inexpensive 5 % tolerance resistors may be used. Otherwise, 1 % or even 0.1 % tolerance resistors are employed. Moreover, in lieu of fixed resistors, we may use one or two potentiometers to make the gain adjustable.


 

	4.The load resistance should be sufficientlylarge

 in order not to overdrive the amplifier. A good choice is[image: 
$$ {R}_L\ge 100\;\Omega $$
]

 (5.29c)



This requires an output current of 20 mA at[image: 
$$ {\upsilon}_{\mathrm{out}}=2\;\mathrm{V} $$
] whenR
L is exactly 100 Ω. If[image: 
$$ {R}_{\mathrm{L}}<100\kern0.5em \Omega $$
], the amplifier output voltage may decrease compared to the expected value due to amplifier’s inability to source/sink sufficient current.


 





Example 5.4
A non-inverting amplifier circuit with a gain of 11 is needed in the configuration depicted in Fig. 5.16. Identify one set of proper resistance values.[image: A331468_1_En_5_Fig16_HTML.gif]
Fig. 5.16A non-inverting amplifier with unknown resistance values






                  Solution:
                
To satisfy Eq. (5.29), we simply choose the round numbers[image: 
$$ {R}_1=1\kern0.5em \mathrm{k}\Omega, \kern0.5em {R}_2=10\kern0.5em \mathrm{k}\Omega, \kern0.5em {R}_{\mathrm{L}}=100\kern0.5em \Omega $$
]

 (5.30)



However, other choicesare

 indeed possible. For example, the set[image: 
$$ {R}_1=100\kern0.5em \mathrm{k}\Omega, \kern0.5em {R}_2=1\kern0.5em \mathrm{M}\Omega, \kern0.5em {R}_{\mathrm{L}}=100\kern0.5em \Omega $$
]

 (5.31)



will solve the problem too.


                  Discrete Resistance Values and Potentiometers


                
To achieve a proper gain, we sometimes have to use “strange” resistor values like 49 kΩ (Fig. 5.14 of Section 5.2). Do such resistors really exist? For 5 % tolerance resistors, they do not. However, for 1 % tolerance resistors, you can find the standard value of 48.7 kΩ, which is close to the above value. When the exact resistor values are not available, a potentiometer can be used as a variable resistor. Furthermore, an externally controlled potentiometer in the feedback loop is also important when avariable-gain amplifier is needed, for example, for applications that requireautomatic gain control.

GainTolerance


                    
                    
                  

What about thegain tolerance? The feedback resistor tolerances indeed determine the gain tolerance. If the resistor tolerance isX, then the gain tolerance is 2X. This result is valid for both the inverting and the non-inverting amplifier. The corresponding proof uses an asymptotic expansion for the gain about its unperturbed value. We consider the worst-case scenario for the inverting amplifier and obtain[image: 
$$  {A}_{\mathrm{CL}}=-\frac{R_2\left(1+X\right)}{R_1\left(1-X\right)}\approx -\frac{R_2}{R_1}\left(1+X\right)\left(1+X\right)\approx -\frac{R_2}{R_1}\left(1+2X\right)\kern0.75em \mathrm{f}\mathrm{o}\mathrm{r}\ X<<1 $$
]

 (5.32)

The non-inverting gain is treated similarly. For example, if two resistors of an inverting amplifier circuit are[image: 
$$ {R}_1=1\kern0.5em \mathrm{k}\Omega, \kern0.5em {R}_2=100\kern0.5em \mathrm{k}\Omega $$
] and both resistors have 5 % tolerances, then the amplifier gain is equal to −100 with tolerance of 10 %. Similarly the gain of the non-inverting amplifier circuit becomes 101with

                                    tolerance

 of slightly less than 10 %.


5.3.2 Model of a Whole Voltage Amplifier Circuit
Anyvoltage amplifier circuit with the
                                
                  negative feedback
                  
                  
                 loop may be modeled in a form similar to Fig. 5.5. The corresponding model is shown in Fig. 5.17.[image: A331468_1_En_5_Fig17_HTML.gif]
Fig. 5.17Equivalent model of an amplifier circuit with a negative feedback loop





First, the open-circuit gainA of the amplifier is replaced by the closed-loop gain[image: 
$$ {A}_{\mathrm{CL}}<<A $$
]. Second, the differential input voltageυ

                  x
                 is replaced byυ
in. Third, resistancesR
in andR
out in Fig. 5.17 now becomeinput and output resistances of the amplifier circuit, not the amplifier itself. This difference may be quite important in practice.

Input/Output Resistances

 of Basic Amplifier Circuits Using Ideal-Amplifier Model
The solution simplifies for the ideal-amplifier model; it is shown in Fig. 5.18. We assume ideal operational amplifiers in all three cases. If there were no feedback loop,R
in would be exactly equal to the input resistance of the amplifier itself; this is for an ideal operational amplifier[image: 
$$ {R}_{\mathrm{in}}=\infty $$
]. When the feedback loop is present, a more general definition should be used, namely,[image: A331468_1_En_5_Fig18_HTML.gif]
Fig. 5.18Input and output resistances of amplifier circuits with the ideal operational amplifier




[image: 
$$ {R}_{\mathrm{in}} \equiv \frac{\upsilon_{\mathrm{in}}}{i_{\mathrm{in}}}, $$
]

 (5.33)

whereυ
in is the amplifier’s circuit input voltage andi
in is now the current into the amplifier’s circuitwith the feedback loop. Figure 5.18 illustrates the corresponding calculation for the three basic amplifier types. For both the non-inverting amplifier and the voltage follower circuits, we have[image: 
$$ {R}_{\mathrm{in}}=\infty, \kern0.5em {R}_{\mathrm{out}}=0 $$
]. However, for the inverting amplifier circuit,[image: 
$$ {R}_{\mathrm{in}}={R}_1,\kern0.5em {R}_{\mathrm{out}}=0 $$
], since an input current can still flow into thefeedback

loop but not into the amplifier itself. Thus, the inverting amplifier circuit potentially provides greater flexibility in the input resistance simply by varyingR
1. To ensure the necessary gain,R
2 has to be chosen accordingly.


5.3.3 Voltage Amplifier Versus MatchedAmplifier



A sensor (input load to an amplifier circuit) “sees” an amplifier circuit as a simple resistanceR
in as depicted in Fig. 5.19. The sensor is represented by its Thévenin equivalent circuit.[image: A331468_1_En_5_Fig19_HTML.gif]
Fig. 5.19Sensor’s equivalent circuit and amplifier’s equivalent circuit as seen from the sensor






                  Input Load “Bridging”


                
The general-purpose operational amplifier is avoltage amplifier (also called asignal amplifier) and not apower amplifier. The input voltage matters, not the input power. For the voltage divider circuit in Fig. 5.19, the input voltageυ
in to the amplifier circuit ismaximized whenR
in is maximized. Therefore,R
in must satisfy the inequality[image: 
$$ {R}_{\mathrm{in}}>>{R}_{\mathrm{S}} $$
]

 (5.34)

An appropriate value would be[image: 
$$ {R}_{\mathrm{in}}=100{R}_{\mathrm{S}} $$
], for example. Equation (5.34) is sometimes calledload bridging (orimpedance bridging)condition, where the “load” resistanceR
in seen by the Thévenin source is much larger than the source resistanceR
S. The load bridging is automatically satisfied for the non-inverting amplifier or for the voltage follower. For theinverting

amplifier, one should use large values ofR
1, for instance,[image: 
$$ {R}_1=100{R}_{\mathrm{S}} $$
]

 (5.35)


Bridging connections are used to maximize the voltage transfer from a sensor to an amplifier. Even more importantly, the amplifier does not appreciably load the sensor.
Example 5.5
A sensor is given by its Thévenin equivalent circuit in Fig. 5.19 where the sensor voltageυ
S is small. The sensor’s equivalent resistanceR
S is 100 Ω. An inverting amplifier circuit is needed to generate an amplified version of the sensor’s voltage. The output voltage should be[image: 
$$ \approx -100{\upsilon}_{\mathrm{S}} $$
].

Solution: The corresponding circuit is shown in Fig. 5.20. The input voltage to the amplifier circuit is computed by voltage division:[image: A331468_1_En_5_Fig20_HTML.gif]
Fig. 5.20A 100 Ω sensor connected to the inverting amplifier. Note the common connections




[image: 
$$ {\upsilon}_{\mathrm{in}}=\frac{R_1}{R_1+{R}_{\mathrm{S}}}{\upsilon}_{\mathrm{S}} $$
]

 (5.36)



If[image: 
$$ {R}_{\mathrm{S}}=100\kern0.5em \Omega, \kern0.5em {R}_1=10\kern0.5em \mathrm{k}\Omega $$
], then[image: 
$$ {\upsilon}_{\mathrm{in}}\approx {\upsilon}_{\mathrm{T}} $$
] and there is almost no loss of voltage signal strength across resistanceR
S. Therefore, a pair of resistors with[image: 
$$ {R}_1=10\kern0.5em \mathrm{k}\Omega, \kern0.5em {R}_2=1\kern0.5em \mathrm{M}\Omega $$
] will solve the problem, with the amplifier voltage gain of −100. If, however, we choose[image: 
$$ {R}_1=0.25{R}_{\mathrm{S}}=25\;\Omega $$
], then[image: 
$$ {\upsilon}_{\mathrm{in}}=0.2{\upsilon}_{\mathrm{S}} $$
] and 80 % of available voltage signal strength will be lost! Even if the remaining voltage signal is stillappreciable

 (above thesensitivity threshold of the amplifier), the necessary amplifier gain becomes not −100, but −500. An increase in gain leads to an increase in additive voltage noise at the output. Therefore, in the best case, the amplified signal will be a noisier version of the corresponding signal in the previous design.

Example 5.6
A sensor is given by its Thévenin equivalent in Fig. 5.19 where the sensor voltageυ
S is small. The sensor’s equivalent resistanceR
S may vary in time but is always less than 100 Ω. An inverting amplifier is needed that generates an amplified version of the sensor’s voltage, which is[image: 
$$ \approx -100{\upsilon}_{\mathrm{S}} $$
].

Solution: With reference to Fig. 5.20, the input voltage to the amplifier is again given by Eq. (5.36). This equation is further transformed to[image: 
$$ {\upsilon}_{\mathrm{in}}=\frac{R_1}{R_1+{R}_{\mathrm{S}}(t)}{\upsilon}_{\mathrm{S}}\approx {\upsilon}_{\mathrm{S}} $$
]

 (5.37)




if we choose[image: 
$$ {R}_1=100 \max \left({R}_{\mathrm{S}}(t)\right)=10\;\mathrm{k}\Omega $$
]. In other words, not only have we provided amplificationbut we

alsoeliminated the effect of the sensor’s resistance variation by proper load bridging. Therefore, a pair of resistors with[image: 
$$ {R}_1=10\kern0.5em \mathrm{k}\Omega, \kern0.5em {R}_2=1\kern0.5em \mathrm{M}\Omega $$
] will solve the problem, with the amplifier output of[image: 
$$ \approx -100{\upsilon}_{\mathrm{S}} $$
], irrespective of the specific value ofR
S.



                  Input Load Matching


                
And yet, in many modern applications related to radio-frequency (RF) circuits, theload matching (but not the load bridging) may be a critical condition. RF amplifiers are internally designed for matching to a precise 50 Ω load atboth the input and the output—see Fig. 5.21. The reason is that voltage and current signals in conductors behave like propagating electromagnetic waves at high frequencies. If there is no matching, then multiple wave reflections between the amplifier and its input and/or output loads can occur, resulting in superimposing the previous signal onto the next signal.[image: A331468_1_En_5_Fig21_HTML.gif]
Fig. 5.21A RF amplifier to be matched to a 50 Ω at both the input and output





Therefore, the amplifier circuit optimized for proper load matching (which also achieves maximum power transfer from the input load to the amplifier circuit, see the generator theorems) may still be critical in many high-frequency applications.
Example 5.7
Construct an amplifier circuit matched to an input source with[image: 
$$ {R}_{\mathrm{S}}= $$
] 50 Ω. The amplifier’s voltage gain is[image: 
$$ \left|{A}_{\mathrm{CL}}\right|=20 $$
]. The sign ofA
CL (either positive or negative) is not important since an AC input signal is assumed.

Solution: Two possiblesolutions

 are shown in Fig. 5.22. In the first case, we use the inverting amplifier; in the second case, a smart trick is employed: a non-inverting amplifier with a 50-Ω shunt resistor. You should note that the maximum power transfer will be achieved for theentire amplifier circuit, including the shunt resistor.[image: A331468_1_En_5_Fig22_HTML.gif]
Fig. 5.22Two possible amplifier configurations matched to a 50-Ω input resistance








5.3.4 
Cascading
AmplifierStages



Assume that we need an inverting amplifier with an overall gain of −1000. The input to the amplifier is a sensor as in Fig. 5.19 with the equivalent resistance given by[image: 
$$ {R}_{\mathrm{S}}=1\;\mathrm{k}\Omega $$
]. If we require load bridging according to Eq. (5.35), we arrive at[image: 
$$ {R}_1=100{R}_{\mathrm{S}}=100\;\mathrm{k}\Omega $$
]

 (5.38)

This yields[image: 
$$ {R}_1=100\kern0.5em \mathrm{k}\Omega \Rightarrow {R}_2=100\kern0.5em \mathrm{M}\Omega $$
]

 (5.39)

Such a resistance value is too large to satisfy Eq. (5.29b); it perhaps will not even be included in your laboratory kit (although the ECE shop may still have such resistors). What should we do? The answer lies incascading the amplifier stages as shown in Fig. 5.23. We use the non-inverting amplifier with a gain of 10 as the first stage; this simultaneously provides the load bridging condition. We use the inverting amplifier with a gain of −100 and with the reasonable resistor values as the second stage. The key point of cascading is to realize that the overall gain of the cascade amplifier is given by theproduct (not the sum!) of the individual stage gains, i.e.,[image: 
$$ {A}_{\mathrm{CL}}={A}_{\mathrm{CL}1}\times {A}_{\mathrm{CL}2}=10\times \left(-100\right)=-1000 $$
]

 (5.40)


The same result is valid for more than two stages. The proof for two stages is simple:[image: 
$$ {A}_{\mathrm{CL}} \equiv \frac{\upsilon_{\mathrm{out}}}{\upsilon_{\mathrm{in}}}=\frac{A_{\mathrm{CL}2}{\upsilon}_{\mathrm{out}}^1}{\upsilon_{\mathrm{in}}}=\frac{A_{\mathrm{CL}1}{A}_{\mathrm{CL}2}{\upsilon}_{\mathrm{in}}}{\upsilon_{\mathrm{in}}}={A}_{\mathrm{CL}1}{A}_{\mathrm{CL}2} $$
]

 (5.41)

The cascading of individual amplifier stages is a simple and powerful tool to build high-gain amplifier circuits. Cascading has a number of remarkable features, some of which are studied here:	1.The gains of the individual stages multiply.


 

	2.The gain per stage generally should not exceed 100 (absolute value) in order to avoid instability.


 

	3.The first stage in Fig. 5.23 seesR
1 of the second stage as its output load resistance. Therefore,R
1 should be large enough.


 

	4.The amplifier ICs usually include two (dual op-amp) or even four (quad op-amp) individual amplifiers in one package. Therefore, they are ideally suited for building multistage amplifiers.


 

	5.The effect of aninput
offset voltage (an amplifier imperfection studied next) is primarily important for the first stage, but it then losesits

 significance with every subsequent stage.


 




[image: A331468_1_En_5_Fig23_HTML.gif]
Fig. 5.23Cascading two amplifier stages into a high-gain circuit. The first stage is a non-inverting amplifier with a gain of 10; the second stage is an inverting amplifier with a gain of −100. The overall gain is therefore −1000





Note that cascading is equivalent to a series combination of individual amplifiers. Parallel configurations also exist, particularly inanalog-to-digital converters.
Example 5.8
The input to the amplifier is a sensor in Fig. 5.19 with an equivalent resistance given by[image: 
$$ {R}_{\mathrm{S}}=100\kern0.5em \Omega $$
] and an equivalent sensor voltage,υ
S. An amplifier circuit is needed that generates ~10,000υ
S at its output. The load bridging condition must be satisfied.

                  Solution:
                  	A.A single-stage, non-inverting amplifier with[image: 
$$ {R}_1=100\kern0.5em \Omega, \kern0.5em {R}_2=1\kern0.5em \mathrm{M}\Omega $$
] might do the job, including load bridging. However, the gain per stage (10,000) is far too high for stable operation.


 

	B.A series combination of two inverting stages will do a much better job: the first inverting op-amp assures load bridging, and it consists of[image: 
$$ {R}_1=10\kern0.5em \mathrm{k}\Omega, \kern0.5em {R}_2=1\kern0.5em \mathrm{M}\Omega $$
]. The second inverting amplifier has exactly the same resistor values:[image: 
$$ {R}_1=10\kern0.5em \mathrm{k}\Omega, \kern0.5em {R}_2=1\kern0.5em \mathrm{M}\Omega $$
]. And the overall gain is given by[image: 
$$ {A}_{\mathrm{CL}}=\left(-100\right)\times \left(-100\right)=10,000 $$
].


 

	C.A series combination of two non-inverting stages willperform

equally well: we choose[image: 
$$ {R}_1=10\kern0.5em \mathrm{k}\Omega, \kern0.5em {R}_2=1\kern0.5em \mathrm{M}\Omega $$
] for the firststage
 and[image: 
$$ {R}_1=10\kern0.5em \mathrm{k}\Omega, \kern0.5em {R}_2=1\kern0.5em \mathrm{M}\Omega $$
] for the second stage. The overall gain then yields[image: 
$$ {A}_{\mathrm{CL}}=101\times 101=10,201\approx 10,000 $$
].


 




                


5.3.5 AmplifierDC Imperfections
 and Their Cancellation
In general,
                  DC imperfections
                  
                  
                
                                of the operational amplifier can have a severe influence on its performance for high-gain amplifiers. Below, we study two types of imperfections, theinput offset voltage V
OS and theinput (bias and offset) currents, and provide a simple way of how to cancel the corresponding output offset voltage.

                  Input Offset Voltage


                
The input offset voltage results in a nonzero output voltage when the two input terminals of the amplifier are shorted out. It arises due to a small asymmetry in the input differential transistor stage inside the amplifier chip. It is fixed for a certain chip but varies from chip to chip. General-purpose amplifiers have the input offset voltageV
OS in the range of[image: 
$$ 1\kern0.5em \mathrm{mV}-6\kern0.5em \mathrm{mV} $$
]. The offset can be modeled as a small DC source of strength,V
OS, in series with one of the input terminals to the amplifier as shown in Fig. 5.24. The input offset voltage produces a similar effect for any amplifier configuration,
                    
                   including the comparator where its effect becomes most dramatic. A large triangle in Fig. 5.24 indicates the actual amplifier chip, whereas the small triangle isthe
ideal amplifier without DC imperfections. The circuit in Fig. 5.24 is analyzed using the two summing-point constraints. Since the negative feedback is present,υ

                    x
                   must be zero, which yields[image: 
$$ {\upsilon}_{\mathrm{in}}+{V}_{\mathrm{OS}}=\upsilon *=\frac{R_1}{R_1+{R}_2}{\upsilon}_{\mathrm{out}}\Rightarrow {\upsilon}_{\mathrm{out}}={A}_{\mathrm{CL}}\left({\upsilon}_{\mathrm{in}}+{V}_{\mathrm{OS}}\right),\kern1em {A}_{\mathrm{CL}}=1+\frac{R_2}{R_1} $$
]

 (5.42)


[image: A331468_1_En_5_Fig24_HTML.gif]
Fig. 5.24Circuit for the non-inverting amplifier with an input offset voltage





Exercise 5.7
The amplifier circuit in Fig. 5.24 has the closed-loop gain of[image: 
$$ {A}_{\mathrm{CL}}=100 $$
] and an input offset voltage of[image: 
$$ {V}_{\mathrm{OS}}=5\kern0.5em \mathrm{mV} $$
]. What is the general expression for the output voltage?

                    Answer:
                    [image: 
$$ {\upsilon}_{\mathrm{out}} = 100{\upsilon}_{\mathrm{in}}+0.5\kern0.5em \mathrm{V} $$
]

 (5.43)


                  
where 0.5 V is theresulting

output offset voltage to the amplifier.


Canceling theOutput Offset Voltage



In some amplifiers like the LM741, special
offset-null terminals are
available for trimming the output DC voltage to zero. Figure 5.25a shows the concept. The wiper of the potentiometer is to be connected to the negative supply rail. Both inputs to the amplifier should be connected to the common port during the adjusting procedure, which implies that the output voltage is trimmed to zero. If the offset-null terminals are not available, the voltage at the common port, which controls the feedback loop, might be subject to a small offset. Figure 5.25b shows a circuit that can be used to eliminate the DC imperfections for a particular non-inverting
amplifier in the laboratory. A compensating voltage offset is introduced by means of an adjustable voltage divider with a potentiometer. To achieve a good degree of accuracy, one should set[image: A331468_1_En_5_Fig25_HTML.gif]
Fig. 5.25(a) Output DC offset voltage for the LM741 is reduced to zero by adjusting the potentiometer placed between its offset-null pins and (b) a similar operation performed with the virtual ground of the feedback loop




[image: 
$$ {R}_{\mathrm{P}}<<R $$
]

 (5.44)


Furthermore,R
1 should be considerably larger thanR. This condition can be avoided by a further modification of the present voltage divider. The output offset voltage is trimmed to zero when the input to the amplifier in Fig 5.26b is connected to the common port (circuit ground). This ensures that the effect of the input offset voltage will be eliminated entirely, forany value of the input voltage. Note that such an adjustment has to be done forevery

 discrete temperature point, sinceV
OS depends on temperature.[image: A331468_1_En_5_Fig26_HTML.gif]
Fig. 5.26Cancellation of the effectof
input bias currents







                  Input Bias and Offset Currents


                
In reality, for the op-amp to operate, there will be very small currents into the input terminals (into transistor bases), typically on the order of 100 nA. When those currents flow through the feedback resistances, they create corresponding voltages which appear as an output offset voltage as well. Let a current of 100 nA flowinto the negative terminal of the amplifier in Fig. 5.24. If the input to the amplifieris
grounded, this current must flow through resistanceR
2. Therefore, it will create the extra output DC voltage of[image: 
$$ {\upsilon}_{\mathrm{out}} = +100\kern0.5em \mathrm{nA}\times {R}_2 $$
]

 (5.45)

when the input voltage to the amplifierυ
in is exactly zero. To appreciate its value, we can use a resistance[image: 
$$ {R}_2=1\kern0.5em \mathrm{M}\Omega $$
] as an example. This yields[image: 
$$ {\upsilon}_{\mathrm{out}} = 0.1\kern0.5em \mathrm{V} $$
]

 (5.46)


at the output. Fortunately, the currents flowing into the amplifier are nearly thesame for either terminal. Therefore, theiraverage
(theinput bias current) considerably exceeds their difference (theinput offset current). There is a way to eliminate the larger effect of the input bias current. It consists of modifying the circuits for the non-inverting and inverting amplifier by adding one extra resistance[image: 
$$ R={R}_1\left|\right|{R}_2 $$
] as shown in Fig. 5.26.
From the amplifier’s gain point of view, the resistanceR has a negligible, if any, effect. The proof of the cancellation effect for the non-inverting amplifier circuit is as follows. When both the input and output to the amplifier in Fig. 5.26a aregrounded

 (connected to the common port), the input current source at the non-inverting input sees resistanceR and the input current source at the inverting input seesthe
 parallel combination ofR
1, R
2, respectively. MakingR equal to[image: 
$$ {R}_1\left|\right|{R}_2 $$
] yields an offset differential voltage that is zero.


5.3.6 
DC-Coupled Single-Supply Amplifier
:Virtual-Ground Circuit


A single voltage supply is a battery. We consider the non-inverting amplifier circuit driven by a 9-V battery. To handle the problem of not being able to generate negative voltages, avirtual-ground circuit may be used as shown in Fig. 5.27. We simply divide the voltage of the battery by two, with two large, equal resistancesR, and assign this voltage of 4.5 V to the common port. The battery terminal voltages then formally become ±4.5 V versus the common port. The power supply so constructed is unfortunately not exactly the dual-polarity voltage power supply. Namely, both resistancesR have to be large to avoid ohmic losses in the virtual-ground circuit. If they are, we cannot source/sink an appreciable output current into the common terminal since these resistances simultaneously operate as current limiters. An alternative solution is to reference the output to ground (which is the negative terminal of the battery), but notto
thevirtual ground of 4.5 V. When referenced to ground, the circuit in Fig. 5.27 has one remarkable property. Namely, if the input vs. ground is the (small) sensor voltageυ
in plus 4.5 V, then the output vs. ground is the amplified sensor voltage,A
CL
υ
in, plus thesame 4.5 V offset. In other words, the offset voltage of the virtual ground is not amplified! This statement is proved in the following example.[image: A331468_1_En_5_Fig27_HTML.gif]
Fig. 5.27A non-inverting amplifier driven by a single voltage supply, a battery. Absolute voltages versus ground (negative terminal of the battery) are shown





Example 5.9
Solve the circuit in Fig. 5.27.

Solution: The solution is based on the two summing-point constraints. There is no current into the input terminals so that resistancesR
1 andR
2 again form a voltage dividerbut
 now betweenυ
out and 4.5 V. By voltage division, the voltage at node (*) becomes[image: 
$$ \upsilon *=4.5\kern0.5em \mathrm{V}+\frac{R_1}{R_1+{R}_2}\left({\upsilon}_{\mathrm{out}}-4.5\kern0.5em \mathrm{V}\right) $$
]

 (5.47)



At the same time,using
 the second summing-point constraint for the amplifier with negative feedback, we obtain:[image: 
$$ \upsilon *=4.5\kern0.5em \mathrm{V}+{\upsilon}_{\mathrm{in}} $$
]

 (5.48)



Equating Eqs. (5.47) and (5.48), we arrive at the expected result:[image: 
$$ {\upsilon}_{\mathrm{out}} = 4.5\ \, \mathrm{V}+{A}_{\mathrm{CL}}{\upsilon}_{\mathrm{in}},\ \, {A}_{\mathrm{CL}}=1+\frac{R_2}{R_1} $$
]

 (5.49)



Feedback resistancesR
1, R
2 should be much larger than resistanceR in Fig. 5.27, in order to assure a flawless circuit operation. Yet another solution is to use (Zener) diodes in the bias circuit. Specialvirtual-

                    ground
                    
                  
integrated circuits exist that support single-supply amplifier operation. They generatean
output preciselymidway
 between the two supply rails.



5.4 Differenceand
Instrumentation Amplifiers
5.4.1 
Differential Input Signal
 to anAmplifier



Consider a sensing element that is a variable resistance. The sensor configuration is a Wheatstone bridge (Section 3.3) as seen in Fig. 5.28. Since the amplifier is powered by a dual supply with three terminals,[image: 
$$ \pm {V}_{\mathrm{CC}} $$
], and common (ground) port, the same power supply is connected to the bridge. We will use the positive rail and the ground rail in Fig. 5.28 since the sensor (e.g., the strain gauge) may require lower voltages than the amplifier chip itself.[image: A331468_1_En_5_Fig28_HTML.gif]
Fig. 5.28A Wheatstone bridge sensor to be connected to an amplifier circuit





Both voltagesυ
a, υ
b have to be used when reading sensor information. They may be written in terms of the other two voltagesυ
D, υ
CM:[image: 
$$ {\upsilon}_{\mathrm{a}}={\upsilon}_{\mathrm{CM}}+\frac{1}{2}{\upsilon}_{\mathrm{D}},\ \, {\upsilon}_{\mathrm{b}}={\upsilon}_{\mathrm{CM}}-\frac{1}{2}{\upsilon}_{\mathrm{D}} $$
]

 (5.50a)


[image: 
$$ {\upsilon}_{\mathrm{D}}={\upsilon}_{\mathrm{a}}-{\upsilon}_{\mathrm{b}},\kern0.5em {\upsilon}_{\mathrm{CM}}=0.5\left({\upsilon}_{\mathrm{a}}+{\upsilon}_{\mathrm{b}}\right) $$
]

 (5.50b)

Here,υ
D is the differential component of the combined input signal or thedifferential voltage andυ
CM is the sum component of the combined input signalor
thecommon-mode voltage. Only the differential voltage is usually important for sensor reading; the common-mode voltage does not carry any information. Whenthe
 bridge is exactly balanced, i.e., when[image: 
$$ \frac{R_1}{R_2}=\frac{R_3}{R(x)}, $$
]

 (5.51a)

the differential voltage is exactly zero:[image: 
$$ {\upsilon}_{\mathrm{D}}=0 $$
]

 (5.51b)

Still, the common-modeDC

voltage given by[image: 
$$ {\upsilon}_{\mathrm{CM}}={\upsilon}_{\mathrm{CC}}\left(\frac{R_2}{R_2+{R}_1}\right) $$
]

 (5.51c)

can have any large positive value. For example, it isυ
CC/2 when all resistances are equal.Even
 if the bridge in Fig. 5.28 uses[image: 
$$ \pm {V}_{\mathrm{CC}} $$
] power rails, it is hardly possible that the common-mode voltage is set to zero since absolutely identical resistors do not exist.
Exercise 5.8
In the Wheatstone bridge in Fig. 5.28, we assume[image: 
$$ {R}_2=1.1{R}_1 $$
],[image: 
$$ R(x)=1.1{R}_3 $$
], and[image: 
$$ {V}_{\mathrm{CC}}=6\kern0.5em \mathrm{V} $$
]. What are thedifferential
and common-mode voltages?

Answer:
                                    [image: 
$$ {\upsilon}_{\mathrm{D}}=0 $$
],[image: 
$$ {\upsilon}_{\mathrm{CM}}=3.14\;\mathrm{V} $$
].


5.4.2 Difference Amplifier:Differential Gain and Common-Mode Gain



The sensor in Fig. 5.28
                                is
thedifferential sensor withthree terminals:a,b, and ground. How do we amplify the differential voltage? Reviewing the inverting and non-inverting amplifier types reveals that they are not appropriate for this purpose: we simply do not have two input terminals to be connected to nodesa andb in Fig. 5.28. Onlyone
                                input
terminal referenced to common (ground) is available.
                  
                Note thatsingle-ended sensors withtwo terminals (plus and ground) indeed exist and may be used. In that case, inverting or non-inverting amplifiers will function well. However, the overall design accuracy may deteriorate compared to the differential design. Therefore, a new amplifier type with two input terminals should be introduced. It is thedifference amplifier shown in Fig. 5.29.[image: A331468_1_En_5_Fig29_HTML.gif]
Fig. 5.29A difference amplifier





Both inputs to this amplifier are referenced to common (ground) port. First, we see that the difference amplifier is an inverting amplifier with the negative feedback loop. However, the second input signal is now added to its positive terminal through a voltage divider. The analysis of this amplifier type is done using two summing-point constraints. A shortcut is to recognize, with the help of the first SPC, that in Fig. 5.29 we have two voltage dividers: one between resistancesR
1, R
2 and another between resistancesR
3, R
4. Therefore, for the voltage at node (*), one has, using the first voltage divider,[image: 
$$ \upsilon *={\upsilon}_{\mathrm{b}}+\frac{R_1}{R_1+{R}_2}\left({\upsilon}_{\mathrm{out}}-{\upsilon}_{\mathrm{b}}\right) $$
]

 (5.52a)

and, according to the second voltage divider,[image: 
$$ \upsilon *={\upsilon}_{\mathrm{a}}+\frac{R_3}{R_3+{R}_4}\left(0\ \, \mathrm{V}-{\upsilon}_{\mathrm{a}}\right) $$
]

 (5.52b)

Both expressions must be equalto
 each other due to the second SPC (the
 differential input voltage in a negative feedback amplifier is zero). Therefore,[image: 
$$ \begin{array}{l}{\upsilon}_{\mathrm{b}}+\frac{R_1}{R_1+{R}_2}\left({\upsilon}_{\mathrm{out}}-{\upsilon}_{\mathrm{b}}\right)={\upsilon}_{\mathrm{a}}-\frac{R_3}{R_3+{R}_4}{\upsilon}_{\mathrm{a}}\Rightarrow \\ {}\frac{R_1}{R_1+{R}_2}{\upsilon}_{\mathrm{out}}=\left(\frac{R_1}{R_1+{R}_2}-1\right){\upsilon}_{\mathrm{b}}-\left(\frac{R_3}{R_3+{R}_4}-1\right){\upsilon}_{\mathrm{a}}\end{array} $$
]

 (5.52c)

To create a voltage difference, i.e.,[image: 
$$ {\upsilon}_{\mathrm{a}}-{\upsilon}_{\mathrm{b}} $$
], between the input voltages on the right-hand side of Eq. (5.52c), we select[image: 
$$ \frac{R_2}{R_1}=\frac{R_4}{R_3} $$
]

 (5.52d)

as the necessary condition. Then,
                  
                  
                both factors in parentheses on the right-hand side of Eq. (5.52c) become equal. This yields the basic equation of the difference amplifier,[image: 
$$ {\upsilon}_{\mathrm{out}}=\frac{R_2}{R_1}\left({\upsilon}_{\mathrm{a}}-{\upsilon}_{\mathrm{b}}\right)=\frac{R_2}{R_1}{\upsilon}_{\mathrm{D}} $$
]

 (5.53)

Equation (5.53) is a simple, yet highly useful result for amplifier circuit design. Namely, once the amplifier in Fig. 5.29 is connected to the sensor in Fig. 5.28, the differential voltage[image: 
$$ {\upsilon}_{\mathrm{D}}={\upsilon}_{\mathrm{a}}-{\upsilon}_{\mathrm{b}} $$
] is amplified with the gain ofR
2/R
1 (
                  
                thedifferential amplifier circuit gain). At the same time,the
undesired common-mode voltage[image: 
$$ {\upsilon}_{\mathrm{CM}}=0.5\left({\upsilon}_{\mathrm{a}}+{\upsilon}_{\mathrm{b}}\right) $$
] is completelyrejected, i.e., amplified with a gain of 0, no matter what specific values the input voltages have versus ground. In other words,
                  
                thecommon-mode amplifier circuit gain is zero. Note that the ratio of two gains (differential gain versuscommon-mode gain) isan
important characteristic of the difference-amplifier circuit. It is calledthe

common-mode rejection ratio (CMRR). In our case, this ratio is clearly infinity. Unfortunately, in reality, this value is finite though quite large. One obvious reason is apossible

 mismatch in resistance ratios in Eq. (5.52d), which will not allow us to obtain Eq. (5.53) exactly. A certain portion of[image: 
$$ {\upsilon}_{\mathrm{CM}}=0.5\left({\upsilon}_{\mathrm{a}}+{\upsilon}_{\mathrm{b}}\right) $$
] will be present at the output.
Example 5.10
Find the output voltage of the amplifier circuits shown in Fig. 5.30 below. Assume the ideal amplifier and exact resistance values.[image: A331468_1_En_5_Fig30_HTML.gif]
Fig. 5.30Difference amplifier for Example5.10







Solution: We check Eq. (5.52d) first and conclude that the circuit in Fig. 5.30 is a true difference amplifier: it rejects the common-mode voltage. The differential voltage to the amplifier is −0.01 V. Using Eq. (5.53) gives us an output voltage of[image: 
$$ {\upsilon}_{\mathrm{out}}=-0.1\kern0.5em \mathrm{V} $$
]. If the resistance ratios were not equal to each other, a common-mode signal would be present at the output. In that case, the complete amplifier equation (5.52c) should to be used.

To minimize the effect ofbias
currents (Section 5.3), we should choose[image: 
$$ {R}_1={R}_3,\kern0.5em {R}_2={R}_4 $$
]

 (5.54)




5.4.3 Application Example: Instrumentation Amplifier
Motivation for an Instrumentation Amplifier
Figure 5.31 shows a 700-Ω uniaxial strain gauge. The strain gauge is attached to an aluminum slab. Figure 5.31 also shows a Wheatstone bridge intended for strain measurement with the present device. The dual-polarity supply voltage is ±7.5 V. You may build the Wheatstone bridge according to Fig. 5.31a and connect it to a DMM, with the DMM leads attached to terminalsa andb, respectively. In this configuration, the DMM measures the differential voltageυ
D. Using the potentiometer, you may balance the bridge, i.e., reduce voltageυ
D at no strainto

 a minimum, which should be within the range[image: 
$$ 0\kern0.5em \mathrm{V}\pm 3\kern0.5em \mathrm{mV} $$
]. The highest DMM resolution should be used. Now, by applying a strong bending force to the slab with two hands, you probably could obtain a maximum voltage change of[image: 
$$ \pm 2\kern0.5em \mathrm{mV} $$
].[image: A331468_1_En_5_Fig31_HTML.gif]
Fig. 5.31A Wheatstone bridge sensor where the strain gauge forms one of the four resistors





The positive voltagechange
corresponds to one bending direction, the negative change, to the opposite direction. Next, you may connect an oscilloscope instead of the DMM and use the DC-coupled settings and the highest voltage resolution of 20 mV per division. You will find that the noisy signal line on the screen hardly changes when you try your best. So are you not strong enough? Well, no. These are the realistic differential voltages for strain gauges which correspond to gauge resistance changes on the order of 1 Ω. Evensmaller voltage changes are often encountered in practice. Therefore, an accurate amplification of an extremely small differential voltage should be donewhile
rejecting thelarge

common-mode voltage (3.75 V in the present case). This nontrivial task is accomplished by aninstrumentation amplifier.

How to Build anInstrumentation

 Amplifier?
The initial guess is probably to use the difference amplifier from Fig. 5.30. For this amplifier,[image: 
$$ {R}_1={R}_3=10\kern0.5em \mathrm{k}\Omega, \kern0.5em {R}_2={R}_4=100\kern0.5em \mathrm{k}\Omega $$
]. However, we encounter two problems. The first one is that the amplifier should not perturb the sensor operation. In other words, the amplifier’s input resistance must be large compared to any of the resistances in the Wheatstone bridge. Thedifferential-mode input resistance to the amplifier in Fig. 5.30 is[image: 
$$ {R}_{\mathrm{in}}=2{R}_1=2{R}_3 $$
] (check problem5.82 at the end of this chapter). Therefore, we may wish to increase[image: 
$$ {R}_1={R}_3 $$
] by a factor of 10, i.e., choose[image: 
$$ {R}_1={R}_3=100\kern0.5em \mathrm{k}\Omega $$
]. The second problem is the amplifier gain. An overall gain of 1000 is required in Eq. (5.53) in order to obtain appreciable output voltages on the order of ± 2 V. This gain is too high; prohibitively large resistor values[image: 
$$ {R}_2={R}_4=100\kern0.5em \mathrm{M}\Omega $$
] would be needed in Fig. 5.30.

Concept of an Instrumentation Amplifier
Thus, the solution for at least one problem is clear: we need to add an extra amplifier stage. One way of doing so is shown in Fig. 5.32. Two non-inverting amplifiers are added to both inputs of the difference amplifier. This design achieves two goalssimultaneously
. First, it isolates the amplifier circuit from the Wheatstone bridge since the non-inverting amplifiers have an infinite input resistance and do not sink any current from the bridge. Second, it adds the extra gain; in other words, it eases the burden on the difference amplifier in the second stage. The difference amplifier becomes mainly responsible for rejecting the common-mode signal and the amplification of the differential signal.[image: A331468_1_En_5_Fig32_HTML.gif]
Fig. 5.32An important step toward the instrumentation amplifier: we add non-inverting amplification stages at the input





However, another problem arises there. The two non-inverting amplifiers amplify voltagesυ
a, υ
b (close to 3.75 V in the present case). Therefore, at any appreciable gain (say,[image: 
$$ {A}_{\mathrm{CL}}=1+{R}_4/{R}_3=10 $$
]), they simply saturate and will not function! To avoid this issue, we use a simple yet critical change shown in Fig. 5.33 where we remove the common-port connection from the non-inverting stage. The circuit in Fig. 5.33 behaves completely differently compared to the original circuit in Fig. 5.32. We nolonger

have the output voltagesυ
a*, υ
b* given by[image: 
$$ {\upsilon}_{\mathrm{a}}*={A}_{\mathrm{CL}}{\upsilon}_{\mathrm{a}},\ \, {\upsilon}_{\mathrm{a}}*={A}_{\mathrm{CL}}{\upsilon}_{\mathrm{a}},\ \, {A}_{\mathrm{CL}}=1+\frac{R_4}{R_3} $$
]

 (5.55)

Instead, those voltages now become[image: 
$$ {\upsilon}_{\mathrm{a}}*={\upsilon}_{\mathrm{a}}+\frac{R_4}{2{R}_3}\left({\upsilon}_{\mathrm{a}}-{\upsilon}_{\mathrm{b}}\right),\kern1em {\upsilon}_{\mathrm{b}}*={\upsilon}_{\mathrm{b}}-\frac{R_4}{2{R}_3}\left({\upsilon}_{\mathrm{a}}-{\upsilon}_{\mathrm{b}}\right) $$
]

 (5.56)

The details of the derivation are seen in Fig. 5.33. The currents and voltages labeled in this figure are obtained using two summing-point constraints.The
 key observation is that the absolute voltagesυ
a, υ
b are no longer amplified but are simply passed through. Only the differential voltage[image: 
$$ {\upsilon}_{\mathrm{D}}={\upsilon}_{\mathrm{a}}-{\upsilon}_{\mathrm{b}} $$
] is amplified. The circuit in Fig. 5.33 is also a “difference amplifier,” and it may becalled
theunity common-mode gain stage. The final step in the construction of theinstrumentation amplifier is to connect both stages together. Figure 5.34 gives the final circuit that can be employed in conjunction with the Wheatstone bridge for the strain gauge shown in Fig. 5.31. Here, a quad op-amp chip (LM148 series) is used; it has four individual amplifiers inside the chip. For our circuit, we need three of them. The circuit is powered by a[image: 
$$ \pm 7.5-\mathrm{V} $$
] dual supply. According to Eqs. (5.53) and (5.56), the overall (differential) gain in Fig. 5.34 becomes[image: 
$$ {\upsilon}_{\mathrm{out}}=\frac{R_2}{R_1}\left(1+\frac{R_4}{R_3}\right)\left({\upsilon}_{\mathrm{a}}-{\upsilon}_{\mathrm{b}}\right)=\frac{R_2}{R_1}\left(1+\frac{R_4}{R_3}\right){\upsilon}_{\mathrm{D}},\ \, {A}_{\mathrm{CL}}=\frac{R_2}{R_1}\left(1+\frac{R_4}{R_3}\right) $$
]

 (5.57)

The overall common-mode gainis

 exactly zero (ideal resistances). Choosing resistance values from Fig. 5.34 gives us an overall differential gain of 1010. We retain a certain gain (10) of the differential stage in order to have the gain of no more than 100 per stage.[image: A331468_1_En_5_Fig33_HTML.gif]
Fig. 5.33Next step toward the instrumentation amplifier: we convert the non-inverting stage to a unity common-mode gain amplifier




[image: A331468_1_En_5_Fig34_HTML.gif]
Fig. 5.34The complete instrumentation amplifier for the strain gauge testing







5.4.4 Instrumentation Amplifier in Laboratory
The operation of the circuit in Fig. 5.34 is shown in Fig. 5.35. The oscilloscope resolution is 1 V per division. At no applied strain, the oscilloscope connected to the amplifier output (the ground terminal of the oscilloscope is connected to circuit ground) shows a relatively small output voltage signal. When a bending moment is applied, as shown in Fig. 5.35a, the output voltage rises to approximately 2 V. This voltage is sufficient to light up a yellow LED (light-emitting diode) indicator connected between the output port and common port. When the opposite bending moment is applied, as in Fig. 5.35b, the output voltage drops to approximately –2 V. This voltage, taken with a negative sign, is again sufficient to light up a red LED connected from the common port to the output port. The states in Fig. 5.35 have beenachieved
by a proper tuning of the potentiometer in the Wheatstone bridge. Thus, we have built a simple, yet useful, uncalibrated,
                  
                  
                 uniaxial, stress-monitoring system. Frequently, the output of an instrumentation amplifier is connected to an analog-to-digital converter (ADC) and then to a computer system.[image: A331468_1_En_5_Fig35_HTML.gif]
Fig. 5.35Operation of the instrumentation amplifier with the strain gauge attached to a metal slab. (a) A “positive” bending moment is applied and (b) a “negative” bending moment is applied. The oscilloscope resolution is 1 V per division in every case






Load Cell
 and OtherUses



The circuit in Fig. 5.34 gives us the idea of a commercialload cell. Strain gauges are commercially available in prefabricated modules such as load cells that measure force, tension, compression, and torque. All four resistors of the Wheatstone bridge may be strain gauges. Load cells typically use a full-bridge configuration and contain four leads for bridge excitation and measurement. The manufacturers provide calibration and accuracy information. However, the load cells donot normally include the instrumentation amplifier itself. Another mechanical engineering example where the differential amplifier is quite useful is a thermocouple. When measuring a thermocouple in a noisy environment, the noise from the environment appears as an offset on both input leads, making it a common-mode voltage signal. Many other examples indeed exist, particularly in biomedical engineering. The instrumentation amplifier is used to amplify an output signal from virtually any analog differential sensor instrument. Also note that instrumentation amplifiers with precision resistors are available as separate integrated circuits.
                    
                   Those ICs have a much better performance than an instrumentation amplifier wired onthe
 protoboard. Other instrumentation amplifier types exist, which are different from the topology of the instrumentation amplifier circuit in Fig. 5.34. In principle, it is possible to design an instrumentation amplifier circuit with onlytwo amplifier gain stages. The summary to this chapter provides an example used in practice.



5.5 General Feedback Systems
5.5.1 Signal-Flow Diagram of a Feedback System
Although the negative feedback was first quantified by electrical engineers, it is extensively observed, studied, and employed in many mechanical, biomedical, chemical, and other systems. Figure 5.36 shows a generic structureof
alinear feedback system.[image: A331468_1_En_5_Fig36_HTML.gif]
Fig. 5.36A negative feedback loop for an arbitrary system (signal-flow diagram)





Figure 5.36 is a simplifiedsignal-flow diagram orcontrols block diagram. The variablex is asignal; it may be voltage, current (electrical engineering) or displacement, velocity (mechanical engineering), etc. These three blocks have special names in control theory:	1.The first block (basic voltage amplifier in terms of ECE) is called theforward oropen-loop gain A (often denoted byA
OL). It operates according to the ideal-amplifier rule[image: 
$$ {x}_o=A{x}_{\mathrm{e}},\kern1em A=\mathrm{const}>0 $$
]

 (5.58)





 

	2.The second block iscalled
thefeedback gain. It operates according to a linear rule[image: 
$$ {x}_f=\beta {x}_{\mathrm{out}},\kern1em \beta =\mathrm{const}>0 $$
]

 (5.59)

whereβ iscalled
thefeedback factor.


 

	3.The block where the input signal and feedback signal are compared and subtracted from one another is called thesumming (ordifference)node.


 






5.5.2 Closed-Loop Gain and ErrorSignal


                  
                

Mathematically, from Eq.(5.59), one has[image: 
$$ {x}_{\mathrm{e}}={x}_{\mathrm{in}}-{x}_f={x}_{\mathrm{in}}-\beta \kern0.1em {x}_{\mathrm{out}} $$
]

 (5.60)

According to Eqs. (5.58) and (5.60), we obtain[image: 
$$ {x}_{\mathrm{out}}=A{x}_{\mathrm{e}}=A\left({x}_{\mathrm{in}}-\beta \kern0.1em {x}_{\mathrm{out}}\right) $$
]

 (5.61)

Solving forx
out gives us theclosed-loop gain A
CL (sometimes denoted byG orA

                  f
                )[image: 
$$ {x}_{\mathrm{out}}=\frac{A}{1+A\beta }{x}_{\mathrm{in}}\Rightarrow {A}_{\mathrm{CL}}=\frac{A}{1+A\beta } $$
]

 (5.62)

If theopen-loop gainA is made arbitrarily large (ideally approaching ∞), then theclosed-loop gain approaches[image: 
$$ {A}_{\mathrm{CL}}\approx \frac{1}{\beta } $$
]

 (5.63)

The significance of Eq. (5.63) cannot be overstated. It means that as long as the open-loop gainA is large enough, the closed-loop gainA
CL will approach the constant value 1/β, which is precisely controlled by an external passive feedback network. In other words, manufacturing uncertainties inA and the potential nonlinear behavior ofA are eliminated sinceA itself is eliminated. The price for this operation is a significant reduction of the overall system gain. Equation (5.63) implies that[image: 
$$ A\beta >>1\Rightarrow {A}_{CL}=\frac{1}{\beta }<<A $$
]

 (5.64)

Clearly, the feedback loop reduces the initial gain substantially. And yet, despite this drawback, the closed-loop gainA
CL may still be large enough and sufficient for amplification as long asA is made very large. Thus, the feedback loop in Fig. 5.36 is a simple and powerful means to control the operation ofan


                  
                 arbitrary high-gain system.
Exercise 5.9
The open-loop gainA in Fig. 5.36 varies between two extreme values of[image: 
$$ A=1000\pm 200 $$
] (±20 % gain variation) depending on the system parameters. The forward gain block is used inthe
closed-loop configuration with the feedback factorβ of 0.1. Approximate the two extreme values of the closed-loop gain,A
CL.

Answer:
                                    [image: 
$$ {A}_{\mathrm{CL}}=A/\left(1+A\beta \right)=9.90\pm 0.02\kern1em \mathrm{or}\kern0.5em \pm 0.2\% $$
] closed-loop gain variation.

Error Signal
The second question of interest is finding theerror signal,x
e, in Fig. 5.36, which corresponds to the differential input voltage for an amplifier circuit with the negative feedback. Substitution of Eq. (5.62) into Eq. (5.60) yields[image: 
$$ {x}_{\mathrm{e}}={x}_{\mathrm{in}}-\beta \ \, \frac{A}{1+A\beta }{x}_{\mathrm{in}}=\frac{1}{1+A\beta }{x}_{\mathrm{in}} $$
]

 (5.65)

When the open-loop gainA is largeand


                    
                  furthermore[image: 
$$ A\beta >>1 $$
], one obtains[image: 
$$ {x}_{\mathrm{e}}\approx 0 $$
]

 (5.66)


As applied to the amplifier circuits, Eq. (5.66) is exactly the second summing-point constraint or the condition of the zero differential input amplifier voltage under presence of the negative feedback.
Exercise 5.10
The open-loop gainA in Fig. 5.36 is 10,000. The forward gain block is used in the closed-loop configuration with the feedback factorβ of 0.1. Determine the error signalx
e if theinput


                      
                    voltage signal is 1 mV.

Answer:
                                        [image: 
$$ {x}_{\mathrm{e}}=0.999\kern0.5em \upmu \mathrm{V}\approx 1\kern0.5em \upmu \mathrm{V} $$
].



5.5.3 Application of General Theory to Voltage Amplifiers with Negative Feedback
Two circuits shown in Fig. 5.37 are the buffer amplifier circuit and the non-inverting amplifier circuit, respectively. The goal is to find the closed-loop gainA
CL of the amplifier circuit when thegiven
open-circuit voltage gainA is large but finite. In this case, the second summing-point constraint cannot be applied. Therefore, simple Eqs. (5.16) and (5.21) obtained previously need to be modified.[image: A331468_1_En_5_Fig37_HTML.gif]
Fig. 5.37Two amplifier circuits with negative feedback networks indicated by a shaded rectangle





Both circuits from Fig. 5.37 have the form of the feedback system as in Fig. 5.36. The feedback network is indicated by a shaded rectangle. The signalx is now the voltage. SinceA is given, the only problem is to find the feedback factor,β. For the buffer amplifier, the feedback factor is clearly one. For the non-inverting amplifier circuit, the feedback loop is the voltage divider, whereβ is determined by the resistance ratio. Note that the voltage divider model implies no current into amplifier’s input terminals. Specifically,βυ
out is equal to[image: 
$$ {R}_1/\left({R}_1+{R}_2\right){\upsilon}_{\mathrm{out}} $$
]. Therefore,[image: 
$$ \beta =1 - \mathrm{buffer}\ \mathrm{ampl}.\ \mathrm{circuit};\kern1em \beta =\frac{R_1}{R_1+{R}_2} - \mathrm{n}\mathrm{o}\mathrm{n}\hbox{-} \mathrm{i}\mathrm{n}\mathrm{v}.\ \mathrm{ampl}.\ \mathrm{circuit} $$
]

 (5.67)

Substitution into Eq. (5.62) gives us two expressions for the closed-loop gain:[image: 
$$  {A}_{CL}=\frac{A}{1+A}\kern0.5em -\kern0.5em \mathrm{buffer}\ \mathrm{ampl}.\ \mathrm{circuit};\kern1em {A}_{CL}=\frac{A}{1+A\frac{R_1}{R_1+{R}_2}}-\kern0.5em \mathrm{n}\mathrm{o}\mathrm{n}\hbox{-} \mathrm{i}\mathrm{n}\mathrm{v}.\ \mathrm{ampl}.\ \mathrm{circuit} $$
]

 (5.68)


The first equation (5.68) coincides with Eq. (5.23) obtained in Section 5.2 using the accurate circuit analysis. So does second equation (5.68) when we repeat the same analysis for the non-inverting amplifier configuration. If[image: 
$$ A\to \infty $$
], then the simple gain expressions—Eqs. (5.16) and (5.21)—derived with the help of the second summing-point constraint are obtained from Eqs. (5.68). The analysis of the inverting amplifier requires more efforts since this amplifier type is not exactly the voltage amplifier but rather a transresistance amplifier considered next.
Exercise 5.11
The open-loop (open-circuit) gainA of a non-inverting amplifier circuit with[image: 
$$ {R}_1=1\;\mathrm{k}\Omega, {R}_2=9\;\mathrm{k}\Omega $$
] is 10,000. Determine the closed-loop gain.

Answer:
                                    [image: 
$$ {A}_{\mathrm{CL}}=9.99 $$
], which is by 0.1 % different from[image: 
$$ {A}_{\mathrm{CL}}=1+\frac{R_2}{R_1}=10 $$
].

Last but not least, we emphasize another significant advantage of the negative feedback. When the input and output resistances of the amplifier model in Fig. 5.5 have finite values (which occurs in practice), the negative feedback loop effectivelyincreases the input resistance anddecreases the output resistance, i.e., makes the entire amplifier circuit look closer to the ideal-amplifier model.

5.5.4 Voltage, Current, Transresistance, and Transconductance Amplifiers with the Negative Feedback
At the end of this short section, we consider four basic amplifier circuits with negative feedback, which correspond to the four basic dependent sources studied in Chapter2:voltage amplifier,transconductance amplifier,transresistance amplifier, andcurrent amplifier. Figure 5.38 shows the corresponding circuit diagrams.Load
resistanceR
L is introduced forthe
transconductance amplifier and the current amplifier, respectively, where the output is the load current. Although every amplifier circuit may be represented in the form similar to the feedback diagram in Fig. 5.36 and analyzed accordingly, only a simplified treatment will be given here. It utilizes the condition[image: 
$$ A\to \infty $$
] and the resulting second summing-point constraint. Using the both summing-point constraints, we may obtain, with reference to Fig. 5.38,[image: A331468_1_En_5_Fig38_HTML.gif]
Fig. 5.38Four basic amplifier types with negative feedback




[image: 
$$ {\upsilon}_{\mathrm{out}}=\left(1+\frac{R_2}{R_1}\right){\upsilon}_{\mathrm{in}}\kern3em \mathrm{voltage}\ \mathrm{amplifier} $$
]

 (5.69a)


[image: 
$$ {i}_{\mathrm{out}}={G}_{\mathrm{F}}{\upsilon}_{\mathrm{in}},\kern0.5em {G}_{\mathrm{F}}=1/{R}_{\mathrm{F}}\kern1em \mathrm{transconductance}\ \mathrm{amplifier} $$
]

 (5.69b)


[image: 
$$ {\upsilon}_{\mathrm{out}}=-{R}_{\mathrm{F}}{i}_{\mathrm{in}}\kern5.8em \mathrm{transresistance}\ \mathrm{amplifier} $$
]

 (5.69c)


[image: 
$$ {i}_{\mathrm{out}}=\left(1+\frac{R_2}{R_1}\right){i}_{\mathrm{in}}\kern3.7em \mathrm{current}\ \mathrm{amplifier} $$
]

 (5.69d)

Note that other more elaborate circuits may be considered; some of them are analyzed in the corresponding homework problems.


Summary

                	Amplifier circuit
	Operation
	Formulas

	Open-loop operational amplifier (comparator)

                            [image: A331468_1_En_5_Figbd_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figbe_HTML.gif]
                          
	Operation with[image: 
$$ \pm {V}_{\mathrm{CC}} $$
] power rails:

                            [image: 
$$ {\upsilon}_{\mathrm{out}}=A\left({\upsilon}^{+}-{\upsilon}^{-}\right),\kern1em \left|{\upsilon}_{\mathrm{out}}\right|<{V}_{\mathrm{CC}} $$
]
                          
Open-circuit (open-loop) gainA is very high

	Amplifier circuit model

                            [image: A331468_1_En_5_Figbf_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figbg_HTML.gif]
                          
	– Valid forany voltage amplifier or voltage amplifier circuit, butR
in,R
out,A are different in every case;
– Ideal amplifier model (useful simplification):

[image: 
$$ {R}_{\mathrm{in}}=\infty $$
],[image: 
$$ {R}_{\mathrm{out}}=0 $$
],[image: 
$$ A=\infty $$
]


	Negative feedback for the ideal-amplifier model: differential input voltage is zero (2nd SPC)

	Non-inverting amplifier

                            [image: A331468_1_En_5_Figbh_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figbi_HTML.gif]
                          
	For ideal-amplifier model:

                            [image: 
$$ {\upsilon}_{\mathrm{out}}={A}_{\mathrm{CL}}{\upsilon}_{\mathrm{in}},\kern0.5em {A}_{\mathrm{CL}}=1+\frac{R_2}{R_1} $$
]
                          

[image: 
$$ {R}_{\mathrm{in}}=\infty $$
],[image: 
$$ {R}_{\mathrm{out}}=0 $$
]

Exact:[image: 
$$ {A}_{\mathrm{CL}}=A{\left(1+A\frac{R_1}{R_1+{R}_2}\right)}^{-1} $$
]


	Voltage follower (buffer) amplifier

                            [image: A331468_1_En_5_Figbj_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figbk_HTML.gif]
                          
	For ideal-amplifier model:

                            [image: 
$$ {\upsilon}_{\mathrm{out}}={A}_{\mathrm{CL}}{\upsilon}_{\mathrm{in}},\kern0.5em {A}_{\mathrm{CL}}=1 $$
]
                          

[image: 
$$ {R}_{\mathrm{in}}=\infty $$
],[image: 
$$ {R}_{\mathrm{out}}=0 $$
]

Exact:[image: 
$$ {A}_{\mathrm{CL}}=\frac{A}{1+A} $$
]


	Inverting amplifier

                            [image: A331468_1_En_5_Figbl_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figbm_HTML.gif]
                          
	For ideal-amplifier model:

                            [image: 
$$ {\upsilon}_{\mathrm{out}}={A}_{\mathrm{CL}}{\upsilon}_{\mathrm{in}},\kern0.5em {A}_{\mathrm{CL}}=-\frac{R_2}{R_1} $$
]
                          

[image: 
$$ {R}_{\mathrm{in}}={R}_1 $$
],[image: 
$$ {R}_{\mathrm{out}}=0 $$
]

Exact:[image: 
$$ {A}_{\mathrm{CL}}=-\frac{R_2}{R_1}A{\left(A+1+\frac{R_2}{R_1}\right)}^{-1} $$
]


	Cascaded amplifier

                            [image: A331468_1_En_5_Figbn_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figbo_HTML.gif]
                          
	– Gains of individual stages multiply;
– Input resistance of the amplifier circuit is the input resistance of stage 1;
– Individual stage gain should not exceed 100

	Input load bridging versus input load matching

	Load bridging

                            [image: A331468_1_En_5_Figbp_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figbq_HTML.gif]
                          
	– Source (sensor) sees the amplifier as an open circuit:

                            [image: 
$$ {\upsilon}_{\mathrm{out}}={\upsilon}_{\mathrm{S}}\times {A}_{\mathrm{CL}} $$
]
                          
– No current from the source can flow into amplifier circuit

	Load matching

                            [image: A331468_1_En_5_Figbr_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figbs_HTML.gif]
                          
	– Source (sensor) sees the amplifier as resistance[image: 
$$ {R}_{\mathrm{in}}={R}_1 $$
]:

                            [image: 
$$ {\upsilon}_{\mathrm{out}}=\frac{R_{\mathrm{in}}}{R_{\mathrm{S}}+{R}_{\mathrm{in}}}{\upsilon}_{\mathrm{S}}\times {A}_{\mathrm{CL}} $$
]
                          
– Matching condition[image: 
$$ {R}_{\mathrm{S}}={R}_{\mathrm{in}} $$
] is important for high-freq. circuits

	DC imperfections and their cancellation

	Non-inverting amplifier

                            [image: A331468_1_En_5_Figbt_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figbu_HTML.gif]
                          
	– Short-circuited output voltage may be trimmed to zero using the offset null terminal
– Short-circuited output voltage may be trimmed to zero by adjusting common-terminal voltage;
– Extra resistanceR eliminates the effect of the input bias current

	Inverting amplifier

                            [image: A331468_1_En_5_Figbv_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figbw_HTML.gif]
                          
	The same as above

	Multiple-input amplifier circuits

	Summing amplifier

                            [image: A331468_1_En_5_Figbx_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figby_HTML.gif]
                          
	– The summing amplifier sums several weighted input voltages:

                            [image: 
$$ {\upsilon}_{\mathrm{out}}=-\frac{R_{\mathrm{F}}}{R_1}{\upsilon}_1-\frac{R_{\mathrm{F}}}{R_2}{\upsilon}_2-\frac{R_{\mathrm{F}}}{R_3}{\upsilon}_3 $$
]
                          
– Used as a prototype of the digital to analog converter

	Difference amplifier

                            [image: A331468_1_En_5_Figbz_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figca_HTML.gif]
                          
	– True difference amplifier:

[image: 
$$ \frac{R_2}{R_1}=\frac{R_4}{R_3} $$
],[image: 
$$ {\upsilon}_{\mathrm{out}}=\frac{R_2}{R_1}\left({\upsilon}_a-{\upsilon}_b\right) $$
]

– Rejects common-mode voltage
– For the general difference amplifier circuit see Eq. (5.52c)

	Unity common-mode gain stage

                            [image: A331468_1_En_5_Figcb_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figcc_HTML.gif]
                          
	– Differential gain:

                            [image: 
$$ {\upsilon}_a*-{\upsilon}_b*={A}_{\mathrm{D}}\left({\upsilon}_a-{\upsilon}_b\right) $$
]
                          

                            [image: 
$$ {A}_{\mathrm{D}}=1+\frac{R_4}{R_3} $$
]
                          
– Common-mode gain:

                            [image: 
$$ {\upsilon}_a*+{\upsilon}_b*={A}_{\mathrm{CM}}\left({\upsilon}_a+{\upsilon}_b\right) $$
]
                          

                            [image: 
$$ {A}_{\mathrm{CM}}=1 $$
]
                          

	Instrumentation amplifier

                            [image: A331468_1_En_5_Figcd_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figce_HTML.gif]
                          
	Output voltage:

                            [image: 
$$ {\upsilon}_{\mathrm{out}}=\frac{R_2}{R_1}\left(1+\frac{R_4}{R_3}\right)\left({\upsilon}_a-{\upsilon}_b\right) $$
]
                          
Closed-loop differential gain:

                            [image: 
$$ {A}_{\mathrm{CL}}=\frac{R_2}{R_1}\left(1+\frac{R_4}{R_3}\right) $$
]
                          
– Rejects common-mode voltage

	Simpler instrumentation amplifier

                            [image: A331468_1_En_5_Figcf_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figcg_HTML.gif]
                          
	Output voltage:

                            [image: 
$$ {\upsilon}_{\mathrm{out}}=\left(2\frac{R_2}{R_{\mathrm{G}}}+\left(1+\frac{R_2}{R_1}\right)\right)\left({\upsilon}_a-{\upsilon}_b\right) $$
]
                          
– Closed-loop differential gain:

                            [image: 
$$ {A}_{\mathrm{CL}}=2\frac{R_2}{R_{\mathrm{G}}}+\left(1+\frac{R_2}{R_1}\right) $$
]
                          
– Rejects common-mode voltage

	General feedback systems and amplifiers with negative feedback

	Signal—flow diagram

                            [image: A331468_1_En_5_Figch_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figci_HTML.gif]
                          
	Closed-loop gain:

                            [image: 
$$ {x}_{\mathrm{out}}={A}_{\mathrm{CL}}{x}_{\mathrm{in}},\kern0.5em {A}_{\mathrm{CL}}=\frac{A}{1+A\beta}\approx \frac{1}{\beta } $$
]
                          
Error signal:

                            [image: 
$$ {x}_e=\frac{1}{1+A\beta }{x}_{\mathrm{in}}\approx 0 $$
]
                          

	Transconductance amplifier

                            [image: A331468_1_En_5_Figcj_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figck_HTML.gif]
                          
	Closed-loop operation:

                            [image: 
$$ {i}_{\mathrm{out}}={G}_{\mathrm{F}}{\upsilon}_{\mathrm{in}},\kern0.5em {G}_{\mathrm{F}}=1/{R}_{\mathrm{F}} $$
]
                          
Variations of this simple circuit are possible

	Transresistance amplifier

                            [image: A331468_1_En_5_Figcl_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figcm_HTML.gif]
                          
	Closed-loop operation:

                            [image: 
$$ {\upsilon}_{\mathrm{out}}=-{R}_{\mathrm{F}}{i}_{\mathrm{in}} $$
]
                          
Variations of this simple circuit are possible

	Current amplifier

                            [image: A331468_1_En_5_Figcn_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figco_HTML.gif]
                          
	Closed-loop operation:

                            [image: 
$$ {i}_{\mathrm{out}}=\left(1+\frac{R_2}{R_1}\right){i}_{\mathrm{in}} $$
]
                          
Variations of this simple circuit are possible

	Howland amplifier (current pump)

                            [image: A331468_1_En_5_Figcp_HTML.gif]
                          
	
                            [image: A331468_1_En_5_Figcq_HTML.gif]
                          
	Closed-loop operation:
([image: 
$$ {R}_1/{R}_3={R}_2/{R}_4 $$
])

                            [image: 
$$ {i}_{\mathrm{out}}={G}_{\mathrm{F}}\left({\upsilon}_a-{\upsilon}_b\right),\kern0.5em {G}_{\mathrm{F}}=1/{R}_2 $$
]
                          
Variations of this clever circuit are possible




              

Problems
5.1 Amplifier operation and circuit models

                  5.1.1 Amplifier Operation
                
Problem 5.1
An operational amplifier has five terminals.	A.Sketch the amplifier symbol.


 

	B.Name each of the op-amp terminals and describe its function in one sentence per terminal.


 

	C.Can the amplifier IC have more than five terminals? Explain.


 






Problem 5.2
You may wonder about the meaning of the two letters preceding amplifier marking, e.g., LM741. Each of the semiconductor companies has its own abbreviation, e.g., LM for an amplifier designed and manufactured by the National Semiconductor Corporation (acquired by Texas Instruments in 2011), AD for an amplifier manufactured by Analog Devices, MC for STMicroelectronics, TL for Texas Instruments, etc. The same chip, e.g., LM741, may be manufactured by several semiconductor chip makers. The part number is given by a numerical code that is imprinted on the top of the package. An MC1458 amplifier IC chip is shown in the figure below. This IC is adual operational amplifier. In other words, one such IC package contains two separate operational amplifiers.[image: A331468_1_En_5_Fige_HTML.gif]


	A.Download the amplifier’s datasheet fromhttp://​www.​datasheetcatalog​.​com



 

	B.Redraw the figure to this problem in your notes and label the pins for the non-inverting input, the inverting input, and the output of the operational amplifier #1.


 

	C.Label pins for[image: 
$$ +{V}_{\mathrm{CC}} $$
] and[image: 
$$ -{V}_{\mathrm{CC}} $$
].


 






Problem 5.3
What is the minimum number of pins required for:	A.The dual operational amplifier (the corresponding IC package contains two separate operational amplifiers)?


 

	B.Thequad operational amplifier (the corresponding IC package contains four separate operational amplifiers)?


 






Problem 5.4
An operational amplifier has an open-circuit gain of[image: 
$$ A=2\times {10}^5 $$
] and is powered by a dual source of ±10 V. It is operated in the open-circuit configuration. What is the amplifier’s open-circuit output voltageυ
out if	A.
                            [image: 
$$ {\upsilon}^{+}=0\mathrm{V},\kern0.5em {\upsilon}^{-}=0\mathrm{V} $$
]
                          


 

	B.
                            [image: 
$$ {\upsilon}^{+}=+1\mathrm{V},\kern0.5em {\upsilon}^{-}=+1\mathrm{V} $$
]
                          


 

	C.
                            [image: 
$$ {\upsilon}^{+}=+1\mathrm{V},\kern0.5em {\upsilon}^{-}=0\mathrm{V} $$
]
                          


 

	D.
                            [image: 
$$ {\upsilon}^{+}=0\mathrm{V},\kern0.5em {\upsilon}^{-}=-1\mathrm{V} $$
]
                          


 

	E.
                            [image: 
$$ {\upsilon}^{+}=+1\mathrm{mV},\kern0.5em {\upsilon}^{-}=0\mathrm{V} $$
]
                          


 

	F.
                            [image: 
$$ {\upsilon}^{+}=-1\mathrm{mV},\kern0.5em {\upsilon}^{-}=0\mathrm{V} $$
]
                          


 

	G.
                            [image: 
$$ {\upsilon}^{+}=10\mu \mathrm{V},\kern0.5em {\upsilon}^{-}=0\mathrm{V} $$
]
                          


 

	H.
                            [image: 
$$ {\upsilon}^{+}=0\mathrm{V},\kern0.5em {\upsilon}^{-}=10\mu \mathrm{V} $$
]
                          


 






Problem 5.5
Based on the solution to Problem5.4, why do you think the operational amplifier is seldom used in the open-loop configuration, at least in analog electronics?

Problem 5.6
Using the website of the National Semiconductor Corporation, determine the maximum and minimum supply voltages (operating with the dual-polarity power supply) for the following amplifier’s ICs:	A.LM358


 

	B.LM1458


 

	C.LM741


 





Which amplifier IC from the list may be powered by two AAA batteries?

Problem 5.7
Plot to scale the output voltage of the operation amplifier with an open-circuit gain[image: 
$$ A=5\times {10}^4 $$
] when the non-inverting input voltage[image: 
$$ {\upsilon}^{+} $$
] changes from −2 mV to +2 mV and the inverting input voltage[image: 
$$ {\upsilon}^{-} $$
] is equal to −1 mV. The amplifier is powered by a ±12-V dual voltage supply. Label the axes.

Problem 5.8
Repeat the previous problem for[image: 
$$ A=5\times {10}^5 $$
].


                  5.1.2 Operational Amplifier Comparator
                
Problem 5.9
In a circuit shown in the figure below, an operational amplifier is driven by a ±10-V dual power supply (not shown). The open-circuit DC gain of the amplifier is[image: 
$$ A=1,000,000 $$
]. Sketch to scale the output voltage to the amplifier when	a)
                            [image: 
$$ {V}_{\mathrm{threshold}}=-30\kern0.5em \mathrm{mV} $$
]
                          


 

	b)
                            [image: 
$$ {V}_{\mathrm{threshold}}=+30\kern0.5em \mathrm{mV} $$
]
                          


 





Assume that the amplifier hits the power rails in saturation.[image: A331468_1_En_5_Figf_HTML.gif]




Problem 5.10
Based on the solution to the previous problem, why do you think the operational amplifier in the open-loop configuration may be useful for digital circuits?

Problem 5.11
Solve Problem5.9 when the input voltage is applied to the inverting input and the threshold voltage is applied to the non-inverting input.

Problem 5.12
The circuit shown in the figureis
azero-level detector. An operational amplifier in the open-loop configuration is driven by a ±10-V dual power supply (not shown). The open-circuit amplifier gain is 100,000. Sketch the output voltage to scale. Assume that the amplifier hits the power rails in saturation.[image: A331468_1_En_5_Figg_HTML.gif]




Problem 5.13
In a circuit shown in the figure below, an operational amplifier is driven by a ±15-V dual power supply (not shown). The open-circuit gain of the amplifier is[image: 
$$ A=100,000 $$
]. Sketch to scale the output voltage to the amplifier when	a)
                            [image: 
$$ {V}_{\mathrm{threshold}}=0\kern0.5em \mathrm{mV} $$
]
                          


 

	b)
                            [image: 
$$ {V}_{\mathrm{threshold}}=+4\kern0.5em \mathrm{mV} $$
]
                          


 





Assume that the amplifier hits the power rails in saturation.[image: A331468_1_En_5_Figh_HTML.gif]





                  5.1.3 Amplifier Circuit Model
                

                  5.1.4 Ideal-Amplifier Model
                
Problem 5.14

                    	A.Draw the circuit model of an operational amplifier.


 

	B.Describe the meaning of the amplifier as the voltage-controlled voltage source in your own words.


 




                  

Problem 5.15
For an equivalent amplifier circuit with[image: 
$$ A=1500 $$
] shown in the figure below, determine the output voltage given that[image: 
$$ {\upsilon}_{\mathrm{S}}(t)=1 \cos \omega \kern0.1em t\kern0.5em \left[\mathrm{mV}\right] $$
],[image: 
$$ {R}_{\mathrm{S}}=50\kern0.5em \Omega $$
],[image: 
$$ {R}_{\mathrm{L}}=50\kern0.5em \Omega $$
] for three cases:	A.
[image: 
$$ {R}_{\mathrm{in}}=100\kern0.5em \mathrm{k}\Omega $$
] and[image: 
$$ {R}_{\mathrm{out}}=2\kern0.5em \Omega $$
].


 

	B.
[image: 
$$ {R}_{\mathrm{in}}=50\kern0.5em \Omega $$
] and[image: 
$$ {R}_{\mathrm{out}}=25\kern0.5em \Omega $$
].


 

	C.
[image: 
$$ {R}_{\mathrm{in}}=\infty $$
] and[image: 
$$ {R}_{\mathrm{out}}=0 $$
].


 




[image: A331468_1_En_5_Figi_HTML.gif]




Problem 5.16
Name one reason why we should attempt to:	A.Make the input resistance (impedance) to the amplifier as high as possible.


 

	B.Make the output resistance (impedance) to the amplifier as low as possible.


 






Problem 5.17

                    	A.List all conditions of the ideal-amplifier model.


 

	B.What is the short-circuit output current of the ideal amplifier?


 




                  

Problem 5.18

                    	A.What is the first summing-point constraint?


 

	B.What is the equivalent formulation of the first summing-point constraint in terms of the input resistance (impedance) to the amplifier?


 




                  

Problem 5.19
An amplifier circuit is shown in the figure below. The first summing-point constraint applies. Determine currenti
2.[image: A331468_1_En_5_Figj_HTML.gif]




Problem 5.20
An amplifier circuit is shown in the figure below. The first summing-point constraint applies. An ideal operational amplifier has an open-circuit gain of[image: 
$$ A=2\times {10}^5 $$
]. Determine the output voltage,V
out. You are not allowed to use any of the materials of the next section!

Hint: Denote the unknown voltage at node * byυ*, expressυ* in terms ofυ
out, and then solve forυ
out.[image: A331468_1_En_5_Figk_HTML.gif]




Problem 5.21
An ECE laboratory project uses the LM358 amplifier IC.	A.What semiconductor company has developed this chip?


 

	B.Is the chip from the lab project necessarily manufactured by this company? (See http://www.datasheetcatalog.com/ for manufacturers’ datasheets related to this product.)


 

	C.Use the Digi-Key distributor’s website and estimate average cost for this amplifier chip (DIP-8 package) in today’s market.


 






Problem 5.22
An ECE laboratory project uses the TL082 amplifier IC.	A.What semiconductor company has developed this chip?


 

	B.Is the chip from the lab project necessarily manufactured by this company? (See http://www.datasheetcatalog.com/ for manufacturers' datasheets related to this product.)


 

	C.Use the Digi-Key distributor’s website to estimate the average cost for this amplifier chip (DIP-8 package) in today’s market.


 







5.2 Negative Feedback

                  5.2.2 Amplifier Feedback Loop. Second Summing-Point Constraint
                

                  5.2.3 Amplifier Circuit Analysis Using Two Summing-point Constraints
                
Problem 5.23

                    	A.Name the two summing-point constraints used to solve an amplifier circuit.


 

	B.Which summing-point constraint remains valid without the negative feedback?


 




                  


                  Non-inverting Amplifier
                
Problem 5.24

                    	A.Draw the circuit diagram of the basic non-inverting amplifier configuration.


 

	B.Accurately derive the expression for the amplifier gain in terms of the resistances, assuming an ideal operational amplifier.


 




                  

Problem 5.25
Using the two summing-point constraints, solve the ideal-amplifier circuit shown in the figure if the input voltage has the value of 2 mV.	A.Label and determine the currents in the feedback loop.


 

	B.Determine the output voltage of the amplifier versus the common port.[image: A331468_1_En_5_Figl_HTML.gif]





 






Problem 5.26
Determine the output voltage of the ideal operational amplifier shown in the figure. The amplifier is driven by a ±10-V dual power supply.[image: A331468_1_En_5_Figm_HTML.gif]





                  Inverting Amplifier
                
Problem 5.27

                    	A.Draw the circuit diagram of the basic inverting amplifier configuration.


 

	B.Give the expression for the amplifier gain in terms of the resistances, assuming an ideal operational amplifier.


 




                  

Problem 5.28
Using the two summing-point constraints, solve the ideal-amplifier circuit shown in the figure that follows if the input voltage is 1 mV.	A.Label and determine the currents in the feedback loop.


 

	B.Determine the output voltage of the amplifier versus the common port.[image: A331468_1_En_5_Fign_HTML.gif]





 






Problem 5.29
Determine the output voltage of the ideal operational amplifier shown in the figure. The amplifier is driven by a ±10-V dual power supply.[image: A331468_1_En_5_Figo_HTML.gif]





                  Voltage Follower
                
Problem 5.30

                    	A.Using only the first summing-point constraint (SPC), solve the circuit shown in the figure, i.e., determine the output voltage of the amplifier versus the common port.


 

	B.What function does this amplifier have? Why is it important?[image: A331468_1_En_5_Figp_HTML.gif]





 




                  


                  Exercises on the Use of the Negative Feedback
                
Problem 5.31
(A review problem) For three basic ideal-amplifier circuits:	Inverting amplifier

	Non-inverting amplifier

	Voltage follower





(each includes negative feedback) present	1.A circuit diagram


 

	2.Expression for the amplifier gain


 






Problem 5.32
Determine the output voltage of amplifier configurations shown in the figure that follows. The amplifier is powered by a ±9-V dual-polarity voltage power supply. Assume an ideal operational amplifier.[image: A331468_1_En_5_Figq_HTML.gif]




Problem 5.33
Each of the circuits shown in the figures below employs negative feedback. Find the output voltageυ
out vs. ground (or common).Hint: The ground symbol in an amplifier circuit usually has thesame meaning as the common port.[image: A331468_1_En_5_Figr_HTML.gif]




Problem 5.34
Each of the circuits shown in the figures below employs negative feedback. Find the output voltage Vout vs. ground (or common).Hint: The ground symbol in the amplifier circuit usually has the same meaning as the common port.[image: A331468_1_En_5_Figs_HTML.gif]




Problem 5.35
Each of the circuits shown in the figures below employs an inverting amplifier.	1.Solve each circuit (findυ
out) with an input voltage of 1 mV.


 

	2.Based on this solution, find the closed-loop voltage gainA
CL of the corresponding amplifier circuit.[image: A331468_1_En_5_Figt_HTML.gif]





 






Problem 5.36
An inverting amplifier that achieves high-gain magnitude with a smaller range of resistance values is shown in the figure below. Find its output voltageυ
out vs. ground (or common port) and the resulting amplifier gain.[image: A331468_1_En_5_Figu_HTML.gif]




Problem 5.37
The amplifier circuit shown in the figure employs negative feedback.	A.Find the value of the output currenti
out if the input current is 1 mA,[image: 
$$ {R}_1=9\kern0.5em \mathrm{k}\Omega, \kern0.5em {R}_2=1\kern0.5em \mathrm{k}\Omega $$
].


 

	B.Why do you think this amplifier type is known as thecurrent amplifier? To answer this question quantitatively, analytically express the output currenti
out (current through the load) in terms of the unknown input currenti
out and two arbitrary resistor values,R
1,2.[image: A331468_1_En_5_Figv_HTML.gif]





 







                  5.2.4 Mathematics Behind the Second Summing-Point Constraint
                
Problem 5.38

                    	A.Derive an expression for the closed-loop gain of the non-inverting amplifier based only on the definition of the output voltage[image: 
$$ {\upsilon}_{\mathrm{out}}=A\left({\upsilon}_{\mathrm{in}}^{+}-{\upsilon}_{\mathrm{in}}^{-}\right) $$
], without using the second summing-point constraint.


 

	B.Determine the exact gain value when[image: 
$$  A=2\times {10}^5 $$
]



[image: 
$$  {R}_1=1\kern0.5em \mathrm{k}\Omega, {R}_2=9\kern0.5em \mathrm{k}\Omega $$
]






 




                    [image: A331468_1_En_5_Figw_HTML.gif]


                  

Problem 5.39

                    	A.Derive an expression for the closed-loop gain of the inverting amplifier based only on the definition of the output voltage[image: 
$$ {\upsilon}_{\mathrm{out}}=A\left({\upsilon}_{\mathrm{in}}^{+}-{\upsilon}_{\mathrm{in}}^{-}\right) $$
], without using the second summing-point constraint.


 

	B.Determine the exact gain value when


 




                    [image: 
$$  A=2\times {10}^5 $$
]



                    [image: 
$$  {R}_1=1\kern0.5em \mathrm{k}\Omega, {R}_2=10\kern0.5em \mathrm{k}\Omega $$
]



                  


                  5.2.5 Current Flow in the Amplifier Circuit
                
Problem 5.40
The amplifier circuit shown in the figure below is powered by a ±9-V dual-polarity voltage power supply.	A.Redraw the amplifier schematic in your notes.


 

	B.Show the current direction in every wire of the circuit by an arrow and write the corresponding current value close to each arrow.


 






Hint: Change the polarity of the input voltage and the voltage sign if you have trouble operating with negative values.[image: A331468_1_En_5_Figx_HTML.gif]




Problem 5.41
Repeat the previous problem for the circuit shown in the figure below.[image: A331468_1_En_5_Figy_HTML.gif]




Problem 5.42
The amplifier shown in the figure below is powered by a ±9-V dual-polarity voltage power supply.	A.Redraw the amplifier schematic in your notes.


 

	B.Show the current direction in every wire of the circuit by an arrow and write the corresponding current value close to each arrow.[image: A331468_1_En_5_Figz_HTML.gif]





 






Problem 5.43
Repeat the previous problem when the input voltage to the amplifier is −100 mV.


                  5.2.6 Multiple-Input Amplifier Circuit: Summing Amplifier
                
Problem 5.44
By solving the amplifier circuit shown in the figure, fill out the table that follows. Assume that[image: 
$$ {R}_0={R}_{\mathrm{F}} $$
],[image: 
$$ {R}_1={R}_{\mathrm{F}}/2 $$
], and[image: 
$$ {R}_2={R}_{\mathrm{F}}/4 $$
].[image: A331468_1_En_5_Figaa_HTML.gif]


	
D
2, V
	
D
1, V
	
D
0, V
	
υ
out, V

	0
	0
	0
	 
	0
	0
	5
	 
	0
	5
	0
	 
	0
	5
	5
	 
	5
	0
	0
	 
	5
	0
	5
	 
	5
	5
	0
	 
	5
	5
	5
	 





Problem 5.45
The amplifier circuit shown in the figure below employs negative feedback. This configuration is known as a three-bit
digital-to-analog converter (DAC)
 on the base of an R/2R ladder. By solving the amplifier circuit, determine its output voltage in terms of resistancesR, R
F, given the input voltages[image: 
$$ {D}_0=0\kern0.5em \mathrm{V},{D}_1=0\kern0.5em \mathrm{V},{D}_2=5\kern0.5em \mathrm{V} $$
].[image: A331468_1_En_5_Figab_HTML.gif]




Problem 5.46
By solving the amplifier circuit shown in the following figure, determine its output voltage in terms of resistancesR, R
F, given the input voltages[image: 
$$ {D}_0=0\kern0.5em \mathrm{V},{D}_1=5\kern0.5em \mathrm{V},{D}_2=0\kern0.5em \mathrm{V} $$
].[image: A331468_1_En_5_Figac_HTML.gif]





5.3 Amplifier Circuit Design

                  5.3.1 Choosing Proper Resistance Values
                
Problem 5.47
State the limitations on the feedback resistances and the output load resistance of an amplifier circuit.

Problem 5.48
The non-inverting amplifier shown in the figure below has been wired in laboratory.	A.Do you have any concerns with regard to this circuit?


 

	B.If you do, draw the corrected circuit diagram.[image: A331468_1_En_5_Figad_HTML.gif]





 







                  5.3.2 Model of a Whole Amplifier Circuit
                

                  5.3.3 Input Load Bridging or Matching
                
Problem 5.49
For three basic amplifier circuits	Inverting amplifier

	Non-inverting amplifier

	Voltage follower





(each includes negative feedback), present	1.A circuit diagram


 

	2.An expression for the closed-loop amplifier circuit gain


 

	3.An expression for the input resistance (impedance)


 

	4.An expression for output resistance (impedance)


 






Problem 5.50

                    	A.Explain in your own words the concept of load bridging (impedance bridging).


 

	B.Which amplifier, the non-inverting or inverting, should be subject to load bridging?


 




                  

Problem 5.51
An electromechanical sensor is given by its Thévenin equivalent wherein the sensor voltageυ
S is small. The sensor’s equivalent resistanceR
S may vary in time; but it is always less than 1 kΩ. An inverting amplifier is needed that generates an amplified version of the sensor’s voltage. The output voltage should be[image: 
$$ \approx -100{\upsilon}_{\mathrm{S}} $$
]. Draw the corresponding circuit diagram and specify one possible set of resistor values.

Problem 5.52
Construct an amplifier circuit matched to a 100-Ω load. The amplifier’s gain is[image: 
$$ \left|{A}_{\mathrm{CL}}\right|=100 $$
]. The sign of the gain (positive or negative) is not important and the input AC signal.

Hint: Multiple solutions many exist. Present at least two solutions.

Problem 5.53
Find the input resistance (impedance) to the amplifier circuit shown in the figure below.[image: A331468_1_En_5_Figae_HTML.gif]




Problem 5.54
Find the input resistance (impedance) to the amplifier circuit shown in the figure below.[image: A331468_1_En_5_Figaf_HTML.gif]





                  5.3.4 Cascading Amplifier Stages
                
Problem 5.55
For the amplifier circuit shown in the figure, find the output voltage and the input resistance (show units).[image: A331468_1_En_5_Figag_HTML.gif]




Problem 5.56
A sensor with Thévenin voltage (source voltage)[image: 
$$ {\upsilon}_{\mathrm{S}}=2.5\kern0.5em \mathrm{mV} $$
] shown in the figure is to be connected to an amplifier circuit. An amplified replica of the sensor’s voltage,[image: 
$$ {\upsilon}_{\mathrm{out}}\approx 1000\kern0.15em {\upsilon}_{\mathrm{S}} $$
], is needed at the circuit’s output.	A.Present one possible circuit diagram and specify all necessary resistor values.


 

	B.Present another (distinct) circuit diagram and specify all necessary resistor values.[image: A331468_1_En_5_Figah_HTML.gif]





 






Problem 5.57
An amplifier in the configuration shown in the figure below is connected to a sensor with Thévenin (source) voltage[image: 
$$ {\upsilon}_{\mathrm{S}}=25\kern0.5em \mathrm{mV} $$
]. An amplified replica of the sensor’s voltage,[image: 
$$ {\upsilon}_{\mathrm{out}}\approx -100\kern0.15em {\upsilon}_{\mathrm{S}} $$
], is needed at the output.	A.Do you have any concerns with regard to this circuit?


 

	B.If you do, draw an appropriate circuit diagram.


 




[image: A331468_1_En_5_Figai_HTML.gif]




Problem 5.58
An amplifier circuit is needed with the closed-loop gain[image: 
$$ {A}_{\mathrm{CL}}=+1000 $$
]. The input resistance (impedance) to the circuit should be 5 kΩ. Present two alternative circuit diagrams and specify the necessary resistor values. The first circuit must use inverting amplifiers and the second circuit-non-inverting amplifiers.

Problem 5.59
An amplifier circuit is needed with the closed-loop gain[image: 
$$ {A}_{\mathrm{CL}}=+10,000 $$
]. The input resistance (impedance) to the circuit should be as high as possible. Present the corresponding circuit diagram and specify the necessary resistor values.

Problem 5.60
An amplifier circuit is needed with a positive gain of 1000 ± 20 %. The input resistance (impedance) to the circuit should be 1 kΩ. Present the circuit diagram and specify the necessary resistor values including tolerance.

Problem 5.61
An amplifier circuit is needed with a positive gain of 5000 ± 5 %. The input resistance (impedance) should be as high as possible. Present one possible circuit diagram and specify the necessary resistor values including tolerance.


                  5.3.5 Amplifier DC Imperfections and Their Cancellation
                
Problem 5.62
Determine the output voltage to nonideal operational amplifier circuits (with the nonzero input offset voltage) shown in the figures below.[image: A331468_1_En_5_Figaj_HTML.gif]




Problem 5.63
Determine the output voltage to nonideal operational amplifier circuits (with nonzero input currents) shown in the figures below. The input terminal is connected directly to the common terminal (grounded). The strength of every bias current source is 100 nA.

Hint: The upper bias current source does not contribute to the solution.[image: A331468_1_En_5_Figak_HTML.gif]




Problem 5.64
For the amplifier circuit shown in the figure below, determine the output voltage. Use[image: 
$$ {R}_1={R}_2=1\kern0.5em \mathrm{k}\Omega $$
].[image: A331468_1_En_5_Figal_HTML.gif]




Problem 5.65
In the previous problem, denote the terminal voltage of 2 mV byV
off, the input voltage of 1 mV byυ
in, the output voltage byυ
out, and the amplifier gain byA
CL. Derive an analytical formula that determinesV
off in terms ofV
in given that the output voltageυ
out to the amplifier is exactly zero.

Problem 5.66
For the amplifier circuit shown in the figure below, determine the output voltage. Use[image: 
$$ {R}_1=1\kern0.5em \mathrm{k}\Omega $$
] and[image: 
$$ {R}_2=4\kern0.5em \mathrm{k}\Omega $$
].[image: A331468_1_En_5_Figam_HTML.gif]




Problem 5.67
In the previous problem, denote the terminal voltage of 4 mV byV
off, the input voltage of 5 mV byυ
in, the output voltage byυ
out, and the amplifier gain byA
CL. Derive an analytical formula that determinesV
off in terms ofυ
in given that the output voltage to the amplifier is exactly zero.

Problem 5.68
For the circuit shown in the figure below:	A.Determine the output voltage of the nonideal operational amplifier circuit (with the nonzero input offset voltage).


 

	B.Does the amplifier circuit really follow the ideal-amplifier circuit law:[image: 
$$ {\upsilon}_{\mathrm{out}}={A}_{\mathrm{CL}}{\upsilon}_{\mathrm{in}} $$
]?


 

	C.What happens if the input voltage changes from 10 mV to 20 mV?[image: A331468_1_En_5_Figan_HTML.gif]





 






Problem 5.69
Solve the previous problem with the offset voltage in the feedback loop changed from 6 mV to 5 mV.

Problem 5.70
In problem5.68, denote the terminal voltage of 6 mV byV
off, the input voltage of 10 mV byυ
in, the input offset voltage byV
OS, the output voltage byυ
out, and the amplifier gain byA
CL. Derive an analytical formula that determinesV
off in terms ofV
OS given that the output voltageυ
out to the amplifier must exactly follow the ideal-amplifier gain law:[image: 
$$ {\upsilon}_{\mathrm{out}}={A}_{\mathrm{CL}}{\upsilon}_{\mathrm{in}} $$
].[image: A331468_1_En_5_Figao_HTML.gif]




Problem 5.71
For two nonideal operational amplifier circuits (with the nonzero input offset voltage) shown in the figures below, determine the necessary offset voltage,V
off, which ensures that the output voltage,υ
out, to the amplifier exactly follows the ideal-amplifier gain law:[image: 
$$ {\upsilon}_{\mathrm{out}}={A}_{\mathrm{CL}}{\upsilon}_{\mathrm{in}} $$
]. You need to express this voltage in terms of other circuit parameters that are given in figures a) and b).[image: A331468_1_En_5_Figap_HTML.gif]





                  5.3.6 DC-Coupled Single-Supply Amplifier
                
Problem 5.72
For the single-supply amplifier circuit shown in the figure:	A.Determine the output voltage versus circuit ground (the negative terminal of the voltage power supply).


 

	B.What potential problem do you see with this circuit? How could you fix it?[image: A331468_1_En_5_Figaq_HTML.gif]





 






Problem 5.73
For the single-supply amplifier circuit shown in the figure:	A.Determine the output voltage versus circuit ground (the negative terminal of the voltage power supply).


 

	B.Do you see any problem with this circuit?[image: A331468_1_En_5_Figar_HTML.gif]





 







5.4 Difference and Instrumentation Amplifiers

                  5.4.1 Differential Input Signal to an Amplifier
                
Problem 5.74
The model of an input signal from a three-terminal sensing device is shown in the figure below. What are the differential and common-mode voltages at terminalsa andb?[image: A331468_1_En_5_Figas_HTML.gif]




Problem 5.75
The Wheatstone bridge in Fig. 5.27 is connected to[image: 
$$ \pm {V}_{\mathrm{CC}} $$
] rails instead of[image: 
$$ +{V}_{\mathrm{CC}} $$
] and ground. Furthermore,[image: 
$$ {R}_2=1.1{R}_1 $$
],[image: 
$$ R(x)=1.1{R}_3 $$
], and[image: 
$$ {V}_{\mathrm{CC}}=6\;\mathrm{V} $$
]. What are the differential and common-mode voltages?

Problem 5.76
The Wheatstone bridge in Fig. 5.27 is connected to ground and[image: 
$$ -{V}_{\mathrm{CC}} $$
] rails instead of[image: 
$$ +{V}_{\mathrm{CC}} $$
] and ground. Given that[image: 
$$ {R}_2=1.05{R}_1 $$
],[image: 
$$ R(x)=1.05{R}_3 $$
], and[image: 
$$ {V}_{\mathrm{CC}}=6\kern0.5em \mathrm{V} $$
], determine the differential and common-mode voltages.


                  5.4.2 Difference Amplifier
                
Problem 5.77
Design a difference amplifier with a differential gain of 20. Present the circuit diagram and specify one possible set of resistor values. In the circuit diagram, label the input voltages asυ
a, υ
b and express the output voltage in terms ofυ
a, υ
b.

Problem 5.78
Repeat the previous problem for a differential gain of 100.

Problem 5.79
Find the output voltage to the difference-amplifier circuits shown in the figures below. Assume the ideal-amplifier model and exact resistance values.[image: A331468_1_En_5_Figat_HTML.gif]




Problem 5.80
Your technician needs to control a process using two sensors with output voltagesυ
1 andυ
2, respectively. The weighted difference in sensor reading,[image: 
$$ \upsilon =1{\upsilon}_1-0.5{\upsilon}_2 $$
], is critical for the product quality. The technician reads voltageυ
1 and then voltageυ
2 and then uses a calculator to findυ.
Help the technician, i.e., sketch for him a difference-amplifier circuit that will directly outputυ to the DMM. The negative terminal of the DMM is always grounded. Specify one possible set of resistor values.

Problem 5.81
Repeat the previous problem when the weighted difference in sensor reading,[image: 
$$ \upsilon =10{\upsilon}_1-5{\upsilon}_2 $$
], needs to be processed.

Problem 5.82
For the circuit shown in the figure, find the output voltage if the input voltages are[image: 
$$ {\upsilon}_{\mathrm{b}}=1\;\mathrm{V} $$
] and[image: 
$$ {\upsilon}_{\mathrm{a}}=1.01\;\mathrm{V} $$
], respectively. Assume the ideal-amplifier model and exact resistance values.[image: A331468_1_En_5_Figau_HTML.gif]




Problem 5.83

                    	A.For the circuits shown in the figures below, find the output voltage if the input voltages are[image: 
$$ {\upsilon}_{\mathrm{a}}=1\;\mathrm{V} $$
] and[image: 
$$ {\upsilon}_{\mathrm{b}}=1\;\mathrm{V} $$
], respectively Assumethe
ideal amplifier and exact resistance values.


 

	B.What is the value of the common-mode gain in every case?[image: A331468_1_En_5_Figav_HTML.gif]





 




                  

Problem 5.84
For the difference-amplifier circuit shown in the figure below, find thedifferential-mode resistance (impedance) to the amplifier. The differential-mode resistance is defined as the ratio of a voltage of a power supply placed between terminalsa andb to the current that flows through this power supply.[image: A331468_1_En_5_Figaw_HTML.gif]





                  5.4.3 Instrumentation Amplifier
                
Problem 5.85

                    	A.Why is the original difference amplifier not used as an instrumentation amplifier?


 

	B.Why is the circuit in Fig. 5.31 not used as the instrumentation amplifier?


 




                  

Problem 5.86

                    	A.Find the differential gain and the common-mode gain for the amplifier circuit shown in Fig. 5.32. The differential output voltage is[image: 
$$ {\upsilon}_{\mathrm{a}}*-{\upsilon}_{\mathrm{b}}* $$
], and the common-mode output voltage is[image: 
$$ 0.5\left({\upsilon}_{\mathrm{a}}*+{\upsilon}_{\mathrm{b}}*\right) $$
].


 

	B.Find the differential gain and the common-mode gain for the amplifier circuit shown in Fig. 5.31.


 




                  

Problem 5.87
Design an instrumentation amplifier with a differential gain of 210. Present the corresponding circuit diagram and specify one possible set of resistance values. In the circuit diagram, label the input voltages asυ
a, υ
b and express the output voltage in terms ofυ
a, υ
b.

Problem 5.88
Design an instrumentation amplifier with a differential gain of 1010. Present the corresponding circuit diagram and specify one possible set of resistor values. In the circuit diagram, label the input voltages asυ
a, υ
b and express the output voltage in terms ofυ
a, υ
b.

Problem 5.89
The following voltages are measured:[image: 
$$ {\upsilon}_{\mathrm{a}}=3.750\kern0.5em \mathrm{V} $$
] and[image: 
$$ {\upsilon}_{\mathrm{b}}=3.748\kern0.5em \mathrm{V} $$
]. Find voltages versus circuit ground (common port of the dual supply) for every labeled node in the circuit shown in the figure below. The amplifier circuit is powered by a[image: 
$$ \pm 10-\mathrm{V} $$
] dual supply. Assume exact resistance values and the ideal-amplifier model.[image: A331468_1_En_5_Figax_HTML.gif]




Problem 5.90
Repeat the previous problem when node 1 is grounded.

Problem 5.91
The following voltages are measured:[image: 
$$ {\upsilon}_{\mathrm{a}}=5.000\;\mathrm{V}\ \mathrm{and}\kern0.5em {\upsilon}_{\mathrm{b}}=5.001\kern0.5em \mathrm{V} $$
]. Find voltages versus circuit ground (common port of the dual supply) for every labeled node in the circuit shown in the figure below. The amplifier circuit is powered by a[image: 
$$ \pm 10-\mathrm{V} $$
] dual supply. Assume exact resistance values and the ideal-amplifier model.[image: A331468_1_En_5_Figay_HTML.gif]




Problem 5.92
Repeat the previous problem when node 1 is grounded.

Problem 5.93
The following voltages are measured:[image: 
$$ {\upsilon}_{\mathrm{a}}=5.000\kern0.5em \mathrm{V} $$
] and[image: 
$$ {\upsilon}_{\mathrm{b}}=5.001\kern0.5em \mathrm{V} $$
]. Find voltages versus circuit ground (common port of the dual supply) for every labeled node in the circuit shown in the figure below. The amplifier circuit is powered by a[image: 
$$ \pm 10-\mathrm{V} $$
] dual supply. Assume exact resistance values and the ideal-amplifier model.[image: A331468_1_En_5_Figaz_HTML.gif]




Problem 5.94

                    	A.Find the output voltage for the amplifier circuit shown in the figure below.


 

	B.Denote the input voltage of 0.1 V byυ
a, the input voltage of 0.08 V byυ
b, the 10-kΩ resistor byR
1, the 40-kΩ resistor byR
2, and the 10-kΩ resistor byR
G. Express the output voltage in the general form, in terms of two input voltages and the resistances.[image: A331468_1_En_5_Figba_HTML.gif]





 




                  


5.5 General Feedback Systems

                  5.5.1 Signal-flow Diagram of a Feedback System
                

                  5.5.2 Closed-Loop Gain and Error Signal
                
Problem 5.95
The block diagram of Fig. 5.35 is applied to a voltage amplifier.	A.Given the input signal[image: 
$$ {x}_{\mathrm{in}}=10\kern0.5em \mathrm{mV} $$
], the error signal[image: 
$$ {x}_{\mathrm{e}}=1\kern0.5em \upmu \mathrm{V} $$
], and the output signal[image: 
$$ {x}_{\mathrm{out}}=1\kern0.5em \mathrm{V} $$
], determine the open-loop gain and the feedback factor.


 

	B.Given the ratio of input to error signal[image: 
$$ {x}_{\mathrm{in}}/{x}_{\mathrm{e}}=100 $$
] and the feedback factor of 0.1, determine the open-loop gain.


 






Problem 5.96
The open-loop gainA in Fig. 5.35 varies between two extreme values of[image: 
$$ A=10,000\pm 2,000 $$
] (±20 % gain variation) depending on the system parameters. The forward gain block is used in the closed-loop configuration with the feedback factorβ of 0.1. Determine the two extreme values of the closed-loop gain,A
CL.

Problem 5.97
The open-loop gainA in Fig. 5.35 is 100,000. The forward gain block is used in the closed-loop configuration with the feedback factorβ of 1. Determine the error signal,x
e, if the input voltage signal is 1 mV.

Problem 5.98
The closed-loop gain of a non-inverting amplifier circuit with[image: 
$$ {R}_1=1\kern0.15em \mathrm{k}\Omega, \kern0.15em {R}_2=100\kern0.5em \mathrm{k}\Omega $$
] is 99. Determine the open-circuit gainA of the amplifier chip.


                  5.5.3 Application of General Theory to Voltage Amplifiers with Negative Feedback
                

                  5.5.4 Voltage, Current, Transresistance, and Transconductance Amplifiers with the Negative Feedback
                
Problem 5.99
Derive the gain Eq. (5.69) for the amplifier circuits shown in Fig. 5.37.

Problem 5.100
The circuit shown in the figure that follows is a feedback transconductance amplifier. Expressi
out in terms ofυ
in.[image: A331468_1_En_5_Figbb_HTML.gif]




Problem 5.101
The amplifier circuit shown in the figure that followsis
theHowland current source widely used in biomedical instrumentation; its output is the current through the load resistance.	A.Classify the amplifier circuit in terms of four basic amplifier topologies and mention the most important circuit features.


 

	B.Derive its gain equation[image: 
$$ {i}_{\mathrm{out}}=\left({\upsilon}_{\mathrm{a}}-{\upsilon}_{\mathrm{b}}\right)/{R}_2 $$
] given that[image: 
$$ {R}_1/{R}_3={R}_2/{R}_4 $$
].[image: A331468_1_En_5_Figbc_HTML.gif]
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Overview

              Prerequisites:
	Knowledge of basic circuit theory (Chapters 2 and 3)

	Knowledge of operational amplifiers with negative feedback (Chapter 5)




              Objectives of Section 6.1:
	Define types of capacitance encountered in electric circuits

	Define self-inductance and mutual inductance from the first principles

	Define field energy stored in a capacitor/inductor

	Be able to combine capacitances/inductances in series and in parallel

	Understand construction of practical capacitors/inductors

	Understand fringing effect and its use in sensor circuits




              Objectives of Section 6.2:
	Derive dynamic equations for capacitance/inductance from the first principles

	Establish how the capacitance may create large transient currents

	Establish how the inductance may create large transient voltages

	Define instantaneous energy and power of dynamic circuit elements

	Establish the behavior of dynamic circuit elements in the DC steady state and at a very high frequency




              Objectives of Section 6.3:
	Obtain initial exposure to bypass/blocking capacitor and decoupling inductor

	Obtain initial exposure to amplifier circuits with dynamic circuit elements




              Application Examples:
	Electrostatic discharge and its effect on integrated circuits

	How to design a 1-μF capacitor? How to design a 1-mH inductor?

	Capacitive touchscreens

	Bypassing a DC motor




            

6.1 Static Capacitance and Inductance
6.1.1 Capacitance, Self-Capacitance, and Capacitance to Ground

Capacitance reflects the ability of arbitrary conductors to store electric charge and, simultaneously, the store energy of the electric field in the surrounding space. When no dielectric is present, capacitance is determined entirely by the geometry of conductors. When a dielectric material is present, its permittivity becomes important. Capacitance definitions will be given with reference to Fig. 6.1.[image: A331468_1_En_6_Fig1_HTML.gif]
Fig. 6.1Conductor geometry for capacitance definitions




	1.

                          Capacitance
                          
                        
, C, of Two Conductors. Two arbitrary 

insulated conductors near together in Fig. 6.1a constitute a simple capacitor. Its capacitance, C, is found with the help of electrostatic theory. Further, it is used in various dynamic models. Capacitance C of two insulated conductors 1 and 2 is defined by the ratio[image: 
$$ \begin{array}{l}C\equiv \frac{Q}{V}>0\end{array} $$
]

 (6.1a)

where [image: 
$$ Q>0 $$
] is the (absolute) net charge of either conductor given that the net charge of the system with both conductors is zero and V is the potential difference or voltage between two conductors 1 and 2, i.e., [image: 
$$ V={V}_1-{V}_2 $$
]. This ratio does not depend on V; it is always taken so as to make the capacitance positive.


 

	2.

                          Self-Capacitance
                          
                        
, C
self
, of a 
                          Conductor
                          
                          
                        . When an electric charge Q is added to a single isolated conductor in Fig. 6.1b, its surface will possess a certain absolute voltage V versus 0 V at infinity. The ratio[image: 
$$ {C}_{\mathrm{self}}\equiv \frac{Q}{V}>0 $$
]

 (6.1b)

is the self-capacitance of the conductor. The self-capacitance is the capacitance when the second conductor is a hollow conducting sphere of infinite radius subject to 0 V.


 

	3.
Capacitance to 
                          Ground
                          
                          
                        
, C, of a Conductor. For conductor 1 in Fig. 6.1c with charge [image: 
$$ +Q $$
], its capacitance to ground is the capacitance when the second conductor is an infinite conducting ground plane in Fig. 6.1c subject to 0 V (and charged to –Q). Capacitance to ground, C, is always greater than the self-capacitance, C
self; their ratio becomes quite large when the separation distance d from the plane is small. On the other hand,[image: 
$$ C\to {C}_{\mathrm{self}}\ \mathrm{when}\ d\to \infty  \mathrm{in}\ \mathrm{Fig}.\ 6.1\mathrm{c}. $$
]

 (6.1c)





 

	4.
Capacitance, C, of Two 
                          Equal Conductors Separated by Large Distances
                          
                          
                        . For conductors 1 and 2 in Fig. 6.1d, the capacitance approaches


 




[image: 
$$ C\to \frac{1}{2}{C}_{\mathrm{self}}\ \mathrm{when}\ d\to \infty  \mathrm{in}\ \mathrm{Fig}.\ 6.1\mathrm{d}. $$
]

 (6.1d)



The separation distance d must 

be large compared to the conductor’s size. Equation (6.1d) will be proved shortly.
The capacitance is recorded in units of farads or F. This unit is named in honor of Michael Faraday (1791–1867), a British physicist and chemist, who was known to many as “the best experimentalist in the history of science.” Typical capacitance values in electronics are pF (picofarad or simply paf), nF (nanofarad), and μF (microfarad). In power electronic circuits, larger capacitances might be used. The capacitance unit is linked to other MKS units as follows:[image: 
$$ 1 \mathrm{F}=1\frac{\mathrm{A}\cdot \mathrm{s}}{\mathrm{V}}=1\frac{\mathrm{J}}{{\mathrm{V}}^2}=1\frac{\mathrm{C}}{\mathrm{V}} $$
]

 (6.2)

where C is the unit of coulomb. The total electric field energy stored 
between two conductors and in the surrounding space is given by[image: 
$$ E=\frac{1}{2}C{V}^2 $$
]

 (6.3)

This result can be derived from the definition of the electric potential (voltage). The energy is equal to work, which is necessary to put all charges of the capacitor in place. Equation (6.3) is valid for any configuration shown in Fig. 6.1.
Example 6.1
Prove Eq. (6.1d).

Solution: For a conductor in Fig. 6.1b, the stored electric energy is given by[image: 
$$ {E}_{\mathrm{self}}=\frac{1}{2}{C}_{\mathrm{self}}{V}^2 $$
]

 (6.4a)

For two conductors in Fig. 6.1d separated by a very large distance d, the stored electric energy is approximately given by[image: 
$$ E=2{E}_{\mathrm{self}}=\frac{1}{2}C{(2V)}^2 $$
]

 (6.4b)

Comparing Eqs. (6.4a) and (6.4b) we obtain the necessary result.

Exercise 6.1
A metal circle or radius [image: 
$$ r=0.1 \mathrm{m} $$
] has the self-capacitance [image: 
$$ {C}_{\mathrm{self}}=8{\varepsilon}_0 r $$
] where [image: 
$$ {\varepsilon}_0=8.85419\times {10}^{-12} \mathrm{F}/\mathrm{m} $$
] is the permittivity of vacuum. Estimate capacitance of a capacitor formed by two coaxial circles separated by 1 m.

Answer: ~3.54 pF from Eq. (6.1d). A precise numerical solution predicts 3.77 pF.

Exercise 6.2
How large is the stored energy in a 100-μF laboratory capacitor at 10 V?

Answer: 0.005 J or, which is the same on the power basis, 5 mW of power delivered during one second. However, this power will not be delivered uniformly.

Exercise 6.3
How large is the stored energy in a 20-F ultracapacitor charged to 25 V?

Answer: 6250 J or 6.25 kJ. This is certainly a significant value. At the same time, the discharge rate (available current or power) is much less in this case than the current or power delivered by laboratory electrolytic capacitors.


6.1.2 Application Example: ESD
Self-capacitance results may be applied for the prediction of

 ESD (electrostatic discharge) effects on 
integrated circuits (ICs)

. One of the most common causes of electrostatic damage is the direct transfer of electrostatic charge through a significant series resistor from the human body or from a charged material to the electrostatic discharge-sensitive (ESDS) device

. The concept is shown in Fig. 6.2a. A metal ground plane and the highly conducting human body naturally form a capacitor. The 
                  body capacitance
                  
                 C in Fig. 6.2b is defined as the capacitance between the body, assumed to be a conductor, and the large (ideally infinite) ground plane. Its value depends significantly on the posture of the body with respect to the ground surface. The typical separation distance is 2 cm. It may be shown that, at such distances, [image: 
$$ C\approx 2{C}_{\mathrm{self}} $$
]. Therefore, instead of calculating C directly, we can find the self-capacitance of the human body, C
self, and then multiply it by 2. Typical self-capacitances of a 177-cm-tall male student are indicated in Fig. 6.3. These values were obtained by the method described in Chapter 1.[image: A331468_1_En_6_Fig2_HTML.gif]
Fig 6.2Equivalent circuit for understanding ESD and its effect on 
a device under test (DUT)




[image: A331468_1_En_6_Fig3_HTML.gif]
Fig 6.3Typical self-capacitance values for a 177-cm-tall male person. Note how the self-capacitance changes when the body poses change





The simplifying assumption [image: 
$$ C\approx 2{C}_{\mathrm{self}} $$
] and Fig. 6.3 predict body capacitances in the range 86–95 pF. These values are in a good agreement with the generally accepted human body model (HBM), which, with reference to Fig. 6.2b, uses[image: 
$$ R=1.5 \mathrm{k}\Omega,  C=100 \mathrm{pF} $$
]

 (6.5)




6.1.3 Parallel-Plate Capacitor
Consider a parallel-plate capacitor shown in Fig. 6.4a, b. Both infinitely thin conducting square plates with the side a and area [image: 
$$ A={a}^2 $$
] are separated by distance d. The upper plate has a total charge +Q


; the lower plate has the opposite charge –Q


; the net charge of the capacitor is zero. Feeding conductors are implied to be disconnected; they are excluded from consideration. Assuming that the entire electric field is concentrated only within the capacitor and that it is uniform in space (equal to V/d), the approximate capacitance is established as[image: A331468_1_En_6_Fig4_HTML.gif]
Fig. 6.4(a) Equipotential lines and lines of force for a capacitor with [image: 
$$ d/a=0.2 $$
] in the central cross-sectional plane (the plates are at ±1 V). (b) Fringing electric field for the same capacitor observed in the central cross-sectional plane (the plates are at ±1 V). (c) Ratio of the accurate capacitance values (found numerically) to the values predicted by Eq. (6.6)




[image: 
$$ C=\frac{\varepsilon_0A}{d} $$
]

 (6.6)

where ε
0 is the 
                  dielectric permittivity of vacuum
                  
                  
                 if the capacitor is situated in vacuum. For Eq. (6.6) to hold, the plates do not have to be square. If the capacitor does not have a high-ε dielectric inside, Eq. (6.6) is a good approximation only if d is very small compared to the dimensions of the plates. Otherwise, the 
                  fringing effect
                  
                  
                 must be taken into account. The fringing effect is illustrated in Fig. 6.4a, b. Fringing means that the electric field extends outside the physical capacitor. The electric field outside the capacitor possesses certain extra energy. Therefore, according to Eq. (6.3) where voltage V is fixed, the capacitance must increase compared to the non-fringing case. Figure 6.4c in the summary of this chapter present numerically found capacitance values C
exact for the parallel-plate capacitor with fringing. These values have been accurately computed using a rigorous numerical adaptive procedure. Figure 6.4c predicts a nearly linear increase of the ratio C
exact/C as a function of the separation distance. Therefore, the wrong result, [image: 
$$ C\to 0 \mathrm{when} d\to \infty $$
], which is predicted by Eq. (6.6), is corrected. Instead, one will have [image: 
$$ C\to 0.5 {C}_{\mathrm{self}} \mathrm{when} d\to \infty $$
].
The fringing field of capacitors is utilized in 
capacitive 
touch screens

. In this case, the significant fringing field is a desired effect. Therefore, configurations other than the parallel-plate capacitor are used. These configurations will be studied later in this section.
When a dielectric material of relative permittivity [image: 
$$ {\varepsilon}_r>1 $$
] is inserted between the capacitor plates, a substitution [image: 
$$ {\varepsilon}_0\to {\varepsilon}_r{\varepsilon}_0 $$
] has to be made in Eq. (6.6). The fringing effect is less apparent for higher values of ε

                  r
                .
Exercise 6.4
Estimate the static capacitance

 of a parallel-plate capacitor with [image: 
$$ a=1\ {\mathrm{cm}}^2 $$
] and [image: 
$$ d=1.57\ \mathrm{mm} $$
] using the basic formula. The substrate material is Rogers 4003 laminate with [image: 
$$ {\varepsilon}_r=3.55 $$
].

Answer: 2.00 pF.


6.1.4 
Circuit Symbol

: Capacitances in Parallel and in Series
Figure 6.5 shows the capacitances in parallel and in series, along with the capacitance circuit symbol. This symbol is reserved for the capacitance as a circuit element. Such an element is an ideal capacitor excluding manufacturing imperfections (parasitic resistance and inductance). In the following text, we will frequently employ both words—capacitance and capacitor—to denote the same ideal circuit element. The parallel and series connections of capacitances are opposite when compared to the resistances. To establish this fact we consider two combinations in Fig. 6.5.[image: A331468_1_En_6_Fig5_HTML.gif]
Fig. 6.5Capacitances in parallel and in series: (a) capacitances in parallel are added; they behave similarly to resistances in series and (b) capacitances in series are combined in the same way as resistances in parallel





For the parallel configuration in Fig. 6.5a, the same voltage V
C is applied to every capacitance. One has for the charges on the capacitor plates,[image: 
$$ {Q}_1={C}_1{V}_{\mathrm{C}}, {Q}_2={C}_2{V}_{\mathrm{C}}, {Q}_3={C}_3{V}_{\mathrm{C}}\Rightarrow {Q}_1+{Q}_2+{Q}_3={Q}_{\mathrm{total}}=\left({C}_1+{C}_2+{C}_3\right) {V}_{\mathrm{C}} $$
]

 (6.7)

Thus, the capacitances connected in parallel behave like a single capacitance C
eq,[image: 
$$ {C}_{\mathrm{eq}}={C}_1+{C}_2+{C}_3 $$
]

 (6.8)

Equation (6.8) also makes intuitive sense if we take a closer look at Fig. 6.5a where the three individual capacitors visually form a bigger capacitor comprised of larger plate areas. This clearly increases the capacitance accordingly. In Fig. 6.5b, however, the situation is different. The thicknesses of each capacitor add together, which decreases the overall capacitance since thickness 

varies inversely with capacitance. Assume that every capacitor was initially uncharged and apply voltage V
C between terminals A and B. Since each pair of inner conductors in Fig. 6.5b has remained insulated, [image: 
$$ {Q}_1={Q}_2={Q}_3=Q $$
]. Next, by KVL,[image: 
$$ {V}_{\mathrm{C}}={V}_1+{V}_2+{V}_3=\frac{Q_1}{C_1}+\frac{Q_2}{C_2}+\frac{Q_3}{C_3}=\left(\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_3}\right)Q=\frac{Q}{C_{\mathrm{eq}}} $$
]

 (6.9)

and for the series combination of the capacitances, one has[image: 
$$ \frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_3} $$
]

 (6.10)



Exercise 6.5
Find the equivalent capacitance

 of the circuit shown in Fig. 6.6.[image: A331468_1_En_6_Fig6_HTML.gif]
Fig. 6.6A capacitive network which includes series and parallel combinations of capacitances






Answer: [image: 
$$ {C}_{\mathrm{eq}}=44 \upmu \mathrm{F} $$
]



6.1.5 
Application

 Example: How to Design a 1-μF Capacitor?
Let us to design a capacitor. Our modest goal is a 1-μF capacitor. We consider two aluminum plates separated by 1 mm. Equation (6.6) then allows us to predict the required plate area:[image: 
$$ A=\frac{dC}{\varepsilon_0}=\frac{10^{-3}\times {10}^{-6}}{8.854\times {10}^{-12}}=113\ {\mathrm{m}}^2! $$
]

 (6.11a)

Well, such a capacitor will certainly occupy a significant fraction of a lecture hall and is hardly practical. How, then, do manufactures design a capacitor of 1 μF? The first step is to use a dielectric material sandwiched within the capacitor. A dielectric medium increases charges stored on the two metal capacitor plates depending on [image: 
$$ {\varepsilon}_r\ge 1 $$
], the relative dielectric permittivity of the dielectric medium. Table 6.1 gives us a list of permittivities for a number of dielectric materials. For each material, a dielectric strength, or normalized breakdown voltage, is also given. This is actually the maximum electric field (notice the unit of V/m) that the capacitor can handle. It is for this reason that capacitors carry a voltage rating that you should not exceed in your circuit. From a practical point of view, the higher the capacitance, the lower the voltage rating. The well-known dilemma with the capacitor is that a decrease in the separation distance increases the capacitance and the stored energy. However, as already mentioned,
                  
                  
                 it simultaneously decreases the maximum applied voltage due to the dielectric breakdown effect. For our capacitor, we will again use the mica dielectric material listed in Table 6.1. Equation (6.6) now transforms toTable 6.1Relative dielectric permittivity and dielectric strength of some common materials


	Material
	Relative permittivity
	Dielectric strength in V/m

	Air
	1.0
	0.4–3.0 × 106


	Aluminum oxide
	8.5
	Up to 1000 × 106


	Fused silica (glass)
	3.8
	470–670 × 106 (or lower)

	Gallium arsenide (GaAs)
	13
	 
	Germanium (Ge) crystal
	16
	~10 × 106


	Mica
	7.0
	Up to 400 × 106


	Nylon
	3.8
	~20 × 106


	Plexiglas
	3.4
	~30 × 106


	Polyester
	3.4
	 
	Quartz
	4.3
	8 × 106 (fused quartz)

	Rutile (titanium dioxide)
	100–200
	10–25 × 106


	Silicon (Si) crystal
	12
	~30 × 106


	Styrofoam
	1.03–1.05
	 
	Teflon
	2.2
	87–173 × 106


	Water (distilled, deionized)
	~80
	65–70 × 106





[image: 
$$ A=\frac{dC}{\varepsilon_0{\varepsilon}_r}=\frac{10^{-3}\times {10}^{-6}}{8.854\times {10}^{-12}\times 7}=16\ {\mathrm{m}}^2 $$
]

 (6.11b)

Even though the result looks a bit better, it is still far from practical. However, what if we try to make the dielectric layer very thin? An oxide is a dielectric, so could we just oxidize one top aluminum plate with a very thin (i.e., [image: 
$$ d=10 \upmu \mathrm{m} $$
]) oxide layer and

 press-fit it to the second plate? The result becomes (the relative dielectric constant of 8.5 is now that for aluminum oxide from Table 6.1)[image: 
$$ A=\frac{hC}{\varepsilon_0{\varepsilon}_r}=\frac{10^{-5}\times {10}^{-6}}{8.854\times {10}^{-12}\times 8.5}=13\ {\mathrm{cm}}^2 $$
]

 (6.11c)




                  Electrolytic Capacitors


                
Once such a thin film is rolled into a cylinder, it will clearly become a compact design, similar in size to a 1-μF electrolytic capacitor routinely used in the laboratory. Unfortunately, one problem still remains: the permanent oxide layer is fragile and rough in shape. A better idea is to chemically grow such a layer using a so-called anodization process. This process occurs when the aluminum foil is in contact with an electrolyte as a second conductor and an appropriate voltage is applied between them. This is the smart idea behind an electrolytic capacitor. And this is also the reason why an electrolytic capacitor is polarized. The term electrolytic capacitor is applied to any capacitor in which the dielectric material is formed by an electrolytic method; the capacitor itself does not necessarily contain an electrolyte.
                    
                    
                   Along with aluminum capacitors, tantalum capacitors (both wet and dry) are also electrolytic capacitors.


                  Ceramic Capacitors


                
A competitor to the electrolytic capacitor is a non-polarized ceramic capacitor. Ceramic capacitors consist of a sandwich of conductor sheets alternated with ceramic material. In these capacitors the dielectric material is a ceramic agglomerate whose relative static dielectric permittivity, ε
r, can be changed over a very wide range from 10 to 10,000 by dedicated compositions. The ceramic capacitors with lower ε
r values have a stable capacitance and very low losses, so they are preferred in high-precision circuits and in high-frequency and RF electronic circuits. Typically, these “fast” ceramic capacitors have very small capacitances, on the order of pF and nF, and they can hold a high voltage. At the same time, the “slow” ceramic capacitors may have values as high as 1 μF. Therefore, the task of the above example can be solved with the ceramic capacitor as well.


                  Capacitor Marking


                
Figure 6.7 shows two examples of ceramic capacitors, with 100-pF and 1.0-μF capacitance from two different companies. To read the capacitance in the figure, we use the following rule: [image: 
$$ 101=10\times {10}^1 \mathrm{pF}=100 \mathrm{pF} $$
], and [image: 
$$ 105=10\times {10}^5\mathrm{pF}=1 \upmu \mathrm{F} $$
]. Indeed, [image: 
$$ 473=47\times {10}^3\mathrm{pF}=47 \mathrm{nF} $$
], and so forth. The tolerance letters may be present: F = 1 %, G = 2 %, J = 5%, K = 10 %, and M = 20 %. Also, the voltage rating should be given.[image: A331468_1_En_6_Fig7_HTML.jpg]
Fig. 6.7
Left, ceramic capacitors of 100 pF. Right, radial leaded ceramic capacitors of 1.0 μF





A standardized set of capacitance base values is defined in the industry. The capacitance of any (electrolytic or not) capacitor can then be derived by multiplying one of the base numbers 1.0, 1.5, 2.2, 3.3, 4.7, or 6.8 by powers of ten. Therefore, it is common to find capacitors with capacitances of 10, 15, 22, 33, 47, 68, 100, 220 μF, and so on. Using this method, values ranging from 0.01 to 4700 μF are customary in most applications. The value of the capacitance and the allowed 

maximum voltage are prominently written on the case of the electrolytic capacitor so reading those does not constitute any difficulties.


6.1.6 Application Example: Capacitive Touchscreens




Capacitive touchscreens use the fringing field of a capacitor studied previously. Many small capacitors with a significant fringing field are involved. If a conducting finger (an extra conductor) is placed in the fringing field, the corresponding capacitance changes. There are two possible solutions called the self-capacitance method and the mutual-capacitance method, respectively. The difference is in the measurement nodes for the capacitance. In the first case, the capacitance is measured between the touch pad electrode and a ground. In the second case, the capacitance is measured between two pad electrodes, neither of which is grounded. Both methods may be combined.

                  Self-Capacitance Method


                
Consider a human finger in the proximity of a touchscreen as shown in Fig. 6.8a. The touchscreen itself may be a lattice of circular touch pads surrounded by a ground plane and separated from it by an air-gap ring—see Fig. 6.8b. When the finger is not present, each pad has capacitance C
P to ground, which is called a parasitic capacitance. When the (grounded) finger appears in the vicinity of the touchpad, there appears another capacitance, C
F, which is called the finger capacitance. Figure 6.8a indicates that both capacitances are in parallel so that the resulting ground capacitance increases as[image: A331468_1_En_6_Fig8_HTML.gif]
Fig. 6.8Self-capacitance method for a capacitive touchscreen. The touchscreen is enlarged




[image: 
$$ {C}_{\mathrm{P}}\to {C}_{\mathrm{P}}+{C}_{\mathrm{F}}>{C}_{\mathrm{P}} $$
]

 (6.12)

This change in capacitance is recorded. Physically, the presence of the finger (or hand) increases the size of the ground conductor and thus increases the resulting capacitance. Typical values of C
P are on the order of 100 pF; C
F is on the order of 1–0.1 pF. Now assume that the desired resolution along one dimension of the screen is N. Then, N
2 individual touch pads are needed including the corresponding sensing circuitry. This may be a significant disadvantage

 of the self-capacitance method.


                  Mutual-Capacitance Method


                
The electrodes are typically interleaving rows and columns of interconnected square patches, which are shown in Fig. 6.9. Neither of them is connected to circuit ground (the third conductor) or to each other. When a finger touches the panel, the mutual capacitance C
M between the row and column, which mostly concentrates at the intersection, decreases, in contrast to the previous case. This change in capacitance is recorded. Assume again that the desired resolution along one dimension of the screen is N. Then, only 2N individual touch pads (electrodes) are needed including the corresponding sensing circuitry. This is a significant advantage of the mutual-capacitance method.[image: A331468_1_En_6_Fig9_HTML.gif]
Fig. 6.9Mutual-capacitance method for a capacitive touchscreen. Surface charge distribution is illustrated when the driven row is subject to an applied voltage. Finger projection is a circle







6.1.7 
Self-Inductance

 (Inductance) and Mutual Inductance


                  
                  
                

As long as the physical capacitor stores energy of the electric field, a physical

 inductor stores energy of the magnetic field. The inductor stores magnetic-field energy only when an electric current I flows through it. This is in contrast to a capacitor, which, once charged, stores the electric field energy in vacuum indefinitely, even when disconnected from the charging circuit. To use the inductor as an energy-storage element, one therefore needs to

 maintain a current in the circuit. The primary quantity is 
the magnetic fluxdensity, [image: 
$$ \overrightarrow{B} $$
], which is measured in webers per m
2, or tesla ([image: 
$$ 1 \mathrm{T}=1 \mathrm{Wb}/{\mathrm{m}}^2=1 \mathrm{V}\cdot \mathrm{s}/{\mathrm{m}}^2 $$
]). The magnetic flux density is related 
to the magnetic field, [image: 
$$ \overrightarrow{H} $$
], by [image: 
$$ \overrightarrow{B}=\mu \overrightarrow{H} $$
] where μ is magnetic permeability. In older power electronics texts, [image: 
$$ \overrightarrow{B} $$
], may be 
called magnetic induction. In Fig. 6.10, the magnetic flux density [image: 
$$ \overrightarrow{B} $$
] is created by circuit #1 (a closed loop of current I). Instead of the vector field [image: 
$$ \overrightarrow{B} $$
], it is convenient to use a simpler scalar quantity known 
as magnetic flux or simply flux, Φ. For a constant [image: 
$$ \overrightarrow{B} $$
], which is strictly perpendicular to the plane of circuit #1 with area A, the magnetic flux would be equal to[image: A331468_1_En_6_Fig10_HTML.gif]
Fig. 6.10Magnetic flux density generated by circuit #1




[image: 
$$ \varPhi = AB $$
]

 (6.13)

where B is the magnitude (length) of vector [image: 
$$ \overrightarrow{B} $$
]. The flux is measured in webers or in [image: 
$$ \mathrm{V}\cdot \mathrm{s} $$
]([image: 
$$ 1\ \mathrm{Wb}=1\ \mathrm{V}\cdot \mathrm{s} $$
]).
Generally, Eq. (6.13) is only approximately 

valid for circuit #1 in Fig. 6.10. The exact flux is given by a surface integral over the area of the circuit,[image: 
$$ \varPhi ={\displaystyle \underset{\mathrm{A}}{\iint}\overrightarrow{B}\cdot \overrightarrow{n}da} $$
]

 (6.14)

where [image: 
$$ \overrightarrow{n} $$
] is a unit normal to the surface A. Flux is an algebraic quantity and hence could be positive or negative

 depending 
on the chosen direction of [image: 
$$ \overrightarrow{n} $$
]. We

 assume that positive current in the circuit produces positive flux—see Fig. 6.10. The self-inductance of circuit #1 in Fig. 6.1 is its inductance; both terms have the same meaning. The inductance, L, of circuit #1 is given by[image: 
$$ L\equiv \frac{\varPhi }{I}>0 $$
]

 (6.15)

Thus, the inductance is the 
magnetic flux through circuit #1 produced by a unit current in the same circuit. The mutual inductance, M, between circuits #2 and #1 in Fig. 6.10 is the magnetic flux, Φ′, through circuit #2 produced by unit current in circuit #1, i.e.,[image: 
$$ M\equiv \frac{\varPhi^{\prime }}{I} $$
]

 (6.16)

Both L and M have the units of henry, or H. This unit is named in honor of Joseph Henry (1797–1878), an American scientist. Typical inductance values in electronics are nH (nanohenries) and μH (microhenries). In power electronics, larger inductances may be used. Henry is converted to V, A, and energy, J, as follows:[image: 
$$ 1 \mathrm{H}=1\frac{\mathrm{V}\cdot \mathrm{s}}{\mathrm{A}}=1\frac{\mathrm{J}}{{\mathrm{A}}^2} $$
]

 (6.17)

One may observe a close similarity between Eqs. (6.17) and (6.2). Both equations become identical if we interchange V and A. Equation (6.17) also has a

 number of simple and important implications related to
 energy 

and power. Total magnetic-field energy stored in 

space surrounding circuit #1 in Fig. 6.10 is given by[image: 
$$ E=\frac{1}{2}L{I}^2 $$
]

 (6.18)

Equation (6.18) may be considered as another definition of self-inductance (or inductance). As such, it is frequently used in practice.
Exercise 6.6
A flux linking the circuit is 0.1 Wb. Find the circuit’s inductance and magnetic-field energy stored if the

 
                    
                  
circuit 

current is 1 A.

Answer: [image: 
$$ L=100 \mathrm{mH} $$
], [image: 
$$ E=0.05 \mathrm{J} $$
].


6.1.8 
Inductance

 of a Solenoid With and Without Magnetic Core



                  
                  
                

Consider a solenoid (a long helical coil of length l) with applied current I shown in Fig. 6.11. The case of air-filled coil in Fig. 6.11a is studied first. 
                  
                Magnetic flux density [image: 
$$ \overrightarrow{B} $$
] within the solenoid is nearly uniform and is directed along its axis. Therefore, the flux through one turn of the coil (one loop) is given by Eq. (6.13). It is equal to AB, where A is the loop area. The net flux Φ through the entire solenoid is AB times the number of turns comprising the coil, N. The inductance is therefore obtained from Eq. (6.15) as[image: A331468_1_En_6_Fig11_HTML.gif]
Fig. 6.11Three types of a solenoid




[image: 
$$ L=N\frac{AB}{I} $$
]

 (6.19)

The magnetic flux, B, within the solenoid is found in physics courses:[image: 
$$ B=\frac{\mu_0N\;I}{l} $$
]

 (6.20)

where the natural constant [image: 
$$ {\mu}_0=4\pi \times {10}^{-7}\ \mathrm{H}/\mathrm{m} $$
] is the 
                  magnetic permeability of vacuum
                  
                 (or air, which is very close to a vacuum with regard to magnetic properties). Substitution of Eq. (6.20) into Eq. (6.19) yields a simple equation for the inductance[image: 
$$ L=\frac{\mu_0A{N}^2}{l} \left[\mathrm{H}\right] $$
]

 (6.21)

Thus, strong inductances can be created by a large number of turns (a quadratic dependence), a large coil cross section, and a smaller coil length. Equation (6.21) also holds for various bent solenoids (such as toroidal coils). Equation (6.21) makes clear that the

 inductance, like capacitance and resistance, is independent of externally applied circuit 

conditions.
The above derivation is only valid for a solenoid that is long compared to its diameter. When this is not the case, a modification to Eq. (6.22) is made, namely,[image: 
$$ L=\frac{\mu_0A{N}^2}{l}\left(1-\frac{8w}{3\pi }+\frac{w^2}{2}-\frac{w^4}{4}\right), w=\frac{r}{l}<1 $$
]

 (6.22)

where r is the radius of the coil. Other handy formulas for short solenoids exist. Equation (6.22) describes the 
fringing effect in

 practical inductors, which may also be used for sensor purposes, similar to the fringing fields for the capacitor. The inductance of the solenoid

 increases when it has a core with a magnetic material within the coil, as shown in Fig. 6.11b, c. This material is called a magnetic core and inserting it into the coil increases the magnetic-field energy stored in the inductor. When the magnetic core is closed, i.e., has the form of a toroid as in Fig. 6.11b, Eq. (6.21) is transformed to[image: 
$$ L=\frac{\mu_0{\mu}_rA{N}^2}{l} $$
]

 (6.23)

where [image: 
$$ {\mu}_{\mathrm{r}}\ge 1 $$
] is known as the 
                  relative magnetic permeability
                  
                 of a magnetic material. Emphasize that Eq. (6.23) is not valid for the straight cylindrical core in Fig. 6.11c. The calculation of inductance for the straight core becomes a nontrivial theoretical exercise. We present here a 

useful theoretical result, which is only valid for a high-permeability magnetic core, with approximately [image: 
$$ {\mu}_r\ge 100 $$
]. The resulting inductance has the form[image: 
$$ L\approx \frac{0.5\pi {\mu}_0{l}^{*}{N}^2}{ \ln \left[\frac{l^{*}}{r}-1\right]}\left(1-\frac{l}{2{l}^{*}}\right) \left[\mathrm{H}\right] $$
]

 (6.24)

where l, l* are indicated in Fig. 6.11c and r is the radius of the coil (core). The resulting inductance does not explicitly depend on the specific value of μ
r as long as this value is 

sufficiently large. Equation (6.24) holds only for the situations where the core length-to-diameter ratio is considerably smaller than the relative magnetic permeability, μ
r. It predicts inductances that are much lower than those found by using Eq. (6.23).[image: A331468_1_En_6_Fig12_HTML.gif]
Fig. 6.12Inductances in series and in parallel





Exercise 6.7
A solenoid coil in Fig. 6.11a, b, and c has [image: 
$$ r=0.45\;\mathrm{cm} $$
], [image: 
$$ N=110 $$
], [image: 
$$ l=2.15\ \mathrm{cm} $$
]. Determine the coil 

inductance in all three cases. In

 cases b and c, respectively, [image: 
$$ {\mu}_{\mathrm{r}}=100 $$
]. 
                    
                    
                  Furthermore, [image: 
$$ l*=8.90\ \mathrm{cm} $$
] in Fig. 6.11c.

Answer: [image: 
$$ L=45 \upmu \mathrm{H} $$
] (air-core coil
); [image: 
$$ L=4500 \upmu \mathrm{H} $$
] (toroidal coil); [image: 
$$ L=640 \upmu \mathrm{H} $$
] (straight-magnetic-core coil
).


6.1.9 
Circuit Symbol

: Inductances in Series and in Parallel



Figure 6.12 shows the inductances in series and in parallel, along with inductance circuit symbol. This symbol is reserved for the inductance as a circuit element. Such an element is an 
                  ideal
                  
                  
                 inductor excluding manufacturing imperfections (parasitic resistance and capacitance). In the following text, we will frequently employ both words—inductance and inductor—to denote the same ideal circuit element. The series and parallel connections of inductances are identical when compared to the connections of resistances. To establish this fact we consider two combinations shown in Fig. 6.12.
For the series configuration in Fig. 6.12a, the same current I is applied to every inductance. Given that the equivalent inductance is also subject to current I and must possess the same magnetic-field energy defined by Eq. (6.18), one has[image: 
$$ E=\frac{1}{2}{L}_{\mathrm{eq}}{I}^2=\frac{1}{2}{L}_1{I}^2+\frac{1}{2}{L}_2{I}^2+\frac{1}{2}{L}_3{I}^2\Rightarrow {L}_{\mathrm{eq}}={L}_1+{L}_2+{L}_3 $$
]

 (6.25)

The parallel configuration in Fig. 6.12b may be analyzed given the condition of equal magnetic flux through each inductance. Since this condition is

 related to Faraday’s law
 of induction, we postpone the corresponding discussion until the next section.

6.1.10 Application Example: How to Design a 1-mH

 Inductor
?
Again, after this theoretical excursion, let us design a practical inductor. Our goal is to construct a 1-mH inductance. According to Eq. (6.21) the required number of turns is[image: 
$$ N=\sqrt{\frac{Ll}{\mu_0A}} $$
]

 (6.26)

We will select a coil length of [image: 
$$ l=5\ \mathrm{cm} $$
] and an (average) coil radius of [image: 
$$ r=1\ \mathrm{cm} $$
]. Equation (6.26) then yields[image: 
$$ N=\sqrt{\frac{10^{-3}\times 5\times {10}^{-2}}{4{\pi}^2\times {10}^{-7}\times {10}^{-4}}}=356 $$
]

 (6.27)

Such a coil can be wound on a former in the laboratory with a sufficiently thin wire, say AWG 28. A different approach to reducing the number of turns while maintaining, or even increasing, the inductance is to use a magnetic material within the coil, as shown in Fig. 6.11. Table 6.2 lists the magnetic permeability for a number of magnetic 

materials. The simplest magnetic core is an iron core. However, it is lossy since an alternating magnetic field creates so-called eddy currents in the conducting core, which are dissipated into heat. One solution to this problem is to use thin insulated sheets of iron, or laminations. Various ferrites (oxides of iron, or other metals) are an alternative to iron, which are ceramics and known as good electric insulators. Other types of losses may occur there, explanations of which go beyond the scope of our text. Once a soft
 ferrite with [image: 
$$ {\mu}_{\mathrm{r}}\sim 100 $$
] is used in the design of the 1-mH inductor, the number of turns necessary to achieve the same inductance decreases by [image: 
$$ \sqrt{\mu_{\mathrm{r}}}=10 $$
]. In our example, it becomes equal to 36 turns instead of over 300 turns. However, the magnetic core cannot be a short rod like that shown in Fig. 6.11c; it must form a 

closed loop shown in Fig. 6.11b.Table 6.2Relative permeability of some common materials


	Material
	Relative static permeability

	Air
	1.0

	Magnetic iron
	200

	Iron powder
	2–75

	Nickel
	100

	Permalloy (78.5 % nickel + 21.5 % iron)
	8000

	Soft ferrites with low losses at frequencies up to 100 MHz
	20–800

	Hard ferrites with low losses up to 1 MHz
	1000–15,000






                  Inductor Marking


                
Leaded inductors have color codes, similar to resistors. A standardized set of inductance base values is defined in the industry. The inductance of any inductor can then be derived by multiplying one of the base numbers 1.0, 1.1, 1.3, 1.5, 1.9, 2.2, 2.7, 3.3, 3.9, 4.7, 5.8, 6.8, or 8.2 by powers of ten. Therefore, it is common to find inductances with values of 1.0, 2.7, 6.8 μH, and so on.
                    
                    
                   Using this method, values ranging from 0.01 to 100 μH are customary in most applications.



6.2 Dynamic Behavior of Capacitance and Inductance
6.2.1 Set of Passive Linear Circuit Elements


The three elements, resistance, capacitance, and inductance, constitute the fundamental set of passive circuit elements for any linear electric circuit. This is very similar to a mechanical system consisting of dashpot, spring, and mass, which form the basic set of any linear kinematic system. Having discussed the underlying DC concepts of capacitance and inductance, we now turn our attention to their dynamics. A simple example of dynamic behavior is given by a vacuum cleaner. If one manually unplugs the working vacuum cleaner from the wall outlet (please avoid doing so), a profound spark may appear. On the other hand, turning off the vacuum cleaner normally produces no spark. The reason for the spark is that breaking the current through a dynamic circuit element—an inductance—which models the coil of the motor, creates very large transient voltages. One reason for studying transients is the wish to avoid such sparks and to properly design the electric switch. The use of two dynamic circuit elements—the capacitance and inductance—is enormous, especially in power systems. Every electric motor is basically an inductance; most power motors need a power correction circuit that in turn requires a shunt capacitance. Some motors need starting capacitors or surge capacitors for large motors. On the other hand, the capacitance of logic gates is responsible for the so-called propagation delay. This delay determines a very important measure of the performance of a digital system, such as a computer, which is the maximum speed of operation. Thus, the capacitances and inductances are just everywhere, like mass and spring systems present everywhere in mechanical engineering. However, they are becoming most apparent when we consider a transient behavior, an alternating current, or 
high-frequency digital and communication circuits.

6.2.2 Dynamic Behavior of Capacitance



Both capacitance and inductance are passive circuit elements, which means that, like resistance, they do not deliver a net power increase to the circuit. Indeed, after charging, the capacitor is able to power a circuit, usually for a short period of time. At the end of the discharge cycle, it needs to be recharged. Therefore, we use the passive reference configuration for the capacitance in Fig. 6.13a. Lowercase letters denote time-varying voltage and current. The dynamic behavior of the capacitance is described by the well-known voltage-to-current relation (dynamic equation), which plays the role of “Ohm’s law” for the capacitance[image: A331468_1_En_6_Fig13_HTML.gif]
Fig. 6.13Passive reference configuration for capacitance and its fluid mechanics analogy




[image: 
$$ {i}_{\mathrm{C}}=C\frac{d{\upsilon}_{\mathrm{C}}}{dt} $$
]

 (6.28)

Equation (6.28) follows from the capacitance definition, [image: 
$$ {q}_{\mathrm{C}}=C{\upsilon}_{\mathrm{C}} $$
], given in the previous section. It is obtained after differentiation and using the equality[image: 
$$ \frac{d{q}_{\mathrm{C}}}{dt}={i}_{\mathrm{C}} $$
]

 (6.29)

A fluid mechanics analogy of the dynamic capacitance effect corresponds to alternating fluid motion in Fig. 6.13b. A capacitance is represented by a flexible membrane. The capacitance value, C, corresponds to the inverse stiffness, 1/k, of the membrane. When [image: 
$$ k\to \infty $$
] and [image: 
$$ C\to 0 $$
] (a rigid membrane), the capacitance value tends to zero. The membrane becomes a solid wall, which blocks the alternating flow entirely. In another limiting case ([image: 
$$ k\to 0 $$
] or [image: 
$$ C\to \infty $$
]), the membrane moves with fluid and has no effect on the fluid flow. Intermediate cases correspond to a partial blocking. The electric current in Eq. (6.28) is not the DC conduction current, but the displacement current which was first introduced by Sir James Clerk Maxwell to complete Maxwell’s equations. This current can flow through empty (or free) space between two capacitor plates. It is not supported by directional motion of free charges, in contrast to the DC conduction current. The capacitor itself was invented yet in 1745 by Ewald Georg von Kleist (1700–1748), German lawyer and physicist, and by Dutch scientist Pieter Van Musschenbroek (1692–1761). Some also believe the Biblical Ark of the Covenant was protected by a first capacitor—the Leyden jar—capable of

 producing thousands of volts of static electricity.
Example 6.2
The voltage across a 100-μF capacitor is shown in Fig. 6.14 that follows by a solid curve. At [image: 
$$ t=0 $$
], the voltage is zero. Sketch the current through the capacitor to scale versus time.

Solution: We use Eq. (6.28) to find the current. In Fig. 6.14, [image: 
$$ {\upsilon}_{\mathrm{C}}(t)={10}^5\left(t-{10}^{-6}\right)\ \mathrm{V} $$
] when t changes from 1 to 2 μs, and [image: 
$$ {\upsilon}_{\mathrm{C}}(t)=0 $$
] at [image: 
$$ t<1 \upmu \mathrm{s} $$
]. At [image: 
$$ t>2 \upmu \mathrm{s} $$
], the voltage is 100 mV. Therefore, the current is found in the form: [image: 
$$ {i}_{\mathrm{C}}(t)={10}^{-4}\times {10}^5=10\ \mathrm{A} $$
]when t changes from 1 to 2 μs and [image: 
$$ {i}_{\mathrm{C}}\left(\mathrm{t}\right)=0 $$
] otherwise. The result is shown in Fig. 6.14 by a dashed curve. We observe a strong current spike when the voltage across the capacitor changes rapidly, and we observe no current flow when the voltage across the capacitor remains constant.

Note that the relatively small voltage on the order of 100 mV in Fig. 6.14 leads to a very large current spike of 10 A(!) through the capacitance. The key point here is that the current increase is due to the rapid change in voltage. Such a change can be created when the capacitor discharges through a small resistance. This is the reason why capacitors are routinely employed to deliver large currents, or high power levels, for a very short period of time. The high currents are common in motor starting circuits, in electronic flashes, in solenoids, and in various electromagnetic propulsion systems.[image: A331468_1_En_6_Fig14_HTML.gif]
Fig. 6.14Applied voltage across the capacitor (solid curve) and resulting current (dashed curve)





The capacitor is charged with an

 electric current. The voltage across the capacitor, from Eqs. (6.28) and (6.29), is given by[image: 
$$ {\upsilon}_{\mathrm{C}}=\frac{1}{C}{\displaystyle \underset{0}{\overset{t}{\int }}{i}_{\mathrm{C}}\left(t,^{\prime}\right)dt^{\prime }}=\frac{q_{\mathrm{C}}(t)}{C} $$
]

 (6.30)

Equation (6.30) tells us that the capacitor voltage is equal to zero at the initial time, i.e., at [image: 
$$ t=0 $$
]. Once the current i
C(t) is known, the voltage at any point in time is obtained by carrying out the integration in Eq. (6.30). At any time instant, the voltage is equal to the instantaneous stored charge q
C(t) divided by capacitance. The current in Eq. (6.30) is either predefined or found from circuit considerations. The example that follows illustrates voltage calculations.
Example 6.3
A 1-μF capacitor is charged with an electric current, [image: 
$$ {i}_{\mathrm{C}}(t)=1\cdot t \left[\mathrm{m}\mathrm{A}\right] $$
]. The capacitance voltage is equal to zero at the initial time instance [image: 
$$ t=0 $$
]. When will the capacitor

 be charged to 10 V?

Solution: The integration yields[image: 
$$ {\upsilon}_{\mathrm{C}}=\frac{1}{C}{\displaystyle \underset{0}{\overset{t}{\int }}{i}_{\mathrm{C}}\left(t,^{\prime}\right)dt^{\prime }}=\frac{0.001}{C}{t}^2=10\Rightarrow t=0.1 \mathrm{s} $$
]

 (6.31)





6.2.3 Dynamic Behavior of Inductance



We use the passive reference configuration for the inductance in Fig. 6.15a. Lowercase letters denote time-varying voltage and current. The dynamic behavior of the inductance is described by the well-known voltage-to-current relation (dynamic equation), which plays the role of “Ohm’s law” for the inductance:[image: A331468_1_En_6_Fig15_HTML.gif]
Fig. 6.15Passive reference configuration for inductance and its fluid mechanics analogy




[image: 
$$ {\upsilon}_{\mathrm{L}}=L\frac{d {i}_{\mathrm{L}}}{dt} $$
]

 (6.32)

Equation (6.32) follows from the inductance definition, [image: 
$$ \varPhi =L{i}_{\mathrm{L}} $$
], given in the previous section. We obtain Eq. (6.32) after differentiation and using the Faraday’s law of induction for the time derivative of the 
magnetic flux (the plus sign is used in Faraday’s law to be consistent with the passive reference configuration):[image: 
$$ \frac{d\varPhi (t)}{dt}={\upsilon}_{\mathrm{L}} $$
]

 (6.33)

A fluid mechanics analogy of the dynamic inductance effect is given here in terms of alternating current, which corresponds to alternating fluid motion in Fig. 6.15b. A massive wheel with rotational inertia in Fig. 6.15b represents inductance. The inductance value, L, corresponds to the mechanical mass m of the wheel. When [image: 
$$ m\to \infty $$
] or [image: 
$$ L\to 0 $$
], the wheel does not responds to fluid oscillations and blocks the alternating fluid flow entirely. In the opposite case ([image: 
$$ m\to 0 $$
] or [image: 
$$ L\to \infty $$
]), the wheel has no effect on the fluid flow. Intermediate cases correspond to a partial blocking.
Example 6.4
The current through a 2-mH inductor is shown in Fig. 6.16 by a solid curve. At [image: 
$$ t=0 $$
], the current is 

zero. Sketch the voltage across the inductance to scale versus time.[image: A331468_1_En_6_Fig16_HTML.gif]
Fig. 6.16Impressed current through an inductance (solid curve) and resulting voltage across the inductance (dashed curve)






Solution:We use Eq. (6.32) to find the voltage across the inductance. In Fig. 6.16, [image: 
$$ {i}_{\mathrm{L}}(t)={10}^3\left(t-{10}^{-6}\right)\ \mathrm{A} $$
] when t changes from 1 to 2 μs and [image: 
$$ {i}_{\mathrm{L}}(t)=0 $$
] at [image: 
$$ t<1 \upmu \mathrm{s} $$
]. At [image: 
$$ t>2 \upmu \mathrm{s} $$
], the current is 1 mA. Therefore, the voltage is found in the form: [image: 
$$ {\upsilon}_{\mathrm{L}}(t)=2\times {10}^{-3}\times {10}^3 = 2 \mathrm{V} $$
] when t changes from 1 to 2 μs and [image: 
$$ {\upsilon}_{\mathrm{L}}(t)=0 $$
] otherwise. The result is shown in Fig. 6.16 by a dashed curve.

Note that relatively small current, on the order of 1 mA, leads to a large voltage spike of 2 V across the inductance in Fig. 6.16. The key point here is again the rapid change in the current. If the current in the present example were on the order of 1 A, a voltage spike of 2000 V would be observed. This is the reason why inductors are routinely used to boost the voltage to a higher level. These high voltages are common in electric and electronic ignition systems including the most common car ignition plug. From Eqs. (6.32) and (6.33) the current through the inductance is given by[image: 
$$ {i}_{\mathrm{L}}=\frac{1}{L}{\displaystyle \underset{0}{\overset{t}{\int }}{\upsilon}_L\left(t,^{\prime}\right)dt^{\prime }}=\frac{\varPhi (t)}{L} $$
]

 (6.34)

Equation (6.34) implies that the current is equal to zero at the initial time, i.e., at [image: 
$$ t=0 $$
]. Once the voltage is known as a function of time, the current through the inductance at any time moment is obtained by the calculation of the integral in Eq. (6.34). At any time instant, the current is equal to the instantaneous 

magnetic flux Φ(t) divided by inductance.
Example 6.5
A 1-mH inductor is subject to applied voltage, [image: 
$$ {\upsilon}_L(t)=1\cdot t \left[\mathrm{mV}\right] $$
]. The inductance current is equal to zero at the initial time instance [image: 
$$ t=0 $$
]. When will the magnetic-field 
energy stored in the inductance reach 1 J?

Solution: The integration in Eq. (6.34) and using Eq. (6.18) for the energy stored in the inductor yield[image: 
$$ {i}_{\mathrm{L}}=\frac{1}{L}{\displaystyle \underset{0}{\overset{t}{\int }}{\upsilon}_C\left(t,^{\prime}\right)dt^{\prime }}=\frac{0.001}{L}{t}^2={t}^2 \left[\mathrm{A}\right]\Rightarrow \frac{1}{2}L{\left({t}^2\right)}^2=1 \mathrm{J}\Rightarrow t=6.7 \mathrm{s} $$
]

 (6.35)




So, if the capacitance is associated with a spring, the inductance is associated with the mass, and the resistance is associated with a dash pot (damping element), then the entire electric circuit containing dynamic elements is nothing else but a mechanical system. Is this correct? Clearly the same analysis methods are applicable to both systems, electrical and mechanical! The model of an entire building in terms of lumped mechanical elements is in theory the same as the model of a complicated electric circuit. Both models can be analyzed by using the theory of linear systems, and both models follow the 

same control theory. A more difficult issue is related to nonlinear circuit elements.

6.2.4 Instantaneous Energy and Power of 

Dynamic Circuit Elements



An elegant derivation of the energy stored in a capacitance can also be obtained by integrating the power delivered (or taken) by the capacitance. The instantaneous electric power p
C(t) can be written in the form[image: 
$$ {p}_{\mathrm{C}}(t)={\upsilon}_{\mathrm{C}}{i}_{\mathrm{C}}={\upsilon}_{\mathrm{C}}C\frac{d{\upsilon}_{\mathrm{C}}}{dt}=\frac{1}{2}C\frac{d{\upsilon}_{\mathrm{C}}^2}{dt} $$
]

 (6.36)

The stored energy is then the time integration of the power, i.e.,[image: 
$$ {E}_{\mathrm{C}}(t)={\displaystyle \underset{0}{\overset{t}{\int }}{p}_{\mathrm{C}}\left(t,^{\prime}\right)dt^{\prime }}={\displaystyle \underset{0}{\overset{t}{\int }}\frac{1}{2}C\frac{d{\upsilon}_{\mathrm{C}}^2}{dt^{\prime }}dt^{\prime }}=\frac{1}{2}C\left[{\upsilon}_{\mathrm{C}}^2(t)-{\upsilon}_{\mathrm{C}}^2(0)\right] $$
]

 (6.37)

where the lower limit, υ
C(0), is the initial state of the capacitance. Suppose that [image: 
$$ {\upsilon}_{\mathrm{C}}(0)=0 $$
], i.e., the capacitance is initially uncharged and has zero stored energy. Then,[image: 
$$ {E}_{\mathrm{C}}(t)=\frac{1}{2}C{\upsilon}_{\mathrm{C}}^2(t) $$
]

 (6.38)

Equation (6.38) is the formal proof of the corresponding static result, Eq. (6.3), postulated in the previous section. We can derive the 
energy stored in the inductance using the same method—by integrating the power. The instantaneous 
power supplied to or obtained from the inductance has the form[image: 
$$ {p}_{\mathrm{L}}(t)={\upsilon}_{\mathrm{L}}{i}_{\mathrm{L}}={i}_{\mathrm{L}}L\frac{d{i}_{\mathrm{L}}}{dt}=\frac{1}{2}L\frac{d{i}_{\mathrm{L}}^2}{dt} $$
]

 (6.39)

The energy stored in the inductance is the integral of Eq. (6.39), i.e.,[image: 
$$ \begin{array}{l}{E}_L(t)={\displaystyle \underset{0}{\overset{t}{\int }}{p}_L\left(t,^{\prime}\right)dt^{\prime }}={\displaystyle \underset{0}{\overset{t}{\int }}\frac{1}{2}L\frac{d{i}_L^2}{dt^{\prime }}dt^{\prime }}=\frac{1}{2}L\left[{i}_L^2(t)-{i}_L^2(0)\right]\end{array} $$
]

 (6.40)

Suppose that [image: 
$$ {i}_{\mathrm{L}}(0)=0 $$
], i.e., the inductance is

 initially “uncharged” or has no stored energy. Then,[image: 
$$ {E}_{\mathrm{L}}(t)=\frac{1}{2}L{i}_{\mathrm{L}}^2(t) $$
]

 (6.41)

Equation (6.41) is the formal proof of the corresponding static result, Eq. (6.18), postulated in the previous section. The series and parallel combinations of inductances and capacitances may also be analyzed using the dynamic element equations; the laws obtained in the previous section will be confirmed.
Exercise 6.8
Determine instantaneous power supplied to the capacitance in Fig. 6.14 at A. [image: 
$$ t=2 \upmu \mathrm{s} $$
] and B. [image: 
$$ t=1 \upmu \mathrm{s} $$
].

Answer: 1 W and 0 W, respectively.

Exercise 6.9
Repeat the previous exercise for the

 inductance
 shown in Fig. 6.16.

Answer: 0.002 W and 0 W, respectively.


6.2.5 
                DC Steady State

              
According to Eq. (6.28) when voltage across the capacitance does not change with time, the capacitance becomes an open circuit (no current) under DC steady-state condition, i.e.,[image: 
$$ \frac{d{\upsilon}_{\mathrm{C}}}{dt}=0\Rightarrow {i}_{\mathrm{C}}=C\frac{d{\upsilon}_{\mathrm{C}}}{dt}=0 $$
]

 (6.42)

This is to be expected since a DC current cannot flow through empty space between two capacitor plates. Similarly, according to Eq. (6.32) the inductance becomes a short circuit for the DC steady state when current across the inductance does not change in time, i.e.,[image: 
$$ \frac{d{i}_{\mathrm{L}}}{dt}=0\Rightarrow {\upsilon}_{\mathrm{L}}=L\frac{d{i}_{\mathrm{L}}}{dt}=0 $$
]

 (6.43)

In other words, there is no voltage drop across a (long) bent piece of wire, which is the inductor, for DC currents. Equations (6.36) and (6.37) allow us to establish the behavior of any transient electric circuit in the long run, after the circuit behavior has been stabilized
. The transient circuit is a circuit with dynamic elements and a switch. Figure 6.17 shows one such circuit that consists of a 
number of dynamic (and static) elements and a switch. The switch connects the voltage source to the rest of the circuit as the switch closes at [image: 
$$ t\to 0 $$
].[image: A331468_1_En_6_Fig17_HTML.gif]
Fig. 6.17A circuit is used to study the DC steady state. The switch closes at [image: 
$$ t=0 $$
]. The behavior of the circuit at [image: 
$$ t\to \infty $$
] is sought after the circuit has stabilized





Example 6.6
Find current I in Fig. 6.17 at [image: 
$$ t\to \infty $$
], i.e., under DC steady state.

Solution: Immediately after the switch in Fig. 6.17 closes, the voltages and currents in the circuit may be subject to a complicated response. In particular the voltage across certain dynamic elements may be higher than the voltage of the power supply of 5 V. However, in the long run as [image: 
$$ t\to \infty $$
], the circuit behavior stabilizes and we reach the DC steady state. The capacitance in Fig. 6.17 becomes an open circuit and may be ignored. Both inductances can be replaced by a wire (short circuit). The resulting DC circuit is shown in Fig. 6.18. Thus, we obtain[image: 
$$ I=\frac{5 \mathrm{V}}{40 \Omega}=125 \mathrm{m}\mathrm{A} $$
]

 (6.44)

Other more complicated circuits can be analyzed
 in exactly the same way.[image: A331468_1_En_6_Fig18_HTML.gif]
Fig. 6.18A DC equivalent of the circuit in Fig. 6.17 under steady-state conditions







6.2.6 Behavior at Very High Frequencies


At very high frequencies, the behavior of the two dynamic circuit elements is exactly the opposite: the capacitance becomes a short circuit, whereas the inductance becomes an open circuit. To establish this fact, we can either use the fluid mechanics analogies or the dynamic equations themselves. For example, the inertia of a massive wheel (inductance) will prevent any very fast movements of it so that the oscillating fluid flow will be entirely blocked when the oscillation frequency tends to infinity. On the other hand, the forces on a flexible membrane of zero mass will be so high for a rapidly oscillating fluid flow that its finite stiffness no longer matters. The membrane will simply be moving along with the fluid, which means the full transmission through its counterpart—the capacitance. The behavior of dynamic elements at very high frequencies is exactly as important as the behavior at DC; it will be studied quantitatively in Chapter 9.
Example 6.7
Illustrate how is the capacitance becoming a short circuit at very high frequencies using the capacitor’s dynamic equation as a starting point.

Solution: Assume that there is a periodic current with the amplitude of 1 A, [image: 
$$ {i}_{\mathrm{C}}(t)=1\ \mathrm{A} \cos \omega  t $$
] through a 10-μF capacitance. The resulting capacitor voltage is given by Eq. (6.30), [image: 
$$ {\upsilon}_{\mathrm{C}}(t)=1/\left(\omega \mathrm{C}\right) \sin \omega  t $$
]. When [image: 
$$ \omega ={10}^8\ \mathrm{rad}/\mathrm{s} $$
], the capacitor voltage has the amplitude of 1 mV. This small voltage approximately corresponds to a
 short circuit. When ω increases, the voltage amplitude is reduced even further.



6.3 Application Circuits Highlighting Dynamic Behavior
6.3.1 
                Bypass Capacitor

              
Let us consider the circuit shown in Fig. 6.19a. It includes a voltage source represented by its Thévenin equivalent and a load represented by its equivalent resistance R
L. The source generates a voltage in the form of a (large) DC component V
S and superimposed (small) AC signal υ
S(t). This setup could model a nonideal DC voltage power supply, which does not create the exactly DC voltage. In fact, a weak AC component may be present. This AC component (also called the noise component) has a frequency of either [image: 
$$ 60\times n\ \mathrm{Hz} $$
], where n is an integer (USA, Canada, parts of South America, Saudi Arabia, etc.), or [image: 
$$ 50\times n\ \mathrm{Hz} $$
] (the rest of the world) and appears due to a not quite perfect rectification of the primary AC power. As an aside, switching power supplies create noise spikes at much higher frequencies. The weak AC component may lead to circuit oscillations, especially when dealing with high-gain amplifiers. It therefore should be removed from the load, or “filtered out” as engineers often say. The idea is to use a capacitor C in parallel with the (imperfect) power supply and in parallel with the load, the so-called bypass capacitor. This capacitor ideally becomes a short circuit for the high-frequency noise component of the source and shorts it out (or bypasses). The corresponding circuit diagram is shown in Fig. 6.19b. An electrolytic capacitor is typically used as the bypass capacitor.[image: A331468_1_En_6_Fig19_HTML.gif]
Fig. 6.19Model of a voltage source connected to a load with a bypass capacitor





In many cases, the undesired noise source in a circuit is not a low-frequency noise source of a nonideal power supply, but rather a high-frequency noise generator. Examples include high-speed DC motors, analog-to-digital converters, and other digital circuits. Radio-frequency (RF) high-speed amplifiers are also very sensitive to RF noise that is created by connectors and wires which can act like antennas. By placing a bypass capacitor as closely as possible to the power supply pins of every chip, such RF noise sources may be eliminated. Bypass capacitors are so prevalent that they are encountered in 
virtually every working piece of electronic equipment.
Example 6.8
Explain the operation of bypassing a DC motor.

Solution: A DC motor with a bypass capacitor is also described by the model shown in Fig. 6.19b. In this case, the source voltage [image: 
$$ {V}_{\mathrm{S}}+{\upsilon}_{\mathrm{S}}(t) $$
] becomes the induced electromotive force (emf), E, of the motor, The induced emf is still a DC voltage but with quite a significant high-frequency noise component created by the spinning rotor comprised of a finite number of individual switched coils. The source resistance becomes the armature and brush resistance R
M, that is, [image: 
$$ {R}_{\mathrm{S}}={R}_{\mathrm{M}} $$
]. The load resistance R
L may, for example, be the oscilloscope resistance. We consider a small DC fan motor directly connected to a 5-V power supply shown in Fig. 6.20. The motor creates a substantial high-frequency noise seen on the oscilloscope in Fig. 6.20, left (with 100 mV per division resolution). The oscilloscope measures the voltage across the motor, which is the 5-V DC component plus the noise component. Once a 1000-μF capacitor is connected in parallel with the motor (one may call 
it a shunt capacitor), the resulting voltage becomes a highly stable 5-V DC (see Fig. 6.20, right).[image: A331468_1_En_6_Fig20_HTML.gif]
Fig. 6.20Effect of bypass capacitor on the high-frequency noise created by a DC motor






The bypass capacitor in Fig. 6.20 may be considered as a part of 
the snubber RC circuit, which includes a capacitance and a small series resistance. The snubber 
circuits are used to suppress high-voltage spikes in inductive switching systems like electric motors.

6.3.2 
                Blocking Capacitor

              
Quite often, an opposite scenario is desired—we want to block a DC component at the load—see Fig. 6.21. An example is an audio amplifier (the source) connected to a speaker (the load). The audio amplifier may generate an unwanted DC component, which may overheat the speaker coil made of a very thin wire. The idea is to use a capacitor C in series with the (imperfect) amplifier and in series with the load. 
                  
                This blocking or decoupling capacitor will block the DC current at the load as shown in Fig. 6.21b.[image: A331468_1_En_6_Fig21_HTML.gif]
Fig. 6.21Model of a voltage source connected to a load with a blocking capacitor






6.3.3 
                Decoupling Inductor

              
A decoupling inductor is the complement of the bypass capacitor. Consider the circuit shown in Fig. 6.22a. It includes a source represented by its Norton equivalent [image: 
$$ {I}_{\mathrm{S}}+{i}_{\mathrm{S}}(t),{R}_{\mathrm{S}} $$
] and a load with an equivalent resistance R
L. The source generates an electric current in the form of a DC component and a superimposed AC signal. Assume that we would like to have only the direct current at the load. The idea is to use an inductor L in series with the load, the so-called decoupling inductor as shown in Fig. 6.22b. At a sufficiently high frequency, this inductor will block the AC component at the load.[image: A331468_1_En_6_Fig22_HTML.gif]
Fig. 6.22Model of a current source connected to a load with a decoupling inductor





A common application of the decoupling inductor is the so-called radio-frequency (RF) inductor choke

. Here, 
                  
                we’d rather intend to redirect the alternating current. The inductor choke prevents the very weak alternating current received by an antenna to be lost in the low-resistance DC power supply, which powers an amplifier. Instead, it forces the current to flow directly into the input port of the amplifier. In order to model the choke effect in Fig. 6.22, we should in fact interchange the role of two resistances: we consider the load resistance as the DC supply resistance and the source
 resistance as the desired input resistance of the amplifier.

6.3.4 Amplifier Circuits With Dynamic Elements: Miller Integrator


                  
                  
                

                  
                

Amplifier circuits with the dynamic elements in the negative feedback loop can serve different purposes. In particular, they operate 
as active filters. Here, we will introduce the operation concept and present simple examples. The Miller integrator circuit is an inverting-amplifier circuit considered in Chapter 5, but with the feedback resistance R
2 replaced by a capacitance C—see Fig. 6.23. Given a time-varying input voltage signal, the capacitor will conduct a current. Therefore, the negative feedback is still present, even though we now have a capacitance instead of the resistance in the feedback loop.[image: A331468_1_En_6_Fig23_HTML.gif]
Fig. 6.23Miller integrator circuit





The circuit analysis uses two summing-point constraints: no current into the amplifier and zero differential input voltage. Therefore, the node voltage υ * in Fig. 6.23 is also zero. The currents [image: 
$$ {i}_1={i}_{\mathrm{R}} $$
] and [image: 
$$ {i}_2={i}_{\mathrm{C}} $$
] in Fig. 6.23 are equal to each other. This yields[image: 
$$ \begin{array}{l}\overset{i_{\mathrm{C}}}{\overbrace{C\frac{d{\upsilon}_{\mathrm{C}}}{dt}}}=C\frac{d\left(\upsilon *-{\upsilon}_{\mathrm{out}}\right)}{dt}=-C\frac{d{\upsilon}_{\mathrm{out}}}{dt}=\overset{i_{\mathrm{R}}}{\overbrace{\frac{\upsilon_{\mathrm{R}}}{R}}}=\frac{\upsilon_{\mathrm{in}}-\upsilon *}{R}=\frac{\upsilon_{\mathrm{in}}}{R}\Rightarrow \end{array} $$
]



[image: 
$$ -C\frac{d{\upsilon}_{\mathrm{out}}}{dt}=\frac{\upsilon_{\mathrm{in}}}{R}\Rightarrow {\upsilon}_{\mathrm{out}}=-\frac{1}{RC}{\displaystyle \underset{0}{\overset{t}{\int }}{\upsilon}_{\mathrm{in}}\left(t,^{\prime}\right)dt^{\prime }}-{V}_{\mathrm{C}} $$
]

 (6.45)

where V
C is a constant (the initial voltage across the capacitor at [image: 
$$ t=0 $$
]). Thus, an integral of the input voltage (weighted by [image: 
$$ -1/(RC) $$
]) is provided at the output. Interestingly, the time constant τ of the integrator, [image: 
$$ \tau =RC $$
], has the unit of seconds.
Example 6.9

The 
analog pulse counter is an integrator circuit shown in Fig. 6.23 that counts monopolar voltage pulses simply by integrating 
the input voltage as time progresses. Assume that the input to the amplifier is the voltage shown in Fig. 6.24, where every rectangular voltage pulse of 10-ms duration corresponds to a car passing through a gate. Given that [image: 
$$ R=10\ \mathrm{k}\Omega,  C=0.1\ \upmu \mathrm{F} $$
], and that the initial value of the output voltage is reset to 

zero, how many cars should pass the gate in order to reach the output voltage threshold of −6 V?[image: A331468_1_En_6_Fig24_HTML.gif]
Fig. 6.24Input signal to the amplifier in Example 6.9







Solution: The time constant τ of the integrator, [image: 
$$ \tau =RC $$
], is equal to 1 ms.
According to Eq. (6.45),[image: 
$$ {\upsilon}_{\mathrm{out}}=-1000 {\mathrm{s}}^{-1}{\displaystyle \sum_{n=1}^N\Big(0.06 \mathrm{V}\times 0.01} \mathrm{s}\Big)=-N\times 0.6 \mathrm{V} $$
]

 (6.46)

where N is the number of pulses (cars). Equating the above expression to −6 V gives [image: 
$$ N=10 $$
]. The time interval between passing cars is not important.

Along with Example 6.9, other applications

 of the Miller integrator include 
various wave-shaping circuits.

6.3.5 
                Compensated Miller Integrator

                
                  
                  
                
              
The circuit in Fig. 6.23 will not function in the laboratory, when a realistic amplifier chip is used that is different from the ideal-amplifier model. The reason is that the capacitance is equivalent to an open circuit at DC. Therefore, the feedback loop is simply missing in the Miller integrator at DC, and the entire amplifier circuit becomes a comparator with a very high open-loop gain. A small random input offset voltage, V
OS, which is present for any realistic amplifier IC, will saturate the amplifier toward one of the power rails (depending on the sign of V
OS) even if its input is at zero volts (grounded)—see Fig. 6.25.[image: A331468_1_En_6_Fig25_HTML.gif]
Fig. 6.25Effect of the input offset voltage on the integrator circuit at DC





Note that the input offset voltage source, V
OS, may be added to either amplifier terminal. Hence, the voltage across the capacitance will approach the rail voltage and the capacitance itself will become permanently charged. The dynamics of this process can be analyzed explicitly, starting with some initial voltage value, say [image: 
$$ {\upsilon}_{\mathrm{C}}=0 \mathrm{V} $$
]. In this case, we are allowed to use the negative feedback. For example, given that [image: 
$$ R=10 \mathrm{k}\Omega,  C=0.1 \upmu \mathrm{F}, {V}_{\mathrm{OS}}=5\ \mathrm{mV}, $$
] it takes exactly 1 s to reach the output voltage of 5 V! A similar effect is created by input bias currents to the amplifier. To overcome this issue, a large resistance, R
F, is introduced in parallel with C in order to maintain the negative feedback at DC and discharge the capacitance as needed—see Fig. 6.26. If, for example, [image: 
$$ {R}_{\mathrm{F}}=10\ \mathrm{M}\Omega $$
], then the capacitance will discharge over time on the order of [image: 
$$ {R}_{\mathrm{F}}C=1\ \mathrm{s} $$
]. This estimate is comparable with the estimate for the charging time. As a result, a balance will be established that results in a


                  
                  
                 certain nonzero υ
out with the output of the amplifier grounded. A further quantitative discussion may be carried out.[image: A331468_1_En_6_Fig26_HTML.gif]
Fig. 6.26Miller integrator improved with a large resistance, R
F, in the feedback loop






6.3.6 Differentiator and Other Circuits
When the resistance and the capacitance in Fig. 6.23 are interchanged, 
                  
                a 
                  differentiator amplifier circuit
                  
                 (or 
active differentiator) 
is obtained; its output signal is a derivative of the input signal. The corresponding solution is studied in one of the homework problems. The differentiators are rarely used in practice since they attempt to amplify any input noise (they become “noise magnifiers”). The reason for this is an infinitely high gain of the amplifier circuit at high frequencies, when the capacitance becomes a short circuit. A small resistance added in series with the capacitance reduces this effect and assures the finite gain similar to the standard inverting amplifier.
Exercise 6.10
Draw an integrator circuit with an inductance instead of the capacitance.

Answer: The circuit in Fig. 6.23 but with the resistance replaced by an inductance and with the capacitance replaced by the resistance.

Inductances might be used instead of capacitances; the amplifier circuits so constructed will be either a differentiator or an integrator. We again pass the corresponding analysis to the homework exercises. However, the physical inductors tend to have a significant series resistance and are more bulky. Last but not least, we may ask ourselves a question: as long as the amplifier circuits can perform multiplication, addition (or subtraction), and integration (or differentiation), can we now build 
an analog computer, which operates with analog voltages and replaces its digital counterpart at least for simple 
computational tasks? The answer is yes, we can. In fact, this was done a long time ago, in the mid-1960s.


Summary

                	
                            Static capacitance and inductance
                          

	
                            Property
                          
	
                            Capacitance
                          

                            [image: A331468_1_En_6_Figam_HTML.gif]
                          
	
                            Inductance
                          

                            [image: A331468_1_En_6_Figan_HTML.gif]
                          

	Definition
	
                            [image: 
$$ C=\frac{Q}{V}>0 $$
]
                          

Q—charge of either conductor; V—volt. between two conductors
Units: [image: 
$$ \mathrm{F}=\mathrm{C}/\mathrm{V} $$
]

	
                            [image: 
$$ L=\frac{\varPhi }{I}>0 $$
]
                          
Φ—magnetic flux through the circuit; I—circuit current
Units: [image: 
$$ \mathrm{H}=\left(\mathrm{V}\cdot \mathrm{s}\right)/\mathrm{A} $$
]


	Physical meaning
	Charge on either conductor produced by 1 V voltage difference between the two conductors
	Magnetic flux through the circuit produced by 1 A of current in the same circuit

	Stored energy, J (static or dyn.)
	
[image: 
$$ E=\frac{1}{2}C{V}^2 $$
] or [image: 
$$ E(t)=\frac{1}{2}C\upsilon {(t)}^2 $$
]

	
[image: 
$$ E=\frac{1}{2}L{I}^2 $$
] or [image: 
$$ E(t)=\frac{1}{2}Li{(t)}^2 $$
]


	Series/parallel
combinations
	
[image: 
$$ \frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_3} $$
] in series

[image: 
$$ {C}_{\mathrm{eq}}={C}_1+{C}_2+{C}_3 $$
] in parallel
	
[image: 
$$ {L}_{\mathrm{eq}}={L}_1+{L}_2+{L}_3 $$
] in series

[image: 
$$ \frac{1}{L_{\mathrm{eq}}}=\frac{1}{L_1}+\frac{1}{L_2}+\frac{1}{L_3} $$
] in parallel

	Basic models (no fringing fields)
	
                            [image: A331468_1_En_6_Figao_HTML.gif]
                          

[image: 
$$ C=\frac{\varepsilon_0A}{d} $$
] or [image: 
$$ C=\frac{\varepsilon_r{\varepsilon}_0A}{d} $$
] (diel. material inside)

                            [image: 
$$ A= ab, {\varepsilon}_0=8.854187\times {10}^{-12} \mathrm{F}/\mathrm{m} $$
]
                          
	
                            [image: A331468_1_En_6_Figap_HTML.gif]
                          

[image: 
$$ L=\frac{\mu_0A{N}^2}{l} $$
] or [image: 
$$ L=\frac{\mu_0{\mu}_rA{N}^2}{l} $$
] (closed magnetic core )

                            [image: 
$$ {\mu}_0=4\pi \times {10}^{-7}\ \mathrm{H}/\mathrm{m} $$
]
                          

	
                            Models with fringing
                          

	Capacitance of a parallel-plate square capacitor (Table 6.1)
	
                            [image: A331468_1_En_6_Figaq_HTML.gif]
                          

	Inductance of a finite-radius solenoid
	
[image: 
$$ {L}_{\mathrm{exact}}=L\left(1-\frac{8w}{3\pi }+\frac{w^2}{2}-\frac{w^4}{4}\right), w=\frac{r}{l}<1 $$
]; r is the radius of the coil

	Inductance of a solenoid with a finite core
	
[image: 
$$ L\approx \frac{0.5\pi {\mu}_0{l}^{*}{N}^2}{ \ln \left[\frac{l^{*}}{r}-1\right]}\left(1-\frac{l}{2{l}^{*}}\right) $$
], [image: 
$$ {\mu}_r\ge 100 $$
], see Fig. 6.12c


	
                            Dynamic behavior
                          

	
                            Property
                          
	
                            Capacitance
                          
	
                            Inductance
                          

	Dynamic model-
Passive ref. conf.
	
                            [image: A331468_1_En_6_Figar_HTML.gif]
                          
	
                            [image: A331468_1_En_6_Figas_HTML.gif]
                          

	Dynamic model-
υ–i characteristic
	
                            [image: 
$$ {i}_{\mathrm{C}}=C\frac{d{\upsilon}_{\mathrm{C}}}{dt} $$
]
                          
	
                            [image: 
$$ {\upsilon}_{\mathrm{L}}=L\frac{d{i}_{\mathrm{L}}}{dt} $$
]
                          

	Dynamic model-
charge and flux
	
                            [image: 
$$ \frac{d{q}_{\mathrm{C}}}{dt}={i}_{\mathrm{C}} $$
]
                          
	
[image: 
$$ \frac{d\varPhi (t)}{dt}={\upsilon}_{\mathrm{L}} $$
] (passive ref. conf.)

	Behavior at DC
	
                            [image: A331468_1_En_6_Figat_HTML.gif]
                          
	
                            [image: A331468_1_En_6_Figau_HTML.gif]
                          

	Behavior at very high frequencies
	
                            [image: A331468_1_En_6_Figav_HTML.gif]
                          
	
                            [image: A331468_1_En_6_Figaw_HTML.gif]
                          

	
                            Bypassing/Decoupling
                          

	Bypass capacitor
	
                            [image: A331468_1_En_6_Figax_HTML.gif]
                          

	Blocking capacitor
	
                            [image: A331468_1_En_6_Figay_HTML.gif]
                          

	Decoupling inductor
	
                            [image: A331468_1_En_6_Figaz_HTML.gif]
                          

	
                            Amplifier circuits with capacitor/inductor
                          

	
                            Property
                          
	
                            Capacitance
                          
	
                            Inductance
                          

	Miller Integrator (open-loop amplifier at DC)
	
                            [image: A331468_1_En_6_Figba_HTML.gif]
                          
	
                            [image: A331468_1_En_6_Figbb_HTML.gif]
                          

	Time-domain operation
	
                            [image: 
$$ \frac{d{\upsilon}_{\mathrm{out}}}{dt}=-\frac{\upsilon_{\mathrm{in}}}{\tau }, \tau =RC $$
]
                          
	
                            [image: 
$$ \frac{d{\upsilon}_{\mathrm{out}}}{dt}=-\frac{\upsilon_{\mathrm{in}}}{\tau }, \tau =\frac{L}{R} $$
]
                          

	Compensated integrator with a finite gain at DC
	
                            [image: A331468_1_En_6_Figbc_HTML.gif]
                          
	
                            [image: A331468_1_En_6_Figbd_HTML.gif]
                          

	Time-domain operation
	
                            [image: 
$$ \frac{d{\upsilon}_{\mathrm{out}}}{dt}+\frac{\upsilon_{\mathrm{out}}}{R_fC}=-\frac{\upsilon_{\mathrm{in}}}{\tau }, \tau =RC $$
]
                          
	
                            [image: 
$$ \frac{d{\upsilon}_{\mathrm{out}}}{dt}+\frac{R_{\mathrm{in}}}{L}{\upsilon}_{\mathrm{out}}=-\frac{\upsilon_{\mathrm{in}}}{\tau }, \tau =\frac{L}{R} $$
]
                          

	Differentiator circuit (infinite gain at very high frequencies)
	
                            [image: A331468_1_En_6_Figbe_HTML.gif]
                          
	
                            [image: A331468_1_En_6_Figbf_HTML.gif]
                          

	Time-domain operation
	
                            [image: 
$$ {\upsilon}_{\mathrm{out}}=-\tau \frac{d{\upsilon}_{\mathrm{in}}}{dt}, \tau =RC $$
]
                          
	
                            [image: 
$$ {\upsilon}_{\mathrm{out}}=-\tau \frac{d{\upsilon}_{\mathrm{in}}}{dt}, \tau =\frac{L}{R} $$
]
                          

	Differentiator with a finite gain at very high frequencies
	
                            [image: A331468_1_En_6_Figbg_HTML.gif]
                          
	
                            [image: A331468_1_En_6_Figbh_HTML.gif]
                          

	Time-domain operation
	
                            [image: 
$$ {R}_{\mathrm{in}}C\frac{d{\upsilon}_{\mathrm{out}}}{dt}+{\upsilon}_{\mathrm{out}}=-\tau \frac{d{\upsilon}_{\mathrm{in}}}{dt},\tau =RC $$
]
                          
	
                            [image: 
$$ \frac{L}{R_f}\frac{d{\upsilon}_{\mathrm{out}}}{dt}+{\upsilon}_{\mathrm{out}}=-\tau \frac{d{\upsilon}_{\mathrm{in}}}{dt},\tau =L/R $$
]
                          




              

Problems
6.1 Static Capacitance and Inductance

                  6.1.1 Capacitance, Self-capacitance, and Capacitance to Ground
                

                  6.1.2 Application Example: ESD
                
Problem 6.1
 	A.Describe in your own words the physical meaning of capacitance.


 

	B.Suggest a way to memorize the expression for the capacitance of two conductors.


 

	C.What is approximately the self-capacitance of a human body?


 

	D.What is approximately the capacitance of a human body (to ground)?


 

	E.How does the human-body self-capacitance change in embryo pose (yoga)?


 






Problem 6.2
A metal square plate with the side of 10 mm has the self-capacitance [image: 
$$ {C}_{\mathrm{self}}=0.41 \mathrm{pF} $$
].	A.Estimate the capacitance of a capacitor formed by two such parallel plates separated by 30 mm. Compare this value to the exact result of 0.23 pF.


 

	B.Estimate the capacitance of the plate to ground when the separation distance is 30 mm. Compare this value to the exact result of 0.43 pF.


 






Problem 6.3
Draw the basic electric-circuit model of a human body and specify the generic element values.


                  6.1.3 Parallel-Plate Capacitor
                

                  6.1.4 Capacitances in Parallel and in Series
                
Problem 6.4
For the parallel-plate capacitor schematically shown in the figure,[image: 
$$  a=10 \mathrm{cm},\ b=20 \mathrm{cm}, h=1 \mathrm{mm}, {\varepsilon}_{\mathrm{r}}=12 $$
]



[image: A331468_1_En_6_Figd_HTML.gif]


	A.Determine capacitance of the capacitor, C.


 

	B.Determine the electric field strength, E (in V/m), within the capacitor volume and total charge, Q, on either capacitor plate if the applied voltage is 25 V.


 

	C.Determine the electric field energy stored in the capacitor if the applied voltage is 25 V.


 






Problem 6.5
Solve the previous problem when the separation distance, h, between the plates is reduced to 100 μm.

Problem 6.6
For the enclosed-cylinder capacitor shown in the figure, [image: 
$$ a=10\;\mathrm{cm},\ b=9.99\;\mathrm{cm}, H=5\;\mathrm{cm},\ {\varepsilon}_{\mathrm{r}}=16 $$
], the electrodes are the inner and outer cylinder surfaces, respectively.	A.Determine the capacitance of the capacitor, C.


 

	B.Determine the electric field strength, E (in V/m), within the capacitor volume and total charge, Q, on either capacitor plate if the applied voltage is 50 V.


 

	C.Determine the electric field energy stored in the capacitor if the applied voltage is 25 V.


 






Hint: The capacitance per unit area of the device is that of the parallel-plate capacitor.[image: A331468_1_En_6_Fige_HTML.gif]




Problem 6.7
Solve the previous problem when the separation distance between the two electrodes is reduced to 25 μm.

Problem 6.8
A cross section of the rolled capacitor is approximated by a rational spiral shown in the figure. Here, [image: 
$$ a=0.25 \mathrm{cm},\ {\varepsilon}_{\mathrm{r}}=10 $$
], the separation distance between the two conductors is 20 μm, and the height of the entire roll is 1.5 cm.	A.Determine capacitance of the capacitor, C.


 

	B.Determine the electric field strength, E (in V/m), within the capacitor and total charge, Q, on either capacitor plate if the applied voltage is 12 V.


 

	C.Determine the electric field energy stored in the capacitor if the applied voltage is 12 V.


 






Hint: The capacitance per unit area of the device is that of the parallel-plate capacitor.[image: A331468_1_En_6_Figf_HTML.gif]




Problem 6.9
Determine the capacitance of the three leaded capacitors shown in the figure (from left to right).[image: A331468_1_En_6_Figg_HTML.gif]




Problem 6.10
Find the equivalent capacitance for the circuit shown in the following figure.[image: A331468_1_En_6_Figh_HTML.gif]




Problem 6.11
Find the equivalent capacitance for each circuit shown in the figure below.[image: A331468_1_En_6_Figi_HTML.gif]




Problem 6.12
Find the equivalent capacitance for each circuit shown in the following figure.[image: A331468_1_En_6_Figj_HTML.gif]




Problem 6.13
Two 1-μF capacitances have an initial voltage of 10 V and 0 V, respectively (before the switch is closed), as shown in the figure. Find the total electric energy stored in the system before the switch is closed. Find the voltage across each capacitance and the total stored energy after the switch is closed. What could have happened to the missing energy?[image: A331468_1_En_6_Figk_HTML.gif]





                  6.1.7 Self-inductance (Inductance) and Mutual Inductance
                

                  6.1.8 Inductance of a Solenoid With and Without Magnetic Core
                

                  6.1.9 Circuit Symbol. Inductances in Series and in Parallel
                
Problem 6.14
 	A.Describe in your own words the physical meaning of inductance.


 

	B.Do you think a straight wire has a certain inductance per unit length? You might want to ask the TA and/or browse the Web and present the corresponding expression (if any).


 






Problem 6.15
Three air-core inductors of the same cross section are shown in the following figure. The inductor length is proportional to the number of turns. Find the ratios of inductances: L
2/L
1, L
3/L
2, L
3/L
1.[image: A331468_1_En_6_Figl_HTML.gif]




Problem 6.16
The solenoid shown in the figure has a diameter [image: 
$$ d=1 \mathrm{cm} $$
] and a length [image: 
$$ l=10 \mathrm{cm} $$
].	A.Find the solenoid’s inductance, L, using the common assumption [image: 
$$ d/l<<1 $$
].


 

	B.Determine the 
magnetic field energy stored within the inductance and in the surrounding space if the applied current, I
L, is 0.5 A.[image: A331468_1_En_6_Figm_HTML.gif]





 






Problem 6.17

                    	A.Obtain more accurate answers to the previous problem using the precise expression for the inductance of a solenoid, which is Eq. (6.22).


 

	B.Estimate the relative error of the common expression for solenoid’s inductance, Eq. (6.21).


 




                  

Problem 6.18

                    	A.Design a 100-μH air-core inductor (determine the necessary number of turns) with a radius of 1 cm and a length of 10 cm.


 

	B.Determine the magnetic field energy stored in the inductor if the applied current, I
L, is 1.0 A.


 




                  

Problem 6.19

                    	A.Design a 0.5-mH air-core inductor (determine the necessary number of turns) having a radius of 0.5 cm and a length of 10 cm.


 

	B.Determine the magnetic field
 energy stored in the inductor if the applied current, I
L, is 1.0 A.


 




                  

Problem 6.20
The solenoid shown in the figure has diameter, [image: 
$$ d=1 \mathrm{cm} $$
], length, [image: 
$$ l=10 \mathrm{cm} $$
], and a closed magnetic core of the same circular cross section with [image: 
$$ {\mu}_{\mathrm{r}}=1000 $$
].	A.Find the solenoid’s inductance, L, using the common assumption [image: 
$$ d/l<<1 $$
].


 

	B.Determine the magnetic field
 energy stored in the inductor if the applied current, I
L, is 0.5 A.


 

	C.Compare two of your answers to the answers in Problem 6.16.


 

	D.Determine voltage across the inductor assuming the ideal (zero-resistance) wire.[image: A331468_1_En_6_Fign_HTML.gif]





 






Problem 6.21

                    	A.Obtain a more accurate solution to the previous problem using the precise expression for the inductance of a solenoid, Eq. (6.22). To do so, propose your own modification of this expression to include the effect of the magnetic core.


 

	B.Estimate the relative error of the simplified expression for the inductance, Eq. (6.21).


 




                  

Problem 6.22
Find the equivalent inductance for the circuit shown in the following figure.[image: A331468_1_En_6_Figo_HTML.gif]




Problem 6.23
Find the equivalent inductance for circuits shown in the figure that follows.[image: A331468_1_En_6_Figp_HTML.gif]




Problem 6.24
Find the equivalent inductance for circuits shown in the figure.[image: A331468_1_En_6_Figq_HTML.gif]




Problem 6.25
For the inductor shown in Fig. 6.11, [image: 
$$ {l}^{*}=2l=10 \mathrm{cm} $$
] and [image: 
$$ r=0.75 \mathrm{cm} $$
]. How do the inductances with the magnetic core (with [image: 
$$ {\mu}_{\mathrm{r}}\ge 100 $$
]) and without the core compare to each other?

Problem 6.26
Repeat the previous problem with [image: 
$$ {l}^{*}=15 \mathrm{cm} $$
], but still [image: 
$$ 2l=10\;\mathrm{cm} $$
]. The other parameters are the same.


6.2 Dynamic Behavior of Capacitance and Inductance

                  6.2.2 Dynamic Behavior of Capacitance
                

                  6.2.3 Dynamic Behavior of Inductance
                

                  6.2.4 Instantaneous Energy and Power of Dynamic Circuit Elements
                
Problem 6.27

                    	A.Sketch the circuit symbol for the capacitance and the inductance; label the corresponding voltages and currents.


 

	B.Write two dynamic equations for the capacitance and the inductance which relate the voltages and currents.


 

	C.Express the units for the inductance and capacitance through volts and amperes.


 

	D.Which capacitance and inductance values are typical in electronic circuits?


 




                  

Problem 6.28

                    	A.Sketch the hydrodynamic analogies for the capacitance and the inductance.


 

	B.Which mechanical quantities are associated with the capacitance and inductance?


 




                  

Problem 6.29
The voltage across a 10-μF capacitance is shown in the following figure. At [image: 
$$ t=0 $$
], the voltage is zero. Sketch the current through the capacitance to scale versus time.[image: A331468_1_En_6_Figr_HTML.gif]




Problem 6.30
Repeat the previous problem for the voltage shown in the following figure.	A.How is the solution different from the previous problem?


 

	B.For creating large currents, should the voltage across the capacitance change slowly or quickly?[image: A331468_1_En_6_Figs_HTML.gif]





 






Problem 6.31
A 10-μF capacitance is charged by the current [image: 
$$ {i}_{\mathrm{C}}=1\;\mathrm{m}\mathrm{A}\cdot { \cos}^2(1000t) $$
]. At [image: 
$$ t=0 $$
], the capacitance voltage is zero.	A.Using software of your choice (MATLAB is recommended), sketch the capacitance voltage to scale versus time over the interval from 0 to 0.05sec.


 

	B.How much time is approximately necessary to charge the capacitance to 1.5 V?


 

	C.Solve the same problem analytically.


 






Problem 6.32
Repeat the previous problem with the capacitance changed to 1 μF. Does the 10-V charging time increase or decrease?

Problem 6.33
The current through a 5-mH inductance is shown in the following figure. At [image: 
$$ t=0 $$
], the current is zero. Sketch the voltage across the inductance to scale versus time.[image: A331468_1_En_6_Figt_HTML.gif]




Problem 6.34
Repeat the previous problem for the current shown in the figure.	A.How is the solution different from the previous problem?


 

	B.For creating large voltages, should the current through the inductance change slowly or quickly?[image: A331468_1_En_6_Figu_HTML.gif]





 






Problem 6.35
The voltage across a 3-mH inductance is given by [image: 
$$ {\upsilon}_{\mathrm{L}}(t)=10\;\mathrm{mV}\cdot { \cos}^2(1000t) $$
]. The current through the inductance is equal to zero at the initial time [image: 
$$ t=0 $$
]. Using software of your choice (MATLAB is recommended), plot the current through the inductance for [image: 
$$ t\le 50\;\mathrm{ms} $$
].


                  6.2.5 DC Steady State
                
Problem 6.36

                    	A.Draw the equivalent circuit for the inductance shown in the figure at DC.


 

	B.Repeat for the capacitance.[image: A331468_1_En_6_Figv_HTML.gif]





 




                  

Problem 6.37
Find current I in the circuit shown in the figure that follows at [image: 
$$ t\to \infty $$
], in the DC steady state. The switch closes at [image: 
$$ t=0 $$
].[image: A331468_1_En_6_Figw_HTML.gif]




Problem 6.38
Find current I in the circuit shown in the figure at [image: 
$$ t\to \infty $$
], in the DC steady state. The switch closes at [image: 
$$ t=0 $$
].[image: A331468_1_En_6_Figx_HTML.gif]




Problem 6.39
Find current I in the circuit shown in the following figure at [image: 
$$ t\to \infty $$
], in the DC steady state. The switch closes at [image: 
$$ t=0 $$
].[image: A331468_1_En_6_Figy_HTML.gif]




Problem 6.40
 	A.Find current I in the circuit shown in the figure at [image: 
$$ t\to \infty $$
], in the DC steady state. The switch closes at [image: 
$$ t=0 $$
].


 

	B.Find voltage across the capacitance in the DC steady state and label its polarity in the figure.[image: A331468_1_En_6_Figz_HTML.gif]





 






Problem 6.41
Find the voltage across the capacitance in the DC steady state and label its polarity in the figure at [image: 
$$ t\to \infty $$
], in the DC steady state. The switch opens at [image: 
$$ t=0 $$
].[image: A331468_1_En_6_Figaa_HTML.gif]




Problem 6.42
Determine the equivalent resistance between terminals a and b for the circuit shown in the following figure in the DC steady state.[image: A331468_1_En_6_Figab_HTML.gif]




Problem 6.43
Determine the equivalent resistance between terminals a and b for the circuit shown in the following figure in the DC steady state.[image: A331468_1_En_6_Figac_HTML.gif]





6.3 Application Circuits Highlighting Dynamic Behavior

                  6.3.1 Bypass Capacitor
                

                  6.3.2 Blocking Capacitor
                

                  6.3.3 Decoupling Inductor
                
Problem 6.44
Describe the purpose of a	A.Bypass capacitor


 

	B.Blocking capacitor


 

	C.Decoupling inductor


 





in your own words. Specify the placement of each component: in series or in parallel with the source.


                  6.3.4 Amplifier Circuits with Dynamic Elements: Miller Integrator
                

                  6.3.5 Compensated Miller Integrator
                

                  6.3.6 Differentiator and Other Circuits
                
Problem 6.45
The input voltage to the Miller integrator circuit with the ideal amplifier shown in the figure is a series of rectangular voltage pulses. Each is 50 mV tall and 8 ms wide. Given that the initial value of the output voltage is zero, how many voltage pulses are necessary to reach the negative output voltage threshold of −8 V?[image: A331468_1_En_6_Figad_HTML.gif]




Problem 6.46
The input voltage to the Miller integrator circuit with the ideal amplifier shown in the figure is a series of rectangular voltage pulses. Each is 50 mV tall and 16 ms wide. Given that the initial value of the output voltage is zero, how many voltage pulses are necessary to reach the negative output voltage threshold of −9.2 V?[image: A331468_1_En_6_Figae_HTML.gif]




Problem 6.47
How would you modify the circuit to the previous problem when the positive threshold voltage of +9.2 V should be reached at the output?

Problem 6.48
For the circuit shown in the following figure, express the output voltage, υ
out(t), as a function of time in terms of the input voltage, υ
in(t), and circuit parameters R, C. Assume the ideal amplifier.[image: A331468_1_En_6_Figaf_HTML.gif]




Problem 6.49
For the circuit shown in the following figure, express the output voltage, υ
out(t), as a function of time in terms of the input voltage, υ
in(t), and circuit parameters R, C. Assume ideal amplifiers.[image: A331468_1_En_6_Figag_HTML.gif]




Problem 6.50
For the circuit shown in the following figure, express the output voltage, υ
out(t), as a function of time in terms of the input voltage, υ
in(t), and circuit parameters R, L. Assume ideal amplifier.[image: A331468_1_En_6_Figah_HTML.gif]




Problem 6.51
For the circuit shown in the following figure, express the output voltage, υ
out(t), as a function of time in terms of the input voltage, υ
in(t), and circuit parameters R, L. Assume ideal amplifier.[image: A331468_1_En_6_Figai_HTML.gif]




Problem 6.52
Explain why is the Miller integrator typically used with a shunt resistance, R
F.

Problem 6.53
For the circuit shown in the figure, assume that the voltage across the capacitance at [image: 
$$ t=0 $$
] is zero. Also assume that the negative feedback is present. Derive the dynamic expression for υ
C(t) at any positive time instance.[image: A331468_1_En_6_Figaj_HTML.gif]




Problem 6.54
Establish the gain of amplifier circuits shown in the figure that follows.[image: A331468_1_En_6_Figak_HTML.gif]




Problem 6.55
For two circuits shown in the figure that follows, obtain an analytical expression for the output voltage as a function of time and circuit parameters when the input voltage has the form [image: 
$$ {\upsilon}_{\mathrm{in}}(t)=1 \exp \left(-\alpha  t\right) \left[\mathrm{mV}\right] $$
].[image: A331468_1_En_6_Figal_HTML.gif]
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Overview

              Prerequisites:
	Knowledge of first-order ordinary differential equations (calculus)

	Knowledge of Thévenin/Norton equivalent circuits (Chapter 4)

	Knowledge of constitutive relations for dynamic circuit elements (Chapter 6)

	Knowledge of basic amplifier theory (Chapter 5)




              Objectives of Section 7.1:
	Demonstrate the universal character of the KVL/KCL as applied to any electric circuit including transient circuits

	Establish the general character of the time constant [image: 
$$ \tau =RC $$
] for RC circuits

	Establish the continuity of the capacitor voltage and its role in circuit ODEs

	Solve any first-order transient RC circuit configuration and understand the practical meaning of the RC circuit using different application examples




              Objectives of Section 7.2:
	Demonstrate the universal character of the KVL/KCL as applicable to any electric circuit including transient circuits

	Establish the general character of the time constant [image: 
$$ \tau =L/R $$
] for RL circuits

	Establish the continuity of the inductor current and its role in circuit ODEs

	Solve any first-order transient RL circuit configuration and understand the practical meaning of the RL circuit using an application example




              Objectives of Section 7.3:
	Obtain initial exposure to a bistable amplifier circuit with positive feedback

	Understand the principle of operation of a relaxation oscillator—RC timer—on the base of the bistable amplifier circuit

	Establish oscillation frequency and voltage amplitudes from the relaxation oscillator; demonstrate the corresponding laboratory setup

	Briefly discuss the 555 timer IC




              Objectives of Section 7.4:
	Define the single-time-constant (STC) transient circuit

	Be able to classify any transient circuit with dynamic elements of the same type as either a single-time-constant circuit or a more complicated circuit

	Solve an example of a non-STC circuit

	Convert an arbitrary transient circuit with one capacitance or one inductance to the basic RC/RL first-order circuit

	Solve a first-order transient circuit with a harmonic forcing function




              Objectives of Section 7.5:
	Understand topology and classification for the second-order transient circuits

	Convert a transient circuit with a series/parallel LC block to the standard second-order RLC series/parallel transient circuits

	Introduce two major RLC circuit parameters: damping coefficient and undamped resonant frequency

	Introduce the step response of a second-order transient circuit as a solution with a DC source and a switch. Understand the general value of the step response

	Properly select the independent function (capacitor voltage or inductor current) for the standard form of the step response with zero initial conditions




              Objectives of Section 7.6:
	Use the method of characteristic equation for second-order transient circuits

	Understand the meaning of overdamped, critically damped, and underdamped circuits

	Use the value of damping ratio ς to distinguish between three different cases of circuit behavior

	Obtain the complete analytical solution for the step response of the RLC circuit

	Apply this solution for modeling a nonideal (realistic) digital waveform




              Application Examples:
	Electromagnetic railgun

	Electromagnetic material processing

	Digital memory cell

	Laboratory ignition system

	RC timer or clock circuit in laboratory

	Transient circuit with a bypass capacitor

	Modeling and origin of the nonideal digital waveform




            

7.1 RC Circuits

The first-order RC circuits explored in this section involve the process of discharging or charging a capacitor

. This is a time-dependent, or transient, circuit behavior, and to understand it, we are required to solve dynamic circuit equations. Mathematically, this implies the solution of first-order ordinary differential equations (ODEs) with time as one independent variable. Fortunately, KVL and KCL remain valid for any static or dynamic circuit

. These laws can be employed to derive the circuit equations. After that, it is either solved analytically for simple circuits or numerically for realistic RC circuits.
7.1.1 Energy-Release Capacitor Circuit
The circuit in Fig. 7.1 
                  
                  
                  
                depicts a capacitor, C, that has been charged to a certain voltage[image: A331468_1_En_7_Fig1_HTML.gif]
Fig. 7.1Discharging a capacitor through a load resistor








[image: 
$$ {V}_0={\upsilon}_{\mathrm{C}}\left(t\le 0\right) $$
]

 (7.1)

prior to use. Through a switch, the 


capacitor is connected to a load, represented by a resistor R = 10 Ω. The switch shown in Fig. 7.1 may be a transistor switch. We assume that the switch closes and thereby connects the load to the capacitor at [image: 
$$ t=0 $$
]. Our goal is to find all circuit parameters, plus the power delivered to the load as functions of time.
The solution to this dynamic circuit is based on applying KVL and KCL, which are valid for all electric circuits. Using KCL gives the result:[image: 
$$ {i}_{\mathrm{C}}=-{i}_{\mathrm{R}} $$
]

 (7.2)


at any instance of time, t. Since both circuit elements in Fig. 7.1 are passive, we can apply the constitutive relations between currents and voltages without changing the sign:[image: 
$$ \overset{i_{\mathrm{C}}}{\overbrace{C\frac{d{\upsilon}_{\mathrm{C}}}{dt}}}=-\overset{i_{\mathrm{R}}}{\overbrace{\frac{\upsilon_R}{R}}}=-\frac{\upsilon_{\mathrm{C}}}{R} $$
]

 (7.3)

This is true because KVL states for any positive time, t > 0,[image: 
$$ {\upsilon}_{\mathrm{R}}={\upsilon}_{\mathrm{C}} $$
]

 (7.4)

Equation (7.3) therefore yields[image: 
$$ C\frac{d{\upsilon}_{\mathrm{C}}}{dt}+\frac{\upsilon_{\mathrm{C}}}{R}=0\Rightarrow \frac{d{\upsilon}_{\mathrm{C}}}{dt}+\frac{\upsilon_{\mathrm{C}}}{\tau }=0,\kern1em \tau =RC $$
]

 (7.5)


This is the famous first-order transient circuit equation. Here, τ carries units of seconds since R is recorded in Ω and C is given in F = A × s/V and is called the time constant or the relaxation 
                  constant
                  
                  
                  
                 of the circuit. It is the only constant that is present in the first-order differential equation. The solution of an ODE of this type has the generic form[image: 
$$ {\upsilon}_{\mathrm{C}}(t)=K \exp \left(-\frac{t}{\tau}\right) $$
]

 (7.6)

This fact is proven by direct substitution. The constant K is determined from the initial condition, Eq. (7.1), which yields[image: 
$$ K={V}_{\kern-0.2em 0} $$
]

 (7.7)

Thus, the circuit voltages have the same form[image: 
$$ {\upsilon}_{\mathrm{C}}(t)={\upsilon}_{\mathrm{R}}(t)={V}_{\kern-0.2em 0} \exp \left(-\frac{t}{\tau}\right);\kern1em t\ge 0 $$
]

 (7.8a)

for nonnegative values of t. However, although the capacitor voltage is equal to V
0 at [image: 
$$ t<0 $$
], the resistor voltage is exactly zero at [image: 
$$ t<0 $$
], since the switch was open. The current through the load resistor is[image: 
$$ {i}_{\mathrm{R}}(t)=\frac{\upsilon_{\mathrm{R}}(t)}{R}=\frac{V_{\kern-0.15em 0}}{R} \exp \left(-\frac{t}{\tau}\right);\kern1em t\ge 0 $$
]

 (7.8b)


and is zero for negative t. We recall that the capacitor current is the negative of the load current. The instantaneous power delivered to the load resistance is expressed in the form[image: 
$$ {p}_{\mathrm{R}}(t)={\upsilon}_{\mathrm{R}}(t){i}_{\mathrm{R}}(t)=\frac{{V_{\kern-0.15em 0}}^2}{R} \exp \left(-2\frac{t}{\tau}\right);\kern1em t\ge 0 $$
]

 (7.8c)

Equations (7.8a–c) provide the complete solution of the circuit shown in Fig. 7.1. What is the most remarkable and perhaps most important property of the solution? The answer to this question is linked to the amount of power that can be discharged in a finite amount of time. Let us examine Eq. (7.8c) more closely. When the load resistance, R, becomes small, the delivered power can reach an arbitrarily high value at small positive t. Expressed in another way, when discharged through a small resistance, the (ideal) capacitor delivers an extremely high power pulse during a short period of time! This conclusion is not affected by the specific capacitance value; the capacitance value only affects the discharge duration. In reality, however, an infinitely small resistance cannot be achieved. How can we use the ability of the charged capacitor to create a large current and, consequently, supply a large power for a short period of time? There are a number of well-known applications such as an electronic photoflash or drivers for the light-emitting diodes (LEDs) or even 
                  electromagnetic material processing
                  
                  
                  
                .

7.1.2 
Time Constant

 of the RC Circuit and Its Meaning

To appreciate the value of the time constant as a fundamental property of an RC circuit, we consider two examples with explicit component values. Our objective is to find the dynamic voltage and current responses of the circuit as the capacitor discharges. You should note that the time constant τ determines the duration at which the capacitor voltage will have dropped to 1/e or 0.368 (36.8 %) of the initial voltage V
0. This number arises from the fact that, at the time instance [image: 
$$ t=\tau $$
], we obtain from Eq. (7.8a)[image: 
$$ {\upsilon}_{\mathrm{C}}(t)={\upsilon}_{\mathrm{R}}(t)={V}_{\kern-0.15em 0} \exp \left(-\frac{\tau }{\tau}\right)={V}_{\kern-0.15em 0}{e}^{-1}={V}_{\kern-0.15em 0}/e=0.368\kern0.5em {V}_{\kern-0.15em 0} $$
]

 (7.9a)

It is sometimes useful to study the 

dynamic response at [image: 
$$ t=2\tau $$
], in which case we obtain[image: 
$$ {\upsilon}_{\mathrm{C}}(t)={\upsilon}_{\mathrm{R}}(t)={V}_{\kern-0.15em 0}{e}^{-2}=0.135\kern0.5em {V}_{\kern-0.15em 0} $$
]

 (7.9b)


or 13.5 % of its original value, V
0. At 3 τ, we already see the voltage drop less than 5 %.
Example 7.1
In Fig. 7.1, a 10-μF capacitor discharges into a 10-Ω load. The capacitor is initially charged to [image: 
$$ {V}_0=10\kern0.5em \mathrm{V} $$
]. Plot the capacitor voltage υ
C, load current i
R, load voltage υ
R, and load power p
R, over the interval from −0.2 ms to 0.5 ms.

Solution: First, we determine the time constant τ. According to Eq. (7.5),[image: 
$$ \tau =RC={10}^{-5}\mathrm{F}\times 10\;\Omega ={10}^{-4}\mathrm{s}=0.1\kern0.5em \mathrm{ms} $$
]

 (7.9c)


                                
The solution then relies on Eqs. (7.8a) through (7.8c) based on [image: 
$$ {V}_0=10\kern0.5em \mathrm{V} $$
]. Figure 7.2 shows the behavior of voltage, load current, and load power. The vertical line is the time constant τ. This constant determines how fast the

 capacitor discharges. At t = τ, the voltage is equal to 1/e or 0.368 of the initial capacitor voltage, V
0. Note that a rather low capacitance value of 10 μF is used. We can purchase a 10-μF electrolytic capacitor of 5 mm diameter and 12 mm height and rated at 25 V or 50 V. As seen in Fig. 7.2c, an appreciable load power of 10 W (!) can be created. Unfortunately, it is created for only a very short period of time, on the order of τ.[image: A331468_1_En_7_Fig2_HTML.gif]
Fig. 7.2(a) Capacitor voltage, (b) load current (c) load voltage, and (d) load power for a 10-μF capacitor discharging into a 10-Ω load resistor




                                

Exercise 7.1
The capacitor in Fig. 7.1 is initially charged to [image: 
$$ {V}_0=20\kern0.5em \mathrm{V} $$
]. Determine the capacitor voltage and the instantaneous power delivered to the load resistance at (i) [image: 
$$ t=50\kern0.5em \upmu \mathrm{s} $$
] and (ii) [image: 
$$ t=1\kern0.5em \mathrm{ms} $$
].

Answer: (i) –12.13 V and 1472 W; (ii) –0.9 mV and 8.2 μW.


7.1.3 Continuity of the Capacitor Voltage

                  Energy Consideration


                
The voltage across the discharging capacitor remains a continuous function of time over the breakpoint [image: 
$$ t=0 $$
]. On the other hand, all other quantities in Fig. 7.2 such as the circuit current, the load voltage, and the load power are subject to a sudden jump when the switch closes. Why is that so? The electric field energy stored in the capacitor 

is given by[image: 
$$ {E}_{\mathrm{C}}=\frac{1}{2}C{\upsilon}_{\mathrm{C}}^2(t) $$
]

 (7.10a)


at any time instant. Any energy cannot be released instantaneously. For instance, a vehicle with mass m and speed υ possesses the kinetic energy[image: 
$$ {E}_{\mathrm{T}}=\frac{1}{2}m{\upsilon}^2 $$
]

 (7.10b)

and cannot be stopped instantaneously. The kinetic energy must be a continuous function of time, as does the vehicle speed. Similarly, the capacitor energy must be a continuous function of time and so does the capacitor voltage. Such an effect might be called the “capacitor inertia” in reference to mechanical inertia. Thus, the capacitor voltage υ
C(t) is the only variable which is always a continuous function of time in an RC circuit. Therefore, it must be used as an independent function in the ODEs for RC circuits. Using any other function (circuit current or resistor voltage) is prohibited since we cannot specify the initial conditions for a noncontinuous function.


                  Fluid Mechanics Analogy


                
The continuity of the capacitor voltage may be illustrated by a fluid-flow analogy of the discharging capacitor shown in Fig. 7.3. The 

voltage corresponds to the fluid level in the water-filled tank, which gradually decreases, but cannot jump instantaneously. On the other hand, the fluid acquires a certain velocity (the equivalence to electric current) immediately after the switch in Fig. 7.3 opens. Interestingly, the value of the load resistance in Fig. 7.1 is the reciprocal of the cross section of the pipe in Fig. 7.3. The smaller the cross section of the pipe (i.e., the greater the resistance), the slower the observed fluid flow from the tank (i.e., the smaller load current). At the same time, the leakage time (or the discharge time) increases accordingly. In Fig. 7.3, we actually need to open the mechanical valve, whereas in Fig. 7.1 we close the electric switch. There is no real contradiction though since both operations really enable the flow of a substance: either the flow of electric current in Fig. 7.1 or the water flow in Fig. 7.3.[image: A331468_1_En_7_Fig3_HTML.gif]
Fig. 7.3A fluid-flow analogy 

for the circuit shown in Fig. 7.1





                                


7.1.4 Application Example: Electromagnetic Railgun



Figure 7.4 shows a generic structure of an electromagnetic accelerator, sometimes called an electromagnetic railgun. Apart from potential high-power applications, this setup helps us to visualize the operation of linear motors and generators. The discharging capacitor is connected via a resistor to the rails, as shown on the left in Fig. 7.4. Resistor R models ohmic losses in the metal rails and a (typically small) series resistance of the capacitor. The capacitor current flows through two metal rails and through a sliding or rolling metal rod to be accelerated. Also shown in Fig. 7.4 are two permanent magnets responsible for creating a magnetic flux emanating from the north pole (N) and terminating at the south pole (S). When this perpendicular magnetic flux density B, measured in tesla (T), is applied between the rails, the 
                  Lorentz force
                  
                 will act on the moving object of length [image: 
$$ l=\left|\overrightarrow{l}\right| $$
] and accelerate this object in the direction of the rails. This force is given by[image: A331468_1_En_7_Fig4_HTML.gif]
Fig. 7.4An electromagnetic accelerator based on the Lorentz force effect in the magnetic field created by two permanent magnets and the capacitor discharge current




[image: 
$$ \overrightarrow{F}={i}_{\mathrm{C}}\left(\overrightarrow{l}\times \overrightarrow{B}\right)\kern1.25em \left[\mathrm{N}\right] $$
]

 (7.11)


The Lorentz force
 was named after Hendrik Antoon Lorentz (1853–1928), a Dutch physicist and Nobel Prize laureate. Only 24 years of age, Lorentz was appointed to the newly established chair in theoretical physics at the University of Leiden, the oldest university in the Netherlands founded by William, Prince of Orange. Lorentz made significant contributions to field theory ranging from hydrodynamics to general relativity. The Lorentz force is the driving force of any 

electric motor you are using. The cross product in Eq. (7.11) is consistent with the right-hand rule: the current direction of the moving object represents the fingers of your right hand, and they are turned into the magnetic flux direction so that the thumb points in the direction of the Lorentz force. Another way is to picture a screw whose body points along the force and which is turned in the plane spanned by [image: 
$$ \overrightarrow{l} $$
] and [image: 
$$ \overrightarrow{B} $$
] such that [image: 
$$ \overrightarrow{l} $$
] is rotated into [image: 
$$ \overrightarrow{B} $$
]. From a circuit point of view, the construction in Fig. 7.4 could be replaced by an RC circuit, with the capacitor connected to the rails through a switch. Resistance R in Fig. 7.4 is formed by the rail resistance combined with the object’s resistance and with the contact resistance between the object and the rails. The force is directly proportional to the discharge current i
C.
Example 7.2
The capacitor in Fig. 7.4 is initially charged to a voltage [image: 
$$ {V}_0=100\kern0.5em \mathrm{V} $$
] and has a capacitance of 1000 μF. The total system resistance R is 1 Ω. For the above example, what force in N is to be expected and for how long?

Solution: According to Eq. (7.8b), the maximum current value, which occurs when the switch has just closed, is [image: 
$$ {V}_0/R=100\kern0.5em \mathrm{A} $$
]. Using Eq. (7.11), we calculate the initial force value, which is 0.6 N.

As time progresses, the 

current and the force both quickly decrease. Over a time duration of [image: 
$$ \tau =RC=1\;\mathrm{ms} $$
], both of these values decrease to 36.8 % of their initial values. For simplicity, we assume that an average force acts over the time duration τ. Its value is estimated as approximately 60 % of the initial force value. We then obtain an average of 0.36 N over the time interval τ = 1 ms, which is a rather modest result. Realistic capacitors used for electromagnetic (EM) acceleration are the so-called pulsed capacitors. They have a high charge voltage of [image: 
$$ {V}_0\ge 10,\kern-.15em 000\kern0.5em \mathrm{V} $$
] and capacitances on the order of 100 μF. Therefore, a high-voltage power supply is needed. A number of capacitors are put in parallel to increase the overall capacitance. Large currents, on the order of 10,000 A, into the 1-Ω load may then produce much higher force values.


7.1.5 Application Example: Electromagnetic Material Processing

                  Electromagnetic Forming


                
The moving object in Fig. 7.4 may be implemented in various forms. For example, it could be replaced by a liquid metal such as molten aluminum. In principle, an electromagnetic “die casting” machine could be constructed that creates a high-speed liquid metal jet. The key point is the small mass of the object in order to enable a fast acceleration. Electromagnetic forming is used to accelerate solid metal sheets at velocities up to a few hundred meters per second, which are 100–1000 times greater than the deformation rates of conventional forming such as sheet metal stamping. The noncontact electromagnetic forming of metals is a process that has been applied since the 1960s but has not seen extensive use. Its common application is to expand, or compress, axisymmetric metal parts as shown in Fig. 7.5a. It has been commercially applied for the joining and assembly of concentric parts and compression crimp seals. Figure 7.5b shows a more recent experiment at the Ohio State University and made with aluminum car 

door panels.[image: A331468_1_En_7_Fig5_HTML.gif]
Fig. 7.5(a) Electromagnetic forming of metal joints. The current in the 

windings generates a magnetic flux that induces eddy currents in the metal. Their product is the Lorentz force
. (b) Electromagnetically reformed door panel compared with the production geometry




                                


                  Self-Induced Lorentz Force


                

Electromagnetic forming processes shown in Fig. 7.5 do not use permanent magnets. Instead, the so-called self-induced Lorentz force is employed. The idea is to generate the magnetic flux B with the same current i
C. Figure 7.5a shows the related concept used in noncontact electromagnetic forming of metal joints. The high discharge current, i
C, creates a strong time-varying magnetic field, both inside and outside of the coils in Fig. 7.5a. In turn, the time-varying magnetic field induces so-called eddy currents in the metal sample. The product of these eddy currents and the magnetic field gives rise to a Lorentz force according to Eq. (7.11). This force is strong enough to deform the joints.


7.1.6 Application Example: Digital Memory Cell



This completely different example investigates a digital circuit that stores binary information. Figure 7.6 shows a schematic of a 
dynamic random-access memory (DRAM)


                  
                  
                 memory cell. The cell stores its bit of information as charge deposited on the cell capacitor C. When the cell is storing a logic 1, the capacitor is charged to a positive voltage V
0; when a logic zero is stored, the capacitor is discharged to a zero voltage. Because of leakage effects, there is always a nonzero resistance R to ground (not shown in the figure). Thus, the cell circuit becomes that of Fig. 7.1. The capacitor will discharge and must be refreshed periodically. During refresh, the capacitor voltage is restored to V
0 if necessary. The refresh operation is in fact 

performed every 5–10 ms![image: A331468_1_En_7_Fig6_HTML.gif]
Fig. 7.6Dynamic RAM memory cell. The bit line carries either logic 1 or 0 information




                            

7.1.7 Energy-Accumulating Capacitor Circuit
Charging is the inverse process of discharging a capacitor and it involves a power supply. The corresponding circuit is shown in Fig. 7.7. 
                  
                  
                  
                The switch closes at [image: 
$$ t=0 $$
]. The resistor R can be either the Thévenin resistance


 of the practical voltage source or the series parasitic resistance of the capacitor itself or even a combination of both.[image: A331468_1_En_7_Fig7_HTML.gif]
Fig. 7.7Charging a capacitor


 with a DC voltage source as an example of another RC circuit




                            

To support this conclusion, we note that the positions of the switch and the resistor in Fig. 7.7 may be interchanged without affecting the circuit analysis. Similarly, two resistors may be placed on both sides of the switch; the circuit solution will display their series equivalent. The solution to the circuit is once again based on KVL and KCL. By KCL,[image: 
$$ {i}_{\mathrm{C}}={i}_{\mathrm{R}} $$
]

 (7.12)

at any time instance t. Since both R and C in Fig. 7.7 are passive elements, we can apply the constitutive relations between currents and voltages without changing the sign:[image: 
$$ \overset{i_{\mathrm{C}}}{\overbrace{C\frac{d{\upsilon}_{\mathrm{C}}}{dt}}}=\overset{i_{\mathrm{R}}}{\overbrace{\frac{\upsilon_{\mathrm{R}}}{R}}}=\frac{V_{\mathrm{S}}-{\upsilon}_{\mathrm{C}}}{R} $$
]

 (7.13)

Next, KVL states[image: 
$$ {\upsilon}_{\mathrm{R}}={V}_{\mathrm{S}}-{\upsilon}_{\mathrm{C}} $$
]

 (7.14)


at any positive time instance t. Therefore, Eq. (7.13) yields[image: 
$$ C\frac{d{\upsilon}_{\mathrm{C}}}{dt}+\frac{\upsilon_{\mathrm{C}}}{R}=\frac{V_{\mathrm{S}}}{R}\Rightarrow \frac{d{\upsilon}_{\mathrm{C}}}{dt}+\frac{\upsilon_{\mathrm{C}}}{\tau }=\frac{V_{\mathrm{S}}}{\tau },\kern1em \tau =RC $$
]

 (7.15)


Equation (7.15) has now an excitation term (the power supply voltage) on its right-hand side. Consequently, the solution to this equation is called a 
                  forced response
                  
                  
                  
                . Equation (7.15) is known as an inhomogeneous first-order differential equation. This is in contrast to the homogeneous differential equation (7.5). Nonetheless, Eq. (7.15) still remains a first-order transient equation with the same time constant τ. The solution to any first-order ordinary differential equation of that type has the generic form[image: 
$$ {\upsilon}_{\mathrm{C}}(t)={K}_1 \exp \left(-\frac{t}{\tau}\right)+{K}_2 $$
]

 (7.16a)

This fact can be checked by direct substitution. The two terms containing the exponential factor will cancel out after differentiation. The remaining terms in Eq. (7.15) yield[image: 
$$ \frac{K_2}{\tau }=\frac{V_{\mathrm{S}}}{\tau}\Rightarrow {K}_2={V}_{\mathrm{S}} $$
]

 (7.16b)

The constant parameter K
1 can be determined from the initial condition, [image: 
$$ {\upsilon}_{\mathrm{C}}\left(t=0\right)=0 $$
]. Since exp(0) = 1 in Eq. (7.16a), we conclude[image: 
$$ {K}_1+{K}_2=0\Rightarrow {K}_1=-{V}_{\mathrm{S}} $$
]

 (7.16c)

Thus, the circuit voltages have the form[image: 
$$ {\upsilon}_{\mathrm{C}}(t)={V}_{\mathrm{S}}\left[1- \exp \left(-\frac{t}{\tau}\right)\right],\kern1em {\upsilon}_{\mathrm{R}}(t)={V}_{\mathrm{S}} \exp \left(-\frac{t}{\tau}\right) $$
]

 (7.16d)


The resistor voltage


 has the same form as the resistor voltage in Eq. (7.8a) for the discharging capacitor. However, the capacitor voltage has not. The capacitor current is[image: 
$$ {i}_{\mathrm{C}}(t)=C\frac{d{\upsilon}_{\mathrm{C}}(t)}{dt}=\frac{V_{\mathrm{S}}}{R} \exp \left(-\frac{t}{\tau}\right) $$
]

 (7.16e)

It is equivalent to Eq. (7.8b), the discharge current for the RC circuit. What is the most remarkable property of the solution given? According to Eq. (7.16d), we always need a certain amount of time to charge the capacitor. It is clear that this time will be on the order of the time constant τ. Moreover, from a formal point of view, the capacitor voltage will never exactly reach the source voltage (the exact equality only occurs at [image: 
$$ t\to \infty $$
]), see Fig. 7.8
.[image: A331468_1_En_7_Fig8_HTML.gif]
Fig. 7.8Voltage/current plots for charging a 10-μF capacitor in series with a 10-Ω resistor. We again observe continuity of the capacitor voltage (the “capacitor inertia”)




                            
Example 7.3
A 10-μF capacitor in Fig. 7.7 is charged by a 10-V voltage source. The switch closes at [image: 
$$ t=0 $$
], and the system resistance is 10 Ω. Plot capacitor voltage υ
C and capacitor current i
C to scale over the time interval from −0.2 ms to 0.5 ms.

Solution: First, we find the time constant τ. According to Eq. (7.15) or (7.5), [image: 
$$ \tau =RC={10}^{-5}\mathrm{F}\times 10\kern0.5em \Omega =0.1\;\mathrm{ms} $$
]. The solutions for this example are given by Eqs. (7.16d) and (7.16e) with [image: 
$$ {V}_{\mathrm{S}}=10\;\mathrm{V} $$
]. Solutions for the capacitor voltage and capacitor current are plotted in Fig. 7.29. The vertical line denotes the time constant τ so that you can see how fast the capacitor charges. At one time constant, i.e., τ = 0.1 ms, the capacitor is charged to [image: 
$$ \left(1-1/e\right){V}_{\mathrm{S}} $$
] or to 63.2 % of the source voltage V
S.

Exercise 7.2
The source voltage


 in Fig. 7.7 is 20 V. Determine the capacitor voltage and the circuit current at (i) [image: 
$$ t=5\kern0.5em \upmu \mathrm{s} $$
] and (ii) [image: 
$$ t=1\kern0.5em \mathrm{ms} $$
].

Answer: (i) –0.98 V and 1.90 A; (ii) –19.999 V and 90 μA.



7.2 RL Circuits
The first-order RL circuits studied in this section lay the foundation of understanding the behavior of any transient circuit containing inductances. The transient circuit response is a dynamic process; we are once again required to solve dynamic circuit equations that can be formulated as ordinary differential equations. You can again rely on KVL and KCL since they apply to any static (DC) or dynamic (transient and AC) circuit

. Along with the inductor’s voltage/current relation, they are used to derive the circuit ODE.
7.2.1 Energy-Release Inductor Circuit
The inductor stores the magnetic-field energy


 created by an electric current. Thus, in order to be “charged,” the inductor must carry some current. A natural choice is therefore a circuit with the 
                  current source
                  
                  
                  
                 shown in Fig. 7.9a. This is in contrast to the charged capacitor, which does not need a voltage supply to stay charged. If the switch in Fig. 7.9a is open ([image: 
$$ t<0 $$
]), the entire current I
S flows through the inductor. The inductor is thus “charged


.” When the switch closes at [image: 
$$ t=0 $$
], the current source still generates the same current I
S at its terminals. However, the supply is now shorted out, i.e., no current flows into the circuit. In other words, the current supply is effectively disconnected so that the RL circuit becomes a stand-alone circuit in Fig. 7.9b, with the initial current I
S still flowing in the inductor


. As time progresses, the inductor releases its energy to the load.[image: A331468_1_En_7_Fig9_HTML.gif]
Fig. 7.9
The concept 


of “discharging” the previously charged inductor through a load resistor R





                            
The solution of the dynamic circuit


 in Fig. 7.9b is again based on KVL and KCL. With the voltage polarities shown in Fig. 7.9b, the use of KVL yields[image: 
$$ {\upsilon}_{\mathrm{L}}={\upsilon}_{\mathrm{R}} $$
]

 (7.17)

at any time instance, t. Since both circuit elements in Fig. 7.9b are passive, we can directly apply the constitutive relations between voltages and currents without changing the sign:[image: 
$$ \overset{\upsilon_{\mathrm{L}}}{\overbrace{L\frac{d{i}_{\mathrm{L}}}{dt}}}=\overset{\upsilon_{\mathrm{R}}}{\overbrace{R\kern0.1em {i}_{\mathrm{R}}}}=-R{i}_{\mathrm{L}} $$
]

 (7.18)


According to KCL, [image: 
$$ {i}_{\mathrm{R}}=-{i}_{\mathrm{L}} $$
], at any positive time instance t, and Eq. (7.18) yields[image: 
$$ L\frac{d{i}_{\mathrm{L}}}{dt}+R{i}_{\mathrm{L}}=0\Rightarrow \frac{d{i}_{\mathrm{L}}}{dt}+\frac{i_{\mathrm{L}}}{\tau }=0,\kern1em \tau =L/R $$
]

 (7.19)

Here again we encounter a first-order transient equation. The constant τ carries the unit of seconds (since R is in ohms and L is in henrys) and is known as the time constant, or relaxation 
                  constant
                  
                  
                  
                
, of the RL circuit. It is the only constant that is present in the first-order transient differential equation. We can observe a remarkable similarity between the transient RL circuit and the RC circuit of discharging a capacitor. The mathematics is the same, but the capacitor voltage is replaced by the inductor current, and the value of the time constant changes from RC to L/R. The initial condition [image: 
$$ {i}_{\mathrm{L}}\left(t=0\right)={I}_{\mathrm{S}} $$
] includes the past inductor current instead of the past capacitor voltage. The solution of Eq. (7.19) is[image: 
$$ {i}_{\mathrm{L}}(t)=K \exp \left(-\frac{t}{\tau}\right),\kern1em t\ge 0 $$
]

 (7.20)

The validity of Eq. (7.20) is seen by direct substitution. The constant K is determined from the initial condition. Setting [image: 
$$ t=0 $$
] yields [image: 
$$ K={I}_{\mathrm{S}} $$
]. Both currents in Fig. 7.9b are[image: 
$$ {i}_{\mathrm{L}}(t)=-{i}_{\mathrm{R}}(t)={I}_{\mathrm{S}} \exp \left(-\frac{t}{\tau}\right)\kern1em t\ge 0 $$
]

 (7.21a)

At [image: 
$$ t<0 $$
], the inductor current


 maintains its value I
S but the resistor current is zero, as shown in Fig. 7.9a. The resistor (or load) voltage is given by[image: 
$$ {\upsilon}_{\mathrm{R}}(t)=R\kern0.1em {i}_{\mathrm{R}}(t)=-R{I}_{\mathrm{S}} \exp \left(-\frac{t}{\tau}\right) $$
]

 (7.21b)

At [image: 
$$ t<0 $$
], the load voltage is zero. The instantaneous power delivered to the load is[image: 
$$ {p}_{\mathrm{R}}(t)={\upsilon}_{\mathrm{R}}(t){i}_{\mathrm{R}}(t)=R{I_{\mathrm{S}}}^{\kern-.35em 2}\kern.15em \exp \left(-2\frac{t}{\tau}\right) $$
]

 (7.21c)

Equations (7.21a)–(7.21c) provide the complete solutions for the circuit depicted in Fig. 7.9.
Example 7.4
A 1-mH inductor in Fig. 7.9 is connected to a 1-kΩ load. The supply current


 (disconnected at [image: 
$$ t=0 $$
]) is 1 A. Plot inductor current i
L, inductor (or load) voltage υ
R, load current, i
R, and load power, p
R, over the interval from –2τ to 5τ.

Solution: First, we find the time constant τ. According to Eq. (7.19),[image: 
$$ \tau =L/R={10}^{-3}\mathrm{H}/1000\kern0.5em \Omega ={10}^{-6}\mathrm{s}=1\kern0.5em \upmu \mathrm{s} $$
]

 (7.22)


which is a rather small value. The solution for this example is given by Eqs. (7.21a) through (7.21c), with [image: 
$$ {I}_{\mathrm{S}}=1\kern0.5em \mathrm{A} $$
], and is shown in Fig. 7.10. The vertical line in all plots is the time constant τ. One can see that the time constant determines how quickly the inductor current and the load voltage decrease. At 1τ, the load voltage is equal to 1/e or 0.368 (36.8 %) of the initial voltage RI
S.[image: A331468_1_En_7_Fig10_HTML.gif]
Fig. 7.10(a) Inductor current, (b) load voltage, (c) load current, and (d) load power for a 1-mH inductor connected to a 10-Ω load resistor




                                

Exercise 7.4
The supply current 


in Fig. 7.9 is 0.5 A. Given [image: 
$$ L=1\kern0.5em \mathrm{mH} $$
] and [image: 
$$ R=1\kern0.5em \mathrm{k}\Omega $$
], determine the load voltage and the instantaneous power delivered to the load resistance at (i) [image: 
$$ t=0.2\kern0.5em \upmu \mathrm{s} $$
] and (ii) [image: 
$$ t=10\kern0.5em \upmu \mathrm{s} $$
].

Answer: (i) –409.4 V and 167.6 W; (ii) –23 mV and 0.52 μW.


What is the most remarkable property of the solution? According to Fig. 7.10, the high voltage spike across the inductor is created in an RL switching circuit when the load resistance, R, is large. For example, an air gap has a very high resistance. When used as a load, it may possess a very high voltage drop of several kV and more. This is the idea behind any medium-to-high-power 
electronic ignition system
, including the 12-V-powered car ignition system, a missile ignition system, etc. Such a circuit must include at least three basic elements: (a) a voltage or current power supply, (b) a switch, and (c) an inductor (coil). The switch can be a transistor switch controlled by a sensor.

7.2.2 Continuity of the Inductor Current
The current through the inductor remains a 
continuous function


 of time over the breakpoint [image: 
$$ t=0 $$
]. However, all other quantities in Fig. 7.10, the load voltage, the load current, and the load power are subject to a sudden jump when the switch closes. The reason for such a continuity is the 
finite magnetic-field energy


 stored in the inductor:[image: 
$$ {E}_{\mathrm{L}}=\frac{1}{2}L{i}_{\mathrm{L}}^2(t), $$
]

 (7.23)

at any time instant. This energy cannot be released instantaneously. Such an effect might be called “inductor inertia


” in reference to mechanical inertia of a vehicle with mass m and speed υ and kinetic energy [image: 
$$ {E}_{\mathrm{T}}=0.5\;m{\upsilon}^2 $$
], which cannot be stopped instantaneously. The kinetic energy is a continuous function of time, as is the vehicle speed. Similarly, the inductor energy is a continuous function of time, as is the inductor current. The inductor current is the only variable which is always a continuous function. Therefore, it must be used as an 
independent function


 in the ODEs for RL circuits. Using any other function is prohibited since we cannot state the initial conditions for a noncontinuous function.

                  Fluid Mechanics Analogy



                
The continuity of the inductor current may be illustrated by a fluid-flow analogy of the energy-releasing inductor circuit shown in Fig. 7.11. The electric current corresponds to the velocity of the fluid. The inductance is a massive wheel of mass m. When subject to a DC current (constant water flow), it acquires a certain angular velocity. This is the case of Fig. 7.9a at [image: 
$$ t<0 $$
]. When the water pump is suddenly turned off, the wheel inertia will still support the same water flow, at least at the initial time moment. After that, the wheel slowly decelerates. This is the case


 of Fig. 7.9b.[image: A331468_1_En_7_Fig11_HTML.gif]
Fig. 7.11A fluid-flow analogy 


for the two circuits shown in Fig. 7.9





                                


7.2.3 Energy-Accumulating Inductor Circuit
The circuit behavior is now exactly the opposite of the circuit shown in Fig. 7.9. For instance, when the switch in Fig. 7.12 is closed, the current supply is shorted out. No current flows into the circuit. However, when the switch opens, the supply current I
S starts to flow into the circuit, and as time approaches infinity, the entire supply current I
S flows through the inductor. Thus, the inductor becomes “charged.”[image: A331468_1_En_7_Fig12_HTML.gif]
Fig. 7.12The concept of “charging


” an inductor using a current source




                            
The solution of the dynamic circuit in


 Fig. 7.12 is based on KVL and KCL. With the voltage polarities in Fig. 7.12, the use of KVL yields[image: 
$$ {\upsilon}_{\mathrm{L}}={\upsilon}_{\mathrm{R}} $$
]

 (7.24)

at any time instance, t. Since both circuit elements in Fig. 7.12 are passive, we can apply the constitutive relations between voltages and currents


 without changing the sign:[image: 
$$ \overset{\upsilon_{\mathrm{L}}}{\overbrace{L\frac{d{i}_{\mathrm{L}}}{dt}}}=\overset{\upsilon_{\mathrm{R}}}{\overbrace{R\kern0.1em {i}_{\mathrm{R}}}}=R{I}_{\mathrm{S}}-R\kern0.1em {i}_{\mathrm{L}} $$
]

 (7.25)

because, according to KCL, [image: 
$$ {i}_{\mathrm{R}}={I}_{\mathrm{S}}-{i}_{\mathrm{L}} $$
], at any positive time instance, t. Equation (7.25) yields[image: 
$$ \frac{d{i}_{\mathrm{L}}}{dt}+\frac{i_{\mathrm{L}}}{\tau }=\frac{I_{\mathrm{S}}}{\tau },\kern1em \tau =L/R $$
]

 (7.26)

which is the inhomogeneous


 first-order transient equation with the forcing function (right-hand side) equal to I
S/τ. Here, τ is the generic time constant of the RL circuit. Once again, there is a close similarity between the present RL circuit and the series RC circuit for charging the capacitor. The mathematics is the same, but the capacitor voltage is replaced by an inductor current and the voltage supply is replaced by the current supply. The initial condition for Eq. (7.26) now includes the past inductor current of 0 A instead of the past capacitor voltage, which is 0 V. Equation (7.26) has the solution[image: 
$$ {i}_{\mathrm{L}}(t)={K}_1 \exp \left(-\frac{t}{\tau}\right)+{K}_2,\kern1em {K}_2={I}_{\mathrm{S}} $$
]

 (7.27)

This fact is seen by direct substitution. The constant K
1 is found from the initial condition of zero inductor current


 at [image: 
$$ t=0 $$
], which yields [image: 
$$ {K}_1=-{K}_2 $$
]. Therefore,[image: 
$$ {i}_{\mathrm{L}}(t)={I}_{\mathrm{S}}\left[1- \exp \left(-\frac{t}{\tau}\right)\right],\kern1em {i}_{\mathrm{R}}(t)={I}_{\mathrm{S}} \exp \left(-\frac{t}{\tau}\right),\kern1em t\ge 0 $$
]

 (7.28a)

Both currents are 


zero at [image: 
$$ t<0 $$
]. However, the inductor current is continuous over the breakpoint while the resistor current is not. The inductor/resistor voltages


 are given by[image: 
$$ {\upsilon}_{\mathrm{L}}(t)=L\frac{d{i}_{\mathrm{L}}(t)}{dt}=R{I}_{\mathrm{S}} \exp \left(-\frac{t}{\tau}\right),\kern1em {\upsilon}_{\mathrm{R}}(t)={\upsilon}_{\mathrm{L}}(t)\kern1em t\ge 0 $$
]

 (7.28b)

Both voltages are zero at [image: 
$$ t<0 $$
]. This completes our circuit analysis.
Example 7.5
A 1-mH inductor


 in Fig. 7.12 is connected to a 1-A current power supply. The resistor value is [image: 
$$ R=1\;\mathrm{k}\Omega $$
]. Plot the inductor current, i
L, and the inductor voltage, υ
L, to scale versus time over the interval from –2τ to 5τ.

Solution: First, we find the time constant τ. According to Eq. (7.26), we get [image: 
$$ \tau =L/R={10}^{-3}\mathrm{H}/1\;\mathrm{k}\Omega ={10}^{-6}\mathrm{s}=1\;\upmu \mathrm{s} $$
]. The 


solution to the example is given by Eqs. (7.28a, b) with [image: 
$$ {I}_{\mathrm{S}}=1\kern0.5em \mathrm{A} $$
]; see Fig. 7.13. The vertical line in both plots is the time constant τ. One can see that this time constant determines how fast the circuit stabilizes. At 1τ, the inductor current reaches [image: 
$$ \left(1-1/e\right){I}_{\mathrm{S}} $$
], i.e., 63.2 % of the expected DC value. Note that Fig. 7.13 of this section and Fig. 7.8 of the previous section are identical to within interchanging voltage and current terms![image: A331468_1_En_7_Fig13_HTML.gif]
Fig. 7.13
Voltage/current plots for “charging” the 1-mH inductor in parallel with the 1-kΩ resistor




                                

Exercise 7.5
The supply current


 in Fig. 7.12 is 0.5 A. Given [image: 
$$ L=1\kern0.5em \mathrm{mH} $$
] and [image: 
$$ R=1\kern0.5em \mathrm{k}\varOmega $$
], determine the inductor voltage and the inductor current at (i) [image: 
$$ t=0.2\kern0.5em \upmu \mathrm{s} $$
] and (ii) [image: 
$$ t=10\kern0.5em \upmu \mathrm{s} $$
].

Answer: (i) –409.4 V and 91 mA; (ii) –23 mV and 0.49999 A.

The final question to ask is what is the most remarkable property of the solutions given by Eqs. (7.28a, b)? According to Eq. (7.28a), we always need a certain period of time to create a given current through the inductor. The elapsed time will be on the order of the time constant τ. Moreover, the inductor current will never exactly reach the supply current (the exact equality only occurs as [image: 
$$ t\to \infty $$
]). In practice, this effect is masked by noise and by other factors. Interestingly, the resistor carries most of the circuit current when the solution changes rapidly, i.e., close to the initial time [image: 
$$ t=0 $$
]. At the same time, when the circuit stabilizes, i.e., when t becomes large compared to τ, the influence of the inductor dominates. This observation leads us to the concept of impedance (the “resistance” of dynamic circuit elements) that is considered next. The impedance is similar to a resistance (and has the same unit), but it depends on how fast circuit current and voltage change. When the changes are very fast, the inductor exhibits a much greater “resistance” than the resistor; it becomes virtually an open circuit with no current flow.

7.2.4 Energy-Release RL Circuit with the Voltage Supply



The combination of the current supply I
S and resistor R in Figs. 7.9 and 7.12 is in fact the Norton equivalent circuit of any network of power supplies and resistors. The RL circuit may be modeled a Thévenin equivalent too. The concept is shown in Fig. 7.14.[image: A331468_1_En_7_Fig14_HTML.gif]
Fig. 7.14“Discharging” 
                          
                          
                        an inductor with a voltage supply, as an example of an RL circuit




                            
Prior to opening the switch in Fig. 7.14a, the inductor current is found to be V
S/R
0. When the switch opens, the supply is disconnected from the RL circuit; see Fig. 7.14b. As time progresses, the inductor releases its energy into the load. The circuit in Fig. 7.14b is identical to the circuit in Fig. 7.9b. Therefore, all prior results related to the energy-release RL circuit will remain valid if we replace the initial inductor current I
S by V
S/R
0. According to Eq. (7.21b), the load voltage is given by[image: 
$$ {\upsilon}_{\mathrm{R}}(t)=R\kern0.1em {i}_{\mathrm{R}}(t)=-\frac{R}{R_0}{V}_{\mathrm{S}} \exp \left(-\frac{t}{\tau}\right) $$
]

 (7.29)

If the ratio R/R
0 is large, the initial voltage spike of the inductor is large too. The magnitude of the initial 

voltage spike for the circuit in Fig. 7.14 is a hundred times the supply voltage V
S! Can we model an 
                  electronic ignition system
                  
                 in the laboratory? Yes, according to Fig. 7.14 this can be accomplished relatively easily. The key, however, is the construction of a fast switch. A proper choice may be a power transistor switch.

7.2.5 Application Example: Laboratory Ignition Circuit




A circuit rated at 6 V for safety purposes is shown in Fig. 7.15. The laboratory DC voltage source usually delivers up to 3 A of current, if not current limited. The electric step-up transformer with two coils is a 6-V car ignition coil. Instead of a simple coil, a transformer is used to further boost the inductor voltage spike of the RL circuit. The small resistance R
0 is the transistor/wire resistance. The very large resistance R is the resistance of the spark plug in series with the large resistance of the spark plug cable R
CABLE, which is a carbon core wire. This carbon core wire is used to prevent higher EM radiation and its possible influence (we would hear it as noise) on the car audio receiving equipment. Figure 7.16 shows the operating circuit. The sparking frequency ranges from 2 Hz to 100 Hz.[image: A331468_1_En_7_Fig15_HTML.gif]
Fig. 7.15
Modeling the 

ignition system as in a laboratory. The spark plug voltage is about 3–10 kV




[image: A331468_1_En_7_Fig16_HTML.gif]
Fig. 7.16A constructed ignition system




                            
Spark Gap Radio
The spark gap in the circuit in Fig. 7.15 and in Fig. 7.16 is a powerful and broadband source of electromagnetic radiation. One favorite story in science fiction novels is that, after crashing his or her spaceship on an inhabited planet, the commander can quickly

 construct a spark generator out of remaining parts of the ship and send an SOS signal out to space. An AM radio can “listen” to the circuit shown in Fig. 7.16 over the entire AM band from 540 to 1610 kHz used in the USA. Even better results are observed for the long-wave AM band from 153 to 279 kHz used in Europe, Africa, and parts of Asia.
Exercise 7.6
The supply voltage in Fig. 7.14 is 10 V. Determine the inductor voltage and the inductor current at (i) [image: 
$$ t=0.2\kern0.5em \upmu \mathrm{s} $$
] and (ii) [image: 
$$ t=10\kern0.5em \upmu \mathrm{s} $$
].

Answer: (i) –818.7 V and 0.82 A; (ii) –45 mV and 45 μA.




7.3 Switching RC Oscillator
The time constant τ of an RC circuit provides a natural time scale. It is widely employed for timing purposes. Some of you may have already used microcontroller starter kits. The microcontroller manual discussing the various settings will likely feature a topic entitled “RC oscillator.” Here you will discover that the microcontroller 
                clock frequency
                
                
               can be controlled by an external resistor R and capacitor C. How is this possible? We have just seen that the RC circuit discharges the capacitor through the resistor, but how can it be used to create a periodic 
                clock signal
                
                
               at a given frequency? The present section aims to augment an RC circuit with an amplifier circuit and establish a 
                clock circuit
                
                
              .
7.3.1 About Electronic Oscillators
An 
                  electronic oscillator
                  
                  
                 is a circuit that has an output, but no input in the common sense. It generates a certain periodic waveform at the output. The period, amplitude, and shape of this waveform are determined by the circuit topology. The “heart” of any oscillator circuit is an amplifier block with some sort of a 
                  positive feedback
                  
                . The positive feedback is the opposite of the negative feedback. A part of the output amplifier’s voltage is fed back into the input with the sign plus. All oscillator circuits may be divided into 
                  linear oscillators
                  
                , which create sinusoidal waveforms, and 
                  switching oscillators
                  
                , which create square and other periodic nonharmonic waveforms. The subject of this section is a switching oscillator circuit, which is called an 
                  astable multivibrator
                  
                 or a relaxation oscillator. This circuit uses the comparator amplifier but with a positive feedback loop and a transient RC block. It is perhaps the simplest and yet efficient oscillator circuit.

7.3.2 
Bistable Amplifier Circuit

 with the Positive Feedback
Saturation Mechanism



Consider the circuit shown in Fig. 7.17. At first sight, it is similar to the inverting amplifier configuration. However, the amplifier polarity is interchanged, which means that the feedback is now positive. The circuit has no input: both potential inputs are grounded. Since there is no current into the amplifier itself (the first summing-point constraint still applies), two resistors of the feedback loop form a voltage divider between the output voltage υ
out and ground. Therefore,
                    
                    
                   the voltage at node (+) becomes[image: A331468_1_En_7_Fig17_HTML.gif]
Fig. 7.17A bistable 

amplifier circuit




[image: 
$$ {\upsilon}^{+}=\frac{R_1}{R_1+{R}_2}{\upsilon}_{\mathrm{out}} $$
]

 (7.30)


To analyze the circuit in Fig. 7.17, we again consider the feedback as a fast dynamic process with a very short delay in the feedback loop. We assume that [image: 
$$ {R}_1={R}_2 $$
] for simplicity. It means that 50 % of υ
out is returned back to the non-inverting input in, say, 1 μs. The open-loop amplifier’s gain will be [image: 
$$ A={10}^6 $$
]; the amplifier hits the power rails [image: 
$$ {\upsilon}_{\mathrm{out}}=\pm {V}_{\mathrm{CC}} $$
] in saturation. The initial value of [image: 
$$ {\upsilon}^{+} $$
] will be 0 V, and the initial value of υ
out will be 1 μV (at the noise level). Table 7.1 shows the dynamics of the feedback process where the amplifier operates as [image: 
$$ {\upsilon}_{\mathrm{out}}=A{\upsilon}^{+} $$
], but it takes 1 μs to return 50 % of υ
out. It follows from Table 7.1 that the amplifier will be very quickly saturated; its output will be the positive rail voltage [image: 
$$ {\upsilon}_{\mathrm{out}}=+{V}_{\mathrm{CC}} $$
]. All other positive initial values of υ
out will lead to the same result. Simultaneously, all negative initial values of υ
out will lead to the saturation at the negative rail [image: 
$$ {\upsilon}_{\mathrm{out}}=-{V}_{\mathrm{CC}} $$
].Table 7.1Dynamics of the output voltage for the bistable amplifier circuit


	
Time, μs
	
                              [image: 
$$ {\upsilon}^{+} $$
]
                            
	
                              υ
                              out
                            

	0
	0 V
	
                              [image: 
$$ {10}^{-6}\kern0.5em \mathrm{V} $$
]
                            

	1
	
                              [image: 
$$ 0.5\times {10}^{-6}\kern0.5em \mathrm{V} $$
]
                            
	0.5 V

	2
	0.25 V
	
                              [image: 
$$ +{V}_{\mathrm{CC}} $$
]
                            




                                


                  Two Stable States


                
The key point is that once the saturation state[image: 
$$ {\upsilon}_{\mathrm{out}}=+{V}_{\mathrm{CC}},\;{\upsilon}^{+}=+\frac{R_1}{R_1+{R}_2}{V}_{\mathrm{CC}} $$
]

 (7.31)

has been reached, the amplifier circuit will exist in this state indefinitely, despite all the subsequent electric noise. To prove this fact, we may introduce a small perturbation in υ
out and/or in [image: 
$$ {\upsilon}^{+} $$
]; the circuit will quickly return to the solution given by Eq. (7.31). Quite similarly, once the opposite 

saturation state[image: 
$$ {\upsilon}_{\mathrm{out}}=-{V}_{\mathrm{CC}}\kern0.5em {\upsilon}^{+}=-\frac{R_1}{R_1+{R}_2}{V}_{\mathrm{CC}} $$
]

 (7.32)


has been reached, the amplifier circuit will exist in this state indefinitely. Thus, the positive feedback always forces the comparator to operate in saturation, i.e., in either of the two stable states, [image: 
$$ {\upsilon}_{\mathrm{out}}=\pm {V}_{\mathrm{CC}} $$
], where [image: 
$$ \pm {V}_{\mathrm{CC}} $$
] is the supply voltage of the amplifier. This result is valid for any pair of the resistances R
1, R
2. The resistance pair specifies values of [image: 
$$ {\upsilon}^{+} $$
] in Eqs. (7.31) and (7.32), respectively, known as 
                    threshold voltages
                    
                  . Figure 7.18 shows the corresponding 
                    mechanical analogy
                    
                   of the bistable amplifier circuit. Note that a grounded comparator amplifier without the positive feedback loop would also be always saturated due to inherent electric noise. However, there are no stable states whatsoever; the switching between the rails is random; it is controlled by random noise.[image: A331468_1_En_7_Fig18_HTML.gif]
Fig. 7.18Mechanical analogy of two stable states for the bistable amplifier circuit




                                


7.3.3 
                Triggering


              
The amplifier circuit in Fig. 7.17 can be in either of two stable states defined by the initial conditions. As such, it is useless as long as we do not have a mean to change the state. A trigger signal (an input voltage signal) may be applied to switch between the states. After introducing an external trigger signal in the form of short pulses, the bistable amplifier circuit

 becomes a basic 
                  digital memory element
                  
                 capable of saving and retrieving one bit of data. When the input voltage signal is applied to node (a) in Fig. 7.17 instead of grounding it, the corresponding circuit becomes the 
                  non-inverting Schmitt trigger
                  
                . When the input voltage is applied to node (b) in Fig. 7.17 instead of grounding it, the corresponding circuit becomes the 
                  inverting Schmitt trigger
                  
                . The Schmitt triggers are used as zero-level detectors in analog electronics and for many other purposes. When triggered, the bistable amplifier circuit operates as a comparator.
Exercise 7.7
The bistable amplifier circuit with [image: 
$$ {R}_1={R}_2 $$
] in Fig. 7.17 exists in the positive stable state with [image: 
$$ {\upsilon}_{\mathrm{out}}=+{V}_{\mathrm{CC}} $$
]. A trigger signal is applied to node (b) in Fig. 7.17. Determine output voltage when the applied trigger signal is (i) [image: 
$$ -{V}_{CC} $$
], (ii) [image: 
$$ +0.4{V}_{\mathrm{CC}} $$
], and (iii) [image: 
$$ +0.6{V}_{\mathrm{CC}} $$
], where [image: 
$$ \pm {V}_{\mathrm{CC}} $$
] is the supply voltage of the amplifier.

Answer: (i) [image: 
$$ +{V}_{\mathrm{CC}} $$
]; (ii) [image: 
$$ +{V}_{\mathrm{CC}} $$
]; (iii) [image: 
$$ -{V}_{\mathrm{CC}} $$
].


7.3.4 Switching RC Oscillator
The idea of the switching RC oscillator (or the 
                  relaxation oscillator
                  
                  
                ) is not to use an external trigger, but rather to derive the trigger signal from an RC circuit connected to the output of the amplifier itself. The circuit diagram of the relaxation oscillator is shown in Fig. 7.19. The RC circuit with the source voltage υ
out forms a negative feedback loop. The capacitor may either charge or discharge depending on the source voltage.[image: A331468_1_En_7_Fig19_HTML.gif]
Fig. 7.19Bistable amplifier 

circuit with an RC circuit in the negative feedback loop




                            
To analyze the amplifier circuit in Fig 7.19, we assume an infinitely high open-loop DC gain A and use basic amplifier equations 5.​4 with [image: 
$$ {\upsilon}^{-}={\upsilon}_C $$
]. This yields[image: 
$$ {\upsilon}_{\mathrm{out}}=+{V}_{\mathrm{C}\mathrm{C}}\kern1em \mathrm{if}\ \frac{R_1}{R_1+{R}_2}{\upsilon}_{\mathrm{out}}>{\upsilon}_{\mathrm{C}} $$
]

 (7.33a)


[image: 
$$ {\upsilon}_{\mathrm{out}}=-{V}_{\mathrm{C}\mathrm{C}}\kern1em \mathrm{if}\ \frac{R_1}{R_1+{R}_2}{\upsilon}_{\mathrm{out}}<{\upsilon}_{\mathrm{C}} $$
]

 (7.33b)

Thus, the circuit in Fig. 7.19 becomes equivalent to a simple RC 

circuit given in Fig. 7.20 where the dependent (or rather switching) voltage source is defined by Eqs. (7.33a, b). The corresponding transient analysis is performed starting with some initial conditions.[image: A331468_1_En_7_Fig20_HTML.gif]
Fig. 7.20Equivalent circuit for finding oscillation behavior. The dependent voltage source is controlled by the capacitor voltage







                            
Example 7.6
Given initial conditions [image: 
$$ {\upsilon}_{\mathrm{out}}=10\kern0.5em \mathrm{V} $$
] and [image: 
$$ {\upsilon}_{\mathrm{C}}=0\kern0.5em \mathrm{V} $$
] at [image: 
$$ t=0 $$
], solve the circuit in Fig. 7.19 and Fig. 7.20. Assume that [image: 
$$ {V}_{\mathrm{CC}}=10\kern0.5em \mathrm{V} $$
] and [image: 
$$ {R}_1={R}_2 $$
].

Solution: Step 1. The source voltage in Fig. 7.20 is [image: 
$$ {\upsilon}_{\mathrm{out}}=10\kern0.5em \mathrm{V} $$
] and the capacitor voltage is zero, i.e., [image: 
$$ {\upsilon}_{\mathrm{C}}=0\kern0.5em \mathrm{V} $$
] at the initial time moment [image: 
$$ t=0 $$
].

Step 2. The capacitor starts to charge. When its voltage reaches [image: 
$$ {\upsilon}_{\mathrm{C}}=5\kern0.5em \mathrm{V} $$
], the differential voltage at the amplifier’s input becomes negative so that Eq. (7.33a) is no longer valid. The source voltage in Fig. 7.20 switches to

[image: 
$$ {\upsilon}_{\mathrm{out}}=-10\kern0.5em \mathrm{V} $$
] according to Eq. (7.33b).

Step 3. The capacitor starts to discharge. When it reaches [image: 
$$ {\upsilon}_{\mathrm{C}}=-5\kern0.5em \mathrm{V} $$
], the differential voltage at the amplifier’s input becomes positive, and the output voltage therefore switches back to [image: 
$$ {\upsilon}_{\mathrm{out}}=10\kern0.5em \mathrm{V} $$
] according to Eq.(7.33a).
After Step 3, the circuit returns to Step 1, and the process continues periodically. This results in the output voltage shown in Fig. 7.21.[image: A331468_1_En_7_Fig21_HTML.gif]
Fig. 7.21
Relaxation

 oscillator operation for the idealized amplifier model (amplifier hits the rails in saturation); the amplifier supply voltage is 10 V




                                

Exercise 7.8
The relaxation oscillator circuit in Fig. 7.19 uses [image: 
$$ {R}_1=1\kern0.5em \mathrm{k}\Omega $$
] and [image: 
$$ {R}_2=4\kern0.5em \mathrm{k}\Omega $$
]. The supply voltage of the amplifier is [image: 
$$ \pm 15\kern0.5em \mathrm{V} $$
]. Determine the amplitude (peak value) of the oscillating capacitor voltage and the oscillating output voltage.

Answer: 15 V and 3 V, respectively.


7.3.5 Oscillation Frequency



Consider the positive half cycle in Fig. 7.21. The solution for the RC circuit in Fig. 7.20 is given by Eqs. (7.16a, b) with [image: 
$$ {V}_{\mathrm{S}}={V}_{\mathrm{CC}} $$
]. The constant K
1 is found from the initial condition of [image: 
$$ {\upsilon}_{\mathrm{C}}\left(t=0\right)=-\beta \kern0.22em {V}_{\mathrm{C}\mathrm{C}} $$
] where [image: 
$$ \beta ={R}_1/\left({R}_1+{R}_2\right) $$
] is the amount of the positive feedback
. We assume that the initial time instance has been switched to the start of the half cycle. Therefore, during the entire positive half cycle[image: 
$$ {\upsilon}_{\mathrm{C}}(t)={V}_{\mathrm{C}\mathrm{C}}-\left(1+\beta \right){V}_{\mathrm{C}\mathrm{C}} \exp \left(-\frac{t}{\tau}\right),\kern1em \tau =RC $$
]

 (7.34)

At the end of the positive half cycle, the capacitor voltage becomes β V
CC. This allows us to find the half cycle

 duration T/2 and the oscillation period T. Solving Eq. (7.34) with [image: 
$$ {\upsilon}_{\mathrm{C}}=\beta \kern0.2em {V}_{\mathrm{C}\mathrm{C}} $$
] and [image: 
$$ t=T/2 $$
], one has (
f is the oscillation frequency in hertz)[image: 
$$ T=2\tau \ln \frac{1+\beta }{1-\beta },\kern1em f=\frac{1}{T}=\frac{1}{2\tau }{\left( \ln \frac{1+\beta }{1-\beta}\right)}^{-1} $$
]

 (7.35)


                            
Exercise 7.9
For the relaxation oscillator with [image: 
$$ {R}_1={R}_2 $$
], express the oscillation frequency in terms of its time constant τ.

Answer: [image: 
$$ f=\frac{0.455}{\tau}\kern0.5em \left[\mathrm{Hz}\right] $$
].


7.3.6 Circuit Implementation: 555 Timer
Figure 7.22 shows the relaxation

 oscillator circuit implemented in a laboratory and its output voltages when the supply voltages are [image: 
$$ \pm 5\kern0.15em \mathrm{V} $$
]. Since the realistic amplifier never reaches the supply rails, the peak-to-peak (Pk-Pk) value of the output voltage is now less than 10 V. The output current limitations of the amplifier IC may severely affect circuit performance. Also, the oscillation frequency only approximately follows Eq. (7.35).[image: A331468_1_En_7_Fig22_HTML.gif]
Fig. 7.22(a) Timer circuit operation in laboratory. The square waveform is the output voltage υ
out(t). The curved waveform is the capacitor voltage υ
C(t). A variable resistance R makes it possible to visually control the oscillation frequency using an LED connected to the output through a buffer amplifier . The oscillation frequency changes from 0.5 to about 100 Hz




                            
555 Timer Integrated Circuit
Rectangular pulse forms at lower frequencies are routinely created by the well-known 555 timer IC (integrated circuit). The 555 timer operates conceptually similarly to the relaxation oscillator circuit described above; it is more versatile though. The 555 timer creates a waveform of relatively sharp and clean rectangular voltage pulses whose frequency is controlled by an external capacitor and resistor. The duty cycle (ratio of the positive phase duration to the signal period) 
                    
                    
                  can also be controlled. The 555 timer is perhaps one of the most popular integrated circuits ever built.



7.4 Single-Time-Constant (STC) Transient Circuits
7.4.1 Circuits with Resistances and Capacitances
Consider a transient circuit with an arbitrary number of capacitances and resistances. The circuit has an independent voltage source (or sources) and a switch


. Instead of the voltage source, some capacitors may be charged prior to closing the switch. A single-time-constant transient circuit (STC circuit) is that which solution has the form[image: 
$$ \upsilon (t)={K}_1 \exp \left(-\frac{t}{\tau}\right)+{K}_2 $$
]

 (7.36)


for any branch voltage in the circuit. In other words, only one exponential function is involved, similar to the basic RC circuits studied previously. Here, τ is the only 
                  time constant
                  
                  
                  
                 of the circuit. The STC transient circuits are frequently encountered in practice, in particular, in the study of transistor amplifiers. The STC transient circuits include:	1.Transient circuits with only one capacitance C. According to Thévenin’s theorem, the network of resistances and source(s) seen by the capacitor is reduced to its Thévenin equivalent. As a result, we obtain the circuit shown in Fig. 7.7. Its time constant is given by


 




[image: 
$$ \tau ={R}_{\mathrm{T}}C $$
]

 (7.37)


where R
T is Thévenin resistance – the equivalent resistance of the network with the independent voltage source(s) shorted out.
	2.Transient circuits with only one resistance R. Thévenin’s theorem may be applied again, this time to the network of capacitances and source(s) seen by the resistance. As a result, we again obtain the circuit from Fig. 7.7. Its time constant is given by


 




[image: 
$$ \tau =R{C}_{\mathrm{T}} $$
]

 (7.38)


where C
T is the equivalent capacitance of the network with the independent voltage source(s) shorted out.
	3.Transient circuits with an arbitrary number of capacitances and resistances given that the solutions for different capacitor voltages obtained by the simultaneous use of KVL and KCL are all linear functions of each other. Consider a circuit with multiple capacitances. Assume that N is the final number of capacitances after all possible series/parallel combinations. For the STC condition to hold, there should be [image: 
$$ N-1 $$
] independent closed loops that include only capacitances (and possibly independent voltage source(s)) but do not include resistances. This useful result has been confirmed by the authors based on an extensive 


circuit analysis.


 




                            
As an example, we consider here simple transient circuits shown in Fig. 7.23.[image: A331468_1_En_7_Fig23_HTML.gif]
Fig. 7.23Transient circuits


 with multiple resistances and capacitances




                            
Exercise 7.10
For the circuits in Fig. 7.23, establish the number of independent closed loops that include only capacitance(s) and independent voltage source but do not include resistances.

Answer: (a) Zero; (b) zero; (c) one; (d) zero.

The first case in Fig. 7.23 is the transient circuit of Fig. 7.7. The positions of the switch and the resistor may be interchanged without affecting the circuit solution, which has the form of Eq. (7.36)—see also Eqs. (7.16). The second case is again the STC circuit; the solution for the capacitor voltage (and any other voltage in the circuit) is given by Eq. (7.36) with [image: 
$$ \tau =\left({R}_1\left|\right|{R}_2\right)C $$
]. The constants K
1 and K
2 in this equation will be different for voltages across different circuit elements. The third case is also the STC circuit; the solution for the capacitor voltage


 (and any other voltage in the circuit) is still given by Eq. (7.36) with [image: 
$$ \tau =R\left({C}_1+{C}_2\right) $$
]. This case requires extra care since two capacitances and the source form a closed loop. Therefore, according to KVL, capacitor voltages cannot be both equal to zero at the initial time moment (and at any other time moment). Finally, consider the last case in Fig. 7.23. For this circuit with two capacitances and two resistances, there is no closed loop that includes only the capacitances but does not include resistances. Therefore, this circuit is not a STC circuit. This result will be confirmed shortly.
Exercise 7.11
Given initially uncharged capacitor(s)


, write solutions for the capacitor voltage for the circuits shown in Fig. 7.23a–c. For the circuit in Fig. 7.23c, assume that that C
1 was initially uncharged but C
2 was initially charged to V
S and connected to the rest of the circuit at [image: 
$$ t=0 $$
] via a second switch.

                  Answer:
                  [image: 
$$ {\upsilon}_{\mathrm{C}}(t)={V}_{\mathrm{S}}\left[1- \exp \left(-\frac{t}{\tau}\right)\right],\kern1em \tau =RC\kern7.25em \mathrm{in}\ \mathrm{Fig}.\ 7.23\mathrm{a} $$
]

 (7.39)


                  [image: 
$$ {\upsilon}_{\mathrm{C}}(t)={V}_{\mathrm{S}}\frac{R_2}{R_1+{R}_2}\left[1- \exp \left(-\frac{t}{\tau}\right)\right],\kern1em \tau =\left({R}_1\left|\right|{R}_2\right)C\kern0.9em \mathrm{in}\ \mathrm{Fig}.\ 7.23\mathrm{b} $$
]

 (7.40)


                  [image: 
$$ \begin{array}{c}\kern-5.75em {\upsilon}_{\mathrm{C}1}(t)={V}_{\mathrm{S}}\left[1- \exp \left(-\frac{t}{\tau}\right)\right],\kern1em {\upsilon}_{\mathrm{C}2}(t)={V}_{\mathrm{S}} \exp \left(-\frac{t}{\tau}\right),\\ {}\tau =R\left({C}_1+{C}_2\right)\kern15.95em \mathrm{in}\ \mathrm{Fig}.\ 7.23\mathrm{c}\end{array} $$
]

 (7.41)


                


7.4.2 
Circu



its


 with Resistances and Inductances
The forthcoming analysis is quite similar to the analysis performed previously for the capacitances and resistances. The single-time-constant transient circuit (STC circuit) with resistances and inductances is that which solution has the form[image: 
$$ i(t)={K}_1 \exp \left(-\frac{t}{\tau}\right)+{K}_2 $$
]

 (7.42)

for any branch current in the circuit. The list of the corresponding STC circuits also becomes identical to the previous case with a few modifications:	1.Capacitances are replaced by inductances.


 

	2.Independent current source(s) will be used. They may be converted to voltage sources according to the 


source transformation theorem.


 

	3.In condition #3, instead of loops, we use circuit nodes. This condition is now formulated as follows. Consider a circuit with multiple inductances. Assume that N is the final number of inductances after all possible series/parallel combinations. For the STC condition to hold, there should be [image: 
$$ N-1 $$
] independent (single) nodes, every branch of which is either an inductance or an independent current source.


 




                            
As an example, we consider here simple transient circuits shown in Fig. 7.24.[image: A331468_1_En_7_Fig24_HTML.gif]
Fig. 7.24Transient circuits with multiple resistances and inductances




                            
Exercise 7.12
For the circuits in Fig. 7.24, establish the number of independent nodes, every branch of which is either an inductance or an independent current source.

Answer: (a) Zero; (b) zero; (c) one; (d) zero.


The first case in Fig. 7.24 is the transient circuit of Fig. 7.12. The corresponding solution for the inductor current is given by Eq. (7.42); see also Eqs. (7.28). The second case is again the STC circuit; the solution for the inductor current (and any other current in the circuit) is given by Eq. (7.42) with [image: 
$$ \tau =L/\left({R}_1+{R}_2\right) $$
]. The constants [image: 
$$ {K}_1 $$
] and [image: 
$$ {K}_2 $$
] in this equation will be different for voltages across different circuit elements. The third case is also the STC circuit; the solution for the inductor current (and any other current in the circuit) is still given by Eq. (7.42) with [image: 
$$ \tau =\left({L}_1+{L}_2\right)/R $$
]. This case requires extra care since two inductances and the current source are three branches of the same node. Therefore, according to KCL, inductance currents cannot be both equal to zero at the initial time moment (and at any other time moment). We may assume, for example, that inductance [image: 
$$ {L}_2 $$
] carried initial current [image: 
$$ {I}_{\mathrm{S}} $$
] and employs a second switch. Finally, consider the last case in Fig. 7.24. For this circuit with two inductances and two resistances, there is no nontrivial single node that includes only the inductances but does not include resistances. Therefore, this 


circuit is not the STC circuit.
Exercise 7.13
Given zero inductor current at the initial time moment, write solutions for the inductor current for the circuits shown in Fig. 7.24a–c. For the circuit in Fig. 7.24c, additionally assume that that inductor L
1 was carrying zero initial current but inductor L
2 was initially carrying current I
S and connected to the rest of the circuit at [image: 
$$ t=0 $$
] via a second switch.

                  Answer:
                  [image: 
$$ {i}_{\mathrm{L}}(t)={I}_{\mathrm{S}}\left[1- \exp \left(-\frac{t}{\tau}\right)\right],\kern1em \tau =L/R\kern1.25em \mathrm{in}\ \mathrm{Fig}.\ 7.24\mathrm{a} $$
]

 (7.43)


                  [image: 
$$ {i}_{\mathrm{L}}(t)={I}_{\mathrm{S}}\frac{R_1}{R_1+{R}_2}\left[1- \exp \left(-\frac{t}{\tau}\right)\right],\kern1em \tau =L/\left({R}_1+{R}_2\right)\ \mathrm{in}\ \mathrm{Fig}.\ 7.24\mathrm{b} $$
]

 (7.44)


                  [image: 
$$ {i}_{\mathrm{L}1}(t)={I}_{\mathrm{S}}\left[1- \exp \left(-\frac{t}{\tau}\right)\right],\kern1em {i}_{\mathrm{L}2}(t)={I}_{\mathrm{S}} \exp \left(-\frac{t}{\tau}\right),\kern1em \tau =\left({L}_1+{L}_2\right)/R\kern1.25em \mathrm{in}\ \mathrm{Fig}.\ 7.24\mathrm{c} $$
]

 (7.45)


                


7.4.3 
Example


 of a Non-STC Transient Circuit



Figure 7.25a shows the last circuit from Fig. 7.23 to be analyzed here in detail. With reference to Fig. 7.25a, KCL and KVL give[image: A331468_1_En_7_Fig25_HTML.gif]
Fig. 7.25A non-STC circuit 

with two resistances and two capacitances and its solution behavior




[image: 
$$ \begin{array}{l}i={i}_1+{i}_2\Rightarrow {C}_1\frac{d{\upsilon}_1}{dt}={C}_2\frac{d{\upsilon}_2}{dt}+\frac{\upsilon_2}{R_2};\kern1.5em \\ {}\kern1pc9 -{V}_{\mathrm{S}}+{\upsilon}_1+{\upsilon}_2=0\Rightarrow {R}_1{C}_1\frac{d{\upsilon}_1}{dt}={V}_{\mathrm{S}}-{\upsilon}_1-{\upsilon}_2\end{array} $$
]

 (7.46)


Expressing either υ
1 in terms of υ
2 or vice versa, we obtain from Eq. (7.46) a second-order ODE for either of the capacitor voltages. For simplicity, we will assume that [image: 
$$ {C}_1={C}_2=C $$
], [image: 
$$ {R}_1={R}_2=R $$
], and [image: 
$$ {\tau}_0=RC $$
]. Then, the corresponding ODE for υ
1 has the 

form[image: 
$$ \frac{d^2{\upsilon}_1}{d{t}^2}+\frac{3}{\tau_0}\frac{d{\upsilon}_1}{dt}+\frac{\upsilon_1}{\tau_0^2}=\frac{V_S}{\tau_0^2} $$
]

 (7.47)

The analysis of the second-order ODEs like Eq. (7.47) is thoroughly explained in the last section of this chapter. Here, we present its succinct version suitable for our immediate purposes. The solution of the homogeneous second-order ODE is sought in the form [image: 
$$ \exp \left(-\alpha \kern0.1em t/{\tau}_0\right) $$
] with α being a dimensionless constant. Substitution of this expression into the homogeneous ODE gives a quadratic equation for α, [image: 
$$ {\alpha}^2+3\alpha +1=0 $$
], with the two positive roots [image: 
$$ {\alpha}_1=2.62 $$
] and [image: 
$$ {\alpha}_2=0.38 $$
]. Therefore, the solution for Eq. (7.47) should have the form[image: 
$$ {\upsilon}_1(t)={V}_{\mathrm{S}}+{K}_1 \exp \left(-\frac{\alpha_1t}{\tau_0}\right)+{K}_2 \exp \left(-\frac{\alpha_2t}{\tau_0}\right) $$
]

 (7.48)

where K
1, K
2 are two constants determined by the initial conditions The solution for voltage υ
2(t) is found using the second of equations (7.46):[image: 
$$ {\upsilon}_2(t)=\left(1+{\alpha}_1\right){K}_1 \exp \left(-\frac{\alpha_1t}{\tau_0}\right)+\left(1+{\alpha}_2\right){K}_2 \exp \left(-\frac{\alpha_2t}{\tau_0}\right) $$
]

 (7.49)


The initial conditions imply that both capacitors are uncharged prior to closing the switch. This gives [image: 
$$ {K}_1=\left(1+{\alpha}_2\right)/\left({\alpha}_1-{\alpha}_2\right){V}_{\mathrm{S}} $$
] and [image: 
$$ {K}_2=\left(1+{\alpha}_1\right)/\left({\alpha}_2-{\alpha}_1\right){V}_{\mathrm{S}} $$
]. With this in mind, the solution is complete. Figure 7.25b, c shows the behavior of the two capacitor voltages. A truly remarkable point is that 

instantaneous voltage across the second capacitor in Fig. 7.25b exceeds the (absolute) source voltage. Moreover, the instantaneous circuit current in Fig. 7.25c exceeds the initial circuit current [image: 
$$ {I}_0={V}_{\mathrm{S}}/{R}_1 $$
] by 2.5 times. Those distinct features are observed for other second-order transient circuits studied further.

7.4.4 Example of an STC Transient Circuit
In Fig. 7.26, we present an example of a rather complicated circuit, which still follows the STC circuit model. The proof is based on the observation that node (*) in Fig. 7.26 connects three branches: two of which are exactly the inductances and the remaining one is the current source. According to KCL, this circuit again implies that both inductances cannot have zero current simultaneously prior to closing the switch.[image: A331468_1_En_7_Fig26_HTML.gif]
Fig. 7.26An STC circuit with two inductances and two resistances




                            

7.4.5 Method of Thévenin Equivalent and Application Example: Circuit with a Bypass Capacitor



Let us consider a transient circuit with a bypass capacitor shown in Fig. 7.27a. It includes a voltage source represented by its Thévenin equivalent

 υ
S(t), R
S and a load represented by its equivalent resistance R
L. The source is turned on at [image: 
$$ t=0 $$
] and it generates a voltage in the form of a (large) DC component V
S and a superimposed (small) AC signal:[image: A331468_1_En_7_Fig27_HTML.gif]
Fig. 7.27Model of a voltage 

source connected to a load with a bypass capacitor




[image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{S}}+{V}_{\mathrm{m}} \cos \omega \kern0.1em t,\kern1em \omega =2\pi \kern0.1em f $$
]

 (7.50)

where f is frequency in Hz. Generally, [image: 
$$ {V}_{\mathrm{S}}>>{V}_{\mathrm{m}} $$
].
We first interchange positions of capacitance C and resistance R
L in Fig. 7.27. With the switch closed, the voltage source υ
S(t) with two resistances R
S, R
L is then converted to its Thévenin equivalent circuit with[image: 
$$ {\upsilon}_{\mathrm{T}}(t)=\frac{R_{\mathrm{L}}}{R_{\mathrm{S}}+{R}_{\mathrm{L}}}{\upsilon}_{\mathrm{S}}(t),\kern1em {R}_{\mathrm{T}}={R}_{\mathrm{S}}\left|\right|{R}_{\mathrm{L}} $$
]

 (7.51)

The resulting circuit is the simple RC circuit shown in Fig. 7.27b. The method of a Thévenin (or Norton) equivalent circuit is common for all transient circuits with one capacitor or inductor as explained in the previous section. According to this method, a circuit with one capacitance or one inductance is always converted to the basic RC or RL transient circuit. Therefore, it is always a 
first-order transient circuit

 which is described by a first-order ODE. Once the solution for the capacitor voltage υ
C(t) in Fig. 7.27a is found, the voltage across the load resistor is then simply expressed as [image: 
$$ {\upsilon}_{\mathrm{L}}(t)={\upsilon}_{\mathrm{C}}(t) $$
].
Forced Response and Natural Response
Using KVL, KCL, and the capacitor equation


, we obtain the first-order ODE for the circuit in Fig. 7.27b in the form[image: 
$$ \frac{d{\upsilon}_{\mathrm{C}}(t)}{dt}+\frac{\upsilon_{\mathrm{C}}(t)}{\tau }=f(t),\kern1em f(t)=\frac{1}{\tau}\frac{R_{\mathrm{L}}}{R_{\mathrm{S}}+{R}_{\mathrm{L}}}\left({V}_{\mathrm{S}}+{V}_{\mathrm{m}} \cos \omega \kern0.1em t\right),\kern1em \tau ={R}_{\mathrm{T}}C $$
]

 (7.52)

at any positive time instance, [image: 
$$ t>0 $$
]. The initial condition is [image: 
$$ {\upsilon}_{\mathrm{C}}\left(t=0\right)=0 $$
]. The time-dependent source term f(t) is called a forcing function, whether or not the switch is present. The action of the switch may always be included into f(t) by setting [image: 
$$ f(t)=0 $$
] at [image: 
$$ t<0 $$
]. A general solution of the homogeneous Eq. (7.52), let us call it x
c(t), is known as the complementary solution (or natural response). The natural response is given by [image: 
$$ {x}_{\mathrm{c}}(t)=K \exp \left(-t/\tau \right) $$
] where K is an arbitrary constant. The natural response carries information about the circuit. A particular solution of the inhomogeneous Eq. (7.52), let us call it x
p(t), is known as the forced response. The forced response carries information about the excitation f(t). It does not need to contain an arbitrary integration constant. By linearity, the complete solution for Eq. (7.53) is the sum of both responses, i.e.,[image: 
$$ {\upsilon}_{\mathrm{C}}(t)={x}_{\mathrm{p}}(t)+{x}_{\mathrm{c}}(t) $$
]

 (7.53)

We already know the natural response. The forced response is sought in the form[image: 
$$ {x}_{\mathrm{p}}(t)=a \cos \omega \kern0.1em t+b \sin \omega \kern0.1em t+c $$
]

 (7.54)

where constants a, b, c are to be uniquely determined. If the function f(t) is sinusoidal, a combination of sine and cosine would suffice under certain conditions for any linear differential equation, not necessarily of the first order. The particular solution in the form of Eq. (7.54) is even useable for second-order circuits


 considered next.
Example 7.7
Find the forced response for Eq. (7.52).

Solution: Equation (7.54) is substituted into Eq. (7.52); then all terms are pulled to the left-hand side, and all terms with cos ω t and cos ω t are combined. We obtain:[image: 
$$ \cos \omega \kern0.1em t\left[\frac{a}{\tau }+b\omega -\frac{V_{\mathrm{m}}}{\tau}\frac{R_{\mathrm{L}}}{R_{\mathrm{S}}+{R}_{\mathrm{L}}}\right]+ \sin \omega \kern0.1em t\left[\frac{b}{\tau }-a\omega \right]+\left[\frac{c}{\tau }-\frac{V_{\mathrm{S}}}{\tau}\frac{R_{\mathrm{L}}}{R_{\mathrm{S}}+{R}_{\mathrm{L}}}\right]=0 $$
]

 (7.55)


                                    
In order to satisfy Eq. (7.55), we require all three expressions in the square brackets to be zero. This operation yields a system of two equations for a and b, while the constant c is found directly. Working out the algebra produces the results[image: 
$$ a=\frac{R_{\mathrm{L}}{V}_{\mathrm{m}}}{R_{\mathrm{S}}+{R}_{\mathrm{L}}}\frac{1}{1+{\left(\omega \kern0.1em \tau \right)}^2},\kern1em b=\frac{R_{\mathrm{L}}{V}_{\mathrm{m}}}{R_{\mathrm{S}}+{R}_{\mathrm{L}}}\frac{\omega \kern0.1em \tau }{1+{\left(\omega \kern0.1em \tau \right)}^2},\kern1em c=\frac{R_{\mathrm{L}}{V}_{\mathrm{S}}}{R_{\mathrm{S}}+{R}_{\mathrm{L}}} $$
]

 (7.56)


                                    

Example 7.8
Obtain the complete solution for Eq. (7.52) and plot it to scale.

Solution: The final solution is based on Eqs. (7.54)–(7.56). The initial condition [image: 
$$ {\upsilon}_{\mathrm{C}}\left(t=0\right)=0 $$
] is satisfied if [image: 
$$ K=-a-c $$
]. The required load voltage has the form[image: 
$$ \begin{array}{l}{\upsilon}_{\mathrm{L}}(t)={\upsilon}_{\mathrm{C}}(t)=\frac{R_{\mathrm{L}}{V}_{\mathrm{S}}}{R_{\mathrm{S}}+{R}_{\mathrm{L}}}\left(1- \exp \left(-t/\tau \right)\right)\\ {}\kern7em +\frac{R_{\mathrm{L}}{V}_{\mathrm{m}}}{R_{\mathrm{S}}+{R}_{\mathrm{L}}}\frac{1}{1+{\left(\omega \kern0.1em \tau \right)}^2}\left[ \cos \omega \kern0.1em t+\omega \kern0.1em \tau \sin \omega \kern0.1em t- \exp \left(-t/\tau \right)\right]\end{array} $$
]

 (7.57)


                                    
This solution is compared with the load voltage without bypass capacitor


:[image: 
$$ {\upsilon}_{\mathrm{L}}(t)=\frac{R_{\mathrm{L}}{V}_{\mathrm{S}}}{R_{\mathrm{S}}+{R}_{\mathrm{L}}}+\frac{R_{\mathrm{L}}{V}_{\mathrm{m}}}{R_{\mathrm{S}}+{R}_{\mathrm{L}}} \cos \omega \kern0.1em t $$
]

 (7.58)


                                    
Given that ω τ and t/τ are both large, the dominant AC term in Eq. (7.57) is the sine function. Comparing Eqs. (7.57) and (7.58) with each other, we can therefore state that the bypass capacitor reduces the amplitude of the unwanted AC component at the load by a factor 1/(ω τ) while keeping the DC component unchanged! Figure


 7.28 plots the load voltage with and without the bypass capacitor. The circuit parameters are [image: 
$$ {R}_{\mathrm{S}}=5\kern0.5em \Omega, {R}_{\mathrm{L}}=1\kern0.5em \mathrm{k}\Omega, \kern0.5em C=1000\kern0.5em \upmu \mathrm{F} $$
]. The source parameters are [image: 
$$ {V}_{\mathrm{S}}=10\kern0.5em \mathrm{V},\kern0.5em {V}_{\mathrm{m}}=1\kern0.5em \mathrm{V},f=500\kern0.5em \mathrm{Hz} $$
]. One hidden yet critical solution parameter is the source resistance R
S. When this parameter is very small, the bypass capacitor has little if any effect on the solution.[image: A331468_1_En_7_Fig28_HTML.gif]
Fig. 7.28
Load voltage


 with and without the bypass capacitor predicted by Eqs. (7.57) and (7.58)




                                    




7.5 Description of the Second-Order Transient Circuits
7.5.1 
Types

 of Second-Order Transient Circuits
A first-order transient circuit is described by a first-order differential equation. All single-time-constant (STC) circuits considered thus far are the first-order transient circuits. A second-order transient circuit is described by a second-order differential equation. Figure 7.29 outlines two major types of the second-order order transient circuits.[image: A331468_1_En_7_Fig29_HTML.gif]
Fig. 7.29Classification of second-order transient circuits




                            
The first type involves two nonidentical dynamic elements (capacitance and inductance) assembled as a series or parallel two-terminal LC network—see Fig. 7.29a. This figure shows two such connections. The number of resistances may be arbitrary. As long as the LC network sees only the combination of source(s) and resistances, the equivalent circuit (obtained with the help of Thévenin or Norton equivalents) will have the form shown in Fig. 7.29a. The second type includes non-STC circuits with two capacitances or two inductances—see Fig. 7.29b. In this section, we will study the second-order circuits on the base of the LC networks.

7.5.2 Series-Connected Second-Order RLC Circuit
Generic Representation of a Series RLC Circuit and Qualitative Operation



Consider a series LC network shown in the shaded box of Fig. 7.30. Using Thévenin’s theorem, any network of resistances/independent DC sources connected to this block may be represented as the series combination of the voltage source and the resistance R. This is why we arrive at the very generic series RLC circuit shown in Fig. 7.30. The switch implies that the ideal voltage source is to be connected to the circuit at time [image: 
$$ t=0 $$
]. Prior to [image: 
$$ t=0 $$
], this source has no effect, it is disconnected. Qualitatively, just after closing the switch the entire voltage drop will be acquired by the inductance. Then, the capacitor voltage will increase. Finally, the capacitor voltage will assume the supply voltage V
S, and no current will flow in the circuit under DC steady-state condition.[image: A331468_1_En_7_Fig30_HTML.gif]
Fig. 7.30Series RLC second-order transient circuit; 
                            
                            
                          the switch closes at [image: 
$$ t=0 $$
]





                                


                  Mechanical Analogy


                
Figure 7.31 shows an intuitive analogy between a mechanical mass-spring-damping system and an electric (or electronic) RLC transient 

circuit depicted in Fig. 7.30.[image: A331468_1_En_7_Fig31_HTML.gif]
Fig. 7.31
Mechanical 

counterpart of an RLC circuit; at [image: 
$$ t=0 $$
] the gravity force is applied




                                
The inductance L corresponds to the mechanical mass m. The capacitance C is the inverse stiffness, 1/k, of the spring. The resistance R corresponds to viscous damping. At [image: 
$$ t=0 $$
], the gravity force is applied to mass m in Fig. 7.31 initially located at [image: 
$$ x=0 $$
]. As a result, the mass reaches a new equilibrium position [image: 
$$ x\left(t\to \infty \right) $$
] with or without intermediate oscillations depending on damping. The following correspondences may be established between mechanical and electrical quantities (q(t) is the capacitor charge):[image: 
$$ i(i)\kern1em \to \kern1em dx(t)/dt,\kern1em q(t)\kern1em \to \kern1em x(t),\kern1em mg\kern1em \to \kern1em {V}_S $$
]

 (7.59)


                                

Solution in Terms of Circuit Current



A solution to the dynamic circuit in Fig. 7.30 is based on KVL and KCL. KCL prescribes the same current i(t) through every circuit element at any time instant t. KVL states[image: 
$$ {\upsilon}_{\mathrm{L}}+{\upsilon}_{\mathrm{R}}+{\upsilon}_{\mathrm{C}}={V}_{\mathrm{S}} $$
]

 (7.60)

at any positive time [image: 
$$ t>0 $$
]. Indeed, υ
L, υ
R, υ
C are all functions of time. Using constitutive relations for the inductance, resistance, and capacitance (integral form), we obtain[image: 
$$ L\frac{di(t)}{dt}+R\kern0.1em i(t)+\frac{1}{C}{\displaystyle \underset{0}{\overset{t}{\int }}i\left(t,^{\prime}\right)dt^{\prime }}={V}_{\mathrm{S}} $$
]

 (7.61)

where we assumed that the initial 

capacitor voltage is zero. Differentiation over time yields the expected homogeneous second-order ODE:[image: 
$$ L\frac{d^2i(t)}{d{t}^2}+R\frac{di(t)}{dt}+\frac{1}{C}i(t)=0 $$
]

 (7.62)

which, after division by L, can be cast in the standard form:[image: 
$$ \frac{d^2i(t)}{d{t}^2}+2\alpha \frac{di(t)}{dt}+{\omega}_0^2i(t)=0 $$
]

 (7.63)

The two constants present in this equation are given by[image: 
$$ \alpha =\frac{R}{2L},\kern1em {\omega}_0=\frac{1}{\sqrt{LC}} $$
]

 (7.64)

Both constants in Eq. (7.64) have a general mathematical meaning that should be remembered. The first constant α with the units of neper
/sec is the 
                    damping coefficient
                    
                  . It generally characterizes how fast oscillations in Fig. 7.31 decay and reach a steady state. The neper (Np) is a dimensionless unit named after John Napier (1550–1617), a Scottish mathematician. The constant α is similar to the inverse time constant 1/τ for the first-order transient circuits. The second constant ω
0 with the units of rad/s is the 
                    undamped resonant frequency
                    
                   of the RLC circuit. This constant characterizes frequency of oscillations—see again the mechanical analogy in Fig. 7.31. The meaning of the 
undamped resonant frequency remains the same for any LC circuit block, either in transient 

analysis or in the AC circuit analysis, either for series or parallel configurations.
Exercise 7.14
When is [image: 
$$ i(t)=K \cos {\omega}_0t $$
] a solution to Eq. (7.63)?

Answer: At [image: 
$$ R=0 $$
].



7.5.3 Initial Conditions in Terms of Circuit Current and Capacitor Voltage



In contrast to the first-order transient circuits, there are two equally possible choices of the independent function for the RLC circuit in Fig. 7.30:	Circuit (or inductor) current i(t)

	Capacitor voltage, υ
C(t)




                            
The circuit current remains continuous over time (inductor “inertia”) and so does the capacitor voltage (capacitor “inertia”). We have chosen the circuit current and obtained the second-order ODE Eq. (7.53). You may wonder if this is really the best choice. The answer is nontrivial and is hidden in the initial conditions. Any first-order ODE needs one initial condition. Any second-order ODE needs two initial conditions. Let us establish these initial conditions for the circuit current first. Following the 

current continuity through the inductor, the circuit current must be zero at [image: 
$$ t=0 $$
], that is,[image: 
$$ i\left(t=0\right)=0 $$
]

 (7.65a)

Hence, the first initial condition is established. The second one is that of the initial capacitor voltage equal to zero. According to Eq. (7.60) and Eq. (7.65a),[image: 
$${\upsilon}_L\left(t=0\right)+\underset{Ri\left(t=0\right)=0}{\underbrace{\upsilon_{\mathrm{R}}\left(t=0\right)}}+\underset{0}{\underbrace{\upsilon_{\mathrm{C}}\left(t=0\right)}}={V}_S\Rightarrow L\frac{di}{dt}\left(t=0\right)={V}_{\mathrm{S}}\Rightarrow \frac{di}{dt}\left(t=0\right)=\frac{V_{\mathrm{S}}}{L} $$
]

 (7.65b)

Thus, the initial circuit current is zero, whereas its first derivative is not. This is a drawback of the electric current formulation given by Eq. (7.63) for the series RLC circuit. On the other hand, the capacitor voltage and its derivative (which is proportional to the capacitor/inductor/circuit current) are both zero at [image: 
$$ t=0 $$
], which leads to a simpler “universal” homogeneous formulation of the initial conditions, i.e.,[image: 
$$ {\upsilon}_{\mathrm{C}}\left(t=0\right)=0,\kern1em \frac{d{\upsilon}_{\mathrm{C}}\left(t=0\right)}{dt}=0 $$
]

 (7.66)

At the same time, the second-order ODE for the capacitor voltage becomes inhomogeneous, i.e., at [image: 
$$ t\ge 0 $$
]
[image: 
$$ \frac{d^2{\upsilon}_{\mathrm{C}}(t)}{d{t}^2}+2\alpha \frac{d{\upsilon}_{\mathrm{C}}(t)}{dt}+{\omega}_0^2{\upsilon}_{\mathrm{C}}(t)={\omega}_0^2{V}_{\mathrm{S}} $$
]

 (7.67)

It is worth noting that this equation has exactly the same form as Eq. (7.63), but with the nonzero right-hand side. The derivation of Eq. (7.67) is similar to the 

derivation of Eq. (7.63); it is suggested as a homework problem.

7.5.4 Step Response and Choice of the Independent Function



The selection between current and voltage formulations reflects our desire to convert the circuit differential equation into a standard form, which will allow us to use powerful tools of signals and systems theory. What should be preferred: the homogeneous second-order ODE Eq. (7.63) for the circuit current augmented with inhomogeneous initial conditions Eqs. (7.65a, b), or the inhomogeneous second-order ODE Eq. (7.67) for the capacitor voltage augmented with the homogeneous initial conditions Eq. (7.66)? The answer is as follows. If the initial conditions are all zero, the only remaining excitation is the forcing function: the right-hand side of Eq. (7.67). We consider a unit step function, u
(t), defined by (see Fig. 7.32a)[image: A331468_1_En_7_Fig32_HTML.gif]
Fig. 7.32(a) Unit step 

function u(t) and (b) the scaled right-hand side of Eq. (7.59)




[image: 
$$ u(t)=\left\{\begin{array}{c}\hfill 0\kern1em t<0\hfill \\ {}\hfill 1\kern1em t\ge 0\hfill \end{array}\right. $$
]

 (7.68)

Equation (7.67) may be conveniently written in the form[image: 
$$ \frac{d^2{\upsilon}_{\mathrm{C}}(t)}{d{t}^2}+2\alpha \frac{d{\upsilon}_{\mathrm{C}}(t)}{dt}+{\omega}_0^2{\upsilon}_{\mathrm{C}}(t)=Au(t) $$
]

 (7.69)

at any time instant where [image: 
$$ A={\omega}_0^2{V}_S $$
]. The forcing function is thus the product of the constant A and the unit step function u(t), as seen in Fig. 7.32b. The solution to Eq. (7.67) or Eq. (7.69), after division by A, is the normalized step response of a second-order system. We call it the response to a unit step voltage excitation. It is generally accepted in signals and systems theory that for the unit step response the initial conditions should be homogeneous or zero. Therefore, Eq. (7.67) or Eq. (7.69) with zero initial conditions Eq. (7.66) is 

preferred when dealing with future applications of the unit step response.
The step response is the “business card

” of the circuit, which actually contains the complete information about its behavior. If the circuit in Fig. 7.30 with an arbitrary time-varying voltage source [image: 
$$ {V}_{\mathrm{S}}\to {\upsilon}_{\mathrm{S}}(t) $$
] is considered, this source may be represented as a number of “steps” in time. Hence, the complete solution may be constructed as a sum (or integral) of the elementary unit step response solutions, properly scaled and shifted in time. As an example, we consider a voltage source υ
S(t) in Fig. 7.30, which generates a pulse (think of one bit) with the duration T and a 5-V peak value, as depicted in Fig. 7.33.[image: A331468_1_En_7_Fig33_HTML.gif]
Fig. 7.33A one-bit excitation voltage constructed as the sum of two step responses




                            

The switch in Fig. 7.30 is replaced by a short circuit. According to Fig. 7.33, [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=5u(t)-5u\left(t-T\right) $$
]. By linearity, the solution for the bit excitation is simply the sum [image: 
$$ 5{\upsilon}_{\mathrm{C}}(t)-5{\upsilon}_{\mathrm{C}}\left(t-T\right) $$
] in Fig. 7.33 where υ
C(t) is the solution of Eq. (7.69) with [image: 
$$ {V}_{\mathrm{S}}=1\kern0.5em \mathrm{V} $$
].

7.5.5 Parallel Connected Second-Order RLC Circuit
Generic Representation of the Parallel RLC Circuit and Qualitative Operation



Consider a parallel connected LC block in the shaded box in Fig. 7.34. Using Norton’s theorem, any network of resistors and power supplies connected to this block is represented as the parallel combination of a current source and a resistor R, as seen in Fig. 7.34. This is why we arrive at the very generic parallel RLC circuit shown in Fig. 7.34. The switch implies that the ideal current power supply is to be connected to the circuit at time instant [image: 
$$ t=0 $$
]. Qualitatively, just after closing the switch, the entire circuit current will flow through the capacitor. As time progresses, the capacitor current will decrease. Finally, the entire current will flow through the inductor, which becomes the short circuit under 

DC conditions.[image: A331468_1_En_7_Fig34_HTML.gif]
Fig. 7.34Generic representation

 of any network of sources and resistances connected to the parallel LC circuit: the standard parallel LCR circuit




                                

Circuit Equation in Terms of Voltage



The same reasoning as mentioned for the series RLC circuit applies. There are two possible choices of the independent function for the RLC circuit in Fig. 7.34:	Circuit (or capacitor) voltage, υ(t)

	Inductor current i
L(t)




                                

The capacitor voltage remains continuous over time (inductor “inertia”) and so does the inductor current (inductor “inertia”). We use for derivation υ(t) first. KCL yields[image: 
$$ C\frac{d\upsilon (t)}{dt}+\frac{\upsilon (t)}{R}+\frac{1}{L}{\displaystyle \underset{0}{\overset{t}{\int }}\upsilon \left(t,^{\prime}\right)dt^{\prime }}={I}_{\mathrm{S}} $$
]

 (7.70)

at any positive time [image: 
$$ t>0 $$
]. Differentiation over time and division by C yield the expected 
                    homogeneous
                    
                    
                   second-order ODE:[image: 
$$ \frac{d^2\upsilon (t)}{d{t}^2}+\frac{1}{RC}\frac{d\upsilon (t)}{dt}+\frac{1}{LC}\upsilon (t)=0 $$
]

 (7.71)

Eq. (7.71) is written in the form of Eq. (7.63):[image: 
$$ \frac{d^2\upsilon (t)}{d{t}^2}+2\alpha \frac{d\upsilon (t)}{dt}+{\omega}_0^2\upsilon (t)=0 $$
]

 (7.72)

if we define the 
damping coefficient α and the 
undamped resonant frequency ω
0 as[image: 
$$ \alpha =\frac{1}{2RC},\kern1em {\omega}_0=\frac{1}{\sqrt{LC}} $$
]

 (7.73)


                                

Initial Conditions and Choice of Independent Function



The initial conditions for Eq. (7.72) are that the voltage across the capacitor and the inductor current must be continuous. Therefore, they must have the form[image: 
$$ \upsilon \left(t=0\right)=0,\kern1em \frac{d\upsilon }{dt}\left(t=0\right)=\frac{I_{\mathrm{S}}}{C} $$
]

 (7.74)

The voltage derivative is not zero at the initial time 

moment. Eq. (7.74) is similar to Eqs. (7.65a, b). It has been stated that the step response of the second-order system is generally calculated with the

 homogeneous (zero) initial conditions. The second-order circuit ODE written in terms of the inductor current[image: 
$$ \frac{d^2{i}_{\mathrm{L}}(t)}{d{t}^2}+2\alpha \frac{d{i}_{\mathrm{L}}(t)}{dt}+{\omega}_0^2{\upsilon}_{\mathrm{L}}(t)={\omega}_0^2{I}_{\mathrm{S}} $$
]

 (7.75)

possesses zero initial conditions, i.e.,[image: 
$$ {i}_{\mathrm{L}}\left(t=0\right)=0,\kern1em \frac{d{i}_{\mathrm{L}}\left(t=0\right)}{dt}=0 $$
]

 (7.76)

Those are the preferred conditions for the step response calculations. The derivation of Eq. (7.75) is similar to the derivation of Eq. (7.72); it is left as a homework problem.


                  Duality


                
Comparing Eqs. (7.66) and (7.67) for the series LCR circuit with Eqs. (7.76) and (7.75) for the parallel LCR circuit, we can establish the following substitutions:[image: 
$$ {V}_{\mathrm{S}}\leftrightarrow R{I}_{\mathrm{S}},\kern1em {\upsilon}_{\mathrm{C}}\leftrightarrow R{i}_{\mathrm{L}},\kern1em \frac{L}{R}\leftrightarrow RC $$
]

 (7.77)

These substitutions make both sets of equations including all the constants mathematically identical. This fact reflects the duality of series/parallel RLC electric circuits. A similar duality is established for the steady-state RLC resonator circuits. Since the initial conditions are also the same, we conclude that the step response of the parallel RLC circuit is equivalent to the step response of the series RLC circuit.
Exercise 7.15

The 
damping coefficient 

of a second-order RLC circuit (i) does not depend on capacitance, (ii) decreases when resistance increases, and (iii) equals zero.
Determine the circuit topology in every case.

Answer: (i) Series RLC circuit, (ii) parallel RLC circuit, (iii) series LC circuit.




7.6 Step Response of the Series RLC Circuit
7.6.1 General Solution of the Second-order ODE
Solution for Step Response
The starting point is Eq. (7.69) of the previous section for the capacitor voltage of the series RLC circuit augmented with the homogeneous initial conditions, i.e.,[image: 
$$ \frac{d^2{\upsilon}_{\mathrm{C}}(t)}{d{t}^2}+2\alpha \frac{d{\upsilon}_{\mathrm{C}}(t)}{dt}+{\omega}_0^2{\upsilon}_{\mathrm{C}}(t)=Au(t),\kern1em A={\omega}_0^2{V}_{\mathrm{S}} $$
]

 (7.78a)


[image: 
$$ {\upsilon}_{\mathrm{C}}\left(t=0\right)=0,\kern1em \frac{d{\upsilon}_{\mathrm{C}}\left(t=0\right)}{dt}=0 $$
]

 (7.78b)


Similar to the first-order transient circuits with arbitrary sources, the general solution is also given by the sum of two parts: a 
                    particular solution
                    
                    
                   of the inhomogeneous equation (7.78a), let us call it x
p(t), and a 
                    complementary solution
                    
                    
                  , let us call it x
c(t), of the homogeneous equation (7.78a). Homogeneous implies that the right-hand side of the ODE equals zero. The particular solution is known as the forced response and the complementary solution is known as the 
                    natural response
                    
                    
                  . As a result, the total solution is[image: 
$$ {\upsilon}_{\mathrm{C}}(t)={x}_{\mathrm{p}}(t)+{x}_{\mathrm{c}}(t) $$
]

 (7.79)

For the circuit with the DC voltage source and the switch acting as a step excitation, the particular solution is trivial. It is proved by direct substitution:[image: 
$$ {x}_{\mathrm{p}}(t)={V}_{\mathrm{S}}\Rightarrow {\upsilon}_{\mathrm{C}}(t)={V}_{\mathrm{S}}+{x}_{\mathrm{c}}(t) $$
]

 (7.80)

The complementary solution carries information about the entire circuit and requires care.

Solution in Arbitrary Case
What if the right-hand side of Eq. (7.78a) is an arbitrary function of time? How is the solution obtained? We have already established that any such solution can be obtained on the basis of the step response. In general, the solution is expressed in terms of a 
                    convolution integral
                    
                    
                  , which involves an arbitrary right-hand side of the second-order ODE and the time derivative of the step response. This interesting and fundamental question is studied further in signals and systems theory.


7.6.2 Derivation of the Complementary Solution: Method of Characteristic Equation
Similar to the first-order transient circuits, we seek a complementary solution (natural response) of the homogeneous


 Eq. (7.78a) in the most general exponential form[image: 
$$ {x}_{\mathrm{p}}(t)=K \exp (st) $$
]

 (7.81)

where K and s are two arbitrary constants. The substitution yields[image: 
$$ \left({s}^2+2\alpha \kern0.1em s+{\omega}_0^2\right)K \exp (st)=0 $$
]

 (7.82)

For a nontrivial solution, the characteristic equation [image: 
$$ {s}^2+2\alpha \kern0.1em s+{\omega}_0^2=0 $$
] must be satisfied, that is,[image: 
$$ {s}^2+2\alpha \kern0.1em s+{\omega}_0^2=0\Rightarrow {s}_{1,2}=\left\{\begin{array}{c}\hfill -\alpha +\sqrt{\alpha^2-{\omega}_0^2}\hfill \\ {}\hfill -\alpha -\sqrt{\alpha^2-{\omega}_0^2}\hfill \end{array}\right.\kern1em \mathrm{or}\kern1em {s}_{1,2}=\left\{\begin{array}{c}\hfill -\alpha \left(1-\sqrt{\frac{\varsigma^2-1}{\varsigma^2}}\right)\hfill \\ {}\hfill -\alpha \left(1+\sqrt{\frac{\varsigma^2-1}{\varsigma^2}}\right)\hfill \end{array}\right. $$
]

 (7.83)

where the new constant [image: 
$$ \zeta =\alpha /{\omega}_0 $$
] is the 
                  damping ratio
                  
                  
                  
                 of the RLC circuit. Formally, this constant has units of 1/rad; it is often considered dimensionless. We must distinguish between three separate cases depending on the value of the damping ratio:
Case A
This situation (
                    overdamping
                    
                    
                    
                  ) corresponds to [image: 
$$ \varsigma >1 $$
]. In this case, s
1,2 are both real and negative. Since the original ODE is linear, the general solution is simply the combination of two independent decaying exponential functions:[image: 
$$ {x}_{\mathrm{c}}(t)={K}_1 \exp \left({s}_1t\right)+{K}_2 \exp \left({s}_2t\right) $$
]

 (7.84a)


                                

Case B
This case (
                    critical damping
                    
                    
                    
                  ) corresponds to [image: 
$$ \varsigma =1 $$
]. Both roots s
1,2 become identical. Therefore, a solution in the form of Eq. (7.84a) with two independent constants can no longer be formed. Only one independent constant may be available. Fortunately, another solution in the form t exp(s
1
t) exists in this special case. This fact is proved by direct substitution. Thus, the general solution becomes[image: 
$$ {x}_{\mathrm{c}}(t)={K}_1 \exp \left({s}_1t\right)+{K}_2t \exp \left({s}_1t\right) $$
]

 (7.84b)


                                

Case C
This case (
                    underdamping
                    
                    
                    
                  ) corresponds to [image: 
$$ \varsigma <1 $$
]. Both roots s
1,2 become complex. This means that our initial simple guess Eq. (7.81) is no longer correct. One can prove by direct substitution that the general solution now has the oscillating form[image: 
$$ {x}_{\mathrm{c}}(t)={K}_1 \exp \left(-\alpha \kern0.1em t\right) \cos {\omega}_nt+{K}_2 \exp \left(-\alpha \kern0.1em t\right) \sin {\omega}_nt $$
]

 (7.84c)


                                
where [image: 
$$ {\omega}_n=\sqrt{\omega_0^2-{\alpha}^2} $$
] is the (radian) 
                    natural frequency
                    
                    
                    
                   of the circuit. 1/α is also called the time constant or the time constant of the decay envelope. The complementary solution in the form of Eqs. (7.84) always contains two independent integration constants. They should be used to satisfy the initial conditions, which complete the solution.


7.6.3 Finding Integration Constants



According to Eqs. (7.79) and (7.80), the capacitor voltage is [image: 
$$ {\upsilon}_{\mathrm{C}}(t)={x}_{\mathrm{c}}(t)+{V}_{\mathrm{S}} $$
] where x
c(t) is given by Eqs. (7.84). The integration constants may be found using Eq. (7.78b), which dictates that both the capacitor voltage and its derivative must vanish at the initial time [image: 
$$ t=0 $$
]. We then

 have from Eqs. (7.84)[image: 
$$ \mathbf{Case}\ \mathbf{A}.\kern1em {K}_1+{K}_2+{V}_{\mathrm{S}}=0,\kern1em {s}_1{K}_1+{s}_2{K}_2=0 $$
]

 (7.85a)


[image: 
$$ \mathbf{Case}\ \mathbf{B}.\kern1em {K}_1+{V}_{\mathrm{S}}=0,\kern1em {s}_1{K}_1+{K}_2=0 $$
]

 (7.85b)


[image: 
$$ \mathbf{Case}\ \mathbf{C}.\kern1em {K}_1+{V}_{\mathrm{S}}=0,\kern1em -\alpha {K}_1+{\omega}_n{K}_2=0 $$
]

 (7.85c)

The solution of Eqs. (7.85) has the form[image: 
$$ \mathbf{Case}\ \mathbf{A}.\kern1em {K}_1=\frac{s_2{V}_{\mathrm{S}}}{s_1-{s}_2},\kern1em {K}_2=\frac{s_1{V}_{\mathrm{S}}}{s_2-{s}_1} $$
]

 (7.86a)


[image: 
$$ \mathbf{Case}\ \mathbf{B}.\kern1em {K}_1=-{V}_S,\kern1em {K}_2={s}_1{V}_{\mathrm{S}} $$
]

 (7.86b)


[image: 
$$ \mathbf{Case}\ \mathbf{C}.\kern1em {K}_1=-{V}_{\mathrm{S}},\kern1em {K}_2=-\frac{\alpha }{\omega_n}{V}_{\mathrm{S}} $$
]

 (7.86c)

Equations (7.83) through (7.86) complete the step response solution for the series RLC circuit. The circuit may behave quite differently depending on the value of the damping ratio ς.

7.6.4 Solution Behavior for Different Damping Ratios



We consider the series RLC circuit shown

 in Fig. 7.35. We will choose round numbers [image: 
$$ L=1\kern0.15em \mathrm{mH},\ C=1\kern0.15em \mathrm{nF} $$
]. These values approximately correspond to an RLC transient circuit operating in the 100 kHz–1 MHz frequency band.[image: A331468_1_En_7_Fig35_HTML.gif]
Fig. 7.35RLC series circuit; t

he resistance value R may be varied




                            
Example 7.9
Determine the solution for the capacitor voltage for the circuit shown in Fig. 7.35 over a time interval from 0 to 25 μs for [image: 
$$ R=200\kern0.5em \Omega, \kern0.5em 1\kern0.5em \mathrm{k}\Omega, \kern0.5em 2\kern0.5em \mathrm{k}\Omega $$
], and 20 kΩ.

Solution: Equations (7.83) through (7.86) give

                  [image: 
$$ R=200\kern0.5em \Omega \Rightarrow \alpha ={10}^5,{\omega}_0={10}^6\Rightarrow \boldsymbol{\upzeta} =\mathbf{0.1} $$
]
                  (Case C—
                  
                    underdamped circuit
                    
                  
                  )
                

                  [image: 
$$ \Rightarrow {\upsilon}_C(t)=10-10 \exp \left(-{10}^5t\right) \cos 9.95\times {10}^5t-1.005 \exp \left(-{10}^5\kern0.1em t\right) \sin 9.95\times {10}^5t $$
]

 (7.87a)


                

                  [image: 
$$ R=1\kern0.5em \mathrm{k}\Omega \Rightarrow \alpha =5\times {10}^5,{\omega}_0={10}^6\Rightarrow \boldsymbol{\upzeta} =\mathbf{0.5} $$
]
                  (Case C—
                  
                    
                  
                  underdamped circuit)
                

                  [image: 
$$ \Rightarrow {\upsilon}_{\mathrm{C}}(t)=10-10 \exp \left(-5\times {10}^5t\right) \cos 8.66\times {10}^5t-5.77 \exp \left(-5\times {10}^5\kern0.1em t\right) \sin 8.66\times {10}^5t $$
]

 (7.87b)


                

                  [image: 
$$ R=2\kern0.5em \mathrm{k}\Omega \Rightarrow \alpha ={10}^6,{\omega}_0={10}^6\Rightarrow \boldsymbol{\upzeta} =\mathbf{1} $$
]
                  (Case B—
                  
                    
                    
                  
                  critically damped circuit)
                

                  [image: 
$$ \Rightarrow {\upsilon}_{\mathrm{C}}(t)=10-10 \exp \left(-{10}^6t\right)-{10}^7t \exp \left(-{10}^6\kern0.1em t\right) $$
]

 (7.87c)


                

                  [image: 
$$ R=20\kern0.5em \mathrm{k}\Omega \Rightarrow \alpha ={10}^7,{\omega}_0={10}^6\Rightarrow \boldsymbol{\upzeta} =\mathbf{10} $$
]
                  (Case A—overdamped circuit)
                

                  [image: 
$$ \Rightarrow {\upsilon}_{\mathrm{C}}(t)=10 - 10.0252 \exp \left( - 5.013\times {10}^4t\right)+0.0252 \exp \left( - 1.995\times {10}^7\kern0.1em t\right) $$
]

 (7.87d)


                
Equations (7.87) satisfy both the initial conditions to within numerical rounding error. Figure 7.36 shows the solution behavior for four distinct cases.[image: A331468_1_En_7_Fig36_HTML.gif]
Fig. 7.36Circuit responses in 

terms of capacitor voltages for different damping factors




                                

The first person who discovered and documented the oscillatory transient response of an electric circuit similar to that depicted in Fig. 7.36 was probably Félix Savary (1797–1841). A renowned astronomer and French academician, he worked with Ampère and discovered an oscillatory discharge of a Leyden jar (an early prototype of the battery) in 1823–
                  
                  
                1826. Some fifteen years later, the similar observation has been made by Joseph Henry.

7.6.5 
                Overshoot and Rise Time


              
One important result seen in Fig. 7.36a, b is the so-called dynamic overshoot caused by a sudden application of a voltage pulse and the associated voltage ringing. The dimensionless overshoot (overshoot percentage after multiplying by 100) M
p is the maximum voltage value minus the supply voltage divided by the supply voltage. For a slightly damped circuit, the overshoot may be quite large—see Fig. 7.36a, b. The rise time t
r (which is sometimes called the “transition time”) in digital circuits is the time taken for the voltage to rise from 0.1V
S to 0.9V
S (T. L. Floyd, Digital Fundamentals, 9th, p. 8); see Figs. 8.​14a–c. The circuit designer typically attempts to minimize both the rise time and the overshoot. An important example considered later in our text is a pulse train to be transmitted at a maximum speed (which requires minimum rise time) and with minimum distortion (which requires minimum overshoot). Figure 7.36 indicates that those goals are in fact conflicting. Decreasing the rise time increases the overshoot and vice versa. Designing the damping ratio close to unity, or slightly below it, is a reasonable compromise to quickly achieve the desired voltage level without a significant overshoot and ringing. The overshoot and rise time may be estimated analytically. We present here the estimates found in common control theory textbooks:[image: 
$$ {M}_{\mathrm{p}}=\frac{ \exp \left(-\pi \zeta \right)}{\sqrt{1-{\zeta}^2}}\kern0.75em \mathrm{f}\mathrm{o}\mathrm{r}\kern0.75em \zeta <1,\kern1em {M}_{\mathrm{p}}=0\kern0.5em \mathrm{f}\mathrm{o}\mathrm{r}\kern0.75em \zeta \ge 1 $$
]

 (7.88a)


[image: 
$$ {t}_{\mathrm{r}}=\left(1-0.4167\zeta +2.917{\zeta}^2\right)/{\omega}_n\kern1em \mathrm{f}\mathrm{o}\mathrm{r}\kern0.75em \zeta <1 $$
]

 (7.88b)


                            
Exercise 7.16

The 
damping coefficient

 of 15,000 
neper/s and the natural frequency of 10 kHz are measured for an unknown series RLC circuit in laboratory via its step response. Given R = 10 Ω, determine L and C.

Answer: [image: 
$$ L=0.333\kern0.5em \mathrm{mH} $$
], [image: 
$$ C=0.719\kern0.5em \upmu \mathrm{F} $$
].

As to mechanical engineering, it is interesting to note that an automotive suspension system is described by the same step response model and behaves quite similarly to the RLC circuit in Fig. 7.36. Well, driving a car everyday should certainly be a motivation for studying this topic.

7.6.6 Application Example: Nonideal Digital Waveform

                  Modeling Circuit



                
The series RLC block is an appropriate model to study the voltage pulse as it realistically occurs in digital circuits and in power electronic circuits involving pulse width modulation (PWM). The ideal square voltage pulse, shown in Fig. 7.33 of the previous section, is a crude approximation of reality. Parasitic capacitance, resistance, and inductance are always present in the circuit. As a result, the pulse form is distorted. To model the pulse form distortion, we consider the circuit shown in Fig. 7.37.[image: A331468_1_En_7_Fig37_HTML.gif]
Fig. 7.37The RLC


 circuit for studying the nonideal digital (pulse) waveform




                                
The switch is now removed and a time-varying voltage source υ
S(t) is introduced; it generates the voltage pulse (one bit) of duration T with amplitude V
S as seen in Fig. 7.37b. One may think of the source voltage as an “ideal” digital waveform and, for example, of the capacitor voltage as a nonideal (realistic) waveform influenced by parasitic capacitance, resistance, and inductance.

Solution
The solution to the pulse problem is derived as described at the end of the previous section. We know that Eqs. (7.83) through (7.86) determine the step response—the capacitor voltage


 υ
C(t) for the circuit with the DC voltage source shown in Fig. 7.35 after closing the switch. To obtain the solution υ
Cpulse(t) for the voltage pulse shown in Fig. 7.37, we simply combine two such step responses, i.e.,[image: 
$$ {\upsilon}_{\mathrm{C}}^{\mathrm{pulse}}(t)={\upsilon}_{\mathrm{C}}(t)-{\upsilon}_{\mathrm{C}}\left(t-T\right) $$
]

 (7.89)

This operation again underscores the importance of the fundamental step response solution. Close inspection of Eq. (7.89) shows that the pulse will possess the dynamic overshoot and the nonzero rise time similar to the step response solution. This happens at the rising (or leading) 
                    edge
                    
                    
                    
                   of the pulse. At the same time, a dynamic undershoot and a nonzero settling time will happen at the falling or trailing 
                    edge
                    
                    
                    
                   as depicted in Fig. 7.38.[image: A331468_1_En_7_Fig38_HTML.gif]
Fig. 7.38Distorted pulse forms for three different values of the damping ratio. When the damping ratio increases, the overshoot decreases but the rise time increases




                                
Example 7.10
Determine the solution for the capacitor voltage


, υ
Cpulse(t), for the circuit shown in Fig. 7.37 with [image: 
$$ L=1\kern0.5em \upmu \mathrm{H},\kern0.5em C=1\kern0.5em \mathrm{nF},\kern0.5em {V}_{\mathrm{S}}=10\kern0.5em \mathrm{V},\kern0.5em T=0.5\kern0.5em \upmu \mathrm{s} $$
] over the time interval from 0 to 1 μs for [image: 
$$ R=15\kern0.5em \Omega, \kern0.5em 30\kern0.5em \Omega $$
], and 60 Ω.

Solution: We find the step response υ
C(t) following Eqs. (7.83) through (7.86) first and then obtain the final solution using Eq. (7.89). For the step response, we obtain

[image: 
$$ R=15\kern0.5em \Omega \Rightarrow \boldsymbol{\upzeta} =\mathbf{0.24} $$
] (Case C—

                      
                    
underdamped circuit) ⇒[image: 
$$ {\upsilon}_{\mathrm{C}}(t)=10-10 \exp \left(-7.5\times {10}^6t\right) \cos 3.07\times {10}^7t-2.44 \exp \left(-7.5\times {10}^6\kern0.1em t\right) \sin 3.07\times {10}^7t $$
]

 (7.90a)


                                    

[image: 
$$ R=30\kern0.5em \Omega \Rightarrow \boldsymbol{\upzeta} =\mathbf{0.47} $$
] (Case C—underdamped circuit) ⇒[image: 
$$ {\upsilon}_{\mathrm{C}}(t)=10-10 \exp \left(-1.5\times {10}^7t\right) \cos 2.78\times {10}^7t-5.39 \exp \left(-1.5\times {10}^7\kern0.1em t\right) \sin 2.78\times {10}^7t $$
]

 (7.90b)


                                    

[image: 
$$ R=60\kern0.5em \Omega \Rightarrow \boldsymbol{\upzeta} =\mathbf{0.95} $$
] (Case C—underdamped circuit) ⇒[image: 
$$ {\upsilon}_{\mathrm{C}}(t)=10-10 \exp \left(-3.0\times {10}^7t\right) \cos 1.0\times {10}^7t-30 \exp \left(-3.0\times {10}^7\kern0.1em t\right) \sin 1.0\times {10}^7t $$
]

 (7.90c)


                                    
Figure 7.38a–c shows the distorted pulse forms for three particular cases. Figure 7.38a outlines the major pulse parameters: rise time, fall time, overshoot, undershoot, and pulse width. One can see that there is again a conflict between the desire to simultaneously


 decrease the rise time and the overshoot.

The overshoot and undershoot in Fig. 7.38 approximately coincide, and so do the rise time and the fall or settling time. Note that this is not always the case. The voltage pulse may be very significantly and unsymmetrically distorted when the initial pulse width, T, is comparable with the rise time. A good illustration is the previous example solved for [image: 
$$ R=15\kern0.15em \Omega $$
] when [image: 
$$ T=0.25\kern0.15em \upmu \mathrm{s} $$
] or less.
Exercise 7.17
Using a theoretical approximation, find the overshoot for the case of Fig. 7.38a and compare this value with value observed on the figure.

Answer: 48 % (theory) versus 50 % (observation).

The solution for the second-order circuits with arbitrary sources and arbitrary initial conditions can quite simply be obtained numerically. A straightforward finite-difference second-order method may be implemented in MATLAB or in other software packages with a few lines of the code. This method is the extension of the Euler method used for first-order transient circuits. Interestingly, the same method may be applied to radio-frequency pulse propagation in transmission lines and in free space, including problems such as signal penetration through walls.



Summary

                	
                            
General facts about transient circuits
                          

	
Voltage across the capacitor(s) remains continuous for all times—use this voltage as an unknown function

	
Current through the inductor(s) remains continuous for all times—use this current as an unknown function

	
When discharged through a small resistance, the (ideal) capacitor is able to deliver an extremely high power (and current) during a very short period of time

	
When disconnected from the source, the (ideal) inductor in series with a large resistance is able to deliver an extremely high power (and voltage) during a very short period of time

	
                            Transient circuit
                          
	
                            Generic circuit diagram
                          
	
                            Solution plot
                          

	Energy-release RC circuit

                            [image: 
$$ \begin{array}{l}{\upsilon}_C(t)={V}_0 \exp \left(-\frac{t}{\tau}\right)\\ {}\tau =RC\end{array} $$
]
                          
ODE:

                            [image: 
$$ \frac{d{\upsilon}_C}{dt}+\frac{\upsilon_C}{\tau }=0 $$
]
                          
	
                            [image: A331468_1_En_7_Figce_HTML.gif]
                          
	
                            [image: A331468_1_En_7_Figcf_HTML.gif]
                          

	Energy-accumulating RC circuit

                            [image: 
$$ \begin{array}{l}{\upsilon}_C(t)={V}_{\kern-0.15em S}\left[1- \exp \left(-\frac{t}{\tau}\right)\right]\\ {}\tau =RC\end{array} $$
]
                          
ODE:

                            [image: 
$$ \frac{d{\upsilon}_C}{dt}+\frac{\upsilon_C}{\tau }=\frac{V_{\kern-0.15em S}}{\tau } $$
]
                          
	
                            [image: A331468_1_En_7_Figcg_HTML.gif]
                          
	
                            [image: A331468_1_En_7_Figch_HTML.gif]
                          

	Energy-release RL circuit

                            [image: 
$$ \begin{array}{l}{i}_L(t)={I}_S \exp \left(-\frac{t}{\tau}\right)\\ {}\tau =L/R\end{array} $$
]
                          
ODE:

                            [image: 
$$ \frac{d{i}_L}{dt}+\frac{i_L}{\tau }=0 $$
]
                          
	
                            [image: A331468_1_En_7_Figci_HTML.gif]
                          
	
                            [image: A331468_1_En_7_Figcj_HTML.gif]
                          

	Energy-accumulating RL circuit

                            [image: 
$$ \begin{array}{l}{i}_L(t)={I}_{\kern-0.05em S}\left[1- \exp \left(-\frac{t}{\tau}\right)\right]\\ {}\tau =L/R\end{array} $$
]
                          
ODE:

                            [image: 
$$ \frac{d{i}_L}{dt}+\frac{i_L}{\tau }=\frac{I_{\kern-0.05em S}}{\tau } $$
]
                          
	
                            [image: A331468_1_En_7_Figck_HTML.gif]
                          
	
                            [image: A331468_1_En_7_Figcl_HTML.gif]
                          

	Energy-release RL circuit

                            [image: 
$$ \begin{array}{l}{i}_L(t)={I}_0 \exp \left(-\frac{t}{\tau}\right)\\ {}\tau =L/R,\kern0.5em {I}_0={V}_{\kern-0.15em S}/{R}_0\end{array} $$
]
                          
ODE:

                            [image: 
$$ \frac{d{i}_L}{dt}+\frac{i_L}{\tau }=\frac{V_{\kern-0.15em S}}{R_0\tau } $$
]
                          
	
                            [image: A331468_1_En_7_Figcm_HTML.gif]
                          
	
                            [image: A331468_1_En_7_Figcn_HTML.gif]
                          

	
Generic energy-release curves for either dynamic element
	
Voltage or current

                            [image: A331468_1_En_7_Figco_HTML.gif]
                          
	
Power

                            [image: A331468_1_En_7_Figcp_HTML.gif]
                          

	
                            Switching RC oscillator (relaxation oscillator)—RC timer
                          

	Bistable amplifier circuit with positive feedback.
Two stable states:

                            [image: 
$$ {\upsilon}_{out}=+{V}_{\kern-0.15em CC} $$
]
                          

                            [image: 
$$ {\upsilon}_{out}=-{V}_{\kern-0.15em CC} $$
]
                          
Threshold voltage(s):

                            [image: 
$$ \upsilon *=\frac{R_1}{R_1+{R}_2}{\upsilon}_{out} $$
]
                          
	
                            [image: A331468_1_En_7_Figcq_HTML.gif]
                          
	
                            [image: A331468_1_En_7_Figcr_HTML.gif]
                          

	Relaxation oscillator with positive feedback:

[image: 
$$ {\upsilon}_{out}=+{V}_{\kern-0.15em CC} $$
] if [image: 
$$ \upsilon *>{\upsilon}_C $$
]


[image: 
$$ {\upsilon}_{out}=-{V}_{\kern-0.15em CC} $$
] if [image: 
$$ \upsilon *<{\upsilon}_C $$
]

Threshold voltage(s):

                            [image: 
$$ \upsilon *=\frac{R_1}{R_1+{R}_2}{\upsilon}_{out} $$
]
                          
	
                            [image: A331468_1_En_7_Figcs_HTML.gif]
                          
	
                            [image: A331468_1_En_7_Figct_HTML.gif]
                          

	Period and frequency of the relaxation oscillator

                            [image: 
$$ \left(\beta ={R}_1/\left({R}_1+{R}_2\right)\right) $$
]
                          
	
                            [image: 
$$ T=2\tau \ln \frac{1+\beta }{1-\beta } $$
]
                          
	
                            [image: 
$$ f=\frac{1}{T}=\frac{1}{2\tau }{\left( \ln \frac{1+\beta }{1-\beta}\right)}^{-1} $$
]
                          




                	
                            
Single-time-constant (STC) transient circuits
                          

	
                            [image: 
$$ \tau =RC $$
]
                          
or

                            [image: 
$$ \tau =\frac{L}{R} $$
]
                          
	
                            [image: A331468_1_En_7_Figcu_HTML.gif]
                          
	
                            [image: A331468_1_En_7_Figcv_HTML.gif]
                          

	
[image: 
$$ \tau =\left({R}_1\left|\right|{R}_2\right)C $$
] or

                            [image: 
$$ \tau =\frac{L}{R_1+{R}_2} $$
]
                          
	
                            [image: A331468_1_En_7_Figcw_HTML.gif]
                          
	
                            [image: A331468_1_En_7_Figcx_HTML.gif]
                          

	
[image: 
$$ \tau =R\left({C}_1+{C}_2\right) $$
] or

                            [image: 
$$ \tau =\frac{L_1+{L}_2}{R} $$
]
                          
	
                            [image: A331468_1_En_7_Figcy_HTML.gif]
                          
	
                            [image: A331468_1_En_7_Figcz_HTML.gif]
                          

	
                            [image: 
$$ \tau =\frac{L_1+{L}_2}{R_1+{R}_2} $$
]
                          

                            [image: 
$$ \begin{array}{l}\tau ={R}_1\left|\right|{R}_2\times \\ {}\kern1em \left({C}_1+{C}_2\right)\end{array} $$
]
                          
	
                            [image: A331468_1_En_7_Figda_HTML.gif]
                          
Arbtr. initial conditions are not allowed
	
                            [image: A331468_1_En_7_Figdb_HTML.gif]
                          
Arbtr. initial conditions are not allowed

	
                            STC circuits with general sources
                          

	
Bypass capacitor and decoupling inductor
	
                            [image: A331468_1_En_7_Figdc_HTML.gif]
                          

[image: 
$$ {\upsilon}_S(t)={V}_{\kern-0.15em S}+{V}_{\kern-0.15em m} \cos \omega \kern0.1em t $$
], [image: 
$$ \tau =\left({R}_S\left|\right|{R}_L\right)C $$
]

	
                            [image: A331468_1_En_7_Figdd_HTML.gif]
                          

[image: 
$$ {i}_S(t)={I}_S+{I}_m \cos \omega \kern0.1em t $$
], [image: 
$$ \tau =L/\left({R}_S+{R}_L\right) $$
]


	
Solution for load voltage or load current
	
                            [image: 
$$ \begin{array}{l}{\upsilon}_L=\frac{R_L{V}_{\kern-0.25em S}}{R_S+{R}_L}\left(1- \exp \left(-\frac{t}{\tau}\right)\right)+\frac{R_L{V}_{\kern-0.15em m}}{R_S+{R}_L}\times \frac{1}{1+{\left(\omega \kern0.1em \tau \right)}^2}\\ {}\left[ \cos \omega \kern0.1em t+\omega \kern0.1em \tau \sin \omega \kern0.1em t- \exp \left(-\frac{t}{\tau}\right)\right]\end{array} $$
]
                          
	
                            [image: 
$$ \begin{array}{l}{i}_L=\frac{R_S{I}_S}{R_S+{R}_L}\left(1- \exp \left(-\frac{t}{\tau}\right)\right)+\frac{R_S{I}_m}{R_S+{R}_L}\times \frac{1}{1+{\left(\omega \kern0.1em \tau \right)}^2}\left[ \cos \omega \kern0.1em t+\omega \kern0.1em \tau \sin \omega \kern0.1em t- \exp \left(-\frac{t}{\tau}\right)\right]\end{array} $$
]
                          

	
                            Second-order transient circuits
                          

	
With two identical dynamic elements
	
                            [image: A331468_1_En_7_Figde_HTML.gif]
                          
	
                            [image: A331468_1_En_7_Figdf_HTML.gif]
                          

	
With series LC network
	
                            [image: A331468_1_En_7_Figdg_HTML.gif]
                          
• Step response with zero initial conditions: use capacitor voltage υ

                              C
                            (t)

	
• Damping coefficient: [image: 
$$ \alpha =R/(2L) $$
]


• Undamped res. freq.: [image: 
$$ {\omega}_0=1/\sqrt{LC} $$
]


• Damping ratio: [image: 
$$ \zeta =\alpha /{\omega}_0 $$
]


• Natural freq.: [image: 
$$ {\omega}_n=\sqrt{\omega_0^2-{\alpha}^2} $$
]


Characteristic Eq.: [image: 
$$ {s}^2+2\alpha \kern0.1em s+{\omega}_0^2=0 $$
]


	
With parallel LC network
	
                            [image: A331468_1_En_7_Figdh_HTML.gif]
                          
• Step response with zero initial conditions: use inductor current i

                              L
                            (t)

	
• Damping coefficient: [image: 
$$ \alpha =1/(2RC) $$
]


• Undamped res. freq.: [image: 
$$ {\omega}_0=1/\sqrt{LC} $$
]


• Damping ratio: [image: 
$$ \zeta =\alpha /{\omega}_0 $$
]


• Natural freq.: [image: 
$$ {\omega}_n=\sqrt{\omega_0^2-{\alpha}^2} $$
]


Characteristic Eq.: [image: 
$$ {s}^2+2\alpha \kern0.1em s+{\omega}_0^2=0 $$
]


	
Overdamped, critically-damped, and underdamped RLC circuits
	
                            [image: A331468_1_En_7_Figdi_HTML.gif]
                          
	
• Overdamped ([image: 
$$ \zeta >1 $$
]):

                            [image: 
$$ {x}_c(t)={K}_1 \exp \left({s}_1t\right)+{K}_2 \exp \left({s}_2t\right) $$
]
                          

                            [image: 
$$ {K}_1=\frac{s_2{V}_{\mathrm{S}}}{s_1-{s}_2},\kern0.5em {K}_2=\frac{s_1{V}_{\mathrm{S}}}{s_2-{s}_1} $$
]
                          

• Critically damped ([image: 
$$ \zeta =1 $$
]):

                            [image: 
$$ {x}_c(t)={K}_1 \exp \left({s}_1t\right)+{K}_2t\kern2pt \exp \left({s}_1t\right) $$
]
                          

                            [image: 
$$ {K}_1=-{V}_{\mathrm{S}},\kern0.5em {K}_2={s}_1{V}_S $$
]
                          

• Underdamped ([image: 
$$ \zeta <1 $$
]):

                            [image: 
$$ \begin{array}{l}{x}_c(t)={K}_1 \exp \left(-\alpha \kern0.1em t\right) \cos {\omega}_nt+\\ {}{K}_2 \exp \left(-\alpha \kern0.1em t\right) \sin {\omega}_nt\end{array} $$
]
                            [image: 
$$ {K}_1=-{V}_{\kern-0.15em S},\kern0.5em {K}_2=-\frac{\alpha }{\omega_n}{V}_{\kern-0.15em S} $$
]
                          

	
Non-ideal digital waveform: second-order circuit
	
                            [image: A331468_1_En_7_Figdj_HTML.gif]
                          
	
• Overshoot


                            [image: 
$$ {M}_p=\frac{ \exp \left(-\pi \zeta \right)}{\sqrt{1-{\zeta}^2}}\kern0.75em \mathrm{f}\mathrm{o}\mathrm{r}\kern0.75em \zeta <1 $$
]
                          

•
Undershoot is approximately overshoot for rise times small compared to pulse width

•
Rise time


                            [image: 
$$ \begin{array}{l}{t}_{\mathrm{r}}=\left(1-0.4167\zeta +2.917{\zeta}^2\right)/{\omega}_n\kern1em \\ {}\mathrm{f}\mathrm{o}\mathrm{r}\kern0.75em \zeta <1\end{array} $$
]
                          

Fall time is approximately rise time for rise times small compared to pulse width




              


Problems
7.1 RC Circuits

                  7.1.1 Energy-Release Capacitor Circuit
                

                  7.1.2 Time Constant of an RC Circuit and Its Meaning
                

                  7.1.3 Continuity of the Capacitor Voltage
                
Problem 7.1
For the capacitor as a dynamic circuit element, develop:	1.Equivalent circuit at DC


 

	2.Relation between voltage and current


 

	3.Expression for the time constant of a transient circuit that includes the dynamic element and a resistor R
                                                    


 




	Dynamic circuit element
	
                                [image: A331468_1_En_7_Fige_HTML.gif]
                              

	Equivalent circuit at DC (short or open)
	 
	Relation between voltage and current (passive reference configuration)
	 
	Expression for the time constant of a transient circuit that includes the dynamic element (C) and a resistor R.
	
                                [image: 
$$ \tau = $$
]
                              




                                    

Problem 7.2
Using KCL and KVL, derive the differential equation for the circuit shown in the following figure, keeping the same labeling for the voltages and the currents.	A.Is the final result different from Eq. (7.5) of Section 7.1?


 

	B.Could you give an example of a certain voltage and/or current labeling (by arbitrarily changing polarities and directions in the figure) that causes the differential equations to change?


 




                                    

                    [image: A331468_1_En_7_Figf_HTML.gif]


                  

Problem 7.3
Prove that Eq. (7.6) is the solution to Eq. (7.5) (both from Section 7.1) using direct substitution and the differentiation that follows.

Problem 7.4

                    	A.Show that the time constant, τ, of an RC circuit has the units of seconds.


 

	B.
To obtain the slow discharge rate of lesser instantaneous power into the load, should the load resistance be small or large?


 




                  

Problem 7.5
A 100-μF capacitor discharges into a load as shown in the following figure. The load resistance may have values of 100 Ω, 10 Ω, and 1 Ω. The capacitor is charged to 20 V prior to [image: 
$$ t=0 $$
].
[image: A331468_1_En_7_Figg_HTML.gif]


	A.
Find time constant τ and the maximum instantaneous power delivered to the load resistor in the very first moment for every resistor value—fill out the Table that follows.
Instantaneous load power right after the switch closes



	
                                        R
                                        L
                                      
	
τ, s
	
[image: 
$$ {p}_{\mathrm{L}}\left(t=+0\right) $$
], W

	100 Ω
	 	 
	10 Ω
	 	 
	1 Ω
	 	 



                                                    


 

	B.Do the instantaneous power values from the Table depend on the capacitance value?


 




                                    

Problem 7.6
A 100-μF capacitor, shown in the following figure, discharges into a 10-Ω load resistor. The capacitor is charged to 15 V prior to [image: 
$$ t=0 $$
].	A.Find the time constant of the circuit (show units).


 

	B.Express the voltage across the capacitor as a function of time and sketch it to scale versus time over time interval from −2 ms to 5 ms.


 




[image: A331468_1_En_7_Figh_HTML.gif]


[image: A331468_1_En_7_Figi_HTML.gif]


                                    

Problem 7.7
A 100-μF capacitor, shown in the following figure, discharges into a 5-Ω load resistor. The capacitor is charged to 20 V prior to [image: 
$$ t=0 $$
].	A.Find an expression for the voltage across the capacitor as a function of time and sketch it to scale versus time over the interval from –2τ to 5τ.


 

	B.Repeat the exercise for instantaneous power delivered to the resistor.[image: A331468_1_En_7_Figj_HTML.gif]


[image: A331468_1_En_7_Figk_HTML.gif]


                                                    


 




                                    

Problem 7.8
In the circuit shown in the following figure, the capacitor is charged to 20 V prior to [image: 
$$ t=0 $$
].	A.
Find an expression for the voltage across the capacitor as a function of time and sketch it to scale versus time over the interval from –2τ to 5τ.


 

	B.Repeat for instantaneous power delivered to the rightmost resistor.[image: A331468_1_En_7_Figl_HTML.gif]


                                                    


 




                                    

Problem 7.9
Present the text of a MATLAB script (or of any software of your choice) in order to generate Fig. 7.2d of Section 7.1. Attach the figure so generated to the homework report.

Problem 7.10
Prove that the integral of the load power in Fig. 7.2d given by Eq.(7.8c) is exactly equal to the energy stored in the charged capacitor, [image: 
$$ {E}_{\mathrm{C}}=\frac{1}{2}C{V}_0^2 $$
] prior to [image: 
$$ t=0 $$
].

Problem 7.11

                    	A.
Create the generic capacitor voltage discharge curve similar to Fig. 7.2a but for an arbitrary capacitor powering an arbitrary load resistor over the time interval from –2τ to 5τ. The capacitor is charged to V
0 prior to [image: 
$$ t=0 $$
]. To do so, find the capacitor voltage as a fraction of V
0 for every unit of τ and fill out the Table that follows.Capacitor voltage in terms of V
0



	
                                        t
                                      
	−2τ

	-τ

	0
	
                                        τ
                                      
	2τ

	3τ

	4τ

	5τ


	
υ
C(t)
	 	 	 	 	 	 	 	 



                                                    


 

	B.Repeat the same task for Fig. 7.2d related to load power. Find the load power in terms of the maximum power just after closing the switch.


 




                  

Problem 7.12
For an unknown energy-release RC circuit, capacitor voltage and capacitor current were measured in laboratory before and after closing the switch at [image: 
$$ t=0 $$
] as shown in the figure that follows. Approximate R and C.[image: A331468_1_En_7_Figm_HTML.gif]


                                    


                  7.1.4 Application Example:
                  
                    
                    
                  
                  Electromagnetic Railgun
                

                  7.1.5 Application Example:
Electromagnetic Material Processing
                
Problem 7.13

An electromagnetic capacitor accelerator with permanent magnets has [image: 
$$ B=0.3\kern0.5em \mathrm{T} $$
]. The accelerating object has a length of 2 cm. Plot to scale the Lorentz force as a function of discharge current over the interval [image: 
$$ 0<{i}_C<1000\kern0.5em \mathrm{A} $$
].

Problem 7.14
An electromagnetic capacitor accelerator needs to create an average force of 5 N over 2 ms on a moving object with length of 1 cm. The load (armature plus object) resistance is 1 Ω, and the external magnetic field is [image: 
$$ B=0.25\kern0.5em \mathrm{T} $$
]. Determine:	A.The required capacitor voltage prior to discharge


 

	B.The required capacitance of the capacitor (bank of capacitors)


 




                                    

Hint: Assume that the average force acts over the time interval τ. Its value is approximately equal to 60 % of the initial force value.

Problem 7.15
Solve the previous problem when:	A.The average force increases to 50 N


 

	B.The average force increases to 500 N


 




                                    

Problem 7.16
The world's largest capacitor bank is located in Dresden, Germany. The pulsed, capacitive power supply system was designed and installed for studying high magnetic fields by experts from Rheinmetall Waffe Munition. The bank delivers 200 kA of discharge current in the initial time moment (just after the switch closes). The time constant is 100 ms. Estimate the bank capacitance if the charging voltage is 200 kV.[image: A331468_1_En_7_Fign_HTML.jpg]


                                    


                  7.1.7 Energy-Accumulating Capacitor Circuit
                
Problem 7.17
A 1-μF capacitor shown in the following figure is charged through the 1-kΩ load resistor. The initial capacitor voltage is zero.	A.Find the time constant of the circuit (show units).


 

	B.Express the voltage across the capacitor as a function of time and sketch it to scale versus time over the interval from −2 ms to 5 ms.[image: A331468_1_En_7_Figo_HTML.gif]


[image: A331468_1_En_7_Figp_HTML.gif]


                                                    


 




                                    

Problem 7.18
For the circuit shown in the following figure:	A.Find an expression for the capacitor voltage, υ
C, and the capacitor current, i
C, including the value of time constant.


 

	B.Sketch the capacitor voltage, υ
C, and the capacitor current, i
C, to scale versus time over the interval from –2τ to 5τ.


 




[image: A331468_1_En_7_Figq_HTML.gif]


                                    

Problem 7.19
For the circuit shown in the following figure:	A.Find an expression for the capacitor voltage, υ
C, and the capacitor current, i
C, including the value of time constant.


 

	B.Sketch the capacitor voltage, υ
C, and the capacitor current, i
C, to scale versus time over the time interval from –2τ to 5τ.[image: A331468_1_En_7_Figr_HTML.gif]


                                                    


 




                                    

Problem 7.20
Sketch your own fluid-flow counterpart of the charging circuit shown in the figure and establish as many analogies between electrical (R, C, V
S) and mechanical parameters of your drawing as possible.[image: A331468_1_En_7_Figs_HTML.gif]


                                    

Problem 7.21
For the circuit shown in the following figure:	A.How much time does it take to charge the capacitor to 10 V?


 

	B.To 25 V?[image: A331468_1_En_7_Figt_HTML.gif]


                                                    


 




                                    

Problem 7.22
For the circuit shown in the figure, how much time does it take to charge the capacitor, C
1, to 10 V? Assume that the initial voltages of both capacitors are zero.[image: A331468_1_En_7_Figu_HTML.gif]


                                    

Problem 7.23
For an unknown energy-accumulating RC circuit, capacitor voltage and capacitor current were measured in laboratory before and after closing the switch at [image: 
$$ t=0 $$
] as shown in the figure that follows. Approximate R and C.[image: A331468_1_En_7_Figv_HTML.gif]


                                    

Problem 7.24

                    	A.Obtain an analytical solution for the capacitor voltage in the circuit shown in the following figure. When the switch is closed, the current source still generates current I
S at its terminals. However, the supply is shorted out – no current flows into the circuit. When the switch is open, the current flows into the circuit.


 

	B.Could you convert this circuit to an equivalent RC transient circuit with the voltage source?


 

	C.
Plot the voltage across the resistor versus time over the time interval from -2τ to 5τ.


 




                    [image: A331468_1_En_7_Figw_HTML.gif]


                  

Problem 7.25
Repeat the previous problem for the circuit shown in the following figure.[image: A331468_1_En_7_Figx_HTML.gif]


                                    

Problem 7.26
Obtain an analytical solution for the capacitor voltage in the circuit shown in the following figure at any time and express it in terms of I
s, R
1, R
2, C. Find the time constant of the circuit when [image: 
$$ {R}_1={R}_2=100\kern0.5em \Omega, \kern0.5em C=47\kern0.5em \upmu \mathrm{F} $$
].[image: A331468_1_En_7_Figy_HTML.gif]


                                    

Problem 7.27
For the circuit shown in the figure:	A.Derive and solve the dynamic circuit equation after the switch opens. Assume the initial capacitor voltage equal to zero.


 

	B.
Plot the capacitor voltage to scale versus time over the time interval from –2τ to 5τ.


 




[image: A331468_1_En_7_Figz_HTML.gif]
                                    

Problem 7.28
In the circuit that follows, the capacitor, C
1, is initially uncharged. The switch is closed at [image: 
$$ t=0 $$
].[image: A331468_1_En_7_Figaa_HTML.gif]


                                    
Give answers to the following questions based on known circuit parameters C
1, R
1, R
2, V
S:	A.What is the current through resistor R
2 as a function of time?


 

	B.What is the maximum current through resistor R
1?


 

	C.What is the current through resistor R
1 at a time long after the switch closes?


 

	D.What is the charge, [image: 
$$ {Q}^{+}(t) $$
], of the capacitor, C
1, as a function of time?


 




                                    
The switch is then opened a very long time after it has been closed – reset the time to [image: 
$$ t=0 $$
].	A.What is the charge [image: 
$$ {Q}^{+}(t) $$
] of the capacitor, C
1, as a function of time?


 

	B.What is the current through resistor R
2 as a function of time? Specify the current direction in the figure.


 




                                    


7.2 RL Circuits

                  7.2.1 Energy-Release Inductor Circuit
                

                  7.2.2 Continuity of the Inductor Current
                
Problem 7.29
For the inductor as a dynamic circuit element, present:	1.Equivalent circuit at DC


 

	2.Relation between voltage and current


 

	3.Expression for the time constant of a transient circuit that includes the dynamic element and a resistor, R
                                                    


 




	Dynamic circuit element
	
                                [image: A331468_1_En_7_Figab_HTML.gif]
                              

	Equivalent circuit at DC (short or open)
	 
	Relation between voltage and current (passive reference configuration)
	 
	Expression for the time constant of a transient circuit that includes the dynamic element (L) and a resistor R

	
                                [image: 
$$ \tau = $$
]
                              




                                    

Problem 7.30

                    	A.Using KCL and KVL, derive the differential equation for the inductor current in the circuit shown in the figure that follows, keeping the same labeling for the voltages and the currents.


 

	B.Is the final result different from Eq. (7.19) of Section 7.2?[image: A331468_1_En_7_Figac_HTML.gif]


                                                    


 




                  

Problem 7.31
Prove that Eq. (7.20) is the solution to Eq. (7.19) using direct substitution and the corresponding differentiation.

Problem 7.32

                    	A.Show that the time constant τ has units of seconds for the RL circuit.


 

	B.To ensure a slower energy release rate of the inductor, should the load resistance be small or large?


 

	C.To ensure a faster energy release rate of the inductor, should the load resistance be small or large?


 




                  

Problem 7.33
A 6.8-μH inductor releases its energy into a load resistor as shown in the following figure. The load resistance may have values of 10 Ω, 100 Ω, and 1 kΩ. The inductor current is 1 A prior to [image: 
$$ t=0 $$
].[image: A331468_1_En_7_Figad_HTML.gif]


	A.Find time constant τ and the maximum instantaneous power delivered to the load resistor in the very first moment for every resistor value—fill out the Table that follows.Instantaneous load power just after the switch closes



	
                                        R
                                      
	
τ, s
	
[image: 
$$ {p}_{\mathrm{R}}\left(t=+0\right) $$
], W

	
10 Ω
	 	 
	
100 Ω
	 	 
	
1 kΩ
	 	 



                                                    


 

	B.Do those instantaneous power values from the Table depend on the inductance value?


 




                                    

Problem 7.34
Prove that the integral from 0 to ∞ of the load power in Fig. 7.10d is exactly equal to the energy stored in the inductor [image: 
$$ {E}_{\mathrm{L}}=\frac{1}{2}L{I}_{\mathrm{S}}^2 $$
] prior to [image: 
$$ t=0 $$
]. Hint: The proof should include analytical integration of the instantaneous power in Eq. (7.21c).

Problem 7.35
A 2-mH inductor, shown in the following figure, releases its energy into the 2-kΩ load resistor. The supply current is 0.8 A.	A.Find the time constant of the RL circuit (show units).


 

	B.Express the current through the inductor as a function of time and sketch it to scale versus time over time interval from −2 μs to 5 μs.[image: A331468_1_En_7_Figae_HTML.gif]


[image: A331468_1_En_7_Figaf_HTML.gif]


                                                    


 




                                    

Problem 7.36
A 270-μH inductor, shown in the following figure, releases its energy into the 510-Ω load resistor. The supply current is 0.8 A.	A.Find the time constant of the RL circuit (show units).


 

	B.Express the current through the inductor as a function of time and sketch it to scale versus time over time interval from −1 μs to 2.5 μs.


 

	C.Express the resistor voltage as a function of time and sketch it to scale versus time over time interval from −1 μs to 2.5 μs.[image: A331468_1_En_7_Figag_HTML.gif]


[image: A331468_1_En_7_Figah_HTML.gif]


[image: A331468_1_En_7_Figai_HTML.gif]


                                                    


 




                                    

Problem 7.37
For an unknown energy-release RL circuit, inductor current and resistor voltage were measured before and after closing the switch at [image: 
$$ t=0 $$
] as shown in the figure that follows. Approximate R and L.[image: A331468_1_En_7_Figaj_HTML.gif]


                                    

Problem 7.38
A 2-mH inductor, shown in the following figure, releases its energy into two 1-kΩ load resistors. The supply current is 100 mA.	A.Find the time constant of the RL circuit (show units).


 

	B.Express the current through the inductor as a function of time and sketch it to scale versus time over time interval from −2 μs to 10 μs.[image: A331468_1_En_7_Figak_HTML.gif]


[image: A331468_1_En_7_Figal_HTML.gif]


                                                    


 




                                    

Problem 7.39

                    	A.Obtain the solution for the inductor current in the circuit shown in the figure at any time.


 

	B.Plot to scale the current through the inductor versus time over the interval from –2τ to 10τ.[image: A331468_1_En_7_Figam_HTML.gif]


                                                    


 




                  


                  7.2.3 Energy-Accumulating Inductor Circuit
                
Problem 7.40

In the energy-accumulating RL circuit shown in the following figure, [image: 
$$ R=2\ \mathrm{k}\Omega $$
] and [image: 
$$ L=2\ \mathrm{mH} $$
]. The supply current is 1 A.[image: A331468_1_En_7_Figan_HTML.gif]


	A.Find the time constant of the RL circuit (show units).


 

	B.Express the current through the inductor as a function of time and sketch it to scale versus time over time interval from −2 μs to 5 μs.[image: A331468_1_En_7_Figao_HTML.gif]


                                                    


 




                                    

Problem 7.41
In the energy-accumulating RL circuit shown in the following figure, [image: 
$$ R=510\kern0.5em \Omega $$
] and [image: 
$$ L=270\kern0.5em \upmu \mathrm{H} $$
]. The supply current is 1 A.	A.Find the time constant of the RL circuit (show units).


 

	B.Express the current through the inductor as a function of time and sketch it to scale versus time over time interval from −1 μs to 2.5 μs.


 

	C.Express the resistor voltage as a function of time and sketch it to scale versus time over time interval from −1 μs to 2.5 μs.[image: A331468_1_En_7_Figap_HTML.gif]


[image: A331468_1_En_7_Figaq_HTML.gif]


[image: A331468_1_En_7_Figar_HTML.gif]


                                                    


 




                                    

Problem 7.42

                    	A.Obtain the solution for the inductor current in the circuit shown in the figure at any time.


 

	B.Plot the voltage across the rightmost resistor versus time over the interval from –2τ to 5τ.[image: A331468_1_En_7_Figas_HTML.gif]


                                                    


 




                  


                  7.2.4 Energy-Release RL Circuit with the Voltage Supply
                

                  7.2.5 Application Example: Laboratory Ignition Circuit
                
Problem 7.43
A 270-μH inductor shown in the following figure releases its energy into the 510-Ω load resistor. The power supply voltage is 20 V. The switch opens at [image: 
$$ t=0 $$
].	A.Present an expression for the inductor current as a function of time and sketch it to scale versus time over the interval from −1 μs to 2.5 μs.


 

	B.Repeat the same task for the resistor voltage.[image: A331468_1_En_7_Figat_HTML.gif]


                                                    


 




                                    

Problem 7.44
The circuit for the previous problem is converted to the energy-accumulating RL circuit by inversing the switch operation. Assume that the switch was open prior to [image: 
$$ t=0 $$
]. The switch closes at [image: 
$$ t=0 $$
].	A.Derive an expression for the inductor current as a function of time.


 

	B.Repeat the same task for the voltage across resistor R.


 

	C.Could this circuit generate large voltage spikes, similar to the circuit from the previous problem?[image: A331468_1_En_7_Figau_HTML.gif]


                                                    


 




                                    



7.3 Switching RC Oscillator

                  7.3.2 Bistable Amplifier Circuit with
                  
                    the
                    
                  
                  Positive Feedback
                

                  7.3.3 Triggering
                
Problem 7.45
The bistable amplifier circuit shown in the following figure (inverting Schmitt trigger
) exists in the positive stable state. Amplifier’s power supply rails are ±12 V. Determine output voltage when the applied trigger signal is	1.
                            [image: 
$$ {\upsilon}_{\mathrm{in}}=6\kern0.5em \mathrm{V} $$
]
                          


 

	2.
                            [image: 
$$ {\upsilon}_{\mathrm{in}}=2\kern0.5em \mathrm{V} $$
]
                          


 

	3.
                            [image: 
$$ {\upsilon}_{\mathrm{in}}=-4\kern0.5em \mathrm{V} $$
]
                          


 




                                    
Assume that the amplifier hits the power rails in saturation.
[image: A331468_1_En_7_Figav_HTML.gif]


                                    

Problem 7.46
Repeat the previous problem when the initial stable state of the amplifier circuit is negative.

Problem 7.47
The bistable amplifier circuit shown in the following figure (
                      
                    non-inverting Schmitt trigger) exists in the positive stable state. Amplifier’s power supply rails are ±15 V. Determine output voltage when the applied trigger signal is	A.
                            [image: 
$$ {\upsilon}_{\mathrm{in}}=-1\kern0.5em \mathrm{V} $$
]
                          


 

	B.
                            [image: 
$$ {\upsilon}_{\mathrm{in}}=-2\kern0.5em \mathrm{V} $$
]
                          


 

	C.
                            [image: 
$$ {\upsilon}_{\mathrm{in}}=-4\kern0.5em \mathrm{V} $$
]
                          


 




                                    
Assume that the amplifier hits the power rails in saturation.
[image: A331468_1_En_7_Figaw_HTML.gif]


                                    

Problem 7.48
Repeat the previous problem when the initial stable state of the amplifier circuit is negative.


                  7.3.4 Switching RC Oscillator
                

                  7.3.5 Oscillation Frequency
                
Problem 7.49
A clock circuit (relaxation oscillator circuit) shown in the following figure is powered by a ±10-V power supply.
[image: A331468_1_En_7_Figax_HTML.gif]


                                    
Sketch to scale the capacitor voltage, υ
C, as a function of time. Assume that [image: 
$$ {\upsilon}_{\mathrm{C}}\left(t=0\right)=0 $$
]. Assume the ideal amplifier model. The specific values of R and C do not matter; they are already included in the time scale.

Problem 7.50
An RC clock circuit is needed with the oscillation frequency of 1 kHz and amplitude of the capacitor voltage of 4 V. Determine one possible set of circuit parameters R
1, R
2, R given that the capacitance of 100 nF is used. The power supply voltage of the amplifier is ±12 V. Assume that the amplifier hits the power rails in saturation.

Problem 7.51
A relaxation oscillator circuit may generate nearly triangular waveforms at the capacitor. Which values should the feedback factor [image: 
$$ \beta =\frac{R_1}{R_1+{R}_2} $$
] attain to make it possible?



7.4 Single-Time-Constant (STC) Transient Circuits

                  7.4.1 Circuits with Resistances and Capacitances
                

                  7.4.2 Circuits with Resistances and Inductances
                
Problem 7.52
Determine whether or not the transient circuits shown in the following figure are the STC circuits. If this is the case, express the corresponding time constant in terms of the circuit parameters.[image: A331468_1_En_7_Figay_HTML.gif]


                                    

Problem 7.53
Repeat the previous problem for the circuits shown in the following figure.[image: A331468_1_En_7_Figaz_HTML.gif]


                                    


                  7.4.3 Example of a Non-STC Transient Circuit
                
Problem 7.54
Using software of your choice, generate the solution for the non-STC circuit in Fig. 7.25a over the time interval from 0 to 15τ
0 where [image: 
$$ {\tau}_0=RC $$
] with [image: 
$$ {C}_1={C}_2=C $$
], [image: 
$$ {R}_1={R}_2=R $$
]. Use [image: 
$$ R=1\kern0.5em \mathrm{k}\Omega $$
], [image: 
$$ C=1\kern0.5em \upmu \mathrm{F} $$
], and [image: 
$$ {V}_{\mathrm{S}}=10\kern0.5em \mathrm{V} $$
]. Plot two capacitor voltages and the circuit current as functions of time to scale.

Problem 7.55

                    	A.Derive the general ODE for the non-STC circuit in Fig. 7.25a in terms of υ
1 for arbitrary circuit parameters.


 

	B.Present its particular form when [image: 
$$ {C}_1={C}_2=C $$
] and [image: 
$$ {R}_1=2{R}_2=R $$
]. Express all coefficients in terms of [image: 
$$ {\tau}_0=RC $$
].


 

	C.Given that the solution for the homogeneous ODE has the form [image: 
$$ \exp \left(-\alpha \kern0.1em t/{\tau}_0\right) $$
], determine two possible solutions for the dimensionless coefficient α.


 

	D.Using software of your choice, generate the circuit solution over the time interval from 0 to 15τ
0. Use [image: 
$$ R=1\kern0.5em \mathrm{k}\Omega $$
], [image: 
$$ C=1\kern0.5em \upmu \mathrm{F} $$
], and [image: 
$$ {V}_{\mathrm{S}}=10\kern0.5em \mathrm{V} $$
]. Plot two capacitor voltages and the circuit current as functions of time to scale.[image: A331468_1_En_7_Figba_HTML.gif]


                                                    


 




                  


                  7.4.4 Example of a STC Circuit
                
Problem 7.56
For the circuit shown in Fig. 7.26, derive ODEs for inductor currents i
1, i
2.


                  7.4.5 Method of Thévenin Equivalent. Application Example: Circuit with a Bypass Capacitor
                
Problem 7.57
In the circuit from Fig. 7.27a, another resistance R
0 is present in series with the capacitance C. Determine the natural response of the circuit and find the corresponding time constant, τ.

Problem 7.58
A transient circuit with the DC voltage source V
S is shown in the following figure. Given that [image: 
$$ {V}_S=10\kern0.5em \mathrm{V} $$
] and [image: 
$$ {R}_1=1\kern0.5em \mathrm{k}\Omega $$
], [image: 
$$ {R}_2=1\kern0.5em \mathrm{k}\Omega $$
], and [image: 
$$ C=1\kern0.5em \upmu \mathrm{F} $$
]:	A.Present the ODE for the capacitor voltage υ
C(t).


 

	B.Determine the value of the time constant τ and the ODE right-hand side (the forcing function).


 

	C.Present the solution for the capacitor voltage as a function of time assuming an initially uncharged capacitor[image: A331468_1_En_7_Figbb_HTML.gif]


                                                    


 




                                    

Problem 7.59
A transient circuit with the DC voltage source V
S is shown in the following figure. Given that [image: 
$$ {V}_{\mathrm{S}}=10\kern0.5em \mathrm{V} $$
] and [image: 
$$ {R}_1={R}_2=1\kern0.5em \mathrm{k}\Omega $$
], [image: 
$$ {R}_3=2\kern0.5em \mathrm{k}\Omega $$
], and [image: 
$$ C=1\kern0.5em \upmu \mathrm{F} $$
]:	A.Present the ODE for the capacitor voltage υ
C(t).


 

	B.Determine the value of the time constant τ and the ODE right-hand side (the forcing function).


 

	C.Present the solution for the capacitor voltage as a function of time assuming an initially uncharged capacitor.[image: A331468_1_En_7_Figbc_HTML.gif]


                                                    


 




                                    

Problem 7.60
A transient circuit with the DC voltage source V
S is shown in the following figure. Given that [image: 
$$ {V}_{\mathrm{S}}=10\ \mathrm{V} $$
] and[image: 
$$ {R}_1={R}_2=1\ \mathrm{k}\Omega $$
], [image: 
$$ {R}_3={R}_4=2\kern0.5em \mathrm{k}\Omega $$
], and [image: 
$$ C=1\kern0.5em \upmu \mathrm{F} $$
]:	A.Present the ODE for the capacitor voltage υ
C(t).


 

	B.Determine the value of the time constant τ and the ODE right-hand side (the forcing function).


 

	C.Present the solution for the capacitor voltage as a function of time assuming an initially uncharged capacitor.[image: A331468_1_En_7_Figbd_HTML.gif]


                                                    


 




                                    

Problem 7.61
A transient circuit with the current source I
S is shown in the following figure. Given that [image: 
$$ {I}_{\mathrm{S}}=10\kern0.5em \mathrm{m}\mathrm{A} $$
] and [image: 
$$ {R}_1={R}_2=1\kern0.5em \mathrm{k}\Omega $$
] and [image: 
$$ L=1\kern0.5em \mathrm{mH} $$
]:	A.Present the ODE for the inductor current i
L(t).


 

	B.Determine the value of the time constant τ and the ODE right-hand side (the forcing function).


 

	C.Present the solution for the inductor current as a function of time assuming the initial current equal to zero.[image: A331468_1_En_7_Figbe_HTML.gif]


                                                    


 




                                    

Problem 7.62

A transient circuit with the DC voltage source V
S is shown in the figure below. Given that [image: 
$$ {V}_{\mathrm{S}}=10\kern0.5em \mathrm{V} $$
] and [image: 
$$ {R}_1={R}_2=1\kern0.5em \mathrm{k}\Omega, L=1\kern0.5em \mathrm{mH} $$
]:	A.Present the ODE for the inductor current i
L(t).


 

	B.Determine the value of the time constant τ and the ODE right-hand side (the forcing function).


 

	C.Present the solution for the inductor current as a function of time assuming the initial current equal to zero.[image: A331468_1_En_7_Figbf_HTML.gif]


                                                    


 




                                    

Problem 7.63

Consider the circuits in two previous problems at arbitrary values of R
1, R
2, L, I
S, V
S. What should be the relation between these parameters to guarantee the same solution for the inductor current in every case?

Problem 7.64
Describe the mathematical meaning of	A.Natural response


 

	B.Forced response


 




                                    
for a first-order transient circuit in your own words. Do you think that this concept can be applied to any transient circuit?

Problem 7.65
If a transient circuit uses a DC supply (either voltage or current) and a switch, what is a general form of the forcing function?

Problem 7.66
If the forcing function of a first-order transient circuit is a combination of sine/cosine function and a constant, what is the general form of the forced response?

Problem 7.67
In the transient circuit shown in the figure below, [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{S}}+{V}_{\mathrm{m}} \sin \omega \kern0.1em t $$
].	A.Write the solution for the voltage across the load resistor R
L in terms of the circuit parameters assuming an initially uncharged capacitor.


 

	B.Write the solution for the voltage across the load resistor R
L when the bypass capacitor is absent.[image: A331468_1_En_7_Figbg_HTML.gif]


                                                    


 




                                    

Problem 7.68

Plot to scale the load voltage for the circuit shown in Fig. 7.27a with and without the bypass capacitor over time interval from 0 to 50 ms. The circuit parameters are [image: 
$$ {R}_S=5\kern0.5em \Omega, {R}_L=1\kern0.5em \mathrm{k}\Omega, \kern0.5em C=500\kern0.5em \upmu \mathrm{F} $$
]. The source given by Eq. (7.50) is the superposition of the DC and AC components. The source parameters are [image: 
$$ {V}_{\mathrm{S}}=10\kern0.5em \mathrm{V},\kern0.5em {V}_{\mathrm{m}}=1\mathrm{V},\kern0.5em f=250\kern0.6em \mathrm{Hz} $$
].

Problem 7.69
What is the asymptotic form of the solution given by Eqs. (7.57)–(7.58) when the source resistance, R
S, tends to zero?

Problem 7.70
In the transient circuit shown in the figure below, assume [image: 
$$ {i}_{\mathrm{S}}(t)={I}_{\mathrm{S}}+{I}_{\mathrm{m}} \sin \omega \kern0.1em t $$
].	A.Write the solution for the current through the load resistor R
L in terms of the circuit parameters assuming that the initial inductor current is equal to zero.


 

	B.Write the solution for the current through the load resistor R
L when the decoupling inductor is absent
[image: A331468_1_En_7_Figbh_HTML.gif]


                                                    


 




                                    

Problem 7.71
In the circuit for the previous problem, another resistor R
0 is present in parallel with the inductance L. Determine the natural response of the circuit and find the time constant, τ.



7.5 Description of the Second-Order Transient Circuits

                  7.5.1 First-order Transient Circuits Versus Second-order Transient Circuits
                
Problem 7.72
A transient circuit is shown in the following figure. Is it a first- or second-order transient circuit? Justify your answer.[image: A331468_1_En_7_Figbi_HTML.gif]


                                    

Problem 7.73
A transient circuit is shown in the figure below. Is it a first- or second-order transient circuit? Justify your answer.[image: A331468_1_En_7_Figbj_HTML.gif]


                                    

Problem 7.74
Establish the ODE for the transient circuit shown in the figure below. Both capacitors have zero voltage prior to closing the switch.	A.Assume [image: 
$$ {R}_1={R}_2=R,\;{C}_1={C}_2=C $$
].


 

	B.Assume arbitrary values of R
1,2, C
1,2.[image: A331468_1_En_7_Figbk_HTML.gif]


                                                    


 




                                    

Problem 7.75
Establish the ODE for the transient circuit shown in the figure below. Inductor currents are zero prior opening the switch.	A.Assume [image: 
$$ {R}_1={R}_2=R,\;{L}_1={L}_2=L $$
].


 

	B.
Assume arbitrary values of R
1,2, L
1,2.[image: A331468_1_En_7_Figbl_HTML.gif]


                                                    


 




                                    

Problem 7.76
In the previous problem, add resistance R
3 as shown in the figure that follows and solve task B.[image: A331468_1_En_7_Figbm_HTML.gif]


                                    


                  7.5.2 Series Connected Second-order RLC Circuit
                
Problem 7.77
Describe in your own words the mechanical counterpart of the series RLC circuit.

Problem 7.78

An RLC circuit in Fig. 7.30 has [image: 
$$ R=1\kern0.5em \mathrm{k}\Omega, \kern0.5em C=1\kern0.5em \upmu \mathrm{F},L=1\kern0.5em \mathrm{mH} $$
].	A.Find the value of the 
damping coefficient, α (show units).


 

	B.Find the value of 
undamped resonant frequency, ω
0.


 




                                    

Problem 7.79
How does the second-order ODE Eq. (7.63) for the circuit current in the series RLC circuit from Fig. 7.30 change if the capacitor was charged to V
S/2 prior to [image: 
$$ t=0 $$
]?

Problem 7.80
In the circuit shown in Fig. 7.30, the switch is replaced by a short circuit. The constant voltage source is replaced by an arbitrary time-varying voltage source [image: 
$$ {V}_{\mathrm{S}}\to {\upsilon}_{\mathrm{S}}(t) $$
] as shown in the figure that follows. Derive the dynamic circuit equation for the circuit current similar to Eq. (7.63) of this section. Present your result in terms of damping coefficient α and 
undamped resonant frequency ω
0.[image: A331468_1_En_7_Figbn_HTML.gif]


                                    


                  7.5.3 Choice of Independent Function: Initial Conditions
                

                  7.5.4 Step Response
                
Problem 7.81
The RLC circuit shown in Fig. 7.30 is described by dynamic equation (7.63) written in terms of the electric current. How do the initial conditions to this equation change if the capacitor was charged to V
S/2 prior to [image: 
$$ t=0 $$
]?

Problem 7.82
For the circuit shown in Fig. 7.30:	A.Derive the dynamic circuit equation (7.67) in terms of the capacitor voltage υ
C(t).


 

	B.How does this equation change if the capacitor was charged to V
S/2 prior to [image: 
$$ t=0 $$
]?


 




                                    

Problem 7.83
For the series RLC circuit with the switch and the DC supply shown in Fig. 7.30, we know the solution, υ
C(t), of Eq. (7.67) or Eq. (7.69) for [image: 
$$ {V}_{\mathrm{S}}=1\kern0.5em \mathrm{V} $$
]. The circuit shown in the following figure is now considered, with the voltage source in the form of a voltage pulse (one bit) centered about [image: 
$$ t=0 $$
]. Express the solution to the present problem in terms of υ
C(t).[image: A331468_1_En_7_Figbo_HTML.gif]


                                    

Problem 7.84
Repeat the previous problem for the voltage source shown in the figure that follows (a voltage pulse train of two bits).[image: A331468_1_En_7_Figbp_HTML.gif]


                                    

Problem 7.85
Repeat Problem 7.83 for the voltage source shown in the figure that follows (a bipolar voltage pulse).[image: A331468_1_En_7_Figbq_HTML.gif]


                                    


                  7.5.5 Parallel Connected Second-Order RLC Circuit
                
Problem 7.86
For the circuit shown in Fig. 7.34:	A.Derive the dynamic circuit equation (7.75) written in terms of the inductor current i
L(t).


 

	B.How does this equation change if the switch in Fig. 7.34 was open prior to [image: 
$$ t=0 $$
] and closes at [image: 
$$ t=0 $$
]?


 

	C.How do the initial conditions change in this case?


 




                                    

Problem 7.87
Describe the duality between series and parallel RLC circuits in your own words.

Problem 7.88
For the parallel RLC circuit with the switch and the DC current source shown in Fig. 7.34, we know the solution, i
L(t), of Eq. (7.75) for [image: 
$$ {I}_{\mathrm{S}}=1\kern0.5em \mathrm{m}\mathrm{A} $$
]. The circuit shown in the following figure is now considered, with the current source in the form of a pulse (one bit) centered about [image: 
$$ t=0 $$
]. Express the solution to in terms of i
L(t).[image: A331468_1_En_7_Figbr_HTML.gif]


                                    


7.6. Step Response of the Series RLC Circuit

                  7.6.1 General Solution of the Second-order ODE
                

                  7.6.2 Derivation of Complementary Solution
                
Problem 7.89

                    	A.The complete solution to a second-order homogeneous ODE is a sum of two distinct components. Describe each of them.


 

	B.
Write three forms of the complementary solution (natural response) for the second-order homogeneous ODE.


 

	C.What is a new parameter to be introduced for the underdamped circuit?


 




                  

Problem 7.90
For the series RLC circuit shown in the following figure:	A.Find the value of the damping coefficient, α (show units).


 

	B.Find the value of the 
undamped resonant frequency, ω
0 (show units).


 

	C.Find the value of the damping ratio, ζ (show units).


 

	D.Find the particular solution (forced response).


 

	E.Outline the form of the complementary solution (natural response).


 

	F.Which value should the circuit resistance have for a critically damped circuit?[image: A331468_1_En_7_Figbs_HTML.gif]


                                                    


 




                                    

Problem 7.91
Repeat the previous problem for the series RLC circuit shown in the figure below.[image: A331468_1_En_7_Figbt_HTML.gif]


                                    

Problem 7.92
For the series RLC circuit shown in the following figure, fill out the table of circuit parameters.[image: A331468_1_En_7_Figbu_HTML.gif]


                                    
Table of circuit parameters
	
R, Ω
	
ζ
	Circuit type (overdamped, critically damped, underdamped)

	25
	 	 
	50
	 	 
	75
	 	 
	100
	 	 



                                    
Given fixed L and C, which values of resistance (large or small) lead to the overdamped circuit?

Problem 7.93
For the series RLC circuit shown in the figure below, fill out the table of circuit parameters.[image: A331468_1_En_7_Figbv_HTML.gif]


                                    
Table of circuit parameters
	
C, μF
	
ζ
	Circuit type (overdamped, critically damped, underdamped)

	0.01
	 	 
	0.1
	 	 
	0.4
	 	 
	1.0
	 	 



                                    

Given fixed L and R, which values of capacitance (large or small) lead to the overdamped circuit?

Problem 7.94
For the series RLC circuit shown in the following figure, fill out the table of circuit parameters.[image: A331468_1_En_7_Figbw_HTML.gif]


                                    
Table of circuit parameters
	
L, μH
	
ζ
	Circuit type (overdamped, critically damped, underdamped)

	0.1
	 	 
	1
	 	 
	2.5
	 	 
	10
	 	 



                                    

Given fixed R and C, which values of inductance (large or small) lead to the overdamped circuit?

Problem 7.95
Show that underdamped solution and critically damped solutions coincide with each other when [image: 
$$ \varsigma \to 1 $$
].


                  7.6.3 Finding Integration Constants
                

                  7.6.4 Solution Behavior for Different Damping Ratios
                
Problem 7.96
For the circuit shown in the figure below:

                    [image: A331468_1_En_7_Figbx_HTML.gif]


                    	A.Determine damping coefficient α, 
                              
                            undamped resonant frequency ω
0, and damping ratio ζ.


 

	B.Determine constants K
1, K
2.


 

	C.Write solution for the capacitor voltage with all constants defined.


 

	D.Calculate and plot to scale capacitor voltage at 0, 0.05, 0.1, 0.2, and 0.3 μs.


 




                  

Problem 7.97
For the circuit shown in the following figure:	A.Determine damping coefficient α, undamped resonant frequency ω
0, and damping ratio ζ.


 

	B.Determine constants K
1, K
2.


 

	C.Write the solution for the capacitor voltage with all constants defined.


 

	D.Calculate capacitor voltage at 0, 1, 2, 3, 4, and 5 ms and plot it to scale versus time.[image: A331468_1_En_7_Figby_HTML.gif]


                                                    


 




                                    

Problem 7.98
Repeat the previous problem for the circuit shown in the following figure.[image: A331468_1_En_7_Figbz_HTML.gif]


                                    

Problem 7.99
In the circuit shown in the figure below, the capacitor was charged to 10 V prior to closing the switch.[image: A331468_1_En_7_Figca_HTML.gif]


	A.
How are the circuit equation and initial conditions different from Eqs. (7.78a, b)?


 

	B.Determine damping coefficient α, 
                              
                            undamped resonant frequency ω
0, and damping ratio ζ.


 

	C.Determine constants K
1, K
2.


 

	D.Write the solution for capacitor voltage with all constants defined.


 

	E.Calculate the capacitor voltage at 0, 1, 2, 3, 4, and 5 ms and plot it to scale versus time.


 




                                    


                  7.6.5 Overshoot and Rise Time
                

                  7.6.6 Application: Non-ideal Digital Waveform
                
Problem 7.100
The following figure shows the underdamped step response for a series RLC circuit. The DC source has the voltage of 10 V. Using the figure:	A.Estimate the overshoot percentage.


 

	B.Estimate the rise time.


 

	C.Do these estimates (approximately) agree with Eqs. (7.88a, b)?


 




[image: A331468_1_En_7_Figcb_HTML.gif]


                                    

Problem 7.101
Capacitor voltage is measured in a series RLC circuit as shown in the figure to the previous problem. Given [image: 
$$ R=2\;\Omega $$
], estimate circuit inductance L and circuit capacitance C.

Problem 7.102
The figure that follows shows the distorted rectangular waveform (capacitor voltage) for the circuit shown in Fig. 7.33. The DC source has the voltage of 10 V.	A.Using the figure, estimate the overshoot and undershoot percentages.


 

	B.Using the figure, estimate the rise time and the fall time.


 

	C.Do these estimates (approximately) agree with Eqs. (7.88a, 7.88b)?[image: A331468_1_En_7_Figcc_HTML.gif]


                                                    


 




                                    

Problem 7.103
For the circuit shown in the following figure:[image: A331468_1_En_7_Figcd_HTML.gif]


	A.Determine the step response υ
C(t) for the circuit shown in figure (a) given that [image: 
$$ L=1\kern0.5em \upmu \mathrm{H},\kern0.5em C=1\kern0.5em \mathrm{nF}, $$
] [image: 
$$ {V}_{\mathrm{S}}=10\kern0.5em \mathrm{V} $$
], and [image: 
$$ R=75\kern0.5em \Omega $$
].


 

	B.Express the solution υ
Cpulse(t) for the voltage pulse shown in figure (b) in terms of the step response.


 

	C.Given [image: 
$$ T=0.5\kern0.5em \upmu \mathrm{s} $$
], calculate the solution for the voltage pulse over the time interval from 0 to 0.7 μs in steps of 0.1 μs and plot it to scale.


 




                                    

Problem 7.104
Repeat the previous problem assuming [image: 
$$ T=0.2\kern0.5em \upmu \mathrm{s} $$
]. Calculate the solution for the voltage pulse over the time interval from 0 to 0.5 μs in steps of 0.05 μs and plot it to scale versus time.
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Overview

              Prerequisites:
	Knowledge of DC circuit analysis (Chapters 2, 3, and 4)

	Knowledge of dynamic circuit elements (Chapter 6, optionally Chapter 7)

	Knowledge of complex arithmetic and calculus




              Objectives of Section 8.1:
	Apply and work with the major parameters of the steady-state AC signals: amplitude, frequency, and phase

	Establish the concept of phase leading or lagging for AC voltages and currents

	Become familiar with the major function of the oscilloscope—measure periodic (AC) voltages in a circuit

	Understand the meaning of the phasor as a representation of the real signal

	Convert real signals to phasors and vice versa

	Perform basic operations with phasors

	Be able to construct the phasor diagram for real signals and restore the real signals from the phasor diagram

	Become familiar with the phasor (angle) notation




              Objectives of Section 8.2:
	Provide the complete mathematical derivation of complex impedances

	Apply the impedance concept to resistor, capacitor, and inductor

	Understand the meaning of magnitude and phase of the complex impedance




              Objectives of Section 8.3:
	Understand and apply the AC circuit analysis with phasors and impedances

	Appreciate the value of the phasor diagram as a tool for AC circuit analysis

	Transfer major circuit theorems to steady-state AC circuits

	Be able to solve multifrequency AC circuits using superposition principle




              Application examples:
	Measurements of amplitude, frequency, and phase

	Impedance of a human body




            

8.1 Harmonic Voltage and Current: Phasor
Whether you use a kitchen appliance or operate a piece of industrial machinery, they are powered by alternating current (AC) power supplies

. It may seem odd at first to create power sources with alternating polarities that result in fluctuating voltage and current directions through resistors, inductors, and capacitors. Consider the following situation: current flows through a coil from left to right with increasing and then decreasing magnitude, then changing direction, and again increasing and decreasing in magnitude before the process repeats itself. A benefit

 of using periodic, sinusoidal waveforms is related to the relative ease of stepping up or down AC voltages and currents with little, ideally no, power losses via a transformer. The economic importance of AC circuits can hardly be overstated; the bulk of the residential and industrial power demand is produced, transformed, and distributed via AC circuits. To understand the basics of AC circuit analysis, we start with the key characteristics of sinusoidal waveforms such as frequency, phase, and amplitude

. Special attention is paid to the phase. We define the meaning of leading and lagging phase for two steady-state AC voltages or currents. We note that in electrical engineering, AC voltages are often called 
                signals
                
                
              .
8.1.1 Harmonic Voltages and Currents
In 
                  steady-state AC circuits
                  
                  
                , all voltages and currents measured across or through the elements are periodic and in the ideal case harmonic (i.e., sine or cosine) functions of time. These voltages and currents have the same frequency but different phases and amplitudes. Interestingly, the word harmonic originates from the reference to music sounds of pure, single tones, pitches, or frequencies. The word steady-state means that the circuit frequency, phases of all voltages and currents, and amplitudes of all voltages and currents do not change over time. Transient effects are entirely excluded from our consideration. Similarly, the AC voltage and currents are called 
steady-state AC voltage and steady-state alternating current


. It is common to use terms 
AC voltage and AC power


, but the term AC current does not make much sense, even though it might be a part of the electrical engineering jargon. Figure 8.1 
                  
                  
                shows an AC harmonic signal. All voltages and currents in an AC circuit will have exactly this form, regardless of whether they are measured over a resistor, capacitor, or inductor. For this figure we consider the voltage υ(t). The current i(t) could be treated in an identical manner. As a harmonic function, the steady-state AC voltage can be written in the form[image: A331468_1_En_8_Fig1_HTML.gif]
Fig. 8.1Harmonic voltage signal of Eq. (8.1a) and its parameters

. The phase is zero




[image: 
$$ \upsilon (t)={V}_{\mathrm{m}} \cos \left(\omega \kern0.1em t+\varphi \right) $$
]

 (8.1a)

where	
V
m is the voltage amplitude (maximum absolute voltage), with the unit of volts.

	
ω is the angular frequency, with the unit of rad/s.

	
φ is the phase, with the unit of radians.





The use of a cosine function rather than a sine function, as a basis for any AC signal in Eq. (8.1a), is common. The angular frequency

 relates to the frequency f and period T by[image: 
$$ \omega =2\pi f,\kern1em T=1/f $$
]

 (8.1b)

where f is measured in hertz or Hz (1 Hz = 1 s−1) and the period is recorded in seconds. As the name implies, the frequency f defines the number of cycles (positive-to-negative AC voltage transitions) per second. For example, the frequency of the AC wall plug in the USA is 60 cycles per second and is recorded as[image: 
$$ f=60\ \frac{1}{\mathrm{s}}=60\kern0.5em \mathrm{Hz} $$
]

 (8.1c)

The angular frequency

 ω is essentially a replica of the frequency f; its use is primarily a matter of convenience. Virtually all frequencies in electrical engineering are measured in terms of f and not in terms of angular frequency ω. For example, we say that the AC frequency in the USA is 60 Hz, or 50 Hz in Europe and other countries and not 377 rad/s or 314 rad/s. The frequency unit hertz honors Heinrich Hertz (1857–1894), a German scientist, who, at the age of 29, built the first radio-frequency transmitter based on a spark gap circuit and a receiver (a loop antenna). He thus confirmed Maxwell’s theory

 of electromagnetic wave propagation.
Example 8.1
Determine the frequency in Hz, 
                    
                    
                  the angular frequency in rad/s, and the amplitude of the harmonic voltage signal shown in Fig. 8.1.

Solution: The amplitude is the simplest parameter to find. By inspection, the maximum voltage value is 0.6 V. It is exactly the amplitude value, [image: 
$$ {V}_{\mathrm{m}}=0.6\kern0.5em \mathrm{V} $$
], and therefore is the
absolute minimum voltage. The period is determined as the interval between two similar zero
crossings in Fig. 8.1; it is measured as e

                    jω t
                  . Another (sometimes more accurate) way to measure the period is to observe that there are exactly three periods in the figure, recorded over the time interval from 0 to 3 ms. Dividing the time interval over the number of periods, we obtain the duration of one period. The frequency of the voltage is [image: 
$$ f=1/T=1000\;\mathrm{Hz}=1\;\mathrm{kHz} $$
]. The angular frequency results in [image: 
$$ \omega =2\pi f=6283.1\kern0.5em \mathrm{rad}/\mathrm{s} $$
], and the voltage in Fig. 8.1 is [image: 
$$ \upsilon (t)=0.6 \cos \left(2\pi 1000t\right)\left[\mathrm{V}\right] $$
]. In real circuits, you should avoid measuring the period by using two consecutive maxima or minima of the sinusoidal signal. Although the same result is obtained on paper, in reality the flat maximum plateau is frequently corrupted by noise. As a result, rather inaccurate maxima positions are acquired.


Note that the amplitude is well defined for a pure harmonic in Fig. 8.1. It is symmetric about the axis, i.e., does not have a DC offset. But what about other periodic signals that have a significant DC offset? How can we define their amplitudes? The key is the peak-to-peak (or in short: Pk-Pk) shown in Fig. 8.1. For a harmonic AC voltage and current, the peak-to-peak value is simply twice the amplitude value. For non-sinusoidal periodic signals or sinusoidal signals with a DC offset, the peak-to-peak value is the only meaningful measure of the alternating signal strength. Therefore, an oscilloscope always uses the peak-to-peak value, instead of the amplitude.

8.1.2 Phase: Leading and Lagging

Perhaps the most confusing constant in Eq. (8.1a) is the phase φ. A nonzero phase means that the cosine function is shifted with respect to a zero-phase cosine


 in Fig. 8.1 either to the left or to the right. Let us ask the following question: if the phase in Eq. (8.1a) is positive, say [image: 
$$ \varphi =+\pi /2 $$
], is the cosine function shifted to the left or to the right versus the base cosine signal on the time axis? The answer might be somewhat unexpected: the positive phase means a shift to the left. Why? Because the given value of the cosine function occurs earlier in time than without the phase. Figure 



8.2a shows a phase-shifted voltage signal [image: 
$$ \upsilon (t)=0.6 \cos \left(2\pi 1000t+\pi /2\right)\kern0.5em \left[\mathrm{V}\right] $$
]; see the dashed curve; the base signal of zero phase is shown by the solid curve. At [image: 
$$ t=0 $$
], the argument is already ahead by [image: 
$$ +\pi /2 $$
] and the cosine function is zero, whereas with zero phase the zero occurs later at [image: 
$$ t=0.5T $$
]. A shift to the left means that all events (e.g., the peaks or zero crossings) happen earlier in time than for the base cosine with the phase zero. Therefore, the cosine with the positive phase always leads the cosine with the zero phase. In the present case, it leads the base cosine by 90°. In contrast, the cosine with the negative phase is shifted to the right. Figure 8.2b depicts the example of [image: 
$$ \varphi =-\pi /2 $$
]. A shift to the right means that all events (e.g., the peaks or zero crossings) happen later in time than for the base cosine with zero phase. The voltage with the negative phase lags the cosine with the zero phase (in fact, it lags by 90° or π/2 in Fig. 8.2b). The concept of leading and lagging plays a prominent role in power electronics


.[image: A331468_1_En_8_Fig2_HTML.gif]
Fig. 8.2
Phase-shifted AC voltages


 [image: 
$$ \upsilon (t)=0.6 \cos \left(2\pi 1000t\pm \pi /2\right)\kern0.5em \left[\mathrm{V}\right] $$
] versus the zero-phase voltage [image: 
$$ \upsilon (t)=0.6 \cos \left(2\pi 1000t\right)\kern0.5em \left[\mathrm{V}\right] $$
] shown by a solid curve. In Fig. 8.2a the dashed voltage leads the base signal, whereas in Fig. 8.2b it lags the base signal





Exercise 8.1
Determine frequency


 in Hz, angular frequency in rad/s, and the amplitude of the harmonic voltage signals shown in Fig. 8.2.

Answer: All four signals in Fig. 8.2 have the same amplitude of 0.6 V, the same frequency of 1 kHz, and the same radian frequency of [image: 
$$ \omega =2\pi f=6283.1\kern0.5em \mathrm{rad}/\mathrm{s} $$
].


The most useful facts related to phase measurements are:
	1.The phase 


in electrical engineering applications ranges from −π to +π radians; this corresponds in degrees to −180° to +180°. The phase in degrees should be divided by 180 and multiplied by π to obtain the phase in radians. The phase in radians should be divided by π and then multiplied by 180 to obtain the phase in degrees.


 

	2.The phase is a relative measure, with reference to a base signal. If the base signal is not present, the phase cannot be defined uniquely. By default the base signal is the cosine signal of the same frequency, that is, cos(ω t).


 

	3.If a measured phase for some reason exceeds π, we need to subtract its value from 2π. If it is less than −π, then we need to add 2π to its value. This will ensure that the phase will stay in the range from −π to +π radians.


 





Example 8.2
Determine the frequency, amplitude, and phase


 of the harmonic voltage signal shown in Fig. 8.3 versus the base cosine signal.[image: A331468_1_En_8_Fig3_HTML.gif]
Fig. 8.3A phase-shifted AC voltage [image: 
$$ \upsilon (t)=1 \cos \left(2\pi 1000t-\pi /3\right)\kern0.5em \left[\mathrm{V}\right] $$
]







Solution: The amplitude is determined first: by inspection it is clear that [image: 
$$ {V}_{\mathrm{m}}=1.0\mathrm{V} $$
]. Next the frequency is determined: the entire interval from 0 to 3 ms contains three full periods; hence [image: 
$$ T=1\kern0.5em \mathrm{ms} $$
], and [image: 
$$ f=1/T=1000\kern0.5em \mathrm{Hz}=1\ \mathrm{kHz} $$
]. For the phase determination, we note that the first maximum in Fig. 8.3 occurs later in time than for the base cosine, which already peaks at [image: 
$$ t=0 $$
]. Therefore, the phase must be negative, that is, [image: 
$$ \varphi <0 $$
]. The absolute value of the phase in Fig. 8.3 is[image: 
$$ \left|\varphi \right|=2\pi \frac{\Delta T}{T} $$
]

 (8.2)



which gives [image: 
$$ \varphi =-\pi /3 $$
] after measuring T and ΔT with a scale. A smarter 


way to obtain the same result is to note that the cosine function is equal to 0.5V
m at [image: 
$$ t=0 $$
], so that [image: 
$$ \varphi =-{ \cos}^{-1}(0.5)=-\pi /3 $$
]. And an even “smarter” way is to use a calculator to plot the cosine function with all possible phases until it matches Fig. 8.3. This method only works well during an exam if enough time is available.

Example 8.3
Assume that an AC signal


 is given by [image: 
$$ \upsilon (t)={V}_{\mathrm{m}} \sin \left(\omega t+\psi \right)\kern0.5em \left[\mathrm{V}\right] $$
]. How do we convert it to a cosine function?

Solution: The single most important trigonometric identity worth remembering is probably [image: 
$$ \sin \alpha = \cos \left(\alpha -\pi /2\right) $$
]. If you forget this identity, you may recall a visual picture: at [image: 
$$ t=0 $$
] the sine with zero phase lags the cosine with zero phase by π/2 or by 90°. The result is then [image: 
$$ \upsilon (t)={V}_{\mathrm{m}} \cos \left(\omega t+\psi -\pi /2\right)\kern0.5em \left[\mathrm{V}\right] $$
].


8.1.3 Application Example: Measurements

 of Amplitude, Frequency, and Phase

Different parameters of the steady-state AC voltage or of a general periodic voltage studied in the section are readily measured with the oscilloscope. The oscilloscope always measures the time-amplitude response of the voltage, not the current. Parameters include frequency, amplitude (or peak-to-peak value), the rms voltage, the mean voltage (voltage averaged over a period), etc. Figure 8.4 provides a practical measurement example. Several voltage signals can be measured simultaneously with several oscilloscope channels. The phase is not measured for a single signal, only the phase difference between two and more signals can be measured. The oscilloscope has two commonly used settings. In the first setting called DC coupled, any voltage supplied to the channel will cause a deflection of the trace. As a result, the actual value of the input voltage with respect to oscilloscope ground can be measured. In the second setting called AC Coupled, any DC offset to the periodic signal is eliminated via an internal coupling capacitor. The result, after a short transient period, is that the trace will settle at 0 V regardless of the magnitude of an applied DC voltage. This configuration is used whenever it is desired to ignore the constant DC component of an applied voltage waveform and only observe the AC component of the waveform with zero mean.[image: A331468_1_En_8_Fig4_HTML.gif]
Fig. 8.4Front panel of an inexpensive dual-channel digital-storage oscilloscope. Note the measured signal parameters






8.1.4 Definition of a Phasor



This topic is critical for the steady-state AC circuit analysis. We are about to introduce the method of solving AC circuits based on the use of so-called phasors or complex numbers. Working with phasors allows us to “cancel” out the frequency dependence and the time dependence. This is possible because in a linear system the harmonic behavior is the same for all circuit components, we only need to keep the amplitude and phase information for every sinusoid. The application of phasors will eventually allow us to reduce the AC circuit to an equivalent “DC” circuit that is solved using standard tools. However, there is no “free lunch”; the voltages and currents in the resulting “DC” circuit appear to be complex numbers. They carry information of two parameters: the phase and the amplitude of a sinusoid. The use of a complex number relies on two independent parameters, real and imaginary parts (or magnitude and phase); it is ideally suited to represent AC signals while entirely eliminating time-domain harmonics. The starting point of the phasor concept is rooted in Euler’s formula in the form[image: 
$$ {\mathrm{e}}^{\kern0.15em j\alpha }= \cos \alpha +j \sin \alpha $$
]

 (8.3a)

The identity expresses the complex exponent in terms of the real-valued cosine and sine functions. Here, [image: 
$$ j=\sqrt{-1} $$
] is the imaginary unit and α is an arbitrary, real number. Note that α can be equal to ω t or to [image: 
$$ \omega \kern0.1em t+\varphi $$
]. In electrical 

engineering, the symbol [image: 
$$ j=\sqrt{-1} $$
] is preferred over the mathematical symbol i which may be confused with the electric current. In terms of real and imaginary parts, we obtain[image: 
$$ \cos \alpha =\mathrm{R}\mathrm{e}\left({\mathrm{e}}^{\kern0.15em j\alpha}\right),\kern1em \sin \alpha =\mathrm{I}\mathrm{m}\left({\mathrm{e}}^{\kern0.18em j\alpha}\right) $$
]

 (8.3b)

Why do we need the complex exponent instead of cosine and sine? To answer this question, let us study the following identity:[image: 
$$ {\mathrm{e}}^{\kern0.18em j\left(\omega t+\varphi \right)}={\mathrm{e}}^{\kern0.18em j\omega t}\cdot {\mathrm{e}}^{\kern0.18em j\varphi } $$
]

 (8.3c)

We will write the current or the voltage in the form of Eq. (8.3c) and use the multiplicative property of the exponent. Then, the factor e
                  jω t
                 can be exactly canceled out in every term in the underlying differential equation. This is a major simplification, because the ODE becomes an algebraic equation. The key is the function Re(⋅) or the real part of a complex number:[image: 
$$ \begin{array}{l}\upsilon (t)={V}_{\mathrm{m}} \cos \left(\omega t+\varphi \right)=\mathrm{R}\mathrm{e}\left({V}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\left(\omega t+\varphi \right)}\right)\\ {}i(t)={I}_{\mathrm{m}} \cos \left(\omega t+\psi \right)=\mathrm{R}\mathrm{e}\left({I}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\left(\omega t+\psi \right)}\right)\end{array} $$
]

 (8.4)

The remaining complex number available after cancellation of the time factor e
                  jω t
                 is called a phasor: the phasor voltage V and the phasor current I:[image: 
$$ \mathbf{V}={V}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\varphi },\kern1em \mathbf{I}={I}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\psi } $$
]

 (8.5)

Equation (8.5) as a definition tells us that the phasor is a complex number comprised of two parameters: amplitude and phase. For related operations with complex numbers, you can see the chapter summary. You should notice that frequency is 

no longer present since it remains the same for all circuit elements, and it is equal to the known frequency of the voltage power supply. The phasor has the same units as the original quantity: the phasor voltage has units of volts, and the phasor current has units of amperes. The theory and application of the symbolic method of alternating currents by means of complex number algebra was started along with the famous book of C. P. Steinmetz, Theory and Calculation of Alternating Current Phenomena, New York, McGraw Hill Publishing Co., 1897. It happened only four years after the 1893 World’s Fair, the World’s Columbian Exposition in Chicago, where Nikola Tesla and George Westinghouse introduced visitors to AC power by using it to illuminate the exposition. Further, those methods received wide attention in control theory, in communications and signal processing, and in RF engineering.

8.1.5 From Real Signals to Phasors



Every AC voltage or current has its own phasor. The conversion from real-valued voltages and currents to phasors is performed exactly according to the phasor definition Eqs. (8.4) and (8.5).
Example 8.4
Determine the phasors for the real-valued AC voltages and currents:[image: 
$$ \begin{array}{l}\upsilon (t)=3 \cos \left(\omega \kern0.1em t-\pi /3\right)\kern0.5em \left[\mathrm{V}\right]\\ {}i(t)=1 \cos \left(\omega \kern0.1em t+\pi /6\right)\kern0.5em \left[\mathrm{A}\right]\end{array} $$
]

 (8.6a)


Solution: To construct the phasor, we only need the amplitude (V
m or I
m) and the phase (φ or ψ) for every signal in Eq. (8.6a). The result then uses the phasor definition given by Eqs. (8.4) and (8.5):[image: 
$$ \begin{array}{l}\mathbf{V}=3{\mathrm{e}}^{-j\pi /3}=3\left( \cos \frac{\pi }{3}-j \sin \frac{\pi }{3}\right)=\frac{3}{2}-j\frac{3\sqrt{3}}{2}\kern0.5em \left[\mathrm{V}\right]\\ {}\mathbf{I}=1{\mathrm{e}}^{\kern0.18em j\pi /6}=1\left( \cos \frac{\pi }{6}+j \sin \frac{\pi }{6}\right)=\frac{\sqrt{3}}{2}+j\frac{1}{2}\kern0.5em \left[\mathrm{A}\right]\end{array} $$
]

 (8.6b)



All results are a direct consequence of using Euler’s formula. The phasors are complex numbers that can be plotted in the complex plane as dots or vectors; we will provide an example of this later in this section. Moreover, we can add, subtract, multiply, and divide phasors, and the results are again phasors. However, the addition and subtraction of real signals is difficult, and the multiplication and division is practically impossible. Just imagine how you would divide a sine by a cosine

 and then convert the result into a cosine form.

To assure the uniqueness of phasor definition, the real signal must always be written in the standard form of the cosine function with the positive amplitude. For example, voltage [image: 
$$ \upsilon (t)=-3 \cos \left(\omega \kern0.1em t\right) $$
] is to be converted to [image: 
$$ \upsilon (t)=3 \cos \left(\omega \kern0.1em t+\pi \right) $$
] and then to the phasor [image: 
$$ \mathbf{V}=3{\mathrm{e}}^{\kern0.18em j\pi } $$
].
Exercise 8.2
Determine the phasor for the real-valued alternating current [image: 
$$ i(t)=-1 \sin \left(\omega \kern0.1em t-\pi /2\right)\kern0.5em \left[\mathrm{A}\right] $$
].

Answer: [image: 
$$ \mathbf{I}=1{\mathrm{e}}^{\kern0.18em j0}=1\kern0.5em \left[\mathrm{A}\right] $$
].


8.1.6 From Phasors to Real Signals



If the phasors of the voltage and current are given, and the angular frequency of the AC source is known, the real-valued AC voltages and currents can be restored using the phasor definition given by Eqs. (8.4) and (8.5).
Example 8.5
The phasors of the AC voltage and current are given by [image: 
$$ \begin{array}{l}\mathbf{V}=12\angle \pi /3=12{\mathrm{e}}^{\kern0.18em j\pi /3}\kern0.5em \left[\mathrm{V}\right]\\ {}\kern0.35em \mathbf{I}=0.1\angle 60{}^{\circ}=0.1{\mathrm{e}}^{\kern0.18em j60{}^{\circ}}\kern0.5em \left[\mathrm{A}\right]\end{array} $$
]

 (8.7a)



An AC source has the angular frequency ω. Restore the corresponding real-valued voltages and currents.

Solution: We construct the real signals in the form of Eq. (8.4) where the amplitude (V
m or I
m) and the phase (φ or ψ) of the corresponding sinusoidal function are extracted from the phasors in Eq. (8.7a):[image: 
$$ \begin{array}{l}\upsilon (t)=12 \cos \left(\omega \kern0.1em t+\pi /3\right)\kern0.5em \left[\mathrm{V}\right]\\ {}i(t)=0.1 \cos \left(\omega \kern0.1em t+\pi /3\right)\kern0.5em \left[\mathrm{A}\right]\end{array} $$
]

 (8.7b)




Exercise 8.3
The phasor voltage is given by [image: 
$$ \mathbf{V}=-2\angle \pi /3\kern0.5em \left[\mathrm{V}\right] $$
]. Restore the 

corresponding real-valued voltage signal.

                  Answer:
                  [image: 
$$ \upsilon (t)=2 \cos \left(\omega \kern0.1em t-2\pi /3\right)\kern0.5em \left[\mathrm{V}\right]. $$
]
                


8.1.7 
Polar and Rectangular Forms

: Phasor Magnitude
The phasor as a complex number has two forms: the polar form and the rectangular form. Equation (8.8a) includes both forms:[image: 
$$ \mathbf{V}=\underset{\mathrm{polar}\ \mathrm{form}}{\underbrace{V_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\varphi }}}=\underset{\mathrm{rectangular}\kern0.5em \mathrm{form}}{\underbrace{V_{\mathrm{m}} \cos \varphi +j{V}_{\mathrm{m}} \sin \varphi }}=\underset{\mathrm{rectangular}\kern0.5em \mathrm{form}}{\underbrace{x+jy}} $$
]

 (8.8a)

In general, the conversion from polar form to rectangular form uses Euler’s identity. We emphasize that [image: 
$$ {V}_{\mathrm{m}}>0 $$
] is the magnitude of a complex number—the phasor. It is always positive and equals the amplitude of the corresponding real signal. As mentioned before, φ is the phase; it changes from [image: 
$$ -\pi $$
] to [image: 
$$ +\pi $$
] and equals the phase of the corresponding real signal. The phasor may be initially given in a rectangular form, say as [image: 
$$ \mathbf{V}=x+jy $$
]. In that case, we may convert the phasor to polar form as follows:[image: 
$$ \mathbf{V}={V}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\varphi },\kern1em {V}_{\mathrm{m}}=\sqrt{x^2+{y}^2},\kern1em \varphi ={ \tan}^{-1}\left(\frac{y}{x}\right) $$
]

 (8.8b)

Equation (8.8b) is only valid when x is positive. Otherwise, a factor of [image: 
$$ \pm \pi $$
] must be added as explained in Fig. 8.5. The conversion to the polar form and vice versa is routinely done using a calculator, or MATLAB (function angle), or other software of your choice. For other operations with complex numbers, please refer to the Appendix section. Figure 8.5 plots a complex number (phasor) as given by Eqs. (8.8a,b) in the complex plane. The x-axis of the complex plane is the real part of the complex number, and the y-axis is the imaginary part. The complex number is either represented by a dot with the coordinates x, y or by a vector drawn from the origin to that dot. The magnitude of the complex number (phasor), [image: 
$$ \left|\mathbf{V}\right|={V}_{\mathrm{m}}=\sqrt{x^2+{y}^2} $$
], is the length of this vector; the phase φ is the angle with the positive x-axis. It is straightforward to add two phasors; this operation corresponds to vector addition in Fig. 8.5.[image: A331468_1_En_8_Fig5_HTML.gif]
Fig. 8.5A phasor in rectangular, or polar, form in the complex plane and the corresponding phase conversion. The phase of the complex number φ is given for different quadrants





Example 8.6
The phasors of AC voltage and current are given in rectangular form[image: 
$$ \begin{array}{l}\mathbf{V}=5+j5\kern2.25em \left[\mathrm{V}\right]\\ {}\mathbf{I}=-0.1-j0.2\kern0.5em \left[\mathrm{A}\right]\end{array} $$
]

 (8.9)


An AC source has the angular frequency ω. Restore the 

corresponding real voltages and currents.

Solution: We convert the phasors to the polar form using Eq. (8.8b) and Fig. 8.5:[image: 
$$ \begin{array}{l}\mathbf{V}=7.07{\mathrm{e}}^{\kern0.18em j\kern0.10em 0.785}\kern1em \left[\mathrm{V}\right]\\ {}\mathbf{I}=0.224{\mathrm{e}}^{-j2.03}\kern1em \left[\mathrm{A}\right]\end{array} $$
]

 (8.10)



After that, we restore the real signals exactly following Example 8.6:[image: 
$$ \begin{array}{l}\upsilon (t)=7.07 \cos \left(\omega \kern0.1em t+0.785\right)\kern1em \left[\mathrm{V}\right]\\ {}i(t)=0.224 \cos \left(\omega \kern0.1em t-2.03\right)\kern1em \left[\mathrm{A}\right]\end{array} $$
]

 (8.11)



The phase in Eq. (8.11) is given in radians. Another equivalent form of the solution that should please your engineering professor implies replacing 0.785 by π/4 or 45° and 2.03 by π/1.54 or 117°.


8.1.8 Operations with Phasors and Phasor Diagram



Phasors allow us to perform a number of basic operations in AC circuits rather quickly. Let us consider a part of an AC circuit with two arbitrary series circuit elements, shown in Fig. 8.6. The AC voltages υ
1(t) and υ
2(t) across each element are known. How can we find the AC voltage υ(t) for the series combinations?[image: A331468_1_En_8_Fig6_HTML.gif]
Fig. 8.6A series combination of two AC circuit elements. The voltage across the series combination (voltage between terminals a and b) is desired. You should note the voltage polarities






According to KVL we conclude [image: 
$$ \upsilon (t)={\upsilon}_1(t)-{\upsilon}_2(t) $$
], where the second voltage has opposite polarity. There are two ways to proceed from here. The first way in the time domain is to add two cosine functions directly and convert them into another cosine function. Unfortunately, if these cosine functions have different phases and amplitudes, the operation is not straightforward. It requires a search for the corresponding trigonometric formulas and the accurate use of this formula, keeping in mind proper phase definition. The second way is to use phasors. We will see that this approach has a clear intuitive background and is actually simpler to apply.

Example 8.7
Find the total voltage between terminals a and b in Fig. 8.6 if the element voltages are given by:[image: 
$$ \begin{array}{l}{\upsilon}_1(t)=6.08 \cos \left(\omega \kern0.1em t+80.5{}^{\circ}\right)\kern1em \left[\mathrm{V}\right]\\ {}{\upsilon}_2(t)=5.00 \cos \left(\omega \kern0.1em t+36.9{}^{\circ}\right)\kern1em \left[\mathrm{V}\right]\end{array} $$
]

 (8.12a)




Solution: We construct the phasors first:[image: 
$$ \begin{array}{l}{\mathbf{V}}_1=6.08\angle 80.5{}^{\circ}\kern1em \left[\mathrm{V}\right]\\ {}{\mathbf{V}}_2=5.00\angle 36.9{}^{\circ}\kern1em \left[\mathrm{V}\right]\end{array} $$
]

 (8.12b)



Convert them into rectangular form using Euler’s formula next:[image: 
$$ \begin{array}{l}{\mathbf{V}}_1=1.00+j6.00\kern2em \left[\mathrm{V}\right]\\ {}{\mathbf{V}}_2=4.00+j3.00\kern1.75em \left[\mathrm{V}\right]\end{array} $$
]

 (8.12c)



Both phasors are plotted in Fig. 8.7a. Such a plot is known as a phasor diagram. It is quite useful since it provides us with a visual

 picture of magnitude and phase. We subtract the phasors as complex numbers and obtain the resulting phasor for the desired voltage υ(t)[image: A331468_1_En_8_Fig7_HTML.gif]
Fig. 8.7(a) Finding series voltage for two circuit elements using phasors and (b) the time-domain representation of the same result




[image: 
$$ \upsilon (t)={\upsilon}_1(t)-{\upsilon}_2(t)\Rightarrow \mathbf{V}={\mathbf{V}}_1-{\mathbf{V}}_2=1+j6-4-j3=-3+j3\kern1em \left[\mathrm{V}\right] $$
]

 (8.13a)



The same subtraction operation is done in the vector form in the phasor diagram of Fig. 8.7a. The resulting phasor V is shown by a dashed arrow. We need to center it at the origin to obtain agreement with Eq. (8.13a). Next, we convert the phasor V into polar form using either Eq. (8.8b) or by just looking at the phasor diagram itself,[image: 
$$ \mathbf{V}=-3+j3=3\sqrt{2}{\mathrm{e}}^{\kern0.18em j135{}^{\circ}}=4.23{\mathrm{e}}^{\kern0.18em j135{}^{\circ}}=4.23\angle 135{}^{\circ}\kern1em \left[\mathrm{V}\right] $$
]

 (8.13b)



Finally, we restore the voltage υ(t) from its phasor: [image: 
$$ \upsilon (t)=4.23 \cos \left(\omega \kern0.1em t+135{}^{\circ}\right) $$
].
Using the same method, we could find the terminal voltage for a series combination of any number of circuit elements with arbitrary polarities.

The phasor diagram introduced in Fig. 8.7a also allows us to find the relative lag or lead for two or more AC voltages and/or currents, a topic you may recall from the previous section. As an example, in Fig. 8.8 we show the phasor diagram for three different time-domain voltages υ
1(t), υ
2(t), υ
3(t). Irrespective of the specific values of the amplitudes and phases, we may conclude that voltage υ
2(t) leads voltage υ
1(t) by 90°, but lags voltage υ
3(t).[image: A331468_1_En_8_Fig8_HTML.gif]
Fig. 8.8Phasor diagram for three time-domain voltages υ
1(t), υ
2(t), υ
3(t). Voltage υ
2(t) leads voltage υ
1(t) by 90°, but lags voltage υ
3(t)





Exercise 8.4
Does the voltage signal [image: 
$$ \upsilon (t)=6.08 \cos \left(\omega \kern0.1em t+80.5{}^{\circ}\right) $$
] lead or lag the voltage signal [image: 
$$ \upsilon (t)=4.23 \cos \left(\omega \kern0.1em t+135{}^{\circ}\right) $$
]?

Answer: It lags by 54.5°.

At this point a legitimate 

question arises: is adding sinusoids the only application of phasors? What will be the next step? Obviously, our goal now is to reduce an AC circuit to the equivalent “DC” circuit. This step requires a new concept known as impedance. It will be considered in the next section.

8.1.9 Shorthand Notation for the Complex Exponent



In electrical engineering and electronics, the shorthand notation (phasor notation or angle notation) [image: 
$$ {\mathrm{e}}^{\kern0.18em j\varphi }=\angle \varphi $$
] is commonly used to simplify the notation of the complex exponent. We will frequently use this shorthand notation in the following sections. All operations with phasors remain the same. For example, the multiplicative operations are written in the forms[image: 
$$ {V}_1{\mathrm{e}}^{\kern0.18em j\varphi }{V}_2{\mathrm{e}}^{\kern0.18em j\psi }={V}_1{V}_2{e}^{\kern0.22em j\left(\varphi +\psi \right)}\Rightarrow {V}_1\angle \varphi\ {V}_2\angle \psi ={V}_1{V}_2\angle \left(\varphi +\psi \right) $$
]

 (8.14)





8.2 Impedance
8.2.1 The Concept of Impedance



We can avoid solving ODEs for the AC circuits entirely if we establish a relation between the phasor voltage and the phasor current for the inductor and capacitor, similar to Ohm’s law for the resistor. We consider three basic AC circuit elements shown in Fig. 8.9 in a passive reference configuration and determine their phasor voltages and phasor currents.[image: A331468_1_En_8_Fig9_HTML.gif]
Fig. 8.9Three AC circuit elements







                  Resistance
                  
                  
                 For the resistance, voltage will be given by a cosine function shown in Fig. 8.10a. One has[image: A331468_1_En_8_Fig10_HTML.gif]
Fig. 8.10Voltage and current sinusoids for resistor, inductor, and capacitor (at phase zero)




[image: 
$$ \begin{array}{l}\upsilon =R\kern0.1em i,\kern1em \upsilon (t)={V}_{\mathrm{m}} \cos \left(\omega t+\varphi \right)\Rightarrow i(t)=\frac{V_{\mathrm{m}}}{R} \cos \left(\omega \kern0.1em t+\varphi \right)\\ {}\mathbf{V} = {V}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\varphi}\kern2em \mathbf{I}=\frac{V_{\mathrm{m}}}{R}{\mathrm{e}}^{\kern0.18em j\varphi}\end{array} $$
]

 (8.15)




Capacitance For the capacitance, voltage will again be given by a cosine function shown in Fig. 8.10b. One has[image: 
$$ \begin{array}{l}i=C\frac{d\upsilon }{dt},\kern1em \upsilon (t)={V}_{\mathrm{m}} \cos \left(\omega \kern0.1em t+\varphi \right)\\ {} \Rightarrow i(t)=-\omega \kern0.1em C{V}_{\mathrm{m}} \sin \left(\omega t+\varphi \right)=\omega C{V}_{\mathrm{m}} \cos \left(\omega t+\varphi +\pi /2\right)\\ {}\mathbf{V} = {V}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\varphi}\kern2em \mathbf{I}=\omega C{V}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\varphi +j\pi /2}\end{array} $$
]

 (8.16)


Inductance For the inductance, current will be given by a cosine function shown in Fig. 8.10c. One has[image: 
$$ \begin{array}{l}\upsilon =L\frac{di}{dt},\kern1em i(t)={I}_{\mathrm{m}} \cos \left(\omega t+\varphi \right)\\ {} \Rightarrow \upsilon (t)=-\omega L{I}_{\mathrm{m}} \sin \left(\omega \kern0.1em t+\varphi \right)=\omega \kern0.1em L{I}_{\mathrm{m}} \cos \left(\omega t+\varphi +\pi /2\right)\\ {}\mathbf{I} = {I}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\varphi}\kern3em \mathbf{V}=\omega L{I}_{\mathrm{m}}{e}^{j\varphi +j\pi /2}\end{array} $$
]

 (8.17)

Impedance Z of an 
                  arbitrary
                  
                  
                 linear circuit element or of an arbitrary one-port network comprised of such elements is defined by[image: 
$$ \mathbf{Z}\equiv \frac{\mathbf{V}}{\mathbf{I}} $$
]

 (8.18)


Thus, the phasors for voltage and current are linked via a constant, which can be real or complex. In order to emphasize that this constant is not exactly a resistance, the constant is called the impedance. Substituting Eqs. (8.15), (8.16), and (8.17) into Eq. (8.18), we obtain:[image: 
$$ \begin{array}{l}\mathrm{Resistance}:\kern1em {\mathbf{Z}}_{\mathrm{R}}\equiv \frac{\mathbf{V}}{\mathbf{I}}=R\kern1em \left[\Omega \right]\\ {}\mathrm{Capacitance}:\kern.3em {\mathbf{Z}}_{\mathrm{C}}\equiv \frac{\mathbf{V}}{\mathbf{I}}=\frac{1}{{\mathrm{e}}^{\kern0.18em j\pi /2}\omega \kern0.1em C}=\frac{1}{\omega C}\angle -90{}^{\circ}=\frac{1}{j\omega \kern0.1em C}\kern1em \left[\Omega \right]\\ {}\mathrm{Inductance}:\kern.8em {\mathbf{Z}}_{\mathrm{L}}\equiv \frac{\mathbf{V}}{\mathbf{I}}={\mathrm{e}}^{\kern0.18em j\pi /2}\omega L=\omega \kern0.1em L\angle 90{}^{\circ}=j\omega L\kern1em \left[\Omega \right]\end{array} $$
]

 (8.19)


The impedance has units of ohms, exactly as the resistance does. The impedance is an extension of the familiar DC resistance concept for dynamic AC circuit elements or any combination of them. The term “impedance” (along with “inductance,” “permeability,” etc.) belongs to Oliver Heaviside (1850–1925), a brilliant self-taught English electrical engineer and mathematician. We note that the method of solving differential equations with phasors (or using Laplace transforms) originates from him. Heaviside invented and patented in England the first coaxial cable in 1880. His uncle was Sir Charles Wheatstone (1802–1875); do you remember the Wheatstone bridge?

8.2.2 Physical Meaning of Impedance



The problem with the impedance definition is that in general it is a complex number. What exactly is the physical meaning? For the resistor in Fig. 8.10a, we only need to stretch the current sinusoid in order to obtain the voltage sinusoid. Therefore, we only need one independent “stretching” parameter R to express voltage in terms of current. However, for the capacitor in Fig. 8.10b, we need not only stretch, but also shift the current sinusoid to the right in order to obtain the voltage sinusoid. To accomplish this, we need two independent parameters. The impedance as a complex number has exactly those two independent parameters. In polar form, it is the magnitude (responsible for stretching) and the phase (responsible for shifting). Thus, only a complex number can be used to express voltage in terms of current for the capacitor. Similarly, for the inductor in Fig. 8.10c, we need not only stretch, but also shift to the left the current sinusoid in order to obtain the voltage sinusoid. Therefore, we again need two independent parameters to express the voltage in terms of current; we need the complex impedance with two required independent parameters: the magnitude and the phase. In light of this reasoning, it is useful to express the impedances given by Eq. (8.20) in polar form. For the imaginary number, we use the equalities [image: 
$$ j=\angle 90{}^{\circ} $$
] and [image: 
$$ 1/j=\angle -90{}^{\circ} $$
] and obtain[image: 
$$ {\mathbf{Z}}_{\mathrm{R}}=R\angle 0{}^{\circ},\kern1em {\mathbf{Z}}_{\mathrm{C}}=\frac{1}{\omega \kern0.1em C}\angle -90{}^{\circ},\kern1em {\mathbf{Z}}_{\mathrm{L}}=\omega \kern0.1em L\angle 90{}^{\circ} $$
]

 (8.20)



Example 8.8
Find impedances of resistor, capacitor, and inductor in Fig. 8.10.

Solution: In Fig. 8.10a,[image: 
$$ \begin{array}{c}\hfill {i}_{\mathrm{R}}(t)=1 \cos \left(\omega t\right)\kern0.5em \left[\mathrm{A}\right]\hfill \\ {}\hfill {\upsilon}_{\mathrm{R}}(t)=2 \cos \left(\omega \kern0.1em t\right)\kern0.5em \left[\mathrm{V}\right]\hfill \end{array}\Rightarrow {\mathbf{Z}}_{\mathrm{R}}=R=2\kern0.5em \left[\Omega \right] $$
]

 (8.21a)



The resistor’s impedance is frequency independent. It is just the resistance R. In Fig. 8.10b,
[image: 
$$ \begin{array}{c}\hfill {i}_{\mathrm{C}}(t)=1 \cos \left(\omega t+\pi /2\right)\kern0.5em \left[\mathrm{A}\right]\hfill \\ {}\hfill {\upsilon}_{\mathrm{C}}(t)=2 \cos \left(\omega t\right)\kern0.5em \left[\mathrm{V}\right]\hfill \end{array}\Rightarrow {\mathbf{Z}}_{\mathrm{C}}=2{\mathrm{e}}^{-j\pi /2}=-j2\kern0.5em \left[\Omega \right] $$
]

 (8.21b)



The capacitor’s impedance is thus an imaginary negative number. This is always true. In Fig. 8.10c,[image: 
$$ \begin{array}{c}\hfill {i}_{\mathrm{L}}(t)=1 \cos \left(\omega t\right)\kern0.5em \left[\mathrm{A}\right]\hfill \\ {}\hfill {\upsilon}_{\mathrm{L}}(t)=2 \cos \left(\omega \kern0.1em t+\pi /2\right)\kern0.5em \left[\mathrm{V}\right]\hfill \end{array}\Rightarrow {\mathbf{Z}}_{\mathrm{L}}=2{\mathrm{e}}^{+j\pi /2}=+j2\kern0.5em \left[\Omega \right] $$
]

 (8.21c)



The inductor’s 
impedance is

 thus an imaginary positive number. This is always true.


8.2.3 Magnitude and Phase of Complex Impedance
With reference to Fig. 8.10, the magnitude of the 
                  impedance
                  
                  
                 is a factor by which we should multiply (or stretch) the current sinusoid in order to obtain the voltage sinusoid. The phase (or the polar angle) of the impedance is a factor by which we should shift to the left the current sinusoid in order to obtain the voltage sinusoid.	1.For the resistor, we multiply the current by [image: 
$$ \left|{\mathbf{Z}}_{\mathrm{R}}\right|=R=2\kern0.5em \Omega $$
] and do not shift.


 

	2.For the capacitor, we multiply the current by [image: 
$$ \left|{\mathbf{Z}}_{\mathrm{C}}\right|=\frac{1}{\omega C}=2\kern0.5em \Omega $$
] and shift it by −90° (or by a quarter of the period) to the right in Fig. 8.10b.


 

	3.For the inductor, we multiply the current by [image: 
$$ \left|{\mathbf{Z}}_{\mathrm{L}}\right|=\omega L=2\kern0.5em \Omega $$
] and shift by +90° (or by a quarter of the period) to the left in Fig. 8.10c.


 





The above operations hold for any resistor, inductor, and capacitor. Thus, the impedance concept extends Ohm’s law to dynamic circuit 

elements in steady-state AC circuits.
Exercise 8.5
Establish phase relationships for voltages and currents in Fig. 8.10.

Answer: For the resistor, current and voltage are in phase. For the capacitor, current leads voltage by 90° (or voltage lags current by 90°). For the inductor, voltage leads current by 90° (or current lags voltage by 90°).

Example 8.9
For two AC circuits shown in Fig. 8.11, find the impedance of the resistor, capacitor, and inductor.[image: A331468_1_En_8_Fig11_HTML.gif]
Fig. 8.11Two types of a series AC circuit with a voltage supply






Solution: The resistor’s impedance is frequency independent. It is just the resistance R,
[image: 
$$ {\mathbf{Z}}_{\mathrm{R}}=R=2\kern0.5em \left[\Omega \right] $$
]

 (8.22a)



The capacitor’s impedance does depend on frequency. In Fig. 8.10a, ω = 5000 rad/s. Therefore,[image: 
$$ {\mathbf{Z}}_{\mathrm{C}}=\frac{1}{j\omega C}=\frac{1}{j5000\cdot {10}^{-4}}=\frac{1}{j0.5}=\frac{2}{j}=-j2\kern0.5em \left[\Omega \right] $$
]

 (8.22b)



The inductor’s impedance also depends on frequency. In Fig. 8.10b, ω = 20 rad/s. Therefore,[image: 
$$ {\mathbf{Z}}_{\mathrm{L}}=j\omega L=j20\cdot 0.1=j2\kern0.5em \left[\Omega \right] $$
]

 (8.22c)





An equivalent representation of impedances in Eqs. (8.22a, b, c) is the impedance phasor diagram shown in Fig. 8.12 where we plot the corresponding complex numbers.[image: A331468_1_En_8_Fig12_HTML.gif]
Fig. 8.12Complex impedances displayed in the phasor diagram





Note that the 

magnitudes of complex impedances in Fig. 8.12 are all equal to 2 Ω:[image: 
$$ \left|{\mathbf{Z}}_{\mathrm{R}}\right|=\left|{\mathbf{Z}}_{\mathrm{R}}\right|=\left|{\mathbf{Z}}_{\mathrm{R}}\right|=2\kern0.5em \Omega $$
]

 (8.23)




8.2.4 Application Example: Impedance of a Human Body
The impedance is not only the characteristic of an electric circuit

 but also of an arbitrary conducting object, which may be modeled as a combination of ideal resistance, inductance, and capacitance. They can be connected in series, in parallel, or a combination of series and parallel. As an example, we consider here the impedance of a human body in the frequency range from 10 kHz to 3 MHz. The impedance magnitude is shown in 

Fig. 8.13. It was measured for about 400 human subjects of ages between 18 and 70 years and then averaged. The subject stood on a large aluminum sheet as a ground plane. The electrode

 was a cylindrical brass rod for making a grasping contact with the hand. In its simplest form, the concept of impedance measurement implies the simultaneous measurements of harmonic voltage and current and then the extraction of the amplitude ratio (magnitude of the impedance) and the phase difference (impedance phase).[image: A331468_1_En_8_Fig13_HTML.gif]
Fig. 8.13Magnitude of the average impedance of the human body

. From: I. Chatterjee et al., “Human Body Impedance and Threshold Currents for Perception and Pain for Contact Hazard Analysis in the VLF-MF Band,” IEEE Trans Biomedical Eng., May 1986





Figure 8.13 indicates that the impedance magnitude decreases with frequency. Therefore, the human body impedance, at least at relatively low frequencies, behaves similarly to the impedance of a capacitor, where the magnitude also decreases with frequency. A purely resistive component is also present. The impedance measurements have been used for the extraction of various biomedical data such as assessment of a fat-free mass.


8.3 Principles of AC Circuit Analysis
8.3.1 AC Circuit Analysis: KVL, KCL, and Equivalent Impedances



The generic process of conducting an AC circuit analysis is outlined in Fig. 8.14 for a steady-state circuit with a capacitor and a resistor. We replace the circuit components by their impedances and replace the voltages and currents by their phasors. Hence, the “real” time-domain AC circuit in Fig. 8.14a becomes an “imaginary” circuit with complex phasor voltages V
S, V
R, V
C and a complex phasor current I “flowing” through the circuit; see Fig. 8.14b. However, the phasor V
S is a 

constant and the resulting circuit is the “DC” circuit.[image: A331468_1_En_8_Fig14_HTML.gif]
Fig. 8.14Transformation of an AC circuit to phasor/impedance

 form






KVL for the circuit in Fig. 8.14a in the time domain reads[image: 
$$ -{\upsilon}_{\mathrm{S}}(t)+{\upsilon}_{\mathrm{R}}(t)+{\upsilon}_{\mathrm{C}}(t)=0 $$
]

 (8.24)

Its phasor counterpart, Fig. 8.14b, in the frequency domain has exactly the same algebraic form[image: 
$$ -{\mathbf{V}}_{\mathrm{S}}+{\mathbf{V}}_{\mathrm{R}}+{\mathbf{V}}_{\mathrm{C}}=0 $$
]

 (8.25)

This result can be proven using the method described in the Chapter’s summary. KCL is formulated in terms of phasors exactly in the same manner. According to KCL, the same phasor current I flows through all the elements in the circuit of Fig. 8.14b. This results in[image: 
$$ -{\mathbf{V}}_{\mathrm{S}}+{\mathbf{Z}}_{\mathrm{R}}\mathbf{I}+{\mathbf{Z}}_{\mathrm{C}}\mathbf{I}=0\Rightarrow \mathbf{I}=\frac{{\mathbf{V}}_{\mathrm{S}}}{{\mathbf{Z}}_{\mathrm{R}}+{\mathbf{Z}}_{\mathrm{C}}}=\frac{{\mathbf{V}}_{\mathrm{S}}}{{\mathbf{Z}}_{\mathrm{eq}}} $$
]

 (8.26)


where phasor voltages are related to phasor currents though the concept of impedances. Thus, once the AC circuit has been transformed to phasors and impedances (frequency domain), the
impedances may be combined as if they were simple resistors. The series/parallel equivalents for the impedances are equally applicable. After plugging in numbers for ω , R, C, V
S, the phasor current and phasor voltages can be found and converted back to time domain. This is the method of solving in AC circuits.


8.3.2 Complete Solution for an AC Circuit: KVL and KCL on Phasor Diagram



Let us assume that the power supply voltage in Fig. 8.14a has the form [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \cos \omega \kern0.1em t $$
], and its amplitude and frequency are given by [image: 
$$ {V}_{\mathrm{m}}=5\kern0.5em \mathrm{V},\ \omega =1000\kern0.5em \mathrm{rad}/\mathrm{s} $$
]. Further we know that [image: 
$$ C=1\kern0.5em \upmu \mathrm{F},\ R=1\kern0.5em \mathrm{k}\Omega $$
] in Fig. 8.14a. The solution to this AC circuit includes several steps as discussed above. First, we convert the circuit to the phasor/impedance form as shown in Fig. 8.14b. All currents/voltages are replaced by their phasors, 
                  
                  
                and all circuit elements are replaced by their impedances. Next, we solve the phasor circuit in Fig. 8.14b as if it were a “DC” circuit. The element impedances are[image: 
$$ {\mathbf{Z}}_{\mathrm{R}}=1000\kern0.5em \left[\Omega \right],\kern1em {\mathbf{Z}}_{\mathrm{C}}=\frac{1}{j\omega \kern0.1em C}=\frac{1}{j1000\cdot 1\times {10}^{-6}}=-j1000\kern0.5em \left[\Omega \right] $$
]

 (8.27)

Note that the impedances here are written in rectangular instead of polar form. We must now find the equivalent impedance. From the series impedance combination:[image: 
$$ {\mathbf{Z}}_{\mathrm{eq}}={\mathbf{Z}}_{\mathrm{R}}+{\mathbf{Z}}_{\mathrm{C}}=1000-j1000=\sqrt{1000^2+{1000}^2}\angle - \arctan (1)\approx 1414\angle -45{}^{\circ}\kern0.5em \left[\Omega \right] $$
]

 (8.28)

The phasor current (circuit current) has the form[image: 
$$ \mathbf{I}=\frac{{\mathbf{V}}_{\mathrm{S}}}{{\mathbf{Z}}_{\mathrm{eq}}}=\frac{5}{1414\angle -45{}^{\circ}}\approx 3.54\angle 45{}^{\circ}\kern0.5em \left[\mathrm{m}\mathrm{A}\right] $$
]

 (8.29)

The phasor voltages across the resistor and the capacitor are found according to Ohm’s law, that is:[image: 
$$ {\mathbf{V}}_{\mathrm{R}}={\mathbf{Z}}_{\mathrm{R}}\mathbf{I}=1000\times 0.00354\angle 45{}^{\circ}=3.54\angle 45{}^{\circ}\kern1em \left[\mathrm{V}\right] $$
]

 (8.30)


[image: 
$$ {\mathbf{V}}_{\mathrm{C}}={\mathbf{Z}}_{\mathrm{C}}\mathbf{I}=-j1000\times 0.00354\angle 45{}^{\circ}=3.54\angle -90{}^{\circ}\angle 45{}^{\circ}=3.54\angle -45{}^{\circ}\kern1em \left[\mathrm{V}\right] $$
]

 (8.31)

The phasor voltages are plotted in the phasor diagram as depicted in Fig. 8.15.[image: A331468_1_En_8_Fig15_HTML.gif]
Fig. 8.15
Phasor diagram for 

the circuit in Fig. 8.14 and KVL in the vector form





We may conclude that KVL in phasor form is equivalent to the addition of two vectors V
R, V
C, which equals the supply phasor voltage V
S. For an AC circuit in the form of a current divider, KCL in phasor form will have exactly the same representation.
As a final step to arrive at the solution, 
                  
                  
                we convert the phasors in Eqs. (8.30) and (8.31) to real-valued voltages:[image: 
$$ \begin{array}{l}{\upsilon}_{\mathrm{R}}(t)=3.54 \cos \left(\omega \kern0.1em t+45{}^{\circ}\right)\kern1em \left[\mathrm{V}\right]\\ {}{\upsilon}_{\mathrm{C}}(t)=3.54 \cos \left(\omega \kern0.1em t-45{}^{\circ}\right)\kern1em \left[\mathrm{V}\right]\end{array} $$
]

 (8.32)

The AC circuit is thus solved. We note that the amplitudes of both voltages are the same; in this particular case the voltage divider splits the power supply voltage “equally.” In fact, [image: 
$$ \sqrt{3.54^2+{3.54}^2}=5\mathrm{V} $$
], which is KVL in terms of the voltage amplitudes.

Exercise 8.6
How does the phasor diagram in Fig. 8.15 change if the voltage source in Fig. 8.14 is given by [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \cos \left(\omega \kern0.1em t-45{}^{\circ}\right) $$
]?

Answer: The entire phasor diagram rotates clockwise by 45°.


8.3.3 Source Transformation
After KVL and KCL

 in terms of phasors (in the frequency domain) have been established, the circuit laws and principles from Chapters 3 and 4 are straightforwardly extended to the steady-state AC circuits operating at a single frequency. The first example is the source transformation in the frequency domain shown in Fig. 8.16.[image: A331468_1_En_8_Fig16_HTML.gif]
Fig. 8.16
Source transformation

 in the frequency domain





A voltage source with the phasor voltage V
T and in series with a passive circuit element having impedance Z
T is equivalent to a current source with the phasor current I
N and in parallel with impedance Z
N given that[image: 
$$ {\mathbf{Z}}_{\mathrm{T}}={\mathbf{Z}}_{\mathrm{N}},\kern1em {\mathbf{V}}_{\mathrm{T}}={\mathbf{Z}}_{\mathrm{T}}{\mathbf{I}}_{\mathrm{N}}\iff {\mathbf{I}}_{\mathrm{N}}=\frac{{\mathbf{V}}_{\mathrm{T}}}{{\mathbf{Z}}_{\mathrm{T}}} $$
]

 (8.33)

Equation (8.33) is the direct extension of the source transformation principle established in Chapter 4 for DC 

circuits.
Example 8.10
Determine phasor voltage V
1 in the AC circuit shown in Fig. 8.17 using the method of source transformation. The impedance values are given at the frequency of interest. Note that, for every impedance box in Fig. 8.17, its physical counterpart is shown inside this box.[image: A331468_1_En_8_Fig17_HTML.gif]
Fig. 8.17An AC circuit solved with the help of source transformation. Note that every impedance box has a physical counterpart shown within this box






Solution: The source transformation follows Eq. (8.33) and leads to the AC circuit shown in Fig. 8.18. This circuit is easier to solve. We can see that the circuit in Fig. 8.18 becomes the current divider between the [image: 
$$ 10\Omega \left|\right|10\Omega =5\Omega $$
] impedance and the [image: 
$$ j10\Omega -j5\Omega =j5\Omega $$
] impedance, respectively. Therefore, the phasor current through the impedance of interest is given by current division[image: A331468_1_En_8_Fig18_HTML.gif]
Fig. 8.18Source transformation applied to the AC circuit from the previous figure




[image: 
$$ \mathbf{I}=\frac{5}{5+j5}\times 1\angle 90{}^{\circ}=\frac{5}{5\sqrt{2}\angle 45{}^{\circ}}\times 1\angle 90{}^{\circ}=\frac{1}{\sqrt{2}}\angle 45{}^{\circ}\kern1em \left[\mathrm{A}\right] $$
]

 (8.34)



Thus, the resulting voltage is given by[image: 
$$ {\mathbf{V}}_1=-j5\times \mathbf{I}=5\angle -90{}^{\circ}\times \frac{1}{\sqrt{2}}\angle 45{}^{\circ}=\frac{5}{\sqrt{2}}\angle -45{}^{\circ}\kern1em \left[\mathrm{V}\right] $$
]

 (8.35)




Exercise 8.7
Three impedances j5Ω, 10Ω, 10Ω are combined in parallel. What is the 

equivalent impedance?

Answer: [image: 
$$ 2.5+j2.5\kern0.5em \Omega $$
].

Exercise 8.8
In Fig. 8.18, the impedance of the capacitor changes to [image: 
$$ -j10\Omega $$
]. What will be the phasor current, I, through the capacitor?

                  Answer:
                  [image: 
$$ \mathbf{I}=1\angle 90{}^{\circ}\kern0.5em \left[\mathrm{A}\right] $$
]
                


8.3.4 
                Thévenin and Norton Equivalent Circuits


              
The Thévenin’s theorem for steady-state AC circuits is formulated as follows. Any linear AC network of resistors/capacitors/inductors and voltage/current power sources operating at the same frequency can be represented in the form of a Thévenin equivalent network shown in Fig. 8.19b (phasor form). This result is a direct extension of Thévenin’s theorem for DC circuits stated in Chapter 4. Thévenin’s theorem allows us to reduce complicated AC circuits to a simple source and the impedance configuration, with the same power output to a load. The AC frequency remains the same. Phasor voltage V
T is known as Thévenin voltage or simply the source voltage; impedance Z
T is called Thévenin impedance or source impedance. 
                  
                  
                The phasor voltage may have amplitude and phase that is different from the original AC sources. The Norton theorem for steady-state AC circuits replaces the Thévenin equivalent circuit by the Norton equivalent circuit from Fig. 8.16. As in resistive circuits, the Thévenin phasor voltage is equal to the open-circuit phasor voltage of the original circuit in Fig. 8.19a:[image: A331468_1_En_8_Fig19_HTML.gif]
Fig. 8.19Representation of a Thévenin equivalent circuit. 
                          
                          
                        The original AC circuit in (a) is transformed into its Thévenin equivalent circuit (b) by providing the same voltage and current to a load. Both circuits are indistinguishable when looking from the load




[image: 
$$ {\mathbf{V}}_{\mathrm{T}}={\mathbf{V}}_{\mathrm{ab}}={\mathbf{V}}_{\mathrm{OC}} $$
]

 (8.36)

To find the Thévenin impedance Z
T, we need to know the phasor, I
SC, for the short-circuit current of the network. The short-circuit current is obtained by shorting out the output terminals a and b. This results in the source impedance:[image: 
$$ {\mathbf{Z}}_{\mathrm{T}}=\frac{{\mathbf{V}}_{\mathrm{OC}}}{{\mathbf{I}}_{\mathrm{SC}}}=\frac{{\mathbf{V}}_{\mathrm{T}}}{{\mathbf{I}}_{\mathrm{SC}}} $$
]

 (8.37)

To find Z
T we often use another, somewhat simpler, approach. We short out the voltage source(s), i.e., replace them by wires. Then we zero the current sources (if present), i.e., replace them by an open circuit. This enables us to find the equivalent impedance of the resulting purely passive circuit, which is equal to Z
T.
Example 8.11
Find the Thévenin equivalent, i.e., V
T and Z
T, for the circuit shown in Fig. 8.19a when [image: 
$$ \omega =377\kern0.5em \mathrm{rad}/\mathrm{s},\kern0.5em L=26.5\kern0.5em \mathrm{mH},R=10\kern0.5em \Omega, C=220\kern0.5em \upmu \mathrm{F} $$
], and [image: 
$$ {V}_{\mathrm{S}}(t)=10 \cos \omega \kern0.1em t\kern0.5em \left[\mathrm{V}\right] $$
].

Solution: We convert the circuit in Fig. 8.19a into phasor form first. V
T is the phasor voltage between terminals a and b, i.e., the phasor voltage across the inductor. The resistor and the inductor form a voltage divider with regard to the supply phasor voltage of 10 V. According to the voltage division principle:
[image: 
$$ {\mathbf{V}}_{\mathrm{T}}={\mathbf{V}}_{\mathrm{L}}=\frac{{\mathbf{Z}}_{\mathrm{L}}}{{\mathbf{Z}}_{\mathrm{L}}+{\mathbf{Z}}_{\mathrm{R}}}10=\frac{j10}{10+j10}10=\frac{10\angle 90{}^{\circ}}{14.14\angle 45{}^{\circ}}10=7.07\angle 45{}^{\circ}\kern1em \left[\mathrm{V}\right] $$
]

 (8.38)


To find the Thévenin resistance, we short out the voltage source (by using the second approach). This operation simultaneously shorts out the capacitor, 
                    
                    
                  with the result that the resistor and the inductor are now in parallel. This gives[image: 
$$ {\mathbf{Z}}_{\mathrm{T}}={\mathbf{Z}}_{\mathrm{L}}\left|\right|{\mathbf{Z}}_{\mathrm{R}}=\frac{j10\times 10}{10+j10}=\frac{100\angle 90{}^{\circ}}{14.14\angle 45{}^{\circ}}=7.07\angle 45{}^{\circ}\kern0.75em \left[\Omega \right] $$
]

 (8.39)





8.3.5 Summary of AC Circuit Analysis at a Single Frequency



As long as an AC circuit includes a single AC source or sources which all operate at the same frequency, it can always be directly analyzed in terms of phasors/complex impedances. All DC analysis techniques:	Series/parallel equivalents and voltage/current dividers

	Superposition principle

	Source transformation; Thévenin and Norton equivalent circuits

	Nodal and mesh analyses






are equally applicable to steady-state AC circuits. The specific frequency value does not matter. Indeed, we simply need to perform calculations w

ith complex numbers instead of real ones.

8.3.6 Multifrequency AC Circuit Analysis: 

Superposition Theorem
Unfortunately, when an AC circuit includes sources operating at different frequencies and/or includes the DC sources, the situation is no longer straightforward. The key to the circuit analysis in this case is the general superposition theorem, which is applicable to all linear circuits with arbitrary independent and linear-dependent sources. The superposition theorem for multifrequency AC circuits is explained in Fig. 8.20. The original circuit with two AC voltage sources of different frequencies and with one DC source is replaced by three partial circuits, with two of three voltage sources shorted out at a time. Every partial circuit is solved independently, either using the phasor/impedance method (for single-frequency AC circuits) or the DC circuit analysis. Finally, the complete solution is obtained as a sum of three real-valued contributions.[image: A331468_1_En_8_Fig20_HTML.gif]
Fig. 8.20
Superposition theorem

 for a circuit with sources operating at different frequencies (including a DC source)





Example 8.12
Find real-valued voltage υ
R(t) across the resistor for the circuit in Fig. 8.20 using the superposition principle. You are given [image: 
$$ R=10\kern0.5em \Omega, \kern0.5em {V}_1=10\kern0.5em \mathrm{V},\kern0.5em {V}_2=1\kern0.5em \mathrm{V} $$
]. The impedance of the inductor is j2 Ω at frequency ω
1 and j6 Ω at frequency ω
2, respectively.

Solution: Three partial equivalent circuits are shown in Fig. 8.20a,b,c. We solve the AC circuits in Fig. 8.20a,c using the phasor/impedance method. Applying voltage division for the circuits in frequency domain gives[image: 
$$ {\mathbf{V}}_{\mathrm{R}1}=+\frac{10}{10+j2}10=9.81\angle -11{}^{\circ}\kern0.5em \mathrm{V} $$
]

 (8.40)


[image: 
$$ {\mathbf{V}}_{\mathrm{R}2}=-\frac{10}{10+j6}1=0.86\angle +149{}^{\circ}\kern0.5em \mathrm{V} $$
]

 (8.41)



The DC circuit in Fig. 8.20b gives [image: 
$$ {V}_{\mathrm{R}3}=10\kern0.5em \mathrm{V} $$
] since the inductor is the short circuit in the DC steady state. Combining the solutions yields the resistor voltage,[image: 
$$ {\upsilon}_{\mathrm{R}}(t)=10+9.81 \cos \left({\omega}_1t-11{}^{\circ}\right)+0.86 \cos \left({\omega}_2t+149{}^{\circ}\right)\kern0.5em \mathrm{V} $$
]

 (8.42)




Exercise 8.9
How does the solution for

 the previous example change when a 20 Ω resistor is placed in series with the DC source?

Answer: The solution becomes[image: 
$$ {\upsilon}_{\mathrm{R}}(t)=3.33+3.33 \cos \left({\omega}_1t-4{}^{\circ}\right)+0.33 \cos \left({\omega}_2t+169{}^{\circ}\right)\kern0.5em \mathrm{V}. $$
]







Summary

                	
Term
	
Meaning/Figure

	
Steady-state AC voltage (steady-state alternating current)
	
                            [image: 
$$ \upsilon (t)={V}_{ m} \cos \left(\omega \kern0.1em t+\varphi \right) $$
]
                          

[image: 
$$ {V}_{ m}>0 $$
] is the voltage amplitude [V]

[image: 
$$ \omega =2\pi \kern0.1em f>0 $$
] is the angular frequency [rad/s]

[image: 
$$ f>0 $$
] is the frequency [Hz]

[image: 
$$ T=1/f>0 $$
] is the period [s]

[image: 
$$ -\pi \le \varphi \le \pi $$
] is the phase [rad] or [deg]

	
                            [image: A331468_1_En_8_Figaj_HTML.gif]
                          

	
Leading/lagging
	
                            [image: A331468_1_En_8_Figak_HTML.gif]
                          

	
Euler’s identity
	
[image: 
$$ {e}^{\kern0.15em j\alpha }= \cos \alpha +j \sin \alpha $$
], [image: 
$$ {e}^{\kern2pt j\pi /2}=j $$
], [image: 
$$ {e}^{-j\pi /2}=-j $$
]


	
Time-domain signal υ(t) versus its phasor V; phasor diagram
	
                            [image: A331468_1_En_8_Figal_HTML.gif]
                          

	
Complex phasors and impedances

                            [image: 
$$ \begin{array}{c}{\mathbf{Z}}_R=R\\ {}{\mathbf{Z}}_C=\frac{1}{j\omega C}\\ {}{\mathbf{Z}}_L=j\omega L\end{array} $$
]
                          
	
                            [image: A331468_1_En_8_Figam_HTML.gif]
                          

	
Meaning of complex impedance
	
                            [image: A331468_1_En_8_Figan_HTML.gif]
                          

	
Solution for an AC circuit
	
                            [image: A331468_1_En_8_Figao_HTML.gif]
                          

	
Proof of the conversion from time domain to frequency domain
	
                            [image: 
$$ -{\upsilon}_S(t)+{\upsilon}_R(t)+{\upsilon}_C(t)=0\Rightarrow $$
]
                          

                            [image: 
$$ -\mathrm{R}\mathrm{e}\left({\mathbf{V}}_S{e}^{\kern0.15em j\omega \kern0.1em t}\right)+\mathrm{R}\mathrm{e}\left({\mathbf{V}}_R{e}^{\kern0.15em j\omega \kern0.1em t}\right)+\mathrm{R}\mathrm{e}\left({\mathbf{V}}_C{e}^{\kern0.15em j\omega \kern0.1em t}\right)=0\Rightarrow $$
]
                          

                            [image: 
$$ \mathrm{R}\mathrm{e}\left(-{\mathbf{V}}_S{e}^{\kern0.15em j\omega \kern0.1em t}+{\mathbf{V}}_R{e}^{\kern0.15em j\omega \kern0.1em t}+{\mathbf{V}}_C{e}^{\kern0.15em j\omega \kern0.1em t}\right)=0\Rightarrow $$
]
                          

                            [image: 
$$ -{\mathbf{V}}_S{e}^{\kern0.15em j\omega \kern0.1em t}+{\mathbf{V}}_R{e}^{\kern0.15em j\omega \kern0.1em t}+{\mathbf{V}}_C{e}^{\kern0.15em j\omega \kern0.1em t}=0\Rightarrow $$
]
                          

                            [image: 
$$ -{\mathbf{V}}_S+{\mathbf{V}}_R+{\mathbf{V}}_C=0 $$
]
                          

	
Analytical solution method (calculator)
	
                            [image: A331468_1_En_8_Figap_HTML.gif]
                          

	
Numerical solution method (MATLAB)
	
                            [image: A331468_1_En_8_Figaq_HTML.gif]
                          

	
Source transformation; Thévenin and Norton equivalent circuits
	
                            [image: A331468_1_En_8_Figar_HTML.gif]
                          

                            [image: 
$$ {\mathbf{Z}}_T={\mathbf{Z}}_N,\;{\mathbf{V}}_T={\mathbf{Z}}_T{\mathbf{I}}_N,\;{\mathbf{I}}_N=\frac{{\mathbf{V}}_T}{{\mathbf{Z}}_T} $$
]
                          




                Table 1Some basic operations with complex numbers





	
                            [image: 
$$ {\mathrm{e}}^{\kern0.18em j0}=1,\kern1em {\mathrm{e}}^{\kern0.18em j\pi /2}=j,\kern1em {\mathrm{e}}^{-j\pi /2}=-j,\kern1em {\mathrm{e}}^{\kern0.18em j\pi }=-1,\kern1em {\mathrm{e}}^{-j\pi }=-1,\kern1em \left|{\mathrm{e}}^{\kern0.18em j\alpha}\right|=1 $$
]
                          

	
                            [image: 
$$ j=\angle 90{}^{\circ},\kern1em \frac{1}{j}=\angle -90{}^{\circ},\kern1em {j}^2=-1,\kern1em \frac{1}{j}=-j,\kern1em \left|j\right|=1 $$
]
                          

	
                            [image: 
$$ {V}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\varphi }={V}_{\mathrm{m}}\angle \varphi ={V}_{\mathrm{m}}\left( \cos \varphi +j \sin \varphi \right),\kern1em {V}_{\mathrm{m}}{\mathrm{e}}^{-j\varphi }={V}_{\mathrm{m}}\angle -\phi ={V}_{\mathrm{m}}\left( \cos \varphi -j \sin \varphi \right) $$
]
                          

                            [image: 
$$ \left|{V}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\varphi}\right|=\left|{V}_{\mathrm{m}}{\mathrm{e}}^{-j\varphi}\right|={V}_{\mathrm{m}} $$
]
                          

	
                            [image: 
$$ x+jy={V}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\varphi },\kern1em {V}_{\mathrm{m}}=\sqrt{x^2+{y}^2},\kern1em \varphi = \arctan \left(\frac{y}{x}\right),\kern1em x\ge 0 $$
]
                          

	
                            [image: 
$$ \frac{1}{x+jy}=\frac{x}{x^2+{y}^2}-j\frac{y}{x^2+{y}^2} $$
]
                          

	
                            [image: 
$$ \frac{1}{x+jy}=\frac{1}{V_{\mathrm{m}}}{\mathrm{e}}^{-j\varphi },\kern1em {V}_{\mathrm{m}}=\sqrt{x^2+{y}^2},\kern1em \varphi = \arctan \left(\frac{y}{x}\right),\kern1em x\ge 0 $$
]
                          

	
                            [image: 
$$ {\left(x+jy\right)}^{*}=x-jy,\kern1em {\left({V}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\varphi}\right)}^{*}={V}_{\mathrm{m}}{\mathrm{e}}^{-j\varphi },\kern1em {\left({V}_{\mathrm{m}}\angle \varphi \right)}^{*}={V}_{\mathrm{m}}\angle -\varphi $$
]
                          

	
                            [image: 
$$ {V}_{\mathrm{m}}\angle \varphi \cdot {I}_{\mathrm{m}}\angle \psi =\left({V}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\varphi}\right)\left({I}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\psi}\right)={V}_{\mathrm{m}}{I}_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\left(\varphi +\psi \right)}={V}_{\mathrm{m}}{I}_{\mathrm{m}}\angle \left(\varphi +\psi \right) $$
]
                          

	
                            [image: 
$$ \frac{V_{\mathrm{m}}\angle \varphi }{I_{\mathrm{m}}\angle \psi }=\frac{V_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\varphi }}{I_{\mathrm{m}}{\mathrm{e}}^{\kern0.18em j\psi }}=\frac{V_{\mathrm{m}}}{I_{\mathrm{m}}}{\mathrm{e}}^{\kern0.18em j\left(\varphi -\psi \right)}=\frac{V_{\mathrm{m}}}{I_{\mathrm{m}}}\angle \left(\varphi -\psi \right) $$
]
                          




                Table 2Selected trigonometric identities


	
                            [image: 
$$ \sin \alpha = \cos \left(\alpha -\pi /2\right),\kern0.5em - \sin \alpha = \cos \left(\alpha +\pi /2\right),\kern0.5em \cos 2\alpha =2{ \cos}^2\alpha -1,\kern0.5em \sin 2\alpha =2 \sin \alpha \cos \alpha $$
]
                          

	
                            [image: 
$$ \begin{array}{l} \cos \left(\alpha +\beta \right)= \cos \alpha \cos \beta - \sin \alpha \sin \beta \kern1em \cos \alpha \cos \beta =0.5\left( \cos \left(\alpha +\beta \right)+ \cos \left(\alpha -\beta \right)\right)\\ {} \sin \left(\alpha +\beta \right)= \sin \alpha \cos \beta + \cos \alpha \sin \beta \kern1em \sin \alpha \sin \beta =0.5\left( \cos \left(\alpha -\beta \right)- \cos \left(\alpha +\beta \right)\right)\\ {}\kern15.75em \sin \alpha \cos \beta =0.5\left( \sin \left(\alpha +\beta \right)+ \sin \left(\alpha -\beta \right)\right)\end{array} $$
]
                          

	
                            [image: 
$$ \cos \alpha + \cos \beta =2 \cos \left(\frac{\alpha +\beta }{2}\right) \cos \left(\frac{\alpha -\beta }{2}\right)\kern1em \sin \alpha + \sin \beta =2 \sin \left(\frac{\alpha +\beta }{2}\right) \cos \left(\frac{\alpha -\beta }{2}\right) $$
]
                          

	
                            [image: 
$$ \arctan \varphi =\frac{\pi }{2}- \arctan \frac{1}{\varphi },\kern1em \varphi >0\kern2em \arctan \varphi =-\frac{\pi }{2}- \arctan \frac{1}{\varphi },\kern1em \varphi <0 $$
]
                          

	
                            [image: 
$$ {C}_1 \cos \omega t+{C}_2 \sin \omega t=\sqrt{C_1^2+{C}_2^2} \cos \left(\omega t+\varphi \right),\kern1em \varphi =- \arctan \left(\frac{C_2}{C_1}\right)\kern1em {C}_1,\kern0.5em {C}_2>0 $$
]
                          

	
                            [image: 
$$ {C}_1 \cos \left(\omega \kern0.1em t+\varphi \right)\cdot {C}_2 \cos \left(\omega \kern0.1em t+\psi \right)=0.5{C}_1{C}_2\left( \cos \left(\varphi -\psi \right)+ \cos \left(2\omega t+\varphi +\psi \right)\right) $$
]
                          

	
                            [image: 
$$ \begin{array}{l}{C}_1 \cos \left(\omega \kern0.1em t+\varphi \right)+{C}_2 \cos \left(\omega \kern0.1em t+\psi \right)=C \cos \left(\omega t+\varphi \right)\\ {}C=\sqrt{C_1^2+{C}_2^2+2{C}_1{C}_2 \cos \left(\varphi -\psi \right)}\\ {}\phi =\varphi - \arctan \left(\frac{C_2 \sin \left(\varphi -\psi \right)}{C_1+{C}_2 \cos \left(\varphi -\psi \right)}\right)+\left\{\begin{array}{c}\hfill 0\kern1em {C}_1+{C}_2 \cos \left(\varphi -\psi \right)>0\hfill \\ {}\hfill \pi \kern1em {C}_1+{C}_2 \cos \left(\varphi -\psi \right)<0\hfill \end{array}\right.\end{array} $$
]
                          




              


Problems
8.1 Harmonic Voltage and Current: Phasor

                  8.1.1 Harmonic Voltages and Currents
                

                  8.1.2 Phase: Leading and Lagging
                
Problem 8.1

                    	A.
Write

 a general expression for the AC harmonic voltage signal (steady-state AC voltage) using the cosine function.


 

	B.Identify amplitude, angular frequency, and phase.


 

	C.
Write relations between the angular frequency, frequency, and the period.


 




                  

Problem 8.2

                    	A.Determine frequency in Hz, angular frequency in rad/s, and amplitude of the harmonic voltage signal shown in the figure below (show units for every quantity).


 

	B.
Write the AC voltage in the form of a cosine function with the

 corresponding amplitude, frequency, and phase.[image: A331468_1_En_8_Figc_HTML.gif]





 




                  

Problem 8.3
Repeat problem 8.2 for the voltage signal shown in the figure below.[image: A331468_1_En_8_Figd_HTML.gif]




Problem 8.4
Repeat problem 8.2 for a harmonic voltage signal with a DC offset shown in the figure below.[image: A331468_1_En_8_Fige_HTML.gif]




Problem 8.5

                    	A.Determine frequency in Hz, angular frequency in rad/s, amplitude, and phase (versus the base cos ω t signal) of the harmonic voltage shown in the figure below (show units for every quantity).


 

	B.
Write the AC voltage in the form of a cosine function with the 

corresponding amplitude, frequency, and phase.


                            [image: A331468_1_En_8_Figf_HTML.gif]


                          


 




                  

Problem 8.6
Repeat problem 8.5 for the voltage signal shown in the figure below.[image: A331468_1_En_8_Figg_HTML.gif]




Problem 8.7
Repeat problem 8.5 for the voltage signal shown in the figure below.[image: A331468_1_En_8_Figh_HTML.gif]




Problem 8.8
Repeat problem 8.5 for the voltage signal shown in the figure below.[image: A331468_1_En_8_Figi_HTML.gif]




Problem 8.9

An 

AC voltage in a circuit is given by [image: 
$$ \upsilon (t)=10 \cos \left(2\pi 50t\right)\kern0.5em \left[\mathrm{V}\right] $$
]. Using software of your choice, plot the voltage to scale over the time interval of two periods, i.e., [image: 
$$ 0\le t\le 2T $$
]. Label the axes.


Problem 8.10

An AC voltage in a circuit is given by the voltage expression [image: 
$$ \upsilon (t)=10 \cos \left(1000t-\pi /3\right)\kern0.5em \left[\mathrm{V}\right] $$
]. Using software of your choice, plot the voltage to scale over the time interval of four periods, i.e., [image: 
$$ 0\le t\le 4T $$
]. Label the axes.


Problem 8.11
The reference voltage is shown by a solid curve in the figure; the AC voltage under study is shown by a dashed curve. Determine if the AC voltage under study leads or lags the reference voltage, and, if so, by how many degrees.[image: A331468_1_En_8_Figj_HTML.gif]




Problem 8.12
Repeat problem 8.11 for the voltage signal shown in the figure below.[image: A331468_1_En_8_Figk_HTML.gif]




Problem 8.13

Repeat 

problem 8.11 for the voltage signal shown in the figure below.[image: A331468_1_En_8_Figl_HTML.gif]




Problem 8.14
Determine the frequency in Hz, period in s, amplitude in V, and phase in degrees (versus the base cosine signal) of the voltage signal in the form [image: 
$$ \upsilon (t)=15 \sin \left(100\;t+45{}^{\circ}\right)\kern0.5em \left[\mathrm{V}\right] $$
]. Hint: Convert the signal to the base cosine form first.


Problem 8.15
Determine the frequency in Hz, period in s, amplitude in V, and phase in radians (versus the base cosine signal) of the voltage signal in the form [image: 
$$ \upsilon (t)=15 \sin \left(1000\;t-35{}^{\circ}\right)\kern0.5em \left[\mathrm{V}\right] $$
]. Hint: Convert the signal to the base cosine form first.


Problem 8.16

Determine

 the frequency in Hz, period in s, amplitude in V, peak-to-peak value in V, and phase in radians (versus the base cosine signal) of the voltage signal in the form [image: 
$$ \upsilon (t)=5 \sin \left(100\;t+225{}^{\circ}\right)\kern0.5em \left[\mathrm{V}\right] $$
]. Hint: Convert the signal to the base cosine form first.


Problem 8.17
The AC voltage is given by a combination of two sinusoids:	A.
                            [image: 
$$ \upsilon (t) = 1 \sin  \left(\omega \kern0.1em t+ \pi /2\right) - 2 \sin  \left(\omega \kern0.1em t-\pi /2\right) $$
]
                          


 

	B.
                            [image: 
$$ \upsilon (t) = 1 \sin  \left(\omega  t+\pi  /2\right)-2 \sin \left(\omega  t-\pi /3\right) $$
]
                          


 





Convert this voltage to the basic cosine form
[image: 
$$ \upsilon (t)={V}_{\mathrm{m}} \cos \left(\omega \kern0.1em t+\varphi \right) $$
] and determine the amplitude and the phase (versus the base cosine signal).

Hint: Trigonometric identities may be found in the summary to this chapter.



                  8.1.4 Definition of a Phasor
                

                  8.1.5 From Real Signals to Phasors
                

                  8.1.6 From
                  
                    Phasors to Real Signals
                    
                    
                  
                
Problem 8.18
Determine the

 phasors for the real-valued AC voltages and currents. Show units. Express all phase angles in radians.[image: 
$$ \begin{array}{l}\upsilon (t)=10 \cos \left(\omega \kern0.1em t+\pi /3\right)\kern1em \left[\mathrm{V}\right]\\ {}\upsilon (t)=3 \cos \left(\omega \kern0.1em t-30{}^{\circ}\right)\kern1em \left[\mathrm{V}\right]\\ {}i(t)=12 \cos \left(\omega \kern0.1em t+\pi /6\right)\kern1em \left[\mathrm{A}\right]\\ {}i(t)=-1 \cos \left(\omega \kern0.1em t-\pi /2\right)\kern1em \left[\mathrm{A}\right]\end{array} $$
]





Problem 8.19

Determine the phasors for the real-valued AC voltages and currents. Use the shorthand notation ∠ for the complex exponent. Show units. Express all phase angles in degrees.[image: 
$$ \begin{array}{l}\upsilon (t)=10 \sin \left(\omega \kern0.1em t+\pi /3\right)\kern1em \left[\mathrm{V}\right]\\ {}\upsilon (t)=3 \cos \left(100\kern0.1em t-30{}^{\circ}\right)\kern1em \left[\mathrm{V}\right]\\ {}i(t)=-12 \sin \left(\omega \kern0.1em t+\pi /6\right)\kern1em \left[\mathrm{A}\right]\\ {}i(t)= \cos \left(\omega \kern0.1em t\right)+ \sin \left(\omega t\right)\kern1em \left[\mathrm{A}\right]\end{array} $$
]





Problem 8.20
The phasors of the AC voltage and current are given by[image: 
$$ \begin{array}{l} \mathbf{V}=5\angle \pi /3\kern1em \left[\mathrm{V}\right]\\ {} \mathbf{V}=3\angle \pi \kern1em \left[\mathrm{V}\right]\\ {}\mathbf{I}=2.1\angle 45{}^{\circ}\kern1em \left[\mathrm{A}\right]\\ {}\mathbf{I}=1\angle -180{}^{\circ}\kern1em \left[\mathrm{A}\right]\end{array} $$
]




The AC source has the angular frequency ω. Restore the corresponding real-valued voltages and currents. Show units; express 

all phase angles in radians.


Problem 8.21
The phasors of the AC voltage and current are given by[image: 
$$ \begin{array}{l} \mathbf{V}=10\angle \pi /2\kern1em \left[\mathrm{V}\right]\\ {} \mathbf{V}=15\angle -\pi /3\kern1em \left[\mathrm{V}\right]\\ {}\mathbf{I}=-20\angle -16{}^{\circ}\kern1em \left[\mathrm{A}\right]\\ {}\mathbf{I}=j\angle 45{}^{\circ}\kern1em \left[\mathrm{A}\right]\end{array} $$
]




The AC source has the angular frequency ω. Restore the corresponding real-valued voltages and currents as functions of time. Show units. Express all phase angles in radians.


Problem 8.22
The phasors of the AC voltage and current are given by[image: 
$$ \begin{array}{l} \mathbf{V}=-1\kern1em \left[\mathrm{V}\right]\\ {} \mathbf{V}=\angle \pi +\angle -\pi \kern1em \left[\mathrm{V}\right]\\ {}\mathbf{I}=-2\angle 45{}^{\circ}\kern1em \left[\mathrm{A}\right]\\ {}\mathbf{I}=\angle 45{}^{\circ}+\angle -45{}^{\circ}\kern1em \left[\mathrm{A}\right]\end{array} $$
]




The AC source has the angular frequency ω. Restore the corresponding real-valued voltages and currents. Show units; express all phase angles in degrees.



                  8.1.7 Polar and Rectangular Forms: Phasor Magnitude
                

                  8.1.8 Operations with Phasors and Phasor
                  
                    Diagram
                    
                    
                  
                
Problem 8.23
A complex number V is given by [image: 
$$ \mathbf{V}=4+j\;2 $$
].	A.Convert it into polar form; express the phase angle in degrees.


 

	B.Plot the number on the phasor diagram.


 

	C.If this number is a phasor of a voltage signal with the units of volts, what is the voltage signal in time domain? Assume the angular frequency ω.[image: A331468_1_En_8_Figm_HTML.gif]





 






Problem 8.24
Repeat problem 8.23 for [image: 
$$ \mathbf{V}=4 \exp \left(-j\pi /6\right) $$
], but convert this number to the rectangular form.


Problem 8.25
Repeat problem 8.23 for [image: 
$$ \mathbf{V}=25/\left(3+j4\right) $$
].


Problem 8.26

Phasors of three AC voltage signals are shown in Fig. 8.8. Every division in the figure corresponds to 1 V. The AC source has the angular frequency ω. Restore the corresponding real-valued voltages in time domain. Show units. Express all phase angles in radians.


Problem 8.27
The phasors of the AC voltage and current are given in the rectangular form:[image: 
$$ \begin{array}{l} \mathbf{V}=3+j2\kern1em \left[\mathrm{V}\right]\\ {}\mathbf{I}=-2+j3\kern1em \left[\mathrm{A}\right]\end{array} $$
]





The AC source has the angular frequency ω. Restore the 

corresponding real-valued voltages and currents. Show units, express all phase angles in radians.


Problem 8.28*
Solve the previous problem using MATLAB. Present the corresponding MATLAB script.


Problem 8.29
The phasors of the AC voltage and current are given in the rectangular form:[image: 
$$ \begin{array}{l}\mathbf{V}={\left(3+j2\right)}^2\kern1em \left[\mathrm{V}\right]\\ {}\mathbf{V}=\left(-2+j3\right)\left(7+j\right)\kern1em \left[\mathrm{V}\right]\\ {}\mathbf{V}=\frac{1}{-0.2+j0.1}\kern1em \left[\mathrm{V}\right]\end{array} $$
]




The AC source has the angular frequency ω. Restore the corresponding real-valued voltages and currents. Show units; express all phase angles in radians.


Problem 8.30
Solve the previous problem using 

MATLAB. Present the corresponding MATLAB script.


Problem 8.31
Two phasor voltages are shown in the phasor diagram. The AC source has the angular frequency ω. Restore the corresponding real-valued voltages. Show units. Express all phase angles in radians.[image: A331468_1_En_8_Fign_HTML.gif]




Problem 8.32
Phasors of two AC current signals are shown in the following figure. The AC source has the angular frequency ω. A sum of two current signals is desired. Restore the real-valued current corresponding to the sum of three signals in time domain. Express the phase angle in degrees.[image: A331468_1_En_8_Figo_HTML.gif]




Problem 8.33

Phasors of three AC voltage signals are shown in Fig. 8.8. Every division in the figure corresponds to 1 V. The AC source has the angular frequency ω. A sum of three voltage signals is desired. Restore the real-valued voltage corresponding to the 

sum of three signals in time domain. Express the phase angle in degrees.


Problem 8.34
Solve the previous problem using MATLAB. Present the corresponding MATLAB script.


Problem 8.35
Voltages of two series elements, shown in the figure below,[image: A331468_1_En_8_Figp_HTML.gif]



are given by[image: 
$$ \begin{array}{l}{\upsilon}_1(t)=5 \cos \left(\omega \kern0.1em t+45{}^{\circ}\right)\kern1em \left[\mathrm{V}\right]\\ {}{\upsilon}_2(t)=5 \cos \left(\omega \kern0.1em t-45{}^{\circ}\right)\kern1em \left[\mathrm{V}\right]\end{array} $$
]



	A.
Draw the phasor diagram and show phasors V
1, V
2 to scale as two vectors in the complex plane.


 

	B.Show the sum [image: 
$$ \mathbf{V}={\mathbf{V}}_1+{\mathbf{V}}_2 $$
] as a vector in the complex plane.


 

	A.
Find voltage υ(t) between terminals a and b using the phasor method. 
                              
                              
                            Express the phase angle in degrees.


 

	C.Does voltage υ
1(t) lag or lead voltage υ
2(t)?


 






Problem 8.36

Repeat the previous problem for:[image: 
$$ \begin{array}{l}{\upsilon}_1(t)=1 \cos \left(\omega \kern0.1em t+60{}^{\circ}\right)\kern1em \left[\mathrm{V}\right]\\ {}{\upsilon}_2(t)=2 \cos \left(\omega \kern0.1em t-30{}^{\circ}\right)\kern1em \left[\mathrm{V}\right]\end{array} $$
]





Problem 8.37
Electric currents through two parallel circuit elements are shown in the following figure:[image: A331468_1_En_8_Figq_HTML.gif]



The current expressions are given by[image: 
$$ \begin{array}{l}{i}_1(t)=4 \cos \left(\omega t+45{}^{\circ}\right)\kern1em \left[\mathrm{A}\right]\\ {}{i}_2(t)=2 \cos \left(\omega t-60{}^{\circ}\right)\kern1em \left[\mathrm{A}\right]\end{array} $$
]



	A.
Draw the phasor diagram and show phasors I
1, I
2 to scale as two vectors in the complex plane.


 

	B.Show the difference [image: 
$$ \mathbf{I}={\mathbf{I}}_1-{\mathbf{I}}_2 $$
] as a vector in the complex plane.


 

	C.Find the net current i(t) of the parallel combination using the phasor

 method. Express the phase angle in degrees.


 

	D.Does the net current i(t) lag or lead current i
1(t)?


 







8.2 Impedance

                  8.2.1 The Concept of Impedance
                

                  8.2.2 Physical Meaning of the
                  
                    Impedance
                    
                    
                  
                
Problem 8.38

Prove that the impedance of the inductor, [image: 
$$ {\mathbf{Z}}_{\mathrm{L}}=j\omega \kern0.1em L $$
], has units of ohms.

Hint: The imaginary unit j is dimensionless. However, in the context of phasors, it may be assigned the units of rad−1.


Problem 8.39
Prove that the impedance of the capacitor, [image: 
$$ {\mathbf{Z}}_{\mathrm{C}}=\frac{1}{j\omega C} $$
] has units of ohms.

Hint: The imaginary unit j is dimensionless. 
                      
                      
                    However, in the context of phasors, it may be assigned the units of rad−1.


Problem 8.40
An ECE student discovers a “new” dynamic passive circuit element N (in addition to the inductor and the capacitor) that is described by the voltage-to-current relation [image: 
$$ {\upsilon}_N=N\frac{d^2{i}_N}{d{t}^2} $$
] where N is a positive constant:	A.Obtain the impedance for this circuit element.


 

	B.
Do you think such a circuit element may exist? Why or why not? Hint: The real part of the impedance is the element resistance. If the resistance is negative, the element delivers power instead of absorbing it.


 






Problem 8.41
Another ECE student discovers a “truly new” dynamic passive circuit element N (in addition to the inductor and the capacitor) that is described by the voltage-to-current relation [image: 
$$ {\upsilon}_N=N\frac{d^3{i}_N}{d{t}^3} $$
] where N is a constant:	A.Obtain the impedance for this circuit element.


 

	B.
Do you think such a circuit element may exist? Why or why not? Hint: The real part of the impedance is the element resistance. If the resistance is negative, the element delivers 

power instead of absorbing it.


 






Problem 8.42

For three AC circuits shown in the following figure, find the impedance of the resistor, inductor, and capacitor (when present). Show units. Express the result in rectangular form. Also express the result in polar form using the shorthand notation [image: 
$$ \angle $$
]. Determine the magnitude of the impedance. Does the strength of the power supply have an effect on the obtained impedance values?[image: A331468_1_En_8_Figr_HTML.gif]




Problem 8.43
Repeat problem 8.42 if the AC voltage power supply in every figure is replaced by an alternating current power supply with the same frequency and amplitude of 0.5 A.


Problem 8.44
Voltages (dashed curves) and the corresponding currents (solid curves) for three unknown circuit elements are shown in the figure below.[image: A331468_1_En_8_Figs_HTML.gif]



Determine:	A.The type of the element (resistor, capacitor, or inductor)


 

	B.The value of the corresponding resistance, inductance, or capacitance


 





Note that the angular frequency is 

different in every case.

Problem 8.45
Voltages (dashed curves) and currents (solid curves) for three unknown circuit elements are shown in the figure below.[image: A331468_1_En_8_Figt_HTML.gif]



Determine:	A.The type of the element (resistor, capacitor, or inductor)


 

	B.The value of the corresponding resistance, inductance, or capacitance


 






Problem 8.46
Phasor voltages and currents for three unknown circuit elements are shown in the figure below. Determine the type of the 

element (R, L, or C) and the value of R, L, or C.[image: A331468_1_En_8_Figu_HTML.gif]




Problem 8.47

Phasor voltages and phasor currents for three unknown circuit elements are shown in the figure below. Determine the type of the element (R, L, or C) and the value of R, L, or C when appropriate.[image: A331468_1_En_8_Figv_HTML.gif]




Problem 8.48*
The following MATLAB script plots the real-valued signals in time domain corresponding to the phasor voltage [image: 
$$ \mathbf{V}=5\angle 30{}^{\circ}\kern0.5em \left[\mathrm{V}\right] $$
]
and to the phasor current [image: 
$$ \mathbf{I}=2\angle -60{}^{\circ}\kern0.5em \left[\mathrm{A}\right] $$
] for an inductor.

                    
clear all
                  

                    
f = 2e6; % frequency, Hz
                  

                    
T = 1/f; % period, sec
                  

                    
dt = T/100; % sampling int.
                  

                    
t = [0:dt:2.5*T]; % time vector
                  

                    
vL = 5*cos(2*pi*f*t+pi/6); % voltage
                  

                    
iL = 2*cos(2*pi*f*t-pi/3); % current
                  

                    
t = t/T; % time in periods
                  

                    
plot(t, vL, 'b');
                  

                    
grid on; hold on;
                  

                    
plot(t, iL, 'r');
                  

                    
xlabel('t/T');
                  

                    
ylabel('voltage/current')
                  

Modify the script and plot the real-
                      
                      
                    valued voltages and currents corresponding to the phasors shown in the phasor diagrams for Problem 8.46.


Problem 8.49
Repeat the previous problem for the phasors shown in the phasor diagrams for Problem 8.47.


8.3 Principles of AC Circuit Analysis

                  8.3.1 AC Circuit Analysis: KVL, KCL, and Equivalent Impedances
                

                  8.3.2 Complete Solution for an AC Circuit: KVL and KCL on Phasor
                  
                    Diagram
                    
                    
                  
                
Problem 8.50
For the AC circuit element combinations shown in the figure that follows,[image: A331468_1_En_8_Figw_HTML.gif]




                    	A.Find the equivalent impedance Z
eq in 
                              
                              
                            polar form given that [image: 
$$ \omega =10000\kern0.5em \mathrm{rad}/\mathrm{s} $$
], [image: 
$$ C=0.1\kern0.5em \upmu \mathrm{F} $$
], [image: 
$$ L=100\kern0.5em \mathrm{mH} $$
], [image: 
$$ R=1\kern0.5em \mathrm{k}\Omega $$
].


 

	B.Plot the result for the partial impedances and for Z
eq on the corresponding phasor diagram.


 




                  

Problem 8.51
Find Z
eq in the polar form for the circuit element combination shown in the figure below when [image: 
$$ \omega =100,000\kern0.5em \mathrm{rad}/\mathrm{s} $$
], [image: 
$$ C=100\kern0.5em \mathrm{nF} $$
], [image: 
$$ L=1\kern0.5em \mathrm{mH} $$
], [image: 
$$ R=100\kern0.5em \Omega $$
].[image: A331468_1_En_8_Figx_HTML.gif]




Problem 8.52
For three circuit

 element combinations shown in the figure below,
find Z
eq given that [image: 
$$ \omega =2000\kern0.5em \mathrm{rad}/\mathrm{s} $$
], [image: 
$$ C=5\kern0.5em \upmu \mathrm{F} $$
], [image: 
$$ L=50\kern0.5em \mathrm{mH} $$
], [image: 
$$ R=1\kern0.5em \mathrm{k}\Omega $$
].[image: A331468_1_En_8_Figy_HTML.gif]




Problem 8.53
A complex impedance of any circuit may be written in the form [image: 
$$ \mathbf{Z}=R+jX $$
] where R is called the resistance and X is called the electrical reactance or simply the reactance. An engineer measures a reactance of 2 Ω over an inductor at 60 Hz. What is the inductance?


Problem 8.54
The same engineer measures a reactance of −1 kΩ over a capacitor at 60 Hz. What is the capacitance?


Problem 8.55

For the circuit shown in the figure below, [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=10 \cos \omega t\kern0.5em \left[\mathrm{V}\right],\omega =10,000\kern0.5em \mathrm{rad}/\mathrm{s},\kern0.5em C=1\kern0.5em \upmu \mathrm{F},\kern0.5em R=100\kern0.5em \Omega $$
]:	A.Find phasor current I and phasor voltages, V
R, V
C, and construct the voltage phasor diagram for phasors V
R, V
C, V
S.


 

	B.Find voltages across the resistor and capacitor, υ
R(t) and υ
C(t), as 

functions of time.[image: A331468_1_En_8_Figz_HTML.gif]





 






Problem 8.56
For the circuit shown in the figure below, [image: 
$$ {i}_{\mathrm{S}}(t)=1 \cos \omega t\kern0.5em \left[\mathrm{A}\right] $$
] and [image: 
$$ \omega =10,000\kern0.5em \mathrm{rad}/\mathrm{s},\ C=1\kern0.5em \upmu \mathrm{F},\ R=100\Omega $$
].	A.Find phasor voltages V
R, V
C, V and construct the voltage phasor diagram for phasors V, V
R, V
C.


 

	B.Find voltages across the resistor and capacitor, υ
R(t) and υ
C(t), as functions of time.[image: A331468_1_En_8_Figaa_HTML.gif]





 






Problem 8.57

Repeat 

problem 8.55 when [image: 
$$ C=2.2\kern0.5em \upmu \mathrm{F} $$
]. The rest of the parameters are the same.


Problem 8.58
Repeat problem 8.55 when [image: 
$$ C=2.2\kern0.5em \upmu \mathrm{F} $$
] and [image: 
$$ f=500\kern0.5em \mathrm{Hz} $$
]. The rest of the parameters are the same.


Problem 8.59

In the circuit shown in the figure below, [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=12 \cos \omega t\ \left[\mathrm{V}\right],\ \omega =10,000\ \mathrm{rad}/\mathrm{s},L=1\kern0.5em \mathrm{mH},\kern0.5em R=10\kern0.5em \Omega $$
]:	A.Find phasor current I and phasor voltages, V
R, V
L, and construct the voltage phasor diagram for phasors V
R, V
C, V
S.


 

	B.Find voltages across the resistor and inductor, υ
R(t) and υ
L(t), as functions of time.[image: A331468_1_En_8_Figab_HTML.gif]





 






Problem 8.60

For the 

circuit shown in the figure, [image: 
$$ {i}_{\mathrm{S}}(t)=1 \cos \omega t\ \left[\mathrm{A}\right] $$
] and [image: 
$$ \omega =10,000\ \mathrm{rad}/\mathrm{s},\kern0.15em L=10\kern0.5em \mathrm{mH},\kern0.5em R=100\kern0.5em \Omega $$
]:	A.Find phasor voltages, V
R, V
L, V and construct the voltage phasor diagram for phasors V, V
R, V
C.


 

	B.Find voltages across the resistor and inductor, υ
R(t) and υ
L(t), as functions of time.[image: A331468_1_En_8_Figac_HTML.gif]





 






Problem 8.61
Repeat Problem 8.59 when [image: 
$$ L=1.9\kern0.5em \mathrm{mH} $$
]. Assume the other parameters to be the same.


Problem 8.62
Repeat Problem 8.59 when [image: 
$$ L=6.8\kern0.5em \mathrm{mH} $$
] and [image: 
$$ f=1000\kern0.5em \mathrm{Hz} $$
]. The rest of the parameters are the same.



                  8.3.3 Source Transformation
                

                  8.3.4 Thévenin and Norton Equivalent Circuits
                

                  8.3.5 Summary of AC Circuit Analysis at a Single Frequency
                

                  8.3.6 Multi-frequency AC Circuit Analysis:
                  
                    Superposition Principle
                    
                    
                  
                
Problem 8.64
A current source with the phasor current I

                      N
                     and in parallel with the impedance Z

                      N
                     shown in the following figure is equivalent to a voltage source with the phasor voltage V
T and in series with the impedance Z
T. Determine V
T and Z
T given that [image: 
$$ {\mathbf{I}}_N=2+j3\kern0.5em \mathrm{A} $$
], [image: 
$$ {\mathbf{Z}}_N=2-j3\kern0.5em \Omega $$
]. Express your result in the polar form.[image: A331468_1_En_8_Figad_HTML.gif]




Problem 8.65

Determine phasor voltage V
1 in the AC circuit shown in the following figure 
                      
                      
                    using the method of source transformation. The impedance values are given at the frequency of interest.[image: A331468_1_En_8_Figae_HTML.gif]




Problem 8.66

Find the Thévenin equivalent circuit, i.e., V
T and Z
T, for the circuit shown in the figure when [image: 
$$ \omega =377\ \mathrm{rad}/\mathrm{s},L=26.5\ \mathrm{mH},\ R=10\ \Omega,\ C=220\ \upmu \mathrm{F},{\upsilon}_{\mathrm{S}}(t)=10 \cos \omega t\kern0.5em \left[\mathrm{V}\right]. $$
]
[image: A331468_1_En_8_Figaf_HTML.gif]




Problem 8.67

Find the Thévenin equivalent circuit, i.e., V
T and Z
T, for the circuit shown in the figure when [image: 
$$ \omega =377\kern0.5em \mathrm{rad}/\mathrm{s},L=26.5\kern0.5em \mathrm{mH},R=10\ \Omega, C=500\kern0.5em \upmu \mathrm{F},\mathrm{and}\kern0.5em {V}_{\mathrm{S}}(t)=10 \cos \omega \kern0.1em t\kern0.5em \left[\mathrm{V}\right]. $$
]
[image: A331468_1_En_8_Figag_HTML.gif]




Problem 8.68

Describe 

the meaning of the superposition principle for multifrequency AC circuits in your own words.


Problem 8.69
Find real-valued voltage υ
R(t) across the resistor for the circuit in the following figure using the superposition principle. You are given [image: 
$$ {V}_1=10\kern0.5em \mathrm{V},\kern0.5em {V}_2=1\kern0.5em \mathrm{V} $$
]. The AC frequencies are [image: 
$$ {\omega}_1=377\kern0.5em \mathrm{rad}/\mathrm{s} $$
] and [image: 
$$ {\omega}_2=3{\omega}_1 $$
], respectively.[image: A331468_1_En_8_Figah_HTML.gif]
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Overview

              Prerequisites:
	Knowledge of complex arithmetic

	Knowledge of superposition principle for linear circuits (Chapter 3)

	Knowledge of harmonic voltage and current behavior (Chapter 8)

	Knowledge of phasor/impedance method for AC circuit analysis (Chapter 8)

	Knowledge of an operational amplifier with negative feedback (Chapter 5)




              Objectives of Section 9.1:
	Establish the concept of a first-order analog filter as a two-port network

	Understand the difference between high-pass and low-pass filters

	Understand the effect of filter termination

	Become familiar with the fundamental filter characteristics including transfer function, break frequency, roll-off, and high-/low-frequency asymptotes

	Understand the construction of the Bode plot including decibels; become familiar with some of the jargon used by electrical engineers

	Establish the close agreement between first-order RC and RL filters; become familiar with the concept of cascaded filter networks




              Objectives of Section 9.2:
	Establish the model for the open-loop gain of an operational amplifier as a function of frequency

	Understand the meaning of datasheet parameters such as unity-gain bandwidth and gain-bandwidth product

	Establish the model for the closed-loop gain of an operational amplifier as a function of frequency from first principles

	Find the frequency bandwidth for any practical operational amplifier circuit using the datasheet




              Objectives of Section 9.3:
	Obtain an introductory exposure to the continuous Fourier transform and be able to compute the transform for simple examples including the meaning of a sinc function

	Be able to relate continuous and discrete Fourier transform via the Riemann sum approximation

	Be able to define sampling points of the DFT in both time and frequency domain

	Understand the structure and ordering of the DFT frequency spectrum including its relation to negative frequencies

	Apply the DFT to a filter with a given transfer function and generate the discrete frequency spectrum of the output signal

	Apply the DFT to filter operation with input pulse or nonperiodic signals

	Apply the DFT (FFT and IFFT) in MATLAB




              Application examples:
	Effect of a load connected to the filter

	Effect of next-stage filter load

	Finding bandwidth of an amplifier circuit using the datasheet

	Selection of an amplifier IC for proper frequency bandwidth

	Numerical differentiation via the FFT

	Filter operation for an input pulse signal

	Converting computational electromagnetic solution from frequency domain to time domain




            

9.1 First-Order Filter Circuits and Their Combinations
AC voltage divider circuits (either RC or RL) generally operate as analog filters. They pass certain voltage signals but stop or cut out other signals, depending on the signal’s frequency content. The analog filters studied in this section are 
first-order filters

 since they may be described by first-order differential equations—we discussed them in Chapter 7. The phasor/impedance method is applied to solve the AC circuit, both in analytical and in numerical form. Although over the years the value of the numerical analysis has greatly increased in engineering, the analytical method remains important if we are interested in a parametric study such as a rigorous filter analysis. The analytical method involves (multiple) conversions of complex numbers or expressions from the rectangular to polar form and vice versa. Generally, division and multiplication are 

better carried out in polar form, whereas addition and subtraction require a rectangular form.
9.1.1 RC Voltage Divider as an Analog Filter
The RC voltage divider circuit

 shown in Fig. 9.1a is perhaps the oldest and best-known version of an analog filter. In order to understand its operation, we must obtain a general solution to the RC circuit in Fig. 9.1a. Even though the solution has to work at any frequency f or angular frequency ω of interest, it is not difficult to find.[image: A331468_1_En_9_Fig1_HTML.gif]
Fig. 9.1
RC

 voltage divider circuit and its solution by the phasor method. We note the phasors for the voltages V
S, V
R, V
C and the phasor for the circuit current I






What is an analog filter? The goal of the filter is to accept an AC voltage signal at its input and either pass the signal to the next circuit block or to stop (or “cut out”) the signal, depending on its particular frequency. Imagine a human voice that is mixed with white noise with a spectrum extended over all frequencies. If the noise level is high, we will probably only hear screaming at high frequencies. However, if we only pass the voltage signals with frequencies below 3 kHz, where most of the voice power is concentrated, the resulting total signal will be much clearer for listening. The analog filter is an electric circuit which, in its simplest form, is identical to the circuit in Fig. 9.1.
General Solution
Let us first convert the circuit in Fig. 9.1a to a phasor form as shown in Fig. 9.1b. We assume that [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \cos \omega \kern0.1em t $$
]; therefore [image: 
$$ {\mathbf{V}}_{\mathrm{S}}={V}_{\mathrm{m}} $$
]. Next, we solve the resulting “DC circuit”

 in the complex domain. The voltage division yields[image: 
$$ {\mathbf{V}}_{\mathrm{C}}=\frac{{\mathbf{Z}}_{\mathrm{C}}}{{\mathbf{Z}}_{\mathrm{R}}+{\mathbf{Z}}_{\mathrm{C}}}{V}_{\mathrm{m}}=\frac{\frac{1}{j\omega C}}{R+\frac{1}{j\omega C}}{V}_{\mathrm{m}}=\frac{1}{1+ j\omega RC}{V}_{\mathrm{m}}=\frac{1}{1+j\omega \kern0.1em \tau }{V}_{\mathrm{m}}\kern0.5em \left[\mathrm{V}\right] $$
]

 (9.1a)


[image: 
$$ {\mathbf{V}}_{\mathrm{R}}=\frac{{\mathbf{Z}}_{\mathrm{R}}}{{\mathbf{Z}}_{\mathrm{R}}+{\mathbf{Z}}_{\mathrm{C}}}{V}_{\mathrm{m}}=\frac{R}{R+\frac{1}{j\omega C}}{V}_{\mathrm{m}}=\frac{j\omega RC}{1+ j\omega RC}{V}_{\mathrm{m}}=\frac{j\omega \tau }{1+j\omega \kern0.1em \tau }{V}_{\mathrm{m}}\kern0.5em \left[\mathrm{V}\right] $$
]

 (9.1b)

where [image: 
$$ \tau =RC $$
] is exactly the same time constant that appears for transient circuits

 in Chapter 7. Converting Eq. (9.1a) and (9.1b) into polar form gives[image: 
$$ {\mathbf{V}}_{\mathrm{C}}=\frac{1}{\sqrt{1+{\left(\omega \kern0.1em \tau \right)}^2}}{V}_{\mathrm{m}}\angle {\varphi}_{\mathrm{C}},\kern1em {\varphi}_{\mathrm{C}}=-{ \tan}^{-1}\left(\omega \kern0.1em \tau \right) $$
]

 (9.1c)


[image: 
$$ {\mathbf{V}}_{\mathrm{R}}=\frac{\omega \tau }{\sqrt{1+{\left(\omega \kern0.1em \tau \right)}^2}}{V}_{\mathrm{m}}\angle {\varphi}_{\mathrm{R}},\kern1em {\varphi}_{\mathrm{R}}=\frac{\pi }{2}-{ \tan}^{-1}\left(\omega \kern0.1em \tau \right) $$
]

 (9.1d)

After the polar form has been obtained, the real-valued voltages

 are found in the form[image: 
$$ \begin{array}{l}{\upsilon}_{\mathrm{C}}(t)={V}_{\mathrm{m}\mathrm{C}} \cos \left(\omega t+{\varphi}_{\mathrm{C}}\right)\kern0.5em \left[\mathrm{V}\right],\kern1em {V}_{\mathrm{m}\mathrm{C}}=\frac{1}{\sqrt{1+{\left(\omega \tau \right)}^2}}{V}_{\mathrm{m}}\kern0.5em \left[\mathrm{V}\right]\\ {}{\upsilon}_{\mathrm{R}}(t)={V}_{\mathrm{m}\mathrm{R}} \cos \left(\omega t+{\varphi}_{\mathrm{R}}\right)\kern0.5em \left[\mathrm{V}\right],\kern1em {V}_{\mathrm{m}\mathrm{R}}=\frac{\omega \kern0.1em \tau }{\sqrt{1+{\left(\omega \tau \right)}^2}}{V}_{\mathrm{m}}\kern0.5em \left[\mathrm{V}\right]\end{array} $$
]

 (9.1e)

The general solution of the RC circuit in Fig. 9.1a is now complete. The key observations are that the amplitudes

 of the resistor voltage and the capacitor voltage now become functions of frequency.


                  Qualitative Analysis


                
The circuit in Fig. 9.1 is a voltage divider. The supply voltage (or the input voltage to the filter) is divided between the capacitor and the resistor. Which voltage dominates at low frequencies and which at high frequencies? To answer those questions, we consider Eq. (9.1e). When [image: 
$$ \omega \to 0 $$
],[image: 
$$ \begin{array}{l}{V}_{\mathrm{m}\mathrm{C}}=\frac{1}{\sqrt{1+{\left(\omega \kern0.1em \tau \right)}^2}}{V}_{\mathrm{m}}\to {V}_{\mathrm{m}}\\ {}{V}_{\mathrm{m}\mathrm{R}}=\frac{\omega \tau }{\sqrt{1+{\left(\omega \kern0.1em \tau \right)}^2}}{V}_{\mathrm{m}}\to 0\end{array} $$
]

 (9.2a)

Therefore, at low frequencies, the capacitor voltage dominates; it is approximately equal to the supply voltage. This fact is quite clear because the capacitor acts like an open circuit for DC, implying that the capacitor voltage “sees” nearly all the supply voltage. On the other hand, when [image: 
$$ \omega \to \infty $$
],[image: 
$$ \begin{array}{l}{V}_{\mathrm{m}\mathrm{C}}=\frac{1}{\sqrt{1+{\left(\omega \kern0.1em \tau \right)}^2}}{V}_{\mathrm{m}}\to 0\\ {}{V}_{\mathrm{m}\mathrm{R}}=\frac{\omega \tau }{\sqrt{1+{\left(\omega \kern0.1em \tau \right)}^2}}{V}_{\mathrm{m}}\to {V}_{\mathrm{m}}\end{array} $$
]

 (9.2b)

Therefore, at high frequencies, the resistor voltage dominates; it approximately equals the supply voltage. This fact is also easy to understand because the capacitor acts like a short circuit for a high-frequency AC, [image: 
$$ \left|{\mathbf{Z}}_{\mathrm{C}}\right|=1/\left(\omega \kern0.1em C\right)\to 0 $$
], so that the capacitor voltage is nearly zero and all the supply voltage is “seen” by the resistor.

Filter Concept: Two-Port Network



Now, we will explore the concept of an analog low-pass RC filter. We consider the power supply AC voltage as the input voltage υ
in(t) into the filter. We consider the capacitor voltage as the output voltage υ
out(t) of the filter. According to Eq. (9.2a, 9.2b),[image: 
$$ \begin{array}{ll}{\upsilon}_{\mathrm{out}}(t)\approx {\upsilon}_{\mathrm{in}}(t)\hfill & \hfill \mathrm{at}\ \mathrm{low}\ \mathrm{frequencies}\hfill \\ {}{\upsilon}_{\mathrm{out}}(t)\approx 0\hfill & \hfill \mathrm{at}\ \mathrm{high}\ \mathrm{frequencies}\hfill \end{array} $$
]


The circuit so constructed passes voltage signals with lower frequencies (like the human voice) but cuts out voltage signals with higher frequencies (like noise). Figure 9.2 on the left depicts the corresponding circuit transformation. This transformation implies that the input voltage is acquired from another circuit block and the output voltage is passed to another circuit block. The qualitative filter description is complete. You should note that both circuits on the right of Fig. 9.2 are called two-port networks. A port is nothing else but a pair of voltage terminals, either related to the input voltage or to the output voltage, respectively. Can we construct an RC filter that passes high frequencies but cuts out low frequencies? In other words, can we create a so-called high-pass filter? The solution is simple and elegant; the output voltage is now the resistor voltage, not the capacitor voltage. Figure 9.2b shows the corresponding circuit transformation.[image: A331468_1_En_9_Fig2_HTML.gif]
Fig. 9.2(a) Transformation 

of the series RC circuit into the low-pass analog RC filter. (b) A similar transformation into the high-pass RC filter





Example 9.1
The input voltage to the low-pass filter in Fig. 9.2a is a combination of three harmonics: [image: 
$$ {\upsilon}_{\mathrm{in}}(t)=10 \cos {\omega}_1\kern0.1em t+10 \cos {\omega}_2\kern0.1em t + 10 \cos {\omega}_3\kern0.1em t\ \left[\mathrm{V}\right] $$
], each with an amplitude of 10 V. The filter has the following parameters: [image: 
$$ C=530\kern0.5em \mathrm{nF},\kern1em R=100\kern0.5em \Omega $$
]. Determine the output voltage υ
out(t) given that:	1.
[image: 
$$ {f}_1=20\ \mathrm{Hz} $$
]
(lower frequency of the acoustic range)


 

	2.
[image: 
$$ {f}_2=3000\kern0.5em \mathrm{Hz} $$
]
(frequency below which most of the acoustic power is present)


 

	3.
[image: 
$$ {f}_3=20,000\kern0.5em \mathrm{Hz} $$
] (higher frequency of the acoustic range)


 






Solution: The key is the superposition principle, which is based on circuit linearity. Using the superposition principle, we apply Eq. (9.1e) (and Eq. (9.1d) reporting the phases) for the capacitor voltage (the output voltage to the filter) to each harmonic separately 

and then find the sum of three partial solutions. This will be the filter output voltage, which is given by[image: 
$$ {\upsilon}_{\mathrm{out}}(t)=10.00 \cos \left({\omega}_1\kern0.1em t-0.4{}^{\circ}\right)+7.07 \cos \left({\omega}_2\kern0.1em t-45.0{}^{\circ}\right) + 1.48 \cos \left({\omega}_3\kern0.1em t-81.5{}^{\circ}\right)\kern1em \left[\mathrm{V}\right] $$
]

 (9.3)



The filter reduces the amplitudes of higher-frequency harmonics and simultaneously creates a certain phase shift. The high-pass filter operates in an opposite manner. The phase shift becomes positive.

Example 9.2
Solve Example 9.1 using MATLAB.

Solution: The text of the corresponding MATLAB is listed below. It is vectorized in the sense that any number of input harmonics may be taken into consideration:
[image: A331468_1_En_9_Figt_HTML.gif]




Exercise 9.1

The

 input voltage to a high-pass filter circuit is a combination of two harmonics, [image: 
$$ {\upsilon}_{\mathrm{in}}(t)=2 \cos {\omega}_1\kern0.1em t+2 \cos {\omega}_2\kern0.1em t $$
], with the amplitude of 2 V each. The filter has the following parameters: [image: 
$$ R=100\kern0.5em \mathrm{k}\Omega $$
] and [image: 
$$ C=1.59\kern0.5em \mathrm{nF} $$
]. Determine the output voltage υ
out(t) to the filter given that [image: 
$$ {f}_1=100\kern0.5em \mathrm{Hz} $$
] and [image: 
$$ {f}_2=100\kern0.5em \mathrm{kHz} $$
].

Answer: [image: 
$$ {\upsilon}_{\mathrm{out}}(t)=1.99 \cos \left({\omega}_1\kern0.1em t-5.7{}^{\circ}\right)+0.02 \cos \left({\omega}_2\kern0.1em t-89.4{}^{\circ}\right)\kern1.5em \left[\mathrm{V}\right] $$
].


Application Example: Effect of a Load Connected

 to the Filter
The initial excitement about the simplicity of the theoretical filter model often fades quickly once we try to construct the filter circuit of Fig. 9.2a or Fig. 9.2b in the laboratory. And the circuit does not work. The major reason for this is the effect of a 
                    load
                    
                    
                  connected to the filter. We consider the low-pass filter in Fig. 9.3.[image: A331468_1_En_9_Fig3_HTML.gif]
Fig. 9.3A generic load connected to the low-pass RC filter





To solve the circuit with the load, we need to apply the phasor method. The input voltage is now divided between the resistance R and the parallel combination of the capacitor impedance and the load resistance, R
L. Instead of Eq. (9.1c), we will have[image: 
$$ {\mathbf{V}}_{\mathrm{C}}=\frac{1}{\sqrt{{\left(1+R/{R}_{\mathrm{L}}\right)}^2+{\left(\omega \tau \right)}^2}}{V}_{\mathrm{m}}\angle {\varphi}_{\mathrm{C}}\kern0.5em \left[\mathrm{V}\right],\kern1em {\varphi}_{\mathrm{C}}=-{ \tan}^{-1}\left(\frac{\omega \tau }{1+R/{R}_{\mathrm{L}}}\right) $$
]

 (9.4)

The proof of this result is suggested in Problems 9.5 and 9.6. The necessary condition for proper filter operation (both high pass or low pass) is that the 
                    filter termination
                    
                   resistance should be much greater than the filter’s resistance R. Put in approximate mathematical terms: [image: 
$$ R/{R}_{\mathrm{L}}\ll 1 $$
]. The low-resistance load (e.g., a loudspeaker) would simply short out the capacitor! To avoid this effect, a buffer amplifier may have to be inserted between the load and the filter.


9.1.2 
Half-Power Frequency

 and Amplitude Transfer Function




                  Low-Pass Filter


                
We are going to show how to construct a low-pass RC filter for a particular application. The design engineer needs to know at approximately which frequency the signal should be cut out. It is a common agreement to choose this frequency so that the amplitude of the output voltage is exactly [image: 
$$ 1/\sqrt{2}\approx 0.707 $$
] of the input voltage amplitude V
m. In other words, the output filter power, which is proportional to the square of the output voltage, becomes exactly half of the input power. The corresponding frequency is called the break frequency or 
half-power frequency

 of the low-pass filter. According to Eq. (9.1e), the break frequency [image: 
$$ {\omega}_{\mathrm{b}}={f}_{ \mathrm{b}} $$
] is 

found using the amplitude of the output (capacitor) voltage in the following way:[image: 
$$  \frac{1}{\sqrt{1+{\left({\omega}_{\mathrm{b}}\kern0.1em \tau \right)}^2}}=\frac{1}{\sqrt{2}}\Rightarrow {\omega}_{\mathrm{b}}\kern0.1em \tau =1\Rightarrow {\omega}_{\mathrm{b}}=\frac{1}{\tau}\Rightarrow {f}_{ \mathrm{b}}=\frac{\omega_{\mathrm{b}}}{2\pi }=\frac{1}{2\pi \tau }=\frac{1}{2\pi RC}\kern1em \left[\mathrm{Hz}\right] $$
]

 (9.5)

Expressed in terms of the break frequency, the amplitude of the output voltage to the voltage across the capacitor in Eq. (9.1e), has the form [image: 
$$ {V}_{\mathrm{m}}/\sqrt{1+{\left(f\kern0.1em /{f}_{ \mathrm{b}}\right)}^2} $$
] since [image: 
$$ \omega \kern0.1em \tau =f\kern0.1em /{f}_{ \mathrm{b}} $$
]. With the input voltage amplitude to the filter being V
m, the ratio of the two amplitudes is the amplitude transfer function of the low-pass filter H
m. This transfer function is given by[image: 
$$ {H}_{\mathrm{m}}(f)=\frac{1}{\sqrt{1 + {\left(f\kern0.1em /{f}_{ \mathrm{b}}\right)}^2}}\le 1 $$
]

 (9.6a)

We note that the transfer function is dimensionless (or has the units of V/V). For a given input voltage, the amplitude transfer function allows us to determine the output voltage amplitude. The behavior of Eq. (9.6a) is such that the amplitude transfer function is always less than one: the output voltage cannot exceed the input voltage.


High-Pass

 Filter
The break frequency, ω
b or f
b, of the high-pass filter has the meaning of reducing the voltage amplitude by a factor of [image: 
$$ 1/\sqrt{2} $$
] and reducing the signal power by the factor of ½. According to Eq. (9.1e) for the resistor voltage, it is found using the equality [image: 
$$ {\omega}_{\mathrm{b}}\kern0.1em \tau /\sqrt{1+{\left({\omega}_{\mathrm{b}}\kern0.1em \tau \right)}^2}=1/\sqrt{2} $$
], which gives us exactly the same value as the break frequency for the low-pass filter; see Eq. (9.5). In other words, the definitions of the break frequency and the half-power frequency coincide for the first-
                    
                    
                  order low-pass filter and the first-order high-pass filter
, respectively. In terms of the break frequency, the amplitude of the output voltage to the high-pass filter

, the voltage across the resistor in Eq. (9.1e), has the form [image: 
$$ {V}_{\mathrm{m}}f/{f}_{ \mathrm{b}}/\sqrt{1 + {\left(f/{f}_{ \mathrm{b}}\right)}^2} $$
], whereas the input voltage amplitude to the filter is still V
m. The ratio of the two amplitudes is the amplitude transfer function of the high-pass filter, denoted here by the same letter H
m. This transfer function is given by[image: 
$$ {H}_{\mathrm{m}}\left(\kern0.2em ,f\right)=\frac{f/{f}_{ \mathrm{b}}}{\sqrt{1 + {\left(f/{f}_{ \mathrm{b}}\right)}^2}}\le 1 $$
]

 (9.6b)

We note again that H
m cannot exceed 1. The implication is that the output voltage is always less than or equal to the input voltage; the filter cannot amplify the input.
Example 9.3
With the values of [image: 
$$ C=530\kern0.15em \mathrm{nF},\ R=100\kern0.15em \Omega $$
], determine the break frequency of both the low-pass RC filter and the high-pass RC filter, respectively.

Solution: We utilize the definition of Eq. (9.5), [image: 
$$ {f}_{ \mathrm{b}}=\frac{1}{2\pi RC}\ \left[\mathrm{Hz}\right] $$
], and obtain [image: 
$$ {f}_{ \mathrm{b}}=3.00\ \mathrm{kHz} $$
] for either case. This is exactly why the particular signal at 3 kHz in Eq. (9.3) of Example 9.1 (the example uses the same parameters) was reduced by a factor of 0.707 at the output of the low-pass filter. If a high-pass filter were used, the corresponding output signal would have exactly the same form but with the phase shift of +45° instead of −45°.

Exercise 9.2
The input signal to a high-pass RC filter includes a 180-Hz component. Its amplitude is to be reduced by a factor of 10. What break 

frequency should the filter have?

Answer: 1791 Hz.



9.1.3 Bode Plot, Decibel, and Roll-Off



The Bode plot displays the amplitude transfer function defined by Eq. (9.6a, 9.6b) as a function of frequency on a logarithmic scale. It was first suggested by an electrical engineer and mathematician Hendrik Wade Bode (1905–1982), Bell Labs, NJ, USA. The advantage of the logarithmic scale is the ability to simultaneously observe the (very large) function variations at small and large frequencies. Furthermore, you can more clearly see the roll-off of the transfer function as a straight line (asymptote). This is impossible to see when using the linear scale. As the x-variable, we will always choose frequency f (and avoid the angular frequency ω). As the y-variable, we plot the logarithmic function[image: 
$$ {H}_{\mathrm{m}}{\left(\kern0.2em ,f\right)}_{\mathrm{dB}}=20{ \log}_{10}{H}_{\mathrm{m}}\left(\kern0.2em ,f\right)\kern1em \left[\mathrm{dB}\right] $$
]

 (9.7)


The dimensionless units for the amplitude transfer function in Eq. (9.7) are decibels or dB. Figure 9.4 shows the Bode plot for transfer function Eq. (9.6a) with [image: 
$$ {f}_{ \mathrm{b}}=100\ \mathrm{Hz} $$
]. The selected values of the transfer function are given in Table 9.1 and where the last row is given in dB. The particular values of the resistance and capacitance are yet to be found; only their combination [image: 
$$ \tau =RC=1/\left(2\pi {f}_{ \mathrm{b}}\right)=1.6\ \mathrm{ms} $$
] is really important for the Bode plot. Despite the apparent simplicity of this operation, the Bode plot for an RC filter is a very likely question on the entrance exam for an industrial position in electrical engineering.[image: A331468_1_En_9_Fig4_HTML.gif]
Fig. 9.4
Construction 

of a Bode plot for the amplitude transfer function of a low-pass RC filter with break frequency of [image: 
$$ {f}_{\mathrm{b}}=100\ \mathrm{Hz} $$
]





Table 9.1Values of amplitude transfer function for a low-pass filter with [image: 
$$ {f}_{\mathrm{b}}=100\kern0.5em \mathrm{Hz} $$
]



	
f, Hz
	1
	10
	
                            100
                          
	1000
	104

	105

	106

	107


	
H
m(f)
	1.000
	0.995
	
                            0.707
                          
	1.0 × 10−1

	1.0 × 10−2

	1.0 × 10−3

	1.0 × 10−4

	1.0 × 10−5


	20 log10
H
m(f)
	−0.0004
	−0.0432
	
                            −3.0103
                          
	−20.043
	−40.000
	−60.000
	−80.000
	−100.00





Historical
The decibel is named in honor of Alexander Graham Bell (1847–1922), a Scottish scientist and inventor who later became a professor at Boston University, MA. Bell invented the first practical telephone at the age of 28 (US Patent 174,465) and very quickly became a millionaire. His father-in-law Gardiner Greene Hubbard founded the 

Bell Telephone Company in 1878, which subsequently transformed into American Telephone & Telegraph Company (AT&T).

A legitimate question to ask is what is the meaning of the factor 20 in Eq. (9.7)? The answer is based on the equality [image: 
$$ 20{ \log}_{10}{H}_{\mathrm{m}}\left(\kern0.2em ,f\right)=10{ \log}_{10}{H}_{\mathrm{m}}^2\left(\kern0.2em ,f\right) $$
] where H
m2(f) is not the amplitude transfer function but rather attempts to represent power, which is proportional to voltage squared for a resistor.
Therefore, Eq. (9.7) in fact attempts to plot the power transfer function even though the capacitor in Fig. 9.2a does not consume any power in the average sense, see Chapter 11. Also note that, when [image: 
$$ f={f}_{ \mathrm{b}} $$
], the transfer function in Table 9.1 is approximately −3 dB. Therefore, the break frequency is also called the 
                  3-dB frequency
                  
                  
                

                  
                 for obvious reasons. Another name, the 
                  corner frequency
                  
                , will be explained shortly.
The interval on the Bode plot for which the frequencies differ by a factor of 10 is called a decade. Every division on the x-axis in Fig. 9.4 is one decade. The transfer function for 
                  any
                  
                first-order low-pass filter decreases by 20 dB per decade or has the 20-dB-per-decade roll-off as seen in Fig. 9.4. This not only occurs away from the break frequency, i.e., when [image: 
$$ f\gg {f}_{ \mathrm{b}} $$
], but it is also approximately valid in the interval from f
b to 10f
b; see Table 9.1. Note that an interval of frequencies is called the frequency band. The roll-off of 20 dB per decade (or equivalently, the slope of -20 dB per decade) means that the output amplitude of the filter decreases by a factor of 10 per decade (see Table 9.1), whereas the output power decreases by the factor of 100. Figure 9.4 shows a frequency band from 0 to f
b, which is the 
                  passband
                  
                  
                 of the low-pass filter. The passband is the range of frequencies that are passed through a filter without being (significantly) attenuated. The opposite of the passband is the stopband. The required attenuation within the stopband
 may be specified between 20 and 120 dB as compared to the value of 0 dB, which means no attenuation. Besides the decade, the relative frequency interval of one 

octave is sometimes used. In this interval, the frequencies differ by the factor of 2, not 10. For example, a TV antenna that has the bandwidth of one octave (400–800 MHz) may be used to receive most of the (digital) commercial TV channels in the USA. It can be 

shown that the RC filter has a 6-dB-per-octave roll-off, away from the break frequency.
Historical
The career of Hendrik Wade Bode (1905–1982), a pioneer of modern control theory and electronic telecommunications, gives us an example of how important it is to have a comprehensive education in calculus and a solid background in electrical engineering. A graduate of the Ohio State University (BS in mathematics at the age of 19 and then MS in mathematics two years later), Hendrik Bode started his job at Bell Labs as a designer of electronic filters and invented the asymptotic plots we now call them Bode plots in 1938. These plots have proven to be extremely useful in feedback control theory. Today, any electrical engineer who works with amplifiers and their frequency responses is relying on Bode plots. Some consider Bode a pioneer of robotics as well, based on his invention of robotic antiaircraft artillery during WWII.

Exercise 9.3
The following values of the amplitude transfer function are given: [image: 
$$ {H}_{\mathrm{m}}\left(\kern0.2em ,f\right)=0.707,\kern0.5em 0.0707,\kern0.5em \mathrm{and}\kern0.5em 0.00707 $$
]. Find the corresponding values of H
m(f)dB.

Answer: −3.01 dB, −20.00 dB, and −40.00 dB.

Example 9.4
Design a medium-frequency-range RC low-pass filter (LPF) that has a break frequency of 1 kHz. The filter load has the resistance of [image: 
$$ R=100\kern0.5em \mathrm{k}\Omega $$
]. Create the amplitude Bode plot in the range from 10 Hz to 100 kHz. Label the filter passband. Repeat the same task for the high-pass filter (HPF).

Solution: The condition [image: 
$$ {f}_{ \mathrm{b}}=1/\left(2\pi RC\right) $$
] yields [image: 
$$ C=1/\left(2\pi R{f}_{ \mathrm{b}}\right)=1.6\kern0.2em \mathrm{nF} $$
]. The Bode plot may be generated by finding transfer function values for (at least) every decade and filling out a table similar to Table 9.1. The result is shown in Fig. 9.5a. The passband is the frequency band from 0 to f
b. For the high-pass filter, we repeat the same steps but replace the transfer function given by Eq. (9.6a) by the transfer function given by Eq. (9.6b). The result is shown in Fig. 9.5b. The passband extends from f
b to infinity and is only limited by the upper frequency of the Bode plot. Note that the Bode plot for the high-pass filter has the same form, but it is 
                    mirror reflected
                    
                    
                   about the break frequency. This is another advantage of the logarithmic scale.[image: A331468_1_En_9_Fig5_HTML.gif]
Fig. 9.5(a) Bode plot for the amplitude transfer function of the low-pass RC filter with the break frequency [image: 
$$ {f}_{\mathrm{b}}=1\kern0.5em \mathrm{kHz} $$
]. (b) The same Bode plot but for the high-pass RC filter. Note high-frequency and 
low-frequency asymptotes





Figure 9.5 indicates that the 

amplitude response of both the low-pass filter and the high-pass filter follows two straight lines, which are known as high-frequency and 
                    low-frequency asymptotes
                    
                  . The corner between them is the break frequency, also called the 

corner frequency. Note that, for the high-pass filter, the meaning of high-frequency and low-frequency asymptotes is interchanged in Fig. 9.5b.


9.1.4 Phase Transfer Function and Its Bode Plot



According to Eq. (9.1e), it is not only the amplitude but also the phase of the input signal that undergoes a transformation when the signal is passed through the filter. The phase transformation is important since different frequencies (or harmonics) of the input signal may have a certain phase relation that is distorted by the filter. The phase transfer function is given by the phase variation of the filter’s output voltage, which is either the capacitor voltage for the low-pass filter or the resistor voltage for the high-pass filter. From Eq. (9.1c) for the low-pass filter, the phase transfer function has the form[image: 
$$ {\varphi}_{\mathrm{H}}\left(\kern0.2em ,f\right)=-{ \tan}^{-1}\left(\omega \tau \right)=-{ \tan}^{-1}\left(\frac{f}{f_{ \mathrm{b}}}\right)\kern1em \mathrm{low}\hbox{-} \mathrm{pass}\kern0.5em \mathrm{R}\mathrm{C}\kern0.5em \mathrm{filter} $$
]

 (9.8a)

From Eq. (9.1d) for the high-pass filter, the phase transfer function has the form[image: 
$$ {\varphi}_{\mathrm{H}}\left(\kern0.2em ,f\right)=\frac{\pi }{2}-{ \tan}^{-1}\left(\omega \tau \right)=\frac{\pi }{2}-{ \tan}^{-1}\left(\frac{f}{f_{ \mathrm{b}}}\right)\kern1em \mathrm{high}\hbox{-} \mathrm{pass}\kern0.5em \mathrm{R}\mathrm{C}\kern0.5em \mathrm{filter} $$
]

 (9.8b)

where the break 

frequency is given by Eq. (9.5).
Example 9.5
Generate the phase Bode plots for the low-pass filter and the high-pass filter, respectively, with the same break frequency [image: 
$$ {f}_{ \mathrm{b}}=1\kern0.15em \mathrm{kHz} $$
]. The frequency band is from 10 Hz to 100 kHz.

Solution: The phase Bode plots in Fig. 9.6 may be generated by calculating the phase transfer function according to Eq. (9.8a, 9.8b) for (at least) every decade. The result is shown in Fig. 9.6. You can see that the Bode plots only differ by a phase shift of 90°. Alternatively, a MATLAB script may be used:[image: A331468_1_En_9_Fig6_HTML.gif]
Fig. 9.6Comparison of the phase Bode plots for (a) the low-pass-filter and (b) for the high-pass filter with the same break frequency [image: 
$$ {f}_{\mathrm{b}}=1\kern0.5em \mathrm{kHz} $$
]. Both plots are identical to within a phase shift




[image: A331468_1_En_9_Figu_HTML.gif]





9.1.5 Complex Transfer Function: Cascading Filter Circuits



The complex transfer function of the filter, H(f), is often called the 
                  frequency response
                  
                  
                 of the filter. It describes not only the amplitude transformation but also the phase transformation. The transfer function now becomes a 
                  complex expression
                  
                  
                . It is equal to the ratio of two phasors; specifically, it denotes the ratio of the output phasor voltage to the input phasor voltage. The low-pass filter

 has the form of Fig. 9.1 with the input voltage equal to the supply voltage and the output voltage equal to the capacitor voltage. Its complex transfer function is given by Eq. (9.1c) divided by V
m. The high-pass filter

 also has the form of Fig. 9.1 with the input voltage equal to the supply voltage and the output voltage equal to the resistor voltage. Its complex transfer function is given by Eq. (9.1d) divided by V
m. Thus, we obtain[image: 
$$ \mathbf{H}\left(\kern0.2em ,f\right)\equiv {H}_{\mathrm{m}}\left(\kern0.2em ,f\right)\angle {\varphi}_{\mathrm{H}}=\left\{\begin{array}{c}\hfill \frac{1}{1+j\left(\ f/{f}_{ \mathrm{b}}\right)}=\frac{1}{\sqrt{1+{\left(\ f/{f}_{ \mathrm{b}}\right)}^2}}\angle -{ \tan}^{-1}\left(\frac{f}{f_{ \mathrm{b}}}\right);\kern1em \mathrm{low}\hbox{-} \mathrm{pass}\ \mathrm{R}\mathrm{C}\ \mathrm{filter}\hfill \\ {}\hfill \frac{\left(\ f/{f}_{ \mathrm{b}}\right)}{1+j\left(\ f/{f}_{ \mathrm{b}}\right)}=\frac{f/{f}_{ \mathrm{b}}}{\sqrt{1+{\left(\ f/{f}_{ \mathrm{b}}\right)}^2}}\angle \frac{\pi }{2}-{ \tan}^{-1}\left(\frac{f}{f_{ \mathrm{b}}}\right);\kern1em \mathrm{high}\hbox{-} \mathrm{pass}\ \mathrm{R}\mathrm{C}\ \mathrm{filter}\hfill \end{array}\right. $$
]

 (9.9a)

This is consistent with Eqs. (9.6a, b) and (9.8a, b), respectively. Given the phasor of input voltage V
in, the phasor of the output voltage is simply expressed by[image: 
$$ {\mathbf{V}}_{\mathrm{out}}=\mathbf{H}\left(\kern0.2em ,f\right){\mathbf{V}}_{\mathrm{in}} $$
]

 (9.9b)

Equation (9.9b), which is valid for any linear 

electronic filter and other linear systems, fully describes the filter operation and has great practical value.
Example 9.6
For a 

low-pass RC filter with the values [image: 
$$ C=530\ \mathrm{nF},\ R=100\ \Omega $$
],
determine the output voltage in time domain when the input voltage is given by
[image: 
$$ {\upsilon}_{\mathrm{in}}(t)=1 \cos \left(\omega \kern0.1em t+30{}^{\circ}\right)\kern0.5em \left[\mathrm{V}\right] $$
] where [image: 
$$ \omega =2\pi \times 3000\ \mathrm{rad}/\mathrm{s} $$
].

Solution: The break frequency of the low-pass filter is [image: 
$$ {f}_{ \mathrm{b}}=3.00\kern0.5em \mathrm{kHz} $$
], which coincides with the signal frequency in this particular case. According to the first Eq. (9.9a) and Fig. 9.6a, at that frequency, [image: 
$$ \mathbf{H}\left(\kern0.2em ,f\right)=\frac{1}{\sqrt{2}}\angle -45{}^{\circ} $$
]; therefore, the output voltage has the form [image: 
$$ {\mathbf{V}}_{\mathrm{out}}=\frac{1}{\sqrt{2}}\angle  - 15{}^{\circ} $$
] or [image: 
$$ {\upsilon}_{\mathrm{out}}(t)=0.71 \cos \left(\omega \kern0.1em t-15{}^{\circ}\right)\left[\mathrm{V}\right] $$
]. The same analysis may be applied at any frequency and phase of the input harmonic voltage signal.

Another advantage of the complex transfer function lies in the fact that the series or cascade combination of any number of filters (or two-port networks) shown in Fig. 9.7 has a transfer function that is simply the product of the corresponding transfer functions:[image: A331468_1_En_9_Fig7_HTML.gif]
Fig. 9.7Cascading a high-pass and a low-pass filter into a more complex filter structure




[image: 
$$ \mathbf{H}\left(\kern0.2em ,f\right)={\mathbf{H}}_1\left(\kern0.2em ,f\right){\mathbf{H}}_2\left(\kern0.2em ,f\right)\Rightarrow {H}_{\mathrm{m}}\left(\kern0.2em ,f\right)={H}_{\mathrm{m}1}\left(\kern0.2em ,f\right){H}_{\mathrm{m}1}\left(\kern0.2em ,f\right) $$
]

 (9.10)

In this manner, a more advanced filter may be constructed from the individual filter blocks. To prove Eq. (9.10), we state that the phasor for the

 intermediate output voltage υ
out1(t) in Fig. 9.7 is given by [image: 
$$ {\mathbf{V}}_{\mathrm{out}1}={\mathbf{H}}_1\left(\kern0.2em ,f\right){\mathbf{V}}_{\mathrm{in}} $$
]. Hence, the phasor for the output voltage υ
out(t) in Fig. 9.7 becomes [image: 
$$ {\mathbf{V}}_{\mathrm{out}}={\mathbf{H}}_1\left(\kern0.2em ,f\right){\mathbf{V}}_{\mathrm{out}1}={\mathbf{H}}_1\left(\kern0.2em ,f\right){\mathbf{H}}_2\left(\kern0.2em ,f\right){\mathbf{V}}_{\mathrm{in}} $$
] which is equivalent to Eq. (9.10). Due to the logarithmic scale of the Bode plot, the product in Eq. (9.10) is replaced by the sum of two contributions when the decibel scale is used:[image: 
$$ {H}_{\mathrm{m}}{\left(\kern0.2em ,f\right)}_{\mathrm{dB}}={H}_{\mathrm{m}1}{\left(\kern0.2em ,f\right)}_{\mathrm{dB}}+{H}_{\mathrm{m}1}{\left(\kern0.2em ,f\right)}_{\mathrm{dB}} $$
]

 (9.11)

Thus, we simply add up two 

magnitude transfer functions in dB and obtain the resulting magnitude transfer function also in dB.
Application Example: Effect of Next-Stage Filter Load



Equation (9.10) requires great care. For example, the equivalent impedance seen by the leftmost high-pass filter stage in Fig. 9.7 should be much greater than R
1; otherwise this stage will not operate as expected, and Eq. (9.10) will be inaccurate. In other words, a following filter stage should not appreciably load the previous one.
Example 9.7
For the combined circuit in Fig. 9.7, create the Bode plot

 for the transfer function of the cascade connection in the frequency band from 1 Hz to 1 MHz You are given [image: 
$$ {R}_1=159.1\kern0.2em \Omega, \kern0.5em {C}_1=10\kern0.2em \upmu \mathrm{F} $$
] and [image: 
$$ {R}_2=159.1\kern0.2em \Omega, \kern0.5em {C}_2=0.1\kern0.2em \upmu \mathrm{F} $$
].

Solution: The break frequency of the high-pass filter

 is calculated as 100.0 Hz, and the break frequency of the low-pass filter is found to be 10.0 kHz. The combined Bode plot is generated using Eqs. (9.6a, 9.6b) and (9.10). Alternatively, the transfer functions in dB, specified by Eq. (9.7), may be added. The result is a band-pass filter as shown in Fig. 9.8 by the solid curve. This result is expected to be accurate only if [image: 
$$ \left|{R}_2+{Z}_{C_2}\right|\gg {R}_1 $$
]. Though valid at low frequencies below 1 kHz, this inequality is violated above 1 kHz. The exact transfer function is obtained by solving the complete AC circuit in Fig. 9.7 with the open-circuited capacitor C
2. It is plotted in Fig. 9.8 by a dashed curve. There is clearly 

a significant deviation from the solution given by Eq. (9.10) at higher frequencies above 1 kHz. To avoid the loading effect seen in Fig. 9.8, a buffer amplifier may be inserted between the filter stages shown in Fig. 9.7.[image: A331468_1_En_9_Fig8_HTML.gif]
Fig. 9.8
Solid curve: Eq. (9.10) for the cascaded filters. Dashed curve: the exact solution with the open-circuited capacitor C
2







In Fig. 9.8, the exact transfer function may exceed 0 dB. In other words, the voltage gain of the combined (still passive) filter may be greater than one. How is it possible? The answer is that, in contrast to the circuits in Fig. 9.2, the circuit in Fig. 9.7 is in fact already a second-order circuit. Second-order circuits may experience a resonance behavior where the circuit voltages across individual elements may (very considerably) exceed the original supply voltage. This effect, called voltage multiplication, is of great practical importance and will be considered in detail in Chapter 10 devoted to second-order AC circuits. Note that that the true power gain of a passive filter of any order and any topology is always less than one (less than 0 dB). Only electronic amplifiers may have a positive, and often high, power gain; this is discussed in the next section.


9.1.6 
                RL Filter Circuits

              
The RL circuits are used for the same filtering purposes as the RC circuits. Figure 9.9 depicts the concept. It may be demonstrated that the corresponding circuit theory and Eqs. (9.6a, 9.6b) for the transfer functions become equivalent to first-order RC filter 
circuits under the following conditions:[image: A331468_1_En_9_Fig9_HTML.gif]
Fig. 9.9(a) Transformation of a series 
RL circuit into a high-pass analog RL filter. (b) Similar transformation into the low-pass RL filter




	1.The time constant [image: 
$$ \tau =RC $$
] is replaced by the time constant [image: 
$$ \tau =L/R $$
], similar to the corresponding operation for the first-order transient circuits. The break frequency [image: 
$$ {f}_b=1/\left(2\pi \tau \right) $$
] remains the same.


 

	2.The role of the capacitor and inductor are interchanged. For example, the RL circuit in Fig. 9.9a is a 
first-order high-pass filter because the inductor voltage, which is the output filter voltage, is exactly zero for a DC signal. However, it becomes a 
first-order low-pass filter if the inductor is replaced by a capacitor, as shown in Fig. 9.9a.


 

	3.Similarly, the RL circuit in Fig. 9.9b is a 
first-order low-pass filter simply because the inductor becomes a short circuit at DC and the DC signal will pass through. However, it becomes a first-order high-pass filter if the inductor is replaced by a capacitor, as shown in Fig. 9.9b.


 





Furthermore, the filter specifications might require large inductance values, which lead to physically large inductor sizes.
Example 9.8
For the two filter circuits in Fig. 9.9, create the amplitude Bode plots in the frequency band from 10 Hz to 100 kHz. You are given [image: 
$$ R=31.4\ \Omega, \kern0.5em L=5\kern0.15em \mathrm{mH} $$
].

Solution: The break frequencies of the high-pass filter and the low-pass filter in Fig. 9.9 coincide. In either case, we obtain [image: 
$$ {f}_{ \mathrm{b}}=1/\left(2\pi \tau \right),\kern0.5em \tau =L/R=1.59\times {10}^{-4}\kern0.5em \mathrm{s} $$
]. Thus, [image: 
$$ {f}_{ \mathrm{b}}=1.00\kern0.5em \mathrm{kHz} $$
].
The Bode plots may be generated by finding transfer function values based on Eq. (9.6) for (at least) every decade and filling out a table similar to Table 9.1. The result is shown in Fig. 9.10 along with high- and 
low-frequency asymptotes. We again observe the 20-dB roll-off per decade. The Bode plots given in Fig. 9.10 coincide with the Bode plots for RC filters having the same break frequency, see Fig. 9.5. However, given an 
identical component topology, the filter function is interchanged.[image: A331468_1_En_9_Fig10_HTML.gif]
Fig. 9.10(a) Bode plot for the amplitude transfer function of the high-pass RL filter with break frequency [image: 
$$ {f}_{\mathrm{b}}=1\kern0.15em \mathrm{kHz} $$
]. (b) The same Bode plot but for the low-pass RL filter






Exercise 9.4
An RL filter circuit in Fig. 9.9a has [image: 
$$ R=100\kern0.15em \Omega $$
] and [image: 
$$ L=1\kern0.15em \mathrm{mH} $$
]. Establish the capacitance value of an equivalent RC filter, given that the resistances are the same in both cases.

Answer: 100 nF.



9.2 Bandwidth of an Operational Amplifier
The operational amplifier circuits introduced earlier are implicitly assumed to operate equally well for any frequency of the input signal. In reality this is not true. An operational amplifier may operate only over a certain frequency band, and the associated 
                frequency bandwidth
                
                
              

                
                
               is perhaps the most critical device parameter. Frequently we do not realize how severe this limitation can be and how difficult it is to build a high-frequency or radio-frequency amplifier. As an example, we should point out that none of the common amplifier ICs studied in introductory ECE classes can be used as a front-end amplifier for an AM radio receiver (520–1610 kHz), even if the noise levels were low. Indeed, high-frequency amplifiers with larger frequency bandwidths exist. A case in point is the accessible LM7171 chip. Key to understanding the amplifier frequency behavior is the theory of the first-order RC filters developed in the previous section.
9.2.1 Bode Plot of the Open-Loop Amplifier Gain

Open-Loop Amplifier Gain

 and Its Relation to the Previous Results
The (amplitude) frequency response of an operational amplifier is simply a plot of its gain magnitude versus frequency of the input AC voltage signal. This response is usually a Bode plot. The problem is that the gain of the amplifier (both open loop and closed loop) generally decreases with increasing frequency. We consider the open-loop gain (gain without the feedback loop) first. The open-loop gain magnitude will be denoted here by [image: 
$$ {A}_{\mathrm{OL}}={A}_{\mathrm{OL}}\left(\kern0.2em ,f\right) $$
]. Note that in Chapter 5 we have already introduced the open-circuit gain, A, of an amplifier at DC without the feedback loop. What is the relation between A
OL and A introduced previously? The answer is given by the equality [image: 
$$ A={A}_{\mathrm{OL}}\left(\ f=0\right) $$
] as long as the amplifier is open circuited.


                  Open-Loop Gain Behavior


                
The open-loop gain decreases with increasing frequency of the input signal. Figure 9.11 shows the frequency response of an open-loop amplifier on a log-log scale. You may recall that the log-log scale used in this figure is simply the Bode plot introduced in the previous section. This figure is typical for the LM741 amplifier IC and similar general-purpose devices. Comparing the Bode plot in Fig. 9.11 with the Bode plot of the RC filter in Fig. 9.4 of the previous section, we discover that the amplifier’s gain as a function of frequency is virtually identical to the transfer function of the RC filter for the same break frequency of 10 Hz, as seen in Fig. 9.11! In both cases, we have a roll-off of 20 dB per decade. Obviously, the scale is different. Why is this so? This occurs because the amplifier ICs are usually internally compensated, which means incorporating a simple RC filter network (in practice, it may be a single capacitor C) into the IC chip itself. This process is called 
                    internal compensation
                    
                   of the amplifier. The goal of such a modification is to ensure that the amplifier circuit will be stable. Stability refers to the amplifier’s immunity to spontaneous oscillations. These undesired oscillations occur when the input frequency excites internal 

resonances, similar to a mechanical mass-spring system, that continue ad infinitum.[image: A331468_1_En_9_Fig11_HTML.gif]
Fig. 9.11Bode plot 

of the open-loop gain magnitude for the LM741-type amplifier IC. Note the logarithmic scale on the left and the corresponding scale in dB on the right. The frequency bandwidth given by the break frequency f
b is only 10 Hz







9.2.2 Unity-Gain Bandwidth Versus Gain-Bandwidth Product



The amplifier gain

 in Fig. 9.11 decreases by a factor of 0.1 (or 20 dB) gain roll-off per frequency decade. The decay already starts at a relatively low break frequency of 10 Hz where the DC open-loop gain drops by the factor of 0.707 or [image: 
$$ 1/\sqrt{2} $$
]. The corresponding value in dB is [image: 
$$ 20{ \log}_{10}1/\sqrt{2}=-3\kern0.5em \mathrm{dB} $$
]. The gain continues to decrease further and reaches unity at the frequency of 1 MHz. This frequency is equal to the unity-gain bandwidth (BW) of the amplifier, i.e., for the amplifier IC depicted in Fig. 9.11:[image: 
$$ \mathrm{B}\mathrm{W}=1\kern0.5em \mathrm{MHz} $$
]

 (9.12)

A remarkable observation from Fig. 9.11 is that the gain-bandwidth product (sometimes denoted by GBW or GB in datasheets) remains constant over the band for every particular gain value. The gain-bandwidth product is equal to the length of every single arrow (in Hz) in Fig. 9.11 times the corresponding gain value (dimensionless), that is,[image: 
$$ \begin{array}{l}f={10}^2\mathrm{Hz}\Rightarrow \mathrm{G}\mathrm{B}\mathrm{W}={10}^2\times {10}^4={10}^6\mathrm{Hz}=\mathrm{B}\mathrm{W},\\ {}f={10}^3\mathrm{Hz}\Rightarrow \mathrm{G}\mathrm{B}\mathrm{W}={10}^3\times {10}^3={10}^6\mathrm{Hz}=\mathrm{B}\mathrm{W},\\ {}f={10}^4\mathrm{Hz}\Rightarrow \mathrm{G}\mathrm{B}\mathrm{W}={10}^4\times {10}^2={10}^6\mathrm{Hz}=\mathrm{B}\mathrm{W},\end{array} $$
]

 (9.13)

etc. Thus, the gain-bandwidth product is exactly equal to the unity-gain bandwidth BW; it is frequently specified in the manufacturer datasheet. In what follows, we will use the unity-gain bandwidth as the major parameter of interest. Note that instead of, or along with, the unity-gain bandwidth, the rise time of an amplifier may be specified in the datasheet. Approximately,
                  
                  
                 we can state that [image: 
$$ \mathrm{B}\mathrm{W}=0.35/\mathrm{rise}\ \mathrm{time}\kern0.37em \left[\mathrm{Hz}\right] $$
].

9.2.3 Model of the Open-Loop AC Gain


                  
                  
                

The open-loop gain dependence on the frequency has the form of a low-pass filter. We could therefore describe the open-loop gain in a complex form that is identical to the complex transfer function of the low-pass filter given, for example, by Eqs. (9.9a, b) of the previous section. The open-loop AC gain in complex phasor form states[image: 
$$ {\mathbf{A}}_{\mathrm{OL}}\left(\kern0.2em ,f\right)=\frac{A_{\mathrm{OL}}(0)}{1+j\left(\ f/{f}_{ \mathrm{b}}\right)},\kern1em {A}_{\mathrm{OL}}(0)\kern0.5em \mathrm{is}\ \mathrm{the}\ \mathrm{open}\hbox{-} \mathrm{loop}\ \mathrm{D}\mathrm{C}\ \mathrm{gain} $$
]

 (9.14)

For example, [image: 
$$ {A}_{\mathrm{OL}}(0)={10}^5 $$
] in Fig. 9.11. According to Eq. (9.14), the open-loop AC gain is a complex-valued frequency-dependent transfer function. This circumstance is reflected in a phase difference between the output and input voltages. To be consistent with Fig. 9.11 and with the previous DC amplifier analysis, the magnitude of the complex gain function in Eq. (9.14) is denoted by the same symbol, A
OL, i.e.,[image: 
$$ \left|{\mathbf{A}}_{\mathrm{OL}}\right|={A}_{\mathrm{OL}}\left(\kern0.2em ,f\right)=\frac{A_{\mathrm{OL}}(0)}{\sqrt{1 + {\left(f/{f}_{ \mathrm{b}}\right)}^2}} $$
]

 (9.15)

The Bode plot applied to Eq. (9.15) will give us exactly the dependence shown in Fig. 9.11. According to Eq. (9.15), the unity-gain bandwidth satisfies the equality[image: 
$$ 1=\frac{A_{\mathrm{OL}}(0)}{\sqrt{1+{\left(\mathrm{B}\mathrm{W}/{f}_{ \mathrm{b}}\right)}^2}} $$
]

 (9.16)

Since [image: 
$$ \mathrm{B}\mathrm{W}\kern0.1em /{f}_{ \mathrm{b}}\gg 1 $$
], one has [image: 
$$ \sqrt{1+{\left(\mathrm{B}\mathrm{W}\kern0.1em /{f}_{ \mathrm{b}}\right)}^2}\approx \mathrm{B}\mathrm{W}/{f}_{ \mathrm{b}} $$
] with a high degree of accuracy. Therefore, according to Eq. (9.16),[image: 
$$ \mathrm{B}\mathrm{W}={A}_{\mathrm{OL}}(0){f}_{ \mathrm{b}} $$
]

 (9.17)

Looking at Fig. 9.11, we observe a very significant decrease of the open-loop gain, even in the audio frequency range. For example, the open-loop gain decreases by a factor of 1000 in the audio range from 10 Hz to 10 kHz. Does it mean that the LM741 or any general-purpose amplifier cannot be used in this range? The general answer is that the operational amplifier is mostly used with a negative feedback loop. When the closed-loop DC gain is not very high (say 10), the corresponding 


                  
                  
                
closed-loop AC gain appears to be nearly constant over a much wider bandwidth (say up to 100 kHz). This critical result will be proved mathematically shortly.
Example 9.9
The internally compensated LM148-series amplifiers (LM148/248/348) have a unity-gain bandwidth BW of 1 MHz. The typical large-signal voltage gain at room temperature reported in the datasheet is 160 V/mV.	A.Find the open-loop DC gain in dB and the open-loop break frequency f
b.


 

	B.Find the open-loop gain at 100 Hz, 1 kHz, and 10 kHz.


 






Solution: The open-loop DC gain is [image: 
$$ {A}_{\mathrm{OL}}(0)=160,000 $$
] or [image: 
$$ 20{ \log}_{10}\left(160,000\right)=104\ \mathrm{dB} $$
]. The break frequency may be found from Eq. (9.17):[image: 
$$ {f}_{ \mathrm{b}}=\frac{\mathrm{BW}}{160,000}=6.25\ \mathrm{Hz} $$
]

 (9.18)



According to Eq. (9.15), the open-loop gain at 100 Hz, 1 kHz, and 10 kHz becomes 104, 103, and 100, which corresponds to 80 dB, 60 dB, and 40 dB.

Exercise 9.5
For an 


                    
                    
                  internally compensated amplifier IC, the open-loop DC gain is 120 dB. The break frequency is 100 Hz. Determine the unity-gain bandwidth.

Answer: BW = 100 MHz.


9.2.4 Model of the Closed-Loop AC Gain


                  
                  
                

Consider a negative feedback amplifier in an inverting configuration, as shown in Fig. 9.12. Since the open-loop gain significantly decreases with frequency, we can no longer apply the second summing-point constraint (the differential input voltage is zero), which was justified based on the condition of the very high (ideally infinite) open-loop gain. However, the first summing-point constraint of no current into the amplifier is still valid. Therefore, a direct theoretical derivation of the closed-loop gain can be performed.[image: A331468_1_En_9_Fig12_HTML.gif]
Fig. 9.12Circuit configuration for deriving the frequency-dependent closed-loop gain





We use the complex open-loop gain given by Eq. (9.14) and employ phasor voltages. Looking at Fig. 9.12, we conclude that [image: 
$$ {\mathbf{A}}_{\mathrm{OL}}\left(0\mathrm{V}-{\mathbf{V}}^{*}\right)={\mathbf{V}}_{\mathrm{out}} $$
], based on the amplifier definition. This definition is valid for either real (time-dependent) voltages or complex phasors. By KCL at the node associated with V*, we can develop[image: 
$$  \frac{{\mathbf{V}}_{\mathrm{in}}-{\mathbf{V}}^{*}}{R_1}=\frac{{\mathbf{V}}^{*}-{\mathbf{V}}_{\mathrm{out}}}{R_2}\Rightarrow \frac{{\mathbf{V}}_{\mathrm{in}}+{\mathbf{V}}_{\mathrm{out}}/{\mathbf{A}}_{\mathrm{OL}}}{R_1}=\frac{-{\mathbf{V}}_{\mathrm{out}}/{\mathbf{A}}_{\mathrm{OL}}-{\mathbf{V}}_{\mathrm{out}}}{R_2}\Rightarrow  \frac{{\mathbf{V}}_{\mathrm{in}}}{R_1}=\left(-\frac{1}{{\mathbf{A}}_{\mathrm{OL}}{R}_1}-\frac{1}{{\mathbf{A}}_{\mathrm{OL}}{R}_2}-\frac{1}{R_2}\right){\mathbf{V}}_{\mathrm{out}} $$
]

 (9.19)

It follows from Eq. (9.19) that the output phasor voltage to the amplifier and the closed-loop amplifier phasor gain A
CL become[image: 
$$ {\mathbf{V}}_{\mathrm{out}}=-\frac{R_2}{R_1}\frac{{\mathbf{V}}_{\mathrm{in}}}{1+\frac{1}{{\mathbf{A}}_{\mathrm{OL}}}\left(1+\frac{R_2}{R_1}\right)}\Rightarrow {\mathbf{A}}_{\mathrm{CL}} \equiv \frac{{\mathbf{V}}_{\mathrm{out}}}{{\mathbf{V}}_{\mathrm{in}}}=-\frac{R_2}{R_1}\frac{1}{1+\frac{1}{{\mathbf{A}}_{\mathrm{OL}}}\left(1+\frac{R_2}{R_1}\right)} $$
]

 (9.20)

Next, we substitute Eq. (9.15) into Eq. (9.20) and rearrange terms to obtain the form[image: 
$$ {\mathbf{A}}_{\mathrm{CL}}\left(\kern0.2em ,f\right)=-\frac{R_2}{R_1}\frac{1}{\left[1+\frac{1}{A_{\mathrm{OL}}(0)}\left(1+\frac{R_2}{R_1}\right)\right]+\frac{1}{A_{\mathrm{OL}}(0)}\left(1+\frac{R_2}{R_1}\right)j\frac{f}{f_{ \mathrm{b}}}} $$
]

 (9.21)

The first term in the denominator on the right-hand side of Eq. (9.20) is one with a high degree of accuracy since [image: 
$$ {A}_{\mathrm{OL}}(0)\approx {10}^5-{10}^8 $$
]. This approximation is valid for any realistic resistor values. Therefore, 
                  
                

                  
                  
                we again arrive at the 
first-order low-pass filter response:[image: 
$$ \begin{array}{l}{\mathbf{A}}_{\mathrm{CL}}\left(\kern0.2em ,f\right)=\frac{A_{\mathrm{CL}}(0)}{1+j\left(\ f/{f}_{\mathrm{b}}^{\mathrm{closed}\kern0.15em \mathrm{loop}}\right)},\\ {}{A}_{\mathrm{CL}}(0)=-\frac{R_2}{R_1},\kern1em {f}_{\mathrm{b}}^{\mathrm{closed}\kern0.15em \mathrm{loop}}=\frac{A_{\mathrm{OL}}(0){f}_{ \mathrm{b}}}{1+{R}_2/{R}_1}=\frac{\mathrm{BW}}{1+{R}_2/{R}_1}\end{array} $$
]

 (9.22)

but with a very different break frequency f
b
closed loop. A similar treatment holds for the 


                  
                  
                
non-inverting amplifier configuration. The result is identical to Eq. (9.22); however, the closed-loop DC gain A
CL(0) is now given by[image: 
$$ {A}_{\mathrm{CL}}(0)=1+\frac{R_2}{R_1} $$
]

 (9.23)




9.2.5 Application Example: Finding Bandwidth

 of an Amplifier Circuit
The relation reported in Eq. (9.22) is perhaps the most important single result with regard to the AC behavior of operational amplifiers. It reveals that the closed-loop AC gain has conceptually the same RC filter response as the open-loop gain; see Eq. (9.15). However, the corresponding break frequency f
b
closed loop is much larger, namely, by a factor of [image: 
$$ {A}_{\mathrm{OL}}(0)/\left(1+{R}_2/{R}_1\right) $$
]. This implies that the frequency response remains flat up to a very high frequency. The amplifier bandwidth in the closed-loop configuration coincides with the break frequency f
b
closed loop determined by Eq. (9.22). Therefore, the bandwidth is directly proportional to the unity-gain bandwidth BW reported in the datasheet and inversely proportional to the factor [image: 
$$ 1+{R}_2/{R}_1 $$
], which is straightforwardly calculated using the known values of the feedback resistances.
Example 9.10
An amplifier with the open-loop gain of Fig. 9.11 ([image: 
$$ {A}_{\mathrm{OL}}(0)={10}^5,\kern0.5em {f}_{ \mathrm{b}}=10\kern0.15em \mathrm{Hz} $$
]) is used in the closed-loop inverting configuration with [image: 
$$ {R}_2/{R}_1=9 $$
] (the DC inverting gain is −9). Create the Bode plot for the gain magnitude A
CL(f), compare this result with the open-loop gain, and determine the bandwidth of the amplifier.

Solution: According to Eq. (9.22), the gain magnitude is given by[image: 
$$ {A}_{\mathrm{CL}}\left(\kern0.2em ,f\right)=\frac{R_2}{R_1}\frac{1}{\sqrt{1+{\left(\ f/{f}_{ \mathrm{b}}^{\mathrm{closed}\ \mathrm{loop}}\right)}^2}},\kern1em {f}_{ \mathrm{b}}^{\mathrm{closed}\ \mathrm{loop}}=\frac{10^5}{10}\times 10\kern0.5em \mathrm{Hz}=100\kern0.5em \mathrm{kHz} $$
]

 (9.24)



In Fig. 9.13, we plot the 

closed-loop gain versus the open-loop gain given by Eq. (9.15). The amplifier bandwidth in the closed-loop configuration is now a respectable 100 kHz.[image: A331468_1_En_9_Fig13_HTML.gif]
Fig. 9.13Closed-loop AC 

gain A
CL(f) (lower curve) versus open-loop AC gain A
OL(f) (upper curve) for an inverting amplifier with [image: 
$$ {A}_{\mathrm{OL}}(0)={10}^5 $$
] and [image: 
$$ 1+{R}_2/{R}_1=10 $$
] (the amplifier DC gain is −9)






Exercise 9.6
The unity-gain bandwidth of an amplifier IC is 1 MHz. Determine the bandwidth of the non-inverting amplifier circuit with a gain of 200.

Answer: 5 kHz.


9.2.6 Application Example: Selection of an Amplifier IC for Proper Frequency Bandwidth



The required bandwidth and closed-loop gain usually are known to the circuit designer. Using Eq. (9.22), we can estimate whether or not a specific amplifier IC will meet those requirements. There is clearly a trade-off between the closed-loop gain and bandwidth according to Fig. 9.13 and Eq. (9.22). For a given amplifier IC, the lower the closed-loop gain requirement, the wider the achievable bandwidth.
Example 9.11
An inverting amplifier with a gain of −20 and bandwidth of at least 20 kHz is needed. Is the LM348 chip appropriate for this purpose?

Solution: From the LM348

 datasheet, we obtain [image: 
$$ \mathrm{B}\mathrm{W}=1\kern0.5em \mathrm{MHz} $$
]. Because the inverting gain is −20, we should use a ratio of [image: 
$$ {R}_2/{R}_1=20 $$
]. According to Eq. (9.22), this gives [image: 
$$ {f}_{\mathrm{b}}^{\mathrm{closed}\kern0.15em \mathrm{loop}}=47.6\kern0.5em \mathrm{kHz} $$
]. The closed-loop 3-dB bandwidth of the amplifier coincides with this value. Therefore, the LM348 chip is sufficient for our purposes. However, if its gain is forced to a higher value, say to 100, then the useful bandwidth reduces to 10 kHz.

Exercise 9.7
A non-inverting amplifier with a gain of 31 and a bandwidth of at least 90 kHz is needed. Is an LM741-based amplifier IC appropriate for this circuit?

Answer: No.



9.3 Introduction to Continuous and Discrete Fourier Transform
9.3.1 Meaning and Definition of Fourier Transform
Consider a phasor as introduced in the previous chapter. This phasor is in fact a transform. It converts a harmonic sinusoidal time-domain signal into a complex number for easier, algebraic computation of circuit values. After determining the phasor value of a voltage or current signal

, we transform it back to the time-domain expression. What if we do not have a pure sinusoidal tone, but an arbitrary voltage pulse υ(t) in the time domain? Another important example is a bit stream of arbitrary data, which can also be described by a certain voltage function f(t). Could we still introduce a “phasor” for an arbitrary signal f(t) in the time domain? The answer is yes; however, instead of a single complex number, we will have an entire complex function F(ω) of angular frequency ω. This function essentially consists of individual phasors, corresponding to all possible harmonic signals, which form the time-domain signal f(t). Mathematically, the 
                  direct
                  
                  
                 Fourier transform (from time domain to frequency domain) is given by[image: 
$$ F\left(\omega \right) \equiv {\displaystyle \underset{-\infty }{\overset{\infty }{\int }}f(t){\mathrm{e}}^{-j\omega t}dt}, $$
]

 (9.25a)

whereas the 
                  inverse
                  
                  
                 Fourier transform (from frequency domain to time domain) is given by a similar integral[image: 
$$ f(t) \equiv \frac{1}{2\pi }{\displaystyle \underset{-\infty }{\overset{\infty }{\int }}F\left(\omega \right){\mathrm{e}}^{j\omega t}d\omega } $$
]

 (9.25b)

The pair of integrals in Eqs. (9.25a, 9.25b) completely describes the Fourier transform. Function F(ω) is called the 
                  Fourier spectrum
                  
                  
                 (or simply the spectrum) of the signal f
(t). This function is generally complex; however, in contrast to the previous convention, we will not use boldface here in order to preserve the most common mathematical notations.
Exercise 9.8
Establish a relation between [image: 
$$ F\left(-\omega \right) $$
] and F(ω) for a real signal f
(t), which is called a 
                    reversal property
                    
                  

                    
                    
                   of the Fourier transform.

Answer:
[image: 
$$ F\left(-\omega \right)={F}^{*}\left(\omega \right) $$
]

 (9.26)

where the star denotes complex conjugate.

The spectrum is said to be 
                  bandlimited
                  
                

                  
                  
                 if F(ω) is zero above a certain angular frequency ω
max. According to Eq. (9.26), this simultaneously means that F(ω) is zero below [image: 
$$ -{\omega}_{\max } $$
]. Many useful signals are approximately bandlimited.
Example 9.12
Derive the 

Fourier transform of a rectangular pulse in the form of one bit of data shown in Fig. 9.14a.[image: A331468_1_En_9_Fig14_HTML.gif]
Fig. 9.14(a) Rectangular pulse

 f(t) of duration [image: 
$$ T=1\kern0.15em \upmu \mathrm{s} $$
] and (b) its Fourier spectrum in the form of a 



                            
                          sinc function






Solution: The integral in Eq. (9.25a) is reduced to[image: 
$$ F\left(\omega \right)={V}_{\mathrm{m}}{\displaystyle \underset{-T/2}{\overset{T/2}{\int }}{\mathrm{e}}^{-j\omega t}dt}={\left.\frac{V_{\mathrm{m}}}{-j\omega }{\mathrm{e}}^{-j\omega t}\right|}_{-T/2}^{T/2}={V}_{\mathrm{m}}T\frac{ \sin \omega T/2}{\omega T/2} $$
]

 (9.27)



The function [image: 
$$ \mathrm{sinc}(x)\equiv \sin \pi \kern0.1em x/\left(\pi \kern0.1em x\right) $$
] is called a 
                    sinc function
                    
                  . Using its definition, the final result for the spectrum has the form[image: 
$$ F\left(\omega \right)={V}_{\mathrm{m}}T\mathrm{sinc}\left(\frac{\omega T}{2\pi}\right) $$
]

 (9.28)



and is plotted in Fig. 9.14b using a few lines of MATLAB code:

                  [image: A331468_1_En_9_Figv_HTML.gif]
                
In contrast to the original signal, the pulse spectrum is not bounded and extends to infinity. This is due to the fact that the original pulse has sharp edges, which are described by higher-frequency harmonics. The pulse spectrum in the form of a 
sinc function is famous in communications theory. Figure 9.15 shows the shape of the sinc function depicted on an electronics store in

 Silicon Valley, CA.[image: A331468_1_En_9_Fig15_HTML.jpg]
Fig. 9.15Fry’s Electronics store in Sunnyvale, Silicon Valley, with an emblem depicting the sinc function







9.3.2 Mathematical Properties of Fourier Transform
Major 
                  mathematical properties
                  
                  
                 of the Fourier transform follow from its definition and are listed in Table 9.2.Table 9.2
Major 

mathematical properties of Fourier transform


	
f(t)
	
F(ω)

	
Kf(t)
	
KF(ω)

	
                            [image: 
$$ {f}_1(t)-{f}_2(t)+{f}_3(t) $$
]
                          
	
                            [image: 
$$ {F}_1\left(\omega \right)-{F}_2\left(\omega \right)+{F}_3\left(\omega \right) $$
]
                          

	
d

                              n
                            
f(t)/dt

                              n
                            

	(jω)
                              n
                            
F(ω)

	
[image: 
$$ {\displaystyle \underset{-\infty }{\overset{t}{\int }}f\left(\tau \right)}d\tau $$
], [image: 
$$ {\displaystyle \underset{-\infty }{\overset{\infty }{\int }}f(t)}dt=0 $$
]

	
                            [image: 
$$ \frac{1}{j\omega }F\left(\omega \right) $$
]
                          

	
f(at)
	
                            [image: 
$$ \left(1/a\right)F\left(\omega /a\right),\kern1em a>0 $$
]
                          

	
                            [image: 
$$ f\left(t-a\right) $$
]
                            
                              
                              
                            
                          
	
                            [image: 
$$ {\mathrm{e}}^{-j\omega a}F\left(\omega \right) $$
]
                          





The two first properties follow from Fourier transform linearity. Multiplication of f
(t) by a constant corresponds to multiplying F(ω) by the same constant. Also, addition (subtraction) in the time domain corresponds to addition (subtraction) in the frequency domain. The next two properties (differentiation and integration) make the Fourier transform useful for solving ODEs since the time-domain derivatives and integrals will correspond to multiplication and division by jω in the frequency domain. The two last properties (scaling and translation) directly follow from Eq. (9.25a).
Exercise 9.9
The Fourier transform of f(t) is F(ω). What is the Fourier transform of [image: 
$$ df(t)/dt+5f(t) $$
]?

Answer: [image: 
$$ \left(5+j\omega \right)F\left(\omega \right) $$
].

We emphasize that 

the properties listed in Table 9.2 also apply to the discrete Fourier transform studied below, but the corresponding indexing of discrete frequencies has to be carefully arranged.

9.3.3 Discrete Fourier Transform and Its Implementation
Direct Discrete Fourier Transform
Present and future demands are such that we must process continuous signals by discrete methods. Perhaps the most important method is the discrete Fourier transform (DFT)



                    
                  

                    
                    
                   and its fast versions: fast Fourier transform (FFT

) and inverse fast Fourier transform (IFFT). Let f(t) be a continuous pulse signal which is the source of the data. We assume that f(t) is zero outside of the interval [image: 
$$ 0\le t<T $$
]. Let [image: 
$$ f\left({t}_n\right),\kern1em n=0,\dots, N-1 $$
] be its values at N uniformly distributed 


sampling points [image: 
$$ {t}_n=\Delta Tn,\kern1em n=0,\dots, N-1 $$
] within the interval of interest.

 Here[image: 
$$ \Delta T=\frac{T}{N} $$
]

 (9.29)

is the 
                    sampling interval
                    
                    
                  . Then, the integral of the direct Fourier transform in Eq. (9.25a) may be found using the 
                    rectangle rule
                    
                   (or the 
                    Riemann sum approximation
                    
                  )[image: 
$$ F\left(\omega \right)=\Delta T{\displaystyle \sum_{n=0}^{N-1}{\mathrm{e}}^{-j\omega n\Delta T}}f\left({t}_n\right) $$
]

 (9.30)


We could in principle evaluate this expression at any value of ω. However, with only N data points to start with, only N final outputs will be significant. 
                    
                    
                  We choose those N uniformly distributed frequency sampling points as [image: 
$$ {\omega}_m={\omega}_0m,\kern1em m=0,\dots, N-1 $$
], where[image: 
$$ {\omega}_0=\frac{2\pi }{T} $$
]

 (9.31)

is the 
                    fundamental frequency
                    
                  

                    
                    
                   (with one period over the interval T). Let [image: 
$$ F\left({\omega}_m\right),\kern.05em m=0,\dots, N-1 $$
] be the values of F(ω) at the frequency sampling points. Then, Eq. (9.30) gives[image: 
$$ F\left({\omega}_m\right)=\Delta T{\displaystyle \sum_{n=0}^{N-1}{\mathrm{e}}^{-j\frac{2\pi }{N}mn}}f\left({t}_n\right),\kern1em m=0,\dots, N-1 $$
]

 (9.32)




Inverse Discrete Fourier Transform (IDFT)



                    
                  

A very similar operation is applied to the integral of the inverse Fourier transform given by Eq. (9.25b). We first assume that F(ω) is zero outside of the interval [image: 
$$ 0\le \omega <N{\omega}_0 $$
]; in other words, it is 

bandlimited. Then, the corresponding integral in Eq. (9.25b) is again approximated using the rectangle
 rule so that the final result has the form[image: 
$$  f\left({t}_n\right)=\frac{1}{N\Delta T}{\displaystyle \sum_{m=0}^{N-1}{\mathrm{e}}^{j\frac{2\pi }{N}mn}F\left({\omega}_m\right)},\kern1em n=0,\dots, N-1 $$
]

 (9.33)





Definition

 of Discrete Fourier Transform
It is rather inconvenient to keep the factor ΔT in both Eqs. (9.32) and (9.33), respectively. Therefore, we may introduce the notation[image: 
$$ f\left[n\right] \equiv \Delta Tf\left({t}_n\right),\kern1em F\left[m\right] \equiv F\left({\omega}_m\right) $$
]

 (9.34)

and obtain the 
                    standard form
                    
                   of the discrete Fourier transform[image: 
$$ F\left[m\right]={\displaystyle \sum_{n=0}^{N-1}{\mathrm{e}}^{-j\frac{2\pi }{N}mn\kern0.1em }}f\left[n\right],\kern1em m=0,\dots, N-1 $$
]

 (9.35a)


[image: 
$$  f\left[n\right]=\frac{1}{N}{\displaystyle \sum_{m=0}^{N-1}{\mathrm{e}}^{j\frac{2\pi }{N}mn\kern0.1em }F\left[m\right]},\kern1em n=0,\dots, N-1 $$
]

 (9.35b)

Here, f
[n] may be treated as an impulse having the area of ΔTf(t

                    n
                  ).
Exercise 9.10
Establish a relation between [image: 
$$ F\left[N-m\right] $$
] and F[m] for a real signal f(t), which is called a 

reversal property of the discrete Fourier transform.

Answer:
[image: 
$$ {F}^{*}\left[N-m\right]=F\left[m\right] $$
]

 (9.36)


where the star again denotes complex conjugate.

Example 9.13

It 

is possible to very significantly minimize the actual number of multiplications necessary to compute a given DFT in Eqs. (9.35a, b). The DFT so constructed is the fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT). It works best when N is a power of two. For a pulse [image: 
$$ f(t)= \exp \left(-2{\left(t-5\right)}^2\right),\kern0.5em 0\ \mathrm{s}\le t<10\ \mathrm{s} $$
], compute its FFT and then the IFFT and finally compare the end result with the original pulse form given that [image: 
$$ N=64 $$
].

Solution: The solution is conveniently programmed using a few lines of a self-explanatory MATLAB code, which uses Eq. (9.29) and plots two final curves:

                    [image: A331468_1_En_9_Figw_HTML.gif]
                  
Both curves are virtually identical: the relative integral error (integral of signal difference magnitude over the integral of signal magnitude) 
                      
                      
                    does not exceed 10−16.


Structure of Discrete Fourier Spectrum
The set of spectrum

 values F[m], [image: 
$$ m=0,\dots, N-1 $$
], of the DFT has an important redundancy property illustrated in the following example.
Example 9.14
Express all discrete Fourier spectrum values F[m] present in Eq. (9.35a) through N/2 first values of F[m] only. Hint: Use Eq. (9.36).

Solution:
[image: 
$$ \begin{array}{l}F\left[0\right],F\left[1\right],\dots, F\left[\frac{N}{2}-1\right],F\left[\frac{N}{2}\right],F\left[\frac{N}{2}+1\right],\dots, F\left[N-1\right]=\\ {}F\left[0\right],F\left[1\right],\dots, F\left[\frac{N}{2}-1\right],F\left[\frac{N}{2}\right],{F}^{*}\left[\frac{N}{2}-1\right],\dots, {F}^{*}\left[1\right]\end{array} $$
]

 (9.37)


Equation (9.37) demonstrates how the output of the DFT (and of the FFT, in particular in MATLAB) is arranged in reality. It is a symmetric conjugate about [image: 
$$ m=N/2 $$
]. Equation (9.37) is a key to finding derivatives and arbitrary filter transformations of the input signal with the FFT. Only a frequency with [image: 
$$ m\le N/2 $$
] is considered to be valid; its mirror reflection about [image: 
$$ m=N/2 $$
] is a higher “aliasing frequency.” We emphasize that, according to Eq. (9.26), the complex conjugates may be replaced by spectrum values at a negative frequency, i.e., [image: 
$$ {F}^{*}\left[1\right]=F\left[-1\right] $$
]. Thus, the spectrum above [image: 
$$ m=N/2 $$
] corresponds 

to negative frequencies with [image: 
$$ m>-N/2 $$
].



9.3.4 
                Sampling Theorem


              
It follows from Example 9.14 that only frequency samples with [image: 
$$ {\omega}_m\le \frac{N}{2}{\omega}_0 $$
] are really needed. This fact is a consequence of the sampling theorem, which states that any signal 
bandlimited to ω
max can be reproduced exactly using the discrete Fourier transform if[image: 
$$ {\omega}_{\max}\le \frac{N}{2}{\omega}_0 $$
]

 (9.38a)


Accordingly, the maximum possible sampling interval may be found from inequality[image: 
$$ \Delta T\le \frac{1}{2}\frac{1}{f_{\max }},\kern1em {f}_{\max }=\frac{\omega_{\max }}{2\pi } $$
]

 (9.38b)



Exercise 9.11
Examples of the maximum frequency of interest for some biomedical signals are:	1.Electrocardiogram (ECG) where [image: 
$$ {f}_{\max}\approx 250\kern0.2em \mathrm{Hz} $$
]



 

	2.Blood flow where [image: 
$$ {f}_{\max}\approx 25\kern0.2em \mathrm{Hz} $$
]



 

	3.Respiratory rate where [image: 
$$ {f}_{\max}\approx 10\kern0.2em \mathrm{Hz} $$
]



 

	4.Electromyogram where [image: 
$$ {f}_{\max}\approx 10\kern0.2em \mathrm{kHz} $$
]



 





Establish the maximum possible sampling interval of the DFT and the minimum possible sampling frequency, which is equal to 1/ΔT.

Answer: (1) 2 ms

 and 500 Hz; (2) 20 ms and 50 Hz; (3) 50 ms and 20 Hz; (4) 50 μs and 20 kHz.


9.3.5 
Applications

 of Discrete Fourier Transform
The DFT is one of the most important tools in 
digital signal processing (DSP)


                  
                  
                . In particular, the DFT can calculate a signal’s frequency spectrum. This is a direct examination of information encoded in the frequency, phase, and amplitude of the component sinusoids. For example, human speech and hearing use signals with this type of encoding. Second, the DFT or rather its variation, the discrete cosine transform, is used in sound compression; the MP3 format is one such example. The DFT is also an important image processing tool which is used to decompose an image into its sine and cosine components. The output of the transformation represents the image in the Fourier or frequency domain, while the input image is the spatial domain equivalent. In the Fourier domain image, each point represents a particular frequency contained in the spatial domain image. In particular, the JPEG format is using a modification of the DFT for image compression; the DFT is also used for image filtering and reconstruction. Along with this, the DFT is used widely in bioinformatics/computational biology to analyze DNA sequences. Last but not least, many computational modeling tools, such as antenna and high-speed circuit simulators, typically operate at one particular signal frequency (in the frequency domain). Collecting the solutions at many such frequencies makes it 

possible to establish evolution of an arbitrary signal or wave field in time.

9.3.6 Application Example: Numerical Differentiation via the FFT
We have established that a filter is characterized by its transfer function H(f) or H(ω) and found this transfer function for simple cases. Given the input sinusoidal signal

, we have also shown how to evaluate the filter’s output when its transfer function is known. But what if the input signal is an arbitrary pulse? How could the solution for the output pulse be obtained? The answer relies upon an observation that the transfer function given by Eq. (9.9b) may be applied to every harmonic component of the input signal f
in(t) separately. Those harmonics are all described by the Fourier spectrum of the pulse, F(ω). Therefore, the output Fourier pulse spectrum is given by[image: 
$$ {F}_{\mathrm{out}}\left(\omega \right)=\mathbf{H}\left(\omega \right){F}_{\mathrm{in}}\left(\omega \right) $$
]

 (9.39)

The remaining part is to find the output pulse itself, which is clearly the inverse Fourier transform

:[image: 
$$ {f}_{\mathrm{out}}(t)\equiv \frac{1}{2\pi }{\displaystyle \underset{-\infty }{\overset{\infty }{\int }}{F}_{\mathrm{out}}\left(\omega \right){\mathrm{e}}^{j\omega t}d\omega } $$
]

 (9.40)

When moving from continuous toward discrete Fourier transform and toward digital signal processing

, Eq. (9.39) becomes a somewhat tricky operation. According to Eq. (9.37), the discrete version of Eq. (9.39) must have the form[image: 
$$  \mathbf{H}F\to \mathbf{H}\left[0\right]F\left[0\right],\kern0.5em \mathbf{H}\left[1\right]F\left[1\right],\dots, \kern0.5em \mathbf{H}\left[\frac{N}{2}-1\right]F\left[\frac{N}{2}-1\right],\kern0.5em \mathbf{H}\left[\frac{N}{2}\right]F\left[\frac{N}{2}\right],{\mathbf{H}}^{*}\left[\frac{N}{2}-1\right]F\left[\frac{N}{2}+1\right],\dots \kern0.5em {\mathbf{H}}^{*}\left[1\right]F\left[N-1\right] $$
]

 (9.41)

This version corresponds to the full list of monotonic frequency data

 [image: 
$$ {\omega}_m={\omega}_0m,\kern1em m=0,\dots, N-1 $$
]. Also note that, in all realistic linear systems,[image: 
$$ {\mathbf{H}}^{*}(m)=\mathbf{H}\left(-m\right) $$
]

 (9.42)

Therefore, Eq. (9.41) simultaneously describes a set of data for the following non-monotonic frequency list [image: 
$$ 0,\kern0.5em {\omega}_m,\dots, \kern0.5em \frac{N}{2}{\omega}_0,\left(1-\frac{N}{2}\right){\omega}_0,\left(2-\frac{N}{2}\right),\dots, -{\omega}_0 $$
], which also includes the negative frequencies.
Example 9.15 (numerical differentiation via the FFT)


                    
                    
                  Prove Eq. (9.41) for a pulse [image: 
$$ f(t)= \exp \left(-2{\left(t-5\right)}^2\right),\kern1em 0\kern0.5em \mathrm{s}\le t<10\kern0.5em \mathrm{s} $$
] and for [image: 
$$ \mathbf{H}\left(\omega \right)=j\omega $$
]. Such a transfer function corresponds to numerical differentiation via the FFT. Use the FFT and IFFT with [image: 
$$ N=64 $$
].

Solution: The solution is conveniently programmed in a self-explanatory MATLAB code, which uses Eq. (9.41) and plots two final results in Fig. 9.16, the numerical pulse derivative and the analytical derivative, respectively:[image: A331468_1_En_9_Fig16_HTML.gif]
Fig. 9.16Analytical (solid curve) and numerical (diamonds) differentiation of the original Gaussian pulse






                  [image: A331468_1_En_9_Figx_HTML.gif]
                
Both curves are virtually identical: the relative integral error (integral of signal difference magnitude over the integral of analytical signal magnitude)
                    
                    
                   does not exceed 1.3 × 10−15.


9.3.7 Application Example: Filter Operation for an Input Pulse Signal



The filter operation for an input pulse signal exactly follows Example 9.15 but with a different transfer function H(ω).
Example 9.16
A pulse [image: 
$$ f(t)= \exp \left(-2{\left(t-5\right)}^2\right),\kern1em 0\kern0.5em \mathrm{s}\le t<10\kern0.5em \mathrm{s} $$
] is an input to a 
first-order high-pass filter. Find the filter output when its (angular) break frequency is given by a) [image: 
$$ {\omega}_0=1\ \mathrm{rad}/\mathrm{s} $$
] and b) [image: 
$$ {\omega}_0=10\kern0.5em \mathrm{rad}/\mathrm{s} $$
]. Use the FFT and IFFT with [image: 
$$ N=64 $$
].

Solution: The solution is performed and programmed exactly described in the previous example, but the transfer function is now given by Eq. (9.1b):

                  H = j*omega/omega0./(1+j*omega/omega0);
                
Figure 9.17 plots two output pulse forms corresponding to two different values of the break frequency. Note that the value [image: 
$$ {\omega}_0=10\ \mathrm{rad}/\mathrm{s} $$
] approximately corresponds to a mean value for non-aliasing frequencies of the FFT. Also note that when the break frequency becomes sufficiently high, the HPF behaves as an ideal differentiator but with a significant amplitude decay.[image: A331468_1_En_9_Fig17_HTML.gif]
Fig. 9.17
Diamonds: HPF output for (a) [image: 
$$ {\omega}_0=1\kern0.5em \mathrm{rad}/\mathrm{s} $$
] and (b) [image: 
$$ {\omega}_0=10\ \mathrm{rad}/\mathrm{s} $$
], respectively. Solid curve: analytical derivative of the input Gaussian pulse







9.3.8 Application Example: Converting Computational Electromagnetic Solution

 from Frequency Domain to Time Domain
Many computational modeling tools operate at one particular signal frequency or at a set of those (in frequency domain). To obtain the solution for an arbitrary pulse at an arbitrary point in space, we can again use the method of the transfer function and the FFT described previously. As an example, we consider a TMS (transcranial magnetic stimulation) coil above the head of a computational human phantom in Fig. 9.18a. Once a current pulse is applied to the coil, an electric field will be excited in the brain according to Faraday’s law of induction. This field may help to reestablish some neuron connections lost, for example, in Parkinson’s disease. For safety considerations, the field at arbitrary locations within the body needs to be evaluated, let’s say at node 2 in Fig. 9.18a. In order to do so, the problem is first solved for about 40 single-frequency excitations, which will presumably cover the spectrum content of the desired TMS pulse in Fig. 9.18b well. The ratio of the electric field phasor at the observation point to the coil current phasor is the transfer function value at a desired frequency, H(ω). This ratio does not depend on particular amplitude of the coil current. Next, we introduce the DFT of size N for the original pulse shown in Fig. 9.18b, interpolate the transfer function over [image: 
$$ N/2+1 $$
] required frequency points, and apply the method of Examples 91.5 and 9.16 with this new transfer function. The result is an electric field pulse at node 2 shown in Fig. 9.18c (the dominant z-component has been plotted), which is excited by the coil current shown in Fig. 9.18b.[image: A331468_1_En_9_Fig18_HTML.gif]
Fig. 9.18Time-domain computational solution 

for the induced electric field within a human body obtained from the frequency-domain data via the FFT







Summary

                	Property
	
                            First-order low-pass filter
                          
	
                            First-order high-pass filter
                          

	Circuit schematic
	
                            [image: A331468_1_En_9_Figy_HTML.gif]
                          
	
                            [image: A331468_1_En_9_Figz_HTML.gif]
                          

	Transmission at [image: 
$$ f=0 $$
] (DC)
	
                            1
                          
(DC path through the resistor)
	
                            0
                          
(No DC path)

	Transmission at [image: 
$$ f\to \infty $$
]

	
                            0
                          
(Inductor is an open circuit at [image: 
$$ f\to \infty $$
])
	
                            1
                          
(DC path through the resistor)

	Transfer function H(
f
)
	
                            [image: 
$$ \frac{1}{1+j\left(\kern0.2em f\kern0.1em /{f}_b\right)} $$
]
                          
	
                            [image: 
$$ \frac{\left(\kern0.2em f\kern0.1em /{f}_b\right)}{1+j\left(\kern0.2em f\kern0.1em /{f}_b\right)} $$
]
                          

	Decibels of [image: 
$$ H=\left|\mathbf{H}\right| $$
]

	20 log10
H [dB]
	20 log10
H [dB]

	Decibels of 1 and 0.1
	0 dB and −20 dB
	0 dB and −20 dB

	Transfer function magnitude H

                              m
                            (
f
)
	
                            [image: 
$$ \frac{1}{\sqrt{1+{\left(\kern0.2em f\kern0.1em /{f}_b\right)}^2}} $$
]
                          
	
                            [image: 
$$ \frac{f\kern0.1em /{f}_b}{\sqrt{1+{\left(\kern0.2em f\kern0.1em /{f}_b\right)}^2}} $$
]
                          

	Transfer function phase [image: 
$$ \angle {\varphi}_H $$
]

	
                            [image: 
$$ \angle -{ \tan}^{-1}\left(\kern0.2em ,\frac{f}{f_b}\right) $$
]
                          
	
                            [image: 
$$ \frac{\pi }{2}-{ \tan}^{-1}\left(\kern0.2em ,\frac{f}{f_b}\right) $$
]
                          

	Break frequency, (half-power frequency, 3-dB frequency, corner frequency)
	
                            [image: 
$$ \begin{array}{l}{f}_b=\frac{1}{2\pi \tau}\kern0.5em \left[\mathrm{Hz}\right]\\ {}\tau =RC\kern0.5em \mathrm{or}\kern0.5em \frac{L}{R}\kern1em \left[\mathrm{s}\right]\end{array} $$
]
                          
	
                            [image: 
$$ \begin{array}{l}{f}_b=\frac{1}{2\pi \tau}\kern0.5em \left[\mathrm{Hz}\right]\\ {}\tau =RC\kern0.5em \mathrm{or}\kern0.5em \frac{L}{R}\kern1em \left[\mathrm{s}\right]\end{array} $$
]
                          

	Passband (3 dB bandwidth), Hz
	From 0 to f

                              b
                            

	From f

                              b
                             to [image: 
$$ \infty $$
]


	Filter with a resistive load R

                              L
                            

	
                            [image: A331468_1_En_9_Figaa_HTML.gif]
                          
	
                            [image: A331468_1_En_9_Figab_HTML.gif]
                          

	Transfer function with the load H(
f
)
	
                            [image: 
$$ \begin{array}{l}\mathbf{H}\left(\kern0.2em ,f\right)=\frac{1}{1+R/{R}_L+j\left(\kern0.2em ,f\kern0.1em /{f}_b\right)}\\ {}{f}_b=\frac{1}{2\pi \tau },\kern0.5em \tau =RC\end{array} $$
]
                          
	
                            [image: 
$$ \begin{array}{l}\mathbf{H}\left(\kern0.2em ,f\right)=\frac{\left(\kern0.2em ,f\kern0.1em /{f}_b\right)}{1+j\left(\kern0.2em ,f\kern0.1em /{f}_b\right)}\\ {}{f}_b=\frac{1}{2\pi \tau },\kern0.5em \tau =\left(R\left|\right|{R}_L\right)C\ \end{array} $$
]
                          

	Amplitude Bode plots
	
                            [image: A331468_1_En_9_Figac_HTML.gif]
                          
	
                            [image: A331468_1_En_9_Figad_HTML.gif]
                          

	Phase Bode plots
	
                            [image: A331468_1_En_9_Figae_HTML.gif]
                          
	
                            [image: A331468_1_En_9_Figaf_HTML.gif]
                          

	Meaning of the transfer function for harmonic signals represented by phasors
	
                            [image: 
$$ {\mathbf{V}}_{out}=\mathbf{H}\left(\kern0.2em ,f\right){\mathbf{V}}_{in} $$
]
                          
where V

                              in
                             is the input voltage phasor and V

                              out
                             is the output voltage phasor

	Cascading filters and linear systems (series combination)
	
                            [image: 
$$ \mathbf{H}\left(\kern0.2em ,f\right)={\mathbf{H}}_1\left(\kern0.2em ,f\right){\mathbf{H}}_2\left(\kern0.2em ,f\right) $$
]
                          
only if the loading effect of individual blocks is minimized

	3-dB bandwidth of an operational amplifier circuit (inverting or non-inverting amplifier configuration)
	
                            [image: A331468_1_En_9_Figag_HTML.gif]
                          
From 0 to f

                              b
                            
closed loop (closed-loop 3-dB frequency) where

                            [image: 
$$ {f}_b^{\mathrm{closed}\ \mathrm{loop}}=\frac{\mathrm{BW}}{1+{R}_2/{R}_1} $$
]
                          
BW is the unity-gain bandwidth reported in the datasheet

	Property
	
                            Continuous and discrete Fourier transform
                          

	Fourier transform definition
	
                            [image: 
$$ F\left(\omega \right)\equiv {\displaystyle \underset{-\infty }{\overset{\infty }{\int }}f(t){e}^{-j\omega t}dt} $$
]
                            [image: 
$$ f(t)\equiv \frac{1}{2\pi }{\displaystyle \underset{-\infty }{\overset{\infty }{\int }}F\left(\omega \right){e}^{j\omega t}d\omega } $$
]
                          

[image: 
$$ F\left(-\omega \right)={F}^{*}\left(\omega \right) $$
] if f(t) is real


	Fourier transform of a rectangular pulse
	
                            [image: A331468_1_En_9_Figah_HTML.gif]
                          

                            [image: 
$$ F\left(\omega \right)={V}_mT\; \sin  \mathrm{c}\left(\frac{\omega T}{2\pi}\right) $$
]
                          

	Fourier transform of a Gaussian pulse
	
                            [image: 
$$ f(t)={e}^{-a\kern0.05em {t}^2}\iff F\left(\omega \right)=\sqrt{\frac{\pi }{a}}\kern2pt {e}^{-{\omega}^2/(4a)} $$
]
                          

	Major properties of Fourier transform
	
                            [image: A331468_1_En_9_Figai_HTML.gif]
                          

	Definition of sampling points: discrete Fourier transform
	
[image: 
$$ {t}_n=\Delta Tn,\kern0.5em n=0,\dots, N-1 $$
], [image: 
$$ T=N\Delta T $$
]


[image: 
$$ {\omega}_m={\omega}_0m,\kern0.5em m=0,\dots, N-1 $$
], [image: 
$$ {\omega}_0=\frac{2\pi }{T} $$
]


	Definition of samples: discrete Fourier transform
	
                            [image: 
$$ f\left[n\right]\equiv \Delta Tf\left({t}_n\right),\kern1em n=0,\dots, N-1 $$
]
                          

                            [image: 
$$ F\left[m\right]\equiv F\left({\omega}_m\right),\kern1em m=0,\dots, N-1 $$
]
                          

	Discrete/fast Fourier transform
	
                            [image: 
$$ F\left[m\right]={\displaystyle \sum_{n=0}^{N-1}{e}^{-j\frac{2\pi }{N}mn\kern0.1em }}f\left[n\right],\kern1em m=0,\dots, N-1 $$
]
                          

                            [image: 
$$ f\left[n\right]=\frac{1}{N}{\displaystyle \sum_{m=0}^{N-1}{e}^{j\frac{2\pi }{N}mn\kern0.1em }F\left[m\right]},\kern1em n=0,\dots, N-1 $$
]
                          

	Sampling theorem
	1. Any signal bandlimited to ω
max can be reproduced exactly using the discrete Fourier transform if [image: 
$$ {\omega}_{\max}\le \frac{N}{2}{\omega}_0 $$
]

2. Alternatively, the sampling interval must satisfy inequality

                            [image: 
$$ \varDelta T\le \frac{1}{2}\frac{1}{f_{\max }},\kern1em {f}_{\max }=\frac{\omega_{\max }}{2\pi } $$
]
                          

	Structure of discrete Fourier spectrum
	
                            [image: 
$$ \begin{array}{l}\hfill {F}^{*}\left[N-m\right]=\operatorname{F}\left[m\right]\hfill \\ {}\hfill \Downarrow \hfill \\ {}F\left[0\right],F\left[1\right],\dots, F\left[\frac{N}{2}-1\right],F\left[\frac{N}{2}\right],F\left[\frac{N}{2}+1\right],\dots, F\left[N-1\right]=\\ {}F\left[0\right],F\left[1\right],\dots, F\left[\frac{N}{2}-1\right],F\left[\frac{N}{2}\right],{F}^{*}\left[\frac{N}{2}-1\right],\dots, {F}^{*}\left[1\right]\end{array} $$
]
                          

	Equivalent frequency samples for negative frequencies
	
                            [image: 
$$ 0,\kern0.5em {\omega}_m,\dots, \kern0.5em \frac{N}{2}{\omega}_0,\left(1-\frac{N}{2}\right){\omega}_0,\left(2-\frac{N}{2}\right),\dots, -{\omega}_0 $$
]
                          

	Transfer function multiplication
	
                            [image: 
$$ \begin{array}{l}\mathbf{H}F\to \mathbf{H}\left[0\right]F\left[0\right],\kern0.5em \mathbf{H}\left[1\right]F\left[1\right],\dots, \kern0.5em \mathbf{H}\left[\frac{N}{2}-1\right]F\left[\frac{N}{2}-1\right],\kern0.5em \mathbf{H}\left[\frac{N}{2}\right]F\left[\frac{N}{2}\right],\\ {}\kern12em {\mathbf{H}}^{*}\left[\frac{N}{2}-1\right]F\left[\frac{N}{2}+1\right],\dots, \kern0.5em {\mathbf{H}}^{*}\left[1\right]F\left[N-1\right]\end{array} $$
]
                          




              

Problems
9.1 First-Order Filter Circuits and Their Combinations

                  9.1.1
                  
                    RC
                    
                    
                  
                  Voltage Divider as an Analog Filter
                
Problem 9.1

                    	A.Explain the function of an analog RC filter.


 

	B.Write the capacitor and resistor voltages υ
R(t) and υ
C(t) of the series RC circuits in the general form, as functions of the AC angular frequency.


 

	C.Which circuit element (or which voltage) dominates at low frequencies? At high frequencies?


 




                  

Problem 9.2

                    	A.Draw a schematic of the low-pass analog RC filter. Show the input and output ports.


 

	B.Repeat the same task for the high-pass analog RC filter.


 




                  

Problem 9.3
The input voltage to the filter circuit shown in the following figure is a combination of two harmonics, [image: 
$$ {\upsilon}_{\mathrm{in}}(t)=1 \cos {\omega}_1\kern0.1em t+1 \cos {\omega}_2\kern0.1em t $$
], with the amplitude of 1 V each.
                      
                      
                     The filter has the following parameters: [image: 
$$ R=100\kern0.5em \mathrm{k}\Omega $$
] and [image: 
$$ C=1.59\kern0.5em \mathrm{nF} $$
]. Determine the output voltage υ
out(t) to the filter given that [image: 
$$ {f}_1=100\kern0.5em \mathrm{Hz} $$
] and [image: 
$$ {f}_2=100\kern0.5em \mathrm{kHz} $$
]. Express all phase angles in degrees.[image: A331468_1_En_9_Fige_HTML.gif]




Problem 9.4
Repeat the previous problem for the filter circuit shown in the following figure. All other parameters remain the same.[image: A331468_1_En_9_Figf_HTML.gif]




Problem 9.5
The input voltage to the RC filter circuit shown in the figure is [image: 
$$ {V}_{\mathrm{in}}(t)=5 \cos \omega \kern0.1em t\kern0.5em \left[\mathrm{V}\right] $$
]. The filter has the following parameters: [image: 
$$ C=1\kern0.5em \upmu \mathrm{F} $$
] and [image: 
$$ R=100\kern0.5em \Omega $$
]. The filter operates in the frequency band from 100 Hz to 50 kHz. The filter is connected to a load with the load resistance of 1 MΩ. By solving the corresponding AC circuit, determine the output voltage amplitude across the load (and its percentage versus the input voltage amplitude) with and without the load at [image: 
$$ f=100\ \mathrm{Hz} $$
], [image: 
$$ f=1592\ \mathrm{Hz} $$
], and [image: 
$$ f=50\kern0.5em \mathrm{kHz} $$
].[image: A331468_1_En_9_Figg_HTML.gif]




Problem 9.6
Repeat the previous problem when the load resistance changes from 1 MΩ to 100 Ω (decreases).

Problem 9.7
Repeat Problem 9.5 for the filter circuit shown in the following figure. Assume the load resistance 

of 100 Ω.[image: A331468_1_En_9_Figh_HTML.gif]





                  9.1.2 Half-Power Frequency and Amplitude Transfer Function
                

                  9.1.
                  
                    3
                    
                    
                  
                  Bode Plot, Decibel, and Roll-off
                
Problem 9.8

                    	A.Describe the physical meaning of the (half-power) break frequency in your own words.


 

	B.Give the expression for the break frequency in terms of circuit parameters of an RC filter. Is it different for low-pass and high-pass filters?


 




                  

Problem 9.9
Given [image: 
$$ R=100\kern0.5em \mathrm{k}\Omega $$
] and [image: 
$$ C=1.59\kern0.5em \mathrm{nF} $$
], determine the break frequency of the low-pass RC filter and of the high-pass RC filter, respectively.

Problem 9.10
List all possible alternative names for the break frequency.

Problem 9.11
Write the 

amplitude transfer function for the low-pass RC filter. Repeat for the high-pass RC filter. Indicate units (if any).

Problem 9.12
The input signal to a high-pass RC filter includes a 60-Hz component. Its amplitude is to be reduced by a factor of 10. What break frequency should the filter have?

Problem 9.13
The input signal to a low-pass RC filter includes a 10-kHz component. Its amplitude is to be reduced by a factor of 5. What break frequency should the filter have?

Problem 9.14
Describe the meaning of the Bode plot in your own words.

Problem 9.15
It is known that [image: 
$$ {H}_{\mathrm{m}}{\left(\kern0.2em ,f\right)}_{\mathrm{dB}}=0,\kern0.5em -6,\kern0.5em -20\kern1em \left[\mathrm{dB}\right] $$
]. Find the corresponding values of H
m(f).

Problem 9.16
The following values are given [image: 
$$ {H}_{\mathrm{m}}\left(\kern0.2em ,f\right)=1,\kern0.5em 0.707,\kern0.5em 0.1,\kern0.5em \mathrm{and}\kern0.5em 100 $$
]. Find the corresponding values of H
m(f)dB.

Problem 9.17

                    	A.When the ratio of the amplitudes of two signals is [image: 
$$ \sqrt{2} $$
], what is the difference between the two corresponding decibel measures in dB?


 

	B.When the ratio of the amplitudes of two signals is 1/ [image: 
$$ \sqrt{2} $$
], what is the difference between the two corresponding decibel measures in dB?


 

	C.When the ratio of the amplitudes of two signals is [image: 
$$ \sqrt{20} $$
], what is 

the difference between the two corresponding decibel measures in dB?


 

	D.When the ratio of the powers of two signals is 1000, what is the difference between the two corresponding decibel measures in dB?


 




                  

Problem 9.18
What do engineers mean by one decade? One 
octave?

Problem 9.19
For the filter circuit shown in the following figure, given that [image: 
$$ R=100\kern0.5em \mathrm{k}\Omega $$
] and [image: 
$$ C=159\kern0.5em \mathrm{pF} $$
]:	A.Create the amplitude Bode plot by finding transfer function values for (at least) every decade.


 

	B.Label the break frequency.


 

	C.Label the filter passband.[image: A331468_1_En_9_Figi_HTML.gif]





 






Problem 9.20
Repeat the 

previous problem with [image: 
$$ R=100\kern0.5em \mathrm{k}\Omega $$
] and [image: 
$$ C=53\kern0.5em \mathrm{pF} $$
].

Problem 9.21
For the filter circuit shown in the following figure, assume the values [image: 
$$ R=10\kern0.5em \mathrm{k}\Omega $$
] and [image: 
$$ C=1.59\kern0.5em \mathrm{nF} $$
].	A.Create the amplitude Bode plot by finding the transfer function values for (at least) every decade.


 

	B.Label the break frequency.


 

	C.Label the filter passband.
[image: A331468_1_En_9_Figj_HTML.gif]





 






Problem 9.22
Repeat the previous problem with [image: 
$$ R=100\kern0.5em \mathrm{k}\Omega $$
] and [image: 
$$ C=53\kern0.5em \mathrm{pF} $$
].

Problem 9.23
An amplitude Bode plot for a certain RC filter is shown in the figure below.	A.Approximately determine the filter’s resistance R if it is known that [image: 
$$ C=265\kern0.5em \mathrm{pF} $$
]. Describe each step of your approach.


 

	B.Suggest a way to verify your solution.
[image: A331468_1_En_9_Figk_HTML.gif]





 






Problem 9.24
An amplitude 

Bode plot for a certain RC filter is shown in the figure below.	A.Approximately determine the filter’s capacitance, C, for a given [image: 
$$ R=100\kern0.5em \mathrm{k}\Omega $$
]. Describe each step of your approach.


 

	B.Suggest a way to verify your solution.[image: A331468_1_En_9_Figl_HTML.gif]





 






Problem 9.25
Prove analytically that the amplitude transfer functions of the low-pass filter and the high-pass filter are the mirror reflections of each other about the break frequency in the Bode plot.


                  9.1.4 Phase Transfer
                  
                    Function
                    
                    
                  
                  and Its Bode Plot
                
Problem 9.26
Write the phase transfer function for the low-pass RC filter. Repeat for the high-pass RC filter. Show units.

Problem 9.27
The input voltage to a low-pass RC filter has a zero phase. At what frequency in terms of the break frequency f
b is the phase shift at the output equal to −1°, −45°, and −89°?

Problem 9.28
The input voltage to a high-pass RC filter has a zero phase. At what frequency in terms of the break frequency f
b is the phase shift at the output equal to 5°, 45°, and 85°?

Problem 9.29
A low-pass RC filter has the break frequency of 10 kHz. Create the phase Bode plot by finding the transfer function values for (at least) every decade.[image: A331468_1_En_9_Figm_HTML.gif]




Problem 9.30
Repeat the previous problem for a high-pass RC filter with the same break frequency.


                  9.1.5
                  
                    Complex Transfer Function:
                    
                    
                  
                  Cascading Filter Circuits
                

                  9.1.
                  
                    6
                    
                  
                  RL Filter Circuits
                
Problem 9.31
For the filter circuit shown in the figure below, create the amplitude response of the Bode plot by 
finding transfer function values for (at least) every decade. The two individual filter blocks both have the break frequency of 1 kHz. Assume that the loading effect of the filter stages is negligibly small; in practice, a buffer amplifier stage could be used.[image: A331468_1_En_9_Fign_HTML.gif]




Problem 9.32

                    	A.Repeat the previous problem for the filter circuit shown in the figure below.


 

	B.Analytically determine the roll-off per decade in dB.[image: A331468_1_En_9_Figo_HTML.gif]





 




                  

Problem 9.33
For two RL filter circuits with [image: 
$$ R=31.4\kern0.5em \Omega $$
] and [image: 
$$ L=1\kern0.5em \mathrm{mH} $$
] shown in the figure below:	A.Determine the break frequency.


 

	B.Draw the corresponding RC counterpart.


 

	C.Establish the capacitance values of the RC filters, which assure the equivalent transfer functions, given that the resistances of the RC filters are 100 kΩ in both cases.[image: A331468_1_En_9_Figp_HTML.gif]





 






Problem 9.34
For the 
filter circuit shown in the figure below, assume the values [image: 
$$ {R}_1=628\kern0.5em \Omega $$
] and [image: 
$$ {L}_1=10\kern0.5em \mathrm{mH} $$
].	A.Create the amplitude Bode plot by finding transfer function values for (at least) every decade.


 

	B.Determine the roll-off per decade in dB.


 





Assume that the loading effect of the filter stages is negligibly small (e.g., a buffer amplifier stage is used).[image: A331468_1_En_9_Figq_HTML.gif]




Problem 9.35
The transfer function of a filter circuit is given by [image: 
$$ H\left(\kern0.2em ,f\right)=\frac{1+j\left(\ f/1000\right)}{1 + {\left(f/1000\right)}^2} $$
]. Create its amplitude and phase Bode plots in the frequency band from 10 Hz to 100 kHz by finding transfer function values for (at least) every decade.


9.2 Bandwidth of an Operational Amplifier

                  9.2.1 Bode Plot of the Open-
                  
                    loop
                    
                    
                  
                  Amplifier Gain
                

                  9.2.2 Unity-gain Bandwidth Versus Gain-Bandwidth
                  
                    Product
                    
                    
                  
                
Problem 9.36
An amplifier has the unity-gain bandwidth BW of 5 MHz. What exactly does this mean? Explain and provide equations.

Problem 9.37
Using a manufacturing company’s website (usually it is a more accurate frequently updated source) or the corresponding datasheet, find the unity-gain bandwidth for the following amplifier ICs:	A.TL082


 

	B.LM741


 

	C.LM7171


 






Problem 9.38
Frequency response of an amplifier is characterized by the open-loop DC gain [image: 
$$ {A}_{\mathrm{OL}}(0)=1.41\times {10}^6 $$
] and the break frequency of [image: 
$$ {f}_{ \mathrm{b}}=20\ \mathrm{Hz} $$
]. Numerically calculate the gain-bandwidth product for the amplifier at:	A.20 Hz,


 

	B.2 kHz,


 

	C.2 M

Hz.


 







                  9.2.3 Model of the Open-Loop AC Gain
                
Problem 9.39

Frequency 


                      
                      
                    response of an amplifier is characterized by the open-loop DC gain [image: 
$$ {A}_{\mathrm{OL}}(0)={10}^6 $$
] and the break frequency of [image: 
$$ {f}_{ \mathrm{b}}=20\ \mathrm{Hz} $$
]. Plot the open-loop gain magnitude in dB over the range of frequencies (the frequency band) from 1 Hz to 10 MHz on the log-log scale (the Bode plot) and label the axes.

Problem 9.40
In the previous problem, find the unity-gain bandwidth BW of the amplifier.

Problem 9.41
Internally compensated LM358-series amplifiers have the unity-gain bandwidth (BW) of 1 MHz. The typical large-signal DC voltage gain at room temperature is 100 V/mV.	A.Find the open-loop DC gain in dB and the open-loop break frequency f
b.


 

	B.Find the open-loop gain at 100 Hz, 1 kHz, and 10 kHz.


 






Problem 9.42
The open-loop gain magnitude of an internally compensated high-frequency amplifier has been given as[image: 
$$ {A}_{\mathrm{OL}}\left(100\kern0.5em \mathrm{Hz}\right)=0.9\times {10}^6,\kern1em {A}_{\mathrm{OL}}\left(1\kern0.5em \mathrm{MHz}\right)=1.0\times {10}^2 $$
]



at room temperature. Determine:	A.3-dB break frequency,


 

	B.DC open-loop gain,


 

	C.Unity-gain 


                              
                              
                            bandwidth BW of the amplifier.


 






Problem 9.43
Repeat the previous problem for[image: 
$$ {A}_{\mathrm{OL}}\left(100\kern0.5em \mathrm{Hz}\right)=0.5\times {10}^6,{A}_{\mathrm{OL}}\left(1\kern0.5em \mathrm{MHz}\right)=1.0\times {10}^2. $$
]






                  9.2.4 Model of
                  
                    the
                    
                  
                  
                    
                    
                  
                  Closed-loop AC Gain
                

                  9.2.5 Application Example: Finding
                  
                    Bandwidth of an
                    
                    
                  
                  Amplifier Circuit
                
Problem 9.44
An amplifier with the open-loop gain described by the first-order RC circuit response with [image: 
$$ {A}_{\mathrm{OL}}(0)={10}^5 $$
] and [image: 
$$ {f}_{ \mathrm{b}}=20\kern0.5em \mathrm{Hz} $$
] is used in a closed-loop inverting configuration with [image: 
$$ {R}_2/{R}_1=9 $$
] and [image: 
$$ {R}_2/{R}_1=99 $$
], respectively.	A.Using the template that follows, create the Bode plots for the corresponding frequency response (closed-loop gain), G(f), in the band from 10 Hz to 10 MHz on the same 

graph. Plot the gain values for (at least) every decade.


 

	B.Also on the same graph, plot the open-loop gain as a function of frequency.


 

	C.Determine the bandwidth of the closed-loop amplifier so constructed in every case.
[image: A331468_1_En_9_Figr_HTML.gif]





 






Problem 9.45
The unity-gain bandwidth of an amplifier IC is 1 MHz. Determine the bandwidth of the following amplifier circuits:
	A.An inverting amplifier with the gain of −1,


 

	B.An inverting amplifier with the gain of −10,


 

	C.A non-inverting amplifier with the gain of 100,


 

	D.A voltage follower (buffer amplifier).


 





constructed using the

 same IC.


                  9.2.6 Application Example: Selection of an Amplifier IC for Proper Frequency Bandwidth
                
Problem 9.46
An inverting 

amplifier with a gain of −20 and a bandwidth of at least 200 kHz is needed. Which amplifier chip is appropriate for this circuit (and which is not)?	A.LM358


 

	B.TL082


 

	C.LM741


 

	D.LM7171


 

	E.LM8272


 






Problem 9.47
A non-inverting amplifier with a gain of 31 and a bandwidth of at least 90 kHz is needed. Which amplifier chip is appropriate for this circuit (and which is not)?	A.TL082


 

	B.LM7171


 

	C.LM8272


 







9.3 Introduction to Continuous and Discrete Fourier Transform

                  9.3.1 Meaning and
                  
                    Definition
                    
                    
                  
                  of Fourier Transform
                
Problem 9.48
Establish all values of the angular frequency ω in Fig. 9.14b at which the Fourier spectrum F(ω) of a rectangular pulse crosses the frequency axis (becomes zero). Express your result in terms of pulse duration T.

Problem 9.49

                    	A.Establish the value of the Fourier transform F(ω) for the pulse shown in the following figure at [image: 
$$ \omega =0 $$
].


 

	B.Establish the complete pulse spectrum F
(ω) at all values of angular frequency ω.[image: A331468_1_En_9_Figs_HTML.gif]





 




                  

Problem 9.50
Establish the Fourier transform F(ω) for the following voltage signals in time domain:	A.
                            [image: 
$$ \begin{array}{cc}\hfill f(t)=A \sin \left(\frac{\pi }{2}t\right),\hfill & \hfill -2\le t<2\hfill \\ {}\hfill  f(t)=0,\hfill & \hfill \mathrm{otherwise}\hfill \end{array} $$
]
                          


 

	B.
                            [image: 
$$ \begin{array}{cc}\hfill f(t)=A \cos \left(\frac{\pi }{2}t\right),\hfill & \hfill -2\le t<2\hfill \\ {}\hfill  f(t)=0,\hfill & \hfill \mathrm{otherwise}\hfill \end{array} $$
]
                          


 






Problem 9.51
Show that for an arbitrary real 

voltage signal f
(t):	A.The real part of F(ω) is an even function of angular frequency ω.


 

	B.The imaginary part of F(ω) is an odd function of angular frequency ω.


 

	C.The magnitude of F(ω) is an even function of angular frequency ω.


 

	D.Replacing ω by [image: 
$$ -\omega $$
] generates the complex conjugate of F(ω); in other wor

ds, [image: 
$$ F\left(-\omega \right)={F}^{*}\left(\omega \right) $$
].


 







                  9.3.2 Mathematical Properties of Fourier Transform
                
Problem 9.52
The Fourier tra

nsform of f(t) is F(ω). What is the Fourier transform of [image: 
$$ {d}^2f(t)/d{t}^2-2{\displaystyle \underset{-\infty }{\overset{t}{\int }}f\left(\tau \right)d\tau } $$
]?

Problem 9.53
The Fourier transform of f(t) is F(ω). What is the Fourier transform of [image: 
$$ f\left(-t\right) $$
]?

Problem 9.54
The function f(t)cos ω
0
t is an 
                      amplitude-modulated signal
                      
                    : a high-frequency carrier cos ω
0
t, which is transmitted wirelessly, has a low-frequency envelope f(t), which carries information and is being demodulated at the receiver. If the Fourier transform of f(t) is F(ω), what is the Fourier transform of f(t)
cos ω
0
t?

Problem 9.55
If f(t) represents the voltage across a 1-Ω load, then f
2(t) is the power delivered to the load and [image: 
$$ {\displaystyle \underset{-\infty }{\overset{\infty }{\int }}{f}^2(t)dt} $$
] is the total 

energy delivered to the load. Prove 
                      Parseval’s theorem
                      
                    ,[image: 
$$ {\displaystyle \underset{-\infty }{\overset{\infty }{\int }}{f}^2(t)dt}=\frac{1}{2\pi }{\displaystyle \underset{-\infty }{\overset{\infty }{\int }}{\left|F\left(\omega \right)\right|}^2d\omega }, $$
]




which relates the total energy to an integral of the 
                      energy spectral density
                      
                    , [image: 
$$ {\left|F\left(\omega \right)\right|}^2=F\left(\omega \right){F}^{*}\left(\omega \right) $$
], of the signal.

Hint: Use the 
reversal property of the Fourier transform given by Eq. (9.26).

Problem 9.56
Based on Parseval’s theorem established in the previous problem, find the value of the integral [image: 
$$ {\displaystyle \underset{-\infty }{\overset{\infty }{\int }}{\operatorname{sinc}}^2(t)dt} $$
].


                  9.3.3 Discrete Fourier Transform and Its
                  
                    Implementation
                    
                    
                  
                
Problem 9.57
You are using the discrete Fourier transform of length 8 ([image: 
$$ N=8 $$
]) for a signal [image: 
$$ f(t)= \sin t $$
] over a time interval from 0 to 2π s.	A.Compute all sampling points in the time domain.


 

	B.Compute all sampling points in the frequency domain.


 

	C.Compute equivalent frequency samples using negative frequencies.


 

	D.Compute all

 discrete samples f
[n].


 

	E.Compute all discrete samples F[m] using the definition of the discrete Fourier transform. Explain the physical meaning of their values.


 

	F.Repeat the previous step using function fft of MATLAB. Compare both sets of F[m].


 

	G.Restore all discrete samples f
[n] using the definition of the inverse discrete Fourier transform. Compare them with the exact function values.


 

	H.Repeat the previous step using function ifft of MATLAB. Compare both sets of f
[n].


 






Problem 9.58
Repeat the previous problem for the signal [image: 
$$ f(t)= \cos t $$
]. All other parameters remain the same.

Problem 9.59
For Problem 9.57, establish and prove a discrete version of 
Parseval’s theorem formulated in Problem 9.55.

Problem 9.60
An input signal to a filter has a discrete frequency spectrum [image: 
$$ F\left[m\right],\kern1em m=0,\dots, N-1 $$
] computed via the FFT. You are given filter transfer function H computed at [image: 
$$ \frac{N}{2}+1 $$
] frequency points of the FFT, [image: 
$$ \mathbf{H}\left[m\right],\kern1em m=0,\dots, N/2 $$
]. Compute

 the discrete spectrum of the filter’s output to be fed into the IFFT.


                  9.3.6 Application Example:
                  
                    Numerical Differentiation
                    
                    
                  
                  via the FFT
                

                  9.3.7 Application Example:
                  
                    
                    
                  
                  Filter Operation for an Input Pulse Signal
                
Problem 9.61*
Present the text of a MATLAB script that numerically differentiates the input signal [image: 
$$ f(t)= \sin t $$
] over the time interval from 0 to 4π s using the FFT with 4096 sampling points and plot the resulting signal derivative.

Problem 9.62
Repeat the previous problem for the signal [image: 
$$ f(t)= \exp \left(-{\left(t-2\pi \right)}^2\right) $$
]. All other parameters remain the same.

Problem 9.63
A monopolar pulse [image: 
$$ f(t)= \exp \left(-2{\left(t-5\right)}^2\right),\kern1em 0\kern0.5em \le t<10\kern0.5em \mathrm{s} $$
] is an input to a series combination of two identical 
first-order high-pass filters.
                      
                      
                     Find the output of the filter combination when the (angular) break frequency is given by:	A.
                            [image: 
$$ {\omega}_0=0.5\ \mathrm{rad}/\mathrm{s} $$
]
                          


 

	B.
                            [image: 
$$ {\omega}_0=10\ \mathrm{rad}/\mathrm{s} $$
]
                          


 





Use the FFT and IFFT with [image: 
$$ N=64 $$
]. Plot the filter output and explain the output signal behavior in every case.

Problem 9.64
A bipolar pulse [image: 
$$ f(t)=\left(5-t\right) \exp \left(-2{\left(t-5\right)}^2\right),\kern0.5em 0\ \le t<10\ \mathrm{s} $$
] is an input to a first-order low-pass filter
. Find the filter output 

when its (angular) break frequency is given by:	A.
                            [image: 
$$ {\omega}_0=0.5\ \mathrm{rad}/\mathrm{s} $$
]
                          


 

	B.
                            [image: 
$$ {\omega}_0=5\ \mathrm{rad}/\mathrm{s} $$
]
                          


 





Use the FFT and IFFT with [image: 
$$ N=64 $$
]. Plot the filter output along with the input signal on the same graph and explain the output signal behavior in both cases.
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Overview

              Prerequisites:
	Knowledge of complex arithmetic

	Knowledge of phasor/impedance method for AC circuit analysis (Chapter 8)




              Objectives of Section 10.1:
	Learn the concept of a resonant circuit and its relation to other engineering disciplines

	Understand the internal dynamics of the series/parallel RLC resonator including voltage and current behavior near the resonant frequency

	Establish the meaning and be able to calculate resonant frequency, quality factor, and bandwidth of the second-order resonant circuits

	Establish and quantify the duality between series and parallel RLC resonators




              Objectives of Section 10.2:
	Construct four major types of the second-order RLC filters

	Relate all filter concepts to the corresponding circuit diagrams

	Specify two filter design parameters: the undamped resonant frequency and the quality factor

	Realize the advantages of the second-order filters versus the first-order filters




              Objectives of Section 10.3:
	Become familiar with the concept of the near-field wireless link

	Apply the theory of the series resonant RLC circuit to the basic design of the near-field wireless transmitter and receiver

	Understand the operation of proximity sensors based on resonant RLC circuits




              Application examples:
	Near-field wireless link in undergraduate laboratory

	Proximity sensors




            

10.1 Theory of Second-Order Resonant RLC Circuits
In this section, we study the last group of standard AC circuits—the resonators. They are second-order AC circuits in LC or LCR configuration

. The term second order means that the circuits will be described by second-order differential equations if we work in the time domain. The value of a resonator circuit in electronics cannot be overstated. In order to proceed with any type of wireless communication, we first need to create a high-frequency AC signal as part of a resonator circuit. Beyond high-frequency circuits, resonators are often used in power electronics and as sensors. In this section, we apply the phasor/impedance method to analyze resonator circuits. We will discover that the most important characteristic is the 
                resonant frequency
                
                
              . Another important parameter is the quality factor, which also determines the resonator bandwidth.
10.1.1 Self-Oscillating Ideal LC Circuit
The circuit shown in Fig. 10.1a includes an inductor and a capacitor

 and there is no power source connected to the circuit. The circuit is also ideal, which means that there is no resistance. In other words, the parasitic resistance of the inductor, parasitic resistance of the capacitor, and the wire resistance are all neglected. We assume that the power supply (voltage or current) was disconnected at [image: 
$$ t=0 $$
], after the resonator was excited. The steady-state alternating current and the AC voltages across the circuit elements are sought once the oscillation process

 has been stabilized, i.e., at [image: 
$$ t\to \infty $$
].[image: A331468_1_En_10_Fig1_HTML.gif]
Fig. 10.1Self-oscillating ideal LC 

circuit and its phasor representation




                            
When we apply the phasor/impedance method

 to the circuit in Fig. 10.1a, we obtain the circuit shown in Fig. 10.1b. KVL in phasor form yields (note the passive reference configuration)[image: 
$$ {\mathbf{V}}_{\mathrm{L}}+{\mathbf{V}}_{\mathrm{C}}=0\Rightarrow {\mathbf{Z}}_{\mathrm{L}}\kern0.1em \mathbf{I}+{\mathbf{Z}}_{\mathrm{C}}\mathbf{I}=0\Rightarrow \left({\mathbf{Z}}_{\mathrm{L}}+{\mathbf{Z}}_{\mathrm{C}}\right)\mathbf{I}=0 $$
]

 (10.1)

Generally, Eq. (10.1) requires the phasor current I to be zero. Obviously, if the phasor current is zero, then the real current is also zero and so are the voltages across the inductor and the capacitor. The circuit is not functioning. However, you should note that, if[image: 
$$ {\mathbf{Z}}_{\mathrm{L}}+{\mathbf{Z}}_{\mathrm{C}}=0 $$
]

 (10.2)

in Eq. (10.1), the phasor current does not have to be zero and may have any value depending on the initial excitation. Equation (10.2) is satisfied at only one single frequency

 f
0:[image: 
$$ j{\omega}_0L+\frac{1}{j{\omega}_0C}=0\Rightarrow\ \left(\mathrm{multiply}\ \mathrm{b}\mathrm{y}\ j\right)\Rightarrow -{\omega}_0L+\frac{1}{\omega_0\kern0.1em C}=0\Rightarrow {\omega}_0=\frac{1}{\sqrt{LC}}\Rightarrow {f}_0=\frac{1}{2\pi \sqrt{LC}} $$
]

 (10.3)

which is the 
                  undamped resonant frequency
                  
                  
                 of the LC circuit. Equation (10.3) is perhaps the most important result of resonator theory. Once Eq. (10.3) is satisfied, the solution for the circuit current is obtained in the form:[image: 
$$ \mathbf{I}={\mathbf{I}}_0\Rightarrow i(t)={I}_{\mathrm{m}} \cos {\omega}_0\kern0.1em t $$
]

 (10.4a)

The current amplitude I
m may be arbitrary; it is determined by the initial excitation. The voltages are found accordingly:[image: 
$$ \begin{array}{l}{\mathbf{V}}_{\mathrm{L}}={\mathbf{Z}}_{\mathrm{L}}\mathbf{I}\Rightarrow {\upsilon}_{\mathrm{L}}(t)={\omega}_0L{I}_{\mathrm{m}} \cos \left({\omega}_0t+90{}^{\circ}\right)\\ {}{\mathbf{V}}_{\mathrm{C}}={\mathbf{Z}}_{\mathrm{C}}\mathbf{I}\Rightarrow {\upsilon}_{\mathrm{C}}(t)=1/\left({\omega}_0C\right){I}_{\mathrm{m}} \cos \left({\omega}_0t-90{}^{\circ}\right)\end{array} $$
]

 (10.4b)


The ideal self-oscillating LC circuit in Fig. 10.1 can oscillate indefinitely long. What is the physical basis of self-oscillations in an LC circuit? To answer this question, let us take a closer look at Eqs. (10.4). When the circuit current is at its maximum, the magnetic field energy stored in the inductor also has reached its maximum. Since the voltages are shifted by ± π/2 versus the current, they are exactly zero at that time instance. The zero capacitor voltage

 means that no energy of the electric field is stored in the capacitor. All of the energy stored in the circuit is concentrated in the inductor. When the circuit current reaches zero, the situation becomes the opposite: the capacitor stores the entire circuit energy, and the inductor does not have any stored energy. As time progresses, the process continues so that the current flows back and forth in the circuit charging and discharging the capacitor (and in certain sense the inductor) periodically. Figure 10.2 shows the ideal mechanical counterpart

 of the circuit in Fig. 10.1. A massive wheel with a rotational inertia represents the inductor and the flexible membrane, the capacitor. The fluid flows back and forth either rotating the wheel (increasing its rotational energy) or bending the membrane (increasing its release energy).[image: A331468_1_En_10_Fig2_HTML.gif]
Fig. 10.2Self-oscillating mechanical 

counterpart of the LC circuit shown in Fig. 10.1
                                            




                            
Example 10.1
An LC circuit in Fig. 10.1 has the circuit parameters [image: 
$$ L=1\kern0.5em \upmu \mathrm{H},C=1\kern0.5em \upmu \mathrm{F} $$
]. Determine its resonant frequency, also known as the self-oscillation frequency.

Solution: Equation (10.3) is applied, which gives [image: 
$$ {\omega}_0={10}^6\kern0.5em \mathrm{rad}/\mathrm{s}\Rightarrow {f}_0=159\ \mathrm{kHz} $$
]. For practical reasons, the resonant frequency is most often measured and reported in Hz, instead of rad/s.


10.1.2 Series Resonant Ideal LC Circuit

What if an alternating pressure pump is connected to the oscillating mechanical system in Fig. 10.2, which will add a small pressure “push” at every period of oscillation? Since there is no friction, the oscillations may grow up indefinitely. This phenomenon is known as resonance. The corresponding electrical counterpart is the circuit shown in Fig. 10.3a. The circuit in Fig 10.3
a 

is solved using the phasor method, see Fig. 10.3b. We assume [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \cos \omega \kern0.1em t $$
]. The equivalent impedance is given by,[image: A331468_1_En_10_Fig3_HTML.gif]
Fig. 10.3Series resonant ideal LC circuit and its phasor representation


                                            




[image: 
$$ {\mathbf{Z}}_{\mathrm{eq}}={\mathbf{Z}}_{\mathrm{L}}+{\mathbf{Z}}_{\mathrm{C}}=j\omega \kern0.1em L+\frac{1}{j\omega C}=j\left(\omega L-\frac{1}{\omega C}\right)=-j\frac{1-LC{\omega}^2}{\omega C}\kern1em \left[\Omega \right] $$
]

 (10.5a)


The phasor voltages and phasor current

 become[image: 
$$ \mathbf{I}={V}_{\mathrm{m}}/{\mathbf{Z}}_{\mathrm{eq}}=\frac{V_{\mathrm{m}}\omega \kern0.1em C}{1-LC{\omega}^2}\angle 90{}^{\circ},\kern1em {\mathbf{V}}_{\mathrm{L}}={\mathbf{Z}}_{\mathrm{L}}\mathbf{I}=\frac{V_{\mathrm{m}}LC{\omega}^2}{1-LC{\omega}^2}\angle 180{}^{\circ},{\mathbf{V}}_{\mathrm{C}}={\mathbf{Z}}_{\mathrm{C}}\mathbf{I}=\frac{V_{\mathrm{m}}}{1-LC{\omega}^2}\angle 0{}^{\circ} $$
]

 (10.5b)

The real-valued circuit parameters

 are given by[image: 
$$ i(t)=\frac{V_{\mathrm{m}}\omega C}{1-LC{\omega}^2} \cos \left(\omega \kern0.1em t+90{}^{\circ}\right),\kern1em {\upsilon}_{\mathrm{L}}(t)=\frac{V_{\mathrm{m}}LC{\omega}^2}{1-LC{\omega}^2} \cos \left(\omega t+180{}^{\circ}\right),{\upsilon}_{\mathrm{C}}(t)=\frac{V_{\mathrm{m}}}{1-LC{\omega}^2} \cos \left(\omega t\right) $$
]

 (10.5c)

The solution remains finite at any source frequency except the undamped resonant frequency [image: 
$$ {\omega}_0=1/\sqrt{LC} $$
] or [image: 
$$ {f}_0={\omega}_0/\left(2\pi \right) $$
]. The closer the source frequency approaches the undamped resonant frequency, the higher the circuit current, capacitor voltage, and the inductor voltage become. Eventually, at the exact undamped resonant frequency, they all become infinitely high! The denominator in Eq. (10.5c) approaches zero and the circuit starts to “resonate.” At the undamped resonant frequency, the impedances of the inductor and capacitor cancel out and their combination is a short circuit: an ideal wire of zero resistance. Moreover, the voltage source is shorted out. Note that the resonant frequency of an LC circuit was first derived by James Clerk Maxwell in 1868. A young man at this point, he spent a night working over this problem, which arose from an experiment of Sir William Grove, and wrote a report to him the next morning.
Example 10.2
Find the sum of the real-valued voltages

 υ
L(t), υ
C(t) in Fig. 10.3a.

Solution: The capacitor and inductor voltages are in antiphase (the phases differ by 180°). Therefore, they largely cancel out. According to Eq. (10.5c), the sum of the voltages is exactly the supply voltage υ
S(t), irrespective of how high the individual voltages are.

Exercise 10.1
For the ideal series resonant ideal LC circuit in Fig. 10.3, determine the phasor voltages across the inductor and capacitor given that [image: 
$$ {V}_{\mathrm{m}}=1\kern0.5em \mathrm{V} $$
] and [image: 
$$ {\omega}^2=0.9{\omega}_0^2 $$
].

Answer: [image: 
$$ {\mathbf{V}}_{\mathrm{L}}=9\angle 180{}^{\circ}\kern0.5em \left[\mathrm{V}\right] $$
], [image: 
$$ {\mathbf{V}}_{\mathrm{C}}=10\angle 0{}^{\circ}\kern0.5em \left[\mathrm{V}\right] $$
]
                                


10.1.3 Series Resonant RLC Circuit: Resonance Condition



The ideal LC circuit shown in Fig. 10.1a, or the series LC resonator shown in Fig. 10.3a, never exists in practice. Internal power supply resistance, wire resistance, or parasitic resistances of realistic capacitors and inductors lead to the realistic resonant RLC circuit model shown in Fig. 10.4a. Here, the resistance R models the combined resistances present in the circuit. The resistance reduces the resonant effect and leads to finite voltages/currents at the resonance.[image: A331468_1_En_10_Fig4_HTML.gif]
Fig. 10.4Realistic series resonant RLC 

circuit and its phasor representation




                            
The circuit in Fig 10.4a is solved using the phasor method, see Fig. 10.4b. We again assume [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \cos \omega \kern0.1em t $$
]. The equivalent impedance is given by[image: 
$$ {\mathbf{Z}}_{\mathrm{eq}}={\mathbf{Z}}_{\mathrm{R}}+{\mathbf{Z}}_{\mathrm{L}}+{\mathbf{Z}}_{\mathrm{C}}=R+j\omega L+\frac{1}{j\omega \kern0.1em C}=R+j\left(\omega L-\frac{1}{\omega C}\right)\kern1em \left[\Omega \right] $$
]

 (10.6a)


The resonance condition for any AC circuit, and not necessarily the circuit shown in Fig. 10.4, states that the imaginary part (the reactance X) of the equivalent circuit impedance seen by the power source must be equal to zero:[image: 
$$ \mathrm{I}\mathrm{m}\left({\mathbf{Z}}_{\mathrm{eq}}\right)=X=0\kern1em \left[\Omega \right] $$
]

 (10.6b)

When applied to Eq. (10.6a), this condition defines the circuit’s resonant frequency in the form [image: 
$$ {\omega}_0=1/\sqrt{LC},\kern0.5em {f}_0=1/\left(2\pi \sqrt{LC}\right) $$
]. For the series RLC circuit, the resonant frequency clearly coincides with the undamped resonant frequency of the ideal LC circuit. Unfortunately, this is not always the case for general RLC circuits. This important question is addressed in the homework problems.
At the resonant frequency, the impe

dances of the inductor and capacitor in Eq. (10.6a) cancel out; their combination is a short circuit since only the resistance R remains. The real-valued circuit current and the real-valued voltages are given by[image: 
$$ i(t)=\frac{V_{\mathrm{m}}}{R} \cos \left({\omega}_0t\right),\kern1em {\upsilon}_{\mathrm{L}}(t)=\frac{V_{\mathrm{m}}}{R}{\omega}_0L \cos \left({\omega}_0t+90{}^{\circ}\right),\kern1em {\upsilon}_{\mathrm{C}}(t)=\frac{V_{\mathrm{m}}}{R}\frac{1}{\omega_0C} \cos \left({\omega}_0t-90{}^{\circ}\right) $$
]

 (10.6c)

at resonance. Those are the highest amplitudes of the circuit current and the individual voltages that could be achieved in the series RLC circuit. If the frequency deviates from the resonant frequency, smaller amplitude values are obtained. When the circuit resistance is small, large circuit current and large capacitor and inductor voltages may be achieved at the resonance. You have to be aware of the fact that it is not uncommon to measure voltage amplitudes of 50–500 V across the individual elements in the laboratory, whereas the driving source voltage may only have an amplitude of 10 V. The circuit in Fig. 10.4 is also called the 
                  series RLC tank circuit
                  
                .
Exercise 10.2
In the series resonant RLC circuit shown in Fig. 10.4, [image: 
$$ {V}_{\mathrm{m}}=10\kern0.5em \mathrm{V},L=50\kern0.5em \upmu \mathrm{H},\ C=0.5\kern0.5em \mathrm{nF},\ R=50\kern0.5em \Omega $$
]. Determine the real-valued circuit current and the inductor/capacitor voltages at the resonance.

                  Answer:
                  [image: 
$$ i(t)=0.2 \cos \left(\omega \kern0.1em t\right)\kern0.5em \left[\mathrm{A}\right],\kern1em {\upsilon}_{\mathrm{L}}(t)=63.3 \cos \left(\omega \kern0.1em t+90{}^{\circ}\right)\kern0.5em \left[\mathrm{V}\right],{\upsilon}_{\mathrm{C}}(t)=63.3 \cos \left(\omega t-90{}^{\circ}\right)\kern0.5em \left[\mathrm{V}\right]. $$
]

 (10.7)


                

Could we increase the resonant voltage amplitudes of the series RLC circuit in Fig. 10.4a [see Eq. (10.6c)] while keeping the voltage source and the

 circuit resistance unaltered? Yes we can. However, one more concept is required for this and similar problems: the concept of the quality factor of a resonator.

10.1.4 Quality Factor Q of the Series Resonant RLC Circuit
Multiple factors in front of resonant voltages and currents expressions can be reduced to one single factor. Using the definition of the resonant frequency

 ω
0, Eq. (10.6c) at the resonance may be rewritten in the simple form[image: 
$$ i(t)=\frac{V_{\mathrm{m}}}{R} \cos \left({\omega}_0t\right),\kern1em {\upsilon}_{\mathrm{L}}(t)=Q{V}_{\mathrm{m}} \cos \left({\omega}_0t+90{}^{\circ}\right),\kern1em {\upsilon}_{\mathrm{C}}(t)=Q{V}_{\mathrm{m}} \cos \left({\omega}_0t-90{}^{\circ}\right) $$
]

 (10.8)

where the dimensionless constant[image: 
$$ Q=\frac{\sqrt{L/R}}{\sqrt{RC}}=\frac{\sqrt{L/C}}{R} $$
]

 (10.9)

is called the 
                  quality factor of the series resonant RLC circuit
                  
                . The equivalent forms are[image: 
$$ Q=\frac{1}{\omega_0RC}={\omega}_0\frac{L}{R} $$
]

 (10.10)

Thus, in order to increase the resonant voltage amplitudes in Eq. (10.8), we should simply increase the quality factor of the resonator. Even if the circuit resistance remains the same, we can still improve Q by increasing the ratio of L/C in Eq. (10.9). This observation provides one physical interpretation of the quality factor: it determines the 
                  maximum amplitude
                  
                  
                 of the resonant oscillations. A higher Q-factor results in larger amplitudes. Yet another, perhaps even more important, interpretation is related to the “sharpness” of the resonance at frequencies close to ω
0. What is the physical meaning of Eq. (10.9)? Why does the Q-factor increase with increasing the inductance but not the capacitance? To answer these questions, consider the fluid mechanics analogy in Fig. 10.2. The high Q implies a massive wheel (note: high inductance is equivalent to high wheel mass). Simultaneously, it implies a large membrane stiffness (the small capacitance, which is inversely proportional to the stiffness). The mechanical resonator

 so constructed will be less susceptible to losses at resonance but will not resonate at all if the driving force has a frequency far away from the resonance.
A general definition of the quality factor also applicable to mechanical engineering and physics is as follows. The quality factor is 2π times the ratio per cycle of the energy stored in the resonator to the energy supplied by a source, while keeping the signal amplitudes constant at the resonant frequency. According to Eq. (10.6c), the instantaneous energies stored in the inductor and capacitor

 are given by[image: 
$$ \begin{array}{l}{E}_{\mathrm{L}}(t)=\frac{1}{2}L{i}^2(t)={\left(\frac{V_{\mathrm{m}}}{R}\right)}^2\frac{L}{2}{ \cos}^2\left({\omega}_0\kern0.1em t\right),\kern1em \\ {}{E}_{\mathrm{C}}(t)=\frac{1}{2}C{\upsilon}_{\mathrm{C}}^2(t)={\left(\frac{V_{\mathrm{m}}}{R}\right)}^2\frac{1}{2{\omega}_0^2C}{ \sin}^2\left({\omega}_0t\right)\end{array} $$
]

 (10.11)

Since [image: 
$$ 1/\left({\omega}_0^2C\right)=L $$
], the coefficients in front of the cosine squared and sine squared terms are equal. It means that even though both energies vary over time, their sum is a 
                  constant
                  
                  
                :[image: 
$$ {E}_{\mathrm{L}}(t)+{E}_{\mathrm{C}}(t)={\left(\frac{V_{\mathrm{m}}}{R}\right)}^2\frac{L}{2} $$
]

 (10.12a)

The energy dissipated in the resistance is the integral of the instantaneous absorbed power over the period; this integral is equal to[image: 
$$ {E}_{\mathrm{diss}}={\displaystyle \underset{0}{\overset{2\pi /{\omega}_0}{\int }}\frac{V_{\mathrm{m}}^2}{R}{ \cos}^2\left({\omega}_0t\right)}dt=\frac{V_{\mathrm{m}}^2}{2R}{\displaystyle \underset{0}{\overset{2\pi /{\omega}_0}{\int }}\left(1+ \cos \left(2{\omega}_0\kern0.1em t\right)\right)}dt=\frac{\pi {V}_{\mathrm{m}}^2}{\omega_0R} $$
]

 (10.12b)

The ratio of the two energies times 2π precisely equals Eq. (10.9).
Example 10.3
A series resonant LC circuit

 is driven by a laboratory AC voltage source with amplitude [image: 
$$ {V}_{\mathrm{m}}=10\kern0.5em \mathrm{V} $$
] and an internal resistance of 50 Ω (a function generator). Which value should the ratio L/C have to obtain the amplitude of the capacitor voltage to be equal to 50 V at resonance?

Solution: We replace the realistic voltage source by its Thévenin equivalent: the ideal voltage source with the amplitude of 10 V and the series resistance of 50 Ω. Here, we again arrive at the standard RLC circuit shown in Fig. 10.4a. According to Eq. (10.8), the Q-factor of the RLC circuit should be equal to 5. From the definition of the Q-factor given by Eq. (10.9), one has[image: 
$$ \sqrt{L/C}=RQ=250\Rightarrow L/C=62,500\kern0.5em {\Omega}^2 $$
]

 (10.13)


                                
This result is valid for any resonant frequency. For example, the set [image: 
$$ L=1\kern0.15em \mathrm{mH},C=16\kern0.5em \mathrm{nF} $$
] will give us the desired amplitude value.

Note that large Q-factors usually imply large inductances which increase the series resistance of the inductor coil and thus increase the net circuit resistance (increase circuit loss). Therefore, there is a trade-off between the circuit Q and the inductance value.
Example 10.4
A series resonant RLC circuit

 is needed with the resonant frequency of 100 kHz and a Q-factor of 50. The circuit resistance is 10 Ω. Determine the necessary values of L and C.

Solution: From the definition of the resonant frequency and the Q-factor, we obtain[image: 
$$ 1/\sqrt{LC}=2\pi \times {10}^5,\kern1em \sqrt{L/C}=RQ=500\Rightarrow \frac{1}{C}=2\pi \times {10}^5\times 500\Rightarrow C=3.2\kern0.5em \mathrm{nF} $$
]

 (10.14)


                                
Consequently, [image: 
$$ L=0.80\kern0.5em \mathrm{mH} $$
].


10.1.5 Bandwidth of the Series Resonant RLC Circuit
The bandwidth of the series resonant RLC circuit is obtained by analyzing the behavior of the amplitude of the circuit current as a function of 
                  source frequency
                  
                  
                . An alternative definition implies analyzing the behavior of the amplitude of the resistor voltage; however, both quantities are equal to within a constant R. The phasor current

 at any frequency is obtained from Eq. (10.6a). It will be written here in terms of quality factor Q, frequency f, and resonant frequency f
0 in the form:[image: 
$$ \mathbf{I}=\frac{V_{\mathrm{m}}}{{\mathbf{Z}}_{\mathrm{eq}}}=\frac{V_{\mathrm{m}}}{R+j\left(\omega \kern0.1em L-\frac{1}{\omega C}\right)}={I}_{\mathrm{m}}\frac{1}{1+jQ\left(\frac{f}{f_0}-\frac{f_0}{f}\right)} $$
]

 (10.15a)

Here, [image: 
$$ {I}_{\mathrm{m}}={V}_{\mathrm{m}}/R $$
] is 

the maximum (resonant) current amplitude in the series RLC circuit; [image: 
$$ {f}_0=1/\left(2\pi \sqrt{LC}\right) $$
] is the resonant frequency in Hz. The real-valued circuit current and the real-valued resistor voltage are both found from the phasor current given by Eq. (10.15a):[image: 
$$ \left.\begin{array}{c}\hfill i(t)={I}_{\mathrm{m}}H \cos \left(\omega t+\varphi \right)\kern0.5em \left[\mathrm{A}\right]\hfill \\ {}\hfill {\upsilon}_{\mathrm{R}}(t)={V}_{\mathrm{m}}H \cos \left(\omega t+\varphi \right)\kern0.5em \left[\mathrm{V}\right]\hfill \end{array}\right\},\kern1em H(f)=\frac{1}{\sqrt{1+{Q}^2{\left(\frac{f}{f_0}-\frac{f_0}{f}\right)}^2}} $$
]

 (10.15b)

 Here, H(f) is the dimensionless function of frequency that peaks at the resonant frequency [image: 
$$ f={f}_0 $$
], [image: 
$$ H\left({f}_0\right)=1 $$
]. One may treat H(f) as an 
                  amplitude transfer function
                  
                  
                 of an associated RLC filter with the input voltage being the source voltage and the output voltage being the resistor voltage. In this case, H(f) is equal to the amplitude ratio of the two voltages. Simultaneously, H(f) characterizes how fast the circuit current amplitude decays when the circuit frequency deviates from the resonant frequency f
0. To be specific, we assume [image: 
$$ {f}_0=10\kern0.5em \mathrm{kHz} $$
] and [image: 
$$ Q=1,\kern0.5em 2,\kern0.5em 5 $$
] in Eq. (10.15b). Figure 10.5 plots the function H(f) in decibels, [image: 
$$ H{(f)}_{\mathrm{dB}}=20{ \log}_{10}\left(H(f)\right)\kern0.5em \left[\mathrm{dB}\right] $$
], using a log-log scale, i.e., creates its 
                  Bode plot
                  
                  
                .[image: A331468_1_En_10_Fig5_HTML.gif]
Fig. 10.5Amplitude of the circuit current (or the amplitude of the resistor voltage) normalized by its peak value at resonance. The resulting graph is the Bode plot


                                            




                            
The 
                  bandwidth
                  
                  
                 B of the series resonant RLC circuit is defined as the interval of frequencies over which the function H(f) is greater than or equal to [image: 
$$ 1/\sqrt{2}=0.707 $$
]. In other words, the signal power at the resistor (which is proportional to the square of H
(f)) is no less than 50 % of the maximum power at the exact resonance. We call the bandwidth so defined the 
                  half-power bandwidth
                  
                . In terms of the transfer function H
(f)dB in decibels, this condition corresponds to the inequality [image: 
$$ H{(f)}_{\mathrm{dB}}\ge -3\kern0.5em \mathrm{dB} $$
].
The first resonant curve in the form of Fig. 10.5 
                  
                  
                was published by Heinrich Hertz in 1887 although he used a linear, not a logarithmic, frequency scale so that the curve did not look quite symmetric. Figure 10.5 indicates that the bandwidth increases when the quality factor decreases and vice versa. In other words, the low-Q resonant circuit has a large bandwidth; we may say it resonates “equally bad” over a wider band of frequencies. However, the high-Q circuit has a small bandwidth; it resonates well but only over a small band of frequencies. The 
                  lower and upper half-power frequencies
                  
                  
                , f
L, f
U, are obtained by setting [image: 
$$ H(f)=1/\sqrt{2} $$
] in Eq. (10.15b) and solving for f. 
                  
                  
                The resulting quadratic equation has two roots:[image: 
$$ {f}_{\mathrm{L}}={f}_0\left(\sqrt{1+1/{(2Q)}^2}-1/(2Q)\right),\kern1em {f}_{\mathrm{U}}={f}_0\left(\sqrt{1+1/{(2Q)}^2}+1/(2Q)\right)\kern1em \left[\mathrm{Hz}\right] $$
]

 (10.16)

Despite the complexity of those expressions, the final result for the 
half-power bandwidth is surprisingly simple and understandable:[image: 
$$ B\equiv {f}_{\mathrm{U}}-{f}_{\mathrm{L}}=\frac{f_0}{Q}=\frac{R}{2\pi L}\kern1em \left[\mathrm{Hz}\right] $$
]

 (10.17)


                            
Exercise 10.3
Determine the bandwidth B of the series resonant RLC circuit with the resonant frequency of 1 MHz and a Q-factor of 10.

Answer: [image: 
$$ B=100\kern0.5em \mathrm{kHz} $$
].

Example 10.5
A series resonant RLC circuit is needed with a resonant frequency

 of 500 kHz and a bandwidth of 20 kHz. Given the circuit resistance of 15 Ω, determine L and C.

Solution: From the bandwidth definition, the required Q-factor is equal to [image: 
$$ 500/20=25 $$
]. Further, we may follow the solution developed in Example 10.4. From the definition of the resonant frequency and the Q-factor, we subsequently obtain [image: 
$$ 1/\sqrt{LC}=2\pi \times 5\times {10}^5,\kern1em \sqrt{L/C}=RQ=375\Rightarrow C\approx 0.85\kern0.5em \mathrm{nF} $$
]. Next, we determine[image: 
$$ L=C{(RQ)}^2\approx 0.12\kern0.5em \mathrm{mH} $$
]. Alternatively, one could find the inductance L directly from Eq. (10.16), that is, [image: 
$$ L=R/\left(2\pi \kern0.1em B\right)=0.12\kern0.5em \mathrm{mH} $$
].

Example 10.6
Create Bode plots as seen in Fig. 10.5 using MATLAB.

Solution: We create only one bandwidth curve, for [image: 
$$ Q=2 $$
]. Other curves are obtained similarly, using the command hold on.[image: A331468_1_En_10_Figs_HTML.gif]


                                


10.1.6 Parallel Resonant RLC Circuit: Duality
The parallel resonant RLC circuit is shown in

 Fig. 10.6. It is driven by an alternating current source [image: 
$$ {i}_{\mathrm{S}}(t)={I}_{\mathrm{m}} \cos \omega t $$
]. The parallel RLC resonator is a current divider circuit, which is the dual to the series RLC resonator (which is a voltage divider) in Fig. 10.4. While the series RLC resonator is capable of creating large voltages (or “amplifying” the supply voltage), the parallel RLC resonator circuit is capable of producing large currents. The amplitudes of the currents through the inductor and the capacitor may be large, much larger than the supply current itself. The circuit in Fig. 10.6 is also called the 
                  parallel RLC tank circuit
                  
                  
                .[image: A331468_1_En_10_Fig6_HTML.gif]
Fig. 10.6Parallel resonant RLC circuit and its phasor representation


                                            




                            
The circuit in Fig 10.6a is solved by using the phasor method; see Fig. 10.6b. The equivalent impedance is given by[image: 
$$ \frac{1}{{\mathbf{Z}}_{\mathrm{eq}}}=\frac{1}{{\mathbf{Z}}_{\mathrm{R}}}+\frac{1}{{\mathbf{Z}}_{\mathrm{L}}}+\frac{1}{{\mathbf{Z}}_{\mathrm{C}}}=\frac{1}{R}+\frac{1}{j\omega L}+j\omega C=\frac{1}{R}-j\frac{1-LC{\omega}^2}{\omega L}\kern1em \left[\Omega \right] $$
]

 (10.18)

The 
                  resonance condition
                  
                  
                 for any AC circuit states that the impedance Z
eq must be a purely real number at resonance. If the impedance is real, its reciprocal, the admittance, is also real and vice versa. Therefore, from Eq. (10.18), we obtain the 
                  resonant frequency
                  
                  
                
[image: 
$$ {\omega}_0=\frac{1}{\sqrt{LC}},\kern0.5em {f}_0=\frac{1}{2\pi \sqrt{LC}} $$
]

 (10.19)

which coincides with the resonant frequency of the 
series RLC tank circuit and with the undamped resonant frequency of the LC circuit. Thus, at resonance, [image: 
$$ {\mathbf{Z}}_{\mathrm{eq}}=R $$
] and one has [image: 
$$ \mathbf{V}=R{I}_{\mathrm{m}} $$
] for the phasor voltage in Fig. 10.6b. Knowing the phasor voltage, we can establish the phasor currents. The corresponding real-valued voltage and currents at resonance take on the forms[image: 
$$ \begin{array}{l}\ \upsilon (t)=R{I}_{\mathrm{m}} \cos \left({\omega}_0t\right),\kern1em {i}_{\mathrm{L}}(t)=\frac{R{I}_{\mathrm{m}}}{\omega_0L} \cos \left({\omega}_0t-90{}^{\circ}\right),\\ {}{i}_{\mathrm{C}}(t)=R{I}_{\mathrm{m}}\left({\omega}_0C\right) \cos \left({\omega}_0t+90{}^{\circ}\right)\end{array} $$
]

 (10.20)

The amplitude

 of the circuit voltage, along with the amplitudes of inductor and capacitor currents in Eq. (10.20), reaches a maximum at resonance. Next, we wish to introduce the Q-factor of the circuit, similar to Eq. (10.8) for the series resonator, that is,[image: 
$$ \upsilon (t)=R{I}_{\mathrm{m}} \cos \left({\omega}_0t\right),\kern1em {i}_{\mathrm{L}}(t)={I}_{\mathrm{m}}Q \cos \left({\omega}_0t-90{}^{\circ}\right),\kern1em {i}_{\mathrm{C}}(t)={I}_{\mathrm{m}}Q \cos \left({\omega}_0t+90{}^{\circ}\right) $$
]

 (10.21)

Comparing Eq. (10.20) with Eq. (10.21), we obtain a different expression:[image: 
$$ Q=\frac{\sqrt{RC}}{\sqrt{L/R}}={\omega}_0RC=\frac{R}{\omega_0L} $$
]

 (10.22)

which is exactly the reciprocal of the 
Q-factor

 of the series RLC circuit. This means that a high-Q parallel resonant circuit will require higher capacitances than inductances.
Fortunately, all the results related to the series resonant RLC circuit can directly be converted to the parallel RLC resonant circuit using the substitutions:[image: 
$$ \upsilon (t)\to Ri(t),\kern1em {i}_{\mathrm{L}}(t)\to {\upsilon}_{\mathrm{C}}(t)/R,\kern1em {i}_{\mathrm{C}}\to {\upsilon}_{\mathrm{L}}(t)/R $$
]

 (10.23a)

Here, the left-hand side corresponds to the parallel RLC circuit, whereas the right-hand side corresponds to the series RLC circuit. Furthermore, we need to replace V
m by RI
m and interchange the role of two partial time constants

:[image: 
$$ \frac{L}{R}\leftrightarrow RC $$
]

 (10.23b)

in the original solution for the series RLC circuit; see Eq. (10.22). The solution so constructed will match exactly the solution of the parallel RLC circuit depicted in Fig. 10.6. This fact is proved by direct substitution. Thus, Eqs. (10.23) reflects the 
                  duality
                  
                  
                 of the series/parallel RLC AC steady-state electric circuits driven by voltage and current sources, respectively. It means that the results established for one circuit may be applied to the other circuit and vice versa. A similar duality is established for the transient RLC circuits. Consequently, we can concentrate our study on the series RLC circuit.
Exercise 10.4
For the parallel resonant RLC circuit in Fig. 10.6, determine resonant phasor currents

 I
R, I
L, and I
C if [image: 
$$ {I}_{\mathrm{m}}=100\kern0.5em \mathrm{m}\mathrm{A},\kern0.5em L=30\kern0.5em \upmu \mathrm{H} $$
], [image: 
$$ C=1\kern0.5em \upmu \mathrm{F} $$
], and [image: 
$$ R=100\kern0.5em \Omega $$
].


                    A
                    
                    
                  
nswer: [image: 
$$ {\mathbf{I}}_{\mathrm{R}}={\mathbf{I}}_{\mathrm{S}}=0.1\angle 0{}^{\circ},\kern1em {\mathbf{I}}_{\mathrm{L}}=1.83\angle -90{}^{\circ},\kern1em {\mathbf{I}}_{\mathrm{C}}=1.83\angle +90{}^{\circ}\kern1em \left[\mathrm{A}\right] $$
].

Example 10.7
The circuit voltage

 for the parallel RLC circuit in Fig. 10.6 at any frequency may be written in the form [image: 
$$ \upsilon (t)=R{I}_{\mathrm{m}}H(f) \cos \left(2\pi f\kern0.1em t+\varphi \right) $$
] where H(f) is a dimensionless amplitude transfer function, which peaks at the resonant frequency, [image: 
$$ H\left({f}_0\right)=1 $$
]. Create the Bode plot of H(f) at [image: 
$$ {f}_0=10\kern0.5em \mathrm{kHz} $$
] and for [image: 
$$ Q=1,\kern0.5em 2,\kern0.5em 5 $$
].

Solution: The amplitude transfer function H(f) for the parallel RLC circuit coincides with the expression (10.15b) for the series RLC circuit. The Bode plot also coincides with the corresponding result for the series RLC circuit shown in Fig. 10.5. However, the Q-factor is now given by Eq. (10.22). The bandwidth of the parallel resonant circuit
 is still given by the expression [image: 
$$ B={f}_0/Q\left[\mathrm{Hz}\right] $$
] but with the modified Q-factor. This results in [image: 
$$ B=1/\left(2\pi RC\right)\kern1em \left[\mathrm{Hz}\right] $$
].



10.2 Construction of Second-Order RLC Filters
An immediate application of the RLC resonant circuits relates to the concept of filter design. We have already studied the first-order low-pass and high-pass filters on the basis of RC and RL steady-state AC circuits. In fact, the RLC circuits could also be used as low-pass and high-pass filters. They perform even better, i.e., more closely linked to the frequency response of the 
                ideal filter
                
                
              , which implies passing all the frequency components below (or above) a certain 

cutoff frequency and rejecting all other frequency components. In other words, the frequency responses of the RLC low-pass and high-pass filters are “steeper” than first-order filters. Not only that, resonant RLC circuits can form band-pass and band-reject (or band-stop or notch) filters, a task which is impossible with first-order RC or RL circuits.
10.2.1 Second-Order Band-Pass RLC Filter

A series RLC circuit is shown in 

Fig. 10.7a. We consider the supply voltage as the input voltage υ
in(t) into the filter and the resistor voltage υ
R(t) as the output voltage υ
out(t). Figure 10.7b depicts the corresponding circuit transformation. This transformation implies that the input voltage is provided by another circuit block and the output voltage is passed to another circuit block. The circuit in Fig. 10.7b is thus a 
                  two-port network
                  
                  
                . Qualitatively then, when the frequency of the input voltage is the resonant frequency of the RLC circuit, the LC block in Fig. 10.7 is replaced by a short circuit (a wire). The input voltage passes through unchanged. However, if the frequency differs from the resonant one, the LC block exhibits a large finite impedance that is added to the resistance R. As a result, the circuit current decreases in amplitude, as does the output voltage (voltage across the resistor), which is proportional to the current. Those frequencies are thus rejected. The filter so constructed is known as a second-order band-pass RLC filter.[image: A331468_1_En_10_Fig7_HTML.gif]
Fig. 10.7
                                                Transformation

 of the series RLC circuit into the band-pass analog RLC filter




                            
We assume the source voltage (the input filter voltage) is given in the form [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \cos \omega \kern0.1em t $$
]. The phasor current for the corresponding series RLC circuit was found in the previous section (see Eq. (10.15a)):[image: 
$$ \mathbf{I}=\frac{V_{\mathrm{m}}/R}{1+jQ\left(\frac{f}{f_0}-\frac{f_0}{f}\right)} $$
]

 (10.24a)

Here, [image: 
$$ Q=\sqrt{L/C}/R $$
] is the corresponding quality factor of the series RLC circuit (quality 
                  factor
                  
                  
                 of the filter circuit), and [image: 
$$ {f}_0=1/\sqrt{LC} $$
] is its resonant frequency. The complex filter transfer function is defined by the ratio of the corresponding phasors:[image: 
$$ \mathbf{H}(f)\equiv \frac{{\mathbf{V}}_{\mathrm{R}}}{{\mathbf{V}}_{\mathrm{S}}}=\frac{R\mathbf{I}}{V_{\mathrm{m}}} $$
]

 (10.24b)

Substitution of Eq. (10.24a) into Eq. (10.24b) gives the transfer function in the form:[image: 
$$ \mathbf{H}(f)=\frac{1}{\sqrt{1+{Q}^2{\left(\frac{f}{f_0}-\frac{f_0}{f}\right)}^2}}\angle -{ \tan}^{-1}\left(Q\left(\frac{f}{f_0}-\frac{f_0}{f}\right)\right) $$
]

 (10.24c)

which is equivalent to Eq. (10.15b) of the previous section. Therefore, the results derived for the series resonant RLC circuit are also valid for the band-pass RLC filter in Fig. 10.7. In particular, the center 
                  frequency
                  
                  
                 of the band-pass filter is the circuit resonant frequency. The 

half-power bandwidth of the filter is given by Eq. (10.17), i.e., [image: 
$$ B={f}_0/Q=R/\left(2\pi L\right) $$
], and the 
                  lower and upper half-power frequencies
                  
                  
                 are known from Eq. (10.16) of the previous section. Second-order filter circuits are designed by choosing the values of R, L, C in such a way as to obtain the required values of Q and f
0 (the filter center frequency and the required bandwidth). Thus, we have two equations for three unknowns. The remaining degree of freedom is used to match the filter impedances.
Example 10.8
A band-pass RLC filter is required with the center (resonant) frequency of 1 MHz and a half-power bandwidth B of 100 kHz. Create amplitude and phase Bode plots for the filter in the frequency band from 100 kHz to 10 MHz.

Solution: Clearly, [image: 
$$ {f}_0=1\kern0.5em \mathrm{MHz} $$
]. The quality factor of the RLC circuit is found to be [image: 
$$ Q={f}_0/B=10 $$
]. We plot the magnitude of the transfer function, H(f), in decibels and its phase in degrees according to Eq. (10.24c). The result is shown in Fig. 10.8. You should note that far away from the 

passband, the filter follows a 20-dB-per-decade roll-off.[image: A331468_1_En_10_Fig8_HTML.gif]
Fig. 10.8Amplitude and phase Bode plot of a band-pass series RLC filter with Q = 10




                                

Exercise 10.5
In the band-pass filter circuit of Fig.10.7, [image: 
$$ L=100\kern0.5em \upmu \mathrm{H} $$
], [image: 
$$ C=15.9\kern0.5em \upmu \mathrm{F} $$
], and [image: 
$$ R=10\kern0.5em \Omega $$
]. What is the filter bandwidth?

Answer: 15.9 kHz.

Example 10.9
In the previous example, determine the necessary values of 
L and C


 given [image: 
$$ R=20\kern0.5em \Omega $$
].

Solution: From the definition of the resonant frequency and the Q-factor, we obtain [image: 
$$ 1/\sqrt{LC}=2\pi \times {10}^6,\kern1em \sqrt{L/C}=RQ=200\Rightarrow C\approx 796\kern0.5em \mathrm{pF} $$
]. Then, we find the required inductance, [image: 
$$ L=C{(RQ)}^2\approx 31.8\kern0.5em \upmu \mathrm{H} $$
]. Alternatively, one could find the inductance L directly from the definition of the band

width for the series RLC resonator, that is, [image: 
$$ L=R/\left(2\pi \kern0.1em B\right)=31.8\kern0.5em \upmu \mathrm{H} $$
].


10.2.2 Second-Order Low-Pass RLC Filter
A series RLC circuit is 
again shown in Fig. 10.9a. We consider the power supply AC voltage as the input voltage υ
in(t) into the filter. We monitor the capacitor voltage υ
C(t) as the output voltage υ
out(t) of the filter. Figure 10.9b depicts the corresponding circuit.[image: A331468_1_En_10_Fig9_HTML.gif]
Fig. 10.9
                                                Transformation
 of the series RLC circuit into the low-pass analog RLC filter




                            
The filter so constructed is a second-order low-pass RLC filter. Qualitatively then, when the frequency of the input voltage is low, the inductor behaves as a short circuit and the capacitor as an open circuit. The input voltage passes through unchanged. However, if the frequency is higher than the resonant frequency, both the inductor and the capacitor prevent transmission: the capacitor shorts out the output voltage, whereas the inductor reduces the circuit current. The complex filter transfer function is defined by the ratio of the corresponding phasors:[image: 
$$ \mathbf{H}(f)\equiv \frac{{\mathbf{V}}_{\mathrm{C}}}{{\mathbf{V}}_{\mathrm{S}}}=\frac{\mathbf{I}}{j\omega C{V}_{\mathrm{m}}} $$
]

 (10.25a)

We substitute the expression for the 
phasor current of the series RLC circuit from Eq. (10.24a) and obtain the transfer function in the form:[image: 
$$ \mathbf{H}(f)=Q\kern0.35em \frac{f_0}{f}\frac{1}{\sqrt{1+{Q}^2{\left(\frac{f}{f_0}-\frac{f_0}{f}\right)}^2}}\angle -\frac{\pi }{2}-{ \tan}^{-1}\left(Q\left(\frac{f}{f_0}-\frac{f_0}{f}\right)\right) $$
]

 (10.25b)


                            
Example 10.10

A low-pass RLC filter is required with a passband from 0 to 1 MHz. In other words, the low-pass filter bandwidth, which extends from zero hertz to the half-power frequency, should be 1 MHz. Create amplitude and phase Bode plots for the filter in the frequency band from 100 kHz to 10 MHz.

Solution:
The critical point for the low-pass RLC filter design is the proper selection of the quality factor. The amplitude transfer function in Eq. (10.25b) can exhibit a sharp peak in the passband with its value higher than one. Such a peak (further investigated in the homework problems) occurs only for [image: 
$$ Q=1/\sqrt{2} $$
]. The value [image: 
$$ Q=1/\sqrt{2} $$
] corresponds to the maximally flat but still steep transfer function (maximally flat 
                    Butterworth response
                    
                  ). We will use this value in Eq. (10.25b). Then, the half-power or 3-dB frequency of the filter will be exactly the resonant frequency f
0. The resulting Bode plots are shown in Fig. 10.10. The transfer function of the filter has 40-dB-per-decade roll-off.[image: A331468_1_En_10_Fig10_HTML.gif]
Fig. 10.10Amplitude and phase
 Bode plots for the low-pass RLC filter (solid curves) compared with a first-order RC filter (dotted curve)




                                

Figure 10.10 shows three amplitude responses: for an ideal filter with the cutoff frequency
 of 1 MHz, for a second-order RLC filter with the 3-dB frequency which coincides with [image: 
$$ {f}_0=1\kern0.5em \mathrm{MHz} $$
], and for a first-order RC (or RL) filter with the break (half-power) frequency [image: 
$$ {f}_{\mathrm{b}}={f}_0=1\kern0.5em \mathrm{MHz} $$
]. Clearly, the second-order filter better approaches the desired ideal response. 
                  
                This observation encourages us to consider filters of higher order.

10.2.3 Second-Order High-Pass RLC Filter
A series RLC
 circuit is again shown in Fig. 10.11a. We consider the power supply AC voltage as the input voltage υ
in(t) into the filter. We next consider the inductor voltage υ
L(t) as the output voltage υ
out(t) of the filter, see Fig. 10.11b. The constructed circuit is a second-order high-pass RLC filter. Qualitatively, when the frequency of the input voltage is low, the capacitor behaves like an open circuit, while the inductor behaves like a short circuit. Both the inductor and the capacitor prevent transmission. However, if the frequency is higher than the resonant frequency, the capacitor becomes a short circuit and the inductor becomes an open circuit. The input voltage is passed through the filter nearly unchanged. The complex filter transfer function is defined by the ratio 
of the corresponding phasors:[image: A331468_1_En_10_Fig11_HTML.gif]
Fig. 10.11Transformation of the
 series RLC circuit into the high-pass analog RLC filter




[image: 
$$ \mathbf{H}(f)\equiv \frac{{\mathbf{V}}_{\mathrm{L}}}{{\mathbf{V}}_{\mathrm{S}}}=\frac{j\omega L\mathbf{I}}{V_{\mathrm{m}}} $$
]

 (10.26a)

We substitute the expression for the phasor current of the series RLC circuit from Eq. (10.24a) and obtain the transfer function in the form:[image: 
$$ \mathbf{H}(f)=Q\frac{f}{f_0}\frac{1}{\sqrt{1+{Q}^2{\left(\frac{f}{f_0}-\frac{f_0}{f}\right)}^2}}\angle \frac{\pi }{2}-{ \tan}^{-1}\left(Q\left(\frac{f}{f_0}-\frac{f_0}{f}\right)\right) $$
]

 (10.26b)

The amplitude transfer function of the high-pass filter in Eq. (10.26b) is the mirror reflection of the amplitude transfer function for the low-pass filter in Eq. (10.25b) if a logarithmic frequency scale is used. This fact is seen by substituting [image: 
$$ f\leftrightarrow 1/f,{f}_0\leftrightarrow 1/{f}_0 $$
], which makes both expressions identical.
Example 10.11
A high-pass RLC filter is required with the passband from 0 to 1 MHz. The high-pass filter half-power frequency should be 1 MHz. Create amplitude and phase Bode plots for the filter in the band from 100 kHz to 10 MHz.

Solution: The important point for the high-pass RLC filter design is again the proper selection of the quality factor. Similar to the low-pass filter, we choose the value [image: 
$$ Q=1/\sqrt{2} $$
], which corresponds to the maximally flat transfer function (
                    
                  
Butterworth response). Then, the half-power or 3-dB frequency of the filter will be exactly the resonant frequency f
0. The resulting Bode plots are shown in Fig. 10.12 in comparison with the transfer function of the first-order high-pass filter. The amplitude transfer function of the filter again has the 40-dB-per-decade roll-off.[image: A331468_1_En_10_Fig12_HTML.gif]
Fig. 10.12Amplitude and phase
 Bode plots for the high-pass RLC filter (solid curves) and amplitude comparison with a first-order RC filter (dotted curve)




                                

Exercise 10.6
A band-pass filter is as a series combination of the second-order low-pass RLC filter and the second-order high-pass RLC filter, respectively. Both filters have the same half-power frequency. What is the transfer function roll-off far away from the
 passband per one octave?

Answer: 12 dB.


10.2.4 Second-Order Band-Reject RLC Filter
A series RLC 
circuit is again shown in Fig. 10.13a. We consider the power supply AC voltage as the input voltage υ
in(t) into the filter, and the voltage υ
LC(t) across the LC block is recorded as the output voltage υ
out(t). Figure 10.13b depicts the corresponding filter circuit.[image: A331468_1_En_10_Fig13_HTML.gif]
Fig. 10.13Transformation of the series 
RLC circuit into the band-reject analog RLC filter




                            
The filter so constructed is a second-order band-reject (known as band-stop or notch) RLC filter. At resonance, the LC block forms a 
short circuit: the output filter voltage is thus shorted out. All other frequencies pass through. This filter is useful when a single tone (e.g., 60 Hz) needs to be rejected. By KVL, its transfer function is equal to one minus the transfer function of the band-pass filter in Eq. (10.24c), i.e.,[image: 
$$ \mathbf{H}\left(\ f\right)=1-\frac{1}{1+jQ\left(\kern0.1em \frac{f}{f_0}-\frac{f_0}{f}\right)}=Q\left|\kern0.1em \frac{f}{f_0}-\frac{f_0}{f}\right|\frac{1}{\sqrt{1+{Q}^2{\left(\kern0.1em ,\frac{f}{f_0}-\frac{f_0}{f}\right)}^2}}\angle \frac{\pi }{2}-{ \tan}^{-1}\left(Q\left(\ \frac{f}{f_0}-\frac{f_0}{f}\right)\right) $$
]

 (10.27)

Therefore, the filter behavior is the opposite of the band-pass filter previously analyzed.
Example 10.12
A band-reject RLC filter is required with the center frequency of 1 MHz and the 
half-power bandwidth, B, of 100 kHz. Create amplitude and phase Bode plots for the filter in the frequency band from 100 kHz to 10 MHz.

Solution: The quality factor of the RLC circuit is found to be [image: 
$$ Q={f}_0/B=10 $$
]. We plot the magnitude of the transfer function H(f) in decibels and its phase in degrees according to Eq. (10.27). The result is shown in Fig. 10.14. The filter response is very steep over the specified frequency range. We can lower the Q-factor, which will lead to a wider bandwidth. Note that the amplitude transfer function formally equals zero at the exact resonant frequency. This r
esult is physically unrealizable since real inductors have a small parasitic series resistance.[image: A331468_1_En_10_Fig14_HTML.gif]
Fig. 10.14Amplitude and phase 
Bode plots for the band-reject series RLC filter




                                


10.2.5 
                                Second-Order RLC Filters

 Derived from the Parallel RLC Circuit
All second-order filters considered so far are derived from the series RLC circuit, with the same quality factor given by [image: 
$$ Q={\omega}_0L/R $$
]. The natural structure after shorting out the input voltage source is shown in Fig. 10.15a. A complementary group of these filter circuits exists; after shorting out the input voltage source, its natural structure is that of the parallel RLC circuit seen in Fig. 10.15b. These circuits operate quite similarly, but all of them have the quality factor of the parallel RLC resonator, that is, [image: 
$$ Q={\omega}_0RC $$
].[image: A331468_1_En_10_Fig15_HTML.gif]
Fig. 10.15(a) Series RLC circuit with no excitation and (b) parallel RLC circuit with no excitation




                            

For the filter circuits derived from the parallel RLC circuit, the resonant frequency still has to satisfy the condition that a real circuit impedance is “seen” by the voltage source. The resonant frequency found this way either does not equal the undamped resonant frequency [image: 
$$ {f}_0=1/\left(2\pi \sqrt{LC}\right) $$
] or does not exist at all. However, the structure of the filter equations is not affected by this result. Only the undamped resonant frequency f
0 appears to be important for the voltage transfer function, which indeed remains the same for 


any filter circuit containing one inductance and one capacitance.


10.3 RLC Circuits for Near-Field Communications and Proximity Sensors
10.3.1 Near-Field Wireless Link

Near-field wireless
 communication can transfer data, power, or both of them simultaneously. Common data-related applications include radio-frequency identification (RFID) systems of 125/134 kHz and 13.56 MHz, 
electronic article surveillance (EAS)


                  
                  
                 for electronic anti-theft devices in shops, and mobile and other portable device 
near-field communication (NFC)


                  
                  
                . Promising applications in biomedical engineering have also been explored. Figure 10.16 shows the key concept of a near-field wireless link. The transmitter and the receiver inductor coils share a common magnetic flux density [image: 
$$ \overrightarrow{B} $$
] in the near field. The transmitter/receiver system in Fig. 10.16 is known as an inductively coupled system.[image: A331468_1_En_10_Fig16_HTML.gif]
Fig. 10.16The concept 
of the near-field wireless link; the magnetic flux density is shared between receiver and transmitter coils




                            
In contrast to the radio-frequency radiating fields, the near field [image: 
$$ \overrightarrow{B} $$
] is very strong in the vicinity of the coil antenna. However, this field very rapidly decays at larger distances from the transmitter. For example, consider a transmitter coil with N loops of area A each. The corresponding near field of the transmitter coil in Fig. 10.16 with current i(t) on the coil axis at the axial distances z much greater than the coil length (and the loop radius) may be found in the form:[image: 
$$ B=N\left[\frac{\mu_0A}{2\pi}\frac{i(t)}{z^3}\right]\kern0.5em \left[\mathrm{T}\right],\kern1em {\mu}_0=4\pi \times {10}^{-7}\ \mathrm{H}/\mathrm{m} $$
]

 (10.28)

where B is recorded in tesla T. The expression in square brackets is the contribution of a single loop. Thus, the near-field decay is inversely proportional 
to the third degree of the separation distance. This observation (obtained via an asymptotic analysis of the related magnetostatic expressions) is also valid for any quasi-static magnetic (and electric) dipole. Such a short-range wireless communication is both safe and effective.

10.3.2 Transmitter Circuit
In a transmitter circuit shown in

 Fig. 10.17a, the function generator is modeled by an ideal voltage source [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \cos \omega \kern0.1em t $$
] in series with resistance R. The function generator is connected to the transmitter coil modeled by the inductance L. The goal is to increase the magnetic flux density [image: 
$$ \overrightarrow{B} $$
] of the transmitter. According to Eq. (10.28), the obvious choice is to increase the inductance of the transmitter. However, this operation would decrease the circuit current i(t) due to an increase of the impedance magnitude. We will attempt to solve this problem with the series resonant RLC circuit shown in Fig. 10.17b.[image: A331468_1_En_10_Fig17_HTML.gif]
Fig. 10.17Using a series capacitor

 in order to increase the circuit current




                            
The original and the modified circuits in Fig. 10.2 are both solved by using the phasor method

. We denote the desired operating frequency by f
0. For the original circuit in Fig. 10.17a, the 

phasor current may then be written in the form:[image: 
$$ \mathbf{I}=\frac{V_{\mathrm{m}}}{{\mathbf{Z}}_{\mathrm{eq}}}=\frac{V_{\mathrm{m}}}{R+j\omega L}=\frac{V_{\mathrm{m}}}{R}\frac{1}{\sqrt{1+{Q}^2{\left(\frac{f}{f_0}\right)}^2}}\angle -{ \tan}^{-1}\left(Q\frac{f}{f_0}\right),\kern1em Q={\omega}_0\left(L/R\right) $$
]

 (10.29)

For the series RLC circuit in Fig. 10.17b, the capacitance is chosen in such a way that the resonant frequency of the circuit coincides with the operation frequency f
0. The phasor current for the RLC circuit has been derived in the previous sections. It has the form:[image: 
$$ \mathbf{I}=\frac{V_{\mathrm{m}}}{{\mathbf{Z}}_{\mathrm{eq}}}=\frac{V_{\mathrm{m}}}{R+j\left(\omega \kern0.1em L-\frac{1}{\omega C}\right)}=\frac{V_{\mathrm{m}}}{R}\frac{1}{\sqrt{1+{Q}^2{\left(\frac{f}{f_0}-\frac{f_0}{f}\right)}^2}}\angle -{ \tan}^{-1}\left(Q\left(\frac{f}{f_0}-\frac{f_0}{f}\right)\right) $$
]

 (10.30)


Note the presence of the quality factor

, [image: 
$$ Q={\omega}_0\left(L/R\right) $$
], for the series RLC circuit in both Eqs. (10.29) and (10.30). At exactly the operation frequency, [image: 
$$ f={f}_0 $$
], the ratio of current magnitudes (both phasors [image: 
$$ \angle \cdot $$
] have the magnitude of one) becomes[image: 
$$ \frac{I_{\mathrm{m}\kern0.5em \mathrm{circuit}\ \mathrm{with}\ \mathrm{series}\ \mathrm{capacitor}}}{I_{\mathrm{m}\kern0.5em \mathrm{o}\mathrm{r}\mathrm{iginal}\ \mathrm{circuit}}}=\sqrt{1+{Q}^2}\approx Q\kern0.5em \mathrm{f}\mathrm{o}\mathrm{r}\ Q\gg 1 $$
]

 (10.31)


This ratio may significantly exceed one for high Q values. Thus, the series RLC circuit may considerably increase the circuit current and the associated magnetic field.
Exercise 10.7
It is suggested to increase the magnetic field

 for the circuit without the capacitor in Fig. 10.7a by simply doubling the number of coil turns and increasing the coil length by the factor of two. Given that:	1.
[image: 
$$ Q={\omega}_0\left(L/R\right)\gg 1 $$
] at the operation frequency


 

	2.
[image: 
$$ Q={\omega}_0\left(L/R\right)\ll 1 $$
] at the operation frequency


 




                                
how does the magnetic field B change?

Answer: (i) B remains the same. (ii) B doubles.

Example 10.13
Given the operation frequency

 (center band frequency) of [image: 
$$ {f}_0=1\kern0.5em \mathrm{MHz} $$
] and [image: 
$$ {V}_{\mathrm{m}}=10\kern0.5em \mathrm{V},\kern0.5em L=50\kern0.5em \upmu \mathrm{H},\kern0.5em R=50\kern0.5em \Omega $$
], plot the amplitude of the circuit current as a function of source frequency for the original (RL) and modified (resonant RLC) circuits in in Fig. 10.17 over the frequency band from 0.5 to 1.5 MHz.

Solution: The quality factor is found to be [image: 
$$ Q=6.283 $$
]. Next, we plot both current amplitudes based on Eqs. (10.29) and (10.30) using a linear scale. The result is shown in Fig. 10.18. The amplitude of the circuit current increases from 31.4 to 200 mA at the operation frequency f
0 (resonant frequency of the RLC circuit).[image: A331468_1_En_10_Fig18_HTML.gif]
Fig. 10.18Amplitudes of the circuit current for the original and modified circuits in Fig. 10.17
                                                




                                


10.3.3 Receiver Circuit

Consider the receiver coil in Fig. 10.19a. Its 

equivalent circuit includes the ideal inductor L in series with R, which is the resistance of the coil winding. It also includes an induced emf (electromotive force) voltage source υ
emf(t), which follows Faraday’s law

 of induction:[image: A331468_1_En_10_Fig19_HTML.gif]
Fig. 10.19(a) Receiver coil and (b) receiver coil with capacitance to increase the open-circuit voltage


                                            




[image: 
$$ {\upsilon}_{\mathrm{emf}}(t)\equiv AN\frac{dB(t)}{dt}={V}_{\mathrm{m}} \cos \left(\omega \kern0.1em t\right),\kern1em B(t)={B}_{\mathrm{m}} \sin \left(\omega t\right) $$
]

 (10.32)

Here, B(t) is the coaxial component of the external, time-varying magnetic flux density of the transmitter at the receiver location. The source voltage amplitude is given by [image: 
$$ {V}_{\mathrm{m}}=AN\omega {B}_{\mathrm{m}} $$
] where A is the area of the receiver coil and N is the number of coil turns. The major parameter of interest is the (small) open-circuit voltage of the receiver coil, υ
out(t). It is desired to increase this voltage. For the circuit shown in Fig. 10.19a, υ
out(t) is always equal to υ
emf(t). However, the situation will change if we create a series RLC circuit as shown in Fig. 10.19b. The output voltage becomes the capacitor voltage. We will attempt to increase υ
out(t) by using the resonance condition.
The circuit in Fig. 10.19b is solved using the phasor method. The desired resonant frequency (operating frequency) is f
0. The phasor for the output voltage has the form:[image: 
$$ {\mathbf{V}}_{\mathrm{out}}={\mathbf{V}}_{\mathrm{C}}=\frac{V_{\mathrm{m}}/\left(j\omega C\right)}{R+j\omega \kern0.1em L+\frac{1}{j\omega C}}=Q\ \frac{f_0}{f}\frac{V_{\mathrm{m}}}{\sqrt{1+{Q}^2{\left(\frac{f}{f_0}-\frac{f_0}{f}\right)}^2}}\left\{\angle -\frac{\pi }{2}-{ \tan}^{-1}\left(Q\left(\frac{f}{f_0}-\frac{f_0}{f}\right)\right)\right\} $$
]

 (10.33)

where [image: 
$$ Q={\omega}_0\left(L/R\right) $$
] is again the quality factor of the series RLC resonant circuit (and simultaneously the 
                  quality factor of the nonideal inductor
                  
                  
                 with series resistance R). At the exact resonant frequency, the output voltage amplitude becomes[image: 
$$ {V}_{\mathrm{out}}=Q{V}_{\mathrm{m}} $$
]

 (10.34)


This value may significantly exceed V
m given a high value of Q. Thus, the series RLC circuit formed with the help of the shunt capacitor C in Fig. 10.19b may considerably increase the received voltage.
Example 10.14
Given the operating frequency

 (center band frequency) of [image: 
$$ {f}_0=1\kern0.5em \mathrm{MHz} $$
] and [image: 
$$ {V}_{\mathrm{m}}=10\kern0.5em \mathrm{mV},\kern0.5em L=78\kern0.5em \upmu \mathrm{H},\ R=10\kern0.5em \Omega $$
], plot the amplitude of the output voltage for the original and modified circuits in Fig. 10.19 as a function of source frequency over the band from 0.5 to 1.5 MHz.

Solution: We find the required capacitance value first. Specifically, [image: 
$$ C=1/\left(L{\left(2\pi {f}_0\right)}^2\right)\approx 325\kern0.5em \mathrm{pF} $$
]. The quality factor is given by [image: 
$$ Q\approx 49.0 $$
]. Next, we plot both voltage amplitudes. The first one is simply V
m. The second plot is based on Eq. (10.33). The results are shown in Fig. 10.20. The amplitude of the output voltage increases from 10 to 490 mV at the operating frequency f
0 (resonant frequency of the series RLC circuit).[image: A331468_1_En_10_Fig20_HTML.gif]
Fig. 10.20Amplitudes of the output voltage for the original and modified circuits in Fig. 10.19
                                                




                                

The circuit in Fig. 10.19b is the low-pass second-order RLC filter studied in the previous section, right? Why is it boosting the source voltage instead of just passing it through? The key is the Q-factor. The present circuit operates as a filter at relatively small values of the quality factors, i.e., [image: 
$$ Q\le 1 $$
]. At higher Q values, the circuit generates a voltage spike close to the resonant frequency and operates as a 
                  voltage multiplier
                  
                  
                . This operation is similar to the operation of an electric transformer.

10.3.4 Application Example: Near-Field Wireless Link
 in Laboratory

Figure 10.21 shows a prototype of the near-field link implemented in an undergraduate laboratory. The operating frequency of the transmitter is tunable; it ranges from 400 kHz to 1.2 MHz. Despite this relatively high frequencies, the circuitry can still be implemented on standard protoboards. The key is the tunability of both the transmitter and the receiver, which simultaneously accounts for the parasitic capacitance of the board.[image: A331468_1_En_10_Fig21_HTML.gif]
Fig. 10.21Prototype of the 
near-field link implemented in laboratory




                            

The transmitter is driven by a function generator; the tuning is made by a bank of fixed capacitors from a laboratory kit. The receiver uses a single-ended magnetic-core coil (a loopstick antenna) with an inductance of approximately 1 mH and a series resistance of about 10 Ω. The RLC circuit at the receiver uses a trimmer capacitor of 10–180 pF range for tuning. When the transmitter is sending an amplitude-modulated signal from the function generator, the receiver operates as an AM radio given the subsequent rectifying circuit with a germanium diode and an audio amplifier IC (LM386). Frequency modulation is also possible; however, the receiver circuit has to be modified accordingly. The system operating range is up to two feet on average. When an external modulation input of the function generator is used, an audio clip may be transmitted.

10.3.5 Application Example: Proximity Sensors


The idea of the resonant RLC proximity sensor is quite simple. Assume that the inductance is a large coil or simply a loop of wire. When a metal object to be detected is brought in proximity to the loop, its (self) inductance changes. This causes a detectable change in the resonant frequency f
0 of an RLC tank circuit. After encoding, information may be extracted about the presence of the object and sometimes of its size. This is the well-known principle of a metal detector. A large variety of metal-detecting circuits already exist, and more are still awaiting discovery. Another idea is to change the capacitance by putting a dielectric object (such as a medical pill) inside the capacitor. A similar change in the resonant frequency may be observed and detected. Such a device may be used, for example, as an automatic pill counter.
The detector circuit itself can operate based on three different principles. First, a simple method is to use the 
series RLC tank circuit with the external AC power supply. The measured parameter is the amplitude of the circuit current (resistor voltage) at the frequency of the AC source. When the resonant frequency is close to the AC frequency, the circuit voltage is large. However, when the resonant frequency deviates from the source frequency, the circuit voltage becomes smaller. The change in the circuit voltage is detected. A second method is to make the tank circuit self-resonant, by using an amplifier with a positive feedback. A resonant circuit so built does not need an AC power supply. It oscillates exactly at f
0 when there is no object to be detected. When the object is present the oscillation frequency changes. The change in the AC frequency is encoded by another electronic circuit. Using self-resonant tank circuits is perhaps the most common method in practice. A third method is based on the effect of the resistance in the tank circuit. When a metal object is placed close to the coil, the coil’s series resistance significantly increases, due to the so-called eddy current losses (for all metals) and, possibly, hysteresis losses (for magnetic metals such as iron, nickel, steel alloys, etc.). The increase in the resistance leads to smaller voltage oscillations 
in the self-resonant circuit. The circuit may be tuned in such a way as to stop oscillating at a given value of the extra resistance. Great sensitivity may be achieved with this method.
Figure 10.22 shows the inductor assembly in a resonant sensor for an automatic traffic light. The inductor now is a single-turn (or multi-turn) pavement loop. When a vehicle is located above the loop, its (self) inductance L decreases. This leads to an increase in the resonance frequency. The change in frequency, not the change in the amplitude, is typically detected and encoded. The latter is used to indicate the presence of a vehicle and to adjust the traffic light control. Most vehicle detectors based on loop inductors operate with frequencies from 10 to 100 kHz. A (simplified) equivalent tank circuit for the traffic light control is shown in Fig. 10.23b. We note the series resistance R, which is the parasitic resistance of the loop. The parasitic resistance includes both the effect of the passing vehicle and of the ground.[image: A331468_1_En_10_Fig22_HTML.jpg]
Fig. 10.22Multiple vehicle detection loops after installation at an intersection. Courtesy of the US Traffic Corporation, Loop Application Note of 3/10/03




[image: A331468_1_En_10_Fig23_HTML.gif]
Fig. 10.23(a) Simplified schematic of the vehicle detecting system and (b) equivalent resonant circuit




                            
The circuit in Fig. 10.23b may be analyzed exactly in the same way as the series/parallel RLC tank circuits in Section 10.1. The tricky part for the tank circuit block in Fig. 10.23b is that its resonant angular frequency is no longer [image: 
$$ 1/\sqrt{LC} $$
]. However, it can still be found from the condition of a purely real equivalent impedance Z
eq, see the summary of this chapter.
Single coils of special shapes—the horseshoe shape—may be used to detect the level and the presence of molten metals through the walls of (large) casting molds and for other purposes. The equivalent circuit is the parallel RLC tank circuit. When properly tuned, the self-resonating circuit quantitatively detects variations in molten metal level through 4–5″ thick walls, see Fig. 10.24.[image: A331468_1_En_10_Fig24_HTML.gif]
Fig. 10.24A half-toroidal (horseshoe) coil used to concentrate the magnetic field between its tips in a molten metal detector (Foley, Biederman, Ludwig, and Makarov, US Patent 7,828,043 Nov. 9th 2010)




                            


Summary

                	TERM
	Series RLC circuit
	Parallel RLC circuit

	Series and parallel RLC resonators
	
                            [image: A331468_1_En_10_Figt_HTML.gif]
                          
	
                            [image: A331468_1_En_10_Figu_HTML.gif]
                          

	Resonant frequency
	
                            [image: 
$$ {\omega}_0=1/\sqrt{LC},\kern0.5em {f}_0=1/\left(2\pi \sqrt{LC}\right) $$
]
                          
Coincides with the undamped resonant frequency
	
                            [image: 
$$ {\omega}_0=1/\sqrt{LC},\kern0.5em {f}_0=1/\left(2\pi \sqrt{LC}\right) $$
]
                          
Coincides with the undamped resonant frequency

	Quality factor of the resonant circuit
	
                            [image: 
$$ Q=\frac{\sqrt{L/R}}{\sqrt{RC}}=\frac{1}{\omega_0RC}={\omega}_0\left(L/R\right) $$
]
                          
dimensionless
	
                            [image: 
$$ Q=\frac{\sqrt{RC}}{\sqrt{L/R}}={\omega}_0RC=\frac{1}{\omega_0\left(L/R\right)} $$
]
                          
dimensionless

	Bandwidth of the resonant circuit
	
                            [image: 
$$ B\equiv {f}_U-{f}_L=\frac{f_0}{Q}=\frac{1}{2\pi \left(\kern0.1em L/R\right)\kern0.1em }\kern0.5em \left[\mathrm{Hz}\right] $$
]
                          
	
                            [image: 
$$ B\equiv {f}_U-{f}_L=\frac{f_0}{Q}=\frac{1}{2\pi \kern0.1em RC}\kern0.5em \left[\mathrm{Hz}\right] $$
]
                          

	Half-power lower and upper frequencies
	
                            [image: 
$$ {f}_{L,U}={f}_0\left(\sqrt{1+\frac{1}{(2Q)^2}}\mp \frac{1}{2Q}\right)\kern0.5em \left[\mathrm{Hz}\right] $$
]
                          
	
                            [image: 
$$ {f}_{L,U}={f}_0\left(\sqrt{1+\frac{1}{(2Q)^2}}\mp \frac{1}{2Q}\right)\kern0.5em \left[\mathrm{Hz}\right] $$
]
                          

	Other RLC resonators
	Circuit diagram
	Resonant frequency

	L+R||C
	
                            [image: A331468_1_En_10_Figv_HTML.gif]
                          
	
                            [image: 
$$ {\omega}_0=\frac{1}{(RC)}\sqrt{\frac{RC}{L/R}-1} $$
]
                          
Different from the undamped resonant frequency

	C+L||R
	
                            [image: A331468_1_En_10_Figw_HTML.gif]
                          
	
                            [image: 
$$ {\omega}_0=\frac{1}{\left(L/R\right)}\frac{1}{\sqrt{\frac{RC}{L/R}-1}} $$
]
                          
Different from the undamped resonant frequency

	(R+L)||C
	
                            [image: A331468_1_En_10_Figx_HTML.gif]
                          
	
                            [image: 
$$ {\omega}_0=\frac{1}{\left(L/R\right)}\sqrt{\frac{L/R}{RC}-1} $$
]
                          
Different from the undamped resonant frequency

	RLC filter circuits derived from the series RLC circuit: [image: 
$$ {f}_0=1/\left(2\pi \sqrt{LC}\right) $$
], [image: 
$$ Q=1/\left({\omega}_0RC\right) $$
]
                                                    

	Band-pass filter
	
                            [image: A331468_1_En_10_Figy_HTML.gif]
                          
	
                            [image: 
$$ {\mathbf{H}}_0\left(\kern0.18em f\right)=\frac{1}{1+jQ\left(\kern0.2em \frac{f}{f_0}-\frac{f_0}{f}\right)} $$
]
                          

	Low-pass filter
	
                            [image: A331468_1_En_10_Figz_HTML.gif]
                          
	
                            [image: 
$$ \mathbf{H}\left(\kern0.18em f\right)=Q\kern3pt \frac{f_0}{f}{\mathbf{H}}_0\left(\kern0.18em f\right) $$
]
                          

	High-pass filter
	
                            [image: A331468_1_En_10_Figaa_HTML.gif]
                          
	
                            [image: 
$$ \mathbf{H}\left(\kern0.18em f\right)=Q\kern2pt \frac{f}{f_0}{\mathbf{H}}_0\left(\kern0.18em f\right) $$
]
                          

	Band-reject filter
	
                            [image: A331468_1_En_10_Figab_HTML.gif]
                          
	
                            [image: 
$$ \mathbf{H}\left(\kern0.18em f\right)=jQ\left(\kern0.2em \frac{f}{f_0}-\frac{f_0}{f}\right){\mathbf{H}}_0\left(\kern0.18em f\right) $$
]
                          

	RLC filter circuits derived from the parallel RLC circuit: [image: 
$$ {f}_0=1/\left(2\pi \sqrt{LC}\right) $$
], [image: 
$$ Q={\omega}_0RC $$
]
                                                    

	Band-pass filter based on parallel RLC circuit
	
                            [image: A331468_1_En_10_Figac_HTML.gif]
                          
	
                            [image: 
$$ {\mathbf{H}}_0\left(\kern0.18em f\right)=\frac{1}{1+jQ\left(\kern0.2em \frac{f}{f_0}-\frac{f_0}{f}\right)} $$
]
                          

	Low-pass filter based on parallel RLC circuit
	
                            [image: A331468_1_En_10_Figad_HTML.gif]
                          
	
                            [image: 
$$ \mathbf{H}\left(\kern0.18em f\right)=Q\kern2.5pt \frac{f_0}{f}{\mathbf{H}}_0\left(\kern0.18em f\right) $$
]
                          

	High-pass filter based on parallel RLC circuit
	
                            [image: A331468_1_En_10_Figae_HTML.gif]
                          
	
                            [image: 
$$ \mathbf{H}\left(\kern0.18em f\right)=Q\kern2pt \frac{f}{f_0}{\mathbf{H}}_0\left(\kern0.18em f\right) $$
]
                          

	Band-reject filter based on parallel RLC circuit
	
                            [image: A331468_1_En_10_Figaf_HTML.gif]
                          
	
                            [image: 
$$ \mathbf{H}\left(\kern0.18em f\right)=jQ\left(\kern0.2em \frac{f}{f_0}-\frac{f_0}{f}\right){\mathbf{H}}_0\left(\kern0.18em f\right) $$
]
                          

	Near-field wireless transmitter/receiver

	Resonant circuit at the transmitter (TX)
	
                            [image: A331468_1_En_10_Figag_HTML.gif]
                          
The series capacitor forms the series RLC circuit and increases the amplitude of the magnetic flux density anywhere in space by the factor [image: 
$$ \sqrt{1+{Q}^2} $$
], [image: 
$$ Q={\omega}_0\left(L/R\right) $$
]
                                                    

	Resonant circuit at the receiver (RX)
	
                            [image: A331468_1_En_10_Figah_HTML.gif]
                          
The shunt capacitor again forms the series RLC circuit and increases the amplitude of the output voltage by the factor Q, [image: 
$$ Q={\omega}_0\left(L/R\right) $$
]
                                                    




              

Problems
10.1. Theory of the Second-Order RLC Resonator

                  10.1.1 Self-Oscillating Ideal
                  
                    LC
                    
                  
                  Circuit
                

                  10.1.2 Series Resonant Ideal LC Circuit
                
Problem 10.1

Give
 an example of a self-oscillating (resonant) mechanical system different from that in Fig. 10.2 of this section.

Problem 10.2
For the self-o
scillating circuit shown in the figure below, the circuit current is specified by [image: 
$$ i(t)={I}_{\mathrm{m}} \cos \omega \kern0.1em t $$
]. Given [image: 
$$ {I}_{\mathrm{m}}=200\kern0.5em \mathrm{m}\mathrm{A} $$
], [image: 
$$ L=0.63\kern0.5em \mathrm{mH},\kern0.5em C=1\kern0.5em \upmu \mathrm{F} $$
]:	A.Determine the undamped resonant frequency f
0.


 

	B.Construct the phasor diagram for phasor voltages V
L and V
C and phasor current I on the same plot. Assume that every plot division corresponds to 1 V or to 100 mA.

                            [image: A331468_1_En_10_Figd_HTML.gif]


                          


 




                                    

Problem 10.3

For a series ideal LC circuit shown in the figure below, the voltage source has the form [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \cos \omega \kern0.1em t $$
]. Given [image: 
$$ {V}_{\mathrm{m}}=5\kern0.5em \mathrm{V} $$
],
[image: 
$$ L=0.5\kern0.5em \mathrm{mH},\kern0.5em C=1\kern0.5em \upmu \mathrm{F} $$
]:	A.Determine the undamped resonant frequency f
0 of the circuit.


 

	B.Construct the 
phasor diagram for phasor voltages V
S, V
L, and V
C when the source frequency is 90 % of the resonant frequency.


 

	C.Describe how your phasor diagram would change if the inductance becomes 1 mH instead of 0.5 mH.

                            [image: A331468_1_En_10_Fige_HTML.gif]


                          


 




                                    

Problem 10.4
For a series ideal LC circuit shown in the figure below, the voltage source has the form [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \cos \omega \kern0.1em t $$
]. Given
[image: 
$$ {V}_{\mathrm{m}}=5\kern0.5em \mathrm{V} $$
], [image: 
$$ L=1\kern0.5em \mathrm{mH},\kern0.5em C=0.5\upmu \mathrm{F} $$
]:	A.Determine the undamped resonant frequency f
0 of the circuit.


 

	B.Construct the phasor diagram for phasor voltages V
S, V
L, and V
C when the source f
requency is 111 % of the resonant frequency.


 

	C.Describe how your phasor diagram would change if the capacitance becomes 1 μF instead of 0.5 μF.[image: A331468_1_En_10_Figf_HTML.gif]


                                                    


 




                                    


                  10.1.3 Series Resonant RLC Circuit:
                  
                    Resonance
                    
                    
                  
                  Condition
                

                  10.1.4 Quality Factor
                  Q
                  of the
                  
                    Series Resonant RLC Circuit
                    
                    
                  
                

                  10.1.5
                  
                    Bandwidth
                    
                    
                  
                  of the Series Resonant RLC Circuit
                
Problem 10.5

For a generic series resonant RLC circuit with the supply voltage [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \cos \omega \kern0.1em t $$
], 
                      
                      
                    resistance R, inductance L, and capacitance C, give the expressions (show units) for:	A.Equivalent circuit impedance at the resonance


 

	B.Resonant frequency


 

	C.Quality factor of the resonant circuit


 




                                    

Problem 10.6
Describe the physical meaning of the quality factor of the series RLC resonator circuit in your own words.

Problem 10.7
In the series resonant RLC circuit shown in the figure that follows, given
[image: 
$$ {V}_{\mathrm{m}}=1\kern0.3em \mathrm{V},\kern0.3em L=1\kern0.3em \mathrm{mH},C=80\kern0.3em \mathrm{pF},\kern0.35em R=10\kern0.3em \Omega $$
]:	A.Determine resonant frequency and the Q-factor.


 

	B.Determine resonant phasor current and phasor voltages V
R, V
L, and V
C; construct the phasor diagram. Assume voltage scale in volts and current scale in milliamperes.


 

	C.Determine the real-valued circuit current i(t) and 

the inductor/capacitor voltages υ
L(t), υ
C(t) at resonance.[image: A331468_1_En_10_Figg_HTML.gif]


                                                    


 




                                    

Problem 10.8
In the series resonant RLC circuit shown in the figure below, given [image: 
$$ {V}_m=5\ \mathrm{V},\kern0.5em L=30\kern0.5em \upmu \mathrm{H},\ C=0.48\kern0.5em \mathrm{nF},\kern0.5em R=50\kern0.5em \Omega $$
]:	A.Determine resonant frequency and the Q-factor.


 

	B.
Determine resonant phasor voltages V
R, V
L, and V
C; construct the phasor diagram.


 

	C.Determine the real-valued resistor voltage υ
R(t) and the inductor/capacitor voltages υ
L(t), υ
C(t) at

 the resonance.[image: A331468_1_En_10_Figh_HTML.gif]


                                                    


 




                                    

Problem 10.9
A series resonant LC circuit is driven by a laboratory AC voltage source with an amplitude [image: 
$$ {V}_{\mathrm{m}}=12\kern0.5em \mathrm{V} $$
] and an internal resistance of 50 Ω (a function generator). Which value should the ratio L/C have to obtain the amplitude of the capacitor voltage equal to 200 V at the resonance?

Problem 10.10
A series resonant RLC circuit is needed with the resonant frequency of 1 MHz and a Q-factor of 100. The circuit resistance is 

10 Ω. Determine the necessary values of L and C.

Problem 10.11
Describe the physical meaning of the resonance bandwidth of the series resonant RLC circuit in your own words.

Problem 10.12
A series resonant RLC circuit has the resonant frequency of 1 MHz and the quality factor of 10. Create the Bode plot for the amplitude of the circuit current normalized by its maximum value at the resonance over frequency band from 0.5 to 2 MHz.[image: A331468_1_En_10_Figi_HTML.gif]


                                    

Problem 10.13

Determine

 the bandwidth, B, of the series resonant RLC circuit with the resonant frequency of 1 MHz and a Q-factor of 100.

Problem 10.14
A series resonant RLC circuit is needed with the resonant frequency of 1 MHz and the bandwidth of 10 kHz. Given the circuit resistance of 10 Ω, determine L and C.

Problem 10.15
For the RLC circuit block shown in the figure, establish the resonant frequency in terms of component values.

Hint: The resonance is defined by the condition of the purely real equivalent impedance between terminals a and b. In other words, [image: 
$$ \mathrm{I}\mathrm{m}\left({\mathbf{Z}}_{\mathrm{eq}}\right)=0 $$
] at the resonance.[image: A331468_1_En_10_Figj_HTML.gif]


                                    

Problem 10.16
Repeat the 

previous problem for the circuit shown in the figure that follows.[image: A331468_1_En_10_Figk_HTML.gif]


                                    


                  10.1.6 Parallel Resonant RLC Circuit: Duality
                
Problem 10.17
For a generic 

parallel RLC resonant circuit with the supply current [image: 
$$ {i}_{\mathrm{S}}(t)={I}_{\mathrm{m}} \cos \omega t $$
], resistance R, inductance L, and capacitance C, give the expressions (show units) for:	A.Equivalent circuit impedance at the resonance


 

	B.Resonant frequency


 

	C.Quality factor of the resonant circuit


 




                                    

Problem 10.18

In the parallel resonant RLC 

circuit shown in the figure that follows, given
[image: 
$$ {I}_{\mathrm{m}}=0.5\kern0.3em \mathrm{A},\kern0.5em L=30\kern0.3em \upmu \mathrm{H},C=0.43\kern0.3em \upmu \mathrm{F},\kern0.5em R=50\kern0.3em \Omega $$
]:	A.Determine the resonant frequency and the Q-factor.


 

	B.Determine resonant phasor currents I
R, I
L, and I
C; construct the phasor diagram.


 

	C.Determine the real-valued resistor current i
R(t) and the inductor/capacitor currents i
L(t), i
C(t) at the resonance.


 




[image: A331468_1_En_10_Figl_HTML.gif]


                                    

Problem 10.19
Determine the bandwidth, B, of the parallel resonant RLC circuit with the resonant frequency of 0.5 MHz and a Q-factor of 50.

Problem 10.20
A parallel 

resonant RLC circuit is needed with the resonant frequency of 1 MHz and the bandwidth of 10 kHz. Given the circuit resistance of 100 Ω, determine L and C.


10.2: Construction of Second-Order RLC Filters

                  10.2.1
                  
                    Second-Order Band-Pass RLC Filter
                    
                  
                

                  10.2.2
                  
                    Second-Order Low-Pass RLC Filter
                    
                  
                

                  10.2.3
                  
                    Second-Order High-Pass RLC Filter
                    
                  
                

                  10.2.4 Second-
                  
                    
                  
                  Order Band-Reject RLC Filter
                

                  Problem 10.21
                  	A.Draw the circuit diagram of the second-order RLC band-pass filter. Label R, L, and C.


 

	B.Show the input and output ports (input and output voltages)


 

	C.Define the resonant frequency and the Q-factor of the filter circuit.


 




                
Problem 10.22
A band
-pass RLC filter is required with the center (resonant) frequency of 100 kHz and the 
half-power bandwidth, B, of 20 kHz.	A.Create its amplitude Bode plot in the frequency band from 10 kHz to 1 MHz.


 

	B.Label the filter passband.


 

	C.Determine the necessary values of L and C given [image: 
$$ R=20\kern0.5em \Omega $$
].[image: A331468_1_En_10_Figm_HTML.gif]


                                                    


 




                                    


                  Problem 10.23
                  	A.
Draw 
the circuit diagram of the second-order RLC low-pass filter. Label R, L, and C.


 

	B.Show the input and output ports (input and output voltages)


 

	C.Define the resonant frequency and the Q-factor of the filter circuit.


 

	D.Which Q-factor is required for the maximally flat response?


 

	E.What is the filter’s half-power frequency for the maximally flat response?


 




                
Problem 10.24

A low-pass RLC filter is required with the passband from 0 to 1 MHz. Create amplitude Bode plots for the filter in the frequency 
band from 100 kHz to 10 MHz given the resonant frequency of the filter circuit of 1 MHz and	A.
                            [image: 
$$ Q=5 $$
]
                          


 

	B.
                            [image: 
$$ Q=1/\sqrt{2} $$
]
                          


 

	C.
                            [image: 
$$ Q=0.2 $$
]
                            [image: A331468_1_En_10_Fign_HTML.gif]


                          


 




                                    

Problem 10.25*
Generate Fig. 10.4 of this section, the Bode plots for the low-pass filter using MATLAB.

Problem 10.26

                    	A.Draw the circuit diagram of the second-order RLC high-pass filter. Label R, L, and C.


 

	B.
Show 
the input and output ports (input and output voltages)


 

	C.Define the resonant frequency and the Q-factor of the filter circuit.


 

	D.Which Q-factor is required for the maximally flat response?


 

	E.What is the filter’s half-power frequency for the maximally flat response?


 




                  

Problem 10.27
A high-pass RLC filter is required with the passband from 0 to 1 MHz. Create amplitude Bode plots for the filter in the frequency band from 100 kHz to 10 MHz given the resonant frequency of the filter circuit of 1 MHz and	A.
                            [image: 
$$ Q=10 $$
]
                          


 

	B.
                            [image: 
$$ Q=1/\sqrt{2} $$
]
                          


 

	C.
                            [image: 
$$ Q=0.1 $$
]
                          


 




                                    

Problem 10.28

                    	A.
Draw
 the circuit diagram of the second-order RLC band-reject filter. Label R, L, and C.


 

	B.Show the input and output ports (input and output voltages)


 

	C.Define the resonant frequency and the Q-factor of the filter circuit.


 




                  

Problem 10.29
A band-reject RLC filter is required with the center (resonant) frequency of 100 kHz and the half-power 
bandwidth, B, of 20 kHz.	A.Create its amplitude Bode plot in the frequency band from 10 kHz to 1 MHz.


 

	B.Label the filter passband.


 

	C.Determine the necessary values of L and C given [image: 
$$ R=20\kern0.5em \Omega $$
].[image: A331468_1_En_10_Figo_HTML.gif]


                                                    


 




                                    


                  10.2.6. Second-Order RLC Filters Derived from the
                  
                    Parallel RLC Circuit
                    
                    
                  
                
Problem 10.30

Second-order RLC filters may be constructed either on the basis of the series RLC circuit or on the basis of the parallel RLC circuit. The undamped resonant frequency, [image: 
$$ {f}_0=1/\left(2\pi \sqrt{LC}\right) $$
], which is present in the filter equations, remains the same in either case. However, the quality

 factor does not. Three unknown second-order RLC filter circuits are shown in the figure that follows.	A.Determine the filter function (band-pass, low-pass, high-pass, or band-reject).


 

	B.
By analyzing filter’s natural structure (after shorting out the input voltage source), determine the expression for the filter quality factor.[image: A331468_1_En_10_Figai_HTML.gif]


                                                    


 




                                    


10.3. RLC Circuits for Near-Field Communications and Proximity Sensors

                  10.3.1
                  
                    Near-Field Wireless Link
                    
                  
                

                  10.3.2
                  
                    Transmitter Circuit
                    
                  
                

                  10.3.3
                  
                    Receiver Circuit
                    
                  
                

                  10.3.4 Application Example: Near-Field Wireless Link in Laboratory
                

                  10.3.5 Application Example:
                  
                    Proximity Sensors
                    
                  
                
Problem 10.31
Describe the concept and purpose of the near-field wireless link in your own words. Think of an example where the link may be used solely for the power transfer.

Problem 10.32

In the circuit 
shown in the following figure, a capacitor C is introduced in series with an ideal coil having inductance L in order to set up a series resonant RLC circuit and increase the amplitude of the magnetic flux density [image: 
$$ \overrightarrow{B} $$
] oscillating at 1 MHz. Determine the ratio of the magnetic flux amplitudes[image: 
$$ \frac{B_{\mathrm{m}\kern0.5em \mathrm{circuit}\ \mathrm{with}\ \mathrm{series}\ \mathrm{capacitor}}}{B_{\mathrm{m}\kern0.5em \mathrm{original}\ \mathrm{circuit}}} $$
]



                                    
with and without the capacitor anywhere in space given that [image: 
$$ L=100\kern0.5em \upmu \mathrm{H},\ R=25\kern0.5em \Omega $$
].[image: A331468_1_En_10_Figp_HTML.gif]


                                    

Problem 10.33
Given the operation frequency (center band frequency) of [image: 
$$ {f}_0=1\kern0.5em \mathrm{MHz} $$
] and [image: 
$$ {V}_{\mathrm{m}}=1\kern0.5em \mathrm{V},\kern0.5em L=100\kern0.5em \upmu \mathrm{H},R=20\kern0.5em \Omega $$
], plot to scale the amplitude of the circuit current as a function of source frequency for the original (RL) and
 modified (resonant RLC) circuits in the figure to the previous problem over the frequency band from 0.5 to 1.5 MHz. Label the amplitude values at the operation frequency.

Problem 10.34

In the circuit shown in the figure that follows, a receiver coil antenna is subject to an external magnetic field oscillating at 1 MHz. A capacitor C is introduced in parallel with the coil having inductance L and series resistance R in order to set up a series resonant RLC circuit and increase the amplitude of the output voltage υ
out(t). Determine the ratio of the output voltage amplitudes with and without the capacitor given that [image: 
$$ L=1000\kern0.5em \upmu \mathrm{H},\ R=10\kern0.5em \Omega $$
].
[image: A331468_1_En_10_Figq_HTML.gif]


                                    

Problem 10.35
Given the operation frequency (center band frequency) of [image: 
$$ {f}_0=1\kern0.5em \mathrm{MHz} $$
] and [image: 
$$ {\upsilon}_{\mathrm{emf}}(t)={V}_{\mathrm{m}} \cos \left(\omega t\right) $$
], [image: 
$$ {V}_{\mathrm{m}}=1\kern0.5em \mathrm{mV},\kern0.5em L=500\kern0.5em \upmu \mathrm{H},\ R=50\kern0.5em \Omega $$
], plot to scale the amplitude of the output voltage as a function of source frequency for the original (RL) 
                      
                    and modified (resonant series RLC) circuits in the figure to the previous problem over the frequency band from 0.5 to 1.5 MHz. Label the amplitude values at the operation frequency.

Problem 10.36
In the circuit shown in the figure below, a receive coil antenna is subject to an external magnetic field oscillating at 1 MHz. A capacitor C is introduced in parallel with the coil having inductance L and series resistance R in order to set up a series resonant RLC circuit and increase the amplitude of the output voltage υ
out(t). Determine the output voltage amplitudes with and without the capacitor given that [image: 
$$ {\upsilon}_{\mathrm{emf}}(t)=1 \cos \left(\omega \kern0.1em t\right)\kern0.5em \left[\mathrm{mV}\right] $$
] and that [image: 
$$ L=1000\kern0.5em \upmu \mathrm{H},\ R=10\kern0.5em \Omega, {R}_f=100\kern0.5em \Omega $$
].
[image: A331468_1_En_10_Figr_HTML.gif]
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Overview

              Prerequisites:
	Knowledge of complex arithmetic

	Knowledge of basic circuit analysis (Chapters 3 and 4)

	Knowledge of phasor/impedance method for AC circuit analysis (Chapter 8)




              Objectives of Section 11.1:
	Find average AC power for a resistive load and understand the rms values

	Express average power for any AC load in terms of power angle and power factor

	Express average power in terms of phasors/impedances

	Define major AC power types: average power, reactive power, complex power, and apparent power

	Be able to construct the power triangle and classify the load power factor




              Objectives of Section 11.2:
	Be able to perform power factor correction of an inductive load (AC motor)

	Learn about maximum power efficiency technique in general

	Derive and test a simple condition for maximum power transfer to a load from an arbitrary AC source




              Objectives of Section 11.3:
	Learn the structure of power distribution systems

	Establish the concept of the three-phase power transmission system

	Understand the meaning and realization of three-phase source and three-phase load

	Solve for phase and line voltages and line currents in the three-phase balanced wye-wye system

	Establish the meaning and the role of the neutral conductor in the wye-wye power distribution system




              Objectives of Section 11.4:
	Establish that the instantaneous power in balanced three-phase systems is constant

	Extend the concepts of reactive power, complex power, and apparent power to the three-phase systems

	Compare conductor material consumption in single-phase and three-phase systems

	Become familiar with delta-connected three-phase sources and loads

	Establish equivalency between delta and wye topologies with no ground




              Application Examples:
	rms voltages and AC frequencies around the world

	Wattmeter

	Automatic power factor correction system

	Examples of three-phase source and the load

	Conductor material consumption in three-phase systems




            

11.1 AC Power Types and Their Meaning
The present section studies the basics of AC power. We begin with the root-mean-square (rms)

 representation of AC voltages and currents. The rms concept enables us to develop a DC equivalent representation, which compares AC to DC conditions in terms of power delivered to the load. It is important to understand that the rms concept is a general power concept; it applies not only to periodic AC circuits but virtually to any circuits, even with nonperiodic power sources, like noise power sources. Further results presented in this section are primarily intended for power electronic circuits

; they have an equal applicability to radio-frequency communication circuits.
11.1.1 Instantaneous AC Power
We consider an arbitrary load with resistance R, load current i(t), and load voltage υ(t), in the passive reference configuration. The instantaneous power delivered into the load is given by[image: 
$$ p(t)=\upsilon (t)i(t)=\frac{\upsilon^2(t)}{R} $$
]

 (11.1)

according to Ohm’s law

. If we use the load voltage in the form [image: 
$$ \upsilon (t)={V}_{\mathrm{m}} \cos \omega \kern0.1em t\kern0.5em \left[\mathrm{V}\right] $$
], then[image: 
$$ p(t)=\upsilon (t)i(t)=\frac{V_{\mathrm{m}}^2}{R}{ \cos}^2\omega \kern0.1em t=\frac{V_{\mathrm{m}}^2}{2R}\left(1+ \cos 2\omega \kern0.1em t\right) $$
]

 (11.2)

where we applied the trigonometric identity [image: 
$$ { \cos}^2\omega \kern0.1em t=0.5\left(1+ \cos 2\omega \kern0.1em t\right) $$
]. Interestingly, the load power is not constant; it varies in time, and the behavior is shown in Fig. 11.1 for a load voltage amplitude

 [image: 
$$ {V}_{\mathrm{m}}=3\mathrm{V} $$
], frequency f = 50 Hz, and load resistance [image: 
$$ R=5\ \Omega $$
].[image: A331468_1_En_11_Fig1_HTML.gif]
Fig. 11.1Power (solid line) for a load 

voltage [image: 
$$ \upsilon (t)=3 \cos \left(2\pi 50t\right)\kern0.5em \left[\mathrm{V}\right] $$
] (dotted line)






11.1.2 Time-averaged AC Power
An interesting question arises when we have to determine the bill for the variable AC power in Fig. 11.1. As far as the utility power is concerned, a consumer would prefer to pay for the minimum amount of power. The power minima in Fig. 11.1 occur at [image: 
$$ t=0.25T,\ 0.75T,\ 1.25T,\ \mathrm{e}\mathrm{t}\mathrm{c}. $$
]; here T is the period of the AC voltage signal. Since the power is exactly zero at its minima, we would pay nothing. On the other hand, a utility would prefer to charge for the maxima of the power, which occur at [image: 
$$ t=0,\kern0.5em 0.5T,\ 1.0T,\ 1.5T,\ \mathrm{e}\mathrm{t}\mathrm{c}. $$
] A fair solution is clearly somewhere in the middle. It is based on 
                  time averaging
                  
                  
                 the load power and then charging the consumer for the average (or mean) power as indicated in Fig. 11.1 by the shaded rectangle. Thus, we are interested in the averaged instantaneous power of Eq. (11.2). The time averaging is always done over a full period T of the AC voltage signal. The notation for the time-average value is often denoted by an overbar. Thus, the definition reads:[image: 
$$ P=\overline{p(t)}\equiv \frac{1}{T}{\displaystyle \underset{0}{\overset{T}{\int }}p(t)}dt $$
]

 (11.3)

where P is now the average power delivered to the load. We note that the average power times the period T gives us the energy E (in J or more often in W⋅h, 1 W⋅h = 3600 J) delivered to the load per period, i.e., [image: 
$$ E=TP. $$
]


                  rms Voltage and rms Current


                
Using Eq. (11.2) we obtain from Eq. (11.3)[image: 
$$ P=\frac{1}{T}{\displaystyle \underset{0}{\overset{T}{\int }}\frac{V_{\mathrm{m}}^2}{2R}\left(1+ \cos 2\omega \kern0.2em t\right)}dt=\frac{1}{T}\frac{V_{\mathrm{m}}^2}{2R}\left({\displaystyle \underset{0}{\overset{T}{\int }}1}\cdot dt+{\displaystyle \underset{0}{\overset{T}{\int }} \cos 2\omega \kern0.2em t}dt\right) $$
]

 (11.4)

The first integral yields a nonzero contribution, whereas the second integral is exactly equal to zero, due to fact that the average of the sine or cosine functions over a period, or multiple periods, is zero. Thus,[image: 
$$ {\displaystyle \underset{0}{\overset{T}{\int }}1}\cdot dt=T,\kern1em {\displaystyle \underset{0}{\overset{T}{\int }} \cos 2\omega \kern0.1em t}dt=\frac{1}{2\omega }{\left. \sin 2\omega \kern0.1em t\right|}_0^T=\frac{1}{2\omega }{\left. \sin \left(4\pi \kern0.1em t/T\right)\right|}_0^T=0 $$
]

 (11.5)

Inserting these values into Eq. (11.4) results in[image: 
$$ P=\frac{V_{\mathrm{m}}^2}{2R}=\frac{V_{\mathrm{rms}}^2}{R},\kern1em {V}_{\mathrm{rms}}=\frac{V_{\mathrm{m}}}{\sqrt{2}} $$
]

 (11.6)


where V
rms is the rms (root-mean-square) value for the load voltage [image: 
$$ \upsilon (t)={V}_{\mathrm{m}} \cos \omega \kern0.1em t $$
] or simply the rms voltage. According to Eq. (11.6), the rms voltage is the equivalent DC voltage that provides the same power into the load. Once we know the rms voltage, the average power is given by the “DC” formula V
rms2/R. The rms voltage is always less than the voltage amplitude by a factor of 0.707 (or 71 %). You should notice that Fig. 11.2 is a replica of Fig. 11.1; additionally, it shows the rms voltage and the averaged power for the load voltage [image: 
$$ \upsilon (t)=3 \cos \left(2\pi 50t\right)\;\left[\mathrm{V}\right] $$
]. If a nonzero phase is present in this expression, the result will not change. The signal will be shifted but all averages over the period will remain the same. The corresponding mathematical proof is 

suggested as one of the homework problems.[image: A331468_1_En_11_Fig2_HTML.gif]
Fig. 11.2(a) Load voltage [image: 
$$ \upsilon (t)=3 \cos \left(2\pi 50t\right)\kern0.5em \left[\mathrm{V}\right] $$
] (dotted line) and its 
                            rms
                            
                            
                          DC voltage, which delivers the same power into the load and (b) instantaneous power and the average power for the load voltage [image: 
$$ \upsilon (t)=3 \cos \left(2\pi 50t\right)\kern0.5em \left[\mathrm{V}\right] $$
]






A similar expression is obtained for the alternating current [image: 
$$ i(t)={I}_{\mathrm{m}} \cos \omega \kern0.1em t $$
] across the load. The rms current is given by[image: 
$$ {I}_{\mathrm{rms}}=\frac{I_{\mathrm{m}}}{\sqrt{2}},\kern1em {V}_{\mathrm{rms}}=R{I}_{\mathrm{rms}},\kern1em P=R\frac{I_{\mathrm{m}}^2}{2}=R{I}_{\mathrm{rms}}^2 $$
]

 (11.7)



Example 11.1
Determine average power delivered to a 10-Ω load when the applied AC voltage is given by [image: 
$$ \upsilon (t)=170 \cos \left(2\pi 60t\right)\kern0.5em \left[\mathrm{V}\right] $$
] (US).

Solution: We find the rms voltage first:[image: 
$$ {V}_{\mathrm{rms}}=170/\sqrt{2}\approx 120.21\kern0.5em \mathrm{V} $$
]

 (11.8)


The average power is then given by [image: 
$$ P=\frac{V_{\mathrm{rms}}^2}{R}=1.445\kern0.5em \mathrm{kW} $$
]. Note that the rms current is equal to 11.02 A. Therefore, a 15-A or a 20-A AC fuse

 should be used. The fuse rating is based on the rms electric current value.

Exercise 11.1

Determine 

average power delivered to a 10-Ω load when the alternating load current is given by [image: 
$$ i(t)=5 \cos \left(2\pi 60t\right)\ \left[\mathrm{A}\right] $$
].

Answer: 125 W.



11.1.3 Application Example: rms Voltages and AC Frequencies

 Around the World
The AC voltage reported for the wall plug is an rms voltage. In the USA, the rms voltage typically ranges from 110 V to 127 V. Variations are caused by a specific type of a three-phase secondary distribution system studied later in this chapter. In this text we assume an average nominal value of V
rms = 120 V, perhaps a safe estimate. Using this value we obtain the voltage amplitude (the peak voltage value) of [image: 
$$ {V}_{\mathrm{m}}=\sqrt{2}\cdot 120\ \mathrm{V}\approx 170\ \mathrm{V} $$
]. This number is considerably greater than the reported 120 V AC. In other countries, the nominal rms wall plug voltage ranges from 220 V to 240 V, depending on the country. Using the nominal rms value of 220 V (People’s Republic of China, Russia, France, Argentina, etc.), we obtain a voltage amplitude of [image: 
$$ {V}_{\mathrm{m}}=\sqrt{2}\cdot 220\ \mathrm{V}=311\ \mathrm{V} $$
]. This number is again greater than the reported 220 V AC. India uses the nominal rms value of 230 V at 50 Hz, as do the European Union and Great Britain. This yields a voltage amplitude of [image: 
$$ {V}_{\mathrm{m}}=\sqrt{2}\cdot 230\ \mathrm{V}=325\ \mathrm{V} $$
]. Depending on the country you live in, the AC frequency is either 50 Hz or 60 Hz; for instance, it is 60 Hz in the USA.
Historical

From the IEEE Historical FAQ’s and other sources: The person responsible for adopting 60 Hz was probably Nikola Tesla who figured that for the Westinghouse-designed central stations for

 incandescent lamps, the efficient distribution was 59 Hz, and it was then rounded to 60 Hz. The German company AEG (Allgemeine Elektrizitäts-Gesellschaft), originally influenced by Thomas Edison, started using 50 Hz as a more “metric” number. Their standard spread to the rest of Europe and to other countries.

Figure 11.3 shows the rms voltage (and frequency) world map. Some countries have a dual distribution system that operates at 120 V and 220 V simultaneously. With the help of an electric transformer, studied in the following text, we can convert the voltages to higher or lower values. However, we cannot convert frequency with a linear circuit or a transformer. Some transformers are designed for both 50 Hz and 60 Hz but unfortunately not all. As time progresses, the frequency difference between the load and the source may have a severe effect on motorized applications and their transformers (power loss, overheating, and even eventual burnout).[image: A331468_1_En_11_Fig3_HTML.gif]
Fig. 11.3The rms voltage 

world map, courtesy of Mr. Conrad H. McGregor, UK, and reproduced with the author’s permission





Example 11.2
Determine average power delivered to a 100-Ω load when the applied AC voltage has an rms value of 220 V (People’s Republic of China).

Solution: The average power is given by[image: 
$$ P=\frac{V_{\mathrm{rms}}^2}{R}=484\kern0.5em \mathrm{W} $$
]

 (11.9)


Note that the rms current is equal to 2.2 A. Therefore, a 5-A 

AC fuse (but not the 2-A fuse) is sufficient in the present case. The fuse is an overcurrent protective device; a soldered joint within the fuse is melted when the rms current exceeds a threshold.

Exercise 11.2
The load from Example 11.2 is connected to a wall plug in the USA. How would the average load power change?

Answer: The 

average load power will be 144 W.


11.1.4 rms Voltages for Arbitrary Periodic AC Signals
Analytical expressions given by Eqs. (11.6) and (11.7) are quite sufficient for finding the mean power but only for single-frequency AC signals. In certain cases, the signal may still be periodic with a period of T but may contain multiple frequency components. One such example is the clock signal for which we estimate the average electric power. In this case, we return to the definition Eq. (11.3) and rewrite it in the form, which literally explains the meaning of the 
root-mean-square value

:[image: 
$$ P=\frac{1}{T}{\displaystyle \underset{0}{\overset{T}{\int }}p(t)}\kern0.1em dt=\frac{1}{R}\kern0.5em \frac{1}{T}{\displaystyle \underset{0}{\overset{T}{\int }}{\upsilon}^2(t)\kern0.1em }dt=\frac{{\left(\sqrt{\frac{1}{T}{\displaystyle \underset{0}{\overset{T}{\int }}{\upsilon}^2(t)}\kern0.2em dt}\right)}^2}{R} $$
]

 (11.10a)

We again wish to define the rms voltage as the DC voltage

 that gives the same power into the load resistance R. Therefore, it should be[image: 
$$ {V}_{\mathrm{rms}}=\sqrt{\frac{1}{T}{\displaystyle \underset{0}{\overset{T}{\int }}{\upsilon}^2(t)\kern0.2em }dt}\Rightarrow P=\frac{V_{\mathrm{rms}}^2}{R} $$
]

 (11.10b)

For single-frequency voltage signals

, this result reduces to Eq. (11.6). For more complicated voltages or for voltages measured directly, the calculation of the integral in Eq. (11.10b) may constitute some difficulties. At the end of this chapter, we provide a few homework problems tasking you to calculate the integral in Eq. (11.10b) directly. Once the rms voltage is found, the rms current across the resistive load is expressed by [image: 
$$ {I}_{\mathrm{rms}}={V}_{\mathrm{rms}}/R $$
], irrespective of the particular signal type.
Example 11.3
Determine the average power delivered to a 100-Ω load when the applied periodic voltage has the form [image: 
$$ \upsilon (t)=10\kern0.1em t/T\ \left[\mathrm{V}\right] $$
] over a period T = 10 ms. This signal is known as a sawtooth or a triangular 
                    wave
                    
                    
                  .

Solution: We find the rms voltage first:[image: 
$$ {V}_{\mathrm{rms}}=\sqrt{\frac{1}{T}{\displaystyle \underset{0}{\overset{T}{\int }}{\upsilon}^2(t)\kern0.2em }dt}=\sqrt{\frac{1}{T}{\displaystyle \underset{0}{\overset{T}{\int }}100\kern0.1em {t}^2/{T}^2\kern0.2em }dt}=\sqrt{100/3}\approx 5.77\kern0.5em \mathrm{V} $$
]

 (11.10c)


The average power is thus given by [image: 
$$ P={V}_{\mathrm{rms}}^2/R\approx $$
] 333 mW.

Frequently encountered voltage signals in microelectronic circuits are 
                  noise signals
                  
                , which are neither sinusoidal nor periodic. In this case, Eq. (11.10b) applies again, but only in the limit as [image: 
$$ T\to \infty $$
]. Advanced analog electronics deals with certain electronic circuits where such noise sources become important and even critical.

11.1.5 Average AC Power in Terms of Phasors: Power Angle


For arbitrary dynamic circuit elements, the power analysis is carried out in terms of phasors. Consider element A in Fig. 11.4 which has real-valued voltage and current given by[image: A331468_1_En_11_Fig4_HTML.gif]
Fig. 11.4Arbitrary circuit element in the passive reference configuration




[image: 
$$ \begin{array}{l}\upsilon (t)={V}_{\mathrm{m}} \cos \left(\omega t+\varphi \right)\\ {}i(t)={I}_{\mathrm{m}} \cos \left(\omega t+\psi \right)\end{array} $$
]

 (11.11)


When element A is a resistor, the phases in Eq. (11.11) are the same, and finding the average power is straightforward. However, when element A is an inductor, capacitor, or a combination of resistor and inductor/capacitor, the situation becomes different. 
                  
                In this case, the phases of voltage and current in Eqs. (11.11) do not necessarily coincide. By definition:[image: 
$$ P=\overline{p(t)}=\frac{1}{T}{\displaystyle \underset{0}{\overset{T}{\int }}\upsilon (t)i(t)dt}=\frac{1}{T}{V}_{\mathrm{m}}{I}_{\mathrm{m}}{\displaystyle \underset{0}{\overset{T}{\int }} \cos \left(\omega t+\varphi \right) \cos \left(\omega \kern0.1em t+\psi \right)dt} $$
]

 (11.12)

To manipulate the cosine expression in Eq. (11.12), we can use the trigonometric identity [image: 
$$ \cos \left(\omega t+\varphi \right) \cos \left(\omega \kern0.1em t+\psi \right)=0.5 \cos \left(\varphi -\psi \right)+0.5 \cos \left(2\omega \kern0.1em t+\varphi +\psi \right) $$
]. The integral of the second term in Eq. (11.12) will be equal to zero since it is the integral of the plain cosine function over two periods. The result then has the form:[image: 
$$ P=\overline{p(t)}=\frac{1}{T}{\displaystyle \underset{0}{\overset{T}{\int }}\upsilon (t)i(t)dt}=\frac{V_{\mathrm{m}}{I}_{\mathrm{m}}}{2} \cos \left(\varphi -\psi \right)=\frac{V_{\mathrm{m}}{I}_{\mathrm{m}}}{2} \cos \theta ={V}_{\mathrm{rms}}{I}_{\mathrm{rms}} \cos \theta $$
]

 (11.13)

Equation (11.13) is of great importance for power electronics since it introduces the so-called power angle θ
[image: 
$$ \theta =\varphi -\psi, \kern1em -{90}^{\mathrm{o}}\le \theta \le +{90}^{\mathrm{o}} $$
]

 (11.14)

and the power factor[image: 
$$ PF= \cos \left(\varphi -\psi \right)= \cos \theta $$
]

 (11.15)


Both of these expressions determine the average power delivered to the circuit element. For any passive load, the power angle must be between −90° and +90°; i.e., the average power delivered to the element must be nonnegative! However, for an active load (an amplifier), 
                  
                it is possible that the power angle is no longer within those limits. Then, the element actually delivers power to the circuit rather than absorbing it. Equation (11.13) can now be expressed in terms of phasor voltage [image: 
$$ \mathbf{V}={V}_{\mathrm{m}}\angle \varphi $$
] and phasor current [image: 
$$ \mathbf{I}={I}_{\mathrm{m}}\angle \psi $$
]. The result is simple and elegant:[image: 
$$ P=\frac{\mathrm{Re}\left(\mathbf{V}\cdot {\mathbf{I}}^{*}\right)}{2}=\frac{\mathrm{Re}\left({\mathbf{V}}^{*}\cdot \mathbf{I}\right)}{2} $$
]

 (11.16)

where the star denotes the complex conjugate, [image: 
$$ {\left({\mathrm{e}}^{j\alpha}\right)}^{*}={\mathrm{e}}^{-j\alpha } $$
], and Re is the real part of a complex number. The proof is based on the phasor substitution, that is,[image: 
$$ \frac{\mathrm{Re}\left(\mathbf{V}\cdot {\mathbf{I}}^{*}\right)}{2}=\frac{\mathrm{Re}\left({V}_{\mathrm{m}}\angle \varphi \cdot {I}_{\mathrm{m}}\angle -\psi \right)}{2}=\frac{V_{\mathrm{m}}{I}_{\mathrm{m}}}{2}\mathrm{R}\mathrm{e}\left(\angle \varphi -\psi \right)=\frac{V_{\mathrm{m}}{I}_{\mathrm{m}}}{2} \cos \left(\varphi -\psi \right) $$
]

 (11.17)



Example 11.4
The phasor voltage across a purely resistive load with a resistance R = 10 Ω is given by [image: 
$$ \mathbf{V}=-3+j3\kern0.75em \left[\mathrm{V}\right] $$
]. Find the average power delivered to the load.

Solution: According to Eq. (11.16),[image: 
$$ P=\frac{\mathrm{Re}\left(\mathbf{V}\cdot {\mathbf{I}}^{*}\right)}{2}=\frac{\mathrm{Re}\left(\mathbf{V}\cdot {\mathbf{V}}^{*}\right)}{2R}=\frac{{\left|\mathbf{V}\right|}^2}{2R}=\frac{3^2+{3}^2}{20}=\frac{18}{20}=900\ \mathrm{mW} $$
]





Exercise 11.3
The phasor voltage and phasor current for an AC load are given by [image: 
$$ \mathbf{V}=-3+j3\kern0.5em \left[\mathrm{V}\right],\kern1em \mathbf{I} = +2+j3\kern0.75em \left[\mathrm{A}\right] $$
]. Find the 
average power delivered to the load.

Answer: [image: 
$$ P=1.5\ \mathrm{W} $$
].


11.1.6 Average Power for Resistor, Capacitor, and Inductor

For 
arbitrary passive circuit elements, the phasor voltage V and the phasor current I are related by Ohm’s law in the impedance form, [image: 
$$ \mathbf{V}=\mathbf{Z}\kern0.1em \mathbf{I} $$
], where Z is the element impedance (or the equivalent impedance of a circuit block). We can substitute this result into Eq. (11.16) and obtain[image: 
$$ P=\frac{\mathrm{Re}\left(\mathbf{V}\cdot {\mathbf{I}}^{*}\right)}{2}=\frac{\mathrm{Re}\left(\mathbf{Z}\cdot \mathbf{I}\cdot {\mathbf{I}}^{*}\right)}{2}=\frac{\mathrm{Re}\left(\mathbf{Z}\cdot {\left|\mathbf{I}\right|}^2\right)}{2}=\frac{\mathrm{Re}\left(\mathbf{Z}\right){\left|\mathbf{I}\right|}^2}{2} $$
]

 (11.18)

since for any complex number I, the following equality holds: [image: 
$$ \mathbf{I}\cdot {\mathbf{I}}^{*}={I}_{\mathrm{m}}\angle \psi \cdot {I}_{\mathrm{m}}\angle -\psi ={I}_{\mathrm{m}}^2={\left|\mathbf{I}\right|}^2>0 $$
]. Equation (11.18) is a remarkable result: if the impedance of an element is purely imaginary, the average power delivered to the circuit element must be zero. Indeed, so are the impedances for the inductor and the capacitor. Therefore, the average power delivered to either the inductor or the capacitor must be zero! The same result may be explained using Eq. (11.13). We put the phase of the current, ψ, equal to zero for simplicity. The voltage phase φ will then be +90° for the inductor and −90° for the capacitor. As the cosine of ±90° is zero, Eq. (11.13) will also give zero average power. An additional explanation is related to the phasor diagrams for voltages and currents shown in Fig. 11.5. The average power is half of the dot products of two vectors (phasor voltage and phasor current) in the complex plane. The dot product of two perpendicular 
vectors is exactly zero.[image: A331468_1_En_11_Fig5_HTML.gif]
Fig. 11.5Average power for a resistor, inductor, and capacitor and the related phasor diagrams






11.1.7 Average Power, Reactive Power, and Apparent Power
We have just seen that the impedance of a load, Z, is most important for the average AC power delivered to the load. If the impedance is a pure resistance, there is no problem. Otherwise, almost no power may be delivered to the load even though large currents can flow in the circuit and large AC voltages are observed. For example, if the load is a pure inductance or 
capacitance, then no average power will be delivered to the load, no matter which voltages and currents we use. Instead, we will only heat up wires and other circuit components. We write the impedance for an arbitrary load both in rectangular and in polar form:[image: 
$$ \mathbf{Z}=R+jX\kern0.5em \left[\Omega \right],\kern1em \mathbf{Z}=\left|\mathbf{Z}\right|\angle \theta \kern0.5em \left[\Omega \right],\kern1em R=\left|\mathbf{Z}\right| \cos \theta, \kern1em X=\left|\mathbf{Z}\right| \sin \theta $$
]

 (11.19a)


[image: 
$$ \left|\mathbf{Z}\right|=\sqrt{R^2+{X}^2}\kern0.5em \left[\Omega \right],\kern1em \theta ={ \tan}^{-1}\left(\frac{X}{R}\right) $$
]

 (11.19b)

The real part of the impedance, R, is the resistance of the load, and the imaginary part, X, is the load reactance. For example, the inductor and the capacitor are purely reactive loads (have only X but not R), whereas the resistor is purely “resistive”. The angle θ is the power angle of the load; the power angle has already been introduced in Eqs. (11.13), (11.14), and (11.15). Thus, the power factor PF is simply the cosine of the angle of the load impedance
.
Example 11.5
Determine the resistance and the reactance of an RLC series load shown in Fig. 11.6. The AC angular frequency is 1000 rad/s.[image: A331468_1_En_11_Fig6_HTML.gif]
Fig. 11.6A RLC series load






Solution: The three impedances are combined in series (added to each other),[image: 
$$ \mathbf{Z}=100+j\omega L-j\frac{1}{\omega C}=100+j1-j100=100-j99\kern0.5em \left[\Omega \right] $$
]

 (11.20)

The resistance is 100 Ω and the reactance is equal to −99 Ω. The reactance is negative, i.e., capacitive. In other words, the capacitive reactance
 dominates.

Using resistance R and reactance X of the load, we now introduce three different AC power types for that load. The first type is the average or active power P studied before in this section. The active power is expressed by[image: 
$$ P=\frac{\mathrm{Re}\left(\mathbf{V}\cdot {\mathbf{I}}^{*}\right)}{2}=\frac{R{\left|\mathbf{I}\right|}^2}{2}=\frac{\left|\mathbf{Z}\right|{\left|\mathbf{I}\right|}^2}{2} \cos \theta =\frac{\left|\mathbf{V}\right|\left|\mathbf{I}\right|}{2} \cos \theta ={V}_{\mathrm{rms}}{I}_{\mathrm{rms}} \cos \theta \kern1em \left[\mathrm{W}\right] $$
]

 (11.21a)

since [image: 
$$ \left|\mathbf{V}\right|={V}_{\mathrm{m}}=\sqrt{2}{V}_{\mathrm{rms}},\kern1em \left|\mathbf{I}\right|={I}_{\mathrm{m}}=\sqrt{2}{I}_{\mathrm{rms}} $$
]. This is the true or useful power delivered to the load, with the units of watts. Note the operations with complex magnitudes: [image: 
$$ \left|\mathbf{a}\mathbf{b}\right|=\left|\mathbf{a}\right|\left|\mathbf{b}\right|,\kern1em \left|\mathbf{a}/\mathbf{b}\right|=\left|\mathbf{a}\right|/\left|\mathbf{b}\right|,\kern1em \left|{\mathbf{a}}^{*}\right|=\left|\mathbf{a}\right| $$
], which directly follow from the complex number definition in polar form. The second power type is the 
reactive power
 Q that is[image: 
$$ Q=\frac{\mathrm{Im}\left(\mathbf{V}\cdot {\mathbf{I}}^{*}\right)}{2}=\frac{X{\left|\mathbf{I}\right|}^2}{2}=\frac{\left|\mathbf{Z}\right|{\left|\mathbf{I}\right|}^2}{2} \sin \theta =\frac{\left|\mathbf{V}\right|\left|\mathbf{I}\right|}{2} \sin \theta ={V}_{\mathrm{rms}}{I}_{\mathrm{rms}} \sin \theta \kern1em \left[\mathrm{V}\mathrm{A}\mathrm{R}\right] $$
]

 (11.21b)

The physical units of the reactive power are also watts. However, to underscore the fact that this power is not an active useful power, the units of VAR (volt-amperes reactive)
                  
                 are used. The reactive power flows back and forth from the source to the load, through an electric line but does not do real work. The last power type is the 
                  complex power
                  
                 S that is simply[image: 
$$ \mathbf{S}=\frac{\mathbf{V}\cdot {\mathbf{I}}^{*}}{2}=P+jQ\kern1em \left[\mathrm{V}\mathrm{A}\right] $$
]

 (11.21c)


The complex power is measured in 
volt-amperes (VA)
. The magnitude of the complex power [image: 
$$ S=\left|\mathbf{S}\right| $$
] is called the 
                  apparent power
                  
                . We can see that the apparent power is given by[image: 
$$ S=\left|\mathbf{S}\right|=\frac{\left|\mathbf{Z}\right|{\left|\mathbf{I}\right|}^2}{2}=\frac{\left|\mathbf{V}\right|\left|\mathbf{I}\right|}{2}={V}_{\mathrm{rms}}{I}_{\mathrm{rms}}\kern1em \left[\mathrm{V}\mathrm{A}\mathrm{R}\right] $$
]

 (11.21d)

The apparent power is the “best possible” load power that can be obtained if one measures current and voltage and ignores the phase shift between them. Equations (11.21) and (11.22) raise the obvious question: why do we need so many AC power types? The answer is that a purely resistive load (the power angle θ equals zero) is merely a dream and not realistic. Any AC load generally has a significant reactive impedance part. So does an electric motor, a small antenna in your cellphone, and even a household electric heater whose heating spiral is a series combination of a resistance and a small, but often visible, inductance. Therefore, we always deal with active and reactive power
; the sum of their squares is the square magnitude of the 
apparent power. The reactive power increases the electric current flowing in the circuit and thus increases the unrecoverable losses in (sometimes very long) power lines, which have a finite resistance. Therefore, our goal is to decrease the percentage of the reactive power and thus decrease the net power loss. The three power definitions show us how to accomplish this task. In the next section, we will need to decrease the power angle θ by modifying the load through adding other circuit components; in other words, we are attempting to load match the circuit.

11.1.8 Power Triangle
Since [image: 
$$ { \cos}^2\theta +{ \sin}^2\theta =1 $$
], the three powers (average, reactive, and apparent) are interconnected by the relation[image: 
$$ {S}^2={P}_{\mathrm{avg}}^2+{Q}^2\kern1em \left[\mathrm{W}\right] $$
]

 (11.22)


This relation is also called the power triangle.
Example 11.6
Determine the average (or true) power and the reactive power for the inductive load shown in Fig 11.7a. 
                    
                    
                  Construct the corresponding power triangle. The circuit parameters are as follows:
[image: 
$$ {V}_{\mathrm{m}}=170\kern0.5em \mathrm{V},\kern1em \omega =377\mathrm{rad}/\mathrm{s},L=25.7\kern0.5em \mathrm{mH},\kern1em R=9.7\kern0.5em \Omega $$
].[image: A331468_1_En_11_Fig7_HTML.gif]
Fig. 11.7Two circuits for power calculation of (a) inductive load and (b) capacitive load









Solution: We need to find active and reactive powers according to Eq. (11.21). To do so, we need the load impedance and the load or

 circuit current. We convert the circuit to the phasor/impedance form. The equivalent impedance is given by[image: 
$$ \mathbf{Z}={\mathbf{Z}}_R+{\mathbf{Z}}_L=R+j\omega L=9.7+j9.7=9.7\sqrt{2}\angle 45{}^{\circ}\kern0.5em \left[\Omega \right] $$
]

 (11.23)



The power angle (the phase of the complex impedance) is 45°. The phasor voltage V across the load is equal to [image: 
$$ {V}_{\mathrm{m}}=170\mathrm{V} $$
]. The load phasor current is given by [image: 
$$ \mathbf{I}={V}_{\mathrm{m}}/\mathbf{Z}=170/\left(9.7\sqrt{2}\angle 45{}^{\circ}\right)=12.39\angle -45{}^{\circ}\kern0.5em \left[\mathrm{A}\right] $$
]. According to Eq. (11.21),[image: 
$$ \begin{array}{l}P=0.5\times 170\times 12.39\times \cos 45{}^{\circ}=745\kern0.5em \left[\mathrm{W}\right]\\ {}Q = 0.5\times 170\times 12.39\times \sin 45{}^{\circ}=745\kern0.5em \left[\mathrm{V}\mathrm{A}\mathrm{R}\right]\end{array} $$
]

 (11.24)



The corresponding power triangle is plotted in Fig. 11.8a.[image: A331468_1_En_11_Fig8_HTML.gif]
Fig. 11.8Power triangles for inductive loads (a, b), and for a capacitive load (c). The real axis corresponds to the average (true) power; the imaginary axis is the reactive power






The power angle (the phase of the load impedance) of the power triangle in Fig. 11.8a is +45°. When the power angle θ is positive, as in the present case, the 

corresponding power factor is said to be lagging. The lagging power factor
 means that the load current lags the load voltage. Thus, the power factor in Fig. 11.8a is 0.707 lagging or, which is the same, is 70.7 % lagging. Similarly, the power factor in Fig. 11.8b is 44.8 % lagging. However, the power angle (the phase of the load impedance) in Fig. 11.8c is −45°. When the power angle θ is negative, as is the case here, the corresponding power factor is said to be leading. The leading power factor
 means that the load current leads the load voltage. The power factor in Fig. 11.8c is 70.7 % leading. The lagging occurs for a predominantly inductive load, whereas the leading occurs for a predominantly capacitive load; see Fig. 11.7.
Exercise 11.4
Determine the average (or true) power and the reactive power for the inductive load shown in Fig 11.7a. Construct the corresponding power triangle. You are given [image: 
$$ {V}_{\mathrm{m}}=170\kern0.5em \mathrm{V},\kern1em \omega =377\kern0.5em \mathrm{rad}/\mathrm{s},\kern1em L=26.5\kern0.5em \mathrm{mH},\kern1em R=5\kern0.5em \Omega $$
].

Solution: [image: 
$$ P=578.9\kern0.5em \left[\mathrm{W}\right],\kern1em Q=1156.7\kern0.5em \left[\mathrm{V}\mathrm{A}\mathrm{R}\right],\kern1em \theta =63.4{}^{\circ} $$
]. The power triangle is plotted in Fig. 11.8b. The power factor is 44.8 % lagging.

Exercise 11.5
Determine the average (or true) power and the reactive power for the capacitive load shown in Fig 11.7b. Construct the corresponding power triangle. The circuit parameters are [image: 
$$ {V}_{\mathrm{m}}=170\kern0.5em \mathrm{V},\kern1em \omega =377\kern0.5em \mathrm{rad}/\mathrm{s},\kern1em C=265\kern0.5em \upmu \mathrm{F},\kern1em R=10\kern0.5em \Omega $$
].

Answer: [image: 
$$ P=722.5\kern0.5em \left[\mathrm{W}\right],\kern1em Q=-722.5\kern0.5em \left[\mathrm{V}\mathrm{A}\mathrm{R}\right],\kern1em \theta =-45{}^{\circ} $$
]. Note that the reactive power becomes negative for the capacitive load. The corresponding power triangle is plotted in Fig. 11.8c. The power factor is 70.7 % leading.

It might be interesting to mention that the circuit in Fig. 11.7b is an equivalent circuit model of a short dipole or monopole antenna, the so-called whip antenna

; it represents predominantly a capacitive load. Indeed, much higher frequencies are employed, but the concept remains the same. Whip antennas are common on ships, trucks, and other vehicles. Many radio amateurs use whip antennas as well.

11.1.9 Application Example: Wattmeter


AC power is measured with a wattmeter. The idea of an analog wattmeter operation is schematically illustrated in Fig. 11.9a. The wattmeter includes at least two coils: the massive immovable current coil and the lighter suspended, or pivoted, voltage (or potential) coil. The
 current coil has a very low impedance; it is connected in series with the load in Fig. 11.9b. The voltage coil has a very high impedance; it is connected in parallel with the load in Fig. 11.9b. The voltage coil typically has a high-value resistor connected in series to increase the impedance. The voltage coil is constructed of a fine wire, whereas the fixed (current) coil uses a thicker wire to carry the load current. When the current and voltage are in phase, the magnetic fluxes in both coils attempt to align with each other so that the arrow in Fig. 11.9a will move to the right. When the current and voltage are out of phase (phase difference of 180°; the load is in fact an AC source), the arrow in Fig. 11.9a would move to the left. When the phase difference is 90°, the arrow stays at the center. Thus, the power angle could be measured, and the average and reactive powers could be reported in an analog or digital way.[image: A331468_1_En_11_Fig9_HTML.gif]
Fig. 11.9(a) Wattmeter concept and (b) wattmeter coil connection to the load







11.2 Power Factor Correction: Maximum Power Efficiency and Maximum Power Transfer
11.2.1 Power Factor Correction
We are about to proceed with the correction of the power factor [image: 
$$ PF= \cos \theta $$
] for an arbitrary AC load. The correction has several equivalent definitions make:	1.the power angle

 exactly equal to zero.


 

	2.the power factor equal to one.


 

	3.the reactive power equal to zero.


 

	4.the load impedance purely resistive.


 

	5.the imaginary part of the load impedance (reactance) equal to zero.


 





The last definition is perhaps most useful from a practical point of view. We attempt to modify the load by adding extra circuit elements so that the impedance of the 
modified load

 becomes purely resistive (the imaginary part of the impedance is zero). It is worth noting that the condition of zero reactance is simultaneously the resonance condition for the various RLC tank circuits studied in the previous chapter. It means that we need to make the load “resonant” in order to correct the power factor! This is often achieved by converting the load to an RLC circuit

: adding a capacitor to the inductive load or an inductor to a capacitive load. Most residential loads (washer, dryer, air conditioner, refrigerator, etc.) and industrial loads are powered by an induction motor. A simplified equivalent circuit of it is an inductive load shown in Fig. 11.10a. We intend to add a capacitor in parallel with the load as in Fig. 11.10b. We attempt to choose the capacitance value in such a fashion as to make the power factor of the modified load equal to one. The capacitor in Fig. 11.10b is called the 
                  power factor correction capacitor
                  
                 or the 
                  PFC capacitor
                  
                .[image: A331468_1_En_11_Fig10_HTML.gif]
Fig. 11.10Power correction for an inductive load with the shunt capacitor

 (capacitor in parallel)





We solve both circuits in Fig. 11.10 in the phasor form. 
                  
                  
                The equivalent impedance (or better its reciprocal, the admittance) for the modified load in Fig. 11.10b is found first, that is,[image: 
$$ \frac{1}{\mathbf{Z}}=\frac{1}{{\mathbf{Z}}_C}+\frac{1}{{\mathbf{Z}}_L+{\mathbf{Z}}_R}=j\omega \kern0.1em C+\frac{R-j\omega \kern0.1em L}{R^2+{\left(\omega \kern0.1em L\right)}^2} $$
]

 (11.25)

If the impedance

 is a real number, then the admittance is a real number and vice versa. Therefore, the condition of a real impedance is equivalent to the condition of a real admittance. From Eq. (11.25), one has[image: 
$$ j\omega \kern0.1em C+\frac{-j\omega \kern0.1em L}{R^2+{\left(\omega \kern0.1em L\right)}^2}=0\Rightarrow {R}^2+{\left(\omega \kern0.1em L\right)}^2=\frac{L}{C}\Rightarrow C=\frac{L}{\omega^2{L}^2+{R}^2} $$
]

 (11.26)

The capacitance value

 is thus found from the equation[image: 
$$ C=\frac{L}{\omega^2{L}^2+{R}^2} $$
]

 (11.27)

Equation (11.27) is a mathematical statement for the power factor correction capacitor. Its practical value will become apparent from the example that follows. The equivalent impedance of the load with the matching capacitor is then found using the real part of Eq. (11.25), i.e.,[image: 
$$ \frac{1}{\mathbf{Z}}=\frac{R}{R^2+{\left(\omega \kern0.1em L\right)}^2}\Rightarrow \mathbf{Z}=R+\frac{{\left(\omega \kern0.1em L\right)}^2}{R} $$
]

 (11.28)

We are interested in the phasor circuit current I with and without the 
PFC capacitor. Given the voltage source [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \cos \omega \kern0.1em t $$
], one obtains for the circuits in Fig. 11.10:[image: 
$$ \mathbf{I}=\overset{\mathrm{with}\mathrm{out}\ \mathrm{capacitor}}{\overbrace{\underset{\mathrm{with}\ \mathrm{capacitor}}{\underbrace{\frac{R{V}_m}{R^2+{\left(\omega \kern0.1em L\right)}^2}}}-\frac{j\omega L{V}_m}{R^2+{\left(\omega \kern0.1em L\right)}^2}}} $$
]

 (11.29)

As you can see, the two terms of the expression without capacitor are reduced to the first term when the power correction capacitor is included. This completes the analysis of the circuits in Fig. 11.10.
Example 11.7
For the circuit in Fig. 11.10, find the average (or true) load power and the reactive load power

 with and without the power correction factor
capacitor. You are given [image: 
$$ {V}_{\mathrm{m}}=170\kern0.5em \mathrm{V},\kern1em \omega =377\kern0.5em \mathrm{rad}/\mathrm{s},\kern1em L=25.7\kern0.5em \mathrm{mH},R=9.7\kern0.5em \Omega $$
]


Solution: To find the power expressions, we need the phasor voltage across the load, which is simply V
m. We also need the phasor current, which is given by Eq. (11.29) in either case. 
                    
                    
                  Plugging in the numbers we obtain,[image: 
$$ \mathbf{I}=8.77\kern0.5em \mathrm{A}\kern1.25em \mathrm{or}\kern1em \mathbf{I}=8.77-j8.77\kern0.5em \mathrm{A} $$
]

 (11.30)

with and without the 
PFC capacitor, respectively. Now, we use the power definitions:[image: 
$$ P=\frac{\mathrm{Re}\left(\mathbf{V}\cdot {\mathbf{I}}^{*}\right)}{2}\Rightarrow P=745\kern0.5em \mathrm{W}\kern1em \mathrm{or}\kern1em P=745\ \mathrm{W} $$
]

 (11.31)


[image: 
$$ Q=\frac{\mathrm{Im}\left(\mathbf{V}\cdot {\mathbf{I}}^{*}\right)}{2}\Rightarrow Q=0\kern0.5em \mathrm{V}\mathrm{A}\mathrm{R}\kern1em \mathrm{or}\kern1em Q=745\ \mathrm{V}\mathrm{A}\mathrm{R} $$
]

 (11.32)

with and without the PFC capacitor, respectively.

In summary, we have found the following information from this example:
No power factor correction:	Average (active or true) power: [image: 
$$ P=745\kern0.5em \mathrm{W} $$
]


	Reactive power: [image: 
$$ Q=745\ \mathrm{V}\mathrm{A}\mathrm{R} $$
]


	Amplitude of the circuit current: 12.41 A





Power factor c

orrection:	Average (active or true) power: [image: 
$$ P=745\kern0.5em \mathrm{W} $$
]


	Reactive power: 0

	Amplitude of the circuit current: 8.77 A





By correcting the load power factor with the capacitor in parallel, we did not change the average power (power delivered to the load), but we eliminated the reactive power and decreased the amplitude of the circuit current by 70.7 % ([image: 
$$ 1/\sqrt{2} $$
]). This means that the ohmic losses in the electric line connecting load and generator will decrease by 50 %, since these losses are proportional to the square of the current amplitude

. In other examples, the loss reduction factor may be even more significant. Is it worth doing a power factor correction? Well, if the electric power line is long enough or the initial power factor is not high enough, it is definitely a very useful and professional task. To support this conclusion, we mention a citation from IEEE Transactions on Power Electronics: “Everyone knows that correcting power factor is the easiest and fastest way to save energy dollars.”
Exercise 11.6
Find the value of the power factor correction capacitor in Example 11.7.

                  Answer:
                  [image: 
$$ C=136.73\kern0.5em \upmu \mathrm{F}. $$
]
                

Exercise 11.7
Find the value of the load impedance

 in Example 11.7 with and without the power factor correction capacitor. Express your result in polar form.

Answer: [image: 
$$ \mathbf{Z}=13.7\angle 45{}^{\circ}\kern0.5em \Omega $$
] and [image: 
$$ \mathbf{Z}=19.4\angle 0{}^{\circ}\kern0.5em \Omega $$
], respectively.


11.2.2 
Application

 Example: Automatic Power Factor Correction System
The power factor correction capacitors are frequently seen on residential power poles in the form of pole-mounted capacitor banks. Figure 11.11 shows an automatically switched power factor correction system that measures all three power types (active, reactive, and apparent power) using the same wattmeter principle described in the previous section. Based on the recorded measurements, the required capacitor value is selected, which assures the targeted power factor.[image: A331468_1_En_11_Fig11_HTML.gif]
Fig. 11.11Automatically switched power factor correction systems for low-voltage applications. Six capacitor cells are seen on the bottom. Technical Data TD02607001E Cutler-Hammer






11.2.3 Principle of Maximum Power Efficiency for AC Circuits



Why is the power correction capacitor placed in parallel, not in series with the load? To answer this question, we should establish and understand the principle of maximum power efficiency for AC circuits. Consider a generic source-load AC circuit depicted in Fig. 11.12a in phasor form. It is based on a Thévenin equivalent circuit for an AC source with the source impedance Z
T connected to the load impedance Z
L (note: load is subscribed as L, not L). The source impedance will also include the loss resistance of power lines. Figure 11.12b shows the corresponding DC counterpart, which is useful for the subsequent analysis. The source resistance R
T will include the loss resistance of power lines as well.[image: A331468_1_En_11_Fig12_HTML.gif]
Fig. 11.12Thévenin equivalent

 circuit for an AC source with the load impedance Z
L and its DC counterpart with the load resistance R
L






In the DC case, the source-load configuration of Fig. 11.12b is maximally efficient when the load resistance is much greater than the source (loss) resistance. This fact has been established in Chapter 4. When [image: 
$$ {R}_{\mathrm{L}}\gg {R}_{\mathrm{T}} $$
], the useful power delivered to the load resistance R
L is much larger than the power loss in R
T. We emphasize that the load power itself could be relatively small in this case as compared to the maximum available load power at [image: 
$$ {R}_{\mathrm{L}}={R}_{\mathrm{T}} $$
]. The same situation occurs for the AC system shown in Fig. 11.12a. Do we wish to deliver the maximum available power of a remote megawatt AC source to the household? No, this is not our goal. We would rather deliver a reasonable amount of power but in a most efficient way. It means that not only do we need to make Z
L real but also as high as possible. This operation would further reduce the circuit current and the associated loss. Exactly this goal is accomplished by the shunt PFC capacitor in Fig. 11.10. If we consider the series-connected 
PFC capacitor as an alternative, we will obtain[image: 
$$ \begin{array}{l}{\mathbf{Z}}_{\mathrm{L}}=R\kern1em \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{series}\ \mathrm{connection}\kern1em \mathrm{versus}\kern1em {\mathbf{Z}}_{\mathrm{L}}=R+\frac{{\left(\omega \kern0.1em L\right)}^2}{R}\kern1em \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{shunt}\ \mathrm{connection}.\end{array} $$
]

 (11.33)



Both impedances in Eq. (11.33) are real; 
                  
                  
                there is no reactive power in either case. However, the second impedance is considerably greater than the first one for poor power factors, i.e., for [image: 
$$ \omega \kern0.1em L\gg R $$
]! Hence, considerably smaller circuit currents and considerably better efficiencies are achieved. Moreover, the parallel connection is easier to accomplish in practice—we remember how easy it is to connect a voltmeter as opposed to an ammeter
Exercise 11.8
Find the amplitude of the circuit current in Example 11.7 if the power correction capacitor were in series.

Answer: [image: 
$$ {I}_{\mathrm{m}}=17.53\kern0.5em \mathrm{A} $$
].


11.2.4 Principle of Maximum Power Transfer for AC Circuits
The principle of maximum power transfer is perhaps less important for residential power distribution systems where efficiency counts. However, it is critical for radio-frequency and communication circuits


, which are conceptually the same AC circuits but operating at much higher frequencies. With reference to Fig. 11.12a, the following question should now be asked: at which value of the load impedance [image: 
$$ {\mathbf{Z}}_{\mathrm{L}}={R}_{\mathrm{L}}+j{X}_{\mathrm{L}} $$
] is the average (true) power delivered to the load maximized? The phasor current in Fig. 11.12a is given by[image: 
$$ \mathbf{I}=\frac{{\mathbf{V}}_{\mathrm{T}}}{{\mathbf{Z}}_{\mathrm{L}}+{\mathbf{Z}}_{\mathrm{T}}}\kern0.5em \left[\mathbf{A}\right] $$
]

 (11.34)

so that the average power


 delivered to the load becomes[image: 
$$ P=\frac{R_{\mathrm{L}}{\left|\mathbf{I}\right|}^2}{2}=\frac{R_{\mathrm{L}}{\left|{\mathbf{V}}_{\mathrm{T}}\right|}^2}{2{\left|{\mathbf{Z}}_{\mathrm{L}}+{\mathbf{Z}}_{\mathrm{T}}\right|}^2}=\frac{0.5{R}_{\mathrm{L}}{\left|{\mathbf{V}}_{\mathrm{T}}\right|}^2}{{\left({R}_{\mathrm{L}}+{R}_{\mathrm{T}}\right)}^2+{\left({X}_{\mathrm{L}}+{X}_{\mathrm{T}}\right)}^2}\kern1em \left[\mathrm{W}\right] $$
]

 (11.35)

Let us take a closer look at Eq. (11.35); in order to reach the maximum true power
, the load reactance X
L should be equal to the generator reactance X
T taken with the opposite sign so that [image: 
$$ {X}_{\mathrm{L}}+{X}_{\mathrm{T}}=0 $$
]. This yields for the average load power[image: 
$$ P=\frac{0.5{R}_{\mathrm{L}}{\left|{\mathbf{V}}_{\mathrm{T}}\right|}^2}{{\left({R}_{\mathrm{L}}+{R}_{\mathrm{T}}\right)}^2}\kern1em \left[\mathrm{W}\right] $$
]

 (11.36)

Consequently, the problem reduces to the maximum power transfer of a DC circuit as studied in Chapter 2. The corresponding condition for the maximum load power is[image: 
$$ {R}_{\mathrm{L}}={R}_{\mathrm{T}} $$
]

 (11.37)

This condition, augmented by the equality


 for the reactances[image: 
$$ {X}_{\mathrm{L}}=-{X}_{\mathrm{T}} $$
]

 (11.38)

leads to a simple, yet very useful result for the maximum power transfer to the load:[image: 
$$ {\mathbf{Z}}_{\mathrm{L}}={\mathbf{Z}}_{\mathrm{T}}^{*}\Rightarrow {P}_{\max }=\frac{1}{8}\frac{{\left|{\mathbf{V}}_{\mathrm{T}}\right|}^2}{R_{\mathrm{T}}}\kern1em \left[\mathrm{W}\right] $$
]

 (11.39)

We note that the load impedance should be the complex conjugate of the generator impedance. Along with the maximum power transfer, Eq. (11.39) assures that there is no reflection of radio-frequency waves propagating along the circuit transmission lines from the source to the load, which may even be a more important factor. A process of modifying the load impedance in order to satisfy Eq. (11.39) is called 
                  impedance matching
                  
                

                  
                  
                  
                .
Example 11.8
A generator impedance is 50 Ω. The load impedance is 10 + j100 Ω. What percentage of maximum available power (at a load impedance of 50 Ω) is transferred to the load?

Solution: According to Eq. (11.36), when the load impedance is exactly 50 Ω,[image: 
$$ P=\frac{0.5\times 50{\left|{\mathbf{V}}_{\mathrm{T}}\right|}^2}{{\left(50+50\right)}^2}=\frac{{\left|{\mathbf{V}}_{\mathrm{T}}\right|}^2}{8\times 50}=0.0025{\left|{\mathbf{V}}_{\mathrm{T}}\right|}^2\kern1em \left[\mathrm{W}\right] $$
]

 (11.40a)



When the load impedance is 10 + j100Ω, the same equation gives[image: 
$$ P=\frac{0.5\times 10{\left|{\mathbf{V}}_{\mathrm{T}}\right|}^2}{{\left(50+10\right)}^2+{100}^2}=\frac{{\left|{\mathbf{V}}_{\mathrm{T}}\right|}^2}{2720}=0.00037{\left|{\mathbf{V}}_{\mathrm{T}}\right|}^2\kern1em \left[\mathrm{W}\right] $$
]

 (11.40b)



The ratio of the two power expressions is 0.147, or 14.7%. In other words, 85.3% of available power is lost!

Exercise 11.9
A generator’s impedance is 50 − j100 Ω. What should the load impedance


 be for maximum power transfer?

Answer: 50 + j100 Ω.

Exercise 11.10
Solve Example 11.8 when the load impedance is 10 − j100 Ω.

Answer: The same result of 14.7 % is obtained.



11.3 AC Power Distribution: Balanced Three-Phase Power Distribution System
11.3.1 AC Power Distribution Systems
Representative AC power distribution systems are shown in Fig. 11.13. A 
                  single-phase two-wire
                  
                  
                 power distribution system is depicted in Fig. 11.13a. It consists of a generator with a voltage amplitude of V
m, an rms value of [image: 
$$ {V}_{\mathrm{rms}}={V}_{\mathrm{m}}/\sqrt{2} $$
], and a phase φ connected through two conductors to a load with impedance Z. 
                  
                  
                The previous analysis of AC power was solely restricted to this configuration. An extension is the 
                  single-phase three-wire
                  
                  
                 power distribution system shown in Fig. 11.13b. Such a system contains two identical AC sources of the same amplitude and phase connected to two (Z
1, Z
2) loads or to one (Z) load through two outer conductors and the 
                  neutral conductor
                  
                  
                 (or neutral wire). This system is the common household distribution system. It allows us to connect both 120-V and 240-V appliances as shown in Fig. 11.13b; we sometimes called it the 
                  split-phase distribution system
                  
                . The neutral wire is usually physically grounded. In contrast to those two cases, the power distribution systems shown in Fig. 11.13c, d are the 
                  polyphase distribution systems
                  
                  
                 in the sense that they use AC sources with different phases. For example, Fig. 11.13c illustrates a two-phase three-wire distribution system with two voltage sources; the second one lags the former by 90°. Finally, Fig. 11.13d shows the most important and practical 
                  three-phase four-wire
                  
                  
                 power distribution system with three sources and three load impedances Z
1, Z
2, and Z
3. Generally, the three-phase system also uses a (grounded) neutral wire. We will show that this wire may be omitted for balanced power distribution circuits, with the earth itself acting as the neutral conductor. This is important for long-distance, high-power transmissions. Power systems designed in this way are grounded at critical points to ensure safety.[image: A331468_1_En_11_Fig13_HTML.gif]
Fig. 11.13Various AC power distribution systems. 


N or n indicates the neutral line





Today, a vast majority of electric power is generated and distributed via the three-phase power systems. Why is this so? You will soon learn that in contrast to the single-phase systems, the instantaneous power in balanced three-phase systems is constant or independent of time rather than pulsating. This circumstance results in more uniform power transmission and less vibration of electric machines. Furthermore, three-phase AC motors have a nonzero starting torque in contrast to the single-phase motors. Last but not least, it will be shown that the three-phase system surprisingly requires a lesser amount of wire compared to the single-phase system.

11.3.2 
Phase Voltages
: Phase Sequence
The voltage sources in the three-phase system in Fig. 11.13d are set between lines a, b, c and the neutral line n. Those voltages are called phase voltages or 
                  line-to-neutral voltages
                  
                . The phase voltages are 120° out of phase. One possible scenario for the real-valued phase voltages is[image: 
$$ \begin{array}{l}{\upsilon}_{\mathrm{an}}(t)={V}_{\mathrm{m}} \cos \left(\omega t\right),\kern1em {\upsilon}_{\mathrm{bn}}(t)={V}_{\mathrm{m}} \cos \left(\omega t-120{}^{\circ}\right),\\ {}{\upsilon}_{\mathrm{cn}}(t)={V}_{\mathrm{m}} \cos \left(\omega \kern0.1em t+120{}^{\circ}\right)\end{array} $$
]

 (11.41a)


[image: 
$$ {\mathbf{V}}_{\mathrm{an}}={V}_{\mathrm{m}},\kern1em {\mathbf{V}}_{\mathrm{bn}}={V}_{\mathrm{m}}\angle -120{}^{\circ},\kern1em {\mathbf{V}}_{\mathrm{cn}}={V}_{\mathrm{m}}\angle +120{}^{\circ} $$
]

 (11.41b)

Phase voltage υ
an leads phase voltage υ
bn, which in turn leads υ
cn. This set of voltages is shown in Fig. 11.14. It has a positive or 
                  abc phase sequence
                  
                 since the voltages reach their peak values in the order abc as seen in Fig. 11.14. Simultaneously, the phasor voltages are obtained from each other by clockwise rotation in the phasor diagram. This is shown in Fig. 11.15a.[image: A331468_1_En_11_Fig14_HTML.gif]
Fig. 11.14

                          
                        Balanced phase voltages in 
positive phase sequence




[image: A331468_1_En_11_Fig15_HTML.gif]
Fig. 11.15(a) Phasor
 diagram for the phase sequence [image: 
$$ 0,\kern0.5em + 120{}^{\circ},\kern0.5em - 120{}^{\circ} $$
] and (b) phasor diagram for individual phase voltages from Eq. (11.42). Both three-phase sources are equivalent





An alternative is the negative or 
acb phase sequence
, which corresponds to [image: 
$$ 0,+ 120{}^{\circ},\kern0.5em - 120{}^{\circ} $$
] phases in Eqs. (11.41a, b
). In this case, the phasor voltages are obtained from each other by counterclockwise rotation in the phasor diagram of Fig. 11.15a. Thus, the 
                  balanced phase voltages
                  
                 are those which have 
                  equa
                  
                
l amplitudes and are out of phase with each other by 120° (either in positive [image: 
$$ 0,\kern0.5em - 120{}^{\circ},\kern0.5em + 120{}^{\circ} $$
] or in negative [image: 
$$ 0,+ 120{}^{\circ},\kern0.5em - 120{}^{\circ} $$
] phase sequence). An example of balanced voltages is given by Eqs. (11.41a, b). The concept of balanced phase voltages is critical for the subsequent analysis.
Example 11.9
Determine whether the phase voltages[image: 
$$ {\upsilon}_{\mathrm{an}}(t)=3 \cos \left(\omega \kern0.1em t-90{}^{\circ}\right),\kern1em {\upsilon}_{\mathrm{bn}}(t)=3 \cos \left(\omega \kern0.1em t+150{}^{\circ}\right),\kern1em {\upsilon}_{\mathrm{cn}}(t)=3 \cos \left(\omega \kern0.1em t+30{}^{\circ}\right) $$
]

 (11.42)

of a three-phase system are balanced or not. If yes, determine the corresponding phase sequence.

Solution: The amplitudes of the phase voltages are equal, which is the first necessary condition of the balanced sources. To analyze the phases, we plot the voltages in the phasor diagram and obtain Fig. 11.15b. Despite the common phase shift of −90° as compared to Eqs. (11.41a, b), the phase voltages are still out of phase with each other by 120° and form the same positive phase sequence
; see Fig. 11.15b.

Exercise 11.11
The phase voltage V
bn is given by [image: 
$$ {V}_{\mathrm{m}}\angle +45{}^{\circ} $$
]. Determine the remaining phase voltages V
an, V
cn of the balanced three-phase system for the 
positive phase sequence. Express your result in phasor form.

Answer: [image: 
$$ {\mathbf{V}}_{\mathrm{an}}={V}_{\mathrm{m}}\angle 165{}^{\circ},\kern1em {\mathbf{V}}_{\mathrm{cn}}={V}_{\mathrm{m}}\angle  - 75{}^{\circ} $$
].


11.3.3 Wye (Y) Source and Load Configurations for Three-Phase Circuits
The voltage sources in the three-phase system in Fig. 11.13d are now rearranged as shown in Fig. 11.16a. This configuration is indeed equivalent to the original one; it is known as the wye (or Y) configuration. Accordingly, the 
                  balanced three-phase source
                  
                 in Fig. 11.16a is the 
                  wye-connected source
                  
                
, and the load in Fig. 11.16b is the 
                  wye-connected load
                  
                .[image: A331468_1_En_11_Fig16_HTML.gif]
Fig. 11.16Wye configuration for the three-phase source connected to a three-phase load





The AC voltage source in Fig. 11.16a has four terminals. The corresponding load should also have four terminals. The concept is shown in Fig. 11.16b. This load assembly is also identical with the topology of Fig. 11.16d. The load includes three impedance elements (

                  
                
phase impedances or 
                  load impedances per phase
                  
                ) [image: 
$$ \mathbf{Z}=Z\angle \theta $$
] 
                  
                with impedance magnitude Z and phasor angle (power angle) θ each. The load so assembled is the 
                  balanced three-phase load
                  
                . In the balanced load, the phase impedances are equal in magnitude and phase. The source and the load are typically connected by (long) wire transmission lines. When necessary, the wire resistance may be added to each individual load impedance.

11.3.4 Application: Examples of Three-Phase Source and the Load
Synchronous Three-Phase AC Generator
Despite the apparent complexity, the three-phase source and the three-phase loads are relatively simple to realize in practice. Figure 11.17 shows a 
                    synchronous three-phase AC generator
                    
                    
                   (or alternator), which is equivalent to the three-phase source in Fig. 11.16a.[image: A331468_1_En_11_Fig17_HTML.gif]
Fig. 11.17Structure of the three-phase AC generator. (a) Cross-section view. (b) Simplified outline of one of the three windings





Consider first the generator cross section shown in Fig. 11.17a. The generator’s 
                    rotor
                    
                   is a permanent magnet (small scale) or an electromagnet (industrial scale) rotated by a mechanical torque (a turbine). Three individual coil windings aa′, bb′, and cc′ in the 
                    stator
                    
                   are spaced exactly 120° apart around the stator. When the rotor moves, an induced emf (induced voltage) will be created in every individual winding according to Faraday’s law of induction—see Fig. 11.17b. From the geometry considerations, the induced voltages are equal in magnitude and out of phase by 120°. When the coil terminals a′, b′, and c′ are all connected to the neutral wire, see Fig. 11.17a, we obtain exactly the three-phase source with the neutral wire in Fig. 11.16a.


                  Automotive Alternator


                
The automotive alternator operates based on the same principle. However, the resulting three-phase voltage is further converted to the DC voltage (rectified, see Chapter 16).


                  Synchronous Three-Phase AC Motor

                  
                    
                    
                  
                
The counterpart of the three-phase generator is the three-phase AC motor (the synchronous AC 
                    moto
                    
                  
r). The 
stator, which is subject to the three-phase voltage source, creates a 
                    rotating magnetic field
                    
                  ; the rotor
 magnet is aligned with this field at every time moment and rotates accordingly. The 
stator’s circuit model is similar to the three-phase load model in Fig. 11.16b where each load impedance Z includes resistance and inductance of the individual (identical) coil windings. The induced emf should be included into our consideration as well. Why is the phase sequence important for power distribution? There is a simple answer to this question. Assume that the machine in Fig. 11.17 operates in the motor mode. Changing the phase sequence from abc to acb will reverse the direction of the magnetic field rotation and thus reverse the direction of the motor rotation! This method is used in practice since it requires interchanging only two connections.


                  Residential Household


                
Another example of the load impedance per phase is related to a typical residential household in the USA. A single phase of a three-phase residential distribution system is normally used to power them up; see Fig. 11.18. This single phase still has a high rms voltage (4800 V or 7200 V). A step-down center-tap transformer is used to decrease this voltage level to the desired level of 120–240 V and provide the neutral contact necessary for the three-wire single-phase residential system shown in Fig. 11.13b. This transformer case is also seen in Fig. 11.18. In the USA, a pole-mounted transformer in a suburban setting may supply one to three houses.[image: A331468_1_En_11_Fig18_HTML.jpg]
Fig. 11.18Three-phase to three-wire residential system connected via a step-down transformer. From the pole transformer, the residential power system serving two houses is run down the pole underground. Cape Cod, MA







11.3.5 Solution for the Balanced Three-Phase Wye-Wye Circuit
Phase Voltages and Line Voltages



A three-phase balanced circuit (wye-wye configuration) which includes the source and the load is shown in Fig. 11.19. We place the nodes n and N at the originally anticipated center positions. The 
positive phase sequence of [image: 
$$ 0,\kern0.5em - 120{}^{\circ},\kern0.5em + 120{}^{\circ} $$
] is assumed. The sum of phase voltages is to be found first. In the phasor form,[image: A331468_1_En_11_Fig19_HTML.gif]
Fig. 11.19Three-phase, four-wire balanced 


                            
                            
                          

                            wye-wye distribution system
                            
                          . Ground connection is implied for the neutral wire




[image: 
$$ \begin{array}{l}{\mathbf{V}}_{\mathrm{an}}+{\mathbf{V}}_{\mathrm{bn}}+{\mathbf{V}}_{\mathrm{cn}}={V}_{\mathrm{m}}\left(1+1\angle  - 120{}^{\circ}+1\angle  + 120{}^{\circ}\right)={V}_{\mathrm{m}}\left(1+2 \cos 120{}^{\circ}\right)\\ {}\kern6.7em ={V}_{\mathrm{m}}\left(1-1\right)=0\end{array} $$
]

 (11.43)


Thus, the sum of the 
balanced phase voltages is exactly zero, either in the phasor form or in the time domain. Now, along with the phase (line-to-neutral) voltages, we define 
                    line-to-line voltages
                    
                   (or just line voltages) V
ab, V
bc, V
ca between nodes a–b, b–c, and c–a, as indicated in Fig. 11.19. These voltages are expressed through the phase voltages using KVL. Using the trigonometric identity [image: 
$$ 1-1\angle  - 120{}^{\circ}=\sqrt{3}\angle 30{}^{\circ} $$
] three times, it can be shown that[image: 
$$ \begin{array}{l}{\mathbf{V}}_{\mathrm{ab}}={\mathbf{V}}_{\mathrm{an}}-{\mathbf{V}}_{\mathrm{bn}}=\sqrt{3}{\mathbf{V}}_{\mathrm{an}}\angle 30{}^{\circ},\\ {}{\mathbf{V}}_{\mathrm{bc}}={\mathbf{V}}_{\mathrm{bn}}-{\mathbf{V}}_{\mathrm{cn}}=\sqrt{3}{\mathbf{V}}_{\mathrm{bn}}\angle 30{}^{\circ},\\ {}{\mathbf{V}}_{\mathrm{ca}}={\mathbf{V}}_{\mathrm{cn}}-{\mathbf{V}}_{\mathrm{an}}=\sqrt{3}{\mathbf{V}}_{\mathrm{cn}}\angle 30{}^{\circ}\end{array} $$
]

 (11.44)

It is seen that the line voltages are higher in amplitude than the phasor voltages by a factor of [image: 
$$ \sqrt{3}\approx 1.73 $$
]. Furthermore, they lead their corresponding phase voltages by 30°. According to Eqs. (11.43) and (11.44), the sum of the line voltages is also equal to zero. Both the phase voltages and the line voltages may be used in the three-phase system.
Exercise 11.12
Is Eq. (11.44) also valid for the negative phase sequence
?

Answer: Not exactly. A 

substitution [image: 
$$ 30{}^{\circ}\to -30{}^{\circ} $$
] has to be made.

Example 11.10
The electric service for commercial buildings (university campus buildings) in the USA is a three-phase, four-wire wye system schematically shown in Fig. 11.19. Determine rms phase voltages if the line voltages are all equal to 208 V rms.

Solution: According to Eq. (11.44), we should divide the line voltage of 208 V rms by [image: 
$$ \sqrt{3} $$
]. This gives us exactly 120 V rms voltage per phase. Thus, the present wye system is also powering common 120 V wall plugs with any of the 
line-to-neutral voltages. Note that the source in Fig. 11.19 typically models an output of a three-phase transformer.



Line Currents


                    
                    
                  : Per-Phase Solution


The currents I
a,b,c in Fig. 11.19 are called line currents. To find the line currents, the circuit may be solved separately for every phase using the superposition principle. The superposition principle 
implies shorting out two of the three voltage 
sources at a time. This method applies to both balanced and unbalanced circuits. Shorting out voltage sources V
bn and V
cn leads to a single-phase equivalent circuit, shown in Fig. 11.20, since the two remaining source impedances will be shorted out by the neutral wire. As long as the system is balanced, the same equivalent circuit will be derived 


                    
                    
                  for every other phase.[image: A331468_1_En_11_Fig20_HTML.gif]
Fig. 11.20A single-phase equivalent circuit by shorting out V
bn and V
cn






Applying this method to every phase, we obtain[image: 
$$ \begin{array}{l}{\mathbf{I}}_{\mathrm{a}}={\mathbf{V}}_{\mathrm{a}\mathrm{n}}/\mathbf{Z}={I}_{\mathrm{m}}\angle -\theta, \kern1em {\mathbf{I}}_{\mathrm{b}}={\mathbf{V}}_{\mathrm{b}\mathrm{n}}/\mathbf{Z}={I}_{\mathrm{m}}\angle  - 120{}^{\circ}-\theta, \kern1em \\ {}{\mathbf{I}}_{\mathrm{c}}={\mathbf{V}}_{\mathrm{c}\mathrm{n}}/\mathbf{Z}={I}_{\mathrm{m}}\angle 120{}^{\circ} - \theta \end{array} $$
]

 (11.45)


where [image: 
$$ {I}_{\mathrm{m}}={V}_{\mathrm{m}}/Z $$
]. The sum of the line currents is given by[image: 
$$ {\mathbf{I}}_{\mathrm{a}}+{\mathbf{I}}_{\mathrm{b}}+{\mathbf{I}}_{\mathrm{c}}=\left({\mathbf{V}}_{\mathrm{a}\mathrm{n}}+{\mathbf{V}}_{\mathrm{b}\mathrm{n}}+{\mathbf{V}}_{\mathrm{c}\mathrm{n}}\right)/\mathbf{Z}=0 $$
]

 (11.46)

according to Eq. (11.43). Thus, the sum of the balanced line currents is also exactly zero, either in phasor form or in the time domain. Equations (11.43), (11.44), (11.45), and (11.46) hold for any phase sequence, with or without the common phase shift.


11.3.6 Removing the Neutral Wire
 in Long-Distance Power Transmission
Equation (11.46) for the line currents has an important implication. By taking into account Eq. (11.46), KCL for node n in Fig. 11.19 yields[image: 
$$ {\mathbf{I}}_{\mathrm{n}}=-\left({\mathbf{I}}_{\mathrm{a}}+{\mathbf{I}}_{\mathrm{b}}+{\mathbf{I}}_{\mathrm{c}}\right)=0 $$
]

 (11.47)

Equation (11.47) states that the neutral conductor in the balanced circuit carries no current. Such a wire could in principle be removed from the balanced
 circuit without affecting the rest of it. Removing the neutral conductor is economically beneficial in long-distance high-voltage power transmission, which utilizes the balanced circuits. In high-voltage power lines, the conductors in multiples of three are used; see Fig. 11.21.[image: A331468_1_En_11_Fig21_HTML.gif]
Fig. 11.21(a) Three-phase single-circuit high-voltage overhead power transmission line and (b) three-phase double-circuit, high-voltage overhead line. Both lines include (thinner) shielding wire(s) on top of it to protect against lightning strikes (F. Kiessling, et al., “Overhead Power Lines: Planning, Design, Construction,” Springer 2003)





In fact, the neutral wire is not removed entirely since the earth ground itself plays the role of the neutral conductor. We will not draw the neutral wire in the three-phase balanced wye-wye circuit; in Fig. 11.22 only three wires are drawn. However, the meaning of the phase voltage or the phase-to-neutral voltage still remains unchanged—this voltage is simply defined with regard to the reference node n in Fig. 11.22.[image: A331468_1_En_11_Fig22_HTML.gif]
Fig. 11.22Three-phase balanced 
wye-wye system with the neutral conductor removed. The neutral conductor may still be implied for the solution using the per-phase method





If a three-phase circuit is unbalanced, like having different individual loads in Fig. 11.19, then a significant current may flow in the neutral wire. The neutral wire is thus meant to carry unbalanced currents in the electrical system. It should be kept in place for potentially unbalanced systems.
Example 11.11
Determine line currents in the balanced three-phase wye-wye circuit shown in Fig. 11.22 given the acb sequence of phase voltages [image: 
$$ {\mathbf{V}}_{\mathrm{an}}=325\angle 0{}^{\circ},\kern1em {\mathbf{V}}_{\mathrm{bn}}=325\angle 120{}^{\circ},\kern1em {\mathbf{V}}_{\mathrm{cn}}=325\angle  - 120{}^{\circ}\kern0.5em \left[\mathrm{V}\right] $$
] and load impedance per phase [image: 
$$ \mathbf{Z}=8.333 + j14.434\kern0.5em \Omega $$
].

Solution: The three-phase circuit in Fig. 11.22 is balanced; hence, the single-phase circuit in Fig. 11.20 applies to every phase (to visualize the per-phase method, we can still imagine the neural wire present). We convert the load impedance to polar form first, i.e., [image: 
$$ \mathbf{Z}=16.667\angle 60{}^{\circ}\kern0.5em \Omega $$
]. Then, we solve the circuit in Fig. 11.20 for every phase and obtain [image: 
$$ {\mathbf{I}}_{\mathrm{a}}=19.5\angle  - 60{}^{\circ},\kern1em {\mathbf{I}}_{\mathrm{b}}=19.5\angle 60{}^{\circ},\kern1em {\mathbf{I}}_{\mathrm{c}}=19.5\angle 180{}^{\circ}\kern0.5em \left[\mathrm{A}\right] $$
]. The solution is shown in the phasor diagram in Fig. 11.23. Note that the phasor voltages/currents are obtained from each other by counter clockwise rotation in the phasor diagram, which corresponds to the negative or 
acb phase sequence
. 
                    
                  Also note that the rms values for the phase voltages in this example are 230 V, which corresponds to the European residential power distribution system.[image: A331468_1_En_11_Fig23_HTML.gif]
Fig. 11.23Phasor diagram for the three-phase circuit of Example 11.11. Note the separate scales for the phasors of voltages and phasors of currents






The wye-wye circuit in Fig. 11.22, along with the similar circuits in Figs. 11.13 and 11.19, may contain extra impedances. Those are line impedance, which characterizes transmission line loss and inductance, and source impedances, which are present for nonideal voltage sources. Fortunately, all those (equal) impedances are combined in series along the line into one impedance Z which is called the total load impedance per phase. In this sense, Fig. 11.22 represents this general case as well.


11.4 Power in Balanced Three-Phase Systems: Delta-connected Three-Phase Circuits
11.4.1 Instantaneous Power
The analysis of the instantaneous power requires a source-load circuit in terms of real-value expressions of voltages and currents. This is shown in Fig. 11.24 for the wye-wye configuration

. We assume a balanced source and a balanced load. This means that individual loads a, b, and c in Fig. 11.24 are identical. Each of them can be a mixed RLC load, with an arbitrary impedance [image: 
$$ \mathbf{Z}=Z\angle \theta $$
].[image: A331468_1_En_11_Fig24_HTML.gif]
Fig. 11.24Three-phase balanced

 wye-wye circuit in the time domain. Three 

individual loads are identical. Each of them is characterized by the impedance [image: 
$$ \mathbf{Z}=Z\angle \theta $$
] in the frequency domain





We consider the 
positive phase sequence. According to Eqs. (11.41) and (11.45) of the previous section, the phase voltages and line currents in Fig. 11.24 are given by[image: 
$$ \begin{array}{l}{\upsilon}_{\mathrm{an}}(t)={V}_{\mathrm{m}} \cos \left(\omega t\right),\kern1em {\upsilon}_{\mathrm{bn}}(t)={V}_{\mathrm{m}} \cos \left(\omega t-120{}^{\circ}\right),\kern1em {\upsilon}_{\mathrm{cn}}(t)={V}_{\mathrm{m}} \cos \left(\omega t+120{}^{\circ}\right)\end{array} $$
]

 (11.48a)


[image: 
$$ \begin{array}{l}{i}_{\mathrm{a}}(t)={I}_{\mathrm{m}} \cos \left(\omega t-\theta \right),\kern1em {i}_{\mathrm{b}}(t)={I}_{\mathrm{m}} \cos \left(\omega t-120{}^{\circ}-\theta \right),\\ {}{i}_{\mathrm{c}}(t)={I}_{\mathrm{m}} \cos \left(\omega \kern0.1em t+120{}^{\circ}-\theta \right)\end{array} $$
]

 (11.48b)

The 
                  total instantaneous load power
                  
                  
                 of the three-phase system is the sum of the three power contributions for each phase voltage, that is,[image: 
$$ p(t)={\upsilon}_{\mathrm{a}\mathrm{n}}(t){i}_{\mathrm{a}}(t)+{\upsilon}_{\mathrm{b}\mathrm{n}}(t){i}_{\mathrm{b}}(t)+{\upsilon}_{\mathrm{c}\mathrm{n}}(t){i}_{\mathrm{c}}(t) $$
]

 (11.49)

Every summand on the right-hand side of Eq. (11.49) is the product of two cosines. To transform this product back to cosines, we use the trigonometric identity [image: 
$$ \cos \alpha \cos \beta =\frac{1}{2}\left( \cos \left(\alpha +\beta \right)+ \cos \left(\alpha -\beta \right)\right) $$
] and obtain[image: 
$$ p(t)=\frac{3}{2}{V}_{\mathrm{m}}{I}_{\mathrm{m}} \cos \theta +\frac{1}{2}{V}_{\mathrm{m}}{I}_{\mathrm{m}}\left[ \cos \left(2\omega t-\theta \right)+\underbrace{ \cos \left(2\omega t-\theta +120{}^{\circ}\right)+ \cos \left(2\omega t-\theta -120{}^{\circ}\right)}\right] $$
]

 (11.50)


We then use the above trigonometric identity again to convert the underlined term to [image: 
$$ 2 \cos \left(2\omega \kern0.1em t-\theta \right) \cos \left(120{}^{\circ}\right)=- \cos \left(2\omega \kern0.1em t-\theta \right) $$
]. Consequently, the entire term in the square brackets in Eq. (11.50) is equal to zero, and the final result for the instantaneous power is[image: 
$$ p(t)=\frac{3}{2}{V}_{\mathrm{m}}{I}_{\mathrm{m}} \cos \theta =3{V}_{\mathrm{rms}}{I}_{\mathrm{rms}} \cos \theta =\mathrm{const}\ ! $$
]

 (11.51)

where the rms values of phase voltages and line currents

 are indeed related to the amplitudes by [image: 
$$ {V}_{\mathrm{m}}=\sqrt{2}{V}_{\mathrm{rms}},\kern1em {I}_{\mathrm{m}}=\sqrt{2}{I}_{\mathrm{rms}} $$
].
Example 11.12
A balanced wye-wye three-phase system in Fig. 11.24 operates at 60 Hz. The 
line-to-neutral voltages have the amplitudes of 170 V, [image: 
$$ {V}_{\mathrm{m}}=170\kern0.5em \mathrm{V} $$
]. Every phase impedance
 is a 77.2-mH inductance in series with a 29.1-Ω resistance. Find the instantaneous load power.

Solution: The first step is to find the impedance for every phase of the load. We have[image: 
$$ \mathbf{Z}=R+j\omega L=29.1+j29.1\kern0.5em \Omega =29.1\sqrt{2}\angle 45{}^{\circ}\kern0.5em \Omega $$
]

 (11.52)



Next, we find the line currents. Since the circuit is balanced, the per-phase solution applies, with the equivalent circuit shown in Fig. 11.20 of the previous section. It yields[image: 
$$ {I}_{\mathrm{m}}=\frac{V_{\mathrm{m}}}{\left|\mathbf{Z}\right|}=\frac{V_{\mathrm{m}}}{Z}=\frac{170}{41.154}=4.1309\kern0.5em \mathrm{A} $$
]

 (11.53)



The instantaneous load power follows Eq. (11.51) with the power angle, [image: 
$$ \theta =45{}^{\circ} $$
]. Therefore, we obtain[image: 
$$ p(t)=\frac{3}{2}{V}_{\mathrm{m}}{I}_{\mathrm{m}} \cos \theta =745\kern0.5em \mathrm{W}=\mathrm{const} $$
]

 (11.54)




Equation (11.51) is critical for three-phase systems. It tells us that the total instantaneous power delivered to the load remains constant at any instance in time. This is in contrast to the instantaneous power of every individual single phase, which is still pulsating in time. Equation (11.51) implies that a three-phase load (e.g., an induction motor) as well as the three-phase generator introduced in the previous section should generate or require a 
constant torque

. Thus, they undergo less vibration since the net power transfer is uniform.

11.4.2 Average Power, Reactive Power, and Apparent Power



The AC power types defined 
for the single-phase power distribution in Section 11.1 of this chapter also apply for the three-phase circuits. The average or active load power P, the reactive load power Q, and the complex load power S of the balanced three-phase system are given by[image: 
$$ P=3{V}_{\mathrm{rms}}{I}_{\mathrm{rms}} \cos \theta \kern0.5em \left[\mathrm{W}\right],\kern1em Q=3{V}_{\mathrm{rms}}{I}_{\mathrm{rms}} \sin \theta \kern0.5em \left[\mathrm{V}\mathrm{A}\mathrm{R}\right],\kern1em \mathbf{S}=3{V}_{\mathrm{rms}}{I}_{\mathrm{rms}}\angle \theta \kern0.5em \left[\mathrm{V}\mathrm{A}\right] $$
]

 (11.55a)

While the instantaneous powers per phase are pulsating, their average values labeled with indexes a, b, c are exactly one third of the load powers. One has[image: 
$$ \begin{array}{l}{P}_{\mathrm{a},\mathrm{b},\mathrm{c}}={V}_{\mathrm{rms}}{I}_{\mathrm{rms}} \cos \theta \kern0.5em \left[\mathrm{W}\right],\kern1em {Q}_{\mathrm{a},\mathrm{b},\mathrm{c}}={V}_{\mathrm{rms}}{I}_{\mathrm{rms}} \sin \theta \kern0.5em \left[\mathrm{V}\mathrm{A}\mathrm{R}\right],\\ {}{\mathbf{S}}_{\mathrm{a},\mathrm{b},\mathrm{c}}={V}_{\mathrm{rms}}{I}_{\mathrm{rms}}\angle \theta \kern0.5em \left[\mathrm{V}\mathrm{A}\right]\end{array} $$
]

 (11.55b)

per phase. Equation (11.55) uses the rms values of phase voltages and line currents.
Example 11.13
For the 

previous example, determine the load average power, reactive power, and the apparent power. Do these powers coincide with the corresponding source measures?

Solution: The average power is simply the load instantaneous power, [image: 
$$ P=745\kern0.5em \mathrm{W} $$
]. The reactive power is [image: 
$$ Q=\frac{3}{2}{V}_{\mathrm{m}}{I}_{\mathrm{m}} \sin \theta =745\kern0.5em \mathrm{V}\mathrm{A}\mathrm{R} $$
]. The apparent power is [image: 
$$ S=\left|\mathbf{S}\right|=\frac{3}{2}{V}_{\mathrm{m}}{I}_{\mathrm{m}}=1053\kern0.5em \mathrm{V}\mathrm{A} $$
]. And the apparent power can be also found from the power triangle. All load powers coincide with the corresponding source powers since the transmission lines in Fig. 11.24 are assumed to be ideal conductors.

Exercise 11.13
A three-phase induction motor is modeled by a balanced wye load in Fig. 11.24. The motor (active) power is 6 kW; the line current is 20 A rms, and the line voltage is 208 V rms. Determine the power factor of th

e motor, which is the ratio of the active load power P to the magnitude of the total apparent power, |S|.

Answer: [image: 
$$ PF\approx 5/6=0.833 $$
].


11.4.3 Application Example: Material Consumption

 in Three-Phase Systems
A comparison is made between the conductor material consumption in a single-phase two-wire transmission system (shown in Fig. 11.25a) and the three-phase, three-wire transmission system shown in Fig. 11.25b. Both systems have the identical distance from the source to the load, the same average power P distributed to a purely resistive load, and the same rms line voltages close to the load. They all use the same conductor material. The distributed resistance per wire is modeled by a lumped resistor R for the single-phase line and by a lumped resistor R′ for the three-phase line. Given the same load power and line voltage, the rms line currents are expressed as[image: A331468_1_En_11_Fig25_HTML.gif]
Fig. 11.25Comparison of single-phase and three-phase transmission systems







[image: 
$$ {I}_{\mathrm{single}\ \mathrm{phase}}=\frac{P}{V},\kern1em {I}_{\mathrm{three}\ \mathrm{phase}}=\frac{P}{\sqrt{3}\;V} $$
]

 (11.56)

Equating power loss in the wire conductors, we obtain[image: 
$$ 2R{I}_{\mathrm{single}\ \mathrm{phase}}^2=3{R}^{\prime }{I}_{\mathrm{three}\ \mathrm{phase}}^2\Rightarrow 2R{\left(\frac{P}{V}\right)}^2=3{R}^{\prime }{\left(\frac{P}{\sqrt{3}\kern0.1em V}\right)}^2\Rightarrow {R}^{\prime }=2R $$
]

 (11.57)



Since resistance R is twice as large as resistance R′, the cross section of the corresponding cylindrical conductor is smaller by a factor of two in the three-phase configuration. Hence, its radius is [image: 
$$ 1/\sqrt{2} $$
] times less than the radius, r, of the single-phase line. Figure 11.26 depicts the radii of the equivalent conductors.[image: A331468_1_En_11_Fig26_HTML.gif]
Fig. 11.26Radii of equivalent conductors for the two systems in Fig. 11.25






For the single-phase line, the total conductor cross section is 2π r
2; for the three-phase line, the total cross section is 1.5π r
2. Given the same length, the ratio of conductor material required is exactly the cross-section ratio, that is, [image: 
$$ 1.5/2=0.75 $$
]. In other words, the three-phase system consumes 75 % less conductor material compared to the single-phase system. 
                  
                  
                The key is the absence of the neutral wire (or, possibly, using a much thinner neutral wire). Other examples for particular loads might result in even more dramatic savings.

11.4.4 
                Balanced Delta-Connected Load

              
Along with the 
wye-connected load, an important example of the three-phase load is the delta-connected load, which is shown in Fig. 11.27a in the balanced configuration. The balanced delta-connected load is common, along with a balanced wye-connected load. The delta-connected load inherently does not have a neutral port. This load may be converted to the wye-connected load shown in Fig. 11.27b by using the Y-Δ transformation algorithm established in Chapter 3. This algorithm equally applies to the impedance circuits. The algorithm considerably simplifies when the loads are balanced (load resistances or impedances are equal). With reference to Fig. 11.27, one has[image: A331468_1_En_11_Fig27_HTML.gif]
Fig. 11.27Delta-connected load versus 

ad






[image: 
$$ {\mathbf{Z}}_{\mathrm{Y}}=\frac{1}{3}{\mathbf{Z}}_{\Delta}\leftrightarrow {\mathbf{Z}}_{\Delta}=3{\mathbf{Z}}_{\mathrm{Y}} $$
]

 (11.58)

for phase impedance transformation. 
                  
                Here, indexes Y and Δ refer to the wye-connected and delta-connected loads, respectively.

11.4.5 Balanced Delta-Connected Source
The 
                  balanced delta-connected source
                  
                 is shown in Fig. 11.28b. In its original configuration, it is not using the ground terminal or a neutral conductor. The delta-connected source so wound is generally less common and less safe than the 
wye-connected source. It may be created by the three-phase generator shown in Fig. 11.17 of the previous section, assuming the three individual coil windings aa′, bb′, and cc′ are interconnected in a closed loop.[image: A331468_1_En_11_Fig28_HTML.gif]
Fig. 11.28

                          
                        Wye-connected source versus delta-connected source







The balanced wye-connected source without a neutral or ground conductor can be easily converted to the balanced delta source and vice versa. The concept is shown in Fig. 11.28. The line voltages V
ab, V
bc, V
ca between nodes a–b, b–c, and c–a of the wye source become the phase voltages of the delta source. The relation between two voltage types is given by Eq. (11.44) of the previous section, that is (
                  
                positive phase sequence),[image: 
$$ {\mathbf{V}}_{\mathrm{ab}}=\sqrt{3}{\mathbf{V}}_{\mathrm{an}}\angle 30{}^{\circ},\kern1em {\mathbf{V}}_{\mathrm{bc}}=\sqrt{3}{\mathbf{V}}_{\mathrm{bn}}\angle 30{}^{\circ},\kern1em {\mathbf{V}}_{\mathrm{ca}}=\sqrt{3}{\mathbf{V}}_{\mathrm{cn}}\angle 30{}^{\circ} $$
]

 (11.59)



Thus, according to Eq. (11.59) and Fig. 11.28, the phase voltages of the equivalent delta-connected source V
ab, V
bc, V
ca are greater in amplitude by a factor of [image: 
$$ \sqrt{3}\approx 1.73 $$
] as compared to the phase voltages V
an, V
bn, V
cn of the equivalent 
wye-connected source in Fig. 11.28. The line voltages of the delta-connected source coincide with its phase voltages given lossless conductors and coincide with the line voltages of the wye-wye source; all of them are simply V
ab, V
bc, V
ca. Indeed, the sum of the phase voltages for the delta-connected source is still equal to zero according to Eq. (11.43) of the previous section. Hence, there is no 
current circulation in the (ideal) delta loop in Fig. 11.28b. Transformations given by Eqs. (11.58) and (11.59) allow us to consider four distinct source-load configurations in the three-phase systems: wye-wye, wye-delta, delta-wye, and delta-delta. All of them may be reduced to the wye-wye circuit or solved independently. Figure 11.29 shows one such configuration: a balanced 
                  delta-delta distribution system
                  
                . In the delta-delta system, the line voltages coincide with the phase voltages, whereas the line currents I
a, I
b, and I
c are different from the load (or phase) currents I
AB, I
BC, and I
CA. This is in contrast to the wye-wye system where the line and phase voltages are different, but the line and load currents remain the same.[image: A331468_1_En_11_Fig29_HTML.gif]
Fig. 11.29Three-phase balanced 

delta-delta distribution system. Note the load (phase) currents circulating in the delta loop





Example 11.14
A balanced delta-delta system in Fig. 11.29 operates at 60 Hz. The phase voltages of the delta source, V
ab, V
bc, V
ca, have amplitudes of [image: 
$$ {V}_{\mathrm{m}}=294.5\kern0.5em \mathrm{V} $$
] each. Moreover, each phase impedance is a 0.2315 H inductance in series with a 87.3 Ω resistance. Find the average load power.

Solution: We find the impedance for each phase of the load first. One has[image: 
$$ \mathbf{Z}=R+j\omega L=87.3+j87.3\kern0.5em \Omega =87.3\sqrt{2}\angle 45{}^{\circ}\kern0.5em \Omega $$
]

 (11.60)

The power angle is thus given by [image: 
$$ \theta =45{}^{\circ} $$
]. Next, we find the load (phase) currents I
AB, I
BC, I
CA circulating in the
 delta-connected load. Since the individual voltage sources in Fig. 11.6 are now directly connected to the individual load phases, one has for the amplitude of the phase current I
AB:[image: 
$$ {\mathbf{I}}_{\mathrm{AB}}=\frac{{\mathbf{V}}_{\mathrm{ab}}}{\mathbf{Z}}\Rightarrow {I}_{\mathrm{m}}=\frac{V_{\mathrm{m}}}{\left|\mathbf{Z}\right|}=\frac{294.5}{Z}=\frac{294.5}{123.46}=2.385\kern0.5em \mathrm{A} $$
]

 (11.61)



The remaining phases have the same amplitudes: the per-phase method is used again. Both the average load power and the instantaneous load powers are the sum of three individual contributions, that is,[image: 
$$ P=p(t)=3\times \left(\frac{1}{2}{V}_{\mathrm{m}}{I}_{\mathrm{m}} \cos \theta \right)=\frac{3}{2}294.5\times 2.385\times 0.707=745\kern0.5em \mathrm{W} $$
]

 (11.62)



The instantaneous power may be calculated; it is constant and equals 745 W. Note that the rms line voltages in this example are 208 V.

Example 11.15
Solve the previous example by converting the delta-delta system to the equivalent wye-wye system.

Solution: First, the phase impedance of the wye load should be three times less than the phase impedance of the delta load, that is, [image: 
$$ \mathbf{Z}=29.1\sqrt{2}\angle 45{}^{\circ}\kern0.5em \Omega $$
]. Second, the amplitude of the wye phase source should be [image: 
$$ 1/\sqrt{3} $$
] times less than the amplitude of the delta phase source, that is, [image: 
$$ {V}_{\mathrm{m}}=170\kern0.5em \mathrm{V} $$
]. These
 numbers have been used in Examples 11.12 and 11.13 for the wye-wye system, which gave us exactly the same value of 745 W (one horsepower) for the average and instantaneous powers, respectively.

Apart from the circuit equivalence, one may look at Fig. 11.28 from a slightly different perspective. What if the voltage sources in Fig. 11.28 are all the same (the same windings of the three-phase generator just connected differently)? In this case, the wye connection gives us a line voltage [image: 
$$ \sqrt{3} $$
] times greater than the delta connection. Hence, the line current, which is required for the same power transfer, will be [image: 
$$ 1/\sqrt{3} $$
] times less. Reducing line currents reduces line losses. This explains why the wye source connection is preferable for long-distance power transmission.


Summary

                	rms Voltages and currents in terms of sine/cosine amplitudes and in the general case

	For sinusoidal signals: [image: 
$$ {V}_{\mathrm{rms}}=\frac{V_m}{\sqrt{2}} $$
], [image: 
$$ {I}_{\mathrm{rms}}=\frac{I_m}{\sqrt{2}} $$
] General periodic case: [image: 
$$ {V}_{\mathrm{rms}}=\sqrt{\frac{1}{T}{\displaystyle \underset{0}{\overset{T}{\int }}{\upsilon}^2(t)\kern0.2em }dt} $$
]


	Average power for resistive load: [image: 
$$ P=\frac{1}{2}{V}_m{I}_m={V}_{\mathrm{rms}}{I}_{\mathrm{rms}} $$
], [image: 
$$ {V}_{\mathrm{rms}}=R{I}_{\mathrm{rms}} $$
]


	Power angle θ and power factor PF


	
                            [image: 
$$ \begin{array}{l}\upsilon (t)={V}_m \cos \left(\omega \kern0.1em t+\varphi \right)\\ {}i(t)={I}_m \cos \left(\omega \kern0.1em t+\psi \right)\end{array} $$
]
                            [image: 
$$ \Rightarrow \theta =\varphi -\psi, \kern1em -90{}^{\circ}\le \theta \le +90{}^{\circ} $$
]
                            [image: 
$$ PF= \cos \left(\varphi -\psi \right)= \cos \theta $$
]
                          

	Average power for arbitrary load: [image: 
$$ P=\frac{V_m{I}_m}{2} \cos \theta ={V}_{\mathrm{rms}}{I}_{\mathrm{rms}} \cos \theta $$
] (zero for L and C)

	Average power and power angle in terms of phasors: [image: 
$$ P=\frac{\mathrm{Re}\left(\mathbf{V}\cdot {\mathbf{I}}^{*}\right)}{2} $$
], [image: 
$$ \mathbf{Z}=\left|\mathbf{Z}\right|\angle \theta $$
]


	Average power P, reactive power Q, complex power S, and apparent power S


	
                            [image: 
$$ P=\frac{\mathrm{Re}\left(\mathbf{V}\cdot {\mathbf{I}}^{*}\right)}{2}=\frac{R{\left|\mathbf{I}\right|}^2}{2}=\frac{\left|\mathbf{Z}\right|{\left|\mathbf{I}\right|}^2}{2} \cos \theta =\frac{\left|\mathbf{V}\right|\left|\mathbf{I}\right|}{2} \cos \theta ={V}_{\mathrm{rms}}{I}_{\mathrm{rms}} \cos \theta\;\left[\mathrm{W}\right] $$
]
                          

                            [image: 
$$ Q=\frac{\mathrm{Im}\left(\mathbf{V}\cdot {\mathbf{I}}^{*}\right)}{2}=\frac{X{\left|\mathbf{I}\right|}^2}{2}=\frac{\left|\mathbf{Z}\right|{\left|\mathbf{I}\right|}^2}{2} \sin \theta =\frac{\left|\mathbf{V}\right|\left|\mathbf{I}\right|}{2} \sin \theta ={V}_{\mathrm{rms}}{I}_{\mathrm{rms}} \sin \theta \kern0.24em \left[\mathrm{V}\mathrm{A}\mathrm{R}\right] $$
]
                          

                            [image: 
$$ \mathbf{S}=\frac{\mathbf{V}\cdot {\mathbf{I}}^{*}}{2}=P+jQ\kern0.24em \left[\mathrm{V}\mathrm{A}\right] $$
]
                          

                            [image: 
$$ S=\left|\mathbf{S}\right|=\frac{\left|\mathbf{Z}\right|{\left|\mathbf{I}\right|}^2}{2}=\frac{\left|\mathbf{V}\right|\left|\mathbf{I}\right|}{2}={V}_{\mathrm{rms}}{I}_{\mathrm{rms}}\kern0.24em \left[\mathrm{V}\mathrm{A}\mathrm{R}\right] $$
]
                          

	Power triangle (lagging/leading power factor)

	
                            [image: A331468_1_En_11_Figag_HTML.gif]
                          

	
                            AC power conservation laws
                          
For any network of N loads connected in series, parallel, or in general:

[image: 
$$ \mathbf{S}={\mathbf{S}}_1+{\mathbf{S}}_2+ \dots {\mathbf{S}}_N $$
], [image: 
$$ P={P}_1+{P}_2+ \dots {P}_N $$
], [image: 
$$ Q={Q}_1+{Q}_2+ \dots {Q}_N $$
]


	Power factor correction

	
                            [image: A331468_1_En_11_Figah_HTML.gif]
                          

                            [image: 
$$ \begin{array}{l}C=\frac{L}{\omega^2{L}^2+{R}^2}\Rightarrow \mathbf{Z}=R+\frac{{\left(\omega \kern0.1em L\right)}^2}{R}\Rightarrow \\ {} \mathbf{I}=\overset{\mathrm{with}\mathrm{out}\ \mathrm{capacitor}}{\overbrace{\underset{\mathrm{with}\ \mathrm{capacitor}}{\underbrace{\frac{R{V}_m}{R^2+{\left(\omega \kern0.1em L\right)}^2}}}-\frac{j\omega L{V}_m}{R^2+{\left(\omega \kern0.1em L\right)}^2}}}\end{array} $$
]
                            [image: 
$$ \begin{array}{l}L=\frac{1+{\omega}^2{R}^2{C}^2}{\omega^2C}\Rightarrow \mathbf{Z}=R+\frac{1}{R{\left(\omega C\right)}^2}\Rightarrow \\ {} \mathbf{I}=\overset{\mathrm{with}\mathrm{out}\ \mathrm{inductor}}{\overbrace{\underset{\mathrm{with}\ \mathrm{inductor}}{\underbrace{\frac{R{\left(\omega C\right)}^2{V}_m}{1+{\left(\omega R\kern0.1em C\right)}^2}}}+\frac{j\omega C{V}_m}{1+{\left(\omega R\kern0.1em C\right)}^2}}}\end{array} $$
]
                          

P remains exactly the same, Q becomes zero, PF becomes 100 %


	Maximum power transfer

	
                            [image: A331468_1_En_11_Figai_HTML.gif]
                          

                            [image: 
$$ \begin{array}{l}P=\frac{0.5{R}_{\mathrm{L}}{\left|{\mathbf{V}}_T\right|}^2}{{\left({R}_{\mathrm{L}}+{R}_T\right)}^2+{\left({X}_{\mathrm{L}}+{X}_T\right)}^2}\;\left[\mathrm{W}\right]\\ {}{P}_{\max }=\frac{1}{8}\frac{{\left|{\mathbf{V}}_T\right|}^2}{R_T}\;\left[\mathrm{W}\right]\\ {}\mathrm{at}\kern1em {\mathbf{Z}}_{\mathrm{L}}={\mathbf{Z}}_T^{*}\end{array} $$
]
                          

	Some equivalent drawings of the same balanced three-phase four-wire wye–wye power distribution system

	
                            [image: A331468_1_En_11_Figaj_HTML.gif]
                          

	Major parameters of the balanced three-phase four-wire wye–wye power distribution system

	Positive phase sequence [image: 
$$ {\mathbf{V}}_{an}={V}_m,\kern0.5em {\mathbf{V}}_{bn}={V}_m\angle - 120{}^{\circ},\kern0.5em {\mathbf{V}}_{cn}={V}_m\angle + 120{}^{\circ} $$
]

Negative phase sequence [image: 
$$ {\mathbf{V}}_{an}={V}_m,\kern0.5em {\mathbf{V}}_{bn}={V}_m\angle + 120{}^{\circ},\kern0.5em {\mathbf{V}}_{cn}={V}_m\angle - 120{}^{\circ} $$
]

Current in the neutral wire: [image: 
$$ {\mathbf{I}}_n=0 $$
]

Per phase solution: [image: 
$$ {\mathbf{I}}_a={I}_m\angle -\theta, \kern0.24em {\mathbf{I}}_b={I}_m\angle - 120{}^{\circ}-\theta, \kern0.24em {\mathbf{I}}_c={I}_m\angle 120{}^{\circ}-\theta $$
]


[image: 
$$ {I}_m={V}_m/Z $$
], [image: 
$$ \mathbf{Z}=Z\angle \theta $$
]

Line voltages (positive phase sequence): [image: 
$$ \begin{array}{l}{\mathbf{V}}_{ab}={\mathbf{V}}_{an}-{\mathbf{V}}_{bn}=\sqrt{3}{\mathbf{V}}_{an}\angle 30{}^{\circ},\\ {}{\mathbf{V}}_{bc}={\mathbf{V}}_{bn}-{\mathbf{V}}_{cn}=\sqrt{3}{\mathbf{V}}_{bn}\angle 30{}^{\circ},\\ {}{\mathbf{V}}_{ca}={\mathbf{V}}_{cn}-{\mathbf{V}}_{an}=\sqrt{3}{\mathbf{V}}_{cn}\angle 30{}^{\circ}\end{array} $$
]

Instantaneous/average load power: [image: 
$$ p(t)=P=\frac{3}{2}{V}_m{I}_m \cos \theta =3{V}_{\mathrm{rms}}{I}_{\mathrm{rms}} \cos \theta =\mathrm{const} $$
]

Apparent load power: [image: 
$$ S=\frac{3}{2}{V}_m{I}_m=3{V}_{\mathrm{rms}}{I}_{\mathrm{rms}} $$
]


	Some common wye distribution systems

	
                            [image: 
$$ \begin{array}{cc}\hfill 3\hbox{-} \mathrm{Phase},\;4\hbox{-} \mathrm{Wire}\;208\mathrm{Y}/120\;\mathrm{V}\;\left(\mathrm{US}\right)\ \hfill & \hfill \mathrm{Line}\kern0.5em :\kern0.5em {V}_{\mathrm{rms}}=208\kern0.5em \mathrm{V},\;{V}_{\mathrm{m}}=294\kern0.5em \mathrm{V}\hfill \\ {}\hfill \hfill & \hfill \mathrm{Phase}:\kern0.5em {V}_{\mathrm{rms}}=120\kern0.5em \mathrm{V},\;{V}_{\mathrm{m}}=170\kern0.5em \mathrm{V}\hfill \\ {}\hfill 3\hbox{-} \mathrm{Phase},\;4\hbox{-} \mathrm{Wire}\;400\mathrm{Y}/230\kern0.37em \mathrm{V}\;\left(\mathrm{E}\mathrm{U},\;\mathrm{Others}\right)\hfill & \hfill \mathrm{Line}\kern0.5em :\kern0.5em {V}_{\mathrm{rms}}=400\kern0.5em \mathrm{V},\;{V}_{\mathrm{m}}=566\kern0.5em \mathrm{V}\hfill \\ {}\hfill \hfill & \hfill \mathrm{Phase}:\kern0.5em {V}_{\mathrm{rms}}=230\kern0.5em \mathrm{V},\;{V}_{\mathrm{m}}=325\kern0.5em \mathrm{V}\hfill \end{array} $$
]
                          

	Wye load to delta load conversion

	
                            [image: A331468_1_En_11_Figak_HTML.gif]
                          

	Wye source to delta source conversion

	
                            [image: A331468_1_En_11_Figal_HTML.gif]
                          

[image: 
$$ {\mathbf{V}}_{ab}=\sqrt{3}{\mathbf{V}}_{an}\angle 30{}^{\circ},\kern1em {\mathbf{V}}_{bc}=\sqrt{3}{\mathbf{V}}_{bn}\angle 30{}^{\circ},\kern1em {\mathbf{V}}_{ca}=\sqrt{3}{\mathbf{V}}_{cn}\angle 30{}^{\circ} $$
] (positive phase sequence)




              

Problems
11.1 AC Power Types and Their Meaning

                  11.1.1 Instantaneous AC Power
                

                  11.1.2 Time-Averaged
                  
                    AC
                    
                    
                  
                  Power
                
Problem 11.1
An AC voltage signal across a resistive load with R = 10 Ω is given by:	A.
                            [image: 
$$ \upsilon (t)={V}_{\mathrm{m}} \cos 1000\kern0.1em t\kern0.5em \left[\mathrm{V}\right] $$
]
                          


 

	B.
                            [image: 
$$ \upsilon (t)={V}_{\mathrm{m}} \sin 60t\kern0.5em \left[\mathrm{V}\right] $$
]
                          


 

	C.
                            [image: 
$$ \upsilon (t)={V}_{\mathrm{m}} \cos \left(60t+45{}^{\circ}\right)\kern0.5em \left[\mathrm{V}\right] $$
]
                          


 





where [image: 
$$ {V}_{\mathrm{m}}=10\kern0.5em \mathrm{V} $$
]. Determine the average AC power into the load in every case.

Problem 11.2
An alternating current through a resistive load with R = 100 Ω is given by:	A.
                            [image: 
$$ i(t)={I}_{\mathrm{m}} \cos {10}^6\kern0.1em t\kern0.5em \left[\mathrm{V}\right] $$
]
                          


 

	B.
                            [image: 
$$ i(t)={I}_{\mathrm{m}} \cos 37t\kern0.5em \left[\mathrm{V}\right] $$
]
                          


 

	C.
                            [image: 
$$ i(t)={I}_{\mathrm{m}} \sin \left(2011t+45{}^{\circ}\right)\kern0.5em \left[\mathrm{V}\right] $$
]
                          


 





where [image: 
$$ {I}_{\mathrm{m}}=1\kern0.5em \mathrm{A} $$
]. Determine the average AC power into the load in every case.

Problem 11.3
An rms 

voltage across a resistive load with R = 100 Ω is given by:	A.
                            [image: 
$$ {V}_{\mathrm{rms}}=5\kern0.5em \mathrm{V} $$
]
                          


 

	B.
                            [image: 
$$ {V}_{\mathrm{rms}}=100\kern0.5em \mathrm{V} $$
]
                          


 

	C.
                            [image: 
$$ {V}_{\mathrm{rms}}=0\kern0.5em \mathrm{V} $$
]
                          


 





Determine the average power into the load in every case.

Problem 11.4
An rms 

current through a resistive load with R = 1 kΩ is given by:	A.
                            [image: 
$$ {I}_{\mathrm{rms}}=1\kern0.5em \mathrm{A} $$
]
                          


 

	B.
                            [image: 
$$ {I}_{\mathrm{rms}}=100\kern0.5em \upmu \mathrm{A} $$
]
                          


 

	C.
                            [image: 
$$ {I}_{\mathrm{rms}}=0\kern0.5em \mathrm{A} $$
]
                          


 





Determine the average power into the load in every case.

Problem 11.5
An AC 

voltage signal is given by:	A.
                            [image: 
$$ \upsilon (t)={V}_{\mathrm{m}} \cos \left(\omega \kern0.1em t+\varphi \right)\kern0.5em \left[\mathrm{V}\right] $$
]
                          


 

	B.
                            [image: 
$$ \upsilon (t)=1\kern0.1em \mathrm{V}+{V}_{\mathrm{m}} \cos \left(\omega \kern0.1em t+\varphi \right)\kern0.5em \left[\mathrm{V}\right] $$
]
                          


 

	C.
                            [image: 
$$ \upsilon (t)=1\kern0.5em \mathrm{V}-{V}_{\mathrm{m}} \sin \left(\omega \kern0.1em t+\varphi \right)\kern0.1em \left[\mathrm{V}\right] $$
]
                          


 





where [image: 
$$ {V}_{\mathrm{m}}=1\kern0.5em \mathrm{V} $$
], [image: 
$$ \omega =100\kern0.5em \mathrm{rad}/\mathrm{s} $$
], and [image: 
$$ \varphi =\pi /2\kern0.5em \mathrm{rad} $$
]. Find the time-average voltage [image: 
$$ \overline{\upsilon (t)} $$
] in every case.

Problem 11.6
Present a mathematical proof of the fact that the expression for the average power, [image: 
$$ P=\frac{V_{\mathrm{m}}^2}{2R} $$
], holds for an AC voltage signal given by [image: 
$$ \upsilon (t)={V}_{\mathrm{m}} \cos \left(\omega t+\varphi \right)\kern0.1em \left[\mathrm{V}\right] $$
] where φ is an arbitrary phase.


                  11.1.3
                  
                    Application
                    
                    
                  
                  Example: rms Voltages and AC Frequencies Around the World
                
Problem 11.7
A 100 Ω resistive load is connected to an AC wall plug in:	A.Peoples Republic of China


 

	B.India


 

	C.USA


 

	D.Germany


 





Determine the average power delivered to the

 load in every case. Also determine the rms load current in every case.

Problem 11.8
What do you think is a major	A.Advantage


 

	B.Disadvantage


 





of having a higher AC voltage?


                  11.1.4 rms Voltages for Arbitrary Periodic
                  
                    AC Signals
                    
                    
                  
                
Problem 11.9
Determine the average power delivered to a 100 Ω resistive load when the applied periodic voltage signal has the form [image: 
$$ \upsilon (t)=\left(5t+0.01\right)/T\kern0.5em \left[\mathrm{V}\right] $$
] over one period T = 0.01 s. This signal is known as the sawtooth or the triangular wave:	A.Use the analytical calculation of the rms voltage.


 

	B.Use the rms 

voltage found numerically, based on a MATLAB script or any software of your choice.


 






Problem 11.10
Determine the average power delivered to a 100 Ω resistive load when the applied periodic voltage has the form [image: 
$$ \upsilon (t)=\sqrt{t}/T\kern0.5em \left[\mathrm{V}\right] $$
] over one period T = 0.01 s:	A.Use the analytical calculation of the rms voltage.


 

	B.Use the rms voltage found numerically, based on a MATLAB script or any software of your choice.


 






Problem 11.11
Of the two periodic voltage signals shown in the figures below,

                    [image: A331468_1_En_11_Figd_HTML.gif]


                  
which signal delivers more average power into a resistive load? The periodic voltage on the top graph is the cosine function. Explain your answer and 

provide an analytical proof (find the rms voltages and the average power in every case).

Problem 11.12
Of the two periodic signals shown in the figures that follow, which signal delivers more average power into a resistive load? Explain your answer and provide:	A.An analytical proof—find the rms voltage and the average power in every case


 

	B.A numerical proof (use MATLAB or any software of your choice).


 





The periodic voltage on the top graph is the cosine function. The periodic voltage on the bottom graph is given by [image: 
$$ \upsilon (t)=3.2\times {10}^5{\left(t-0.005\right)}^2-4\kern0.5em \left[\mathrm{V}\right] $$
] over the time interval from 0 to T.

                    [image: A331468_1_En_11_Fige_HTML.gif]


                  

Problem 11.13
Of the two periodic signals shown in the figure that follows, which signal delivers more average power into a resistive load? 
                      
                      
                    The periodic voltage on the top graph is the cosine function. Explain your answer and provide:	A.An analytical proof—find the rms voltage and the average power in every case


 

	B.A numerical proof (use MATLAB or any software of your choice).


 






                    [image: A331468_1_En_11_Figf_HTML.gif]


                  


                  11.1.5 Average AC Power in Terms of Phasors:
                  
                    Power Angle
                    
                  
                

                  11.1.6
                  
                    Average Power for the
                    
                  
                  Resistor, Capacitor, and Inductor
                
Problem 11.14
The phasor voltage across a purely resistive load with the resistance R = 100 Ω is given by [image: 
$$ \mathbf{V}=-2-j1.5\kern0.75em \left[\mathrm{V}\right] $$
]. Find the average power delivered to the load.

Problem 11.15
The phasor current through a purely resistive load with the resistance R = 100 Ω is given by [image: 
$$ \mathbf{I}=-1-j0.5\kern0.75em \left[\mathrm{A}\right] $$
]. Find the average power delivered to the load.

Problem 11.16
The phasor voltage across an AC load and the phasor current through the same AC load are given by:[image: 
$$ \begin{array}{l} \mathbf{V}=-3+j3\kern1em \left[\mathrm{V}\right]\hfill \\ {} \mathbf{I} = +j0.1\kern1.4em \left[\mathrm{A}\right]\hfill \end{array} $$
]



	A.Find the average power delivered to the load analytically.


 

	B.Find the
 average power delivered to the load numerically using MATLAB or any software of your choice.


 






Problem 11.17
Repeat the previous problem for phasor voltage and phasor current in the form:[image: 
$$ \begin{array}{l} \mathbf{V}=2+j2\kern1em \left[\mathrm{V}\right]\\ {} \mathbf{I} = 1-j1\kern1.06em \left[\mathrm{A}\right]\end{array} $$
]





Problem 11.18
Express the average power given by [image: 
$$ P=\frac{\mathrm{Re}\left(\mathbf{V}\cdot {\mathbf{I}}^{*}\right)}{2} $$
] in terms of the following three quantities: magnitude of the phasor voltage, |V|; the impedance magnitude, |Z|; and the real part of the impedance, Re(Z).

Problem 11.19
Determine the average power delivered to the load circuit between terminals a and b shown in the figure that follows. The
 AC angular frequency is 100 rad/s.

                    [image: A331468_1_En_11_Figg_HTML.gif]


                  

Problem 11.20
Determine the average power delivered to the load circuit between terminals a and b shown in the figure that follows. The AC angular frequency is 1000 rad/s.

                    [image: A331468_1_En_11_Figh_HTML.gif]


                  

Problem 11.21
Determine the average power delivered to the load circuit shown in the figure below. The AC signal frequency is 106 Hz.

                    [image: A331468_1_En_11_Figi_HTML.gif]


                  


                  11.1.7. Average Power, Reactive Power, and Apparent Power
                

                  11.1.8.
                  
                    Power Triangle
                    
                  
                
Problem 11.22
Determine the resistance and the reactance of the circuit blocks (the load) shown in the figure. The AC angular frequency is 1000 rad/s.

                    [image: A331468_1_En_11_Figj_HTML.gif]


                  

Problem 11.23
Determine the resistance and the reactance of the circuit block (the load) shown in the figure in terms of R, L, and C in a general form. The AC angular frequency is ω.

                    [image: A331468_1_En_11_Figk_HTML.gif]


                  

Problem 11.24
Write the expressions (and show units) for the average power P and the reactive power Q in terms of:	A.Phasor current I through the load and the load resistance R and the reactance X



 

	B.Phasor voltage V across the load, the load impedance magnitude |Z|, and the impedance phase (or the power angle) θ



 






Problem 11.25
For the 
circuit shown in the figure with the parameters [image: 
$$ \begin{array}{l}{V}_{\mathrm{m}}=170\kern0.5em \mathrm{V},\omega =377\kern0.5em \mathrm{rad}/\mathrm{s},\ \\ {}L=26.5\kern0.5em \mathrm{mH},\kern1em R=25\kern0.5em \Omega \end{array} $$
]:	A.Determine the power angle and the power factor.


 

	B.Determine the average (or true) power and the reactive power for the inductive load shown in the figure.


 

	C.Construct the corresponding power triangle.


 






                    [image: A331468_1_En_11_Figl_HTML.gif]


                  

                    [image: A331468_1_En_11_Figm_HTML.gif]


                  

Problem 11.26
For the circuit shown in the figure with the parameters [image: 
$$ \begin{array}{l}{V}_{\mathrm{m}}=170\kern0.5em \mathrm{V},\kern1em \omega =377\kern0.5em \mathrm{rad}/\mathrm{s},\ \\ {}C=500\kern0.5em \upmu \mathrm{F},\kern1em R=10\kern0.5em \Omega \end{array} $$
]:	A.Determine the power angle and the power factor.


 

	B.Determine the average (or true) power and the reactive power for the capacitive load shown in the figure.


 

	C.
Construct 
the corresponding power triangle.


 






                    [image: A331468_1_En_11_Fign_HTML.gif]


                  

                    [image: A331468_1_En_11_Figo_HTML.gif]


                  

Problem 11.27
For the circuit shown in the figure with the parameters [image: 
$$ \begin{array}{l} {V}_{\mathrm{m}}=170\kern0.3em \mathrm{V},\kern3pt \omega =377\kern0.3em \mathrm{rad}/\mathrm{s},\kern3pt L=14.07\kern0.35em \mathrm{mH},C=500\kern0.5em \upmu \mathrm{F},R=10\kern0.5em \Omega \end{array} $$
]:	A.Determine the power angle and the power factor.


 

	B.Determine the average (or true) power and the reactive power for the complex load shown in the figure.


 

	C.Construct the corresponding power triangle.


 






                    [image: A331468_1_En_11_Figp_HTML.gif]


                  

                    [image: A331468_1_En_11_Figq_HTML.gif]


                  


11.2 Power Factor Correction: 
                    
                  Maximum Power Efficiency and Maximum Power Transfer

                  11.2.1 Power Factor Correction
                

                  11.2.3 Principle
                  
                    of
                    
                    
                  
                  Maximum Power Efficiency for AC Circuits
                
Problem 11.28
Correct the power factor for the inductive load shown in the figure below. The circuit parameters are [image: 
$$ {V}_{\mathrm{m}}=170\kern0.5em \mathrm{V},\omega =377\kern0.5em \mathrm{rad}/\mathrm{s} $$
] and [image: 
$$ L=53\kern0.5em \mathrm{mH},R=10\kern0.5em \Omega $$
]:	A.Present the circuit diagram of the modified load and determine the required capacitance.


 

	B.Determine average (true) power, reactive power, power factor, and amplitude of the circuit current before the power factor correction.


 

	C.Determine average (true) power, reactive power, power factor, and amplitude of the circuit current after 

the power factor correction.


 






                    [image: A331468_1_En_11_Figr_HTML.gif]


                  

Problem 11.29
Correct the power factor for the capacitive load shown in the figure that follows. The circuit parameters are [image: 
$$ {V}_{\mathrm{m}}=170\kern0.5em \mathrm{V},\kern1em \omega =377\kern0.5em \mathrm{rad}/\mathrm{s} $$
] and [image: 
$$ C=265\kern0.5em \upmu \mathrm{F},\kern1em R=10\kern0.5em \Omega $$
]:	A.Present the circuit diagram of the modified load and determine the required inductance.


 

	B.Determine average (true) power, reactive power, power factor, and amplitude of the circuit current before the power factor correction.


 






                    [image: A331468_1_En_11_Figs_HTML.gif]


                  

Problem 11.30
A whip monopole antenna used in US Coast Guard ships has an equivalent electric circuit shown in the figure of the previous problem. Its (radiation) resistance is 1 Ω, and the reactance is −j1000 Ω. By modifying the 

antenna circuit with a lumped inductor, it is required to make the antenna impedance real and as large as possible:	A.Present the circuit diagram of the modified load


 

	B.Determine the required impedance of the inductor.


 







                  11.2.4
                  
                    Principle
                    
                    
                  
                  of Maximum Power Transfer for AC Circuits
                
Problem 11.31
Describe in your own words the difference between the concepts of maximum power efficiency and maximum power transfer for AC circuits.

Problem 11.32
A generator’s impedance is [image: 
$$ 50\angle 30{}^{\circ}\kern1em \left[\Omega \right] $$
]. What should the load impedance be to allow the maximum power transfer to the load?

Problem 11.33

                    	A.A generator’s 

impedance is 50 Ω. The load impedance is 1 + j50 [Ω]. What percentage of the maximum available power (at the load impedance of 50 Ω) is transferred to the load?


 

	B.Repeat the same task for the load impedance of 1 − j50 [Ω].


 

	C.Repeat the same task for the load impedance of 5 + j50 [Ω].


 




                  

Hint: Derive the general expression for the power ratio first and then plug in the numbers.


11.3 AC Power Distribution: Balanced Three-Phase Power Distribution System

                  11.3.1 AC Power Distribution Systems
                

                  11.3.2
                  
                    Phase Voltages
                    
                  
                  : Phase Sequence
                
Problem 11.34
Draw generic circuits for the following representative AC power distribution systems:	A.Single-phase two-wire system


 

	B.Single-phase three-wire system


 

	C.Two-phase three-wire system


 

	D.Three-phase four-wire system


 





Show loads and phasor 
voltages with the corresponding phases.

Problem 11.35
Determine the phase sequence for the phase voltages given by:[image: 
$$ \begin{array}{l} {\upsilon}_{\mathrm{an}}(t)=240 \cos \left(314\kern0.1em t+75{}^{\circ}\right)\kern0.5em \left[\mathrm{V}\right],\\ {} {\upsilon}_{\mathrm{bn}}(t)=240 \cos \left(314t-165{}^{\circ}\right)\kern0.5em \left[\mathrm{V}\right],\\ {} {\upsilon}_{\mathrm{cn}}(t)=240 \cos \left(314t-45{}^{\circ}\right)\kern0.5em \left[\mathrm{V}\right].\end{array} $$
]




To simplify the solution, construct the corresponding phasor diagram in the figure below:

                    [image: A331468_1_En_11_Figt_HTML.gif]


                  

Problem 11.36
Given [image: 
$$ {\mathbf{V}}_{\mathrm{bn}}=120\angle 45{}^{\circ}\left[\mathrm{V}\right] $$
], find V
an and V
cn assuming:	A.The positive 

abc phase sequence


 

	B.The negative 

acb phase sequence


 





Express your result in phasor form. Make sure that the phase ranges from −180° to +180°. To check the solution, you may want to use the corresponding 
phasor diagram shown in the figure for the previous problem.


                  11.3.3 Wye (Y)
                  
                    Source
                    
                  
                  and Load Configurations for Three-phase Circuits
                

                  11.3.4 Application: Examples of Three-phase Source and the Load
                

                  11.3.5 Solution for the Balanced Three-Phase Wye-Wye Circuit
                

                  11.3.6 Removing the
                  
                    Neutral Wire
                    
                  
                  in Long-Distance Balanced High-power Transmission
                
Problem 11.37

                    	A.Draw the circuit diagram for a generic three-phase four-wire balanced wye-wye power distribution system.


 

	B.Label phase voltages and phase impedances (
                              
                            load impedances per
 phase).


 

	C.Label line currents.


 




                  

Problem 11.38
A three-phase circuit is shown in the figure that follows:	A.Is it a balanced wye-wye circuit?


 

	B.If not, show your corrections on the figure.


 






                    [image: A331468_1_En_11_Figu_HTML.gif]


                  

Problem 11.39
Repeat the previous problem for the circuit shown in the figure below:

                    [image: A331468_1_En_11_Figv_HTML.gif]


                  

Problem 11.40
Repeat Problem 11.38
 for the circuits shown in the figure that follows:

                    [image: A331468_1_En_11_Figw_HTML.gif]


                  

Problem 11.41
Prove that Eq. (11.28) of this chapter for line voltages also holds for the 

negative phase sequence to within the substitution [image: 
$$ 30{}^{\circ}\to -30{}^{\circ} $$
].

Problem 11.42
The local electric service in the European Union is provided by a three-phase four-wire abcn wye system with the line voltages equal to 400 V rms each (so-called Niederspannungsnetz):	A.Determine the rms phase voltages.


 

	B.By connecting terminals abcn in any sequence of your choice, could you in principle obtain the rms voltages higher than 400 V?


 






Problem 11.43
Determine line 
currents in the balanced three-phase wye-wye circuit shown in the figure that follows. You are given the acb sequence of phase voltages [image: 
$$ {\mathbf{V}}_{\mathrm{an}}=170\angle 0{}^{\circ}\kern0.5em \left[\mathrm{V}\right] $$
], [image: 
$$ {\mathbf{V}}_{\mathrm{bn}}=170\angle 120{}^{\circ}\kern0.35em \left[\mathrm{V}\right] $$
], [image: 
$$ {\mathbf{V}}_{\mathrm{bn}}=170\angle  - 120{}^{\circ}\kern0.35em \left[\mathrm{V}\right] $$
], and load impedance per phase, [image: 
$$ \mathbf{Z}=8 + j30\kern0.5em \Omega $$
].
Plot phasor currents on the phasor diagram that follows.

                    [image: A331468_1_En_11_Figx_HTML.gif]


                  

                    [image: A331468_1_En_11_Figy_HTML.gif]


                  

Problem 11.44
In the balanced three-phase wye-wye circuit shown in the figure that follows, the power line resistance and inductance are additionally included into
consideration. The three-phase source operates at 60 Hz; [image: 
$$ R=2\kern0.5em \Omega $$
], [image: 
$$ L=9.6\kern0.5em \mathrm{mH} $$
]. You are given the abc sequence of phase voltages [image: 
$$ {\mathbf{V}}_{\mathrm{an}}=170\angle 0{}^{\circ}\kern0.1em \left[\mathrm{V}\right] $$
], [image: 
$$ {\mathbf{V}}_{\mathrm{bn}}=170\angle -120{}^{\circ}\left[\mathrm{V}\right] $$
], [image: 
$$ {\mathbf{V}}_{\mathrm{bn}}=170\angle 120{}^{\circ}\kern0.5em \left[\mathrm{V}\right] $$
], and load impedance per phase, [image: 
$$ \mathbf{Z}=7 + j30\kern0.5em \Omega $$
].	A.Determine line currents.


 

	B.Plot phasor line currents on the phasor diagram to the previous problem.


 






                    [image: A331468_1_En_11_Figz_HTML.gif]


                  


11.4 Power in Balanced Three-
Phase
 Systems: Delta-connected Three-Phase Circuits

                  11.4.1 Intantaneous Power
                

                  11.4.2 Average Power, Reactive Power, and Apparent Power
                
Problem 11.45
In a three-phase balanced wye-wye system, the rms phase voltages are 120 V, and the rms line currents are 10 A. The impedance has the power angle of [image: 
$$ \theta =75{}^{\circ} $$
]. Find:	1.The instantaneous load power


 

	2.The average load power


 






Problem 11.46
In a three-phase balanced wye-wye system, the rms line voltages are 400 V, and the rms line currents are 10 A. The impedance has the power angle of [image: 
$$ \theta =60{}^{\circ} $$
]. Find:	1.The instantaneous load power


 

	2.The average load power


 






Problem 11.47
In the three-phase system shown in the figure that follows, [image: 
$$ \mathbf{Z}=40\angle 60{}^{\circ} $$
]. The sources have the relative phases [image: 
$$ 0,\kern0.5em -120{}^{\circ},\kern0.5em +120{}^{\circ} $$
]. The rms line voltages are 208 V. Determine:	A.The type of the three-phase system


 

	B.Instantaneous power delivered to the three-phase load


 

	C.Average power delivered to the three-phase load


 






                    [image: A331468_1_En_11_Figaa_HTML.gif]


                  

Problem 11.48
A balanced wye-wye three-phase system in the figure that follows uses lossless transmission lines and operates at 60 Hz. The 
line-to-neutral voltages have the amplitudes of 170 V, [image: 
$$ {V}_{\mathrm{m}}=170\kern0.5em \mathrm{V} $$
]. Every 
phase impedance is a 92-mH inductance in series with a 20 Ω resistance. Find the instantaneous load power.

                    [image: A331468_1_En_11_Figab_HTML.gif]


                  

Problem 11.49
In the previous problem:	A.Determine the load average power, reactive power, and the apparent power.


 

	B.Do these powers coincide with the corresponding source measures?


 






Problem 11.50
A three-phase induction motor is modeled by a balanced wye load. The motor (active) power is 2.5 kW; the line current is 10 A rms, and the phase voltage of a three-phase wye source is 120 V rms. Determine the power factor of the motor.

Problem 11.51
In the previous problem, the motor (active) power is 9 kW; the line current is 15 A rms, and the line voltage of a three-phase wye source is 400 V rms. Determine the power factor of the motor.


                  11.4.4
                  
                    Balanced Delta-Connected Load
                    
                  
                

                  11.4.5
                  
                    Balanced Delta-Connected Source
                    
                  
                
Problem 11.52
A three-phase balanced wye-wye system is shown in the figure that follows. Its delta-delta equivalent is sought, which is shown in the same figure. For the delta-delta system, write the corresponding voltage and impedance values in the 
phasor form close to every circuit element.

                    [image: A331468_1_En_11_Figac_HTML.gif]


                  

Problem 11.53
A three-phase balanced delta-delta system is shown in the figure that follows. Its wye-wye equivalent is sought, which is shown in the same figure. For the wye-wye system, write the corresponding voltage and impedance values in the phasor form close to every circuit element.[image: A331468_1_En_11_Figad_HTML.gif]




Problem 11.54
A balanced delta-delta system shown in the figure below operates at 50 Hz. The phase voltages of the delta source, V
ab, V
bc, V
ca, have the amplitudes of [image: 
$$ {V}_{\mathrm{m}}=563.4\kern0.5em \mathrm{V} $$
] each. Every 
phase impedance is a 0.21 H inductance in series with a 38-Ω resistance:	A.Find the average load power,


 

	B.Find the instantaneous load power,


 

	C.Find the apparent load power.


 






                    [image: A331468_1_En_11_Figae_HTML.gif]


                  

Problem 11.55

A 
balanced wye-delta system shown in the figure below operates at 60 Hz. The phase voltages of the wye source, V
an, V
bn, V
cn, have the amplitudes of [image: 
$$ {V}_{\mathrm{m}}=170\kern0.5em \mathrm{V} $$
] each. Each phase impedance is a 0.18 H inductance in series with a 90 Ω resistance:	A.Find the average load power,


 

	B.Find the instantaneous load power,


 

	C.Find the apparent load power.


 






                    [image: A331468_1_En_11_Figaf_HTML.gif]
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Overview

              Prerequisites:
	Knowledge of complex arithmetic

	Knowledge of basic circuit analysis (Chapters 3 and 4)

	Knowledge of self- and mutual inductances (Chapter 6)

	Knowledge of phasor/impedance method for AC circuit analysis (Chapter 8) and of basic AC power analysis (Chapter 11)




              Objectives of Section 12.1:
	Derive the ideal transformer model from the first principles

	Understand the role of the ideal magnetic core

	Understand the role of Faraday’s law and Ampere’s law

	Prepare the background for introducing magnetic circuits

	Understand and apply the dot convention

	Relate ideal transformer model to a model with dependent sources




              Objectives of Section 12.2:
	Be able to analyze electric circuits with ideal transformer

	Learn about load and source reflections

	Learn about impedance matching via transformers

	Learn about electric power transfer via transformers




              Objectives of Section 12.3:
	Derive equations for useful transformer types—autotransformer, multiwinding transformer, and center-tapped transformer—from the first principles

	Understand the role of the center-tapped transformer for single-ended to differential transformation and for power division




              Objectives of Section 12.4:
	Understand the physical background of the Steinmetz model and relate the model parameters to real transformers

	Be able to analyze the nonideal transformer model

	Define transformer voltage regulation and power efficiency

	Briefly discuss the high-frequency transformer model




              Objectives of Section 12.5:
	Introduce the model of two coupled inductors from the first principles

	Learn how to analyze electric circuits with coupled inductors

	Learn about the useful conversion to the T-network of uncoupled inductances

	Obtain the basic exposure to wireless inductive power transfer including its major features and challenges




              Application examples:
	Electric power transfer via transformers

	Wireless inductive power transfer

	Coupling of nearby magnetic radiators




            

12.1 Ideal Transformer as a Linear Passive Circuit Element
12.1.1 Electric Transformer
General
An electric transformer is a simple and versatile device, which targets AC power transfer

 from one electric circuit to another. These circuits are coupled via a time-varying magnetic flux linking two or more coils. There is no direct electric connection between the coils. The transformer cannot transfer power between the DC circuits. Analysis of transformers involves many principles that are basic to the understanding of electric machines. Transformers are primarily used

 to:	1.Change the voltage level in power electronics AC circuits.


 

	2.Insulate one AC (or RF) circuit from another (
                            isolation transformers
                            
                          ).


 

	3.Match the impedance of the source and the load in electronic circuits.


 

	4.Measure AC voltages and currents (
                            instrumentation transformers
                            
                          ).


 





As another everyday application example, we mention various DC power supplies (AC to DC converters or adapters), both switching and linear. These DC supplies power PCs, printers, modems, cordless phones, video game consoles, etc. at your home. Low-frequency (bulky) or high-frequency (smaller) transformers are very important parts of these supplies, irrespective of their particular construction.

Function
Although the transformer typically consists of two coupled inductors—see Fig. 12.1—its function

 is principally different from that of the familiar inductance. While the inductance is an energy-storage (and energy-release) circuit element, the ideal transformer, as a new circuit element, never stores any instantaneous energy. It does not possess any inductance (or impedance in general) either.[image: A331468_1_En_12_Fig1_HTML.gif]
Fig. 12.1Construction of an ideal electric transformer. 

The negligibly small exciting current is not shown. In all three cases, the magnetic flux Φ(t) in the core remains the same







Approach
The model a two-winding electric transformer introduced in this section does yet not use the concept of a 
                    magnetic circuit
                    
                    
                  . Instead, we accurately formulate and employ Faraday’s law and Ampere’s law directly. The same transformer model in the framework of magnetic circuits is revisited in the next chapter. Through the text, we use opposite reference directions for the transformer currents; the equal directions are also discussed in the text.


12.1.2 
                                Ideal Open-Circuited Transformer

: Faraday’s Law of Induction
We will perform transformer analysis

 in several steps illustrated in Fig. 12.1.
Using Faraday’s Law of Induction
Transformer construction can start with a 
single lossless inductor

 with a closed magnetic core directly connected to an AC voltage source, see Fig. 12.1a. The inductor is a coil with N
1 turns—the 
                    primary winding
                    
                    
                   of the transformer. Its inductance neglecting the flux leakage effect will be denoted here by L
m. By KVL,[image: 
$$ {\upsilon}_1(t)={\upsilon}_{\mathrm{S}}(t) $$
]

 (12.1)

The primary winding establishes a finite time-varying magnetic flux [image: 
$$ \Phi (t)= AB(t) $$
] in the core. Here, B is the flux density and A is the core cross section. According to Faraday’s law of induction—see Eq. (6.​19) and (6.​33)—this flux is uniquely determined by the winding voltage (which is equal to the source voltage) in the form[image: 
$$ {\upsilon}_1(t)={N}_1\frac{d\Phi (t)}{dt} $$
]

 (12.2)




Exciting Current and Inductance

 for the Ideal Magnetic Core
An inductor current i
Φ(t) which would be present in Fig. 12.1a is called the 
                    exciting current
                    
                   (or magnetizing current). Accordingly, inductance L
m is called the 
                    magnetizing inductance
                    
                  . The magnetizing inductance is found using Eq. (6.​23). The exciting current is then found using Eq. (6.​19) of the same chapter, which is valid in both static and dynamic cases. This gives[image: 
$$ {L}_{\mathrm{m}}=\frac{\mu_0{\mu}_{\mathrm{r}}A{N}_1^2}{l}, {i}_{\Phi}(t)={N}_1\frac{\Phi (t)}{L_{\mathrm{m}}} $$
]

 (12.3)

where A is the core cross section shown in Fig. 12.1. When the relative magnetic permeability μ
r of the core is very high, the coil inductance L
m is very large. Therefore, the corresponding inductor current i
Φ(t) is quite small. 
                    
                    
                  An ideal magnetic core assumes that [image: 
$$ {\mu}_{\mathrm{r}}\to \infty $$
]. Therefore, according to Eq. (12.3),[image: 
$$ {L}_{\mathrm{m}}\to \infty,  {i}_{\Phi}(t)=0, {\mu}_{\mathrm{r}}\to \infty $$
]

 (12.4)

Equation (12.4) corresponds to the ideal transformer model. The primary winding becomes an open circuit of infinite inductance as shown in Fig. 12.1b. However, the finite magnetic flux Φ(t) is still established in the core. There is no contradiction here since a negligible exciting current i
Φ(t) is necessary to establish the finite flux Φ(t) in a core with the infinitely high permeability (infinitely high inductance). The situation is somewhat similar to an operational amplifier with the negative feedback where the negligible input different voltage controls the large-signal amplifier operation.

Using Faraday’s Law a Second Time: Relation Between Transformer Voltages



As a next step, another coil with N
2 turns—the secondary winding of the transformer—can be added as shown in Fig. 12.1c. The core flux Φ(t) also links the secondary winding and creates an open-circuit voltage

 at its terminals. No flux leakage in air is permitted in the ideal model. Faraday’s law is applied a second time, which yields[image: 
$$ {\upsilon}_2(t)={N}_2\frac{d\Phi (t)}{dt} $$
]

 (12.5)

The plus sign implies the dot convention to be discussed shortly. From Eqs. (12.2) and (12.5), the voltage ratio becomes[image: 
$$ \frac{\upsilon_2}{\upsilon_1}=\frac{N_2}{N_1} $$
]

 (12.6)

at any time instant. Thus, the voltage ratio is the ratio of respective turns. The equivalent circuit of the open-circuited transformer is that of Fig. 12.1d. 
                    
                    
                  The secondary winding operates as a dependent voltage-controlled voltage source. Thus far, it has zero effect on the circuit connected to the primary winding.
Exercise 12.1
You are given the source voltage in the form [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=170 \cos \left(2\pi 60t\right) \left[\mathrm{V}\right] $$
], the number of turns of the primary winding [image: 
$$ {N}_1=200 $$
], the finite relative permeability of the magnetic core, [image: 
$$ {\mu}_{\mathrm{r}}=5000 $$
], the coil length of the primary winding of 0.1 m, and the core cross-section of [image: 
$$ A=0.001 {\mathrm{m}}^2 $$
].	A.Find the exciting current (no-load current) in the primary winding of this non-ideal transformer. Justify the ideal-transformer approximation Eq. (12.4).


 

	B.Reduce N
1 from 200 to 20 and repeat the solution.


 






                    Answers:
                    	A.
[image: 
$$ {i}_{\Phi}(t)=179 \sin \left(2\pi 60t\right) \left[\mathrm{m}\mathrm{A}\right] $$
]. The current amplitude and its rms value are much less than typical current amplitudes of 5 A (3.54 A rms) observed in residential AC circuits. The ideal-transformer approximation is justified.


 

	B.
[image: 
$$ {i}_{\Phi}(t)=17.9 \sin \left(2\pi 60t\right) \left[\mathrm{A}\right] $$
]. The current amplitude is quite high; the 

ideal-transformer approximation is severely violated.


 




                  



                  Dot Convention


                
Windings of transformers are marked to indicate the 
                    relative
                    
                  
voltage polarities of voltages υ
1 and υ
2. We indicate the relative polarities by the dot convention. Namely, voltages υ
1 and υ
2 with the positive polarity at the 
                    dotted terminals
                    
                   will be strictly in phase, see Fig. 12.1c. It does not matter where the dots are exactly located. Yet another meaningful definition of the dotted terminals is as follows. Currents entering the dotted terminals (which means the passive reference configuration not to be confused with Fig. 12.1e) would produce fluxes in the same direction in the core that forms the common magnetic path. If the windings are visually seen, the polarities are determined by examining clockwise or counterclockwise coil winding directions. Otherwise, an experiment could be employed, with a function generator and an oscilloscope. Emphasize that the dot convention only determines the voltage polarity; it has nothing in common with large currents which can flow in a loaded transformer to be discussed shortly.
Exercise 12.2
In Fig. 12.1c, the winding direction of the secondary winding is reversed. Where should the dot be placed?

Answer: To the lower end of the secondary winding.



12.1.3 Appearance of Transformer Currents



Finally, a load resistance R is connected 

across the terminals of the secondary winding, see Fig. 12.1e, f. As a result, a large current i
2(t) will flow in the secondary winding, which is given by Ohm’s law

:[image: 
$$ {i}_2(t)=\frac{\upsilon_2(t)}{R} $$
]

 (12.7)


In this case, the transformer performs its major function of power transfer from the source to the load. When a large current i
2(t) starts to flow, it will drastically change the magnetic field in the core, core flux Φ(t), and consequently voltage υ
1(t) according to Eq. (12.2). However, any extra change in υ
1(t) is in contradiction with KVL stated by Eq. (12.1). Therefore, another large current i
1(t) in the primary winding will immediately start to flow too, in order to undo this change. In other words, current i
2 “calls current i
1 into existence.” Ampere’s law is used to establish the quantitative relation between transformer currents i
1 and i
2 at any time instant and in any circuit, not necessarily the circuit from Fig. 12.1.

12.1.4 
                Ampere’s Law

                
                  
                  
                
              

Ampere’s law does not operate in terms of the magnetic flux Φ (or flux density [image: 
$$ \overrightarrow{B} $$
]), but rather in terms of the magnetic field [image: 
$$ \overrightarrow{H} $$
] defined in Section 6.​1.​7. Consider a closed contour abcd in Fig. 12.2. Ampere’s law expresses the field created by a linked current i via a contour integral:[image: A331468_1_En_12_Fig2_HTML.gif]
Fig. 12.2
                                                Ampere’s law for a 


                          
                          
                        transformer




[image: 
$$ {\displaystyle \underset{abcd}{\oint}\overrightarrow{H}\cdot d\overrightarrow{l}}=i $$
]

 (12.8a)

It does not matter whether the magnetic core is present or not. The “linked current” i is the total current that passes through a surface bounded by the contour in 


                  
                  
                Fig. 12.2. The direction in which the current traverses the contour and reference direction of the loop abcd (clockwise in Fig. 12.2) are related by the right-hand rule. For the contour abcd in Fig. 12.2, the field in the magnetic core is a constant and is parallel to the contour. In this case, Eq. (12.8a) is simplified as[image: 
$$ lH=i $$
]

 (12.8b)


where [image: 
$$ l={l}_{\mathrm{ab}}+{l}_{\mathrm{bc}}+{l}_{\mathrm{cd}}+{l}_{\mathrm{da}} $$
] is the total contour length. Ampere’s law is further simplified for time-varying currents linking the ideal magnetic core with [image: 
$$ {\mu}_{\mathrm{r}}\to \infty $$
]. Note the magnetic flux in the core is given by [image: 
$$ \Phi (t)= AB(t)=A{\mu}_0{\mu}_{\mathrm{r}}H(t) $$
]. When [image: 
$$ {\mu}_{\mathrm{r}}\to \infty $$
], any finite magnetic field H(t) would create an infinite flux in the core and thus infinite voltages across the coils, which is impossible. Therefore, we must set [image: 
$$ H=0 $$
] in Eq. (12.8b) and obtain[image: 
$$ i=0 \mathrm{f}\mathrm{o}\mathrm{r} {\mu}_{\mathrm{r}}\to \infty $$
]

 (12.8c)

In order words, for the ideal magnetic core, the time-varying linked current must be zero.

12.1.5 Ideal Loaded Transformer
For the transformer in Fig. 12.2, the linked current is given by[image: 
$$ i={N}_1{i}_1-{N}_2{i}_2 $$
]

 (12.9)

since current i
1 is inflowing and current i
2 is outflowing through the surface bounded by the contour

. Therefore, according to Eq. (12.8c)[image: 
$$ {N}_1{i}_1-{N}_2{i}_2=0\Rightarrow \frac{i_1}{i_2}=\frac{N_2}{N_1} $$
]

 (12.10)

at any time instant. Equation (12.9) completes the analysis of the ideal transformer. It states that the current ratio is the inverse turns ratio. This result does not depend on the particular value of the load resistance in Fig. 12.1f. It is perhaps even more important that Eq. (12.10) does not require the source to be directly connected to the primary. Thus, the ideal transformer as a new passive linear circuit element is completely described by Eqs. (12.6) and (12.10) (
                  ideal transformer equations
                  
                ), respectively. The corresponding circuit model may be expressed in terms of two dependent sources—the voltage-controlled voltage source in the secondary and the current-controlled current source in the primary—see Fig. 12.1f.
Typical Transformer Circuit
Figure 12.3a shows a typical single-phase transformer circuit along with the ideal transformer 
                    circuit symbol
                    
                    
                   (with a magnetic core). The transformer acts as a 
linear interface

 between an arbitrary AC source circuit and an arbitrary AC load circuit. Both the source and the load do not have to be linear. Figure 12.3b shows the corresponding dependent-source model. Such a model may be quite useful in transformer circuits where extra coupling between the source and the load exists, for example, via a capacitor. This may occur in high-frequency transformers.[image: A331468_1_En_12_Fig3_HTML.gif]
Fig. 12.3Transformer interfacing a source and a load

 and its model in terms of dependent sources







                  Power Conservation


                
Combining Eqs. (12.6) and (12.10), we obtain for the instantaneous power delivered to the load[image: 
$$ {p}_2={\upsilon}_2{i}_2=\frac{N_2}{N_1} \frac{N_1}{N_2}\ {\upsilon}_1{i}_1={\upsilon}_1{i}_1={p}_1 $$
]

 (12.11)


Equation (12.11) states that, in the absence of losses, instantaneous (and indeed average) power is conserved during voltage/current transformation; there is no net gain or loss of power for an ideal transformer. As soon as power is consumed by the load, the same power is drawn from the source. The transformer, therefore, provides a physical isolation between the load and the source while maintaining electric power transfer. Note that Fig. 12.3b has similarities with the equivalent amplifier circuit model. If the transformer may be used as a voltage booster, why do we need the semiconductor amplifier then? The answer is that it is the power that counts. When the transformed voltage increases, the transformed current decreases so that the output power remains the same. An amplifier, on the other hand, boosts the total power, which is true amplification of the source signal. Still, the transformer may be used at the amplifier 

output to provide a significant extra voltage (but not power) gain.


                  Stored Energy


                
The ideal loaded transformer in Fig. 12.1e, f does not possess any stored magnetic-field energy. The instantaneous magnetic-field energy stored in a magnetic core of volume V is given by Eq. (6.​18):[image: 
$$ E(t)=\frac{1}{\mu_0{\mu}_{\mathrm{r}}}{\displaystyle \underset{V}{\int}\overrightarrow{B}(t)\cdot \overrightarrow{B}(t)d\upsilon =\frac{Al}{\mu_0{\mu}_{\mathrm{r}}}{B}^2(t)=\frac{l}{A{\mu}_0{\mu}_{\mathrm{r}}}{\Phi}^2}(t) $$
]

 (12.12)

The energy becomes exactly zero when [image: 
$$ {\mu}_{\mathrm{r}}\to \infty $$
]. Here, l is the length of the centerline of the magnetic core and A is its cross section. The same proof is valid for the open-circuited ideal transformer.
Exercise 12.3

Under conditions of Exercise 12.1, determine the instantaneous stored energy of a non-ideal transformer given that the core centerline length is 30 cm.

                    Answers:
                    	A.
[image: 
$$ E(t)=0.24{ \sin}^2\left(2\pi 60t\right) \left[\mathrm{J}\right] $$
], which is a small value.


 

	B.
[image: 
$$ E(t)=24{ \sin}^2\left(2\pi 60t\right) \left[\mathrm{J}\right] $$
], which is a quite significant number.


 




                  

Exercise 12.4
In the circuit in Fig. 12.1f, [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=325 \cos \left(2\pi 50t\right) \left[\mathrm{V}\right] $$
]. For a 400 Ω resistive load, determine load voltage, load current, and average power 

delivered to the load when the turns ratio is equal to 10:1, 1:1, and 1:10.

                    Answers:
                  
For 1:10 turns ratio:[image: 
$$ {\upsilon}_{\mathrm{R}}(t)=32.5 \cos \left(2\pi 50t\right) \left[\mathrm{V}\right],\ {i}_{\mathrm{R}}(t)=0.08125 \cos \left(2\pi 50t\right) \left[\mathrm{A}\right],\ P=1.320 \mathrm{W} $$
]


For 1:1 turns ratio:[image: 
$$ {\upsilon}_{\mathrm{R}}(t)=325 \cos \left(2\pi 50t\right) \left[\mathrm{V}\right],\ {i}_{\mathrm{R}}(t)=0.8125 \cos \left(2\pi 50t\right) \left[\mathrm{A}\right],\ P=132.0 \mathrm{W} $$
]


For 10:1 turns ratio:[image: 
$$ {\upsilon}_{\mathrm{R}}(t)=3250 \cos \left(2\pi 50t\right) \left[\mathrm{V}\right],\ {i}_{\mathrm{R}}(t)=8.125 \cos \left(2\pi 50t\right) \left[\mathrm{A}\right],\ P=13.2 \mathrm{kW} $$
]







12.1.6 Ideal Transformer Versus Real Transformer: Transformer Terminology
Ideal Transformer Versus Real Transformer



The major assumptions of the ideal transformer discussed above are:	1.Infinite permeability of the magnetic core and no magnetic flux leakage from the core in air.


 

	2.No coil resistance loss (through using copper wires of a very small resistance).


 

	3.No other loss in the 

core called the iron loss. The iron losses would include hysteresis loss and eddy current loss.


 





Real transformers studied in Section 12.4 deviate from this ideal circuit model often very significantly. The ratio of output power to input power is called the efficiency of the transformer. For large power transformers, the efficiency can be in excess of 98 %. For RF (radio-frequency) transformers, the efficiency is typically much lower. Two methods of analysis can be used to study realistic transformers:	1.An extended equivalent circuit model that includes the present ideal transformer model plus extra inductances and resistances, see Section 12.4.


 

	2.A different mathematical model of magnetically coupled circuits with self- and mutual inductances, see Section 12.5.


 







                  Terminology


                
Engineers have adopted a special terminology when dealing with transformers:	A.The ratio N
1 : N
2 is the turns ratio of the transformer. A transformer with a primary winding of 100 turns and a secondary winding of 200 turns has a turns ratio of 1:2. A transformer with a primary winding of 200 turns and a secondary winding of 150 turns has a turns ratio of 4:3.


 

	B.When [image: 
$$ {N}_2>{N}_1 $$
], the transformer increases the input AC voltage; it is called a 
                            step-up transformer
                            
                          .


 

	C.When [image: 
$$ {N}_2<{N}_1 $$
], the transformer decreases the input AC voltage; it is called a 
                            step-down transformer
                            
                          .


 

	D.The winding with a higher number of turns is the high-voltage (HV) side of the transformer.


 

	E.The winding with a smaller number of turns is the low-voltage (HV) side of the transformer.


 





In Figs. 12.1, 12.2, and 12.3, we have used the opposite 
                    current reference directions
                    
                   for the two 
dotted terminals. Quite often, the same reference directions

 are employed. This is to underscore the fact that either winding may serve as the input of the transformer. Sign minus should then be inserted into Eq. (12.10) which relates i
1 and i
2.

Transformer Rating

Power transformers seldom drive purely resistive loads. Therefore, their power rating

 is given in VA (volt-amperes) or kVA instead of watts, identical to the complex power defined in Section 11.​1. More precisely, this is the apparent load power defined by Eq. (11.​21d). Consider a popular example of a transformer that carries the following information on a nameplate or in a reference manual: 10 kVA, 1100:110 V. The voltage rating means the one transformer winding (high-voltage side
) is rated for 1100 V, whereas another (low-voltage side
) for 110 V. The turns ratio is the voltage ratio, [image: 
$$ {N}_1:{N}_2=10 $$
]. The corresponding current ratings are 9.09 A rms and 90.9A rms, respectively.
Exercise 12.4
A power transformer is rated as 1 kVA, 120:480 V. Determine transformer type, turns ratio, and the rated current on the low-voltage side.

Answers: This is a step-up transformer with turns ratio 1:4 and a current on the low-voltage side of 8.333 A rms.

Example 12.1
In the circuit shown in Fig. 12.4, [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=170 \cos \left(2\pi \omega t\right) \left[\mathrm{V}\right] $$
]. The 

ideal-transformer model is used. Determine all circuit currents and voltages when:[image: A331468_1_En_12_Fig4_HTML.gif]
Fig. 12.4A transformer circuit 

with a load and a switch




	A.The switch is open.


 

	B.The switch is closed.


 

	C.The switch is closed and [image: 
$$ \omega \to 0 $$
].


 






Solution A: The current through the secondary winding is zero, so is the current through the primary. The open-circuit condition thus passes through the transformer. The physical background for this is an infinite permeability of the magnetic core and hence an infinite inductance of the primary coil. You should know that the infinite inductance is an open circuit for an AC signal. By KVL, the voltage of the primary winding υ
1(t) is equal to the source voltage. Open-circuit voltage

 of the secondary winding υ
2(t) is exactly five times smaller.

Solution B: Both winding voltages remain identical to the voltages in the previous case. The load voltage is now the voltage of the secondary winding. The load current, by Ohm’s law, is [image: 
$$ {i}_{\mathrm{R}}={i}_2={\upsilon}_{\mathrm{R}}/{R}_{\mathrm{L}}=0.815 \cos \omega t \left[\mathrm{A}\right] $$
]. The primary-winding current is exactly five times smaller than the load current.

Solution C: When the frequency approaches zero, the transformer loses its functionality. The induced voltages υ
1 and υ
2 tend to zero. Moreover, the primary winding of the transformer becomes a short circuit, which prohibits using transformers loaded with DC power sources.

Exercise 12.5

In the circuit shown in Fig. 12.4, the current through resistance is given by [image: 
$$ {i}_2(t)=1 \cos \left(2\pi 60t\right) \left[\mathrm{A}\right] $$
]. With the 

switch closed, find the source voltage.

Answer: [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=200 \cos \left(2\pi 60t\right) \left[\mathrm{V}\right] $$
].



12.1.7 
                                Mechanical Analogies

 of a Transformer
An electric transformer operates with alternating currents. One mechanical analogy of the transformer is a gear transmission or gearbox, see Fig. 12.5a.[image: A331468_1_En_12_Fig5_HTML.gif]
Fig. 12.5Analogies for a 

transformer





In terms of anoular speed ω [rad/s] and developed torque [image: 
$$ T \left[\mathrm{N}\cdot \mathrm{m}\right] $$
], one has[image: 
$$ {T}_2=\frac{D_2}{D_1}{T}_1, {\omega}_2=\frac{D_1}{D_2}{\omega}_1 $$
]

 (12.13)


where D
1,2 are pitch diameters of gear wheels. Here, torque is the voltage and speed is the current. D
1,2 are similar to the number of turns, N
1,2, of the primary and secondary windings of the transformer, respectively. Emphasize that the present transformer analogy still ignores the field effect—magnetic coupling between the coils. Therefore, it will fail in the DC case. A more realistic hydraulic transformer analogy is shown in Fig. 12.5b. The model with four pistons transforms power from one circuit to another in the AC case only. It is drawn for a transformer whose turns ratio is 1:1. When, for example, a transformer with a turns ratio of 2:1 is required, the area of output pistons is doubled. This doubles the output current, but the output voltage (the force) will be halved.

Historical
The transformer action was independently invented and utilized by many researchers, starting with Michael Faraday, Joseph Henry, Nicholas Callan of Ireland, and Pavel Yablochkov of Russia. Hungarian engineer Ottó Titusz Bláthy introduced the name “transformer.” A power transformer developed by Lucien Gaulard of France and John Dixon Gibbs of England was demonstrated in London in 1881 and then sold to the American company Westinghouse. 
                    
                    
                  In 1886 William Stanley, working for Westinghouse, built the refined, commercially used AC transformer used in the electrification of Great Barrington, Massachusetts.



12.2 Analysis of Ideal Transformer Circuits
12.2.1 Circuit with a Transformer in the Phasor Form




Consider a generic transformer circuit shown in Fig. 12.6a in the frequency domain. The circuit is given in the phasor form assuming a harmonic signal source. A source circuit with the phasor voltage V
S and impedance Z
S is connected to a load with impedance Z
L via an ideal transformer studied in the previous Section. Since any linear AC source network can be represented in the form of its Thévenin equivalent, and any linear passive source can be replaced by the equivalent impedance, Fig. 12.6a is a rather general interpretation of the transformer setup with linear networks in Fig. 12.4. When written in the phasor form, the ideal transformer model given by Eqs. (12.6) and (12.10) does not need a special treatment. We simply replace the real-valued voltages and currents by phasors:[image: A331468_1_En_12_Fig6_HTML.gif]
Fig. 12.6(a) A source circuit 

and a load circuit connected to a transformer. (b) Equivalent circuit of the source with the transformer when looking from the load. (c) The same as (a). (d) Equivalent circuit of the load with the transformer when looking from the source





[image: 
$$ {\upsilon}_2=\frac{N_2}{N_1} {\upsilon}_1\Rightarrow {\mathbf{V}}_2=\frac{N_2}{N_1} {\mathbf{V}}_1 $$
]

 (12.14a)


[image: 
$$ {i}_2=\frac{N_1}{N_2}{i}_1\Rightarrow {\mathbf{I}}_2=\frac{N_1}{N_2}{\mathbf{I}}_1 $$
]

 (12.14b)

In power electronics, phasor voltage and phasor current in Fig. 12.6a are often expressed in terms of rms values times the phasor (the complex exponent). This is in contrast to the previous analysis where we have used the amplitude of a sinusoidal function times the phasor. The circuit analysis remains the same, but the factor of 2 in the expressions for the power disappears. We will 

mention this convention every time when required.

12.2.2 Referred (Or Reflected) Source Network in the Secondary Side



What voltage and impedance does the load see in Fig. 12.6a? In other words, what is the Thévenin equivalent circuit of the source and the transformer combined? To answer this question, we find Thévenin equivalent voltage V
T of the one-port network with terminals a and b in Fig. 12.6a as its open-circuit voltage. Using Eqs. (12.14a, b) and setting [image: 
$$ {\mathbf{Z}}_{\mathrm{L}}=\infty $$
] in Fig. 12.6a yields[image: 
$$ {\mathbf{I}}_2=0\Rightarrow {\mathbf{I}}_1=0\Rightarrow {\mathbf{V}}_{\mathrm{T}} \equiv {\mathbf{V}}_2=\frac{N_2}{N_1}{\mathbf{V}}_1=\frac{N_2}{N_1}{\mathbf{V}}_{\mathrm{S}} $$
]

 (12.15)


The Thévenin equivalent impedance Z
T is found by dividing the open-circuit voltage by the short-circuit current [image: 
$$ {\mathbf{I}}_{\mathrm{SC}}={\mathbf{I}}_2 $$
]. Setting [image: 
$$ {\mathbf{Z}}_{\mathrm{L}}=0 $$
] in Fig. 12.6a, one finds the short-circuit current[image: 
$$ {\mathbf{Z}}_{\mathrm{L}}=0\Rightarrow {\mathbf{V}}_2={\mathbf{V}}_1=0\Rightarrow {\mathbf{I}}_{\mathrm{S}\mathrm{C}}={\mathbf{I}}_2=\frac{N_1}{N_2}{\mathbf{I}}_1=\frac{N_1}{N_2} \frac{{\mathbf{V}}_{\mathrm{S}}}{{\mathbf{Z}}_{\mathrm{S}}} $$
]

 (12.16)


In summary, the equivalent circuit of the source and the transformer combined is shown in Fig. 12.6b. It is characterized by[image: 
$$ {\mathbf{V}}_{\mathrm{T}}=\frac{N_2}{N_1}{\mathbf{V}}_{\mathrm{S}}, {\mathbf{Z}}_{\mathrm{T}}={\left(\frac{N_2}{N_1}\right)}^2{\mathbf{Z}}_{\mathrm{S}} $$
]

 (12.17)

We conclude that, from the viewpoint of the load, the ideal transformer boosts the source voltage by a factor of N
2/N
1 and multiplies the source impedance by a factor of (N
2/N
1)2. The 

meaning of Eq. (12.17) is commonly expressed in the following form:	1.The source is reflected to the secondary side by the inverse turns ratio.


 

	2.The source impedance is reflected to the secondary by the square of the inverse turns ratio.


 





An inspective student may notice a contradiction in Eq. (12.16): as long as [image: 
$$ {\mathbf{V}}_2={\mathbf{V}}_1=0 $$
], the transformer apparently should not function at all. In fact, the equality [image: 
$$ {\mathbf{V}}_2={\mathbf{V}}_1=0 $$
] is never exactly satisfied; a (infinitesimally small) voltage across the transformer is assumed that supports its operation. Mathematically, one considers a finite but small load impedance and then obtains Eq. (12.16) in the limit [image: 
$$ {\mathbf{Z}}_{\mathrm{L}}\to 0 $$
].

12.2.3 Referred (Or Reflected) Load Impedance to the Primary Side



What is the equivalent impedance of the load and the transformer combined? With reference to Fig. 12.6c, one has[image: 
$$ {\mathbf{Z}}_{\mathrm{T}} \equiv  \frac{{\mathbf{V}}_1}{{\mathbf{I}}_1}={\left(\frac{N_1}{N_2}\right)}^2\frac{{\mathbf{V}}_2}{{\mathbf{I}}_2}={\left(\frac{N_1}{N_2}\right)}^2{\mathbf{Z}}_{\mathrm{L}} $$
]

 (12.18)

The equivalent circuit of the load and the transformer combined are shown in Fig. 12.6d. The meaning of Eq. (12.18) is commonly expressed in the following form: the load impedance is reflected to the primary side by the square of the turns ratio.
Exercise 12.6
Load impedance is 12 Ω. Find the equivalent impedance of the load combined with a 1:2 step-up transformer to the primary side.

Answer: [image: 
$$ {R}_{\mathrm{T}}=3 \Omega $$
].

Exercise 12.7
Source voltage is given by [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=1 \cos \omega t \left[\mathrm{V}\right] $$
] and the source impedance is 12 Ω. Find the

 equivalent circuit of the source combined with a 1:2 step-up transformer in the secondary side. Express your result both in frequency domain and in time domain.

Answer: [image: 
$$ {R}_{\mathrm{T}}=48 \Omega $$
], [image: 
$$ {\mathbf{V}}_{\mathrm{T}}=2\angle 0{}^{\circ} \left[\mathrm{V}\right] $$
] or [image: 
$$ {\upsilon}_{\mathrm{T}}(t)=2 \cos \omega t \left[\mathrm{V}\right] $$
].

Both source and load reflections
 are of great practical value since they eliminate the transformer from the circuit analysis and thereby simplify the overall circuit analysis and design. The analysis with Norton equivalent circuits is developed in a similar fashion.

Exercise 12.8
To bring out an important application, let the load be a series RLC network with resistance R, inductance L, and capacitance C. An equivalent impedance of the load combined with a N
1 : N
2 step-up transformer at the primary is again a series RLC network. Find the reflected (or “transformed”) values of the resistance

, inductance, and capacitance.

Answer: [image: 
$$ R\to {\left(\frac{N_1}{N_2}\right)}^2R $$
], [image: 
$$ L\to {\left(\frac{N_1}{N_2}\right)}^2L $$
], [image: 
$$ C\to {\left(\frac{N_2}{N_1}\right)}^2C $$
].


12.2.4 Transformer as a Matching Circuit
Matching Real-Valued Impedances



Consider a transformer circuit with real-valued impedances shown in Fig. 12.7. A given practical voltage source with resistance R
S is to be connected to a given load with resistance [image: 
$$ {R}_{\mathrm{L}}\ne {R}_{\mathrm{S}} $$
]. The principle of maximum power transfer states that there should be [image: 
$$ {R}_{\mathrm{L}}={R}_{\mathrm{S}} $$
] for the maximum power transfer from the source to the load. Could we still achieve the maximum available power from the source without changing the source and the load? The answer is yes; such a procedure is known as impedance matching with a transformer. A transformer used for this purpose is known as a matching transformer. The idea is to use a transformer with the turns ratio:[image: A331468_1_En_12_Fig7_HTML.gif]
Fig. 12.7(a) A matching transformer for

 real impedances. (b) Equivalent circuit of the load with the transformer when looking from the source





[image: 
$$ {N}_1:{N}_2=\sqrt{R_{\mathrm{S}}/{R}_{\mathrm{L}}} $$
]

 (12.19)


To prove this fact we consider a transformer with an arbitrary turns ratio in the circuit of Fig. 12.7a. The load resistance is reflected to the primary side by the square of the turns ratio. The resulting equivalent circuit is a voltage divider. It includes the voltage source and two resistances in series. Instantaneous power delivered to the load is given by[image: 
$$ p(t)=\left\{\frac{x{R}_{\mathrm{L}}}{{\left({R}_{\mathrm{S}}+x{R}_{\mathrm{L}}\right)}^2}\right\}{\upsilon}_{\mathrm{S}}^2(t), x={\left(\frac{N_1}{N_2}\right)}^2 $$
]

 (12.20)

The expression in curly brackets 

is maximized with regard to parameter x, which may attain any positive values. Its maximum (and the maximum power) is achieved when[image: 
$$ x={R}_{\mathrm{S}}/{R}_{\mathrm{L}} $$
]

 (12.21)

or when the reflected load resistance is exactly R
S, see Fig. 12.7b. The same circuit may be equally well solved by reflecting the source to the primary side; the related homework problems provide several examples.
Example 12.2
A passive RFID tag is modeled by a load resistance of 9 Ω. The tag is wirelessly powered; it is augmented with a small collecting antenna, which has a radiation resistance of 1 Ω. Find the ratio of the average received powers from the antenna with and without the matching transformer.

Solution: We use Fig. 12.7a to visualize the circuit. The antenna is the source, the tag is the load. For the received power without the transformer, one has[image: 
$$ {P}_{\mathrm{L}}=\frac{1}{2}\frac{R_{\mathrm{L}}{\left|{\mathbf{V}}_{\mathrm{S}}\right|}^2}{{\left({R}_{\mathrm{S}}+{R}_{\mathrm{L}}\right)}^2}=0.045{\left|{\mathbf{V}}_{\mathrm{S}}\right|}^2 \left[\mathrm{W}\right] $$
]

 (12.22)



where V
S is a phasor voltage at the antenna terminals. With the matching transformer (1:3 turns ratio), the result has the form (after reflecting the source to the secondary side):[image: 
$$ {P}_{\mathrm{L}}=\frac{1}{2}\frac{R_{\mathrm{L}}/9{\left|{\mathbf{V}}_{\mathrm{S}}\right|}^2}{{\left({R}_{\mathrm{S}}+{R}_{\mathrm{L}}/9\right)}^2}=0.125{\left|{\mathbf{V}}_{\mathrm{S}}\right|}^2 \left[\mathrm{W}\right] $$
]

 (12.23)



The ratio of the two powers is 2.78 or [image: 
$$ 10{ \log}_{10}(2.78)=4.4 \mathrm{dB} $$
]. This is an improvement of the tag performance which results in a greater reading range.

Exercise 12.9
A 4-Ω speaker is connected to an AC voltage source with the voltage amplitude of 10 V. The source’s impedance is 1 Ω.	A.Determine the average power delivered to the speaker.


 

	B.Given a 1:2 

matching transformer, determine power delivered to the speaker.


 






Answer: A. 8 W; B. 12.5 W.


Matching Arbitrary Complex Impedances
Can a transformer match two arbitrary complex impedances

? Unfortunately, it cannot. The transformer operates as an impedance multiplier; it multiplies (or divides) by a real number. On the other hand, the complex impedance match requires two complex conjugate impedances. A transformer could often provide a “better” match (see the summary to this chapter) but cannot perform impedance matching in full. Other circuit elements (capacitance or inductance) may be necessary to complete the task.


12.2.5 Application Example: Electric Power Transfer via Transformers
Circuit with a Fixed Load Voltage



Figure 12.8a shows a circuit for transmitting electric power over a long transmission line with the total resistance R and the total inductance L. The circuit in Fig. 12.8a is converted to a phasor form first. We consider the phasors in terms of rms values. Two competing schemes are studied: transmission without transformers (see Fig. 12.8b) and a transmission scheme with two 1:20 and 20:1 ideal transformers—see Fig. 12.8c. In order to compare the performance of two circuits (with and without transformers), it is assumed that the load phasor voltage V
L (V rms) and the load phasor current I
L (V rms) have the same values in both cases. This guarantees us the same average power delivered to the load. The power loss (ohmic loss) in the line resistance 

in Fig. 12.8b is[image: A331468_1_En_12_Fig8_HTML.gif]
Fig. 12.8(a) Schematic of a transmission line. (b) 
                            
                            
                          Transmission line without a transformer (phasor form). (c) Transmission line with step-up and step-down transformers (phasor form)




[image: 
$$ {P}_{\mathrm{loss}}=R{\left|{\mathbf{I}}_{\mathrm{L}}\right|}^2 $$
]

 (12.24)

The power loss in the line resistance in Fig. 12.8c is decreased by a factor of 400:[image: 
$$ {P}_{\mathrm{loss}}=\frac{1}{400}R{\left|{\mathbf{I}}_{\mathrm{L}}\right|}^2 $$
]

 (12.25)

since the line current is exactly 20 times less than in the first case. This result is independent of the particular values of R and L. Simultaneously, the line voltages increase by a factor of 20, but the load voltage still remains the same due to the step-down transformer. Thus, using a pair of transformers allows us to choose an economically optimum voltage for transmitting a given amount of power. The line sees a high voltage of the secondary of the first transformer while the load essentially sees the source voltage. Not only does the use of transformers greatly decrease the line loss, but it also potentially allows us to use smaller source voltages (
                    sending-end voltages
                    
                  ). The required source power also decreases.

Circuit with a Fixed Source Voltage



Next, the performance of the circuit in Fig. 12.9 with a fixed source voltage is to be analyzed, with and without 1:10 step-up transformer and 10:1 step-down transformer, respectively. All phasors are given in terms of the rms values. We are interested in source current I
S and active source power:[image: A331468_1_En_12_Fig9_HTML.gif]
Fig. 12.9Analysis of a particular 

power-transfer circuit




[image: 
$$ {P}_{\mathrm{S}}=\mathrm{R}\mathrm{e}\left({\mathbf{V}}_{\mathrm{S}}\cdot {\mathbf{I}}_{\mathrm{S}}^{*}\right) $$
]

 (12.26)

We are also interested in load

 parameters V
L, I
L and active load power:[image: 
$$ {P}_{\mathrm{L}}=\mathrm{R}\mathrm{e}\left({\mathbf{V}}_{\mathrm{L}}\cdot {\mathbf{I}}_{\mathrm{L}}^{*}\right) $$
]

 (12.27)

and, finally, in line power loss:[image: 
$$ {P}_{\mathrm{loss}}=R{\left|{\mathbf{I}}_{\mathrm{line}}\right|}^2 $$
]

 (12.28)

The circuit in Fig. 12.9a without the transformers is solved by finding the equivalent impedance and then the source current. All circuit currents will coincide, [image: 
$$ {\mathbf{I}}_{\mathrm{S}}={\mathbf{I}}_{\mathrm{line}}={\mathbf{I}}_{\mathrm{L}} $$
]. The circuit with the transformers is solved by reflecting the load impedance to the primary side twice, see Fig. 12.9b and c, respectively.
The simplified circuit in Fig. 12.9c allows us to find the source current. Then, we return to the circuit in Fig. 12.9b and find the line current following the ideal transformer model Eq. (12.14b). Finally, we return to the circuit in Fig. 12.9a and restore the load current from the line current. Table 12.1 summarizes the corresponding numerical values. It illustrates the reduction in the line loss, which is again approximately proportional to the square of the turns ratio.Table 12.1Circuit parameters (V rms, A rms, and W) for the power-transfer circuit in Fig. 12.9
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	No tr.
	480[image: 
$$ \angle 0{}^{\circ} $$
]

	
                              [image: 
$$ 90\angle -38{}^{\circ} $$
]
                            
	34,312
	
                              [image: 
$$ 90\angle -38{}^{\circ} $$
]
                            
	1634
	
                              [image: 
$$ 452\angle -1{}^{\circ} $$
]
                            
	
                              [image: 
$$ 90\angle -38{}^{\circ} $$
]
                            
	32,678

	W tr.
	
                              [image: 
$$ 480\angle 0{}^{\circ} $$
]
                            
	
                              [image: 
$$ 96\angle -37{}^{\circ} $$
]
                            
	36,837
	
                              [image: 
$$ 9.6\angle -37{}^{\circ} $$
]
                            
	18.4
	
                              [image: 
$$ 480\angle 0{}^{\circ} $$
]
                            
	
                              [image: 
$$ 96\angle -37{}^{\circ} $$
]
                            
	36,818





Historical
Originally, the use of AC in favor of DC was made based on the use of transformers. In the late 1880s, the USA experienced what many citizens termed a “Battle of Currents” where George Westinghouse and Nikola Tesla prevailed with their AC power distribution system over world-famous Thomas Edison who advocated DC power. This fight became so intense that Edison rushed to deliver the first electric chair powered by DC. The execution of the first prisoner, William Kemmler, in 1890 with 2000 V DC became a terrible capital punishment; it caused his body to burn. This supposedly prompted Westinghouse to state that an axe would have been a more humane execution.




12.3 Some Useful Transformers
12.3.1 
                Autotransformer

                
                  
                  
                
              
A transformer in which a part of the winding is common to both primary and secondary circuits—see Fig. 12.10—is known as an autotransformer. This common part may be controlled by a sliding contact as shown in the same figure.[image: A331468_1_En_12_Fig10_HTML.gif]
Fig. 12.10Step-down autotransformer


                          
                          
                         along with the corresponding circuit symbol. Circuit symbols for the autotransformer may vary





An autotransformer is typically a step-down transformer. Autotransformers are used widely and come in many sizes. The autotransformer is also known as a Variac (variable AC transformer). Such autotransformers are used in the laboratory to obtain a variable output voltage by means of a movable contact in Fig. 12.10 that changes N
2 and consequently the turns ratio N
1 : N
2. An autotransformer will again be analyzed using the ideal transformer model. Primary winding N
1 and secondary winding N
2 in Fig. 12.10 share the same flux Φ(t). Both induced voltages υ
1(t) and υ
2(t) in Fig. 12.10 obey Faraday’s law given by Eqs. (12.2) and (12.5), respectively. One has[image: 
$$ {\upsilon}_1(t)=\left({N}_1+{N}_2\right)\frac{d\Phi}{dt}, {\upsilon}_2(t)={N}_2\frac{d\Phi (t)}{dt} $$
]

 (12.29)

Therefore,[image: 
$$ {\upsilon}_2=\frac{N_2}{N_1+{N}_2}{\upsilon}_1 $$
]

 (12.30)

Using Ampere’s law for the ideal magnetic core Eq. (12.8c), we obtain an expression that is very similar to Eq. (12.10) of Section 12.1,[image: 
$$ \left({N}_1+{N}_2\right){i}_1-{N}_2{i}_2=0\Rightarrow {i}_2=\frac{N_1+{N}_2}{N_2}{i}_1 $$
]

 (12.31)


Thus, the model of the ideal autotransformer is indeed undistinguishable from the ideal transformer model. Advantages of the autotransformer are generally lower losses and variable output voltage. However, there is now a direct electric connection between 


                  
                  
                the primary and secondary sides, which potentially enables direct current flow.
Exercise 12.9
A voltage source connected to the primary winding of an autotransformer has the form [image: 
$$ {\upsilon}_{\mathrm{S}}=10 \cos \omega  t+1 \left[\mathrm{V}\right] $$
]. Ohmic resistance of the primary winding is 1 Ω. Magnetic losses are ignored. Turns ratio established by a sliding contact is given by [image: 
$$ {N}_1+{N}_2:{N}_2=5 $$
]. Determine the voltage in the secondary.

Answer: Using the superposition theorem for DC and AC voltages, one has [image: 
$$ {\upsilon}_{\mathrm{S}}=2 \cos \omega  t+0.2 \left[\mathrm{V}\right] $$
].


12.3.2 
                                Multiwinding



                  
                 Transformer
A multiwinding transformer shown in Fig. 12.11 is one in which two or more secondary windings are placed on the same core.[image: A331468_1_En_12_Fig11_HTML.gif]
Fig. 12.11A multiwinding 



                          
                        transformer along with the corresponding circuit symbol. Circuit symbols for the multiwinding transformer may vary





For example, a three-winding transformer shown in Fig. 12.11 has a primary winding N
1 and two secondary windings, N
2 and N
3, respectively. It is useful when lossless power division is required. The multiwinding transformer is also analyzed using the ideal transformer model. All induced voltages υ
1(t), υ
2(t), and υ
3(t) in Fig. 12.11 obey 



                  
                Faraday’s law of induction. Therefore,[image: 
$$ \frac{\upsilon_1}{N_1}=\frac{\upsilon_2}{N_2}=\frac{\upsilon_3}{N_3} $$
]

 (12.32)

Using Ampere’s law for the ideal magnetic core Eq. (12.8c), we obtain[image: 
$$ {N}_1{i}_1-{N}_2{i}_2-{N}_3{i}_3=0 $$
]

 (12.33)



Example 12.3
In the circuit shown in Fig. 12.11, [image: 
$$ {N}_1={N}_2={N}_3 $$
]. How is the instantaneous power partitioned between the two secondary windings?

Solution: According to Eqs. (12.32) and (12.33),[image: 
$$ {\upsilon}_1={\upsilon}_2={\upsilon}_3, {i}_1={i}_2+{i}_3 $$
]

 (12.34)



If two secondary windings are terminated into the same load resistances, then [image: 
$$ {i}_2={i}_3=0.5{i}_1 $$
]. Therefore, the input power is divided equally. However, if one of the loads is an open circuit, all the input power is transferred to another load.


A multiwinding transformer may be used, for example, in a 
                  telephone hybrid circuit
                  
                 which is designed to convert a two-wire interface to a four-wire interface. A telephone hybrid is the circuit which separates the transmitted and received audio which are initially sent both at the same wire pair in two-wire normal telephone interface.

12.3.3 
                                Center-Tapped

 Transformer: Single-Ended to Differential Transformation
Figure 12.12 shows a particular, yet widely used modification of the multiwinding transformer in Fig. 12.11. Two equal secondary windings, with N
2/2 turns each, are connected to each other and then to ground. The center tap of the secondary coil may be grounded. The output voltages of the two secondary windings versus the 
dotted terminals are still equal to each other and equal to voltage υ
2. However, since the center tap is grounded, the absolute voltages at the output to the transformer are[image: 
$$ +{\upsilon}_2(t), 0 \mathrm{V}, \mathrm{and} -{\upsilon}_2(t) \mathrm{where} {\upsilon}_2=\frac{N_2}{2{N}_1}{\upsilon}_1 $$
]

 (12.35a)


versus ground. The output voltage is thus identical to a dual-polarity AC voltage source. More generally, this design is intended to convert a single-ended (two-wire) voltage signal υ
1, i.e., a signal that is initially referenced to ground, to a balanced differential (three-wire) voltage signal with equal voltages with respect to ground but of opposite polarity.[image: A331468_1_En_12_Fig12_HTML.gif]
Fig. 12.12Center-tapped transformer 

intended for single-ended to differential signal transformation (differential transformer) and the corresponding circuit symbol




                            
The differential signal has significant advantages; it can be used in different applications including power electronics, instrumentation, communication circuits, and high-speed digital circuits. If, and only if, the center-tapped transformer is connected to the two identical loads, the center tap carries zero current and with reference to Fig. 12.12,[image: 
$$ {i}_2(t)={i}_3(t) \mathrm{where} {i}_1=\frac{N_2}{N_1}{i}_2 $$
]

 (12.35b)

The three-wire model described by Eq. (12.35a) is often called a three-wire single-phase system. Note that all of the AC power that is supplied to your house by a residential AC distribution network is a 120/240 V rms three-wire single-phase system, see Fig. 11.​13.
Example 12.4
Common home appliances use a single-phase 120-V rms AC line (a refrigerator, TV, microwave, etc.) and a 240-V rms three-wire differential AC line (electric range, dryer, etc.). A house located in a remote area is powered from a local micro hydropower generator located a couple of miles away. Suggest a way to power all appliances when the input power is a not a residential AC distribution network, but a single-phase two-wire 240 V rms AC line from the generator.

Solution: A solution is shown in 

Fig. 12.13. The center-tapped transformer is used to accomplish the task. All loads are to be connected in parallel.[image: A331468_1_En_12_Fig13_HTML.gif]
Fig. 12.13Powering home appliances in remote areas using a single-phase two-wire 240 V rms AC line as an input. Note that the dot locations are less important for this case






Example 12.5
A dipole antenna with two wings is to be fed as follows: one wing is fed with a voltage signal [image: 
$$ +\upsilon (t) $$
] versus ground plane and another wing is fed with a voltage signal [image: 
$$ -{\upsilon}_1(t) $$
] versus ground plane (180° phase shift). At the same time, the input from a transmitter is a single-phase coaxial line. Suggest a way of connecting the antenna to a transmitter.

Solution:
A solution is shown in Fig. 12.14. The center-tapped transformer from Fig. 12.12 is again used to accomplish the task. From the viewpoint of an RF circuit design, the transformer in Fig. 12.14 is sometimes called a balun transformer; the word balun is an acronym for balanced-to-unbalanced converter. These balun structures are employed in such common RF and microwave components as mixers, antenna-feed networks, and frequency multipliers.[image: A331468_1_En_12_Fig14_HTML.gif]
Fig. 12.14A balun (center-tapped) transformer attached to a dipole antenna. The metal case of the transformer is grounded






Note that the transformer in Fig. 12.12 is simultaneously a power divider, namely, the so-called 180° power divider

 or 180° power splitter

. It is amazing to see how many different applications rely on the “old good” transformer.

12.3.4 
                                Current



                  
                 Transformer
There is a device that has been around for a long time and which allows the engineer to monitor the electrical power system. It is called the current transformer and is shown in Fig. 12.15. The current transformer is a main measuring tool to determine current flow in a power system. The corresponding hardware device is known as a 
                  clamp on ammeter
                  
                .[image: A331468_1_En_12_Fig15_HTML.gif]
Fig. 12.15A current transformer and 



                          
                        the corresponding circuit symbol. Circuit symbols for the current transformer may vary





Consider a straight conductor in Fig. 12.15 that carries current i
1 to be measured. This conductor effectively forms one turn of the primary coil. The secondary coil has N
2 turns. We again assume the ideal transformer model and apply Ampere’s law for the ideal magnetic core Eq. (12.8c). The current through the secondary coil then follows the equality (note current directions in Fig. 12.15)[image: 
$$ {i}_1-{N}_2{i}_2=0\Rightarrow {i}_2=\frac{1}{N_2}{i}_1 $$
]

 (12.36)

which is a particular case of the 
ideal transformer equation with [image: 
$$ {N}_1=1 $$
]. Thus, by measuring current i
2 or the associated voltage, the unknown current i
1 can be established. Note that Fig. 12.15 and Eq. (12.36) only demonstrate the very basic concept; the practical current transformer design is significantly more elaborated. Another type of 
instrumentation transformers—
                  potential transformers
                  
                —is used for accurate AC voltage measurements.


12.4 Real-Transformer Model
12.4.1 Model of a Nonideal Low-Frequency Transformer
Figure 12.16 shows a linear circuit model of a practical low-frequency (60 or 50 Hz) two-winding transformer. This circuit is also known as the 
                  Steinmetz model
                  
                  
                  
                 and its parameters as Steinmetz parameters. The complete model will be explained in several steps:[image: A331468_1_En_12_Fig16_HTML.gif]
Fig. 12.16Circuit model of a low-frequency transformer—the Steinmetz model




	1.Consider the open-circuited transformer first. The primary winding is characterized by a large but finite magnetizing inductance, L
m, which was defined in Eq. (12.3). This is the standard inductance expression for a long solenoid with the magnetic core


. It is shown in Fig. 12.16a.


 

	2.A small amount of magnetic flux is still situated outside the core so that Eq. (12.3) needs to be refined. The total inductance as in Fig. 12.16 of the primary winding is therefore somewhat larger:[image: 
$$ {L}_1={L}_{\mathrm{m}}+{L}_{l1} $$
]

 (12.36)


where a small addition L

l1 is called the 
                          leakage inductance
                          
                          
                          
                        , see Fig. 12.16a.


 

	3.A practical primary winding has a certain ohmic resistance, R
1, which is placed in series with L
1. Simultaneously, the core loss (hysteresis and eddy current loss) in the magnetic material consumes some extra current. It is modeled by an equivalent resistance R
c, which is placed in parallel with L
m. R
c is often called the 
                          core loss resistance
                          
                          
                          
                        . The resulting equivalent circuit in Fig. 12.16b is also an equivalent circuit of a nonideal inductor with the magnetic core.


 

	4.Finally, the secondary winding is added and a load is connected to the transformer. This results in the complete equivalent circuit model of Fig. 12.16c. Two new circuit parameters L

l2, and R
2 are the leakage resistance and the ohmic resistance


, respectively, of the secondary winding.


 





In general, all model parameters, and especially L
m and R
c, are frequency dependent.

12.4.2 Model Parameters and Their Extraction



Table 12.2 lists typical equivalent circuit values for three distinct power transformers of different power ratings and compares them with the ideal transformer model. Not the inductances themselves but the rather reactance values are given at angular frequency [image: 
$$ \omega =2\pi f $$
] where [image: 
$$ f=50\ \mathrm{or}\ 60\ \mathrm{Hz} $$
].Table. 12.2
                                                Equivalent circuit values

 for three different practical power transformers as compared to the ideal transformer model


	Element nameplate
	Ideal model
	#1—2 kVA 230:115 V
50 Hz
	#2—10 kVA
2300:230 V
60 Hz
	#3—100 kVA
11,000:2200 V
60 Hz

	
                                                        Magnetizing reactance
 [image: 
$$ {X}_{\mathrm{m}}=\omega {L}_{\mathrm{m}} $$
], Ω
	
                            [image: 
$$ \infty $$
]
                          
	1437.5
	69,400
	57,300

	Core loss resistance, R
c, Ω
	
                            [image: 
$$ \infty $$
]
                          
	294.2
	75,600
	124,000

	Primary leakage

 reactance [image: 
$$ {X}_{l1}=\omega {L}_{l1} $$
], Ω
	0
	0.430
	12
	31.2

	Secondary leakage reactance,
[image: 
$$ {X}_{l2}=\omega {L}_{l2} $$
], Ω
	0
	0.006
	0.12
	1.25

	
                                                        
                              
                              
                            Primary ohmic resistance R
1, Ω
	0
	0.428
	5.80
	6.1

	
                                                        Secondary ohmic resistance

 R
2, Ω
	0
	0.123
	0.0605
	0.29





It follows from Table 12.2 that the real-transformer data is reasonably well approximated by the ideal model. In particular, we may observe that[image: 
$$ {R}_{1,2}\ll {R}_{\mathrm{c}}, {X}_{l1,2}\ll {X}_{\mathrm{m}} $$
]

 (12.37)

in all three cases considered. In a well-designed transformer, the following equalities should be satisfied:[image: 
$$ {R}_1\approx {\left(\frac{N_1}{N_2}\right)}^2{R}_2={R}_2^{\prime }, {X}_{l1}\approx {\left(\frac{N_1}{N_2}\right)}^2{X}_{l2}={X}_2^{\prime }, $$
]

 (12.38)

along with Eq. (12.37). Here, the prime denotes circuit parameters of the secondary winding referred to the primary side.
Exercise 12.10
For three transformers from Table 12.2, find the corresponding turns ratio and prove whether or not equalities given by Eq. (12.38) are approximately satisfied.

                  Answer:
                  	Model #1—turns ratio 2:1, first Eq. (12.38) is satisfied, but the second is not.

	Model #2—turns ratio 10:1, both Eq. (12.38) are satisfied.

	Model #3—turns ratio 5:1, both Eq. (12.38) are satisfied.




                


If the complete geometry and

 design characteristics of a transformer are available, all parameters of the equivalent circuit model can be calculated theoretically. Most complicated is the calculation of leakage resistances. At the same time, these parameters are directly and more easily found using measurements. Open-circuit transformer test and short-circuit transformer test (and often the DC bridge test) are performed to find all parameters of interest.

12.4.3 Analysis of Nonideal Transformer Model
When a harmonic voltage source is applied to a nonideal transformer and a linear load is connected to it, the corresponding equivalent circuit follows 

Fig. 12.17a. Although only a resistive load is indicated, the same circuit applies to an arbitrary RLC linear load. The corresponding circuit in frequency domain is shown in Fig. 12.17b. Despite its apparently complicated nature, the circuit analysis

 is quite straightforward.[image: A331468_1_En_12_Fig17_HTML.gif]
Fig. 12.17Equivalent circuits for real transformers with harmonic source and linear load








Terminology

                  	1.
 In power electronics, phasor voltage and phasor current in Fig. 12.17b are expressed in terms of 
                            rms values
                            
                            
                           times the phasor (the complex exponent). This is in contrast to the previously analyzed circuits where we have mostly used the amplitude of the sinusoidal function times the phasor. The analysis remains the same, but the factor of 2 in the expressions for the power disappears. For example, the input (source) and output (load) active powers are given by[image: 
$$ {P}_{\mathrm{L}}=\mathrm{R}\mathrm{e}\left({\mathbf{V}}_{\mathrm{L}}\cdot {\mathbf{I}}_{\mathrm{L}}^{*}\right), {P}_{\mathrm{S}}=\mathrm{R}\mathrm{e}\left({\mathbf{V}}_{\mathrm{S}}\cdot {\mathbf{I}}_{\mathrm{S}}^{*}\right) $$
]

 (12.39)





 

	2.The rated load is that which has the rms voltage corresponding to the transformer rating. For example, the rated load for transformer #1 in Table 12.2 has[image: 
$$ {\mathbf{V}}_{\mathrm{L}}=115\angle 0{}^{\circ} \left[\mathrm{V}\ \mathrm{r}\mathrm{m}\mathrm{s}\right] $$
]

 (12.40)



It is customary to choose the phase of the load voltage equal to zero.


 

	3.An impedance load

 has a power factor PF, lagging or leading. It means that the rated-load current is defined by[image: 
$$ {\mathbf{I}}_{\mathrm{L}}=\frac{S}{{\mathbf{V}}_{\mathrm{L}}}\angle \mp \arccos (PF) \left[\mathrm{A}\ \mathrm{r}\mathrm{m}\mathrm{s}\right] $$
]

 (12.41)




where S is transformer power rating (the apparent load power). For example, for transformer #1 in Table 12.2, [image: 
$$ S=2 \mathrm{k}\mathrm{V}\mathrm{A} $$
]. In Eq. (12.41), the minus sign corresponds to the lagging power factor and the plus sign to the leading power factor, see Section 11.​1.


 




                
Example 12.6
In the circuit in Fig. 12.17b, the load voltage V
L and the load current

 I
L are both known. Determine the source phasor voltage V
S and the source phasor current I
S in the general form. Use the notation [image: 
$$ a={N}_1/{N}_2 $$
].

Solution: Applying KVL to the circuit connected to the secondary winding of the ideal transformer yields[image: 
$$ {\mathbf{E}}_2={\mathbf{V}}_{\mathrm{L}}+\left({R}_2+j{X}_{\mathrm{l}2}\right){\mathbf{I}}_{\mathrm{L}} $$
]

 (12.42)



Next, we apply KCL to the circuit connected to the primary winding of the ideal transformer. This gives ([image: 
$$ {\mathbf{I}}_2={\mathbf{I}}_{\mathrm{L}} $$
])[image: 
$$ {\mathbf{I}}_{\mathrm{S}}={\mathbf{I}}_1=\frac{{\mathbf{I}}_{\mathrm{L}}}{a}+\left(\frac{1}{R_{\mathrm{C}}}+\frac{1}{j{X}_{\mathrm{l}2}}\right)a{\mathbf{E}}_2 $$
]

 (12.43)



Finally, KVL for the primary circuit branch leads to[image: 
$$ {\mathbf{V}}_{\mathrm{S}}=a{\mathbf{E}}_2+\left({R}_1+j{X}_{\mathrm{l}1}\right){\mathbf{I}}_{\mathrm{S}} $$
]

 (12.44)




Example 12.7
Given the rated load with the power factor

 of 1, determine the source phasor voltage V
S and the source phasor current I
S for transformer #1 in Table. 12.2.

Solution: For the rated load, [image: 
$$ {\mathbf{V}}_{\mathrm{L}}=115\angle 0{}^{\circ} \left[\mathrm{V}\ \mathrm{r}\mathrm{m}\mathrm{s}\right] $$
]. The load phasor current is found from Eq. (12.44), [image: 
$$ {\mathbf{I}}_{\mathrm{L}}=17.39\angle 0{}^{\circ} \left[\mathrm{A}\ \mathrm{r}\mathrm{m}\mathrm{s}\right] $$
]. Further, we use the solution of the previous example with [image: 
$$ a=2 $$
], plug in the model parameters from Table 12.2, and obtain[image: 
$$ {\mathbf{V}}_{\mathrm{S}} = 238.5\angle +1.0{}^{\circ}, {\mathbf{I}}_{\mathrm{S}}=9.49\angle -1.0{}^{\circ} $$
]

 (12.45)



Emphasize that the source voltage of 238.5 V rms is higher than the rated or nameplate value of 230 V rms. The additional potential of 8.5 V is needed to overcome the finite impedance of the non-ideal transformer. Indeed, for the ideal-transformer model, the agreement would be perfect.

Exercise 12.11
Repeat the previous example for transformer #2 and transformer #3 from Table. 12.2.

                    Answer:
                    	Model #2—[image: 
$$ {\mathbf{V}}_{\mathrm{S}} = 2354\angle +2.5{}^{\circ} $$
], [image: 
$$ {\mathbf{I}}_{\mathrm{S}}=4.38\angle -0.4{}^{\circ} $$
].

	Model #3—[image: 
$$ {\mathbf{V}}_{\mathrm{S}} = 11142\angle +2.9{}^{\circ} $$
], [image: 
$$ {\mathbf{I}}_{\mathrm{S}}=9.19\angle -1.2{}^{\circ} $$
].




                  

Exercise 12.12
Repeat the previous example for every transformer model from Table 12.2 given the rated load with the power factor of 0.9 lagging (power angle of 25.8°). Does the deviation from the rated input voltage

 increase?

                    Answer:
                    	Model #1—[image: 
$$ {\mathbf{V}}_{\mathrm{S}} = 239.3\angle +0.1{}^{\circ} $$
], [image: 
$$ {\mathbf{I}}_{\mathrm{S}}=9.49\angle -24.7{}^{\circ} $$
].

	Model #2—[image: 
$$ {\mathbf{V}}_{\mathrm{S}} = 2394\angle +1.7{}^{\circ} $$
], [image: 
$$ {\mathbf{I}}_{\mathrm{S}}=4.39\angle -26.1{}^{\circ} $$
].

	Model #3—[image: 
$$ {\mathbf{V}}_{\mathrm{S}} = 11373\angle +2.3{}^{\circ} $$
], [image: 
$$ {\mathbf{I}}_{\mathrm{S}}=9.26\angle -26.7{}^{\circ} $$
].




                  
In all three cases, the deviation from the rated input voltage slightly increases when compared to the case of the rated resistive load.



12.4.4 Voltage Regulation and Transformer Efficiency

                  Voltage Regulation


                
Since the transformer model is nonideal, the voltage delivered to the load does depend on the load current. This means, for example, that the voltage delivered to lights will somewhat decrease when another parallel high-current load (a dryer) is turned on. This undesired effect is characterized by the regulation of a transformer (or percentage regulation):[image: 
$$ \mathrm{Regulation}=\frac{\left|{\mathbf{V}}_{\mathrm{no}\hbox{-} \mathrm{load}}\right|-\left|{\mathbf{V}}_{\mathrm{L}}\right|}{\left|{\mathbf{V}}_{\mathrm{L}}\right|}\times 100\;\% $$
]

 (12.46)

Here, |V
no‐load| is the rms voltage for the open-circuited load, and |V
L| is the rms voltage of the rated load. The regulation is determined by calculating V
S for the rated load and then using the same V
S to find the voltage across the open-circuited load. With reference to Fig. 12.17b, a simple yet accurate approximation for the no-load voltage is given by[image: 
$$ {\mathbf{V}}_{\mathrm{no}\hbox{-} \mathrm{load}}\approx \frac{{\mathbf{V}}_{\mathrm{S}}}{a} $$
]

 (12.47)

To prove this fact we observe that [image: 
$$ {\mathbf{I}}_2=0 $$
] for the open-circuited load. Furthermore, almost all of V
S is applied to the primary.
Exercise 12.13
Given the rated load with the power factor of 1.0, determine the percentage regulation for three transformer models in Table. 12.2.

                    Answer:
                    	Model #1—[image: 
$$ \mathrm{Regulation}=3.8 \% $$
].

	Model #2—[image: 
$$ \mathrm{Regulation}=2.4 \% $$
].

	Model #3—[image: 
$$ \mathrm{Regulation}=1.3 \% $$
].




                  

Exercise 12.14
Repeat the 

previous exercise for the power factor of 0.9 lagging.

                    Answer:
                    	Model #1—[image: 
$$ \mathrm{Regulation}=4.1 \% $$
].

	Model #2—[image: 
$$ \mathrm{Regulation}=4.1 \% $$
].

	Model #3—[image: 
$$ \mathrm{Regulation}=3.4 \% $$
].




                  


Transformer Efficienc

y
The transformer equivalent circuit in Fig. 12.17 includes parasitic resistances and thus implies power loss in the transformer itself. This power loss is characterized by 
                    transformer power efficiency
                    
                    
                   (percentage efficiency), η, which is defined by[image: 
$$ \eta =\frac{P_{\mathrm{L}}}{P_{\mathrm{S}}}\times 100 \% $$
]

 (12.48)

where the input active power P
S and the output active power P
L are given by Eq. (12.39). In well-designed power transformers, the efficiency may approach 99 %.
Exercise 12.15
Given the

 rated load with the power factor of 1.0, determine the percentage efficiency for three transformer models in Table. 12.2.

                    Answer:
                    	Model #1—[image: 
$$ \eta =88.4 \% $$
].

	Model #2—[image: 
$$ \eta =97.1 \% $$
].

	Model #3—[image: 
$$ \eta =97.9 \% $$
].




                  

Exercise 12.16
Repeat the previous exercise for the power factor of 0.9 lagging.

                    Answer:
                    	Model #1—[image: 
$$ \eta =87.3 \% $$
].

	Model #2—[image: 
$$ \eta =96.8 \% $$
].

	Model #3—[image: 
$$ \eta =97.7 \% $$
].




                  



12.4.5 About High-Frequency Transformer Model



At medium (in the audio range) and higher frequencies, the effect of winding capacitances and other capacitances shown in Fig. 12.18 becomes important. When frequency increases, the transformer, as an RLC circuit, may ultimately exhibit a resonance that will cause the effective parameter [image: 
$$ a={N}_1/{N}_2 $$
] to change. A number of capacitances may be added to the equivalent circuit model to model this effect.[image: A331468_1_En_12_Fig18_HTML.gif]
Fig. 12.18Internal winding 

capacitances of a realistic high-frequency transformer







12.5 Model of Coupled Inductors
12.5.1 Model of Two Coupled Inductors

                  Definitions


                
Now it is time to examine a model of two coupled inductors L
1 and L
2. This model is perhaps more general than the transformer model. What does coupled mean? For simplicity, we start with a “broken” transformer model with a large air gap shown in Fig. 12.19. Primary and secondary windings have currents i
1 and i
2, respectively. However, in contrast to the previous study, both currents will now enter the 
dotted terminals. This means that the primary winding, inductor #1, as well as the secondary winding, inductor #2, will both satisfy the passive υ-i reference configuration for the inductance. Therefore, when the air gap is very large, we will have the familiar inductor laws for both voltages υ
1 and υ
2 in Fig. 12.19, respectively:[image: A331468_1_En_12_Fig19_HTML.gif]
Fig. 12.19
                                                    Two coupled inductors.

 Note that we no longer use the transformer symbol. Also note the passive reference configuration for each inductance




[image: 
$$ {\upsilon}_1=+{L}_1\frac{d{i}_1}{dt}, {\upsilon}_2=+{L}_2\frac{d{i}_2}{dt} $$
]

 (12.49)

When the air gap is not very large, inductor #1 will be subject to a certain time-varying magnetic flux Φ2(t) created by current i
2(t) in the second inductor. According to Faraday’s law, voltage υ
1(t) will therefore additionally depend on current i
2(t), more precisely, on its time derivative. Quite similarly, inductor #2 will be subject to 

a certain time-varying magnetic flux Φ1(t) created by current i
1(t) in the first inductor. According to Faraday’s law, voltage υ
1(t) will also depend on time derivative of current i
1(t). As a result, instead of the inductance laws given by Eq. (12.49) for two uncoupled (literally noninteracting) inductors, we have the model
[image: 
$$ \begin{array}{l}{\upsilon}_1=+{L}_1\frac{d{i}_1}{dt}+M\frac{d{i}_2}{dt}\\ {}{\upsilon}_2=+M\frac{d{i}_1}{dt}+{L}_2\frac{d{i}_2}{dt}\end{array} $$
]

 (12.50)


of two coupled inductors. Here the coefficient [image: 
$$ M>0 $$
] is the mutual inductance of two coils, which is also measured in henries. You can see from the second expression in Eqs. (12.50) that the mutual inductance determines the voltage induced in inductor #2 due to changes of the electric current in inductor #1. Alternatively, from the first expression in Eqs. (12.50), the same mutual inductance determines the voltage induced in inductor #1 due to changes of the electric current in inductor #2. The signs in Eq. (12.50) are important. They follow a few rules:	1.Eqs. (12.50) corresponds to the dot convention and 
voltage polarities/current directions shown in Fig. 12.19.


 

	2.If one of the 
current reference directions, say the direction of i
2, is selected oppositely, we will have to use the minus sign in the respective terms in Eqs. (12.50).


 

	3.If one of the voltage polarities changes, we have will have to use the minus sign where required in Eqs. (12.50).


 





Figure 12.19 also shows the 
                    circuit symbol
                    
                    
                   for two coupled inductors. This symbol does not include the magnetic core; event if it is present in reality. Also, the mutual inductance is shown by an arrow.


12.5.2 Analysis of Circuits with Coupled Inductors
Solving circuits with the coupled inductors

 requires care. Consider, for example, a simple circuit shown in Fig. 12.20 in frequency domain. We cannot apply the impedance relations following from Eq. (12.49). For two coupled inductors, [image: 
$$ {\mathbf{V}}_1\ne +j\omega  {L}_1{\mathbf{I}}_1 \mathrm{and} {\mathbf{V}}_2\ne j\omega  {L}_2{\mathbf{I}}_2 $$
]. Instead, we should convert Eqs. (12.50) to the phasor form first and obtain[image: A331468_1_En_12_Fig20_HTML.gif]
Fig. 12.20Circuit with two coupled inductors in the phasor form







[image: 
$$ \begin{array}{l}{\mathbf{V}}_1=j\omega  {L}_1{\mathbf{I}}_1+j\omega  M{\mathbf{I}}_2\\ {}{\mathbf{V}}_2=j\omega  M{\mathbf{I}}_1+j\omega  {L}_2{\mathbf{I}}_2\end{array} $$
]

 (12.51)

These are two equations for four unknowns V
1, I
1, V
2, I
2. The two remaining equations are KVL for the left part of the circuit and KVL for the right part of the circuit, i.e.,[image: 
$$ {\mathbf{V}}_1=+{\mathbf{V}}_S \mathrm{and} {\mathbf{V}}_2=-{R}_L{\mathbf{I}}_2 $$
]

 (12.52)



Example 12.8
Solve the circuit with two coupled inductors in Fig. 12.20—determine the phasor load current given that [image: 
$$ {\mathbf{V}}_{\mathrm{S}}=10\angle 0{}^{\circ} \left[\mathrm{V}\right] $$
].

Solution: First, we substitute into Eqs. (12.51) the expressions for the reactances [image: 
$$ j\omega  {L}_1=j5 \Omega $$
], [image: 
$$ j\omega  {L}_2=j4 \Omega $$
], [image: 
$$ j\omega  M=j2 \Omega $$
] and obtain[image: 
$$ \begin{array}{l}{\mathbf{V}}_1=j5{\mathbf{I}}_1+j2{\mathbf{I}}_2 \left[\mathrm{V}\right]\\ {}{\mathbf{V}}_2=j2{\mathbf{I}}_1+j4{\mathbf{I}}_2 \left[\mathrm{V}\right]\end{array} $$
]

 (12.53)

Since, by KVL, [image: 
$$ {\mathbf{V}}_2=-{R}_{\mathrm{L}}{\mathbf{I}}_2=-10{\mathbf{I}}_2 $$
], from the second Eq. (12.53), one has[image: 
$$ {\mathbf{I}}_1=\left(-2+j5\right){\mathbf{I}}_2 \left[\mathrm{A}\right] $$
]

 (12.54)



Since by KVL, [image: 
$$ {\mathbf{V}}_1={\mathbf{V}}_{\mathrm{S}} = 10 \left[\mathrm{V}\right] $$
], from the first Eq. (12.53), one has[image: 
$$ 10=\left(-25-j8\right){\mathbf{I}}_2\Rightarrow {\mathbf{I}}_2=0.381\angle 162{}^{\circ} \left[\mathrm{A}\right] $$
]

 (12.55)

The phasor source current I
1 is given by [image: 
$$ {\mathbf{I}}_1=2.052\angle -86{}^{\circ} \left[\mathrm{A}\right] $$
].

A general solution of the four Eqs. (12.51) and (12.52) is of practical interest. Following the method of Example 12.8, it is obtained in the form:[image: 
$$ {\mathbf{I}}_2=\frac{{\mathbf{V}}_{\mathrm{S}}}{j\omega \frac{M^2-{L}_1{L}_2}{M}-\frac{L_1{R}_{\mathrm{L}}}{M}} \left[\mathrm{A}\right], {\mathbf{I}}_1=-\left(\frac{L_2}{M}+\frac{R_{\mathrm{L}}}{j\omega M}\right) {\mathbf{I}}_2 \left[\mathrm{A}\right] $$
]

 (12.56)



Exercise 12.17
Using Eqs. (12.56) solve the previous example given that [image: 
$$ j\omega {L}_1=j4 \Omega $$
], [image: 
$$ j\omega {L}_2=j1 \Omega $$
], and the mutual inductance is given by [image: 
$$ M=\sqrt{L_1{L}_2} $$
].

                  Answer:
                  [image: 
$$ \begin{array}{l}{\mathbf{I}}_1=2.513\angle -84{}^{\circ} \left[\mathrm{A}\right], {\mathbf{I}}_2=0.500\angle 180{}^{\circ} \left[\mathrm{A}\right], \\ {}{\mathbf{V}}_1=10.000\angle 0{}^{\circ} \left[\mathrm{V}\right], {\mathbf{V}}_2=5.000\angle 0{}^{\circ} \left[\mathrm{V}\right].\end{array} $$
]



                

Solution for N Coupled

 Inductors

The solution method for two coupled inductors may be straightforwardly extended to the case of N coupled inductors. In this case, Eqs. (12.51) will involve a matrix of self- and mutual inductances (the inductance matrix L) on the size N × N. KVL applied to every individual inductor circuit gives N remaining algebraic equations. The coupled system of 2N algebraic equations is then solved for unknowns I
1, …, I

                    N
                   and V
1, …, V

                    N
                  . The systems of coupled inductors are used in many applications, mostly for (multiple output) switched-mode power conversion. They could also be used for sensor and other purposes in bioelectromagnetics and other disciplines—see Fig. 12.21.[image: A331468_1_En_12_Fig21_HTML.jpg]
Fig. 12.21An array of coupled inductors (small coils) located on top of a human-head phantom. This hypothetic setup was tested for applications related to brain stimulation






Finding Mutual Inductance(s)



Despite the dynamic nature of Eqs. (12.50), the mutual inductance defined previously by Eq. (6.​16) is inherently a static quantity. It may be computed from the corresponding 3D magnetostatic analysis (often quite complicated). We will briefly review this question at the end of this section. Right now, however, we will establish the highest possible value of M, which is achieved for the ideal transformer.

Conversion to T-Network



It is may be convenient to replace a circuit with two coupled inductors by a circuit without magnetic coupling. This can be done using either a T-network or a Π-network of three inductances—see Section 3.​3 of Chapter 3. Figure 12.22 illustrates a conversion to the T-network for the circuit from Fig. 12.20. For leftmost inductance L
a, rightmost inductance L
b, and shunt inductance L
c of the T-network, one has[image: A331468_1_En_12_Fig22_HTML.gif]
Fig. 12.22Conversion of two coupled inductors to the

 T-network of three inductances




[image: 
$$ {L}_{\mathrm{a}}={L}_1-M, {L}_{\mathrm{b}}={L}_2-M, {L}_{\mathrm{c}}=M $$
]

 (12.57)

The proof is based on establishing υ–i relationships for both two-port networks in Fig. 12.22 and demonstrating t

heir identity.


12.5.3 Coupling Coefficient

                                    Energy

 in a Coupled Circuit
Multiplying Eqs. (12.50) by i
1 and i
2, respectively, and combining them together, one can find expressions for the instantaneous power p(t) and instantaneous energy E(t) stored in the system of two coupled inductors.[image: 
$$ \begin{array}{l}\left.\begin{array}{c}\hfill {\upsilon}_1{i}_1={L}_1{i}_1\frac{d{i}_1}{dt}+M{i}_1\frac{d{i}_2}{dt}\hfill \\ {}\hfill {\upsilon}_2{i}_2=M{i}_2\frac{d{i}_1}{dt}+{L}_2{i}_2\frac{d{i}_2}{dt}\hfill \end{array}\right\}\Rightarrow p(t)={\upsilon}_1{i}_1+{\upsilon}_2{i}_2=\frac{d}{dt}\left\{\frac{1}{2}{L}_1{i}_1^2+\frac{1}{2}{L}_2{i}_2^2+M{i}_1{i}_2\right\}\Rightarrow \\ {}E(t)={\displaystyle \underset{0}{\overset{t}{\int }}p\left({t}^{\prime}\right)d{t}^{\prime }}=\frac{1}{2}{L}_1{i}_1^2+\frac{1}{2}{L}_2{i}_2^2+M{i}_1{i}_2\ge 0\end{array} $$
]

 (12.58)

To complete the square in the expression for the energy, we both add and subtract the term [image: 
$$ \sqrt{L_1{L}_2}{i}_1{i}_2 $$
], which gives[image: 
$$ E(t)=\frac{1}{2}{\left(\sqrt{L_1}{i}_1+\sqrt{L_2}{i}_2\right)}^2+\left(M-\sqrt{L_1{L}_2}\right) {i}_1{i}_2\ge 0 $$
]

 (12.59)




Mutual Inductance of the Ideal Transformer
For the ideal transformer

, the energy stored in the transformer is zero, for any values of i
1, i
2. This fact has been proved in Section 12.1. Given arbitrary i
1, i
2, the condition [image: 
$$ E(t)=0 $$
] in Eq. (12.58) is satisfied if and only if,[image: 
$$ M=\sqrt{L_1{L}_2} \left[\mathrm{H}\right] $$
]

 (12.60)


and[image: 
$$ \frac{i_1}{i_2}=-\frac{\sqrt{L_2}}{\sqrt{L_1}}=-\frac{N_2}{N_1} $$
]

 (12.61)

Equation (12.60) is the 

definition of the mutual inductance for the ideal transformer. It gives the largest possible value of the mutual inductance. Equation (12.61) uses Eq. (6.​23) for the coil inductance. We note that this is indeed the ideal-transformer law (12.10), but with the minus sign due to the opposite current direction in Fig. 3.​19.
Example 12.9
A system of two coupled inductors is characterized by Eq. (12.60). Is this system equivalent to an ideal transformer?

Solution: We check the voltage relation first. From Eq. (12.50),[image: 
$$ \frac{\upsilon_2}{\upsilon_1}=\frac{\sqrt{L_2}\left(\sqrt{L_1}\frac{d{i}_1}{dt}+\sqrt{L_2}\frac{d{i}_2}{dt}\right)}{\sqrt{L_2}\left(\sqrt{L_1}\frac{d{i}_1}{dt}+\sqrt{L_2}\frac{d{i}_2}{dt}\right)}=\sqrt{\frac{L_2}{L_1}}=\frac{N_1}{N_2} $$
]

 (12.62)




Thus, the ideal-transformer law for voltages is satisfied. However, the ideal-transformer law for currents is not satisfied. An example is given by Eqs. (12.56). In order to obtain the ideal-transformer model, we must additionally assume that[image: 
$$ {L}_1\to \infty,  {L}_2\to \infty,  M\to \infty $$
]

 (12.63)



Otherwise, the coupled-inductor model will additionally take into account the magnetizing inductance, which is already a part of the nonideal 

transformer model studied in the previous section.


Coupling Coefficient
The mutual inductance

 in the general case is expressed in terms of the two coils’ self- inductances L
1 and L
2, in the form[image: 
$$ M=k\sqrt{L_1{L}_2} \left[\mathrm{H}\right] $$
]

 (12.64)

where k is a so-called coupling coefficient, [image: 
$$ 0<k\le 1 $$
]. The coupling coefficient determines the amount of total magnetic flux linkage from the first coil shared by the second coil and vice versa. For the ideal transformer, the flux is entirely concentrated within the common magnetic core so that [image: 
$$ k=1 $$
]. Figure 12.23 illustrates different values of the coupling coefficient.[image: A331468_1_En_12_Fig23_HTML.gif]
Fig. 12.23Different configurations and coupling coefficient values for two coupled inductors







12.5.4 Application Example: Wireless Inductive Power Transfer
Next, we shall consider two arbitrary coils in spatial proximity to each other. Equations (12.50) will always hold for any such coil configuration

 and for any distance, d, between the coils. However, the coupling coefficient, k, in Eq. (12.64) has to be determined separately for every particular geometry. The coupling coefficient may now be much less than one. Nonetheless, for any non-zero k, the variable current in coil #1 will create a variable voltage in coil #2. In other words, we could create wireless power or 
                  data transfer
                  
                  
                 between two, or even more than two, inductors. This is due to the very distinct property of an inductor’s magnetic near field. We are going to briefly discuss two examples of wireless data and/or power transfer with two coupled inductors. One approach is 
radio-frequency identification (RFID)

 which employs the use of a patch, known as an RFID tag, that is attached to the person or machinery to be monitored. The RFID 

technology has created a rapidly growing industry following the first patent issued in 1983 to Charles Walton (US Patent 4,284,288).
Example 12.10
The mutual inductance and the associated magnetic coupling provide a fundamental example of wireless data transfer between two physically distant circuits containing two coupled inductors. We should keep in mind that even though this is considered wireless coupling, it is quite different from true radio-frequency (RF) wireless data transmission over large distances. Still, many of the modern circuits, including the first two RFID standards in Table 12.3, use magnetic coupling and mutual inductance to enable wireless power transfer or data transfer from the tag to the reader and vice versa.
Table 12.3Standard frequencies for 

RFID tags (RFID TX/RX systems)


	Low frequency (LF)
	125–134 kHz

	High frequency (HF)
	13.56 MHz

	Ultra high frequency (UHF)
	868–930 MHz

	Microwave
	2.45 GHz

	Microwave
	5.80 GHz


Circuits with coupled 

inductors are highlighted.





Example 12.11
The mutual inductance and the associated magnetic coupling also provide a basic example of a wireless power (not data) transfer between two physically separated circuits. Let us assume that a power transfer is needed between two circuits, but without mechanical contact. For example, one circuit may be fixed, and another contained in a rotating or indexing machine. Clearly, we cannot use a wired wall plug for such a situation. An important example of near field wireless power transfer is a battery of an implanted device in a human body, which needs to be charged from time to time. A solution to the problem involves a pair of coupled inductors. Figure 12.24 depicts a 120-W inductive power transfer system from Mesa Systems Co., Medfield, MA. This system can be powered by any 12 V battery and also includes DC to AC converters.[image: A331468_1_En_12_Fig24_HTML.jpg]
Fig. 12.24A 120-W inductive power-transfer system powered by a 12-V battery from Mesa Systems Co., Medfield, MA






Basic Model of Inductive Power Transfer at Large Separation Distances
Two coaxial coupled inductors

 L
1 and L
2 in the wireless link configuration are shown in Fig. 12.25. One of them is the transmitter (TX) and the second is the receiver (RX). The separation distance between the inductors is d. The coupling coefficient k is usually much less than one, and the calculation of the mutual inductance requires care. It is prudent to calculate the mutual inductance of two single coaxial loops of current separated by d first. The result has the form[image: A331468_1_En_12_Fig25_HTML.gif]
Fig. 12.25Coupling between two coils in a typical near-field wireless link configuration




[image: 
$$ {M}_{\mathrm{loop}}\approx \frac{\pi {\mu}_0}{2}\frac{r_1^2{r}_2^2}{d^3} \left[\mathrm{H}\right], d\gg {r}_1,{r}_2 $$
]

 (12.65)

where r
1, r
2 are the loop radii. Note that d
3 is in the denominator indicating that the mutual inductance decreases very rapidly when the separation distance d increases. This is somewhat discouraging, but an unavoidable result for 
                    magnetic near-field calculations
                    
                    
                  . The mutual inductance between the two air-core coils having radii r
1, r
2, and N
1 and N
2 turns, respectively, is obtained from Eq. (12.65) in the form
[image: 
$$ M={N}_1{N}_2{M}_{\mathrm{loop}}\approx \frac{N_1{N}_2\pi {\mu}_0}{2}\frac{r_1^2{r}_2^2}{d^3} $$
]

 (12.66)

Knowing the mutual inductance, we can find the received current or voltage (and the received power) in the second coil once the transmitted voltage or the current is known in the first coil.
Example 12.12
Two coaxial air-core coils with [image: 
$$ {r}_1={r}_2=1.0 \mathrm{cm} $$
] and with [image: 
$$ {N}_1={N}_2=100 $$
] are separated by 1 m. What is the voltage signal induced in the second coil (RX) if the current in the first coil (TX) is given by [image: 
$$ {i}_1(t)=100 \mathrm{m}\mathrm{A}\times \sin \left(\omega t\right) $$
]?

Solution: We find the mutual inductance

 first, using Eq. (12.67):[image: 
$$ M=\frac{100\times 100\times 4{\pi}^2\times {10}^{-7}}{2}\frac{10^{-8}}{1}\approx 2.0\times {10}^{-10}\ \left[\mathrm{H}\right] $$
]

 (12.67)



A voltage induced in coil #2 according to the second equation in Eq. (12.50) is given by[image: 
$$ {\upsilon}_2=M\frac{d{i}_1}{dt}=2.0\times {10}^{-10}\times {10}^{-1}\omega\;\cos \left(\omega\;t\right) $$
]

 (12.68)



One can see that the higher the transmission frequency

, the greater response we will obtain! Let us assume that the transmission frequency is given by [image: 
$$ f=120 \mathrm{kHz} $$
]. Then, [image: 
$$ \omega =2\pi f\approx 0.75\times {10}^6 \mathrm{rad}/\mathrm{s} $$
] and Eq. (12.68) yields
[image: 
$$ {\upsilon}_2=2.0\times 0.75\times {10}^{-11}\times {10}^6 \cos \left(\omega t\right) \left[\mathrm{V}\right]=15\ \cos \left(\omega t\right) \left[\upmu \mathrm{V}\right] $$
]

 (12.69)



Such a weak voltage signal can hardly be observed on an oscilloscope, extracted from noise, and then amplified in a class laboratory setup. The most critical parameter is the coil radius; if it increases by the factor of 2, the received voltage will increase by a factor of 16. We see from this example that the near-field wireless link is tricky: the weak received signal must be carefully managed before conducting any experimentation.

The above analysis implies that the separation distance between the two coils is much greater than any of the coil dimensions. A finite magnetic core

 is not yet taken into account in Eq. (12.67). The equation is only valid for ceramic-core coils. Also note that the presence of steel conductors (armatures) nearby may greatly increase the efficiency of the wireless link. Such an effect is frequently observed in the laboratory. If the receive coil is terminated into a very small resistance, infinite received current and power may be obtained, even if the received voltage is small. Where is the contradiction? The point is that the received current creates its own magnetic field that opposes the changes in the transmitted magnetic field. As long as the received current is small, this is not an issue. The rule of thumb is to request the magnitude of the magnetic field created by the received current to be at most 10 % of the transmitted one at the receiver location.

Example 12.13
Compile a MATLAB script

 that will estimate the voltage signal (voltage amplitude) induced in the second coaxial coil (RX) if the periodic current (current amplitude) in the first coaxial coil (TX) is known. The signal strength (amplitude of the receiver voltage) is to be plotted as a function of the distance between two coils, d. We know coil radius, r, and number of turns, N (the same for both coils).

Solution: The text of the corresponding MATLAB script is given below. It uses Eq. (12.67). Next, it plots the voltage as a function of the separation distance. The plot for the previous example at 1 MHz is shown in Fig. 12.26.[image: A331468_1_En_12_Fig26_HTML.gif]
Fig. 12.26Voltage amplitude in coil #2 when the current amplitude in coil #1 is 100 mA






                    [image: A331468_1_En_12_Figam_HTML.gif]
                  



12.5.5 Application Example: Coupling of Nearby Magnetic Radiators

The mutual coupling between the two inductors (a transmitter and a receiver) is key for the wireless inductive power transfer

. At the same time, the mutual coupling may have a negative effect when the transmitter includes two or more independently driven coils assembled in a 
                  coil array
                  
                  
                . The mutual coupling between the individual transmit coils may reduce the individual coil current, i.e., reduce the resulting total magnetic field.
Circuit with Two Identical

 Radiators

The circuit shown in Fig. 12.27 formalizes the problem. It models the coupling effect between two nearby identical magnetic radiators. This circuit is important for near-field wireless power transfer with coil arrays including medical applications. Our goal is to express the source phasor current I

                    S
                   through the circuit parameters for two distinct cases:[image: A331468_1_En_12_Fig27_HTML.gif]
Fig. 12.27Modeling mutual c

oupling of two transmit coils




	A.Mutual coupling is absent.


 

	B.Mutual coupling is present; the mutual reactance is [image: 
$$ {X}_{\mathrm{M}}>0 $$
].


 





To solve the circuit, we convert the two coupled inductors to a T-network. The resulting circuit is shown in Fig. 12.28.[image: A331468_1_En_12_Fig28_HTML.gif]
Fig. 12.28Equivalent circuit with uncoupled inductors








When the mutual coupling is absent, the central inductor becomes a wire; both currents are given by[image: 
$$ {\mathbf{I}}_{\mathrm{S}}=\frac{{\mathbf{V}}_{\mathrm{S}}}{R_{\mathrm{S}}+j{X}_1} $$
]

 (12.70)

When the mutual coupling is present

, we can use KVL for the either circuit loop, which gives[image: 
$$ -{\mathbf{V}}_{\mathrm{S}}+{R}_{\mathrm{S}}{\mathbf{I}}_{\mathrm{S}}+j\left({X}_1-{X}_{\mathrm{M}}\right){\mathbf{I}}_{\mathrm{S}}+2j{X}_{\mathrm{M}}{\mathbf{I}}_{\mathrm{S}}=0 $$
]

 (12.71)

Therefore,[image: 
$$ {\mathbf{I}}_{\mathrm{S}}=\frac{{\mathbf{V}}_{\mathrm{S}}}{R_{\mathrm{S}}+j\left({X}_1+{X}_{\mathrm{M}}\right)} $$
]

 (12.72)

Note that the sign in front of X
M may vary depending on coil orientation. For example, it is positive for two coaxial coils (or loops) with in-phase currents (or in-phase fluxes) and is negative otherwise.


                  Tuned Radiators


                
The individual radiator circuit should be tuned to the operating frequency to maximize the circuit current/magnetic field. The tuning is typically achieved by a series capacitor with reactance [image: 
$$ -{X}_1 $$
], which exactly cancels the inductor’s reactance [image: 
$$ +{X}_1 $$
]. If this is the case, Eq. (12.73) is transformed to[image: 
$$ {\mathbf{I}}_{\mathrm{S}}=\frac{{\mathbf{V}}_{\mathrm{S}}}{R_{\mathrm{S}}+j{X}_{\mathrm{M}}}\Rightarrow \left|{\mathbf{I}}_{\mathrm{S}}\right|=\frac{\left|{\mathbf{V}}_{\mathrm{S}}\right|}{\sqrt{R_{\mathrm{S}}^2+{\left({X}_{\mathrm{M}}\right)}^2}} $$
]

 (12.73)

Thus, for the tuned radiators, the mutual coupling reduces the circuit current and the magnetic field, irrespective of the coil orientation. When X
M is small compared to the source resistance, this effect is of little value. Altogether, it can be eliminated by adjusting the value of the tuning capacitors.

Exercise 12.18
Determine the relative reduction in the emanating magnetic field at any point in space for two tuned identical coupled radiators when [image: 
$$ {R}_{\mathrm{S}}=10 \Omega $$
] and [image: 
$$ {X}_{\mathrm{M}}=1 \Omega $$
].

Answer: 0.5 %.

Exercise 12.19
Which reactance should the 



                      
                      
                    tuning capacitors have in order to eliminate the effect of the mutual inductance in Fig. 12.28?

Answer: [image: 
$$ -{X}_1-{X}_{\mathrm{M}} $$
].




Summary

                	
                            Ideal-transformer model
                          

	Concept
	Circuit
	Formulas/Meaning

	Faraday’s law

                            [image: A331468_1_En_12_Figan_HTML.gif]
                          
	Dependent voltage source in the secondary winding

                            [image: A331468_1_En_12_Figao_HTML.gif]
                          
	Primary winding:

                            [image: 
$$ {\upsilon}_1(t)={N}_1\frac{d\varPhi (t)}{dt} $$
]
                          
Secondary winding:

                            [image: 
$$ {\upsilon}_2(t)={N}_2\frac{d\varPhi (t)}{dt} $$
]
                          
Conclusion:

                            [image: 
$$ \frac{\upsilon_2}{\upsilon_1}=\frac{N_2}{N_1} $$
]
                          

	Ampere’s law

                            [image: A331468_1_En_12_Figap_HTML.gif]
                          
	Dependent current source in the primary winding

                            [image: A331468_1_En_12_Figaq_HTML.gif]
                          
	
                            [image: 
$$ l={l}_{ab}+{l}_{bc}+{l}_{cd}+{l}_{da} $$
]
                          
General form:

                            [image: 
$$ lH=i $$
]
                          
Ideal core:

                            [image: 
$$ 0=i={N}_1{i}_1-{N}_2{i}_2 $$
]
                          
Conclusion:

                            [image: 
$$ \frac{i_1}{i_2}=\frac{N_2}{N_1} $$
]
                          

	Ideal-transformer model with two dependent sources

                            [image: A331468_1_En_12_Figar_HTML.gif]
                          
	Equivalent circuit model of the ideal transformer

                            [image: A331468_1_En_12_Figas_HTML.gif]
                          
	Ideal-transformer equations:

                            [image: 
$$ \frac{\upsilon_2}{\upsilon_1}=\frac{N_2}{N_1} $$
]
                          

                            [image: 
$$ \frac{i_1}{i_2}=\frac{N_2}{N_1} $$
]
                          
Power conservation:

                            [image: 
$$ {\upsilon}_1{i}_1={\upsilon}_2{i}_2 $$
]
                          
Stored energy: 0

	Simple transformer circuit

                            [image: A331468_1_En_12_Figat_HTML.gif]
                          
	Circuit with transformer symbol

                            [image: A331468_1_En_12_Figau_HTML.gif]
                          
	Load voltage:

                            [image: 
$$ {\upsilon}_R=\frac{N_2}{N_1}{\upsilon}_S $$
]
                          
Load current:

                            [image: 
$$ {i}_R=\frac{\upsilon_R}{R} $$
]
                          
Source power:

                            [image: 
$$ {p}_S(t)=\frac{N_2}{N_1}\frac{\upsilon_S^2(t)}{R} $$
]
                          




                	Terminology

	Turns ratio
	
                            [image: 
$$ {N}_1:{N}_2=a $$
]
                          

	Step up transformer
	
                                                        [image: 
$$ {N}_2>{N}_1 $$
], [image: 
$$ a<1 $$
]

Secondary winding is the high-voltage side

	Step down transformer
	
                                                        [image: 
$$ {N}_2<{N}_1 $$
], [image: 
$$ a>1 $$
]

Primary winding is the high-voltage side

	Ratings
	Apparent load power and
Primary voltage (rms) : Secondary voltage (rms)




                	Some useful transformers

	Autotransformer

                            [image: A331468_1_En_12_Figav_HTML.gif]
                          
	Circuit symbol

                            [image: A331468_1_En_12_Figaw_HTML.gif]
                          
	Step down setup:
Voltage relation:
(from Faraday’s law)

                            [image: 
$$ {\upsilon}_2=\frac{N_2}{N_1+{N}_2}{\upsilon}_1 $$
]
                          
Current relation:
(from Ampere’s law)

                            [image: 
$$ {i}_2=\frac{N_1+{N}_2}{N_2}{i}_1 $$
]
                          

	Multiwinding transformer

                            [image: A331468_1_En_12_Figax_HTML.gif]
                          
	Circuit symbol

                            [image: A331468_1_En_12_Figay_HTML.gif]
                          
	Voltage relation:
(from Faraday’s law)

                            [image: 
$$ \frac{\upsilon_1}{N_1}=\frac{\upsilon_2}{N_2}=\frac{\upsilon_3}{N_3} $$
]
                          
Current relation:
(from Ampere’s law)

                            [image: 
$$ {N}_1{i}_1={N}_2{i}_2+{N}_3{i}_3 $$
]
                          

	Center-tapped transformer

                            [image: A331468_1_En_12_Figaz_HTML.gif]
                          
	Circuit symbol

                            [image: A331468_1_En_12_Figba_HTML.gif]
                          
	Voltage relation:
(from Faraday’s law)

                            [image: 
$$ {\upsilon}_2=\frac{N_2}{2{N}_1}{\upsilon}_1 $$
]
                          
Current relation:
(from Ampere’s law for two identical loads)

                            [image: 
$$ \frac{N_1}{N_2}{i}_1={i}_2={i}_3 $$
]
                          

	Current transformer

                            [image: A331468_1_En_12_Figbb_HTML.gif]
                          
	Circuit symbol

                            [image: A331468_1_En_12_Figbc_HTML.gif]
                          
	Instrumentation transformer (to measure current)

                            [image: 
$$ {i}_2=\frac{1}{N_2}{i}_1 $$
]
                          




                	
                            Phasor form of a transformer circuit
                          

	Particular types of dot convention

	
                            [image: A331468_1_En_12_Figbd_HTML.gif]
                          
	
                                                        [image: 
$$ \frac{{\mathbf{V}}_2}{ {\mathbf{V}}_1}=+\frac{N_2}{N_1} $$
], [image: 
$$ \frac{{\mathbf{I}}_2}{{\mathbf{I}}_1}=+\frac{N_1}{N_2} $$
]


	
                            [image: A331468_1_En_12_Figbe_HTML.gif]
                          
	
                                                        [image: 
$$ \frac{{\mathbf{V}}_2}{ {\mathbf{V}}_1}=+\frac{N_2}{N_1} $$
], [image: 
$$ \frac{{\mathbf{I}}_2}{{\mathbf{I}}_1}=-\frac{N_1}{N_2} $$
]


	
                            [image: A331468_1_En_12_Figbf_HTML.gif]
                          
	
                                                        [image: 
$$ \frac{{\mathbf{V}}_2}{ {\mathbf{V}}_1}=-\frac{N_2}{N_1} $$
], [image: 
$$ \frac{{\mathbf{I}}_2}{{\mathbf{I}}_1}=+\frac{N_1}{N_2} $$
]


	
                            [image: A331468_1_En_12_Figbg_HTML.gif]
                          
	
                                                        [image: 
$$ \frac{{\mathbf{V}}_2}{ {\mathbf{V}}_1}=-\frac{N_2}{N_1} $$
], [image: 
$$ \frac{{\mathbf{I}}_2}{{\mathbf{I}}_1}=-\frac{N_1}{N_2} $$
]


	Reflecting the source to the secondary side

	Transformer circuit

                            [image: A331468_1_En_12_Figbh_HTML.gif]
                          
	Circuit equivalent (load voltage is the same)

                            [image: A331468_1_En_12_Figbi_HTML.gif]
                          

	Reflecting the load to the primary side

	Transformer circuit

                            [image: A331468_1_En_12_Figbj_HTML.gif]
                          
	Circuit equivalent (source current is the same)

                            [image: A331468_1_En_12_Figbk_HTML.gif]
                          

	
                            Transformer-based impedance matching
                          

	Exact matching with real impedances

	Transformer circuit

                            [image: A331468_1_En_12_Figbl_HTML.gif]
                          
	Circuit equivalent with [image: 
$$ {N}_{ 1}:{N}_2=\sqrt{R_S/{R}_L} $$
]


                            [image: A331468_1_En_12_Figbm_HTML.gif]
                          

	Approximate matching for maximum power transfer from source to load

	Transformer circuit

                            [image: A331468_1_En_12_Figbn_HTML.gif]
                          
	
                            [image: 
$$ {N}_{ 1}:{N}_2=\sqrt[4]{\left({R}_S^2+{X}_S^2\right)/{R}_L^2} $$
]
                          

                            [image: A331468_1_En_12_Figbo_HTML.gif]
                          

	
                            Non-ideal low-frequency transformer model (Steinmetz model)
                          

	
                            [image: A331468_1_En_12_Figbp_HTML.gif]
                          
	
                            Primary winding and magnetic core:
                          
Magnetizing inductance L

                              m
                             ([image: 
$$ {X}_m=\omega {L}_m $$
]);
Core loss equivalent resistanceR

                              c
                            ;
Leakage inductance L

l1 ([image: 
$$ {X}_{l1}=\omega {L}_{l1} $$
]);
Ohmic resistanceR
1;

                                                        Secondary winding:
Leakage inductance L

l2 ([image: 
$$ {X}_{l2}=\omega {L}_{l2} $$
]);
Ohmic resistance R
1


	
                            Model of coupled inductors
                          

	Circuit symbol

                            [image: A331468_1_En_12_Figbq_HTML.gif]
                          
	Physical counterpart

                            [image: A331468_1_En_12_Figbr_HTML.gif]
                          

	Reduction to ideal-transformer model

                            [image: A331468_1_En_12_Figbs_HTML.gif]
                          
	Ideal-transformer model

                            [image: A331468_1_En_12_Figbt_HTML.gif]
                          

	Phasor form

                            [image: A331468_1_En_12_Figbu_HTML.gif]
                          
	Constitutive relations:

                            [image: 
$$ \begin{array}{l}{\mathbf{V}}_1=j\omega  {L}_1{\mathbf{I}}_1+j\omega  M{\mathbf{I}}_2\\ {}{\mathbf{V}}_2=j\omega  M{\mathbf{I}}_1+j\omega  {L}_2{\mathbf{I}}_2\end{array} $$
]
                          
Mutual inductance:

                            [image: 
$$ M=k\sqrt{L_1{L}_2} $$
]
                          
Dimensionless coupling coefficient:

                            [image: 
$$ 0\le k\le 1 $$
]
                          

	Simple circuit

                            [image: A331468_1_En_12_Figbv_HTML.gif]
                          
	To solve the circuit use the constitutive relations and KVL for each loop. Solution:

                            [image: 
$$ \begin{array}{l}{\mathbf{I}}_2=\frac{{\mathbf{V}}_S}{j\omega \frac{M^2-{L}_1{L}_2}{M}-\frac{L_1{R}_L}{M}} \left[\mathrm{A}\right]\\ {}{\mathbf{I}}_1=-\left(\frac{L_2}{M}+\frac{R_L}{j\omega M}\right) {\mathbf{I}}_2 \left[\mathrm{A}\right]\end{array} $$
]
                          

	Conversion to a T-network without coupling

                            [image: A331468_1_En_12_Figbw_HTML.gif]
                          
	Equivalent T-network of uncoupled inductances

                            [image: A331468_1_En_12_Figbx_HTML.gif]
                          

	Mutual inductance for two short ceramic coaxial coils

                            [image: A331468_1_En_12_Figby_HTML.gif]
                          
	
                            [image: 
$$ M\approx \frac{N_1{N}_2\pi {\mu}_0}{2}\frac{r_1^2{r}_2^2}{d^3} $$
]
                          

                                                        r
1, r
2 are the coil radii;

                                                        [image: 
$$ d>>{r}_1,{r}_2 $$
] is the coil separation distance

	Coupling between two nearby near-field magnetic radiators

                            [image: A331468_1_En_12_Figbz_HTML.gif]
                          
	Mutual coupling between two radiators generally reduces the amplitude of the source current in every radiator: [image: 
$$ {\mathbf{I}}_S=\frac{{\mathbf{V}}_S}{R_S+j\left({X}_1+{X}_M\right)} $$
]

and the associated magnetic field for both of them




              

Problems
12.1 Ideal Transformer as a Linear Passive Circuit Element

                  12.1.2
                  
                    Ideal Open-Circuited Transformer
                    
                    
                  
                  : Faraday’s Law of Induction
                
Problem 12.1
The following figure shows two open-circuited coils subject to a time-varying flux, Φ(t), in the core.[image: A331468_1_En_12_Figf_HTML.gif]



Faraday’s law does not explicitly say anything about the polarity of the induced voltage in the coils. Nevertheless, the induced voltage does have a preferred polarity determined by Lenz’s law (Heinrich Friedrich Emil Lenz (1804–1865), a Russian physicist of German ethnicity, taught at the University of St. Petersburg). Lenz’s Law
 states that the circuit current due to induced voltage υ produces a flux in such a direction as to oppose the change of the flux. In other words, the induced current always seeks to maintain the status duo of the magnetic field. To find the direction of the anticipated circuit current, you may imagine a resistance connected across the coil terminals. Now, assume that the magnetic flux in the core, Φ, is increasing in time. Label the polarity of the induced voltages for coils #1 and #2, respectively, by ± and show the direction of the anticipated circuit current.


Problem 12.2
Are the following figures correct?[image: A331468_1_En_12_Figg_HTML.gif]




Problem 12.3
For the circuit shown in the following figure, determine voltage υ
2(t) if [image: 
$$ \upsilon (t)=100 \cos \omega  t \left[\mathrm{V}\right] $$
] using Faraday’s law of induction. Count the number of turns. Assume no flux leakage.[image: A331468_1_En_12_Figh_HTML.gif]




Problem 12.4
For the circuit shown in the figure below, determine voltage υ
2(t) if[image: 
$$ \upsilon (t)=70 \cos \omega  t \left[\mathrm{V}\right] $$
] using Faraday’s law of induction. Count the number 

of turns. Assume no flux leakage.[image: A331468_1_En_12_Figi_HTML.gif]




Problem 12.5
Explain the meaning of the ideal magnetic core. What is the inductance value for an inductor which uses the closed-loop ideal magnetic core?

Problem 12.6
You are given the source voltage in the form [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=340 \cos \left(2\pi 60t\right) \left[\mathrm{V}\right] $$
]
, the number of turns of primary winding [image: 
$$ {N}_1=250 $$
], the finite relative permeability of the magnetic core, [image: 
$$ {\mu}_{\mathrm{r}}=7000 $$
], the coil length of the primary winding of 9 cm, and the core cross section of [image: 
$$ A=0.0015 {\mathrm{m}}^2 $$
].	A.Find the exciting current i
Φ(t) (no-load current) in the primary winding of this nonideal transformer.


 

	B.Reduce N
1 by the

 factor of 10 and repeat the solution.


 







                  12.1.4
                  
                    Ampere’s Law
                    
                  
                

                  12.1.5
                  
                    Ideal Loaded Transformer
                    
                  
                

                  12.1.6 Ideal Transformer
                  
                    Versus
                    
                    
                  
                  Realistic Transformer: Transformer Terminology
                
Problem 12.7
For the circuit shown in the following figure, establish the relation between currents i
1(t) and i
2(t). Assume the ideal magnetic core. Count the number of turns.[image: A331468_1_En_12_Figj_HTML.gif]




Problem 12.8
For the circuit shown in the following figure, establish the relation between currents i
1(t), i
2(t), and i
3(t). Assume an

 ideal magnetic core. Count the number of turns.[image: A331468_1_En_12_Figk_HTML.gif]




Problem 12.9
For the circuit shown in the figure below, determine current i
2(t) given that [image: 
$$ {i}_1(t)=1 \cos \omega  t \left[\mathrm{A}\right] $$
]. Count the number of turns.[image: A331468_1_En_12_Figl_HTML.gif]




Problem 12.10
For the circuit shown in the figure below, establish the relation between currents i
1(t), i
2(t), and i
3(t). Assume an ideal magnetic core. Count the number of turns. Hint: Ampere’s law for the ideal core applies to every closed path.[image: A331468_1_En_12_Figm_HTML.gif]




Problem 12.11
In Problem 12.6, determine the instantaneous stored energy of a nonideal transformer given a core centerline length of 30 cm.


Problem 12.12
In the circuit 

shown in the figure below, [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=170 \cos \left(2\pi 60t\right) \left[\mathrm{V}\right] $$
]. For a 100 Ω resistive load, determine:	Source current i
S(t)

	Load voltage υ
R(t)

	Load current i
R(t)

	Average power delivered to the load P






when the turns ratio is equal to 10:1, 1:1, and 1:10.[image: A331468_1_En_12_Fign_HTML.gif]




Problem 12.13

In the circuit shown in the figure below, [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=325 \cos \left(2\pi \omega t\right) \left[\mathrm{V}\right] $$
]. The ideal transformer model is used. Determine source current i
S(t), load voltage υ
R(t), and load current i
R(t) when:	A.The switch is open.


 

	B.The switch is closed.


 

	C.The switch is closed and [image: 
$$ \omega \to 0 $$
].[image: A331468_1_En_12_Figo_HTML.gif]





 






Problem. 12.14
In the 

circuit shown in the figure below, the current through resistance is given by [image: 
$$ {i}_{\mathrm{R}}(t)=50 \cos \left(2\pi 60t\right) \left[\mathrm{A}\right] $$
]. Determine:	Source voltage υ
S(t)

	Source current i
S(t)[image: A331468_1_En_12_Figp_HTML.gif]









Problem 12.15
A power transformer is rated as 100 kVA, 11,000:2200 V, 60 Hz. Determine:	Transformer type

	Turns ratio

	The rated current on the 



                            
                          low-voltage side







Problem 12.16
Repeat the previous problem for a transformer rated as 10 kVA, 2300:230 V, 60 Hz.

Problem 12.17
Repeat Problem 12.15 for a transformer rated as 2 kVA, 230:115 V, 50 Hz.


12.2 Analysis of Ideal-Transformer Circuits

                  12.2.1 Circuit with a Transformer in the
                  
                    Phasor
                    
                    
                  
                  Form
                

                  12.2.2 Referred (or Reflected)
                  
                    Source
                    
                    
                  
                  Network in the Secondary Side
                

                  12.2.3 Referred (or Reflected)
                  
                    Load
                    
                    
                  
                  Impedance in the Primary Side
                
Problem 12.18
The load impedance is [image: 
$$ 12.5-j2.5 \Omega $$
]. Find the equivalent impedance of the load Z
T combined with a 2:1 step-down transformer in the primary side.


Problem 12.19
Source voltage is given by[image: 
$$ {\upsilon}_{\mathrm{S}}(t)=2.5 \cos \omega t+45{}^{\circ} \left[\mathrm{V}\right] $$
] and the source impedance is [image: 
$$ 5-j0.5 \Omega $$
]. Find the equivalent circuit of the source (find V
T and Z
T) combined with a 1:4 step-up transformer in the secondary side. Express your result both in frequency domain and in time domain.


Problem 12.20
A large capacitance value of 1.6 mF is required. The available physical component is a 100-μF capacitor. You are given an ideal transformer with an arbitrary turns ratio. Design the equivalent circuit for the 1.6 mF capacitance, 
                      
                      
                    specify the transformer turns ratio, and draw the corresponding circuit diagram.


Problem 12.21
For the circuit shown in the figure below, determine transformer’s turns ratio.[image: A331468_1_En_12_Figq_HTML.gif]




Problem 12.22
For the circuit shown in the following figure, [image: 
$$ {\mathbf{V}}_{\mathrm{S}}=10\angle 45{}^{\circ} \left[\mathrm{V}\right] $$
], [image: 
$$ {\mathbf{Z}}_{\mathrm{S}}=5+j5 \Omega $$
], [image: 
$$ {\mathbf{Z}}_{\mathrm{L}}=5+j5 \Omega $$
], and [image: 
$$ {N}_1:{N}_2=1:2 $$
]. Find phasor voltage across the load, V
L. Express your result in polar form. Assume the ideal 

transformer.[image: A331468_1_En_12_Figr_HTML.gif]




Problem 12.23
In the circuit shown in the figure below, [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=2.5 \cos \left(\omega  t+45{}^{\circ}\right) \left[\mathrm{V}\right] $$
] where [image: 
$$ \omega =1000\mathrm{rad}/\mathrm{s} $$
], [image: 
$$ C=10 \upmu \mathrm{F} $$
], [image: 
$$ {R}_1=25 \Omega $$
], [image: 
$$ {R}_{\mathrm{L}}=200 \Omega $$
]. Furthermore, [image: 
$$ {N}_1:{N}_2=1:2 $$
]. Find voltage across the load υ
L(t) in time domain. Assume the ideal transformer.[image: A331468_1_En_12_Figs_HTML.gif]




Problem 12.24
For the circuit shown in the following figure, [image: 
$$ {\mathbf{V}}_{\mathrm{S}}=10\angle 45{}^{\circ} \left[\mathrm{V}\right] $$
], [image: 
$$ {\mathbf{Z}}_{\mathrm{S}}=5+j5 \Omega $$
], [image: 
$$ {\mathbf{Z}}_{\mathrm{L}}=5+j5 \Omega $$
], and [image: 
$$ {N}_1:{N}_2=1:2 $$
]. Find phasor current of the 

source, I
S. Express your result in polar form. Assume the ideal transformer.[image: A331468_1_En_12_Figt_HTML.gif]




Problem 12.25
In the circuit shown in the following figure, [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=2.5 \cos \left(\omega  t+45{}^{\circ}\right) \left[\mathrm{V}\right] $$
] where [image: 
$$ \omega =2000 \mathrm{rad}/\mathrm{s} $$
], [image: 
$$ C=10 \upmu \mathrm{F} $$
], [image: 
$$ {R}_1=50 \Omega $$
], [image: 
$$ {R}_{\mathrm{L}}=20 \Omega $$
]. Furthermore, [image: 
$$ {N}_1:{N}_2=2:1 $$
]. Find source current i
S(t) in time domain. Assume the ideal transformer.[image: A331468_1_En_12_Figu_HTML.gif]





                  12.2.4
                  
                    Transformer
                    
                    
                  
                  as a Matching Circuit
                
Problem 12.26
A 16-Ω load is connected to an AC voltage source with a voltage amplitude of 10 V and series resistance of 1 Ω. A matching 

transformer is used with the turns ratio N
1 : N
2. Determine the average power delivered to the load when
	A.
                            [image: 
$$ {N}_1:{N}_2=1:1 $$
]



                          


 

	B.
                            [image: 
$$ {N}_1:{N}_2=1:2 $$
]



                          


 

	C.
                            [image: 
$$  {N}_1:{N}_2=1:4 $$
]



                          


 

	D.
                            [image: 
$$  {N}_1:{N}_2=1:5 $$
]



                          


 






Problem 12.27
A passive RFID tag circuit measuring temperature is modeled by a load resistance of 16 Ω. The tag is wirelessly powered; it is augmented with a small collecting antenna, which has the radiation resistance of [image: 
$$ 1-j2 \Omega $$
]. The negative antenna reactance is an inherent part of the small dipole antenna design. Find the ratio of the average received powers from the antenna with and without the matching transformer. Assume the load matching condition for the real part of the impedances.[image: A331468_1_En_12_Figv_HTML.gif]




Problem 12.28
The previous problem may be generalized as follows. An antenna operates as an energy-harvesting source. The antenna is modeled as an impedance [image: 
$$ {\mathbf{Z}}_{\mathrm{S}}={R}_{\mathrm{S}}+j{X}_{\mathrm{S}} $$
] in series with a fixed ideal voltage source. The nonzero antenna reactance is an inherent part of the small antenna design. The load is modeled as a resistance R
L. Express the turns ratio of a matching transformer, which is necessary for maximum average power transfer from the 

antenna to the load, in terms of three given problem parameters. Note that this problem has an elegant analytical solution.


                  12.2.5
                  
                    Application
                    
                    
                  
                  Example: Electric Power Transfer via Transformers
                
Problem 12.29
The performance of a transmission line circuit in the following figure is to be analyzed, with and without 1:10 step-up transformer and 10:1 step-down transformer, respectively. All phasors are given in terms of the rms values. Solve the circuit with and without transformers and fill out the table that follows including active load power [image: 
$$ {P}_{\mathrm{L}}=\mathrm{R}\mathrm{e}\left({\mathbf{V}}_{\mathrm{L}}\cdot {{\mathbf{I}}_{\mathrm{L}}}^{*}\right) $$
], active source power, [image: 
$$ {P}_{\mathrm{S}}=\mathrm{R}\mathrm{e}\left({\mathbf{V}}_{\mathrm{S}}\cdot {{\mathbf{I}}_{\mathrm{S}}}^{*}\right) $$
], and the line power loss [image: 
$$ {P}_{\mathrm{loss}}=R{\left|{\mathbf{I}}_{\mathrm{line}}\right|}^2 $$
]. All powers are to be reported in watts. You are given [image: 
$$ {\mathbf{Z}}_{\mathrm{L}}=4+j2 \Omega $$
].[image: A331468_1_En_12_Figw_HTML.gif]


	Param.
	
                                V
                                S
                              
	
                                I
                                S
                              
	
                                P
                                S
                              
	
                                I
                                line
                              

	No tr.
	
                                [image: 
$$ 240\angle 0{}^{\circ} $$
]
                              
	 	 	 
	W tr.
	
                                [image: 
$$ 240\angle 0{}^{\circ} $$
]
                              
	 	 	 
	Param.
	
                                P
                                loss
                              
	
                                V
                                L
                              
	
                                I
                                L
                              
	
                                P
                                L
                              

	No tr.
	 	 	 	 
	W tr.
	 	 	 	 





Problem 12.30

Repeat the previous

 problem when the transformer setup changes to a 1:5 step-up transformer and a 5:1 step-down transformer.


Problem 12.31
An AC-direct micro-hydropower system is illustrated in the following figure.[image: A331468_1_En_12_Figx_HTML.gif]
Reprinted from Micro-Hydropower Systems Canada 2004, ISBN 0-662-35880-5





The system uses a single phase induction generator with the rms voltage of 240 V. The system serves four small houses, each connected to the generator via a separate transmission line with the same length of 3000 m. Each line uses AWG#10 solid aluminum wire 

with a diameter of 2.59 mm. The house load in every house is an electric range with the resistance of 20 Ω. Determine total active power delivered by the generator, P
S, total power loss in the transmission lines, P
loss, and total active useful power, P
L:	1.When no transformers are used;


 

	2.When a 1:5 step-up transformer is used in powerhouse and a 5:1 step-down transformer is used at home.


 






Problem 12.32
Solve the previous problem when the distributed line inductance is additionally taken into account. The inductance per unit length of a two-wire line is given by [image: 
$$ \frac{\mu_0}{\pi}\left( \ln \frac{d}{a}+\frac{1}{4}\right) $$
] where a is the wire radius and d is the separation distance. Assume the separation distance of 1 m. The operation frequency is 50 Hz.


12.3 Some useful transformers

                  12.3.1
                  
                    Autotransformer
                    
                  
                
Problem 12.33
A voltage source connected to the primary winding of an ideal step-up autotransformer shown in the following figure has the form [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=5 \cos \omega t \left[\mathrm{V}\right] $$
]. The 
source current into the 
dotted terminal is [image: 
$$ {i}_{\mathrm{S}}(t)=10 \cos \omega t \left[\mathrm{A}\right] $$
]. You are given [image: 
$$ {N}_1=200 $$
], [image: 
$$ {N}_2=50 $$
]. Determine voltage υ
2(t) and current i
2(t) in the secondary.[image: A331468_1_En_12_Figy_HTML.gif]




Problem 12.34
Solve the previous problem for the circuit shown in the following figure.[image: A331468_1_En_12_Figz_HTML.gif]




Problem 12.35
For the circuit shown in the following figure, [image: 
$$ {\mathbf{V}}_{\mathrm{S}}=100\angle 45{}^{\circ} \left[\mathrm{V}\right] $$
], [image: 
$$ {\mathbf{Z}}_{\mathrm{S}}=5+j5 \Omega $$
], [image: 
$$ {\mathbf{Z}}_{\mathrm{L}}=5+j5 \Omega $$
], and [image: 
$$ {N}_1:{N}_2=4:1 $$
]. Find phasor current of the source, I
S. Express your result in polar form. Assume the ideal autotransformer.[image: A331468_1_En_12_Figaa_HTML.gif]




Problem 12.36
Find the equivalent input impedance, Z
in, for two autotransformer circuits shown in 
the following figure.[image: A331468_1_En_12_Figab_HTML.gif]





                  12.3.2
                  
                    Multiwinding Transformer
                    
                  
                

                  12.3.
                  
                    3
                    
                    
                  
                  Center-Tapped Transformer: Single-Ended to Differential Transformation
                
Problem 12.37
In the circuit shown in the following figure, [image: 
$$ {N}_1=2{N}_2={N}_3 $$
]
. How is the instantaneous power partitioned between the two secondary windings if both of them are terminated into the same load resistances? To answer this question, express both p
2(t) and p
3(t) in terms of p
1(t).[image: A331468_1_En_12_Figca_HTML.gif]




Problem 12.38
In the circuit of the previous problem, [image: 
$$ {N}_1=2{N}_2=2{N}_3 $$
]. How is the instantaneous power partitioned between the two secondary windings if winding #2 is terminated into resistance R and winding #3 is terminated into resistance 3R?


Problem 12.39
Determine the 

turns ratio for the center-tapped transformer in Fig. 12.13.


Problem 12.40
A household is using an ideal center-tapped distribution transformer shown in the following figure. All voltage values are the rms values. The resistive loads include a TV, a microwave, and a kitchen range. The powers for every individual load are shown in the figure. Determine:	A.Turns ratio, N
1 : N
2 of the transformer


 

	B.rms value of input current i
1
[image: A331468_1_En_12_Figad_HTML.gif]





 






Problem 12.41
Determine phasor currents I
R1, I
R2, and I
R0 for the center-tapped balanced transformer circuit shown in the following figure. You are given the source phasor voltage [image: 
$$ {\mathbf{V}}_{\mathrm{S}}=10\angle 0{}^{\circ} \left[\mathrm{V}\right] $$
], resistance values [image: 
$$ R=50 \Omega $$
], and turns ratio [image: 
$$ {N}_1:{N}_2=1 $$
].
[image: A331468_1_En_12_Figae_HTML.gif]




Problem 12.42
Solve the previous problem in a general form, i.e., express phasor currents I
R1, I
R2, and I
R0 in the (generally unbalanced) circuit shown in the following figure in terms of given circuit parameters V
S, Z
1, Z
2, 
                      
                      
                    and turns ratio [image: 
$$ a={N}_1:{N}_2 $$
].[image: A331468_1_En_12_Figaf_HTML.gif]





                  12.3.4
                  
                    Current
                    
                    
                  
                  Transformer
                
Problem 12.43
Determine current i
2(t) in an ideal current transformer shown in the figure given that [image: 
$$ {i}_1(t)=10 \cos \omega  t\left[\mathrm{A}\right] $$
]. Count the number of turns.[image: A331468_1_En_12_Figag_HTML.gif]





12.4 Real-Transformer Model

                  12.4.1 Model of a
                  
                    Nonideal Low-Frequency Transformer
                    
                  
                

                  12.4.2 Model Parameters and Their Extraction
                

                  12.4.3 Analysis of Nonideal Transformer Model
                

                  12.4.4 Voltage Regulation and Transformer Efficiency
                
Problem 12.44

                    	A.
Name



                              
                              
                             all seven components of the low-frequency nonideal transformer model.


 

	B.Draw the corresponding circuit diagram.


 




                  

Problem 12.45
A practical power transformer is characterized by the following nameplate information: 20 kVA 2400:240 V 60 Hz.
	A.Determine rated-load phasor voltage V
L (show units and assign phase zero).


 

	B.Determine rated-load phasor current I
L for power factor of 0.8 lagging (show units).


 

	C.Determine rated-load active power P
L (show units).


 






Problem 12.46
Repeat the



                      
                      
                     previous problem for the power transformer characterized by

                    2 kVA 230:115 V 50 Hz.
                  

Problem 12.47
A practical power transformer is characterized by the following information:	Element nameplate
	
                                20 kVA 2400:240 V
                              

                                60 Hz
                              

	
                                                                Magnetizing reactance
 [image: 
$$ {X}_{\mathrm{m}}=\omega {L}_{\mathrm{m}} $$
], Ω
	15,000

	Core loss resistance, R
c, Ω
	100,000

	
                                                                Primary leakage reactance

 [image: 
$$ {X}_{\mathrm{l}1}=\omega {L}_{\mathrm{l}1} $$
], Ω
	6.5

	
                                                                Secondary leakage reactance

, [image: 
$$ {X}_{\mathrm{l}12}=\omega {L}_{\mathrm{l}12} $$
], Ω
	0.07

	
                                                                Primary ohmic resistance

 R
1, Ω
	3.0

	Secondary ohmic resistance R
2, Ω
	0.03





Check whether or not equalities (12.38) for the well-designed transformer are satisfied.


Problem 12.48
In a well-designed transformer, the number of turns of both primary and secondary windings is usually quite large. Why is



                      
                      
                     it so? Can we just design a 10:1 transformer with 10 and 1 turns, respectively?


Problem 12.49

The nonideal transformer model is shown in the following figure in frequency domain. Given the rated load with a power factor of 0.8 lagging, determine the source phasor voltage V
S and the source phasor current I
S for transformer #1 model from Table 12.2.[image: A331468_1_En_12_Figah_HTML.gif]




Problem 12.50
Repeat the 



                      
                      
                    previous problem for transformer #2 model from Table 12.2.


Problem 12.51

Repeat Problem 12.49 for transformer #3 model from Table 12.2.


Problem 12.52
The nonideal transformer model is shown in the following figure in frequency domain. Given the rated load with a power factor of 0.7 lagging, determine:	A.Percentage regulation


 

	B.Percentage efficiency


 





for transformer #1 model from Table 12.2
[image: A331468_1_En_12_Figai_HTML.gif]




Problem 12.53
Repeat the previous problem for transformer #2 model from Table 12.2.


Problem 12.54
Repeat Problem 12.52 for transformer #3 model from Table 12.2.


12.5 Model of Coupled Inductors

                  12.5.1 Model of
                  
                    Two Coupled Inductors
                    
                    
                  
                

                  12.5.2 Analysis of Circuits with Coupled Inductors
                

                  12.5.3 Coupling Coefficient
                
Problem 12.55
Solve a circuit with two coupled inductors in the figure below in frequency domain:	A.Determine the load phasor current and the source phasor current.


 

	B.Determine phasor voltages V
1 and V
2



 





given that [image: 
$$ {\mathbf{V}}_{\mathrm{S}}=10\angle 0{}^{\circ} \left[\mathrm{V}\right] $$
] and [image: 
$$ {R}_{\mathrm{L}}=10 \Omega $$
].[image: A331468_1_En_12_Figaj_HTML.gif]




Problem 12.56
Solve the previous problem when the mutual inductance is exactly zero.

Problem 12.57
Solve Problem 12.55 when the mutual reactance is equal to 3 Ω.


Problem 12.58
In the circuit shown in the following figure, determine source phasor current I
S given that [image: 
$$ {R}_{\mathrm{L}}=1 \Omega $$
], [image: 
$$ {R}_{\mathrm{S}}=2 \Omega $$
], and [image: 
$$ {\mathbf{V}}_{\mathrm{S}}=15\angle 0{}^{\circ} \left[\mathrm{V}\right] $$
].[image: A331468_1_En_12_Figak_HTML.gif]





                  12.5.4 Application Example:
                  
                    
                    
                  
                  Wireless Inductive Power Transfer
                

                  12.5.5
                  
                    Application
                    
                    
                  
                  Example: Coupling of Nearby Magnetic Radiators
                
Problem 12.59

Two small coaxial ceramic-core coils with [image: 
$$ {r}_1={r}_2=2.0 \mathrm{cm} $$
] and with [image: 
$$ {N}_1={N}_2=100 $$
] are separated by 1 m. What is the voltage signal induced in the second coil (RX) if the current in the first coil (TX) is given by [image: 
$$ {i}_1=100 \mathrm{m}\mathrm{A}\times \sin \left(\omega t\right) $$
]? The operation frequency is 1 MHz.


Problem 12.60
Repeat the previous problem when the operation frequency changes to 10 MHz.

Problem 12.61
In the circuit shown in the following figure, find source phasor current I
S 
                      
                      
                    in time domain i
S(t) given that [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=10 \cos \omega t \left[\mathrm{V}\right] $$
].[image: A331468_1_En_12_Figal_HTML.gif]









Part IV
Digital Circuits

© Springer International Publishing Switzerland 2016
Sergey N. Makarov, Reinhold Ludwig and Stephen J. BitarPractical Electrical Engineering10.1007/978-3-319-21173-2_13

13. Switching Circuits

Sergey N. Makarov1 , Reinhold Ludwig2 and Stephen J. Bitar3
(1)ECE Department, Worcester Polytechnic Institute, Worcester, Washington, USA

(2)ECE Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA

(3)Worcester Polytechnic Institute, Worcester, Massachusetts, USA

 


Keywords
Electronic switchSwitch control voltageGround-side switchPower-side switchSeries switchPull-down switchPull-up switchMetal-oxide-semiconductor (MOS) transistorsNMOS transistorsPMOS transistorsComplementary transistorsCMOS circuitsSwitching transistorsSwitching diagramTransistor threshold voltageMatched switching transistorsControl switching circuitsSwitching quadrantsHalf H-bridgeFull H-bridgeMotor speed controllerMotor control states (forward modereverse modefree run to a stopmotor brake)One-quadrant switchForbidden statesPulse-width modulation (PWM)Duty cycle of PWMAverage supply voltage of PWMLogic inverterNOT gateTruth tableNOR gateOR gateNAND gateAND gateSwitching algebraBoolean algebraBoolean expressionsLaws of Boolean algebra (commutative law of addition, commutative law of multiplication, associative law of addition, associative law of multiplication, distributive law)De Morgan’s lawsExclusive OR (XOR) gateExclusive NOR (XNOR) gateLogic circuit analysisLogic circuit synthesisHardware description language (HDL)Sum-of-products approachProduct-of-sums approachKarnaugh mapsStatic random access memory (SRAM)LatchStatic RAM cellAccess transistors
Overview

              Prerequisites:
	Knowledge of basic circuit analysis




              Objectives of Section 13.1:
	Understand the functionality of a semiconductor transistor switch

	Characterize the operation of a transistor switch by differentiating between the ground-side pull-down switch (NMOS transistor) and the power-side pull-up switch (PMOS transistor)

	Appreciate the value of MOSFET threshold voltage

	Solve simple switching circuits




              Objectives of Section 13.2:
	Become familiar with simple switching motor controllers and load controller switches

	Track the operation of the H-bridge and the half H-bridge motor controllers

	Obtain initial exposure to pulse-width modulation (PWM) and motor speed control




              Objectives of Section 13.3:
	Establish the relation between symbols for logic gates and underlying electric circuits on transistor level

	Review basic logic gates

	Obtain initial exposure to Boolean algebra and logic circuit analysis and synthesis

	Understand the functionality of a semiconductor memory cell




              Application Examples:
	PWM motor controller

	Logic gate motor controller




            

13.1 Principle of Operation
The manual switch used in electric circuits long ago and shown in Fig. 13.1a was first replaced by electromechanical relays and later on by transistor switches. Still, both the mechanical switch and the solenoid are widely used today: the mechanical switch finds its numerous applications in household electronics, whereas the relay is employed for switching high-power, high-current loads in power electronics. However, it is the transistor 
electronic switch 
 that made possible digital systems, computers, control circuits, and modern communication circuits. Applications of the current switching technology range from toggle switches used in many simple circuits, including perhaps your laboratory kit, to power transistors used in power electronics and motor controllers and to literally billions of low-power

 switching transistors used in your computer. In the present section, we introduce the meaning of the transistor switch and explain its operation based on simple examples.[image: A331468_1_En_13_Fig1_HTML.jpg]
Fig. 13.1

                        
                      Left—a mechanical copper switch. The background image is from Nicholas Gessler’s website, Duke University (NC) and Umea University, Sweden. Right—schematic of a basic 
electronic switch with a control voltage V
in






13.1.1 Switch Concept
An 
                  electronic switch
                  
                 shown in Fig. 13.1b is a circuit block that connects or disconnects two nodes a and b in a circuit depending on the voltage V
in (
                  switch control voltage
                  
                ) supplied to a control terminal of the switch.
Therefore, any electronic switch


 should have at least three terminals: the control terminal V
in referenced to ground and two line terminals a and b. We note the following:	1.An electronic switch is typically a transistor switch. The transistor is a semiconductor device. This is in contrast to an electromechanical switch such as a relay.


 

	2.
The 


electronic switch always has a small but finite resistance (resistance between terminals a and b). The goal of a circuit designer is to reduce this resistance and the associate power loss in the switch. This can be done using proper circuit optimization, without modifying the transistor itself.


 

	3.The electronic switch may use two distinct transistor types: the so-called metal-oxide-semiconductor field-effect transistors (MOSFETs) studied in Chapter 18 and the bipolar junction transistors (BJTs) studied in Chapter 17, respectively.


 

	4.In this chapter, we will always implement MOSFET transistors since they are specifically used in digital circuits including microprocessors and computers.


 

	5.The most important feature of the switch is that it consumes virtually no input power. Namely, the input current I
in into the control terminal in Fig. 13.1b is zero or close to zero, in contrast to the control voltage V
in.


 






An 


electronic switch is an important part of many analog circuits including power conversion circuits (DC to DC, AC to DC, etc.), DC and AC motor drives, etc. The switch is capable of turning on and off large line currents between terminals a and b. For example, a properly designed electronic switch may in principle allow us to turn on a 1-MW power plant with a single 9-V battery. On the other hand, an electronic switch is also the heart of any digital circuit. We could in principle build low-power switches using operational amplifiers studied in Chapter 5. However, a powerful, simple, versatile, and by far the fastest switch is a single-transistor switch.

13.1.2 Switch Position in a Circuit
Depending on the switch position in a circuit, 
                  
                  
                  
                we distinguish between:	1.A 
                          ground-side switch
                          
                        



 

	2.A 
                          power-side switch
                          
                        



 

	3.A 
                          series switch
                          
                        



 





All three switching configurations


 are quite intuitive; they are shown in Fig. 13.2. Resistor R
L designates a load. The switch position dictates the type of transistor to be used and the acceptable values of control voltages. The details are given in the following text. For example, the ground-side switch
 is implemented with an n-type transistor (MOSFET or BJT). Such a transistor conducts by negative carriers—electrons. The switch is normally open (which means that it is open at zero control voltage), but is closed at higher control voltage values. In contrast to that, the power-side switch is implemented with a p-type transistor (MOSFET or BJT). Such a transistor conducts by positive carriers—holes. The switch is normally closed (closed at zero control voltage), but is open at such control voltage values that are close to the supply voltage. The 
series switch (the switch between two power blocks of a larger circuit) may use either transistor type. However, the control voltage must be higher than the voltage to be switched. From the viewpoint of a simple resistive load R
L in Fig. 13.2, it really does not matter where the control switch is exactly located: on the ground side or on the power side. Hence, either type of the switch may be chosen. However, more sophisticated loads such as motors or solenoids are controlled by several switches that are located both on the ground side and on the 
power side and, thus, have quite distinct features.[image: A331468_1_En_13_Fig2_HTML.gif]
Fig. 13.2Switch positions in a circuit






13.1.3 
                MOSFET Switches and Threshold Voltage



              
Among a variety of transistor types and switches, the switches based on metal-oxide-semiconductor (MOS) transistors are most widely used in modern analog switching applications. The MOS transistor switches almost entirely dominate the digital circuitry; they serve about 98 % of those circuits. Overall, about 90 % of the electronic market works with MOSFETs. Two of such switches—the 

ground-side switch

 (normally open) and the power-side switch



                  
                 (normally closed)—are shown in Fig. 13.3.[image: A331468_1_En_13_Fig3_HTML.gif]
Fig. 13.3Two types of electronic switches
 on the basis of field-effect transistors: the pull-down or ground-side switch (normally open) and the pull-up or power-side switch
 (normally closed)





We will assume that both switches operate with a supply voltage V
S. Sometimes, the 


ground-side switch 
is also called the 
pull-down switch,

 whereas the 


power-side switch 
is called the 
                  pull-up switch
                  
                  
                . This is indicated in Fig. 13.3. The abbreviation 
                  NMOS
                  
                 in Fig. 13.3 means n-type or n-channel MOS transistor, whereas the abbreviation PMOS in Fig. 3 corresponds to a p-type or p-channel MOS transistor
. The arrow in the (simplified) transistor symbols always indicates the (normal) current direction. Transistor terminals in Fig. 13.3 are called drain (D), gate (G), and source (S). An important feature of the switches in Fig. 13.3 is that:	1.All NMOS transistors should be connected either to ground or to another NMOS transistor—see Fig. 13.3a. This is the ground-side switch



                          
                        .


 

	2.Similarly, all PMOS transistors should be connected either to the voltage source V
S or to another PMOS transistor—see Fig. 13.3b. This is the 
power-side switch.


 







                  
                  
                  
                Both transistors (NMOS and PMOS) are often called complementary 
                  transistor
                  
                
s or simply complements. CMOS (complementary MOS) 
                  circuits
                  
                  
                 use both of them. Figure 13.4 shows a typical switching diagram for the two transistor switches

. We indicate the switch state as a function of the control voltage V
in. We assume in this chapter that the transistor switch is precisely an open circuit when it is OFF and that it is a short circuit of zero resistance when it is ON. Such an assumption corresponds to an ideal switch. It is acceptable during the initial study, but it may be a crude approximation to reality when the accurate results are required.[image: A331468_1_En_13_Fig4_HTML.gif]
Fig. 13.4Switching diagram for two MOSFET transistors


                          
                          
                        






It is seen from Figs. 13.3 and 13.4 that the switching behavior

 is determined by the so-called transistor threshold voltage. The NMOS transistor has a threshold voltage

 [image: 
$$ {V}_{\mathrm{Tn}}>0 $$
]; the PMOS transistor has a threshold voltage

 [image: 
$$ {V}_{\mathrm{Tp}}<0 $$
]. The two switching transistors in Figs. 13.3 and 13.4 are said to be 
                  matched
                  
                 when their threshold voltages

 coincide in terms of the absolute values:[image: 
$$ {V}_{\mathrm{Tn}}=\left|{V}_{\mathrm{Tp}}\right|={V}_{\mathrm{Th}} $$
]

 (13.1)



                  
                  
                  
                where V
Th is the common threshold voltage. We will only consider the matched transistors. The meaning of transistor threshold voltage is quantified in Chapter 18. With reference to Fig. 13.4, the NMOS transistor is OFF when the control voltage

 V
in is less than the threshold voltage V

                  Th
                . It is ON for all other control voltages. Conversely, the PMOS transistor is OFF when the control voltage

 V

                  in
                 is close to the supply voltage: [image: 
$$ {V}_{\mathrm{in}}>{V}_{\mathrm{S}}-\left|{V}_{\mathrm{Th}}\right| $$
]. It is ON for all other control voltages. The typical values are [image: 
$$ 0.4 \mathrm{V}\le {V}_{\mathrm{Th}}\le 4 \mathrm{V} $$
]. There is no current into the gate of the transistor (control terminal), either in ON or OFF state. Therefore, virtually no input power is needed to turn the transistor switch ON or OFF. The mid-region of operation (when both transistors are ON) in Fig. 13.4 corresponds to the saturation state of MOSFETs where the power loss in the switches themselves becomes significant (transistors will heat up). It also corresponds to the undefined digital CMOS voltages—see below. Therefore, the mid-region should be possibly avoided.
Exercise 13.1
A switching circuit driven by a 10-V power supply uses both NMOS and PMOS transistor switches. The threshold voltage is [image: 
$$ {V}_{\mathrm{Tn}}=2 \mathrm{V} $$
] for the NMOS transistor and [image: 
$$ \left|{V}_{\mathrm{Tp}}\right|=2 \mathrm{V} $$
] for the PMOS transistor. What are the acceptable values of the control voltage V
in to have one switch ON and another OFF?

Answer: [image: 
$$ 8 \mathrm{V}\le {V}_{\mathrm{in}}\le 10 \mathrm{V} $$
] and [image: 
$$ 0 \mathrm{V}\le {V}_{\mathrm{in}}\le 2 \mathrm{V} $$
].



                  
                  
                  
                In digital circuits, the supply voltage V
S may vary from 5 V (0.8-μm CMOS) all the way down to 1.4 or 1.2 V for a modern 45-nm CMOS process. The transistor threshold voltages in digital circuits

 may vary from about 700 mV (0.8 μm CMOS) all the way down to 200 mV. In analog circuits, the supply voltage may vary widely; it is typically 12 V or some multiples of this number. The transistor threshold voltages (power transistors are used) are higher, about 2–4 V. Remember again that both switches in Fig. 13.3 or Fig. 13.4 require zero input current and thus consume zero input power: the input resistance of two switches is therefore infinite with a high degree of accuracy. However, they could source or sink a significant power to a load. For example, the NMOS transistor may sink a significant load current

 and discharge a load capacitor down to zero volts (this is the reason for the name pull down). Similarly, the PMOS transistor may source a significant current into a load (i.e., pull up the load voltage).

13.1.4 Sketch of Transistor Physics




The theory and the basic circuit design for MOS field-effect transistors (MOSFETs) are studied in Chapter 18. Here, we discuss a simplified transistor model in Fig. 13.5 representing an n-channel MOSFET. The transistor is a semiconductor device; the NMOS transistor includes two metal electrodes

, drain (D) and source (S), with a weakly conducting semiconductor material (Si or GaAs) between them—a channel. A third electrode (gate or G) with voltage V
in is attached to the channel through an insulator. When the input voltage V
in versus ground is close to zero, the channel is virtually an open circuit, with a very low conductivity—see Fig. 13.5a.[image: A331468_1_En_13_Fig5_HTML.gif]
Fig. 13.5Simplified diagram of transistor conduction for an n-channel MOSFET: (a) zero control voltage and (b) control voltage approaching the threshold value





When the input voltage V
in versus ground is close to zero, the channel is virtually an open circuit, with a small concentration of charge carriers and a very low conductivity—see Fig. 13.5a. The switch is thus open (normally open). When a positive voltage V
in is applied to the control terminal, the corresponding electric field attracts more negative electron carriers to the channel from the drain and source semiconductor regions with the rich electron concentration, thus making the channel more conducting. 
                  
                  
                  
                The dependence of the conductivity on V
in is exponential, i.e., very sharp. When V
in reaches the threshold voltage V
Tn or exceeds it, the channel becomes conducting, i.e., resembles a wire—see Fig. 13.5b. The switch becomes closed. The intrinsic threshold voltage

 V
Tn of the NMOS transistor depends on transistor geometry and doping concentrations. The PMOS transistor operates in an opposite way. It is closed when the control voltage V
in is close to zero and opens when V
in reaches the difference between the source voltage V
S and the magnitude of the intrinsic threshold voltage

 for the PMOS transistor, |V
Tp|.
Example 13.1
Two circuits in Fig. 13.6 operate with a source [image: 
$$ {V}_{\mathrm{S}}=5 \mathrm{V} $$
]. The transistor threshold voltages are [image: 
$$ {V}_{\mathrm{Tn}}=\left|{V}_{\mathrm{Tp}}\right|=1 \mathrm{V} $$
]. Find the output voltage V
out to each circuit if (a) [image: 
$$ {V}_{\mathrm{in}}=0.0\mathrm{V} $$
], (b) [image: 
$$ {V}_{\mathrm{in}}=0.5\;\mathrm{V} $$
], (c) [image: 
$$ {V}_{\mathrm{in}}=4.5\;\mathrm{V} $$
], and (d) [image: 
$$ {V}_{\mathrm{in}}=5.0\;\mathrm{V} $$
].[image: A331468_1_En_13_Fig6_HTML.gif]
Fig. 13.6Transistor switch operation at different values of the input voltage






Solution: We use Fig. 13.4 as a reference and fill out Table 13.1 that follows. The transistor switch is replaced by a short circuit when it is ON and by an open circuit when it is OFF.Table 13.1
Output voltages

 to the circuits from Fig. 13.6



	Input voltage
	Switch state and output voltage—NMOS switch
	Switch state and output voltage—PMOS switch

	0 V
	OFF (V
out is determined by the rest of circuit)
	ON [image: 
$$ {V}_{\mathrm{out}}=5\mathrm{V} $$
]


	0.5 V
	OFF (V
out is determined by the rest of circuit)
	ON [image: 
$$ {V}_{\mathrm{out}}=5\;\mathrm{V} $$
]


	4.5 V
	ON [image: 
$$ {V}_{\mathrm{out}}=0\;\mathrm{V} $$
]

	OFF (V
out is determined by the rest of circuit)

	5.0 V
	ON [image: 
$$ {V}_{\mathrm{out}}=0\;\mathrm{V} $$
]

	OFF (V
out is determined by the rest of circuit)



The NMOS switch sets the output voltage equal to zero at all high input voltages, whereas the PMOS switch sets the output voltage equal to 5 V at all low input voltages. This will allow us to use both switches in digital logic circuits


.

We should also mention alternative circuit symbols for the switches shown in Fig. 13.7.[image: A331468_1_En_13_Fig7_HTML.gif]
Fig. 13.7Alternative circuit symbols for the transistor switches from Fig. 13.3








13.2 Power Switching Circuits
13.2.1 
                
                  
                  
                
                Switching Quadrants


              
In this section, we introduce and describe the principle of operation for some standard 
                  control switching circuits
                  
                  
                 for motor loads including:	1.A single-transistor switch (one-quadrant switch)


 

	2.A 
                          half H-bridge
                          
                          
                         switch with two transistors (two-quadrant switch)


 

	3.A 
full H-bridge switch

 with four transistors (four-quadrant switch)


 

	4.A 
                          motor speed controller
                          
                          
                         using pulse-width modulation

 (PWM)


 





The switching quadrants of load voltage/current

 are shown in Fig. 13.8. For a resistive load (a DC heater), the load voltage V
L and the load current I
L are always positive, i.e., are in the first quadrant or at zero. Therefore, the one-quadrant switch or a single-transistor switch considered next is quite sufficient.[image: A331468_1_En_13_Fig8_HTML.gif]
Fig. 13.8Quadrants of 

load voltage and load current





Instead of one simple switching option for a resistive load, the motor switching generally requires four different states:	

                        Forward mode
                        
                        
                      

                        
                       (the motor spins clockwise—quadrant I)

	

                        Reverse mode
                        
                        
                       (the motor spins counterclockwise—quadrant III)

	

                        Free run to a stop
                        
                        
                       (the motor stops slowly)

	

                        Motor brake
                        
                        
                       (the motor stops suddenly, using the brake effect of the Lorentz force studied in Chapter 7)







                  
                  
                A more involved transistor switch is therefore necessary. Such a switch (the H-bridge) will be studied step by step. Also, we wish to control the motor speed in a continuous fashion, which requires pulse-width modulation and the H-bridge modifications studied next. The motor may also operate as a generator, i.e., in the second and fourth quadrants in Fig. 13.8. Switching between motor and generator functions requires additional efforts.

13.2.2 Switching a Resistive Load



A switching circuit with one NMOS transistor (the ground-side switch
) is shown in Fig. 13.9 for a resistive load R
L. The circuit always operates in the first quadrant in Fig. 13.8. In practice, the circuit must include a current-limiting resistor.[image: A331468_1_En_13_Fig9_HTML.gif]
Fig. 13.9Switching circuit for a resistive load operating in the first quadrant





Example 13.2


                    
                    
                  In Fig. 13.9, an IRF510 n-channel power MOSFET is used with [image: 
$$ {V}_{\mathrm{Tn}}=3.5 \mathrm{V} $$
]. Establish power delivered to the resistive load when the control voltage V
in switches from 0 V to 9 V.

Solution: When the control voltage is 0 V, the NMOS transistor switch is OFF according to the switching chart in Fig. 13.4. The load is disconnected from the source; the load power is zero. When [image: 
$$ {V}_{\mathrm{in}}=9 \mathrm{V} $$
], the switch closes. In the ideal approximation of zero switch resistance, the load voltage is the source voltage, and we obtain the load power of 14.4 W. In reality, the switch in Fig. 13.9 has to be carefully optimized to avoid losses in the transistor. For the present example (with the circuit parameters from Fig. 13.9), the more accurate analysis predicts the load power of 12.8 W and the transistor resistance of 0.6 Ω. We will learn in Chapter 18 that this value can be reduced by increasing the control voltage signal V
in.


13.2.3 Switching a DC Motor



A motor load requires a more involved treatment compared to the simple resistive load.
In order to proceed further, we should recall the motor model at DC steady state. This model shown in Fig. 13.10 includes the induced emf, E (the dependent voltage source), and the armature resistance, R
M.[image: A331468_1_En_13_Fig10_HTML.gif]
Fig. 13.10Motor model and its simplification





In order to perform a qualitative analysis of switching circuits, the (small) armature resistance R
M may be ignored. This leads us to a simplified motor model with no armature resistance also shown in Fig. 13.10. We will use this model in what follows. When the motor in Fig. 13.11a operating in the forward mode is disconnected from the main source by virtue of a top switch, one should distinguish between two different states—see Fig. 13.11b, c, respectively. The first state is shown in Fig. 13.11a. 
                  
                  
                The second switch is left disconnected. Then, one of motor terminals is left disconnected. Therefore, the current through the motor, I
a, is exactly zero just after switching. The motor torque T is also zero. However, the motor angular speed, ω, is not zero, i.e.,[image: A331468_1_En_13_Fig11_HTML.gif]
Fig. 13.11Two possible motor states after disconnecting the power source




[image: 
$$ {I}_{\mathrm{a}}=0\Rightarrow T={K}_{\mathrm{T}}{I}_{\mathrm{a}}=0, \omega \ne 0 $$
]

 (13.2a)

The motor speed slowly decreases toward zero depending on its internal friction. We call this state free run to a stop. The second state is shown in Fig 13.11b. The motor is disconnected from the main source, but its terminals are shorted out so that the induced emf E is exactly equal to zero just after switching. The motor speed is also zero. However, the motor torque is not zero; it actually has an opposite sign and quickly decelerates the load, due to current I
a fed back into the motor, i.e.,[image: 
$$ E=0\Rightarrow \omega =E/{K}_{\mathrm{V}}=0, T\ne 0 $$
]

 (13.2b)

We call this state motor brake.
Note that for a purely resistive load, the states in Fig.13.11b, c will be identical. Both current through the load and the voltage across the load are zero just after disconnecting the top switch. The same treatment of Fig. 13.11 holds for a reverse mode of operation, when the supply current through the motor flows in the opposite direction. We could also define two similar switching states for this mode—free run to stop and a brake.

13.2.4 One-Quadrant Switch for a DC Motor



A simple switching circuit—the one-quadrant switch—for a DC motor is shown in Fig. 13.12. It operates in the first quadrant. When the transistor switch is closed, the motor operates in the 
forward mode—see Fig. 13.12a. When the switch opens, the motor will operate in a free run to a stop mode—see Fig. 13.12b. No other modes of operation are possible. Note that in Fig. 13.12 we use different notations compared to Fig. 13.9: [image: 
$$ {V}_{\mathrm{L}}\to E,{I}_{\mathrm{L}}\to {I}_{\mathrm{a}} $$
]. Those notations are common in the theory of electric machines. E stands for the induced emf and I
a stands for an armature current of a motor.
                  
                  
                
[image: A331468_1_En_13_Fig12_HTML.gif]
Fig. 13.12Switching circuit for a DC motor operating in the first quadrant





Example 13.3
Consider a switching circuit with a power NMOS transistor shown in Fig. 13.12. The IRF510 n-channel power MOSFET from Vishay Siliconix with [image: 
$$ {V}_{\mathrm{Tn}}=3.5 \mathrm{V} $$
] is used again; the switching voltage V
in is either 0 V or 9 V. We wish to describe motor behavior when switch opens.

Solution: When the control voltage V
in in Fig. 13.12 is 9 V, the NMOS transistor switch is ON according to the switching chart in Fig. 13.4. The motor is in the forward mode in Fig. 13.12a. The term forward mode means that the first quadrant in Fig. 13.8 is used. When V
in in Fig. 13.12 switches to 0 V at [image: 
$$ t=0 $$
], the switch opens. The motor current becomes exactly zero and that the motor does not create any extra torque. However, the induced emf or the voltage across the motor E continues to stay the same. Then, it slowly decreases in time. So does the motor velocity. Such a state shown in Fig. 13.12b is called free run to a stop. This state is useful, but it may be not quite sufficient if we also wish to implement a true brake, i.e., suddenly stop the motor. To do so, the circuit in Fig. 13.12 needs to be modified as described in the following text.


13.2.5 Half H-Bridge for a DC Motor



                  
                  
                

We aim to modify the circuit in Fig. 13.12 in order to implement the motor brake option, which was impossible with the previous circuit. The new circuit is shown in Fig. 13.13. The circuit has the name of a half H-bridge for an obvious reason. It uses two switches: the ground-side
 NMOS transistor and the power-side

 PMOS transistor. 
                  
                  
                Under no circumstances shall both transistors be turned on simultaneously.[image: A331468_1_En_13_Fig13_HTML.gif]
Fig. 13.13Half H-bridge transistor switch with three motor functions








Example 13.4
We consider the switching circuit with power NMOS/PMOS transistors shown in Fig. 13.13. We use an IRF520 n-channel power MOSFET and its complement, an IRF9520 p-channel power MOSFET, both from Vishay Siliconix. We assume that [image: 
$$ {V}_{\mathrm{Tn}}=\left|{V}_{\mathrm{Tp}}\right|=3.5\;\mathrm{V} $$
]; the switching voltages V
1,2 are either 0 V or 9 V. The circuit behavior is studied when two control voltages are given by



(i) [image: 
$$ {V}_1=0\;\mathrm{V},{V}_2=0\;\mathrm{V} $$
], (ii) [image: 
$$ {V}_1=9\;\mathrm{V},{V}_2=0\;\mathrm{V} $$
], and (iii) [image: 
$$ {V}_1=9\;\mathrm{V},{V}_2=9\;\mathrm{V} $$
].

Solution: In case (i), the PMOS switch is ON; the NMOS switch is OFF. The motor is in the forward mode shown in Fig. 13.13a.
In case (ii), both switches are OFF. The motor is disconnected from the circuit; the motor current is zero but not the motor voltage E, which slowly decreases toward zero while the motor slows down. This is free run to a stop—a state in Fig. 13.13b that is also achievable with only one transistor as described in the previous subsection. In case (iii), however, the situation changes. The PMOS switch is OFF whereas the NMOS switch is ON too. The motor is not only disconnected from the power source, but it is also shorted out. This means that the motor voltage or induced emf E is exactly zero just after the motor is shorted out. Then, from Eq. (13.2b), one has [image: 
$$ \omega =0 $$
] 
                    
                    
                  for the angular speed. In other words, the motor should stop suddenly. Such a state is the motor brake shown in Fig. 13.13c. An experimental demonstration of the brake option in laboratory might be a quite valuable addition to this analysis. Now, how about spinning the motor in the opposite direction? In order to do so, we should further modify the switching transistor circuit as described further.
                    
                    
                  



13.2.6 Full H-Bridge for a DC Motor



                  
                  
                



                  
                  
                The circuit in Fig. 13.13 is further modified in order to implement the reverse mode of operation, i.e., spin the motor in the opposite direction. In that case, the motor should operate in the third quadrant of Fig. 13.8. The modified circuit is shown in Fig. 13.14. Compared to Fig. 13.13, the circuit includes the second (missing) half of the full H-bridge. The circuit in Fig. 13.14 has four control voltages V
1, V
2, V
3, V
4 and sixteen possible control states. Under no circumstances shall both transistors in either side of the bridge be turned on simultaneously (the forbidden stages).[image: A331468_1_En_13_Fig14_HTML.gif]
Fig. 13.14
Full H-bridge transistor switch
 with four motor functions





Example 13.5
Determine forbidden state
s (short-circuited states) for the H-bridge in Fig. 13.14. Use an IRF520 n-channel power MOSFET and its complement, an IRF9520 p-channel power MOSFET, and assume that [image: 
$$ {V}_{\mathrm{Tn}}=\left|{V}_{\mathrm{Tp}}\right|=3.5\;\mathrm{V} $$
]; the switching voltages V
1,2,3,4 are either 0 V or 9 V.

Solution: The forbidden states correspond to a short circuit on either side of the bridge. Thus, they are:	i.
[image: 
$$ {V}_1=0\mathrm{V},{V}_2=9\mathrm{V}; {V}_3,{V}_4 $$
] are arbitrary


 

	ii.
[image: 
$$ {V}_3=0\mathrm{V},{V}_4=9\mathrm{V}; {V}_1,{V}_2 $$
] are arbitrary


 







                    
                    
                  There are totally seven independent forbidden combinations. If we denote the 0-V control voltage by 0 (low) and the 9-V control voltage by 1 (high), the forbidden control voltages V
1,2,3,4 in the digital form are:
0100 0001 0101 1001 0110 1101 0111

Example 13.6
The H-bridge in Fig. 13.14 has the switching voltages V
1,2,3,4 that are either 0 V or 9 V. The power MOSFETS with [image: 
$$ {V}_{\mathrm{Tn}}=\left|{V}_{\mathrm{Tp}}\right|=3.5\;\mathrm{V} $$
] are considered. Determine all meaningful states of the control voltages.

Solution: We need to realize two directions of rotations (forward mode and stop mode), plus free run to a stop and a brake for each direction. The corresponding states for V
1,2,3,4 in the digital form are those from Table 13.2. For illustration, Fig. 13.15 shows how two first free run to a stop states have been calculated.Table 13.2Allowed states of the control voltages V
1,2,3,4 for the circuit in Fig. 13.14



	Forward mode—see Fig. 13.7a

	0011

	Reverse mode—see Fig. 13.7b

	1100 (inverse of the above)

	Free run to a stop (reverse or forward mode—five combinations)
	1110
0010
1011
1000
1010 (all off)

	Brake (reverse or forward mode—two combinations)
	1111
0000




[image: A331468_1_En_13_Fig15_HTML.gif]
Fig. 13.15Identification of two possible free run to a stop states. Two next states (1011 and 1000) are obtained by permutation








                  
                  
                One may note a great similarity in the above bridge and the Wheatstone bridge made of four resistors. Another bridge, the diode rectifying bridge from Chapter 16, is also very similar to the present design. What makes those three circuits look so similar even though they function quite differently? The answer is ability to control current direction using two distinct current paths—two sides of the bridge. By this point, we have implemented the motor forward/reverse mode, free run to a stop, and the brake options. And yet, how about spinning the motor at a given speed, i.e., doing the complete speed control? In order to do so, we should further modify the switching transistor circuit as described next.
                  
                  
                


13.2.7 Application Example: Pulse-Width Modulation (PWM) Motor Controller



                  
                  
                 PWM Voltage Form



If someone needs speed control, an obvious way may be to vary load voltage using a voltage divider with a variable resistor. For example, a 12-V Mabuchi DC motor RS-380PH-3270 may operate at supply voltages from 4.5 V to 15 V, not necessarily at exactly the nominal voltage of 12 V. However, this method results in higher losses in the divider circuit. This method might also result not only in the decrease of the motor speed but also the motor current I
a and the instantaneous motor torque. Another way of controlling the speed is the pulse-width modulation (PWM). In that case, the supply voltage to the motor is varied as a rectangular periodic waveform shown in Fig. 13.16.[image: A331468_1_En_13_Fig16_HTML.gif]
Fig. 13.16Pulse-width modulation of the supply voltage to the motor








The motor operates at its nominal voltage (12 V in Fig. 13.16) during the ON phase (with the duration t
on). The power supply is disconnected from the motor during the OFF phase with the duration t
off. The period of the periodic waveform in Fig. 13.16 is given by[image: 
$$ T={t}_{\mathrm{on}}+{t}_{\mathrm{off}} $$
]

 (13.3)



                  
                  
                The frequency (measured in hertz, [image: 
$$ 1\;\mathrm{Hz}=1/\mathrm{s} $$
]) of the waveform is given by[image: 
$$ f=\frac{1}{T} \left[\mathrm{Hz}\right] $$
]

 (13.4)

The duty cycle d (fraction) or D (percentage) of the periodic wave form is given by[image: 
$$ d=\frac{t_{\mathrm{on}}}{T}, D=\frac{t_{\mathrm{on}}}{T}\times 100\;\% $$
]

 (13.5)



                  
                  
                When both ON and OFF phases are equal, the duty cycle

 is said to be exactly 50 %. The 
                  average supply voltage
                  
                  
                 V
DC of PWM in Fig. 13.16 is given by[image: 
$$ {V}_{\mathrm{DC}}=\frac{t_{\mathrm{on}}}{T}{V}_{\mathrm{S}}=d{V}_{\mathrm{S}} $$
]

 (13.6)

This is the voltage that will be actually applied to a motor. Thus, the PWM also decreases the average supply voltage but in the lossless way.
Example 13.7
Determine all parameters of the PWM voltage in Fig. 13.16 including period, frequency, duty cycle d, and the average voltage V
DC.

Solution: From Fig. 13.16 by observation, [image: 
$$ {t}_{\mathrm{on}}=30 \mathrm{ms}, {t}_{\mathrm{off}}=10 \mathrm{ms} $$
]. Therefore, [image: 
$$ T=40 \mathrm{ms}, f=1/0.04=25 \mathrm{Hz} $$
]. We further find the duty cycle and the average voltage in the form[image: 
$$ d={t}_{\mathrm{on}}/T=0.75, {V}_{\mathrm{DC}}=d{V}_{\mathrm{S}}=0.75\times 12=9 \mathrm{V} $$
]

 (13.7)

Thus, varying the duty cycle changes the output voltage V
DC in Fig. 13.16.



                  
                  
                According to the equivalent motor circuit, one can write for the motor angular speed ω (again neglecting the motor armature and brush resistance R
M and using the voltage constant of the DC motor, K
V):[image: 
$$ \omega =\frac{E}{K_{\mathrm{V}}}\approx \frac{V_{\mathrm{DC}}}{K_{\mathrm{V}}} $$
]

 (13.8)

Equation (13.8) says that applying the PWM with [image: 
$$ d=0.75 $$
] shown in Fig. 13.16 to a 12-V DC motor results in the average supply voltage of 9 V and the motor speed reduction of 25 %.


                    
                    
                  PWM Realization



Commercial PWM controllers

 use the PWM applied directly to four transistors of the H-bridge shown in Fig. 13.14 at the frequencies of approximately 10–20 kHz. A laboratory setup that could be driven by a simple function generator is shown in Fig. 13.17. This setup uses one more NMOS transistor as a switch controlling the PWM but still keeps the full functionality of the H-bridge. The NMOS switch is normally OFF (OFF at zero gate voltage). Therefore, the control signal applied to the transistor gate from a function generator is identical in form to the PWM supply voltage. However, the supply voltage in Fig. 13.17 has indeed the peak value of 12 V, whereas the control signal may have different peak values of 9 V, 10 V, 12 V, etc. Note that the use of both PMOS and NMOS transistors is intuitively very appealing. However, the present CMOS design of the H-bridge

 might have higher losses in the PMOS power transistors. Therefore, an H-bridge with the only NMOS transistors is typically used since it has a lower loss 

(Fig. 13.18).[image: A331468_1_En_13_Fig17_HTML.gif]
Fig. 13.17
Realization

 of the PWM

 with one more switching transistor added to the H-bridge. The control signal to the transistor gate is supplied by a function generator




[image: A331468_1_En_13_Fig18_HTML.jpg]
Fig. 13.18PWM motor controller in undergraduate laboratory

. The H-bridge is controlled by a DIP switch. The PWM control signal to the transistor gate is supplied by a function generator








13.3 Digital Switching Circuits




A digital circuit is the same electric circuit except for the fact that it performs a different function. For example, previously we have used transistors to control the motor. Now, we will use the same transistors and even in a similar configuration, in order to perform logic operations and arithmetic operations. An immediate question to ask is how an electric circuit may be used to operate with numbers because we used to think that the circuit operates with voltages and currents only. The simple answer here is that virtually any digital circuit, including the computer that you are using right now, employs electric voltages as a carrier of information. A digital circuit consists of logic gates. A logic gate

 is a switching circuit that we shall study in this section. Any logic gate is an extension or a generalization of a 
                logic inverter
                
              , which is considered first.
13.3.1 
NOT Gate
 or Logic Inverter



Consider the circuit shown in Fig. 13.19. It includes the PMOS transistor (normally ON) as the power-side switch and the NMOS transistor (normally OFF) as a ground-side switch
. The circuit is powered by a 5-V power supply. The two transistors are matched and have equal (absolute) threshold voltages [image: 
$$ \left|{V}_{\mathrm{Tp}}\right|={V}_{\mathrm{Tn}}=1 \mathrm{V} $$
]. The circuit is identical to the half H-bridge considered in the previous section, but it serves a different purpose.[image: A331468_1_En_13_Fig19_HTML.gif]
Fig. 13.19
                        CMOS 

                        
logic inverter or NOT gate



                      





The input voltage to the circuit follows the first column of Table 13.3. Further, we shall use the chart from Fig. 13.4 of Section 13.1 in order to study the circuit behavior. When the input voltage is low (0 V), the NMOS switch is OFF and the PMOS switch is ON. The output voltage is 5 V. When the input voltage is high (5 V), the situation changes to the opposite: the NMOS switch is ON and the PMOS switch is OFF. The output voltage is 0 V. Hence the output voltage follows the second column of Table 13.3.Table 13.3Output voltage of the 
logic inverter versus the input voltage


	
                            V
                            in
                          
	
                            V
                            out
                          

	0 V
	5 V

	5 V
	0 V





If we denote the 0-V voltage by value 0 (low or false) and the 5-V voltage by value 1 (high or true), Table 13.3 is converted to the so-called truth table—Table 13.4.Table 13.4Truth table for the logic circuit

 in Fig. 13.19—the logic inverter. We substitute 0 instead of 0 V and 1 instead of 5 V


	
                            V
                            in
                          
	
                            V
                            out
                          

	0
	1

	1
	0





The circuit thus performs logic inversion (substitutes zero instead of one or false instead of true and vice versa). The symbol for this is the logic 
NOT gate
 shown 

in Fig. 13.20.[image: A331468_1_En_13_Fig20_HTML.gif]
Fig. 13.20Symbol for the NOT gate along with the corresponding circuit diagram





Note that the input voltage may slightly vary around zero volts or around five volts. As long as these variations do exceed 1 V (do not exceed threshold voltages of the transistors), the circuit shall still output exactly the results shown in Tables 13.3 and 13.4. The corresponding task is suggested as a homework problem. This property of the NOT gate is critical—it means that the present logic operation is immune to electric noise.

13.3.2 NOR Gate and OR Gate

                  NOR Gate

                  
                    
                    
                  
                
Consider the circuit with four transistors shown in Fig. 13.21. This circuit may be considered as an extension of the logic inverter 
shown in Fig. 13.19. Now, one has two input voltages V
1 and V
2 instead of one input voltage V
in. The circuit is powered by a 5-V power supply. All four transistors (two PMOS and two NMOS transistors) are matched and have equal threshold voltages [image: 
$$ \left|{V}_{\mathrm{Tp}}\right|={V}_{\mathrm{Tn}}=1 \mathrm{V} $$
].[image: A331468_1_En_13_Fig21_HTML.gif]
Fig. 13.21CMOS NOR logic gate










                    
                  The input voltages to the circuit follow the first columns of Table 13.5. Further, we shall use the chart from Fig. 13.4 of Section 13.1 in order to study the circuit behavior. When the input voltages V
1 and V
2 are both low (0 V), the NMOS switches are OFF and the PMOS switches are ON. The output voltage is therefore 5 V. When the input voltage V
1 is high (5 V), irrespectively of the value of the input voltage V
2, the leftmost NMOS transistor is ON, so that the output voltage is always 0 V. A similar situation occurs when V
2 is high (5 V). The output voltage is always 0 V. Hence the output voltage follows the last column of Table 13.5.Table 13.5Output voltage of the NOR gate versus the input voltages





	
                              V
                              1
                            
	
                              V
                              2
                            
	
                              V
                              out
                            

	0 V
	0 V
	5 V

	0 V
	5 V
	0 V

	5 V
	0 V
	0 V

	5 V
	5 V
	0 V





If we again denote the 0-V voltage by value 0 (low or false) and the 5-V voltage by value 1 (high or true), Table 13.5 is converted to the truth table—Table 13.6.Table 13.6Truth table for the logic circuit in Fig. 13.21—the NOR gate


	
                              V
                              1
                            
	
                              V
                              2
                            
	
                              V
                              out
                            

	0
	0
	1

	0
	1
	0

	1
	0
	0

	1
	1
	0







                    
                    
                  It follows from Table13.6 that this circuit does not perform the logic OR operation (outputs true when at least one input is true). Rather, it does exactly the opposite. Therefore, this circuit is called NOT OR or simply the NOR logic gate. Its symbol is shown in Fig. 13.22.[image: A331468_1_En_13_Fig22_HTML.gif]
Fig. 13.22Symbol for the NOR gate







Note that the input voltages V
1 and V
2 may slightly vary around zero volts or around five volts. As long as these variations do not exceed 1 V (do not exceed threshold voltages of the transistors), the circuit shall still output exactly the results shown in Tables 13.5 and 13.6. The corresponding task is suggested as a related homework problem. This property of the 
NOR logic gate (and of all other logic gates) is critical—it shows us that arbitrary logic operations with voltages are immune to electric noise.


                  OR Gate

                  
                    
                    
                  
                
How to construct the gate that performs an OR operation? One way is to contemplate the corresponding circuit diagram, which will include a number of PMOS and NMOS transistors. Yet another way is to mention that the OR gate is simply obtained by a series combination of the NOR gate and the 
NOT gate—see Fig. 13.23. The corresponding truth table is Table 13.7. Further, we may substitute the real circuits from Fig. 13.19 and Fig. 13.21 instead of symbols in Fig. 13.23 and obtain the resulting circuit for the OR gate. It will include six transistors total. Generally, the way of constructing logic circuits outlined in Fig. 13.23 is simple and powerful.[image: A331468_1_En_13_Fig23_HTML.gif]
Fig. 13.23Construction of the OR gate
 from NOR gate and NOT gate




Table 13.7Truth table for the OR gate


                            
                            
                          



	
                              V
                              1
                            
	
                              V
                              2
                            
	
                              V
                              out
                            

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	1





Note that the NOR (and OR) 
                    
                  gate may have an arbitrary number of inputs as shown in Fig. 13.24. The resulting circuit shall be a straightforward modification of the circuit in Fig. 13.21. The corresponding task is suggested as a homework problem.[image: A331468_1_En_13_Fig24_HTML.gif]
Fig. 13.24The NOR gate with three inputs








Example 13.8
An oxygen sensor outputs high voltage (5 V) when the oxygen concentration in a room is not sufficient. Otherwise, its output is low (0 V). A temperature sensor outputs high voltage (5 V) when the temperature in a room is too high. Otherwise, its output is low (0 V). Construct a logic circuit that outputs high voltage (5 V) and lights up a red indicator when either of the sensor readings is high.
                      
                      
                    
	A.Present the symbolic circuit diagram.


 

	B.Present the electric circuit diagram including individual transistors.


 






Solution: The input to the logic circuit will consist of two voltages V
1 and V
2—sensor outputs. The logic circuit itself is the OR gate with two inputs shown in Fig. 13.23. According to Table 13.7, it does output the high voltage when either of its inputs is high. The electric circuit diagram is the transistor circuit in Fig. 13.21 in series with the circuit from Fig. 13.19.



13.3.3 NAND Gate and AND Gate

                  NAND Gate

                  
                    
                    
                  
                
Consider again the circuit with four transistors shown in Fig. 13.25. The difference from the NOR gate circuit in Fig. 13.21 is that the PMOS transistors are now in parallel, but the NMOS transistors are in series. The circuit has two input voltages, V
1 and V
2, similar to the NOR gate. The circuit is powered by a 5-V power supply. All four transistors (two PMOS and two NMOS transistors) are matched and have equal threshold voltages [image: 
$$ \left|{V}_{\mathrm{Tp}}\right|={V}_{\mathrm{Tn}}=1 \mathrm{V} $$
].[image: A331468_1_En_13_Fig25_HTML.gif]
Fig. 13.25CMOS NAND logic gate








The input voltages to the circuit follow the first columns of Table 13.8. Then, we use the chart from Fig. 13.4 of Section 13.1 in order to determine the circuit behavior. When either of the input voltages V
1 and V
2 is low (0 V), one of the PMOS switches is always ON, so that the output voltage is always high (5 V). Only when both input voltages are high, both PMOS switches are OFF, but the NMOS switches are ON. The output becomes low (0 V). Hence the output voltage follows the last column of Table 13.8.Table 13.8Output voltage of the NAND gate versus the input voltages





	
                              V
                              1
                            
	
                              V
                              2
                            
	
                              V
                              out
                            

	0 V
	0 V
	5 V

	0 V
	5 V
	5 V

	5 V
	0 V
	5 V

	5 V
	5 V
	0 V







                    
                    
                  If we again denote the 0-V voltage by value 0 (low or false) and the 5-V voltage by value 1 (high or true), Table 13.8 is converted to the truth table—Table 13.9.Table 13.9Truth table for the logic circuit in Fig. 13.25—the NAND gate





	
                              V
                              1
                            
	
                              V
                              2
                            
	
                              V
                              out
                            

	0
	0
	1

	0
	1
	1

	1
	0
	1

	1
	1
	0





It follows from Table 13.9 that this circuit does not perform the logic AND operation (outputs true only when both inputs are true). Rather, it does exactly the opposite. Therefore, this circuit is called NOT AND or simply the NAND logic gate. Its symbol is shown in Fig. 13.26.[image: A331468_1_En_13_Fig26_HTML.gif]
Fig. 13.26Symbol for the NAND gate









                  AND Gate

                  
                    
                    
                  
                
How to construct the gate that performs an AND operation? Similar to the OR gate from the previous subsection, the AND gate
 is simply obtained by a series combination of the NAND gate and the 
NOT gate shown in Fig. 13.27.[image: A331468_1_En_13_Fig27_HTML.gif]
Fig. 13.27Construction of the AND gate from NAND gate and NOT gate





The corresponding voltage table is Table 13.10; the truth table is Table 13.11. Further, we may substitute the real circuits from Figs. 13.25 and 13.19 instead of symbols in Fig. 13.26 and obtain the resulting circuit for the AND gate. It will include total six transistors.Table 13.10Output voltage of the AND gate versus the input voltages




	
                              V
                              1
                            
	
                              V
                              2
                            
	
                              V
                              out
                            

	0 V
	0 V
	0 V

	0 V
	5 V
	0 V

	5 V
	0 V
	0 V

	5 V
	5 V
	5 V




Table 13.11Truth table for the AND gate


                            
                            
                          



	
                              V
                              1
                            
	
                              V
                              2
                            
	
                              V
                              out
                            

	0
	0
	0

	0
	1
	0

	1
	0
	0

	1
	1
	1





Note that the NAND
 (and AND) gate may have an arbitrary number of inputs—see Fig. 13.28. The resulting circuit will be a straightforward modification of the circuit in Fig. 13.27. The corresponding task is suggested as a homework problem.[image: A331468_1_En_13_Fig28_HTML.gif]
Fig. 13.28The NAND gate with three inputs








Example 13.9
We study the operation of the AND gate
 one more time and perform a simple experiment. Please open your calculator and type 0. Apart from an intermediate circuitry, you’ve just sent 0 V to input V
1 
                      
                      
                    in Table 13.10. Now type the multiplication sign. You’ve chosen the AND gate. Then type 0 again. You’ve sent 0 V to input V
2 in Table 13.10. Then hit ENTER. Your result is zero or V
out = 0 V. Thus, the calculator multiplication [image: 
$$ 0\times 0=0 $$
] relates to voltage operations by	
[image: 
$$ 0\times 0=0 $$
] is equivalent to→
	
                                V
                                1
                              
	
                                V
                                2
                              
	
                                V
                                out
                              

	0 V
	0 V
	0 V



The calculator multiplication [image: 
$$ 0\times 1=0 $$
] relates to voltage operations by	
[image: 
$$ 0\times 1=0 $$
] is equivalent to→
	
                                V
                                1
                              
	
                                V
                                2
                              
	
                                V
                                out
                              

	0 V
	5 V
	0 V



The calculator multiplication [image: 
$$ 1\times 0=0 $$
] relates to voltage operations by	
[image: 
$$ 1\times 0=0 $$
] is equivalent to→
	
                                V
                                1
                              
	
                                V
                                2
                              
	
                                V
                                out
                              

	5 V
	0 V
	0 V





Finally, the calculator multiplication [image: 
$$ 1\times 1=1 $$
] relates to voltage operations by	
[image: 
$$ 1\times 1=1 $$
] is equivalent to→
	
                                V
                                1
                              
	
                                V
                                2
                              
	
                                V
                                out
                              

	5 V
	5 V
	5 V







                      
                      
                    Thus, with one logic gate, we can accomplish the multiplication of ones and zeros. This is not much, but a digital circuit may include a large number (thousands and even millions) of such logic gates.

Example 13.10
A humidity sensor outputs high voltage (5 V) when the humidity percentage in a room is too high. Otherwise, its output is low (0 V). A temperature sensor outputs high voltage (5 V) when the temperature in a room is too high. Otherwise, its output is low (0 V). Construct a logic circuit that outputs high voltage (5 V) and lights up a red indicator only when both sensor readings are high.	A.Present the symbolic circuit diagram.


 

	B.Present the electric circuit diagram including individual transistors.


 







                      
                      
                    
Solution: The input to the logic circuit will consist of two voltages V
1 and V
2—sensor outputs. The logic circuit itself is the AND gate
 with two inputs shown in Fig. 13.27. According to Table 13.10, it outputs the high voltage if and only if both inputs are high. The electric circuit diagram is the transistor circuit in Fig. 13.25 in series with the circuit from Fig. 13.19.



13.3.4 
Simple Combinational Logic Circuits

: Switching Algebra


The primary purpose of the logic gates is to serve as a building block of a complex digital system. At the same time, they are also useful as stand-alone components in the form of so-called logic circuits. Logic circuits consist of individual logic gates. 
                  
                Logic circuits are classified into two types: “combinational” and “sequential.” A combinational logic circuit is one whose outputs depend only on its current inputs. In other words, the combinational logic circuit has no memory. A combinational logic circuit may contain an arbitrary number of logic gates, but no feedback loops. Such a circuit is studied next. In contrast to the analog circuits, logic circuits are not described by KVL and KCL. Instead, they are described in terms of the switching algebra or 
                  Boolean algebra
                  
                 named in honor of George Boole, an English mathematician. The switching algebra uses only two values (states):	0 or voltage low

	1 or voltage high







                  
                  
                There are three basic Boolean operations: NOT, AND, and OR. They exactly correspond to the three logic gates described in the previous subsections. If A and B are two logic or Boolean variables (inputs to the gates), which can only assume
 values 0 and 1, then we could describe those operations with the help of Table 13.12 that follows.Table 13.12Basic logic operations and their symbols


	Operation
	Symbol
	Gate
	Result

	Logic inversion
	
                            Ā
                          
	NOT
	
                            [image: 
$$ \begin{array}{c}\overline{0}=1\\ {}\overline{1}=0\end{array} $$
]
                          

	Logic multiplication
	
                            [image: 
$$ A\cdot B $$
]
                          
	AND
	
                            [image: 
$$ \begin{array}{c}0\cdot 0=0\\ {}0\cdot 1=0\\ {}1\cdot 0=0\\ {}1\cdot 1=1\end{array} $$
]
                          

	Logic addition
	
                            [image: 
$$ A+B $$
]
                          
	OR
	
                            [image: 
$$ \begin{array}{c}0+0=0\\ {}0+1=1\\ {}1+0=1\\ {}1+1=1\end{array} $$
]
                          





Historical
George Boole (1815–1864) invented his two-value algebraic system in 1854. He was the first who replaced the operation of multiplication by the word AND and addition by the word OR. In 1938, Claude Shannon showed how to use this system to describe simple digital circuits.

Boolean variables form 
                  Boolean expressions
                  
                 (the logic circuits), which satisfy a number of fundamental laws
 and rules:[image: 
$$ A+B=B+A \mathrm{commutative}\ \mathrm{law}\ \mathrm{of}\ \mathrm{addition} $$
]

 (13.9a)


[image: 
$$ A\cdot B=B\cdot A \mathrm{commutative}\ \mathrm{law}\ \mathrm{of}\ \mathrm{multiplication} $$
]

 (13.9b)


[image: 
$$ A+\left(B+C\right)=\left(A+B\right)+C \mathrm{associative}\ \mathrm{law}\ \mathrm{of}\ \mathrm{addition} $$
]

 (13.9c)


[image: 
$$ A\cdot \left(B\cdot C\right)=\left(A\cdot B\right)\cdot C \mathrm{associative}\ \mathrm{law}\ \mathrm{of}\ \mathrm{multiplication} $$
]

 (13.9d)


[image: 
$$ A\cdot \left(B+C\right)=A\cdot B+A\cdot C \mathrm{distributive}\ \mathrm{law} $$
]

 (13.9e)


[image: 
$$ \begin{array}{l}A+0=A, A+1=1, A\cdot 0=0, A\cdot 1=1, A+A=A, A+\overline{A}=1, \\ {}A\cdot A=A, A\cdot \overline{A}=0, \overline{\overline{A}}=A\end{array} $$
]

 (13.9f)





                    
                    
                  Exercise 13.2


                    
                  Simplify the Boolean expression
 [image: 
$$ A+A\cdot B $$
] (AND gate and OR gate applied to inputs A and B).

Answer: [image: 
$$ A+A\dot{c}B=A $$
].


13.3.5 Universal Property of NAND Gates

: De Morgan’s Laws


When looking for logic gates in the form of integrated circuits (ICs), you will probably encounter a large number of NAND gate chips, with up to four gates per chip. A typical example is a MM74HC00 quad NAND gate from Fairchild Semiconductor that currently costs $0.50 (a 14-pin DIP package). Why are the other gates not so popular? The reason for such a selection is simple: the NAND gate is a universal gate so that all other gates (NOT, AND, OR, and NOR) can be constructed from NAND gates when necessary. Furthermore, the NAND gate is faster (has a smaller number of transistor and a smaller propagation delay) than an AND gate or an OR gate. The above statement is proved for OR (and NOR) gates using De Morgan’s laws. These laws are given by two 
                  Boolean expressions
                  
                , for two (or more) Boolean variables X and Y, which are[image: 
$$ A+B=\overline{\overline{A}\cdot \overline{B}} $$
]

 (13.10a)


[image: 
$$ A\cdot B=\overline{\overline{A}+\overline{B}} $$
]

 (13.10b)

Equation (13.10a) states that any OR gate may be constructed from a NAND gate with the inverted inputs. Vice versa, Eq. (13.10b) states that any AND gate may be constructed from a NOR gate with the inverted inputs. Interestingly, the NOR gate is also a universal gate: all other gates could in principle be constructed from the NOR gates. De Morgan’s laws are employed to simplify and transform Boolean expressions
, so that you can use one sort of gate, 
                  
                  
                generally only using NAND or NOR gates. This leads to cheaper and faster hardware.
Exercise 13.3
Using De Morgan’s laws, present the equivalent representation of the OR gate with two inverted inputs, [image: 
$$ \overline{A}+\overline{B} $$
], in terms of the NAND gate(s).

Answer: [image: 
$$ \overline{A}+\overline{B}=\overline{A\cdot B} $$
]. Therefore, the OR gate with inverted inputs is exactly equivalent to one NAND gate and vice versa.



                    
                  Exercise 13.4

Exclusive OR or XOR gate, which symbol is shown in Fig. 13.29, is formed by a combination of other gates. However, because of its fundamental importance, this gate is often treated as a basic logic element. The output of the XOR gate is given by [image: 
$$ C=A\cdot \overline{B}+\overline{A}\cdot B $$
] where A and B are the inputs. Give an alternative expression for the output that involves the OR gate in the form [image: 
$$ \left(A+B\right) $$
].[image: A331468_1_En_13_Fig29_HTML.gif]
Fig. 13.29Exclusive OR
 or XOR gate








Answer: [image: 
$$ C=\left(A+B\right)\cdot \overline{A\cdot B} $$
].


13.3.6 Logic Circuit Analysis and Application Example: Logic Gate Motor Controller

Logic circuit analysis implies finding the behavior of the logic circuit for various input combinations. Given a logic diagram for a combinational circuit, we obtain a formal description of its operation, either in the form of a truth table or as a timing diagram if time dependence is involved. As an example, we consider an H-bridge controller from the previous section built in the laboratory and shown in Fig. 13.30c.[image: A331468_1_En_13_Fig30_HTML.gif]
Fig. 13.30A simple manual two-switch motor controller with three NAND gates





Obtaining Truth Table


 of the Logic Circuit



The H-bridge in Fig. 13.30a controls a DC motor placed at its center using four power MOSFETs and four control voltages V
1, V
2, V
3, V
4 applied to their gates. Similar to the Boolean algebra 
considered in this section, the control voltages could only have high and low values. The motor has four meaningful states: forward and reverse rotation, free run to a stop, and brake. On the other hand, four control voltages V
1, V
2, V
3, V
4 provide 16 total possible switching combinations. Some of them are forbidden state
s (shorting out the circuit), yet some others are redundant states. 
                    
                    
                  Do we really need four independent control voltages to achieve the meaningful states? The answer is indeed no. Two independent control voltages would exactly suffice since they provide four independent control combinations, 00, 01, 10, and 11, each of which could be assigned to a particular meaningful state. Therefore, it is desired to control the H-bridge in Fig. 13.30a not with four independent switches but with only two independent switches shown in Fig. 13.30b. In order to accomplish this task, a logic circuit can be constructed as shown in Fig. 13.30c. This logic circuit has two inputs and four outputs. Its analysis results in a truth table which is


 Table 13.13 that follows.Table 13.13Truth table for the logic circuit in Fig. 13.30c



	Input1
	Input2
	
                              V
                              1
                            
	
                              V
                              2
                            
	
                              V
                              3
                            
	
                              V
                              4
                            

	
                              0
                            
	
                              0
                            
	1
	0
	1
	0

	
                              0
                            
	
                              1
                            
	1
	1
	0
	0

	
                              1
                            
	
                              0
                            
	0
	0
	1
	1

	
                              1
                            
	
                              1
                            
	1
	1
	1
	1






Determining Motor State




Further, we use the MOSFET operation chart—see Fig. 13.4 in Section 13.2 of this chapter—and arrive at Table 13.14, which employs the data of Table 13.13 for control voltages V
1, V
2, V
3, V
4 in order to determine the particular transistor state and finally establish the motor state.Table 13.14Motor states calculated from Table 13.13 and using the MOSFET switching behavior


	Input1
	Input2
	
                              V
                              1
                            
	
                              V
                              2
                            
	
                              V
                              3
                            
	
                              V
                              4
                            
	Trans. state (1,2,3,4)
	Motor state

	
                              0
                            
	
                              0
                            
	1
	0
	1
	0
	OFF/OFF/OFF/OFF
	Free run to a stop

	
                              0
                            
	
                              1
                            
	1
	1
	0
	0
	OFF/ON/ON/OFF
	Reverse mode

	
                              1
                            
	
                              0
                            
	0
	0
	1
	1
	ON/OFF/OFF/ON
	Forward mode

	
                              1
                            
	
                              1
                            
	1
	1
	1
	1
	OFF/ON/OFF/ON
	Brake







                    
                    
                    
                  Thus, the analysis of the logic circuit established the usefulness of the motor controller in Fig. 13.30c. This controller replaces four switches by two switches while preserving the full functionality of the H-bridge. Furthermore, it protects the H-bridge against the forbidden state
s (short circuits). The controller may be implemented in the laboratory with one low-cost quad NAND IC—see Fig. 13.31. It is important to note two resistors to ground in Fig. 13.30b, which are called the pull-down resistors. These resistors assure that the control voltage does go to zero when the switch is disconnected (no static charge). When switches “Input1” and “Input2” in Fig. 13.30b operate as functions of time, one may obtain the corresponding timing diagram for the logic circuit. This task is suggested in a number of homework problems at the end of this section.[image: A331468_1_En_13_Fig31_HTML.jpg]
Fig. 13.31Manual two-switch H-bridge motor controller from Fig. 13.30 implemented in an undergraduate laboratory using Digilent Electronics Explorer board with built-in NAND 74HC00 IC







13.3.7 
                Logic Circuit Synthesis


              
Logic circuit design is mostly a synthesis of a logic circuit. We start with a verbal description of the circuit (or function that it should perform) and proceed to the circuit diagram, which includes a number of logic gates. In modern digital design, the word description is translated into a program in a so-called hardware description language (HDL). The HDL
 synthesizes a logic circuit for such a program so that the designer never gets involved into the real design process. However, there are still many situations where the logic circuit is designed and/or modified “by hand.” When a truth table is available, there is always a way to design the logic circuit using the 
sum-of-products approach
 or the 
                  product-of-sums approach
                  
                . Both these methods are studied in digital circuit design classes. However, the established logic circuits may be way too cumbersome and expensive. They often need further minimization. This is accomplished based on 
                  Karnaugh maps
                  
                , which provide a graphic representation of the truth table. The logic circuit design then becomes an exciting engineering design journey, which is beyond the scope of the present text.
Example 13.11


                    
                    
                  A county board is composed of three commissioners. Each commissioner votes on measures presented to the board by pressing a 5-V button indicating whether the commissioner votes for or against a measure. If two or more commissioners vote for a measure, it passes. You are asked to help with a logic circuit that takes the three votes as inputs and lights a green LED (outputs 5 V) to indicate that a measure passed. You can use OR and/or AND logic gates, as many of them as you need.

Solution: First, we may want to translate the description of the desired operation into a truth table. The truth table has three logic inputs A, B, C and one output, M. The output M is one as long as any combination of A, B, C has at least two ones and is zero otherwise. One straightforward Boolean expression
 for the output has the form:[image: 
$$ M=A\cdot B+A\cdot C+B\cdot C $$
]

 (13.11a)



The corresponding hardware solution includes three AND gates connected to an OR gate with three inputs. Another possible Boolean expression for the output has the form:[image: 
$$ M=\left(A+B\right)\cdot \left(A+C\right)\cdot \left(B+C\right) $$
]

 (13.11b)



The corresponding hardware solution includes three OR gates connected to an AND gate with three inputs. The hardware realization of either logic circuit may be implemented with only NAND gates. The LED will light up at high output voltage (5 V or close) and be off at low output voltage (0 V or close).
                    
                    
                  



13.3.8 The Latch



Most of the transistors today are used in semiconductor memories. Memory devices are embedded in digital integrated circuits. Memory can occupy most of the area of a computer processor chip. There are several types of semiconductor memories. We will describe the topology of a unit cell for one such memory type—the static RAM (SRAM
) or the static random access memory. RAM means that every data bit is accessible any time unlike hard disk memory. All RAM memories are volatile, which means that they require a continuous presence of a power supply. SRAM cells provide the fastest operation among all other memories. SRAM cells are used as cache memory embedded in a processing unit where speed is critical. The basic memory element, the latch, is shown in Fig. 13.32. It consists of two cross-coupled inverters connected input to output. The latch has two stable states listed in Table 13.15. All other states are unstable, which means that they contradict the operation of the two logic gates. Thus, any arbitrary initial voltage distribution will be very quickly transformed to one of the stable states. As long as power is present, the latch can remain in any of the stable states indefinitely long. In other words, the latch circuit memorizes the initial state, due to the effect of the positive feedback

.[image: A331468_1_En_13_Fig32_HTML.gif]
Fig. 13.32Basic latch consisting of two inverters







Table 13.15Stable states of the latch circuit

. Note the inversion of all voltages for two different states


	State
	
                            V
                            in1
                          
	
                            V
                            in2
                          
	
                            V
                            out1
                          
	
                            V
                            out2
                          

	#1



	1
	0
	0
	1

	#2
	0
	1
	1
	0





With the two stable states, the latch circuit is capable of storing one bit of data. One state is then designated as 0 (LOW) and another as 1 (HIGH). It now remains to design a mechanism by which the state can be written and read. This is accomplished in a static RAM memory cell, which uses two additional access (or pass) NMOS transistors.


Summary

                	Transistor switches

	Ground-side NMOS transistor switch (normally OFF)—pull down switch

	
                            [image: A331468_1_En_13_Figai_HTML.gif]
                          
	A. Closes when [image: 
$$ {V}_{\mathrm{in}}>{V}_{\mathrm{tn}} $$
];
B. For efficient operation, the control voltage V
in must be as high as possible in the ON position;
C. Complement to PMOS switch

	Power-side PMOS transistor switch (normally ON)—pull up switch

	
                            [image: A331468_1_En_13_Figaj_HTML.gif]
                          
	A. Opens when [image: 
$$ {V}_{\mathrm{in}}>{V}_{\mathrm{S}}-\left|{V}_{\mathrm{tp}}\right| $$
];
B. For efficient operation, the control voltage V
in must be as low as possible in the ON position;
C. Complement to NMOS switch

	Transistor switching diagram

	
                            [image: A331468_1_En_13_Figak_HTML.gif]
                          
	A. V
in—control voltage;
B. Assume [image: 
$$ {V}_{\mathrm{tn}}={V}_{\mathrm{Th}} $$
];
C. Assume [image: 
$$ \left|{V}_{\mathrm{tp}}\right|={V}_{\mathrm{Th}} $$
];
D. Typical values of V
Th are in the range from 0.4 to 4 V
E.V
Th depends on transistor geometry and composition

	Transistor motor controllers

	H-bridge

	
                            [image: A331468_1_En_13_Figal_HTML.gif]
                          
Controls a DC motor load enabling:
– Forward mode;
– Reverse mode;
– Free run to a stop;
– Brake states
Available commercially as an H-bridge IC. Simpler modification—half H-bridge
	
                            [image: A331468_1_En_13_Figam_HTML.gif]
                          

	Basic pulse width modulation (PWM) waveform

	
                            [image: A331468_1_En_13_Figan_HTML.gif]
                          
	Period (sec) [image: 
$$ T={t}_{on}+{t}_{off} $$
]

Frequency (Hz) [image: 
$$ f=1/T $$
]

Duty cycle [image: 
$$ d=\frac{t_{on}}{T}, D=\frac{t_{on}}{T}\times 100\;\% $$
]

Average supply voltage [image: 
$$ {V}_{ DC}=d{V}_{ S} $$
]


	Basic logic gates and switching (Boolean) algebra

	Logic inverter (NOT gate)

	
                            [image: A331468_1_En_13_Figao_HTML.gif]
                          
	
                            [image: A331468_1_En_13_Figap_HTML.gif]
                          
For single-transistor design, resistance R should be very large

	NAND gate

	
                            [image: A331468_1_En_13_Figaq_HTML.gif]
                          
	
                            [image: A331468_1_En_13_Figar_HTML.gif]
                          

	AND gate

	
                            [image: A331468_1_En_13_Figas_HTML.gif]
                          
	
                            [image: A331468_1_En_13_Figat_HTML.gif]
                          

	NOR gate

	
                            [image: A331468_1_En_13_Figau_HTML.gif]
                          
	
                            [image: A331468_1_En_13_Figav_HTML.gif]
                          

	OR gate

	
                            [image: A331468_1_En_13_Figaw_HTML.gif]
                          
	
                            [image: A331468_1_En_13_Figax_HTML.gif]
                          

	Exclusive OR (XOR) gate and exclusive NOR (XNOR) gates

	
                            [image: A331468_1_En_13_Figay_HTML.gif]
                          
	
                            [image: A331468_1_En_13_Figaz_HTML.gif]
                          

	Switching (Boolean) algebra

	
                            [image: A331468_1_En_13_Figba_HTML.gif]
                          
	
                            [image: 
$$ A+B=B+A $$
]
                          

                            [image: 
$$ A\cdot B=B\cdot A $$
]
                          

                            [image: 
$$ A+\left(B+C\right)=\left(A+B\right)+C $$
]
                          

                            [image: 
$$ A\cdot \left(B\cdot C\right)=\left(A\cdot B\right)\cdot C $$
]
                          

                            [image: 
$$ A\cdot \left(B+C\right)=A\cdot B+A\cdot C $$
]
                          

                            [image: 
$$ \begin{array}{l}A+0=A, A+1=1, A\cdot 0=0,\\ {}A\cdot 1=1, A+A=A, A+\overline{A}=1,\\ {}A\cdot A=A, A\cdot \overline{A}=0, \overline{\overline{A}}=A\end{array} $$
]
                          
De Morgan’s laws:

[image: 
$$ A+B=\overline{\overline{A}\cdot \overline{B}} $$
], [image: 
$$ A\cdot B=\overline{\overline{A}+\overline{B}} $$
]


	Latch (Transistor memory)

	
                            [image: A331468_1_En_13_Figbb_HTML.gif]
                          
	
                            [image: A331468_1_En_13_Figbc_HTML.gif]
                          




              

Problems
13.1 Principle of Operation

                  13.1.1 Switch Concept
                

                  13.1.2 Switch Position in a Circuit
                

                  13.1.3 MOSFET Switches
                

                  13.1.4 Sketch of Transistor Physics
                
Problem 13.1
Describe the function and major properties of an electronic switch in your own words.

Problem 13.2

                    	A.Describe the meaning of the ground-side switch
, the 
power-side switch, and the 
series switch. Why do we distinguish between those switch types?


 

	B.Draw the circuit symbol for a switching NMOS transistor used in the ground-side switch. Draw the circuit symbol for a PMOS transistor used in the 

power-side switch

. Designate the line current direction in both cases.


 




                  

Problem 13.3
Two digital circuits shown in the following figure operate with a single-supply voltage [image: 
$$ {V}_S=1.8 \mathrm{V} $$
]. The transistor threshold voltages are [image: 
$$ {V}_{\mathrm{Tn}}=\left|{V}_{\mathrm{Tp}}\right|=0.5 \mathrm{V} $$
], which correspond to a 0.18-μm CMOS process. Note: Every “CMOS process” is a manufacturing process for tiny MOSFETs used in digital circuits. A 0.18-μm CMOS means that the channel length (gate width) of the MOSFET in Fig. 13.5 is greater than or equal to 0.18 μm.[image: A331468_1_En_13_Fige_HTML.gif]



Find the output voltage V
out to each circuit if:	i.
                            [image: 
$$ {V}_{\mathrm{in}}=0.0\;\mathrm{V} $$
]
                          


 

	ii.
                            [image: 
$$ {V}_{\mathrm{in}}=0.2\;\mathrm{V} $$
]
                          


 

	iii.
                            [image: 
$$ {V}_{\mathrm{in}}=1.6\;\mathrm{V} $$
]
                          


 

	iv.
                            [image: 
$$ {V}_{\mathrm{in}}=1.8\;\mathrm{V} $$
]
                          


 






Problem 13.4
Two digital circuits shown in the figure below operate with a single-supply voltage [image: 
$$ {V}_{\mathrm{S}}=5.0 \mathrm{V} $$
]. The transistor threshold voltages are [image: 
$$ {V}_{\mathrm{Tn}}=\left|{V}_{\mathrm{Tp}}\right|=1.0 \mathrm{V} $$
].[image: A331468_1_En_13_Figf_HTML.gif]



Find the output voltage V
out to each circuit if:	i.
                            [image: 
$$ {V}_{\mathrm{in}}=0.0\;\mathrm{V} $$
]
                          


 

	ii.
                            [image: 
$$ {V}_{\mathrm{in}}=0.7\;\mathrm{V} $$
]
                          


 

	iii.
                            [image: 
$$ {V}_{\mathrm{in}}=5\;\mathrm{V} $$
]
                          


 

	iv.
                            [image: 
$$ {V}_{\mathrm{in}}=4.6\;\mathrm{V} $$
]
                          


 






Problem 13.5
For the circuit shown in the figure below, [image: 
$$ {V}_{\mathrm{S}}=2.5 \mathrm{V} $$
] and [image: 
$$ {V}_{\mathrm{Tn}}=\left|{V}_{\mathrm{Tp}}\right|=0.5 \mathrm{V} $$
] (0.25-μm CMOS process). Determine the output voltage V
out when:	A.
                            [image: 
$$ {V}_{\mathrm{in}}=0.0 \mathrm{V} $$
]
                          


 

	B.
                            [image: 
$$ {V}_{\mathrm{in}}=0.2 \mathrm{V} $$
]
                          


 

	C.
                            [image: 
$$ {V}_{\mathrm{in}}=2.3 \mathrm{V} $$
]
                          


 

	D.
                            [image: 
$$ {V}_{\mathrm{in}}=2.5 \mathrm{V} $$
]
                          


 

	E.
                            [image: 
$$ {V}_{\mathrm{in}}=1.0 \mathrm{V} $$
]
                            [image: A331468_1_En_13_Figg_HTML.gif]


                          


 






Problem 13.6
For the circuit shown in the figure below, [image: 
$$ {V}_{\mathrm{S}}=2.5 \mathrm{V} $$
] and [image: 
$$ {V}_{\mathrm{Tn}}=\left|{V}_{\mathrm{Tp}}\right|=0.5 \mathrm{V} $$
] (0.25-μm CMOS process). Determine the output voltage V
out when:	A.
                            [image: 
$$ {V}_1=0.0 \mathrm{V}, {V}_2=0.0 \mathrm{V} $$
]
                          


 

	B.
                            [image: 
$$ {V}_1=0.7 \mathrm{V}, {V}_2=0.2 \mathrm{V} $$
]
                          


 

	C.
                            [image: 
$$ {V}_1=2.3 \mathrm{V}, {V}_2=2.3 \mathrm{V} $$
]
                          


 

	D.
                            [image: 
$$ {V}_1=2.3 \mathrm{V}, {V}_2=0.0 \mathrm{V} $$
]
                          


 

	E.
                            [image: 
$$ {V}_1=1.0 \mathrm{V}, {V}_2=1.0 \mathrm{V} $$
]
                            [image: A331468_1_En_13_Figh_HTML.gif]


                          


 






Problem 13.7
For the circuit shown in the figure below, [image: 
$$ {V}_{\mathrm{S}}=2.5 \mathrm{V} $$
] and [image: 
$$ {V}_{\mathrm{Tn}}=0.5 \mathrm{V} $$
]. Determine the output voltage V
out when:	A.
                            [image: 
$$ {V}_{\mathrm{in}}=0.0 \mathrm{V} $$
]
                          


 

	B.
                            [image: 
$$ {V}_{\mathrm{in}}=0.2 \mathrm{V} $$
]
                          


 

	C.
                            [image: 
$$ {V}_{\mathrm{in}}=2.3 \mathrm{V} $$
]
                          


 

	D.
                            [image: 
$$ {V}_{\mathrm{in}}=2.5 \mathrm{V} $$
]
                          


 





The output terminal is disconnected (current cannot flow into this terminal).[image: A331468_1_En_13_Figi_HTML.gif]




Problem 13.8
Draw two alternative circuit symbols for an NMOS switch. Repeat for the PMOS switch.

Problem 13.9
For the circuit shown in the following figure, determine all possible values of the voltage V. The transistor's threshold voltage is 0.5 V.[image: A331468_1_En_13_Figj_HTML.gif]




Problem 13.10
For the circuit shown in the figure below, determine all possible values of the voltage V. The transistor’s threshold voltage is [image: 
$$ \left|{V}_{\mathrm{Tp}}\right|=0.5\mathrm{V} $$
]; the supply voltage is 2.5 V.[image: A331468_1_En_13_Figk_HTML.gif]




Problem 13.11
A circuit shown in the figure below is used to measure the threshold voltage of the NMOS transistor. Could you explain why?

Hint: Determine all possible values of the voltage V.[image: A331468_1_En_13_Figl_HTML.gif]




Problem 13.12
A circuit shown in the figure below is used to measure the threshold voltage of the PMOS transistor. Could you explain why?

Hint: Determine all possible values of the voltage V.[image: A331468_1_En_13_Figm_HTML.gif]





13.2 Power Switching Circuit

                  13.2.1 Switching Quadrants
                

                  13.2.2 Switching a Resistive Load
                
Problem 13.13
For a load shown in the figure below, determine the quadrant of operation when:	A.
                            [image: 
$$ {V}_{\mathrm{L}}=-6 \mathrm{V},{I}_{\mathrm{L}}=-1 \mathrm{A} $$
]
                          


 

	B.
                            [image: 
$$ {V}_{\mathrm{L}}=6 \mathrm{V},{I}_{\mathrm{L}}=1 \mathrm{A} $$
]
                          


 

	C.
                            [image: 
$$ {V}_{\mathrm{L}}=6 \mathrm{V},{I}_{\mathrm{L}}=-1 \mathrm{A} $$
]
                          


 

	D.
                            [image: 
$$ {V}_{\mathrm{L}}=-12 \mathrm{V},{I}_{\mathrm{L}}=-2 \mathrm{A} $$
]
                            [image: A331468_1_En_13_Fign_HTML.gif]


                          


 






Problem 13.14
In a switching circuit shown in the figure that follows, an IRF510 n-channel power MOSFET with [image: 
$$ {V}_{\mathrm{Tn}}=3.5 \mathrm{V} $$
] is used. Assuming zero switch resistance, determine the power delivered to the load when the control voltage is:	A.0 V


 

	B.3 V


 

	C.12 V


 

	D.14 V[image: A331468_1_En_13_Figo_HTML.gif]





 






Problem 13.15
In a switching circuit shown in the following figure, a power MOSFET with [image: 
$$ \left|{V}_{\mathrm{Tp}}\right|=3.5 \mathrm{V} $$
] is used. Assuming zero switch resistance, determine the power delivered to the load when the control voltage V
in is	A.0 V


 

	B.2 V


 

	C.15 V


 

	D.12 V[image: A331468_1_En_13_Figp_HTML.gif]





 







                  13.2.3 Switching a DC Motor
                

                  13.2.4 One-Quadrant Switch for a DC Motor
                
Problem 13.16
Explain in your own words how switching a motor is different compared to switching a simple resistor load.

Problem 13.17
Explain in your own words the difference between the “free run to a stop” and “brake” states of a DC motor.

Problem 13.18
Prove that a DC motor load operates as a motor (passive load) in quadrants I and III in Fig. 13.8 and as a generator (active load) in quadrants II and IV.


                  13.2.5 Half H-Bridge for a DC Motor
                

                  13.2.6 Full H-Bridge for a
                  
                    DC Motor
                    
                    
                  
                
Problem 13.19
For a half H-bridge shown in the following figure, [image: 
$$ {V}_{\mathrm{S}}=12 \mathrm{V} $$
] and [image: 
$$ {V}_{\mathrm{Tn}}=\left|{V}_{\mathrm{Tp}}\right|=3.5 \mathrm{V} $$
]. The control voltages V
1, V
2 may switch from 0 V to 12 V. Establish the values of two control voltages that ensure the following motor operations:	A.Motor is in forward mode (current direction through the motor is from left to right).


 

	B.Motor suddenly stops (motor terminals are shorted out, which creates the braking effect).


 

	C.Motor runs freely to a stop (motor is disconnected from the power supply).[image: A331468_1_En_13_Figq_HTML.gif]





 






Problem 13.20
In the half H-bridge circuit shown in the figure to the previous problem, the control voltages V
1, V
2 are either 0 V or 12 V. If we denote the 0-V control voltage by 0 (low) and the 12-V control voltage by 1 (high), all possible combinations of the control voltages are covered by the table that follows (the table in fact lists all binary numbers from 0 to 3). Fill out the table using four states:	A.Forward mode (current direction is from left to right)


 

	B.Brake


 

	C.Free run to a stop


 

	D.Forbidden (short circuit)


 




	
                                V
                                1
                              
	
                                V
                                2
                              
	State

	0
	0
	 
	0
	1
	 
	1
	0
	 
	1
	1
	 





Problem 13.21
Suggest and sketch a schematic of the half H-bridge where three switching states

 (ON, brake, free run to a stop) are realized with only NMOS transistors.

Problem 13.22
For the H-bridge shown in the following figure, [image: 
$$ {V}_{\mathrm{S}}=12 \mathrm{V} $$
] and [image: 
$$ {V}_{\mathrm{Tn}}=\left|{V}_{\mathrm{Tp}}\right|=3.5 \mathrm{V} $$
]. The control voltages may switch from 0 V to 12 V. Establish at least one set of particular values for four control voltages V
1, V
2, V
3, V
4 that ensures the following motor operations:	A.Motor is in forward mode (current direction through the motor is from left to right).


 

	B.Motor is in reverse mode (current direction through the motor is from right to left).


 

	C.Motor suddenly stops (motor terminals are shorted out, which creates the braking effect).


 

	D.Motor runs freely to a stop (motor is disconnected from the power supply).[image: A331468_1_En_13_Figr_HTML.gif]





 






Problem 13.23
In the H-bridge circuit shown in the figure to the previous problem, the control voltages V
1, V
2, V
3, V
4 are either 0 V or 12 V. If we denote the 0-V control voltage by digit 0 (low) and the 12-V control voltage by digit 1 (high), all possible combinations of the control voltages are covered by the table that follows (the table in fact lists all binary numbers from 0 to 15). Fill out the table using five states:	A.Forward mode (current direction is from left to right)


 

	B.Reverse mode (current direction is from right to left)


 

	C.Brake


 

	D.Free run to a stop


 

	E.Forbidden (short circuit)


 







                  13.2.7 Application Example: Pulse-Width Modulation (PWM)
                  
                    Motor Controller
                    
                    
                  
                
Problem 13.24
For a PWM form shown in the following figure, determine:	A.Period, T (show units)


 

	B.Frequency, f (show units)


 

	C.Duty cycle, d (also give its percentage D)


 

	D.Average supply voltage, V
DC



 




[image: A331468_1_En_13_Figs_HTML.gif]




Problem 13.25
For a PWM form shown in the following figure, determine	A.Period, T (show units)


 

	B.Frequency, f (show units)


 

	C.Duty cycle, d (also give its percentage D)


 

	D.Average supply voltage, V
DC



 




[image: A331468_1_En_13_Figt_HTML.gif]




Problem 13.26*

                    	A.Compile a MATLAB script to generate the figure to Problem 13.24 above. Attach the script and the figure to the homework.


 

	B.Compile two MATLAB scripts to generate the two figures to Problem 13.25 above. Attach the scripts and the figures to the homework.


 




                  


13.3 Digital Switching Circuits

                  13.3.1
                  
                    NOT Gate
                    
                  
                  
                    or
                    
                  
                  Logic Inverter
                

                  13.3.2 NOR Gate and OR Gate
                

                  13.3.3 NAND Gate and AND Gate
                
Problem 13.27

                    	A.Draw the symbol for the logic inverter (NOT gate).


 

	B.Draw the corresponding circuit diagram.


 

	C.Given the input voltage to the 
NOT gate, fill out the table that follows. The transistors used in the circuit are matched and have equal threshold voltages [image: 
$$ \left|{V}_{\mathrm{Tp}}\right|={V}_{\mathrm{Tn}}=1 \mathrm{V} $$
].


 




                    	
                                V
                                in
                              
	
                                V
                                out
                              

	0.5 V
	 
	4.7 V
	 



                  

Problem 13.28
For the circuit shown in the figure, fill out the table that follows. The transistors used in the circuit are matched and have equal threshold voltages [image: 
$$ \left|{V}_{\mathrm{Tp}}\right|={V}_{\mathrm{Tn}}=1 \mathrm{V} $$
].[image: A331468_1_En_13_Figu_HTML.gif]


	
                                V
                                in
                              
	
                                V
                                out
                              

	0 V
	 
	5 V
	 





Problem 13.29
For the circuit shown in the figure, fill out the table that follows. The transistors used in the circuit are matched and have equal threshold voltages [image: 
$$ \left|{V}_{\mathrm{Tp}}\right|={V}_{\mathrm{Tn}}=1\mathrm{V} $$
].[image: A331468_1_En_13_Figv_HTML.gif]


	
                                V
                                in
                              
	
                                V
                                out
                              

	0.3 V
	 
	4.2 V
	 





Problem 13.30
The circuit shown in the following figure is a logic gate. However, it utilizes only one transistor. The current cannot flow into the output terminal (it is disconnected in the figure). Construct:	A.Table of V
out versus [image: 
$$ {V}_{\mathrm{in}}=0, 0.5, 4.5, 5 \mathrm{V} $$
]



 

	B.The truth table


 





given that the source voltage is 5 V and the threshold voltage is 1 V. What logic gate is it? What value of the resistor R would you choose to minimize circuit loss and the load impact?[image: A331468_1_En_13_Figw_HTML.gif]




Problem 13.31
Repeat the previous problem for the circuit shown in the following figure.[image: A331468_1_En_13_Figx_HTML.gif]




Problem 13.32
Draw the symbol for the logic OR gate and present the corresponding truth table.

Problem 13.33
Draw the symbol for the logic NOR gate and present the corresponding truth table.

Problem 13.34
Draw the circuit diagram:	A.For the NOR gate


 

	B.For the OR gate


 






Problem 13.35
For the NOR gate with input voltages V
1 and V
2, fill out the table that follows. The transistors used in the circuit are matched and have equal threshold voltages [image: 
$$ \left|{V}_{\mathrm{Tp}}\right|={V}_{\mathrm{Tn}}=1 \mathrm{V} $$
].	
                                V
                                1
                              
	
                                V
                                2
                              
	
                                V
                                out
                              

	0.1 V
	0.7 V
	 
	0.5 V
	4.9 V
	 
	4.5 V
	0.1 V
	 
	4.1 V
	4.4 V
	 





Problem 13.36
For the OR gate with input voltages V
1 and V
2, fill out the table that follows. The transistors used in the circuit are matched and have equal threshold voltages [image: 
$$ \left|{V}_{\mathrm{Tp}}\right|={V}_{\mathrm{Tn}}=1 \mathrm{V} $$
].	
                                V
                                1
                              
	
                                V
                                2
                              
	
                                V
                                out
                              

	0.3 V
	0.1 V
	 
	0.2 V
	4.1 V
	 
	4.1 V
	−0.1 V
	 
	5.3 V
	4.4 V
	 





Problem 13.37
The following figure is an internal electric circuit of a logic gate. It has three inputs and one output.	1.Fill out the truth table.


 

	2.Draw the symbol of the corresponding logic gate.[image: A331468_1_En_13_Figy_HTML.gif]





 






Problem 13.38
A freshman ECE student attends class if at least one of the following conditions is satisfied:	1.He/she feels that this lecture might be useful.


 

	2.The lecture is not early in the morning.


 

	3.His/her friends might be present there too.


 





Every morning he/she “votes” by simultaneously pushing any appropriate combination of three 5-V buttons (V
1, V
2, and V
3) placed in parallel. A logic circuit is needed that lights a green LED (outputs 5 V) when there is time to go to the lecture.	A.Draw the corresponding logic circuit in the symbolic form (in the form of logic gates).


 

	B.Draw the MOSFET representation of that logic circuit.


 

	C.Present the corresponding truth table.


 






Problem 13.39
Draw the symbol for the logic AND gate and present the corresponding truth table.

Problem 13.40
Draw the symbol for the logic NAND gate and present the corresponding truth table.

Problem 13.41
Draw the MOSFET representation	A.For the NAND gate


 

	B.For the AND gate


 





How many transistors are we using in every case?

Problem 13.42
For the NAND gate with input voltages V
1 and V
2, fill out the table that follows. All transistors used in the circuit are matched and have equal threshold voltages [image: 
$$ \left|{V}_{\mathrm{Tp}}\right|={V}_{\mathrm{Tn}}=1 \mathrm{V} $$
].	
                                V
                                1
                              
	
                                V
                                2
                              
	
                                V
                                out
                              

	0.9 V
	0.9 V
	 
	0.1 V
	5.1 V
	 
	4.1 V
	−0.1 V
	 
	4.5 V
	4.7 V
	 





Problem 13.43
For the AND gate with input voltages V
1 and V
2, fill out the table that follows. The transistors used in the circuit are matched and have equal threshold voltages [image: 
$$ \left|{V}_{\mathrm{Tp}}\right|={V}_{\mathrm{Tn}}=1 \mathrm{V} $$
].	
                                V
                                1
                              
	
                                V
                                2
                              
	
                                V
                                out
                              

	0.1 V
	0.1 V
	 
	0.2 V
	4.2 V
	 
	5.1 V
	−0.1 V
	 
	5.0 V
	4.6 V
	 





Problem 13.44
A senior ECE student attends class if all of the following conditions are satisfied:	1.He/she feels that this lecture might be useful.


 

	2.The lecture is not early in the morning.


 

	3.His/her friends might be present there too.


 





Every morning he/she “votes” by simultaneously pushing any appropriate combination of three 5-V buttons (V
1, V
2, and V
3) placed in parallel. A logic circuit is needed that lights a green LED (outputs 5 V) when there is time to go to the lecture.	A.Draw the corresponding logic circuit in the symbolic form (in the form of logic gates).


 

	B.Draw the MOSFET representation of that logic circuit.


 

	C.Present the corresponding truth table.


 







                  13.3.4 Simple Combinational Logic Circuits. Switching Algebra
                

                  13.3.6 Logic Circuit Analysis. Application Example: Logic Gate Motor Controller
                

                  13.3.7 Logic Circuit Synthesis
                
Problem 13.45
Draw a logic circuit with only NAND and NOT gate(s) that realizes an OR gate. Confirm your answer by using the corresponding truth table.

Problem 13.46
Draw a logic circuit with only NAND gate(s) that realizes an OR gate. Confirm your answer by using the corresponding truth table.

Problem 13.47
Draw a logic circuit with only NAND gate(s) that realizes a NOT gate. Confirm your answer by using the corresponding truth table.

Problem 13.48
Four logic circuits shown in the figure below use only the NAND gates. By constructing the truth table for every circuit, establish the equivalence of circuits A,B, C, and D to other logic gates studied in this section.[image: A331468_1_En_13_Figz_HTML.gif]




Problem 13.49
The following figure shows two logic circuits.[image: A331468_1_En_13_Figaa_HTML.gif]



Are they equivalent? Prove your answer by constructing the two corresponding truth tables.

Problem 13.50
The following figure shows two logic circuits.[image: A331468_1_En_13_Figab_HTML.gif]



Are they equivalent? Prove your answer by constructing the two corresponding truth tables.

Problem 13.51
Using laws and rules of 
Boolean algebra, simplify the Boolean expressions	A.
                            [image: 
$$ A\cdot B+A\cdot \left(B+C\right)+B\cdot \left(B+C\right) $$
]
                          


 

	B.
                            [image: 
$$ \left(A\cdot \overline{B}\cdot \left(C+B\cdot D\right)+\overline{A}\cdot \overline{B}\right)\cdot C $$
]
                          


 






Problem 13.52
Using laws and rules of Boolean algebra, simplify the Boolean expressions

	A.
                            [image: 
$$ A+\overline{A}\cdot B $$
]
                          


 

	B.
                            [image: 
$$ \left(A+B\right)\cdot \left(A+C\right) $$
]
                          


 






Problem 13.53
The output of the XOR gate is given by [image: 
$$ C=A\cdot \overline{B}+\overline{A}\cdot B $$
]. Using De Morgan’s theorems and laws and rules of Boolean algebra, express the output of the exclusive NOR gate, [image: 
$$ \overline{C} $$
], in a similar form.

Problem 13.54
If AND gates are substituted in place of NAND gates in the logic circuit in Fig. 13.30c, will the motor controller still function properly? Explain why yes or why no.

Problem 13.55
If NOR gates are substituted in place of NAND gates in the logic circuit in Fig. 13.30c, will the motor controller still function properly? Explain why yes or why no.

Problem 13.56
Given the logic circuit and the input waveforms in the following figure, draw the output waveform on the same figure. Hint: Construct the truth table of the logic circuit first.[image: A331468_1_En_13_Figac_HTML.gif]




Problem 13.57
Given the logic circuit and the input waveforms in the following figure, draw the output waveform on the same figure. Hint: Construct the truth table of the logic circuit first.[image: A331468_1_En_13_Figad_HTML.gif]




Problem 13.58
Given the logic circuit and the input waveforms in the following figure, draw the output waveform on the same figure. Hint: Construct the truth table of the logic circuit first.[image: A331468_1_En_13_Figae_HTML.gif]




Problem 13.59
Given the logic circuit and the input waveforms in the following figure, draw the output waveform on the same figure. Hint: Construct the truth table of the logic circuit first.[image: A331468_1_En_13_Figaf_HTML.gif]




Problem 13.60
A small county board is composed of three commissioners. Each commissioner votes on measures presented to the board by pressing a 5-V button indicating whether the commissioner votes for or against a measure. If two or more commissioners vote for a measure, it passes. You are asked to help with a logic circuit that takes the three votes as inputs and lights a green LED (outputs 5 V) to indicate that a measure passed. You can use AND, NAND, and NOT logic gates, as many of them as you need.	A.Present the corresponding logic circuit in the symbolic form (in the form of logic gates).


 

	B.Present the corresponding truth table.


 

	C.How many transistors does your circuit include?


 






Problem 13.61
A small county board is composed of three commissioners. Each commissioner votes on measures presented to the board by pressing a 5-V button indicating whether the commissioner votes for or against a measure. If two or more commissioners vote for a measure, it passes. You are asked to help with a logic circuit that takes the three votes as inputs and lights a green LED (outputs 5 V) to indicate that a measure passed. You can use OR, NOR, and NOT logic gates, as many of them as you need.	A.Present the corresponding logic circuit in the form of logic gates.


 

	B.Present the corresponding truth table.


 

	C.How many transistors does your circuit include?


 







                  13.3.8 The Latch
                
Problem 13.62
Draw the circuit diagram of a basic latch and explain its operation in your own words.

Problem 13.63
Most of the transistors are used in semiconductor memories. There are several types of semiconductor memories. One of them is the static RAM (SRAM



                      
                    ) or the static random access memory. RAM means that every data bit is accessible any time unlike hard disk memory. SRAM cells provide the fastest operation among all other memories. The figure that follows shows a SRAM memory cell including:	1.The latch with four transistors.


 

	2.A word line WL connected through two access NMOS transistors M
5, M
6. They are always turned on (become the short circuit) when the selected cell’s word line is raised high (to V
S or another high voltage).


 

	3.A bit line BL and its counterpart, another bit line [image: 
$$ \overline{\mathrm{BL}} $$
].[image: A331468_1_En_13_Figag_HTML.gif]





 





The following figure shows another attempt to design the SRAM
 memory cell with only four NMOS transistors. Will this design function? Why yes or why no?[image: A331468_1_En_13_Figah_HTML.gif]
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Overview

              Prerequisites:
	Knowledge of basic circuit analysis

	Knowledge of transistor switches (Chapter 13)




              Objectives of Section 14.1:
	Relate hardware meaning and mathematical meaning of digital voltage

	Convert between binary, decimal, and hexadecimal numbers

	Understand parallel and series representation of digital voltage

	Become familiar with clock frequency and timing diagram of digital circuits

	Learn binary representation of ASCII characters

	Obtain initial exposure to tri-state digital voltage




              Objectives of Section 14.2:
	Appreciate the necessity of the digital-to-analog converter

	Design simple hardware realization(s) of digital-to-analog converters

	Relate circuit structures to the corresponding mathematical operations with binary numbers

	Become familiar with resolution, accuracy, and voltage range of a DAC

	Learn two basic DAC constructions: binary-weighted input and R/2R ladder




              Objectives of Section 14.3:
	Understand the necessity for sampling analog voltages

	Design simple hardware realization(s) of the sample-and-hold circuit

	Understand the value of the Nyquist rate




              Objectives of Section 14.4:
	Design simple hardware realization(s) of the analog-to-digital converters: flash ADC and successive-approximation ADC

	Become familiar with key parameters of ADCs: resolution in bits, full-scale voltage range, and voltage resolution

	Obtain initial exposure to ADC speed, throughput rate, and conversion time




            

14.1 Digital Voltage and Binary Numbers
14.1.1 Introduction: ADC and DAC Circuits
Consider a typical block diagram of a digital signal processor (DSP

)
                  
                —see Fig. 14.1. The diagram includes an analog-to-digital converter (ADC) interfacing with a digital processor. The ADC

 converts an analog input voltage into data in the form of binary codes which are processed mathematically. The digital processor performs mathematical operations with binary numbers. The output to the processor is converted back to the real-world voltage using the digital-to-analog converter (DAC

). Every time you use your cell phone, you are using a DSP, and this is only one example of its application. A general-purpose microprocessor possesses a similar structure.[image: A331468_1_En_14_Fig1_HTML.gif]
Fig. 14.1Structure of a DSP 
including different circuit blocks





In this chapter, we will study the ADC circuit(s), the DAC circuit(s), and some useful interface/control circuits. Those basic digital circuits utilize and extend the generic amplifier concept studied previously. In this sense, the present chapter offers further solidification of the amplifier theory and practice. Section 14.1 introduces the meaning of a digital voltage and its relation to binary number system. It shows how to read a binary word and how to understand its circuit representation. Along with this, we briefly review hexadecimal numbers and demonstrate how to convert between different number systems using MATLAB. Section 14.2 studies two basic digital-to-analog converter configurations. Resolution voltage, accuracy, and full-scale output voltage range are the most important features of a digital-to-analog converter (DAC) chip. It may be amazing to discover how the corresponding electronic circuits follow the mathematical formulas for number conversion. In this section, we also introduce the 



                  
                  
                useful concept of a binary counter and give a number of examples. Section 14.3 analyzes the first block of the analog-to-digital converter—a sample-and-hold circuit. The meaning of the sampling rate and the fundamental concept of the Nyquist rate are naturally introduced in this context. Section 14.4 is devoted to two basic analog-to-digital converters. Resolution voltage, full-scale input voltage range, quantization error, and a slower speed of the A to D conversion are explained. Indeed, the present chapter does not exactly follow modern digital hardware, neither does it provide the reader with comprehensive digital fundamentals including the control logic. Only the basic circuit concepts will be illustrated here, based on simpler 



                  
                  
                yet functionally similar circuits.

14.1.2 Analog Voltage Versus Digital Voltage

Analog voltage is any instantaneous (usually continuous) voltage in a circuit. The term digital voltage is not quite precise. Strictly speaking, digital voltage is the same as analog voltage, which, however, may have only two states—high and low—at any time instant and/or at any particular node in the circuit. The digital voltage concept is closely related to the switching concept: the MOSFET switch studied in Chapter 13 may have only two states: on or off. The output voltage of the switch (the switching voltage) is thus exactly a digital voltage; it may be either high (switch is on) or low (switch is off). Using a number of such switches together allows us to process and store information in the circuit in the form of digital voltages. Thus, the analog circuit becomes a digital machine.
Analog Voltage
Consider the (decimal) number 10. 
                    
                    
                  How could we represent it in a computer? One way is shown in Fig. 14.2. We simply form a voltage divider circuit or an amplifier circuit or another analog circuit, with exactly one output. We’d strive to have 10 V at that output, as precisely as possible. This is the simplest and most intuitive way of assigning the voltage to a number.[image: A331468_1_En_14_Fig2_HTML.gif]
Fig. 14.2
Analog output voltage
 V of 10 V corresponding to a number 10





However, the accuracy of this representation heavily depends on resistor tolerance, amplifier gain tolerance, temperature variations, etc. Such an idea basically 

corresponds to an analog computer, which is briefly considered below.

Digital Voltage and Binary Number System
The second less intuitive



                    
                    
                   but much more versatile way to represent a certain number is shown in Fig. 14.3. We still try to represent (decimal) number 10. But instead of one output voltage V, we now introduce four output voltages denoted by D
3,2,1,0. However, each output can no longer have arbitrary voltage values. The output voltages may be either low or high, say, 0 V or 5 V, respectively.[image: A331468_1_En_14_Fig3_HTML.gif]
Fig. 14.3Four parallel digital output voltage
s D
3,2,1,0 of either 0 V or 5 V corresponding to a decimal number 10





In order to label high and low voltages, respectively, it is natural to use a binary number system, with only two digits, 0 and 1. We assign binary value 0 to 0 V and binary value 1 to 5 V. In view of this, the resulting binary number, which is a combination of all four digital output voltages in Fig. 14.2, is simply 1010binary. Further, we apply the conversion rule[image: 
$$ 101{0}_{\mathrm{binary}}= \mathbf{1}\times {2}^3+\mathbf{0}\times {2}^2+\mathbf{1}\times {2}^1+\mathbf{0}\times {2}^0={10}_{\mathrm{decimal}} $$
]

 (14.1a)


between two number types and obtain (decimal) number 10 exactly. The first (bold) multiplier in every summand in Eq. (14.1a) is a binary digit (or bit) in the 



                    
                    
                  binary number 1010; we read it from left to right. The rightmost bit (0 in this case) is the least significant bit or LSB; the leftmost bit (1 in this case) is the most significant bit or MSB. Equation (14.1a) says that it is possible to represent the number 10 with the help of four digital voltages 5 V, 0 V, 5 V, 0 V forming the binary number 1010. The specific value of high voltage is not really critical; the voltage combination 3 V, 0 V, 3 V, 0 V will again form the same binary number 1010 if we assign binary value 1 to the voltage of 3 V. Equation (14.1a) may indeed be rewritten in a more general form; for a 4-bit binary number, one has[image: 
$$ {d}_3{d}_2{d}_1{d_0}_{\mathrm{binary}} = {\left({d}_3\times {2}^3+{d}_2\times {2}^2+{d}_1\times {2}^1+{d}_0\times {2}^0\right)}_{\mathrm{decimal}} $$
]

 (14.1b)

where d
3, d
2, d
1, d
0 are the

 
                    
                    
                  corresponding binary digits (not voltages).

Parallel Versus Serial Representation
Figure 14.3 corresponds to the
 so-called 

parallel representation of a binary number. A parallel representation requires each bit in the binary number to have its own electrical connection. In the laboratory you often see (older) ribbon cables. Every such cable has many individual wires; those wires are intended to separately carry digital voltages D
3,2,1,0. Yet another serial way of representing digital values is shown in Fig. 14.4. Serial data transmission is currently the dominant format for digital data transfer. Evidence of this is the overwhelming replacement of the older parallel ribbon cables by USB (universal serial bus) cables. There is only one output voltage D in Fig. 14.4, but it changes in time as either 0 V or 5 V. Every voltage pulse in Fig. 14.4 is a bit (basic unit of information: high or low); every time interval T in Fig. 14.4 is the bit width; every bit in Fig. 14.4 represents a single binary digit: either the binary digit 0 (voltage pulse of 0 V) or the binary digit 1 (voltage pulse of 5 V).[image: A331468_1_En_14_Fig4_HTML.gif]
Fig. 14.4
Serial digital output voltage
 D of either 0 V or 5 V corresponding to a number 10





If we sample (which literally means read) the voltages at the center of bit intervals, then the voltage signal in Fig. 14.4 will give us the binary number 1010 again. Here, the least significant bit is coming at the earliest time moment, and the most significant bit is coming last in time.
Example 14.1

Determine 
(decimal) numbers represented by digital voltages in Fig. 14.5a (parallel output) and in Fig. 14.5b (serial output), respectively.[image: A331468_1_En_14_Fig5_HTML.gif]
Fig. 14.5
Digital output voltages
 for parallel (a) and serial (b) transmission






Solution: Both Fig. 14.5a and b deal with exactly six bits (six digital voltage values). However, the LSB and MSB positions are the opposite. Therefore, we read in 


                      
                      
                    the case of Fig. 14.5a,[image: 
$$ 0101{01}_{\mathrm{binary}}= \mathbf{0}\times {2}^5+\mathbf{1}\times {2}^4+\mathbf{0}\times {2}^3+\mathbf{1}\times {2}^2+\mathbf{0}\times {2}^1+\mathbf{1}\times {2}^0={21}_{\mathrm{decimal}} $$
]

 (14.2)

and in the case of Fig. 14.5b,[image: 
$$ {101010}_{\mathrm{binary}}= \mathbf{1}\times {2}^5+\mathbf{0}\times {2}^4+\mathbf{1}\times {2}^3+\mathbf{0}\times {2}^2+\mathbf{1}\times {2}^1+\mathbf{0}\times {2}^0={42}_{\mathrm{decimal}} $$
]

 (14.3)






14.1.3 Bit Rate, Clock Frequency: Timing Diagram
Bit Rate
While the parallel 


                    
                    
                  digital output is only characterized by high and low states at any time instant, the serial bit stream may have a huge variety of forms or codes by which the 0 s and 1 s are represented. Some of them (the so-called line codes used for wired or wireless data transmission) are shown in Fig. 14.6. The first one is the unipolar (0–5 V) NRZ (nonreturn to zero) code that has also been drawn in Figs. 14.4 and 14.5. The second code is similar in form, but it utilizes both positive (+5 V-high) and negative (−5 V-low) voltages versus ground. The third one has the duty cycle of 50 % (returns to zero in the middle of bit width). The last code represents binary one by a [image: 
$$ \pm 5 \mathrm{V} $$
] two-phase pulse and binary 0—by a [image: 
$$ \mp 5 \mathrm{V} $$
] reversed two-phase pulse.[image: A331468_1_En_14_Fig6_HTML.gif]
Fig. 14.6Some serial line codes. All codes have the same bit width, T, and bit rate, f
b






Despite all those differences, the codes shown in Fig. 14.6 convey the same information—binary number 01110010—in the same amount of time and thus have the same bit width, T. It is clear that the capacity of a serial digital data stream depends on the speed with which the bits (regardless of format) are transferred through a path. This capacity is determined by a bit rate. The bit rate is the number of bits conveyed or processed per second. As the name implies, the bit rate, f
b, for any serial bit stream in Fig. 14.6 is[image: 
$$ {f}_{\mathrm{b}}=\frac{1}{T} $$
]

 (14.4)

where T is the bit width. Although the bit rate, f
b, in Eq. (14.4) has the units of frequency or hertz, it is rather measured in bits/s or bps. The reason for this is in that the serial bit stream conveying nontrivial information is never a periodic waveform—see Fig. 14.6. Therefore, we cannot use the meaning of frequency.
Exercise 14.1

Determine 


                      
                      
                    the bit rate of a bit stream in Fig. 14.7 when bit width T is 1 μs.[image: A331468_1_En_14_Fig7_HTML.gif]
Fig. 14.7RS232 line code and its format. Acceptable voltage levels for high and low voltages are indicated by green rectangles. Related standards are RS-422, R-423, R-449, and RS-485






Answer: Using Eq. (14.4), one can find [image: 
$$ {f}_{\mathrm{b}}=\frac{1}{T}=1,000,000\ \mathrm{bps} \mathrm{or} 1 \mathrm{Mbps} $$
].

Example 14.2
Figure 14.7 shows the line code for a RS232 (Recommended Standard 232) interface (the serial port of a PC). Although outperformed with its much faster successor, the USB, the RS232 interface is still widely used today. In contrast to the USB, the RS232 interface does not require a protocol for transferring the data. For the line code in Fig. 14.7 determine:	A.Code type


 

	B.Bit rate


 






Solution: The comparison with Fig. 14.6 indicates that the code in Fig. 14.7 is a polar NRZ code. This means that the serial connection requires a common 


                      
                      
                    ground wire in order to distinguish between positive and negative voltages. Note that all voltages in Fig. 14.7 are inverted—binary 0 now corresponds to a high voltage and binary 1—to a low voltage. The corresponding bit rate is[image: 
$$ {f}_{\mathrm{b}}=\frac{1}{0.1\;\mathrm{ms}}=10,000\ \mathrm{bps} \mathrm{or} 10 \mathrm{kbps}. $$
]





One might wonder, for example, what are bit rates for RFID (radio-frequency identification) tags, in the popular wireless frequency range 860–960 MHz. For passive (without a battery) RFIDs, the bit rates from 26.7 kbps to 128 kbps are common. However, 
                    
                  

                    
                    
                  active (battery-powered) RFIDs have higher bit rates. For example, the E-ZPass toll-collection system operates at 500 kbps.

Clock Frequency
In contrast to the bit stream 


                    
                    
                  of data, the voltage clock (a basic pulse train that is used to synchronize serial bit streams) is always a periodic waveform. A typical clock waveform corresponding to a bit stream in Fig. 14.6 or in Fig. 14.7 is shown in Fig. 14.8. Therefore, one determines clock frequency, f, in Fig. 14.8,[image: A331468_1_En_14_Fig8_HTML.gif]
Fig. 14.8Clock signal for a bit stream in Fig. 14.7. The duty cycle of the periodic waveform is 50 %




[image: 
$$ f=\frac{1}{T} $$
]

 (14.5)

in hertz. If the bit width and the clock period coincide, the bit rate is equal to the clock frequency.
We note that the clock frequency is critical not only for digital IO but also for the functioning of the computer itself. A computer or a microprocessor processes streams of digital data. The logic gates introduced in Chapter 13 make it possible to perform logical and arithmetical operations on binary numbers. As the logic gates are comprised of individual transistors (MOSFETs), their parasitic capacitances delay and distort clock/bit pulses. As a result, there is always a limiting clock frequency that dictates both the maximum serial IO speed and the maximum computer speed. Eventually, those speeds are determined by the response of switching transistors introduced in Chapter 13. This 


                    
                    
                  question is of great practical importance; it requires detailed knowledge of MOS transistors introduced in Chapter 18 and the detailed knowledge of transient RC circuits studied in Chapter 7.

Timing Diagram
Figure 14.9 below illustrates a 


                    
                    
                  
timing diagram: the clock signal and the actual synchronized serial bit stream (the unipolar NRZ code). The timing diagram is a necessary attribute of many digital device datasheets. A case in point is an analog-to-digital converter studied in Section 14.3 of this chapter.[image: A331468_1_En_14_Fig9_HTML.gif]
Fig. 14.9
Timing diagram
 for a binary bit steam





Does the RS232 code illustrated in Fig. 14.7 need a clock signal to be sent along with the data code? As a matter of fact, the clock signal is not necessarily needed. One can see that in Fig. 14.7 a start signal is sent prior to each byte (eight bits), and a stop signal is sent after each byte. This helps us to decode the data even if no clock is available. Such a transmission is called 
                    asynchronous transmission
                    
                  . On the other hand, RS232 also makes use of a synchronous transmission; it has dedicated lines for a transmitter clock. We also note that modern USB cables (USB 3.0) transfer data at the rate of 4800 Mbps. This is an 

amazing number given the low cable cost and the use of stranded AWG-28 wires.
Exercise 14.2
For the timing diagram in Fig. 14.9:	A.Determine the clock period.


 

	B.Determine the clock frequency (show units).


 

	C.Determine the bit rate of the bit stream (show units).


 

	D.Decode the corresponding binary number 
given the LSB/MSB positions (present its decimal equivalent).


 






                    Answer:
                    	A.The clock period (distance between two rising edges) is [image: 
$$ T=2 $$
] μs.


 

	B.The clock frequency is [image: 
$$ f=1/T=500 \mathrm{kHz} $$
].


 

	C.The bit rate of the bit stream is the inverse of the bit width, i.e., 500 kbps.


 

	D.The corresponding binary 


                              
                              
                            number is 11001010. Its decimal equivalent is [image: 
$$ 11001{010}_{\mathrm{binary}}={202}_{\mathrm{decimal}} $$
].


 




                  



14.1.4 Binary Numbers
Defeat of Analog Computers
It can be seen that digital voltage 


                    
                    
                  waveforms are always more complicated than analog ones. Either we need more wires or need to transfer a long stream of digital pulses to represent an analog (decimal) number. We may ask ourselves a question: as long the amplifier circuits studied previously can perform multiplication, addition (or subtraction), and integration (or differentiation), why can we not build an analog computer, which operates with analog voltages and replaces its digital counterpart at least for simple computational tasks? The answer is indeed: yes, we can. In fact, this was done long before, in the mid-1960s. Figure 14.10 shows one such design. However, the analog computers were quickly outperformed by the digital systems. What is the reason? Surprisingly, it was not speed—amplifier circuits built with single junction transistors can be extremely fast. Plus, analog computers routinely operate with many parallel tasks, whereas the single-processor digital systems tend to operate sequentially.[image: A331468_1_En_14_Fig10_HTML.jpg]
Fig. 14.10An analog computer from 
Electronic Associates, Inc. West Long Branch, New Jersey, with 156 individual amplifiers (Analog Computer Museum by Doug Coward)





The culprits turned out noise and even the accuracy of the analog circuit components. Imagine what tolerance the final result could have if you would perform 100 multiplications using 1 %-accurate resistors? The digital approach is principally different: the bit values are defined by logic threshold voltage levels, which allow us for a wide variation of circuit voltages within those margins. For example, a bit value 1 for a 0-to-5-V logic may correspond to any voltage between 2.6 V and 5.0 V and a bit value zero—to any voltage between 0 V and 0.4 V. Another, perhaps even more important point is the existence of fast digital memory (ROM and RAM), which is more advanced than the analog memory carriers. Still, analog computers and especially hybrid computers are used in certain military and commercial 


                    
                    
                  applications even today.

Binary Numbers
Values that are 

in the ones and zeros 

format are said to be binary. Bi- means “two,” so a binary number can only have one of two values per digit, as opposed to decimal numbers, which can have one of ten values per digit. The conversion of integer or fractional binary numbers to decimal numbers is rather straightforward; a few examples have been given at the beginning of this section. When a binary fraction is present, we perform the conversion following Eq. (14.6), that is,[image: 
$$ \begin{array}{l}\begin{array}{c}\hfill {2}^7\hfill \\ {}\hfill 1\hfill \end{array}\begin{array}{c}\hfill {2}^6\hfill \\ {}\hfill 0\hfill \end{array}\begin{array}{c}\hfill {2}^5\hfill \\ {}\hfill 0\hfill \end{array}\begin{array}{c}\hfill {2}^4\hfill \\ {}\hfill 1\hfill \end{array}\begin{array}{c}\hfill {2}^3\hfill \\ {}\hfill 1\hfill \end{array}\begin{array}{c}\hfill {2}^2\hfill \\ {}\hfill 0\hfill \end{array}\begin{array}{c}\hfill {2}^1\hfill \\ {}\hfill 0\hfill \end{array}\begin{array}{c}\hfill {2}^0\hfill \\ {}\hfill 1\hfill \end{array}\begin{array}{c}\hfill \hfill \\ {}\hfill .\hfill \end{array}\begin{array}{c}\hfill {2}^{-1}\hfill \\ {}\hfill 1\hfill \end{array}\begin{array}{c}\hfill {2}^{-2}\hfill \\ {}\hfill 0\hfill \end{array}\begin{array}{c}\hfill {2}^{-3}\hfill \\ {}\hfill 0\hfill \end{array}\begin{array}{c}\hfill {2}^{-4}\hfill \\ {}\hfill 1\hfill \end{array}=128+16+8+1+\frac{1}{2}+\frac{1}{16}={153.5625}_{\mathrm{decimal}}\end{array} $$
]

 (14.6)

On the other hand, the conversion of decimal numbers to binary numbers is a bit more involved. To do so, we repeatedly divide the decimal number by two until the quotient is zero. Equation (14.7) gives an example for decimal number 153. The resulting binary 


number is given by the remainder column; we read it as shown in Eq. (14.7).[image: 
$$ \begin{array}{l}\begin{array}{ccc}\hfill 153\hfill & \hfill \mathrm{Quot}.\hfill & \hfill \mathrm{Remainder}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill 153/2\hfill & \hfill\ 76\hfill & \hfill  1\hfill \end{array} \left(\mathbf{L}\mathbf{S}\mathbf{B}\right)\\ {}\begin{array}{ccc}\hfill 76/2\hfill & \hfill  38\hfill & \hfill  0\hfill \end{array}\\ {}\begin{array}{ccc}\hfill 38/2\hfill & \hfill  19\hfill & \hfill  0\hfill \end{array}\\ {}\begin{array}{ccc}\hfill 19/2\hfill & \hfill  9\hfill & \hfill  1\hfill \end{array}\\ {}\begin{array}{ccc}\hfill 9/2\hfill & \hfill  4\hfill & \hfill  1\hfill \end{array}\\ {}\begin{array}{ccc}\hfill 4/2\hfill & \hfill  2\hfill & \hfill  0\hfill \end{array}\\ {}\begin{array}{ccc}\hfill 2/2\hfill & \hfill  1\hfill & \hfill  0\hfill \end{array}\\ {}\begin{array}{ccc}\hfill 1/2\hfill & \hfill  \mathbf{0}\left(\mathrm{stop}\right)\hfill & \hfill  1 \left(\mathbf{M}\mathbf{S}\mathbf{B}\right)\hfill \end{array}\end{array} $$
]

 (14.7)

To convert a decimal fraction to a 

binary fraction, we repeatedly multiply by 2, track if the result exceeds one, and subtract one when this is the case. The 

template is given by Eq. (14.8) for a decimal fraction 0.5625.[image: 
$$ \begin{array}{l}\begin{array}{ccc}\hfill 0.5625\hfill & \hfill \mathrm{Check}\ \mathrm{if}>1.\hfill & \hfill \mathrm{Remainder}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill 0.5625\times 2\hfill & \hfill\ 1\hfill & \hfill  0.125\hfill \end{array} \left(\mathbf{M}\mathbf{S}\mathbf{B}\right)\\ {}\begin{array}{ccc}\hfill 0.125\times 2\hfill & \hfill  0\hfill & \hfill  0\hfill \end{array}.25\\ {}\begin{array}{ccc}\hfill 0.25\times 2\hfill & \hfill  0\hfill & \hfill  0.5\hfill \end{array}\\ {}\begin{array}{ccc}\hfill 0.5\times 2\hfill & \hfill  1\hfill & \hfill  \mathbf{0}\left(\mathrm{stop}\right)\hfill \end{array} \left(\mathbf{L}\mathbf{S}\mathbf{B}\right)\end{array} $$
]

 (14.8)

The remainder zero is not necessarily reached; in that case one has an infinite binary fraction that may be truncated to a given number of binary digits.
Exercise 14.3

(A) Convert binary number 10011001 to decimal number using MATLAB. (B) Convert decimal number 153 to binary

 number using MATLAB.

                    Answer:
                    	A.We use MATLAB function bin2dec('10011001')and obtain 153. This method cannot be applied to binary fractions.


 

	B.We use MATLAB function dec2bin(153)

                              
                              
                            and obtain 10011001. This method cannot be applied to decimal fractions either.


 




                  



14.1.5 Hexadecimal Numbers
Binary numbers (base 2) are 


                  
                  
                beneficial for electronic hardware since we only distinguish between two voltage values. For human interpretation and programming, the octal (base 8) and especially hexadecimal (base 16) numbers are often used. Table 14.1 that follows establishes symbols for single hexadecimal (shortly hex or h) digits. This table simultaneously lists all binary numbers with four bits—the so-called nibble—total 16 such numbers. The hexadecimal numbers are labeled somewhat differently depending on the application field. Equation (14.9) gives an example for hexadecimal number 378:Table 14.1Single hexadecimal digits in 


                          
                          
                        terms of binary numbers and decimal numbers


	Hexadecimal digit
	Binary number
	Decimal number

	
                            0

                            
                              
                              
                            
                          
	0000
	0

	1
	0001
	1

	2
	0010
	2

	3
	0011
	3

	4
	0100
	4

	5
	0101
	5

	6
	0110
	6

	7
	0111
	7

	8
	1000
	8

	9
	1001
	9

	
                            A

                            
                              
                              
                            
                          
	1010
	10

	B
	1011
	11

	C
	1100
	12

	D
	1101
	13

	E
	1110
	14

	
                            F

                            
                              
                              
                            
                          
	1111
	15




[image: 
$$ \begin{array}{l}\underset{\mathrm{present}\ \mathrm{text}}{\underbrace{378_{16}}}=\underset{\mathrm{a}\ \mathrm{microprocessor}\ \mathrm{text}\mathrm{book}}{\underbrace{378\mathrm{h}}} = \underset{\mathrm{C}/\mathrm{C}+ + }{\underbrace{0\mathrm{x}378}}\end{array} $$
]

 (14.9)

Conversion of hexadecimal numbers to decimal and binary numbers is explained in the example that follows. Especially simple and elegant is hex-to-binary conversion.
Note that binary numbers in the first ten rows of Table 14.1 simultaneously give the BCD (binary coded decimal) code for single decimal 
digits.
Example 14.3

                  	A.Convert hexadecimal number 37816 to decimal number.


 

	B.Convert hexadecimal number 37816 to binary number.


 




                

Solution:
	A.We follow the scheme for binary numbers (Eq. (14.6)) but use base 16 instead of base 2:


 




[image: 
$$ \begin{array}{c}\hfill {16}^2\hfill \\ {}\hfill 3\hfill \end{array}\begin{array}{c}\hfill {16}^1\hfill \\ {}\hfill 7\hfill \end{array}\begin{array}{c}\hfill {16}^0\hfill \\ {}\hfill 8\hfill \end{array}=\mathbf{3}\times 256+\mathbf{7}\times 16+\mathbf{8}\times 1={888}_{\mathrm{decimal}} $$
]

 (14.10)


Conversion of a hex fraction to a 


                    
                    
                  decimal fraction is done similarly; we again use the analogy with Eq. (14.6).
	B.Every hexadecimal digit is simply replaced by a binary number from Table 14.1, so that


 




[image: 
$$ \begin{array}{c}\hfill 0011\hfill \\ {}\hfill 3\hfill \end{array}\begin{array}{c}\hfill  0111\hfill \\ {}\hfill 7\hfill \end{array}\begin{array}{c}\hfill  1000\hfill \\ {}\hfill 8\hfill \end{array}=001101111000=1101111000 $$
]

 (14.11)


At the end of this example, we note that it is much easier to read and talk about 780 A (hex) than 0111100000001010 (binary)!

Exercise 14.4
Convert decimal number 102310 to hexadecimal number using MATLAB.

Solution: We use MATLAB 


                    
                    
                  function dec2hex(1023) and obtain 3FF. This method cannot be applied to decimal fractions.


14.1.6 ASCII Codes and Binary Words

Once 

binary numbers have been introduced, 
                  
                

                  
                  
                every piece of information could be expressed through those numbers, i.e., in terms of ones and zeros. As an example, ASCII codes (American Standard Code for Information Interchange) is a set of correspondences between binary numbers (or digital voltages) and characters on the keyboard, including uppercase and lowercase letters, numbers, and special characters. Table 14.2 which follows includes all the capital letters from an ASCII table. Notice that the MSB in the second column is clearly redundant—only seven bits are necessary at most to represent the keyboard ASCII characters. The 8-bit character set is actually the Extended ASCII which came about later.Table 14.2ASCII table for 
English capital letters


	English capital letter
	8-bit binary number (only seven bits are meaningful)
	Hexadecimal number
	Decimal number

	
                            A

                          
	01000001
	41
	65

	B
	01000010
	42
	66

	C
	01000011
	43
	67

	D
	01000100
	44
	68

	E
	01000101
	45
	69

	F
	01000110
	46
	70

	G
	01000111
	47
	71

	H
	01001000
	48
	72

	I
	01001001
	49
	73

	J
	01001010
	4A
	74

	K
	01001011
	4B
	75

	L
	01001100
	4C
	76

	M
	01001101
	4D
	77

	N
	01001110
	4E
	78

	
                            O

                          
	01001111
	4 F
	79

	P
	01010000
	50
	80

	Q
	01010001
	51
	81

	R
	01010010
	52
	82

	S
	01010011
	53
	83

	T
	01010100
	54
	84

	U
	01010101
	55
	85

	V
	01010110
	56
	86

	W
	01010111
	57
	87

	
                            X

                          
	01011000
	58
	88

	Y
	01011001
	59
	89

	Z
	01011010
	5A
	90





Example 14.4
Retrieve binary 

numbers (8-bit long words) for all ASCII characters without memorizing Table 14.2 and/or its extension.

Solution: We use a simple MATLAB script that follows (the character is letter A chosen as an example)

                  s = 'A'
                

                  d = int8(s)
                

                  b = dec2bin(d)
                
and obtain d =65; b = 1000001 for decimal and binary forms, respectively. Other characters are processed in the same way. Note that an 


                    
                    
                  alternative solution that creates the 

identical result in MATLAB is

                  s = 'A'; d = double(s); b = dec2bin(d)
                

One can see from Table 14.2 that we generally need a multi-bit binary number to represent a letter or another character. Such a binary number is called a digital word:	1.A nibble is the digital word consisting of four bits.


 

	2.A byte is the digital word consisting of eight bits.


 





All binary numbers in 

the second column in Table 14.2 above are one-byte digital words. A byte is the smallest amount of information that is 


                  
                  
                typically saved in computer memory. On the other hand, all single hexadecimal digits in Table 14.1 can be described by a 4-bit word.
Historical
When and where the first electronic digital computer was built?

Answer: Interestingly, the first computer ever was built in 1939 in American Midwest, at Iowa State University by Professor John Vincent Atanasoff (1903–1995) and an electrical engineering undergraduate student Clifford Berry (1918–1963)—see Fig. 14.11 that follows. John V. Atanasoff received his BS in EE from the University of Florida 

(with straight As!). This computer has been called the ABC (Atanasoff-Berry Computer).[image: A331468_1_En_14_Fig11_HTML.jpg]
Fig. 14.11A modern replica of the Atanasoff-Berry computer. Computer History Museum in Mountain View, California, 2010






The machine was the first to use several innovations that are a part of today’s computers:	A binary system of arithmetic

	Separate memory and computing functions, regenerative memory

	Parallel processing, electronic amplifiers as on-off switches

	Circuits for logical addition and 


                          
                          
                        subtraction

	Clocked control of 

electronic operations

	A modular design







14.1.7 Tri-state Digital Voltage
Tri-state Buffer
Along with the 
high and low 

voltages considered in this section, a digital voltage is usually required to have one more state: the High-Z (or “do not care”) state. The High-Z state means that the corresponding terminal is disconnected from the rest of the circuit. Its resistance to ground is therefore infinitely high (the terminal becomes an open circuit). Note that letter Z in the term High-Z actually stands for impedance Z, which is an extension of the resistance concept to both static (resistor) and dynamic (inductor, capacitor) circuit components

 as shown in Chapter 8. When a digital device generates high and low voltages only, a tri-state buffer is added in order to achieve an extra third state: the High-Z state. This buffer

 may either be internal or external to a chip. The concept is explained in Fig. 14.12. First, in Fig. 14.12a we consider the standard buffer amplifier that uses a single-polarity power supply. When connected to an output of a digital device, the amplifier simply transfers high and low digital voltages, without adding new states. Therefore, its output D still has only two states—high and low. The next step is to add a switching circuitry shown in Fig. 14.12b to the amplifier. When control voltage enable is high, both the NMOS and PMOS switches will be on—see Chapter 15 and note an inverter 
connected to the PMOS. Nothing really changes compared to the previous case. However, when control voltage enable is low, both switches will be off. This means that the amplifier will be disconnected from the power supply completely. In other words, its output D becomes an entirely open circuit because current can flow nowhere (the current cannot flow in/out the 

amplifier input(s) and into the power rails).[image: A331468_1_En_14_Fig12_HTML.gif]
Fig. 14.12Concept of a tri-state buffer







Thus, the output to the 
amplifier, D, in Fig. 14.12b achieves the High-Z state. The corresponding truth table is Table 14.3.Table 14.3Truth table for the 
tri-state buffer in Fig. 14.12b



	Input
	Output D

	Input to the amplifier
	Enable

	
                              0

                            
	0
	High-Z

	1
	0
	High-Z

	0
	1
	0

	1
	1
	1






Why Is the Tri-state Voltage Important?
An example is given in 

Fig. 14.13a. Here, two digital devices A and B are connected to a bus, which is a set of interconnections that interface two or more digital devices. The bus is supposed to run to another device C, not shown in Fig. 14.13a.[image: A331468_1_En_14_Fig13_HTML.gif]
Fig. 14.13Two digital devices connected to the same bus





At any given time instant, only one device can have access to the bus (to the device C). Let us say it is device A. Device B should then be electrically disconnected from the circuit so that it cannot send competing voltage signals and thus cause bus contention. Thus, we should add tri-state buffers to both devices A and B as illustrated in Fig. 14.13a. The symbol for the tri-state buffer is a triangle with an extra terminal. The circuit then operates as shown in Fig. 14.13b and c, respectively. The corresponding bus then becomes the tri-state bus. How do we enable/disable outputs from different digital devices in practice? For many chips, it is done with output enable (OE) and chip select (CS) pins. In particular, the 

output drivers are disabled by deasserting output enable.



14.2 Digital-to-Analog Converter
14.2.1 Digital-to-Analog Converter
Conversion between analog and digital voltage signals is done by means of a digital-to-analog converter (DAC) and an analog-to-digital converter (ADC). Both DAC and ADC are electric circuits that perform the corresponding operations

. In this subsection we consider the idea of the DAC circuit. Its goal is to convert a sequence of binary numbers (digital voltages) generated by a processor or by a computer into a real-world voltage signal, which could be used as an input to a control system, to an audio amplifier, etc. The place of the DAC in the generic block diagram of a DSP is shown in Fig. 14.14.[image: A331468_1_En_14_Fig14_HTML.gif]
Fig. 14.14Place of the DAC in the 
DSP block diagram






14.2.2 Circuit (A Binary-Weighted-Input DAC)
Digital-to-analog conversion is conceptually simple. A 4-bit binary-weighted-input


                  
                  
                 DAC

 at the base of an amplifier is shown in Fig. 14.15. The circuit implies four digital input voltages (data lines) D
3, D
2, D
1, D
0 and one analog output voltage υ
DAC. The parallel path of four binary signals in Fig. 14.15 is called a 
                  data bus
                  
                , D
0 always represents the least significant bit (LSB

)
                  
                . The converter in Fig. 14.15 has the form of a summing amplifier. The summing amplifier
 is further connected to an (optional) inverting amplifier stage having the gain of minus one. The summing amplifier is also an inverting amplifier with the negative feedback but with multiple inputs. Its operation may be explained as follows. According to the KCL and to the first summing-point constraint (no current into the amplifier), one has for the feedback current with reference to Fig. 14.15
[image: A331468_1_En_14_Fig15_HTML.gif]
Fig. 14.15Binary-weighted-input digital-to-analog converter. 
                          
                        Index w indicates weighted resistances




[image: 
$$ {i}_{\mathrm{F}}={i}_3+{i}_2+{i}_1+{i}_0 $$
]

 (14.12a)

On the other hand, the 
second summing-point constraint (the differential voltage to the amplifier is zero and the inverting input is the virtual 

ground) yields[image: 
$$ {i}_3=\frac{D_3}{2{R}_{\mathrm{W}}}, {i}_2=\frac{D_2}{4{R}_{\mathrm{W}}}, {i}_1=\frac{D_1}{8{R}_{\mathrm{W}}}, {i}_0=\frac{D_0}{16{R}_{\mathrm{W}}} $$
]

 (14.12b)

in terms of input voltages D
3, D
2, D
1, D
0. Therefore, voltage υ
1 in Fig. 14.15 is found from Eq. (14.12a) that is now 

written in the form:[image: 
$$ \begin{array}{l}{i}_{\mathrm{F}}=\frac{0-{\upsilon}_1}{R_{\mathrm{F}}}={i}_3+{i}_2+{i}_1+{i}_0=\left(\frac{D_3}{2{R}_{\mathrm{W}}}+\frac{D_2}{4{R}_{\mathrm{W}}}+\frac{D_1}{8{R}_{\mathrm{W}}}+\frac{D_0}{16{R}_{\mathrm{W}}}\right)\\ {} =\frac{1}{16{R}_{\mathrm{W}}}\left({D}_3\times {2}^3+{D}_2\times {2}^2+{D}_1\times {2}^1+{D}_0\times {2}^0\right)\end{array} $$
]

 (14.12c)

Consequently, the 
output voltage to the entire converter becomes[image: 
$$ {\upsilon}_{\mathrm{DAC}}=-{\upsilon}_1=\frac{R_{\mathrm{F}}}{16{R}_{\mathrm{W}}}\left({D}_3\times {2}^3+{D}_2\times {2}^2+{D}_1\times {2}^1+{D}_0\times {2}^0\right), $$
]

 (14.12d)

which is the final 

result for the 
binary-weighted-input DAC shown in 
Fig. 14.15.

14.2.3 Underlying Math and Resolution Voltage
It should be emphasized

 that Eq. (14.12d), which describes the circuit operation, is precisely the hardware realization of the mathematical formula for binary-to-decimal conversion given, for example, by Eq. (14.1) at the beginning of the previous section. In order to prove this fact, Eq. (14.12d) may be rewritten in the form[image: 
$$ {\upsilon}_{\mathrm{DAC}}=Q\left({d}_3\times {2}^3+{d}_2\times {2}^2+{d}_1\times {2}^1+{d}_0\times {2}^0\right) $$
]

 (14.13a)

where the scaling voltage 
                  facto
                  
                
r Q is given by[image: 
$$ Q=\frac{R_{\mathrm{F}}D}{2^N{R}_{\mathrm{W}}}, N=4 $$
]

 (14.13b)

for the present circuit. Here, N is the number of bits (data lines), and d
3, …, d
0 are input binary digits (0 and 1) of a 4-bit word, so that[image: 
$$ {D}_3=D{d}_3,\dots, {D}_0=D{d}_0 $$
]

 (14.13c)

where D is the “high” digital voltage value. The 

conversion term in parentheses in Eq. (14.13a) exactly coincides with Eq. (14.12d) for binary-to-decimal conversion given at the beginning of the previous section. Equation (14.13) holds for any number of bits (inputs), N, of the DAC. An extension of the circuit in Fig. 14.15 is straightforward.
Resolution Voltage
The circuit in Fig. 14.15 performs 

the 
                    scaled digital-to-analog conversion
                    
                  . The 
scaling voltage factor Q with the units of volts in Eq. (14.13) is critical. It is called the resolution voltage of the DAC. Resolution voltage Q is simply the analog voltage increment per one single binary count. The resolution voltage is often called the LSB voltage since this is exactly the voltage represented by a change in the least significant bit in Eq. (14.13a). The resolution voltage may be changed if necessary, by varying the resistor values in Fig. 14.15. The result will then follow Eq. (14.13b).
Example 14.5
An input to a four-bit DAC is a timing sequence shown in Fig. 14.16a. Such a timing sequence is known as a 
                      binary counter
                      
                    ; it represents all four-bit binary numbers in an ascending order, with the time interval of 1 μs. In other words, we count all binary numbers with four bits in Fig. 14.16a, with the bit width of 1 μs and with the 
bit rate of 1 Mbps. It 

takes exactly 16 μs to count them all. Design a binary-weighted-input DAC circuit which, at the given digital inputs, attempts to output the analog voltage in the form of a linear time dependence, [image: 
$$ {\upsilon}_{\mathrm{out}}=2.5\times {10}^5t \left(\mathrm{V}\right) $$
], over time interval from 0 to 16 μs:[image: A331468_1_En_14_Fig16_HTML.gif]
Fig. 14.16Input digital voltages (a 4-bit binary counter) and 
output analog voltage to the 4-bit digital-to-analog converter




	A.Present the corresponding circuit diagram.


 

	B.Specify required resolution voltage and necessary resistor values.


 

	C.Plot the output voltage to the DAC to scale versus time.


 






Solution: In order to model the 
required time 

dependence, the increment of the analog voltage per one bit (per one LSB) should be equal to[image: 
$$ 2.5\times {10}^5\frac{V}{s}\times 1\;\upmu \mathrm{s}=0.25\;\mathrm{V} $$
]

 (14.14a)



The resolution voltage given by Eq. (14.13b) must have exactly the same value,[image: 
$$ Q=\frac{R_{\mathrm{F}}D}{16{R}_{\mathrm{W}}}=0.25\;\mathrm{V} $$
]

 (14.14b)


Since [image: 
$$ D=5 \mathrm{V} $$
] in Fig. 14.16a, we may choose [image: 
$$ {R}_{\mathrm{F}}=2 \mathrm{k}\Omega,  {R}_{\mathrm{W}}=2.5 \mathrm{k}\Omega $$
] to satisfy Eq. (14.14b). Furthermore, the next obvious choice is [image: 
$$ R=1 \mathrm{k}\Omega $$
]. With this in mind, all resistor values have been specified and the circuit is completed. The output of the DAC is plotted with the help of Eq. (14.13a) where [image: 
$$ Q=0.25 \mathrm{V} $$
]. The 

corresponding result is shown in Fig. 14.16b. Figure 14.16b clearly demonstrates that the four-bit DAC from Fig. 14.15 provides a staircase approximation of the 
required linear voltage dependence. Therefore, a filter (called DAC 
                      reconstruction filter
                      
                     or a 
                      postfilter
                      
                    ) may follow the DAC in order to smooth the voltage output. Such analog filters are considered in Chapters 9 and 10 of the text.

The binary-weighted DAC is one of the fastest conversion methods. However, its accuracy is poor, in particular, due to difficulty in manufacturing precise resistors with different binary-weighted values. Realize that the amplifiers and the resistors in Fig. 14.15 
                    
                    
                  are implemented in practice as integrated transistor circuits. Also note that the realization of the binary counter with 



                    
                  light-emitting diodes in the laboratory is an impressive and useful exercise.


14.2.4 DAC Full-Scale Output Voltage Range, Resolution, and Accuracy
Using the (mostly illustrative) binary-weighted-input DAC circuit as a starting point, we now intend to obtain general facts about DAC resolution and accuracy, which are applicable to any DAC chip, operating over an arbitrary voltage range.
DAC Equation
When all binary numbers are 

counted in ascending order starting with 0000 toward the maximum 4-bit number of 1111, the circuit in Fig. 14.15 produces an analog output voltage increasing in steps—see Fig. 14.16b above. In order to obtain the range of variation of the output voltage in a general case, we may want to rewrite Eq. (14.13) as[image: 
$$ {\upsilon}_{\mathrm{DAC}}=E\left(\frac{d_3}{2}+\frac{d_2}{4}+\frac{d_1}{8}+\frac{d_0}{16}\right) $$
]

 (14.15a)

which is the commonly used DAC equation. Here, the constant E with the units of volts,[image: 
$$ E={2}^NQ, N=4 $$
]

 (14.15b)

is the 
                    full-scale output voltage range
                    
                   of the DAC, and Q is its resolution voltage. For a 4-bit DAC, the maximum binary number is 1111, and Eq. (14.15a) yields[image: 
$$ {\left.{\upsilon}_{\mathrm{DAC}}\right|}_{\max }=\frac{2^N-1}{2^N}E=\frac{15}{16}E\approx E $$
]

 (14.15c)

Clearly, the maximum 

output voltage approaches E more and more precisely as the number of bits, N, increases. Equation (14.15) no longer relies upon the specific DAC circuitry. They are valid for any DAC chip. Equation (14.15b) indicates that the resolution voltage and the full-scale output voltage range are simply related to each other by a factor of 2
                    N
                  . This factor is exactly the number of distinct binary words or 
                    quantization levels
                    
                    
                   for a DAC with N inputs (input bits). Note that Eq. (14.15a) is perhaps the most useful DAC 

formula, often present in the datasheets.

Setting Output Voltage Range
In a realistic DAC chip, the 

combinations of voltage sources and resistors shown in Fig. 14.15 (resistor “current sources”) are replaced with the transistor-based “current sources.” Therefore, it is not necessary to change resistor values in order to obtain different voltage ranges and resolution voltages, as might appear at first sight from Eqs. (14.13b) and (14.15b). Instead, the output voltage range, E, and simultaneously the resolution voltage Q are simply controlled by setting an external voltage reference, which precisely coincides with the desired value of E. A case in point is a DAC0808 chip (an 8-bit DAC) from National Semiconductor 

Corp. (Texas Instruments).

DAC Resolution
As long as the full-scale output voltage range of the DAC, E, is given, its resolution voltage Q (the LSB voltage) per one digital 

step is solely determined by the number of bits N. According to Eq. (14.15b),[image: 
$$ Q=\frac{E}{2^N} $$
]

 (14.16a)

The larger the number of bits is, the smaller resolution voltage can be obtained, and the “smoother” analog voltage is produced. DACs with 8, 10, 12, and 16 bits are common. The DAC resolution is simply defined as the number of bits, N, or more often as the total 

number of discrete values it can produce over the full-scale output voltage range:[image: 
$$ \mathrm{Resolution}={2}^N=\frac{E}{Q} $$
]

 (14.16b)

It has been pointed out already that the full-scale output voltage range of a DAC chip may be controlled by specifying an external voltage reference for a DAC chip, V
REF. Therefore, voltage E, may be designated in practice as 

reference voltage or V
REF.

DAC Relative Accuracy
The DAC relative accuracy is not exactly the 

deviation of the staircase approximation in Fig. 14.16b from the straight line as might appear at first sight. It is rather accuracy in reproducing an exact analog value, from the given exact binary data. The corresponding error is further divided by the full-scale output voltage range. Such an error is typically in the range of ± ½ LSB (± ½Q). Therefore,[image: 
$$ \mathrm{Relative}\ \mathrm{Accuracy}\ \mathrm{Percentage}=\frac{1/2Q}{E}\times 100\;\%=\frac{1}{2^{N+1}}\times 100\;\% $$
]

 (14.16c)

For example, according to its datasheet, an 8-bit DAC0808 chip from National Semiconductor Corp. (Texas Instruments) has the relative 

accuracy percentage[image: 
$$ \frac{1}{2^{8+1}}\times 100\;\%=0.19\;\% $$
]

 (14.16d)



Example 14.6

A 4-bit DAC, a 6-bit DAC, and an 8-bit DAC use a 4-, 6-, or 8-bit binary counter input sequences in order to produce the analog voltage in the form of a linear time dependence, [image: 
$$ {\upsilon}_{\mathrm{out}}(t)=2.5\times {10}^5t \left(\mathrm{V}\right) $$
], over the same time interval from 0 to 16 μs. Determine:	1.DAC resolution in bits (quantization levels)


 

	2.Full-scale output voltage range, E



 

	3.DAC voltage resolution, Q



 

	4.Necessary bit rate, f
b



 





and plot output analog voltages to scale versus time.

Solution: The first parameter is only DAC 

specific, and the second parameter is only problem specific, that is, [image: 
$$ E={\upsilon}_{\mathrm{out}}\left(16\;\upmu \mathrm{s}\right)=4 \mathrm{V} $$
]. The rest of the parameters are both DAC and problem specific. One thus has
4-bit DAC
	DAC resolution in bits is 4 bits or 

24 = 16 quantization levels (distinct analog outputs)

	Full-scale output voltage range [image: 
$$ E=4\mathrm{V} $$
] (from 0 V to 4 V)

	DAC voltage resolution, [image: 
$$ Q=E/16=0.25\;\mathrm{V} $$
]


	Necessary bit rate, [image: 
$$ {f}_{\mathrm{b}}=1/{T}_{\mathrm{b}}=1\;\mathrm{Mbps} $$
]





6-bit DAC
	DAC resolution in bits is 6 bits or 26 = 64 quantization levels (distinct analog outputs)

	Full-scale 

output voltage range [image: 
$$ E=4\;\mathrm{V} $$
] (from 0 V to 4 V)

	DAC voltage resolution, [image: 
$$ Q=E/64=62.5\;\mathrm{mV} $$
]


	Necessary bit rate, [image: 
$$ {f}_{\mathrm{b}}=1/{T}_{\mathrm{b}}=4\;\mathrm{Mbps} $$
]





8-bit DAC
	DAC resolution in bits is 8 bits or 28 = 256 

quantization levels (distinct analog outputs)

	Full-scale output voltage range [image: 
$$ E=4\;\mathrm{V} $$
] (from 0 V to 4 V)

	DAC voltage resolution, [image: 
$$ Q=E/256=15.6\;\mathrm{mV} $$
]


	Necessary bit rate, [image: 
$$ {f}_{\mathrm{b}}=1/{T}_{\mathrm{b}}=16\;\mathrm{Mbps} $$
]






The voltage resolution indeed 

improves with increasing the number of bits. The corresponding plots are shown in Fig. 14.17.[image: A331468_1_En_14_Fig17_HTML.gif]
Fig. 14.17Comparative resolution 

of the 4-bit DAC, the 6-bit DAC, and the 8-bit DAC. In all three cases, the full-scale output voltage range (4 V) is the same. The linear time dependence, [image: 
$$ {\upsilon}_{\mathrm{out}}(t)=2.5\times {10}^5t \left(\mathrm{V}\right) $$
], over the time interval from 0 to 16 μs is approximated






Exercise 14.5
Generate Fig. 14.17 using MATLAB.

                    [image: A331468_1_En_14_Figac_HTML.gif]
                  



14.2.5 Other DAC Circuits
R/2R Ladder DAC
An alternative to 

the circuit in Fig. 14.15 is an R/2R ladder DAC, which is 
shown (without the inverter) in a 4-bit configuration in Fig. 14.18. The resistive ladder is a circuit, which has a similar performance when more sections are added. This circuit requires a more careful analysis based on Thévenin equivalents, but the final result exactly coincides with Eq. (14.15a), that is (after adding the inverter),[image: A331468_1_En_14_Fig18_HTML.gif]
Fig. 14.18
The 
R/2R ladder DAC




[image: 
$$ {\upsilon}_{\mathrm{DAC}}=E\left(\frac{d_3}{2}+\frac{d_2}{4}+\frac{d_1}{8}+\frac{d_0}{16}\right) $$
]

 (14.17a)

where the full-scale voltage range is given by[image: 
$$ E={2}^NQ=\frac{R_FD}{R} $$
]

 (14.17b)


The binary-weighted-input DAC and the R/2R ladder DAC become identical in operation when [image: 
$$ {R}_{\mathrm{W}}=R $$
].
Example 14.7

For the circuit in Fig. 14.18, [image: 
$$ {D}_3=5 \mathrm{V},\ {D}_2=0 \mathrm{V},\ {D}_1=0 \mathrm{V},{D}_0=0 \mathrm{V} $$
]. Determine the output voltage, υ
DAC, when [image: 
$$ {R}_{\mathrm{F}}=R $$
].

Solution: The voltages at 


                      
                      
                    nodes 0,1,2,3 in Fig. 14.18 are all equal to zero (the corresponding resistors are shorted out). The current [image: 
$$ {i}_3=\frac{5 \mathrm{V}}{2R} $$
] from the input D
3 flows entirely into the feedback resistor, which yields[image: 
$$ {\upsilon}_{\mathrm{DAC}}=-\frac{D_3{R}_{\mathrm{F}}}{2R}=-\frac{5 \mathrm{V}\times {R}_{\mathrm{F}}}{2R}=-2.5\;\mathrm{V} $$
]

 (14.18)


This (after adding the inverter) is exactly the first term on the right-hand side of Eq. (14.17a). The analysis of other individual input voltage combinations is 

suggested as homework problems.

The use of the ladder network improves the precision of the binary-weighted-input DAC since it is easier to produce equal resistors. Therefore, a typical DAC chip rather uses the R/2R ladder network in the form of an integrated circuit, where the 


                    
                    
                  combinations of voltage sources and resistors shown in Fig. 14.18 (resistor “current sources”) have been replaced with the transistor-based “current sources.” A case in point is again a DAC0808 chip (an 8-bit DAC) from National Semiconductor Corp. (Texas Instruments).

The “Power” of Thévenin Equivalent
An attempt to solve the 

ladder circuit in Fig. 14.18 for combinations other than the simple input combination from Example 14.7 meets considerable difficulties. We outline below a general Thévenin-equivalent-based solution that is shown in Fig. 14.19. First, the circuit of Fig. 14.18 is redrawn in the form of the equivalent voltage sources D
3, D
2, D
1, D
0 referenced to ground in Fig. 14.19, top.[image: A331468_1_En_14_Fig19_HTML.gif]
Fig. 14.19Solving R/2R ladder DAC 
using the method of Thévenin equivalent while adding one ladder section at a time





The resulting circuit block on the left of the amplifier (the ladder) contains only voltage sources and resistors. The method of Thévenin equivalent is applied in order to convert it to a form of a single voltage source V
T in series with a resistance R
T. The brute-force calculation of Thévenin resistance for the entire ladder block is rather simple. However, a calculation of Thévenin voltage V
T is not. The resistance calculation (with shorted out voltage sources) gives [image: 
$$ {R}_{\mathrm{T}}=R $$
]. But what about V
T? The idea (which is also applicable to other ladder networks) is to apply Thévenin equivalent in steps, adding one single section a,b,c,d of the ladder block at a time, 
                    
                    
                  starting with the leftmost section a in Fig. 14.19. Every such step is analyzed straightforwardly; it gives Thévenin voltages and resistances shown in Fig. 14.19. The last step in Fig. 14.19 followed by solving the inverting amplifier circuit leads us exactly to Eq. (14.17) if an extra inverter is added.

PWM DAC
One should mention a digital PWM



                    
                    
                   (pulse-width modulation
) code, which is digitally stored and then converted to an analog signal by means of an analog RC filter studied in Chapter 9. Such a technique is becoming increasingly popular today.



14.3 Sample-and-Hold Circuit: Nyquist Rate
14.3.1 Analog-to-Digital Converter
The analog-to-digital converter (ADC) studied in this and next sections should translate a continuously varying analog voltage (voice, electromagnetic signal, readout of a sensor) into a continuous stream of binary numbers (and equivalent digital voltages) passed to a processor. The digital-to-analog converter (DAC) studied in the previous section performs an inverse operation

. The place of the ADC in the generic block diagram of a DSP (digital signal processor) is shown in Fig. 14.20. The ADC circuit analysis is in general much more involved than the DAC circuit analysis. ADC design is an exciting and growing area of the electrical engineering with many hundreds of engineers employed.[image: A331468_1_En_14_Fig20_HTML.gif]
Fig. 14.20Place of the 

ADC in the DSP block diagram






14.3.2 A Quick Look at an Analog Sinusoidal Voltage
First, 
                  
                an input analog voltage to 

the circuit in the figure above should be analyzed. The simplest and simultaneously the most important case of the analog voltage is a pure sine or cosine function shown in Fig. 14.21 and also called the harmonic. The sinusoidal voltages are critical in AC circuit analysis studied previously. Why are we interested in a sinusoidal voltage input also in this chapter? The reason is that, according to the method of Fourier analysis studied in Chapter 9, all existing continuous voltages υ
in(t), including voltage signals corresponding to the human voice, may be expanded into a sum of such multiple sinusoidal functions. Every sinusoidal function will have its own frequency, phase, and amplitude. The sinusoidal voltage can be written in the form[image: A331468_1_En_14_Fig21_HTML.gif]
Fig. 14.21Analog continuous voltage in the 

form of a cosine function




[image: 
$$ {\upsilon}_{\mathrm{in}}(t)={V}_{\mathrm{m}} \cos \left(\omega  t+\varphi \right) $$
]

 (14.19a)

where:

V
m is the voltage amplitude (maximum absolute voltage), with the unit of volts.

ω is the angular frequency, with the unit of radians/sec.

φ is the phase, with the unit of radians.
The angular frequency relates 


                  
                  
                to the voltage's frequency, f, and period, T, by[image: 
$$ \omega =2\pi  f, T=\frac{1}{f} $$
]

 (14.19b)

where f is measured in hertz or Hz (1 Hz = 1 s−1) and the period is measured in seconds. For example, the frequency of the voltage signal in Fig. 14.21 is[image: 
$$ f=\frac{1}{T}=\frac{1}{1 \upmu \mathrm{s}}=1 \mathrm{MHz} $$
]

 (14.19c)

The angular frequency ω is essentially a replica of the frequency f; its use is primarily a matter of convenience. The phase in Eq. (14.19a) ranges from -π to +π radians; this corresponds in degrees to −180° to +180°. Positive phases correspond to a shift of the entire sinusoidal signal in Fig. 14.21 to the left and negative phases to the right. For example, the phase [image: 
$$ \varphi =+\pi /2 $$
] implies shifting of the sinusoidal signal in Fig. 14.21 to the left 

by a quarter period. The 
phase in degrees should be divided by 180 and multiplied by π to obtain the phase in radians. The phase is a relative measure; it is given with reference to a base signal (usually a plain cosine function cos ω t).
Exercise 14.6
Determine frequency in Hz and angular frequency in rad/sec, phase, and amplitude of a harmonic voltage 


                    
                    
                  signal shown in Fig. 14.21.

Answer: [image: 
$$ f=1/T=1 \mathrm{MHz} $$
], [image: 
$$ {V}_{\mathrm{m}}=1 \mathrm{V} $$
], the phase is exactly zero.


14.3.3 Sample-and-Hold Voltage
As compared to D to A conversion, the A to D conversion is generally (much) slower, due to the following reasons

:	First, we need to sample the analog signal (acquire its voltage value) as shown in Fig. 14.22.[image: A331468_1_En_14_Fig22_HTML.gif]
Fig. 14.22
Analog continuous voltage versus 

sample-and-hold voltage






	Second, we need to hold the sampled voltage value as long as it is necessary for the conversion of this value to a binary number. Then, the next value of the analog signal is acquired and held, so that the process repeats itself periodically.





The sample-and-hold concept is illustrated in Fig. 14.22. The input (analog) voltage υ
in(t) is to be converted into a staircase voltage υ
SH(t)—the sample-and-hold approximation of the input signal. Realize that υ
SH(t) is not yet the digital voltage corresponding to A to D conversion but rather the first step in doing so. Every interval between two consecutive samples in Fig. 14.22 is called the 
                  sampling interval
                  
                , T
S. The sampling 
                  rate
                  
                  
                 (sampling frequency), which is the inverse of the sampling interval, defines the number of samples taken per second, that is,[image: 
$$ {f}_{\mathrm{S}}=\frac{1}{T_{\mathrm{S}}} $$
]

 (14.20)

The unit for sampling rate is hertz. The sampling interval is in fact the sum of the 
                  hold time
                  
                  
                 and a (typically much shorter) acquisition (or sample) time, which is necessary, for example, to charge the capacitor in Fig. 14.23 that follows. The acquisition time

 is not seen in Fig. 14.22 due to insufficient resolution.[image: A331468_1_En_14_Fig23_HTML.gif]
Fig. 14.23Sample-and-hold circuit. (a) Circuit with “sample” and “reset” switches. (b) Switches replaced by MOSFET transistors





Exercise 14.7
Determine sampling interval and sampling rate for the sample-and-hold voltage in Fig. 14.22.

Answer: [image: 
$$ {T}_{\mathrm{S}}=0.2/4=0.05 \upmu \mathrm{s} $$
], the sampling rate is [image: 
$$ {f}_{\mathrm{S}}=20 \mathrm{MHz} $$
]. The sampling frequency is much higher than the signal frequency of 1 MHz.

Example 14.8
Generate the plot for the sample-and-hold voltage shown in Fig. 14.22 using MATLAB

.

Solution: The idea is to plot the “analog” voltage (still the discrete MATLAB array, but with the sufficiently fine time resolution) versus the sample-and-hold voltage. In the last case, we use the MATLAB function stairs, which allows us to plot the discrete data.[image: A331468_1_En_14_Figad_HTML.gif]





14.3.4 Sample-and-Hold Circuit (SH Circuit)
Which circuit could convert the analog voltage

 υ
in(t) into the sample-and-hold voltage υ
SH(t) in Fig. 14.22? One such generic design

 is shown in Fig. 14.23a:
	1.First, we need to isolate the acquired analog voltage from the rest of the circuit—introduce the input non-inverting buffer amplifier. Once the “sample” switch is on, the buffer amplifier acquires the voltage sample and charges the capacitor C
hold to exactly the same value.


 

	2.This capacitor has no discharge path; it therefore keeps the sampled voltage as long as required. The output buffer further conveys the sampled voltage to the rest of the circuit without changing it (without discharging the capacitor).


 

	3.However, when the “reset” switch closes, the voltage-holding capacitor voltage quickly discharges, i.e., turns its voltage to zero. In other words, the past voltage value is “erased.” Then, the reset switch opens again, which makes the circuit ready for the next acquisition cycle. Both switches could be implemented with n-channel MOSFET transistors as shown in Fig. 14.23b.


 





The basic process of charging/discharging

 a capacitor was studied in Chapter 7. Indeed, it requires some time, which is very short when the capacitor value is small enough. Such a transition time was ignored in Fig. 14.22.
Sample-and-Hold Circuits in Practice
The sample-and-hold circuits 

exist as single chips (LF198/LF298/LF398 chips from National Semiconductor Corp. or Texas Instruments). The typical capacitance used there is [image: 
$$ {C}_{\mathrm{hold}}=0.02 $$
] μF. Those circuits may be used to hold a given voltage value from any particular sensor in a robot or elsewhere.

However, usually, the sample-and-hold circuit is an internal part of the ADC chip as explained further in the next section. Another popular modification is the track-and-hold circuit suggested as one of the homework problems. Could an ADC function without the sample-and-hold circuit? Yes, it could. This is exactly the way how first ADCs have been made. However, it means that the voltage value to be converted will not be held; it will change during the conversion process, which may lead to wrong bits.


14.3.5 Nyquist Rate

How fast should 

we sample? The answer seems to be trivial: as fast as possible in order to acquire the most precise replica of the input signal. However, a very fast sampling rate may be either impossible in practice for ultrafast signals, or it may lead to huge and unrealistic memory consumptions. On the other hand, reducing the sampling rate, while still keeping the major information about the analog voltage behavior, allows us to proceed with a realistic circuit design and realistic memory requirements. Therefore, a 
                  minimum acceptable sampling rate
                  
                  
                , f
S min, for a given analog voltage signal is of great practical importance. In order to establish this minimum value, we will again consider the sinusoidal voltage of 1 MHz shown in Fig. 14.24. We introduce the Nyquist rate, f
N, of this voltage signal, which is two times its frequency, i.e.,[image: A331468_1_En_14_Fig24_HTML.gif]
Fig. 14.24Effect of sampling rate on the 

sample-and hold voltage




[image: 
$$ {f}_{\mathrm{N}}=2f $$
]

 (14.21)

We further analyze three distinct cases in Fig. 14.24:	1.When the sampling frequency

 is higher than the Nyquist rate—see Fig. 14.24a—then the sample-and hold voltage generally follows the signal shape. After proper filtering (smoothing the stairs in Fig. 14.24a), it will very well replicate the original analog sinusoid.


 

	2.
When the sampling frequency is exactly equal to the Nyquist rate—see Fig. 14.24b—then the sample-and hold voltage becomes exactly the pulse train. And yet, after proper filtering, this pulse train may be converted to the sinusoidal function of the same frequency—the reconstruction may be successful.


 

	3.However, when the sampling 

frequency is less than the Nyquist rate—see Fig. 14.24c—then the sample-and-hold voltage 

may become just a straight line. No matter what do we do further, the signal information is entirely lost!


 





Based on this reasoning, we arrive at the conclusion that the minimum acceptable sampling rate must exceed the Nyquist rate, that is,[image: 
$$ {f}_{\mathrm{S} \min }>{f}_{\mathrm{N}} $$
]

 (14.22)

Equation (14.22) is the first (and critical) step of digital signal processing. It constitutes a significant part of 
                  Nyquist-Shannon sampling theorem
                  
                 studied in ECE communication classes. For example, the sinusoidal voltage in Fig. 14.24 may only be reconstructed 

properly when the sampling frequency is higher than 2 MHz. What if an analog voltage is not a pure sinusoidal function but is a (weighted) sum of many sinusoids with different frequencies, e.g., a voice signal? In this case, Eq. (14.22) must be valid for the sinusoid having the highest frequency among the others. All 

other sinusoidal functions will then satisfy this condition automatically.
Historical
The Nyquist rate was named after famous Swedish-American engineer Harry Nyquist (1889–1976). Harry Nyquist received his BS and MS in electrical engineering from the University of North Dakota and PhD from Yale University. Interestingly, the term “Nyquist rate” itself was first introduced by Harold S. Black (remember negative feedback?), in his 

book Modulation Theory (1953).

Oversampling and Undersampling

Oversampling is the process of 

sampling a signal with sampling frequency 

significantly higher than the Nyquist rate:[image: 
$$ {f}_{\mathrm{S}}>>{f}_{\mathrm{N}} $$
]

 (14.23)

Clearly, once possible in practice, oversampling has many potential advantages. Undersampling is the opposite of oversampling. Although generally undesired, undersampling finds numerous (and really smart!) applications for modulated signals in wireless communications.
Example 14.9

An analog voltage signal is a combination of three sinusoidal voltages (harmonics) with frequencies 5 kHz, 10 kHz, and 15 kHz. The voltage amplitudes of the individual sinusoids are 5 V, 10 V, and 5 V. What is the limit on the 

minimum acceptable sampling rate of the sample-and-hold circuit?

Solution: We apply Eq. (14.22) to the 


highest-frequency sinusoid present in the signal and obtain[image: 
$$ {f}_{\mathrm{S} \min }>{f}_{\mathrm{N}}=2\times 15 \mathrm{kHz}=30 \mathrm{kHz} $$
]

 (14.24)



The amplitudes (and phases) of individual harmonics play no role for this estimate, as long as their amplitudes are not zero. However, if the amplitude of a certain harmonic is zero (or very small), this harmonic may be eliminated from the 



                      
                      
                    analysis entirely.




14.4 Analog-to-Digital Converter
The sample-and-hold (SH) circuit studied previously is only the “front-end” of the analog-to-digital converter. Even if this circuit is available, the A to D converter itself still needs to be designed. Therefore, the ADC block in Fig. 14.25 still needs to be studied. This section completes the analog-to-digital converter model. We will consider only two basic ADC circuit concepts (flash and successive approximation) leaving many others.[image: A331468_1_En_14_Fig25_HTML.gif]
Fig. 14.25DSP block diagram. The ADC converter still needs to be completed





14.4.1 Flash ADC
Circuit
The next step in ADC design is to 

convert the sample-and-hold voltage υ
SH(t) to the digital voltage itself. Figure 14.26 shows the concept of a flash A to D converter. This is the fastest A to D conversion method. All data are essentially processed in parallel. The sample-and-hold circuit

 is not shown in Fig. 14.26, but it is implied. The circuit in Fig. 14.26 is intended to encode the sample-and-hold voltage into 3-bit binary numbers or 3-bit digital voltages D
2, D
1, D
0. It includes (from left to right):[image: A331468_1_En_14_Fig26_HTML.gif]
Fig. 14.26A 3-bit flash 

ADC




	1.A voltage divider with eight equal resistors, R. The voltage divider subdivides the reference voltage, E, into eight levels corresponding to eight possible 3-bit words: 000, 001, 010, 011, 100, 101, 110, and 111. The reference voltage E to the ADC chip simultaneously determines the full-scale measurement voltage range of the ADC studied below.


 

	2.Seven open-loop comparator amplifiers 

(the comparator for a 000 condition is not needed) compare the input voltage with the seven nontrivial voltage levels of the voltage divider. The comparators generate high voltage when υ
SH(t) exceed the corresponding voltage divider level and low voltage otherwise.


 

	3.The output of the comparator block—the second column of Table 14.4.Table 14.4Output of comparators 

(second column) and output of the entire ADC chip (third column)


	Voltage range of sample-and-hold voltage υ

                                        SH
                                      , V
	Output of the comparator block (7–0)
	Output of the priority encoder (binary number d
2
d
1
d
0)
	Voltage decoded back from d
2
d
1
d
0 and resolution Q,


[image: 
$$ Q\left(4{d}_2+2{d}_1+1{d}_0\right) $$
] V
	Quantization error, max

	8.75–10



	11111110
	111
	8.75
	1.25 V or Q


	7.5–8.75
	01111110
	110
	7.5
	1.25 V or Q


	6.25–7.5
	00111110
	101
	6.25
	1.25 V or Q


	5–6.25



	00011110
	100
	5
	1.25 V or Q


	3.75–5
	00001110
	011
	3.75
	1.25 V or Q


	2.5–3.75
	00000110
	010
	2.5
	1.25 V or Q


	1.25–2.5



	00000010
	001
	1.25
	1.25 V or Q


	0–1.25
	00000000
	000
	0
	1.25 V or Q








 

	4.Finally, an ADC encoder block. This circuit converts binary words from the comparator block to the binary numbers. It may be constructed 

with logic gates.


 






Operation
Table 14.4 lists circuit 

parameters for the 

voltage divider analysis in Fig. 14.26.


14.4.2 ADC Resolution in Bits, Full-Scale Input Voltage Range, and Voltage Resolution
Very similar to the digital-to-analog converter considered in Section 14.2, any ADC (not only the flash ADC) is characterized by:	
Resolution in bits, N.


	
Full-scale measurement (or input) voltage range, E.


	
Voltage resolution, [image: 
$$ Q=\frac{E}{2^N} $$
].

	
Relative accuracy (typically 1 LSB), which gives the accuracy magnitude percentage of [image: 
$$ \frac{1}{2^N}\times 100 \% $$
]. The relative accuracy will be explained next.





We emphasize again that the reference voltage E to the ADC chip in Fig. 14.26 is exactly its full-scale measurement voltage range. The 

reference voltage is

 specified in the circuit depending on the problem under study.
Exercise 14.8
For the 3-bit ADC in Fig. 14.26, determine its resolution, full-scale measurement voltage range, and voltage resolution.

                  Answer
                  	ADC resolution in 

bits is 3 bits or 23 = 8 quantization levels (distinct digital outputs).

	Full-scale measurement 

voltage range [image: 
$$ E=10 \mathrm{V} $$
] (from 0 V to 10 V).

	ADC voltage resolution, [image: 
$$ Q=E/8=1.25 \mathrm{V} $$
].




                


14.4.3 ADC Equation and Quantization Error
ADC Equation
It is seen 

from Table 14.4 that the 3-bit ADC in Fig. 14.26 follows an ADC equation in the form[image: 
$$ {\mathrm{ADC}}_{\mathrm{code}}=\mathrm{floor}\left(\frac{\upsilon_{\mathrm{SH}}}{Q}\right) $$
]

 (14.25a)

where ADCcode is a binary number corresponding to an integer on the right-hand side of Eq. (14.25a). A function floor(x) rounds its argument x to the nearest integers less than or equal to x. This function is used in MATLAB and in other software packages. Equation (14.25a) corresponds to a mid-rise coding scheme. Its error—the difference between the original signal υ
SH and the digitized and restored back signal—is clearly Q or one LSB. However, a different coding scheme, the mid-tread coding scheme may reduce the error magnitude to ½ Q or ½ LSB. It follows an ADC equation

 in the form[image: 
$$ {\mathrm{ADC}}_{\mathrm{code}}=\mathrm{round}\left(\frac{\upsilon_{\mathrm{SH}}}{Q}\right) $$
]

 (14.25b)

A function round(x) rounds its argument x to the nearest integer. This function is also used in MATLAB and in other software packages. Equation (14.25b) corresponds to a mid-tread coding scheme. Equations (14.25a) and (14.25b) are valid for any ADC type, not only the flash ADC. Note that the flash-ADC circuit in Fig. 14.26 may be modified to follow Eq. (14.25b). Only a slight modification of the circuit is needed! The corresponding homework problem is 

suggested at the end of this chapter.

Quantization Error
The quantization error or quantization noise is the difference 
between the original signal υ
SH and the 

digitized signal restored back – compare the first and last columns in Table 14.4 above. It is exactly the error of Eq. (14.25a) or Eq. (14.25b), nothing else. One has,	For the coding scheme following Eq. (14.25a), the quantization error is 1Q or 1 LSB.

	For the coding scheme following Eq. (14.25b), the quantization error is ±½ Q or ±½ LSB (error magnitude is ½ Q or ½ LSB).





Quantization error is due to the finite resolution of the 
digital number; it is an intrinsic imperfection of any ADC and cannot be avoided. The ADC relative accuracy considered in the previous subsection includes the quantization error and other 

sources of error.
Example 14.10
A 4-bit flash ADC follows a mid-rise coding scheme. The reference voltage is 10 V:	1.Present the ADC equation.


 

	2.Determine ADC quantization error.


 

	3.Find ADC output code 

when the sample-and-hold voltage, υ
SH, is 3.01 V.


 






Solution: We use Eq. (14.25a)[image: 
$$ {\mathrm{ADC}}_{\mathrm{code}}=\mathrm{floor}\left(\frac{\upsilon_{\mathrm{SH}}}{Q}\right) \mathrm{where} Q=E/{2}^N=0.625 \mathrm{V} $$
]

 (14.25c)

The quantization error is 


                      
                      
                    1LSB or 0.625 V. The ADC code is 0100, that is,[image: 
$$ \mathrm{floor}\left(3.01/0.625\right)=4={0100}_{\mathrm{binazry}} $$
]

 (14.25d)





ADC Speed, Throughput Rate, and Conversion Time
An important 

parameter of the ADC is its conversion time. Conversion time is the time required for a complete measurement by an analog-to-digital converter. Since the conversion time

 does not include acquisition time of the sample-and-hold circuit, the conversion time may be less than the ADC throughput time. A case in point is an 8-bit ADC0820 from National Semiconductor Corp. (Texas Instruments), which internally uses two 4-bit flash A to D converters with the conversion time of 1.5–2.5 μs. The ADC speed (or throughput rate) is the maximum rate at which the A–D converter can output data values. The speed in measured in ksps (kilo samples per second) or Msps (mega samples per second). For ADCs with the sample-and-hold circuits, the speed is the inverse of the conversion time plus the acquisition time. For ADCs without the sample-and-hold circuit (early versions of the ADCs), the speed is the inverse of the conversion time only. A modern trend is to increase the throughput rate by using a pipelined A to D converter, so a second conversion can start while the first is still in 

progress.


14.4.4 Successive-Approximation ADC
Concept
The flash 


ADC shown in Fig. 14.26 suffers from a huge number of comparators to be used when a fine resolution is necessary. Another clever idea is to use the D to A converter considered previously. Once driven by a binary counter, this converter produces various analog outputs corresponding to different binary numbers. Then, the circuit compares such outputs with the actual sample-and-hold voltage using only one comparator amplifier in Fig. 14.27. The closest result is the desired binary number.[image: A331468_1_En_14_Fig27_HTML.gif]
Fig. 14.27A 4-bit successive-approximation 


ADC. Note that both parallel and serial outputs are allowed






Circuit
The corresponding 


circuit diagram (for a 4-bit ADC) is shown in Fig. 14.27. The A to D converter so constructed is known as a successive-approximation ADC for a reason that will be explained below. It is slower than the flash ADC but is still faster than many other ADC techniques. This is perhaps the most 


popular ADC design today.

How Does It Work?

The brute-force comparison, e.g., counting all binary numbers starting with zero and waiting until the corresponding voltage difference changes its sign, is not very appealing. The 


logic control block in Fig. 14.27 uses a smarter, the successive-approximation comparison algorithm, which actually dates back to the sixteenth century. The corresponding logic circuit is known as successive-approximation register (SAR).
Historical
Long ago, an Italian mathematician Niccolò Fontana Tartaglia (1500–1557) was posed with a problem of determination of an unknown weight by a minimal sequence of weighing operations. His suggestion was to use a binary series of weights, e.g., 8 lb, 4 lb, 2 lb, 1 lb, etc. (1000, 0100, 0010, 0001 in terms of binaries). The proposed weighing algorithm found its application in modern successive-approximation ADCs.

For simplicity, we assume that the 4-bit DAC in Fig. 14.27 has the output of 4 V for the MSB (D
3 high), of 2 V for D
2 high, of 1 V for D
1 high, and of 0.5 V for the LSB (D
0 high). The sample-and-hold voltage is υ
SH = 2.6 V. The DAC resolution voltage, Q, is then 0.5 V—exactly the LSB voltage. The DAC equation (Eq. (14.15a) of Section 14.2) is written in terms of Q in the form[image: 
$$ {\upsilon}_{\mathrm{DAC}}=Q\left(8{d}_3+4{d}_2+2{d}_1+{d}_0\right) $$
]

 (14.26)

The corresponding comparison sequence follows:	First, the MSB only (binary word 1000) is compared. The result (4 V) is greater than υ
SH; therefore, this bit is reset to zero (output of the comparator is low).

	Second, the D
2 (binary word 0100) is compared. The result (2 V) is less than υ
SH; therefore, this bit is kept (output of the comparator is high).

	Third, the D
1 (binary word 0110 with D
2 high) is compared. The result (3 V) is greater than υ
SH; therefore, this bit is reset to zero (output of the comparator is low).

	Finally, the LSB (binary word 0101 with D
2 high) is compared. The result (2.5 V) is less than 2.6 V; therefore, it is kept (output of the comparator high). The obtained binary number is 0101.





Figure 14.28 shows the corresponding comparison sequence, which is done in four steps, instead of 15 steps of the worst-case scenario with the binary counter.[image: A331468_1_En_14_Fig28_HTML.gif]
Fig. 14.28Operation of a 4-bit 


successive-approximation ADC





Example 14.11
A 5-bit successive-approximation ADC has the input voltage of [image: 
$$ {\upsilon}_{\mathrm{SH}}=2.05 \mathrm{V} $$
]; the DAC resolution voltage is 0.1 V. Determine the sequence of binary states and the final ADC output.

Solution: The solution uses the DAC formula


 for a 5-bit DAC[image: 
$$ {\upsilon}_{\mathrm{DAC}}=Q\left(16{d}_4+8{d}_3+4{d}_2+2{d}_1+{d}_0\right) $$
]

 (14.27)

and is done in five steps:	10000 is compared. The DAC output is [image: 
$$ Q\times 16=1.6 \mathrm{V} $$
]. The comparator output is high; the bit is kept.

	11000 is compared. The DAC output is [image: 
$$ Q\times 24=2.4 \mathrm{V} $$
]. The comparator output is low; the bit is reset.

	10100 is compared. The DAC output is [image: 
$$ Q\times 20=2.0 \mathrm{V} $$
]. The comparator output is high; the bit is kept.

	10110 is compared. The DAC output is [image: 
$$ Q\times 22=2.2 \mathrm{V} $$
]. The comparator output is low; the bit is reset.

	10101 is compared. The DAC output is [image: 
$$ Q\times 21=2.1 \mathrm{V} $$
]. The comparator output is low; the bit is reset.





The ADC output is 10100 (or 2.0 V when converted back to analog).




Summary

                	Conversion of binary and hexadecimal numbers

	
                            Binary to decimal conversion:
                          
	
                            [image: 
$$ \begin{array}{l}{d}_3{d}_2{d}_1{d_0}_{\mathrm{binary}} = \\ {}{\left(8{d}_3+4{d}_2+2{d}_1+1{d}_0\right)}_{\mathrm{decimal}}\end{array} $$
]
                          

	
                            Hex to decimal conversion:
                          
	
                            [image: 
$$ \begin{array}{l}{378}_{\mathrm{hex}}=\\ {}\mathbf{3}\times 256+\mathbf{7}\times 16+\mathbf{8}\times 1={888}_{\mathrm{decimal}}\end{array} $$
]
                          

	
                            Binary to hex conversion:
                          
	
                            [image: 
$$ \underbrace{0011}\;\underbrace{0111} {\underbrace{1000}}_{\mathrm{binary}}={378}_{\mathrm{hex}} $$
]
                          

	
                            Decimal to binary conversion:
                          
	
                            [image: 
$$ \begin{array}{l} {156}_{\mathrm{decimal}}=\\ {}\begin{array}{c}\hfill 256 \hfill \\ {}\hfill \hfill \end{array}\begin{array}{c}\hfill 128 \hfill \\ {}\hfill 1\hfill \end{array}\begin{array}{c}\hfill 64 \hfill \\ {}\hfill 0\hfill \end{array}\begin{array}{c}\hfill 32 \hfill \\ {}\hfill 0\hfill \end{array}\begin{array}{c}\hfill 16 \hfill \\ {}\hfill 1\hfill \end{array}\begin{array}{c}\hfill 8 \hfill \\ {}\hfill 1\hfill \end{array}\begin{array}{c}\hfill 4 \hfill \\ {}\hfill 1\hfill \end{array}\begin{array}{c}\hfill 2 \hfill \\ {}\hfill 0 \hfill \end{array}\begin{array}{c}\hfill 1\hfill \\ {}\hfill 0\hfill \end{array}={10011100}_{\mathrm{binary}}\end{array} $$
]
                          

	Four-bit binary numbers

                            [image: A331468_1_En_14_Figai_HTML.gif]
                          

	
                            [image: A331468_1_En_14_Figaj_HTML.gif]
                          

	4 bit—binary counter

	
                            [image: A331468_1_En_14_Figak_HTML.gif]
                          

	RS232 interface

	
                            [image: A331468_1_En_14_Figal_HTML.gif]
                          

	Digital to analog converter (DAC) with N bits

	
                            [image: A331468_1_En_14_Figam_HTML.gif]
                          
	
– DAC resolution in bits is N bits or 2
                              N
                             quantization levels (distinct analog output values);

– Full-scale output voltage range E is equal to DAC reference voltage V
REF;

– DAC voltage resolution Q (or LSB voltage) is given by [image: 
$$ Q=E/{2}^N $$
];

– DAC relative accuracy is ½ LSB voltage or 1LSB

– DAC equation (a four-bit DAC):
 [image: 
$$ {\upsilon}_{\mathrm{DAC}}=Q\left(8{d}_3+4{d}_2+2{d}_1+1{d}_0\right) $$
] or
 [image: 
$$ {\upsilon}_{\mathrm{DAC}}=E\left(\frac{d_3}{2}+\frac{d_2}{4}+\frac{d_1}{8}+\frac{d_0}{16}\right), {d}_i=0\ \mathrm{or}\ 1 $$
]


– [image: 
$$ Q=\frac{R_{\mathrm{F}}D}{2^N{R}_{\mathrm{W}}} $$
] Binary-weighted-inp. DAC

– [image: 
$$ Q=\frac{R_{\mathrm{F}}D}{2^NR} $$
] R/2R ladder DAC

	Analog to digital converter (ADC) with N bits

	
                            [image: A331468_1_En_14_Figan_HTML.gif]
                          
	
– ADC resolution in bits is N bits or 2
                              N
                             quantization levels (distinct analog outputs);

– Full-scale output voltage range E is equal to ADC reference voltage V
REF;

– ADC voltage resolution Q (or LSB voltage) is given by [image: 
$$ Q=E/{2}^N $$
];

– ADC quantization error is ½ LSB or 1LSB

– ADC equation:
 Mid-rise (w offset) coding: [image: 
$$ {\mathrm{ADC}}_{\mathrm{code}}=\mathrm{floor}\left(\frac{\upsilon_{\mathrm{SH}}}{Q}\right) $$
]

 Mid-tread coding [image: 
$$ {\mathrm{ADC}}_{\mathrm{code}}=\mathrm{round}\left(\frac{\upsilon_{\mathrm{SH}}}{Q}\right) $$
]


– Minimum acceptable sampling rate must exceed the Nyquist rate (sampling theorem):

– [image: 
$$ {f}_{S \min }>{f}_N $$
], [image: 
$$ {f}_N=2f $$
]—Nyquist frequency

– f—highest signal frequency


	Schematic DAC and ADC circuits

	Binary-weighted-input DAC

                            [image: A331468_1_En_14_Figao_HTML.gif]
                          

	R/2R ladder DAC

                            [image: A331468_1_En_14_Figap_HTML.gif]
                          

	Sample-and-hold circuit

                            [image: A331468_1_En_14_Figaq_HTML.gif]
                          

	Track-and-hold circuit

                            [image: A331468_1_En_14_Figar_HTML.gif]
                          

	Flash ADC

                            [image: A331468_1_En_14_Figas_HTML.gif]
                          

	Successive-approximation ADC

                            [image: A331468_1_En_14_Figat_HTML.gif]
                          




              

Problems
14.1 Digital Voltage and Binary Numbers

                  14.1.2 Analog Voltage Versus Digital Voltage
                

                  14.1.3 Bit Rate. Clock Frequency. Timing Diagram
                
Problem 14.1
Describe in your own words the meaning of:	1.Analog voltage


 

	2.Digital voltage


 

	3.A bit


 

	4.A binary number


 

	5.Most significant bit (MSB)


 

	6.Least significant bit (LSB)


 






Problem 14.2
Convert the following binary numbers:	A.1000001


 

	B.11111


 

	C.111111


 

	D.00001


 

	E.11110000


 





to decimal numbers.

Problem 14.3
Determine integer (decimal) numbers represented by parallel digital output voltages shown in the following figure.[image: A331468_1_En_14_Figd_HTML.gif]




Problem 14.4
Determine integer (decimal) numbers represented by serial digital output voltages shown in the figure. Sampling is made at the center of each bit interval. In part (c), the least significant bit arrives first at the earliest time moment.[image: A331468_1_En_14_Fige_HTML.gif]




Problem 14.5
A generic oscilloscope is measuring a periodic voltage clock signal. The oscilloscope window is shown in the following figure.	A.Determine the clock period.


 

	B.Determine the clock frequency (show units).


 

	C.Determine the duty cycle of the clock waveform.


 

	D.Determine Pk-Pk (peak-to-peak) voltage of the clock signal.[image: A331468_1_En_14_Figf_HTML.gif]





 






Problem 14.6
A Tektronix oscilloscope is measuring a voltage clock signal. The oscilloscope window is shown in the following figure.	A.Determine the clock period.


 

	B.Determine the clock frequency (show units).


 

	C.Determine the duty cycle of the clock waveform.


 

	D.Determine Pk-Pk (peak-to-peak) voltage of the clock signal.[image: A331468_1_En_14_Figg_HTML.gif]





 






Problem 14.7
A Tektronix oscilloscope is measuring a voltage clock signal. The oscilloscope window is shown in the following figure.	A.Determine the clock period.


 

	B.Determine the clock frequency (show units).


 

	C.Determine the duty cycle of the clock waveform.


 

	D.Determine Pk-Pk (peak-to-peak) voltage of the clock signal.[image: A331468_1_En_14_Figh_HTML.gif]





 






Problem 14.8
The following figure shows a timing diagram: the clock signal and the actual synchronized serial bit stream (the unipolar NRZ code).	A.Determine the clock period.


 

	B.Determine the clock frequency (show units).


 

	C.Determine the bit rate of the bit stream (show units).


 

	D.Decode the corresponding binary number given the LSB/MSB positions (present its decimal equivalent).[image: A331468_1_En_14_Figi_HTML.gif]





 






Problem 14.9
The following figure shows a timing diagram: the clock signal and the actual synchronized serial bit stream (the polar NRZ code).
	A.Determine the clock period.


 

	B.Determine the clock frequency (show units).


 

	C.Determine the bit rate of the bit stream (show units).


 

	D.Decode the corresponding binary number given the LSB/MSB positions (present its decimal equivalent).[image: A331468_1_En_14_Figj_HTML.gif]





 







                  14.1.4 Binary Numbers
                

                  14.1.5 Hexadecimal Numbers
                

                  14.1.6 ASCII Codes and Binary Words
                

                  14.1.7 Tri-state Digital Voltage
                
Problem 14.10
Name two major reasons why the analog computer was surpassed by the digital computer.

Problem 14.11
Describe in your own words the meaning of:	1.A digital word


 

	2.A nibble


 

	3.A byte


 






Problem 14.12
Without a calculator or MATLAB, convert the following binary numbers to decimal numbers:	A.1010


 

	B.101010


 

	C.11.1


 

	D.10.001


 






Problem 14.13
Using either a calculator or MATLAB, convert the following binary numbers to decimal numbers:	A.1000001.111111


 

	B.0001111.000010


 






Problem 14.14
Without a calculator or MATLAB, convert the following decimal numbers to binary numbers:	A.19


 

	B.10


 

	C.1960


 

	D.14.25


 






Problem 14.15
Using either a calculator or MATLAB, convert decimal numbers that follow to binary numbers. The desired degree of precision is six bits after the binary point:	A.133.33


 

	B.999.125


 

	C.256.256


 






Problem 14.16

                    	A.How many bits are necessary to represent decimal number 300,000,000 in binary form?


 

	B.How many bytes are necessary?


 




                  

Problem 14.17
Write down the year of your birth. Without a calculator or MATLAB, convert this decimal number to:	A.Binary number


 

	B.Hexadecimal number


 






Problem 14.18

Using the ASCII
 conversion table, write the string USA in terms of:	A.Three decimal numbers


 

	B.Three hexadecimal numbers


 

	C.Three binary numbers


 






Problem 14.19
Without a calculator or MATLAB, convert hexadecimal numbers that follow to decimal numbers and binary numbers, respectively:	1.1


 

	2.12


 

	3.1A


 

	4.AAA


 

	5.ECE


 

	6.BE


 

	7.CE


 






Problem 14.20
Using either a calculator or MATLAB, convert hexadecimal numbers that follow to decimal numbers:	1.3F7


 

	2.EE.25


 

	3.555h


 

	4.0x555


 






Problem 14.21
Convert binary numbers that follow to hexadecimal numbers:	1.01


 

	2.11110101


 

	3.1000000110000000


 

	4.1111111110000001


 

	5.1111111111111111.1111


 







14.2 Digital to Analog Converter

                  14.2.1 Digital to Analog Converter (DAC)
                

                  14.2.2 Circuit (A Binary-Weighted-Input DAC)
                

                  14.2.3 Underlying Math and Resolution Voltage
                
Problem 14.22
The DAC circuit from Fig. 14.15 is operating using the virtual-ground condition of the inverting amplifier in order to add up weighted-input currents. With this in mind, a beginning ECE student removes the amplifier from the circuit and puts a common ground reference at the summing node instead. Will the circuit work?

Problem 14.23

                    	A.For an 8-bit binary-weighted-input DAC, express its output voltage through the resolution voltage (LSB voltage), Q, and binary digits d
7, d
6, …, d
0, which corresponds to the input voltages.


 

	B.Find the output voltage when the LSB voltage is 20 mV and [image: 
$$ {d}_7={d}_6\dots ={d}_2=1,{d}_1=0,{d}_0=1 $$
].


 




                  

Problem 14.24
A 3-bit binary-weighted digital-to-analog converter (DAC) is shown in the figure. The circuit does not include the inverter. Fill out the table that follows:[image: A331468_1_En_14_Figk_HTML.gif]


	D2, V
	D1, V
	D0, V
	
                                υ
                                DAC
                                , V
                              

	0
	0
	0
	 
	0
	0
	5
	 
	0
	5
	0
	 
	0
	5
	5
	 
	5
	0
	0
	 
	5
	0
	5
	 
	5
	5
	0
	 
	5
	5
	5
	 





Problem 14.25
Repeat the previous problem for the DAC shown in the following figure.[image: A331468_1_En_14_Figl_HTML.gif]




Problem 14.26
For a 4-bit binary-weighted-input DAC, the input voltages D
3, D
2, D
1, D
0 are either 0 V or 5 V. The resolution voltage Q of 10 mV is required:	A.Present the circuit diagram of a DAC; label the input voltages.


 

	B.Specify one set of possible resistor values.


 






Problem 14.27
For a 5-bit binary-weighted-input DAC, the input voltages D
4, D
3, D
2, D
1, D
0 are either 0 V or 2.5 V. The resolution voltage Q of 1 mV is required:	A.Present the circuit diagram of a DAC; label the input voltages.


 

	B.Specify one set of possible resistor values.


 






Problem 14.28
Design a 4-bit binary-weighted-input DAC circuit which attempts to output the analog voltage in the form of a linear time dependence, [image: 
$$ {\upsilon}_{\mathrm{out}}(t)=5\times {10}^5t \left(\mathrm{V}\right) $$
] over time interval from 0 to 4 μs. The input to the DAC is a binary-counter sequence of all 4-bit binary numbers. The bit width is 0.25 μs; high and low voltages are 5 V and 0 V, respectively:	A.Present the corresponding circuit diagram; specify required DAC resolution voltage (LSB voltage) and necessary resistor values.


 

	B.Plot the input digital voltages to scale versus time.


 

	C.Plot the output voltage to the DAC to scale versus time.[image: A331468_1_En_14_Figm_HTML.gif]





 






Problem 14.29

Design a 3-bit binary-weighted-input DAC circuit which attempts to output the analog voltage in the form of a linear time dependence, [image: 
$$ {\upsilon}_{\mathrm{out}}(t)=5\times {10}^5t \left(\mathrm{V}\right) $$
] over time interval from 0 to 8 μs. The input to the DAC is a binary-counter sequence of all 3-bit binary numbers. The bit width is 1 μs; high and low voltages are 5 V and 0 V, respectively:	A.Present the corresponding circuit diagram; specify the required DAC resolution voltage (LSB voltage) and necessary resistor values.


 

	B.Plot the input digital voltages to scale versus time.


 

	C.Plot the output voltage to the DAC to scale versus time.[image: A331468_1_En_14_Fign_HTML.gif]





 






Problem 14.30
A 4-bit binary-weighted-input DAC has the resolution voltage, Q, of 0.125 V and the input voltages shown in the following figure. Pin D
3 is accidentally connected to ground. Plot the output voltage of a DAC to scale versus time.[image: A331468_1_En_14_Figo_HTML.gif]




Problem 14.31
Repeat the previous problem for the input voltages shown in the following figure.[image: A331468_1_En_14_Figp_HTML.gif]





                  14.2.4 DAC Full-scale Output Voltage Range, Resolution, and Accuracy
                
Problem 14.32

                    	A.For an 8-bit DAC chip, express its output voltage through the full-scale output voltage range, E, and binary digits d
7, d
6, …, d
0, which corresponds to the input voltages.


 

	B.
Find the output voltage when the full-scale output voltage range, E, is 6 V and [image: 
$$ {d}_7={d}_6\dots ={d}_2=1,{d}_1=0,{d}_0=1 $$
].


 




                  

Problem 14.33

                    	A.For a 10-bit DAC chip, express its output voltage through the full-scale output voltage range, E, and binary digits d
9, d
8, …, d
0, which corresponds to the input voltages.


 

	B.Find the output voltage when the full-scale output voltage range, E, is 10 V and [image: 
$$ {d}_9={d}_8\dots ={d}_3=1,{d}_2={d}_1=0,{d}_0=1 $$
]



 

	C.Find the resolution voltage of the DAC, Q.


 




                  

Problem 14.34
A 6-bit DAC and a 8-bit DAC use a 6- and 8-bit binary-counter input sequences in order to produce the analog voltage in the form of a linear time dependence, [image: 
$$ {\upsilon}_{\mathrm{out}}(t)=5\times {10}^5t \left(\mathrm{V}\right) $$
], over the same time interval from 0 to 10 μs. Determine:	1.DAC resolution in bits (quantization levels)


 

	2.Full-scale output voltage range, E



 

	3.DAC voltage resolution, Q



 

	4.Necessary bit rate, f
b



 






Problem 14.35
An 8-bit DAC and a 10-bit DAC use an 8- and 10-bit binary-counter input sequences in order to produce the analog voltage in the form of a linear time dependence, [image: 
$$ {\upsilon}_{\mathrm{out}}(t)=5\times {10}^6t \left(\mathrm{V}\right) $$
], over the same time interval from 0 to 1 μs. Determine:	1.DAC resolution in bits (quantization levels)


 

	2.Full-scale output voltage range, E



 

	3.DAC voltage resolution, Q



 

	4.Necessary bit rate, f
b



 






Problem 14.36
For a 3-bit R/2R ladder DAC, the input voltages D
2, D
1, D
0 are either 0 V or 5 V. The resolution voltage Q of 100 mV is required:	A.Present the circuit diagram of a DAC; label the input voltages.


 

	B.Specify one set of possible resistor values.


 







                  14.2.5 Other DAC Circuits
                
Problem 14.37
By solving the amplifier circuit, determine the output voltage of the 3-bit R/2R ladder DAC shown in the following figure given that [image: 
$$ {D}_2=0 \mathrm{V},{D}_1=5 \mathrm{V},{D}_0=0\;\mathrm{V} $$
].[image: A331468_1_En_14_Figq_HTML.gif]




Problem 14.38
By solving the amplifier circuit, determine the output voltage of the 4-bit R/2R ladder DAC in Fig. 14.18 given that [image: 
$$ {D}_3=0 \mathrm{V},{D}_2=5 \mathrm{V},{D}_1=0 \mathrm{V},{D}_0=0 \mathrm{V} $$
].[image: A331468_1_En_14_Figr_HTML.gif]




Problem 14.39
An important step in the analysis of the R/2R ladder network is finding Thévenin equivalent for the circuit shown in the figure. Find the Thévenin equivalent and draw the corresponding circuit.[image: A331468_1_En_14_Figs_HTML.gif]





14.3 Sample-and-Hold Circuit. Nyquist Rate

                  14.3.1 Analog to Digital Converter (ADC)
                

                  14.3.2 A Quick Look at an Analog Sinusoidal Voltage
                
Problem 14.40

                    	A.Determine frequency in Hz, angular frequency in rad/sec, phase, and amplitude of the harmonic voltage signal shown in the following figure.


 

	B.
Write the voltage in the form of a cosine function with the corresponding amplitude, frequency, and phase.[image: A331468_1_En_14_Figt_HTML.gif]





 




                  

Problem 14.41
Determine frequency in Hz, angular frequency in rad/s, and amplitude of the harmonic voltage signal shown in the following figure.[image: A331468_1_En_14_Figu_HTML.gif]




Problem 14.42

                    	A.Determine frequency in Hz, angular frequency in rad/s, phase, and amplitude of the harmonic voltage signal shown in the figure.


 

	B.Write the AC voltage in the form of a cosine function, with the corresponding amplitude, frequency, and phase.[image: A331468_1_En_14_Figv_HTML.gif]





 




                  


                  14.3.3 Sample-and-Hold Voltage
                
Problem 14.43
For the voltage signal shown in the following figure, determine:	A.Frequency, f, and amplitude, V
m, of the analog voltage


 

	B.Sampling interval, T
S, and sampling rate, f
S, for the sample-and-hold voltage[image: A331468_1_En_14_Figw_HTML.gif]





 






Problem 14.44*
Plot the figure to the previous problem using MATLAB, introduce a title, and label the axes. Present the text of the corresponding MATLAB script.

Problem 14.45
For the voltage signal shown in the following figure, determine:	A.Frequency, f, and amplitude, V
m, of the analog voltage


 

	B.Sampling interval, T
S, and sampling rate, f
S, for the sample-and-hold voltage[image: A331468_1_En_14_Figx_HTML.gif]





 






Problem 14.46*
Plot the figure to the previous problem using MATLAB, introduce a title, and label the axes. Present the text of the corresponding MATLAB script.


                  14.3.4 Sample-and-Hold Circuit (SH Circuit)
                
Problem 14.47
Draw the schematic of the sample-and-hold circuit. Explain its operation in steps.

Problem 14.48
The circuit shown in the figure is another modification of the sample-and-hold circuit.
Assuming that the capacitor responds instantaneously:	A.Explain the circuit operation.


 

	B.Sketch its output voltage to scale versus time in the figure the follows.


 





The switching control voltage is shown on the top of the figure. The switch is closed at high control voltage and is open at low control voltage.[image: A331468_1_En_14_Figy_HTML.gif]





                  14.3.5 Nyquist Rate
                
Problem 14.49
An analog voltage is a combination of three sinusoidal harmonics with frequencies 1 MHz, 0.5 MHz, and 0.2 MHz. The voltage amplitudes of the individual sinusoids are 1 V, 1 V, and 5 V. What is the limit on minimum acceptable sampling rate of the sample-and-hold circuit?

Problem 14.50
An analog voltage is a combination of four sinusoidal harmonics with frequencies 0.5 MHz, 0.2 MHz, 1 MHz, and 1.2 MHz. The voltage amplitudes of the individual sinusoids are 5 V, 1 V, 1 V, and 0 V. What is the limit on minimum acceptable sampling rate of the sample-and-hold circuit?

Problem 14.51
Using the figure below, could you demonstrate when the sampling at exactly the Nyquist rate may not be successful?[image: A331468_1_En_14_Figz_HTML.gif]




Problem 14.52
An audio signal (containing all analog sinusoids with frequencies between 20 Hz and 20 kHz) is recorded using a simplified sample-and-hold circuit (the reset switch is omitted) shown in the following figure.[image: A331468_1_En_14_Figaa_HTML.gif]



The sample switch closes every:
	A.227 μs


 

	B.22.7 μs


 

	C.2.27 μs


 





then opens momentarily. Which case should be preferred for the minimum memory requirement (for an audio CD)?


14.4 Analog to Digital Converter

                  14.4.1 Flash ADC
                
Problem 14.53
How many comparators would we need for an 8-bit flash ADC? For a 12-bit flash ADC?

Problem 14.54

                    	A.Draw a complete circuit diagram of a 2-bit flash ADC with the full-scale measurement voltage range of 4 V.


 

	B.Fill out the following table:


 




                    	Range of sample-and-hold voltage υ
SH, V
	Output of comparator block (3–0)
	Output of the priority encoder (binary number d
1
d
0)

	3–4
	 	 
	2–3
	 	 
	1–2
	 	 
	0–1
	 	 



                  

Problem 14.55

                    	A.Draw a complete circuit diagram of a 3-bit flash ADC with the full-scale measurement voltage range of 8 V.


 

	B.Fill out the following table:


 




                    	Range of sample-and-hold voltage υ
SH, V
	Output of comparator block (7–0)
	Output of the priority encoder (binary number d
3
d
2
d
1
d
0)

	7–8
	 	 
	6–7
	 	 
	5–6
	 	 
	4–5
	 	 
	3–4
	 	 
	2–3
	 	 
	1–2
	 	 
	0–1
	 	 



                  


                  14.4.2 ADC Resolution in Bits, Full-scale Input Voltage Range, and Voltage Resolution
                
Problem 14.56
For a 6-bit ADC determine:	A.Resolution in bits (quantization levels)


 

	B.Voltage resolution, Q



 

	C.Relative accuracy percentage assuming a 1 LSB error


 





when the full-scale measurement voltage range is 8 V.

Problem 14.57
For an 8-bit ADC determine:	A.Resolution in bits (quantization levels)


 

	B.Voltage resolution, Q



 

	C.Relative accuracy percentage assuming a 1 LSB error


 





when the full-scale measurement voltage range is 10 V.


                  14.4.3 ADC Equation and Quantization Error
                
Problem 14.58
A 5-bit flash ADC follows a mid-rise coding scheme. The reference voltage is 12 V:	1.Present the ADC equation.


 

	2.Determine ADC quantization error.


 

	3.Find ADC output code when the sample-and-hold voltage, υ
SH, is 3.1 V.


 






Problem 14.59
An 8-bit flash ADC follows a mid-tread coding scheme. The reference voltage is 5 V:	1.Present the ADC equation.


 

	2.Determine ADC quantization error.


 

	3.Find ADC output code when the sample-and-hold voltage, υ
SH, is 0.2 V.


 






Problem 14.60
A 3-bit flash ADC is constructed as shown in the following figure:	A.Fill out the table below, which describes the ADC operation. Express all absolute voltage values in terms of the resolution voltage, Q.


 

	B.Based on this table, estimate the quantization error of the ADC in terms of Q.


 

	C.Is this ADC design is better than the mid-rise coding scheme?[image: A331468_1_En_14_Figab_HTML.gif]





 




	Voltage range of υ

                                  SH
                                , in terms of Q

	Output of comp. block (7–0)
	Output of priority encoder (binary number d
2
d
1
d
0)
	Voltage decoded back, in terms of Q


	6.5Q–8Q
	 	 	 
	5.5Q–6.5Q
	 	 	 
	4.5Q–5.5Q
	 	 	 
	3.5Q–4.5Q
	 	 	 
	2.5Q–3.5Q
	 	 	 
	1.5Q–2.5Q
	 	 	 
	0.5Q–1.5Q
	 	 	 
	0–0.5Q
	 	 	 






                  14.4.4 Successive-Approximation ADC
                
Problem 14.61
Draw the circuit diagram for a 3-bit successive-approximation ADC.

Problem 14.62
A 4-bit successive-approximation ADC has the input voltage of [image: 
$$ {\upsilon}_{\mathrm{SH}}=1.05 \mathrm{V} $$
]; the DAC resolution voltage is 0.1 V. Determine the sequence of binary states and the final ADC output.

Problem 14.63
A 5-bit successive-approximation ADC has the input voltage of [image: 
$$ {\upsilon}_{\mathrm{SH}}=3.1 \mathrm{V} $$
]; the DAC resolution voltage is 0.2 V. Determine the sequence of binary states and the final ADC output.
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Overview

              Prerequisites:
	Knowledge of binary and hexadecimal numerical representations and conversions

	Knowledge of basic digital logic circuits

	Knowledge of basic circuitry




              Objectives of Section 15.1:
	Understand high-level architecture of a generic computer

	Define elemental parts of an embedded computers, i.e., CPU, memory, I/O peripherals, buses

	Understand architecture and function of the CPU, memory, and I/O




              Objectives of Section 15.2:
	Understand the organization of memory

	Describe how data is stored in little- and big-endian microprocessors

	Describe and understand various categories and types of memory




              Objectives of Section 15.3:
	Understand capabilities of Arduino Uno

	Install open-source Arduino IDE and driver software

	Learn how to write Arduino sketches and upload code to Arduino Uno




              Objectives of Section 15.4:
	Understand basic data types available on Arduino Uno

	Perform basic operations on data types using arithmetic operations on Arduino

	Create functions to simplify code and reduce repeated instructions

	Understand libraries and their functions on Arduino

	Control a servomotor using Arduino Uno board




              Objectives of Section 15.5:
	Understand and create code with conditional statements

	Understand and implement code with switch statements

	Be able to control loops of a sketch and incite repetition

	Use strings and arrays in a program where appropriate

	Print out messages to the serial monitor for debugging

	Understand interrupts and their advantages and disadvantages

	Be able to generate a square wave with a controllable duty cycle on a pin




              Application examples:
	Servomotor control

	Emergency motor stop




            

15.1 Architecture of Microcontrollers
Embedded computers are literally everywhere in modern life. Embedded computing is the incorporation of computing devices like microcontrollers into the design of a product or larger system that is not itself a computer. On any given day, we interact with and depend on dozens of small computers to make coffee, run cell phones, take pictures, run the dishwasher, control elevators, stop the car, and so on. For every PC-style computer made each year, there are approximately 50–100 embedded computer devices produced. Consider the contents of an average student’s backpack. It is likely to contain a notebook-style personal computer (PC). However, it is just as likely to contain a digital music player, a cell phone, a handheld graphing scientific calculator, a keyless entry car key, and maybe an e-book reader! Each of these devices relies on the computing capability embedded within it.
A key feature

 of an embedded computer is that it typically only performs a single function or small set of very tightly coupled functions. It is not a general-purpose device like a PC. Another feature of an embedded system is that it can enable operation of a complex function by a nonexpert. For example, one can live a full and complete life without knowing the details of the Moving Pictures Expert Group Audio Layer-3 encoding standard (i.e., MPEG-3). To use a digital music player, we simply press the play button. Embedded computers are often resource constrained and must exhibit very high reliability. They must perform their assigned task in real time or very close to real time and must work flawlessly for years powered only by a small battery. To achieve these goals, embedded computers are usually a mix of tightly integrated hardware and software. An engineer must understand and appreciate both the hardware and the software aspects of embedded computers to use them effectively. This chapter presents a high-level overview of microcontrollers and how they can be interfaced with control hardware components in an electronic circuit.
15.1.1 A Generic Microcontroller
Figure 15.1 is a block diagram view of a generic computer. Any computer system, whether large or small, will contain three functional subblocks: the central processing unit (CPU

), memory

, and input/output (or I/O) devices

. The general architecture

 in Fig. 15.1 is called the Von Neumann or Princeton architecture, and it dates from 1946. In earlier mainframe and PC-style computers, the CPU, memory, and I/O devices were each implemented as separate circuits often on separate circuit boards and were connected through wire buses. Modern microcontrollers are complete computer systems implemented within a single integrated circuit (IC).[image: A331468_1_En_15_Fig1_HTML.gif]
Fig. 15.1
Architecture of a 

generic computer





The hierarchy of hardware and software for general-purpose computing (e.g., on a PC) is shown in Table 15.1.Table 15.1
Hierarchy of 

hardware and software for general-purpose computing


	
Applications (MultiSim, MATLAB, Google Earth, etc.)

	
Operating system (Windows 10, 
                              
                              
                            Linux, or Mac OS X)

	
Hardware Abstraction Layer (device drivers, basic I/O system—BIOS)

	
Hardware (CPU, memory, I/O devices)





This hierarchy

 is simplified in an embedded system where a single custom application interfaces directly with the microcontroller’s hardware—see Table 15.2.Table 15.2
Hierarchy of an 

embedded system


	
Application (single, custom application)

	
Hardware (CPU, memory, I/O devices)






15.1.2 Central Processing Unit
The CPU is the “brain

” of a computer. The CPU

 contains the control unit, the arithmetic logic unit (ALU), and bus interface circuitry as seen in Fig. 15.2. It controls the operation of memory and the I/O devices and executes program instructions. Conceptually, a CPU performs four functions

: fetch, decode, execute, and write-back. First the CPU

 fetches an instruction from the part of memory where the program is stored. An instruction is simply a multi-byte binary code. The instruction

 is then decoded within the control unit to extract its 
                  opcode
                  
                  
                (operational code which specifies operations to be performed) and the 


operands (quantities on which operations are performed). The sample format of this process can be seen in Fig. 15.3. A CPU can only understand and execute a fixed number of operations which is called its 



                  instruction set
                  
                .[image: A331468_1_En_15_Fig2_HTML.gif]
Fig. 15.2Block diagram of a 

CPU




[image: A331468_1_En_15_Fig3_HTML.gif]
Fig. 15.3Notional format of a 4-byte machine language 

instruction





Most small microcontrollers used in embedded computing today are RISC (Reduced Instruction Set Computing) devices and only have about 20 or 30 instructions. Each of the instructions is represented by a unique binary opcode. Execution of the instruction generally involves the arithmetic logic unit (ALU). The ALU contains digital circuitry to perform binary arithmetic functions like addition and subtraction as well as bitwise logic functions like AND, OR, and NOT on operands supplied in the instruction. Many, if not most, small microcontrollers do not have multiply or divide instructions meaning they have no digital circuitry for multiplication or division in their ALU. When a program requires multiplication or division, those operations are implemented in 
                  software
                  
                  
                 using repeated 

addition or subtraction instructions.

15.1.3 Memory
Memory is where both 

program and any data used or acquired during program execution

 is stored. Memory is an array of sequential storage locations. Each location typically holds 8 bits or 1 byte. Additionally, each memory location has an address (expressed to the CPU as a binary code) that uniquely identifies it. The amount of memory is specified in terms of bytes

 with the total number of bytes always being a power of 2. For example, 210 = 1024 bytes is commonly called a 1 kilobyte = 1 KB. Similarly, 1 megabyte (MB) is 220 bytes and 1 gigabyte (GB) is 230 bytes. Strictly speaking the quantity 210 is defined as a kilobinary (Ki) and 220 and 230 are megabinaries and gigabinaries (Mi and Gi), respectively. However, manufacturers continue to regularly use the labels KB, MB, and GB for these quantities. The system designer need to consult the datasheets to determine how a given manufacture is defining memory capacity. Small microcontrollers may only have 2–16 KiB of memory, a more capable system may have 64 KiB to 1 MiB, and the most powerful embedded processors can have over 1 GiB of on-chip 

memory.

15.1.4 Input and Output Devices
The I/O devices

, sometimes 
called peripherals
, are how the CPU interfaces to the outside world. The complement of I/O devices varies between many different microcontrollers available. However, most microcontrollers will have at least one analog-to-digital converter to take measurements from analog devices like thermistors, pressure sensors, and accelerometers; one digital timer block to time events; and a one serial interface to communicate serial data to the outside world. Other common peripherals include digital-to-analog converters (DACs), comparators, and digital circuits for 

PWM generation.

15.1.5 Timers
Unlike PCs or other computers, 
                  
                  
                microcontrollers have no access to a time reference. The only unit of time an embedded controller actually knows is the period of its clock signal:[image: 
$$ {T}_{\mathrm{clk}}=1/{f}_{\mathrm{clk}} $$
]

 (15.1)

All other units of time like milliseconds or minutes must be generated by counting clock periods. Timers are digital circuit block that count the rising (or falling) edges of a clock signal. Virtually all microcontrollers have an on-chip timer and most have 2 or more.
Exercise 15.1
For an Arduino Uno running at a 16-MHz clock speed, how many rising or falling edges of the clock signal must be counted to measure the following times: (A) 37 ms, (B) 255 μs, and (C) 469 ns.

Answer: Simply multiply the clock frequency by the desired time.	A.Number of edges = 0.037 s * 16 MHz = 592,000 edges


 

	B.Number of edges = 0.000255 s * 16 MHz = 4080 edges


 

	C.Number of edges = 0.000000469 s * 16 MHz ~ = 7 edges


 



 
An important note is that for 469 ns, a total of 7.5 edges must actually be counted, since half edges cannot be counted. This shows that there is a resolution of 

62 ns for this clock in theory, but in practice this resolution will be much less precise.


15.1.6 Buses
A bus is the general name given to a collection of wires that make multiple connections in parallel. The number of wires bundled together is called the bus width. In digital circuits, the bus width also refers to the number of bits in a word. For example, transferring a byte from memory to the CPU requires eight parallel electrical connections, one for each bit. These eight parallel connections are an 8-bit bus. Instead of showing all eight connections in circuit drawings, buses

 are drawn as a single line with a slash—see Fig. 15.4. Inside a microcontroller, the buses that connect the CPU, memory, and peripherals are not wires but minute interconnections less than micrometer thick. Usually there will be a group of several control lines that the CPU uses to initiate operations by the memory or peripherals. There will also be an address bus which used by the CPU to specify where data should be read from or written to and a data bus which conveys binary data between the CPU and memory or between the CPU and the I/O devices. Notice in Fig. 15.1 that a single bidirectional data bus goes between memory, the CPU, and the I/O peripherals. It is the control lines from the CPU that establish who has control of the bus. Only one device is allowed to place data on the data bus at any given time. The fundamental rule of shared buses is that there can be 

only one bus driver.[image: A331468_1_En_15_Fig4_HTML.gif]
Fig. 15.4(a) Explicitly showing all 

eight connections required to transfer 1 byte makes schematics cluttered; (b) multi-bit buses are drawn as a single, thicker line with bus width indicated above






15.1.7 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
Parallel Data Transmission
Within a microcontroller, 
                    
                    
                  data is passed along parallel interfaces (buses) between the CPU and memory or between the CPU and I/O peripherals. However, parallel data transmission



                    
                   is not practical for the “long” haul (i.e., off chip) for several reasons. Chief among them are that the length of parallel links is usually limited and that there simply aren’t enough pins available on a microcontroller’s package to support parallel interfaces.

Serial Data Transmission
In serial communications, the 

bits that comprise a binary data word are sent sequentially along a single data line. Serial data transfer is typically slower than parallel data transfer but a minimal serial link requires only two data lines, transmit (TX) and receive (RX), 
                    
                  regardless of word size. Also, there are serial devices available to communicate over a great range of distances. Serial 

data links can be made to communicate among integrated circuits on the same printed circuit board or made to communicate over many kilometers through an RF modem or satellite phone.

USART
A USART

 bridges the gap between the 


CPU and external serial devices

 by acting as a parallel-to-serial and serial-to-parallel translator. It converts parallel data from memory or CPU registers to serial format and then transmits the data to an external serial device. It also accepts serial data from external source(s) and converts it to parallel format so that the data may be read by the CPU or stored in memory.
Exercise 15.2
Outline asynchronous and synchronous serial communications.

Solution: In asynchronous communications, both the transmit device and receive device run using their own clock frequencies. In synchronous communications, both devices run at the same clock cycle. There is a data line that supplies the clock signal from the transmit device to 

any receiving devices to ensure the communication occurs smoothly and without errors.




15.2 Memory
15.2.1 Organization of Memory
Memory is a group of 

sequential locations where binary data is stored. Typically, in a microcontroller, each memory location holds 8 bits or 1 byte of data. Each location in memory has a unique address which the CPU uses to read to and write from that location—see Fig. 15.5 as an 

example. You may think of each memory location as mailbox. The address number on the outside of the mailbox has nothing to do with what is actually in the mailbox; it just identifies where the mail is to be placed. Memory addresses serve the same purpose. The address identifies the location at which some data is stored but does not convey any information about what that data may be. Frequently, a single word of data is longer than 1 byte. For example, a 16-bit binary number would require 2 bytes of memory to store. Similarly, the output of a 12-bit ADC would require 2 bytes of storage even though the most significant 4 bits of the second byte are not used. Multi-byte data is stored in successive memory locations and the address associated with the whole word is the address where the first byte from the word is stored.[image: A331468_1_En_15_Fig5_HTML.gif]
Fig. 15.5Byte storage in 

memory





The question is which byte is stored 

first in memory, the byte containing the most significant 8 bits of the word or the byte containing the least significant bits? For that matter, within a byte which bit is the most significant and which is the least? By convention, the bits within a byte are labeled left to right as bits 7 through 0 with bit 7 representing the most significant bit and bit 0 being the least significant. This convention aligns with the powers of 2 that would be represented in an 8-bit binary number. As an example, we present the byte that represents the decimal number 149 in 

Fig. 15.6.[image: A331468_1_En_15_Fig6_HTML.gif]
Fig. 15.6The binary representation of the 

decimal number 149





Determining the order in which the bytes of multi-byte data word are stored is more confusing. One would think that, with almost 70 years into the age of computing, the order of storage of multi-byte data words would be firmly established. Unfortunately, this is not the case. There are two possible storage conventions; the most significant byte can be stored first with the less significant bytes following in successive locations, or the least significant byte can be stored first with the more significant bytes following. The first method is called big-endian storage, and the second method is called little-endian storage. Neither endian convention is technically superior to the other and both are firmly established and used by various families of microcontrollers. The names big and little endian actually come from Jonathan Swift’s Gulliver’s Travels in which the neighboring kingdoms came to blows over which end of a hard-boiled egg to open first. Endian battles in computing are nearly as hotly contested! Typically, endian-ness is a basic design decision 

made early in the development of a family of CPUs and CPUs are either big endian or they are little endian (however, FreeScale does make endian-selectable processors). System designers need to know which convention is used to store their data in order to interpret the contents of memory and implement long word data types.
Example 15.1
How would the value 72468 be stored in memory starting at address 0200h by a little-endian microprocessor and by a big-endian microprocessor?

Solution: First convert 72468 to binary: 72468 = 10001101100010100b. This binary number is 17 bits long, but data representations available to computers are always multiple of 8 bits (i.e., of 1 byte). Common data word sizes for microcontrollers are 8 bits, 16 bits, and 32 bits. Since this number requires more than 16 bits to represent, we must use a 32-bit (4 bytes) data type with 

the most significant bits all equal to 0. It is easier to then write the number as its equivalent hexadecimal value:[image: 
$$ 72468\ \mathrm{decimal}=00000000\ 00000001\ 00011011\ 00010100\mathrm{b}=00\ 01\ 1\mathrm{B}\ 14\mathrm{h} $$
]

 (15.2)



On a little-endian processor, the least significant byte (the little end) is placed in the assigned address and the more significant bytes are placed in successive locations.
However, on a big-endian processor, the most significant byte (the big end) is stored first and the more significant bytes are placed in successive s



                    
                  locations. Table 15.3 illustrates the corresponding data storage.Table 15.3
                          
                            
                            
                          
                          Data storage methods

                        


	Little endian
	Big endian

	Address
	Byte value
	Address
	Byte value

	0204h
	…
	0204h
	…

	0203h
	00h
	0203h
	14h

	0202h
	01h
	0202h
	1Bh

	0201h
	1Bh
	0201h
	01h

	0200h
	14h
	0200h
	00h

	01FFh
	…
	01FFh
	…







15.2.2 Types of Memory
Volatile Memory
There are two main classifications of computer memory, volatile and nonvolatile. All computer systems, including microcontrollers, will have a mix of these two memory types

. Volatile memory can be both read from and written to under program control but all of its contents are immediately lost when power is removed. In most computer systems, the volatile memory
 is called RAM, for random access memory. The term random access means the data at any address can be accessed in any order. This a throwback to the early days of computing where data storage devices like magnetic tape drives had to be accessed sequentially as the tape spun to a given address. Strictly speaking, all on-chip (or IC) memory, whether volatile or not, is random access but the name RAM has become specifically associated with volatile memory.

Nonvolatile Memory
Nonvolatile memory retains its contents when power is removed but it is generally read-only memory (ROM). This means that while nonvolatile memory
 can always be read from under program control, it cannot, in general, be written to. The exception is electronically erasable programmable read-only memory (EEPROM), such as commonly used flash memory, which can be written to during program execution. A valid question might be: why bother with volatile RAM? Why not just always use nonvolatile flash memory? The reason is that reading from and especially writing to EEPROM takes longer than accessing RAM. The erasure and writing process for flash is significantly more involved than writing to RAM. Flash must be erased in blocks, e.g., 512 bits at a time, before it can be written. Other types of ROM, like programmable read-only memory (PROM) and erasable programmable read-only memory (EPROM), cannot be written to at 

all during program execution. The contents of these types of memory are fixed and programmed in using a separate, off-line process (i.e., a PROM programmer).
The two types of memory serve different purposes within the computer. Nonvolatile memory is where the microcontroller’s program is stored (code memory), while volatile memory is where data used or generated during program execution is kept (data memory). By convention, nonvolatile memory generally occupies the higher memory addresses, and RAM occupies the lower addresses. Often, the registers that control the I/O devices are also mapped to the lower memory addresses. Figure 15.7 illustrates a notional memory map for a small microcontroller with a total of 64 KB of memory. The mix of RAM and ROM present in a computer depends on the application of the processor. General-purpose PCs have much more 

volatile memory (i.e., several GB of RAM) than nonvolatile memory. Most 
small microcontrollers, on the other hand, may have only 512–4096 bits of RAM and 16K to 64 KB of flash or ROM.[image: A331468_1_En_15_Fig7_HTML.gif]
Fig. 15.7A notional memory map for a small 

microcontroller with a total of 64 KB of memory





Exercise 15.3
How wide must the address bus be to access 64 KB of memory?

Answer: Sixty-four kilobytes of memory contains 64 × 210 = 26 × 210 = 216 bytes. Sixteen bits are required to label these 216 locations. Usually memory 

addresses are expressed in hex. The labels for the address space of this microcontroller would run from 0000h to FFFFh.



15.2.3 Flash Memory in Embedded Devices
The advent of inexpensive flash memory
 has had a tremendous impact on the design and implementation of embedded systems. As mentioned above, many families of microcontrollers use flash

 as their nonvolatile memory. The primary purpose of these on-chip blocks of flash is to act as code memory. However, some embedded systems also collect measurements from I/O devices and must store this data permenantly. Data loggers are devices that record measurements from a sensor over time and store the data. Depending on the operational life of the system and the amount of data collected, part of the on-chip flash of the microcontroller could be used to save the data. More often, an interface to a removable flash device like a secure digital (SD) card is implemented using the serial commuications peripheral. Then, a small, inexpensive microcontroller with only a few KB of internal memory can save gigabytes of data to the external flash card. The SD device can then be removed and connected to a PC for 


                  
                  
                data review and analysis.


15.3 Arduino Uno: An Embedded Microcontroller
15.3.1 What Is Arduino?
The Arduino is an open-source platform

 designed to be a low-cost, flexible, and easy-to-program embedded microprocessor. Technically, the word Arduino refers to the name of the hardware, while the actual embedded microprocessors are named differently. The Arduino Uno, for example, is one of the lowest-cost and easily accessible variations of the Arduino boards. For the purpose of this textbook chapter, the examples and programming will be done on the Arduino Uno. The Arduino Uno’s brain (the R3 Uno board) is derived from an ATmega328 microcontroller. While the board is powered by a supply voltage of 7–12 V, the actual board itself uses 5-V logic levels and features a 10-bit analog-to-digital convertor (ADC). The ATmega328 chip embedded into the board gives the Uno 14 programmable digital IO pins and 6 analog pins. The board also features 32 KB of flash storage (with a dedicated 0.5 KB for the bootloader to load the Arduino code), 1 KB of EEPROM, and 2 KB of SRAM. The Arduino Uno board also runs at a clock speed of 16 MHz.
The Uno is surprisingly low cost for the actual board and the onboard microcontroller. Besides the Uno, there are many other variations of Arduino boards which are tailored to certain applications

, such as the Arduino LilyPad for being sewn on clothing, the Arduino Robot board for robotics, and the Arduino Esplora for facilitating development of videogame controllers. One feature about all of the Arduino boards is that the Arduino software to program and compile code for the boards is completely free online. This allows for easy program creation. Also available online is a reference for all the syntax for programs and countless examples provided by the makers of the Arduino and the community as a whole; fostering a sense of creativity and creating a knowledge base for projects, tutorials, and code examples.

15.3.2 Arduino IDE
Now with a better understanding of what the Arduino is, the most logical question is how does one interface with the Arduino? This is accomplished through the use of the USB connection

 on the board. When the Uno is connected to the computer, the computer attempts to install the driver but will most likely fail in the process. This is normal as the driver required to run the Arduino must be installed with the integrated development environment (IDE) supplied by the makers of the Arduino board. An IDE

 is a program designed to aid in the programming of a certain language by providing a visual representation

 of a centralized collection of coding resources and files. The Arduino IDE provides a program editor, compiler, and uploading tool for the Arduino. The Arduino IDE is essentially an IDE for the C language, with a few prewritten libraries.
Example 15.2
Describe installation steps for the Arduino IDE.

Solution: This IDE can be downloaded directly from the Arduino home page. The builds are offered for Windows, OS X, and Linux. At the time of writing, the most recent stable version of the Arduino IDE is Arduino 1.0.5. For the purpose of this textbook, the installation process for Windows will be used. The Arduino distribution comes in two flavors: the Windows installer and the Windows ZIP file. The Windows installer is an .exe file which runs and installs the Arduino IDE on the computer. The Windows

 ZIP file is a compressed archive file which contains all the tools and packages necessary to run the Arduino IDE without installing it on the computer. This means that the Arduino environment could be “installed” on a flash drive by simply unzipping the contents of the ZIP file to the flash drive and then running the Arduino executable to start the IDE. Once the Windows installer has been downloaded and run, a splash screen appears which prompts the user to accept a license agreement. This license agreement

 basically outlines the terms and conditions of fair use of the Arduino software and how the code is open source and modifiable. After agreeing 

to this license, a screen showing the installation options appears. Select and install all the components listed in this screen. During the installation process, Windows may generate a warning complaining of the authenticity of the Arduino USB driver, but simply click “install this driver software anyways.”
At this point, the Arduino can be plugged into the computer, and the computer should automatically recognize the device and install the drivers appropriately. If the installation

 was a success, a message will be shown that states the hardware has been recognized and installed. This message also shows the serial COM (communications port) that the Arduino will be using to send and receive data from the computer. This port must be selected within the Arduino IDE to 

ensure the Uno works properly.


15.3.3 Getting Started with Arduino IDE
The Arduino 1.0.5 IDE contains 

several notable features

 shown in Fig. 15.8. The first indicated item is the verify button. This checks the syntax and keyword usage and then compiles the code to a usable format for the Arduino. Item 2 is the upload button which compiles the code again and uploads it to the Arduino. Item 3 shows the name of the current “sketch” that the IDE is processing. A “sketch

” is a code file (a .ino file) that the Arduino understands (essentially equivalent to a .c file in C programming). Item 4 is the button to create a new sketch file. Item 5 is the open sketch button. Item 6 is the save button. Item 7 is the serial monitor which is the console that shows the communication between the Arduino and the computer. Item 8 is the button that allows for the creation of tabs in the Arduino IDE to break up the code. Item 9 is the scripting area. Item 10 is the line number. Item 11 is the console output for showing the progress of compiling and uploading and also displays errors in the code caught by the compiler. Item 12 shows the current board being programmed and the serial port the board uses.[image: A331468_1_En_15_Fig8_HTML.gif]
Fig. 15.8The various parts of the Arduino 

IDE environment





The IDE also features several menu options that aid the coding process. One of the first options is the ability to open examples that are preinstalled with the IDE. These can be accessed under the File menu → Examples. It is highly recommended to take a look at these examples as they provide how-to’s on the various aspects of Arduino syntax and interfacing various external circuitry elements. The File menu also contains the various options to deal with file

 creation, saving, and printing. The 
                  Edit menu
                  
                  
                 contains the basic tools to copy, paste, add indentation to the code, and find words and characters in the code. The Sketch menu contains options to add files to the current sketch as well as import a library. Libraries in the Arduino IDE will be discussed in greater detail later in this section. The 
                  Tools menu
                  
                  
                 offers several resources for uploading and storing Arduino code. The most important options in the Tools menu are the Board and Serial Port options. The Board option lists all the various Arduino boards that have been created. From this menu, the correct board 

must be selected for programming purposes (simply select the Arduino Uno option for the purpose of this textbook). Two of the most useful features of the IDE help menu are the Reference and Find in Reference options under this menu. The Reference option brings up the Arduino reference page online that details the basic reserved words and functions in the Arduino language. Additionally, the Find in Reference option allows for searching of the online Reference page by selecting a word typed into the scripting area.

15.3.4 Arduino Language, Program Storage, and Basic Program Setup
In order for a microprocessor to understand instructions, it must have some general language and compiler

 to support those instructions. In the case of the Arduino, the language that is used to program the boards is essentially the C language which was developed by Brian W. Kernighan and Dennis M. Ritchie back in the 1970s. The actual boards execute machine code that is translated into this form by the compiler, but the scripting is all in the C language. The Arduino IDE introduced at the beginning of this section is essentially a specialized C programming environment with the specialized Arduino compiler (the AVR-GCC compiler for the ATmega328), which translates the code from the sketch files into the machine instructions which are then sent via USB to the Arduino. Once the code is uploaded to the board, the program is stored into flash memory on the Arduino board. This allows for quick access of the code with minimal space considerations. After the code is uploaded to the Arduino, the Arduino will start to run the code as written and will loop through the code while power is attached. When the Arduino is connected to the computer, the Arduino also behaves in the same fashion.
Most Basic Arduino Program
In order to get the Arduino Uno running with just the bare-bones minimum, only several lines of code need to be typed into the IDE. These lines of code can be seen in 

Fig. 15.9.[image: A331468_1_En_15_Fig9_HTML.gif]
Fig. 15.9The bare-bones minimum 

for an Arduino sketch





Figure 15.9 shows the most basic Arduino program (sketch) that will run on any Arduino board. The actual executable code in Fig. 15.9 contains two functions. A function in the Arduino language is identical to a function in the C language and is a segment of code that is called and executed. This segment of code can have a return value or may not return a value (void). The first function in this basic code is the 
setup() function

. This function is called once when the board receives power. Any initializations of variables or other functions that must be run before the code starts executing the loop should be placed here. After the setup function finishes, the 
loop() function

 is essentially called repeatedly while the board is powered. This loop function is where the Arduino program does the “thinking” and computing and is where the logic of the program is executed. Other function calls, variable declaration, variable assignment, and looping may be executed within this loop function.
Example 15.3
Relate Arduino code in Fig. 15.9 to the corresponding C code.

Solution: Those familiar with the C language should recognize the lack of a main() function in the Arduino code. The user of the Arduino does not have to worry about the main function but rather just the setup and loop functions for simplicity.
The general idea of how the Arduino code in Fig. 15.9 translates to C code can 

be seen in Fig. 15.10. The double slashes (//) indicate the start of a comment: a portion of the code that is not compiled and not executed but serves to document the code.[image: A331468_1_En_15_Fig10_HTML.gif]
Fig. 15.10The translation of the basic 

Arduino program code to C code








15.3.5 Compiling and Uploading Code to Arduino Uno
Once the program is 

written in the IDE, the verify button can be clicked to check the syntax of the program. This will simply compile the code and check for errors in the code. If any errors are encountered in the compiling of the program, those errors will be shown below the scripting area. The user can then debug the program by using the information from the compiler to create code that can be compiled. For the basic code shown in Fig. 15.9, a screenshot of the output from the compiler can be seen in Fig. 15.11.[image: A331468_1_En_15_Fig11_HTML.gif]
Fig. 15.11The compiled basic code for the 

Arduino





The output console in Fig. 15.11 shows a successful compiling of the basic .ino sketch and shows the sketch size (466 bytes). The maximum sketch size is 32,256 bytes which corresponds to most of the 32 Kb of flash memory on the Arduino Uno (there is some of this flash storage taken up by the boot loader which is used to load the software onto the Arduino). During the upload or compiling process, a small progress indication bar appears above the console output on the right side of the IDE. Once the upload finishes, several LEDs on the Arduino will flash and then the Arduino will begin executing the code that was uploaded to the board. In this case of the program in Fig. 15.9, the Arduino will not show any signs of activity 

on any of the pins. This is because no instructions have been added yet.


15.4 Basic Arduino Syntax
15.4.1 Data Types
The most basic aspects of any programming language are the primitive data types. Primitive data types


                  
                

                  
                  
                 are the basic storage mechanisms for the language. These generally consist of integers (int), decimal or floating point numbers (float), double-precision floating point numbers (double), logic of true or false (Boolean), and single characters (char). These basic data types hold the information of the program and allow the programmer to create variables that change value. The complete listing of data types supported by the Arduino can be found on the Arduino reference page. The various data types listed above all have their own reserved word in the Arduino language called a type specifier that tells the compiler that a certain variable or constant is of a certain data type (such as an integer with the type specifier int).
In order for a data type to be implemented in Arduino as a variable or as a constant, the type specifier must be listed followed by the name of the data type. Figure 15.12 shows the creation or declaration of several variables and constants within the Arduino IDE.[image: A331468_1_En_15_Fig12_HTML.gif]
Fig. 15.12Declaring and initializing 

several variables and a constant





All of the lines in Fig. 15.12 can be directly typed into the Arduino IDE and compiled without an issue. The important note is that all the declarations and initializations must be followed by a semicolon. Line 1 in Fig. 15.12 declares a fixed integer whose value cannot be changed at runtime of the code. The general naming convention of a constant is all capital letters with 


                  
                  
                underscores between words.
Exercise 15.4
Declare several variables to store the following values:
true, 87, 3.14, ‘k’, ‘6’

Answer: Simply create the data types by 

declaring and naming the variables:

                  boolean is_robot_on = true;
                

                  int my_state = 87;
                

                  float pi_approximated = 3.14;
                

                  char my_letter = ‘k’, still_a_char = ‘6’;
                


15.4.2 Assignment Statements and Their Features
The code in Fig. 15.12 sets the 

integer constant 
                  MOTOR_PIN
                  
                  
                 to have a value of 9 using the assignment statement. This value can be referenced later in the code by simply typing MOTOR_PIN instead of having to remember the value 9. This also aids in reusability of the code as the programmer can simply change the value of MOTOR_PIN at the declaration and this change will percolate through the code where the name was used (instead of having to change all the places where 9 was used in code). The constant identifier in front of the type identifier tells the compiler that the value of MOTOR_PIN should not change. The compiler will then generate a warning if future code segments try to alter the value of MOTOR_PIN. This allows for basic error avoidance.
Line 2 creates a constant floating point value of 2.2 that is called KG_TO_LBS. This name could be used in the code by simply writing KG_TO_LBS. Line 3 declares a Boolean variable called is_stop_button_pressed that can only take on the values true or false. This type of variable is only stored in 1 byte of data (8 bits). Line 4 declares a new integer variable called button_presses and sets its value to 0. This is an example of a single declaration. The declaration

 of an integer sets aside 2 bytes of memory on the Arduino Uno. The next line shows a double declaration of integer variables. Line 5 declares two new integer variables current_mode and num_switches. A note 

about these two variables is that while num_switches contains the value 2, current_mode has not been initialized. The value will most likely be 0, but this is not guaranteed. Thus, the safest course of action is to initialize the variable to a known value as otherwise the variable uses whatever was last in the memory location where the variable was stored. For example, as this code stands now, num_switches will only take on the value of 2 when the code is first uploaded to the Arduino or 

when power is applied to the Arduino (either externally or with the USB).
Line 6 declares and initializes a floating point variable called foo to have the value of 17.77. This value could be changed by typing foo = 9.83; or by a more detailed assignment statement. Floating points

 on the Arduino are stored in 4 bytes as are doubles. Thus on the Arduino, floats and doubles can be considered the same. In particular, line 7 is equivalent to float conversion_factor = 4617.88;. An interesting note about floating point values and integer values is that an integer value may be converted to a floating point automatically if for instance the following line of 

code is written:[image: 
$$  \begin{array}{c}\mathtt{float}\ \mathtt{needed}\_\mathtt{value} =  \mathtt{9};//\mathtt{stores}\ \mathtt{the}\ \mathtt{value}\ \mathtt{9}.\mathtt{0}\ \mathtt{in}\ \mathtt{needed}\ \mathtt{value}\end{array} $$
]

 (15.3)

If the opposite is attempted:[image: 
$$  \mathtt{in}\mathtt{t}\ \mathtt{n}\mathtt{o}\mathtt{t}\_\mathtt{a}\_\mathtt{float} = \mathtt{7}.\mathtt{77};//\mathtt{try}\ \mathtt{t}\mathtt{o}\ \mathtt{store}\ \mathtt{7}.\mathtt{77}\ \mathtt{in}\ \mathtt{a}\mathtt{n}\ \mathtt{in}\mathtt{t} $$
]

 (15.4)

then a problem exists because a floating point value (with numbers to the right of the decimal point) is trying to be stored an integer with a lesser precision. How does the Arduino handle this conundrum? One could say rounding would solve this, but the Arduino simply truncates the value without rounding. The compiler will show a warning if this occurs by in the code during compile time. If this occurs at runtime, however, this can lead to a difficult bug to track. In order to avoid the warning from 

the compiler and to show that the operation of storing a floating point value into an integer value is correct, the code (int) must be added to the operation:[image: 
$$  \mathtt{int}\ \mathtt{not}\_\mathtt{a}\_\mathtt{float} = \left(\mathtt{int}\right)\ \mathtt{7}.\mathtt{77}; $$
]

 (15.5)

The line avoids the warning potentially issued by the compiler and the value of 7 will be stored into the variable not_a_float. This operation is referred to as 
                  typecasting
                  
                  
                 and can be applied to most data types. Obviously, this typecasting only makes sense where the two data types are compatible. The type that a certain operation is being typecast into is included in the parentheses.
Exercise 15.5
A variable distance holds the value of the distance from a sensor connected to the Arduino. The distance is originally stored as an integer value, but later it becomes necessary that the distance has greater precision. How can this be achieved? Write code that converts the distance to the various data types.

Answer: If a greater precision is required, 
                    
                    
                  then the distance variable should be declared as a floating point or double initially instead of an int. In order to convert the distance to a floating point, double, or int, the following code can be used:

                  double d_distance = (double) distance; //assuming distance was a float
                

                  float f_distance = (float) distance; //assuming distance was a double
                

                  int i_distance = (int)
                  
                    
                    
                  
                  distance; //a loss of precision in this conversion
                


15.4.3 
                Arithmetic Operations


              

Typecasting



                  
                 is done automatically for operations involving an integer and a floating point in addition, subtraction, multiplication, and division. The code in Fig. 15.13 shows several floating point and integer

 assignment operations.[image: A331468_1_En_15_Fig13_HTML.gif]
Fig. 15.13Declaring and initializing several 

variables and a constant





The comments show the various values stored in the variables. Some interesting notes are on line 5 and line 7. On line 5, the compiler may complain of a loss in precision converting to an int without a cast. Line 7 returns a value of 0.00 because the 5 and 9 are both integer values and thus integer division is performed. The result of the integer division of 5 and 9 is 0 and then this value is cast as a floating point to 0.00. This can become a major issue of confusion for code operation, so care must be taken when performing calculations.
Example 15.4
Write a line of code that converts a mass (in grams) stored in a variable called mass to a weight (in newtons). Then store the result in double, floating point, and integer variables.

Solution:
First, we find the result in the greatest 

precision available. Then, we convert the result to the other data types using casting:

                  double f_result = mass / ((double) 1000) * 9.8;
                

                  float result = (float) f_result;
                

                  int i_result = (int) f_result; // there is a loss of precision
                
One important note about the naming of variables in the Arduino IDE

 is that the names cannot start with a number or a punctuation mark. Additionally, the variable names cannot contain punctuation marks besides underscores.

Operations with Characters and Relation to C Language
Going back to Fig. 15.12, however, 
                    
                    
                  line 8 declares a character. On the Arduino, a character variable is only stored using a single byte of data and can only hold a single character, number, or punctuation mark. These characters can be added together using 

arithmetic just like integers (e.g., to change a lowercase letter to an uppercase letter), but this makes no sense unless the ASCII character set is used. Strings which are a collection of characters will be discussed later.
As noted before, the Arduino runs a slightly modified version of the C language. As the C language was developed, it is not intended as a highly sophisticated object-oriented language like the other higher object-oriented languages Java and C++. This is not to say that C does not support any objects, but rather it is intended as a more low-level language as a step above the 



                    
                    
                  hardware and assembly languages.


15.4.4 Functions
Before moving on to objects, an important piece of the Arduino language is the creation of functions. Functions


                  
                  
                 allow the user to specify a segment of code that can be used or called over and over again. This helps us to minimize writing the same segment of code over and over by having one simple function to call that does the action of the segment of code. The two basic functions that define an Arduino sketch have already been introduced with setup and loop. In Arduino, a function can be created by using the generic structure shown in Fig. 15.14.[image: A331468_1_En_15_Fig14_HTML.gif]
Fig. 15.14The generic structure of a 

function in Arduino





A specific function that returns a floating point representing the number of pounds from an input of kilograms is shown in Fig. 15.15.[image: A331468_1_En_15_Fig15_HTML.gif]
Fig. 15.15A function for converting kilograms to pounds





The function defined in Fig. 15.15 has one float output parameter and functions in Arduino only may have 1 output parameter. The two lines before the definition of the function are called the function header and exist to document the functions’ inputs and outputs and what the function does. Any parameters to the function must be separated by a comma. The return data type, specified as float here, could be any data type that has been defined previously. Only the data type identifier is included though. The actual body of the function in Fig. 15.15 only consists of the declaration of a constant integer called KG_TO_LBS which is the conversion factor in this case (2.2 lbs in 1 kg). The actual work of the function is done in the line return (kgs * KG_TO_LBS);. This line converts the parameter kgs supplied to the 
function to pounds by multiplying by KG_TO_LBS and then returns the value. The function can be either placed at the top of the file or in a separate file that is included with the Arduino sketch that uses the function. A function 

cannot be declared within another function. In order to call the function convertKgToLbs (in Arduino), the following line is used:[image: 
$$ \begin{array}{c}\mathtt{float}\ \mathtt{t}\mathtt{o}\mathtt{t}\mathtt{alPounds} = \mathtt{convertKgToLbs}\left(\mathtt{4}.\mathtt{7}\right);//\mathtt{c}\mathtt{o}\mathrm{n}\mathtt{v}\mathrm{e}\mathtt{r}\mathtt{t}\ \mathtt{4}.\mathtt{7}\ \mathtt{kg}\ \mathtt{t}\mathtt{o}\ \mathtt{l}\mathtt{b}\mathtt{s}\end{array} $$
]

 (15.6)

The above line converts 4.7 kg to pounds and then stores the result in the float variable called totalPounds. The value 4.7 is the argument to the function. If the function did not have a return value, the function call would simply be: convertKgToLbs(4.7);. In this case, the function definition must use the reserved word “void” instead of 
any data type before the function name.
Example 15.5
Write a function that calculates the moment of inertia of a thin rod about a perpendicular axis passing through the rod’s center. The function should return the result in the highest precision and take in the mass m and length L of the 

rod as the input arguments.

Solution: The moment of inertia about the rod’s center is given by[image: 
$$ {I}_{\mathrm{rod}}=m{L}^2/12 $$
]

 (15.7)

Therefore, the required function can be written in the form:

                  Line 1. //double calculateRotInertiaOfRod(double mass, double length)
                

                  Line 2. //takes in mass and length and returns the moment of inertia
                

                  Line 3.
                  
                    double
                    
                    
                  
                  calculateRotInertiaOfRod(double mass, double length)
                

                  Line 4. {
                

                  Line 5. double rotational_inertia;
                

                  Line 6. rotational_inertia = (1.0 / 12) * mass * length * length;
                

                  Line 7.
                  
                    return
                    
                  
                  
                    
                    
                  
                  rotational_inertia;
                

                  Line 8.}
                


15.4.5 Libraries
Two of the standard objects C and Arduino both support are called arrays and strings. In Arduino, objects can also be created using a 
                  library
                  
                

                  
                  
                . A library is a collection of code files that define variables and functions which create a new data type or add functionality to a preexisting data type. In the case of a new data type, the data type designed to be accessed only using the defined methods and is supposed to keep its data inside the data type without revealing the data. This is called 
                  encapsulation
                  
                 where the data is kept hidden from the user and is only accessed through specialized access functions when needed. A library in the Arduino environment consists of at minimum two code files. The first code file is a *.h or header file which defines the function prototypes (for the functions that the library allows the user to call). The actual definitions of the function will be implemented in the *.cpp script file. The script file and header file must have the same name to be understood as a library. One particularly important library is the servo library included in the Arduino installation. This servo library must be imported into the current sketch by either going to Sketch → Import Library → Servo from the IDE or by using writing the following line at the top of the sketch file:[image: 
$$  \#\mathtt{i}\mathrm{n}\mathtt{clud}\mathrm{e}<\mathtt{Ser}\mathtt{v}\mathtt{o}.\mathtt{h}> $$
]

 (15.8)

Notice that the above line does not terminate in a semicolon. This is because this type of line is processed by the compiler before processing of the code begins. Upon seeing this line of code, the compiler basically copies the content from the Servo.h header file 


                  
                  
                over to the top of the sketch when the sketch is being compiled.

15.4.6 Objects. Application Example: A Servomotor
A 
                  servomotor
                  
                 is basically a 


                  
                  
                motor with a potentiometer attached to the motor shaft. A control loop is implemented using specialized circuitry to actuate and finely control the position of the motor shaft. In Arduino, a 
                  servo object
                  
                 is created in order to better control a servomotor attached to the Arduino board. Figure 15.16 shows the basic setup for attaching a servomotor to the actual Arduino Uno board. In order for the servomotor to work properly, the motor must be attached to a pin that supports pulse-width modulation (PWM

)
                  
                . These pins on the Arduino Uno are pins 3, 5, 6, 9, 10, and 11. They are distinguished by a tilde next to the pin on the board itself. Figure 15.16 shows the corresponding example.[image: A331468_1_En_15_Fig16_HTML.gif]
Fig. 15.16Attaching a servomotor 
to the Arduino Uno





Example 15.6
Write a program to drive a servomotor shown in Fig. 15.16 to one position.

Solution: The code is actually quite simple and is given by

                  Line 1. #include <Servo.h> //import Servo library
                

                  Line 2. Servo left_arm_servo; //declare Servo object
                

                  Line 3. const int SERVO_PIN = 10; //pin Servo is on
                

                  Line 4. void setup() {
                

                  Line 5.
                  
                    pinMode
                    
                  
                  
                    
                    
                  
                  (SERVO_PIN, OUTPUT); //set Servo pin to output mode
                

                  Line 6. left_arm_servo.attach(SERVO_PIN); //attach servomotor
                

                  Line 7.}
                

                  Line 8. void loop() {
                

                  Line 9. left_arm_servo.write(37); //write the position
                

                  Line 10. delay(5); //wait 5 ms between each iteration of loop
                

                  Line 11.}
                
The second argument to the pinMode function is either INPUT or OUTPUT and specifies the type of the pin. The attach function can also take an optional second argument and third argument which specify the timing specifics of the PWM signal. For most small-power servomotors, the default settings of this example are sufficient. Line 9 is actually what causes the servomotor to move. This line generates a PWM signal on pin 9 that the servomotor interprets to drive to the set position of 37. This position is usually decently close to the degree rotation of the servomotor as most servomotors drive from 0° to about 180°. The value supplied to the write function on line 9 must be between 0 and 180 inclusive 


                    
                    
                  otherwise the behavior of the servomotor is undefined. Information on the servo library can be found in the Arduino tutorial page.


15.4.7 Interfacing with IO Pins
Here, we intend to show several techniques of interfacing with the IO pins

 on the Arduino board. Two of the IO pins

 on the Arduino board are digital and analog IO pins, respectively. Digital IO pins can be either read or written to by the Arduino. The same is true of the analog pins. Both digital pins and analog pins also support PWM. For any of the IO pins to work properly, they must be declared as either an INPUT or an OUTPUT pin using the 
pinMode function

 as follows:[image: 
$$ \mathtt{pinMode}\left(\mathtt{pin}\_\mathtt{numb}\mathrm{e}\mathtt{r},\ \mathtt{TYPE}\right);//\mathtt{TYPE}\ \mathtt{is}\ \mathtt{either}\ \mathtt{INPUT}\ \mathtt{or}\ \mathtt{OUTPUT} $$
]

 (15.9)

Once the pin is enabled, it can be written to or read from depending on which type it was declared as. If the pin is a digital pin, then it can be read using the following:[image: 
$$ \mathtt{i}\mathtt{n}\mathtt{t}\ \mathtt{digital}\_\mathtt{value} = \mathtt{digital}\mathtt{Read}\left(\mathtt{pin}\_\mathtt{n}\mathtt{umb}\mathrm{e}\mathtt{r}\right);//\mathtt{returns}\ \mathtt{a}\ \mathtt{1}\ \mathtt{or}\ \mathtt{0} $$
]

 (15.10)

Since the pin is a digital pin, it can 

only return a value of 1 or 0. An analog pin is read using the analogRead function

:[image: 
$$ \mathtt{i}\mathtt{n}\mathtt{t}\ \mathtt{a}\mathtt{n}\mathtt{a}\mathtt{l}\_\mathtt{value} = \mathtt{a}\mathtt{n}\mathtt{a}\mathtt{l}\mathtt{ogRead}\left(\mathtt{pin}\_\mathtt{n}\mathtt{umber}\right);//\mathtt{returns}\ \mathtt{a}\ \mathtt{value}\ \left(\mathtt{0}\hbox{--} \mathtt{1023}\right) $$
]

 (15.11)

The analogRead function returns a value from 0 to 1023 (because of the 10 bits ADC). In order to write to a digital pin, the command is simply[image: 
$$ \mathtt{digitalWrite}\left(\mathtt{pin}\_\mathtt{number},\ \mathtt{STATE}\right);//\mathtt{STATE}\ \mathtt{is}\ \mathtt{either}\ \mathtt{HIGH}\ \mathtt{or}\ \mathtt{LOW} $$
]

 (15.12)

The value of the pin then becomes either high (5 V) or low (0 V). On analog pins, the writing command creates a PWM signal

 with a controllable 

duty cycle from about 5 % to around 95 %. This is achieved by the command[image: 
$$ \mathtt{analogWrite}\left(\mathtt{value}\right);//\mathtt{where}\ \mathtt{value}\ \mathtt{is}\ \mathtt{from}\ \mathtt{0}\ \mathtt{t}\mathtt{o}\ \mathtt{255}\ \left(\mathtt{inclusive}\right) $$
]

 (15.13)

A value of 0 corresponds to the lowest duty cycle and a value of 255 corresponds to the highest duty cycle. With this information, more complex Arduino programs

 can be written that interface external circuitry, LEDs, and other sensors. There are numerous examples within the Arduino IDE for all types of analog writing to pins and reading of sensors, which can be found 

under the File → Examples menu. Reading through the code under this menu will help with understanding the Arduino syntax.


15.5 More Advanced Arduino Programming
15.5.1 Conditional Statements
The previous section is enough to get simple programs working on the Arduino. However, these programs are limited in functionality and in complexity as they lack the real control statements and functional blocks that afford greater detail in programs. Some of these control statements are called 
                  conditional statements
                  
                  
                . These statements create some logical expressions with the output of true or false. The basic structure

 of conditional statements in Arduino is shown in Fig. 15.17.[image: A331468_1_En_15_Fig17_HTML.gif]
Fig. 15.17The basic structure of 

conditional statements





In Fig. 15.17, there can be an arbitrary number of conditional statements. However, there must be at least one if statement before any else if or else statements. Also there can only be one else statement for any block of conditional statements. This makes intuitive sense after thinking that one does not say “or else” without first stating the “if” clause of a demand. The Arduino starts at line 1 and check logical expression 1 first. If logical expression 1 is true, then the Arduino runs the code between the curly braces (brackets) on lines 1 and 3. After executing that code, the Arduino skips execution of the code until after line 13. Using this technique, it is possible to explicitly lay out the control of the program through conditional statements. This can lead to 
                  state programming
                  
                  
                 using variables as flags, but state machine programming is 

outside the scope of this text. If logical expression 1 is false, then the Arduino jumps to line 4 and checks logical expression 2 and processes the code in curly brackets on lines 4 and 6 if logical expression 2 were true, etc. If the Arduino processes all of the conditional statements in Fig. 15.17 and none of them are true, then control would jump to the curly brackets following the else statement on line 13. The curly brackets are only needed if the conditional code is more than a single line.
Example 15.7
Define a function which takes in a student GPA as a double and whose output is the grade range of a student: A (return 1) = 4.0–3.3; B (return 2) = 3.3–2.7; C (return 3) = 2.7–2.0; F (return 4) = 2.0–0.0.

Solution:
The function is rather simple to define and uses 

conditionals to check the various grade ranges of the student.

                  Line 1. //int returnGradeRange (double GPA)
                

                  Line 2. //takes in a double representing GPA of a student. Returns
                

                  Line 3. //1, 2, 3, or 4 meaning the student is an A, B, C or F student
                

                  Line 4. int returnGradeRange(double gpa)
                

                  Line 5. {
                

                  Line 6. if(gpa > 3.3 && gpa <= 4.0)
                

                  Line 7. return 1; //An ‘A’ student
                

                  Line 8. else
                  
                    if
                    
                    
                  
                  (gpa > 2.7 && gpa <= 3.3)
                

                  Line 9. return 2; //A ‘B’ student
                

                  Line 10.else if(gps > 2.0 && gpa <= 2.7)
                

                  Line 11. return 3; //A ‘C’ student
                

                  Line 12.else
                

                  Line 13. return 4; //An ‘F’ student
                

                  Line 14.}
                
The if, else if, and else structure is used here to check the conditions. The logical expression

 is a compounded expression joined together using two ampersands indicating logical AND: gpa > 3.3 && gpa < = 4.0. The other relational operators available for variables are less than (<), greater than or equal to (>=), and equal to (==). Additionally, logical OR (||) and logical NOT (!) are available to string together logical expressions in conditionals. Bitwise logical operators 

are also available for dealing with individual bits.
The function

 returnGradeRange could have been defined using only if statements that checked the GPA range. While this is syntactically valid, this forces the Arduino to check every conditional statement. Thus, the code above ensures the Arduino only checks as many conditions are necessary before exiting the function. This improves the execution speed of the code.

Example 15.8
Implement a logic circuit 

from Fig. 15.18 in Arduino code.[image: A331468_1_En_15_Fig18_HTML.gif]
Fig. 15.18
A 

logic circuit






Solution: The shortest 

implementation may be cast in the form:

                  Line 1. if((A && B) || !(B && C) || (!C || D))
                

                  Line 2. digitalWrite(F_PIN, HIGH);
                

                  Line 3. else //the output of the digital circuit is False
                

                  Line 4. digitalWrite(F_PIN, LOW);
                
Note that the logical NOT operator does not work on integers but rather only Booleans. Thus A, B, C, and D would have to be declared as Booleans. Technically in Arduino however, true is defined as anything nonzero and false is defined only as 0. The code to 

implement the circuit in Fig. 15.18 could also be achieved using nested if statements

 and an if, else if, and else configuration.


15.5.2 Switch Statements
Another type

 of control statement is called the switch statement. In terms of control of the program, it is equivalent to conditional statements except that it follows a case-by-case setup. This arrangement allows the program to quickly jump to the correct case and execute the required code. Its generic layout

 is shown in Fig. 15.19.[image: A331468_1_En_15_Fig19_HTML.gif]
Fig. 15.19The basic setup of a 

switch statement with multiple cases





The main elements of the switch statement

 are the beginning setup of the switch on line 1 of Fig. 15.19. This line lists the variable that will be checked against the various cases. Due to rounding errors, this variable should be an integer. After line 1 in Fig. 15.19 sets up the switch statement, different cases are listed. The order of the cases is not important. Each case must start with the word “case” and then be followed by some expression. If the variable and the expression are the same, the code between the case declaration and the break statement is executed. If the value stored in the variable does not equal any of the results of any of the particular expressions, then the code following the default case is executed. The break statement with semicolon is optional. The switch statements tend to execute slightly faster than conditional statements. This reduces the overall latency or delay of the code due to large numbers of instructions. Some instructions

 can be time intensive. For example, analogRead requires ~100 μs to complete!
Example 15.9
Write a 

function that returns an integer value indicating the following: 1 = drive forward, 2 = turn right, 3 = turn left, and 4 = stop, if a certain number of lines have been counted. The number of lines counted corresponds to: 1, 2, 3 = forward; 4 = turn right; 5 = forward; 6 = turn left; 7, 8 = forward; 9 = turn left; 10 = forward; and 11 = stop.

Solution: This problem is solved using either conditionals or a switch statement. The solution using conditionals is left as a homework problem. The solution using the switch statement is as follows:

                  Line 1. //int determineDriveStatus(int number_of_lines)
                

                  Line 2. //takes in the number of lines a robot has seen and returns
                

                  Line 3. //what the robot should do to continue driving around
                

                  Line 4.
                  
                    int
                    
                    
                  
                  determineDriveStatus(int number_of_lines)
                

                  Line 5. {
                

                  Line 6. switch(number_of_lines)
                

                  Line 7. {
                

                  Line 8. case 7: case 1: case 2: case 3: case 5: case 8: case 10:
                

                  Line 9. return 1; //drive forward
                

                  Line 10. break;
                

                  
                    Line
                    
                    
                  
                  11. case 4:
                

                  Line 12. return 2; //turn right
                

                  Line 13. break;
                

                  Line 14. case 6: case 9:
                

                  Line 15. return 3; //turn left
                

                  Line 16. break;
                

                  Line 17. default:
                

                  Line 18. return 4; //stop the robot
                

                  Line 19.}
                

                  Line 20.}
                
A switch statement can also be translated over to an if, else if, and else configuration. Line 8 shows how cases can be cascaded together to run the same piece of code. If number_of_lines equals 7, 1, 2, 3, 5, 8, or 10, the code execution is said to return 1. A break statement

 is only needed if there is more than 1 line of code to execute after a case or set of cases. 
                    
                    
                  Line 17, the default statement, is only executed if number_of_lines does is not in the range of 1–10. This minimizes the amount of debugging.


15.5.3 Loops
For Loop

Loops

 in 
Arduino are very similar to those in C although the Arduino has a few minor differences. A 
                    for loop
                    
                    
                   is basically a segment of code that runs as many times as specified by the loop conditions. The basic setup of a for loop can be seen in Fig. 15.20.[image: A331468_1_En_15_Fig20_HTML.gif]
Fig. 15.20Basic construction of a 

for loop in Arduino





The pseudo-code in Fig. 15.20 shows major items required in a for loop. Line 1 contains the important information about how the loop operates. Curly brackets are only needed if the code to execute in the loop is more than 1 line. The first part after the parenthesis is the variable being used to loop through the code. This variable can be defined outside of the loop or it can be defined in the loop itself. The next part is a logical expression. This logical expression includes >, >=, ==, <, or < = operators. The last part is a counting expression which describes how the loop changes the value of the variable. This must be an expression that alters the value of the variable; otherwise, the loop could be executed indefinitely. A 
typical mistake is a counting expression which never allows the logical expression of the loop to evaluate to true. An example is a loop that starts counting from 0, is counting by 2 each time and the terminating condition is when the counter equals 7. A similar problem can occur when using floating point numbers. Note that a for loop should never be followed by a semicolon. This could cause an infinite loop.
Example 15.10
Write a function that will print the message “Please press the reset button” 15 times on the serial monitor.

Solution: The required loop uses the 


                      
                      
                    

                      
                      
                    integer variable counter to count from 0 to 14. The line counter++ is equivalent to counter = counter + 1. The double plus is called the 
                      increment operator
                      
                    . Two other methods replace lines 6–7.

Method 1:

                    Line 1. //void printErrorMessage()
                  

                    Line 2. //takes nothing into the function and returns nothing although
                  

                    Line 3. //a message has been printed 15 times
                  

                    Line 4.
                    
                      void
                      
                      
                    
                    
                      
                      
                    
                    printErrorMessage() {
                  

                    Line 5.    int counter = 0;
                  

                    Line 6.
                    
                      for
                      
                    
                    (counter; counter < 15; counter++)
                  

                    Line 7. Serial.println(“Please press the reset button”);
                  

                    Line 8.}
                  

Method 2:

                    Line 1. for(int i = 15; i > 0; i--)
                  

                    Line 2. Serial.println(“Please press the reset button”);
                  
The double minus in 



                      
                      
                    method 2 is called the 
                      decrement operator
                      
                    .

Method 3:

                    Line 1. int count;
                  

                    Line 2. for(count = 0; count != 15; count++)
                  

                    Line 3. Serial.println(“Please press the reset button”);
                  
Method 3 uses a 
counter called “count” that starts at 0 and counts upward by 1 each time. The terminating condition is when value is equal to 15. This sort of 

terminating condition can be risky.


While Loop
Another type of 
loop similar to the for loop is called the while loop. The while loop

 acts exactly as the name implies: it executes the code in the body of the loop as long as a certain logical expression is true. The structure of a while loop can be seen in Fig. 15.21.[image: A331468_1_En_15_Fig21_HTML.gif]
Fig. 15.21Basic structure of a 

while loop in Arduino





The while loop requires the 

counter that is a part of the logical expression to be changed in the body of the loop. The while loop will not automatically update the variable each time through the loop unlike the for loop. The while loop can suffer from the infinite looping if the counter update is omitted or the logical expression is never reached. The while loop requires the curly brackets since it will have at least one line where the counter is updated. One note about the loops in general is that they can be terminated at any time by either a return, a return (value), or a break statement. The break statement will cause the program to jump to the end of the loop and begin code execution from there onward. The return or return (value) statement will cause execution of the function currently being called to cease and control will pass back to the calling function.
Example 15.11
Rewrite the 
function from the previous example using while loops.

Solution:

Method 1:

                    
                      Line
                      
                      
                    
                    1. //void printErrorMessage()
                  

                    Line 2. //takes nothing into the function and returns nothing although
                  

                    Line 3. //a message has been printed 15 times
                  

                    Line 4. void printErrorMessage()
                  

                    Line 5. {
                  

                    Line 6.
                    
                      int
                      
                      
                    
                    counter = 0;
                  

                    Line 7.
                    
                      while
                      
                      
                    
                    (counter < 15)
                  

                    Line 8. {
                  

                    Line 9. Serial.println(“Please press the reset button”);
                  

                    Line 10. counter++;
                  

                    Line 11.}
                  

                    Line 12.}
                  

                    Method 2:
                  

                    Line 1. int i = 15;
                  

                    Line 2.
                    
                      
                    
                    while(i > 0)
                  

                    Line 3. {
                  

                    Line 4.
                    
                      
                      
                    
                    Serial.println(“Please press the reset button”);
                  

                    Line 5. i--;
                  

                    Line 6.}
                  

Method 3:

                    Line 1. int count = 0;
                  

                    Line 2. while(count != 15)
                  

                    Line 3. {
                  

                    Line 4.
                    
                      
                      
                    
                    Serial.println(“Please press the reset button”);
                  

                    Line 5.
                    
                      
                    
                    
                      
                      
                    
                    count++;
                  

                    Line 6.}
                  



15.5.4 Arrays and Strings
One of the C objects the Arduino does 



                  
                  
                support is a linear array. An 

array can be thought of simply as a long rectangular box that has been partitioned to hold various items. The particular storage location of an item is called the element and the number of the

 location is 

called the index of that location. The indexing of the array starts at 0 in C and Arduino and goes to the length of the array minus 1. A visual representation of an array of size 7 can be seen in Fig. 15.22. When an array is stored in memory, a block of memory is set aside and then the elements in the array are stored sequentially one after another in this block of memory.[image: A331468_1_En_15_Fig22_HTML.gif]
Fig. 15.22Values stored in the 


usedPins array after initialization





In order to declare the array in the Arduino language, the type of data the array stores must be defined. Once created, the array should be initialized to some values before accessing the elements. Both tasks can be accomplished by adding the values in the corresponding assignment statement:[image: 
$$ \mathtt{i}\mathtt{n}\mathtt{t}\ \mathtt{us}\mathtt{e}\mathtt{d}\mathtt{P}\mathtt{i}\mathtt{n}\mathtt{s}\left[\mathtt{7}\right] = \left\{\mathtt{87},\ \mathtt{4},\ \mathtt{4}\mathtt{2},\ \mathtt{2}\mathtt{2},\ \mathtt{2}\mathtt{4},\ \mathtt{69},\ \hbox{-} \mathtt{8}\right\}; $$
]

 (15.14)

This initializes the values of the 



                  
                  
                array in Fig. 15.22. After the assignment, array elements can be individually accessed and individually changed:[image: 
$$  \mathtt{i}\mathtt{n}\mathtt{t}\ \mathtt{r}\mathtt{e}\mathtt{t}\mathtt{r}\mathtt{i}\mathtt{e}\mathtt{v}\mathtt{e}\mathtt{d}\mathtt{Valu}\mathtt{e} = \mathtt{us}\mathtt{e}\mathtt{d}\mathtt{P}\mathtt{i}\mathtt{n}\mathtt{s}\left[\mathtt{4}\right];//\mathtt{a}\mathtt{c}\mathtt{c}\mathtt{e}\mathtt{s}\mathtt{s}\ \mathtt{array}\ \mathtt{e}\mathtt{l}\mathtt{e}\mathtt{m}\mathtt{e}\mathtt{n}\mathtt{t} \mathtt{us}\mathtt{e}\mathtt{d}\mathtt{P}\mathtt{i}\mathtt{n}\mathtt{s}\left[\mathtt{4}\right] = \mathtt{7};//\mathtt{stor}\mathtt{e}\ \mathtt{7}\ \mathtt{i}\mathtt{n}\mathtt{t}\mathtt{o}\ \mathtt{5}\mathtt{t}\mathtt{h}\ \mathtt{e}\mathtt{l}\mathtt{e}\mathtt{m}\ \mathtt{i}\mathtt{n}\ \mathtt{us}\mathtt{e}\mathtt{d}\mathtt{P}\mathtt{i}\mathtt{n}\mathtt{s} $$
]

 (15.15)

In the second expression (15.15), the programmer must ensure that the requested index value is always within the size of the array.
Exercise 15.6
What is the value of integer variable retrievedValue in expression (15.15)?

Answer: 24

Exercise 15.7
Write an 



                    
                    
                  Arduino function that adds 17 to the array in Fig. 15.22.

Answer:

                  Line 1. int numbers_array = {6, 8, 7, 99, 100, 2, −3};
                

                  Line 2. void add17ToArray(int size_of_array){
                

                  Line 3. for(int index = 0; index < size_of_array; index++)
                

                  Line 4. numbers_array[index] += 17; //access element and add 17
                

                  Line 5.}
                

                  Line 6. void setup() {
                

                  Line 7. add17ToArray(7); //the array is size seven
                

                  Line 8.}
                

                  Line 9. void loop() {
                

                  Line 10. //execute any code needed here
                

                  Line 11.}
                

Another object that C and Arduino 



                  
                  
                support is called a string. A string is simply a collection of characters that forms a longer word or sentence. Obviously, the size of a string is variable and can be modified by adding or removing characters. Strings in C and the Arduino are simply declared by using the same sort of notation as an array:[image: 
$$ \mathtt{char}\ \mathtt{n}\mathtt{a}\mathtt{m}\mathtt{e}\left[\mathtt{6}\right] = ``\mathtt{F}\mathtt{r}\mathtt{a}\mathtt{n}\mathtt{k}"; $$
]

 (15.16)

Upon inspection of the declaration (15.16), an observant student would notice the assigned name is actually five letters long. The 6th character is actually the null character “\o” which is treated as a single character and is needed for displaying a string properly as the null character signals the end of the string. In order to extend the usefulness of the string objects, the string 
                  library
                  
                 defines a 



                  
                  
                collection of variables, functions, and files that define how a string is processed and accessed. Strings are accessed in the same way arrays are accessed: by using the square brackets.[image: 
$$  \mathtt{char}\ \mathtt{l}\mathtt{e}\mathtt{t}\mathtt{t}\mathtt{e}\mathtt{r} = \mathtt{n}\mathtt{am}\mathtt{e}\left[\mathtt{2}\right]; \mathtt{char}\ \mathtt{n}\mathtt{e}\mathtt{w}\_\mathtt{l}\mathtt{i}\mathtt{n}\mathtt{e} = \mathtt{n}\mathtt{am}\mathtt{e}\left[\mathtt{5}\right]; $$
]

 (15.17)

This would allow the new line 
character to be printed to see the exact value of the character (if cast as an integer) or would simply print a new line to the console.
Exercise 15.8
What is the value of 



                    
                    
                  variables letter and new_line, respectively, in expressions (15.17)?

Answer: ‘a’ and ‘\o’.


15.5.5 Serial Communication
The Arduino does not have a way to visually represent a string on the board itself. The way to get around this is to use the 
                  serial communication
                  
                 capabilities of the USB connection of the Uno to the computer. The Arduino IDE contains the serial monitor (console) button. If the Arduino is connected to the computer, then the serial monitor can be opened. This establishes a serial communication

s link with the Arduino at a set baud rate. The baud rate is a measure of how many bits per second are being transferred over the communications line. The default value is 9600 baud, which refers to 9600 bits/s of data transfer. The Arduino has the capability to communicate with the computer at baud rates from 300 all the way of to 115,200 bits/s. In order to have the Arduino communicate with the computer, both devices must be sending data at the same rate. In order to accomplish this, the serial communications must be started on the Arduino. The serial communication is illustrated in the following example.
Example 15.12
Write 
                    
                    
                  Arduino code that will read in a button sensor and an analog 
value and will print both values to the serial monitor.

Solution:

                  Line 1. const int BUTTON_PIN = 4;
                

                  Line 2. const int ANALOG_PIN = A0;
                

                  Line 3. int button_state, analog_value;
                

                  Line 4.
                  
                    void
                    
                  
                  setup() {
                

                  Line 5. pinMode(BUTTON_PIN, INPUT);
                

                  Line 6. pinMode(ANALOG_PIN, INPUT);//both pins must be input pins
                

                  Line 7.
                  
                    digitalWrite
                    
                    
                  
                  (BUTTON_PIN, HIGH); //enable pull up resistor
                

                  Line 8. Serial.begin(9600); //begin the serial communication
                

                  Line 9. button_state = 0;
                

                  Line 10. analog_value = 0;
                

                  Line 11.}
                

                  Line 12.void loop() {
                

                  Line 13.
                  
                    
                    
                  
                  button_state=digitalRead(BUTTON_PIN);//read button state
                

                  Line 14. analog_value=analogRead(ANALOG_PIN);//read analog pin val.
                

                  Line 15.
                  
                    
                  
                  Serial.print("Button state: ");
                

                  Line 16. Serial.print(button_state);
                

                  Line 17. Serial.print(" Analog value: ");
                

                  Line 18. Serial.println(analog_value);
                

                  Line 19. delay(1); //wait 1 ms
                

                  Line 20.}
                
The two input pins have been declared and initialized in the setup function. Note line 7 where the code enables the internal pull-up resistor 

on the pin 4. This guarantees that the button is always in a known state. The pull-up resistors can be disabled by writing a LOW value instead of a HIGH one. The two input pins are simply read using the standard reading functions for analog and digital pins. The results are 
then printed in lines 15–18. Note that line 18 has a println function, which additionally skips a line to make the output more readable. Otherwise, using the print statements relies on the user to specify any needed spacing for 

printing as on lines 15–17.


15.5.6 Interrupts. Application Example: Emergency Motor Stop
Previously on the 

Arduino, buttons, switches, and other digital IO devices have been read using a method called 
polling. Polling


                  
                  
                 is where each time through a loop the input pin is checked and read. This usually works well while the latency of the code is low and the loop executes quickly. Otherwise, the reading of the input pin gets delayed and information can be missed. This problem is illustrated in Fig. 15.23 where the input signal changes between sample 2 and sample 3, but the change is missed.[image: A331468_1_En_15_Fig23_HTML.gif]
Fig. 15.23The problem with polling
 an input pin





In order to still handle looping and make sure the signal is processed in “almost” real time, an input pin is configured to handle interrupts. An interrupt 

allows the microprocessor to handle code execution while still checking a pin in almost real time. Once an interrupt is generated (a certain programmed state is achieved on the pin), the execution of the code finishes the last machine instruction and then jumps to an 
                  interrupt service routine (ISR)
                  
                . An ISR

 is a special 

segment of code written to be called when an interrupt is generated. This code is executed and then the control of the program resumes from the last executed machine code instruction. On the Arduino Uno, there exist two pins capable of handling interrupts: 

pins 2 and 3. In order to configure a pin as an interrupt, the following line of code is needed in the setup function (the pin should already be declared as an input):[image: 
$$ \mathtt{attachI}\mathtt{n}\mathtt{t}\mathtt{e}\mathtt{rrupt}\left(\mathtt{interrupt}\ \mathtt{n}\mathtt{umber},\ \mathtt{I}\mathtt{S}\mathtt{R},\ \mathtt{t}\mathtt{rigger}\ \mathtt{state}\right); $$
]

 (15.18)

Command (15.18) attaches the interrupt to the specific pin as denoted by the interrupt number. An interrupt number of 0 refers to pin 2 and an interrupt number 

of 1 refers to pin 3 being used. The ISR is the code to be called when the interrupt is 

triggered. The trigger state can be LOW (for triggering an interrupt when the pin is LOW), HIGH (for triggering when the pin is HIGH), RISING (for triggering an interrupt when the pin sees a rising edge of the signal), FALLING (when the pin transitions from HIGH to LOW), or CHANGE (for triggering an interrupt when the pin changes from HIGH to LOW or LOW to HIGH). The Arduino has only 1 priority level for interrupts and thus sees every interrupt as the same (despite how important the user may feel one interrupt to be). Thus in order to handle an interrupt coming in when already in an ISR, the Arduino has an interrupt queue. The interrupt 

queue is capable of storing 1 additional interrupt while processing another. Note that the use of switches with interrupts is tricky. When a switch closes, the mechanical contacts tend to quickly make and break contact several times before settling. This can result in 

many different rising and falling edges being generated. In order to avoid this problem, the switch must be debounced.
Example 15.13
Write an Arduino code that acts as an “emergency stop” and stops a motor attached to pin 10 using an interrupt 

when a button is pressed.

Solution:

                  Line 1. include <Servo.h>
                

                  Line 2. Servo motor;
                

                  Line 3. const int MOTOR_PIN = 10;
                

                  Line 4. const int BUTTON_PIN = 4;
                

                  Line 5.
                  
                    volatile
                    
                    
                  
                  boolean stop_motor;//variables modified in ISR are volatile
                

                  Line 6. //void stopMotorISR()
                

                  Line 7. //Takes no parameters. Returns nothing.
                

                  Line 8. //Handles the interrupt code to stop the motor on the button press
                

                  Line 9. void stopMotorISR() {
                

                  Line 10. stop_motor = True;
                

                  Line 11.}
                

                  Line 12.void setup() {
                

                  Line 13. pinMode(BUTTON_PIN, INPUT);
                

                  Line 14. pinMode(MOTOR_PIN, OUTPUT);
                

                  Line 15. digitalWrite(BUTTON_PIN, HIGH); //pull up resistors on
                

                  Line 16. motor.attach(MOTOR_PIN);
                

                  Line 17. stop_motor = False;
                

                  Line 18. attachInterrupt(0,stopMotorISR,FALLING); //interrupt on pin 2
                

                  Line 19.}
                

                  Line 20.void loop(){
                

                  Line 21. if(!stop_motor)
                

                  Line 22.
                  
                    
                    
                  
                  motor.write(180); //full speed
                

                  Line 23. else
                

                  Line 24. motor.write(90); //stopped motor
                

                  Line 25.}
                
The first notable part of the code is line 5 where a Boolean data type is declared using the identifier of “volatile.” This 

indicates that the value of stop_motor can be changed by code outside of where the variable is currently executing. The next important part is the ISR with the header. In the loop on lines 21–25, the motor will stop being driven when the logical expression on line 21 evaluates to false. Line 18 attaches the ISR function stopMotorISR to pin 2 and sets the pin to wait for a falling edge to hit the pin. However, since pull-up resistors are enabled, the button must be pulling the pin LOW to ground. The loop drives the motor at full speed in one direction using the servo object as the servo object drives the pin with a PWM pulse. The code will only drive the motor until the switch is 

pressed and then the motor will not move afterward no matter how many times the switch is pressed. In order to start the motor again, the reset button must be pressed on the Arduino.


15.5.7 Square Wave and PWM Generation with Arduino
The classic digital-to-analog conversion is not 

available on the Arduino. Therefore, a sinusoidal 
signal cannot be produced directly from the Arduino without using external circuitry. But what about creating a square wave with a certain period or frequency? The answer is yes, but the correct timing requires work. Let us consider a 50-kHz square wave with the period of 20 μs. This means that the signal is high for 0.01 ms and low for 0.01 ms. The standard delay function can only take in whole numbers of milliseconds; thus a function that deals with smaller portions of seconds is needed. In the Arduino language, the required function is delayMicroseconds, which takes in an argument that is an integer number of microseconds. In the present case, delayMicroseconds would be called with an argument of 10 after the pin was switched HIGH and then after the pin was switched LOW again. The code to create the 50-kHz square wave is given in Fig. 15.24.[image: A331468_1_En_15_Fig24_HTML.gif]
Fig. 15.24Program that generates a 

50-kHz square wave on pin 4





The program in Fig. 15.24 produces a square wave with a frequency of around 33 kHz. Why is there a disparity between theory and application? The reason is in hardware switching times. The transistors that regulate on and off of digital pins require some finite time to change state and process the instructions from the code. What happens when there is not a delay? In theory, the pin should be able to change state infinitely fast. This obviously cannot happen as things cannot change instantaneously due to the hardware constraints and software latency. In the Arduino, the fastest frequency achievable is around 100 kHz. This shows that the hardware switching time is about 5 μs as the 100-kHz square wave has a period of around 10 μs. An astute observation would be that this switching time is on the same order of magnitude as the delay times of the 50-kHz square wave. Thus, in order to compensate for hardware switching times and produce the 

50-kHz signal, the delays could be modified as shown in Fig. 15.25. The numbers there are the closest integers since delayMicroseconds does not accept floating point values.[image: A331468_1_En_15_Fig25_HTML.gif]
Fig. 15.25Program that generates ~50-kHz square wave





In order to change the duty cycle of a square signal in the servo library, the analogWrite function can be employed. The analogWrite function can be called by supplying the pin number and the value to write. This value is in the range of 0–255 which represent 


                  
                  
                duty cycles from about 5 % to about 100 %. If the analogWrite function is used, the servomotor must be connected to an analog pin.


Summary

                	
                            Topic
                          
	
                            Arduino sample program
                          

	Data types and assignments
	Define several constants and assigns conversions to variables after using type casting

                            [image: A331468_1_En_15_Figw_HTML.gif]
                          

	Arithmetic operations and functions
	Read analog voltage on pin A1 and output a square wave on pin 3. The duty cycle is proportional to the analog voltage

                            [image: A331468_1_En_15_Figx_HTML.gif]
                          

	Conditional statements
	Function that uses conditionals to determine the return value

                            [image: A331468_1_En_15_Figy_HTML.gif]
                          

	Switch statements
	Function that uses a switch statement to return a drive value. When called from the loop, it returns the robot state

                            [image: A331468_1_En_15_Figz_HTML.gif]
                          

	For loop
	Program that will retrieve the drive values using the function from above and store them in a new array to be used

                            [image: A331468_1_En_15_Figaa_HTML.gif]
                          

	While loop
	Program that will blink an LED a set number of times when a button is pressed

                            [image: A331468_1_En_15_Figab_HTML.gif]
                          

	Numerical array
	Program that sorts an array into an even and odd arrays in the setup function

                            [image: A331468_1_En_15_Figac_HTML.gif]
                          

	String array
	Program that continually swaps the letters in a string array

                            [image: A331468_1_En_15_Figad_HTML.gif]
                          

	Serial monitor
	Program that reads analog/digital inputs and prints values to the Serial Monitor

                            [image: A331468_1_En_15_Figae_HTML.gif]
                          

	Interrupt
	Pushbutton on pin 4 that will increment the state of the robot depending on the number of times the button has been pressed. The code uses an ISR on pin 2

                            [image: A331468_1_En_15_Figaf_HTML.gif]
                          

	Square wave/PWM
	Program that generates robust PWM signal on pin 7. This code should only be used to generate frequencies between 61Hz and 50KHz. For more accurate timing use the Servo Library

                            [image: A331468_1_En_15_Figag_HTML.gif]
                          




              

Problems
15.1 Architecture of Microcontrollers
Problem 15.1

                    	A.List some common IO devices.


 

	B.Draw the schematic of a CPU.


 

	C.Draw the schematic of a basic computer.


 




                  

Problem 15.2
Convert the following numbers to bits:	A.14 GB


 

	B.27 MB


 

	C.42 KB


 

	D.0.97 TB


 






Problem 15.3

                    	A.Draw a diagram showing a CPU communicating with memory over a 16-bit bus and label each of the data connections.


 

	B.Repeat the previous task but use the abbreviated bus notation.


 




                  


15.2 Memory
Problem 15.4
Store the value 57984 (decimal) in memory starting at address 0100h using little-endian notation. Repeat with big-endian notation. Present the corresponding tables.

Problem 15.5
Store the value 372110 in memory starting at address 0400h using little-endian notation. Repeat with big-endian notation. Present the corresponding tables.

Problem 15.6
What is the decimal value stored in memory in the following table starting from address 0200h using little-endian notation? Repeat with big-endian notation.	Address
	Byte value

	0204h
	…

	0203h
	01h

	0202h
	22h

	0201h
	FFh

	0200h
	A0h

	01FFh
	....






Problem 15.7
What is the decimal value stored in memory in the following table starting from address 0200h using little-endian notation? Repeat with big-endian notation.	Address
	Byte value

	0204h
	…

	0203h
	77h

	0202h
	04h

	0201h
	BBh

	0200h
	08h

	01FFh
	....






Problem 15.8
Describe each of the following types of memory and their application:	A.RAM


 

	B.ROM


 

	C.EEPROM


 

	D.PROM


 

	E.EPROM


 

	F.Flash


 






Problem 15.9

                    	A.Describe the difference between volatile and nonvolatile memory.


 

	B.Describe the advantages and disadvantages of flash memory.


 




                  

Problem 15.10
How wide must a data bus be to access:	A.1 GB of memory?


 

	B.1.44 MB of memory?


 

	C.1 TB of memory?


 

	D.22 KB of memory?


 







15.3 Arduino Uno: An Embedded Microcontroller
Problem 15.11

                    	A.Write the bare-bones minimum that is required to create an Arduino sketch.


 

	B.Write the corresponding C code.


 




                  

Problem 15.12
What type of memory and how much of it is available for programs on the Arduino Uno?

Problem 15.13
Describe the process of writing and uploading a program for the Arduino.


15.4 Basic Arduino Syntax
Problem 15.14
Describe the rationale behind a function header and write an example for a function that accepts several integers and returns the maximum. Do not worry about implementation of the function.

Problem 15.15
Design a function that will return the integer value of a character that is passed to the function (Hint: use typecasting).

Problem 15.16
Write a function for the Arduino that takes in the resistance and current in a circuit branch and finds and returns the voltage drop across the resistance.

Problem 15.17
Write a function for the Arduino that takes in the value of two resistors and finds the equivalent parallel combination of the two (returned as a double).

Problem 15.18
Write a function for the Arduino that returns the value of the transfer function for a given frequency for the following low-pass filter with R = 100 kΩ and C = 1.59 nF. Present the corresponding code.[image: A331468_1_En_15_Figc_HTML.gif]




Problem 15.19
Write a function that will configure the pins in the following configuration. Also if needed enable the pull up resistors on any input pins:
Pin 2 = INPUT
Pin 3 = OUTPUT
Pin 4 = OUTPUT
Pin 5 = INPUT
Pin 6 = INPUT
Pin 7 = OUTPUT
Pin A0 = INPUT
Pin A2 = OUTPUT

Problem 15.20
Design and implement a code that reads in an analog voltage value across a variable resistor (potentiometer) and converts the resulting value into the duty cycle value of a square wave on pin 3. The potentiometer should be on pin A4. Discuss the corresponding normalization procedure.

Problem 15.21
Write a program that reads in an analog voltage value from a light sensor (phototransistor) on analog pin A0 and converts this value to the corresponding binary number to be displayed on 8 LEDs. Discuss the corresponding normalization procedure.

Problem 15.22
If the output of analogWrite is a duty cycle ranging from 5 to 95 % corresponding to 0–255, convert the following values to their complement:	A.67 %


 

	B.23


 

	C.44 %


 

	D.233


 






Problem 15.23
The ADC on the Arduino takes in an input signal in the range of 0–5 V and converts it to a decimal value in the range of 0–1023. Convert the following values to their complements:	A.3.7 V


 

	B.898


 

	C.1.2 V


 

	D.469


 






Problem 15.24
Write a program that counts in binary from 0 to 255 on eight external LEDs on pins 4–11 (the binary counter). Use appropriate resistors to limit the current.

Problem 15.25
Create a program and external circuitry that mimics a traffic light. The “green” stays active for 8 s. The “yellow” is active for 3 s and then “red” is active for 10 s. The pattern repeats indefinitely.[image: A331468_1_En_15_Figd_HTML.gif]




Problem 15.26
Create a program that turns the Arduino into a handheld flashlight using a push button to turn an LED on when the button is held down.

Problem 15.27

                    	A.Write a program to control the speed of a motor using external circuitry (a single switching transistor or an H-bridge), a potentiometer, and the servo library.


 

	B.Realize the corresponding project in hardware.


 




                  

Problem 15.28
Write a program to control the position of a servo using ten switches attached to digital pins 2 and 4–12. The servo should be attached to pin 4. Each switch is acting as one bit of the 10-bit ADC of the Arduino.


15.5 More Advanced Arduino Programming
Problem 15.29
Implement the following digital logic circuit in a function that sets the output pin (pin 10 of the Arduino) HIGH or LOW.[image: A331468_1_En_15_Fige_HTML.gif]




Problem 15.30
Repeat the previous problem for the circuit shown in the following figure.[image: A331468_1_En_15_Figf_HTML.gif]




Problem 15.31
Repeat problem 15.29 for the circuit shown in the following figure.[image: A331468_1_En_15_Figg_HTML.gif]




Problem 15.32
Implement a function that sets an output pin (pin 10) HIGH or LOW as shown in the following figure (use a switch statement).[image: A331468_1_En_15_Figh_HTML.gif]




Problem 15.33
Translate the code from Example 15.9 in Section 15.5.2 to use conditional statements instead of the switch statement.

Problem 15.34
What is an infinite loop? Discuss and document several ways that an infinite loop can occur and how to ensure this does not happen.

Problem 15.35
Translate the following while loops into for loops:[image: A331468_1_En_15_Figi_HTML.gif]




Problem 15.36
Translate the following for loops into while loops:[image: A331468_1_En_15_Figj_HTML.gif]




Problem 15.37
Find and fix the errors in the following loops:[image: A331468_1_En_15_Figk_HTML.gif]




Problem 15.38
Write a function that will cycle through the string “Elizabeth” and will copy the string into a blank string that has ten entries (remember the terminating null character at the end of the string).

Problem 15.39
Write a sketch that will print “An Arduino says Hello world!” to the serial monitor the following number of times:	A.7


 

	B.12


 

	C.190


 






Problem 15.40
Write a sketch that can print out the binary representation of the numbers 0–64 to the serial monitor. Hint: Use a function to convert the number to binary then print it out.

Problem 15.41
Write a function that will cycle through an array and print the values with the corresponding indices to the serial monitor. The array should be {7, 29, 444, 42, 69, 8, −10020}.

Problem 15.42
Design a program that uses a potentiometer to cycle through letters in the following character array (string) and print the result to the serial monitor.
char name[8] = “Stephan”;

Problem 15.43
Compare and contrast the use of interrupts versus polling of inputs.

Problem 15.44
Discuss the issue of latency in code: what it is, what causes latency, and how to reduce it?

Problem 15.45
Create a program that turns the Arduino into a voltmeter (0–5 V only!) using two analog pins A0 and A1. The Arduino should print out the voltage at the two pins and the difference between the two pins in both polarities. The voltage should be expressed in volts, not in the decimal numbers from the ADC. Hint: Write a function that performs the function of a DAC in software to print out values.

Problem 15.46
Implement a code that uses an external 2-bit flash ADC to read values on four digital pins and convert the result to a 2-bit binary.[image: A331468_1_En_15_Figl_HTML.gif]




Problem 15.47
Create a program that flashes an LED every second without using the built-in delay function.

Problem 15.48

                    	A.Create and present a program that will increment a counter on a button push. The counter is then used to blink an LED that many times per minute.


 

	B.Design the corresponding circuitry and present the circuit outline.


 




                  

Problem 15.49
Update the code from the previous problem and the corresponding circuitry to add a decrementing counter. Make sure the result of the LED blinks per minute does not go negative or cause a runtime error.

Problem 15.50
Design and implement the code and the corresponding circuitry that will actuate a motor in two directions without using the servo library.[image: A331468_1_En_15_Figm_HTML.gif]



The circuitry should use two push button switches to choose the direction.

Problem 15.51
Write a program that counts hexadecimal numbers from 0 to F every second and displays the count on a seven segment display as shown in the following figure. The program that drives the 7-segment display must manually set the digital pins high corresponding to the value to be shown.[image: A331468_1_En_15_Fign_HTML.gif]




Problem 15.52
Write a program that acts as a burglar alarm. The corresponding schematic follows. The alarm waits for the switch to be released and then turns on a piezo-buzzer as the alarm. The alarm should not reset if the switch is reset (only after resetting the Arduino). The piezo can be sounded by simply writing a PWM signal to it.[image: A331468_1_En_15_Figo_HTML.gif]




Problem 15.53
Create a program that will read the voltage across the capacitor and print the value to the screen (one voltage reading per line) for the circuit in the following figure. Also print out the time measurement along with the voltage. Hint: In order to observe voltage variation across the capacitor, a square wave must be applied to pin 10.[image: A331468_1_En_15_Figp_HTML.gif]




Problem 15.54
Create a program that uses two light sensors (LDRs) to actuate a motor in two directions. The sensors are modeled by voltage dividers. In order to run the motor in two directions, two digital pins are used on the Uno.[image: A331468_1_En_15_Figq_HTML.gif]




Problem 15.55
Create a program that turns the Arduino into a reaction time calculator. A sketch is shown in the following figure. The program starts a countdown of LEDs when the start button is pressed. The program then counts the time it takes the user to press the end button once the final button has been pressed.[image: A331468_1_En_15_Figr_HTML.gif]




Problem 15.56
Write a program that turns the Arduino into a rudimentary stopwatch. The Arduino should begin “timing” after the push of a push button and then “stop” timing after a push of a different button. A sketch is shown in the following figure. Hint: Use some of the built-in timing features.[image: A331468_1_En_15_Figs_HTML.gif]




Problem 15.57
Implement a “lap” feature which spits out the time elapsed instead of stopping the count. A sketch is shown in the following figure.[image: A331468_1_En_15_Figt_HTML.gif]




Problem 15.58
Write a program that will control a 7 × 5 LED matrix as shown in the following figure. In order to make an LED the cell {R1, C1} on C1 must be LOW and R1 must be HIGH. Hint: This problem involves the use of arrays and several functions.[image: A331468_1_En_15_Figu_HTML.gif]




Problem 15.59
Write a program and create external circuitry that mimics the ball drop at New Years. The “drop” should start when a button is pressed and counts down 10 LEDs. The final LED stays on. Hint: Use a function to create the ball drop.[image: A331468_1_En_15_Figv_HTML.gif]




Problem 15.60
Create a program that will generate a square wave on pin 10 of the Arduino with the following frequencies:	A.25 kHz


 

	B.7 kHz


 

	C.300 Hz


 

	D.2 Hz


 






Problem 15.61
Write Arduino code that generates a 20-Hz square wave on pin 7 without using delay or delayMicroseconds function.
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Overview

              Prerequisites:
	Knowledge of basic circuit analysis




              Objectives of Section 16.1:
	Understand basic principles of diode operation and its mechanical analogy

	Learn diode symbols

	Learn three operation regions of a diode

	Become familiar with common diode types and their functions




              Objectives of Section 16.2:
	Solve diode circuits using the ideal-diode model

	Solve diode circuits using the constant-voltage-drop model

	Solve diode circuits using the exponential model and load-line method

	Learn about small-signal diode model and incremental resistance

	Establish applications of the superposition principle to diode circuits




              Objectives of Section 16.3:
	Establish the concept of voltage reference/voltage regulator

	Analyze the voltage regulator with the Zener diode

	Become familiar with three major rectifier types: half-wave rectifier, full-wave rectifier, and bridge rectifier

	Study selected applications of diode rectifier circuits




              Objectives of Section 16.4:
	Become familiar with clamper and voltage multiplier diode circuits

	Learn the function and topology of diode clipper circuits including hard and soft clippers




              Application Examples:
	Automotive battery-charging system

	Envelope detector circuit for AM radio




            

16.1 Diode Operation and Classification
16.1.1 Circuit Symbol and Terminals
An electronic diode is the most basic two-terminal semiconductor device. The common diode is simply a sealed semiconductor silicon pn-junction shown in Fig. 16.1a. The diode symbol

 shown in Fig. 16.1b has a prominent arrow that indicates the proper direction of the current. The positive side (where the current enters and the voltage is more positive) is called 
                  anode
                  
                  
                 and the negative side (where the current leaves) is called cathode. This terminology has been adopted from vacuum tubes, which were used as diodes in the past (circa 1910–1960). Thus, the diode, in contrast to the resistor, capacitor, and inductor, is a polarized device. The current i
D and the voltage across the diode υ
D follow the passive reference configuration, seen in Fig. 16.1b, since the diode is a passive device. The voltage υ
D is also called the 
                  terminal voltage
                  
                  
                . The general-purpose silicon and germanium diodes usually have one or two prominent black rings printed on their package terminations indicating the diode’s cathode as depicted in Fig. 16.1c
[image: A331468_1_En_16_Fig1_HTML.gif]
Fig. 16.1(a) Internal composition 

of a Si diode, (b) circuit symbol, and (c) physical counterpart






16.1.2 Three Regions of Operation
Figure 16.2 demonstrates an experimentally measured volt–ampere (or v–i) characteristic of a common small-signal (i.e., low-power) 1N4148 silicon 
                  switching diode
                  
                  
                . Such diodes are manufactured by many semiconductor companies. In Fig. 16.2, we plot the diode current i
D versus the voltage across the diode, υ
D. A closer look at Fig. 16.2 indicates that the diode has three distinct 


operating regions:[image: A331468_1_En_16_Fig2_HTML.gif]
Fig. 16.2Measured v–i characteristic of a 1N4148 Si switching diode

 to scale




	1.The 
                          forward-bias region
                          
                          
                         characterized by the inequality [image: 
$$ {\upsilon}_{\mathrm{D}}>0 $$
]



 

	2.The 
                          reverse-bias region
                          
                          
                         characterized by the inequality [image: 
$$ -{V}_{\mathrm{Z}0}<{\upsilon}_{\mathrm{D}}<0 $$
]



 

	3.The 
                          breakdown region
                          
                          
                         characterized by the inequality [image: 
$$ \upsilon <-{V}_{\mathrm{Z}0} $$
].


 





The two vertical asymptotes shown in Fig. 16.2 correspond to 
                  Zener breakdown voltage
                  
                  
                 V
Z0 and to a certain threshold voltage V
D0, which is close to the 
                  built-in voltage of the pn-junction
                  
                , V
BI. The three regions of operation and the associated constants will be described in detail in the following sections.

16.1.3 
Mechanical Analogy

 of Diode Operation
The picture in Fig. 16.3 serves as a mechanical analogy for the diode, highlighting its major function: a one-way valve. When the mechanical pressure (equivalently the electric voltage) is sufficiently higher on the left side, the valve is open and a fluid (equivalently the electric current) flows from left to right at any speed. This corresponds to the nearly vertical v–i slope in the forward-bias region. However, a certain pressure drop (voltage of 0.7 V) is consumed by the spring attached to the valve. When the pressure gradient is opposite, the valve is closed and there is no fluid flow (no current). This situation corresponds to the reverse-bias region of operation.[image: A331468_1_En_16_Fig3_HTML.gif]
Fig. 16.3Fluid flow analogy 

of the pn-junction behavior of an ideal diode—a flapper valve with a resistive force in the forward direction






16.1.4 Forward-Bias Region: Switching Diode
The forward-bias region is characterized by positive terminal voltages. In this region, the diode current closely follows Shockley’s equation:[image: 
$$ {i}_{\mathrm{D}}={I}_{\mathrm{S}}\left[ \exp \left(\frac{\upsilon_{\mathrm{D}}}{n{V}_{\mathrm{T}}}\right)-1\right] $$
]

 (16.1a)

This 
                  Shockley’s ideal-diode equation
                  
                  
                 (without the factor n) has been derived analytically based on the pn-junction equations. This equation is strongly temperature dependent. The reference is usually 
                  room temperature
                  
                  
                 of 20 °C or 25 °C (cabinet temperature). In Eq. (16.1a), the constant I
S[A] is the diode saturation current. For small-signal 1N4148-type diodes, a theoretical value of [image: 
$$ {I}_{\mathrm{S}}\approx {10}^{-14} \mathrm{A} $$
] or less at room temperature may be calculated. For real diodes, this value is much higher. The constant[image: 
$$ {V}_{\mathrm{T}}=kT/q $$
]

 (16.1b)

with the unit of volts is called the 
                  thermal voltage
                  
                  
                . The dimensionless constant [image: 
$$ 1\le n $$
] is the ideality factor of the diode, which accounts for the deviation of the real diode from Shockley’s ideal-diode equation. For small-signal, discrete silicon diodes, [image: 
$$ n\approx 2 $$
]. For discrete Schottky diodes, as described below, [image: 
$$ n\approx 1 $$
]. For diodes in integrated circuits, [image: 
$$ n\approx 1 $$
]. Other parameters in Eqs. (16.1a) and (16.1b) are summarized in Table 16.1.Table 16.1Useful constants for Shockley’s equation


	Absolute temperature T (K)
	
                            [image: 
$$ T=273{}^{\circ}+t{}^{\circ}\left(\mathrm{C}\right) $$
]
                          

	Electron charge q (C)
	1.60218 × 10−19


	Boltzmann constant k (J/K)
	1.38066×10−23






The goal of the vertical asymptote in the forward-bias region in Fig. 16.2 is to approximate the steep exponential function at practically relevant values of the diode current. As an approximation, the value of V
D0 in Fig. 16.2 is close to the 

built-in voltage of the pn-junction, V
BI. For small-signal silicon diodes, [image: 
$$ {V}_{\mathrm{BI}}\approx 0.62-0.72\;\mathrm{V} $$
]. To be specific, we will assume [image: 
$$ {V}_{\mathrm{D}0}=0.7\;\mathrm{V} $$
], which is the commonly used value for small-signal silicon diodes.
Example 16.1
Figure 16.4a (and simultaneously Fig. 16.2) shows measured characteristics for the 1N4148 small-signal Si switching 

diode adopted from a Hitachi 1N4148 datasheet at 25 °C in the forward-bias region, i.e., the dotted curve. Compare the experimental curve with the Shockley’s equation (16.1a) under the assumption that [image: 
$$ n=1.7,{I}_{\mathrm{S}}=1.1\;\mathrm{nA} $$
].

                  Solution
                
We calculate the thermal voltage at 25 °C first and obtain [image: 
$$ {V}_{\mathrm{T}}=26\;\mathrm{mV} $$
]. Next, we plot Shockley’s equation in Fig. 16.4a based on the solid curve. The agreement between theory and experiment is quite satisfactory. At the same time, when we consider a wider electric current range and use a logarithmic scale to better resolve small and large currents, the deviation at larger currents becomes more visible. The corresponding graph is given in Fig. 16.4b. Figure 16.4 may be replicated in the laboratory for a 1N4148 diode from different m

anufacturers.


                [image: A331468_1_En_16_Fig4_HTML.gif]
Fig. 16.4(a) Shockley equation prediction

 (solid curve) versus measured data (dotted curve) for the 1N4148 small-signal Si switching diode at 25 °C and (b) enlarged scale




              
Exercise 16.1
Determine the thermal voltage at room temperature

 (20 °C).

Answer: [image: 
$$ {V}_{\mathrm{T}}=25\;\mathrm{mV} $$
].

A diode operating in the forward-bias region is usually called a switching diode, meaning this is its major use. For many applications the diode switching time T plays an important role; it characterizes how fast the pn-junction current responds to reversing the diode voltage. For example, a gold-doped 1N4148 switching diode may have the switching times of about 2–4 ns. Even though this number might appear small, it is not suitable for radio frequencies. The 
                  maximum operating frequency
                  
                 of the diode is the inverse of its shortest switching time, [image: 
$$ {f}_{\max}\approx 1/T=250\;\mathrm{MHz} $$
] for the present switching diode.

16.1.5 Reverse-Bias Region: Varactor Diode



The reverse-bias region is characterized by negative terminal voltages. According to

 Shockley’s equation (16.1a), in this region, [image: 
$$ {i}_{\mathrm{D}}=-{I}_{\mathrm{S}} $$
] when [image: 
$$ {\upsilon}_{\mathrm{D}}\ll -{V}_{\mathrm{T}} $$
]. Thus, the reverse current should flow in the diode. While extremely small, the reverse current may even reach 1–20 nA due to various leakage effects. There is however a special diode which operates only in the reverse-bias region. It is called a varactor (from variable capacitor) diode or the 
                  tuning diode
                  
                . The behavior of the varactor diode is based on the internal structure of the pn-junction, which effectively becomes a charge-free capacitor at negative (and even quite small positive) terminal voltages. The gap between the charged “capacitor plates” is determined by the terminal voltage, which controls the resulting capacitance. As a result, we obtain a voltage-controlled capacitor that has numerous applications in electronic communication circuits. The varactor diode is optimized to increase capacitance variations in response to the applied voltage. The circuit symbol for the varactor diode is seen in Fig. 16.5, where the schematic shows the built-in capacitor.[image: A331468_1_En_16_Fig5_HTML.gif]
Fig. 16.5Circuit symbol for a varactor (variable capacitor) diode






16.1.6 Breakdown Region: Zener Diode



The steepness of the v–i diode curve in Fig. 16.2 in the breakdown region is utilized in the design of voltage regulators. The corresponding Zener breakdown voltage V
Z0 is on the order of 75–100 V for switching diodes, which makes their use in the reverse-bias region impractical. A diode with a much smaller V
Z0, on the order of 5–20 V and specially designed to operate in the reverse-bias region, is called a Zener diode. The silicon-made Zener diode features a heavily doped pn-junction. The breakdown voltage is adjusted by a proper doping composition. Figure 16.6 compares circuit symbols for the switching diode and Zener diode, respectively. Under normal operating conditions in the reverse-bias region, the cathode of the Zener diode is more positive and the diode current flows from cathode to anode. Therefore, both the diode voltage and the diode current in Fig. 16.6b have positive values. The Shockley’s equation is not used in the breakdown region. Instead, the behavior of the Zener diode is described by a piecewise-linear diode model
. The diode breakdown is 
                  not
                  
                  
                 destructive; the diode successfully functions in the breakdown region.[image: A331468_1_En_16_Fig6_HTML.gif]
Fig. 16.6
Switching

 (a) versus Zener (b) diode. Note reversed voltage polarity/current direction






16.1.7 Other Common Diode Types

                  Schottky Diode


                
The Schottky (barrier) diode does not use a pn-junction. Instead, a junction of a metal (anode) and an n-type semiconductor (cathode) are formed. Schottky diodes exhibit lower forward-bias voltages (0.15 to 0.5 V) and ultrafast switching speeds, since they are majority-carrier (conduction) devices, in contrast to the “slow” diffusion-current-based pn-junctions. Schottky diodes may employ different semiconductors including Si, GaAs, etc. in contact with metal (molybdenum, platinum, chromium). The corresponding circuit symbol is shown in Fig. 16.7.[image: A331468_1_En_16_Fig7_HTML.gif]
Fig. 16.7Circuit symbol for a Schottky diode







                  PIN Diode


                
A Si PIN diode is a pin semiconductor junction. In contrast to the standard junction, there exists a region of intrinsic (or lightly doped) silicon (i-layer) of low conductivity between doped p and n layers. When the diode voltage is high and positive, this region becomes filled with charge carriers. Consequently, the PIN diode becomes a variable, voltage-controlled resistor. This makes it useful as a switch or attenuator for radio-frequency signals. Another application is related to photodetection. In this case, the diode voltage is typically negative. When there is no ambient light, the region of intrinsic silicon has no charge carriers; hence, the diode is not conducting. When the ambient light is present, a photon collides with a single electron in the lattice. When the photon energy is sufficiently high, the electron leaves the crystal lattice and becomes a free carrier. Hence, the diode becomes conducting and operates as a photodetector.


                  Photodiode


                
The idea of the photodiode can be explained on the basis of the PIN diode. The light-induced carriers support a reverse current through the diode, the so-called photocurrent. Its intensity can be measured; it is proportional to the intensity of the incident light.

Light-Emitting Diode
A Light-Emitting Diode (LED)


                    
                    
                   performs the opposite function of the 

photodiode. When a free conduction electron finds its place in the crystal lattice (becomes a valence electron), it loses energy, which is irradiated as a quantum of visible light. The LED junction is not a silicon junction, but is made of gallium arsenide (GaAs), another semiconductor material. Several different compounds may be involved and the junction becomes the heterojunction. The corresponding circuit symbol is shown 


                    
                    
                  in Fig. 16.8 (the symbol for the photodiode has the oppositely directed small arrows). Any general-purpose LED may operate as a solar cell—generate a nonzero voltage across its terminals when illuminated by light. A simple experiment is to connect an LED to the DMM and measure the voltage across it with and without the ambient light (cover it with your hand).[image: A331468_1_En_16_Fig8_HTML.gif]
Fig. 16.8Circuit symbol for an 


                            
                            
                          LED





Historical
The history of diode discoveries is very rich. The term diode originates from the Greek roots di, meaning “two,” and ode, meaning “path.” It was suggested by William Eccles (1875–1966), British physicist and radio engineer, who worked with Guglielmo Marconi. The first solid-state diode was patented in 1899 by Karl Ferdinand Braun (1850–1918), German physicist and Nobel Prize laureate. Indian professor of physics, Jagadish Chandra Bose (1858–1937) was the first to use diodes to detect radio signals. The Zener diode is named in honor of American physicist Clarence Melvin Zener (1905–1993). The Schottky diode is named in honor of Walter Hermann Schottky (1886–1976), German professor and engineer at Siemens. The PIN diode was invented by Jun-ichi Nishizawa (1926–), a Japanese professor and engineer. British scientist Henry Joseph Round (1881–1966) was the first to report on the observation of light emission from crystals when subjected to an applied voltage. Russian scientist Oleg Losev (1903–1942) observed light emission from semiconductor junctions, the first LEDs. Nick Holonyak, Jr. (1928–), professor at the University of Illinois at Urbana-Champaign, invented and constructed the first practically useful LED.




16.2 Diode Models
16.2.1 Ideal-Diode Model: Method of Assumed States
The ideal-diode model ignores all details of the v–i characteristic except the most fundamental one: the steep nonlinearity in the forward-bias region

. Figure 16.9 shows the v–i characteristic of the ideal diode.
                  
                  
                 We plot the current i
D versus the voltage υ
D across the diode. The ideal diode is equivalent to an open circuit (no current) at negative or reverse-bias applied voltages ([image: 
$$ {\upsilon}_{\mathrm{D}}<0 $$
]) and to a short circuit at any positive value of diode current ([image: 
$$ {i}_{\mathrm{D}}>0\Rightarrow {\upsilon}_{\mathrm{D}}=0 $$
]). For comparison, we also draw the v–i line for a resistor as a dashed line in Fig. 16.9.[image: A331468_1_En_16_Fig9_HTML.gif]
Fig. 16.9The 
v–i characteristics

 of an ideal diode. The resistor v–i characteristic is a dashed line





The ideal-diode model allows us to analyze an electric circuit with a diode using the method of 
                  assumed states
                  
                  
                . The ideal diode may only have two states: a short circuit (the diode is “ON”) or an open circuit (the diode is “OFF”). During analysis, we make an intuitive guess (ON or OFF) and replace the diode either by a wire or by an open circuit, respectively. We then solve the rest of the circuit and check to see if our guess was right. For the ON-diode

, we cannot check the voltage across the diode, since it is exactly zero for the ideal-diode model. However, we can check the current, which must flow in the direction of the diode arrow. If this is not the case, our guess is wrong. For the OFF-diode

, we check the voltage across the diode. If this voltage is negative (or “reversed”), then it satisfies the condition of Fig. 16.9, and the diode is an open circuit as expected. Otherwise, the guess is wrong. Figure 16.10 shows the procedure.[image: A331468_1_En_16_Fig10_HTML.gif]
Fig. 16.10Checking procedure for the method of assumed states








Example 16.2
Figure 16.11a presents a DC diode circuit, a resistor network bridged with the ideal diode. Solve the circuit, i.e., find all voltages and currents assuming the ideal-diode model. Denote the solution for the diode voltage and diode current in the DC steady state by capital letters V
D, I
D, respectively.[image: A331468_1_En_16_Fig11_HTML.gif]
Fig. 16.11(a) A 



                            
                            
                          resistor network bridged with an ideal diode. (b) Circuit analysis assuming the diode state is OFF (correct guess), leading to an open circuit. Absolute voltages versus ground are marked in bold. (c) Circuit analysis assuming the diode state ON (wrong guess), which is a short circuit. The absolute voltages with respect to ground are marked in bold







Solution: We first assume the diode is OFF

 and replace it by an open circuit; see Fig. 16.11b. Thus, the diode current I
D is zero. The circuit becomes a combination of two independent voltage dividers connected to the same power supply. The absolute voltages of the anode and the cathode with respect to ground are obtained from the voltage division principle and are equal to 5 and 10 V, respectively. The voltage across the diode is obtained as [image: 
$$ {V}_{\mathrm{D}}=5-10\;\mathrm{V}=-5\;\mathrm{V} $$
]. This negative value shows that our guess is correct. After that, all circuit currents are found using Ohm’s law. The total circuit current is 2 mA; it is equally divided between two independent voltage dividers. The circuit analysis in Fig. 16.11b is therefore complete; we have proved that the diode has a negative bias voltage. Consequently, it is not necessary to prove that the opposite guess will lead to a wrong conclusion, in this case, to a wrong direction of the diode current.

Exercise 16.2
For the purpose of completeness, present a solution 

for the diode state guess ON in Fig. 16.11a and show that there is a contradiction.

Answer: The assumed solution is given in Fig. 16.11c. The diode current of 0.75 mA flows though the diode in the opposite direction of the diode arrow. This is a contradiction; therefore, the guess is wrong.

We note that the equivalent circuit resistance in Fig. 16.11b is 7.5 kΩ, and in Fig. 16.11c it becomes 6.68 kΩ. It is interesting to note that the dissipated power V
S
2/R is greater in the second case. A correct diode state thus minimizes the circuit power.
Example 16.3
A diode circuit known as an OR logic gate is shown in Fig. 16.12. This 

circuit has two input voltages, V
1 and V
2, which may either be equal to 0 V or to 5 V. Solve the circuit by filling out Table 16.2 under the assumption that both diodes are ideal.Table 16.2
Output voltage

 of the diode circuit shown in Fig. 16.12 to be evaluated as a function of two input voltages


	
V
1 (V)
	
V
2 (V)
	
                              V
                              OUT
                            

	0
	0
	 
	0
	5
	 
	5
	0
	 
	5
	5
	 





Solution: For the first row of the table, all three voltages in Fig. 16.12 are zero. For the second row, diode D
2 is ON and diode D
1 is OFF. The last condition is confirmed by the reverse bias voltage, and the first condition is confirmed by the correct diode current. The output voltage is 5 V. For the third row of the table, the situation is opposite: diode D
1 is ON and diode D
2 is OFF. The output voltage is again 5 V. For the last row of the table,
                    
                    
                   both diodes are ON and [image: 
$$ {V}_{\mathrm{OUT}}=5\;\mathrm{V} $$
].[image: A331468_1_En_16_Fig12_HTML.gif]
Fig. 16.12An OR logic gate

 on the base of two ideal diodes






If we assign a binary value of “1” to the voltage of 5 V and binary value of “0” to the voltage of 0 V, 
                  
                  
                Table 16.2 from Example 16.3 can be rewritten in the form of a so-called truth table. Table 16.3 is a truth table for the OR logic gate constructed based on two diodes. An AND gate can be constructed in a similar fashion. The diode logic circuits (the so-called diode logic or DL) had once been popular, but they were quickly outperformed by the transistor logic circuits: the resistor-transistor logic (RTL) or the transistor-transistor logic (TTL).Table 16.3Output voltage of the diode circuit in Fig. 16.12 as a function of two input voltages in terms of binary numbers. This is known as a truth table


	
                            V
                            1
                          
	
                            V
                            2
                          
	
                            V
                            OUT
                          

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	1






16.2.2 Constant-Voltage-Drop Model
Figure 16.13 demonstrates the constant-voltage-drop model of a diode. This is the ideal-diode model, but with the inclusion of “turn-on” voltage V
D0 from Fig. 16.2, which has been used to approximate Shockley’s equation. The “voltage supply

” V
D0 and the diode have the same polarity. The constant-voltage-drop model is not a significant complication of the ideal-diode model: the method of 
                  assumed states
                  
                  
                 is still applicable. However, it provides better accuracy and is therefore a popular and robust extension of the ideal-diode model. We will use [image: 
$$ {V}_{\mathrm{D}0}=0.7\;\mathrm{V} $$
] for silicon diodes. For the ON-diode, we additionally introduce the voltage drop across the diode of 0.7 V in the forward direction, calculate the diode current, and finally check the current direction.[image: A331468_1_En_16_Fig13_HTML.gif]
Fig. 16.13The v–i characteristic of the constant-voltage-drop model. The diode in the forward-bias region is replaced by a DC voltage source having the same polarity






Example 16.4
Determine diode current and diode voltage

 in a DC circuit shown in Fig. 16.14 using (A) ideal-diode model and (B) constant-voltage-drop model.[image: A331468_1_En_16_Fig14_HTML.gif]
Fig. 16.14A basic

 diode circuit solved with the constant-voltage-drop model






Solution (A): We assume the diode in Fig. 16.14 is ON and replace it by a short circuit. The correct current direction confirms this assumption. One has[image: 
$$ {V}_{\mathrm{D}}=0,{I}_{\mathrm{D}}=3\;\mathrm{m}\mathrm{A} $$
]

 (16.2a)




Solution (B): We again assume the diode in Fig. 16.14 is ON and replace it by a short circuit plus a 0.7-V voltage supply. The circuit current is found using KVL. The

 correct current direction confirms the initial assumption. One has[image: 
$$ {V}_{\mathrm{D}}=0.7\;\mathrm{V},{I}_{\mathrm{D}}=2.3\;\mathrm{m}\mathrm{A} $$
]

 (16.2b)




It follows from Example 16.4 that the ideal-diode model less accurately predicts the circuit current (and other parameters) for relatively small supply voltages when compared with V
D0. However, its accuracy may be sufficient for voltages much greater than V
D0.
Exercise 16.3
Solve Example 16.4 when the supply voltages change to 120 V.

Answer: [image: 
$$ {V}_{\mathrm{D}}=0,{I}_{\mathrm{D}}=120\;\mathrm{m}\mathrm{A} $$
] and [image: 
$$ {V}_{\mathrm{D}}=0.7\;\mathrm{V},{I}_{\mathrm{D}}=119.3\;\mathrm{m}\mathrm{A} $$
].


16.2.3 Exponential Model in the Forward-Bias Region

 and Its Use
The most accurate 
                  exponential diode model
                  
                 makes use of Shockley’s equation (16.1a) and is r

epeated here for convenience:[image: 
$$ {i}_{\mathrm{D}}={I}_{\mathrm{S}}\left[ \exp \left(\frac{\upsilon_{\mathrm{D}}}{n{V}_{\mathrm{T}}}\right)-1\right] $$
]

 (16.3a)

The saturation current I
S and the ideality constant n in Eq. (16.3a) can hardly be found in the diode datasheet. Instead, two pairs of measured values of diode voltage and current are usually used. Assume that we know V
D1, I
D1 and V
D2, I
D2 at a given temperature and that [image: 
$$ {V}_{\mathrm{D}1,2}\gg {V}_{\mathrm{T}} $$
]. By neglecting the factor 1 in Eq. (16.3a), one finds the ideality factor as[image: 
$$ n=\frac{V_{\mathrm{D}2}-{V}_{\mathrm{D}1}}{V_{\mathrm{T}} \ln \left({I}_{\mathrm{D}2}/{I}_{\mathrm{D}1}\right)} $$
]

 (16.3b)

After that, the saturation current is evaluated in the form:[image: 
$$ {I}_{\mathrm{S}}=\frac{I_{\mathrm{D}1}}{ \exp \left(\frac{V_{\mathrm{D}1}}{n{V}_{\mathrm{T}}}\right)-1} $$
]

 (16.3c)



Exercise 16.4
A 1N4148 diode from Vishay Semiconductors has a current of 0.1 mA at 0.4 V and a current of 0.8 mA at 0.5 V at 25 °C. Determine the ideality factor and the saturation current at this temperature and in this range of

 diode currents.

Answer: [image: 
$$ n=1.9,{I}_{\mathrm{S}}=24.4\;\mathrm{nA} $$
].

Exercise 16.5
Repeat Exercise 16.4 for a 1N4148 diode manufactured by Fairchild. This diode has a current of 0.1 mA at 0.5 V and a current of 5 mA at 0.7 V at 25°.

Answer: [image: 
$$ n=2.0,{I}_{\mathrm{S}}=5.7\;\mathrm{nA} $$
].


16.2.4 
                Load-Line Analysis


              
With the 
exponential diode model, the circuit equation becomes a transcendental expression which complicates the analysis. A solution may be obtained graphically. Such a method is known as the 
                  load-line method
                  
                . Consider the circuit in Fig. 16.14. On one hand, the diode current as a function of diode voltage is given by the Shockley’s equation (16.3a). On the other hand, the same current is

 found with the help of KVL:[image: 
$$ {i}_{\mathrm{D}}=\frac{V_{\mathrm{S}}-{\upsilon}_{\mathrm{D}}}{R} $$
]

 (16.4)

where [image: 
$$ {V}_{\mathrm{S}}=3\;\mathrm{V},R=1\;\mathrm{k}\Omega $$
]. In Fig. 16.15, we plot both dependencies on the same graph. The Shockley’s equation is plotted to scale using [image: 
$$ n=1.7,{I}_{\mathrm{S}}=1.1\;\mathrm{nA} $$
] at 25 °C. The linear relation of Eq. (16.4) or the solid line in Fig. 16.15 is the load line. The load line intersects the diode v–i curve at a point Q. The point Q is known as the DC operating point

 (or the 
                  quiescent point
                  
                ) of the circuit. Its coordinates V
D, I
D give us the required circuit solution. The 
load-line method is a general method for studying arbitrary linear circuits represented by its Thévenin equivalent and connected to a nonlinear load.[image: A331468_1_En_16_Fig15_HTML.gif]
Fig. 16.15Shockley’s equation to scale and the load line for the circuit in Fig. 16.14






Example 16.5
Determine diode (or circuit) current and diode voltage in the DC circuit shown in Fig. 16.14 using the diode v–i curve from Fig. 16.15.

Solution: A visual inspection of the operating point Q in Fig. 16.15 indicates that the diode voltage and the diode current may be approximately estimated as[image: 
$$ {V}_{\mathrm{D}}\approx 0.65\;\mathrm{V},{I}_{\mathrm{D}}\approx 2.4\;\mathrm{m}\mathrm{A} $$
]

 (16.5)





16.2.5 Iterative Solution
A higher accuracy can be achieved with a precise 
                  iterative method
                  
                  
                . Equating the right-hand sides of Eqs. (16.3a) and (16.4), we obtain[image: 
$$ {I}_{\mathrm{S}}\left[ \exp \left(\frac{\upsilon_{\mathrm{D}}}{n{V}_{\mathrm{T}}}\right)-1\right]=\frac{V_{\mathrm{S}}-{\upsilon}_{\mathrm{D}}}{R}\Rightarrow {\upsilon}_{\mathrm{D}}=n{V}_{\mathrm{T}} \ln \left[\frac{V_{\mathrm{S}}-{\upsilon}_{\mathrm{D}}}{R{I}_{\mathrm{S}}}+1\right] $$
]

 (16.6a)

The transcendental equation (16.5a) for υ
D is solved using a basic iterative scheme:[image: 
$$ {\upsilon}_{\mathrm{D}}^{n+1}=n{V}_{\mathrm{T}} \ln \left[\frac{V_{\mathrm{S}}-{\upsilon}_{\mathrm{D}}^n}{R{I}_{\mathrm{S}}}+1\right], n=0,1,2,\dots $$
]

 (16.6b)

where the initial guess υ
D0 may be chosen arbitrarily. Table 16.4 shows the solution convergence for two choices of the initial diode voltage: 0.7 V and 0 V, respectively. In both cases, the convergence is excellent: an accurate solution is obtained after the second iteration already. The iterative algorithm works very well for lumped diode circuits.Table 16.4
Convergence 

of the iterative algorithm for the diode circuit with a 1N4148 small-signal Si switching diode having [image: 
$$ n=1.7,{I}_{\mathrm{S}}=1.1\;\mathrm{nA} $$
] at 25 °C


	
υ
D0 (V) (init. guess)
	
υ
D1 (V)
	
υ
D2 (V)
	
υ
D3 (V)

	0.7
	0.6320
	0.6333
	0.6333

	0.0
	0.6436
	0.6331
	0.6333





Example 16.6
Compare performance of the four diode approximations using the DC circuit shown in Fig. 16.14.

Solution: We collect the results 

of the two previous examples and Table 16.4:
Iterative method (most accurate): [image: 
$$ {V}_{\mathrm{D}}=0.6333\;\mathrm{V},{I}_{\mathrm{D}}=2.367\;\mathrm{m}\mathrm{A} $$
]



                    
                  Load-line method (visual inspection): [image: 
$$ {V}_{\mathrm{D}}=0.65\;\mathrm{V},{I}_{\mathrm{D}}=2.4\;\mathrm{m}\mathrm{A} $$
]

Constant-voltage-drop model: [image: 
$$ {V}_{\mathrm{D}}=0.7\;\mathrm{V},{I}_{\mathrm{D}}=2.3\;\mathrm{m}\mathrm{A} $$
]

Ideal-diode mode (least accurate): [image: 
$$ {V}_{\mathrm{D}}=0,{I}_{\mathrm{D}}=3\;\mathrm{m}\mathrm{A} $$
]

The conclusion of this example is that the simple constant-voltage-drop model and the load-line analysis perform quite well compared to the most-accurate solution.


16.2.6 Linearization About a Bias Point: Small-Signal Diode Model
The 
                  linearization procedure
                  
                  
                 for the diode (or any other nonlinear circuit element) is illustrated in Fig. 16.16. When compared to Fig. 16.15, this figure uses the same data, but employs a finer voltage scale. Quite often, a signal-processing radio-frequency diode is set in a DC circuit, which provides a certain 
DC operating point V
D, I
D shown in Fig. 16.16. The DC circuit so constructed is called the bias circuit.[image: A331468_1_En_16_Fig16_HTML.gif]
Fig. 16.16
Linearization 

procedure for a switching diode with [image: 
$$ n=1.7,{I}_{\mathrm{S}}=1.1\;\mathrm{nA} $$
] at 25 °C





Consequently, the DC operating point of the diode is called the 
                  bias point
                  
                  
                 (
                  
                
quiescent point). Further, a very weak AC signal υ
d(t), i
d(t) is added. Though weak, this signal contains information to be processed. The diode voltage and diode current become[image: 
$$ \begin{array}{c}\hfill {\upsilon}_{\mathrm{D}}(t)={V}_{\mathrm{D}}+{\upsilon}_{\mathrm{d}}(t)\hfill \\ {}\hfill {i}_{\mathrm{D}}(t)={I}_{\mathrm{D}}+{i}_{\mathrm{d}}(t)\hfill \end{array} \left|{\upsilon}_{\mathrm{d}}(t)\right|<{V}_{\mathrm{T}} $$
]

 (16.7a)

The inequality in Eq. (16.7a) means that the AC signal amplitude should be much less than 25 mV. The linearization concept states that this weak AC signal will satisfy not the complicated nonlinear diode expression, but the familiar linear Ohm’s law in the form:[image: 
$$ {\upsilon}_{\mathrm{d}}(t)={r}_{\mathrm{d}}{i}_{\mathrm{d}}(t) $$
]

 (16.7b)

where r
d is the small-signal diode resistance or incremental 
                  resistance
                  
                  
                 determined by the slope of the v–i dependence in Fig. 16.16. Thus, the diode becomes a resistor for small signals, which greatly simplifies the AC analysis. Our goal is to find this small-signal resistance as a function of V
D and I
D. To do so, we use the asymptotic expansion (Taylor series) with regard to the small parameter υ
d/V
T:[image: 
$$ \exp \left(\frac{\upsilon_{\mathrm{D}}}{n{V}_{\mathrm{T}}}\right)= \exp \left(\frac{V_{\mathrm{D}}}{n{V}_{\mathrm{T}}}\right) \exp \left(\frac{\upsilon_{\mathrm{d}}}{n{V}_{\mathrm{T}}}\right)= \exp \left(\frac{V_{\mathrm{D}}}{n{V}_{\mathrm{T}}}\right)\left(1+\frac{\upsilon_{\mathrm{d}}}{n{V}_{\mathrm{T}}}+O\left({\left(\frac{\upsilon_{\mathrm{d}}}{n{V}_{\mathrm{T}}}\right)}^2\right)\right) $$
]

 (16.7c)

and neglect all terms on the order of (υ
d/nV
T)2 or less denoted by the symbol O. Substitution into Shockley’s equation yields[image: 
$$ {i}_{\mathrm{d}}={I}_{\mathrm{S}} \exp \left(\frac{V_{\mathrm{D}}}{n{V}_{\mathrm{T}}}\right)\frac{\upsilon_{\mathrm{d}}}{n{V}_{\mathrm{T}}} $$
]

 (16.8)

Since V
D/V
T is usually much greater than one, we can use I
S exp(V
D/nV
T) instead of [image: 
$$ {I}_{\mathrm{D}}={I}_{\mathrm{S}}\left( \exp \left({V}_{\mathrm{D}}/n{V}_{\mathrm{T}}\right)-1\right) $$
]. This gives the small-signal diode resistance r
d in the form:[image: 
$$ {i}_{\mathrm{d}}=\frac{I_{\mathrm{D}}}{n{V}_{\mathrm{T}}}{\upsilon}_{\mathrm{d}}\Rightarrow {r}_{\mathrm{d}}=\frac{n{V}_{\mathrm{T}}}{I_{\mathrm{D}}} $$
]

 (16.9)

Mathematically, r
d is the inverse slope of the tangent line at the bias point in Fig. 16.16. The small-signal resistance is high at small bias currents and is low otherwise.

16.2.7 Superposition Principle for Small-Signal Diode Model
A circuit with the DC bias and a small AC signal is solved using the 
                  superposition principle
                  
                  
                 shown in Fig. 16.17. We solve the nonlinear DC diode circuit in Fig. 16.17a first. The DC solution is used to find the small-signal diode resistance in Fig. 16.17b. The linear AC circuit in Fig. 16.17b is solved next. The complete solution is the sum of both.[image: A331468_1_En_16_Fig17_HTML.gif]
Fig. 16.17Illustration of the 

superposition principle for small-signal diode circuits





Example 16.7
Determine the diode voltage for the circuit in Fig. 16.17 which superimposes a weak AC voltage signal and the DC bias. Use the constant-voltage-drop-diode model. Assume temperature of 25 °C and [image: 
$$ n=1.7 $$
].

Solution: We apply the method of assumed states to the DC circuit in Fig. 16.17a and obtain [image: 
$$ {I}_{\mathrm{D}}=4.3\;\mathrm{m}\mathrm{A} $$
]. The small-signal diode

 resistance is [image: 
$$ {r}_{\mathrm{d}}=\frac{n{V}_{\mathrm{T}}}{I_{\mathrm{D}}}\approx 10\;\Omega $$
]. The linear small-signal circuit in Fig. 16.17b is a voltage divider; the small-signal diode voltage is therefore given by [image: 
$$ {\upsilon}_{\mathrm{d}}(t)=\frac{10}{1010}\times 0.001 \cos \omega  t\approx 10 \cos \omega t\;\upmu \mathrm{V} $$
]. The total diode voltage is finally obtained in the form [image: 
$$ {\upsilon}_{\mathrm{d}}(t)=0.7\;\mathrm{V}+10 \cos \omega t\;\upmu \mathrm{V} $$
].



16.3 Diode Voltage Regulators and Rectifiers
This section studies major diode circuits such as rectifiers and regulators

. These circuits have applications both in power electronics and communication. When the primary application area is power electronics

, we attempt to designate the input AC voltage as the source voltage υ
S(t) and the output voltage as the load voltage υ
L(t). The same is done for voltage regulator circuits. Otherwise, we keep the notation υ
in(t) for the input voltage to the circuit and υ
out(t) for the output voltage, respectively. As to the phase, we pick the initial phase in the form that is either most convenient for the graphical representation of the problem or is of general convention. Specifically, we choose sin ω t for basic rectifier circuits and cos ω t for a signal-processing envelope (peak) detector circuit. We will label each individual diode in a circuit as D
1, D
2, etc.
16.3.1 Voltage Reference and Voltage Regulator
The first useful diode circuit is the 
                  voltage reference circuit
                  
                  
                 shown in Fig. 16.18. In amplifier and actuator circuits, it is often desired to have a fixed voltage reference with respect to ground, which is not affected by variations of the source voltage V
S and/or by particular values of the load resistance R
L. A resistive voltage divider is unable to do this. However, a diode circuit shown in Fig. 16.18 solves this problem. Indeed, the voltage reference can only be a multiple of the diode voltage drop [image: 
$$ {V}_{D0}=0.7\;\mathrm{V} $$
].[image: A331468_1_En_16_Fig18_HTML.gif]
Fig. 16.18Diode voltage 

reference for the load resistor R
L






The circuit shown in Fig. 16.18 simultaneously serves as a basic 
                  forward-bias voltage regulator
                  
                  
                . The voltage regulator is a circuit that provides a constant DC voltage between its terminals, no matter how much the voltage supply changes. The circuit in Fig. 16.18 is the 
                  shunt voltage regulator
                  
                  
                .
Example 16.8
Determine the load voltage and diode current

 for the regulator circuit in Fig. 16.18 given that [image: 
$$ {V}_{\mathrm{S}}=9\;\mathrm{V}\pm 0.5\;\mathrm{V} $$
] for two different values of the load resistance, [image: 
$$ {R}_{\mathrm{L}}=1\;\mathrm{M}\Omega $$
] and [image: 
$$ {R}_{\mathrm{L}}=1\;\mathrm{k}\Omega $$
]. Use the constant-voltage-drop-diode model to evaluate the circuit.

Solution: We apply the method of assumed states to the DC circuit in Fig. 16.18. We assume that both diodes in Fig. 16.18 are ON and replace them by short circuits plus two 0.7 V voltage supplies in series; this gives us[image: 
$$ {V}_{\mathrm{L}}={V}_{\mathrm{a}}=1.4\;\mathrm{V} $$
]

 (16.10)



in Fig. 16.18. The load current is therefore [image: 
$$ {I}_{\mathrm{L}}=1.4/{R}_{\mathrm{L}} $$
]. The current through the top resistor in Fig. 16.18 is [image: 
$$ I=\left({V}_{\mathrm{S}}-1.4\right)/R $$
]. The guess ON implies the correct direction of the diode current, that is,[image: 
$$ {I}_{\mathrm{D}}=I-{I}_{\mathrm{L}}=\left({V}_{\mathrm{S}}-1.4\right)/R-1.4/{R}_{\mathrm{L}}>0 $$
]

 (16.11)




The 

substitutions show that for any set of values [image: 
$$ {V}_{\mathrm{S}}=9\;\mathrm{V}\pm 0.5\;\mathrm{V} $$
] and [image: 
$$ {R}_{\mathrm{L}}=1\;\mathrm{M}\Omega $$
] or [image: 
$$ {R}_{\mathrm{L}}=1\;\mathrm{k}\Omega $$
], the inequality (16.11) is satisfied. Thus, the initial guess ON is always true. This means that the diode combination in Fig. 16.18 provides a constant voltage reference of 1.4 V given by Eq. (16.10) irrespective of the power supply voltage variations and/or load resistance variations.

The constant-voltage-drop-diode model

 employed in Example 16.18 may be improved using the small-signal diode approximation from the previous section. The key observation is that the small-signal diode resistance, specifically developed to study weak AC signals, is equally applicable for the study of arbitrary small variations of diode voltages such as the variations encountered in the present problem.
Exercise 16.6
Does the voltage regulator

 in Example 16.8 still operate properly when:	A.The supply v

oltage [image: 
$$ {V}_{\mathrm{S}}=5\;\mathrm{V}\pm 1\;\mathrm{V} $$
] is used?


 

	B.The load resistance of [image: 
$$ {R}_{\mathrm{L}}=100\;\Omega $$
] is used?


 






Answer: A. Yes. B. No.


16.3.2 Voltage Regulator with Zener Diode

Shunt Voltage Regulator

 with Zener Diode
If a voltage regulator with an output voltage of 5–20 V is required, the use of forward-biased diodes becomes impractical since many of them have to be used. The standard voltage regulator makes use of the Zener diode operating in the breakdown region as shown in Fig. 16.19a where R
L is the load resistance. Interestingly, the circuit in this figure and the circuit in Fig. 16.18 have in fact the same topology if we replace two forward-biased diodes by one reverse-biased Zener diode.[image: A331468_1_En_16_Fig19_HTML.gif]
Fig. 16.19(a) Shunt 

voltage regulator on the base of a Zener diode. (b). 
                            
                          Piecewise-linear diode model for the Zener diode in the breakdown region. (c) The circuit from (a) with the Zener diode replaced by its equivalent circuit and with the open-circuited load







Piecewise-Linear

 Diode Model
The Zener diode in the breakdown region is described by a 

piecewise-linear diode model. As the name implies, this model approximates the reverse-bias region by a linear dependence shown in Fig. 16.19b. A datasheet for the Zener diode typically specifies:	1.The dynamic or incremental Zener diode resistance r
Z, which is the inverse slope of the straight-line asymptote in Fig. 16.19b



 

	2.At least one diode test point V
ZT, I
ZT on the diode breakdown v–i curve that is also shown in Fig. 16.19b



 





This information is sufficient to construct the linear model in the breakdown region as[image: 
$$ {V}_{\mathrm{D}}={r}_{\mathrm{Z}}{I}_{\mathrm{D}}+{V}_{\mathrm{Z}0} $$
]

 (16.12a)

where the Zener breakdown voltage V
Z0 is found from the datasheet parameters as[image: 
$$ {V}_{\mathrm{Z}0}={V}_{\mathrm{Z}\mathrm{T}}-{r}_{\mathrm{Z}}{I}_{\mathrm{Z}\mathrm{T}} $$
]

 (16.12b)



Example 16.9
A 1N5231B Zener diode with [image: 
$$ {V}_{\mathrm{ZT}}=5.1\;\mathrm{V},{I}_{\mathrm{ZT}}=20\;\mathrm{m}\mathrm{A} $$
] and [image: 
$$ {r}_{\mathrm{Z}}=17\;\Omega $$
] is used in the voltage regulator circuit in Fig. 16.19a. Determine the load voltage given that [image: 
$$ {V}_{\mathrm{S}}=9\;\mathrm{V}\pm 1\;\mathrm{V} $$
] and the load has a very high (infinite) resistance.

Solution: We apply the method of assumed states to the DC circuit in Fig. 16.19 and assume that the Zener diode operates in the breakdown region. Substituting the diode data into Eq. (16.12b) yields the breakdown voltage of [image: 
$$ {V}_{\mathrm{Z}0}=4.76\;\mathrm{V} $$
]. The resulting circuit is shown in Fig. 16.19c where the infinite load resistance is replaced by an open circuit. The circuit (diode) current is given by [image: 
$$ I={I}_{\mathrm{D}}-\left({V}_{\mathrm{S}}-4.76\right)/\left(R+{r}_z\right) $$
]. Therefore, [image: 
$$ {V}_{\mathrm{L}}={r}_zI+4.76 $$
]. When the supply voltage is [image: 
$$ {V}_{\mathrm{S}}=9\;\mathrm{V}\pm 1\;\mathrm{V} $$
], the load voltage becomes [image: 
$$ {V}_{\mathrm{L}}=4.\ 831\;\mathrm{V}\pm 17\;\mathrm{mV} $$
]. Thus, the voltage regulation function of the

 circuit is quantified. The load voltage response to ±1 V supply change is known as line regulation. In the present example, the line regulation is 17 mV per 1 V or 17 mV/V. Finally, we must justify the initial guess of diode operation. This is done by checking the diode current: [image: 
$$ {I}_{\mathrm{D}}=4.2\;\mathrm{m}\mathrm{A}\pm 1\;\mathrm{m}\mathrm{A} $$
]. Since the current flows in the reverse direction, 
                      
                      
                    the initial assumption is also justified.



16.3.3 Half-Wave Rectifier
A diode rectifier is perhaps the most important application of the diode. Mostly large AC currents are rectified, i.e., converted to DC currents. The diode rectifier forms an input stage for electronic DC power supplies

 including switching-mode power supplies. Furthermore, diode rectifiers form a basis for battery-charging circuits including automotive applications. The diode rectifie

r is also an important part of wireless energy-harvesting and communication devices. In particular, any passive RFID tag uses a diode rectifier to convert the (very weak) AC power of a received electromagnetic signal to DC electric power. The concept of a simple (half-wave) diode rectifier is shown in Fig. 16.20. An AC power supply with sinusoidal voltage

 (either positive or negative with respect to ground) is connected to a load via a diode in series. We assume that [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \sin \omega t $$
]. Let us use the ideal-diode model first. When the voltage versus ground is positive, the diode is in the ON state and can be replaced by a wire. All electric power is transferred to the load and the current through the load flows from top to bottom. When the voltage is negative, the diode is OFF, and the load acquires no current. Hence, the current through the load always flows in one direction (or does not flow at all).[image: A331468_1_En_16_Fig20_HTML.gif]
Fig. 16.20Half-wave

 diode rectifier with a resistive load. The source in this figure is usually a secondary winding of a power transformer





Mathematically, the load voltage for the ideal-diode rectifier

 is expressed by[image: 
$$ {\upsilon}_{\mathrm{L}}(t)={\upsilon}_{\mathrm{S}}(t) \mathrm{if} {\upsilon}_{\mathrm{S}}(t)>0 $$
]

 (16.13a)


[image: 
$$ {\upsilon}_{\mathrm{L}}(t)=0 \mathrm{if} {\upsilon}_{\mathrm{S}}(t)\le 0 $$
]

 (16.13b)

Note that a battery charger is constructed in a similar way, with the load resistor in Fig. 16.20 replaced by a battery. A current-limiting resistor

 must also be added. Figure 16.21
a 

shows the load voltage (rectified voltage) for the AC source [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \sin \omega t $$
] with [image: 
$$ {V}_{\mathrm{m}}=90\;\mathrm{V} $$
] and [image: 
$$ f=\omega /\left(2\pi \right)=0.5\;\mathrm{Hz} $$
]. Other signals that are not necessarily sinusoidal, potentially not even periodic, may be rectified in a similar way.[image: A331468_1_En_16_Fig21_HTML.gif]
Fig. 16.21Rectified (or load) voltage versus source voltage

. (a) The result for the ideal half-wave diode rectifier or rectifier with a high input signal. (b) The result using the constant-voltage-drop-diode model for a moderate input signal





Exercise 16.7
Plot source voltage and load voltage

 for the half-wave rectifier with [image: 
$$ {V}_{\mathrm{m}}=3\;\mathrm{V} $$
] and [image: 
$$ f=0.5\;\mathrm{Hz} $$
] using the constant-voltage-drop-diode model.

Answer: The plot is given in Fig. 16.21b. The non-ideal diode in Fig. 16.21b conducts not over the entire 

positive half cycle characterized by the dimensionless angle of π (in terms of ω t), but over a smaller 
                    conduction angle
                    
                   given by [image: 
$$ \pi -2{ \sin}^{-1}\left({V}_{\mathrm{D}0}/{V}_{\mathrm{m}}\right) $$
] where [image: 
$$ {V}_{\mathrm{D}0}=0.7\;\mathrm{V} $$
].


16.3.4 
Full-Wave Rectifier
 with a Dual Supply
A drawback of the half-wave diode rectifier is that half of the AC signal (and of the AC power) is being lost. One solution to the problem is a full-wave diode rectifier shown in Fig. 16.22. This particular rectifier circuit uses a dual AC voltage supply, which is realized in practice by a secondary winding of a power transformer with a center tap at node b. We denote every identical individual supply in Fig. 16.22 by υ
S(t).[image: A331468_1_En_16_Fig22_HTML.gif]
Fig. 16.22The full-wave diode 
rectifier with a dual AC supply. The dual source in this figure is usually a center-tapped secondary winding of a power transformer





We assume that [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \sin \omega t $$
] in Fig. 16.22 and analyze the circuit using the ideal-diode model and the method of assumed states. When the top supply in Fig. 16.22 is positive versus ground, diode D
1 will be ON and diode D
2 will be OFF. The positive half-cycle will be rectified. However, when the top supply is negative versus ground, diode D
1 will be OFF and diode D
2 will be ON. The negative half-cycle will be rectified. However, the load current will always be directed from right to left in Fig. 16.22. Mathematically, 
                  
                the load voltage for the ideal full-wave diode rectifier is expressed by[image: 
$$ {\upsilon}_{\mathrm{L}}(t)=\left|{\upsilon}_{\mathrm{S}}(t)\right| \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{any} {\upsilon}_{\mathrm{S}}(t) $$
]

 (16.14)

Figure 16.23a shows the load voltage (rectified voltage) for the AC source [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \sin \omega t $$
] with [image: 
$$ {V}_{\mathrm{m}}=90\;\mathrm{V} $$
] and [image: 
$$ f=\omega /\left(2\pi \right)=0.5\;\mathrm{Hz} $$
].[image: A331468_1_En_16_Fig23_HTML.gif]
Fig. 16.23Rectified (or load) voltage versus source voltage. (a) The result for the ideal full-wave diode rectifier or full-wave rectifier with a high input signal. (b) The result using the constant-voltage-drop-diode model for a moderate input signal





Exercise 16.8
Plot the source voltage and the load voltage for the full-wave rectifier with [image: 
$$ {V}_{\mathrm{m}}=3\;\mathrm{V} $$
] and [image: 
$$ f=0.5\;\mathrm{Hz} $$
] using the constant-voltage-drop-diode model and give the general mathematical expression for the load voltage corresponding to this model.

Answer: The plot is given in Fig. 16.23b. The load voltage becomes[image: 
$$ \begin{array}{l}{\upsilon}_{\mathrm{L}}(t)={\upsilon}_{\mathrm{S}}(t)-0.7 \mathrm{if} {\upsilon}_{\mathrm{S}}(t)>0.7\\ {}{\upsilon}_{\mathrm{L}}(t)=\left|{\upsilon}_{\mathrm{S}}(t)+0.7\right| \mathrm{if} {\upsilon}_{\mathrm{S}}(t)<-0.7\\ {}{\upsilon}_{\mathrm{L}}(t)=0 \mathrm{if} \left|{\upsilon}_{\mathrm{S}}(t)\right|\le 0.7\end{array} $$
]

 (16.15)





16.3.5 Diode Bridge Rectifier
The 
                  diode bridge rectifier
                  
                 also does the full-wave rectification. However, it is operating using a single AC supply, similar to the half-wave rectifier. Four diodes are used instead of two. Nowadays this is not a serious drawback since diodes are inexpensive. The corresponding circuit is shown in Fig. 16.24. The circuit is again analyzed using the ideal-diode model and the method of assumed states. Figure 16.25 shows the result of this analysis: the current flow at positive and negative voltages of the AC power supply, respectively. When the voltage is positive, diodes D
2 and D
4 are ON and diodes D
1 and D
3 are OFF. When it is negative, the opposite is true: diodes D
1 and D
3 are ON, but diodes D
2 and D
4 are OFF. We can see from Fig. 16.25 that the current through the load resistor flows in the same direction at both positive and negative voltages. Thus, the rectification is achieved and the negative phase of the AC signal is not lost. The ideal-diode bridge rectifier is characterized by Eq. (16.14). In sum, the full-wave rectifier delivers twice as much power to the load as the half-wave rectifier does.[image: A331468_1_En_16_Fig24_HTML.gif]
Fig. 16.24The full-wave diode bridge rectifier: four diodes are bridged by the load resistor R
L





[image: A331468_1_En_16_Fig25_HTML.gif]
Fig. 16.25Current flow in the full-wave diode bridge rectifier assuming ideal diodes. Circuit on the left is for positive applied voltage; circuit on the right is for negative applied voltage





Exercise 16.9
Will the diode bridge rectifier follow Fig. 16.23a, b obtained for the full-wave 
bridge rectifier with the dual supply?

Answer: Fig. 16.23a will be identical for both rectifier types. However, Fig. 16.23b will be different.


16.3.6 Application Example: Automotive Battery-Charging System
When an automotive generator starts to work, it recharges the battery and supplies electric power for all electronic systems in the vehicle


. The automotive generators have a long history. Until the early 1960s, DC generators have been driven by a belt on the crankshaft. After that, they have been replaced by three-phase AC generators, the alternators. Three coils of an alternator stator may be delta or 
                  wye
                  
                  
                  
                 connected; see Chapter 11. Since the mid-1980s, the delta connection has been used far more frequently. In this application example, we apply our prior knowledge of the diode rectifier circuits to understand the operation of an automotive alternator with a rectifier circuit.

                  Diode Circuit Transformation



                
Figure 16.26a shows part of a three-phase diode rectifying circuit that rectifies a voltage f


rom one of the three stator coils of an alternator (three-phase voltage generator studied in Chapter 11) and charges the battery. Every stator coil is an independent voltage source that is offset 120° with regard to the others. The complete rectifying circuit includes six diodes; every voltage power supply uses four of them. Figure 16.26a shows an equivalent circuit for one such power supply (one phase); the charging battery is replaced by a resistor load. Two other circuits are identical. The circuit uses chassis ground; this is typical in automotive applications. A node-by node analysis (the nodes are marked as * and ** in Fig. 16.26a) shows that the circuit in Fig. 16.26a may be converted to the circuit shown in Fig. 16.26b. This circuit is “almost” the familiar full-wave rectifier from Fig. 16.24, except that the load is now connected to the chassis ground instead of the opposite end of the bridge. The opposite bridge end is also grounded. We remember, however, that the chassis ground is just a metal case, and it conducts the electric current exactly as an ordinary metal wire does. Thus, we can restore the missing connection and put the load in the middle of the bridge to obtain exactly the rectifier circuit of Fig. 16.24.[image: A331468_1_En_16_Fig26_HTML.gif]
Fig. 16.26(a) Model of 


one phase of an automotive battery-charging system. The voltage source is a winding of the alternator (three-phase voltage generator). (b) Conversion of the circuit depicted in (a) to the full-wave diode rectifier. (c) Delta-connected alternator and the diode rectifier bridge. (d) Top: rectified generator voltage; bottom: alternator rectifier circuit. Six power diodes with heat sinks are shown (with permission from General Motors)







Three-Phase Diode Rectifier


 with Delta-Connected Alternator
Figure 16.26c shows the complete rectifying system for a delta-connected automotive alternator. Every independent power supply υ
ab(t), υ
bc(t), and υ
ca(t) is connected to its own bridge rectifier circuit shown in Fig. 16.26a, b. 
                    
                    
                    
                  Those circuits share common diodes so that the total number of diodes is six. We reduce each circuit to the standard bridge rectifier model in Fig. 16.25. We can apply the method of assumed states to each individual circuit based on the ideal-diode model. The individual power supply voltages are given by [image: 
$$ {\upsilon}_{\mathrm{ab}}(t)={V}_{\mathrm{m}} \cos \left(\omega t\right) $$
], [image: 
$$ {\upsilon}_{\mathrm{bc}}(t)={V}_{\mathrm{m}} \cos \left(\omega t-120{}^{\circ}\right) $$
], and [image: 
$$ {\upsilon}_{\mathrm{ca}}(t)={V}_{\mathrm{m}} \cos \left(\omega t+120{}^{\circ}\right) $$
]. The rectified load voltages have the form shown in Fig. 16.23b to within a phase shift.
Although every individual diode circuit is nonlinear, the currents add up at the load so that their linear superposition applies for the net load voltage and current. Figure 16.26d shows the rectified load voltage found as the sum of the three voltage contributions; the hardware prototype of the rectifier is shown below. We emphasize that modeling and simulation of automotive electrical power systems facilitate efficient design of the next generation of vehicles.


16.3.7 Application Example: Envelope (or Peak) Detector Circuit
We now discuss a very different, low-power, application of the diode rectifier concept called the 
                  envelope detector circuit
                  
                 or the 
                  peak detector circuit
                  
                . Such a rectifier circuit is primarily used for the 
                  demodulation
                  
                  
                  
                 of radio-frequency signals up to the very high frequencies of 60 GHz. It is also used for radio-frequency power
 
                  
                  
                  
                measurements and RF power harvesting. A simple envelope detector circuit is shown in


 Fig. 16.27a. This circuit is identical to the half-wave rectifier circuit in Fig. 16.20, except for the addition of a capacitance C. The source voltage υ
S(t) is now the input voltage υ
in(t) and the load voltage υ
L(t) is now the output voltage υ
out(t).[image: A331468_1_En_16_Fig27_HTML.gif]
Fig. 16.27Envelope detector circuit and its operation


; (a) circuit, (b) modulated input signal, (c) output signal without capacitor C, and (d)
                          
                          
                          
                         output signal with capacitor C







                  Amplitude-Modulated Signal



                
The received and sufficiently amplified radio-frequency signal at the input to the envelope detector has the form:[image: 
$$ {\upsilon}_{\mathrm{in}}(t)={V}_{\mathrm{m}}\left[1+m(t)\right] \cos \omega t $$
]

 (16.16)

It is shown in Fig. 16.27b where V
m cos ωt is the radio-frequency carrier. The carrier supports the radio transmission, but does not carry any useful information itself. The information is hidden in a low-frequency 
                    amplitude envelope
                    
                   seen in Fig. 16.27b. Mathematically, the envelope is described by a function [image: 
$$ m(t),\left|m(t)\right|<1 $$
] in Eq. (16.16). The parameter m(t) is a modulating signal,
                    
                    
                    
                   a slowly varying function of time when compared to the carrier frequency. For example, the modulating signal may be a voice signal or a digital binary code (ON/OFF). In the simplest case of a pure modulating tone,[image: 
$$ m(t)={A}_{\mathrm{m}} \cos \Omega  t, \Omega \ll \omega,  0\le {A}_{\mathrm{m}}\le 1 $$
]

 (16.17)

where Ω is the frequency of the modulating signal and A
m is the dimensionless 
                    modulation depth
                    
                  . The modulation depth is the amplitude of the modulating signal. The purpose of the envelope detector circuit is to recover the envelope of an amplitude-modulated signal.
Exercise 16.10
Determine the carrier frequency and the frequency of the modulating pure-tone signal in Fig. 16.27b.

Answer: 600 kHz and 100 kHz, respectively.


Operation of an Envelope Detector




The envelope carries information. Therefore, it should be extracted at the receiver, i.e., the received signal should be demodulated or downconverted. This is the underlying principle of wireless communications. The goal of the envelope detector is to perform this task. We assume the ideal-diode model for simplicity. Without the capacitor, the circuit performs identical to the half-wave diode rectifier as shown in Fig. 16.27c. However, when the capacitor in 


Fig. 16.27a is present, the situation changes.
The capacitor is charged when the diode conducts, i.e., when the input voltage υ
in(t) is positive. This process continues until the capacitor voltage υ
C(t) reaches the peak input voltage of the positive phase. Beyond this point, the diode becomes reverse biased and the capacitor voltage remains the same since there is no discharge path through the diode. However, there is another discharge path through resistor R
L. If R
L is large, the capacitor still discharges slowly between two time periods. Its voltage shown in Fig. 16.27c by a solid curve approximately follows the signal envelope. So does the output voltage of the circuit, which is indeed equal to the capacitor voltage, [image: 
$$ {\upsilon}_{\mathrm{out}}(t)={\upsilon}_{\mathrm{C}}(t) $$
]. The appropriate envelope extraction implies a proper choice for the time constant τ of the corresponding RC circuit, [image: 
$$ \tau ={R}_{\mathrm{L}}C $$
]. This constant should satisfy two inequalities:[image: 
$$ \tau \gg {T}_{\mathrm{carrier}}=\frac{2\pi }{\omega }, \tau \ll {T}_{\mathrm{modulation}}=\frac{2\pi }{\Omega} $$
]

 (16.18)

where T
carrier, T
modulation are the period of the carrier signal and the (minimum) period of the modulation signal, respectively. The first inequality in 


Eq. (16.18) ensures that there are no significant ripples between two consecutive short periods of the carrier. When this inequality is satisfied, the small ripple voltage is equal to (T
carrier/τ)V
m given no modulation. The second inequality in Eq. (16.18) ensures that the output to the envelope detector does follow the modulation signal, but does not stay the same all the time. Figure 16.27 corresponds to the so-called linear region of operation of the envelope detector where its output voltage is proportional to the modulating signal. Figure 16.28 shows a basic AM radio receiver circuit constructed in an undergraduate laboratory. The envelope detector marked by a circle block follows the front-end amplifier block.[image: A331468_1_En_16_Fig28_HTML.gif]
Fig. 16.28AM radio receiver circuit with the envelope detector





Example 16.10
Design an envelope detector given the carrier frequency of [image: 
$$ f=1\;\mathrm{MHz} $$
]. The modulation is a human voice, with the maximum passing modulation frequency of 5 kHz.

Solution: First, we find the period of the carrier and the period of the modulating signal: [image: 
$$ {T}_{\mathrm{carrier}}=1\;\upmu \mathrm{s},{T}_{\mathrm{modulation}}=200\;\upmu \mathrm{s} $$
]. A number of choices may satisfy Eq. (16.18). One possible choice is given by [image: 
$$ {R}_{\mathrm{d}}=50\;\mathrm{k}\Omega, {C}_{\mathrm{d}}=0.5\;\mathrm{nF} $$
]. Thus, [image: 
$$ \tau ={R}_{\mathrm{L}}C=25\;\upmu \mathrm{s} $$
].


Modeling Envelope Detector and Square-Law Region


 of Operation
The circuit shown in Fig. 16.27 (and other similar diode circuits) can be analyzed using SPICE. In some cases, it is also useful to have an analytical description. KCL gives[image: 
$$ C\frac{d{\upsilon}_{\mathrm{out}}}{dt}={i}_{\mathrm{D}}-\frac{\upsilon_{\mathrm{out}}}{R_{\mathrm{L}}} $$
]

 (16.19a)

The corresponding nonlinear ODE for the envelope detector has the form:[image: 
$$ \frac{d{\upsilon}_{\mathrm{out}}}{dt}+\frac{\upsilon_{\mathrm{out}}}{\tau }=\frac{R_{\mathrm{L}}{I}_{\mathrm{S}}}{\tau } \exp \left[\left({\upsilon}_{\mathrm{in}}+{V}_{\mathrm{bias}}-{\upsilon}_{\mathrm{out}}\right)/{V}_{\mathrm{T}}\right] $$
]

 (16.19b)

where V
bias is an extra DC bias voltage applied to the diode. Equation (16.19b) is then solved numerically as done in a number of software packages including MATLAB. The model of the envelope detector studied thus far implies large input signals. For small input signals, an appropriate DC bias voltage can be applied to the diode. For very small input signals, which are less than thermal voltage [image: 
$$ {V}_{\mathrm{T}}\approx 0.026\;\mathrm{V} $$
], 
                    
                    
                    
                  the (modified) small-signal diode model developed in the previous section can be used. Its key modification is that the last square term on the right-hand side of Eq. (16.7c) must be retained. As a result, the circuit behavior becomes quite different. The output voltage now follows the square of the input voltage. Thus, the envelope detector operates not in the linear region (as for large input signals), but in the square-law region, where its output voltage is proportional to the power of the received signal, and not to its linear envelope. In the square-law region, the envelope detector is a simple and versatile radio-frequency (RF) power meter.



16.4 Diode Wave-Shaping Circuits
This section studies common wave-shaping (signal-processing) diode circuits such as clamper circuits, voltage doublers and multipliers, and clipper circuits. These circuits find applications in power electronics


. We keep the notation υ
in(t) for the input voltage of the circuit and υ
in(t) for the output voltage of the circuit, respectively. As to the phase of an AC source, we choose the input voltage in the form [image: 
$$ {\upsilon}_{\mathrm{in}}(t)=-{V}_{\mathrm{m}} \sin \omega  t={V}_{\mathrm{m}} \cos \left(\omega t+\pi /2\right) $$
], which is perhaps most convenient for the graphical representation of the clamper and multiplier circuit operation


.
16.4.1 
Diode Clamper Circuit
 (DC Restorer)
The 
                  diode clamper circuit
                  
                  
                  
                 or 
                  DC restorer circuit
                  
                 without a load resistor is shown in Fig. 16.29a. It is identical to the envelope (or peak) detector circuit seen in Fig. 16.27a with the load resistor removed. However, the output voltage is now the (reverse) voltage across the diode or the voltage across the voltage supply and capacitance C
1 in series. This change leads to different applications. A similar situation occurs for filter circuits, where voltages across different elements lead to different filter types.[image: A331468_1_En_16_Fig29_HTML.gif]
Fig. 16.29
Diode 


clamper circuit and the corresponding voltage waveforms. The steady-state value of the capacitor voltage is shown in the box






The idea behind the circuit in Fig. 16.29a is explained using the ideal-diode model. We assume that the input voltage has the period of 2 ms and starts with a negative phase, i.e., [image: 
$$ {\upsilon}_{\mathrm{in}}(t)=-{V}_{\mathrm{m}} \sin \omega  t $$
] in Fig. 16.29b. The capacitor starts to charge when diode D
1 conducts, i.e., when the input voltage υ
in(t) is negative. The charge polarity is shown in Fig. 16.29a. This process continues until the capacitor voltage υ
C(t) reaches the peak input voltage V
m. Afterwards, the diode becomes reverse biased and the 
capacitor voltage remains the same over an infinitely large number of periods as in Fig. 16.29b since there is no discharge path through the diode. The output voltage with respect to circuit ground is simply the sum of the capacitor voltage and the supply voltage; it is shown in Fig. 16.29b as the top curve. We conclude that, in the clamper circuit, the lowest peak of a waveform is clamped to zero with respect to ground, hence its name. This is important for square digital waveforms in pulse-width modulation, which are generated as entirely positive pulse trains, but transmitted with zero mean values. The clamper circuit lifts up the entire signal and thus 


makes it possible to measure and utilize the variable duty cycle of the pulse train, which carries information. This process effectively restores the lost DC reference voltage with respect to the receiver ground; here is another name of the 

DC restorer circuit.
Exercise 16.11
How do voltage waveforms in Fig. 16.29b change if the diode polarity in Fig. 16.29a is reversed and the input voltage becomes [image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \sin \omega t $$
]?

Answer: All three curves in Fig. 16.29b will be mirror-reflected with respect to the x-axis. Thus, the output (diode) voltage will always be negative.

Exercise 16.12
How will the diode voltage in Fig. 16.29b change if the input voltage has an extra DC component of [image: 
$$ -{V}_{\mathrm{m}} $$
]?

Answer: The diode voltage with respect to circuit ground will not change. However, the 
steady-state capacitor voltage will double.

When a finite load resistance R
L is connected in shunt with the diode D
1 in Fig. 16.29a, the ideal output waveform in Fig. 16.29b will be distorted and it will no longer have 


only positive output voltages.

16.4.2 
                Diode Voltage Doubler and Multiplier



              


                  Diode voltage multiplier
                  
                 circuits are employed to generate a high-voltage DC signal from an AC source. Such circuits generally avoid using an electric transformer in applications where its use is impractical due to size, safety, loss, and other issues. For example, voltage multipliers can boost low-voltage radio-frequency signals received by an antenna. They can also be used to generate high static voltages for special power supplies. Figure 16.30a shows a circuit for the 
                  diode voltage doubler
                  
                 invented in 1914 by Heinrich Greinacher, a German-Swiss experimenter. Typically, the output capacitance C
2 is larger than the series coupling capacitance C
1. The idea behind the circuit in Fig. 16.29a will be explained using the ideal-diode model and a combination of already studied cascaded circuit blocks. Here again, we note an obvious analogy with the AC filter circuits, which may also combine multiple filter stages with different features in one.[image: A331468_1_En_16_Fig30_HTML.gif]
Fig. 16.30

                          
                          
                          
                        Diode voltage doubler circuit (Greinacher circuit) and the corresponding voltage waveforms. The steady-state values of the capacitor voltages are shown in the boxes






We note that the first stage of the doubler is the clamper circuit from Fig. 16.29. The voltage across diode D
1 is exactly the curve depicted in Fig. 16.29b; see also Fig. 16.30b. This voltage is now an input voltage to the second stage of the circuit which is the envelope detector circuit in Fig. 16.27a without the load resistor. Therefore, the circuit in


 Fig. 16.30 generates a positive DC voltage of 2V
m when excited by the input signal [image: 
$$ {\upsilon}_{\mathrm{in}}(t)=-{V}_{\mathrm{m}} \sin \omega t $$
]; see Fig. 16.30b. It is therefore named a doubler circuit.
Exercise 16.13
How will the output voltage of the doubler circuit in Fig. 16.30b change if the input voltage has an extra DC component of [image: 
$$ -{V}_{\mathrm{m}} $$
]?

Answer: The output voltage versus ground will not change.

A natural extension of the doubler circuit is the 
                  diode voltage quadrupler circuit
                  
                 shown in Fig. 16.31. We will describe the circuit operation and determine the output voltage in the AC steady state. The key point is again the stage-by-stage analysis. The quadrupler circuit in Fig. 16.31 includes two cascaded diode voltage doublers. However, the output of the first doubler is not the DC voltage of 2V
m across capacitor C
2, but the voltage drop υ
D2 across diode D
2. According to KVL, [image: 
$$ {\upsilon}_{\mathrm{D}2}={\upsilon}_{\mathrm{in}}+{\upsilon}_{\mathrm{C}1}-{\upsilon}_{\mathrm{C}2} $$
]. If we employ the already existing curves υ
C1, υ
C2 from Fig. 16.30b, we obtain the voltage drop υ
D2 in the form shown in Fig. 16.30b and repeated in Fig. 16.31b. Now, we employ this voltage, which is [image: 
$$ {\upsilon}_{\mathrm{in}}(t)-{V}_{\mathrm{m}} $$
] for the AC steady state, as the input voltage to the second voltage doubler. The second voltage doubler is also using the new reference ground point of 2V
m—the virtual ground. The lowest peak of υ
D2 is clamped to zero volts versus the new ground point and then rectified; see Fig. 16.31b. Hence, we obtain the DC voltage of 4V
m at the output of the quadrupler circuit versus the original circuit ground as shown in Fig. 16.31a. Multiplier 


circuits of a different order are constructed in a similar way.[image: A331468_1_En_16_Fig31_HTML.gif]
Fig. 16.31Voltage quadrupler diode circuit and the corresponding voltage waveforms. The steady-state values of the capacitor voltages are shown in the boxes







16.4.3 Positive, Negative, and Double Clipper


                  Diode clipper circuits
                  
                  
                 derive their name by operating in such a way that a part of the input signal is clipped off at the output. Another name is the 
                  diode limiter circuits
                  
                  
                , which often implies a protection function of such circuits against overload, electrostatic discharge, etc. Figure 16.32a shows the 
                  positive diode clipper circuit
                  
                  
                . The circuit topology is exactly that of the half-wave diode rectifier in Fig. 16.20. However, the output voltage is now the diode voltage, not the resistor voltage.[image: A331468_1_En_16_Fig32_HTML.gif]
Fig. 16.32Positive diode 

clipper circuit and the corresponding voltage waveform





When the constant-voltage-drop-diode model

 (with the voltage drop of 0.7 V) is used, the circuit output has the form shown in Fig. 16.32b given that the input voltage is [image: 
$$ {\upsilon}_{\mathrm{in}}(t)=-{V}_{\mathrm{m}} \sin \omega t $$
], [image: 
$$ {V}_{\mathrm{m}}=4\;\mathrm{V} $$
]. The positive signal voltages above +0.7 V are thus clipped off. By analogy with the positive clipper, we can also introduce the 
                  negative diode clipper circuit
                  
                  
                 and the 
                  double diode clipper circuit
                  
                  
                , see Fig. 16.33. The negative clipper
 circuit clips negative signal voltages below −0.7 V, whereas the double clipper
 circuit clips both halves of the voltage waveform if they exceed ±0.7 V. Similar clipper circuits can be constructed with the Zener diodes. A single Zener diode may in fact clip voltages of both polarities, in the forward-bias region and in the breakdown region, respectively.[image: A331468_1_En_16_Fig33_HTML.gif]
Fig. 16.33

                          
                        Negative clipper circuit

, double clipper circuit, and the corresponding voltage waveforms





Example 16.11
Figure 16.34a shows a diode clipper circuit commonly used for electrostatic discharge (ESD) protection

. Describe its operation and plot to scale the output voltage over three periods given the input voltage of [image: 
$$ {\upsilon}_{\mathrm{in}}(t)=-{V}_{\mathrm{m}} \sin \omega t $$
] with [image: 
$$ {V}_{\mathrm{m}}=10\;\mathrm{V} $$
] and [image: 
$$ {V}_{\mathrm{CC}}=5\;\mathrm{V} $$
].

Solution: We will use the method of assumed states and the constant-voltage-drop model to solve the diode circuit. 
                    
                    
                  When [image: 
$$ {\upsilon}_{\mathrm{in}}(t)<-0.7\;\mathrm{V} $$
], diode D
2 conducts. The output voltage stays at −0.7 V. When [image: 
$$ {\upsilon}_{\mathrm{in}}(t)>-0.7\;\mathrm{V} $$
], diode D
2 is an open circuit with no influence on the solution. However, diode D
1 starts to conduct when [image: 
$$ {\upsilon}_{\mathrm{in}}(t)>{V}_{\mathrm{CC}}+0.7\;\mathrm{V} $$
]. In this case, the output voltage is the voltage across D
1 plus +0.7 V. Thus, the output voltage has the form shown in Fig. 16.34b. In other words, the diode circuit in Fig. 16.34a prevents the signal from exceeding the power supply rails by more than 0.7 V.[image: A331468_1_En_16_Fig34_HTML.gif]
Fig. 16.34ESD discharge protection clipper circuit and the corresponding voltage waveforms







16.4.4 Transfer Characteristic of a Diode Circuit



Since the diode circuits are inherently nonlinear, the meaning of the amplitude/phase transfer function, which is common for linear circuits, cannot be applied. Instead, the diode circuits are described by their transfer characteristic. The transfer characteristic of the diode circuit is simply the ratio of the instantaneous output voltage to the instantaneous input (source) voltage. Thus, in order to find the transfer characteristic, we consider the circuit behavior in the DC steady state. The transfer characteristic is well defined for the diode circuits containing only diodes and resistances. Those are simple rectifiers and clippers/limiter circuits. On the other hand, the transfer characteristic of the diode circuits with dynamic circuit elements (clamper circuits, voltage doublers and multipliers) is not well defined since it is time dependent. Figure 16.35 shows the transfer characteristics of three clipper circuits from Figs. 16.32 and 16.33, respectively.[image: A331468_1_En_16_Fig35_HTML.gif]
Fig. 16.35Transfer characteristics of diode clipper circuits





Example 16.12
The clipper (limiter) circuits studied in Figs. 16.32 and 16.33 are called the 
                    hard limiter
                    
                  
s. 
                    Soft limiters
                    
                   also exist: they are characterized by a smoother transfer characteristic. The circuit shown in Fig. 16.36a is the 
                    positive
                    
                  
soft limiter. Plot its transfer characteristic given that [image: 
$$ {R}_2=0.5{R}_1 $$
].

Solution: We use the method of assumed states and the constant-voltage-drop model to solve the diode circuit.
When [image: 
$$ {\upsilon}_{\mathrm{in}}<0.7\;\mathrm{V} $$
], diode D
1 does not conduct. The output voltage is exactly the input voltage which corresponds to the straight line of slope 1 in Fig. 16.36b. When [image: 
$$ {\upsilon}_{\mathrm{in}}>0.7\;\mathrm{V} $$
], the output voltage is the voltage across resistance R
2 and the diode combined, that is, [image: 
$$ {\upsilon}_{\mathrm{out}}={R}_2/\left({R}_1+{R}_2\right)\left({\upsilon}_{\mathrm{in}}-0.7\right)+0.7\;\mathrm{V} $$
]. Given [image: 
$$ {R}_2=0.5{R}_1 $$
] this voltage corresponds to the straight 

line of slope 1/3 in Fig. 16.36b. Other variations are possible.[image: A331468_1_En_16_Fig36_HTML.gif]
Fig. 16.36Transfer c

haracteristic of the 
soft limiter circuit








Summary

                	
                            Common diode circuits—circuits with diodes and resistors
                          

	
                            Sensors, voltage references/regulators
                          

	1. Diode temperature sensor
	
                            [image: A331468_1_En_16_Figav_HTML.gif]
                          
	1.Uses temperature dependence of diode pn-junction parameters2. Resistor R determines necessary diode current3. Typical sensitivity is minus 2 mV to minus 4 mV per 1 °C

	2. Forward-bias voltage reference/voltage regulator
	
                            [image: A331468_1_En_16_Figaw_HTML.gif]
                          
	1. Provides a fixed reference voltage in a circuit2. Provides a constant DC voltage to the load3. Solved using the constant-voltage-drop model or the small-signal diode model

	3. Zener voltage regulator
	
                            [image: A331468_1_En_16_Figax_HTML.gif]
                          
	For high-resistance load:

                            [image: 
$$ \begin{array}{l}{V}_L={r}_Z\frac{V_S-{V}_{Z0}}{R+{r}_Z}+{V}_{Z0},\\ {}{V}_{Z0}={V}_{Z T}-{r}_Z{I}_{Z T}\end{array} $$
]
                          

	
                            Rectifiers and clippers
                          

	4. Half-wave rectifier[image: A331468_1_En_16_Figay_HTML.gif]

	
                            [image: A331468_1_En_16_Figaz_HTML.gif]
                          
	
                            [image: A331468_1_En_16_Figba_HTML.gif]
                          

	5. Full-wave rectifier[image: A331468_1_En_16_Figbb_HTML.gif]

	
                            [image: A331468_1_En_16_Figbc_HTML.gif]
                          
	
                            [image: A331468_1_En_16_Figbd_HTML.gif]
                          

	6. Full-wave bridge rectifier[image: A331468_1_En_16_Figbe_HTML.gif]

	
                            [image: A331468_1_En_16_Figbf_HTML.gif]
                          
	
                            [image: A331468_1_En_16_Figbg_HTML.gif]
                          

	7. Positive clipper/limiter[image: A331468_1_En_16_Figbh_HTML.gif]

	
[image: A331468_1_En_16_Figbi_HTML.gif]Clips positive voltages
	
                            [image: A331468_1_En_16_Figbj_HTML.gif]
                          

	8. Negative clipper/limiter[image: A331468_1_En_16_Figbk_HTML.gif]

	
[image: A331468_1_En_16_Figbl_HTML.gif]Clips negative voltages
	
                            [image: A331468_1_En_16_Figbm_HTML.gif]
                          

	9. Double clipper/limiter[image: A331468_1_En_16_Figbn_HTML.gif]

	
[image: A331468_1_En_16_Figbo_HTML.gif]Clips pos./neg. voltages
	
                            [image: A331468_1_En_16_Figbp_HTML.gif]
                          

	10. ESD protection circuit[image: A331468_1_En_16_Figbq_HTML.gif]

	
[image: A331468_1_En_16_Figbr_HTML.gif]Clips signals outside power rails
	
                            [image: A331468_1_En_16_Figbs_HTML.gif]
                          

	11. Zener diode clipper/limiter[image: A331468_1_En_16_Figbt_HTML.gif]

	
[image: A331468_1_En_16_Figbu_HTML.gif]Clips positive/negative voltages
	
                            [image: A331468_1_En_16_Figbv_HTML.gif]
                          

	12. Zener diode double clipper/limiter[image: A331468_1_En_16_Figbw_HTML.gif]

	
[image: A331468_1_En_16_Figbx_HTML.gif]Clips positive/negative voltages
	
                            [image: A331468_1_En_16_Figby_HTML.gif]
                          

	13. Soft clipper/limiter[image: A331468_1_En_16_Figbz_HTML.gif]

	
[image: A331468_1_En_16_Figca_HTML.gif]Smoothly clips positive voltages
	
                            [image: A331468_1_En_16_Figcb_HTML.gif]
                          

	
                            Common diode circuits—circuits with diodes, capacitors, and resistors
                          

	14. Envelope detector or peak detector
	
                            [image: A331468_1_En_16_Figcc_HTML.gif]
                          
	Outputs signal envelope[image: 
$$ \tau ={R}_LC $$
]
[image: 
$$ \tau >>{T}_{\mathrm{carrier}}, \tau <<{T}_{\mathrm{modulation}} $$
]
[image: 
$$ \begin{array}{l}\frac{d{\upsilon}_{out}}{dt}+\frac{\upsilon_{out}}{\tau }=\frac{R_L{I}_S}{\tau}\times \\ {} \exp \left[\left({\upsilon}_{in}+{V}_{bias}-{\upsilon}_{out}\right)/{V}_T\right]\end{array} $$
]


	15. Clamper circuit or DC restorer
	
                            [image: A331468_1_En_16_Figcd_HTML.gif]
                          
	1. Lowest peak of a signal is clamped to zero volts versus ground2. Has no effect on already clamped signals3. Used in clock recovery circuits and in PWM

	16. Diode voltage doubler
	
                            [image: A331468_1_En_16_Figce_HTML.gif]
                          
	1. Outputs the DC voltage of 2V

                              m
                             if the input signal has the amplitude of V

                              m
                            2. Constructed as a combination of the clamper and the envelope detector

	17. Diode voltage tripler
	
                            [image: A331468_1_En_16_Figcf_HTML.gif]
                          
	1. Outputs the DC voltage of 3V

                              m
                             if the input signal has the amplitude of V

                              m
                            2. Constructed as a combination of the voltage doubler and the envelope detector

	18. Diode voltage quadrupler
	
                            [image: A331468_1_En_16_Figcg_HTML.gif]
                          
	1. Outputs the DC voltage of 4V

                              m
                             if the input signal has the amplitude of V

                              m
                            2. Constructed as a combination of two voltage doublers




              

Problems
16.1 Diode Operation and Classification

                  16.1.1 Circuit Symbol and Terminals
                

                  16.1.2 Three Regions of Operation
                

                  16.1.3 Mechanical Analogy of Diode Operation
                

                  16.1.4 Forward-Bias Region: Switching Diode
                

                  16.1.5 Reverse-Bias Region:
                  
                    
                    
                  
                  Varactor Diode
                

                  16.1.6 Breakdown Region: Zener Diode
                

                  16.1.7 Other Diode Types
                
Problem 16.1
Draw the circuit symbol for the diode, labeling the anode and the cathode. In what direction does the electric current flow?

Problem 16.2
A package for a small-signal 1N4148 Si switching diode (yellow package) is shown in the figure. Where is its anode, on the left or on the right?[image: A331468_1_En_16_Figd_HTML.gif]




Problem 16.3

                    	A.Sketch the typical v–i diode curve


 

	B.Indicate three regions of diode operation and write the name of each region on the figure.


 




                  

Problem 16.4
Determine thermal voltage, which is present in Shockley equation at:	A.0 °C


 

	B.10 °C


 

	C.20 °C


 

	D.40 °C


 






Problem 16.5
Plot the v–i characteristic of a diode with:	A.
                            [image: 
$$ n=1.0,{I}_{\mathrm{S}}=1.1\;\mathrm{nA} $$
]
                          


 

	B.
                            [image: 
$$ n=2.0,{I}_{\mathrm{S}}=1.1\;\mathrm{nA} $$
]
                          


 





at room temperature of 25 °C on the same figure. Use the figure that follows as a template. Label each curve. Use the value of 1.60218×10−19 C for the electron charge and the value of 1.38066×10−23 J/K for the Boltzmann constant.

                    [image: A331468_1_En_16_Fige_HTML.gif]


                  

Problem 16.6
Plot the v–i characteristic of a diode with:	A.
                            [image: 
$$ n=1.0,{I}_{\mathrm{S}}=1\;\mathrm{nA} $$
]
                          


 

	B.
                            [image: 
$$ n=1.0,{I}_{\mathrm{S}}=0.01\;\mathrm{nA} $$
]
                          


 





at room temperature of 25 °C on the same figure. Use the figure to the previous problem as a template. Label each curve. Use the value of 1.60218×10−19 C for the electron charge and the value of 1.38066×10−23 J/K for the Boltzmann constant.

Problem 16.7
For a diode with [image: 
$$ n=2.0 $$
], the following measurement is taken: [image: 
$$ {\upsilon}_{\mathrm{D}}=0.65\;\mathrm{V} $$
] and [image: 
$$ {i}_{\mathrm{D}}=1\;\mathrm{m}\mathrm{A} $$
]. Given thermal voltage of 26 mV, determine diode’s saturation current I
S.

Problem 16.8
For a diode with [image: 
$$ {I}_{\mathrm{S}}=1\;\mathrm{p}\mathrm{A} $$
], the following measurement is taken: [image: 
$$ {\upsilon}_{\mathrm{D}}=0.62\;\mathrm{V} $$
] and [image: 
$$ {i}_{\mathrm{D}}=1\;\mathrm{m}\mathrm{A} $$
]. Given thermal voltage of 26 mV, determine diode’s ideality constant, n.

Problem 16.9
At which forward-bias voltage in terms of V
T does the diode conduct a current of 104
I
S given the ideality factor of two?

Problem 16.10
A diode with [image: 
$$ n=2.0 $$
] is to be used as a temperature sensor in the forward-bias region (it is a common diode application). Determine:	A.The corresponding change in the diode voltage (initial value, final value, and the difference) when the temperature rises from 20 to 60 °C


 

	B.Sensitivity of the device in mV/°C


 





The diode current is fixed at 1 mA. You are given that [image: 
$$ {I}_{\mathrm{S}}=1\;\mathrm{nA} $$
] at 20 °C and that I
S doubles in value for every 5 °C. Use the value of 1.60218×10−19 C for the electron charge and the value of 1.38066×10−23 J/K for the Boltzmann constant.

Problem 16.11
Answer the following questions:	A.Which diode is used as a variable capacitor? Draw its symbol.


 

	B.Which diode operates in the breakdown region? Draw its symbol.


 

	C.Draw the circuit symbol for the Schottky barrier diode.


 

	D.Draw the circuit symbol for the photodiode.


 







16.2 Diode Models

                  16.2.1 Ideal-Diode Model: Method of
                  
                    Assumed States
                    
                    
                  
                
Problem 16.12

                    	A.What is an ideal-diode model?


 

	B.Draw its volt-ampere characteristic using the voltage axis from −5 V to 5 V and the current axis from −10 mA to +10 mA as shown in the figure that follows. On the same graph draw the v–i characteristic for a 

250 Ω resistor to scale.


 




                  

Problem 16.13
After solving a circuit with ideal diodes, what check is necessary for diodes initially assumed to be ON? OFF?

Problem 16.14
Present equivalent circuits for the two-diode configurations shown in the figure, assuming ideal diodes.[image: A331468_1_En_16_Figf_HTML.gif]




Problem 16.15
Determine the electric current through the 1 kΩ resistor for the circuit shown in the figure below, assuming the ideal diode.[image: A331468_1_En_16_Figg_HTML.gif]




Problem 16.16
Assuming the ideal-diode model, find the voltage across the diode and the diode current for the circuit shown in the following figure. Denote the solution for the diode voltage and diode current in the DC steady state by capital letters V
D and I
D, respectively.[image: A331468_1_En_16_Figh_HTML.gif]




Problem 16.17
For the circuits shown in the figure that follows, find values of the diode current and voltage across the diode assuming that the diodes are ideal. Use capital letters V
D and I
D to 

denote the solution for the diode voltage and diode current in the DC steady state.[image: A331468_1_En_16_Figi_HTML.gif]




Problem 16.18
Using the ideal-diode model, you need to design a circuit for the diode temperature sensor described in Problem 16.10. The diode current must be fixed at 1 mA. The power supply voltage is fixed at 9 V.	A.Present the corresponding circuit diagram and specify the component(s) values.


 

	B.Label the sensor output voltage.


 






Problem 16.19
A diode circuit is shown in the figure that follows. Find the values of the diode

 current and the voltage across the diode, assuming that the diode is ideal.[image: A331468_1_En_16_Figj_HTML.gif]




Problem 16.20
For the diode circuit shown in the following figure, determine the values of the diode current and the voltage across the diode, assuming that the diode is ideal.[image: A331468_1_En_16_Figk_HTML.gif]




Problem 16.21
Assuming the ideal-diode model, find current I for the circuit shown in the figure below.[image: A331468_1_En_16_Figl_HTML.gif]




Problem 16.22
Assuming the ideal-diode model, find current I for the circuit

 shown in the figure below.[image: A331468_1_En_16_Figm_HTML.gif]




Problem 16.23
For the circuit shown in the figure below, determine circuit current I, assuming that the diode is ideal. The ground path is simultaneously the current return path.[image: A331468_1_En_16_Fign_HTML.gif]




Problem 16.24
For the circuit below find circuit current I, assuming that both diodes are ideal. The ground path is simultaneously the current return path.[image: A331468_1_En_16_Figo_HTML.gif]




Problem 16.25
For the circuit shown in the figure below, find circuit current I, assuming that the diodes are ideal. The ground path is simultaneously the current 

return path.[image: A331468_1_En_16_Figp_HTML.gif]




Problem 16.26
The circuit shown in the figure below can be used as a signaling system using one wire plus a common ground return. At any moment, the input has one of three voltage values shown in the figure. What is the status of the lamps for each input value?[image: A331468_1_En_16_Figq_HTML.gif]




Problem 16.27
Sketch I versus V to scale for the circuit shown in the following figure. Assume the ideal-diode model and allow V to range from −3 V to 3 V.[image: A331468_1_En_16_Figr_HTML.gif]




Problem 16.28
Sketch I versus V to scale for the circuit shown in the figure. Assume

 the ideal-diode model and allow V to range from −5 V to 5 V.[image: A331468_1_En_16_Figs_HTML.gif]




Problem 16.29
For the circuit shown in the figure below, fill out Table 16.5.Table 16.5Output voltage of the diode circuit as a function of two input voltages


	
V
1 (V)
	
V
2 (V)
	
                                V
                                OUT
                              

	0
	0
	 
	0
	5
	 
	5
	0
	 
	5
	5
	 



[image: A331468_1_En_16_Figt_HTML.gif]



What type of logic gate is it?

Problem 16.30
A freshman ECE student attends class if all of the following conditions are satisfied:	A.He/she feels that this lecture might be useful.


 

	B.There are no other more important things to do.


 

	C.The way to the Department is cleaned up from snow.


 





Every morning he/she “votes” by simultaneously pushing any appropriate combination of three 5-V buttons (A, B, C) placed in parallel. A simple diode circuit is needed that lights

 a green LED when there is time to go to the lecture.

Problem 16.31
A small county board is composed of three commissioners. Each commissioner votes on measures presented to the board by pressing a 5-V button indicating whether the commissioner votes for or against a measure. If two or more commissioners vote for a measure, it passes. You are asked to help with a an ideal-diode circuit that takes the three votes as inputs and lights a green LED to indicate that a measure passed. You can use as many diodes/resistors as you need.	1.Explain your reasoning for building the diode circuit.


 

	2.Present the appropriate circuit diagram.


 







                  16.2.2. Constant-Voltage-Drop Model
                
Problem 16.32
What is the constant-voltage-drop-diode model? Draw the corresponding v–i diagram.

Problem 16.33
Sketch I versus V to scale for the circuit shown in the following figure using:	A.Ideal-diode model


 

	B.Constant-voltage-drop-diode model with the turn-on voltage of 1 V


 





Allow V to range from −3 V to 3 V.[image: A331468_1_En_16_Figu_HTML.gif]




Problem 16.34
Sketch I versus V to scale for the circuit shown in the figure using:	A.Ideal-diode model


 

	B.Constant-voltage-drop-diode model with the turn-on voltage of 1 V


 





Allow V to range from −5 V to 5 V.[image: A331468_1_En_16_Figv_HTML.gif]




Problem 16.35
Sketch I versus V to scale for the circuit shown in the figure using:	A.Ideal-diode model


 

	B.Constant-voltage-drop-diode model with the turn-on voltage of 1 V


 





Allow V to range from −5 V to 5 V.[image: A331468_1_En_16_Figw_HTML.gif]




Problem 16.36
Present equivalent circuit for the two-diode configuration shown in the figure, assuming the constant-voltage-drop-diode model with the turn-on voltage of 1 V.[image: A331468_1_En_16_Figx_HTML.gif]




Problem 16.37
Using the constant-voltage-drop-diode model, you need to design a circuit for the diode temperature sensor described in Problem 16.10. The diode current must be fixed at 1 mA. The power supply voltage is fixed at 9 V.	A.Present the corresponding circuit diagram and specify the component(s) values.


 

	B.Label the sensor output voltage.


 







                  16.2.3 Exponential Model in the Forward-Bias Region and Its Use
                

                  16.2.
                  
                    4
                    
                    
                  
                  Load-Line Analysis
                

                  16.2.
                  
                    5
                    
                    
                  
                  Iterative Solution
                
Problem 16.38
A 1N4148 diode manufactured by Fairchild has a current of 0.7 mA at 0.6 V and a current of 8 mA at 0.725 V, all at 25°. Determine the ideality 

factor and the saturation current of Shockley equation at this temperature.

Problem 16.39
A 1N4148 diode manufactured by Hitachi has a current of 0.15 mA at 0.6 V and a current of 1.5 mA at 0.7 V, all at minus 25°. Determine the ideality factor and the saturation current of Shockley equation at this temperature.

Problem 16.40
In the circuit shown in the figure below, the diode is described in terms of the exponential forward-bias model with the Shockley equation plotted in the figure.	A.Graphically determine the solution—the 
DC operating point V
D, I
D using the 
load-line method.


 

	B.Compare the obtained diode current with that found in the constant-voltage-drop model.[image: A331468_1_En_16_Figy_HTML.gif]





 






Problem 16.41
Repeat the previous problem for the circuit shown in the figure 

that follows.[image: A331468_1_En_16_Figz_HTML.gif]




Problem 16.42
In the circuit shown in the figure that follows, the diode is described in terms of the exponential forward-bias model where the ideality factor and the saturation current of Shockley equation are [image: 
$$ n=1.5,{I}_{\mathrm{S}}=1\;\mathrm{nA} $$
]. Given thermal voltage of 0.026 V, determine the exact 
DC operating point (diode voltage and diode current V
D, I
D) with the help of the iterative solution.[image: A331468_1_En_16_Figaa_HTML.gif]




Problem 16.43
Repeat the previous problem when the diode saturation current 

changes to 3 nA. All other parameters remain the same.


                  16.2.6 Linearization About a Bias Point: Small-Signal Diode Model
                

                  16.2.7
                  
                    Superposition
                    
                    
                  
                  Principle for Small-Signal Diode Model
                
Problem 16.44
Determine the small-signal diode resistance for two limiting cases:	A.When diode bias voltage (DC operating voltage) V
D tends to zero


 

	B.When diode bias current (DC operating current) I
D tends to infinity


 






Problem 16.45
In the circuit shown in the following figure, [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=10+0.005 \cos \omega t\left[\mathrm{V}\right] $$
]. Determine diode voltage. Use the 

constant-voltage-drop-diode model for the diode with the turn-on voltage of 0.7 V. Assume the operating temperature of 25 °C and [image: 
$$ n=2.0 $$
].[image: A331468_1_En_16_Figab_HTML.gif]




Problem 16.46
Repeat the previous problem for the circuit shown in the following figure.[image: A331468_1_En_16_Figac_HTML.gif]




Problem 16.47

                    	A.Obtain the next term of the asymptotic expansion in Eq. (16.7c) so that the error will be on the order of (υ
d/nV
T)3.


 

	B.Derive the expression of the nonlinear small-signal diode

 resistance as a constant term plus a term that depends on the small-signal diode voltage.


 




                  


16.3 Diode Voltage Regulators and Rectifiers

                  16.3.1 Voltage reference and voltage regulator
                
Problem 16.48
You are given a variable voltage source [image: 
$$ {V}_{\mathrm{S}}=5\;\mathrm{V}\pm 0.5\;\mathrm{V} $$
] represented by its Thévenin equivalent shown in the figure below. You are also given a load represented by its equivalent resistance of [image: 
$$ {R}_{\mathrm{L}}=1000\;\Omega $$
]. Construct a diode voltage regulator circuit which outputs the constant voltage of 2.1 V to the load.[image: A331468_1_En_16_Figad_HTML.gif]


	A.Present the corresponding circuit diagram.


 

	B.Determine load voltage and diode current for the regulator circuit for two extreme cases [image: 
$$ {V}_{\mathrm{S}}=5\;\mathrm{V}\pm 0.5\;\mathrm{V} $$
] of the supply voltage variation. Use the constant-voltage-drop-diode model with the turn-on voltage of 0.7 V.


 






Problem 16.49
Repeat the previous problem when Thévenin resistance of the source changes to 1 kΩ.

Problem 16.50
You are given a (variable) voltage source V
S represented by its Thévenin equivalent with resistance R
T and a load represented by its equivalent resistance of R
L. A forward-bias diode voltage regulator is used to keep the load voltage constant. Using the constant-voltage-drop-diode model, answer two questions:	A.What is the maximum possible regulated load voltage if [image: 
$$ {R}_{\mathrm{L}}={R}_{\mathrm{T}} $$
]?


 

	B.What is the maximum possible regulated load voltage if [image: 
$$ {R}_{\mathrm{L}}=10{R}_{\mathrm{T}} $$
]?


 







                  16.3.2
                  
                    Voltage regulator
                    
                    
                  
                  with Zener diode
                
Problem 16.51
A 1N5231B Zener diode with the test point [image: 
$$ {V}_{\mathrm{ZT}}=5.1\;\mathrm{V},{I}_{\mathrm{ZT}}=20\;\mathrm{m}\mathrm{A} $$
] and with the dynamic resistance [image: 
$$ {r}_{\mathrm{Z}}=17\;\Omega $$
] is used in the voltage regulator circuit shown in the figure below.	A.Determine load voltage for the regulator circuit given that [image: 
$$ {V}_{\mathrm{S}}=9\;\mathrm{V}\pm 1\;\mathrm{V} $$
] and that the load has a very high (infinite) resistance.


 

	B.Determine line 

regulation


 




[image: A331468_1_En_16_Figae_HTML.gif]




Problem 16.52
In a typical 12-V automotive application, battery voltage may vary between 10.5 and 14.1 V. The ECM (engine control module) determines fuel delivery and spark advance to control emissions based on several sensors connected to the engine. Many of these sensors require a stable 5-V reference that can be achieved through the use of a Zener diode. The figure that follows shows the corresponding circuit using a 1N4733A Zener diode to provide a stable 5-V reference.

                    [image: A331468_1_En_16_Figaf_HTML.gif]


                  
The Zener diode has a reference (test) voltage of 5.1 V at a reference (test) current of 49 mA.	A.Choose a value for resistor R
1 to limit the current through the Zener diode to approximately 50 mA with the sensor disconnected (switch OPEN).


 

	B.Given that the battery voltage may vary between 10.5 and 14.1 V, determine how much the Zener voltage (voltage across the Zener diode) fluctuates with the sensor disconnected (switch OPEN). Note: This Zener diode has a dynamic resistance of 7 Ω at the test 

current of 49 mA.


 

	C.What minimum load resistance can be connected to the circuit without the voltage drop more than 0.5 V from 5 V?


 

	D.Plot load voltage as function of the load resistance in the range 0–1000 Ω for two extreme battery voltages.


 

	E.If the switch is closed and the load resistance is 100 Ω, what is the power efficiency of this circuit for two extreme values of the battery voltage?Note: Efficiency percentage = PLOAD/PBAT × 100 %.


 






Problem 16.55
Using software of your choice (MATLAB is recommended), plot the output of a half-wave diode rectifier to scale over a time period from 0 to 8 s when the input voltage is given by[image: 
$$ {\upsilon}_{\mathrm{S}}(t)={V}_{\mathrm{m}} \sin \omega t+0.5{V}_{\mathrm{m}} \sin 2\omega t $$
]


with
Signal frequency—0.5 Hz

Signal 

amplitude—[image: 
$$ {V}_{\mathrm{m}}=9\;\mathrm{V} $$
].
Assume the ideal diode.

Problem 16.56
Using the constant-voltage-drop model for a diode with the turn-on voltage of 0.7 V, determine the following parameters for the circuit shown in the figure:	A.The peak positive voltage across the load


 

	B.The average voltage across the load


 

	C.The peak diode current


 

	D.The average diode current


 

	E.The peak negative voltage across the diode

                            [image: A331468_1_En_16_Figag_HTML.gif]


                          


 






Note: The 

voltage source shown represents the output of a typical step-down transform and is given in rms.


                  16.3.4 Full-wave rectifier with a
                  
                    dual supply
                    
                    
                  
                

                  16.3.5 Diode bridge rectifier
                

                  16.3.6
                  
                    Application
                    
                    
                    
                  
                  example: Automotive battery-charging system
                
Problem 16.57
Using the constant-voltage-drop model for the diode with the turn-on voltage of 0.7 V, determine the following parameters for the circuit shown in the figure:	A.The peak positive voltage across the load


 

	B.The average voltage across the load


 

	C.The peak diode current


 

	D.
The 


average diode current


 

	E.The peak negative voltage across each diode[image: A331468_1_En_16_Figah_HTML.gif]





 






Problem 16.58

                    	A.Draw a schematic of the full-wave diode bridge rectifier.


 

	B.Indicate current flow in the full-wave diode rectifier at positive and negative applied voltages.


 

	C.If all diodes in the rectifier are changed to the opposite direction, 
                              
                              
                              
                            will the rectifier function or not?


 




                  

Problem 16.59
Using the constant-voltage-drop model for the diode with the turn-on voltage of 0.7 V, determine the following parameters for the circuit shown in the figure:	A.The peak positive voltage across the load


 

	B.The average voltage across the load


 

	C.The peak diode current


 

	D.The average diode current


 

	E.The peak negative voltage across each diode[image: A331468_1_En_16_Figai_HTML.gif]





 






Note: The voltage source shown represents the output of a typical step-down transform and is given in rms.

Problem 16.60
For an automotive battery-charging system schematically shown in Fig. 16.26c, plot the individual rectified voltages and the output voltage (voltage 


across the load) as a function of time over the interval 0–0.01 s. Every power supply in the figure is a sinusoidal AC voltage source with [image: 
$$ {V}_{\mathrm{m}}=15\;\mathrm{V} $$
], [image: 
$$ f=100\;\mathrm{Hz} $$
]. All three voltage power supplies are 120° out of phase with regard to each other—have the phase angles of 0 and [image: 
$$ \mp 120{}^{\circ} $$
]. Any software can be used (MATLAB is recommended).


                  16.3.7 Application example: Envelope (or peak) detector circuit
                
Problem 16.61

                    	A.Explain the function of the envelope detector in your own words.


 

	B.What is the difference between linear and square-law regions of operation for the envelope detector?


 

	C.When does the envelope detector operate in the linear region? In the square-law region?


 




                  

Problem 16.62
Design an envelope detector given the carrier frequency of [image: 
$$ f=1.7\;\mathrm{MHz} $$
]. The modulation is a human voice, with the maximum passing modulation frequency of 20 kHz.	A.Draw the circuit diagram of the envelope detector.


 

	B.Specify one possible set of values for R
L, C.


 






Problem 16.63
Design an envelope detector (specify one possible set of values for R
L, C) given the carrier frequency of [image: 
$$ f=10\;\mathrm{MHz} $$
]. The modulation is a digital signal, with the bit rate of 100 kbps. Hint: The equivalent frequency of the digital signal is the bit rate in Hz.

Problem 16.64
A MATLAB script that follows models an envelope detector circuit in Fig. 16.27 by solving the exact circuit ODE given by Eq. (16.19b)[image: 
$$ \frac{d{\upsilon}_{\mathrm{out}}}{dt}=\frac{1}{\tau}\left({R}_{\mathrm{L}}{I}_{\mathrm{S}}\ \exp \left[\left({\upsilon}_{\mathrm{in}}+{V}_{\mathrm{bias}}-{\upsilon}_{\mathrm{out}}\right)/{V}_{\mathrm{T}}\right]\right.\left.-{\upsilon}_{\mathrm{out}}\right) $$
]



[image: A331468_1_En_16_Figat_HTML.gif]
[image: A331468_1_En_16_Figau_HTML.gif]


with a particular set of design parameters of your choice. Which bias voltage (0, 1, 4, or 8 V) is most beneficial for the performance of your circuit? Justify your answer.

16.4 Diode Wave-Shaping Circuits

                  16.4.
                  
                    1
                    
                  
                  Diode clamper circuit (DC restorer)
                

                  16.4.2 Diode voltage doubler and multiplier
                
Problem 16.65
In the clamper circuit shown in the figure below, [image: 
$$ {\upsilon}_{\mathrm{in}}(t)={V}_{\mathrm{m}} \sin \omega t $$
] and [image: 
$$ {V}_{\mathrm{m}}=4\;\mathrm{V} $$
]. The wave period is 2 ms. Given the ideal-diode model, plot the input voltage, voltage across capacitor C
1, and voltage across diode D
1 (the output voltage of the circuit) to scale versus time. Clearly label each curve.[image: A331468_1_En_16_Figaj_HTML.gif]




Problem 16.66
In the clamper circuit shown in the figure for Problem 16.65, [image: 
$$ {\upsilon}_{\mathrm{in}}(t)={V}_{\mathrm{m}}-{V}_{\mathrm{m}} \sin \omega t $$
] and [image: 
$$ {V}_{\mathrm{m}}=4\;\mathrm{V} $$
]. The wave period is 2 ms.	A.Given the ideal-diode model, plot the input voltage, voltage across capacitor C
1, and voltage across diode D
1 to scale versus time. Clearly label each curve.


 

	B.Based on your solution, what conclusion could you make about the operation of a clamper circuit subject to strictly positive versus the ground point (already clamped) AC signals?


 






Problem 16.67
The input voltage for the voltage doubler circuit in Fig. 16.30a is shown in the figure below. Plot the voltage across capacitor C
1 and the voltage across capacitor C
2 (the output voltage) to scale versus time. Clearly label each curve.[image: A331468_1_En_16_Figak_HTML.gif]




Problem 16.68

                    	A.Construct a voltage tripler diode circuit, which outputs the DC voltage of 3V
m for the input AC signal of amplitude V
m and zero mean. Present the corresponding circuit diagram.


 

	B.How many capacitors and diodes are you using?


 

	C.Could you extrapolate your answer to a voltage multiplier diode circuit, which outputs the DC voltage of 5V
m?


 




                  


                  16.4.3 Positive, negative, and double clipper
                

                  16.4.
                  
                    4
                    
                    
                  
                  Transfer characteristic of a diode circuit
                
Problem 16.69
For the positive clipper diode circuit, sketch the voltage transfer characteristic to scale assuming	A.Ideal-diode model


 

	B.Constant-voltage drop model[image: A331468_1_En_16_Figal_HTML.gif]





 






Problem 16.70
Repeat Problem 16.69 for the diode circuit shown in the figure that follows.[image: A331468_1_En_16_Figam_HTML.gif]




Problem 16.71
Repeat Problem 16.69 for the diode circuit shown in the figure that

 follows.[image: A331468_1_En_16_Figan_HTML.gif]




Problem 16.72
Given the Zener breakdown voltage of 4 V for D1, for the circuit shown in the figure below, sketch the voltage transfer characteristic to scale assuming:	A.Ideal-diode model in the forward-bias region


 

	B.Constant-voltage drop model in the forward-bias region


 





Always use the constant-voltage-drop model in the breakdown region.[image: A331468_1_En_16_Figao_HTML.gif]




Problem 16.73
Repeat Problem 16.72 for the diode circuit shown in the following figure
                      
                      
                    .[image: A331468_1_En_16_Figap_HTML.gif]




Problem 16.74
Repeat Problem 16.72 for the diode circuit shown in the figure below assuming the Zener breakdown voltage of 4 V for D1 and 5 V for D2.[image: A331468_1_En_16_Figaq_HTML.gif]




Problem 16.75
Repeat Problem 16.72 for the diode circuit shown in the figure below assuming the Zener breakdown voltage of 2 V for D1 and 4 V for D2.

Problem 16.76
For the following diode circuit, sketch the voltage transfer characteristic to

 scale given that [image: 
$$ {R}_1=1\;\mathrm{k}\Omega $$
] and [image: 
$$ {R}_2=1\;\mathrm{k}\Omega $$
], and assuming:	A.Ideal-diode model


 

	B.Constant-voltage drop model


 





Label the endpoint voltages.[image: A331468_1_En_16_Figar_HTML.gif]




Problem 16.77
Repeat Problem 16.76 for the diode circuit shown in the figure below. Assume [image: 
$$ {R}_1=1\;\mathrm{k}\Omega $$
], [image: 
$$ {R}_2=1\;\mathrm{k}\Omega $$
], and [image: 
$$ {R}_3=1\;\mathrm{k}\Omega $$
]. Label the endpoint voltages.[image: A331468_1_En_16_Figas_HTML.gif]
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Overview

              Prerequisites:
	Knowledge of basic circuit analysis

	Exposure to theory of semiconductor pn-junction (optional)

	Exposure to theory of electronic diode (Chapter 16)




              Objectives of Section 17.1:
	Become familiar with terminal voltages and currents of the BJT

	Understand the physical structure and underlying operation of the BJT

	Learn the physical meaning of active, saturation, and cutoff regions of operation

	Learn transistor test circuits and the corresponding v–i dependencies

	Obtain initial exposure to Early effect and Ebers-Moll model




              Objectives of Section 17.2:
	Learn and apply the first-order large-signal exponential transistor model

	Learn and apply the large-signal DC transistor circuit model

	Estimate the accuracy of the large-signal DC circuit model

	Be able to solve a DC transistor circuit using the method of assumed states

	Learn common transistor bias circuits at DC and be able to solve in each of them

	Learn about β-independent bias circuits




              Objectives of Section 17.3:
	Be able to construct a constant-current source based on the BJT

	Be able to construct a constant-voltage source (voltage buffer) based on the BJT

	Learn about the construction of BJT switches and their typical applications




              Objectives of Section 17.4:
	Learn equivalent circuit model of a voltage amplifier and its major parameters

	Understand voltage transfer characteristic of a BJT common-emitter amplifier

	Understand separation of DC and AC voltages/currents in a BJT amplifier model

	Visualize DC operating point or the quiescent point of the transistor amplifier

	Understand the meaning of a small-signal ground

	Be able to find the base-emitter small-signal resistance and formulate the small-signal BJT model (hybrid-π model)

	Analyze most typical common-emitter small-signal BJT amplifier circuits

	Obtain the initial exposure to small-signal transistor amplifier bandwidth




              Application Examples:
	Automotive BJT dome light switch

	Door lock BJT switch and Darlington pair

	Transistor amplifier bandwidth




            

17.1 Physical Principles and Operation Laws
17.1.1 Physical Structure: Terminal Voltages and Currents
A bipolar junction transistor (BJT) is a three-terminal semiconductor device. Internally, the transistor has three distinct doping regions shown in Fig. 17.1. 
                  
                  
                The npn-junction transistor is made of a heavily doped n+-type emitter, a p-type base, and n-type collector. According to standard convention, the transistor terminals are called collector (C), base (B), and emitter (E). The doping structure in Fig. 17.1 corresponds to two semiconductor pn-junctions. One pn-junction is the emitter-base junction (EBJ

) and another is the 
collector-base junction (CBJ)
. You have to be careful: these junctions are not quite symmetric: swapping collector and emitter of the transistor will result in malfunctioning.[image: A331468_1_En_17_Fig1_HTML.gif]
Fig. 17.1Simplified physical structure of the npn-junction transistor


                                            





As a three-terminal device, the transistor is characterized by three terminal voltages; this is also shown in Fig. 17.1:	
                      
                        Base-emitter (bias) voltage
                        
                        
                      
                      υ
                      BE
                    

	

                        Base-collector (bias) voltage
                        
                        
                       υ
BC (or collector-base voltage [image: 
$$ {\upsilon}_{\mathrm{CB}}=-{\upsilon}_{\mathrm{BC}} $$
])

	
                      
                        Collector-emitter (bias) voltage
                        
                        
                      
                      υ
                      CE
                    





Only two of them are independent since KVL relates all three voltages to each other. The voltages υ
BE and υ
CE are chosen as independent variables. Then,[image: 
$$ {\upsilon}_{\mathrm{BC}}={\upsilon}_{\mathrm{BE}}-{\upsilon}_{\mathrm{CE}} $$
]

 (17.1)

Similarly, the transistor is characterized by three terminal currents shown in the same figure:	
                      
                        Collector current
                        
                        
                      
                      i
                      C
                    

	
                      
                        Emitter current
                        
                        
                      
                      i
                      E
                    

	
                      
                        Base current
                        
                        
                      
                      i
                      B
                    





Again, only two of them are independent since KCL relates all three currents to each other. The currents i
C and i
B are typically chosen as the primary parameters. Then,[image: 
$$ {i}_{\mathrm{E}}={i}_{\mathrm{C}}+{i}_{\mathrm{B}} $$
]

 (17.2)


Figure 17.2a shows

 the circuit symbol for the npn-junction transistor, Fig. 17.2b denotes the terminal currents, and Fig. 17.2c displays the terminal voltages. The word transistor is the abbreviation of 
                  transfer resistor
                  
                . It conveys the idea of a resistor connected between two terminals and whose resistance can be controlled by a third terminal.[image: A331468_1_En_17_Fig2_HTML.gif]
Fig. 17.2Circuit symbol for the npn-junction transistor, terminal currents, and terminal voltages





Exercise 17.1

An 

npn junction transistor has the base-emitter voltage
 of 0.5 V and base-collector voltage

 of 0.3 V. What is the collector-emitter voltage
?

Answer: 0.2 V.


17.1.2 Principle of Operation
We illustrate the operation of a junction transistor using a numerical simulation example for a certain n+pn junction with the total length of [image: 
$$ R=5\;\upmu \mathrm{m} $$
] and exponential (n+ and n) donor doping profiles with terminal concentrations of [image: 
$$ {10}^{18}\;{\mathrm{cm}}^{-3} $$
] and [image: 
$$ 0.5\times {10}^{15}\;{\mathrm{cm}}^{-3} $$
], respectively. The central p-region employs acceptor doping whose distribution is of cosine shape with the maximum concentration of [image: 
$$ 0.3\times {10}^{16}\;{\mathrm{cm}}^{-3} $$
]. The doping profiles


 are shown on top of Fig. 17.3. The built-in voltage of the base-to-emitter pn-junction is approximately 0.80 V, and the built-in voltage of the collector-to-base pn-junction is approximately 0.6 V. These values are typical for the npn-junction transistor. The collector-base voltage υ
CB is fixed at zero volts. The emitter of the transistor in Fig. 17.3 is grounded (or is a common node). This arrangement is known as the
                  common-emitter configuration
                  
                  
                  
                . Alternatively, we could ground the base (
                  common-base configuration
                  
                ) or the collector (
                  common-collector configuration
                  
                ).[image: A331468_1_En_17_Fig3_HTML.gif]
Fig. 17.3Operation of the n


pn-junction transistor for three values of 
base-emitter voltage υ
BE. The collector-base voltage υ
CB is fixed at zero volts





Figure 17.3a–c shows the 
                  built-in electric potential
                  
                  
                  
                 φ(x) along the junction in volts. Figure 17.3d–f depicts the 
                  intrinsic Fermi energy level of electrons
                  
                  
                  
                , [image: 
$$ {E}_i(x)=-q\varphi (x) $$
], along the junction in electron volts. The curves are given for three values of the base-emitter voltage, [image: 
$$ {\upsilon}_{\mathrm{BE}}=0,0.5,\mathrm{and}\kern0.5em 0.7\;\mathrm{V} $$
]. The collector-emitter voltage
 coincides with υ
BE, which means that the base-collector voltage

 υ
BC is always fixed at zero volts. The device operation can be explained in three steps using simple mechanical analogies:	1.At [image: 
$$ {\upsilon}_{\mathrm{BE}}=0\;\mathrm{V} $$
], the electric potential has a depth extending far downward into the p-region. The electrons in equilibrium attempt to concentrate in a region with a large electric potential as shown in Fig. 17.3a. From the viewpoint of the electric potential, they resemble air bubbles in water floating up toward the “potential” boundary


. From the viewpoint of the electron energy, they resemble water drops in air that fall into lower energy states. Virtually no electrons cross the barrier; hence, the electric current is negligible.


 

	2.The bias voltage [image: 
$$ {\upsilon}_{\mathrm{BE}}=0.5\;\mathrm{V} $$
] decreases the potential depth (energy barrier). Some electrons may now pass through the weaker potential barrier, diffuse across the p-type base, and get swept into the n-type collector sliding down along the energy hill as seen in Fig. 17.3e. An alternative interpretation is the collection of electrons (air bubbles) under the higher potential hill of the collector in Fig. 17.3b.


 

	3.When the bias voltage reaches [image: 
$$ {\upsilon}_{\mathrm{BE}}=0.7\;\mathrm{V} $$
], carrier diffusion into the base is fully enabled. Hence, a significant electric current i
C passes through the collector (directed opposite to the electron motion). The base of the transistor (the p-region) is intentionally made narrow in order to avoid any significant recombination.


 





In contrast to the pn-junction diode, the npn transistor is essentially an 
electron-controlling device


. The base-collector voltage

 υ
BC determines the potential/energy behavior to the right of the base region in Fig. 17.3. As long as the potential (or the energy) has a sufficiently high (or low) elevation there, all the electrons diffusing across the base get swept into the n-type collector and no electrons reach the collector. This means that the transistor operation is expected to be independent on υ
BC when it is negative or small.

17.1.3 Operating Regions
The junction transistor has three operating regions listed in Table 17.1. These regions are determined by the state of the two pn-junction diodes, i.e., by the corresponding bias

 voltage υ
BE for the base-emitter junction and υ
BC for the 
collector-base junction. Their generic values are listed in Table 17.1. Figure 17.4 shows the corresponding transistor test circuits

 in the common-emitter configuration. In Fig. 17.4a, υ
BE and υ
CE are kept at fixed values using the two voltage sources. In Fig. 17.4, i
B is fixed instead of υ
BE.Table 17.1Operating regions of an npn-junction transistor


                                            


	Region
	Junctions

	EBJ
	CBJ

	Active
	Forward bias [image: 
$$ {\upsilon}_{\mathrm{BE}}\ge 0.5\;\mathrm{V} $$
]
                                                    
	Reverse-bias or small positive forward bias [image: 
$$ {\upsilon}_{\mathrm{BC}}\le 0.4\;\mathrm{V} $$
]
                                                    

	
Saturat

ion
	Forward bias [image: 
$$ {\upsilon}_{\mathrm{BE}}\ge 0.5\;\mathrm{V} $$
]
                                                    
	Forward bias [image: 
$$ {\upsilon}_{\mathrm{BC}}\ge 0.4\;\mathrm{V} $$
]
                                                    

	Cutoff
	Reverse-bias or small positive forward bias [image: 
$$ {\upsilon}_{\mathrm{BE}}\le 0.5\;\mathrm{V} $$
]
                                                    
	Reverse-bias or small positive forward bias [image: 
$$ {\upsilon}_{\mathrm{BC}}\le 0.4\;\mathrm{V} $$
]
                                                    




[image: A331468_1_En_17_Fig4_HTML.gif]
Fig. 17.4Conceptual test circuits for an npn transistor in common-emitter configuration






17.1.4 Active Region
Collector Current: Qualitative Description




The collector current is the diffusion current of minority electron carriers through the electrically neutral p-doped base, as seen in Fig. 17.5. Such a current can be determined; the analysis resulted in the ideal-diode Shockley equation. For the junction transistor, there is one significant simplification. The base region of the BJT is very narrow so that the recombination of the minority carriers there may be ignored. This will lead us to the same Shockley equation but with a modified expression for the saturation current.[image: A331468_1_En_17_Fig5_HTML.gif]
Fig. 17.5

                            
                          Transistor test circuit of the common-emitter configuration in the active region






Collector Current: Quantitative Derivation of Shockley Equation




With reference to Fig. 17.5, boundary conditions for the excess minority carrier concentration Δn(x) are[image: 
$$ \begin{array}{l}\Delta n\left(x=0\right)=\frac{n_{\mathrm{i}}^2}{N_{\mathrm{A}0}}\left( \exp \left(\frac{\upsilon_{\mathrm{BE}}}{V_{\mathrm{T}}}\right)-1\right),\ \\ {}\Delta n\left(x=W\right)=\frac{n_{\mathrm{i}}^2}{N_{\mathrm{A}0}}\left( \exp \left(\frac{\upsilon_{\mathrm{BC}}}{V_{\mathrm{T}}}\right)-1\right)\approx 0\end{array} $$
]

 (17.3)


It is assumed the CBJ is either reverse biased or has only a small positive bias ([image: 
$$ {\upsilon}_{\mathrm{BC}}\le 0.4\;\mathrm{V} $$
]). Here [image: 
$$ {V}_{\mathrm{T}}=kT/q $$
] is the thermal voltage, n
i is the intrinsic concentration of free carriers in the base, N
A0 is the (terminal) acceptor doping concentration in the base, and W is the base width. The diffusion equation is[image: 
$$ \frac{d^2\Delta n}{d{x}^2}=0 $$
]

 (17.4)

The solution of Eqs. (17.3) and (17.4) is a simple linear function[image: 
$$ \Delta n=\frac{n_{\mathrm{i}}^2}{N_{\mathrm{A}0}}\left( \exp \left(\frac{\upsilon_{\mathrm{BE}}}{V_{\mathrm{T}}}\right)-1\right)\left(1-x/W\right) $$
]

 (17.5)


Although the concentration decreases when the distance along the base increases, it does not imply that the minority carriers disappear. They simply move faster when approaching the collector. The transistor collector current is the diffusion current 


of excess minority carriers in the base. The current density per unit area is found as
[image: 
$$ {J}_{\mathrm{C}}=-q{D}_{\mathrm{n}}d\Delta n/dx $$
] where D
n is the base diffusion constant of the minority carriers. The total collector current is the current density times junction area A. Using Eq. (17.5) yields[image: 
$$ {i}_{\mathrm{C}}={I}_{\mathrm{S}}\left[ \exp \left(\frac{\upsilon_{\mathrm{BE}}}{V_{\mathrm{T}}}\right)-1\right],\ {I}_{\mathrm{S}}=A\frac{q{n}_{\mathrm{i}}^2{D}_{\mathrm{n}}}{N_{\mathrm{A}0}W} $$
]

 (17.6)

Equation (17.6) is the ideal-diode Shockley equation. The saturation current I
S in Eq. (17.6) has another name, the scale current, which underscores the fact that it scales linearly with the emitter-base junction area A. Typical values are in the range [image: 
$$ {I}_{\mathrm{S}}={10}^{-12}-{10}^{-15}\;\mathrm{A} $$
].


                  Base Current



                
When the emitter-base junction is forward biased, some holes are injected from the p-type base into the emitter. These holes constitute the base current i
B shown in Fig. 17.5. The base current is an inevitable side effect of the junction transistor. Exactly the same method of the diffusion equation applies. The final result has the form[image: 
$$ {i}_{\mathrm{B}}={I}_{\mathrm{SB}}\left[ \exp \left(\frac{\upsilon_{\mathrm{B}\mathrm{E}}}{V_{\mathrm{T}}}\right)-1\right] $$
]

 (17.7)


The saturation current I
SB has the form of second Eq. (17.6) related to 


the emitter region.

Relation Between Transistor Currents: Common-Emitter Current Gain
According to Eqs. (17.6) and (17.7), transistor currents are directly proportional to each[image: 
$$ {i}_{\mathrm{C}}=\beta {i}_{\mathrm{B}},{i}_{\mathrm{E}}=\left(\beta +1\right)\kern0.1em {i}_{\mathrm{B}} $$
]

 (17.8)

where the dimensionless constant β is the (forward) common-emitter current gain of the transistor. The current gain cannot be controlled precisely due to uncertainties of the manufacturing process. Typical values are [image: 
$$ \beta =20-200 $$
], but much higher values may be obtained. The current gain is the most important DC parameter of the junction transistor. Consider a general-purpose small-signal (which means low-power) npn 2N3904 Si transistor. The current gain from the device’s datasheet ranges from a minimum of 30–100 (for different collector currents) to a maximum of 300 (at room temperature). Along with β, another parameter α is of interest, called the 
                    common-base current gain
                    
                  :[image: 
$$ {i}_{\mathrm{C}}=\alpha {i}_{\mathrm{E}},\alpha =\frac{\beta }{\beta +1} $$
]

 (17.9)



Exercise 17.2
An npn junction transistor in the active region has the collector current of 0.5 mA and the base current of 10 μA. Find emitter current, common-emitter current gain, and 
common-base current gain. Show units.

Answer: [image: 
$$ {i}_{\mathrm{E}}=0.51\;\mathrm{m}\mathrm{A},\kern0.15em \beta =50,\kern0.15em \alpha =0.98 $$
].

In summary, in the active region the junction transistor operates as a current amplifier with terminal currents given by[image: 
$$ {i}_{\mathrm{C}}={I}_{\mathrm{S}}\left[ \exp \left(\frac{\upsilon_{\mathrm{B}\mathrm{E}}}{V_{\mathrm{T}}}\right)-1\right],{i}_{\mathrm{B}}=\frac{I_{\mathrm{S}}}{\beta}\left[ \exp \left(\frac{\upsilon_{\mathrm{B}\mathrm{E}}}{V_{\mathrm{T}}}\right)-1\right] $$
]

 (17.10)

Equation (17.7) is the accurate nonlinear exponential model of the transistor in the active region. For 


practical purposes the factor 1 in the square brackets may be ignored.

Exercise 17.3
An npn junction transistor at room temperature of 25 °C has [image: 
$$ {\upsilon}_{\mathrm{CE}}=3\;\mathrm{V},{\upsilon}_{\mathrm{BC}}=-2.4\;\mathrm{V},\beta =50 $$
], [image: 
$$ {I}_{\mathrm{S}}={10}^{-14}\;\mathrm{A} $$
]. Determine collector and base curre


nts.

Answer: [image: 
$$ {i}_{\mathrm{C}}=0.105\;\mathrm{m}\mathrm{A},{i}_{\mathrm{B}}=2.1\;\upmu \mathrm{A} $$
].



17.1.5 Saturation Region and Cutoff Region
Qualitative Description of the Saturation Region
In saturation, both pn-junctions are forward biased. As a result, along with the diffusion electron motion


 from the emitter shown in Fig. 17.3, an oppositely directed diffusion electron motion from the collector also exists. The net collector (diffusion) current is now given by the contribution of two diffusion currents of two simultaneously operating pn-junctions. These two currents attempt to cancel each other so that the total collector current decreases. The base current, on the other hand, increases since it now serves two forward-biased pn-junctions


 instead of one. Equation (17.8) must be replaced by[image: 
$$ {i}_{\mathrm{C}}<\beta {i}_{\mathrm{B}} $$
]

 (17.11)




Quantitative Description of the Saturation Region
Assume that the collector current


 is affected by both bias voltages, υ
BE and υ
BC, and consider two cases. The first case corresponds to a forward bias for υ
BE and [image: 
$$ {\upsilon}_{\mathrm{BC}}=0\;\mathrm{V} $$
]. The collector and base currents are expressed by Eq. (17.10). The second case corresponds to [image: 
$$ {\upsilon}_{\mathrm{BE}}=0\;\mathrm{V} $$
] and a forward bias for υ
BC. In this case, the roles of the collector and emitter and of two pn-junctions are swapped: the emitter functions as the collector and vice versa. In laboratory, you might encounter this case when the junction transistor in the active region is connected backward. With reference to Fig. 17.6, the emitter and base currents


 are given by[image: A331468_1_En_17_Fig6_HTML.gif]
Fig. 17.6Current flow 


in the transistor when EBJ is at zero 


volts and CBJ is forward biased




[image: 
$$ {i}_{\mathrm{E}}={I}_{\mathrm{S}}\left[ \exp \left(\frac{\upsilon_{\mathrm{B}\mathrm{C}}}{V_{\mathrm{T}}}\right)-1\right],{i}_{\mathrm{B}}=\frac{I_{\mathrm{S}}}{\beta_{\mathrm{R}}}\left[ \exp \left(\frac{\upsilon_{\mathrm{B}\mathrm{C}}}{V_{\mathrm{T}}}\right)-1\right] $$
]

 (17.12)

The emitter current in Eq. (17.12) has the same form as the collector current in Eq. (17.10) since the saturation current in Eq. (17.6) is only affected by the base parameters; it does not change if we swap the collector and emitter. The base current is also similar, but with a different constant β
R known as the 
                    reverse common-emitter current gain
                    
                    
                    
                  
. While [image: 
$$ \beta \gg 1 $$
], the reverse current gain is small, [image: 
$$ {\beta}_R\ll 1 $$
].
When both bias voltages υ
BE and υ
BC are present, the collector and emitter currents


 are the superposition of two solutions given by Eqs. (17.10) and (17.12), respectively,[image: 
$$ {i}_{\mathrm{C}}={I}_{\mathrm{S}}\left[ \exp \left(\frac{\upsilon_{\mathrm{BE}}}{V_{\mathrm{T}}}\right)-1\right]-{I}_{\mathrm{S}}\left(1+\frac{1}{\beta_{\mathrm{R}}}\right)\left[ \exp \left(\frac{\upsilon_{\mathrm{BC}}}{V_{\mathrm{T}}}\right)-1\right] $$
]

 (17.13a)


[image: 
$$ {i}_{\mathrm{B}}=\frac{I_{\mathrm{S}}}{\beta}\left[ \exp \left(\frac{\upsilon_{\mathrm{B}\mathrm{E}}}{V_{\mathrm{T}}}\right)-1\right]+\frac{I_{\mathrm{S}}}{\beta_{\mathrm{R}}}\left[ \exp \left(\frac{\upsilon_{\mathrm{B}\mathrm{C}}}{V_{\mathrm{T}}}\right)-1\right] $$
]

 (17.13b)

Equations (17.13) give the general analytical 
                    Ebers-Moll model
                    
                    
                    
                   of the junction transistor that is valid for any values of the bias voltages. It is used in circuit simulators like SPICE. Equation (17.10) is its simplification for the active region. The saturation region may be also described in terms of the “forced” common-emitter current 
                    gain
                    
                    
                    
                   (the 
                    forced beta
                    
                  ):[image: 
$$ {\beta}_{\mathrm{forced}}\equiv {i}_{\mathrm{C}}/{i}_{\mathrm{B}} $$
]

 (17.13c)



Example 17.1
Using the 


Ebers-Moll model and assuming room temperature of 25 °C, estimate the forced common-emitter current gain [image: 
$$ {\beta}_{\mathrm{forced}}\equiv {i}_{\mathrm{C}}/{i}_{\mathrm{B}} $$
] of the BJT when [image: 
$$ \beta =100 $$
], [image: 
$$ {\beta}_{\mathrm{R}}=0.02 $$
], [image: 
$$ {I}_{\mathrm{S}}={10}^{-12}\;\mathrm{A} $$
] for two sets of bias voltages:	A.
                            [image: 
$$ {\upsilon}_{\mathrm{BE}}=0.5\;\mathrm{V},{\upsilon}_{\mathrm{BC}}=0.1,0.2,0.3\;\mathrm{V} $$
]
                          


 

	B.
                            [image: 
$$ {\upsilon}_{\mathrm{BE}}=0.6\;\mathrm{V},{\upsilon}_{\mathrm{BC}}=0.2,0.3,0.4\;\mathrm{V} $$
]
                          


 






Solution: We plug the above data into the Ebers-Moll model and obtain:	A.
                            [image: 
$$ {\beta}_{\mathrm{forced}}=99.9,95.3,29.8 $$
]
                          


 

	B.
                            [image: 
$$ {\beta}_{\mathrm{forced}}=99.9,95.3,29.8 $$
]
                          


 





The forced current gain
 indeed decreases when the base-collector voltage

 increases. Remarkably, both sets of β
forced are identical to each other. This means that the current gain degradation in the saturation region is solely determined by the 
collector-emitter voltage, which is


 the [image: 
$$ {\upsilon}_{\mathrm{CE}}={\upsilon}_{\mathrm{BE}}-{\upsilon}_{\mathrm{BC}} $$
].

Exercise 17.4
Equation (17.13a) predicts that the saturation current of BCJ, [image: 
$$ {I}_{\mathrm{S}}\left(1+1/{\beta}_{\mathrm{R}}\right) $$
], is much larger than the saturation current of EBJ, I
S, given that [image: 
$$ {\beta}_{\mathrm{R}}\ll 1 $$
]. A physical explanation of this effect is a much larger area of the BCJ compared to that of the EBJ.	A.Which equation may be used to estimate the ratio of two saturation currents in terms of the ratio of two areas?


 

	B.Which value does β
R have if the area ratio is 20?


 






Answer: (A) Equation (17.6). (B) [image: 
$$ {\beta}_{\mathrm{R}}=0.053 $$
].

In the cutoff region, the EBJ and the CBJ are both reverse biased. All transistor currents are zero. Transistor voltages must satisfy the corresponding inequalities of Table 17.1.


17.1.6 
                Transistor v–i Dependencies


              
The transistor v–i curves are measured experimentally using circuits shown in Fig. 17.4. In the first case, we vary υ
BE in Fig. 17.4a while keeping υ
CE constant. Figure 17.7 shows the dependence of the collector current i
C on the 
base-emitter voltage υ
BE. The corresponding dependence is that of the Shockley type and varies with temperature.[image: A331468_1_En_17_Fig7_HTML.gif]
Fig. 17.7Typical dependence of the collector current on υ
BE
                                            





A new important plot specifically related to the junction transistor is that of the collector current as a function of the 
collector-emitter voltage υ
CE. In this case, we vary υ
CE in Fig. 17.4 while keeping either υ
BE or i
B constant. If we treat the junction transistor as a “
                  
                transfer resistor,” this plot allows us to visualize the transistor equivalent “resistance” between collector and emitter terminals. Figure 17.8a shows an idealized plot of this type at three different values of the base current. The test circuit is that of Fig. 17.4b. It is assumed that the EBJ is forward biased. The saturation region corresponds to small υ
CE (smaller than about 0.3 V) where the collector current nonlinearly drops 

toward zero. At larger υ
CE, the transistor enters the active region. The collector current remains independent on υ
CE (and on υ
BC) as long as i
B (and accordingly υ
BE) is a fixed number—see Eq. (17.1). According to Fig. 17.8a, the transistor collector-emitter resistance is infinitely high in the active region, but is rather small in the saturation region.[image: A331468_1_En_17_Fig8_HTML.gif]
Fig. 17.8
Typical 

common-emitter characteristics of the npn BJT. The collector current is independent of the collector-to-emitter voltage in the active region in (a). (b) shows a more accurate representation which includes the Early effect
                                            





Exercise 17.5
In Fig. 17.8a determine the common-emitter current gain β and the 
common-base current gain in the active region of operation.

Answer: [image: 
$$ \beta =100,\alpha =0.99 $$
].

Exercise 17.6
In Fig. 17.8, which part of the figure corresponds to the cutoff region?

Answer: The line [image: 
$$ {i}_{\mathrm{C}}=0 $$
].

Exercise 17.7
Using the Ebers-Moll model and assuming room temperature of 25 °C, determine at which υ
CE does the collector current become zero. Ignore the factor 1 in the square-
                    
                    
                  bracketed expressions. Assume [image: 
$$ {\beta}_{\mathrm{R}}=0.01 $$
].

Answer: [image: 
$$ {\upsilon}_{\mathrm{CE}}={V}_{\mathrm{T}} \ln \left(1+1/{\beta}_{\mathrm{R}}\right)\approx 0.12\;\mathrm{V} $$
].


17.1.7 Early Effect
Figure 17.8b shows a more realistic situation when the collector current slightly (in fact linearly) increases with increasing υ
CE. This is known as the 
                  Early effect
                  
                  
                . At large positive υ
CE (large negative υ
BC), the CBJ is very significantly reverse biased, which results in the widening of the corresponding depletion region and shortening the neutral base length W in Eq. (17.6). Hence, the saturation current in Eq. (17.6) increases as the diffusion current becomes more prominent. The Early effect is therefore known as the base-width modulation effect. It leads to a finite 
                  output resistance
                  
                 of the transistor, r
o,[image: 
$$ {r}_{\mathrm{o}}=\frac{V_{\mathrm{A}}}{i_{\mathrm{C}}} $$
]

 (17.14)

where i
C is the collector current given by Eq. (17.10) and shown in Fig. 17.8 with the Early effect ignored and V
A is a transistor constant known as the 
                  Early voltage
                  
                  
                 (a typical V
A is 50 V). The Early voltage is the common intersection point of all dashed asymptotes in Fig. 17.8b with the υ
CE-axis.

Exe

rcise 17.8
In Fig. 17.8, determine the output transistor resistance when i
B is 30 μA and V
A is 50 V.

Answer: [image: 
$$ {r}_{\mathrm{o}}=16.7\;\mathrm{k}\Omega $$
].


17.1.8 The pnp Transistor



Two complementary types of the junction transistor are in use: the npn BJT and the pnp BJT—see Fig. 17.9. In the pnp arrangement the doping concentrations are reversed as shown in Fig. 17.9b. However, the ratios of impurity concentrations do not differ significantly for both cases. The reversal of doping concentrations (which means the opposite carrier polarity) leads to the opposite current directions and, simultaneously, to a change in sign of the bias voltages. Fortunately, this does not affect the functional behavior. Moreover, if we flip the emitter and collector of the pnp BJT as shown in Fig. 17.9b, then the transistor operation becomes very similar to that for the npn BJT shown in Fig. 17.9a. The changes to be made in the formulas are in switching 

all voltage polarities:[image: A331468_1_En_17_Fig9_HTML.gif]
Fig. 17.9The npn BJT and its pnp complement. We notice the collector and emitter reversal




	1.
                        [image: 
$$ {\upsilon}_{\mathrm{BE}}\to {\upsilon}_{\mathrm{EB}} $$
]
                      


 

	2.
                        [image: 
$$ {\upsilon}_{\mathrm{BC}}\to {\upsilon}_{\mathrm{CB}} $$
]
                      


 

	3.
                        [image: 
$$ {\upsilon}_{\mathrm{CE}}\to {\upsilon}_{\mathrm{EC}} $$
]
                      


 





After this operation is complete, all equations of the present sections become applicable to the pnp transistor. Indeed, all physical currents, i
B, i
E, and i
C will also flow in the opposite directions versus their respective terminals.
The npn transistors exhibit higher speed than pnp transistors since the electron mobility is larger than the hole mobility. Junction transistors used in analog communication circuits are exclusively of the npn type. The pnp transistors find its use in audio applications and elsewhere. The general-purpose discrete junction transistors have corresponding pair marking such as 2N3904 small-signal npn BJT and its 2N3906 pnp complement, 2N3055 npn power BJT and its 2N2955 complement, TIP3055 npn power BJT and its TIP2955 complement, etc.
Exercise 17.9
Derive the current relations for a pnp BJT in the active region.

Answer: [image: 
$$ {i}_{\mathrm{E}}=\left(\beta +1\right){i}_{\mathrm{B}} $$
], [image: 
$$ {i}_{\mathrm{C}}=\beta {i}_{\mathrm{B}} $$
].

Historical Note
How can we build an amplifier based on a semiconductor

 pn-junction? One straightforward answer may be to decrease the built-in voltage of the pn-junction using an external control signal and a point contact as shown in Fig. 17.10a. However, the real breakthrough was achieved through the use of an npn-junction when an extra central p-doped region was added as a base. Figure 17.10b indicates how this concept was fist implemented. The BJT, invented in by William Shockley, John Bardeen, and Walter Brattain at Bell Labs in New Jersey, has had a lasting impact on the electronic industry. The history of this Nobel Prize winning invention is a dramatic story of competition, hard work, and multiple frustrations, which nevertheless resulted in a series of great discoveries—see “The Path to the Conception of the Junction Transistor,” by William Shockley, IEEE Trans. Electron Devices, vol. ED-31, no. 11, pp. 1523–1546, Nov. 1984. The bipolar-junction transistor and the junction field-effect transistor (JFET) were both invented as a direct result of US government-sponsored research programs.[image: A331468_1_En_17_Fig10_HTML.gif]
Fig. 17.10(a) An 

early concept of a semiconductor amplifier on the basis of a single pn-junction; (b) evolution of the pn-junction concept resulted in the invention of the bipolar junction transistor. Both figures are from the original patents. (c) William Bradford Shockley (seating), John Bardeen and Walter Brattain Bell Labs, June 1948








17.2 Large-Signal Circuit Models of a BJT
17.2.1 Large-Signal Circuit Model of a BJT
The 
                  equivalent circuit model
                  
                  
                 of a BJT must describe its operation using a combination of simpler circuit blocks: dependent sources and diodes. The equivalent 
                  first-order circuit
                  
                  
                 of a BJT is either of a π- or T-type (or Y-type). The term first-order implies that more accurate models indeed exist. Figure 17.11b, c shows the first-order π-type npn BJT model in the active region of operation. The circuit in Fig. 17.11b, c is the 
                  large-signal BJT circuit model
                  
                . It means that it is applicable equally well to all possible values of υ
BE.[image: A331468_1_En_17_Fig11_HTML.gif]
Fig. 17.11First-order π-type BJT 

model in the active region of operation





In Fig. 17.11b, the transistor is replaced by the EBJ Shockley diode and a 
                  nonlinear voltage-controlled current source
                  
                  
                . In Fig. 17.11c, a 
                  linear current-controlled current source
                  
                  
                 is used instead. Both circuits in Fig. 17.11b, c are the equivalent of Eq. (17.10) describing the BJT operation in the active region and repeated here one more time for convenience (see also Fig. 17.7):[image: 
$$ {i}_{\mathrm{C}}={I}_{\mathrm{S}}\left[ \exp \left(\frac{\upsilon_{\mathrm{B}\mathrm{E}}}{V_{\mathrm{T}}}\right)-1\right],{i}_{\mathrm{B}}=\frac{I_{\mathrm{S}}}{\beta}\left[ \exp \left(\frac{\upsilon_{\mathrm{B}\mathrm{E}}}{V_{\mathrm{T}}}\right)-1\right],{i}_{\mathrm{C}}=\beta {i}_{\mathrm{B}} $$
]

 (17.15)



Example 17.2
Solve the base-bias transistor circuit

 in Fig. 17.12a (which is essentially the 
transistor test circuit in Fig. 17.4b) at 25 °C by determining voltages υ
BE, υ, and υ
CE using the large-signal model. Assume [image: 
$$ {I}_{\mathrm{S}}={10}^{-14}\;\mathrm{A} $$
] for the EBJ Shockley diode.[image: A331468_1_En_17_Fig12_HTML.gif]
Fig. 17.12A base-bias transistor circuit and its equivalent representation






Solution: First, 
                    
                    
                  we need to replace the transistor by an equivalent circuit model. We assume the active region of operation. Since the base current is given, the model of Fig. 17.11b is more appropriate. The transistor circuit is transformed as shown in Fig. 17.12b. Then, we solve this equivalent circuit. We find the 
base-emitter voltage υ
BE from the Shockley diode model:[image: 
$$ {i}_{\mathrm{B}}=\frac{I_{\mathrm{S}}}{\beta}\left[ \exp \left(\frac{\upsilon_{\mathrm{B}\mathrm{E}}}{V_{\mathrm{T}}}\right)-1\right]\Rightarrow {\upsilon}_{\mathrm{B}\mathrm{E}}={V}_{\mathrm{T}} \ln \left(\frac{\beta {i}_{\mathrm{B}}}{I_{\mathrm{S}}}+1\right)=0.68\;\mathrm{V} $$
]

 (17.16a)



The next step is to find the collector current. From the circuit in Fig. 17.12b,[image: 
$$ {i}_{\mathrm{C}}=\beta {i}_{\mathrm{B}}=1.93\;\mathrm{m}\mathrm{A} $$
]

 (17.16b)



Resistor voltage υ is obtained in the form[image: 
$$ \upsilon ={R}_{\mathrm{C}}{i}_{\mathrm{C}}=9.07\;\mathrm{V} $$
]

 (17.16c)



Therefore, the 
collector-emitter voltage is given by[image: 
$$ {\upsilon}_{\mathrm{C}\mathrm{E}}=20-9.07={R}_{\mathrm{C}}{i}_{\mathrm{C}}=10.93\;\mathrm{V} $$
]

 (17.16d)



After the solution is complete, we check if the transistor is really in the active operation region following Table 17.1. Since [image: 
$$ {\upsilon}_{\mathrm{BE}}=0.68\;\mathrm{V} $$
], we obtain [image: 
$$ {\upsilon}_{\mathrm{BC}}={\upsilon}_{\mathrm{BE}}-{\upsilon}_{\mathrm{CE}}=-10.25\;\mathrm{V} $$
] so that both conditions of the active region (the EBJ is forward biased and the CBJ is reverse biased) are satisfied.

The solution of other (more complicated) transistor circuits with the exponential large-signal model follows the method of Example 17.2. The model may be extended to the saturation region by inclusion the second diode and the Ebers-Moll formalism. In many practical cases, a solution of a transcendental equation may become necessary, which is done either using the graphical load-line method or iteratively. This approach is similar to the diode models studied in Chapter 16.

17.2.2 
Large-Signal DC Circuit Model

 of a BJT
In the DC steady state, the circuit parameters are fixed. The steep exponential dependencies of the BJT transistor may be replaced by turn-on voltages, similar to the constant-voltage-drop diode model studied in Chapter 16. Figure 17.13 outlines the concept. This results in a simplified large-signal DC BJT circuit model, which allows us to determine the operation region (active, saturation, or cutoff) and estimate major circuit parameters. This model works reasonably well when it is necessary to establish the DC operating point of a transistor amplifier circuit and for the qualitative analysis of transistor power circuits.[image: A331468_1_En_17_Fig13_HTML.gif]
Fig. 17.13Large-signal DC circuit model of the EBJ





Figure 17.14 shows the 

DC circuit model for three different transistor regions.[image: A331468_1_En_17_Fig14_HTML.gif]
Fig. 17.14Large-signal DC 

circuit model of a npn BJT transistor for three regions of operation




	1.In the active region, [image: 
$$ {V}_{\mathrm{BE}}\approx 0.7\;\mathrm{V} $$
] (turn-on voltage of the EBJ), and the CBJ is reverse biased or has a small positive bias below its turn-on voltage of [image: 
$$ {V}_{\mathrm{BC}}\approx 0.5\;\mathrm{V} $$
] (turn-on voltage of the CBJ is smaller due to more shallow collector doping). Therefore, [image: 
$$ {V}_{\mathrm{CE}}={V}_{\mathrm{BE}}-{V}_{\mathrm{BC}}>0.2\;\mathrm{V} $$
]. This data falls within the wider active region of Table 17.1. Indeed, [image: 
$$ {I}_{\mathrm{C}}=\beta {I}_{\mathrm{B}} $$
].


 

	2.In the saturation region, [image: 
$$ {V}_{\mathrm{BE}}\approx 0.7\;\mathrm{V} $$
] (turn-on voltage of the EBJ) and [image: 
$$ {V}_{\mathrm{BC}}\approx 0.5\;\mathrm{V} $$
] (turn-on voltage of the CBJ). Therefore, [image: 
$$ {V}_{\mathrm{CE}}={V}_{\mathrm{BE}}-{V}_{\mathrm{BC}}\approx 0.2\;\mathrm{V} $$
]. This data again falls within the wider saturation region of Table 17.1. In saturation, [image: 
$$ {I}_{\mathrm{C}}<\beta {I}_{\mathrm{B}} $$
]. The particular value of the collector current is determined by the rest of the circuit. The transistor is most efficient as a switch (has the lowest relative power loss) in the saturation region.


 

	3.In the cutoff region, both junctions are reverse biased or have a small positive bias so that [image: 
$$ {V}_{\mathrm{BE}}\le 0.5\;\mathrm{V} $$
], [image: 
$$ {V}_{\mathrm{BC}}\le 0.4\;\mathrm{V} $$
] according to Table 17.1. We round the last value to 0.5 V to better memorize it. All terminal

 currents are zeros; the transistor is an open circuit.


 





Example 17.3
Create the analog of the chart in Fig. 17.14 for a pnp transistor.

Solution: According to the previous section, the pnp BJT model is reduced to npn model after switching voltage polarities, i.e., after substitutions [image: 
$$ {V}_{\mathrm{BE}}\to {V}_{\mathrm{EB}} $$
], [image: 
$$ {V}_{\mathrm{BC}}\to {V}_{\mathrm{CB}} $$
], and [image: 
$$ {V}_{\mathrm{CE}}\to {V}_{\mathrm{EC}} $$
]. Therefore, the chart of Fig. 17.14 is straightforwardly extended to the pnp case as shown in Fig. 17.15.[image: A331468_1_En_17_Fig15_HTML.gif]
Fig. 17.15Large-signal DC circuit model of a pnp BJT transistor






In practice, for different junction transistors and under different operating conditions, the particular voltage values shown in Figs. 17.13 and 17.14 may slightly vary. We will ignore these variations.

17.2.3 Method of Assumed States



When the large-signal DC circuit model of a transistor is applied, the circuit is solved using the method of 
                  assumed states
                  
                  
                 used in Chapter 16. Its concept is as follows:	1.We make a guess for the transistor state (active, saturation, or cutoff).


 

	2.We replace the transistor by the large-signal DC circuit model for the corresponding region


 

	3.We solve the resulting circuit. Not all model conditions are necessary for this purpose.


 

	4.We check if the remaining model conditions are satisfied.


 

	5.If this is not the case, the model for another region is selected.


 





The large-signal DC circuit model always provides a unique solution.
Exercise 17.10
Determine the region of operation for an npn BJT with [image: 
$$ \beta =100 $$
] shown in Fig. 17.11a using the large-signal DC circuit model when (A) [image: 
$$ {I}_{\mathrm{B}}=0.01\;\mathrm{m}\mathrm{A}\kern0.5em \mathrm{and}\kern0.5em {I}_{\mathrm{C}}=0.15\;\mathrm{m}\mathrm{A} $$
], (B) [image: 
$$ {V}_{\mathrm{CE}}=0.3\;\mathrm{V}\kern0.5em \mathrm{and}\kern0.5em {V}_{\mathrm{BE}}<0.4\;\mathrm{V} $$
], (C) [image: 
$$ {V}_{\mathrm{CE}}=0.4\;\mathrm{V}\kern0.5em \mathrm{and}\kern0.5em {V}_{\mathrm{BE}}=0.7\;\mathrm{V} $$
], (D) [image: 
$$ {I}_{\mathrm{B}}=0\;\mathrm{m}\mathrm{A} $$
], (E) [image: 
$$ {I}_{\mathrm{C}}=0\;\mathrm{m}\mathrm{A} $$
], and (F) [image: 
$$ {V}_{\mathrm{CE}}=0\;\mathrm{V} $$
].

Answer: (A)
                    
                    
                   saturation, (B) cutoff, (C) active, (D) cutoff, (E) cutoff, and (F) cutoff.


17.2.4 Transistor Circuit Analysis Using the Method of Assumed States
Our starting point is the 
transistor test circuit shown in Fig. 17.4a. We will make it realistic by adding collector and base resistances

 as shown in Fig. 17.16. Note changes in power supply indexing compared to Fig. 17.4a. This is done since the supply voltages are no longer the 
base-emitter voltage or the 
collector-emitter voltage, respectively. We will solve the resulting transistor circuit using the large-signal DC model and the method of assumed states first. Then, we will solve the same circuit using the large-signal exponential model. Finally, we will compare both solutions.[image: A331468_1_En_17_Fig16_HTML.gif]
Fig. 17.16Transistor circuit solved using the method of 

assumed states





Example 17.4
Solve the transistor circuit shown in Fig. 17.16a by determining unknown voltages V
BE and V
CE using the large-signal DC BJT model and the method of assumed states. Assume [image: 
$$ \beta =100 $$
].

Solution: We need to choose one of the regions first; let us choose the active region of operation. This guess leads to the circuit shown in Fig. 17.16b with
[image: 
$$ {V}_{\mathrm{BE}}=0.7\;\mathrm{V} $$
]

 (17.17a)



The base current is found using KVL for the base-emitter loop:[image: 
$$ {I}_{\mathrm{B}}=\frac{V_{\mathrm{B}\mathrm{B}}-0.7\;\mathrm{V}}{R_{\mathrm{B}}}=13\;\upmu \mathrm{A} $$
]

 (17.17b)



In the active region, [image: 
$$ {I}_{\mathrm{C}}=\beta {I}_{\mathrm{B}}=1.3\;\mathrm{m}\mathrm{A} $$
]. From KVL for the base-to-collector branch:[image: 
$$ {V}_{\mathrm{C}\mathrm{E}}={V}_{\mathrm{C}\mathrm{C}} - V=15-{R}_{\mathrm{C}}{I}_{\mathrm{C}}=15-6.63=8.37\;\mathrm{V} $$
]

 (17.17c)



The circuit is thus “tentatively” solved. As a last step, we must check if our initial guess was correct.
                    
                    
                   The only remaining condition to check in the active region is that of the collector-to-emitter voltage:
[image: 
$$ {V}_{\mathrm{CE}}=8.37\;\mathrm{V}>0.2\;\mathrm{V} $$
]

 (17.17d)



Thus, all conditions of the active region are met. The check of other regions of operation (saturation and cutoff) is unnecessary; it must lead to negative results since a solution obtained with the method of assumed states is always unique.

Example 17.5
Solve the transistor circuit in Fig. 17.17a at room temperature of 25 °C by determining unknown voltages υ
BE and υ
CE using the large-signal BJT model. Assume [image: 
$$ {I}_{\mathrm{S}}={10}^{-14}\;\mathrm{A} $$
] for the EBJ Shockley diode and [image: 
$$ \beta =100 $$
].[image: A331468_1_En_17_Fig17_HTML.gif]
Fig. 17.17Transistor circuit solved using the large-signal exponential model






Solution: The current-controlled current source model

 from Fig. 17.11c is selected. This model is somewhat more convenient for the present problem. The rightmost base-to-emitter branch is solved either using the load-line method or iteratively. Using KVL and the definition of the Shockley diode, one has[image: 
$$ 2-{R}_{\mathrm{B}}{i}_{\mathrm{B}}-{\upsilon}_{\mathrm{B}\mathrm{E}}=0\Rightarrow {i}_{\mathrm{B}}=\frac{2-{\upsilon}_{\mathrm{B}\mathrm{E}}}{R_{\mathrm{B}}}\Rightarrow {i}_{\mathrm{B}}=\frac{2-{V}_{\mathrm{T}} \ln \left(\frac{\beta {i}_{\mathrm{B}}}{I_{\mathrm{S}}}+1\right)}{R_{\mathrm{B}}} $$
]

 (17.18a)



We will use the iterative solution for i
B with the starting guess of [image: 
$$ {i}_{\mathrm{B}}=0 $$
]. The convergence process is very fast. We present the final result, 
                    
                    
                  which is
[image: 
$$ {i}_{\mathrm{B}}=13.3\;\upmu \mathrm{A} $$
]

 (17.18b)



The 
                    
                  base-emitter voltage is obtained as[image: 
$$ {\upsilon}_{\mathrm{B}\mathrm{E}}={V}_{\mathrm{T}} \ln \left(\frac{\beta {i}_{\mathrm{B}}}{I_{\mathrm{S}}}+1\right)=0.67\;\mathrm{V} $$
]

 (17.18c)



The collector current is found from the equivalent circuit, [image: 
$$ {i}_{\mathrm{C}}=\beta {i}_{\mathrm{B}}=1.33\;\mathrm{m}\mathrm{A} $$
]. Voltage across the collector resistance is obtained in the form [image: 
$$ \upsilon ={R}_{\mathrm{C}}{i}_{\mathrm{C}}=6.71\;\mathrm{V} $$
]. Therefore, the 
collector-emitter voltage is given by[image: 
$$ {\upsilon}_{\mathrm{CE}}=15-\upsilon =8.29\;\mathrm{V} $$
]

 (17.18d)




The results of Examples 17.4 and 17.5 are in close agreement; the error does not exceed 5% for every parameter. A good agreement is also obtained if we significantly vary parameters of the exponential model (the saturation current, for example). This means that the large-signal DC model is a viable yet simple tool for

 transistor circuit analysis.

17.2.5 
                DC Transistor Bias Circuits


              
The large-signal DC circuit model and the method of assumed states find their use in the analysis of BJT DC transistor bias circuits. Such circuits are the starting point in the design of all transistor amplifiers, both discrete and integrated. The bias circuits typically consist of a transistor, a number of resistors around it, and/or one or multiple voltage/current sources. The bias circuits must ensure that the transistor operates in the active region. The general goal of the bias circuit is to control base, collector, and emitter voltages V
B, V
C, V
E, and the corresponding currents. This will allow us to establish amplifier gain, input and 
output resistances, and other parameters of interest. If we (not very seriously) replace the transistor by a marionette shown in Fig. 17.18 and assign some positions (voltages) to its arms and legs, then the bias circuit plays the role of the “puppet master.”[image: A331468_1_En_17_Fig18_HTML.gif]
Fig. 17.18A “puppet master” analogy of the transistor bias circuit





Our goal now is to design a simple active-region bias circuit that is typical for transistor amplifiers. The following conditions should be met:	1.Provide a constant DC collector current I
C that remains nearly the 

same at large β variations (and temperature variations).


 

	2.Make sure that the transistor has enough output voltage swing (a sufficiently wide dynamic range) in the active region.


 






17.2.6 β-Independent Biasing and Negative Feedback



The first such circuit is the base-bias or fixed-base transistor circuit studied previously and shown again in Fig. 17.19a. The name comes from the fact that the base current in the active region, [image: 
$$ {I}_{\mathrm{B}}=\left({V}_{\mathrm{B}\mathrm{B}}-0.7\;\mathrm{V}\right)/{R}_{\mathrm{B}} $$
], is fixed. The amplifier’s output will be the collector voltage V
C versus ground, which coincides with V
CE. The general solution is obtained by applying the KVL to the base-emitter loop and has the form:[image: A331468_1_En_17_Fig19_HTML.gif]
Fig. 17.19Two candidates for the

 transistor bias circuit




[image: 
$$ {I}_{\mathrm{C}}=\beta \frac{V_{\mathrm{B}\mathrm{B}}-0.7\;\mathrm{V}}{R_{\mathrm{B}}}\Rightarrow {V}_{\mathrm{C}}={V}_{\mathrm{C}\mathrm{E}}={V}_{\mathrm{C}\mathrm{C}}-\beta \frac{R_{\mathrm{C}}}{R_{\mathrm{B}}}\left({V}_{\mathrm{B}\mathrm{B}}-0.7\;\mathrm{V}\right) $$
]

 (17.19)

For the particular component values shown in Fig. 17.19a and [image: 
$$ \beta =100 $$
], the output voltage V
C has been determined in Examples 17.4 and 17.5, respectively. It approximately satisfies the equality[image: 
$$ {V}_{\mathrm{C}}\approx {V}_{\mathrm{C}\mathrm{C}}/2 $$
]

 (17.20)

which is desired for the maximum output voltage swing. As a competitor, we suggest using an alternative 


bias circuit with emitter resistance shown in Fig. 17.19b, which employs the emitter resistance R
E instead of the base resistance R
B. In fact, the emitter resistance is one way of introducing the negative feedback in a transistor circuit. The feedback loop is as follows: a larger base current increases the voltage drop across the emitter resistance. By KVL, the higher emitter voltage drop decreases the V
BE and thus attempts to decrease the base current, which is the negative feedback. The general solution for the circuit in Fig. 17.19b in the active region has the form[image: 
$$ \begin{array}{l}{I}_{\mathrm{E}}=\frac{V_{\mathrm{BB}}-0.7\;\mathrm{V}}{R_{\mathrm{E}}}\Rightarrow \\ {}{I}_{\mathrm{C}}=\frac{\beta }{\beta +1}\frac{V_{\mathrm{BB}}-0.7\;\mathrm{V}}{R_{\mathrm{E}}}\Rightarrow {V}_{\mathrm{C}}={V}_{\mathrm{C}\mathrm{C}}-\frac{\beta }{\beta +1}\frac{R_{\mathrm{C}}}{R_{\mathrm{E}}}\left({V}_{\mathrm{BB}}-0.7\;\mathrm{V}\right)\end{array} $$
]

 (17.21)

In order to obtain Eq. (17.21), we have again applied KVL to the base-emitter loop in Fig. 17.19b. For the particular component values shown in Fig. 17.19b and [image: 
$$ \beta =100 $$
], the output voltage is [image: 
$$ {V}_{\mathrm{C}}=8.44\;\mathrm{V} $$
]. It is not far from V
CC/2, which is the desired value. Thus, both circuits approximately satisfy the condition for the maximum output voltage swing given by Eq. (17.20). The next step is to check the β-dependency.
Example 17.6
Compare the performance of two circuits in Fig. 17.19 for [image: 
$$ \beta =50,100,\kern0.5em \mathrm{and}\kern0.5em 250 $$
]. Show the variation in I
C and V
C, respectively.

Solution: We assume that both 

circuits operate in the active region and apply the solution shortcut given by Eqs. (17.19) and (17.21), respectively. The corresponding result is shown in Table 17.2. In the case of the base-bias circuit in Fig. 17.19a, the current/voltage variations are so large than the transistor runs in the saturation for large β. On the other hand, the circuit with the emitter resistance in Fig. 17.19b indicates a great stability with regard to β variations, which is the direct consequence of the negative feedback—similar to the operational amplifiers with the negative feedback.Table 17.2Comparison of two circuits for different β
                                                


	
                              β
                            
	Fig. 17.19a
                                                        
	Fig. 17.19b
                                                        

	
                              I
                              C
                            
	
                              V
                              C
                            
	
                              I
                              C
                            
	
                              V
                              C
                            

	50
	 0.55 mA
	 11.69 V
	 1.28 mA
	 8.50 V

	100
	1.30 mA
	 8.37 V
	 1.29 mA
	8.44 V

	250
	Saturation
	 1.30 mA
	8.40 V






Exercise 17.11
Determine values I
C, V
C in Table 17.2 in the saturation region.

Answer: [image: 
$$ {V}_{\mathrm{C}}=0.2\;\mathrm{V} $$
], [image: 
$$ {I}_{\mathrm{C}}=2.9\;\mathrm{m}\mathrm{A} $$
].


17.2.7 Common Discrete-Circuit Bias Arrangement
Although the circuit in Fig. 17.19b is already suitable for our purpose, using two voltage supplies is not convenient. It can be avoided by employing only one voltage supply

 V
CC and a proper voltage divider connected to the base as shown in Fig. 17.20. This configuration is standard in discrete-circuit transistor amplifiers, in contrast to the 
                  integrated-circuit transistor amplifiers
                  
                  
                 where the use of resistors should be avoided. It is known as the four-resistor bias circuit. We employ the value [image: 
$$ {V}_{\mathrm{CC}}=10\;\mathrm{V} $$
] to demonstrate that the supply voltage may vary widely from circuit to circuit. The circuit in Fig. 17.20 is solved using the method of Thévenin equivalent

 as shown in Fig. 17.21. First, we draw the voltage power supply V
CC explicitly. Next, we replace the circuit within the shadow rectangle in Fig. 17.21b by its Thévenin equivalent. The Thévenin resistance (denoted here by index TH) is the circuit resistance with the voltage supply shorted out, i.e.,[image: A331468_1_En_17_Fig20_HTML.gif]
Fig. 17.20Four-resistor bias circuit




[image: A331468_1_En_17_Fig21_HTML.gif]
Fig. 17.21Solution of the four-
                          
                          
                        resistor bias circuit using the method of Thévenin equivalent




[image: 
$$ {R}_{\mathrm{TH}}={R}_1\left|\right|{R}_2=\frac{R_1{R}_2}{R_1+{R}_2} $$
]

 (17.22a)


Thévenin voltage (denoted by the same index TH) is the open-circuit voltage, i.e., the voltage across the resistor R
2. By voltage division,[image: 
$$ {V}_{\mathrm{TH}}=\frac{R_2}{R_1+{R}_2}{V}_{\mathrm{CC}} $$
]

 (17.22b)

The resulting circuit is shown in Fig. 17.21c. To complete the solution, we write KVL around the base-emitter loop

 in Fig. 17.21c and obtain an equation for I
B:[image: 
$$ -{V}_{\mathrm{TH}}+{R}_{\mathrm{TH}}{I}_{\mathrm{B}}+0.7\;\mathrm{V}+\left(\beta +1\right){R}_{\mathrm{E}}{I}_{\mathrm{B}}=0 $$
]

 (17.22c)


Solving for I
B gives us the general solution for the four-resistor bias circuit

 in the form[image: 
$$ {I}_{\mathrm{C}}=\beta {I}_{\mathrm{B}}=\beta \frac{V_{\mathrm{TH}}-0.7\;\mathrm{V}}{R_{\mathrm{TH}}+\left(\beta +1\right){R}_{\mathrm{E}}},{V}_{\mathrm{C}}={V}_{\mathrm{C}\mathrm{C}}-\beta {R}_{\mathrm{C}}\frac{V_{\mathrm{TH}}-0.7\;\mathrm{V}}{R_{\mathrm{TH}}+\left(\beta +1\right){R}_{\mathrm{E}}} $$
]

 (17.22d)

which indeed coincides with Eq. (17.21) when [image: 
$$ {R}_{\mathrm{TH}}=0 $$
]. Now, it is instructive to show how we can solve the same circuit without using the method of Thévenin equivalent.
Example 17.7
Solve the circuit in Fig. 17.20 without using the method of Thévenin equivalent. Assume transistor current gain of 100. The circuit parameters are [image: 
$$ {R}_1=5.1\;\mathrm{k}\Omega, {R}_2=820\;\Omega $$
], [image: 
$$ {R}_{\mathrm{C}}=5.1\;\mathrm{k}\Omega $$
], and [image: 
$$ {R}_{\mathrm{E}}=1\;\mathrm{k}\Omega $$
].

Solution: Let’s introduce at least one unknown and see if we can write a closed-form equation for this unknown. We assume the active region of operation and choose an unknown: the voltage across the emitter resistor, V. In this case, [image: 
$$ {V}_{\mathrm{B}}=V+0.7\;\mathrm{V} $$
]. The currents I
1, I
2, and I
B become[image: 
$$ {I}_1=\frac{14.3-V}{R_1},{I}_2=\frac{0.7+V}{R_2},{I}_B={I}_1-{I}_2=\frac{14.3-V}{R_1}-\frac{0.7 + V}{R_2} $$
]

 (17.23a)



On the other hand,[image: 
$$ {I}_{\mathrm{B}}=\frac{I_{\mathrm{C}}}{\beta }=\frac{I_{\mathrm{E}}}{\beta +1}=\frac{V}{R_{\mathrm{E}}\left(\beta +1\right)} $$
]

 (17.23b)



Equating the two expressions for I
B, we obtain the resulting equation for V:[image: 
$$ \frac{V}{R_{\mathrm{E}}\left(\beta +1\right)}=\frac{14.3-V}{R_1}-\frac{0.7+V}{R_2} $$
]

 (17.23c)



The rest of the solution is to plug the numbers into Eq. (17.23c) and solve it for V. This operation yields [image: 
$$ V=1.37\;\mathrm{V} $$
]. Other circuit parameters are found trivially. The present method is in fact a truncated version of the nodal analysis.


17.2.8 Other Bias Circuits



Dual power supplies are often used in transistor amplifier circuits to provide a symmetric voltage swing to a load (e.g., a speaker). In this case, the corresponding 
                  bias circuit with the dual-polarity power supply
                  
                 may be simplified as shown in Fig. 17.22.[image: A331468_1_En_17_Fig22_HTML.gif]
Fig. 17.22A bias circuit with the 

dual-polarity power supply





To obtain the general solution, we write KVL around the base-emitter loop in Fig. 17.22 and obtain an equation for I
B:[image: 
$$ {R}_{\mathrm{B}}{I}_{\mathrm{B}}+0.7\;\mathrm{V}+\left(\beta +1\right){R}_{\mathrm{E}}{I}_{\mathrm{B}}-{V}_{\mathrm{CC}}=0 $$
]

 (17.24a)

Solving for I
B gives us the complete solution for the bias circuit in the form[image: 
$$ {I}_{\mathrm{C}}=\beta {I}_{\mathrm{B}}=\beta \frac{V_{\mathrm{C}\mathrm{C}}-0.7\;\mathrm{V}}{R_{\mathrm{B}}+\left(\beta +1\right){R}_{\mathrm{E}}},{V}_{\mathrm{C}}={V}_{\mathrm{C}\mathrm{C}}-\beta {R}_{\mathrm{C}}\frac{V_{\mathrm{C}\mathrm{C}}-0.7\;\mathrm{V}}{R_{\mathrm{B}}+\left(\beta +1\right){R}_{\mathrm{E}}} $$
]

 (17.24b)



Example 17.8
Establish the 

performance of the circuit in Fig. 17.22 for [image: 
$$ \beta =50,100,\kern0.5em \mathrm{and}\kern0.5em 250 $$
]. Show the variation in I
C and V
C, respectively.

Solution: We assume that the circuit operates in the active region and apply the solution shortcut given by Eq. (17.24b). The corresponding result is shown in Table 17.3. A good stability with regard to β variations is again observed though the variations are larger than in Table 17.2. Similar to the prior results, the stability is a direct consequence of the negative feedback in the base-emitter loop.Table 17.3Performance of the bias circuit in Fig. 17.22 for different β
                                                


	
                              β
                            
	
                              I
                              C
                            
	
                              V
                              C
                            

	50
	 1.82 mA
	7.35 V

	100
	 1.86 mA
	7.18 V

	250
	 1.89 mA
	7.07 V






Other bias circuits exist, in particular those which use the current sources along with the voltage sources. The current sources are constructed using transistors as well. Thus, often one transistor circuit is used to bias another.


17.3 Practical BJT Circuits at DC
The transistor circuits of this section behave very similar to the transistor bias circuits considered previously. However, they serve a completely different purpose. Namely, they are used as drivers and switches for different (power) loads such as LEDs, automotive lights, solenoids, etc.
17.3.1 Constant-Current Sources: Active Region of Operation
General
Since the BJT behaves as a dependent current source, it can be used to control the current through many other devices. For example, if a load requires a constant current, a BJT can be connected as shown in Fig. 17.23 with a constant reference voltage connected to the base of a BJT through a fixed resistance


. Doing so establishes a constant current in the base, which is amplified in the collector (by the current gain β) and flows through the load. The transistor circuits so constructed are called constant-current BJT sources.[image: A331468_1_En_17_Fig23_HTML.gif]
Fig. 17.23Simple BJT configuration as constant-current sources





In the current sources, the BJT is operating in the active region. The collector current


 is determined using the large-signal DC model. In Fig. 17.23a, b, one has, respectively[image: 
$$ {I}_{\mathrm{C}}=\beta \frac{V_{\mathrm{REF}}-0.7\;\mathrm{V}}{R_{\mathrm{B}}} $$
]

 (17.25a)


[image: 
$$ {I}_{\mathrm{E}}=\frac{V_{\mathrm{REF}}-0.7\;\mathrm{V}}{R_{\mathrm{E}}}\Rightarrow {I}_{\mathrm{C}}=\frac{\beta }{\beta +1}\frac{V_{\mathrm{REF}}-0.7\;\mathrm{V}}{R_{\mathrm{E}}} $$
]

 (17.25b)

Those equations are the same as Eqs. (17.19) and (17.21) of the previous sections established for the topologically equivalent bias circuits. Although Eq. (17.25a) provides a means of setting the collector current to a particular value, β varies widely due to variations in transistor dopant concentrations, operating temperature, and current levels. Therefore, this design is not very practical since it is too β-dependent. An improved current source


 is realized if the resistance is moved to the emitter as shown in Fig. 17.23b. Since the ratio [image: 
$$ \beta /\left(\beta +1\right) $$
] is close to unity ([image: 
$$ \beta \gg 1 $$
]), Eq. (17.25b) is reduced to[image: A331468_1_En_17_Fig24_HTML.gif]
Fig. 17.24A 20-mA current source to drive color LEDs



                                                




[image: 
$$ {I}_{\mathrm{C}}\approx \frac{\left({V}_{\mathrm{REF}}-0.7\right)}{R_{\mathrm{E}}} $$
]

 (17.25c)

Here we see that the collector current


 no longer depends on β—a very significant result, making it possible to design practical BJT current sources.
Exercise 17.12

                    	A.Given the circuit of Fig. 17.23b with [image: 
$$ {V}_{\mathrm{REF}}=5\;\mathrm{V} $$
], choose a value of resistance R
E to set a constant emitter current of 20 mA.


 

	B.If β varies between 50 and 250, determine the minimum and maximum collector currents that result.


 




                  


                      Answ
                      
                      
                      
                    
ers: (A) [image: 
$$ {R}_{\mathrm{E}}=215\ \Omega $$
]. (B) [image: 
$$ {I}_{\mathrm{C} \min }=19.60\kern0.2em \mathrm{m}\mathrm{A} $$
], [image: 
$$ {I}_{\mathrm{C} \max }=19.92\kern0.2em \mathrm{m}\mathrm{A} $$
]




                  Circuit Limitations



                
In order for a current source in Fig. 17.23b to operate properly, it must remain in the active region, which requires that [image: 
$$ {V}_{\mathrm{CE}}>{V}_{\mathrm{SAT}}\approx 0.2\;\mathrm{V} $$
]. If the voltage across the load is too great, it will drive the BJT into saturation. Therefore, the load voltage is always less than the supply voltage minus the voltage drop across the emitter resistor R
E and V
SAT,[image: 
$$ {V}_{\mathrm{L}}<{V}_{\mathrm{CC}}-{I}_{\mathrm{E}}{R}_{\mathrm{E}}-{V}_{\mathrm{SAT}} $$
]

 (17.26)





                  Constant-Current Source LED Driver



                
Constant-current sources are often used to drive LEDs (light emitting diodes) of different colors because of their voltage variations. Red LEDs typically have a voltage drop of approximately 1.7 V at 20 mA, while blue LEDs have a voltage drop of 3.5 V at this value. Although the voltage drops are different, both of these LEDs could be driven by the same current source design. The design of a current source capable of driving any color LED at 20 mA from a 5-V supply V
CC is 


shown in Fig. 17.24a. The reference voltage is set up at 1 V (any value greater than 0.7 V is appropriate). If the 5-V supply is regulated, the 1-V reference voltage can be derived from it using a voltage divider as shown in Fig. 17.24b. Following a typical rule of thumb, the divider current in this circuit was selected to be 10% of the load current or 2 mA.
Exercise 17.13
For the circuits of Fig. 17.24, what is the largest LED voltage that can be tolerated before the transistor is pushed into saturation? You are given [image: 
$$ {R}_{\mathrm{E}}=15\;\Omega $$
].

Answer: Applying Eq. (17.26), the largest LED voltage would be 4.5 V.



17.3.2 Voltage Follower (Voltage Buffer): Active Region of Operation
Now, we consider a different problem of setting the constant load voltage with the transistor (the 
                  constant-voltage
                  
                  
                  
                 BJT source). Often, the familiar resistive voltage dividers are used to drop supply voltages down to lower values for various low-power applications. In cases requiring greater current handling capability, a BJT can be used as a voltage follower (voltage buffer) to prevent excessive voltage drop when heavy loads are connected to the divider. Figure 17.25 compares two circuits for generating a required reduced voltage V
DIV from V
CC. The circuit in Fig. 17.25a is a simple voltage divider; the circuit in Fig. 17.25b 
                  
                  
                  
                utilizes a BJT in an 
                  emitter follower configuration
                  
                  
                  
                 with the output being the emitter. In both circuits, the voltage divider voltage under no load conditions is[image: A331468_1_En_17_Fig25_HTML.gif]
Fig. 17.25Voltage divider circuit comparison



                                            




[image: 
$$ {V}_{\mathrm{DIV}}=\frac{R_2}{R_1+{R}_2}{V}_{\mathrm{CC}} $$
]

 (17.27)


To determine how much the voltages drop when the switches are closed, it is customary to replace the voltage dividers with their Thévenin equivalents


 as shown in Fig. 17.26.[image: A331468_1_En_17_Fig26_HTML.gif]
Fig. 17.26Voltage divider


 circuit comparison after applying their Thévenin equivalents





For both voltage dividers, Thévenin voltage and resistance are given by[image: 
$$ {V}_{\mathrm{TH}}={V}_{\mathrm{DIV}}=\frac{R_2}{R_1+{R}_2}{V}_{\mathrm{CC}}\kern1em {R}_{\mathrm{TH}}={R}_1\left|\right|{R}_2=\frac{R_1{R}_2}{R_1+{R}_2} $$
]

 (17.28)

Equation (17.28) coincides with the corresponding result for the bias circuits given by Eqs. (17.22). For the pure resistive divider circuit in Fig. 17.26a, the undesired drop in voltage V
DROP is simply the load current multiplied by the 


Thévenin resistance:[image: 
$$ {V}_{\mathrm{DROP}}={I}_{\mathrm{L}}{R}_{\mathrm{TH}} $$
]

 (17.29a)

On the other hand, for the transistor circuit in Fig. 17.26b, the undesired voltage drop V
DROP is the base current multiplied by the Thévenin resistance:[image: 
$$ {V}_{\mathrm{DROP}}={I}_{\mathrm{B}}{R}_{\mathrm{TH}} $$
]

 (17.29b)

Since [image: 
$$ {I}_{\mathrm{B}}={I}_{\mathrm{L}}/\left(\beta +1\right) $$
], Eq. (17.29b) can be rewritten in terms of the load current, i.e.,[image: 
$$ {V}_{\mathrm{DROP}}=\frac{I_{\mathrm{L}}{R}_{\mathrm{TH}}}{\beta +1} $$
]

 (17.30)

Therefore, for the same load current, the voltage drop in the transistor circuit is reduced by a factor of 1/(β + 1), making it a very good voltage buffer capable of maintaining a voltage across a load with minimal drop.

                  Circuit Limitations



                
The actual output voltage of the voltage buffer will be 0.7 V less than the divider voltage. Therefore, the divider voltage in the voltage buffer should be made 0.7 V above the desired output. Also, the circuit of Fig. 17.25b can only source current, it cannot sink it (i.e., provide current flowing into the emitter). 
                    
                    
                    
                  In order to be able to sink current, the complementary pnp transistor should be used.
Exercise 17.14
For the circuit of Fig. 17.25b, [image: 
$$ {R}_1=315\;\Omega $$
], [image: 
$$ {R}_2=285\;\Omega $$
], and [image: 
$$ {V}_{\mathrm{CC}}=12\;\mathrm{V} $$
].	A.Determine Thévenin voltage and resistance for the voltage divider.


 

	B.Determine the voltage drop that results for a load current of 10 mA. Assume [image: 
$$ \beta =50 $$
]. Repeat for a load current of 100 mA.


 

	C.Determine the load voltage for each of the load currents of part B.


 






                    Answers:
                  

                    	(A):
V
TH = 5.7 V, R
TH = 149.63 Ω.


 

	(B):29.3 mV drop for 10 mA load, 293 mV drop for 100 mA load.


 

	(C):4.97 V for 10 mA load, 4.71 V for 100 mA lo


ad.


 




                  



17.3.3 BJT Switches: Saturation Region
When operated in the saturation and cutoff regions, BJTs can be used as voltage-controlled (or current-controlled) 
                  switches
                  
                  
                . Similar to mechanical switches, BJTs can be placed on either the positive side or the negative side of the load with respect to the power source. 
                  
                  
                Figure 17.27 shows the concept. The npn BJT transistors are used for negative-side switches and the pnp transistors for positive-side switches. In both cases, the collector of each transistor is tied to the load and the emitter is tied to the power source. Often, the negative side of the source is designated as the ground reference. In those cases, negative-side switches may be referred to as 
                  ground-side switches
                  
                  
                 and positive-side switches as 
                  power-side switches
                  
                .[image: A331468_1_En_17_Fig27_HTML.gif]
Fig. 17.27
Negative-side and positive-side

 BJT switches






                  npn BJT Switch


                
In an actual BJT switching circuit, there are two sides to consider—the control side and the load side as shown in

 Fig. 17.28. The switching concept is as follows: smaller control current (or base current) is used to turn on the transistor which allows much larger load current (or collector current) to flow. One important feature of the circuit of Fig. 17.28 is that the voltage on the control side does not have to be the same as the voltage on the load side. The control voltage need only be greater than 0.7 V versus ground. This is just enough to turn on the transistor, which means that low-voltage systems can control high-voltage ones or vice versa. The only requirement is that the voltage sources share a common return path or ground path as in Fig. 17.28.[image: A331468_1_En_17_Fig28_HTML.gif]
Fig. 17.28An npn BJT

 operating as a switch





In systems with one power source such as automobiles, the same supply can be used for both control and load currents as shown in Fig. 17.29. 
                    
                    
                  The wiring on the control side can be of lighter gauge since it only has to handle the small control current. The wiring on the load side is of heavier gauge. This allows the control switch to be located an appreciable distance from the load without having to run heavy gauge wire the entire distance. This approach is often employed in automotive vehicle wiring.[image: A331468_1_En_17_Fig29_HTML.gif]
Fig. 17.29Single supply operation with wire gauge considerations






Operation in the Saturation Regio: Quick Estimates
In order for the BJT to work as an effective switch, it must be driven deep into saturation even under maximum load conditions in order to minimize the voltage drop across the transistor and reduce its power dissipation. Clearly, the power dissipation is the product of [image: 
$$ {V}_{\mathrm{CE}}=0.2\;\mathrm{V} $$
] in saturation and the load current. The minimum base current required to saturate the transistor is found as follows. We take the 
maximum load current

 (replace the transistor by a wire, ignore the 0.2 V drop for simplicity) and dividing it by the minimum anticipated current gain β given in the transistor spec sheet. The actual base current should be two times this value to certainly guarantee saturation. This condition is called 
                    overdriving the transistor base
                    
                    
                  . The pnp switch in Fig. 17.29b is considered similarly.
Exercise 17.15
For the circuit of Fig. 17.28, [image: 
$$ {V}_{\mathrm{REF}}=5\;\mathrm{V} $$
], [image: 
$$ {V}_{\mathrm{CC}}=12\;\mathrm{V} $$
], and the bulb turn-on resistance is 20 Ω. Assume the minimum value [image: 
$$ \beta =50 $$
].	A.Find the maximum load current (if the transistor were a perfect switch).


 

	B.Find the minimum base current required to saturate the transistor.


 

	C.Determine a value for R
B to overdrive the transistor by approximately a factor of 2.


 






Answers: (A) 0.60 A, (B) 12 mA, and (C) 179.2 Ω (175 Ω, 180 Ω are acceptable too).



17.3.4 Application Example: Automotive BJT Dome Light Switch



Modern automobiles utilize dozens of microcontrollers to handle the various electronic control systems on today’s vehicles. These microcontrollers are integrated into modules that are dedicated to specific functions. Here are a few that are quite common:PCMpowertrain control module


ECMengine control module


BCM
                        body control module

                      


SRSsupplemental restraint system (airbags)


ABSanti-lock braking system





Typically, these embedded computer systems run on 5 V, while having to control devices operating at 12 V. BJTs make this switching possible. Figure 17.30 shows one of the outputs of a BCM (body control module) used to control a dome light. The BCM is modeled here as a Thévenin equivalent circuit with [image: 
$$ {V}_{\mathrm{TH}}=5\;\mathrm{V} $$
] and [image: 
$$ {R}_{\mathrm{TH}}=100\;\Omega $$
]. The transistor inside a driver module is used to turn on a dome light modeled as a 20-Ω resistor.[image: A331468_1_En_17_Fig30_HTML.gif]
Fig. 17.30
                        Automotive dome light application


                      





The procedure to determine the value of R
B is as follows:	1.If the transistor were a perfect switch, the maximum load current would be [image: 
$$ 12\;\mathrm{V}/20\;\Omega =600\;\mathrm{m}\mathrm{A} $$
].


 

	2.If the minimum transistor β is 50, then the minimum base current required to saturate the transistor would be [image: 
$$ {I}_{\mathrm{B}}=600\;\mathrm{m}\mathrm{A}/50=12\;\mathrm{m}\mathrm{A} $$
].


 

	3.In order to drive the transistor deep into 

saturation, the base current should be approximately twice this value, i.e., 24 mA. Writing a KVL equation around the base-emitter loop yields [image: 
$$ {V}_{\mathrm{TH}}={I}_{\mathrm{B}}\left({R}_{\mathrm{TH}}+{R}_{\mathrm{B}}\right)+{V}_{\mathrm{B}\mathrm{E}} $$
].


 

	4.Solving for R
B gives the desired result: [image: 
$$ {R}_{\mathrm{B}}=\frac{V_{\mathrm{TH}}-{V}_{\mathrm{B}\mathrm{E}}}{I_{\mathrm{B}}}-{R}_{\mathrm{TH}}=\frac{5-0.7}{0.024}-100=79.2\;\Omega $$
]. Close resistance values are also 

acceptable.


 






17.3.5 Application Example: Door Lock BJT Switch and Darlington Pair



For applications requiring higher switching currents, a Darlington pair (sometimes called a 
                  super-beta transistor
                  
                ) is often used. Darlington pairs utilize two BJT transistors with one driving the other. In this way, very high current gains can be achieved—see Fig. 17.31a. For the Darlington pair in Fig. 17.31a,[image: A331468_1_En_17_Fig31_HTML.gif]
Fig. 17.31
Automotive 

door lock solenoid driven by Darlington pair




[image: 
$$ {I}_{\mathrm{C}}=\left(\left({\beta}_1+1\right)\left({\beta}_2+1\right)-1\right){I}_{\mathrm{B}},{I}_{\mathrm{E}}=\left({\beta}_1+1\right)\left({\beta}_2+1\right){I}_{\mathrm{B}} $$
]

 (17.31)

Figure 17.31 illustrates a door lock solenoid switching circuit. The BCM is again modeled as a Thévenin equivalent circuit with [image: 
$$ {V}_{\mathrm{TH}}=5\;\mathrm{V} $$
] and [image: 
$$ {R}_{\mathrm{TH}}=100\;\Omega $$
]. The Darlington pair comprised of two npn transistors is used to turn on the solenoid whose internal resistance is 3 Ω. A diode is used to quench the inductive current spike that occurs when the solenoid is turned off. The procedure to determine the value of R
B is similar to the previous example; however, much higher current values are used:	1.If the transistor were a perfect switch, the maximum load current would be [image: 
$$ 12\;\mathrm{V}/3\;\Omega =4\;\mathrm{A} $$
].


 

	2.Given that [image: 
$$ {\beta}_1=100 $$
] and [image: 
$$ {\beta}_2=25 $$
], the overall current gain of the Darlington pair is 2625—see Eq. (17.31). This is sometimes referred to as super-beta.


 

	3.Therefore, the minimum amount of base current required

 to saturate the Darlington pair is [image: 
$$ {I}_{\mathrm{B}}=4\;\mathrm{A}/2625=1.52\;\mathrm{m}\mathrm{A} $$
]. Note that the saturation voltage for the Darlington pair is approximately 0.9 V since only one transistor (the first one) goes into saturation and the other remains in the active mode, i.e., 0.2 V + 0.7 V = 0.9 V. This is a major drawback of the Darlington pair since it substantially increases its power dissipation and heat sink requirements.


 

	4.To overdrive the Darlington pair, double the base current, i.e., choose [image: 
$$ {I}_{\mathrm{B}}=2\times 1.52\;\mathrm{m}\mathrm{A}=3.04\;\mathrm{m}\mathrm{A} $$
].


 

	5.KVL equation around the base-emitter loop yields [image: 
$$ {V}_{\mathrm{TH}}={I}_{\mathrm{B}}\left({R}_{\mathrm{TH}}+{R}_{\mathrm{B}}\right)+{V}_{\mathrm{B}\mathrm{E}} $$
]. Note that there are two 0.7 V voltage drops from base to emitter for the Darlington pair.


 

	6.Solving for R
B finally yields[image: 
$$ {R}_{\mathrm{B}}=\frac{V_{\mathrm{TH}}-2\times 0.7\;\mathrm{V}}{I_{\mathrm{B}}}-{R}_{\mathrm{TH}}=\frac{5-1.4}{0.00304}-100=1184\;\Omega $$
]

 (17.32)





 







17.4 

                
                
              Small-Signal Transistor Amplifier
17.4.1 Generic Voltage-Gain Amplifier



An important application of the junction transistor is the design of small-signal, high-frequency amplifiers. This is mostly done with fast npn BJTs. We aim to learn how to design a single-transistor, or single-stage, voltage amplifier. Its generic circuit in the form of a dependent voltage source is shown in Fig. 17.32. Also included are the source circuit and the load circuit.[image: A331468_1_En_17_Fig32_HTML.gif]
Fig. 17.32Generic voltage 

amplifier with the source and the load





Major amplifier characteristics are the 
                  open-circuit voltage gain
                  
                 A
υ0, input resistance R
in, and 

output resistance R
out. The circuit in Fig. 17.32 includes several parameters: source voltage, υ
S(t), input voltage to the amplifier, υ
in(t), output voltage, υ
out(t), and the corresponding currents. The output voltage is expressed through the source voltage[image: 
$$ {\upsilon}_{\mathrm{out}}=\underset{\upsilon_{\mathrm{in}}}{\underbrace{\upsilon_{\mathrm{S}}\times \left(\frac{R_{\mathrm{in}}}{R_{\mathrm{in}}+{R}_{\mathrm{S}}}\right)}}\times {A}_{\upupsilon 0}\times \left(\frac{R_{\mathrm{L}}}{R_{\mathrm{L}}+{R}_{\mathrm{out}}}\right) $$
]

 (17.33)

The transistor amplifier design in its basic form relies on A
υ0, R
in, and R
out using the proper biasing scheme. The ideal values for general-purpose low-frequency amplifiers are the fixed and constant A
υ0, [image: 
$$ {R}_{\mathrm{in}}\to \infty $$
], and [image: 
$$ {R}_{\mathrm{out}}\to 0 $$
], whereas the ideal values for high-frequency (radio-frequency) amplifiers are [image: 
$$ {R}_{\mathrm{in}}=50\;\Omega $$
], and [image: 
$$ {R}_{\mathrm{out}}=50\;\Omega $$
]. Amplifier frequency bandwidth is another important parameter of interest. The parameters A
υ0, R
in, and R
out in Fig. 17.32 are determined as follows:[image: 
$$ {A}_{\upupsilon 0}\equiv {\left.\frac{\upsilon_{\mathrm{out}}}{\upsilon_{\mathrm{in}}}\right|}_{R_{\mathrm{L}}=\infty },{R}_{\mathrm{in}}\equiv \frac{\upsilon_{\mathrm{in}}}{i_{\mathrm{in}}},{R}_{\mathrm{out}}\equiv {\left.\frac{\upsilon_{\mathrm{test}}}{i_{\mathrm{test}}}\right|}_{\upsilon_{\mathrm{in}}=0} $$
]

 (17.34)


Here, index test stands 

for a test voltage source connected to the output when the input of the amplifier is shorted out. Note that dimensionless units for A
υ0 may be V/V or V/mV.
Exercise 17.16
What is (A) inverting or (B) non-inverting version of the 

voltage amplifier in Fig. 17.32?

Answer: (A) [image: 
$$ {A}_{\upupsilon 0}<0 $$
]. (B) [image: 
$$ {A}_{\upupsilon 0}>0 $$
].


17.4.2 Simplified Model of the BJT Common-Emitter Amplifier
The simplified model of the BJT common-emitter amplifier introduced below ignores a small-signal resistance/impedance

 of the EBJ. However, it correctly describes the major modeling steps and it is mathematically consistent. The starting point is the fixed-base transistor bias circuit

 from Fig. 17.19a. We replace the DC bias source V
BB by a variable input voltage υ
IN(t). The DC collector voltage V
C will now become the variable output voltage υ
OUT(t). The corresponding circuit is shown in Fig. 17.33a. We do not yet connect a load resistance R
L.[image: A331468_1_En_17_Fig33_HTML.gif]
Fig. 17.33BJT common-
                          
                          
                        emitter amplifier and its simplified voltage transfer characteristic






                  Voltage Transfer Characteristic


                
To grasp the key amplifier concept, we will simplify the circuit analysis. We will use the large-signal DC circuit model but assume that input/output voltages and currents are now functions of time. The corresponding solution has been given 

by Eq. (17.20), that is,[image: 
$$ {\upsilon}_{\mathrm{OUT}}(t)={V}_{\mathrm{C}\mathrm{C}}-\beta \frac{R_{\mathrm{C}}}{R_{\mathrm{B}}}\left({\upsilon}_{\mathrm{IN}}(t)-0.7\kern0.2em \mathrm{V}\right) $$
]

 (17.35)

Equation (17.35) is plotted by a thick in Fig. 17.33b. This curve is known as the voltage transfer characteristic of the amplifier. The input voltage in Fig. 17.33a is a combination of a certain DC voltage plus a very small input AC signal to be amplified. Then, the output voltage will be a combination of a certain DC voltage plus an amplified (but still relatively small) replica of the AC signal; see Fig. 17.33b. This is the amplifier concept.


Linear Expansion

 of Circuit Variables and Quiescent Point
In transistor amplifiers, the small-signal amplification is superimposed onto the DC solution. Mathematically, the separation of large DC and small (at least for now) AC quantities is done in the form (lowercase indexes are used for small AC signals):[image: 
$$ \begin{array}{l}{\upsilon}_{\mathrm{IN}}(t)={V}_{\mathrm{IN}}+{\upsilon}_{\mathrm{in}}(t)\\ {}{\upsilon}_{\mathrm{OUT}}(t)={V}_{\mathrm{OUT}}+{\upsilon}_{\mathrm{out}}(t)\\ {}{i}_{\mathrm{B}}(t)={I}_{\mathrm{B}}+{i}_{\mathrm{b}}(t)\\ {}{i}_{\mathrm{C}}(t)={I}_{\mathrm{C}}+{i}_{\mathrm{c}}(t)\end{array} $$
]

 (17.36)

The DC parameters listed in Eq. (17.36) correspond to the point Q in Fig. 17.33b, which is the 
                    DC
                    
                    
                  
operating point or the quiescent point of the transistor amplifier. Sometimes, the index Q is introduced to underscore this fact, i.e., I
B is replaced by I
BQ, I
C is replaced by I
CQ, etc. We will not do this assuming that the DC parameters already correspond to the desired operating point. The quiescent-point parameters
 are defined by the DC bias sources, for example, [image: 
$$ {V}_{\mathrm{IN}}={V}_{\mathrm{BB}} $$
]. The DC parameters satisfy the large-signal DC circuit model separately, that is,[image: 
$$ {V}_{\mathrm{OUT}}={V}_{\mathrm{C}\mathrm{C}}-\beta \frac{R_{\mathrm{C}}}{R_{\mathrm{B}}}\left({V}_{\mathrm{IN}}-0.7\;\mathrm{V}\right) $$
]

 (17.37)

We insert the first two equations (17.36) into Eq. (17.35) and take into account Eq. (17.37) so that all DC parameters cancel out. The end result has the form:[image: 
$$ {\upsilon}_{\mathrm{out}}(t)=-\beta \frac{R_{\mathrm{C}}}{R_{\mathrm{B}}}{\upsilon}_{\mathrm{in}}(t) $$
]

 (17.38)

Thus, with regard to the small AC input signal υ
in(t), the circuit in Fig. 17.33 operates as an 
                    inverting
                    
                    
                  voltage amplifier with the open-circuit 
                    small-signal voltage gain
                    
                   A
υ0
[image: 
$$ {A}_{\upupsilon 0}\equiv {\left.\frac{\upsilon_{\mathrm{out}}}{\upsilon_{\mathrm{in}}}\right|}_{R_{\mathrm{L}}=0}=-\beta \frac{R_{\mathrm{C}}}{R_{\mathrm{B}}} $$
]

 (17.39a)



Exercise 17.17
For a transistor amplifier circuit in Fig. 17.33a, determine the 
open-circuit voltage gain given that [image: 
$$ {R}_{\mathrm{B}}={R}_{\mathrm{C}} $$
]. The transistor’s current gain is 50.

Answer: [image: 
$$ {A}_{\mathrm{V}0}=-50 $$
].



                  Small-Signal Ground


                
Constant DC sources play the role of a ground for an AC signal, similar to the physical ground offset by a certain constant voltage. Therefore, the V
CC and the fixed-base voltage of 0.7 V in Fig. 17.33a become the small-signal ground. This leads us to small-signal input/

                    
                  
output resistances in the form
[image: 
$$ {R}_{\mathrm{in}}={R}_{\mathrm{B}},{R}_{\mathrm{out}}={R}_{\mathrm{C}} $$
]

 (17.39b)

Equations (17.39) will be extended and explained in greater detail below.


17.4.3 Small-Signal BJT Analysis and Superposition

Base-Emitter

 Small-Signal Resistance
The simplified amplifier model developed previously assumes exactly zero small-signal resistance between base and emitter. This would be true if the v–i dependence for the base-emitter junction were infinitely steep, as is indeed imposed by the large-signal DC model. As a matter of fact, the exponential v–i Shockley dependence given by Eq. (17.7)[image: 
$$ {i}_{\mathrm{B}}={I}_{\mathrm{SB}}\left[ \exp \left(\frac{\upsilon_{\mathrm{B}\mathrm{E}}}{V_{\mathrm{T}}}\right)-1\right]\approx {I}_{\mathrm{SB}} \exp \left(\frac{\upsilon_{\mathrm{B}\mathrm{E}}}{V_{\mathrm{T}}}\right) $$
]

 (17.40)

has a very steep, yet finite, slope in the active region. Its accurate consideration will give us a finite small-signal base-emitter resistance r
π at quiescent point Q as illustrated in Fig. 17.34. This figure shows the “zoomed in” area around the Q-point. The value of r
π is just the inverse slope at that point. To find r
π, we insert the expansion (17.36) for the base current [image: 
$$ {i}_{\mathrm{B}}={I}_{\mathrm{B}}+{i}_{\mathrm{b}} $$
] and the corresponding expansion for the 
base-emitter voltage [image: 
$$ {\upsilon}_{\mathrm{BE}}={V}_{\mathrm{BE}}+{\upsilon}_{\mathrm{be}} $$
] into the Shockley equation (17.40) and obtain using Taylor series[image: A331468_1_En_17_Fig34_HTML.gif]
Fig. 17.34Finding the small-signal base-emitter amplifier resistance r
π
                                                




[image: 
$$ {I}_{\mathrm{B}}+{i}_{\mathrm{b}}={I}_{\mathrm{SB}} \exp \left(\frac{V_{\mathrm{B}\mathrm{E}}+{\upsilon}_{\mathrm{b}\mathrm{e}}}{V_{\mathrm{T}}}\right)={I}_{\mathrm{B}} \exp \left(\frac{\upsilon_{\mathrm{b}\mathrm{e}}}{V_{\mathrm{T}}}\right)\approx {I}_{\mathrm{B}}+{I}_{\mathrm{B}}\frac{\upsilon_{\mathrm{b}\mathrm{e}}}{V_{\mathrm{T}}}={I}_{\mathrm{B}}+\frac{\upsilon_{\mathrm{b}\mathrm{e}}}{r_{\uppi}} $$
]

 (17.41a)

given that[image: 
$$ \left|{\upsilon}_{\mathrm{be}}\right|/{V}_{\mathrm{T}}\ll 1 $$
]

 (17.41b)

which is the critical 
                    small
                    
                    
                  
-signal approximation. From Eq. (17.41a), one has[image: 
$$ {r}_{\uppi}\equiv \frac{\upsilon_{\mathrm{b}\mathrm{e}}}{i_{\mathrm{b}}}=\frac{V_{\mathrm{T}}}{I_{\mathrm{B}}}=\frac{\beta {V}_{\mathrm{T}}}{I_{\mathrm{C}}} $$
]

 (17.42)


When the condition [image: 
$$ {\upsilon}_{\mathrm{be}}/{V}_{\mathrm{T}}\ll 1 $$
] is severely violated, a nonlinear distortion of the transistor amplifier occurs. Nonetheless, Eq. (17.42) still provides a reasonable average estimate about the Q-point. The 
                    small-signal transconductance
                    
                   is defined in a similar fashion:[image: 
$$ {g}_{\mathrm{m}}\equiv \frac{i_{\mathrm{c}}}{\upsilon_{\mathrm{be}}}=\frac{\beta }{r_{\uppi}} $$
]

 (17.43)



Exercise 17.18
Find r
π at room temperature of 25 °C given that (A) [image: 
$$ {I}_{\mathrm{B}}=1\;\upmu \mathrm{A} $$
] and (B) [image: 
$$ {I}_{\mathrm{B}}=10\;\upmu \mathrm{A} $$
].



                      Ans
                      
                      
                    
wer: (A) [image: 
$$ {r}_{\uppi}=26\kern0.2em \mathrm{k}\Omega $$
], (B) [image: 
$$ {r}_{\uppi}=2.6\kern0.2em \mathrm{k}\Omega $$
].


Small-Signal BJT Model
The concept of linear expansion

, see Eq. (17.36), and of the small-signal base-emitter resistance r
π allows us to split the exponential 

large-signal BJT model in the active region into two parts; this is studied previously and depicted in Fig. 17.11. Both models are shown in Fig. 17.35b, c. The DC solution is still described by the nonlinear large-signal DC circuit model (or even by a nonlinear exponential model, if desired). At the same time, the AC solution is described by a linear small-signal transistor model in Fig. 17.35c which is known as the 
                    hybrid-π model
                    
                    
                  . Although other small-signal models have been developed, the hybrid-π is the most popular.[image: A331468_1_En_17_Fig35_HTML.gif]
Fig. 17.35Splitting the large-signal transistor model

 into a large-signal DC model and a small-signal model







                  Superposition


                
When you look at Fig. 17.35, you notice that we solve the BJT amplifier circuit twice: the first time at DC using the large-signal DC BJT model and the second time at AC using the small-signal model. The DC solution will provide all necessary information for the AC solution. The complete solution is then found as the sum of the DC and AC solutions, respectively. In other words, the superposition principle can be applied. This is a remarkable fact 

given that the DC model is inherently nonlinear.


17.4.4 Analysis of Small-Signal Common-Emitter Amplifiers
We apply the formalism of the combined large-signal/small-signal BJT model to study and quantify three common-emitter amplifier configurations:	1.

                          Base-bias configuration
                          
                          
                          
                         for DC bias circuit; see Figs. 17.16 and 17.33a.


 

	2.
Configuration with the 
                          emitter resistance
                          
                          
                          
                         for DC bias circuit; see Fig. 17.19b.


 

	3.
Most common 
                          four-resistor bias configuration
                          
                         for DC bias circuit; see Fig. 17.20.


 





The general procedure is as follows. First, we solve the large-signal DC model of the circuit with the small-signal sources set to zero, i.e., find the 
                  DC bias solution
                  
                  
                  
                . Such a solution has already been carried out in Section 17.2. It gives us the DC collector voltage [image: 
$$ {V}_{\mathrm{OUT}}={V}_{\mathrm{C}} $$
], the DC base and collector currents I
B, I
C, and the small-signal base-emitter resistance [image: 
$$ {r}_{\uppi}={V}_{\mathrm{T}}/{I}_{\mathrm{C}} $$
]. Once r
π is known, we can apply the small-signal model and find the amplifier parameters of interest: A
υ0, R
in, and R
out. The first amplifier type is the base-bias (or the fixed-base amplifier), shown in Fig. 17.36a. The corresponding small-signal circuit model is shown in 


Fig. 17.36b.[image: A331468_1_En_17_Fig36_HTML.gif]
Fig. 17.36
Base-bias amplifier circuit


 and its small-signal model





Example 17.9
Quantify the model of the small-signal BJT base-bias amplifier with the circuit diagram shown in Fig. 17.36a, i.e., express the generic amplifier parameters A
υ0, R
in, R
out and the output DC collector voltage V
C in terms of the (given) circuit parameters. Assume the BJT current gain is given by the constant β.

Solution: We perform the DC analysis first as required. We use the large-signal DC model in Fig. 17.35b. The corresponding circuit solution is given by Eq. (17.19). It allows us to find the small-signal resistance and the output DC voltage, i.e.,[image: 
$$ {r}_{\uppi}=\frac{V_{\mathrm{T}}}{I_{\mathrm{B}}},{V}_{\mathrm{C}}={V}_{\mathrm{C}\mathrm{C}}-\beta {R}_{\mathrm{C}}{I}_{\mathrm{B}},{I}_{\mathrm{B}}=\frac{V_{\mathrm{B}\mathrm{B}}-0.7\;\mathrm{V}}{R_{\mathrm{B}}} $$
]

 (17.44)



We solve the corresponding small signal model from Fig. 17.36b and obtain[image: 
$$ {i}_{\mathrm{in}}={i}_{\mathrm{b}}=\frac{\upsilon_{\mathrm{in}}}{R_{\mathrm{B}}+{r}_{\uppi}},{i}_{\mathrm{c}}=\beta {i}_{\mathrm{b}}=\frac{\beta {\upsilon}_{\mathrm{in}}}{R_{\mathrm{B}}+{r}_{\uppi}},{\upsilon}_{\mathrm{out}}=-{R}_{\mathrm{C}}{i}_{\mathrm{c}}=-\beta \frac{R_{\mathrm{C}}}{R_{\mathrm{B}}+{r}_{\uppi}}{\upsilon}_{\mathrm{in}} $$
]

 (17.45)




The 
open-circuit voltage gain A
υ0 and the input/output resistances follow the definitions given by Eqs. (17.34). Note that the condition [image: 
$$ {\upsilon}_{\mathrm{in}}=0 $$
], which is 


required for finding the 
output resistance, is equivalent to the condition [image: 
$$ {i}_{\mathrm{in}}={i}_{\mathrm{b}}=0 $$
], which results in zeroing the dependent current source. The zero current source is an open circuit. Therefore, Eqs. (17.34) give[image: 
$$ {A}_{\upupsilon 0}=-\beta \frac{R_{\mathrm{C}}}{R_{\mathrm{B}}+{r}_{\uppi}},{R}_{\mathrm{in}}={R}_{\mathrm{B}}+{r}_{\uppi},{R}_{\mathrm{out}}={R}_{\mathrm{C}} $$
]

 (17.46)



A comparison with the simplified amplifier model described by Eqs. (17.39) reveals only one modification: [image: 
$$ {R}_{\mathrm{B}}\to {R}_{\mathrm{B}}+{r}_{\uppi} $$
]. Unfortunately, the problem with this particular amplifier is that the gain and the DC bias V
C are both strongly β-dependent. To eliminate the DC bias from υ
OUT(t), the load is capacitively coupled to the collector and thus becomes a capacitively-coupled load.

The next amplifier type is a configuration with the emitter resistance shown in Fig. 17.37a. The corresponding small-signal model is shown in Fig. 17.37b.[image: A331468_1_En_17_Fig37_HTML.gif]
Fig. 17.37Amplifier circuit with the 


emitter resistance and its small-signal model





Example 17.10
Repeat the previous example for the amplifier circuit with the emitter resistance


 shown in Fig. 17.37a.

Solution: We perform the DC analysis first. We use the large-signal DC model in Fig. 17.35b. The corresponding circuit solution is given by Eq. (17.21). It allows us to find the small-signal resistance and the output DC voltage, i.e.,[image: 
$$ {r}_{\uppi}=\frac{V_{\mathrm{T}}}{I_{\mathrm{B}}},{V}_{\mathrm{C}}={V}_{\mathrm{C}\mathrm{C}}-\beta {R}_{\mathrm{C}}{I}_{\mathrm{B}},{I}_{\mathrm{B}}=\frac{V_{\mathrm{B}\mathrm{B}}-0.7\;\mathrm{V}}{\left(\beta +1\right){R}_{\mathrm{E}}} $$
]

 (17.47)



We solve the small-signal model from Fig. 17.37b next. By KVL,[image: 
$$ \begin{array}{l}{\upsilon}_{\mathrm{in}}={i}_{\mathrm{b}}{r}_{\uppi}+\left(\beta +1\right){i}_{\mathrm{b}}{R}_{\mathrm{E}}\Rightarrow {i}_{\mathrm{in}}={i}_{\mathrm{b}}=\frac{\upsilon_{\mathrm{in}}}{\left(\beta +1\right){R}_{\mathrm{E}}+{r}_{\uppi}},\\ {}{i}_{\mathrm{c}}=\beta {i}_{\mathrm{b}}=\frac{\beta {\upsilon}_{\mathrm{in}}}{\left(\beta +1\right){R}_{\mathrm{E}}+{r}_{\uppi}},{\upsilon}_{\mathrm{out}}=-{R}_{\mathrm{C}}{i}_{\mathrm{c}}=-\left(\frac{\beta {R}_{\mathrm{C}}}{\left(\beta +1\right){R}_{\mathrm{E}}+{r}_{\uppi}}\right){\upsilon}_{\mathrm{in}}\end{array} $$
]

 (17.48)




The 
open-circuit voltage gain A
υ0 and the input/
                    
                  output resistances follow the definitions given by Eq. (17.34). The expressions for the voltage gain and input resistance simplify, since [image: 
$$ \left(\beta +1\right){R}_{\mathrm{E}}\gg {r}_{\uppi},\beta \gg 1 $$
]. The condition [image: 
$$ {\upsilon}_{\mathrm{in}}=0 $$
] for the 
output resistance is equivalent to the condition [image: 
$$ {i}_{\mathrm{in}}={i}_{\mathrm{b}}=0 $$
], which results in zeroing the 


dependent current source; a zero current source is an open circuit.
Therefore, Eqs. (17.34) give[image: 
$$ {A}_{\upupsilon 0}=-\frac{\beta {R}_{\mathrm{C}}}{\left(\beta +1\right){R}_{\mathrm{E}}+{r}_{\uppi}}\approx -\frac{R_{\mathrm{C}}}{R_{\mathrm{E}}},{R}_{\mathrm{in}}\approx \left(\beta +1\right){R}_{\mathrm{E}},{R}_{\mathrm{out}}={R}_{\mathrm{C}} $$
]

 (17.49)




Compared to Example 17.9, the design of Example 17.10 greatly improves because the amplifier gain and the output DC voltage V
C become β-independent. To eliminate the DC bias from υ
OUT(t), the load is capacitively coupled to the collector. A common way to increase the gain of this amplifier type is to put another capacitor in parallel with the emitter resistor. The final common-emitter amplifier type is the four-resistor bias configuration shown in Fig. 
                  
                  
                  
                
17.38a. The input AC signal is now capacitively coupled to the transistor base. The corresponding small-signal model is shown in Fig. 17.38b. We note that the DC analysis of this circuit using the method of Thévenin equivalent has been performed previously; it is given by Eqs. (17.22).[image: A331468_1_En_17_Fig38_HTML.gif]
Fig. 17.38
Four-resistor bias amplifier circuit


 and its small-signal model





Example 17.11
Solve the task of the previous example for the four-resistor bias BJT amplifier circuit with the emitter resistance shown in Fig. 17.38a.

Solution: We perform the DC analysis first; we use the large-signal DC model in Fig. 17.35b. The corresponding circuit solution is given by Eqs. (17.22). It allows us to 


find the small-signal resistance and the output DC voltage, i.e.,
[image: 
$$ {r}_{\uppi}=\frac{V_{\mathrm{T}}}{I_{\mathrm{B}}},{V}_{\mathrm{C}}={V}_{\mathrm{C}\mathrm{C}}-\beta {R}_{\mathrm{C}}{I}_{\mathrm{B}},{I}_{\mathrm{B}}=\frac{V_{\mathrm{T}\mathrm{H}}-0.7\;\mathrm{V}}{R_{\mathrm{T}\mathrm{H}}+\left(\beta +1\right){R}_{\mathrm{E}}} $$
]

 (17.50)



where [image: 
$$ {R}_{\mathrm{TH}}={R}_1\left|\right|{R}_2 $$
] and [image: 
$$ {V}_{\mathrm{TH}}={R}_2/\left({R}_1+{R}_2\right){V}_{\mathrm{CC}} $$
]. These expressions are further simplified owing to [image: 
$$ \left(\beta +1\right){R}_{\mathrm{E}}\gg {R}_{\mathrm{TH}},\beta \gg 1 $$
]. We solve the corresponding small-signal model from Fig. 17.38b next. By KCL and KVL,[image: 
$$ \begin{array}{l}{i}_{\mathrm{in}}={i}_{\mathrm{b}}+\frac{\upsilon_{\mathrm{in}}}{R_1}+\frac{\upsilon_{\mathrm{in}}}{R_2},{\upsilon}_{\mathrm{in}}={i}_{\mathrm{b}}\left({r}_{\uppi}+\left(\beta +1\right){R}_{\mathrm{E}}\right)\Rightarrow \\ {}{R}_{\mathrm{in}}={R}_1\left|\right|{R}_2\left|\right|\left({r}_{\uppi}+\left(\beta +1\right){R}_{\mathrm{E}}\right)\\ {}{i}_{\mathrm{c}}=\beta {i}_{\mathrm{b}}=\frac{\beta {\upsilon}_{\mathrm{in}}}{\left(\beta +1\right){R}_{\mathrm{E}}+{r}_{\uppi}},{\upsilon}_{\mathrm{out}}=-{R}_{\mathrm{C}}{i}_{\mathrm{c}}=-\left(\frac{\beta {R}_{\mathrm{C}}}{\left(\beta +1\right){R}_{\mathrm{E}}+{r}_{\uppi}}\right){\upsilon}_{\mathrm{in}}\end{array} $$
]

 (17.51)



The open-circuit voltage gain


 A
υ0 and the input/output resistances follow the definitions given by Eq. (17.34). The expressions for the voltage gain and input resistance simplify since we can approximate [image: 
$$ \left(\beta +1\right){R}_{\mathrm{E}}\gg {r}_{\uppi},\beta \gg 1 $$
]. The condition [image: 
$$ {\upsilon}_{\mathrm{in}}=0 $$
] for the 
output resistance is equivalent to the condition [image: 
$$ {i}_{\mathrm{in}}={i}_{\mathrm{b}}=0 $$
], which results in zeroing the dependent current source. The zero current source is an open circuit. 
                    
                    
                    
                  Therefore, Eqs. (17.34) give[image: 
$$ {A}_{\upupsilon 0}=-\frac{\beta {R}_{\mathrm{C}}}{\left(\beta +1\right){R}_{\mathrm{E}}+{r}_{\uppi}}\approx -\frac{R_{\mathrm{C}}}{R_{\mathrm{E}}},{R}_{\mathrm{in}}\approx {R}_1\left|\right|{R}_2\left|\right|\left(\beta +1\right){R}_{\mathrm{E}},{R}_{\mathrm{out}}={R}_{\mathrm{C}} $$
]

 (17.52)




Exercise 17.19
In a BJT common-emitter amplifier circuit at room temperature


 of 25 °C, [image: 
$$ {R}_{\mathrm{C}}=5.1\;\mathrm{k}\Omega $$
], [image: 
$$ {V}_{\mathrm{CC}}=15\;\mathrm{V} $$
], β = 100. Determine the output DC collector voltage V
C and the small-signal amplifier parameters A
υ0, R
in, R
out for:	A.Base-bias amplifier circuit with [image: 
$$ {R}_{\mathrm{B}}=100\;\mathrm{k}\Omega $$
] and [image: 
$$ {V}_{\mathrm{BB}}=2\;\mathrm{V} $$
]



 

	B.Emitter-resistance amplifier


 circuit with [image: 
$$ {R}_{\mathrm{E}}=1\;\mathrm{k}\Omega $$
] and [image: 
$$ {V}_{\mathrm{BB}}=2\;\mathrm{V} $$
]



 

	C.Four-resistor bias amplifier circuit with [image: 
$$ {R}_{\mathrm{E}}=1\;\mathrm{k}\Omega $$
] and [image: 
$$ {R}_1=5.1\;\mathrm{k}\Omega, {R}_2=820\;\Omega $$
]



 





Use the exact expressions without the usual simplifications [image: 
$$ \left(\beta +1\right){R}_{\mathrm{E}}\gg {r}_{\uppi} $$
] and [image: 
$$ \beta \gg 1 $$
].

                  Answer:
                  	(A):
[image: 
$$ {V}_{\mathrm{C}}=8.37\;\mathrm{V} $$
], [image: 
$$ {A}_{\upupsilon 0}=-5 $$
], [image: 
$$ {R}_{\mathrm{in}}=102\;\mathrm{k}\Omega $$
], [image: 
$$ {R}_{\mathrm{out}}=5.1\;\mathrm{k}\Omega $$
]



 

	(B):
[image: 
$$ {V}_{\mathrm{C}}=8.44\;\mathrm{V} $$
], [image: 
$$ {A}_{\upupsilon 0}=-4.95\;1 $$
], [image: 
$$ {R}_{\mathrm{in}}=103.02\;\mathrm{k}\Omega $$
], [image: 
$$ {R}_{\mathrm{out}}=5.1\;\mathrm{k}\Omega $$
]



 

	(C):
[image: 
$$ {V}_{\mathrm{C}}=8.09\;\mathrm{V} $$
], [image: 
$$ {A}_{\upupsilon 0}=-4.955 $$
], [image: 
$$ {R}_{\mathrm{in}}=701.6\;\Omega $$
], [image: 
$$ {R}_{\mathrm{out}}=5.1\;\mathrm{k}\Omega $$
]



 




                

Note that Eq. (17.52)
                  
                  
                  
                 coincide with Eq. (17.49) except for the input resistance. This fact is to be expected since the base voltage divider in Fig. 17.38a simply replaces the bias source V
BB in Fig. 17.37a. To eliminate the DC bias from υ
OUT(t), the load is usually capacitively coupled to the collector. Emphasize that the input capacitor in Fig. 17.38a prevents the DC bias current to flow into the AC source (short circuit at zero input voltage). If this capacitor were not present, resistance R
2 would be simply shorted out. A common way to increase the gain of this amplifier type is to put another capacitor in parallel with the emitter resistor. This shunt capacitor does not affect the DC bias (is an open circuit at DC), but present a low-impedance load for the high-frequency small signal. As a result, it effectively shorts out the emitter resistance in Eq. (17.52) so that [image: 
$$ {R}_{\mathrm{E}}\to 0 $$
] and the amplifier gain greatly increases.

17.4.5 Application Example: Transistor Amplifier Bandwidth
The small-signal analysis

 performed above predicts the constant amplifier voltage gain A
υ0 over the entire frequency band and does not explain its observed degradation at high frequencies. The reason is the so-called Miller effect

; it arises due to the junction capacitance C
μ of the CBJ shown in Fig. 17.33. Likewise, the EBJ has a certain junction capacitance C
π (not shown in the figure), which is usually less important.
The parasitic capacitance

 C
μ adds an extra negative-feedback loop to the transistor amplifier as shown in Fig. 17.39. This extra feedback loop requires an additional current that is drawn from the input. Unfortunately, the corresponding small-signal analysis is very involved and we omit a detailed derivation. The final result is formulated in terms of the 
                  amplitude frequency response
                  
                  
                 of the transistor amplifier, which we define as the ratio of the amplitude of the source voltage V
mS in Fig. 17.32 to the amplitude of the output voltage V
mout under 
                  open-circuited conditions
                  
                  
                . This definition reveals that the frequency response becomes the product of A
υ0 and the transfer functions of two first-order low-pass filters


, one at the amplifier input and another at the output, i.e.,[image: A331468_1_En_17_Fig39_HTML.gif]
Fig. 17.39CBJ junction capacitance C
μ
                                            




[image: 
$$ \begin{array}{l}\frac{V_{\mathrm{mout}}}{V_{\mathrm{mS}}}=\left(1+\frac{R_{\mathrm{sig}}}{R_{\mathrm{in}}}\right)\frac{A_{\upupsilon 0}}{\sqrt{1+{\left(f/{f}_{\mathrm{bi}}\right)}^2}\sqrt{1+{\left(f/{f}_{\mathrm{bo}}\right)}^2}}\\ {}{f}_{\mathrm{bi}}=\frac{1}{2\pi \left({R}_{\mathrm{S}}\left|\right|{R}_{\mathrm{in}}\right){C}_{\mathrm{MILLER},\mathrm{in}}},{f}_{\mathrm{bo}}=\frac{1}{2\pi {R}_{\mathrm{out}}{C}_{\mathrm{MILLER},\mathrm{out}}}\\ {}{C}_{\mathrm{MILLER},\mathrm{in}}=\left(1-{A}_{\upupsilon 0}\right){C}_{\upmu},{C}_{\mathrm{MILLER},\mathrm{out}}=\left(1-{A}_{\upupsilon 0}\right)/\left(-{A}_{\upupsilon 0}\right){C}_{\upmu}\end{array} $$
]

 (17.53)

Equation (17.53) states that frequency response is controlled by the amplifier parameters A
υ0, R
in, and R
out established in this section. The capacitance C
μ at arbitrary bias is expressed through the CBJ 
                  zero-bias junction capacitance
                  
                  
                 C
jc which is available from the datasheet through a semi-empirical dependence:[image: 
$$ {C}_{\upmu}\approx {C}_{\mathrm{jc}}{\left(1+\frac{\left({V}_{\mathrm{CEQ}}-0.7\;\mathrm{V}\right)}{0.75\;\mathrm{V}}\right)}^{-0.3} $$
]

 (17.54)



Example 17.12
The transistor amplifier

 in Fig. 17.38a has the following parameters: [image: 
$$ {R}_1=43\;\mathrm{k}\Omega, {R}_2=3\;\mathrm{k}\Omega, {R}_{\mathrm{C}}=20\;\mathrm{k}\Omega, {R}_{\mathrm{E}}=1\;\mathrm{k}\Omega $$
]. We also assume [image: 
$$ {V}_{\mathrm{CC}}=15\;\mathrm{V} $$
], β = 100, and the source resistance of 50 Ω. The amplifier uses a general-purpose Fairchild 2N3904 npn transistor with [image: 
$$ {C}_{\mathrm{jc}}=3.64\;\mathrm{pF} $$
]. Plot its frequency response to scale over the band from 1 Hz to 100 MHz.

Solution: The analysis of the previous example gives [image: 
$$ {V}_{\mathrm{CE}}=9.4\;\mathrm{V} $$
], [image: 
$$ {A}_{\upupsilon 0}=-18.1 $$
], [image: 
$$ {R}_{\mathrm{in}}=2.7\;\mathrm{k}\Omega $$
], and [image: 
$$ {R}_{\mathrm{out}}=20\;\mathrm{k}\Omega $$
]. Equation (17.54) leads to [image: 
$$ {C}_{\upmu}=1.7\;\mathrm{pF} $$
]. All parameters of the frequency response in Eq. (17.53) are thus defined. We plot it by a dashed curve in Fig. 17.40. The absolute value of A
υ0 in dB is 25.2 dB. The solid curve in Fig. 17.40 
                    
                    
                    
                  is the corresponding SPICE simulation result. The deviation between two curves at low frequencies is the effect of input/output coupling capacitors used in the realistic circuit. The deviation at high frequencies is due to the approximate character of the present model. The resulting frequency bandwidth of about 5 MHz is mostly affected by a high [image: 
$$ {R}_{\mathrm{out}}=20\;\mathrm{k}\Omega $$
]. The flat region in Fig. 17.40 is called the 
                    midband
                    
                    
                  ; the roll-off at low frequencies is the low end and the roll-off at high frequencies is the high end of the frequency response.[image: A331468_1_En_17_Fig40_HTML.gif]
Fig. 17.40Bode plot for the amplifier gain


 of the common-emitter amplifier








Summary

                	Large-signal exponential first-order transistor model

	
                            [image: A331468_1_En_17_Figao_HTML.gif]
                          
	
                            [image: A331468_1_En_17_Figap_HTML.gif]
                          

                            [image: 
$$ {i}_C={I}_S\left[ \exp \left(\frac{\upsilon_{B E}}{V_T}\right)-1\right],{i}_B=\frac{I_S}{\beta}\left[ \exp \left(\frac{\upsilon_{B E}}{V_T}\right)-1\right],\kern0.24em {i}_C=\beta \kern0.1em {i}_B $$
]
                          

	Large-signal DC circuit model of the npn transistor

	
                            [image: A331468_1_En_17_Figaq_HTML.gif]
                          

	Large-signal DC circuit model of the pnp transistor

	
                            [image: A331468_1_En_17_Figar_HTML.gif]
                          

	Transistor bias circuit with base resistance (base-bias) in active region (β-dependent, common emitter configuration)

	
                            [image: A331468_1_En_17_Figas_HTML.gif]
                          
	
                            [image: 
$$ {V}_C={V}_{C C}-\beta {R}_C{I}_B,\kern0.5em {I}_B=\frac{V_{B B}-0.7\kern0.5em \mathrm{V}}{R_B} $$
]
                          

                            [image: 
$$ {V}_B=0.7\kern0.5em \mathrm{V},\kern0.5em {V}_E=0\kern0.5em \mathrm{V} $$
]
                          
Used as a constant-current source
Used as a small-signal common-emitter amplifier

	Transistor bias circuit with emitter resistance in active region (β-independent)

	
                            [image: A331468_1_En_17_Figat_HTML.gif]
                          
	
                            [image: 
$$ {V}_C={V}_{C C}-\beta {R}_C{I}_B,\kern0.24em {I}_B=\frac{V_{B B}-0.7\kern0.5em \mathrm{V}}{\left(\beta +1\right){R}_E} $$
]
                          

                            [image: 
$$ {V}_C\approx {V}_{CC}-\left({R}_C/{R}_E\right)\left({V}_{BB}-0.7\kern0.5em \mathrm{V}\right) $$
]
                          

                            [image: 
$$ {V}_B={V}_{BB},\kern0.24em {V}_E={V}_{BB}-0.7\kern0.5em \mathrm{V} $$
]
                          
Used as a constant-current source
Used as a small-signal common-emitter amplifier

	Transistor bias circuit with voltage divider (four-resistor bias circuit) in active region (β-independent)

	
                            [image: A331468_1_En_17_Figau_HTML.gif]
                          
	
                            [image: 
$$ {V}_C={V}_{C C}-\beta {R}_C{I}_B,\kern0.24em {I}_B=\frac{V_{TH}-0.7\kern0.5em \mathrm{V}}{R_{TH}+\left(\beta +1\right){R}_E} $$
]
                          

                            [image: 
$$ {R}_{TH}=\frac{R_1{R}_2}{R_1+{R}_2},\kern0.24em {V}_{TH}=\frac{R_2}{R_1+{R}_2}{V}_{CC} $$
]
                          

                            [image: 
$$ {V}_C\approx {V}_{CC}-\left({R}_C/{R}_E\right)\left({V}_{TH}-0.7\kern0.5em \mathrm{V}\right) $$
]
                          

                            [image: 
$$ {V}_B={V}_E+0.7\kern0.5em \mathrm{V},\kern0.24em {V}_E=\left(\beta +1\right){R}_E{I}_B $$
]
                          
Used as a constant-current source
Used as a small-signal common-emitter amplifier

	Transistor bias circuit with emitter resistance and dual power supply in active region (β-independent)

	
                            [image: A331468_1_En_17_Figav_HTML.gif]
                          
	
                            [image: 
$$ {V}_C={V}_{C C}-\beta\;{R}_C{I}_B,\kern0.24em {I}_B=\frac{V_{C C}-0.7\kern0.5em \mathrm{V}}{R_B+\left(\beta +1\right){R}_E} $$
]
                          

                            [image: 
$$ {V}_C\approx {V}_{CC}-\left({R}_C/{R}_E\right)\left({V}_{CC}-0.7\kern0.5em \mathrm{V}\right) $$
]
                          

                            [image: 
$$ {V}_B={V}_E+0.7\kern0.5em \mathrm{V},\kern0.24em {V}_E=\left(\beta +1\right){R}_E{I}_B-{V}_{CC} $$
]
                          
Used as a small-signal common-emitter amplifier

	Transistor constant-current sources and constant-voltage sources operating in active region (similar to DC bias circuits)

	
                            [image: A331468_1_En_17_Figaw_HTML.gif]
                          
	Load current is controlled by V
REF
                                                    
(β-dependent)

                            [image: 
$$ {I}_L=\beta \frac{V_{REF}-0.7\kern0.5em \mathrm{V}}{R_B} $$
]
                          

	
                            [image: A331468_1_En_17_Figax_HTML.gif]
                          
	Load current is controlled by V

                              REF
                            
                                                    
(β-independent)

                            [image: 
$$ {I}_L\approx \frac{V_{REF}-0.7\kern0.5em V}{R_E} $$
]
                          

	
                            [image: A331468_1_En_17_Figay_HTML.gif]
                          
	Constant-current source—the 5 V—LED drive of 20 mA (any color LED, β-independent)

                            [image: 
$$ {I}_{LED}\approx \frac{V_{TH}-0.7\kern0.5em \mathrm{V}}{R_E},\kern0.24em {V}_{TH}=\frac{R_2}{R_1+{R}_2}{V}_{CC} $$
]
                          

	
                            [image: A331468_1_En_17_Figaz_HTML.gif]
                          
	Constant-voltage source (voltage follower or voltage buffer, β-independent) in common collector or emitter follower configuration

                            [image: 
$$ {V}_L={V}_{TH}-\frac{I_L{R}_{TH}}{\beta +1}-0.7\kern0.5em \mathrm{V}\approx {V}_{TH}-0.7\kern0.5em \mathrm{V} $$
]
                          

                            [image: 
$$ {R}_{TH}=\frac{R_1{R}_2}{R_1+{R}_2},\kern0.24em {V}_{TH}=\frac{R_2}{R_1+{R}_2}{V}_{CC} $$
]
                          

	Transistor switch operating in saturation region

	
                            [image: A331468_1_En_17_Figba_HTML.gif]
                          
	
[image: 
$$ {R}_B=\frac{V_{TH}-0.7\kern0.5em \mathrm{V}}{I_B}-{R}_{TH} $$
], [image: 
$$ {I}_B\approx 2\frac{V_{CC}}{\beta \kern0.1em {R}_L} $$
]
                                                    
(design selection)

	Darlington pair

	
                            [image: A331468_1_En_17_Figbb_HTML.gif]
                          
	Darlington pair (super-beta transistor)

                            [image: 
$$ {I}_C=\left(\left({\beta}_1+1\right)\left({\beta}_2+1\right)-1\right){I}_B $$
]
                          

                            [image: 
$$ {I}_E=\left({\beta}_1+1\right)\left({\beta}_2+1\right){I}_B $$
]
                          

[image: 
$$ {\beta}_{eff}\approx {\beta}^2 $$
] for equal transistors




                	General characteristics of voltage amplifier

	
                            [image: A331468_1_En_17_Figbc_HTML.gif]
                          
	Open-circuit voltage gain A

                                                            υ0: [image: 
$$ {A}_{\upsilon 0}\equiv {\left.\frac{\upsilon_{out}}{\upsilon_{in}}\right|}_{R_L=\mathrm{\infty}} $$
]
                                                    
Input resistance [image: 
$$ {R}_{in}:{R}_{in}\equiv \frac{\upsilon_{in}}{i_{in}} $$
]
                                                    
Output resistance [image: 
$$ {R}_{out}:{R}_{out}\equiv {\left.\frac{\upsilon_{test}}{i_{test}}\right|}_{\upsilon_{in}=0} $$
]
                                                    
Overall volt. gain: [image: 
$$ {G}_{\upsilon}\equiv \frac{\upsilon_{out}}{\upsilon_S}=\frac{R_{in}}{R_{in}+{R}_S}{A}_{\upsilon 0}\frac{R_L}{R_L+{R}_{out}} $$
]
                                                    

	Small-signal transistor model (hybrid-π model) at Q-point

	
                            [image: A331468_1_En_17_Figbd_HTML.gif]
                          
	Small-signal EBJ resistance: [image: 
$$ {r}_{\pi}\equiv \frac{\upsilon_{b e}}{i_b}=\frac{V_T}{I_B} $$
]
                                                    
Small-signal transconductance: [image: 
$$ {g}_m\equiv \frac{i_c}{\upsilon_{be}}=\frac{\beta }{r_{\pi }} $$
]
                                                    

                            [image: A331468_1_En_17_Figbe_HTML.gif]
                          

	Small-signal base-bias amplifier circuit—common emitter amplifier (no load)
(β-dependent)—Class A
                                                    

	
                            [image: A331468_1_En_17_Figbf_HTML.gif]
                          
	
                            [image: A331468_1_En_17_Figbg_HTML.gif]
                          

	
                            [image: A331468_1_En_17_Figbh_HTML.gif]
                          
	
                            [image: 
$$ {r}_{\pi }=\frac{V_T}{I_B},\kern0.5em {V}_C={V}_{C C}-\beta \kern0.1em {R}_C{I}_B,\kern0.5em {I}_B=\frac{V_{B B}-0.7\kern0.5em \mathrm{V}}{R_B} $$
]
                          

                            [image: 
$$ {A}_{\upsilon 0}=-\beta \frac{\;{R}_C}{R_B+{r}_{\pi }},\kern0.5em {R}_{in}={R}_B+{r}_{\pi },\kern0.5em {R}_{out}={R}_C $$
]
                          
Capacitive coupling eliminates the DC bias at the output

	Small-signal amplifier circuit with emitter resistance—common emitter amplifier (no load)
(β-independent)—Class A
                                                    

	
                            [image: A331468_1_En_17_Figbi_HTML.gif]
                          
	
                            [image: A331468_1_En_17_Figbj_HTML.gif]
                          

	
                            [image: A331468_1_En_17_Figbk_HTML.gif]
                          
	
                            [image: 
$$ {r}_{\pi }=\frac{V_T}{I_B},\kern0.5em {V}_C={V}_{C C}-\beta \kern0.1em {R}_C{I}_B,\kern0.5em {I}_B=\frac{V_{B B}-0.7\kern0.5em \mathrm{V}}{\left(\beta +1\right){R}_E} $$
]
                          

                            [image: 
$$ {A}_{\upsilon 0}\approx -\frac{R_C}{R_E},\kern0.5em {R}_{in}={r}_{\pi }+\left(\beta +1\right){R}_E,\kern0.5em {R}_{out}={R}_C $$
]
                          
Capacitive coupling eliminates the DC bias at the output

	Small-signal four-resistor bias amplifier circuit—common emitter amplifier (no load)
(β-independent)—Class A
                                                    

	
                            [image: A331468_1_En_17_Figbl_HTML.gif]
                          
	
                            [image: A331468_1_En_17_Figbm_HTML.gif]
                          

	
                            [image: A331468_1_En_17_Figbn_HTML.gif]
                          
	
                            [image: 
$$ {r}_{\pi }=\frac{V_T}{I_B},\kern0.5em {V}_C={V}_{C C}-\beta \kern0.1em {R}_C{I}_B,\kern0.5em {I}_B=\frac{V_{T H}-0.7\kern0.5em \mathrm{V}}{R_{T H}+\left(\beta +1\right){R}_E} $$
]
                            [image: 
$$ \begin{array}{l}{A}_{\upsilon 0}\approx -\frac{R_{\mathrm{C}}}{R_{\mathrm{E}}},\kern1em {R}_{\mathrm{in}}={R}_1\left|\right|{R}_2\left|\right|\left({r}_{\pi }+\left(\beta +1\right){R}_{\mathrm{E}}\right),\\ {}{R}_{\mathrm{out}}={R}_{\mathrm{C}}\end{array} $$
]
                          
Capacitive coupling eliminates the DC bias at the output

	Gain enhancement of the prior design with shunt capacitance

	
                            [image: A331468_1_En_17_Figbo_HTML.gif]
                          
	The Q-point parameters remain the same
The small-signal parameters:

                            [image: 
$$ \begin{array}{l}{A}_{\upsilon 0}=-\beta \frac{\;{R}_{\mathrm{C}}}{r_{\pi }},\kern1em {R}_{\mathrm{in}}={R}_1\left|\right|{R}_2\left|\right|\left({r}_{\pi }+\left(\beta +1\right){R}_{\mathrm{E}}\right),\\ {}{R}_{\mathrm{out}}={R}_{\mathrm{C}}\end{array} $$
]
                          




              

Problems
17.1 Physical Principles and Operation Laws

                  17.1.1 Physical Structure. Terminal Voltages and Currents
                

                  17.1.2 Principle of Operation
                
Problem 17.1

                    	A.Draw the circuit symbol for the npn-junction transistor; label the collector, base, and emitter. What do you think the arrow in the transistor symbol designates?


 

	B.Label the transistor currents, and write KCL for the currents.


 

	C.Label the transistor voltages and write KCL for the voltages.


 




                  

Problem 17.2
Shown in the figure is a cross section of the Si npn BJT lateral structure implemented in planar integrated-circuit technology, first invented by Jean Hoerni from Fairchild Semiconductor Inc. (Maine) in 1958. Modern implementations essentially repeat this structure, but with a number of significant improvements. Redraw the figure in your notes and identify the collector, emitter, and base of the transistor.[image: A331468_1_En_17_Figf_HTML.gif]




Problem 17.3
Shown in the figure is a cross section of another Si npn BJT lateral structure implemented in planar integrated-circuit technology. The black color indicates aluminum metallization.	A.Redraw the figure in your notes and identify the collector, emitter, and base of the transistor.


 

	B.What could you tell about the areas of EBJ and CBJ? Area of which pn-junction is larger?


 






Hint: The circuit in the figure not only shows the transistor but also another circuit element.[image: A331468_1_En_17_Figg_HTML.gif]





                  17.1.3 Operating Regions
                

                  17.1.4 Active Region
                

                  17.1.5 Saturation Region and Cutoff Region
                
Problem 17.4
Determine the operating region for an npn BJT transistor when:	A.
                            [image: 
$$ {\upsilon}_{\mathrm{BE}}=0.6\;\mathrm{V},{\upsilon}_{\mathrm{CE}}=0.6\;\mathrm{V} $$
]
                          


 

	B.
                            [image: 
$$ {\upsilon}_{\mathrm{CE}}=0\;\mathrm{V},{\upsilon}_{\mathrm{BE}}=0.6\;\mathrm{V} $$
]
                          


 

	C.
                            [image: 
$$ {\upsilon}_{\mathrm{BC}}=-5\;\mathrm{V},{\upsilon}_{\mathrm{CE}}=5.6\;\mathrm{V} $$
]
                          


 






Problem 17.5
Determine the operating region for an npn BJT transistor when:

                    	A.
                            [image: 
$$ {\upsilon}_{\mathrm{CE}}=-1\;\mathrm{V},{\upsilon}_{\mathrm{CB}}=5\;\mathrm{V} $$
]
                          


 

	B.
                            [image: 
$$ {\upsilon}_{\mathrm{CB}}=0.6\;\mathrm{V},{\upsilon}_{\mathrm{BE}}=0.6\;\mathrm{V} $$
]
                          


 

	C.
                            [image: 
$$ {\upsilon}_{\mathrm{BC}}=0.3\;\mathrm{V},{\upsilon}_{\mathrm{CE}}=-5.6\;\mathrm{V} $$
]
                          


 




                  

Problem 17.6
Shown in the figure below is the Darlington pair, or the Darlington amplifier, invented at Bell Labs by S. Darlington and then patented. The Darlington pair is a combination of two npn BJTs in series. Which resulting current gain does the Darlington pair have if the current gain of each individual BJT is β and both BJTs have [image: 
$$ {\upsilon}_{\mathrm{BE}}=0.6\;\mathrm{V} $$
], [image: 
$$ {\upsilon}_{\mathrm{CE}}=0.6\;\mathrm{V} $$
]?[image: A331468_1_En_17_Figh_HTML.gif]




Problem 17.7
An npn-junction transistor in the active region at room temperature of 25 °C has [image: 
$$ {\upsilon}_{\mathrm{BE}}=0.5\;\mathrm{V} $$
], [image: 
$$ {I}_{\mathrm{S}}={10}^{-13}\;\mathrm{A} $$
], and the base current of 0.3 μA. Find collector current, emitter current, common-emitter current gain, and 
common-base current gain. Show units.


Problem 17.8
An npn-junction transistor at room temperature of 25 °C has [image: 
$$ {\upsilon}_{\mathrm{BE}}=0\;\mathrm{V} $$
], [image: 
$$ {\upsilon}_{\mathrm{CE}}=-0.5\;\mathrm{V} $$
], [image: 
$$ {I}_{\mathrm{S}}={10}^{-13}\;\mathrm{A} $$
], and the base current of 0.1 mA. Find collector current. Show units.


Problem 17.9
Using the Ebers-Moll transistor model, estimate the forced common-emitter current gain [image: 
$$ {\beta}_{\mathrm{forced}}\equiv {i}_{\mathrm{C}}/{i}_{\mathrm{B}} $$
] of a npn BJT when [image: 
$$ \beta =50 $$
], [image: 
$$ {\beta}_{\mathrm{R}}=0.02 $$
], [image: 
$$ {I}_{\mathrm{S}}={10}^{-13}\;\mathrm{A} $$
] for two sets of bias voltages:	A.
                            [image: 
$$ \begin{array}{l}{\upsilon}_{\mathrm{BE}}=0.6\;\mathrm{V},\\ {}{\upsilon}_{\mathrm{BC}}=0.2,0.3,0.4\;\mathrm{V}\end{array} $$
]
                          


 

	B.
                            [image: 
$$ \begin{array}{l}{\upsilon}_{\mathrm{BE}}=0.7\;\mathrm{V},\\ {}{\upsilon}_{\mathrm{BC}}=0.3,0.4,0.5\;\mathrm{V}\end{array} $$
]
                          


 





at room temperature of 25 °C.

Problem 17.10
Using the Ebers-Moll transistor model, estimate the forced common-emitter current gain [image: 
$$ {\beta}_{\mathrm{forced}}\equiv {i}_{\mathrm{C}}/{i}_{\mathrm{B}} $$
] of a npn BJT when [image: 
$$ \beta =100 $$
], [image: 
$$ {\beta}_{\mathrm{R}}=0.02 $$
], [image: 
$$ {I}_{\mathrm{S}}={10}^{-12}\;\mathrm{A} $$
] for	A.
                            [image: 
$$ {\upsilon}_{\mathrm{CE}}=0.4\;\mathrm{V} $$
]
                          


 

	B.
                            [image: 
$$ {\upsilon}_{\mathrm{CE}}=0.3\;\mathrm{V} $$
]
                          


 

	C.
                            [image: 
$$ {\upsilon}_{\mathrm{CE}}=0.2\;\mathrm{V} $$
]
                          


 





at room temperature of 25 °C.


                  17.1.6 Transistor
                  v
                  –
                  i
                  Dependencies
                

                  17.1.7 Early Effect
                
Problem 17.11
An idealized v–i dependence for an npn-junction transistor at room temperature of 25 °C is shown in the figure below. Find the transistor scale current I
S.[image: A331468_1_En_17_Figi_HTML.gif]




Problem 17.12
Using the Ebers-Moll transistor model, express the collector current i
C in terms of the base current i
B when the voltage across the transistor is exactly zero, i.e., when [image: 
$$ {\upsilon}_{\mathrm{CE}}=0 $$
].


Problem 17.13
An idealized v–i dependence for an npn-junction transistor at room temperature of 25 °C is shown in the figure below. The 

Early voltage V
A is a (negative) value of the intersection point of the dashed line with the υ
CE-axis. Its value is 60 V. Determine the output transistor resistance, r
o.[image: A331468_1_En_17_Figj_HTML.gif]





                  17.1.8 The pnp Transistor
                
Problem 17.14
Establish whether or the following equations[image: 
$$ {i}_{\mathrm{E}}=\beta {i}_{\mathrm{B}} $$
]

 (1)


[image: 
$$ {i}_{\mathrm{C}}={i}_{\mathrm{E}}+{i}_{\mathrm{B}}=\beta {i}_{\mathrm{B}}+{i}_{\mathrm{B}}=\left(1+\beta \right){i}_{\mathrm{B}} $$
]

 (2)


[image: 
$$ {i}_{\mathrm{B}}={I}_{\mathrm{SB}}\left[ \exp \left(\frac{\upsilon_{\mathrm{B}\mathrm{E}}}{V_{\mathrm{T}}}\right)-1\right] $$
]

 (3)


are valid for the pnp BJT in the active region. Consider each equation separately.


Problem 17.15
Shown in the figure below are four BJT transistors. The input base current is always equal to 10 μA. Each BJT has a common-emitter current gain β of 50 and is properly biased to operate in the active region.	1.Redraw the circuit shown in the figure.


 

	2.Indicate collector, base, and emitter, and denote the transistor type (npn or pnp) for each device.


 

	3.Indicate the current directions and determine the values of all other currents in the circuit.[image: A331468_1_En_17_Figk_HTML.gif]





 






Problem 17.16
Shown in the figure below is the Sziklai pair (George Clifford Sziklai (1909–1998) was an electrical engineer at Lockheed Martin), which includes the npn and the pnp BJTs. The npn BJT base current is 10 μA. Given that (1) the npn BJT has the current gain β of 10 and V
BE of +0.7 V and (2) the pnp BJT has current gain β of 5 and V
BE of −0.7 V, show the values and the directions of all unknown currents close to each wire in this circuit topology.[image: A331468_1_En_17_Figl_HTML.gif]




Problem 17.17
Repeat the previous problem if υ
BE of the pnp transistor is 0.7 V.


Problem 17.18

                    	A.Who invented the first npn transistor, and in what year?


 

	B.Who were two major collaborators (and rivals) of W. Shockley? Hint: See the reference in this subsection and the article devoted to W. Shockley from Wikipedia.


 




                  


17.2 Large-Signal Circuit Models of a BJT

                  17.2.1 Equivalent Large-Signal Circuit Model of a BJT
                
Problem 17.19
Draw the large-signal equivalent BJT model with:	A.Voltage-controlled current source


 

	B.Current-controlled current source


 






Problem 17.20
For the transistor circuit shown in the figure below:	A.Draw the equivalent circuit diagram using the large-signal BJT model.


 

	B.Solve the circuit for unknown voltages υ
BE, υ, and υ
CE at room temperature of 25 °C. Assume [image: 
$$ {I}_{\mathrm{S}}={10}^{-14}\;\mathrm{A} $$
] for the EBJ Shockley diode.[image: A331468_1_En_17_Figm_HTML.gif]





 






Problem 17.21
For the conceptual transistor circuit shown in the figure below:	A.Draw the equivalent circuit diagram using the large-signal BJT model.


 

	B.Solve the circuit for unknown voltages υ
BE, υ , υ
CE, and the base current i
B at room temperature of 25 °C. Assume [image: 
$$ {I}_{\mathrm{S}}={10}^{-14}\;\mathrm{A} $$
] for the EBJ Shockley diode.[image: A331468_1_En_17_Fign_HTML.gif]





 






Problem 17.22
For the transistor circuit shown in the figure below:	A.Draw the equivalent circuit diagram using the large-signal BJT model.


 

	B.Solve the circuit for unknown base current i
B and unknown voltages υ
BE, υ , υ
CE at room temperature of 25 °C. Assume [image: 
$$ {I}_{\mathrm{S}}={10}^{-14}\;\mathrm{A} $$
] for the EBJ Shockley diode.[image: A331468_1_En_17_Figo_HTML.gif]





 






Problem 17.23
Repeat the previous problem when the base resistance changes to 100 kΩ.


                  17.2.2 Large-Signal DC Circuit Model of a BJT
                

                  17.2.3 Method of Assumed States
                
Problem 17.24
For the large-signal DC circuit model of the npn BJT shown in the following figure, establish:[image: A331468_1_En_17_Figp_HTML.gif]


	A.Conditions for currents and voltages in the active region


 

	B.Conditions for currents and voltages in the saturation region


 

	C.Conditions for currents and voltages in the cutoff region


 






Problem 17.25
Using the datasheet for a 2N3904 npn transistor from Fairchild Semiconductor, estimate the range for:	A.Base-to-emitter voltage in the saturation region (“Base-Emitter Saturation Voltage” in the datasheet)


 

	B.Collector-to-emitter voltage in the saturation region (“Collector-Emitter Saturation Voltage” in the datasheet)


 





for this popular transistor make.

Problem 17.26
Determine the region of operation for an npn BJT with [image: 
$$ \beta =200 $$
] shown in the figure using the large-signal DC circuit model.[image: A331468_1_En_17_Figq_HTML.gif]




                    	A.For [image: 
$$ {I}_{\mathrm{B}}=0.1\;\mathrm{m}\mathrm{A}\kern0.5em \mathrm{and}\kern0.5em {V}_{\mathrm{CE}}=0.4\;\mathrm{V} $$
]



 

	B.For [image: 
$$ {V}_{\mathrm{CE}}=0.3\;\mathrm{V}\kern0.5em \mathrm{and}\kern0.5em {V}_{\mathrm{BE}}=0.4\;\mathrm{V} $$
]



 

	C.For [image: 
$$ {I}_{\mathrm{C}}=1\;\mathrm{m}\mathrm{A}\kern0.5em \mathrm{and}\kern0.5em {I}_{\mathrm{B}}=20\;\upmu \mathrm{A} $$
]



 

	D.For [image: 
$$ {V}_{\mathrm{CE}}=-5\;\mathrm{V} $$
]



 




                  

Problem 17.27
Repeat Problem 17.26 for [image: 
$$ \beta =100 $$
] and

                    	A.
                            [image: 
$$ {I}_{\mathrm{B}}=0.1\;\mathrm{m}\mathrm{A}\kern0.5em \mathrm{and}\kern0.5em {V}_{\mathrm{CE}}=0.6\;\mathrm{V} $$
]
                          


 

	B.
                            [image: 
$$ {V}_{\mathrm{CE}}=0.7\;\mathrm{V}\kern0.5em \mathrm{and}\kern0.5em {V}_{\mathrm{BE}}=0.4\;\mathrm{V} $$
]
                          


 

	C.
                            [image: 
$$ {I}_{\mathrm{C}}=2\;\mathrm{m}\mathrm{A}\kern0.5em \mathrm{and}\kern0.5em {I}_{\mathrm{B}}=20\;\upmu \mathrm{A} $$
]
                          


 

	D.
                            [image: 
$$ {V}_{\mathrm{CE}}=0\;\mathrm{V} $$
]
                          


 




                  

Problem 17.28
Determine the region of operation for a pnp BJT with [image: 
$$ \beta =100 $$
] shown in the figure using the large-signal DC circuit model.[image: A331468_1_En_17_Figr_HTML.gif]




Problem 17.29
Repeat Problem 17.28 for	A.
                            [image: 
$$ {I}_{\mathrm{B}}=0.1\;\mathrm{m}\mathrm{A}\kern0.5em \mathrm{and}\kern0.5em {V}_{\mathrm{CE}}=-1\;\mathrm{V} $$
]
                          


 

	B.
                            [image: 
$$ {V}_{\mathrm{CE}}=-1\;\mathrm{V}\kern0.5em \mathrm{and}\kern0.5em {V}_{\mathrm{BE}}=-0.4\;\mathrm{V} $$
]
                          


 

	C.
                            [image: 
$$ {I}_{\mathrm{C}}=2\;\mathrm{m}\mathrm{A}\kern0.5em \mathrm{and}\kern0.5em {I}_{\mathrm{B}}=20\;\upmu \mathrm{A} $$
]
                          


 

	D.
                            [image: 
$$ {V}_{\mathrm{CE}}=0\;\mathrm{V} $$
]
                          


 







                  17.2.4 Transistor Circuit Analysis Using the Method of Assumed States
                
Problem 17.30

                    	A.Solve the transistor circuit shown in the figure that follows by determining unknown voltages V
BE, V, and V
CE using the large-signal DC BJT model and the method of assumed states.


 

	B.Solve the same circuit using the large-signal BJT model. Assume room temperature of 25 °C and [image: 
$$ {I}_{\mathrm{S}}={10}^{-14}\;\mathrm{A} $$
] for the EBJ Shockley diode.


 

	C.Compare both solutions to each other.[image: A331468_1_En_17_Figs_HTML.gif]





 




                  

Problem 17.31
For three-transistor circuit shown in the figure, find the collector current I
C and collector-to-emitter voltage V
CE


                    	A.For [image: 
$$ \beta =100 $$
]



 

	B.For [image: 
$$ \beta =300 $$
]



 




                  
Use the large-signal DC circuit model of the transistor.[image: A331468_1_En_17_Figt_HTML.gif]




Problem 17.32

                    	A.For the BJT circuit shown below, determine unknown parameters listed in the table that follows Assume [image: 
$$ \beta =100 $$
]. Use the large-signal DC circuit model of the transistor.


 

	B.Perform the corresponding laboratory experiment with a 2N3904 small-signal npn BJT and fill out a similar table.


 




                  
Note: This configuration is sometimes referred to as an NPN inverter with resistive load.[image: A331468_1_En_17_Figu_HTML.gif]




                    	
                                V
                                BB
                              
	
                                I
                                B
                              
	
                                I
                                C
                              
	
                                V
                                CE
                              
	Region

	0 V
	 	 	 	 
	1 V
	 	 	 	 
	2 V
	 	 	 	 
	3 V
	 	 	 	 
	4 V
	 	 	 	 



                  

Problem 17.33

                    	A.For the BJT circuit shown below, determine unknown parameters listed in the table that follows. Assume [image: 
$$ \beta =100 $$
]. Use the large-signal DC circuit model of the transistor.


 

	B.Perform the corresponding laboratory experiment with a 2N3904 small-signal npn BJT and fill out a similar table.[image: A331468_1_En_17_Figv_HTML.gif]





 




                  

	
                            V
                            BB
                          
	
                            I
                            E
                          
	
                            I
                            C
                          
	
                            V
                            CE
                          
	Region

	1 V
	 	 	 	 
	2 V
	 	 	 	 
	3 V
	 	 	 	 
	4 V
	 	 	 	 
	0 V
	 	 	 	 



                  17.2.5 DC Transistor Bias Circuits
                

                  17.2.6
                  β
                  -Independent Biasing and Negative Feedback
                

                  17.2.7 Common Discrete-Circuit Bias Arrangement
                

                  17.2.8 Other Bias Circuits
                
Problem 17.34
For the circuit shown in the figure, fill the table that follows. Use the large-signal DC circuit model of the transistor.[image: A331468_1_En_17_Figw_HTML.gif]




                    	
                                β
                              
	
                                I
                                C
                              
	
                                V
                                C
                              

	50
	 	 
	100
	 	 
	250
	 	 



                  

Problem 17.35
For the circuit shown in the figure, fill the table that follows. Use the large-signal DC circuit model of the transistor.[image: A331468_1_En_17_Figx_HTML.gif]




                    	
                                β
                              
	
                                I
                                C
                              
	
                                V
                                C
                              

	50
	 	 
	100
	 	 
	250
	 	 



                  

Problem 17.36
For the circuit shown in the figure, determine (the npn BJT has [image: 
$$ \beta =100 $$
]):	A.Collector current I
C



 

	B.Emitter current Ii
E



 





Use the large-signal DC circuit model of the transistor.[image: A331468_1_En_17_Figy_HTML.gif]




Problem 17.37
For the circuit shown in the figure, determine the transistor current gain β. Use the large-signal DC circuit model of the transistor.[image: A331468_1_En_17_Figz_HTML.gif]




Problem 17.38

                    	A.Sketch the four-resistor bias circuit. Label two base resistances, collector resistance, and emitter resistance.


 

	B.What purpose could this circuit have?


 




                  

Problem 17.39
For the circuit shown below, determine the emitter current, i
E, using the method of Thévenin equivalent when [image: 
$$ {R}_1=43\;\mathrm{k}\Omega $$
], [image: 
$$ {R}_2=3\;\mathrm{k}\Omega $$
], [image: 
$$ {R}_{\mathrm{C}}=20\;\mathrm{k}\Omega $$
], [image: 
$$ {R}_{\mathrm{E}}=1\;\mathrm{k}\Omega . $$
]
[image: A331468_1_En_17_Figaa_HTML.gif]




Problem 17.40
For three circuits shown in the figure below:

[image: A331468_1_En_17_Figab_HTML.gif]


[image: A331468_1_En_17_Figan_HTML.gif]

determine the emitter current, i
E, when


                    	A.
                            [image: 
$$ \begin{array}{l}{R}_1=10\;\mathrm{k}\Omega, {R}_2=3\;\mathrm{k}\Omega, {R}_{\mathrm{C}}=10\;\mathrm{k}\Omega, \hfill \\ {}{R}_{\mathrm{E}}=10\;\mathrm{k}\Omega \end{array} $$
]
                          


 

	B.
                            [image: 
$$ \begin{array}{l}{R}_1=10\;\mathrm{k}\Omega, {R}_2=10\;\mathrm{k}\Omega, {R}_{\mathrm{C}}=10\;\mathrm{k}\Omega, \\ {}{R}_{\mathrm{E}}=5\;\mathrm{k}\Omega \end{array} $$
]
                          


 

	C.
                            [image: 
$$ \begin{array}{l}{R}_1=10\;\mathrm{k}\Omega, {R}_2=10\;\mathrm{k}\Omega, {R}_{\mathrm{C}}=2\;\mathrm{k}\Omega, \\ {}{R}_{\mathrm{E}}=5\;\mathrm{k}\Omega \end{array} $$
]
                          


 




                  

Problem 17.41
Establish the performance of the circuit shown in the figure below for [image: 
$$ \beta =50,100,\mathrm{and}\kern0.5em 250 $$
]. Show the variation in I
C and V
C, respectively.[image: A331468_1_En_17_Figac_HTML.gif]




                    	
                                β
                              
	
                                I
                                C
                              
	
                                V
                                C
                              

	50
	 	 
	100
	 	 
	250
	 	 



                  


17.3 Practical BJT Circuits at DC

                  17.3.1 Constant Current Sources: Active Region of Operation
                

                  17.3.2 Voltage Follower (Voltage Buffer): Active Region of Operation
                
Problem 17.42

                    	A.Given the constant-current source circuit in Fig. 17.24b with [image: 
$$ {V}_{\mathrm{REF}}=5\;\mathrm{V} $$
], select a value of resistance R
E to set a constant emitter current of 50 mA.


 

	B.If β varies between 50 and 200, determine the minimum and maximum collector currents.


 

	C.Given [image: 
$$ {V}_{\mathrm{CC}}=12\;\mathrm{V} $$
], what is the range of possible load voltages?


 




                  

Problem 17.43
Solve task A of the previous problem for the circuit in Fig. 17.24a given [image: 
$$ \beta =50 $$
].


Problem 17.44
For the circuits of Fig. 17.24a, the required LED current is 30 mA and [image: 
$$ {R}_{\mathrm{E}}=15\;\Omega $$
]. What is the largest LED voltage that can be tolerated before the transistor is pushed into saturation?


Problem 17.45
For the circuit of Fig. 17.25b, [image: 
$$ {R}_1=200\;\Omega $$
], [image: 
$$ {R}_2=300\;\Omega $$
], and [image: 
$$ {V}_{\mathrm{CC}}=12\;\mathrm{V} $$
].	A.Determine Thévenin voltage and resistance for the voltage divider.


 

	B.Determine the voltage drop that results for a load current of 30 mA. Assume [image: 
$$ \beta =100 $$
]. Repeat for a load current of 100 mA.


 

	C.Determine the load voltage for two load currents from part B.


 






Problem 17.46
For the circuits of Fig. 17.24b, [image: 
$$ {V}_{\mathrm{CC}}=5\;\mathrm{V} $$
], the emitter current is 30 mA and [image: 
$$ {R}_{\mathrm{E}}=15\;\Omega $$
]. The transistor has [image: 
$$ \beta =50 $$
].	A.What is the voltage across the emitter resistance?


 

	B.What is the LED voltage in Fig. 17.24b?


 







                  17.3.3 BJT Switches: Saturation Region
                

                  17.3.4 Application Example: Automotive BJT Dome Light Switch
                

                  17.3.5 Application Example: Door Lock BJT Switch and Darlington Pair
                
Problem 17.47
For the circuit of Fig. 17.28, [image: 
$$ {V}_{\mathrm{REF}}=3\;\mathrm{V} $$
], [image: 
$$ {V}_{\mathrm{CC}}=24\;\mathrm{V} $$
], and the load resistance is 10 Ω. Assume the minimum value [image: 
$$ \beta =100 $$
].	A.Find the maximum possible load current (if the transistor were a perfect switch).


 

	B.Find the minimum base current required to saturate the transistor.


 

	C.Determine a value for R
B to overdrive the transistor by approximately a factor of 2.


 






Problem 17.48
For the circuit shown in the following figure, [image: 
$$ {V}_{\mathrm{CC}}=12\;\mathrm{V} $$
], and the bulb turn on resistance is 40 Ω. Assume the minimum value [image: 
$$ \beta =50 $$
].	A.Find the maximum possible load current (if the transistor were a perfect switch).


 

	B.Find the minimum base current required to saturate the transistor.


 

	C.Determine a value for R
B to overdrive the transistor by approximately a factor of 2.[image: A331468_1_En_17_Figad_HTML.gif]





 






Problem 17.49
For the circuit shown in the figure below, [image: 
$$ {V}_{\mathrm{CC}}=12\;\mathrm{V} $$
], and the bulb turn on resistance is 40 Ω. Assume the minimum value [image: 
$$ \beta =30 $$
].	A.Find the maximum possible load current (if the transistor were a perfect switch).


 

	B.Find the minimum base current required to saturate the transistor.


 

	C.Determine a value for R
B to overdrive the transistor by approximately a factor of 2.[image: A331468_1_En_17_Figae_HTML.gif]





 






Problem 17.50
Design the transistor switch for the circuit shown in Fig. 17.30 (determine base resistance R
B) given that [image: 
$$ {V}_{\mathrm{TH}}=3\;\mathrm{V} $$
] and [image: 
$$ {R}_{\mathrm{TH}}=100\;\Omega $$
]. The load is modeled as a 30 Ω resistor, [image: 
$$ {V}_{\mathrm{CC}}=12\;\mathrm{V} $$
]. The minimum transistor β is 50.


17.4 Small-Signal Transistor Amplifier

                  17.4.1 Generic Voltage-Gain Amplifier
                

                  17.4.2 Simplified Model of the BJT Common-Emitter Amplifier
                

                  17.4.3 Small-Signal BJT Analysis and Superposition
                
Problem 17.51
For the amplifier circuit with [image: 
$$ {A}_{\mathrm{V}0}=20 $$
] shown in the figure below, determine the output voltage given that [image: 
$$ {\upsilon}_{\mathrm{S}}(t)=1 \cos \omega \kern0.1em t\left[\mathrm{mV}\right] $$
], [image: 
$$ {R}_{\mathrm{S}}=50\;\Omega $$
], [image: 
$$ {R}_{\mathrm{L}}=50\;\Omega $$
] for two cases	A.
[image: 
$$ {R}_{\mathrm{in}}=1\;\mathrm{M}\Omega $$
] and [image: 
$$ {R}_{\mathrm{out}}=1\;\Omega $$
].


 

	B.
[image: 
$$ {R}_{\mathrm{in}}=50\;\Omega $$
] and [image: 
$$ {R}_{\mathrm{out}}=50\;\Omega $$
].[image: A331468_1_En_17_Figaf_HTML.gif]





 






Problem 17.52
For the amplifier circuit shown in the figure below, plot its voltage transfer characteristic to scale given that [image: 
$$ {V}_{\mathrm{CC}}=9.8\;\mathrm{V} $$
], [image: 
$$ {R}_{\mathrm{C}}={R}_{\mathrm{B}}=20\;\mathrm{k}\Omega $$
], and [image: 
$$ \beta =128 $$
].[image: A331468_1_En_17_Figag_HTML.gif]




Problem 17.53
Determine small-signal base-emitter resistance r
π of a BJT at room temperature of 25 °C given that	A.
                            [image: 
$$ \beta =50,{I}_{\mathrm{B}}=1\;\upmu \mathrm{A} $$
]
                          


 

	B.
                            [image: 
$$ \beta =100,{I}_{\mathrm{C}}=5\;\mathrm{m}\mathrm{A} $$
]
                          


 

	C.
                            [image: 
$$ {I}_{\mathrm{C}}=10\;\mathrm{m}\mathrm{A},{I}_{\mathrm{E}}=10.1\;\mathrm{m}\mathrm{A} $$
]
                          


 






Problem 17.54
Repeat the previous problem for the 
small-signal transconductance g
m.


                  17.4.4 Analysis of BJT Common-Emitter Amplifiers
                
Problem 17.55
A BJT common-emitter amplifier circuit is shown in the figure that follows. Assume [image: 
$$ {R}_{\mathrm{C}}=5.1\;\mathrm{k}\Omega $$
], [image: 
$$ {V}_{\mathrm{CC}}=15\;\mathrm{V} $$
], β = 100, and room temperature of 25 °C. Also assume [image: 
$$ {R}_{\mathrm{B}}=100\;\mathrm{k}\Omega $$
] and [image: 
$$ {V}_{\mathrm{BB}}=2\;\mathrm{V} $$
]. The input voltage is given by [image: 
$$ {\upsilon}_{\mathrm{in}}=0.5 \cos \omega t\left[\mathrm{V}\right] $$
].[image: A331468_1_En_17_Figah_HTML.gif]


	A.Determine DC bias parameters V
B, V
C, V
E, I
B, I
C.


 

	B.Determine small-signal amplifier parameters r
π, A
υ0, R
in, and R
out.


 

	C.Write expressions for υ
IN(t) and υ
OUT(t).


 

	D.Sketch υ
IN(t) and υ
OUT(t) for two cycles to scale on the same plot.


 






Note: Use exact expressions for circuit parameters without simplifications resulting from the condition [image: 
$$ \beta \gg 1 $$
].


Problem 17.56
Repeat tasks C and D of the previous problem when β = 250.


Problem 17.57
A BJT common-emitter amplifier circuit is shown in the following figure. Assume [image: 
$$ {R}_{\mathrm{C}}=5.1\;\mathrm{k}\Omega $$
], [image: 
$$ {V}_{\mathrm{CC}}=15\;\mathrm{V} $$
], β = 100, and room temperature of 25 °C. Also assume [image: 
$$ {R}_{\mathrm{E}}=1\;\mathrm{k}\Omega $$
] and [image: 
$$ {V}_{\mathrm{BB}}=2\;\mathrm{V} $$
]. The input voltage is given by [image: 
$$ {\upsilon}_{\mathrm{in}}=0.5 \cos \omega t\left[\mathrm{V}\right] $$
].[image: A331468_1_En_17_Figai_HTML.gif]


	A.Determine DC bias parameters V
B, V
C, V
E, I
B, I
C.


 

	B.Determine small-signal amplifier parameters r
π, A
υ0, R
in, and R
out.


 

	C.Write expressions for υ
IN(t) and υ
OUT(t).


 

	D.Sketch υ
IN(t) and υ
OUT(t) for two cycles to scale on the same plot.


 






Note: Use the exact expressions for circuit parameters without simplifications resulting from the condition [image: 
$$ \beta \gg 1 $$
].


Problem 17.58
Repeat tasks C and D of the previous problem when [image: 
$$ {\upsilon}_{\mathrm{in}}=2.0 \cos \omega t\left[\mathrm{V}\right] $$
].


Problem 17.59
A BJT common-emitter amplifier circuit is shown in the following figure. Assume [image: 
$$ {R}_{\mathrm{C}}=5.1\;\mathrm{k}\Omega $$
], [image: 
$$ {V}_{\mathrm{CC}}=15\;\mathrm{V} $$
], β = 100, and room temperature of 25 °C. Also assume [image: 
$$ {R}_{\mathrm{E}}=1\;\mathrm{k}\Omega $$
] and [image: 
$$ {R}_1=65\;\mathrm{k}\Omega $$
], [image: 
$$ {R}_2=10\;\mathrm{k}\Omega $$
]. The input voltage is given by [image: 
$$ {\upsilon}_{\mathrm{in}}=0.5 \cos \omega t\left[\mathrm{V}\right] $$
].[image: A331468_1_En_17_Figaj_HTML.gif]


	A.Determine DC bias parameters V
B, V
C, V
E, I
B, I
C.


 

	B.Determine small-signal amplifier parameters r
π, A
υ0, R
in, and R
out.


 

	C.Write expressions for υ
IN(t) and υ
OUT(t).


 

	D.Sketch υ
IN(t) and υ
OUT(t) for two cycles to scale on the same plot.


 






Note: Use the exact expressions for circuit parameters without simplifications resulting from the condition [image: 
$$ \beta \gg 1 $$
].


Problem 17.60
A BJT common-emitter amplifier circuit shown in the following figure uses a capacitor in parallel with the emitter resistor to boost the amplifier small-signal gain, but still keep the DC bias parameters unchanged. Assume that the capacitor reactance is negligible for the AC signal. Also assume the same circuit parameters as in the previous problem (without the shunt capacitor): [image: 
$$ {R}_{\mathrm{C}}=5.1\;\mathrm{k}\Omega $$
], [image: 
$$ {V}_{\mathrm{CC}}=15\;\mathrm{V} $$
], β = 100, room temperature of 25 °C, and [image: 
$$ {R}_{\mathrm{E}}=1\;\mathrm{k}\Omega $$
], [image: 
$$ {R}_1=65\;\mathrm{k}\Omega $$
], [image: 
$$ {R}_2=10\;\mathrm{k}\Omega $$
]. The input voltage is given by [image: 
$$ {\upsilon}_{\mathrm{in}}=0.01 \cos \omega t\left[\mathrm{V}\right] $$
].[image: A331468_1_En_17_Figak_HTML.gif]


	A.Determine DC bias parameters V
B, V
C, V
E, I
B, I
C.


 

	B.Determine small-signal amplifier parameters r
π, A
υ0, R
in, and R
out.


 

	C.Write expressions for υ
IN(t) and υ
OUT(t).


 

	D.Sketch υ
IN(t) and υ
OUT(t) for two cycles to scale on the same plot.


 






Note: Use the exact expressions for circuit parameters without simplifications resulting from the condition [image: 
$$ \beta \gg 1 $$
].


Problem 17.61
Repeat tasks C and D of the previous problem when [image: 
$$ {\upsilon}_{\mathrm{in}}=0.1 \cos \omega t\left[\mathrm{V}\right] $$
].


Problem 17.62
A BJT common-emitter amplifier circuit shown in the figure that follows includes the source circuit and the load circuit. Assume the following circuit parameters (identical to Problem 17.59): [image: 
$$ {R}_{\mathrm{C}}=5.1\;\mathrm{k}\Omega $$
], [image: 
$$ {V}_{\mathrm{CC}}=15\;\mathrm{V} $$
], β = 100, room temperature of 25 °C, and [image: 
$$ {R}_{\mathrm{E}}=1\;\mathrm{k}\Omega $$
], [image: 
$$ {R}_1=65\;\mathrm{k}\Omega $$
], [image: 
$$ {R}_2=10\;\mathrm{k}\Omega $$
]. Also assume that the capacitor reactances are negligible. The source (not the input!) voltage is given by [image: 
$$ {\upsilon}_{\mathrm{S}}=0.5 \cos \omega t\left[\mathrm{V}\right] $$
], and the source and load resistances are [image: 
$$ {R}_{\mathrm{S}}=1\;\mathrm{k}\Omega $$
], [image: 
$$ {R}_{\mathrm{L}}=10\;\mathrm{k}\Omega $$
].[image: A331468_1_En_17_Figal_HTML.gif]


	A.Determine DC bias parameters V
B, V
C, V
E, I
B, I
C.


 

	B.Determine small-signal amplifier parameters r
π, A
υ0, R
in, and R
out;


 

	C.Write expressions for υ
out(t); write a similar expression for υ
out0(t) when the load resistance tends to infinity and the source resistance is zero (the ideal case).


 

	D.Sketch υ
out(t) and υ
out0(t) for two cycles to scale on the same plot.



 






Note: Use the exact expressions for circuit parameters without simplifications resulting from the condition [image: 
$$ \beta \gg 1 $$
].


Problem 17.63
In a BJT common-emitter amplifier circuit shown in the figure that follows, assume that the capacitor reactances are negligible (equal to zero) for the AC signal. Also assume the following circuit parameters: [image: 
$$ {R}_{\mathrm{C}}=2\;\mathrm{k}\Omega $$
], [image: 
$$ {V}_{\mathrm{CC}}=15\;\mathrm{V} $$
], [image: 
$$ {V}_{\mathrm{EE}}=-15\;\mathrm{V} $$
], β = 100, room temperature of 25 °C, and [image: 
$$ {R}_{\mathrm{E}1}=4.7\;\mathrm{k}\Omega $$
], [image: 
$$ {R}_{\mathrm{E}2}=510\;\Omega $$
], [image: 
$$ {R}_{\mathrm{B}}=10\;\mathrm{k}\Omega $$
]. The input voltage is given by [image: 
$$ {\upsilon}_{\mathrm{in}}=1 \cos \omega t\left[\mathrm{V}\right] $$
].[image: A331468_1_En_17_Figam_HTML.gif]


	A.Determine DC bias parameters V
B, V
C, V
E, I
B, I
C.


 

	B.Determine small-signal amplifier parameters r
π, A
υ0, R
in, and R
out.


 

	C.Write the expression for υ
OUT(t).


 

	D.Sketch υ
in(t) and υ
OUT(t) for two cycles to scale on the same plot.


 






Note: Use the exact expressions for circuit parameters without simplifications resulting from the condition [image: 
$$ \beta \gg 1 $$
].
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Overview

              Prerequisites:
	Knowledge of basic circuit analysis

	Exposure to theory of the pn-junction (optional)

	Exposure to BJT circuit analysis and amplifiers (Chapter 17, optional)




              Objectives of Section 18.1:
	Learn physical composition of the field-effect transistor, four- and three-terminal configurations

	Understand principle of operation of the MOSFET

	Realize the origin and understand the value of MOSFET threshold voltage

	Be able to estimate threshold voltage based on MOSFET’s physical composition




              Objectives of Section 18.2:
	Learn MOSFET test circuits

	Become familiar with the dynamics of channel inversion and quantify the underlying mechanism

	Derive MOSFET equations (large-signal model) for three regions of operation from first principles

	Pay special attention to large-signal MOSFET model in saturation

	Become familiar with v-i dependencies for the NMOS and PMOS transistors




              Objectives of Section 18.3:
	Learn the resistor-switch model of the MOSFET for switching applications

	Apply the resistor-switch model of the MOSFET to logic gates

	Understand the value of the triode and cutoff regions for switching applications

	Become fluent with the method of assumed states for MOSFET DC circuit analysis

	Use the load-line method, either graphically or analytically

	Solve in basic MOSFET DC bias circuits




              Objectives of Section 18.4:
	Learn circuit topology of the common-source MOSFET amplifier

	Analyze and characterize the voltage transfer characteristic of the common-source amplifier

	Understand the value of the saturation region for amplifier applications

	Be able to properly select the quiescent (bias) point

	Formulate the small-signal MOSFET model and solve in the common-source amplifier circuit




              Application Examples:
	Output resistance of digital logic gates

	Basic MOSFET switching actuator




            

18.1 Principle of Operation and Threshold Voltage
In this chapter we study the field-effect transistor (FET). The most important member of the FET family is the metal-oxide-semiconductor FET or MOSFET. Similar to the npn and pnp BJT transistors, MOSFETs are subdivided into n-channel
                             MOSFETs and p-channel
                                
                             MOSFETs, also known as NMOS and PMOS transistors. The abbreviation CMOS, or complementary MOS, implies an integrated circuit which incorporates both of these types of transistors on the same substrate. It is the CMOS transistor that allows high-density chip integration as part of microelectronic analog and digital circuits. MOSFETs are used in both logic gates and in memory cells. Discrete power MOSFETs are also deployed in many power engineering applications. We will concentrate on the enhancement-mode MOSFET (or E-MOSFET), which relies on a positive gate-to-source threshold voltage. Other MOSFET types (
                depletion-mode MOSFET
                
               ) may have either negative or near-zero threshold voltages.
18.1.1 Physical Structure: Terminal Voltages and Currents
                                    
                                
                            
An enhancement-mode n-channel MOSFET (NMOS transistor) is a four-terminal semiconductor device. The NMOS transistor shown in Fig. 18.1 consists of a p-doped substrate (the Si wafer) into which two n (or rather heavily doped n+) regions, the source and the drain, are formed through ion implantation. The gate electrode (source of the control voltage) used to be a metal film, but nowadays it is a heavily doped polysilicon. The gate length L, also known as channel length, can be as small as 30 nm. The gate isolation, necessary to form a capacitor, is a SiO2 dielectric. It is formed directly from the Si substrate by thermal oxidation of Si. There are four metal electrodes corresponding to four transistor terminals: the gate terminal (G), the source terminal (S), the drain terminal (D), and the body (or substrate) terminal (B). The basic geometrical device parameters are the channel length, L, in horizontal direction, and the channel width, W, in vertical direction in Fig. 18.1. The channel length is the distance between the two pn+−junctions; the channel width characterizes the region of electron carrier flow between the drain and the source. Typical substrate acceptor concentrations (p-doping) are in the range of [image: $$ {N}_{\mathrm{A}}={10}^{16}-{10}^{17}\kern0.5em {\mathrm{cm}}^{-3} $$]. The doping of the two n+ domains (donor doping) is large. For example, [image: $$ {N}_{\mathrm{D}}\approx {10}^{19}\kern0.5em {\mathrm{cm}}^{-3} $$] for a power MOSFET.[image: A331468_1_En_18_Fig1_HTML.gif]
Fig. 18.1Semiconductor composition of the NMOS transistor—lateral or planar channel design. The vertical channel design typical for power MOSFETs implies rotation by 90 degrees




                            
The circuit symbol for the four-terminal NMOS transistor is shown in Fig. 18.2a. The device is strictly symmetrical, which means that we can interchange the drain and the source; this is in contrast to the BJT
                                    
                                . The arrow denotes the pn-junction polarity (from p to n) similar to the diode arrow. The four-terminal NMOS transistor is widely used in 
                  integrated circuits
                  
                  
                
                                . In discrete circuits, which employ discrete transistor components, the body terminal is tied to the source terminal as shown in Fig. 18.1b. Therefore, the NMOS transistor becomes the three-
                                
                  terminal
                  
                 MOSFET device (gate, drain, and source), similar to the BJT. However, it is no longer symmetrical. Figure 18.2b shows the corresponding circuit symbol. You encounter this symbol in the majority of manufacturer datasheets and electronic simulation packages. Simplified symbols are widely used; see Fig. 18.2c.[image: A331468_1_En_18_Fig2_HTML.gif]
Fig. 18.2Circuit symbols of (a) a four-terminal NMOS transistor, (b) a three-terminal
                                                 asymmetric NMOS transistor with the body tied to the source, and (c) the same device but simplified




                            
We are going to study only the three-terminal configuration and use the symbol shown in Fig. 18.2b. Figure 18.3a shows transistor terminal voltages for the three-terminal device:[image: A331468_1_En_18_Fig3_HTML.gif]
Fig. 18.3Terminal voltages and currents for the NMOS transistor
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Only two voltages are independent since KVL relates all three voltages to each other. The voltages υ
                                GS and υ
                                DS are chosen as independent variables. Then,[image: $$ {\upsilon}_{\mathrm{GD}}={\upsilon}_{\mathrm{GS}}-{\upsilon}_{\mathrm{DS}} $$]

 (18.1)

The principal difference from the BJT is that the control terminal of the transistor, the gate, is electrically insulated. There is no current flowing into or out of the gate. Therefore, the transistor current is the only drain current, i
                                D, which flows from the drain to the source in Fig. 18.3b.
Exercise 18.1
A NMOS transistor has the gate-source voltage of 2 V and drain-source voltage of 0.3 V. What is the gate-drain voltage?

                                    Answer: 1.7 V.


18.1.2 Simplified Principle of Operation
We consider thesimplified transistor circuit
                                    
                                 shown in Fig. 18.4. Both the source and the substrate are grounded. When [image: $$ {\upsilon}_{\mathrm{GS}}=0 $$], the path between the drain and the source includes two oppositely directed pn-junction diodes; see Fig. 18.4a. Therefore, there will be no current between the drain and the source for any possible value of drain-source voltage υ
                                DS since one of the diodes will always be off. Now let us assume a positive control voltage υ
                                GS is applied to the gate control terminal and [image: $$ {\upsilon}_{\mathrm{DS}}=0 $$] for simplicity. A capacitor will form between the gate and all remaining (grounded) terminals; the initial electric field is shown in Fig. 18.4b by dashed lines. This electric field attracts more negative electron carriers to the channel between the drain and the source and repels the positive carrier (holes) from the channel until the initial electric field will be essentially neutralized in the bulk of the substrate. The dependence of the electron concentration in the channel on υ
                                GS is exponential, i.e., very sharp. When υ
                                GS reaches a certain threshold value V
                                Th or exceeds it, the 
                  MOSFET channel
                  
                 appears 
                                    
                                 (a thin subsurface domain just below the oxide) that has enough electron carriers to form a conducting “wire” between the drain and source as in Fig. 18.4b. The transistor switch becomes closed and transistor conducts the current i
                                D from the drain to the source given any (even small) positive voltage [image: $$ {\upsilon}_{\mathrm{DS}}>0 $$]. One may think of the boundary of the n+ region in Fig. 18.4b as a “rubber band” that is pushed away from the gate by the positive gate voltage. The value V
                                Th is the intrinsic threshold voltage (or simply threshold voltage) of the NMOS transistor. V
                                Th depends on transistor geometry and its doping concentrations. For the NMOS transistor, the threshold voltage is often denoted by V
                                Tn and for the PMOS transistor by V
                                Tp. In the following text, we will attempt to keep the generic notation V
                                Th for both transistor types.[image: A331468_1_En_18_Fig4_HTML.gif]
Fig. 18.4Simplified NMOS configuration and creating a channel for current flow




                            

18.1.3 
                NMOS Capacitor
                                    
                                
              
The phenomenon described above is known as 
                  channel inversion
                  
                  
                 (from p- to n-type) of the NMOS transistor. The inversion can be quantified analytically since we deal with a homogeneous p-type material in the bulk of the channel, as you can see in Fig. 18.4b. The central region of the NMOS transistor in Fig. 18.4 thus forms a MOS capacitor that consists of the gate, i
                                    
                                nsulator, and the p-body. We will apply the semiconductor analysis to the MOS capacitor and use its one-dimensional electrostatic model which is shown in Fig. 18.5a (in fact it is turned 90° counterclockwise with respect to Fig. 18.4).[image: A331468_1_En_18_Fig5_HTML.gif]
Fig. 18.5(a) Central region of the MOSFET under an applied voltage υ
                                                GS: the MOS capacitor. (b) to (d) Formation of the depletion and inversion layers in the substrate. The entire region close to the semiconductor surface is called the surface space-charge 
                          region
                          
                        
                                            




                            
The 
                  ideal MOS capacitor model
                  
                 will be considered first. By KVL, the voltage [image: $$ {\upsilon}_{\mathrm{GS}}>0 $$] is the sum of two positive components shown in Fig. 18.5a:[image: $$ {\upsilon}_{\mathrm{GS}}={V}_{\mathrm{S}}+{V}_{\mathrm{OX}} $$]

 (18.2)

The first component V
                                S is the voltage across the semiconductor substrate, which is also called the surface 
                  voltage
                  
                 or the surface 
                  potential
                  
                 [image: $$ {\varphi}_{\mathrm{S}}={V}_{\mathrm{S}} $$] (given zero potential at the body terminal). The second component V
                                OX is the voltage across the oxide layer. We will express it in terms of the surface potential [image: $$ {\varphi}_{\mathrm{S}}={V}_{\mathrm{S}} $$] first. Then, φ
                                S itself will be quantified at the onset of strong inversion. Substitution of those two values in Eq. (18.2) will give us the desired threshold voltage V
                                Tn. The corresponding analysis relies upon semiconductor surface physics and may be skipped if necessary.

18.1.4 Voltage Across the Oxide Layer Before and at the Onset of Strong Inversion
At any [image: $$ {\upsilon}_{\mathrm{GS}}>0 $$], the surface voltage is also positive, i.e., [image: $$ {V}_{\mathrm{S}}>0 $$]. The corresponding electric field directed into the body will push the positive holes into the depth of the substrate and leave immovable negative ions behind; this is seen in Fig. 18.5b–d. Hence, a depletion layer will be formed, similar to the pn-junction depletion layer
                                    
                                
                                
                  
                  
                  
                . Assume that the body is uniformly doped and has an acceptor concentration [image: $$ {N}_{\mathrm{A}}>>{n}_i $$] where n
                                
                  i
                 is the intrinsic concentration of holes and electrons, [image: $$ {n}_i\approx 1\times {10}^{10}\kern0.5em {\mathrm{cm}}^{-3} $$] for Si. The depletion layer is nearly the abrupt region of a uniform negative ion concentration N
                                A and the width W
                                d. The depletion layer width W
                                d may be found analytically as[image: $$ {W}_{\mathrm{d}}=\sqrt{\frac{2\varepsilon }{q}\frac{V_{\mathrm{S}}}{N_{\mathrm{A}}}} $$]

 (18.3)

Here, ε is the dielectric constant of the substrate; in Si, [image: $$ \varepsilon =1.05\times {10}^{-12}\mathrm{F}/\mathrm{cm} $$]. The total charge Q of the depletion layer per unit surface (units of C/cm2) is subsequently given by[image: $$ Q=-q{W}_{\mathrm{d}}{N}_{\mathrm{A}}=-\sqrt{2\varepsilon \kern0.1em q{N}_{\mathrm{A}}{V}_{\mathrm{S}}} $$]

 (18.4)

This is the negative charge on one side of the oxide capacitor with capacitance C
                                OX per unit area. The charge on the opposite side (gate) must be positive and of the same absolute value in order to keep the device electrically neutral. The voltage of the oxide capacitor is therefore[image: $$ {V}_{\mathrm{OX}}=-Q/{C}_{\mathrm{OX}}=\sqrt{2\varepsilon \kern0.1em q{N}_{\mathrm{A}}{V}_{\mathrm{S}}}/{C}_{\mathrm{OX}},\kern1em {C}_{\mathrm{OX}}={\varepsilon}_{\mathrm{OX}}/{t}_{\mathrm{OX}} $$]

 (18.5)

where the dielectric constant of the SiO2 oxide
                                    
                                
                                
                  
                  
                  
                 is [image: $$ {\varepsilon}_{\mathrm{OX}}=3.45\times {10}^{-13}\mathrm{F}/\mathrm{cm} $$] and t
                                OX is the oxide thickness.
Example 18.1
Given [image: $$ {V}_{\mathrm{S}}=1\kern0.5em \mathrm{V} $$] and [image: $$ {N}_{\mathrm{A}}=5\times {10}^{16}\kern0.5em {\mathrm{cm}}^{-3} $$] estimate the voltage across the SiO2 oxide layer with a thickness of 4 nm; the NMOS body is Si.

                                    Solution: We will use centimeters as length units in accordance with generally accepted semiconductor convention. The oxide-layer capacitance is given by[image: $$ {C}_{\mathrm{OX}}=8.625\times {10}^{-7}\kern0.5em \mathrm{F}/{\mathrm{cm}}^2 $$]

 (18.6)

Substitution into Eq. (18.5) yields[image: $$ {V}_{\mathrm{OX}}=0.15\kern0.5em \mathrm{V} $$]

 (18.7)


                                


18.1.5 Voltage Across the Semiconductor Body
At any υ
                                GS, the MOS capacitor is still a system in equilibrium (no currents of any kind) as long as υ
                                DS is zero. Then, the electron and hole concentrations n(x) and p(x) are[image: $$ p(x)={N}_{\mathrm{A}},\kern1em n(x)=\frac{n_i^2}{N_{\mathrm{A}}}<<{N}_{\mathrm{A}},\kern1em n(x)p(x)={n}_i^2 $$]

 (18.8)

The last expression in Eq. (18.8) is the mass-action law
                                    
                                    
                                 of a semiconductor. When a positive voltage υ
                                GS is applied, an electric field is established in the p-doped material which is the negative spatial derivative of the potential distribution φ(x); see Fig. 18.5a. The concentrations are modified by the potential φ(x). Since the potential is defined to within a constant, one can select this constant in order to satisfy Eq. (18.8) deep in the body when [image: $$ \varphi (x)=0 $$]. Equation (18.8) is therefore transformed to[image: $$ p(x)={N}_{\mathrm{A}} \exp \left(-\frac{\varphi (x)}{V_{\mathrm{T}}}\right),\kern1em n(x)=\frac{n_i^2}{N_{\mathrm{A}}} \exp \left(\frac{\varphi (x)}{V_{\mathrm{T}}}\right),\kern1em n(x)p(x)={n}_i^2 $$]

 (18.9)

where V
                                T is the thermal voltage. The boundary condition at [image: $$ x=0 $$] is simply [image: $$ \varphi (x)={\varphi}_s={V}_S $$]. At the boundary of the semiconductor, i.e., at [image: $$ x=0 $$], we obtain[image: $$ n=\frac{n_i^2}{N_{\mathrm{A}}} \exp \left(\frac{V_{\mathrm{S}}}{V_{\mathrm{T}}}\right),\kern1em p={N}_{\mathrm{A}} \exp \left(-\frac{V_{\mathrm{S}}}{V_{\mathrm{T}}}\right) $$]

 (18.10)

It is a common agreement to choose the onset of strong inversion as a surface voltage at which the electron charge concentration n reaches N
                                A at the boundary of the semiconductor; this is depicted in Fig. 18.5c. Thus, the surface charge concentration is inverted from [image: $$ p={N}_{\mathrm{A}} $$] with no applied voltage to [image: $$ n={N}_{\mathrm{A}} $$] when the channel inversion starts. From Eq. (18.10), the surface voltage becomes[image: $$ {V}_{\mathrm{S}}={\varphi}_{\mathrm{S}}=2{V}_{\mathrm{T}} \ln \left(\frac{N_{\mathrm{A}}}{n_i}\right)=2{\varphi}_{\mathrm{F}} $$]

 (18.11)

where the voltage constant [image: $$ {\varphi}_{\mathrm{F}}={V}_{\mathrm{T}}\ \ln\ {N}_{\mathrm{A}}/{n}_i $$] is known as the 
                  Fermi potential
                  
                
                                
                  
                  
                  
                 of the semiconductor. We emphasize that at the onset of strong inversion the total charge Q of the depletion layer per unit surface given by Eq. (18.4) is still much greater than an extra free electron charge brought close to the surface. This is because the surface concentration [image: $$ n={N}_{\mathrm{A}} $$] very quickly decreases when the distance from the surface increases.
Exercise 18.2
Given [image: $$ {N}_{\mathrm{A}}=5\times {10}^{16}\kern0.5em {\mathrm{cm}}^{-3} $$] estimate surface voltage at the onset of strong inversion at room temperature of 25 °C. The NMOS transistor body is Si.

                  Answer:
                  [image: $$ {V}_{\mathrm{S}}=0.79\kern0.5em \mathrm{V} $$]
                

When V
                                S continues to increase even slightly above the value predicted by Eq. (18.11), the surface electron concentration rises exponentially according to Eq. (18.10), and a rich n+ electron channel (or the inversion 
                  layer
                  
                
                                
                  
                  
                  
                ) is quickly formed as illustrated in Fig. 18.5d. When strong inversion takes place, the depletion layer width W
                                d no longer increases because the inversion layer starts blocking the electric field. Its maximum value is given by Eq. (18.3) with [image: $$ {V}_{\mathrm{S}}=2{\varphi}_{\mathrm{F}} $$]. A critical distinction between the NMOS capacitor and the NMOS transistor is the channel formation time. While for an NMOS capacitor it can take minutes to collect the necessary electrons from the p-doped semiconductor with few free electrons, the inversion electrons for the transistor are readily available from two nearby n+ regions—the source and the drain.

18.1.6 
                Threshold Voltage
                                    
                                
              
The 
                  threshold voltage
                  
                  
                 V
                                Th of an NMOS transistor is defined as the gate-source voltage (18.2) at the onset of strong inversion when [image: $$ {V}_{\mathrm{S}}=2{\varphi}_{\mathrm{B}} $$] according to Eq. (18.11). V
                                OX still follows Eq. (18.5). Therefore,[image: $$ {V}_{\mathrm{Th}}={V}_{\mathrm{FB}}+2{\varphi}_{\mathrm{B}}+\sqrt{2\varepsilon q{N}_{\mathrm{A}}\left(2{\varphi}_{\mathrm{B}}\right)}/{C}_{\mathrm{OX}} $$]

 (18.12)

The new extra term V
                                FB on the right-hand side of Eq. (18.12) is called the 
                  flat-band voltage
                  
                 of the MOS capacitor. This term is needed for two reasons. The somewhat less important one is the presence of charges in the oxide layer due to ionic contamination. The second, important reason is the built-in voltage or potential of a boundary between two materials. This effect is similar to the built-in potential or voltage of the pn-junction. The built-in voltages of the metal-oxide boundary and of the semiconductor-oxide boundary do not cancel each other; the corresponding v
                                    
                                oltage difference is known as a 
                  work function difference
                  
                  
                 ψ
                                GS between the gate and the semiconductor; it appears across the oxide layer (Fig. 18.6). Without going into further details, we may assume [image: $$ {V}_{\mathrm{FB}}\approx {\psi}_{\mathrm{GS}} $$] and write[image: A331468_1_En_18_Fig6_HTML.gif]
Fig. 18.6
                                                Work function difference
                                                    
                                                
                                                
                          
                         ψ
                                                GS as a function of body doping for gate electrodes of polysilicon and aluminum, respectively, on a p-Si body of an NMOS transistor




                                [image: $$  {\left.{\psi}_{\mathrm{GS}}\right|}_{\mathrm{A}\mathrm{l}}\approx -0.66-0.03 \ln \left(\frac{N_{\mathrm{A}}}{10^{13}}\right)\kern0.5em \left[\mathrm{V}\right],\kern1em {\left.{\psi}_{\mathrm{GS}}\right|}_{\mathrm{n}+\mathrm{poly}}\approx -0.7-0.03 \ln \left(\frac{N_{\mathrm{A}}}{10^{13}}\right)\kern0.5em \left[\mathrm{V}\right] $$]

 (18.13)


                            
Example 18.2
Estimate the threshold voltage V
                                    Th for a Si NMOS transistor with aluminum gate, [image: $$ {N}_{\mathrm{A}}=1\times {10}^{17}\kern0.5em {\mathrm{cm}}^{-3} $$], and the SiO2 oxide layer with the thickness of 50 nm at room temperature of 25 °C.

                                    Solution: We will use centimeters as length units in accordance with standard semiconductor convention. The surface voltage at the onset of strong inversion is given by Eq. (18.11), i.e.,[image: $$ {V}_{\mathrm{S}}=0.83\kern0.5em \mathrm{V} $$]

 (18.14a)

The oxide-layer capacitance and oxide voltage are given by Eq. (18.5), that is,[image: $$ {C}_{\mathrm{OX}}=6.9\times {10}^{-8}\kern0.5em \mathrm{F}/{\mathrm{cm}}^2,\kern1em {V}_{\mathrm{OX}}=2.42\kern0.5em \mathrm{V} $$]

 (18.14b)

Finally, we find [image: $$ {\psi}_{\mathrm{GS}}=-0.94\kern0.5em \mathrm{V} $$] from Eq. (18.13) and substitute all three contributions into the expression for the threshold voltage, [image: $$ {V}_{\mathrm{Th}}={\psi}_{\mathrm{GS}}+{V}_{\mathrm{S}}+{V}_{\mathrm{OX}} $$]. The result has the form [image: $$ {V}_{\mathrm{Th}}=2.31\kern0.5em \mathrm{V} $$].

It is possible to extend the method of Example 18.2 to arbitrary values of oxide thickness t
                                OX and body doping concentration N
                                A. The result is shown in Fig. 18.7 where the threshold voltage is plotted as a function of N
                                A and t
                                OX. When the threshold voltage is positive (heavy body doping), the NMOS transistor is the enhancement-mode device (E-MOSFET). At light doping and small oxide thickness, the threshold voltage becomes negative. For different enhancement-mode MOSFETs, the V
                                Th values vary in the range[image: A331468_1_En_18_Fig7_HTML.gif]
Fig. 18.7Threshold voltage as a function of N
                                                A and t
                                                OX (Al gate)




                                [image: $$ 0.4\ \mathrm{V}\le {V}_{\mathrm{Th}}\le 4\kern0.5em \mathrm{V} $$]

 (18.15)

Many different methods e
                                    
                                xist to measure the threshold voltage. In practice, the threshold voltage is defined as a voltage when the drain current reaches a certain specified value.

18.1.7 
                PMOS Transistor
                                
                
                  
                  
                
              
For a PMOS transistor (p-channel MOSFET
                                ), all doping concentrations in Figs. 18.1 and 18.4 are reversed. The substrate is now of n-type, and the source and drain are heavily doped p+ regions. Consequently, all voltage polarities are reversed relative to their counterparts in the NMOS case. The PMOS and NMOS transistors are two complementary devices. Figure 18.8 shows the circuit symbols for the PMOS transistor. We put the source on top in accordance with a more positive 
                                    
                                voltage applied to it.[image: A331468_1_En_18_Fig8_HTML.gif]
Fig. 18.8Circuit symbols of (a) a four-terminal PMOS transistor, (b) a three-terminal asymmetric PMOS transistor with the body tied to the source, and (c) the same but simplified symbol




                            
The threshold voltage between the gate and the source also becomes negative. Specifically, Eq. (18.12) for the PMOS transistor is modified as[image: $$ {V}_{\mathrm{Th}}={V}_{\mathrm{FB}}-2{\varphi}_{\mathrm{B}}-\sqrt{2\varepsilon \kern0.1em q{N}_{\mathrm{D}}\left(2{\varphi}_{\mathrm{B}}\right)}/{C}_{\mathrm{OX}} $$]

 (18.14)

where [image: $$ {V}_{\mathrm{FB}}\approx {\psi}_{\mathrm{GS}} $$] and ψ
                                GS is given by two upper curves in Fig. 18.6.
Exercise 18.3

                                    In
                                     Example 18.2, invert all doping concentrations and find the threshold voltage of the corresponding PMOS transistor.

                                    Answer: [image: $$ {V}_{\mathrm{Th}}\approx -3.3\kern0.5em \mathrm{V} $$].


18.1.8 Oxide Thicknesses and Capacitances in CMOS Processes
                                    
                                
                            
MOSFETs used in integrated circuits are fabricated in a number of CMOS processes. Each process is characterized by the minimum channel length L as seen in Fig. 18.1. Smaller lengths allow us to pack a greater number of transistors per unit area. The 
                                    
                                CMOS design is constantly evolving so as to decrease the channel length. Table 18.1 lists some CMOS device parameters: oxide layer thickness and oxide capacitance used in the design of analog ICs. This information helps to find the threshold voltages of the transistors.Table 18.1Minimum channel lengths and oxide layer thicknesses and oxide capacitances for different CMOS processes. [image: $$ 1\kern0.5em \mathrm{f}\mathrm{F}/\upmu {\mathrm{m}}^2={10}^{-7}\mathrm{F}/{\mathrm{cm}}^2 $$] and [image: $$ {\varepsilon}_{\mathrm{OX}}=3.45\times {10}^{-13}\mathrm{F}/\mathrm{cm} $$] (SiO2 oxide)


	Parameter
	0.5-μm process
	0.25-μm process
	0.18-μm process
	0.13-μm process

	NMOS
	PMOS
	NMOS
	PMOS
	NMOS
	PMOS
	NMOS
	PMOS

	
                                                        t
                                                        OX (nm)
	9
	9
	6
	6
	4
	4
	2.7
	2.7

	
                            [image: $$ {C}_{\mathrm{OX}}=\frac{\varepsilon_{\mathrm{OX}}}{t_{\mathrm{OX}}}\kern0.5em \left(\mathrm{f}\mathrm{F}/\upmu {\mathrm{m}}^2\right) $$]
                          
	3.8
	3.8
	5.8
	5.8
	8.6
	8.6
	12.8
	12.8




                            

18.1.9 Family Tree of FETs
The MOSFET is not the only member of the field-effect transistor family. In contrast to the BJT, this device family is extensive. Figure 18.9 lists three examples. Let us first discuss the idea of W. Shockley (1952) for the 
                                    junction FET (JFET)
                                . We can use a depletion region of the reverse-biased pn-junction to control, i.e., reduce or increase, the net channel opening b between the drain and the source in Fig. 18.10a. This is the JFET
                                    
                                 composition. When current flows from the drain to the source, the device becomes a voltage-controlled resistor, with the control voltage being the reverse-bias voltage of the pn-junction. Indeed there is still no gate current since the reverse-biased pn-junction is a very good insulator. A similar situation applies for the MESFET
                                    
                                 (metal–semiconductor 
                  FET
                  
                ) in Fig. 18.10b. However, here the origin of the depletion layer is different, i.e., the metal–semiconductor interface and the corresponding Schottky potential barrier. MESFETs constructed with Si, and especially gallium arsenide (GaAs), are typically used in RF power amplifiers. Many additional FET types exist or are still awaiting discovery.[image: A331468_1_En_18_Fig9_HTML.gif]
Fig. 18.9Modifications of the field-effect transistor involving different types of gates




                                [image: A331468_1_En_18_Fig10_HTML.gif]
Fig. 18.10Two schematic FET configurations: (a) n-channel JFET and (b) n-channel MESFET. A variant for both configurations is the dual gate arrangement. You should note that the corresponding circuit symbols have a continuous gate, denoting the normally “on” state




                            


18.2 Theoretical Model of a MOSFET
18.2.1 Test Circuit and Operating Regions
Figure 18.11 shows the test circuit for the three-terminal
                                 NMOS transistor. Gate-source voltage υ
                                GS and drain-source voltage υ
                                DS are varied. The drain current i
                                D is measured at every particular voltage combination. Our goal is to derive analytical expressions for the drain current i
                                D. The analytical models described below rely on the corresponding measured data, which have been obtained with circuits similar to that in Fig. 18.11.[image: A331468_1_En_18_Fig11_HTML.gif]
Fig. 18.11Schematic diagram of the NMOS transistor test circuit




                            
The NMOS (and PMOS) transistor
                                    
                                 has three operating regions: triode, saturation, and cutoff listed in Table 18.2. All three regions are used. Most common MOSFET switching circuits like logic gates utilize the cutoff and triode regions in order to characterize two binary steady states—logic 0 and 1. However, during the fast transition between the states, the transistors enter the saturation region. MOSFET amplifier circuits solely utilize the saturation region of operation.Table 18.2The three operating regions of an NMOS transistor


	Region
	Condition on υ
                                                        GS
                                                    
	Condition on υ
                                                        DS
                                                    

	Triode
	
                            [image: $$ {\upsilon}_{\mathrm{GS}}>{V}_{\mathrm{Th}} $$]
                          
	
                            [image: $$ {\upsilon}_{\mathrm{DS}}<{\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}={\upsilon}_{\mathrm{OV}} $$]
                          

	Saturation
	
                            [image: $$ {\upsilon}_{\mathrm{GS}}>{V}_{\mathrm{Th}} $$]
                          
	
                            [image: $$ {\upsilon}_{\mathrm{DS}}>{\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}={\upsilon}_{\mathrm{OV}} $$]
                          

	Cutoff
	
                            [image: $$ {\upsilon}_{\mathrm{GS}}\le {V}_{\mathrm{Th}} $$]
                          
	Immaterial




                            
The regions of operation are determined by the value of υ
                                DS as compared to the control voltage υ
                                GS. The triode region starts with a linear (or ohmic) 
                  subregion
                  
                  
                . Table 18.2 indicates one more useful voltage parameter: the overdrive voltage [image: $$ {\upsilon}_{\mathrm{OV}}={\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$]. The NMOS transistor typically operates at large overdrive voltages.

18.2.2 Linear Subregion of Triode Region at Strong Inversion
Let us consider a situation when a large enough gate voltage (typically significantly larger than V
                                Th) is applied to induce the inversion layer between the drain and the source. The cross section of the NMOS transistor is shown in Fig. 18.12. This is a two-dimensional structure. For the analytical description, the electric field is conveniently subdivided into two components: one is in the horizontal direction from gate to body termination, and the other is in the vertical direction from drain to source. Henceforth, two sets of associated voltages (potentials) should describe the 2D models. We analyze fields and voltages in the horizontal direction first.[image: A331468_1_En_18_Fig12_HTML.gif]
Fig. 18.12Voltage distribution across the channel in the triode region. The linear charge and voltage profiles in Fig. 18.12b are an approximation




                            
When the drain is at zero volts or at a small positive voltage with respect to the source (body), the gate-source voltage appears to be nearly uniform in space along the length of the channel L; this is seen in Fig. 18.12a. The charge density in the inversion layer per unit area Q
                                INV measured in C/cm2 is also uniform when the distance x along the channel changes. To find Q
                                INV the following observation is made. The threshold voltage V
                                Th is responsible for creating the depletion layer in the semiconductor body at the onset of strong inversion. Any excess or overdrive voltage [image: $$ {\upsilon}_{\mathrm{OV}}=\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right) $$] thus controls Q
                                INV in the inversion layer since the depletion layer parameters no longer change. Q
                                INV is the negative charge on one side of the oxide capacitor with capacitance C
                                OX per unit area. The charge on the opposite side (gate) must be positive and of the same absolute value in order to keep the device electrically neutral. Therefore,[image: $$ {Q}_{\mathrm{INV}}=-{C}_{\mathrm{OX}}\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right) $$]

 (18.15)

We now turn to the vertical fields. The drain current i
                                D in Fig. 18.12 is the motion of charge Q
                                INV with speed [image: $$ \upsilon ={\mu}_{\mathrm{ns}}E $$] in the (vertical) constant electric field [image: $$ E={\upsilon}_{\mathrm{DS}}/L $$] where μ
                                ns is the 
                  electron surface mobility
                  
                  
                ; [image: $$ {\mu}_{\mathrm{ns}}\approx 450\;{\mathrm{cm}}^2/\left(\mathrm{V}\cdot \mathrm{s}\right) $$] or less. The drain current that flows from drain to source is thus given by (W is the channel width)[image: $$ {i}_{\mathrm{D}}=-W{Q}_{\mathrm{INV}}\upsilon =\frac{W}{L}{k}_n^{\prime}\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right){\upsilon}_{\mathrm{D}\mathrm{S}},\kern1em {k}_n^{\prime }={C}_{\mathrm{OX}}{\mu}_{\mathrm{ns}} $$]

 (18.16)

The constant k
                                
                    n
                  ′ with units of A/V2 (more often mA/V2) is called the 
                  process transconductance parameter
                  
                  
                
                                
                  
                
                                
                  
                  
                . The name implies that it is determined by the particular fabrication technology. The constant [image: $$ {k}_n=\left(W/L\right){k}_n^{\prime } $$] with the same units is the MOSFET transconductance parameter (also called the 
                  lumped process parameter
                  
                  
                
                                
                  
                
                                
                  
                  
                ); it also includes information about the gate dimensions. Typically, k
                                
                  n
                 is on order of 1 mA per V2 or less for small-signal MOSFET transistors. For power MOSFETs, however, it can be much larger: on the order of 100 mA per V2. Equation (18.16) states that at small positive υ
                                DS the NMOS transistor behaves like a linear resistance r
                                DS, which is controlled by the gate-source voltage,[image: $$ {i}_{\mathrm{D}}=\frac{\upsilon_{\mathrm{D}\mathrm{S}}}{r_{\mathrm{D}\mathrm{S}}},\kern1em {r}_{\mathrm{D}\mathrm{S}}=\frac{1}{k_n\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)} $$]

 (18.17)

The resistance r
                                DS can be measured in the laboratory. It is also called the 
                  turn-on resistance
                  
                  
                
                                
                  
                  
                . This resistance of a MOSFET is a key parameter that is typically specified in the manufacturer’s datasheets (in contrast to k
                                
                  n
                ).

18.2.3 Nonlinear Subregion of Triode Region at Strong Inversion
When υ
                                DS increases (but still remains less than [image: $$ {\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$]), the situation depicted in Fig. 18.12b is observed. Close to the source region, the gate still “sees” the absolute source voltage (0 V in this case) as the terminal voltage. However, close to the drain, the gate does not “see” 0 V, but sees the drain voltage as the terminal voltage. The resulting voltage becomes [image: $$ {\upsilon}_{\mathrm{GD}}={\upsilon}_{\mathrm{GS}}-{\upsilon}_{\mathrm{DS}} $$]. Therefore, a variable gate-source voltage υ
                                GS(x) is effectively applied across the channel. The tip of the inversion layer becomes thinner, which is schematically shown in Fig. 18.12b. Introducing an as-yet unknown channel voltage profile y(x), we have[image: $$ {\upsilon}_{\mathrm{GS}}(x)={\upsilon}_{\mathrm{GS}}-y(x){\upsilon}_{\mathrm{DS}},\kern1em y(x)=\left\{\begin{array}{c}\hfill 0\kern1em x=0\hfill \\ {}\hfill 1\kern1em x=L\hfill \end{array}\right. $$]

 (18.18a)

Consequently, the charge of the inversion layer given by Eq. (18.15) also becomes a function of x as illustrated in Fig. 18.12b:[image: $$ {Q}_{\mathrm{INV}}(x)=-{C}_{\mathrm{OX}}\left({\upsilon}_{\mathrm{GS}}(x)-{V}_{\mathrm{Th}}\right)=-{C}_{\mathrm{OX}}\left({V}_{\mathrm{OV}}-y(x){\upsilon}_{\mathrm{DS}}\right) $$]

 (18.18b)

The vertical potential electric field in the channel is now variable too, that is,[image: $$ E(x)=-\frac{d{\upsilon}_{\mathrm{GS}}(x)}{dx}={\upsilon}_{\mathrm{DS}}\frac{dy}{dx} $$]

 (18.18c)

Next, the current along the inversion layer, [image: $$ {i}_{\mathrm{D}}=-W{Q}_{\mathrm{INV}}\upsilon $$], becomes[image: $$ {i}_D=-W{Q}_{INV}{\mu}_{ns}E(x)=W{k}_n^{\prime }{\upsilon}_{DS}\left({V}_{OV}-y(x){\upsilon}_{DS}\right)\frac{dy(x)}{dx} $$]

 (18.18d)

By KCL, the current along the inversion layer
                                 must remain constant. If this condition is enforced, Eq. (18.18c) becomes a nonlinear ODE augmented with the boundary conditions Eq. (18.18a). It allows us to find the voltage profile y(x) along the channel analytically. The corresponding solution has the form (the proof is suggested as one of the homework problems)[image: $$ y(x)=m-\sqrt{m^2-\left(2m-1\right)\frac{x}{L}},\kern1em \frac{dy}{dx}=\frac{1}{L}\frac{m-0.5}{m-y(x)},\kern1em m=\frac{\upsilon_{\mathrm{OV}}}{\upsilon_{\mathrm{DS}}} $$]

 (18.18e)

The profile y(x) is quite linear ([image: $$ \approx x/L $$]) everywhere in the channel at small υ
                                DS and close to the source for any υ
                                DS, but it becomes steeper when approaching the drain at large υ
                                DS. Since all channel parameters are now defined, the transistor current can be calculated by picking up any point along the channel. An alternative and more common approach is to integrate Eq. (18.18d) from x to L and use boundary conditions Eq. (18.18a) along with the constant-current condition. Either method gives the simple final expression for the drain current in the form:[image: $$ {i}_{\mathrm{D}}={k}_n\left({\upsilon}_{\mathrm{GS}}-\frac{1}{2}{\upsilon}_{\mathrm{D}\mathrm{S}}-{V}_{\mathrm{Th}}\right){\upsilon}_{\mathrm{D}\mathrm{S}} $$]

 (18.19)

Equation (18.19) reveals a nonlinear (parabolic) dependence of i
                                
                  D
                 on υ
                                DS; this is an exact result. We could still use Eq. (18.17) too. However, r
                                DS is no longer constant; it becomes voltage dependent, i.e.,[image: $$ {r}_{\mathrm{DS}}=\frac{1}{k_n\left({\upsilon}_{\mathrm{GS}}-\frac{1}{2}{\upsilon}_{\mathrm{DS}}-{V}_{\mathrm{Th}}\right)} $$]

 (18.20)

and increases with increasing υ
                                DS. When the drain-source voltage υ
                                DS is small compared to [image: $$ {\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$], the nonlinear MOSFET model is reduced to a linear one. Equation (18.19) becomes asymptotically equivalent to Eq. (18.16), and Eq. (18.20) reduces to Eq. (18.17).

18.2.4 
                Saturation Region
                                    
                                
              
As υ
                                DS continues to increase and eventually reach [image: $$ {\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$], the tip of the inversion layer in Fig. 18.12b becomes infinitely thin since the inversion layer
                                 charge in Eq. (18.18b) is exactly zero at [image: $$ x=L $$]. This effect is known as the 
                  channel pinch-off
                  
                . It determines entering the saturation region of a MOSFET. The terminal drain current (
                                
                  saturation current
                  
                  
                ) is found from Eq. (18.19) to be[image: $$ {i}_{\mathrm{Dsat}}=\frac{1}{2}{k}_n{V}_{\mathrm{OV}}^2=\frac{1}{2}{k}_n{\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)}^2 $$]

 (18.21a)

This corresponding drain-source voltage is known as the drain saturation voltage:[image: $$ {\upsilon}_{\mathrm{DSsat}}={V}_{\mathrm{OV}}={\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$]

 (18.21b)

While the MOSFET model correctly 
                                    
                                estimates the saturation voltage and the saturation current, it has one major drawback: the finite current at zero inversion charge would imply infinite carrier velocity. This contradiction has its roots in semiconductor physics. Figure 18.13 provides an explanation. The carrier velocity in a semiconductor cannot exceed a certain value [image: $$ \upsilon \le {\upsilon}_{\mathrm{sat}} $$], which is known as the 
                  saturation velocity
                  
                . An excess electric field (or voltage) applied to accelerate carriers even further will result in the generation of certain optical phonons (atom vibrations that light) and the loss of extra kinetic energy. Thus, the artificial carrier-free pinch-off region is in fact a small 
                  velocity saturation region
                  
                 that appears near the drain in Fig. 18.13.[image: A331468_1_En_18_Fig13_HTML.gif]
Fig. 18.13Channel behavior at saturation voltage and beyond and voltage drops across the respective channel areas. The charge profile is an exact nonlinear solution of Eq. (18.18)




                            
The model of the MOSFET in saturation shown in Fig. 18.13 is quantified as follows. A portion of υ
                                DS equal to the overdrive voltage, [image: $$ {\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$], is spent to create the tapered channel with the saturation drain current given by Eq. (18.21a). At the end of this channel, we enter the velocity saturation region. Any excess portion of υ
                                DS is applied solely to the velocity saturation region. However, such an excess voltage does not change the inversion charge in this region:[image: $$ {Q}_{\mathrm{INV}}=-{i}_{\mathrm{Dsat}}/\left(W{\upsilon}_{\mathrm{sat}}\right) $$]

 (18.22)

since the carrier velocity is fixed at υ
                                sat. Instead, the electric field energy is transformed into lattice vibrations. 
                  
                  
                An important conclusion is that the drain current does not change either with increasing υ
                                DS above the overdrive voltage, [image: $$ {\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$]. It remains equal to i
                                Dsat from Eq. (18.21a).

18.2.5 The v-i Dependencies
                                    
                                
                            
Table 18.3 summarizes the simple yet accurate model of the NMOS transistor established in this section.Table 18.3Model of the NMOS transistor


	Region
	Conditions on υ
                                                        GS and υ
                                                        DS
                                                    
	Drain current i
                                                        D
                                                    

	Triode
	
                            [image: $$ {\upsilon}_{\mathrm{GS}}>{V}_{\mathrm{Th}} $$]
                          

                            [image: $$ {\upsilon}_{\mathrm{DS}}<{\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$]
                          
	
                                                        [image: $$ {i}_{\mathrm{D}}={k}_n\left(\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right){\upsilon}_{\mathrm{D}\mathrm{S}}-\frac{1}{2}{\upsilon}_{\mathrm{D}\mathrm{S}}^2\right) $$] (18.23a)

	Saturation
	
                            [image: $$ {\upsilon}_{\mathrm{GS}}>{V}_{\mathrm{Th}} $$]
                          

                            [image: $$ {\upsilon}_{\mathrm{DS}}\ge {\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$]
                          
	
                                                        [image: $$ {i}_{\mathrm{D}}=\frac{1}{2}{k}_n{\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)}^2 $$] (18.23b)
(index sat is omitted)

	Cutoff
	
                            [image: $$ {\upsilon}_{\mathrm{GS}}\le {V}_{\mathrm{Th}} $$]
                          
	
                                                        [image: $$ {i}_{\mathrm{D}}=0 $$] (18.23c)




                            
Example 18.3
A NMOS transistor has the following parameters: [image: $$ {V}_{\mathrm{Th}}=2\kern0.5em \mathrm{V} $$] and [image: $$ {k}_n=3\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$]. Plot the drain current for source-drain voltages from the interval [image: $$ {\upsilon}_{\mathrm{DS}}=\left[0 - 9\right]\kern0.5em \mathrm{V} $$] and at three values of the gate-source voltage [image: $$ {\upsilon}_{\mathrm{GS}}=3,\kern0.5em 4,\kern0.5em \mathrm{and}\kern0.5em 5\kern0.5em \mathrm{V} $$] on the same figure.

                                    Solution: We determine the saturation voltages first. According to the definition, [image: $$ {\upsilon}_{\mathrm{DSsat}}={\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}=1,\kern0.5em 2,\kern0.5em \mathrm{and}\kern0.5em 3\kern0.5em \mathrm{V} $$]. Below these voltages, the triode model Eq. (18.23a) is used. It results in a parabola, whose top point is exactly at the saturation voltage. Above those voltages, the current remains constant; it is 
                                        
                                    equal to the saturation current from Eq. (18.23b). The corresponding values are [image: $$ {i}_{\mathrm{DGS}}=1.5,\kern0.5em 6,\kern0.5em \mathrm{and}\kern0.5em 13.5\kern0.5em \mathrm{m}\mathrm{A} $$]. The result is shown in Fig. 18.14a. Note that the boundary between the two regions (triode and saturation) is another parabola:[image: A331468_1_En_18_Fig14_HTML.gif]
Fig. 18.14(a) Drain current as a function of the drain-source voltage for an NMOS transistor with [image: $$ {V}_{\mathrm{Th}}=2\kern0.5em \mathrm{V} $$] and [image: $$ {k}_n=3\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$]. (b) Drain current as a function of the source-drain voltage for a PMOS transistor with [image: $$ \left|{V}_{\mathrm{Th}}\right|=2\kern0.5em \mathrm{V} $$] and [image: $$ {k}_{\mathrm{p}}=3\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$]
                                                




                                    [image: $$ {i}_{\mathrm{D}}=0.5{k}_n{\upsilon_{\mathrm{D}\mathrm{S}}}^2 $$]

 (18.24)

Also note the linear subregion of the triode region at small drain-source voltages.

Example 18.4
An enhancement-mode NMOS transistor is characterized by [image: $$ {k}_n=4\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$]. For a given set of bias voltages, determine the region of operation and calculate the transistor’s drain current:	A.
                          [image: $$ {\upsilon}_{\mathrm{GS}}=3\kern0.5em \mathrm{V},\ {\upsilon}_{\mathrm{DS}}=10\kern0.5em \mathrm{V},\ \mathrm{and}\kern0.5em {V}_{\mathrm{Th}}=2\kern0.5em \mathrm{V}. $$]
                        


 

	B.
                          [image: $$ {\upsilon}_{\mathrm{GS}}=-2\kern0.5em \mathrm{V},\ {\upsilon}_{\mathrm{DS}}=10\kern0.5em \mathrm{V},\ \mathrm{and}\kern0.5em {V}_{\mathrm{Th}}=1\kern0.5em \mathrm{V}. $$]
                        


 

	C.
                          [image: $$ {\upsilon}_{\mathrm{GS}}=3\kern0.5em \mathrm{V},\ {\upsilon}_{\mathrm{DS}}=2\kern0.5em \mathrm{V},\ \mathrm{and}\kern0.5em {V}_{\mathrm{Th}}=2\kern0.5em \mathrm{V}. $$]
                        


 

	D.
                          [image: $$ {\upsilon}_{\mathrm{GS}}=3\kern0.5em \mathrm{V},\ {\upsilon}_{\mathrm{DS}}=0.5\kern0.5em \mathrm{V},\ \mathrm{and}\kern0.5em {V}_{\mathrm{Th}}=2\kern0.5em \mathrm{V}. $$]
                        


 




                                

                                    Solution: We inspect the 
                                        
                                    inequalities from Table 18.3. Case A then corresponds to saturation, Case B to cutoff (irrespective of drain-to-source voltage), Case C to saturation, and Case D corresponds to the triode region. The transistor current (drain current i
                                    D) is given by Eq. (18.23). Therefore, one has
A [image: $$ {i}_{\mathrm{D}}=2\ \mathrm{m}\mathrm{A} $$], B [image: $$ {i}_{\mathrm{D}}=0\ \mathrm{m}\mathrm{A} $$], C [image: $$ {i}_{\mathrm{D}}=2\ \mathrm{m}\mathrm{A} $$], and D [image: $$ {i}_{\mathrm{D}}=1.5\ \mathrm{m}\mathrm{A} $$].

Exercise 18.4
For the circuit of Fig. 18.11, determine the region of MOSFET operation as well as the drain current i
                                    D for each set of conditions given. Assume [image: $$ {k}_n=90\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and [image: $$ {V}_{\mathrm{Th}}=2\kern0.5em \mathrm{V} $$] for the general-purpose 2 N7000 MOSFET.	A.
                          [image: $$ {\upsilon}_{\mathrm{GS}}=4.5\kern0.5em \mathrm{V},\ {\upsilon}_{\mathrm{DS}}=2\kern0.5em \mathrm{V}. $$]
                        


 

	B.
                          [image: $$ {\upsilon}_{\mathrm{GS}}=4.5\kern0.5em \mathrm{V},\ {\upsilon}_{\mathrm{DS}}=8\kern0.5em \mathrm{V}. $$]
                        


 

	C.
                          [image: $$ {\upsilon}_{\mathrm{GS}}=1.5\kern0.5em \mathrm{V},\ {\upsilon}_{\mathrm{DS}}=8\kern0.5em \mathrm{V}. $$]
                        


 




                                

                                    Answer:	A) Triode, i
                                    D =270 mA. B) Saturation, i
                                    D = 281 mA. C) 
                    
                    
                  Cutoff, i
                                    D = 0.


18.2.6 
                PMOS Transistor
                                    
                                
              
A similar analysis can be repeated for the PMOS transistor with inverted doping concentrations. Table 18.4 summarizes the model of the PMOS transistor. The corresponding test circuit is shown in Fig. 18.15. Note that the |V
                                Th| is used since V
                                Th itself is negative. Also note that υ
                                SG and υ
                                SD are both positive. Table 18.4 is identical to Table 18.3 to within the substitutions [image: $$ {\upsilon}_{\mathrm{GS}}\to {\upsilon}_{\mathrm{SG}} $$], [image: $$ {\upsilon}_{\mathrm{DS}}\to {\upsilon}_{\mathrm{SD}} $$], and [image: $$ \left|{V}_{\mathrm{Th}}\right|\to {V}_{\mathrm{Th}} $$].Table 18.4Model of the PMOS transistor


	Region
	Conditions on υ
                                                        SG and υ
                                                        SD
                                                    
	Drain current [image: $$ {i}_{\mathrm{D}}\ge 0 $$]
                                                    

	Triode
	
                            [image: $$ {\upsilon}_{\mathrm{SG}}>\left|{V}_{\mathrm{Th}}\right| $$]
                          

                            [image: $$ {\upsilon}_{\mathrm{SD}}<{\upsilon}_{\mathrm{SG}}-\left|{V}_{\mathrm{Th}}\right| $$]
                          
	
                                                        [image: $$ {i}_{\mathrm{D}}={k}_{\mathrm{p}}\left(\left({\upsilon}_{\mathrm{SG}}-\left|{V}_{\mathrm{Th}}\right|\right){\upsilon}_{\mathrm{SD}}-\frac{1}{2}{\upsilon}_{\mathrm{SD}}^2\right) $$] (18.25a)

	Saturation
	
                            [image: $$ {\upsilon}_{\mathrm{SG}}>\left|{V}_{\mathrm{Th}}\right| $$]
                          

                            [image: $$ {\upsilon}_{\mathrm{SD}}\ge {\upsilon}_{\mathrm{SG}}-\left|{V}_{\mathrm{Th}}\right| $$]
                          
	
                                                        [image: $$ {i}_{\mathrm{D}}=\frac{1}{2}{k}_{\mathrm{p}}{\left({\upsilon}_{\mathrm{SG}}-\left|{V}_{\mathrm{Th}}\right|\right)}^2 $$] (18.25b) (index sat is omitted)

	Cutoff
	
                            [image: $$ {\upsilon}_{\mathrm{SG}}<\left|{V}_{\mathrm{Th}}\right| $$]
                          
	
                                                        [image: $$ {i}_{\mathrm{D}}=0 $$] (18.25c)




                                [image: A331468_1_En_18_Fig15_HTML.gif]
Fig. 18.15Schematic diagram of the PMOS transistor test circuit




                            
Exercise 18.5
Solve Example 18.3 for the PMOS transistor with [image: $$ \left|{V}_{\mathrm{Th}}\right|=2\kern0.5em \mathrm{V} $$], [image: $$ {k}_{\mathrm{p}}=3\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$], and [image: $$ {\upsilon}_{\mathrm{SG}}=3,\kern0.5em 4,\kern0.5em \mathrm{and}\kern0.5em 5\kern0.5em \mathrm{V} $$].

                                    Answer: The solution 
                                        
                                    is shown in Fig. 18.14b.


18.2.7 Large-Signal MOSFET Model in Saturation
The saturation region of a MOSFET is important for amplifier applications and for fast digital switching circuits
                                    
                                
                                
                  
                  
                . Consider the NMOS transistor: according to Table 18.3, the transistor behaves as a constant-current source in the saturation region for any value of [image: $$ {\upsilon}_{\mathrm{DS}}>{\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$]. However, if the gate-source voltage υ
                                GS is now varied, the MOSFET becomes a voltage-controlled current source with respect to υ
                                GS, as long as it remains in the saturation region. The corresponding result is given by Eq. (18.23b), which is valid for [image: $$ {\upsilon}_{\mathrm{DS}}>{\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$] and [image: $$ {\upsilon}_{\mathrm{GS}}>{V}_{\mathrm{Th}} $$]. This is a parabolic dependence. Figure 18.16 illustrates its behavior for [image: $$ {k}_{\mathrm{p}}=90\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and a threshold voltage of 2 V. The parabola in Fig. 18.16 is known as the 
                  transconductance curve
                  
                
                                
                  
                  
                 of the MOSFET, which expresses the output current i
                                D in terms of υ
                                GS. The transconductance curve
                                    
                                
                                
                  
                 terminates at [image: $$ {\upsilon}_{\mathrm{GS}}={V}_{\mathrm{Th}} $$].[image: A331468_1_En_18_Fig16_HTML.gif]
Fig. 18.16
                                                Transconductance curve
                                                 of the NMOS transistor (i
                                                D versus υ
                                                GS)




                            
Figure 18.17 shows the equivalent circuit representation of the NMOS transistor in the saturation region. The voltage-controlled nonlinear current source is described by the dependence [image: $$ {i}_{\mathrm{D}}=\frac{1}{2}{k}_n{\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)}^2 $$]. This is the large-signal MOSFET model in saturation, which is valid for any values of υ
                                GS and i
                                D, both under DC and AC conditions. A similar model is established for the PMOS transistor.[image: A331468_1_En_18_Fig17_HTML.gif]
Fig. 18.17MOSFET large-signal (nonlinear) current source model




                            

18.2.8 Device Parameters in CMOS Processes
In order to determine the MOSFET model, we need to know the MOSFET transconductance parameter k
                                
                  n
                 or k
                                p. Their values are determined by oxide capacitance C
                                OX and electron/hole surface mobility μ
                                ns/ μ
                                ps, along with gate dimensions L and W. Table 18.5 is an extension of Table 18.1; it provides the corresponding information for CMOS processes used in the design of analog ICs. This information may be used to find the corresponding transconductance parameter (the lumped process parameter).Table 18.5Minimum channel lengths, oxide capacitances, and surface mobilities for some CMOS processes. Note that [image: $$ 1\kern0.5em \mathrm{f}\mathrm{F}/\upmu {\mathrm{m}}^2={10}^{-7}\mathrm{F}/{\mathrm{cm}}^2 $$], [image: $$ {\varepsilon}_{\mathrm{OX}}=3.45\times {10}^{\hbox{-} 13}\mathrm{F}/\mathrm{cm} $$] (SiO2 oxide)


	Parameter
	0.5-μm process
	0.25-μm process
	0.18-μm process
	0.13-μm process

	NMOS
	PMOS
	NMOS
	PMOS
	NMOS
	PMOS
	NMOS
	PMOS

	
                            [image: $$ {C}_{\mathrm{OX}}=\frac{\varepsilon_{\mathrm{OX}}}{t_{\mathrm{OX}}}\kern0.5em \left(\mathrm{f}\mathrm{F}/\upmu {\mathrm{m}}^2\right) $$]
                          
	3.8
	3.8
	5.8
	5.8
	8.6
	8.6
	12.8
	12.8

	
                                                        [image: $$ {\mu}_{\mathrm{ns}}\kern0.5em {\mathrm{cm}}^2/\left(\mathrm{V}\cdot \mathrm{s}\right) $$] or

                            [image: $$ {\mu}_{\mathrm{ps}}\kern0.5em {\mathrm{cm}}^2/\left(\mathrm{V}\cdot \mathrm{s}\right) $$]
                          
	500
	180
	460
	160
	450
	100
	400
	100

	
                                                        V
                                                        Th (V)
	0.7
	−0.8
	0.5
	−0.6
	0.5
	−0.5
	0.4
	−0.4




                            


18.3 MOSFET Switching and Bias Circuits
All problems in this section assume DC steady-state analysis. This is also valid for digital switching circuits where we will ignore the transition region between the two stable states. Still, transistor terminal voltages and drain current (in contrast to the supply voltages) will be denoted by small letters to emphasize that many results of this section are also applicable to the variable signals, either in the exact form or approximately.
18.3.1 Triode Region for Switching Circuits: Device Parameter Extraction

                                    Turn-On Resistance
                                        
                                     and Its Behavior
Consider switching applications where values of υ
                                    DS are expected to be near 0 V and much less than the overdrive voltage [image: $$ {\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$]. In this case, the v-i characteristic of the MOSFET belongs to the linear subregion of the triode region; this is seen in Fig. 18.18. Therefore, the MOSFET is modeled as a DC resistance (turn-on resistance), r
                                    DS.[image: A331468_1_En_18_Fig18_HTML.gif]
Fig. 18.18
                                                    MOSFET turn-on resistance
                                                     r
                                                    DS and its dependence on gate-source voltage for a 2 N7000 NMOS device




                                
The value of this resistance is easily found by finding the slope of the [image: $$ {\upsilon}_{\mathrm{D}\mathrm{S}}-{i}_{\mathrm{D}} $$] characteristic at the origin and inverting the result. It is given by Eq. (18.17) of the previous section, i.e.,[image: $$ {i}_{\mathrm{D}}=\frac{\upsilon_{\mathrm{D}\mathrm{S}}}{r_{\mathrm{D}\mathrm{S}}},\kern1em {r}_{\mathrm{D}\mathrm{S}}=\frac{1}{k_n\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)}\kern1em \mathrm{NMOS}\ \mathrm{transistor} $$]

 (18.26)


                                
Example 18.5
A general-purpose 2N7000 NMOS transistor has the lumped process parameter [image: $$ {k}_n=90\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and 
                                            
                                        a threshold voltage of 2.0 V. The gate-source voltage is 5 V. Plot the drain current for drain-source voltages over the interval [image: $$ {\upsilon}_{\mathrm{DS}}=\left[0 - 9\right]\kern0.5em \mathrm{V} $$] and determine the MOSFET’s turn-on resistance.

                                        Solution: We determine the saturation voltage first. According to the definition, [image: $$ {\upsilon}_{\mathrm{DSsat}}={\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}=\kern0.5em 3\kern0.5em \mathrm{V} $$]. Below this voltage the triode model Eq. (18.23a) is used; above this voltage the saturation model Eq. (18.23b) applies, that is,[image: $$ {i}_{\mathrm{D}}={k}_n\left(\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right){\upsilon}_{\mathrm{D}\mathrm{S}}-\frac{1}{2}{\upsilon}_{\mathrm{D}\mathrm{S}}^2\right),\kern1em {\upsilon}_{\mathrm{D}\mathrm{S}}<3\kern0.5em \mathrm{V} $$]

 (18.27a)


                                        [image: $$ {i}_{\mathrm{D}}=\frac{1}{2}{k}_n{\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)}^2,\kern1em {\upsilon}_{\mathrm{D}\mathrm{S}}\ge 3\kern0.5em \mathrm{V} $$]

 (18.27b)

The result is shown in Fig. 18.18a. The turn-on resistance from Eq. (18.26) is r
                                        DS = 3.7 Ω.

It is important to emphasize the turn-on resistance has a strong dependence on the gate-source voltage, as seen in Fig. 18.18b. Higher υ
                                    GS (higher overdrive voltages) lead to smaller resistances, which is usually desirable. The MOSFET turn-on resistance
                                     r
                                    DS is typically plotted as a function of υ
                                    GS for quick reference in specification sheets. Often, a logarithmic scale plots the resistance.
Exercise 18.5

                                        Using 
                                            
                                        the data of the previous example, plot r
                                        DS as a function of υ
                                        GS.

                                        Answer: The plot is given in Fig. 18.18b. The threshold voltage is clearly seen.


Device Parameter Extraction
Although most MOSFET specification sheets provide values for V
                                    Th, most do not give values for the lumped process parameter k
                                    
                    n
                  . Therefore, one convenient method of determining the threshold voltage V
                                    Th and the lumped process parameter k
                                    
                    n
                   from the MOSFET data is to select two distinct data points on the resistive characteristic similar to Fig. 18.18b, insert each into Eq. (18.6), and then solve the resulting system of two equations for V
                                    Th and k
                                    
                    n
                  . This technique is often called MOSFET 
                    parameter extraction
                    
                    
                  ; it is used for device modeling.
Exercise 18.6
Determine the threshold voltage V
                                        Th and the lumped process parameter k
                                        
                      n
                     for a given MOSFET having the following turn-on resistances at 
                                            
                                        gate-to-source voltages: [υ
                                        GS = 4 V, r
                                        DS = 500 Ω] and [υ
                                        GS = 6 V, r
                                        DS = 100 Ω].

                                        Answer: V
                                        Th = 3.5 V, k
                                        
                      n
                     = 4 mA/V2.

Since the turn-on resistance of a MOSFET is a key parameter, it is typically specified in manufacturer datasheets for a given pair of υ
                                    GS and i
                                    D values. This information may also be used to find r
                                    DS at other gate-source voltages as illustrated in the example that follows.
Example 18.6
The datasheet for an IRF510 enhanced-mode n-channel power MOSFET reports the drain-source on-state 
                      resistance
                      
                    :[image: $$ {r}_{\mathrm{D}\mathrm{S}}={\upsilon}_{\mathrm{D}\mathrm{S}}/{i}_{\mathrm{D}}=0.54\kern0.5em \Omega $$]

 (18.28a)

for [image: $$ {i}_{\mathrm{D}}=3.4\;\mathrm{A} $$] and [image: $$ {\upsilon}_{\mathrm{GS}}=10\;\mathrm{V} $$]. Determine r
                                        DS when [image: $$ {\upsilon}_{\mathrm{GS}}= $$] 5 V and 15 V, respectively. Assume threshold voltage to be 2.0 V.

                                        Solution: From Eq. (18.26), we find[image: $$ {k}_n=\frac{1}{r_{\mathrm{DS}}\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)}=232\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$]

 (18.28b)

Therefore, using the same expression for the drain-source resistance, one has[image: $$ {r}_{\mathrm{DS}}=1.44\kern0.5em \Omega \kern0.5em \mathrm{f}\mathrm{o}\mathrm{r}\kern0.5em {\upsilon}_{\mathrm{GS}}=5\kern0.5em \mathrm{V},\kern1em {r}_{\mathrm{DS}}=0.33\kern0.5em \Omega \kern0.5em \mathrm{f}\mathrm{o}\mathrm{r}\kern0.5em {\upsilon}_{\mathrm{GS}}=15\kern0.5em \mathrm{V} $$]

 (18.28c)

Higher overdrive 
                                            
                                        voltages lead to smaller turn-on resistances of the MOSFET.

Exercise 18.7
Solve the previous example when V
                                        Th changes to 4 V.

                                        Answer: [image: $$ {r}_{\mathrm{DS}}=4.31\kern0.5em \Omega \kern0.5em \mathrm{f}\mathrm{o}\mathrm{r}\kern0.5em {\upsilon}_{\mathrm{GS}}=5\kern0.5em \mathrm{V},\kern1em {r}_{\mathrm{DS}}=0.39\kern0.5em \Omega \kern0.5em \mathrm{f}\mathrm{o}\mathrm{r}\kern0.5em {\upsilon}_{\mathrm{GS}}=15\kern0.5em \mathrm{V} $$].



18.3.2 Resistor-Switch Model
                                    
                                 in Triode Region
Equation (18.26) is valid for MOSFET switching applications where the voltage across the MOSFET is expected to be small, [image: $$ 0<{\upsilon}_{\mathrm{DS}}<<{\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$]. Under this condition, a simple resistor-switch model can be used for the NMOS transistor that is shown in Fig. 18.19a. This model includes an ideal switch and a series resistor. Similar to the NMOS transistor, the resistor-switch model for the p-channel MOSFET
                                 is developed in exactly the same way; it is shown in Fig. 18.19b. This model is valid for [image: $$ 0<{\upsilon}_{\mathrm{SD}}<<{\upsilon}_{\mathrm{SG}}-\left|{V}_{\mathrm{Th}}\right| $$]; see Table 18.4 for the PMOS transistor polarities. Care must be taken, however, not to mix the NMOS and PMOS parameters together in the same equations. When both devices are used, an additional subscript of n or p is generally desirable to distinguish between them. In addition, the threshold voltage for the PMOS device is specified as a negative number. Therefore, its absolute value is employed when defining the turn-on resistance in the form[image: A331468_1_En_18_Fig19_HTML.gif]
Fig. 18.19MOSFET resistor-switch model in the triode region




                                [image: $$ {i}_{\mathrm{D}}=\frac{\upsilon_{\mathrm{SD}}}{r_{\mathrm{D}\mathrm{S}}}>0,\kern1em {r}_{\mathrm{D}\mathrm{S}}=\frac{1}{k_{\mathrm{p}}\left({\upsilon}_{\mathrm{SG}}-\left|{V}_{\mathrm{Th}}\right|\right)}\kern1em \mathrm{PMOS}\ \mathrm{transistor} $$]

 (18.29)


                            
Exercise 18.8
For the resistor-switch model in Fig. 18.19a, determine r
                                    DS given [image: $$ {k}_n=90\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and the threshold voltage of 2.0 V. The gate-source voltage is 4, 5, and 6 V.

                                    Answer: 5.56 Ω, 3.70 Ω, 2.78 Ω.

The resistor-switch model is applied as follows. When [image: $$ {\upsilon}_{\mathrm{GS}}<{V}_{\mathrm{Th}} $$] for the NMOS transistor, the switch in Fig. 18.19a is an open circuit. Otherwise, we assume it is a short circuit. Similarly, when [image: $$ {\upsilon}_{\mathrm{SG}}<\left|{V}_{\mathrm{Th}}\right| $$] for the PMOS transistor, the switch in Fig. 18.19a is an open circuit. Otherwise, it is a short 
                                    
                                circuit.

18.3.3 Application Example: Output Resistance of Digital Logic Gates
Use of the Resistor-Switch Model
The MOSFET resistor-switch model from Fig. 18.19 is used extensively as an estimation tool in the design of digital logic gates shown in Fig. 18.20. The particular gate chosen
                                     is a CMOS NOT gate
                                        
                                     or a 
                    logic inverter
                    
                    
                   comprised of one PMOS and one NMOS
                                     device. Such a configuration with two complementary MOSFETs is a ubiquitous circuit in CMOS-based digital logic. This circuit can be implemented as a tiny building block and replicated billions of times as part of microprocessors and memory chips, making possible high-density microelectronic integrated circuits.[image: A331468_1_En_18_Fig20_HTML.gif]
Fig. 18.20A circuit with a complementary MOSFET pair; the configuration is known as a logic CMOS inverter. Note that the output voltage is open circuited




                                
The circuit in Fig. 18.20a is replaced by the resistor-switch model in Fig. 18.20b. We assume that [image: $$ {V}_{\mathrm{DD}}>{V}_{\mathrm{Th}} $$] for the NMOS transistor and [image: $$ {V}_{\mathrm{DD}}>\left|{V}_{\mathrm{Th}}\right| $$] for the PMOS transistor. The
                                     circuit solution implies the inspection of gate-source voltages for either input voltage. It results in the truth table 18.6, which indicates the state of each MOSFET for a given input voltage and resulting output voltage. A logic “1” corresponds to a voltage level of V
                                    DD and a logic “0” corresponds to 0 V.Table 18.6CMOS NOT
                                                     gate truth table and MOSFET switch states


	Inputs
	NMOS switch
	PMOS switch
	Output

	0
	OFF
	ON
	1

	1
	ON
	OFF
	0




                                

Gate Output Resistance and Its Value
The 
                    output resistance
                    
                    
                   of the logic gate is defined as the resistance of the equivalent Thévenin circuit seen by the output terminal. The corresponding Thévenin voltage (either V
                                    DD or 0 V) has no influence on the output resistance. The output resistance of the gate will vary. For the NOT gate in Fig. 18.20, [image: $$ {r}_{\mathrm{OUT}}={r}_{\mathrm{DSp}} $$] when the input is logic 0 and [image: $$ {r}_{\mathrm{OUT}}={r}_{\mathrm{DSn}} $$] when the input is logic 1. Generally, [image: $$ {r}_{\mathrm{DSn}}\ne {r}_{\mathrm{DSp}} $$]. More complicated combinations occur for other gates such as a NAND gate shown in Fig. 18.21. The output resistance of the gate is important in predicting the fundamental parameter of digital circuits, the gate propagation delay, which is determined by the time constant of an RC circuit formed by r
                                    OUT and MOSFET capacitances. Strictly speaking, the resistor-switch DC model in the triode region loses its validity during the transition between two gate stages, where the MOSFETs enter the saturation region. However, r
                                    OUT found with the help of this model will still provide simple and useful design estimates.[image: A331468_1_En_18_Fig21_HTML.gif]
Fig. 18.21The NAND gate 
                                                    with two identical PMOS transistors and two identical NMOS transistors. The output voltage is open circuited, similar to Fig. 18.20
                                                




                                
Example 18.7
For the NAND gate in Fig. 18.21a, construct the truth table and determine the output gate resistance for every input voltage combination. Assume [image: $$ {V}_{\mathrm{DD}}>{V}_{\mathrm{Th}} $$] for the NMOS transistor and [image: $$ {V}_{\mathrm{DD}}>\left|{V}_{\mathrm{Th}}\right| $$] for the PMOS transistor.

                                        Solution: The circuit in Fig. 18.21a is replaced by the resistor-switch model in Fig. 18.21b. The gate-source voltages of every individual transistor are found by inspection. They determine whether the transistor is on or off. If a direct conduction path from V
                                        DD to the output results, the output voltage is V
                                        DD or logic 1. If a direct conduction path from ground to the output occurs, the output voltage is 0 V or logic 0. The corresponding truth table, Table 18.7, contains an extra column where the gate output resistance is reported. For example, when both A and B are logic 1, both NMOS devices are on, and since they are in series the resistance between 
                                            
                                        the output and ground is [image: $$ {r}_{\mathrm{DSn}}+{r}_{\mathrm{DSn}} $$]. On the other hand, if both A and B are logic 0, both PMOS devices are on and they are wired in parallel, so the output resistance is [image: $$ {r}_{\mathrm{DSp}}\left|\right|{r}_{\mathrm{DSp}} $$].Table 18.7
                                                        CMOS NAND gate
                                                         truth table, MOSFET switch states, and output resistances


	Inputs
	NMOS
	PMOS
	Output
	
                                r
                                OUT
                              

	A
	B
	M1
                                                            
	M2
                                                            
	M3
                                                            
	M4
                                                            
	 	 
	0
	0
	OFF
	OFF
	ON
	ON
	1
	
                                [image: $$ {r}_{\mathrm{DS}3}\left|\right|{r}_{\mathrm{DS}4} $$]
                              

	0
	1
	OFF
	ON
	ON
	OFF
	1
	
                                r
                                DS3
                              

	1
	0
	ON
	OFF
	OFF
	ON
	1
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18.3.4 MOSFET Circuit Analysis at DC
Method of Assumed States
A DC circuit
                                        
                                     with MOSFET(s) is solved using the method of assumed states, similar to the large-signal DC model for the junction transistor. Initially, we assume one of the states—saturation, triode, or cutoff—and solve the resulting circuit. The complete large-signal transistor models, Eq. (18.23) (Table 18.3) for the NMOS transistor and Eq. (18.25) (Table 18.4) for the PMOS transistor, are employed. Then, the inequalities for the transistor voltages are checked. If they are satisfied, the solution is correct. If not, another region of operation is selected. If the transistor state found through inspection is not cutoff, it is often convenient to assume the saturation first and solve for υ
                                    DS. If this value is larger than the effective voltage of [image: $$ {\upsilon}_{\mathrm{GS}}-{\upsilon}_{\mathrm{Th}} $$], the solution is correct. Otherwise, the 
                                        
                                    operating region is triode and the quadratic equation applies. After a certain amount of practice, the method of assumed states, which always provides a unique solution, becomes easy to apply.

Load-Line Analysis
The load-line analysis implies the graphical or analytical representation of the solution in the form of an intersection of two curves: the nonlinear υ
                                    DS—i
                                    D transistor dependence and the linear Ohm’s law for the (load) resistor expressed in terms of the same two quantities. Examples that follow will illustrate theload-line method
                                        
                                        
                                    .
Example 18.8
Consider a gate-bias (or fixed-gate) NMOS transistor circuit shown in Fig. 18.22. An NMOS transistor has the lumped process parameter [image: $$ {k}_n=1.0\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and a threshold voltage of 1.0 V. The gate-source voltage is 5 V. Solve the circuit, i.e., find drain-source voltage υ
                                        DS and current i
                                        D.[image: A331468_1_En_18_Fig22_HTML.gif]
Fig. 18.22Gate-bias NMOS transistor circuit; it is the bias circuit for the common-source MOSFET amplifier




                                    

                                        Solution: Since [image: $$ {\upsilon}_{\mathrm{GS}}>{V}_{\mathrm{Th}} $$], the transistor is ON; it is either in the saturation region or in the triode region
                                            
                                        . We make a guess and assume that the device operates in the saturation region; this yields[image: $$ {i}_{\mathrm{D}}=\frac{k_n}{2}{\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)}^2=8\ \mathrm{m}\mathrm{A} $$]

 (18.29a)

Therefore, [image: $$ {V}_{\mathrm{RD}}={R}_{\mathrm{D}}{i}_{\mathrm{D}}=8\ \mathrm{V} $$]. The drain-source voltage, by KVL, gives[image: $$ {V}_{\mathrm{DS}}=20\ \mathrm{V}-8\ \mathrm{V}=12\ \mathrm{V} $$]

 (18.29b)

The condition of the saturation region [image: $$ {V}_{\mathrm{DS}}>{V}_{\mathrm{GS}}-{V}_{\mathrm{Th}}=4\ \mathrm{V} $$] is satisfied; the drain current is 8 mA. The circuit is thus solved.
A check of other operation regions will yield all negative results. The graphical form of the solution is shown in Fig. 18.23a. We plot the transistor current given either by [image: $$ {i}_{\mathrm{D}}={k}_n\left(\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right){\upsilon}_{\mathrm{D}\mathrm{S}}-\frac{1}{2}{\upsilon}_{\mathrm{D}\mathrm{S}}^2\right) $$] in the triode region or by Eq. (18.29a) in the saturation region. Simultaneously, the general linear load line [image: $$ {i}_{\mathrm{D}}=\left({V}_{\mathrm{D}\mathrm{D}}-{\upsilon}_{\mathrm{D}\mathrm{S}}\right)/{R}_{\mathrm{D}} $$] plots the same current but found using theOhm’s law
                                            
                                         for the resistor R
                                        D. The intersection of two of them corresponds to the solution for the drain-source voltage. This intersection clearly occurs in the saturation region. The boundary between the triode and saturation regions is a parabola [image: $$ {i}_{\mathrm{D}}=0.5{k}_n^{\prime }{\upsilon}_{\mathrm{D}\mathrm{S}}^2 $$], which follows from Eq. (18.29a) with [image: $$ {\upsilon}_{\mathrm{DS}}={\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$].[image: A331468_1_En_18_Fig23_HTML.gif]
Fig. 18.23Graphical representation of the solution for the DC circuit in Fig. 18.22 and intersection of the load line with the υ
                                                        DS—i
                                                        D curve. (a) NMOS transistor in saturation and (b) NMOS transistor in triode region




                                    

Example 18.9
Repeat the previous example when the gate-source voltage changes from 5 V to 7 V.

                                        Solution: As long as [image: $$ {\upsilon}_{\mathrm{GS}}>{V}_{\mathrm{Th}} $$], the transistor is ON. We select the saturation region and find [image: $$ {i}_{\mathrm{D}}=0.5{k}_n{\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)}^2=18\ \mathrm{m}\mathrm{A} $$]. Therefore, [image: $$ {V}_{\mathrm{DS}}=20\ \mathrm{V}-18\ \mathrm{V}=2\ \mathrm{V} $$]. However, the condition of the saturation region [image: $$ {V}_{\mathrm{DS}}>{V}_{\mathrm{GS}}-{V}_{\mathrm{Th}}=6\ \mathrm{V} $$] is not satisfied. The triode region must be therefore chosen. In the triode region, we have to assume [image: $$ {i}_{\mathrm{D}}={k}_n\left(\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right){\upsilon}_{\mathrm{D}\mathrm{S}}-\frac{1}{2}{\upsilon}_{\mathrm{D}\mathrm{S}}^2\right) $$]. However, Ohm’s law for the resistor predicts the linear dependence in the form of the load line [image: $$ {i}_{\mathrm{D}}=\left({V}_{\mathrm{D}\mathrm{D}}-{\upsilon}_{\mathrm{D}\mathrm{S}}\right)/{R}_{\mathrm{D}} $$]. Setting both results equal to each other, we obtain a
                                            quadratic equation
                                            
                                         in υ
                                        DS
                                        [image: $$ \frac{20\ \mathrm{V}\hbox{-} {\upsilon}_{\mathrm{D}\mathrm{S}}}{R_{\mathrm{D}}}={k}_n\left(\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right){\upsilon}_{\mathrm{D}\mathrm{S}}-0.5{\upsilon}_{\mathrm{D}\mathrm{S}}^2\right) $$]

 (18.30)

This equation is reduced to [image: $$ 20 - {\upsilon}_{\mathrm{DS}}=6{\upsilon}_{\mathrm{DS}}-0.5{\upsilon}_{\mathrm{DS}}^2 $$]. It can be solved directly using a calculator. There are two roots: [image: $$ {\upsilon}_{\mathrm{DS}}=4\kern0.5em \mathrm{V} $$] and [image: $$ {\upsilon}_{\mathrm{DS}}=10\kern0.5em \mathrm{V} $$]. The second (larger) root is non-physical since it is located within the already abandoned saturation region. The first root is the true solution; the corresponding drain current is given by 16 mA. The graphical form of the solution is shown in Fig. 18.23b. We again plot the υ
                                        DS—i
                                        D transistor curve along with linear load line [image: $$ {i}_{\mathrm{D}}=\left({V}_{\mathrm{D}\mathrm{D}}-{\upsilon}_{\mathrm{D}\mathrm{S}}\right)/{R}_{\mathrm{D}} $$]. There are two intersections corresponding to the two roots for υ
                                        DS obtained above. The load line method provides physical insight into the problem and the ability to modify the solution in a controlled way if necessary. For example, with reference to Fig. 18.23 we can decide which circuit parameters need to be changed to move the solution from the triode to the saturation region and vice versa.

Exercise 18.9
In the circuit shown in Fig. 18.22 we use the model that represents the 2N7000 NMOS transistor from Fairchild with thelumped process parameter
                                            
                                         [image: $$ {k}_n=90\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and the threshold voltage of 2.0 V. Find the drain-source voltage υ
                                        DS and the drain current i
                                        D given [image: $$ {R}_{\mathrm{D}}=25\kern0.5em \Omega $$], [image: $$ {V}_{\mathrm{GS}}=5\kern0.5em \mathrm{V} $$], and [image: $$ {V}_{\mathrm{DD}}=10\kern0.5em \mathrm{V} $$].

                                        Answer:
                                        υ
                                        DS = 1.720 V, i
                                        D = 331.2 mA.

The circuit in Fig. 18.22 is the bias circuit for the common-source MOSFET small-signal amplifier considered in the next section. Note that the drain resistor R
                                    D and the (variable) transistor resistance r
                                    DS essentially form a voltage divider and thus enable proper amplifier operation (sufficient voltage swing). This situation is similar to voltage dividers used as sensors.
Exercise 18.10
The circuit shown in Fig. 18.24a is the 
                      diode-connected
                      
                      
                     MOSFET. This terminology is adopted from the BJT analysis: the BJT connected in a similar fashion operates like a diode. The configuration shown is a part of the
                      current mirror
                      
                      
                     used in integrated circuits. Determine drain current i
                                        D given [image: $$ {V}_{\mathrm{DD}}=5\kern0.5em \mathrm{V} $$], the lumped process parameter [image: $$ {k}_n=10\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$], and the threshold voltage of 2.0 V.[image: A331468_1_En_18_Fig24_HTML.gif]
Fig. 18.24
                                                        Diode-connected
                                                            
                                                         MOSFET circuit with [image: $$ {\upsilon}_{\mathrm{GS}}={\upsilon}_{\mathrm{DS}} $$]
                                                    




                                    

                                        Answer:
                                        i
                                        D = 45 mA.

Exercise 18.11
The circuit shown in Fig. 18.24b is the diode-connected MOSFET with the drain resistance. It can be used to quickly estimate the threshold voltage V
                                        Th of a particular MOSFET in the laboratory at condition [image: $$ {\upsilon}_{\mathrm{GS}}={\upsilon}_{\mathrm{DS}} $$] (which is not exactly the theoretical condition of [image: $$ {\upsilon}_{\mathrm{DS}}\to 0 $$]) and at a certain (usually very small) value of the drain current. Determine the MOSFET’s threshold voltage V
                                        Th if the circuit in Fig. 18.24b, with [image: $$ {R}_D=100\kern0.5em \mathrm{k}\Omega $$], [image: $$ {V}_{\mathrm{DD}}=12\kern0.5em \mathrm{V} $$], measures a current of [image: $$ {i}_{\mathrm{D}}=100\kern0.5em \upmu \mathrm{A} $$].

                                        Answer:
                                        [image: $$ {V}_{\mathrm{Th}}={\upsilon}_{\mathrm{GS}}={\upsilon}_{\mathrm{DS}}= $$] 2 V.



18.3.5 Application Example: Basic MOSFET Actuator
The circuit shown in Fig. 18.25 is a straightforward modification of the gate-bias circuit from Fig. 18.22. We simply replace the second voltage supply V
                                GS by a voltage divider connected to the gate. This voltage divider operates independently in the sense that it is not affected by the gate connection since there is no current into the gate of the MOSFET. Given the fixed resistor values, this circuit may be employed as a bias circuit for the small-signal MOSFET amplifiers. Its advantage is in using only one voltage supply V
                                DD. Yet another application is a basic MOSFET 
                  actuator device
                  
                  
                 which turns on the motor or another power load, when the sensor reading – output of the voltage divider with a sensing resistive element R
                                1—requires doing so. For higher-power loads, a power MOSFET should be used.[image: A331468_1_En_18_Fig25_HTML.gif]
Fig. 18.25Gate-bias NMOS transistor circuit with the voltage divider




                            
Exercise 18.12
For the circuit shown in Fig. 18.25, choose values for R
                                    1 and R
                                    2 to establish a drain current of 20 mA in the MOSFET. Assume [image: $$ {R}_{\mathrm{D}}=0 $$]. You are given [image: $$ {V}_{\mathrm{DD}}=5\kern0.5em \mathrm{V} $$], the lumped process parameter [image: $$ {k}_n=90\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$], and the threshold voltage of 2.0 V. Also, limit the voltage divider current to 20 μA.

                                    Answer: R
                                    1 = 116.7 kΩ, R
                                    2 = 133.3 kΩ.

To be specific, R
                                1 is the 
                                    
                                resistance of a NTC-503 thermistor operating as[image: $$ {R}_1=50\ \mathrm{k}\Omega \kern1em \mathrm{at}\ 25\kern0.24em {}^{\circ}\mathrm{C}\kern0.5em \left(\mathrm{room}\ \mathrm{temperature}\right) $$]



                                [image: $$ {R}_1=30\ \mathrm{k}\Omega \kern1em \mathrm{at}\kern0.5em 37\;{}^{\circ}\mathrm{C} $$]


The second resistance of the voltage divider is fixed at [image: $$ {R}_2=12\ \mathrm{k}\Omega $$]. Further, a hypothetical n-channel power MOSFET with [image: $$ {V}_{\mathrm{Th}}=2\kern0.5em \mathrm{V} $$] and [image: $$ {k}_n= $$] 261 mA/V2 is considered as an example. The goal is to turn on a small 5-V DC fan motor of 0.4-W power with the equivalent load resistance [image: $$ {R}_{\mathrm{D}}=80\kern0.5em \Omega $$] if the temperature in a room (or in an enclosure) reaches 37 °C.
Exercise 18.13
Determine the load current i
                                    D and load voltage υ
                                    D in Fig. 18.5 when [image: $$ {V}_{\mathrm{DD}}=10\kern0.5em \mathrm{V} $$] and	A.
                                                    [image: $$ {R}_1=50\ \mathrm{k}\Omega $$] (room temperature).


 

	B.
                                                    [image: $$ {R}_1=30\ \mathrm{k}\Omega $$] (temperature of 37 °C).


 




                                
Other device parameters are given in the text above.

                  Answer:
                  	A)Load current and voltages are zero; the transistor is at cutoff.


 

	B)The transistor is in 
                                                        
                                                    saturation; the load current is 96 mA and the load voltage is 7.7 V.


 




                

Various sensing elements (e.g., a photoresistor instead of a thermistor) and various DC motors may be used. Figure 18.26 illustrates the circuit operation with a thermistor and a more powerful 12-V motor. The basic design in Fig. 18.25 is not very practical since it suffers from variations of the MOSFET threshold voltage and other device parameters including the motor’s starting current. A modification involves the use of a potentiometer instead of the fixed resistance R
                                2 and tuning the circuit to the proper operation region.[image: A331468_1_En_18_Fig26_HTML.gif]
Fig. 18.26MOSFET actuator circuit with a temperature sensor and a 12-V DC motor




                            


18.4 MOSFET Amplifier
                                
                                
                            
                        
18.4.1 MOSFET Common-Source Amplifier
                                    
                                    
                                
                            
For amplifier applications, the MOSFET is typically biased into the saturation region where it behaves as a 
                  voltage-controlled current source
                  
                  
                . If a voltage output is desired, the current can be converted to a proportional voltage drop by pulling it through a resistor as shown in Fig. 18.27a. Figure 18.27b shows the equivalent large-signal circuit model of the amplifier. The NMOS transistor in saturation is described by a nonlinear current source following the large-signal model from Fig. 18.17, which is valid at any input voltage [image: $$ {\upsilon}_{\mathrm{IN}}={\upsilon}_{\mathrm{GS}} $$]. The output voltage to the amplifier is [image: $$ {\upsilon}_{\mathrm{OUT}}={\upsilon}_{\mathrm{DS}} $$]. The drain-source path forms a voltage divider between the fixed (R
                                D) and variable resistors.[image: A331468_1_En_18_Fig27_HTML.gif]
Fig. 18.27MOSFET common-source amplifier model




                            
Following traditional naming schemes, when the input is at the gate and the output is at the drain, the amplifier circuit in Fig. 18.17 is identified as the common-source amplifier. Other amplifier configurations exist.

18.4.2 Voltage Transfer Characteristic
                                    
                                
                            
The voltage transfer characteristic of the MOSFET amplifier is obtained when plotting υ
                                OUT versus υ
                                IN. We let υ
                                IN vary from 0 V all the way to V
                                DD. For the amplifier in Fig. 18.27, the plot includes all three regions, cutoff, saturation, and triode, when υ
                                IN passes from 0 V to V
                                DD. Only the saturation region is meaningful. Using the large-signal model of the NMOS transistor and the load-line method in saturation, the complete expression
                                 for the o
                                    
                                utput voltage as a function of the input voltage may be found analytically. The corresponding calculation results in[image: $$ \begin{array}{lll}\hfill 0\le {\upsilon}_{\mathrm{IN}}\le {V}_{\mathrm{Th}}\hfill & \hfill {\upsilon}_{\mathrm{OUT}}={V}_{\mathrm{D}\mathrm{D}}\hfill & \hfill \mathrm{cutoff}\hfill \\ {}\hfill {V}_{\mathrm{Th}}<{\upsilon}_{\mathrm{IN}}\le \left(1+s\right){V}_{\mathrm{Th}}\hfill & \hfill {\upsilon}_{\mathrm{OUT}}={V}_{\mathrm{D}\mathrm{D}}-\frac{k_n}{2}{R}_D{\left({\upsilon}_{\mathrm{IN}}-{V}_{\mathrm{Th}}\right)}^2\hfill & \hfill \mathrm{saturation}\hfill \\ {}\hfill {\upsilon}_{\mathrm{IN}}>\left(1+s\right){V}_{\mathrm{Th}}\hfill & \hfill {\upsilon}_{\mathrm{OUT}}\approx \min \left(\left(1+s\right){V}_{\mathrm{Th}}\kern0.5em ,\kern1em \frac{r_{\mathrm{D}\mathrm{S}}}{r_{\mathrm{D}\mathrm{S}}+{R}_{\mathrm{D}}}{V}_{\mathrm{D}\mathrm{D}}\right)<<{V}_{\mathrm{D}\mathrm{D}}\hfill & \hfill \mathrm{triode}\hfill \end{array} $$]

 (18.31)

In Eq. (18.31), the gate-source voltage υ
                                GS has been replaced with the input voltage υ
                                IN and the drain-source voltage υ
                                DS has been replaced with the output voltage υ
                                OUT. Equation (18.31) clearly indicates the usefulness of the saturation region: otherwise the output voltage would either not change at all (cutoff) or change very little (triode, r
                                DS is typically ~1 Ω and is much less than R
                                DS). The dimensionless parameter s characterizes the width of the saturation region as a fraction of V
                                Th; it is found by solving the quadratic equation for υ
                                IN at the border of the saturation and triode regions, when [image: $$ {\upsilon}_{\mathrm{OUT}}={\upsilon}_{\mathrm{IN}}-{V}_{\mathrm{Th}} $$]. Its value involves both the circuit parameters and
                                 the transistor parameters, i.e.,[image: $$ s=\frac{\sqrt{1+2{k}_n{R}_{\mathrm{D}}{V}_{\mathrm{D}\mathrm{D}}}-1}{k_n{R}_{\mathrm{D}}{V}_{\mathrm{Th}}} $$]

 (18.32)


                            
Exercise 18.14

                                    Determine
                                        
                                     parameter s and the width of the saturation region (amplifier operating region) for the amplifier circuit built with the general-purpose 2N7000 NMOS transistor, which has the lumped process parameter [image: $$ {k}_n=90\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and the threshold voltage of 2.0 V. The source voltage is [image: $$ {V}_{\mathrm{DD}}=10\kern0.5em \mathrm{V} $$] and [image: $$ {R}_{\mathrm{D}}=1.2\kern0.5em \mathrm{k}\Omega $$].

                                    Answer: [image: $$ s=0.211 $$]; the saturation (operating) region extends from 2 V to 2.42 V. Thus, the operating region is quite narrow.

Plotting Eq. (18.31) yields the voltage transfer characteristic for the MOSFET common-source amplifier. To be specific, we consider the parameters from Exercise 18.14 where Fig. 18.28a shows the corresponding voltage transfer characteristic.[image: A331468_1_En_18_Fig28_HTML.gif]
Fig. 18.28Voltage transfer characteristic of the MOSFET common-source amplifier (a) and the amplification principle (b). The output sinusoidal signal indicates no distortion, which is a simplification. Circuit parameters are those from Exercise 18.14
                                            




                            

18.4.3 Principle of Operation and Q-Point
                                    
                                
                            
The input voltage in Fig. 18.27 is a combination of a certain DC voltage plus (typically relatively small) an input AC signal to be amplified. Then, the output voltage will be a combination of a particular DC voltage plus an amplified replica of the AC signal; see Fig. 18.28b. This is the amplifier concept. Mathematically, the separation of large DC and small AC quantities is done in the form (lowercase indexes are used for small AC signals):[image: $$ \begin{array}{lll}\hfill \kern.7em {\upsilon}_{\mathrm{IN}}(t)={V}_{\mathrm{IN}}+{\upsilon}_{\mathrm{in}}(t)\hfill & \hfill \hfill & \hfill {\upsilon}_{\mathrm{GS}}(t)={V}_{\mathrm{GS}}+{\upsilon}_{\mathrm{gs}}(t)\hfill \\ {}\hfill {\upsilon}_{\mathrm{OUT}}(t)={V}_{\mathrm{OUT}}+{\upsilon}_{\mathrm{out}}(t)\hfill & \hfill \mathrm{or}\ \left(\mathrm{equivalently}\right)\hfill & \hfill {\upsilon}_{\mathrm{D}\mathrm{S}}(t)={V}_{\mathrm{D}\mathrm{S}}+{\upsilon}_{\mathrm{d}\mathrm{s}}(t)\hfill \\ {}\hfill \kern1.15em {i}_{\mathrm{D}}(t)={I}_{\mathrm{D}}+{i}_{\mathrm{d}}(t)\hfill & \hfill \hfill & \hfill \kern.6em {i}_{\mathrm{D}}(t)={I}_{\mathrm{D}}+{i}_{\mathrm{d}}(t)\hfill \end{array} $$]

 (18.33)

The DC parameters in Eq. (18.33) correspond to the point Q in Fig. 18.28, which is known as the DC operating point or the quiescent 
                  point
                  
                 of the NMOS transistor amplifier. Sometimes, the index Q is introduced to underscore this fact. We will not introduce this
                                    
                                 index assuming that the DC parameters already correspond to the desired operating point (i.e., are the quiescent-point parameters). The quiescent-point parameters may denote the corresponding DC bias sources, for example, [image: $$ {V}_{\mathrm{IN}}={V}_{\mathrm{GS}} $$]. The equations in (18.33) are applicable to all MOSFET small-signal amplifier models. The DC parameters must satisfy the large-signal DC circuit model separately, that is,[image: $$ {V}_{\mathrm{OUT}}={V}_{\mathrm{D}\mathrm{D}}-\frac{k_n}{2}{R}_{\mathrm{D}}{\left({V}_{\mathrm{IN}}-{V}_{\mathrm{Th}}\right)}^2 $$]

 (18.34)


                            

18.4.4 MOSFET Biasing for Amplifier Operation
In order to use the MOSFET as an amplifier, it is necessary to bias the output to a point Q in the saturation region where the transfer characteristic is fairly linear while at the same time providing enough dynamic range for the output voltage to swing in both a positive and negative direction. In the case of Fig. 18.28, this point has been chosen to be[image: $$ {V}_{\mathrm{Th}}=2\kern0.5em \mathrm{V}<{V}_{\mathrm{IN}}=2.3\kern0.5em \mathrm{V}<\left(1+s\right){V}_{\mathrm{Th}}=2.42\kern0.5em \mathrm{V} $$]

 (18.35)

to establish [image: $$ {V}_{\mathrm{OUT}}=5.14\kern0.5em \mathrm{V} $$] according to Eq. (18.34). This way, a small variation in V
                                IN will cause a large variation in V
                                
                  OUT
                , realizing the desired amplification; see Fig. 18.28. The amount of amplification or the 
                  open-circuit small-signal voltage gain
                  
                 A
                                
                                    υ0 is simply the slope of the voltage transfer characteristic at this point, approximately −30 V/V in Fig. 18.28. The negative sign indicates that the output voltage swing will be inverted with respect to the input.

18.4.5 Small-Signal MOSFET Model and Superposition
Our goal is to solve the circuit in Fig. 18.27. In order to do so, we will introduce a small-signal MOSFET model. The concept of the linear expansion (18.33) allows us to split the large-signal MOSFET model used previously and depicted in Fig. 18.29a into two parts. Both of them are shown in Fig. 18.29b and c respectively. The DC solution is still described by the nonlinear large-signal circuit model
                                    
                                . At the same time, the AC solution is described by a linear small-signal MOSFET model i
                                    
                                n Fig. 18.29c. In the small-signal model, the change in output current i
                                d is equal to a gain factor g
                                m multiplied by the change in input voltage υ
                                gs. The gain factor g
                                m is known as the 
                  small-signal MOSFET transconductance
                  
                . In the small-signal model, all constant DC bias sources are replaced by ground (the small-signal 
                  ground
                  
                 condition) since their voltages do not change with time; the AC signal is thus shorted out.[image: A331468_1_En_18_Fig29_HTML.gif]
Fig. 18.29Splitting the large-signal MOSFET model into a large-signal DC model and a small-signal model. This consideration applies to the common-source amplifier and to other circuits




                            
According to Fig. 18.29, we solve the MOSFET amplifier circuit twice: the first time at DC using the large-signal DC model and the second time at AC using the small-signal model. The DC solution will provide the necessary information for the AC solution. The complete solution is found as the sum of the DC and AC solutions, respectively. In other words, the 
                  superposition principle
                  
                  
                 applies. This is a remarkable fact given that the DC model is inherently nonlinear.

18.4.6 MOSFET Transconductance
                                    
                                
                            
In order to use the small-signal model, a value for the transconductance g
                                m must be determined. This can be found by plotting the drain current i
                                D as a function of the gate-to-source voltage υ
                                GS and finding the slope of this characteristic at the bias point. Mathematically, we can use the Taylor series about the selected DC point. Substitution of the expansions [image: $$ {\upsilon}_{\mathrm{GS}}={V}_{\mathrm{GS}}+{\upsilon}_{\mathrm{gs}},\kern0.5em {i}_{\mathrm{D}}={I}_{\mathrm{D}}+{i}_{\mathrm{d}} $$] into the saturation equation [image: $$ {i}_{\mathrm{D}}=\frac{k_n}{2}{\left({\upsilon}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)}^2 $$] and the corresponding linearization yields[image: $$ {I}_{\mathrm{D}}+{i}_{\mathrm{d}}=\frac{k_n}{2}{\left({V}_{\mathrm{GS}}+{\upsilon}_{\mathrm{gs}}-{V}_{\mathrm{Th}}\right)}^2=\frac{k_n}{2}{\left({V}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)}^2+{k}_n\left({V}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right){\upsilon}_{\mathrm{gs}}+\underset{\mathrm{neglected}}{\underbrace{\frac{k_n}{2}{\upsilon}_{\mathrm{gs}}^2}} $$]

 (18.36)

Therefore, in the general case,[image: $$ {g}_{\mathrm{m}}={k}_n\left({V}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)\kern1em \left[\mathrm{A}/\mathrm{V}\right] $$]

 (18.37a)

or, in a practical circuit to the common-source amplifier with the bias point V
                                IN, V
                                OUT,[image: $$ {g}_{\mathrm{m}}={k}_n\left({V}_{\mathrm{IN}}-{V}_{\mathrm{Th}}\right)\kern1em \left[\mathrm{A}/\mathrm{V}\right] $$]

 (18.37b)

The transconductance can also be expressed conveniently as a function of the drain current bias:[image: $$ {g}_m=\sqrt{2{k}_n{I}_D}\kern1em \left[\mathrm{A}/\mathrm{V}\right] $$]

 (18.37c)


                            
Exercise 18.15
Determine transconductance g
                                    m for the common-source amplifier circuit with the 
                                        
                                    general-purpose 2N7000 NMOS transistor, which has [image: $$ {k}_n=90\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$], the threshold voltage of 2.0 V, and the Q-point at [image: $$ {V}_{\mathrm{IN}}=2.3\kern0.5em \mathrm{V} $$].

                                    Answer: [image: $$ {g}_{\mathrm{m}}=27\kern0.5em \mathrm{m}\mathrm{A}/\mathrm{V} $$].


18.4.7 Analysis of Common-Source MOSFET Amplifier
We apply the formalism of the combined large-signal/small-signal
                                    
                                 MOSFET model to study and quantify the complete common-source amplifier configuration shown in Fig. 18.30a.[image: A331468_1_En_18_Fig30_HTML.gif]
Fig. 18.30Common-source amplifier circuit and its two equivalent circuit models




                            
This configuration includes a (small) input AC source υ
                                in(t) and a DC bias source [image: $$ {V}_{\mathrm{GS}}={V}_{\mathrm{IN}} $$] at the input and an amplified AC voltage υ
                                out(t) and a DC bias voltage [image: $$ {V}_{\mathrm{DS}}={V}_{\mathrm{OUT}} $$] at the output. The general procedure is as follows. First, we solve the large-signal DC model of the circuit in Fig. 18.30b with the small-signal sources set to zero, i.e., we find the 
                  DC bias solution
                  
                  
                . Substitutions [image: $$ {V}_{\mathrm{IN}}\leftrightarrow {V}_{\mathrm{GS}} $$] and [image: $$ {V}_{\mathrm{DS}}\leftrightarrow {V}_{\mathrm{OUT}} $$] can be used at any time to make the model fully compatible with the previous treatment. This solution gives us the output DC voltage V
                                DS, the DC drain current I
                                D, and the small-signal MOSFET transconductance
                                 g
                                m; see Eqs. (18.37c). Once g
                                m is known, we may apply the small-signal MOSFET model in Fig. 18.30c and find the major amplifier parameters of interest, the 
                  open-circuit small-signal voltage gain
                  
                 A
                                
                                    υ0 defined by[image: $$ {A}_{\upsilon 0} \equiv {\left.\frac{\upsilon_{\mathrm{out}}}{\upsilon_{\mathrm{in}}}\right|}_{R_{\mathrm{L}}=\infty } $$]

 (18.38)

where R
                                L is a load resistance to be connected (in general) to the amplifier’s output. Note the small-signal ground in Fig. 20.30c. The voltage of a constant DC source does not change with time. Therefore, this source plays the role of a ground for an AC signal, similar to the physical ground offset by a specific constant voltage. Note that most of the steps for the amplifier design procedure have already been outlined in the preceding section. Also note that a capacitively coupled output voltage may be employed to eliminate the DC voltage bias at the output.
Example 18.10
In a common-source MOSFET amplifier in Fig. 18.30a, [image: $$ {\upsilon}_{\mathrm{in}}(t)=0.1 \cos \left(\omega \kern0.1em t\right)\kern0.5em \left[\mathrm{V}\right] $$]. The general-purpose 2N7000 NMOS transistor is used, with [image: $$ {k}_n=90\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and [image: $$ {V}_{\mathrm{Th}}=2\kern0.5em \mathrm{V} $$]. Furthermore, [image: $$ {V}_{\mathrm{DD}}=10\kern0.5em \mathrm{V} $$] and [image: $$ {R}_{\mathrm{D}}=1.2\kern0.5em \mathrm{k}\Omega $$]. Design the amplifier by performing the following steps:	1.Solve the large-signal DC circuit model in Fig. 18.30b and determine V
                                                    GS (and the corresponding V
                                                    DS) which assures that the Q-point (the DC operating point) is in saturation region and there is enough dynamic range for the output voltage to swing in both a positive and negative direction. Determine the transistor’s transconductance.


 

	2.Solve the small-signal circuit model in Fig. 18.30c and determine the amplified AC voltage υ
                                                    out(t) and the open-circuit small-signal voltage gain A
                                                    
                                                        υ0 of the amplifier.


 

	3.Finally, plot the input and output voltages [image: $$ {\upsilon}_{\mathrm{IN}}(t)={V}_{\mathrm{GS}}+{\upsilon}_{\mathrm{in}}(t) $$], [image: $$ {\upsilon}_{\mathrm{OUT}}(t)={V}_{\mathrm{DS}}+{\upsilon}_{\mathrm{out}}(t) $$] of the amplifier to scale over two periods.


 




                                

                                    Solution (1): The saturation region
                                        
                                     is described by Eqs. (18.31) and (18.32). For the present DC circuit, the saturation region extends from [image: $$ {V}_{\mathrm{Th}}=2\kern0.5em \mathrm{V} $$] to [image: $$ \left(1+s\right){V}_{\mathrm{Th}}=2.42\kern0.5em \mathrm{V} $$]. We select [image: $$ {V}_{\mathrm{GS}}=2.3\kern0.5em \mathrm{V} $$] in order to assure that [image: $$ {V}_{\mathrm{D}\mathrm{S}}={V}_{\mathrm{D}\mathrm{D}}-\frac{k_n}{2}{R}_{\mathrm{D}}{\left({V}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)}^2=5.14\kern0.5em \mathrm{V} $$] is approximately in the middle of the power supply region. The small-signal transconductance is then given by [image: $$ {g}_{\mathrm{m}}={k}_n\left({V}_{\mathrm{GS}}-{V}_{\mathrm{Th}}\right)=27\kern0.5em \mathrm{m}\mathrm{A}/\mathrm{V} $$].

                                    Solution (2): The small-signal model
                                        
                                     in Fig. 18.30c yields[image: $$ {\upsilon}_{\mathrm{out}}(t)=0\kern0.5em \mathrm{V}-{g}_{\mathrm{m}}{R}_{\mathrm{D}}{\upsilon}_{\mathrm{in}}(t)=-3.24\kern0.5em \cos \left(\omega \kern0.1em t\right)\kern0.5em \left[\mathrm{V}\right] $$]

 (18.39)

Therefore, the open-circuit amplifier gain is given by (note the units)[image: $$ {A}_{\upsilon 0}=-{g}_{\mathrm{m}}{R}_{\mathrm{D}}=-32.4\kern0.5em \left[\mathrm{V}/\mathrm{V}\right] $$]

 (18.40)


                                    Solution (3): Input/output voltages
                                        
                                     of the amplifier circuit are finally given by[image: $$ \begin{array}{l}{\upsilon}_{\mathrm{IN}}(t)=2.3\kern0.5em +0.1 \cos \left(\omega \kern0.1em t\right)\kern0.5em \left[\mathrm{V}\right],\kern1em \\ {}{\upsilon}_{\mathrm{OUT}}(t)=5.14\kern0.5em -3.24 \cos \left(\omega \kern0.1em t\right)\kern0.5em \left[\mathrm{V}\right]\end{array} $$]

 (18.41)

They are plotted in Fig. 18.31. Note that Fig. 18.31 indicates no distortion of the output voltage. Such a distortion happens in reality for this particular circuit.[image: A331468_1_En_18_Fig31_HTML.gif]
Fig. 18.31Input and output voltages for the common-source amplifier from Example 18.10
                                                




                                



Summary

                	
                            MOSFET physical characteristics
                          

	
                                                        V
                                                        
                              Th
                            —threshold voltage (0.4–4 V for enhancement-mode n-channel MOSFET) [V]

                                                        [image: $$ {k}_n=\left(W/L\right){C}_{OX}{\upmu}_{ns} $$]—MOSFET transconductance par. (lumped process par.) [mA/V2]

	
                            MOSFET modeling
                          

	
                            NMOS test circuit and regions of operations (large-signal model)
                          

	
                            [image: A331468_1_En_18_Figz_HTML.gif]
                          
	Triode [image: $$ \left[{\upsilon}_{GS}>{V}_{Th},\;{\upsilon}_{DS}<{\upsilon}_{GS}-{V}_{Th}\right] $$]:

                            [image: $$ {i}_D={k}_n\left(\left({\upsilon}_{GS}-{V}_{Th}\right){\upsilon}_{DS}-\frac{1}{2}{\upsilon}_{DS}^2\right) $$]
                          
Saturation [image: $$ \left[{\upsilon}_{GS}>{V}_{Th},\;{\upsilon}_{DS}\ge {\upsilon}_{GS}-{V}_{Th}\right] $$]:

                            [image: $$ {i}_D=\frac{1}{2}{k}_n{\left({\upsilon}_{GS}-{V}_{Th}\right)}^2 $$]
                          
Cutoff [image: $$ \left[{\upsilon}_{GS}\le {V}_{Th}\right] $$]: [image: $$ {i}_D=0 $$]
                                                    

	
                            PMOS test circuit and regions of operations (large-signal model)
                          

	
                            [image: A331468_1_En_18_Figaa_HTML.gif]
                          
	Triode [image: $$ \left[{\upsilon}_{SG}>\left|{V}_{Th}\right|,\;{\upsilon}_{SD}<{\upsilon}_{SG}-\left|{V}_{Th}\right|\right] $$]:

                            [image: $$ {i}_D={k}_p\left(\left({\upsilon}_{SG}-\left|{V}_{Th}\right|\right){\upsilon}_{SD}-\frac{1}{2}{\upsilon}_{SD}^2\right) $$]
                          
Saturation [image: $$ \left[{\upsilon}_{SG}>\left|{V}_{Th}\right|,\;{\upsilon}_{SD}\ge {\upsilon}_{SG}-\left|{V}_{Th}\right|\right] $$]:

                            [image: $$ {i}_D=\frac{1}{2}{k}_p{\left({\upsilon}_{SG}-\left|{V}_{Th}\right|\right)}^2 $$]
                          
Cutoff [image: $$ \left[{\upsilon}_{SG}\le \left|{V}_{Th}\right|\right] $$]: [image: $$ {i}_D=0 $$]
                                                    

	
                            Resistor-switch model in triode region
                          

	
                            [image: A331468_1_En_18_Figab_HTML.gif]
                          
	NMOS: [image: $$ {i}_D=\frac{\upsilon_{DS}}{r_{DS}},\kern0.5em {r}_{DS}=\frac{1}{k_n\left({\upsilon}_{\mathrm{GS}}-{V}_{Th}\right)} $$]
                                                    
PMOS: [image: $$ {i}_D=\frac{\upsilon_{SD}}{r_{DS}},\kern0.5em {r}_{DS}=\frac{1}{k_p\left({\upsilon}_{SG}-\left|{V}_{Th}\right|\right)} $$]
                                                    

                                                        r
                                                        
                              DS
                             may be as small as 0.3–0.5 Ω for discrete (small-signal or power) MOSFETS

	
                            MOSFET circuits at DC
                          

	
                            CMOS Logic gates (two stable states correspond to triode and cutoff regions)
                          

	
                            NOT (inverter)
                          

	
                            [image: A331468_1_En_18_Figac_HTML.gif]
                          
	Most basic and most important digital circuit

                            [image: A331468_1_En_18_Figad_HTML.gif]
                          
For alternative drawing see Chap. 13
                                                    

	
                            NAND
                          

	
                            [image: A331468_1_En_18_Figae_HTML.gif]
                          
	
                            [image: A331468_1_En_18_Figaf_HTML.gif]
                          
For alternative drawing see Chap. 13
                                                    

	
                            NOR
                          

	
                            [image: A331468_1_En_18_Figag_HTML.gif]
                          
	
                            [image: A331468_1_En_18_Figah_HTML.gif]
                          
For alternative drawing see Chap. 13
                                                    

	
                            AND (OR is constructed similarly)
                          

	
                            [image: A331468_1_En_18_Figai_HTML.gif]
                          
	AND = NAND + NOT
OR = NOR + NOT

                            [image: A331468_1_En_18_Figaj_HTML.gif]
                          
For alternative drawing see Chap. 15
                                                    

	
                            Method of assumed states/Load line method
                          

	
                            [image: A331468_1_En_18_Figak_HTML.gif]
                          

	
                            Gate-bias circuit (all three regions are possible)
                          

	
                            [image: A331468_1_En_18_Figal_HTML.gif]
                          
	The load line: [image: $$ {i}_D=\left({V}_{DD}-{\upsilon}_{DS}\right)/{R}_{\mathrm{D}} $$]
                                                    
If [image: $$ {V}_{\mathrm{GS}}\le {V}_{Th} $$] then cutoff
If [image: $$ {V}_{DD}>\left(1+\frac{k_n{R}_D}{2}\right)\left({V}_{\mathrm{GS}}-{V}_{Th}\right) $$] then saturation
If [image: $$ {V}_{DD}\le \left(1+\frac{k_n{R}_D}{2}\right)\left({V}_{\mathrm{GS}}-{V}_{Th}\right) $$] then triode

	
                            Gate-bias circuit with voltage divider (all three regions are possible)
                          

	
                            [image: A331468_1_En_18_Figam_HTML.gif]
                          
	Eliminates the need in the second voltage supply (V
                                                        GS)
Equivalent to the previous circuit when

                                                        [image: $$ {V}_{GS}=\frac{R_2}{R_1+{R}_2}{V}_{DD} $$] or [image: $$ {R}_2=\frac{V_{GS}}{V_{DD}-{V}_{GS}}{R}_1 $$]
                                                    
May be used as a bias circuit for the amplifier or as a sensor switch when R
                                                        1 (or R
                                                        2) is variable and R
                                                        D is the load (light bulb, motor, etc.)

	
                            Diode-connected MOSFETS (current sources, always in saturation or cutoff)
                          

	
                            [image: A331468_1_En_18_Figan_HTML.gif]
                          
	
                            [image: $$ \begin{array}{ll}\mathrm{If}\kern0.5em {V}_{DD}\le {V}_{Th},\kern0.5em \mathrm{then}\kern0.5em {i}_D=0\hfill & \hfill \mathrm{NMOS}\hfill \\ {}\hfill \mathrm{If}\kern0.5em {V}_{DD}>{V}_{Th},\kern0.5em \mathrm{then}\kern0.5em {i}_D=\frac{1}{2}{k}_n{\left({V}_{DD}-{V}_{Th}\right)}^2\hfill & \hfill \mathrm{NMOS}\hfill \\ {}\hfill \mathrm{If}\kern0.5em {V}_{DD}\le \left|{V}_{Th}\right|,\kern0.5em \mathrm{then}\kern0.5em {i}_D=0\hfill & \hfill \mathrm{PMOS}\hfill \\ {}\hfill \mathrm{If}\kern0.5em {V}_{DD}>\left|{V}_{Th}\right|,\kern0.5em \mathrm{then}\kern0.5em {i}_D=\frac{1}{2}{k}_n{\left({V}_{DD}-{V}_{Th}\right)}^2\hfill & \hfill \mathrm{PMOS}\hfill \end{array} $$]
                          

	
                            Diode-connected MOSFET with resistance (always in saturation or cutoff)
                          

	
                            [image: A331468_1_En_18_Figao_HTML.gif]
                          
	If [image: $$ {V}_{DD}\le {V}_{Th} $$], then [image: $$ {i}_D=0 $$]
                                                    
If [image: $$ {V}_{DD}>{V}_{Th} $$], then [image: $$ {i}_D=\frac{V_{DD}-{V}_{Th}}{R_D}+\frac{1-\sqrt{1+2{k}_n{R}_D^2\left({V}_{DD}-{V}_{Th}\right)}}{k_n{R}_D^2} $$]
                                                    

                            Used to estimate threshold voltage:
                          
If R
                                                        
                              D
                             is sufficiently large (i
                                                        
                              D
                             is small) then [image: $$ {V}_{Th}\approx {\upsilon}_{GS} $$]
                                                    

	
                            MOSFET common-source amplifier
                          

	– Common-source amplifier = small-signal voltage amplifier
– Common-source amplifier is similar to the BJT common-emitter amplifier
– In a MOSFET amplifier, the input resistance can be made infinitely large (or kept finite if necessary)
– An analog of the BJT emitter follower is the MOSFET source follower

	
                            Voltage transfer function and
                            Q
                            -point
                          

	
                            [image: A331468_1_En_18_Figap_HTML.gif]
                          
	
                            [image: A331468_1_En_18_Figaq_HTML.gif]
                          

	
                            [image: $$ \begin{array}{lll}0\le {\upsilon}_{IN}\le {V}_{Th}\hfill & {\upsilon}_{OUT}={V}_{DD}\hfill & \mathrm{cutoff}\kern0.5em \left(\mathrm{small}\kern0.5em {\upsilon}_{IN},\kern0.5em \mathrm{not}\kern0.5em \mathrm{used}\right)\hfill \\ {}{V}_{Th}<{\upsilon}_{IN}\le \left(1+s\right){V}_{Th}\hfill & {\upsilon}_{OUT}={V}_{DD}-\frac{k_n}{2}{R}_D{\left({\upsilon}_{IN}-{V}_{Th}\right)}^2\hfill & \boldsymbol{saturation}\kern0.5em \left({\upsilon}_{IN}\ge {V}_{Th}\right)\hfill \\ {}{\upsilon}_{IN}>\left(1+s\right){V}_{Th}\hfill & {\upsilon}_{OUT}<<{V}_{DD}\hfill & \mathrm{triode}\kern0.5em \left({\upsilon}_{IN}>>{V}_{Th},\kern0.5em \mathrm{not}\kern0.5em \mathrm{used}\right)\hfill \end{array} $$]
                          

                            [image: $$  s=\frac{\sqrt{1+2{k}_n{R}_D{V}_{DD}}-1}{k_n{R}_D{V}_{\mathrm{th}}}>0,{V}_{GS}\approx {V}_{Th}+\sqrt{\frac{V_{DD}}{k_n{R}_D}},\kern1em {V}_{DS}\approx \frac{1}{2}{V}_{DD} $$]
                          

	
                            Amplifier circuit analysis, transconductance, and open-circuit small-signal gain
                          

	
                            [image: A331468_1_En_18_Figar_HTML.gif]
                          

	
                            [image: A331468_1_En_18_Figas_HTML.gif]
                          
	Transconductance: [image: $$ {g}_m={k}_n\left({V}_{GS}-{V}_{Th}\right)\kern0.5em \left[\mathrm{A}/\mathrm{V}\right] $$]
                                                    
Small-signal gain: [image: $$ {A}_{\upsilon 0}=-{g}_m{R}_D\kern0.5em \left[\mathrm{V}/\mathrm{V}\right] $$]
                                                    
Input resistance: [image: $$ {R}_{in}=\infty \kern0.5em \left[\Omega \right] $$]
                                                    
Output resistance: [image: $$ {R}_{out}={R}_D\kern0.5em \left[\Omega \right] $$]
                                                    
Small-signal output: [image: $$ {\upsilon}_{out}(t)=-{A}_{0\upsilon }{\upsilon}_{in}(t) $$]
                                                    
Input with DC bias: [image: $$ {\upsilon}_{IN}(t)={V}_{GS}+{\upsilon}_{in}(t) $$]
                                                    
Output with DC bias: [image: $$ {\upsilon}_{OUT}(t)={V}_{DS}-{A}_{0\upsilon }{\upsilon}_{in}(t) $$]
                                                    




              

Problems
18.1 Principle of Operation and Threshold Voltage

                  18.1.1 Physical Structure: Terminal Voltages and Currents
                

                  18.1.2 Simplified Principle of Operation
                
Problem 18.1
What do the abbreviations FET, MOSFET, and CMOS stand for?

Problem 18.2
Draw circuit symbols of:	A.Four-terminal symmetric NMOS transistor


 

	B.Three-terminal asymmetric NMOS transistor with the body tied to the source and


 

	C.The same but simplified symbol


 




                                    
For B and C, label transistor currents and transistor voltages.

Problem 18.3
Repeat the previous problem for the PMOS transistor.

Problem 18.4
An NMOS transistor has	A.The gate-drain voltage of −2 V and gate-source voltage of 1 V


 

	B.The source current of 1 mA


 




                                    
What is the drain-source voltage? What is the drain current?

Problem 18.5
Repeat the previous problem for the PMOS transistor.


                  18.1.3 NMOS Capacitor
                

                  18.1.4 Voltage Across the Oxide Layer
                

                  18.1.5 Voltage Across the Semiconductor Body
                

                  18.1.6 Threshold Voltage
                

                  18.1.7 PMOS Transistor
                

                  18.1.8 Oxide Thicknesses and Capacitances in CMOS Processes
                
Problem 18.6
Given the semiconductor surface potential [image: $$ {\phi}_{\mathrm{S}}=2\kern0.5em \mathrm{V} $$] and the uniform acceptor concentration [image: $$ 5\times {10}^{16}\kern0.5em {\mathrm{cm}}^{-3} $$] for the p-body of the NMOS transistor, estimate the voltage across the SiO2 oxide layer with the thickness of 10 nm. The NMOS body is Si.

Problem 18.7
Repeat the previous problem when the NMOS body is GaAs and the insulating layer is Al2O3.
                                    

Problem 18.8
Estimate surface voltage of the semiconductor body at the onset of strong channel inversion at room temperature of 25 °C given [image: $$ {N}_{\mathrm{A}}=5\times {10}^{17}\kern0.5em {\mathrm{cm}}^{-3} $$]. The NMOS body is Si.

Problem 18.9
Repeat the previous problem when the body material is GaAs.

Problem 18.10
Estimate threshold voltage V
                                        Th for a Si NMOS transistor with n+ polysilicon gate, [image: $$ {N}_{\mathrm{A}}=2\times {10}^{16}\kern0.5em {\mathrm{cm}}^{-3} $$], and the SiO2 oxide layer with the thickness of 20 nm at room temperature of 25 °C.

Problem 18.11
Repeat the previous problem for an aluminum gate.

Problem 18.12
Repeat Problem 18.10 for the PMOS transistor with the n-doped body of the same doping concentration.

Problem 18.13
Estimate threshold voltage V
                                        Th for Si NMOS transistors used in analog ICs and fabricated in four CMOS processes listed in Table 18.1. Every transistor has the n+ polysilicon gate and the SiO2 oxide layer. The corresponding doping concentrations are [image: $$ {N}_{\mathrm{A}}=\left[3.5,\kern0.5em 4.5,\kern0.5em 7.5,\kern0.5em 10.5\right]\times {10}^{16}\kern0.5em {\mathrm{cm}}^{-3} $$].
Keep at least two significant digits. Compare your solutions with the typical values reported elsewhere: [image: $$ {V}_{\mathrm{Th}}=\left[0.7,0.5,\kern0.5em 0.5,\kern0.5em 0.4\right]\kern0.5em \mathrm{V} $$]. Assume room temperature of 25 °C.


18.2 Theoretical Model of a MOSFET

                  18.2.1 Test Circuit and Operating Regions
                

                  18.2.2 Linear Subregion of Triode region at Strong Inversion
                
Problem 18.14

                    	A.Draw the schematic test circuit for the NMOS transistor. Label transistor terminals. When the gate-source bias voltage is 0 V, which region of operation is encountered?


 

	B.Repeat the same tasks for the PMOS transistor.


 




                  

Problem 18.15
Determine the total charge (show units) stored in the inversion layer of the MOSFET transistor with L = 0.8 μm, W = 16 μm, [image: $$ {C}_{\mathrm{OX}}=2.3\kern0.5em \mathrm{f}\mathrm{F}/\upmu {\mathrm{m}}^2 $$]. The overdrive voltage is 2 V; the drain-source voltage is 0 V. How many electrons are stored in the inversion layer?

Problem 18.16
For a CMOS process of MOSFET fabrication, L = 0.8 μm, and W = 16 μm. Furthermore, the electron surface mobility is [image: $$ {\mu}_n=550\ {\mathrm{cm}}^2/\mathrm{V}\cdot \mathrm{s} $$] and the oxide capacitance is [image: $$ {C}_{\mathrm{OX}}=2.3\kern0.5em \mathrm{f}\mathrm{F}/\upmu {\mathrm{m}}^2 $$]. Determine the MOSFET transconductance parameter and show units.

Problem 18.17
An NMOS transistor in the linear subregion of the triode region operates at [image: $$ {\upsilon}_{\mathrm{OV}}=4\kern0.5em \mathrm{V} $$]. Given [image: $$ {r}_{\mathrm{DS}}=100\kern0.5em \Omega $$] determine the lumped process parameter k
                                        
                        n
                      ′ and show units.

Problem 18.18

                    	A.Determine the MOSFET transconductance parameter (show units) for NMOS transistors used in analog ICs and fabricated in four CMOS processes listed in Table 18.5. Use the given channel length and the channel width ten times greater than the length.


 

	B.Determine turn-on resistances r
                                                        DS in every case given that the overdrive voltage is equal to the threshold voltage.


 




                  

Problem 18.19
Repeat the previous problem for the PMOS transistor with parameters listed in Table 18.5. The corresponding resistance is given by [image: $$ {r}_{\mathrm{DS}}=\frac{1}{k_{\mathrm{p}}\left({\upsilon}_{\mathrm{SG}}-\left|{V}_{\mathrm{Th}}\right|\right)} $$], [image: $$ {\upsilon}_{\mathrm{OV}}={\upsilon}_{\mathrm{SG}}-\left|{V}_{\mathrm{Th}}\right| $$].


                  18.2.3 Nonlinear Subregion of Triode Region at Strong Inversion
                

                  18.2.4 Saturation Region
                
Problem 18.20
To avoid complications caused by a nonlinear channel voltage and inversion charge behavior, it is suggested to simplify Eq. (18.18). Namely, the inversion layer of the MOSFET at nonzero drain-source voltages would be described by a straightforward linear voltage dependence [image: $$ {\upsilon}_{\mathrm{GS}}(x)={\upsilon}_{\mathrm{GS}}-\frac{x}{L}{\upsilon}_{\mathrm{DS}} $$], [image: $$ x\in \left[0,\kern1em L\right] $$] present in some undergraduate texts. Do you see one critical contradiction of this model?

Problem 18.21
Plot variable gate-source voltage υ
                                        GS(X) to scale over the interval [image: $$ X=\frac{x}{L}\in \left[0,\kern1em 1\right] $$] given that [image: $$ {V}_{\mathrm{Th}}=1\kern0.5em \mathrm{V} $$], [image: $$ {V}_{\mathrm{OV}}=1\kern0.5em \mathrm{V} $$], and	A.
                            [image: $$ {\upsilon}_{\mathrm{DS}}=0.1{V}_{\mathrm{OV}}. $$]
                          


 

	B.
                            [image: $$ {\upsilon}_{\mathrm{DS}}=0.5{V}_{\mathrm{OV}}. $$]
                          


 

	C.
                            [image: $$ {\upsilon}_{\mathrm{DS}}=1.0{V}_{\mathrm{OV}}. $$]
                          


 




                                    
Use the vertical scale from 1 V to 2 V for every figure.

Problem 18.22
Repeat the previous problem for the normalized charge, Q
                                        INV(X)/Q
                                        INV(0), of the inversion layer.

Problem 18.23
Show that the solution for the channel voltage profile given by Eq. (18.18e) guarantees the condition of the constant current along the channel.

Problem 18.24
An NMOS transistor has [image: $$ {k}_n=2\ \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and [image: $$ {V}_{\mathrm{Th}}=0.7\ \mathrm{V} $$]. The gate-source voltage is 3 V.	A.At which value of υ
                                                        DS does the transistor enter the saturation?


 

	B.What value of i
                                                        D is obtained in saturation?


 




                                    

Problem 18.25
An NMOS transistor has (the 0.25-μm Si CMOS process) [image: $$ L=0.25\kern0.5em \upmu \mathrm{m} $$], [image: $$ {t}_{\mathrm{OX}}=\kern0.5em 6\kern0.5em \mathrm{nm} $$], [image: $$ {\mu}_n=460{\mathrm{cm}}^2/\left(\mathrm{V}\cdot \mathrm{s}\right) $$], and [image: $$ {V}_{\mathrm{Th}}=0.5\ \mathrm{V} $$]. Given [image: $$ W=10\kern0.5em \upmu \mathrm{m} $$] find υ
                                        GS, which assures the operation in the saturation region with the transistor current of 1 mA.


                  18.2.5 The
                  v-i
                  Dependencies
                

                  18.2.6 PMOS Transistor
                

                  18.2.7 Large-Signal MOSFET Model in Saturation
                
Problem 18.26
A n-channel power MOSFET has the following parameters: [image: $$ {V}_{\mathrm{Th}}=3\kern0.5em \mathrm{V} $$] and [image: $$ {k}_n=100\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$].	A.Plot the drain current for source-drain voltages from the interval [image: $$ {\upsilon}_{\mathrm{DS}}=\left[0 \hbox{--}  9\right]\kern0.5em \mathrm{V} $$] and at three values of the gate-source voltage, [image: $$ {\upsilon}_{\mathrm{GS}}=3,\kern0.5em 4,\kern0.5em \mathrm{and}\kern0.5em 5\kern0.5em \mathrm{V} $$] on the same figure.


 

	B.Plot the boundary between the triode region and the saturation region.[image: A331468_1_En_18_Fige_HTML.gif]


                                                    


 




                                    

Problem 18.27
Repeat the previous problem for [image: $$ {\upsilon}_{\mathrm{GS}}=6,\kern0.5em 7,\kern0.5em \mathrm{and}\kern0.5em 8\kern0.5em \mathrm{V} $$].[image: A331468_1_En_18_Figf_HTML.gif]


                                    

Problem 18.28

                    	A.Based on Table 18.3, construct the similar table for the power dissipated by an NMOS transistor.


 

	B.In the figure that follows, show graphically power dissipated by the transistor at two values of υ
                                                        DS: 2 V and 5 V.


 

	C.Which region, triode or saturation, leads to the smallest power dissipation?[image: A331468_1_En_18_Figg_HTML.gif]


                                                    


 




                  

Problem 18.29
A PMOS transistor has the following parameters: [image: $$ \left|{V}_{\mathrm{Th}}\right|=3\kern0.5em \mathrm{V} $$] and [image: $$ {k}_{\mathrm{p}}=100\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$].	A.Plot the drain current for source-drain voltages from the interval [image: $$ {\upsilon}_{\mathrm{SD}}=\left[0 \hbox{--}  9\right]\kern0.5em \mathrm{V} $$] and at three values of the gate-source voltage [image: $$ {\upsilon}_{\mathrm{GS}}=4,\kern0.5em 5,\kern0.5em \mathrm{and}\kern0.5em 6\kern0.5em \mathrm{V} $$] on the same figure.


 

	B.Plot the boundary between the triode region and the saturation region.[image: A331468_1_En_18_Figh_HTML.gif]


                                                    


 




                                    

Problem 18.30
For the circuit shown in the figure that follows, determine the region of MOSFET operation as well as the drain current i
                                        D for each set of conditions given. Assume [image: $$ {k}_n=100\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and [image: $$ {V}_{\mathrm{Th}}=3\kern0.5em \mathrm{V} $$]
                                        	A.
                            [image: $$ {\upsilon}_{\mathrm{GS}}=-3\kern0.5em \mathrm{V},\ {\upsilon}_{\mathrm{DS}}=3\kern0.5em \mathrm{V}. $$]
                          


 

	B.
                            [image: $$ {\upsilon}_{\mathrm{GS}}=10\kern0.5em \mathrm{V},\ {\upsilon}_{\mathrm{DS}}=8\kern0.5em \mathrm{V}. $$]
                          


 

	C.
                            [image: $$ {\upsilon}_{GS}=5\kern0.5em \mathrm{V},\ {\upsilon}_{DS}=1\kern0.5em \mathrm{V}. $$]
                            [image: A331468_1_En_18_Figi_HTML.gif]


                          


 




                                    

Problem 18.31
For the circuit shown in the figure that follows, determine the region of MOSFET operation as well as the drain current i
                                        D for each set of conditions given. Assume [image: $$ {k}_{\mathrm{p}}=100\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and [image: $$ {V}_{\mathrm{Th}}=-2\kern0.5em \mathrm{V} $$].	A.
                            [image: $$ {\upsilon}_{\mathrm{GS}}=-3\kern0.5em \mathrm{V},\ {\upsilon}_{\mathrm{DS}}=-5\kern0.5em \mathrm{V}. $$]
                          


 

	B.
                            [image: $$ {\upsilon}_{\mathrm{GS}}=10\kern0.5em \mathrm{V},\ {\upsilon}_{\mathrm{DS}}=-8\kern0.5em \mathrm{V}. $$]
                          


 

	C.
                            [image: $$ {\upsilon}_{\mathrm{GS}}=-5\kern0.5em \mathrm{V},\ {\upsilon}_{\mathrm{DS}}=-1\kern0.5em \mathrm{V}. $$]
                            [image: A331468_1_En_18_Figj_HTML.gif]


                          


 




                                    


18.3 MOSFET Switching and Bias Circuits

                  18.3.1 Triode Region for Switching Circuits. Device Parameter Extraction
                

                  18.3.2 Resistor-Switch Model in Triode Region
                
Problem 18.32
A power MOSFET has the lumped process parameter [image: $$ {k}_n=130\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and the threshold voltage of 2.0 V.	A.Plot the drain current for drain-source voltages from the interval [image: $$ {\upsilon}_{\mathrm{DS}}=\left[0 \hbox{--}  9\right]\kern0.5em \mathrm{V} $$] to scale and determine MOSFET turn-on resistance
                                                         r
                                                        DS given the gate-source voltage of 5 V.


 

	B.Plot the boundary between the triode region and the saturation region and indicate the slope 1/r
                                                        DS in the figure.


 

	C.Plot r
                                                        DS as a function of υ
                                                        GS to scale.[image: A331468_1_En_18_Figk_HTML.gif]


                                                    


 




                                    

Problem 18.33
Repeat the previous problem when the threshold voltage changes to 3 V.

Problem 18.34
A measurement curve for a certain NMOS transistor is shown in the figure below. Approximately determine the threshold voltage V
                                        Th and the (MOSFET) lumped process parameter k
                                        
                      n
                     (show units).[image: A331468_1_En_18_Figl_HTML.gif]


                                    

Problem 18.35
Repeat the previous problem for the measurement curve shown in the figure that follows.[image: A331468_1_En_18_Figm_HTML.gif]


                                    

Problem 18.36
The datasheet for an IRF510 enhanced-mode n-channel power MOSFET from Fairchild reports the average drain-source on-state resistance [image: $$ {r}_{\mathrm{D}\mathrm{S}}={\upsilon}_{\mathrm{D}\mathrm{S}}/{i}_{\mathrm{D}}=0.4\kern0.5em \Omega $$] for [image: $$ {i}_{\mathrm{D}}=3.4\;\mathrm{A} $$] and [image: $$ {\upsilon}_{\mathrm{GS}}=10\;\mathrm{V} $$]. Assuming threshold voltage to be 2.0 V, sketch r
                                        DS as a function of υ
                                        GS to scale.[image: A331468_1_En_18_Fign_HTML.gif]


                                    


                  18.3.3 Application Example: Output Resistance of Digital Logic Gates
                
Problem 18.37
For a logic gate shown in the figure that follows, construct the truth table in the form of Table 18.7 and determine the output gate resistance for every input voltage combination. Assume [image: $$ {V}_{\mathrm{DD}}>{V}_{\mathrm{Th}} $$] for the NMOS transistor and [image: $$ {V}_{\mathrm{DD}}>\left|{V}_{\mathrm{Th}}\right| $$] for the PMOS transistor. Label turn-on resistances of M
                                        1,2,3,4 as r
                                        DS1,2,3,4.[image: A331468_1_En_18_Figo_HTML.gif]


                                    

Problem 18.38
For a logic gate shown in the figure that follows, construct the truth table in the form of Table 18.7 and determine the output gate resistance for every input voltage combination. Assume [image: $$ {V}_{\mathrm{DD}}>{V}_{\mathrm{Th}} $$] for the NMOS transistor and [image: $$ {V}_{\mathrm{DD}}>\left|{V}_{\mathrm{Th}}\right| $$] for the PMOS transistor. Label turn-on resistances of M
                                        1,2,3,4,5,6 as r
                                        DS1,2,3,4,5,6.[image: A331468_1_En_18_Figp_HTML.gif]


                                    


                  18.3.4 MOSFET Circuit Analysis at DC
                

                  18.3.5 Application Example: Basic MOSFET Actuator
                
Problem 18.39
In a fixed-gate NMOS transistor circuit, the NMOS transistor has the lumped process parameter [image: $$ {k}_n=1.0\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and the threshold voltage of 1.0 V. Furthermore, [image: $$ {V}_{\mathrm{GS}}=7\kern0.5em \mathrm{V} $$], [image: $$ {V}_{\mathrm{DD}}=10\kern0.5em \mathrm{V} $$], and [image: $$ {R}_{\mathrm{D}}=1\kern0.5em \mathrm{k}\Omega $$]. The corresponding υ
                                        DS – i
                                        D curve is shown in the figure that follows.	A.Draw the load line in the same figure and find the solution for the drain-source voltage υ
                                                        DS and drain current i
                                                        D.


 

	B.Solve the same problem exactly and compare the two answers.[image: A331468_1_En_18_Figq_HTML.gif]


                                                        [image: A331468_1_En_18_Figr_HTML.gif]


                                                    


 




                                    

Problem 18.40
In a fixed-gate NMOS transistor circuit shown in the figure that follows, the NMOS transistor has the lumped process parameter [image: $$ {k}_n=1.0\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and the threshold voltage of 1.0 V. Furthermore, [image: $$ {V}_{\mathrm{DD}}=15\kern0.5em \mathrm{V} $$], and [image: $$ {R}_{\mathrm{D}}=1\kern0.5em \mathrm{k}\Omega $$]. Determine the region of operation of the transistor and find the solution for the drain-source voltage υ
                                        DS and drain current i
                                        D when	A.
                            [image: $$ {V}_{\mathrm{GS}}=1\kern0.5em \mathrm{V}. $$]
                          


 

	B.
                            [image: $$ {V}_{\mathrm{GS}}=3\kern0.5em \mathrm{V}. $$]
                          


 

	C.
                            [image: $$ {V}_{\mathrm{GS}}=5\kern0.5em \mathrm{V}. $$]
                          


 

	D.
                            [image: $$ {V}_{\mathrm{GS}}=7\kern0.5em \mathrm{V}. $$]
                          


 




                                        [image: A331468_1_En_18_Figs_HTML.gif]


                                    

Problem 18.41
A solution for an unknown fixed-gate circuit shown in the previous problem is given in the figure that follows. Restore the transistor and circuit parameters (show units):	A.
                            [image: $$ {V}_{\mathrm{DD}} $$]
                          


 

	B.
                            [image: $$ {V}_{\mathrm{GS}}-{V}_{\mathrm{Th}} $$]
                          


 

	C.
                            [image: $$ {R}_{\mathrm{D}} $$]
                          


 

	D.
                            [image: $$ {k}_n $$]
                          


 




                                        [image: A331468_1_En_18_Figt_HTML.gif]


                                    

Problem 18.42
In the circuit shown in the figure that follows, the NMOS transistor has the lumped process parameter k
                                        
                      n
                     and the threshold voltage V
                                        Th. Derive the analytical expression for the drain current i
                                        D as a function of V
                                        DD valid for any values of V
                                        DD.[image: A331468_1_En_18_Figu_HTML.gif]


                                    

Problem 18.43
In the circuit shown in the figure that follows, the PMOS transistor has the lumped process parameter k
                                        p and the threshold voltage [image: $$ {V}_{\mathrm{Th}}<0 $$]. Derive the analytical expression for the drain current i
                                        D as a function of V
                                        DD valid for any values of V
                                        DD.[image: A331468_1_En_18_Figv_HTML.gif]


                                    

Problem 18.44
In the circuit shown in the figure that follows, the NMOS transistor has the lumped process parameter k
                                        
                      n
                     and the threshold voltage V
                                        Th. Derive an analytical expression for the drain current i
                                        D as a function of V
                                        DD and R
                                        D valid for any values of V
                                        DD, R
                                        D.[image: A331468_1_En_18_Figw_HTML.gif]


                                    

Problem 18.45
In the circuit shown in the figure to the previous problem, a sufficiently large resistance R
                                        D has been chosen so that the drain current is very small. Measured υ
                                        DS is 2.5 V. What is approximately the threshold voltage V
                                        Th of the transistor?

Problem 18.46
In a fixed-gate NMOS transistor circuit shown in the figure, the NMOS transistor has the lumped process parameter [image: $$ {k}_n=100\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and the threshold voltage of 2.0 V. Furthermore, [image: $$ {V}_{\mathrm{DD}}=20\kern0.5em \mathrm{V} $$], [image: $$ {R}_2=1\kern0.5em \mathrm{k}\Omega $$], and [image: $$ {R}_{\mathrm{D}}=40\kern0.5em \mathrm{k}\Omega $$]. Determine υ
                                        GS, the region of operation of the transistor, and the solution for the drain-source voltage υ
                                        DS and drain current i
                                        D when	A.
                            [image: $$ {R}_1=9\kern0.5em \mathrm{k}\Omega . $$]
                          


 

	B.
                            [image: $$ {R}_1=4\kern0.5em \mathrm{k}\Omega . $$]
                          


 

	C.
                            [image: $$ {R}_1=2.33\kern0.5em \mathrm{k}\Omega . $$]
                          


 

	D.
                            [image: $$ {R}_1=1.5\kern0.5em \mathrm{k}\Omega . $$]
                          


 




                                    
At which value of the resistance R
                                        1 is the load power (power into R
                                        D) maximized?
At which value of the resistance R
                                        1 is the MOSFET power loss minimized?[image: A331468_1_En_18_Figx_HTML.gif]


                                    

Problem 18.47
Repeat the previous problem when the lumped process parameter changes to 200 mA/V2
                                        .
                                    


18.4 MOSFET Amplifier

                  18.4.1 MOSFET Common-Source Amplifier
                

                  18.4.2 Voltage Transfer Characteristic
                

                  18.4.3 Principle of Operation and Q-point
                

                  18.4.4 MOSFET Biasing for Amplifier Operation
                
Problem 18.48
In the common-source amplifier circuit in Fig. 18.27, the MOSFET has the lumped process parameter [image: $$ {k}_n=100\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and the threshold voltage of 2 V. The source voltage is [image: $$ {V}_{\mathrm{DD}}=20\kern0.5em \mathrm{V} $$].	A.Identify all values of υ
                                                        IN corresponding to the saturation region when[image: $$ {R}_{\mathrm{D}}=1\kern0.5em \mathrm{k}\Omega . $$]



                                                        [image: $$ {R}_{\mathrm{D}}=500\kern0.5em \Omega . $$]



                                                        [image: $$ {R}_{\mathrm{D}}=100\kern0.5em \Omega . $$]



                                                    


 

	B.Identify the DC Q-point voltage V
                                                        IN within the saturation region corresponding to [image: $$ {V}_{\mathrm{OUT}}={V}_{\mathrm{DD}}/2 $$] when[image: $$ {R}_{\mathrm{D}}=1\kern0.5em \mathrm{k}\Omega . $$]



                                                        [image: $$ {R}_{\mathrm{D}}=500\kern0.5em \Omega . $$]



                                                        [image: $$ {R}_{\mathrm{D}}=100\kern0.5em \Omega . $$]



                                                    


 




                                    

Problem 18.49
Plot to scale the voltage transfer characteristic for the common-source amplifier circuit in Fig. 18.27 built with the general-purpose 2 N7000 NMOS transistor from Fairchild, which has the lumped process parameter [image: $$ {k}_n=90\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and the threshold voltage of 2.0 V. Indicate the saturation region. The source voltage is [image: $$ {V}_{\mathrm{DD}}=10\kern0.5em \mathrm{V} $$] and [image: $$ {R}_{\mathrm{D}}=90\kern0.5em \Omega $$]. Assume that the output voltage is constant in the triode region for simplicity.[image: A331468_1_En_18_Figy_HTML.gif]


                                    


                  18.4.5 Small-Signal MOSFET Model and Superposition
                

                  18.4.6 MOSFET Transconductance
                

                  18.4.7 Analysis of Common-Source MOSFET Amplifier
                
Problem 18.50
In a common-source MOSFET amplifier in Fig. 18.30a, the transistor has [image: $$ {k}_n=100\kern0.5em \mathrm{m}\mathrm{A}/{\mathrm{V}}^2 $$] and [image: $$ {V}_{\mathrm{Th}}=3\kern0.5em \mathrm{V} $$]. Furthermore, [image: $$ {V}_{\mathrm{DD}}=20\kern0.5em \mathrm{V} $$]. For	A.
                            [image: $$ {R}_{\mathrm{D}}=5\kern0.5em \mathrm{k}\Omega $$]
                          


 

	B.
                            [image: $$ {R}_{\mathrm{D}}=1\kern0.5em \mathrm{k}\Omega $$]
                          


 

	C.
                            [image: $$ {R}_{\mathrm{D}}=100\kern0.5em \Omega $$]
                          


 




                                    
design the amplifier by performing the following steps:	1.Identify all values of V
                                                        GS corresponding to the Q-point in the saturation region.


 

	2.Determine V
                                                        GS which assures that the Q-point (the DC operating point) is in saturation region and there is enough dynamic range for the output voltage to swing in both a positive and negative direction, i.e., [image: $$ {V}_{\mathrm{DS}}={V}_{\mathrm{DD}}/2 $$].


 

	3.Determine the transistor’s transconductance at the Q-point.


 

	4.Determine the open-circuit small-signal voltage gain A
                                                        
                                                            υ0 of the amplifier.


 




                                    

Problem 18.51

                    	A.Repeat the previous problem when [image: $$ {R}_{\mathrm{D}}=120\kern0.5em \Omega $$].


 

	B.Plot input and output voltages [image: $$ {\upsilon}_{\mathrm{IN}}(t)={V}_{\mathrm{GS}}+{\upsilon}_{\mathrm{in}}(t) $$], [image: $$ {\upsilon}_{\mathrm{OUT}}(t)={V}_{\mathrm{DS}}+{\upsilon}_{\mathrm{out}}(t) $$] to scale over two periods given that [image: $$ {\upsilon}_{in}(t)=0.1\kern0.5em \cos \left(\omega \kern0.1em t\right)\kern0.5em \left[\mathrm{V}\right] $$].


 




                  

Problem 18.52

                    	A.Repeat Problem 18.50 when [image: $$ {R}_{\mathrm{D}}=120\kern0.5em \Omega $$] and [image: $$ {V}_{\mathrm{DD}}=10\kern0.5em \mathrm{V} $$].


 

	B.Plot input and output voltages [image: $$ {\upsilon}_{\mathrm{IN}}(t)={V}_{\mathrm{GS}}+{\upsilon}_{\mathrm{in}}(t) $$], [image: $$ {\upsilon}_{\mathrm{OUT}}(t)={V}_{\mathrm{DS}}+{\upsilon}_{\mathrm{out}}(t) $$] to scale over two periods given that [image: $$ {\upsilon}_{\mathrm{in}}(t)=0.2\kern0.5em \cos \left(\omega \kern0.1em t\right)\kern0.5em \left[\mathrm{V}\right] $$].
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rectifiers and regulators
reverse-bias region
room temperature
Schottky diode
Shockley’s ideal-diode equation
shunt voltage regulator
switching diode
symbol
terminal voltage
thermal voltage
varactor diode
voltage reference circuit
voltage regulator
wave-shaping circuits
clamper and multiplier circuit operation
diode clamper circuit/DC restorer
diode voltage doubler and multiplier
positive, negative and double clipper
power electronics
transfer characteristics
Zener breakdown voltage
Zener diode

Electronic ignition system

Electronic switch

Electrostatic discharge (ESD)
ESDS device
ICs
prediction of

Electrostatics
conductor
Coulomb’s Law
electric charge
electric field
definition
laboratory power source
electric voltage
and electric potential

                vs
                . ground
              

Element’s polarity

Encapsulation

Energy spectral density

Energy stored in capacitance

Energy stored in inductance

Envelope detector circuit

Equipotential lines

Equipotential surface

Equivalent circuit element

Equivalent electric circuits

Equivalent electric networks

Equivalent resistance

Error signal

Essential mesh

Exciting current

Exponential diode model


F

Faraday’s law
current and inductance
dot convention
ideal open-circuited transformer
induction
primary winding
single lossless inductor
transformer analysis
transformer voltages

Fast Fourier transform (FFT)
digital signal processing
input sinusoidal signal
inverse Fourier transform
monotonic frequency data
numerical differentiation

Feedback factor

Feedback gain

Feedback loop

Fermi potential

Filter circuits
Bode plot
decibel (dB)
first-order filters
high-pass
low-pass
phase transfer function
roll-off

Filter termination

First-order high-pass filter

First-order low-pass filter

First summing-point constraint

Fixed resistors

Flash ADC
circuit
operation

Flash memory

Flat-band voltage

Fluid analogies
SeeHydraulic analogiesFor loop, 774–776

Forbidden state

Forced beta

Forced current gain

Forward current

Fourier transform
bandlimited
converting computational electromagnetic solution
definition
DFT
direct
Fourier spectrum
input pulse signal
inverse
mathematical properties
rectangular pulse
reversal property
sampling theorem
voltage/current signal

Four-resistor bias configuration

Four-terminal NMOS transistor
BJT
integrated circuits

Frequency band
bandwidth
bode plot
passband

Full H-bridge
DC motor
transistor switch

Full-scale output voltage range

Full-wave rectifier

Functions, Arduino language

Function header

Fundamental frequency


G

Gain tolerance, amplifier

Gauge factor (GF)

Gauss’ theorem

Generic solar cell
application
maximum power extraction
nonlinear circuits
solar panels

Ground reference

Ground-side switch


H

Half H-bridge
DC motor
motor functions
switching states, NMOS transistors

Half-power bandwidth

Half-power frequency
SeeFilter circuits

Half-wave rectifier
AC power supply, sinusoidal voltage
current-limiting resistor
diode rectifier
dual supply
electronic DC power supplies
ideal-diode rectifier
plot source and load voltage

                rectified voltage
                vs.
                source voltage
              

Hard limiter

Hardware description language (HDL)

Harmonic voltage and current
AC power supplies
AC voltage
angular frequency
benefit
complex exponent
definition, phasor
electric circuit
electrode
frequency, phase and amplitude
impedance
leading and lagging
AC signal
amplitude and phase
frequency
phase-shifted AC voltages
power electronics
zero-phase cosine
magnitude
impedance
human body
Maxwell’s theory
measurements
operations, phasors and phasor diagram
and parameters
phasors to real signals
polar and rectangular forms
real signals to phasors
resistance
signals
steady-state AC circuits
steady-state AC voltage
steady-state alternating current

Hexadecimal numbers

High-voltage side

Howland current source (Howland current pump)

Hydraulic analogies
AC circuits
DC steady state
semiconductor circuit components


I


                υ
                -
                i
                characteristics
              
circuit elements
current source
definition
c—plot
ideal (Shockley) diode
ideal diode
ideal switch
inverse slop
Ohm’s law
ohmic conductor
passive circuit elements
practical current source
practical voltage source
resistances 34–35
solid line
static resistance
transfer characteristic
two-terminal switch
voltage source

Ideal ammeter

Ideal-amplifier model

Ideal-diode model
assumed states
forward-bias region
OFF-diode
ON-diode
OR logic gate
output voltage

                v
                –
                i
                characteristics
              

Ideal loaded transformer
circuit symbol
contour
linear interface
power conservation
power rating

                vs
                . real transformer
              
stored energy
terminologies

Ideal MOS capacitor model

Ideal open-circuited transformer
SeeFaraday’s Law

Ideal transformer equations

Ideal voltmeter and ammeter

IDFT
SeeInverse discrete Fourier transform (IDFT)

Impedance matching

Increment operator

Incremental resistance

Independent ideal current source
active reference configuration
definition
symbols
υ-i characteristic

Independent ideal voltage source

Inductance
dynamic behavior
self-inductance
series and parallel
solenoid with and without magnetic core

Inductor
choke
fringing effect
ideal
1-mH
physical

Input and output (I/O) devices

Input bias current

Instantaneous generator voltage

Instruction set

Instrumentation amplifier

Instrumentation transformers

Integrated circuit (IC)

Integrated development environment (IDE)
edit menu
features
file menu
installation
license agreement
sketch menu
tools menu
USB connection
visual representation
windows

Interface
analogRead function
Arduino programs
IO pins
pinMode function
PWM signal

Internal compensation

Internal source resistance

Interrupt service routine (ISR)

Interrupts
debounced
ISR
microprocessor
polling
queue
trigger state
volatile

Inverse discrete Fourier transform (IDFT)

Inversion layer of MOS capacitor

Inverting amplifier

Inverting input

Inverting Schmitt trigger

Isolation transformers

ISR
SeeInterrupt service routine (ISR)

Iterative method for nonlinear circuits
definition of
explicit iterative scheme
implicit iterative scheme


J

Junction FET (JFET)


K

Karnaugh maps

Kirchhoff’s current law (KCL)

Kirchhoff’s voltage law (KVL)


L

Lagging power factor

Large-signal BJT circuit model

Large-signal circuit model
base-bias transistor circuit
equivalent circuit model
first-order circuit
linear current-controlled current source
nonlinear voltage-controlled current source

Large-signal MOSFET model in saturation
digital switching circuits
transconductance curve

Latch
inverters
SRAM
stable states

Laws of Boolean algebra

Leading power factor

Least significant bit (LSB)

LED
SeeLight-emitting diode (LED)

Lenz’s law

Library

Light-emitting diode (LED)

Line currents

Line integral

Linear circuit (definition of homogeneity additivity superposition)

Linear feedback system

Linear load

Linear oscillators

Linear passive circuit element
components
fixed resistors
Ohm’s law
Ohmic conductors
passive reference configuration
power delivered
resistive sensors
symbols and terminals
variable resistors (potentiometers)
voltage across

                υ-i
                characteristic
              
See
                (
                υ-i
                characteristic)
              

Lines of force

Line-to-line voltages

Line-to-neutral voltages

Load cell

Load impedances per phase

Load line (definition, method of)

Load reflections

Load-line analysis
actuator device
amplifier
See(MOSFET amplifier)current mirror, 950
diode-connected
lumped process parameter
Ohm’s law
quadratic equation

Load-line method

Logic inverter

Loops
electric network
for loop
while loop

Lorentz force

Low-frequency asymptotes

Low-voltage side

LSB
SeeLeast significant bit (LSB)

Lumped process parameter


M

Magnetic field

Magnetic flux density

Magnetic induction

Magnetic permeability of vacuum

Magnetic radiators
application
coil array
tuned radiators
two identical
uncoupled inductors
wireless inductive power transfer

Magnetizing inductance

Magnetizing reactance

Magnetostatics
Ampere’s law
current-carrying conductor

                current flow model
                vs
                . electrostatics
              
electric circuit
electric current
electric power transfer

Matched load

Matched switching transistors

Matching circuit
arbitrary complex impedances
real-valued impedances
transformer

Material conductivity

Material resistivity

Maximum available source current

Maximum available source power

Maximum operating frequency

Maximum power efficiency

Maximum power theorem (principle of maximum power transfer)

Maximum power transfer for AC circuits, principle of

Maximum sensitivity of voltage divider circuit

Mechanical analogy

Memory
binary representation
bytes
data storage methods
flash
organization
program execution
storage
types

Mesh analysis (mesh-current analysis)
linear circuits

Meshes of electric network

Metal-oxide-semiconductor (MOS) transistors
complementary MOS circuits
ground-side switch
power-side switch

Metal–semiconductor FET (MESFET)

1-mH inductor

mho

Microcontrollers
architecture, 747, 748
buses
CPU
feature
hierarchy
I/O devices
memory
timers
USART

Miller integrator
amplifier circuits, dynamic elements
compensated

Mobility of charge carriers

Modulation depth

MOS field effect transistor (MOSFET)
amplifier
linear small-signal
Q-point
transconductance
voltage transfer characteristic
channel
CMOS process
common-source amplifier
See(Common-source MOSFET amplifier)
DC circuit
JFET
linear/ohmic subregion
load-line method
See(Load-line analysis)
MESFET
n and p-channel
NMOS
capacitor
and PMOS transistor
on-state resistance
oxide layer
pn-junction depletion layer

                SiO
                2
              
parameter extraction, 943–944,
PMOS transistor
process transconductance parameter
resistor-switch model
saturation current
saturation region
semiconductor body
Fermi potential
inversion layer
mass-action law
simplifier transistor circuit
terminal voltages and currents
drain-source voltage
gate-drain voltage
gate-source voltage
threshold voltage,
transconductance parameter
curve
lumped process parameter
transistors
turn-on resistance

                v-i
                dependencies
              
work function difference

Motor control states (forward mode)

Motor speed controller

Motor switching
forward mode
free run to stop
motor brake
reverse mode

Multiwinding transformer

Mutual inductance


N

NAND gate

                vs.
                input voltages
              
symbol
three inputs

n-channel metal-oxide-semiconductor field-effect (NMOS) transistor

n-channel MOSFET

Near-field communication (NFC)

Near-field wireless link

Negative clipper

Negative equivalent (Thévenin) resistance
construction and use
dependent source
voltage-controlled voltage source

Negative feedback
amplifier’s stability
idea of
summing-point constraints

Negative phase sequence

Negative temperature coefficient (NTC)

Neper (Np)

Neutral wire

NFC
SeeNear-field communication (NFC)

NMOS transistor
channel inversion
threshold voltage

Nodal analysis

                circuit current
                I
              
linear circuits

                supply current
                I
              

Nodes of electric network

Noise signals

Nonideal low-frequency transformer

Nonideal transformer model
harmonic source and linear load
impedance load
input voltage
load current
load voltage
power factor
rms values

Non-inverting amplifier, 201–203

Non-inverting input

Non-inverting Schmitt trigger

Nonlinear circuits
definition of linearization dynamic/small-signal resistance

Nonlinear passive circuit elements, load

Non-ohmic circuit elements

Non-reference

Nonvolatile memory

NOR gate

                vs.
                input voltages
              
three inputs

NOT gate

n-type/n-channel MOS transistor (NMOS)
control voltage
ground-side switch
intrinsic threshold voltage
load current
metal electrodes
threshold voltage

Nyquist rate
minimum acceptable sampling rate
modulation theory
Nyquist-Shannon sampling theorem
oversampling and undersampling
sampling frequency

Nyquist-Shannon sampling theorem


O

Objects

Octave

Offset-null terminals

Ohm’s law
resistance and conductance

Ohmic conductor

One-port network

Open-circuit
small-signal voltage gain
source voltage
voltage gain

Open-loop AC gain

Open-loop configuration

Open-loop voltage gain

Operating point

Operational amplifier
application
bandwidth
closed-loop AC gain
definition
frequency bandwidth
open-circuit/open-loop voltage gain
open-loop AC gain
open-loop amplifier gain
open-loop gain behavior
power rails and voltage transfer characteristic
symbol and terminals

                unity-gain bandwidth
                vs
                . gain-bandwidth product
              

OR gate

Output resistance

Output terminal


P

Parallel battery bank

Parallel connection

Parallel data transmission

Parallel digital output voltage

Parallel-plate capacitor
application
capacitive touchscreens
capacitor marking
ceramic capacitors
circuit symbol
dielectric permittivity of vacuum
electrolytic capacitors
fringing effect
inductor marking
mutual-capacitance method

                opposite charge–
                Q
              
self-capacitance method
solenoid with and without magnetic core
static capacitance

                total charge +
                Q
              
touch screens

Parallel resonant RLC circuit
amplitude
circuit voltage
duality
parallel RLC tank circuit
partial time constants
phasor representation

                Q-
                factor
              
resonance condition
resonant frequency
resonant phasor currents
second-order RLC filters


                Parallel
                vs
                . serial representation
              

Parseval’s theorem

Passive linear circuit elements

Passive reference configuration

p-channel MOSFET

Peak detector circuit

Peltier-Seebeck effect

Peripherals

Per-phase solution

PFC capacitor

Phase impedances

Phase voltages

Photocell, 43

Photoresistor

Piecewise-linear diode model

PMOS transistor

Polarity
AC source
active reference configuration
independent
voltage

Polling

Positive feedback

Positive phase sequence

Postfilter

Potential transformers

Potentiometer

Potentiometric position sensor

Power angle

Power conservation law for electric networks

Power factor correction
application
average load power
capacitance value
capacitor
current amplitude
impedance
load impedance
modified load
power angle
reactive load power
RLC circuit
shunt capacitor

Power rails

Power-related networking theorems

Power-side switch

Power switching circuits
DC motor
full H-bridge
half H-bridge
one-quadrant switch
PWM motor controller
resistive load
switching quadrants

Power terminals

Power triangle
inductive and capacitive load
whip antenna

Poynting vector

Practical current source
definition
open-circuit voltage
short-circuit current

                υ-i
                characteristic
              

Practical voltage source

Primitive data types

Process transconductance parameter

Product-of-sums approach

Proximity sensors

P-type/p-channel MOS transistor (PMOS)
control voltage
intrinsic threshold voltage
output voltages
power-side
power-side switch
threshold voltage

Pull-down switch
SeeGround-side switch

Pull-up switch
SeePower-side switch

Pulse-width modulation (PWM)
average supply voltage
commercial controllers
duty cycle
motor controller
realization
supply voltage, motor
voltage form

PWM
SeePulse-width modulation (PWM)


Q

Quality factor
constant
definition, resonant frequency
inductor and capacitor
maximum amplitude
mechanical resonator
series resonant LC circuit
series resonant RLC circuit

Quality factor of series resonant RLC circuit

Quantization error

Quiescent-point (Q-point)
NMOS amplifier
parameters


R

Radiation resistance

Radio-frequency (RF)
inductor choke
power

Rail-to-rail amplifiers

Reactive power

Real transformer
equivalent circuit values
model parameters and extraction
nonideal low-frequency
core loss resistance
leakage resistance
leakage inductance
ohmic resistance
Steinmetz model

Receiver circuit
Faraday’s law
open-circuit voltage
operating frequency
quality factor, nonideal inductor
voltage multiplier

Reconstruction filter

Rectangle rule

Reduction of resistive networks

Relative magnetic permeability

Replacing a node by a loop

Resistive sensors

Resistor
ECE laboratory kit
fixed
photoresistor
thermal
variable

Resolution voltage

Return current and ground

Reversal property

Riemann sum approximation

RL filter circuits

rms voltage
AC signals
application
DC voltage
root-mean-square value
sawtooth/triangular wave
single-frequency voltage signals

Rotating magnetic field

Rotor

R/2R ladder DAC

R-2R ladder network


T

T and Π networks

Telephone hybrid circuit

Tellegen’s theorem

Thermistor constant

Thermistor equation

Thermocouple

Thévenin equivalent

Thévenin’s and Norton’s theorems

Three-terminal MOSFET

Three-terminal networks

Threshold voltages

Timing diagram

T network

T pad

Transconductance
amplifier
curve

Transfer characteristic

Transfer resistor

Transient circuit

Transient RC circuit
capacitor
digital memory cell
electromagnetic railgun
energy-accumulating capacitor circuit
forced response
resistor voltage
source voltage
Thévenin resistance
energy consideration
energy-release capacitor circuit
electromagnetic material processing
load resistor
time/relaxation constant
fluid mechanics analogy
static/dynamic circuit
time constant

Transient RL circuit
energy-accumulating capacitor circuit
charging
inductor/resistor voltages
inhomogeneous
mH inductor
supply current
voltages and currents
zero inductor current
energy-release inductor circuit
charged
current source
dynamic circuit
inductor
magnetic-field energy
supply current
time/relaxation constant
inductor current
continuous function
finite magnetic-field energy
fluid mechanics analogy
independent function
inductor inertia
laboratory ignition circuit
static/dynamic circuit
voltage supply

Transistor circuit analysis
collector and base resistances
current-controlled current source model

Transistor test circuits

Transistor threshold voltage
digital circuits
switching behavior

Transmission line

Transmitter circuit
magnetic field
operation frequency
phasor method
quality factor
series capacitor

Transmitting antenna

Transresistance amplifier

Triode region, MOSFET
electron surface mobility
lumped process parameter
process transconductance parameter
turn-on resistance

Tri-state buffer

Tri-state digital voltage
buffer
components

True power

Truth table
AND gate
logic circuit
NAND gate
OR gate

Tuning diode

Two coupled inductors
circuit analysis
circuit symbol

Two-port networks

Two-terminal network (definition of input port output port)

Two-terminal switch

Typecasting


U

Undamped resonant frequency

Underdamped circuit

Unidirectional switch

Unity common-mode gain stage

Universal synchronous/asynchronous receiver/transmitter (USART)
CPU and external serial devices
parallel data transmission
serial data transmission

USART
SeeUniversal synchronous/asynchronous receiver/transmitter (USART)


V

Variable resistor

Velocity saturation region

Very high frequencies

Virtual-ground circuit

Virtual ground of dual-polarity power supply

Virtual-ground (integrated) circuit

Volatile memory

Voltage amplifier

Voltage-controlled current source

Voltage-controlled voltage source

Voltage difference

Voltage divider circuit

Voltage division rule

Voltage drop
absolute voltage

Voltage follower (buffer) amplifier

Voltage polarity

Voltage transfer characteristic

Volt-amperes (VA)

Volt-amperes reactive (VAR)


W

Wattmeter

Wattmeter current coil

Wheatstone bridge (definition of difference signal difference voltage balanced)

While loop

Wireless inductive power transfer
coaxial coupled inductors
coil configuration
data transfer
finite magnetic core
magnetic near-field calculations
MATLAB script
mutual inductance
RFID
transmission frequency

Work function difference

wye-connected load

Wye-connected source

Wye-wye distribution system

Wye/Y configuration


X

XOR gate


Y

Y and Δ Networks

Y to Δ transformation


Z

Zener diode
piecewise-linear
shunt voltage regulator
voltage regulator

Zero-level detector
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