
Linear and
Nonlinear
Programming

International Series in
Operations Research & Management Science

David G. Luenberger
Yinyu Ye

Fourth Edition

International Series in Operations

Research & Management Science

Volume 228

Series Editor

Camille C. Price

Stephen F. Austin State University, TX, USA

Associate Series Editor

Joe Zhu

Worcester Polytechnic Institute, MA, USA

Founding Series Editor

Frederick S. Hillier

Stanford University, CA, USA

More information about this series at http://www.springer.com/series/6161

http://www.springer.com/series/6161

David G. Luenberger • Yinyu Ye

Linear and Nonlinear
Programming

Fourth Edition

123

David G. Luenberger
Department of Management Science

and Engineering
Stanford University
Stanford, CA, USA

Yinyu Ye
Department of Management Science

and Engineering
Stanford University
Stanford, CA, USA

ISSN 0884-8289 ISSN 2214-7934 (electronic)
International Series in Operations Research & Management Science
ISBN 978-3-319-18841-6 ISBN 978-3-319-18842-3 (eBook)
DOI 10.1007/978-3-319-18842-3

Library of Congress Control Number: 2015942692

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 1973, 1984 (2003 reprint), 2008, 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com

To Susan, Robert, Jill, and Jenna;

Daisun, Fei, Tim, and Kaylee

Preface

This book is intended as a text covering the central concepts of practical optimiza-

tion techniques. It is designed for either self-study by professionals or classroom

work at the undergraduate or graduate level for students who have a technical back-

ground in engineering, mathematics, or science. Like the field of optimization itself,

which involves many classical disciplines, the book should be useful to system ana-

lysts, operations researchers, numerical analysts, management scientists, and other

specialists from the host of disciplines from which practical optimization appli-

cations are drawn. The prerequisites for convenient use of the book are relatively

modest; the prime requirement being some familiarity with introductory elements

of linear algebra. Certain sections and developments do assume some knowledge

of more advanced concepts of linear algebra, such as eigenvector analysis, or some

background in sets of real numbers, but the text is structured so that the mainstream

of the development can be faithfully pursued without reliance on this more advanced

background material.

Although the book covers primarily material that is now fairly standard, this edi-

tion emphasizes methods that are both state-of-the-art and popular. One major in-

sight is the connection between the purely analytical character of an optimization

problem, expressed perhaps by properties of the necessary conditions, and the be-

havior of algorithms used to solve a problem. This was a major theme of the first

edition of this book and the fourth edition expands and further illustrates this rela-

tionship.

As in the earlier editions, the material in this fourth edition is organized into three

separate parts. Part I is a self-contained introduction to linear programming, a key

component of optimization theory. The presentation in this part is fairly conven-

tional, covering the main elements of the underlying theory of linear programming,

many of the most effective numerical algorithms, and many of its important special

applications. Part II, which is independent of Part I, covers the theory of uncon-

strained optimization, including both derivations of the appropriate optimality con-

ditions and an introduction to basic algorithms. This part of the book explores the

general properties of algorithms and defines various notions of convergence. Part III

vii

viii Preface

extends the concepts developed in the second part to constrained optimization

problems. Except for a few isolated sections, this part is also independent of Part I.

It is possible to go directly into Parts II and III omitting Part I, and, in fact, the

book has been used in this way in many universities. Each part of the book contains

enough material to form the basis of a one-quarter course. In either classroom use

or for self-study, it is important not to overlook the suggested exercises at the end of

each chapter. The selections generally include exercises of a computational variety

designed to test one’s understanding of a particular algorithm, a theoretical variety

designed to test one’s understanding of a given theoretical development, or of the

variety that extends the presentation of the chapter to new applications or theoretical

areas. One should attempt at least four or five exercises from each chapter. In pro-

gressing through the book it would be unusual to read straight through from cover

to cover. Generally, one will wish to skip around. In order to facilitate this mode, we

have indicated sections of a specialized or digressive nature with an asterisk∗.
New to this edition is a special Chap. 6 devoted to Conic Linear Programming, a

powerful generalization of Linear Programming. While the constraint set in a nor-

mal linear program is defined by a finite number of linear inequalities of finite-

dimensional vector variables, the constraint set in conic linear programming may be

defined, for example, as a linear combination of symmetric positive semi-definite

matrices of a given dimension. Indeed, many conic structures are possible and use-

ful in a variety of applications. It must be recognized, however, that conic linear

programming is an advanced topic, requiring special study.

Another important topic is an accelerated steepest descent method that exhibits

superior convergence properties, and for this reason, has become quite popular. The

proof of the convergence property for both standard and accelerated steepest descent

methods are presented in Chap. 8.

As the field of optimization advances, addressing greater complexity, treating

problems with ever more variables (as in Big Data situations), ranging over diverse

applications. The field responds yo these challenges, developing new algorithms,

building effective software, and expanding overall theory. An example of a valu-

able new development is the work on big data problems. Surprisingly, coordinate

descent, with randomly selected coordinates at each step, is quite effective as ex-

plained in Chap. 8. As another example some problems are formulated so that the

unknowns can be split into two sub groups, there are linear constraints and the objec-

tive function is separable with respect to the two groups of variables. The augmented

Lagrangian can be computed and it is natural to use an alternating series method.

We discuss the alternating direction method with multipliers as a dual method in

Chap. 14. Interestingly, this method is convergent for when the number of partition

groups is two, but not for finer partitions.

We wish to thank the many students and researchers who over the years have

given us comments concerning the book and those who encouraged us to carry out

this revision.

Stanford, CA, USA D.G. Luenberger

Stanford, CA, USA Y. Ye

January 2015

Contents

1 Introduction . 1

1.1 Optimization . 1

1.2 Types of Problems . 2

1.3 Size of Problems . 5

1.4 Iterative Algorithms and Convergence . 6

Part I Linear Programming

2 Basic Properties of Linear Programs . 11

2.1 Introduction . 11

2.2 Examples of Linear Programming Problems 14

2.3 Basic Solutions . 19

2.4 The Fundamental Theorem of Linear Programming 20

2.5 Relations to Convexity . 23

2.6 Exercises . 27

3 The Simplex Method . 33

3.1 Pivots . 33

3.2 Adjacent Extreme Points . 38

3.3 Determining a Minimum Feasible Solution . 42

3.4 Computational Procedure: Simplex Method 45

3.5 Finding a Basic Feasible Solution . 49

3.6 Matrix Form of the Simplex Method . 54

3.7 Simplex Method for Transportation Problems 56

3.8 Decomposition . 68

3.9 Summary . 72

3.10 Exercises . 73

4 Duality and Complementarity . 83

4.1 Dual Linear Programs . 83

4.2 The Duality Theorem . 86

ix

x Contents

4.3 Relations to the Simplex Procedure . 88

4.4 Sensitivity and Complementary Slackness . 92

4.5 Max Flow–Min Cut Theorem . 94

4.6 The Dual Simplex Method . 100

4.7 ∗The Primal-Dual Algorithm . 102

4.8 Summary . 106

4.9 Exercises . 107

5 Interior-Point Methods . 115

5.1 Elements of Complexity Theory . 117

5.2 ∗The Simplex Method Is Not Polynomial-Time 118

5.3 ∗The Ellipsoid Method . 119

5.4 The Analytic Center . 123

5.5 The Central Path . 125

5.6 Solution Strategies . 130

5.7 Termination and Initialization . 137

5.8 Summary . 142

5.9 Exercises . 143

6 Conic Linear Programming . 149

6.1 Convex Cones . 149

6.2 Conic Linear Programming Problem . 150

6.3 Farkas’ Lemma for Conic Linear Programming 154

6.4 Conic Linear Programming Duality . 158

6.5 Complementarity and Solution Rank of SDP 166

6.6 Interior-Point Algorithms for Conic Linear Programming 170

6.7 Summary . 173

6.8 Exercises . 174

Part II Unconstrained Problems

7 Basic Properties of Solutions and Algorithms . 179

7.1 First-Order Necessary Conditions . 180

7.2 Examples of Unconstrained Problems . 182

7.3 Second-Order Conditions . 185

7.4 Convex and Concave Functions . 188

7.5 Minimization and Maximization of Convex Functions 192

7.6 ∗Zero-Order Conditions . 194

7.7 Global Convergence of Descent Algorithms 196

7.8 Speed of Convergence . 204

7.9 Summary . 209

7.10 Exercises . 209

Contents xi

8 Basic Descent Methods . 213

8.1 Line Search Algorithms . 214

8.2 The Method of Steepest Descent . 229

8.3 Applications of the Convergence Theory . 239

8.4 Accelerated Steepest Descent . 243

8.5 Newton’s Method . 245

8.6 Coordinate Descent Methods . 252

8.7 Summary . 257

8.8 Exercises . 258

9 Conjugate Direction Methods . 263

9.1 Conjugate Directions . 263

9.2 Descent Properties of the Conjugate Direction Method 266

9.3 The Conjugate Gradient Method . 268

9.4 The C–G Method as an Optimal Process . 270

9.5 The Partial Conjugate Gradient Method . 273

9.6 Extension to Nonquadratic Problems . 276

9.7 ∗Parallel Tangents . 279

9.8 Exercises . 281

10 Quasi-Newton Methods . 285

10.1 Modified Newton Method . 286

10.2 Construction of the Inverse . 288

10.3 Davidon-Fletcher-Powell Method . 290

10.4 The Broyden Family . 293

10.5 Convergence Properties . 296

10.6 Scaling . 300

10.7 Memoryless Quasi-Newton Methods . 304

10.8 ∗Combination of Steepest Descent and Newton’s Method 306

10.9 Summary . 312

10.10 Exercises . 313

Part III Constrained Minimization

11 Constrained Minimization Conditions . 321

11.1 Constraints . 321

11.2 Tangent Plane . 323

11.3 First-Order Necessary Conditions (Equality Constraints) 326

11.4 Examples . 327

11.5 Second-Order Conditions . 333

11.6 Eigenvalues in Tangent Subspace . 335

11.7 Sensitivity . 338

11.8 Inequality Constraints . 340

11.9 Zero-Order Conditions and Lagrangian Relaxation 344

11.10 Summary . 351

11.11 Exercises . 352

xii Contents

12 Primal Methods . 357

12.1 Advantage of Primal Methods . 357

12.2 Feasible Direction Methods . 358

12.3 Active Set Methods . 360

12.4 The Gradient Projection Method . 364

12.5 Convergence Rate of the Gradient Projection Method 370

12.6 The Reduced Gradient Method . 378

12.7 Convergence Rate of the Reduced Gradient Method 383

12.8 ∗Variations . 390

12.9 Summary . 392

12.10 Exercises . 392

13 Penalty and Barrier Methods . 397

13.1 Penalty Methods . 398

13.2 Barrier Methods . 401

13.3 Properties of Penalty and Barrier Functions 403

13.4 Newton’s Method and Penalty Functions . 412

13.5 Conjugate Gradients and Penalty Methods . 413

13.6 Normalization of Penalty Functions . 415

13.7 Penalty Functions and Gradient Projection . 417

13.8 ∗Exact Penalty Functions . 421

13.9 Summary . 423

13.10 Exercises . 425

14 Duality and Dual Methods . 429

14.1 Global Duality . 430

14.2 Local Duality . 435

14.3 Canonical Convergence Rate of Dual Steepest Ascent 440

14.4 Separable Problems and Their Duals . 441

14.5 Augmented Lagrangian . 445

14.6 The Method of Multipliers . 449

14.7 The Alternating Direction Method of Multipliers 454

14.8 ∗Cutting Plane Methods . 458

14.9 Exercises . 464

15 Primal-Dual Methods . 467

15.1 The Standard Problem . 467

15.2 A Simple Merit Function . 470

15.3 Basic Primal-Dual Methods . 471

15.4 Modified Newton Methods . 477

15.5 Descent Properties . 478

15.6 ∗Rate of Convergence . 483

15.7 Primal-Dual Interior Point Methods . 485

15.8 Summary . 488

15.9 Exercises . 489

Contents xiii

A Mathematical Review . 495

A.1 Sets . 495

A.2 Matrix Notation . 496

A.3 Spaces . 497

A.4 Eigenvalues and Quadratic Forms . 498

A.5 Topological Concepts . 499

A.6 Functions . 500

B Convex Sets . 505

B.1 Basic Definitions . 505

B.2 Hyperplanes and Polytopes . 507

B.3 Separating and Supporting Hyperplanes . 509

B.4 Extreme Points . 511

C Gaussian Elimination . 513

D Basic Network Concepts . 517

D.1 Flows in Networks . 519

D.2 Tree Procedure . 519

D.3 Capacitated Networks . 521

Bibliography . 523

Index . 539

Chapter 1

Introduction

1.1 Optimization

The concept of optimization is now well rooted as a principle underlying the analysis

of many complex decision or allocation problems. It offers a certain degree of philo-

sophical elegance that is hard to dispute, and it often offers an indispensable degree

of operational simplicity. Using this optimization philosophy, one approaches a

complex decision problem, involving the selection of values for a number of in-

terrelated variables, by focusing attention on a single objective designed to quantify

performance and measure the quality of the decision. This one objective is maxi-

mized (or minimized, depending on the formulation) subject to the constraints that

may limit the selection of decision variable values. If a suitable single aspect of a

problem can be isolated and characterized by an objective, be it profit or loss in

a business setting, speed or distance in a physical problem, expected return in the

environment of risky investments, or social welfare in the context of government

planning, optimization may provide a suitable framework for analysis.

It is, of course, a rare situation in which it is possible to fully represent all the

complexities of variable interactions, constraints, and appropriate objectives when

faced with a complex decision problem. Thus, as with all quantitative techniques

of analysis, a particular optimization formulation should be regarded only as an

approximation. Skill in modeling, to capture the essential elements of a problem,

and good judgment in the interpretation of results are required to obtain meaningful

conclusions. Optimization, then, should be regarded as a tool of conceptualization

and analysis rather than as a principle yielding the philosophically correct solution.

Skill and good judgment, with respect to problem formulation and interpretation

of results, is enhanced through concrete practical experience and a thorough under-

standing of relevant theory. Problem formulation itself always involves a tradeoff

between the conflicting objectives of building a mathematical model sufficiently

complex to accurately capture the problem description and building a model that is

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 1

1

2 1 Introduction

tractable. The expert model builder is facile with both aspects of this tradeoff. One

aspiring to become such an expert must learn to identify and capture the important

issues of a problem mainly through example and experience; one must learn to

distinguish tractable models from nontractable ones through a study of available

technique and theory and by nurturing the capability to extend existing theory to

new situations.

This book is centered around a certain optimization structure—that characteristic

of linear and nonlinear programming. Examples of situations leading to this struc-

ture are sprinkled throughout the book, and these examples should help to indicate

how practical problems can be often fruitfully structured in this form. The book

mainly, however, is concerned with the development, analysis, and comparison of

algorithms for solving general subclasses of optimization problems. This is valuable

not only for the algorithms themselves, which enable one to solve given problems,

but also because identification of the collection of structures they most effectively

solve can enhance one’s ability to formulate problems.

1.2 Types of Problems

The content of this book is divided into three major parts: Linear Programming,

Unconstrained Problems, and Constrained Problems. The last two parts together

comprise the subject of nonlinear programming.

Linear Programming

Linear programming is without doubt the most natural mechanism for formulat-

ing a vast array of problems with modest effort. A linear programming problem

is characterized, as the name implies, by linear functions of the unknowns; the

objective is linear in the unknowns, and the constraints are linear equalities or linear

inequalities in the unknowns. One familiar with other branches of linear mathe-

matics might suspect, initially, that linear programming formulations are popular

because the mathematics is nicer, the theory is richer, and the computation simpler

for linear problems than for nonlinear ones. But, in fact, these are not the primary

reasons. In terms of mathematical and computational properties, there are much

broader classes of optimization problems than linear programming problems that

have elegant and potent theories and for which effective algorithms are available.

It seems that the popularity of linear programming lies primarily with the formu-

lation phase of analysis rather than the solution phase—and for good cause. For

one thing, a great number of constraints and objectives that arise in practice are

indisputably linear. Thus, for example, if one formulates a problem with a budget

constraint restricting the total amount of money to be allocated among two different

commodities, the budget constraint takes the form x1 + x2 ≤ B, where x j, i = 1, 2,

1.2 Types of Problems 3

is the amount allocated to activity i, and B is the budget. Similarly, if the objective

is, for example, maximum weight, then it can be expressed as w1 x1 + w2 x2, where

w j, i = 1, 2, is the unit weight of the commodity i. The overall problem would

be expressed as

maximize w1x1 + w2 x2

subject to x1 + x2 ≤ B,

x1 ≥ 0, x2 ≥ 0,

which is an elementary linear program. The linearity of the budget constraint is

extremely natural in this case and does not represent simply an approximation to a

more general functional form.

Another reason that linear forms for constraints and objectives are so popular in

problem formulation is that they are often the least difficult to define. Thus, even if

an objective function is not purely linear by virtue of its inherent definition (as in

the above example), it is often far easier to define it as being linear than to decide on

some other functional form and convince others that the more complex form is the

best possible choice. Linearity, therefore, by virtue of its simplicity, often is selected

as the easy way out or, when seeking generality, as the only functional form that will

be equally applicable (or nonapplicable) in a class of similar problems.

Of course, the theoretical and computational aspects do take on a somewhat spe-

cial character for linear programming problems—the most significant development

being the simplex method. This algorithm is developed in Chaps. 2 and 3. More re-

cent interior point methods are nonlinear in character and these are developed in

Chap. 5.

Unconstrained Problems

It may seem that unconstrained optimization problems are so devoid of structural

properties as to preclude their applicability as useful models of meaningful problems.

Quite the contrary is true for two reasons. First, it can be argued, quite convincingly,

that if the scope of a problem is broadened to the consideration of all relevant de-

cision variables, there may then be no constraints—or put another way, constraints

represent artificial delimitations of scope, and when the scope is broadened the con-

straints vanish. Thus, for example, it may be argued that a budget constraint is not

characteristic of a meaningful problem formulation; since by borrowing at some

interest rate it is always possible to obtain additional funds, and hence rather than

introducing a budget constraint, a term reflecting the cost of funds should be incor-

porated into the objective. A similar argument applies to constraints describing the

availability of other resources which at some cost (however great) could be supple-

mented.

The second reason that many important problems can be regarded as hav-

ing no constraints is that constrained problems are sometimes easily converted to

4 1 Introduction

unconstrained problems. For instance, the sole effect of equality constraints is sim-

ply to limit the degrees of freedom, by essentially making some variables functions

of others. These dependencies can sometimes be explicitly characterized, and a new

problem having its number of variables equal to the true degree of freedom can be

determined. As a simple specific example, a constraint of the form x1 + x2 = B can

be eliminated by substituting x2 = B − x1 everywhere else that x2 appears in the

problem.

Aside from representing a significant class of practical problems, the study of un-

constrained problems, of course, provides a stepping stone toward the more general

case of constrained problems. Many aspects of both theory and algorithms are most

naturally motivated and verified for the unconstrained case before progressing to the

constrained case.

Constrained Problems

In spite of the arguments given above, many problems met in practice are formulated

as constrained problems. This is because in most instances a complex problem such

as, for example, the detailed production policy of a giant corporation, the planning

of a large government agency, or even the design of a complex device cannot be

directly treated in its entirety accounting for all possible choices, but instead must be

decomposed into separate subproblems—each subproblem having constraints that

are imposed to restrict its scope. Thus, in a planning problem, budget constraints are

commonly imposed in order to decouple that one problem from a more global one.

Therefore, one frequently encounters general nonlinear constrained mathematical

programming problems.

The general mathematical programming problem can be stated as

minimize f (x)

subject to h j(x) = 0, i = 1, 2, . . . , m

g j(x) ≤ 0, j = 1, 2, p

x ∈ S .

In this formulation, x is an n-dimensional vector of unknowns, x = (x1, x2, . . . ,

xn), and f , hi, i = 1, 2, . . . , m, and g j, j = 1, 2, . . . , p, are real-valued functions of

the variables x1, x2, . . . , xn. The set S is a subset of n-dimensional space. The func-

tion f is the objective function of the problem and the equations, inequalities, and

set restrictions are constraints.

Generally, in this book, additional assumptions are introduced in order to make

the problem smooth in some suitable sense. For example, the functions in the prob-

lem are usually required to be continuous, or perhaps to have continuous derivatives.

This ensures that small changes in x lead to small changes in other values associ-

ated with the problem. Also, the set S is not allowed to be arbitrary but usually is

required to be a connected region of n-dimensional space, rather than, for example,

1.3 Size of Problems 5

a set of distinct isolated points. This ensures that small changes in x can be made.

Indeed, in a majority of problems treated, the set S is taken to be the entire space;

there is no set restriction.

In view of these smoothness assumptions, one might characterize the problems

treated in this book as continuous variable programming, since we generally discuss

problems where all variables and function values can be varied continuously. In fact,

this assumption forms the basis of many of the algorithms discussed, which operate

essentially by making a series of small movements in the unknown x vector.

1.3 Size of Problems

One obvious measure of the complexity of a programming problem is its size,

measured in terms of the number of unknown variables or the number of constraints.

As might be expected, the size of problems that can be effectively solved has been

increasing with advancing computing technology and with advancing theory. Today,

with present computing capabilities, however, it is reasonable to distinguish three

classes of problems: small-scale problems having about five or fewer unknowns

and constraints; intermediate-scale problems having from about five to a hundred

or a thousand variables; and large-scale problems having perhaps thousands or even

millions of variables and constraints. This classification is not entirely rigid, but

it reflects at least roughly not only size but the basic differences in approach that

accompany different size problems. As a rough rule, small-scale problems can be

solved by hand or by a small computer. Intermediate-scale problems can be solved

on a personal computer with general purpose mathematical programming codes.

Large-scale problems require sophisticated codes that exploit special structure and

usually require large computers.

Much of the basic theory associated with optimization, particularly in non-

linear programming, is directed at obtaining necessary and sufficient conditions

satisfied by a solution point, rather than at questions of computation. This theory

involves mainly the study of Lagrange multipliers, including the Karush-Kuhn-

Tucker Theorem and its extensions. It tremendously enhances insight into the phi-

losophy of constrained optimization and provides satisfactory basic foundations for

other important disciplines, such as the theory of the firm, consumer economics,

and optimal control theory. The interpretation of Lagrange multipliers that accom-

panies this theory is valuable in virtually every optimization setting. As a basis for

computing numerical solutions to optimization, however, this theory is far from ade-

quate, since it does not consider the difficulties associated with solving the equations

resulting from the necessary conditions.

If it is acknowledged from the outset that a given problem is too large and too

complex to be efficiently solved by hand (and hence it is acknowledged that a

computer solution is desirable), then one’s theory should be directed toward devel-

opment of procedures that exploit the efficiencies of computers. In most cases this

6 1 Introduction

leads to the abandonment of the idea of solving the set of necessary conditions in

favor of the more direct procedure of searching through the space (in an intelligent

manner) for ever-improving points.

Today, search techniques can be effectively applied to more or less general non-

linear programming problems. Problems of great size, large-scale programming

problems, can be solved if they possess special structural characteristics, especially

sparsity, that can be exploited by a solution method. Today linear programming soft-

ware packages are capable of automatically identifying sparse structure within the

input data and taking advantage of this sparsity in numerical computation. It is now

not uncommon to solve linear programs of up to a million variables and constraints,

as long as the structure is sparse. Problem-dependent methods, where the structure

is not automatically identified, are largely directed to transportation and network

flow problems as discussed in the book.

This book focuses on the aspects of general theory that are most fruitful for

computation in the widest class of problems. While necessary and sufficient con-

ditions are examined and their application to small-scale problems is illustrated, our

primary interest in such conditions is in their role as the core of a broader theory

applicable to the solution of larger problems. At the other extreme, although some

instances of structure exploitation are discussed, we focus primarily on the general

continuous variable programming problem rather than on special techniques for spe-

cial structures.

1.4 Iterative Algorithms and Convergence

The most important characteristic of a high-speed computer is its ability to per-

form repetitive operations efficiently, and in order to exploit this basic character-

istic, most algorithms designed to solve large optimization problems are iterative

in nature. Typically, in seeking a vector that solves the programming problem, an

initial vector x0 is selected and the algorithm generates an improved vector x1. The

process is repeated and a still better solution x2 is found. Continuing in this fashion,

a sequence of ever-improving points x0, x1, . . . , xk, . . ., is found that approaches a

solution point x∗. For linear programming problems solved by the simplex method,

the generated sequence is of finite length, reaching the solution point exactly after a

finite (although initially unspecified) number of steps. For nonlinear programming

problems or interior-point methods, the sequence generally does not ever exactly

reach the solution point, but converges toward it. In operation, the process is termi-

nated when a point sufficiently close to the solution point, for practical purposes, is

obtained.

The theory of iterative algorithms can be divided into three (somewhat overlap-

ping) aspects. The first is concerned with the creation of the algorithms themselves.

Algorithms are not conceived arbitrarily, but are based on a creative examination

of the programming problem, its inherent structure, and the efficiencies of digital

computers. The second aspect is the verification that a given algorithm will in fact

1.4 Iterative Algorithms and Convergence 7

generate a sequence that converges to a solution point. This aspect is referred to as

global convergence analysis, since it addresses the important question of whether

the algorithm, when initiated far from the solution point, will eventually converge

to it. The third aspect is referred to as local convergence analysis or complexity

analysis and is concerned with the rate at which the generated sequence of points

converges to the solution. One cannot regard a problem as solved simply because

an algorithm is known which will converge to the solution, since it may require

an exorbitant amount of time to reduce the error to an acceptable tolerance. It is

essential when prescribing algorithms that some estimate of the time required be

available. It is the convergence-rate aspect of the theory that allows some quantita-

tive evaluation and comparison of different algorithms, and at least crudely, assigns

a measure of tractability to a problem, as discussed in Sect. 1.1.

A modern-day technical version of Confucius’ most famous saying, and one

which represents an underlying philosophy of this book, might be, “One good theory

is worth a thousand computer runs.” Thus, the convergence properties of an itera-

tive algorithm can be estimated with confidence either by performing numerous

computer experiments on different problems or by a simple well-directed theoreti-

cal analysis. A simple theory, of course, provides invaluable insight as well as the

desired estimate.

For linear programming using the simplex method, solid theoretical statements

on the speed of convergence were elusive, because the method actually converges to

an exact solution in a finite number of steps. The question is how many steps might

be required. This question was finally resolved when it was shown that it was possi-

ble for the number of steps to be exponential in the size of the program. The situa-

tion is different for interior point algorithms, which essentially treat the problem by

introducing nonlinear terms, and which therefore do not generally obtain a solution

in a finite number of steps but instead converge toward a solution.

For nonlinear programs, including interior point methods applied to linear pro-

grams, it is meaningful to consider the speed of convergence. There are many

different classes of nonlinear programming algorithms, each with its own conver-

gence characteristics. However, in many cases the convergence properties can be

deduced analytically by fairly simple means, and this analysis is substantiated by

computational experience. Presentation of convergence analysis, which seems to be

the natural focal point of a theory directed at obtaining specific answers, is a unique

feature of this book.

There are in fact two aspects of convergence-rate theory. The first is generally

known as complexity analysis and focuses on how fast the method converges over-

all, distinguishing between polynomial-time algorithms and non-polynomial-time

algorithms. The second aspect provides more detailed analysis of how fast the

method converges in the final stages, and can provide comparisons between dif-

ferent algorithms. Both of these are treated in this book.

The convergence-rate theory presented has two somewhat surprising but definitely

pleasing aspects. First, the theory is, for the most part, extremely simple in nature.

Although initially one might fear that a theory aimed at predicting the speed of

convergence of a complex algorithm might itself be doubly complex, in fact the

8 1 Introduction

associated convergence analysis often turns out to be exceedingly elementary, re-

quiring only a line or two of calculation. Second, a large class of seemingly distinct

algorithms turns out to have a common convergence rate. Indeed, as emphasized

in the later chapters of the book, there is a canonical rate associated with a given

programming problem that seems to govern the speed of convergence of many algo-

rithms when applied to that problem. It is this fact that underlies the potency of the

theory, allowing definitive comparisons among algorithms to be made even without

detailed knowledge of the problems to which they will be applied. Together these

two properties, simplicity and potency, assure convergence analysis a permanent

position of major importance in mathematical programming theory.

Part I

Linear Programming

Chapter 2

Basic Properties of Linear Programs

2.1 Introduction

A linear program (LP) is an optimization problem in which the objective function

is linear in the unknowns and the constraints consist of linear equalities and linear

inequalities. The exact form of these constraints may differ from one problem to an-

other, but as shown below, any linear program can be transformed into the following

standard form:

minimize c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

...
...

am1x1 + am2x2 + · · · + amnxn = bm

and x1 � 0, x2 � 0, . . . , xn � 0,

(2.1)

where the bi’s, ci’s and ai j’s are fixed real constants, and the xi’s are real numbers to

be determined. We always assume that each equation has been multiplied by minus

unity, if necessary, so that each bi � 0.

In more compact vector notation,1 this standard problem becomes

minimize cT x

subject to Ax = b and x � 0. (2.2)

Here x is an n-dimensional column vector, cT is an n-dimensional row vector, A is

an m × n matrix, and b is an m-dimensional column vector. The vector inequality

x � 0 means that each component of x is nonnegative.

1 See Appendix A for a description of the vector notation used throughout this book.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 2

11

12 2 Basic Properties of Linear Programs

Before giving some examples of areas in which linear programming problems

arise naturally, we indicate how various other forms of linear programs can be con-

verted to the standard form.

Example 1 (Slack Variables). Consider the problem

minimize c1x1 + c2x2 + · · · + cnxn

subject to a11x1 + a12x2 + · · · + a1nxn � b1

a21x1 + a22x2 + · · · + a2nxn � b2

...
...

am1x1 + am2x2 + · · · + amnxn � bm

and x1 � 0, x2 � 0, . . . , xn � 0,

In this case the constraint set is determined entirely by linear inequalities.

The problem may be alternatively expressed as

minimize c1x1 + c2x2 + · · · + cnxn

subject to a11x1 + a12x2 + · · · + a1nxn + y1 = b1

a21x1 + a22x2 + · · · + a2nxn + y2 = b2

...
...

am1x1 + am2x2 + · · · + amnxn + ym = bm

and x1 � 0, x2 � 0, . . . , xn � 0,

and y1 � 0, y2 � 0, . . . , ym � 0.

The new positive variables yi introduced to convert the inequalities to equalities

are called slack variables (or more loosely, slacks). By considering the problem

as one having n + m unknowns x1, x2, . . . , xn, y1, y2, . . . , ym, the problem takes

the standard form. The m × (n + m) matrix that now describes the linear equality

constraints is of the special form [A, I] (that is, its columns can be partitioned into

two sets; the first n columns make up the original A matrix and the last m columns

make up an m × m identity matrix).

Example 2 (Surplus Variables). If the linear inequalities of Example 1 are reversed

so that a typical inequality is

ai1x1 + ai2x2 + · · · + ainxn � bi,

it is clear that this is equivalent to

ai1x1 + ai2x2 + · · · + ainxn − yi = bi

with yi � 0. Variables, such as yi, adjoined in this fashion to convert a “greater than

or equal to” inequality to equality are called surplus variables.

It should be clear that by suitably multiplying by minus unity, and adjoining slack

and surplus variables, any set of linear inequalities can be converted to standard form

if the unknown variables are restricted to be nonnegative.

2.1 Introduction 13

Example 3 (Free Variables—First Method). If a linear program is given in standard

form except that one or more of the unknown variables is not required to be non-

negative, the problem can be transformed to standard form by either of two simple

techniques.

To describe the first technique, suppose in (2.1), for example, that the restriction

x1 � 0 is not present and hence x1 is free to take on either positive or negative

values. We then write

x1 = u1 − v1, (2.3)

where we require u1 � 0 and v1 � 0. If we substitute u1 − v1 for x1 everywhere in

(2.1), the linearity of the constraints is preserved and all variables are now required

to be nonnegative. The problem is then expressed in terms of the n + 1 variables

u1, v1, x2, x3, . . . , xn.

There is obviously a certain degree of redundancy introduced by this technique,

however, since a constant added to u1 and v1 does not change x1 (that is, the rep-

resentation of a given value x1 is not unique). Nevertheless, this does not hinder

the simplex method of solution.

Example 4 (Free Variables—Second Method). A second approach for converting to

standard form when x1 is unconstrained in sign is to eliminate x1 together with one

of the constraint equations. Take any one of the m equations in (2.1) which has a

nonzero coefficient for x1. Say, for example,

ai1x1 + ai2x2 + · · · + ainxn = bi, (2.4)

where ai1 � 0. Then x1 can be expressed as a linear combination of the other vari-

ables plus a constant. If this expression is substituted for x1 everywhere in (2.1),

we are led to a new problem of exactly the same form but expressed in terms of

the variables x2, x3, . . . , xn only. Furthermore, the ith equation, used to determine

x1, is now identically zero and it too can be eliminated. This substitution scheme

is valid since any combination of nonnegative variables x2, x3, . . . , xn leads to a

feasible x1 from (2.4), since the sign of x1 is unrestricted. As a result of this sim-

plification, we obtain a standard linear program having n − 1 variables and m − 1

constraint equations. The value of the variable x1 can be determined after solution

through (2.4).

Example 5 (Specific Case). As a specific instance of the above technique consider

the problem

minimize x1 + 3x2 + 4x3

subject to x1 + 2x2 + x3 = 5

2x1 + 3x2 + x3 = 6

x2 � 0, x3 � 0.

Since x1 is free, we solve for it from the first constraint, obtaining

14 2 Basic Properties of Linear Programs

x1 = 5 − 2x2 − x3. (2.5)

Substituting this into the objective and the second constraint, we obtain the equiva-

lent problem (subtracting five from the objective)

minimize x2 + 3x3

subject to x2 + x3 = 4

x2 � 0, x3 � 0,

which is a problem in standard form. After the smaller problem is solved (the answer

is x2 = 4, x3 = 0) the value for x1(x1 = −3) can be found from (2.5).

2.2 Examples of Linear Programming Problems

Linear programming has long proved its merit as a significant model of numerous

allocation problems and economic phenomena. The continuously expanding litera-

ture of applications repeatedly demonstrates the importance of linear programming

as a general framework for problem formulation. In this section we present some

classic examples of situations that have natural formulations.

Example 1 (The Diet Problem). How can we determine the most economical diet

that satisfies the basic minimum nutritional requirements for good health? Such a

problem might, for example, be faced by the dietitian of a large army. We assume

that there are available at the market n different foods and that the jth food sells at a

price c j per unit. In addition there are m basic nutritional ingredients and, to achieve

a balanced diet, each individual must receive at least bi units of the ith nutrient per

day. Finally, we assume that each unit of food j contains ai j units of the ith nutrient.

If we denote by x j the number of units of food j in the diet, the problem then is

to select the x j’s to minimize the total cost

c1x1 + c2x2 + · · · + cnxn

subject to the nutritional constraints

ai1x1 + ai2x2 + · · · + ainxn � bi, i = 1, . . . ,m,

and the nonnegativity constraints

x1 � 0, x2 � 0, . . . , xn � 0

on the food quantities.

This problem can be converted to standard form by subtracting a nonnegative

surplus variable from the left side of each of the m linear inequalities. The diet

problem is discussed further in Chap. 4.

Example 2 (Manufacturing Problem). Suppose we own a facility that is capable of

manufacturing n different products, each of which may require various amounts

2.2 Examples of Linear Programming Problems 15

of m different resources. Each product can be produced at any level x j � 0,

j = 1, 2, . . . , n, and each unit of the jth product can sell for p j dollars and needs

ai j units of the ith resource, i = 1, 2, . . . ,m. Assuming linearity of the production

facility, if we are given a set of m numbers b1, b2, . . . , bm describing the available

quantities of the m resources, and we wish to manufacture products at maximum

revenue, ours decision problem is a linear program to maximize

p1x1 + p2x2 + · · · + pnxn

subject to the resource constraints

ai1x1 + ai2x2 + · · · + ainxn � bi, i = 1, . . . ,m

and the nonnegativity constraints on all production variables.

Example 3 (The Transportation Problem). Quantities a1, a2, . . . , am, respectively,

of a certain product are to be shipped from each of m locations and received in

amounts b1, b2, . . . , bn, respectively, at each of n destinations. Associated with the

shipping of a unit of product from origin i to destination j is a shipping cost ci j. It is

desired to determine the amounts xi j to be shipped between each origin–destination

pair i = 1, 2, . . . , m; j = 1, 2, . . . , n; so as to satisfy the shipping requirements and

minimize the total cost of transportation.

To formulate this problem as a linear programming problem, we set up the array

shown below:

The ith row in this array defines the variables associated with the ith origin, while

the jth column in this array defines the variables associated with the jth destina-

tion. The problem is to place nonnegative variables xi j in this array so that the sum

across the ith row is a j, the sum down the jth column is b j, and the weighted sum
∑n

j=1

∑m
i=1 ci jxi j, representing the transportation cost, is minimized.

Thus, we have the linear programming problem:

minimize
∑

i j

ci jxi j

subject to

n
∑

j=1

xi j = a j for i = 1, 2, . . . , m (2.6)

m
∑

i=1

xi j = b j for j = 1, 2, . . . , n (2.7)

16 2 Basic Properties of Linear Programs

xi j � 0 for i = 1, 2, . . . , m; j = 1, 2, . . . , n.

In order that the constraints (2.6) and (2.7) be consistent, we must, of course,

assume that
∑m

i=1 ai =
∑n

j=1 b j which corresponds to assuming that the total amount

shipped is equal to the total amount received.

The transportation problem is now clearly seen to be a linear programming prob-

lem in mn variables. The equations (2.6) and (2.7) can be combined and expressed

in matrix form in the usual manner and this results in an (m + n) × (mn) coefficient

matrix consisting of zeros and ones only.

Fig. 2.1 A network with capacities

Example 4 (The Maximal Flow Problem). Consider a capacitated network (see

Fig. 2.1, and Appendix D) in which two special nodes, called the source and the

sink, are distinguished. Say they are nodes 1 and m, respectively. All other nodes

must satisfy the strict conservation requirement; that is, the net flow into these nodes

must be zero. However, the source may have a net outflow and the sink a net inflow.

The outflow f of the source will equal the inflow of the sink as a consequence of

the conservation at all other nodes. A set of arc flows satisfying these conditions

is said to be a flow in the network of value f . The maximal flow problem is that

of determining the maximal flow that can be established in such a network. When

written out, it takes the form

minimize f

subject to

n
∑

j=1

x1 j −
n

∑

j=1

x j1 − f = 0

n
∑

j=1

xi j −
n

∑

j=1

x ji = 0, i � 1, m (2.8)

n
∑

j=1

xm j −
n

∑

j=1

x jm + f = 0

0 ≤ xi j ≤ ki j, forall i, j,

where ki j = 0 for those no-arc pairs (i, j).

2.2 Examples of Linear Programming Problems 17

Example 5 (A Warehousing Problem). Consider the problem of operating a ware-

house, by buying and selling the stock of a certain commodity, in order to maximize

profit over a certain length of time. The warehouse has a fixed capacity C, and there

is a cost r per unit for holding stock for one period. The price, pi, of the commod-

ity is known to fluctuate over a number of time periods—say months, indexed by

i. In any period the same price holds for both purchase or sale. The warehouse is

originally empty and is required to be empty at the end of the last period.

To formulate this problem, variables are introduced for each time period. In par-

ticular, let xi denote the level of stock in the warehouse at the beginning of period i.

Let ui denote the amount bought during period i, and let si denote the amount sold

during period i. If there are n periods, the problem is

maximize
n
∑

i=1
(pi(si − ui) − rxi)

subject to xi+1 = xi + ui − si i = 1, 2, . . . , n − 1

0 = xn + un − sn

xi + zi = C i = 2, . . . , n

x1 = 0, xi � 0, ui � 0, si � 0, zi � 0,

where zi is a slack variable. If the constraints are written out explicitly for the case

n = 3, they take the form

−u1 + s1 +x2 =0

−x2 − u2 + s2 +x3 =0

x2 + z2 =C

−x3 − u3 + s3 =0

x3 + z3 =C

Note that the coefficient matrix can be partitioned into blocks corresponding to

the variables of the different time periods. The only blocks that have nonzero entries

are the diagonal ones and the ones immediately above the diagonal. This structure

is typical of problems involving time.

Example 6 (Linear Classifier and Support Vector Machine). Suppose several

d-dimensional data points are classified into two distinct classes. For example, two-

dimensional data points may be grade averages in science and humanities for differ-

ent students. We also know the academic major of each student, as being in science

or humanities, which serves as the classification. In general we have vectors ai ∈ Ed

for i = 1, 2, . . . , n1 and vectors b j ∈ Ed for j = 1, 2, . . . , n2. We wish to find

a hyperplane that separates the ai’s from the b j’s. Mathematically we wish to find

y ∈ Ed and a number β such that

aT
i y + β � 1 for all i

bT
j y + β � −1 for all j,

where {x : xT y + β = 0} is the desired hyperplane, and the separation is defined by

the +1 and −l. This is a linear program. See Fig. 2.2.

18 2 Basic Properties of Linear Programs

Example 7 (Combinatorial Auction). Suppose there are m mutually exclusive po-

tential states and only one of them will be true at maturity. For example, the states

may correspond to the winning horse in a race of m horses, or the value of a stock

index, falling within m intervals. An auction organizer who establishes a parimutuel

auction is prepared to issue contracts specifying subsets of the m possibilities that

pay $1 if the final state is one of those designated by the contract, and zero oth-

erwise. There are n participants who may place orders with the organizer for the

purchase of such contracts. An order by the jth participant consists of an m-vector

a j = (a1 j, a2 j, . . . , am j)
T where each component is either 0 or 1, a one indicating a

desire to be paid if the corresponding state occurs.

Fig. 2.2 Support vector for data classification

Accompanying the order is a number π j which is the price limit the participant

is willing to pay for one unit of the order. Finally, the participant also declares the

maximum number q j of units he or she is willing to accept under these terms.

The auction organizer, after receiving these various orders, must decide how

many contracts to fill. Let x j be the (real) number of units awarded to the jth or-

der. Then the jth participant will pay π jx j. The total amount paid by all participants

is πT x, where x is the vector of x j’s and π is the vector of prices.

If the outcome is the ith state, the auction organizer must pay out a total of
∑n

j=1 ai jx j = (Ax) j. The organizer would like to maximize profit in the worst possi-

ble case, and does this by solving the problem

maximize πT x −maxi(Ax)i

subject to 0 � x � q.

2.3 Basic Solutions 19

This problem can be expressed alternatively as selecting x and scalar s to

maximize πT x − s

subject to Ax − 1s � 0

0 � x � q

where 1 is the vector of all 1’s. Notice that the profit will always be nonnegative,

since x = 0 is feasible.

2.3 Basic Solutions

Consider the system of equalities

Ax = b, (2.9)

where x is an n-vector, b an m-vector, and A is an m × n matrix. Suppose that from

the n columns of A we select a set of m linearly independent columns (such a set

exists if the rank of A is m). For notational simplicity assume that we select the first

m columns of A and denote the m × m matrix determined by these columns by B.

The matrix B is then nonsingular and we may uniquely solve the equation.

BxB = b (2.10)

for the m-vector xB. By putting x = (xB, 0) (that is, setting the first m components

of x equal to those of xB and the remaining components equal to zero), we obtain a

solution to Ax = b. This leads to the following definition.

Definition. Given the set of m simultaneous linear equations in n unknowns (2.9), let B be
any nonsingular m×m submatrix made up of columns of A. Then, if all n−m components of
x not associated with columns of B are set equal to zero, the solution to the resulting set of
equations is said to be a basic solution to (2.9) with respect to the basis B. The components
of x associated with columns of B are called basic variables.

In the above definition we refer to B as a basis, since B consists of m linearly

independent columns that can be regarded as a basis for the space Em. The basic

solution corresponds to an expression for the vector b as a linear combination of

these basis vectors. This interpretation is discussed further in the next section.

In general, of course, Eq. (2.9) may have no basic solutions. However, we may

avoid trivialities and difficulties of a nonessential nature by making certain elemen-

tary assumptions regarding the structure of the matrix A. First, we usually assume

that n > m, that is, the number of variables x j exceeds the number of equality con-

straints. Second, we usually assume that the rows of A are linearly independent, cor-

responding to linear independence of the m equations. A linear dependency among

the rows of A would lead either to contradictory constraints and hence no solutions

to (2.9), or to a redundancy that could be eliminated. Formally, we explicitly make

the following assumption in our development, unless noted otherwise.

20 2 Basic Properties of Linear Programs

Full Rank Assumption. The m × n matrix A has m < n, and the m rows of A are linearly

independent.

Under the above assumption, the system (2.9) will always have a solution and, in

fact, it will always have at least one basic solution.

The basic variables in a basic solution are not necessarily all nonzero. This is

noted by the following definition.

Definition. If one or more of the basic variables in a basic solution has value zero, that
solution is said to be a degenerate basic solution.

We note that in a nondegenerate basic solution the basic variables, and hence the

basis B, can be immediately identified from the positive components of the solution.

There is ambiguity associated with a degenerate basic solution, however, since the

zero-valued basic and some of nonbasic variables can be interchanged.

So far in the discussion of basic solutions we have treated only the equality con-

straint (2.9) and have made no reference to positivity constraints on the variables.

Similar definitions apply when these constraints are also considered. Thus, consider

now the system of constraints

Ax = b, x � 0, (2.11)

which represent the constraints of a linear program in standard form.

Definition. A vector x satisfying (2.11) is said to be feasible for these constraints. A feasi-
ble solution to the constraints (2.11) that is also basic is said to be a basic feasible solution;
if this solution is also a degenerate basic solution, it is called a degenerate basic feasible

solution.

2.4 The Fundamental Theorem of Linear Programming

In this section, through the fundamental theorem of linear programming, we estab-

lish the primary importance of basic feasible solutions in solving linear programs.

The method of proof of the theorem is in many respects as important as the result

itself, since it represents the beginning of the development of the simplex method.

The theorem (due to Carathéodory) itself shows that it is necessary only to con-

sider basic feasible solutions when seeking an optimal solution to a linear program

because the optimal value is always achieved at such a solution.

Corresponding to a linear program in standard form

minimize cT x

subject to Ax = b, x � 0 (2.12)

a feasible solution to the constraints that achieves the minimum value of the objec-

tive function subject to those constraints is said to be an optimal feasible solution.

If this solution is basic, it is an optimal basic feasible solution.

2.4 The Fundamental Theorem of Linear Programming 21

Fundamental Theorem of Linear Programming. Given a linear program in standard form

(2.12) where A is an m × n matrix of rank m,

i) if there is a feasible solution, there is a basic feasible solution;

ii) if there is an optimal feasible solution, there is an optimal basic feasible solution.

Proof of (i). Denote the columns of A by a1, a2, . . . , an. Suppose x = (x1, x2, . . . ,

xn) is a feasible solution. Then, in terms of the columns of A, this solution satisfies:

x1a1 + x2a2 + · · · + xnan = b.

Assume that exactly p of the variables xi are greater than zero, and for convenience,

that they are the first p variables. Thus

x1a1 + x2a2 + · · · + xpap = b. (2.13)

There are now two cases, corresponding as to whether the set a1, a2, . . . , ap is

linearly independent or linearly dependent.

Case 1: Assume a1, a2, . . . , ap are linearly independent. Then clearly, p � m.

If p = m, the solution is basic and the proof is complete. If p < m, then, since A

has rank m, m − p vectors can be found from the remaining n − p vectors so that

the resulting set of m vectors is linearly independent. (See Exercise 12.) Assign-

ing the value zero to the corresponding m − p variables yields a (degenerate) basic

feasible solution.

Case 2: Assume a1, a2, . . . , ap are linearly dependent. Then there is a non-

trivial linear combination of these vectors that is zero. Thus there are constants

y1, y2, . . . , yp, at least one of which can be assumed to be positive, such that

y1a1 + y2a2 + · · · + ypap = 0. (2.14)

Multiplying this equation by a scalar ε and subtracting it from (2.13), we obtain

(x1 − εy1)a1 + (x2 − εy2)a2 + · · · + (xp − εyp)ap = b. (2.15)

This equation holds for every ε, and for each ε the components x j−εy j correspond to

a solution of the linear equalities—although they may violate xi − εyi � 0. Denoting

y = (y1, y2, . . . , yp, 0, 0, . . . , 0), we see that for any ε

x − εy (2.16)

is a solution to the equalities. For ε = 0, this reduces to the original feasible solution.

As ε is increased from zero, the various components increase, decrease, or remain

constant, depending upon whether the corresponding yi is negative, positive, or zero.

Since we assume at least one yi is positive, at least one component will decrease as ε

is increased. We increase ε to the first point where one or more components become

zero. Specifically, we set

ε = min{xi/yi : yi > 0}.

22 2 Basic Properties of Linear Programs

For this value of ε the solution given by (2.16) is feasible and has at most p − 1

positive variables. Repeating this process if necessary, we can eliminate positive

variables until we have a feasible solution with corresponding columns that are lin-

early independent. At that point Case 1 applies. �

Proof of (ii). Let x = (x1, x2, . . . , xn) be an optimal feasible solution and, as in

the proof of (i) above, suppose there are exactly p positive variables x1, x2, . . . , xp.

Again there are two cases; and Case 1, corresponding to linear independence, is

exactly the same as before.

Case 2 also goes exactly the same as before, but it must be shown that for any

ε the solution (2.16) is optimal. To show this, note that the value of the solution

x − εy is

cT x − εcT y. (2.17)

For ε sufficiently small in magnitude, x − εy is a feasible solution for positive or

negative values of ε. Thus we conclude that cT y = 0. For, if cT y � 0, an ε of small

magnitude and proper sign could be determined so as to render (2.17) smaller than

cT x while maintaining feasibility. This would violate the assumption of optimality

of x and hence we must have cT y = 0.

Having established that the new feasible solution with fewer positive components

is also optimal, the remainder of the proof may be completed exactly as in part (i).

�

This theorem reduces the task of solving a linear program to that of searching

over basic feasible solutions. Since for a problem having n variables and m con-

straints there are at most
(

n

m

)

=
n!

m!(n − m)!

basic solutions (corresponding to the number of ways of selecting m of n columns),

there are only a finite number of possibilities. Thus the fundamental theorem yields

an obvious, but terribly inefficient, finite search technique. By expanding upon the

technique of proof as well as the statement of the fundamental theorem, the efficient

simplex procedure is derived.

It should be noted that the proof of the fundamental theorem given above is of

a simple algebraic character. In the next section the geometric interpretation of this

theorem is explored in terms of the general theory of convex sets. Although the

geometric interpretation is aesthetically pleasing and theoretically important, the

reader should bear in mind, lest one be diverted by the somewhat more advanced

arguments employed, the underlying elementary level of the fundamental theorem.

2.5 Relations to Convexity 23

2.5 Relations to Convexity

Our development to this point, including the above proof of the fundamental theo-

rem, has been based only on elementary properties of systems of linear equations.

These results, however, have interesting interpretations in terms of the theory of

convex sets that can lead not only to an alternative derivation of the fundamen-

tal theorem, but also to a clearer geometric understanding of the result. The main

link between the algebraic and geometric theories is the formal relation between

basic feasible solutions of linear inequalities in standard form and extreme points

of polytopes. We establish this correspondence as follows. The reader is referred to

Appendix B for a more complete summary of concepts related to convexity, but the

definition of an extreme point is stated here.

Definition. A point x in a convex set C is said to be an extreme point of C if there are no
two distinct points x1 and x2 in C such that x = αx1 + (1 − α)x2 for some α, 0 < α < 1.

An extreme point is thus a point that does not lie strictly within a line segment

connecting two other points of the set. The extreme points of a triangle, for example,

are its three vertices.

Theorem (Equivalence of Extreme Points and Basic Solutions). Let A be an m×n matrix

of rank m and b an m-vector. Let K be the convex polytope consisting of all n-vectors x

satisfying

Ax = b, x � 0. (2.18)

A vector x is an extreme point of K if and only if x is a basic feasible solution to (2.18).

Proof. Suppose first that x = (x1, x2, . . . , xm, 0, 0, . . . , 0) is a basic feasible

solution to (2.18). Then

x1a1 + x2a2 + · · · + xmam = b,

where a1, a2, . . . , am, the first m columns of A, are linearly independent. Suppose

that x could be expressed as a convex combination of two other points in K; say,

x = αy+(1−α)z, 0 < α < 1, y � z. Since all components of x, y, z are nonnegative

and since 0 < α < 1, it follows immediately that the last n−m components of y and

z are zero. Thus, in particular, we have

y1a1 + y2a2 + · · · + ymam = b

and

z1a1 + z2a2 + · · · + zmam = b.

Since the vectors a1, a2, . . . , am are linearly independent, however, it follows that

x = y = z and hence x is an extreme point of K.

Conversely, assume that x is an extreme point of K. Let us assume that the

nonzero components of x are the first k components. Then

x1a1 + x2a2 + · · · + xkak = b,

24 2 Basic Properties of Linear Programs

with xi > 0, i = 1, 2, . . . , k. To show that x is a basic feasible solution it must be

shown that the vectors a1, a2, . . . , ak are linearly independent. We do this by con-

tradiction. Suppose a1, a2, . . . , ak are linearly dependent. Then there is a nontrivial

linear combination that is zero:

y1a1 + y2a2 + · · · + ykak = 0.

Define the n-vector y = (y1, y2, . . . , yk, 0, 0, . . . , 0). Since xi > 0, 1 � i � k, it is

possible to select ε such that

x + εy � 0, x − εy � 0.

We then have x = 1
2
(x+εy)+ 1

2
(x−εy) which expresses x as a convex combination of

two distinct vectors in K. This cannot occur, since x is an extreme point of K. Thus

a1, a2, . . . , ak are linearly independent and x is a basic feasible solution. (Although

if k < m, it is a degenerate basic feasible solution.) �

This correspondence between extreme points and basic feasible solutions enables

us to prove certain geometric properties of the convex polytope K defining the con-

straint set of a linear programming problem.

Corollary 1. If the convex set K corresponding to (2.18) is nonempty, it has at least one

extreme point.

Proof. This follows from the first part of the Fundamental Theorem and the Equiv-

alence Theorem above. �

Corollary 2. If there is a finite optimal solution to a linear programming problem, there is

a finite optimal solution which is an extreme point of the constraint set.

Corollary 3. The constraint set K corresponding to (2.18) possesses at most a finite number

of extreme points.

Proof. There are obviously only a finite number of basic solutions obtained by

selecting m basis vectors from the n columns of A. The extreme points of K are

a subset of these basic solutions. �

Finally, we come to the special case which occurs most frequently in practice and

which in some sense is characteristic of well-formulated linear programs—the case

where the constraint set K is nonempty and bounded. In this case we combine the

results of the Equivalence Theorem and Corollary 3 above to obtain the following

corollary.

Corollary 4. If the convex polytope K corresponding to (2.18) is bounded, then K is a con-

vex polyhedron, that is, K consists of points that are convex combinations of a finite number

of points.

Some of these results are illustrated by the following examples:

2.5 Relations to Convexity 25

Example 1. Consider the constraint set in E3 defined by

x1 + x2 + x3 = 1

x1 � 0, x2 � 0, x3 � 0.

This set is illustrated in Fig. 2.3. It has three extreme points, corresponding to the

three basic solutions to x1 + x2 + x3 = 1.

Example 2. Consider the constraint set in E3 defined by

x1 + x2 + x3 = 1

2x1 + 3x2 = 1

x1 � 0, x2 � 0, x3 � 0.

Fig. 2.3 Feasible set for Example 1

This set is illustrated in Fig. 2.4. It has two extreme points, corresponding to the

two basic feasible solutions. Note that the system of equations itself has three basic

solutions, (2, −1, 0), (1/2, 0, 1/2), (0, 1/3, 2/3), the first of which is not feasible.

Example 3. Consider the constraint set in E2 defined in terms of the inequalities

x1 +
8

3
x2 � 4

x1 + x2 � 2

2x1 � 3

x1 � 0, x2 � 0.

26 2 Basic Properties of Linear Programs

This set is illustrated in Fig. 2.5. We see by inspection that this set has five ex-

treme points. In order to compare this example with our general results we must

introduce slack variables to yield the equivalent set in E5:

x1 +
8

3
x2 + x3 = 4

x1 + x2 + x4 = 2

2x1 + x5 = 3

x1 � 0, x2 � 0, x3 � 0, x4 � 0, x5 � 0.

A basic solution for this system is obtained by setting any two variables to zero and

solving for the remaining three. As indicated in Fig. 2.5, each edge of the figure

corresponds to one variable being zero, and the extreme points are the points where

two variables are zero.

Fig. 2.4 Feasible set for Example 2

The last example illustrates that even when not expressed in standard form the

extreme points of the set defined by the constraints of a linear program correspond to

the possible solution points. This can be illustrated more directly by including the

objective function in the figure as well. Suppose, for example, that in Example 3

the objective function to be minimized is −2x1 − x2. The set of points satisfying

−2x1 − x2 = z for fixed z is a line. As z varies, different parallel lines are obtained

as shown in Fig. 2.6. The optimal value of the linear program is the smallest value

of z for which the corresponding line has a point in common with the feasible set.

It should be reasonably clear, at least in two dimensions, that the points of solution

will always include an extreme point. In the figure this occurs at the point (3/2, 1/2)

with z = −7/2.

2.6 Exercises 27

2.6 Exercises

1. Convert the following problems to standard form:

(a) minimize x + 2y + 3z

subject to 2 � x + y � 3

4 � x + z � 5

x � 0, y � 0, z � 0.

(b) minimize x + y + z

subject to x + 2y + 3z = 10

x � 1, y � 2, z � 1.

Fig. 2.5 Feasible set for Example 3

2. A manufacturer wishes to produce an alloy that is, by weight, 30 % metal A and

70 % metal B. Five alloys are available at various prices as indicated below:

Alloy 1 2 3 4 5

%A 10 25 50 75 95

% B 90 75 50 25 5

Price/lb $ 5 $ 4 $ 3 $ 2 $ 1.50

The desired alloy will be produced by combining some of the other alloys. The

manufacturer wishes to find the amounts of the various alloys needed and to

determine the least expensive combination. Formulate this problem as a linear

program.

28 2 Basic Properties of Linear Programs

Fig. 2.6 Illustration of extreme point solution

3. An oil refinery has two sources of crude oil: a light crude that costs $35/barrel

and a heavy crude that costs $30/barrel. The refinery produces gasoline, heating

oil, and jet fuel from crude in the amounts per barrel indicated in the following

table:

Gasoline Heating oil Jet fuel

Light crude 0.3 0.2 0.3

Heavy crude 0.3 0.4 0.2

The refinery has contracted to supply 900,000 barrels of gasoline, 800,000 bar-

rels of heating oil, and 500,000 barrels of jet fuel. The refinery wishes to find

the amounts of light and heavy crude to purchase so as to be able to meet its

obligations at minimum cost. Formulate this problem as a linear program.

4. A small firm specializes in making five types of spare automobile parts. Each

part is first cast from iron in the casting shop and then sent to the finishing shop

where holes are drilled, surfaces are turned, and edges are ground. The required

worker-hours (per 100 units) for each of the parts of the two shops are shown

below:

Part 1 2 3 4 5

Casting 2 1 3 3 1

Finishing 3 2 2 1 1

The profits from the parts are $30, $20, $40, $25, and $10 (per 100 units),

respectively. The capacities of the casting and finishing shops over the next

month are 700 and 1,000 worker-hours, respectively. Formulate the problem of

2.6 Exercises 29

determining the quantities of each spare part to be made during the month so as

to maximize profit.

5. Convert the following problem to standard form and solve:

maximize x1 + 4x2 + x3

subject to 2x1 − 2x2 + x3 = 4

x1 − x3 = 1

x2 � 0, x3 � 0.

6. A large textile firm has two manufacturing plants, two sources of raw material,

and three market centers. The transportation costs between the sources and the

plants and between the plants and the markets are as follows:

Ten tons are available from source 1 and 15 tons from source 2. The three market

centers require 8 tons, 14 tons, and 3 tons. The plants have unlimited processing

capacity.

(a) Formulate the problem of finding the shipping patterns from sources to

plants to markets that minimizes the total transportation cost.

(b) Reduce the problem to a single standard transportation problem with two

sources and three destinations. (Hint: Find minimum cost paths from sources

to markets.)

(c) Suppose that plant A has a processing capacity of 8 tons, and plant B has

a processing capacity of 7 tons. Show how to reduce the problem to two

separate standard transportation problems.

7. A businessman is considering an investment project. The project has a lifetime

of 4 years, with cash flows of −$100,000, +$50,000,+$70,000, and +$30,000

in each of the 4 years, respectively. At any time he may borrow funds at the

rates of 12 %, 22 %, and 34 % (total) for 1, 2, or 3 periods, respectively. He may

loan funds at 10 % per period. He calculates the present value of a project as

the maximum amount of money he would pay now, to another party, for the

project, assuming that he has no cash on hand and must borrow and lend to pay

the other party and operate the project while maintaining a nonnegative cash

30 2 Basic Properties of Linear Programs

balance after all debts are paid. Formulate the project valuation problem in a

linear programming framework.

8. Convert the following problem to a linear program in standard form:

minimize |x| + |y| + |z|
subject to x + y � 1

2x + z = 3.

9. A class of piecewise linear functions can be represented as f (x) = Maximum

(cT
1 x+d1, cT

2 x+d2, . . . , cT
p x+dp). For such a function f , consider the problem

minimize f (x)

subject to Ax = b, x � 0.

Show how to convert this problem to a linear programming problem.

10. A small computer manufacturing company forecasts the demand over the next

n months to be di, i = 1, 2, . . . , n. In any month it can produce r units, using

regular production, at a cost of b dollars per unit. By using overtime, it can

produce additional units at c dollars per unit, where c > b. The firm can store

units from month to month at a cost of s dollars per unit per month. Formulate

the problem of determining the production schedule that minimizes cost. (Hint:

See Exercise 9.)

11. Discuss the situation of a linear program that has one or more columns of the A

matrix equal to zero. Consider both the case where the corresponding variables

are required to be nonnegative and the case where some are free.

12. Suppose that the matrix A = (a1, a2, . . . , an) has rank m, and that for some

p < m, a1, a2, . . . , ap are linearly independent. Show that m − p vectors

from the remaining n − p vectors can be adjoined to form a set of m linearly

independent vectors.

13. Suppose that x is a feasible solution to the linear program (2.12), with A an

m× n matrix of rank m. Show that there is a feasible solution y having the same

value (that is, cT y = cT x) and having at most m + 1 positive components.

14. What are the basic solutions of Example 3, Sect. 2.5?

15. Let S be a convex set in En and S ∗ a convex set in Em. Suppose T is an m × n

matrix that establishes a one-to-one correspondence between S and S ∗, i.e., for

every s ∈ S there is s∗ ∈ S ∗ such that Ts = s∗, and for every s∗ ∈ S ∗ there is a

single s ∈ S such that Ts = s∗. Show that there is a one-to-one correspondence

between extreme points of S and S ∗.
16. Consider the two linear programming problems in Example 1, Sect. 2.1, one

in En and the other in En+m. Show that there is a one-to-one correspondence

between extreme points of these two problems.

References 31

References

2.1–2.4 The approach taken in this chapter, which is continued in the next, is the

more or less standard approach to linear programming as presented in, for

example, Dantzig [D6], Hadley [H1], Gass [G4], Simonnard [S6], Murty

[M11], and Gale [G2]. Also see Bazaraa, Jarvis, and H. F. Sherali [B6],

Bertsimas and Tsitsiklis [B13], Cottle, [C6], Dantzig and Thapa [D9, D10],

Nash and Sofer [N1], Saigal [S1], and Vanderbei [V3].

2.5 An excellent discussion of this type can be found in Simonnard [S6].

Chapter 3

The Simplex Method

The idea of the simplex method is to proceed from one basic feasible solution (that

is, one extreme point) of the constraint set of a problem in standard form to another,

in such a way as to continually decrease the value of the objective function until a

minimum is reached. The results of Chap. 2 assure us that it is sufficient to consider

only basic feasible solutions in our search for an optimal feasible solution. This

chapter demonstrates that an efficient method for moving among basic solutions to

the minimum can be constructed.

In the first five sections of this chapter the simplex machinery is developed from

a careful examination of the system of linear equations that defines the constraints

and the basic feasible solutions of the system. This approach, which focuses on

individual variables and their relation to the system, is probably the simplest, but

unfortunately is not easily expressed in compact form. In the last few sections of

the chapter, the simplex method is viewed from a matrix theoretic approach, which

focuses on all variables together. This more sophisticated viewpoint leads to a com-

pact notational representation, increased insight into the simplex process, and to

alternative methods for implementation.

3.1 Pivots

To obtain a firm grasp of the simplex procedure, it is essential that one first under-

stand the process of pivoting in a set of simultaneous linear equations. There are two

dual interpretations of the pivot procedure.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 3

33

34 3 The Simplex Method

First Interpretation

Consider the set of simultaneous linear equations

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

...
... (3.1)

am1x1 + am2x2 + . . . + amnxn = bm,

where m � n. In matrix form we write this as

Ax = b. (3.2)

In the space En we interpret this as a collection of m linear relations that must be

satisfied by a vector x. Thus denoting by a j the ith row of A we may express (3.1) as:

a1x = b1

a2x = b2

... (3.3)

amx = bm.

This corresponds to the most natural interpretation of (3.1) as a set of m equations.

If m < n and the equations are linearly independent, then there is not a unique

solution but a whole linear variety of solutions (see Appendix B). A unique solution

results, however, if n − m additional independent linear equations are adjoined. For

example, we might specify n − m equations of the form ekx = 0, where ek is the kth

unit vector (which is equivalent to xk = 0), in which case we obtain a basic solu-

tion to (3.1). Different basic solutions are obtained by imposing different additional

equations of this special form.

If Eq. (3.3) are linearly independent, we may replace a given equation by any

nonzero multiple of itself plus any linear combination of the other equations in the

system. This leads to the well-known Gaussian reduction schemes, whereby mul-

tiples of equations are systematically subtracted from one another to yield either a

triangular or canonical form. It is well known, and easily proved, that if the first m

columns of A are linearly independent, the system (3.1) can, by a sequence of such

multiplications and subtractions, be converted to the following canonical form:

x1 +ā1(m+1)xm+1 + ā1(m+2)xm+2 + · · · + ā1nxn = ā10

x2 +ā2(m+1)xm+1 + ā2(m+2)xm+2 + · · · + ā2nxn = ā20

...
... (3.4)

xm +ām(m+1)xm+1 + ām(m+2)xm+2 + · · · + āmnxn = ām0.

3.1 Pivots 35

Corresponding to this canonical representation of the system, the variables x1,

x2, . . . , xm are called basic and the other variables are nonbasic. The corresponding

basic solution is then:

x1 = ā10, x2 = ā20, . . . , xm = ām0, xm+1 = 0, . . . , xn = 0,

or in vector form: x = (ā0, 0) where ā0 is m-dimensional and 0 is the (n − m)-

dimensional zero vector.

Actually, we relax our definition somewhat and consider a system to be in canon-

ical form if, among the n variables, there are m basic ones with the property that each

appears in only one equation, its coefficient in that equation is unity, and no two of

these m variables appear in any one equation. This is equivalent to saying that a

system is in canonical form if by some reordering of the equations and the variables

it takes the form (3.4).

Also it is customary, from the dictates of economy, to represent the system (3.4)

by its corresponding array of coefficients or tableau:

x1 x2 x3 · · · xm xm+1 xm+2 · · · xn

1 0 0 · · · 0 ā1(m+1) ā1(m+2) · · · ā1n ā10

0 1 0 · · · 0 ā2(m+1) ā2(m+2) · · · . ā20

0 0 1 · · ·

.

.

.

0 0 0 · · · 1 ām(m+1) ām(m+2) · · · āmn ām0

(3.5)

The question solved by pivoting is this: given a system in canonical form, suppose

a basic variable is to be made nonbasic and a nonbasic variable is to be made basic;

what is the new canonical form corresponding to the new set of basic variables? The

procedure is quite simple. Suppose in the canonical system (3.4) we wish to replace

the basic variable xp, 1 � p � m, by the nonbasic variable xq. This can be done if

and only if āpq is nonzero; it is accomplished by dividing row p by āpq to get a unit

coefficient for xq in the pth equation, and then subtracting suitable multiples of row

p from each of the other rows in order to get a zero coefficient for xq in all other

equations. This transforms the qth column of the tableau so that it is zero except

in its pth entry (which is unity) and does not affect the columns of the other basic

variables. Denoting the coefficients of the new system in canonical form by ā′
ij
, we

have explicitly
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ā′
ij
= āij − āiq

āpq
āpj, i � p

ā′
pj
=

āpj

āpq
.

(3.6)

Equation (3.6) are the pivot equations that arise frequently in linear programming.

The element āpq in the original system is said to be the pivot element.

36 3 The Simplex Method

Example 1. Consider the system in canonical form:

x1 + x4 + x5 − x6 = 5

x2 + 2x4 − 3x5 + x6 = 3

x3 − x4 + 2x5 − x6 = −1.

Let us find the basic solution having basic variables x4, x5, x6. We set up the coef-

ficient array below:

x1 x2 x3 x4 x5 x6

1 0 0 1© 1 −1 5
0 1 0 2 −3 1 3
0 0 1 −1 2 −1 −1

The circle indicated is our first pivot element and corresponds to the replacement of

x1 by x4 as a basic variable. After pivoting we obtain the array

and again we have circled the next pivot element indicating our intention to replace

x2 by x5. We then obtain

Continuing, there results

x1 x2 x3 x4 x5 x6

1 −1 −2 1 0 0 4
1 −2 −3 0 1 0 2
1 −3 −5 0 0 1 1

From this last canonical form we obtain the new basic solution

x4 = 4, x5 = 2, x6 = 1.

Second Interpretation

The set of simultaneous equations represented by (3.1) and (3.2) can be interpreted

in Em as a vector equation. Denoting the columns of A by a1, a2, . . . , an we write

(3.1) as
x1a1 + x2a2 + · · · + xnan = b. (3.7)

In this interpretation we seek to express b as a linear combination of the ai’s.

3.1 Pivots 37

If m < n and the vectors a j span Em then there is not a unique solution but a

whole family of solutions. The vector b has a unique representation, however, as

a linear combination of a given linearly independent subset of these vectors. The

corresponding solution with (n−m) x j variables set equal to zero is a basic solution

to (3.1).

Suppose now that we start again with a system in the canonical form correspond-

ing to the tableau:

a1 a2 a3 · · · am am+1 am+2 · · · an b

1 0 0 · · · 0 ā1(m+1) ā1(m+2) · · · ā1n ā10

0 1 0 · · · 0 ā2(m+1) ā2(m+2) · · · . ā20

0 0 1 · · ·

.

.

.

0 0 0 · · · 1 ām(m+1) ām(m+2) · · · āmn ām0

(3.8)

In this case the first m vectors form a basis. Furthermore, every other vector repre-

sented in the tableau can be expressed as a linear combination of these basis vectors

by simply reading the coefficients down the corresponding column. Thus

a j = ā1 ja1 + ā2 ja2 + · · · + ām jam. (3.9)

The tableau can be interpreted as giving the representations of the vectors a j

in terms of the basis; the jth column of the tableau is the representation for the

vector a j. In particular, the expression for b in terms of the basis is given in the last

column.

We now consider the operation of replacing one member of the basis by another

vector not already in the basis. Suppose for example we wish to replace the basis

vector ap, 1 � p � m, by the vector aq. Provided that the first m vectors with ap

replaced by aq are linearly independent these vectors constitute a basis and every

vector can be expressed as a linear combination of this new basis. To find the new

representations of the vectors we must update the tableau. The linear independence

condition holds if and only if āpq � 0.

Any vector a j can be expressed in terms of the old array through (3.9). For aq we

have

aq =

m
∑

i=1
i�p

āiqai + āpqap

from which we may solve for ap,

ap =
1

āpq

aq −
m

∑

i=1
i�p

āiq

āpq

ai. (3.10)

38 3 The Simplex Method

Substituting (3.10) into (3.9) we obtain:

a j =

m
∑

i=1
i�p

(

āij −
āiq

āpq

āpj

)

ai +
āpj

āpq

aq. (3.11)

Denoting the coefficients of the new tableau, which give the linear combinations,

by ā′
ij

we obtain immediately from (3.11)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ā′
ij
= āij − āiq

āpq
āp j, i � p

ā′
pj
=

āpj

āpq
.

(3.12)

These formulas are identical to (3.6).

If a system of equations is not originally given in canonical form, we may put

it into canonical form by adjoining the m unit vectors to the tableau and, starting

with these vectors as the basis, successively replace each of them with columns of

A using the pivot operation.

Example 2. Suppose we wish to solve the simultaneous equations

x1 + x2 − x3 = 5

2x1 − 3x2 + x3 = 3

−x1 + 2x2 − x3 = −1.

To obtain an original basis, we form the augmented tableau

e1 e2 e3 a1 a2 a3 b

1 0 0 1 1 −1 5

0 1 0 2 −3 1 3

0 0 1 −1 2 −1 −1

and replace e1 by a1, e2 by a2, and e3 by a3. The required operations are identical

to those of Example 1.

3.2 Adjacent Extreme Points

In Chap. 2 it was discovered that it is only necessary to consider basic feasible solu-

tions to the system

Ax = b, x � 0 (3.13)

when solving a linear program, and in the previous section it was demonstrated that

the pivot operation can generate a new basic solution from an old one by replacing

one basic variable by a nonbasic variable. It is clear, however, that although the pivot

3.2 Adjacent Extreme Points 39

operation takes one basic solution into another, the nonnegativity of the solution will

not in general be preserved. Special conditions must be satisfied in order that a pivot

operation maintain feasibility. In this section we show how it is possible to select

pivots so that we may transfer from one basic feasible solution to another.

We show that although it is not possible to arbitrarily specify the pair of vari-

ables whose roles are to be interchanged and expect to maintain the nonnegativity

condition, it is possible to arbitrarily specify which nonbasic variable is to become

basic and then determine which basic variable should become nonbasic. As is con-

ventional, we base our derivation on the vector interpretation of the linear equations

although the dual interpretation could alternatively be used.

Nondegeneracy Assumption

Many arguments in linear programming are substantially simplified upon the intro-

duction of the following.

Nondegeneracy Assumption: Every basic feasible solution of (3.13) is a nondegenerate
basic feasible solution.

This assumption is invoked throughout our development of the simplex method,

since when it does not hold the simplex method can break down if it is not suitably

amended. The assumption, however, should be regarded as one made primarily for

convenience, since all arguments can be extended to include degeneracy, and the

simplex method itself can be easily modified to account for it.

Determination of Vector to Leave Basis

Suppose we have the basic feasible solution x = (x1, x2, . . . , xm, 0, 0, . . . , 0) or,

equivalently, the representation

x1a1 + x2a2 + · · · + xmam = b. (3.14)

Under the nondegeneracy assumption, x j > 0, i = 1, 2, . . . , m. Suppose also that

we have decided to bring into the representation the vector aq, q > m. We have

available a representation of aq in terms of the current basis

aq = ā1qa1 + ā2qa2 + · · · + āmqam. (3.15)

Multiplying (3.15) by a variable ε � 0 and subtracting from (3.14), we have

(x1 − εā1q)a1 + (x2 − εā2q)a2 + · · · + (xm − εāmq)am + εaq = b. (3.16)

40 3 The Simplex Method

Thus, for any ε � 0 (3.16) gives b as a linear combination of at most m + 1 vectors.

For ε = 0 we have the old basic feasible solution. As ε is increased from zero,

the coefficient of aq increases, and it is clear that for small enough ε, (3.16) gives

a feasible but nonbasic solution. The coefficients of the other vectors will either

increase or decrease linearly as ε is increased. If any decrease, we may set ε equal

to the value corresponding to the first place where one (or more) of the coefficients

vanishes. That is

ε = min
i
{x j/āiq : āiq > 0}. (3.17)

In this case we have a new basic feasible solution, with the vector aq replacing the

vector ap, where p corresponds to the minimizing index in (3.17). If the minimum in

(3.17) is achieved by more than a single index i, then the new solution is degenerate

and any of the vectors with zero component can be regarded as the one that left the

basis.

If none of the āiq’s are positive, then all coefficients in the representation (3.16)

increase (or remain constant) as ε is increased, and no new basic feasible solution is

obtained. We observe, however, that in this case, where none of the āiq’s are positive,

there are feasible solutions to (3.13) having arbitrarily large coefficients. This means

that the set K of feasible solutions to (3.13) is unbounded, and this special case, as

we shall see, is of special significance in the simplex procedure.

In summary, we have deduced that, given a basic feasible solution and an arbi-

trary vector aq, there is either a new basic feasible solution having aq in its basis and

one of the original vectors removed, or the set of feasible solutions is unbounded.

Let us consider how the calculation of this section can be displayed in our

tableau. We assume that corresponding to the constraints

Ax = b, x � 0,

we have a tableau of the form (3.8). Note that the tableau may be the result of sev-

eral pivot operations applied to the original tableau, but in any event, it represents a

solution with basis a1, a2, . . . , am. We assume that ā10, ā20, . . . , ām0 are nonneg-

ative, so that the corresponding basic solution x1 = ā10, x2 = ā20, . . . , xm = ām0 is

feasible. We wish to bring into the basis the vector aq, q > m, and maintain feasibil-

ity. In order to determine which element in the qth column to use as the pivot (and

hence which vector in the basis will leave), we use (3.17) and compute the ratios

xi/āiq = āi0/āiq, i = 1, 2, . . . , m, select the smallest nonnegative ratio, and pivot on

the corresponding āiq.

Example 3. Consider the system

a1 a2 a3 a4 a5 a6 b

1 0 0 2 4 6 4

0 1 0 1 2 3 3

0 0 1 −1 2 1 1

3.2 Adjacent Extreme Points 41

which has basis a1, a2, a3 yielding a basic feasible solution x = (4, 3, 1, 0, 0, 0).

Suppose we elect to bring a4 into the basis. To determine which element in the

fourth column is the appropriate pivot, we compute the three ratios:

4/2 = 2, 3/1 = 3, 1/ − 1 = −1

and select the smallest nonnegative one. This gives 2 as the pivot element. The new

tableau is
a1 a2 a3 a4 a5 a6 b

1/2 0 0 1 2 3 2

−1/2 1 0 0 0 0 1

1/2 0 1 0 4 4 3

with corresponding basic feasible solution x = (0, 1, 3, 2, 0, 0).

Our derivation of the method for selecting the pivot in a given column that will

yield a new feasible solution has been based on the vector interpretation of the equa-

tion Ax = b. An alternative derivation can be constructed by considering the dual

approach that is based on the rows of the tableau rather than the columns. Briefly,

the argument runs like this: if we decide to pivot on āpq, then we first divide the pth

row by the pivot element āpq to change it to unity. In order that the new āp0 remain

positive, it is clear that we must have āpq > 0. Next we subtract multiples of the

pth row from each other row in order to obtain zeros in the qth column. In this pro-

cess the new elements in the last column must remain nonnegative—if the pivot was

properly selected. The full operation is to subtract, from the ith row, āiq/āpq times

the pth row. This yields a new solution obtained directly from the last column:

x′i = xi −
āiq

āpq

xp.

For this to remain nonnegative, it follows that xp/āpq � xi/āiq, and hence again we

are led to the conclusion that we select p as the index i minimizing xi/āiq.

Geometrical Interpretations

Corresponding to the two interpretations of pivoting and extreme points developed

algebraically, are two geometrical interpretations. The first is in activity space, the

space where x is represented. This is perhaps the most natural space to consider, and

it was used in Sect. 2.5. Here the feasible region is shown directly as a convex set,

and basic feasible solutions are extreme points. Adjacent extreme points are points

that lie on a common edge.

The second geometrical interpretation is in requirements space, the space where

the columns of A and b are represented. The fundamental relation is

a1 x1 + a2x2 + · · · + anxn = b.

42 3 The Simplex Method

Fig. 3.1 Constraint representation in requirements space

An example for m = 2, n = 4 is shown in Fig. 3.1. A feasible solution defines a

representation of b as a positive combination of the ai’s. A basic feasible solution

will use only m positive weights. In the figure a basic feasible solution can be con-

structed with positive weights on a1 and a2 because b lies between them. A basic

feasible solution cannot be constructed with positive weights on a1 and a4. Suppose

we start with a1 and a2 as the initial basis. Then an adjacent basis is found by bring-

ing in some other vector. If a3 is brought in, then clearly a2 must go out. On the

other hand, if a4 is brought in, a1 must go out.

3.3 Determining a Minimum Feasible Solution

In the last section we showed how it is possible to pivot from one basic feasible

solution to another (or determine that the solution set is unbounded) by arbitrarily

selecting a column to pivot on and then appropriately selecting the pivot in that

column. The idea of the simplex method is to select the column so that the resulting

new basic feasible solution will yield a lower value to the objective function than

the previous one. This then provides the final link in the simplex procedure. By an

elementary calculation, which is derived below, it is possible to determine which

vector should enter the basis so that the objective value is reduced, and by another

simple calculation, derived in the previous section, it is possible to then determine

which vector should leave in order to maintain feasibility.

Suppose we have a basic feasible solution

(xB, 0) = (ā10, ā20, . . . , ām0, 0, 0, . . . , 0)

together with a tableau having an identity matrix appearing in the first m columns

as shown in tableau (3.8). The value of the objective function corresponding to any

solution x is

z = c1x1 + c2x2 + · · · + cnxn, (3.18)

3.3 Determining a Minimum Feasible Solution 43

and hence for the basic solution, the corresponding value is

z0 = cT
BxB, (3.19)

where cT
B
= [c1, c2, . . . , cm].

Although it is natural to use the basic solution (xB, 0) when we have the tableau

(3.8), it is clear that if arbitrary values are assigned to xm+1, xm+2, . . . , xn, we can

easily solve for the remaining variables as

x1 = ā10 −
n

∑

j=m+1

ā1 jx j

x2 = ā20 −
n

∑

j=m+1

ā2 jx j

... (3.20)

xm = ām0 −
n

∑

j=m+1

āmjx j.

Using (3.20) we may eliminate x1, x2, . . . , xm from the general formula (3.18).

Doing this we obtain

z = cT x = z0 + (cm+1 − zm+1)xm+1

+(cm+2 − zm+2)xm+2 + · · · + (cn − zn)xn (3.21)

where

z j = ā1 jc1 + ā2 jc2 + · · · + āmjcm, m + 1 � j � n, (3.22)

which is the fundamental relation required to determine the pivot column. The imp-

ortant point is that this equation gives the values of the objective function z for

any solution of Ax = b in terms of the variables xm+1, . . . , xn. From it we can

determine if there is any advantage in changing the basic solution by introducing

one of the nonbasic variables. For example, if c j − z j is negative for some j, m+1 �

j � n, then increasing x j from zero to some positive value would decrease the total

cost, and therefore would yield a better solution. The formula (3.21) and (3.22)

automatically take into account the changes that would be required in the values of

the basic variables x1, x2, . . . , xm to accommodate the change in x j.

Let us derive these relations from a different viewpoint. Let ā j be the jth column

of the tableau. Then any solution satisfies

x1e1 + x2e2 + · · · + xmem = ā0 − xm+1ām+1 − xm+2ām+2 − · · · − xnān.

Taking the inner product of this vector equation with cT
B

, we have

m
∑

i=1

c jx j = cT
Bā0 −

n
∑

j=m+1

z jx j,

44 3 The Simplex Method

where z j = cT
B

ā j. Thus, adding
n
∑

j=m+1
c jx j to both sides,

cT x = z0 +

n
∑

j=m+1

(c j − z j)x j (3.23)

as before.

We now state the condition for improvement, which follows easily from the

above observation, as a theorem.

Theorem (Improvement of Basic Feasible Solution). Given a nondegenerate basic fea-

sible solution with corresponding objective value z0, suppose that for some j there holds

c j − z j < 0. Then there is a feasible solution with objectivevalue z < z0. If the column a j can

be substituted for some vector in the originalbasis to yield a new basic feasible solution,

this new solution will have z < z0. If a j cannot be substituted to yield a basic feasible solu-

tion, then the solutionset K is unbounded and the objective function can be made arbitrarily

small (toward minus infinity).

Proof. The result is an immediate consequence of the previous discussion. Let

(x1, x2, . . . , xm, 0, 0, . . . , 0) be the basic feasible solution with objective value

z0 and suppose cm+1 − zm+1 < 0. Then, in any case, new feasible solutions can be

constructed of the form (x′1, x′2, . . . , x′m, x′
m+1, 0, 0, . . . , 0) with x′

m+1 > 0. Substi-

tuting this solution in (3.21) we have

z − z0 = (cm+1 − zm+1)x′m+1 < 0,

and hence z < z0 for any such solution. It is clear that we desire to make x′
m+1

as large

as possible. As x′
m+1 is increased, the other components increase, remain constant,

or decrease. Thus x′
m+1

can be increased until one x′
i
= 0, i � m, in which case

we obtain a new basic feasible solution, or if none of the x′
i
’s decrease, x′

m+1 can

be increased without bound indicating an unbounded solution set and an objective

value without lower bound. �

We see that if at any stage c j − z j < 0 for some j, it is possible to make x j

positive and decrease the objective function. The final question remaining is whether

c j − z j � 0 for all j implies optimality.

Optimality Condition Theorem. If for some basic feasible solution c j− z j � 0 for all j, then

that solution is optimal.

Proof. This follows immediately from (3.21), since any other feasible solution must

have xi � 0 for all i, and hence the value z of the objective will satisfy z − z0 � 0. �

Since the constants c j − z j play such a central role in the development of the

simplex method, it is convenient to introduce the somewhat abbreviated notation

r j = c j − z j and refer to the r j’s as the relative cost coefficients or, alternatively, the

reduced cost coefficients (both terms occur in common usage). These coefficients

measure the cost of a variable relative to a given basis. (For notational convenience

we extend the definition of relative cost coefficients to basic variables as well; the

relative cost coefficient of a basic variable is zero.)

3.4 Computational Procedure: Simplex Method 45

We conclude this section by giving an economic interpretation of the relative cost

coefficients. Let us agree to interpret the linear program

minimize cT x

subject to Ax = b, x � 0

as a diet problem (see Sect. 2.2) where the nutritional requirements must be met

exactly. A column of A gives the nutritional equivalent of a unit of a particular food.

With a given basis consisting of, say, the first m columns of A, the corresponding

simplex tableau shows how any food (or more precisely, the nutritional content of

any food) can be constructed as a combination of foods in the basis. For instance,

if carrots are not in the basis we can, using the description given by the tableau,

construct a synthetic carrot which is nutritionally equivalent to a carrot, by an app-

ropriate combination of the foods in the basis.

In considering whether or not the solution represented by the current basis is

optimal, we consider a certain food not in the basis—say carrots—and determine if

it would be advantageous to bring it into the basis. This is very easily determined

by examining the cost of carrots as compared with the cost of synthetic carrots. If

carrots are food j, then the unit cost of carrots is c j. The cost of a unit of synthetic

carrots is, on the other hand,

z j =

m
∑

i=1

c jāij.

If r j = c j − z j < 0, it is advantageous to use real carrots in place of synthetic carrots,

and carrots should be brought into the basis.

In general each z j can be thought of as the price of a unit of the column a j when

constructed from the current basis. The difference between this synthetic price and

the direct price of that column determines whether that column should enter the

basis.

3.4 Computational Procedure: Simplex Method

In previous sections the theory, and indeed much of the technique, necessary for

the detailed development of the simplex method has been established. It is only

necessary to put it all together and illustrate it with examples.

In this section we assume that we begin with a basic feasible solution and that the

tableau corresponding to Ax = b is in the canonical form for this solution. Methods

for obtaining this first basic feasible solution, when one is not obvious, are described

in the next section.

In addition to beginning with the array Ax = b expressed in canonical form

corresponding to a basic feasible solution, we append a row at the bottom consisting

of the relative cost coefficients and the negative of the current cost. The result is a

simplex tableau.

46 3 The Simplex Method

Thus, if we assume the basic variables are (in order) x1, x2, . . . , xm, the simplex

tableau takes the initial form shown in Fig. 3.2.

The basic solution corresponding to this tableau is

x j =

{

āi0 0 � i � m

0 m + 1 � i � n

which we have assumed is feasible, that is, āi0 � 0, i = 1, 2, . . . , m. The corre-

sponding value of the objective function is z0.

Fig. 3.2 Canonical simplex tableau

The relative cost coefficients r j indicate whether the value of the objective will

increase or decrease if x j is pivoted into the solution. If these coefficients are all

nonnegative, then the indicated solution is optimal. If some of them are negative, an

improvement can be made (assuming nondegeneracy) by bringing the correspond-

ing component into the solution. When more than one of the relative cost coefficients

is negative, any one of them may be selected to determine in which column to pivot.

Common practice is to select the most negative value. (See Exercise 13 for further

discussion of this point.)

Some more discussion of the relative cost coefficients and the last row of the

tableau is warranted. We may regard z as an additional variable and

c1x1 + c2x2 + · · · + cnxn − z = 0

as another equation. A basic solution to the augmented system will have m+1 basic

variables, but we can require that z be one of them. For this reason it is not neces-

sary to add a column corresponding to z, since it would always be (0, 0, . . . , 0, 1).

Thus, initially, a last row consisting of the c j’s and a right-hand side of zero can be

appended to the standard array to represent this additional equation. Using standard

pivot operations, the elements in this row corresponding to basic variables can be

reduced to zero. This is equivalent to transforming the additional equation to the

form

rm+1xm+1 + rm+2xm+2 + · · · + rnxn − z = −z0. (3.24)

3.4 Computational Procedure: Simplex Method 47

This must be equivalent to (3.23), and hence the r j’s obtained are the relative cost

coefficients. Thus, the last row can be treated operationally like any other row: just

start with c j’s and reduce the terms corresponding to basic variables to zero by row

operations.

After a column q is selected in which to pivot, the final selection of the pivot

element is made by computing the ratio āi0/āiq for the positive elements āiq, i =

1, 2, . . . , m, of the qth column and selecting the element p yielding the minimum

ratio. Pivoting on this element will maintain feasibility as well as (assuming nonde-

generacy) decrease the value of the objective function. If there are ties, any element

yielding the minimum can be used. If there are no nonnegative elements in the col-

umn, the problem is unbounded. After updating the entire tableau with āpq as pivot

and transforming the last row in the same manner as all other rows (except row q),

we obtain a new tableau in canonical form. The new value of the objective function

again appears in the lower right-hand corner of the tableau.

The simplex algorithm can be summarized by the following steps:

Step 0. Form a tableau as in Fig. 3.2 corresponding to a basic feasible solution.

The relative cost coefficients can be found by row reduction.

Step 1. If each r j � 0, stop; the current basic feasible solution is optimal.

Step 2. Select q such that rq < 0 to determine which nonbasic variable is to be-

come basic.

Step 3. Calculate the ratios āi0/āiq for āiq > 0, i = 1, 2, . . . , m. If no āiq > 0,

stop; the problem is unbounded. Otherwise, select p as the index i corresponding

to the minimum ratio.

Step 4. Pivot on the pqth element, updating all rows including the last. Return to

Step 1.

Proof that the algorithm solves the problem (again assuming nondegeneracy) is

essentially established by our previous development. The process terminates only

if optimality is achieved or unboundedness is discovered. If neither condition is

discovered at a given basic solution, then the objective is strictly decreased. Since

there are only a finite number of possible basic feasible solutions, and no basis

repeats because of the strictly decreasing objective, the algorithm must reach a basis

satisfying one of the two terminating conditions.

Example 1. Maximize 3x1 + x2 + 3x3 subject to

2x1 + x2 + x3 � 2

x1 + 2x2 + 3x3 � 5

2x1 + 2x2 + x3 � 6

x1 � 0, x2 � 0, x3 � 0.

To transform the problem into standard form so that the simplex procedure can be

applied, we change the maximization to minimization by multiplying the objective

function by minus one, and introduce three nonnegative slack variables x4, x5, x6.

We then have the initial tableau

48 3 The Simplex Method

a1 a2 a3 a4 a5 a6 b

2© 1© 1 1 0 0 2

1 2 3© 0 1 0 5

2 2 1 0 0 1 6

rT −3 −1 −3 0 0 0 0

First tableau

The problem is already in canonical form with the three slack variables serving as

the basic variables. We have at this point r j = c j−z j = c j, since the costs of the slacks

are zero. Application of the criterion for selecting a column in which to pivot shows

that any of the first three columns would yield an improved solution. In each of these

columns the appropriate pivot element is determined by computing the ratios āi0/āij

and selecting the smallest positive one. The three allowable pivots are all circled

on the tableau. It is only necessary to determine one allowable pivot, and normally

we would not bother to calculate them all. For hand calculation on problems of this

size, however, we may wish to examine the allowable pivots and select one that will

minimize (at least in the short run) the amount of division required. Thus for this

example we select the second column and result in:

2 1 1 1 0 0 2

−3 0 1© −2 1 0 1

−2 0 −1 −2 0 1 2

−1 0 −2 1 0 0 2

Second tableau

We note that the objective function—we are using the negative of the original one—

has decreased from zero to minus two. We now pivot on 1©.

5© 1 0 3 −1 0 1

−3 0 1 −2 1 0 1

−5 0 0 −4 1 1 3

−7 0 0 −3 2 0 4

Third tableau

The value of the objective function has now decreased to minus four and we may

pivot in either the first or fourth column. We select 5©.

1 1/5 0 3/5 −1/5 0 1/5

0 3/5 1 −1/5 2/5 0 8/5

0 1 0 −1 0 1 4

0 7/5 0 6/5 3/5 0 27/5

Fourth tableau

Since the last row has no negative elements, we conclude that the solution corre-

sponding to the fourth tableau is optimal. Thus x1 = 1/5, x2 = 0, x3 = 8/5, x4 =

0, x5 = 0, x6 = 4 is the optimal solution with a corresponding value of the (nega-

tive) objective of −(27/5).

3.5 Finding a Basic Feasible Solution 49

Degeneracy

It is possible that in the course of the simplex procedure, degenerate basic feasible

solutions may occur. Often they can be handled as a nondegenerate basic feasible

solution. However, it is possible that after a new column q is selected to enter the ba-

sis, the minimum of the ratios āi0/āiq may be zero, implying that the zero-valued ba-

sic variable is the one to go out. This means that the new variable xq will come in at

zero value, the objective will not decrease, and the new basic feasible solution will

also be degenerate. Conceivably, this process could continue for a series of steps

until, finally, the original degenerate solution is again obtained. The result is a cycle

that could be repeated indefinitely.

Methods have been developed to avoid such cycles (see Exercises 15–17 for a

full discussion of one of them, which is based on perturbing the problem slightly

so that zero-valued variables are actually small positive values, and Exercise 32 for

Bland’s rule, which is simpler). In practice, however, such procedures are found to

be unnecessary. When degenerate solutions are encountered, the simplex procedure

generally does not enter a cycle. However, anticycling procedures are simple, and

many codes incorporate such a procedure for the sake of safety.

3.5 Finding a Basic Feasible Solution

A basic feasible solution is sometimes immediately available for linear programs.

For example, in problems with constraints of the form

Ax � b, x � 0 (3.25)

with b � 0, a basic feasible solution to the corresponding standard form of the

problem is provided by the slack variables. This provides a means for initiating the

simplex procedure. The example in the last section was of this type. An initial basic

feasible solution is not always apparent for other types of linear programs, how-

ever, and it is necessary to develop a means for determining one so that the simplex

method can be initiated. Interestingly (and fortunately), an auxiliary linear program

and corresponding application of the simplex method can be used to determine the

required initial solution.

By elementary straightforward operations the constraints of a linear program-

ming problem can always be expressed in the form

Ax = b, x � 0 (3.26)

50 3 The Simplex Method

with b � 0. In order to find a solution to (3.26) consider the artificial minimization

problem

minimize

m
∑

i=1

u j

subject to Ax + u = b (3.27)

x � 0, u � 0

where u = (u1, u2, . . . , um) is a vector of artificial variables. If there is a feasible

solution to (3.26), then it is clear that (3.27) has a minimum value of zero with u = 0.

If (3.26) has no feasible solution, then the minimum value of (3.27) is greater than

zero.

Now (3.27) is itself a linear program in the variables x, u, and the system is

already in canonical form with basic feasible solution u = b. If (3.27) is solved

using the simplex technique, a basic feasible solution is obtained at each step. If the

minimum value of (3.27) is zero, then the final basic solution will have all u j = 0,

and hence barring degeneracy, the final solution will have no u j variables basic. If in

the final solution some u j are both zero and basic, indicating a degenerate solution,

these basic variables can be exchanged for nonbasic x j variables (again at zero level)

to yield a basic feasible solution involving x variables only. (However, the situation

is more complex if A is not of full rank. See Exercise 21.)

Example 1. Find a basic feasible solution to

2x1 + x2 + 2x3 = 4

3x1 + 3x2 + x3 = 3

x1 � 0, x2 � 0, x3 � 0.

We introduce artificial variables x4 � 0, x5 � 0 and an objective function x4 + x5.

The initial tableau is

x1 x2 x3 x4 x5 b

2 1 2 1 0 4

3 3 1 0 1 3

cT 0 0 0 1 1 0

Initial tableau

A basic feasible solution to the expanded system is given by the artificial variables.

To initiate the simplex procedure we must update the last row so that it has zero

components under the basic variables. This yields:

2 1 2 1 0 4

➂ 3 1 0 1 3

rT −5 −4 −3 0 0 −7

First tableau

3.5 Finding a Basic Feasible Solution 51

Pivoting in the column having the most negative bottom row component as indi-

cated, we obtain:

In the second tableau there is only one choice for pivot, and it leads to the final

tableau shown.
0 −3/4 1 3/4 −1/2 3/2

1 5/4 0 −1/4 1/2 1/2

0 0 0 1 1 0

Final tableau

Both of the artificial variables have been driven out of the basis, thus reducing the

value of the objective function to zero and leading to the basic feasible solution to

the original problem

x1 = 1/2, x2 = 0, x3 = 3/2.

Using artificial variables, we attack a general linear programming problem by

use of the two-phase method. This method consists simply of a phase I in which

artificial variables are introduced as above and a basic feasible solution is found

(or it is determined that no feasible solutions exist); and a phase Π in which, using

the basic feasible solution resulting from phase I, the original objective function

is minimized. During phase II the artificial variables and the objective function of

phase I are omitted. Of course, in phase I artificial variables need be introduced only

in those equations that do not contain slack variables.

Example 2. Consider the problem

minimize 4x1 + x2 + x3

subject to 2x1 + x2 + 2x3 = 4

3x1 + 3x2 + x3 = 3

x1 � 0, x2 � 0, x3 � 0.

There is no basic feasible solution apparent, so we use the two-phase method. The

first phase was done in Example 1 for these constraints, so we shall not repeat it

here. We give only the final tableau with the columns corresponding to the artificial

variables deleted, since they are not used in phase II. We use the new cost function

in place of the old one. Temporarily writing cT in the bottom row we have

x1 x2 x3 b

0 −3/4 1 3/2

1 5/4 0 1/2

cT 4 1 1 0

Initial tableau

52 3 The Simplex Method

Transforming the last row so that zeros appear in the basic columns, we have

and hence the optimal solution is x1 = 0, x2 = 2/5, x3 = 9/5.

Example 3 (A Free Variable Problem).

minimize −2x1 + 4x2 + 7x3 + x4 + 5x5

subject to −x1 + x2 + 2x3 + x4 + 2x5 = 7

−x1 + 2x2 + 3x3 + x4 + x5 = 6

−x1 + x2 + x3 + 2x4 + x5 = 4

x1 free, x2 � 0, x3 � 0, x4 � 0, x5 � 0.

Since x1 is free, it can be eliminated, as described in Chap. 2, by solving for x1

in terms of the other variables from the first equation and substituting everywhere

else. This can all be done with the simplex tableau as follows:

x1 x2 x3 x4 x5 b

−➀ 1 2 1 2 7

−1 2 3 1 1 6

−1 1 1 2 1 4

cT −2 4 7 1 5 0

Initial tableau

We select any nonzero element in the first column to pivot on—this will eliminate x1.

We now save the first row for future reference, but our linear program only in-

volves the sub-tableau indicated. There is no obvious basic feasible solution for this

problem, so we introduce artificial variables x6 and x7.

x2 x3 x4, x5 x6 x7 b

−1 −1 0 1 1 0 1

0 1 −1 1 0 1 3

cT 0 0 0 0 1 1 0

Initial tableau for phase I

3.5 Finding a Basic Feasible Solution 53

Transforming the last row appropriately we obtain

x2 x3 x4 x5 x6 x7 b

−1 −1 0 ➀ 1 0 1

0 1 −1 1 0 1 3

rT 1 0 1 −2 0 0 −4

First tableau—phase I

x2 x3 x4 x5 x6 x7 b

−1 −1 0 1 1 0 1

➀ 2 −1 0 −1 1 2

−1 −2 1 0 2 0 −2

Second tableau—phase I

0 1 −1 1 0 1 3

1 2 −1 0 −1 1 2

0 0 0 0 1 1 0

Final tableau—phase I

Now we go back to the equivalent reduced problem

x2 x3 x4 x5 b

0 1 −1 1 3

1 2 −1 0 2

cT 2 3 −1 1 −14

Initial tableau—phase II

Transforming the last row appropriately we proceed with:

0 1 −1 1 3

0 ➁ −1 0 2

0 −2 2 0 −21

First tableau—phase II

−1/2 0 −1/2 1 2

1/2 1 −1/2 0 1

1 0 1 0 −19

Final tableau—phase II

The solution x3 = 1, x5 = 2 can be inserted in the expression for x1 giving

x1 = −7 + 2 · 1 + 2 · 2 = −1;

thus the final solution is

x1 = −1, x2 = 0, x3 = 1, x4 = 0, x5 = 2.

54 3 The Simplex Method

3.6 Matrix Form of the Simplex Method

Although the elementary pivot transformations associated with the simplex method

are in many respects most easily discernible in the tableau format, with attention

focused on the individual elements, there is much insight to be gained by studying

a matrix interpretation of the procedure. The vector-matrix relationships that exist

between the various rows and columns of the tableau lead, however, not only to

increased understanding but also, in a rather direct way, to the revised simplex pro-

cedure which in many cases can result in considerable computational advantage.

The matrix formulation is also a natural setting for the discussion of dual linear

programs and other topics related to linear programming.

A preliminary observation in the development is that the tableau at any point in

the simplex procedure can be determined solely by a knowledge of which variables

are basic. As before we denote by B the submatrix of the original A matrix consist-

ing of the m columns of A corresponding to the basic variables. These columns are

linearly independent and hence the columns of B form a basis for Em. We refer to B

as the basis matrix.

As usual, let us assume that B consists of the first m columns of A. Then by

partitioning A, x, and cT as

A = [B, D]

x = (xB, xD), cT =
[

cT
B, cT

D

]

,

the standard linear program becomes

minimize cT
BxB + cT

DxD

subject to BxB + DxD = b (3.28)

xB � 0, xD � 0.

The basic solution, which we assume is also feasible, corresponding to the basis

B is x = (xB, 0) where xB = B−1b. The basic solution results from setting xD = 0.

However, for any value of xD the necessary value of xB can be computed from

(3.28) as
xB = B−1b − B−1DxD, (3.29)

and this general expression when substituted in the cost function yields

z = cT
B(B−1b − B−1DxD) + cT

DxD

= cT
BB−1b + (cT

D − cT
BB−1D)xD, (3.30)

which expresses the cost of any solution to (3.28) in terms of xD. Thus

rT
D = cT

D − cT
BB−1D (3.31)

is the relative cost vector (for nonbasic variables). It is the components of this vector

that are used to determine which vector to bring into the basis.

3.6 Matrix Form of the Simplex Method 55

Having derived the vector expression for the relative cost it is now possible to

write the simplex tableau in matrix form. The initial tableau takes the form
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A � b

−− | −−
cT

� 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

B � D � b

−− | −− | −−
cT

B
� cT

D
� 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.32)

which is not in general in canonical form and does not correspond to a point in the

simplex procedure. If the matrix B is used as a basis, then the corresponding tableau

becomes

T =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I � B−1D � B−1b

−− | − − − − − − − | − − − − −
0 � cT

D
− CT

BB−1D � −cT
B

B−1b

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.33)

which is the matrix form we desire.

∗The Revised Simplex Method and LU Decomposition

Extensive experience with the simplex procedure applied to problems from various

fields, and having various values of n and m, has indicated that the method can be

expected to converge to an optimum solution in about m, or perhaps 3m/2, pivot

operations. (Except in the worst case. See Chap. 5.) Thus, particularly if m is much

smaller than n, that is, if the matrix A has far fewer rows than columns, pivots will

occur in only a small fraction of the columns during the course of optimization.

Since the other columns are not explicitly used, it appears that the work expended

in calculating the elements in these columns after each pivot is, in some sense,

wasted effort. The revised simplex method is a scheme for ordering the compu-

tations required of the simplex method so that unnecessary calculations are avoided.

In fact, even if pivoting is eventually required in all columns, but m is small com-

pared to n, the revised simplex method can frequently save computational effort.

The revised form of the simplex method is this: Given the inverse B−1 of a current

basis, and the current solution xB = ā0 = B−1b,

Step 1. Calculate the current relative cost coefficients rT
D
= cT

D
− cT

B
B−1D. This

can best be done by first calculating yT = cT
B

B−1 and then the relative cost vector

rT
D
= cT

D
− yT D. If rD � 0 stop; the current solution is optimal.

Step 2. Determine which vector aq is to enter the basis by selecting the most

negative cost coefficient; and calculate āq = B−1aq which gives the vector aq

expressed in terms of the current basis.

Step 3. If no āiq > 0, stop; the problem is unbounded. Otherwise, calculate the

ratios āi0/āiq for āiq > 0 to determine which vector is to leave the basis.

Step 4. Update B−1 and the current solution B−1b. Return to Step 1.

Updating of B−1 is accomplished by the usual pivot operations applied to an array

consisting of B−1 and āq, where the pivot is the appropriate element in āq. Of course

B−1b may be updated at the same time by adjoining it as another column.

56 3 The Simplex Method

One may go one step further in the matrix interpretation of the simplex method

and note that execution of a single simplex cycle is not explicitly dependent on

having B−1 but rather on the ability to solve linear systems with B as the coefficient

matrix. A decomposition of B = LU can be updated where L is a lower triangular

matrix and U is an upper triangular matrix. Then each of the linear systems can be

solved by solving two triangular systems.

3.7 Simplex Method for Transportation Problems

The transportation problem was stated briefly in Chap. 2. We restate it here. There

are m origins that contain various amounts of a commodity that must be shipped to n

destinations to meet demand requirements. Specifically, origin i contains an amount

ai, and destination j has a requirement of amount b j. It is assumed that the system

is balanced in the sense that total supply equals total demand. That is,

m
∑

i=1

ai =

n
∑

j=1

b j. (3.34)

The numbers ai and b j, i = 1, 2, . . . , m; j = 1, 2, . . . , n, are assumed to be non-

negative, and in many applications they are in fact nonnegative integers. There is a

unit cost ci j associated with the shipping of the commodity from origin i to destina-

tion j. The problem is to find the shipping pattern between origins and destinations

that satisfies all the requirements and minimizes the total shipping cost.

In mathematical terms the above problem can be expressed as finding a set of xi j’

s, i = 1, 2, . . . , m; j = 1, 2, . . . , n, to

minimize

m
∑

i=1

n
∑

j=1

ci jxi j

subject to

n
∑

j=1

xi j = ai for i = 1, 2, . . . ,m (3.35)

m
∑

i=1

xi j = b j for j = 1, 2, . . . , n

xi j � 0 for all i and j.

This mathematical problem, together with the assumption (3.34), is the general

transportation problem. In the shipping context, the variables xi j represent the

amounts of the commodity shipped from origin i to destination j.
The structure of the problem can be seen more clearly by writing the constraint

equations in standard form:

3.7 Simplex Method for Transportation Problems 57

x11 + x12 + · · · + x1n = a1

x21 + x22 + · · · + x2n = a2

...

xm1 + xm2 + · · · + xmn = am

x11 + x21 xm1 = b1

x12 + x22 + xm2 = b2

... (3.36)

x1n + x2n + xmn = bn

The structure is perhaps even more evident when the coefficient matrix A of the

system of equations above is expressed in vector-matrix notation as

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1T

1T

. . .

1T

I I · · · I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.37)

where 1 = (1, 1, . . . , 1) is n-dimensional, and where each I is an n×n identity matrix.

In practice it is usually unnecessary to write out the constraint equations of the

transportation problem in the explicit form (3.36). A specific transportation problem

is generally defined by simply presenting the data in compact form, such as:

a = (a1, a2, . . . , am)

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c11 c12 · · · c1n

c21 c22 · · · c2n

cm1 cm2 · · · cmn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

b = (b1, b2, . . . , bn)

The solution can also be represented by an m × n array, and as we shall see, all

computations can be made on arrays of a similar dimension.

Example 1. As an example, which will be solved completely in a later section, a

specific transportation problem with four origins and five destinations is defined by

a = (30, 80, 10, 60)

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3 4 6 8 9

2 2 4 5 5

2 2 2 3 2

3 3 2 4 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

b = (10, 50, 20, 80, 20)

Note that the balance requirement is satisfied, since the sum of the supply and the

demand are both 180.

58 3 The Simplex Method

Finding a Basic Feasible Solution

A first step in the study of the structure of the transportation problem is to show

that there is always a feasible solution, thus establishing that the problem is well

defined. A feasible solution can be found by allocating shipments from origins to

destinations in proportion to supply and demand requirements. Specifically, let S

be equal to the total supply (which is also equal to the total demand). Then let

xi j = aib j/S for i = 1, 2, . . . , m; j = 1, 2, . . . , n. The reader can easily verify that

this is a feasible solution. We also note that the solutions are bounded, since each

xi j is bounded by ai (and by b j). A bounded program with a feasible solution has an

optimal solution. Thus, a transportation problem always has an optimal solution.

A second step in the study of the structure of the transportation problem is based

on a simple examination of the constraint equations. Clearly there are m equations

corresponding to origin constraints and n equations corresponding to destination

constraints—a total of n + m. However, it is easily noted that the sum of the origin

equations is

m
∑

i=1

n
∑

j=1

xi j =

m
∑

i=1

ai, (3.38)

and the sum of the destination equations is

n
∑

j=1

m
∑

i=1

xi j =

n
∑

j=1

b j. (3.39)

The left-hand sides of these equations are equal. Since they were formed by two dis-

tinct linear combinations of the original equations, it follows that the equations in the

original system are not independent. The right-hand sides of (3.38) and (3.39) are

equal by the assumption that the system is balanced, and therefore the two equations

are, in fact, consistent. However, it is clear that the original system of equations is

redundant. This means that one of the constraints can be eliminated without chang-

ing the set of feasible solutions. Indeed, any one of the constraints can be chosen

as the one to be eliminated, for it can be reconstructed from those remaining. It fol-

lows that a basis for the transportation problem consists of m + n − 1 vectors, and

a nondegenerate basic feasible solution consists of m + n − 1 variables. The simple

solution found earlier in this section is clearly not a basic solution.

There is a straightforward way to compute an initial basic feasible solution to

a transportation problem. The method is worth studying at this stage because it

introduces the computational process that is the foundation for the general solution

technique based on the simplex method. It also begins to illustrate the fundamental

property of the structure of transportation problems.

3.7 Simplex Method for Transportation Problems 59

The Northwest Corner Rule

This procedure is conducted on the solution array shown below:

x11 x12 x13 · · · x1n a1

x21 x22 x23 · · · x2n a2

...
...

xm1 xm2 xm3 · · · xmn am

b1 b2 b3 · · · bn

(3.40)

The individual elements of the array appear in cells and represent a solution. An

empty cell denotes a value of zero.

Beginning with all empty cells, the procedure is given by the following steps:

Step 1. Start with the cell in the upper left-hand corner.

Step 2. Allocate the maximum feasible amount consistent with row and column

sum requirements involving that cell. (At least one of these requirements will

then be met.)

Step 3. Move one cell to the right if there is any remaining row requirement (sup-

ply). Otherwise move one cell down. If all requirements are met, stop; otherwise

go to Step 2.

The procedure is called the Northwest Corner Rule because at each step it selects

the cell in the upper left-hand corner of the subarray consisting of current nonzero

row and column requirements.

Example 1. A basic feasible solution constructed by the Northwest corner Rule is

shown below for Example 1 of the last section.

10 20 30

30 20 30 80

10 10

40 20 60

10 50 20 80 20

(3.41)

In the first step, at the upper left-hand corner, a maximum of 10 units could be

allocated, since that is all that was required by column 1. This left 30 − 10 = 20

units required in the first row. Next, moving to the second cell in the top row, the

remaining 20 units were allocated. At this point the row 1 requirement is met, and

it is necessary to move down to the second row. The reader should be able to follow

the remaining steps easily.

There is the possibility that at some point both the row and column requirements

corresponding to a cell may be met. The next entry will then be a zero, indicating a

degenerate basic solution. In such a case there is a choice as to where to place the

zero. One can either move right or move down to enter the zero. Two examples of

degenerate solutions to a problem are shown below:

60 3 The Simplex Method

30 30

20 20 40

0 20 20

20 40 60

50 20 40 40

30 30

20 20 0 40

20 20

20 40 60

50 20 40 40

It should be clear that the Northwest Corner Rule can be used to obtain different

basic feasible solutions by first permuting the rows and columns of the array before

the procedure is applied. Or equivalently, one can do this indirectly by starting the

procedure at an arbitrary cell and then considering successive rows and columns in

an arbitrary order.

Basis Triangularity

We now establish the most important structural property of the transportation prob-

lem: the triangularity of all bases. This property simplifies the process of solution

of a system of equations whose coefficient matrix corresponds to a basis, and thus

leads to efficient implementation of the simplex method.

The concept of upper and lower triangular matrices was introduced in connection

with Gaussian elimination methods, see Appendix C. It is useful at this point to

generalize slightly the notion of upper and lower triangularity.

Definition. A nonsingular square matrix M is said to be triangular if by a permutation of
its rows and columns it can be put in the form of a lower triangular matrix.

There is a simple and useful procedure for determining whether a given matrix

M is triangular:

Step 1. Find a row with exactly one nonzero entry.

Step 2. Form a submatrix of the matrix used in Step 1 by crossing out the row

found in Step 1 and the column corresponding to the nonzero entry in that row.

Return to Step 1 with this submatrix.

If this procedure can be continued until all rows have been eliminated, then the

matrix is triangular. It can be put in lower triangular form explicitly by arranging

the rows and columns in the order that was determined by the procedure.

Example 1. Shown below on the left is a matrix before the above procedure is ap-

plied to it. Indicated along the edges of this matrix is the order in which the rows

and columns are indexed according to the procedure. Shown at the right is the same

matrix when its rows and columns are permuted according to the order found.

3.7 Simplex Method for Transportation Problems 61

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 2 0 1 0 2

4 1 0 5 0 0

0 0 0 4 0 0

2 1 7 2 1 3

2 3 2 0 0 3

0 2 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

3

6

2

1

5

4

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4 0 0 0 0 0

1 2 0 0 0 0

5 1 4 0 0 0

1 2 1 2 0 0

0 3 2 3 2 0

2 1 2 3 7 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

4 2 1 6 3 5

Triangularization

We are now prepared to derive the most important structural property of the trans-

portation problem.

Basis Triangularity Theorem. Every basis of the transportation problem is triangular.

Proof. Refer to the system of constraints (3.36). Let us change the sign of the top

half of the system; then the coefficient matrix of the system consists of entries that

are either +1, −1, or 0. Following the result of the theorem in Sect. 3.7, delete any

one of the equations to eliminate the redundancy. From the resulting coefficient

matrix, form a basis B by selecting a nonsingular subset of m + n − 1 columns.

Each column of B contains at most two nonzero entries, a + 1 and a − 1. Thus

there are at most 2(m+n−1) nonzero entries in the basis. However, if every column

contained two nonzero entries, then the sum of all rows would be zero, contradict-

ing the nonsingularity of B. Thus at least one column of B must contain only one

nonzero entry. This means that the total number of nonzero entries in B is less than

2(m + n − 1). It then follows that there must be a row with only one nonzero entry;

for if every row had two or more nonzero entries, the total number would be at least

2(m+ n− 1). This means that the first step of the procedure for verifying triangular-

ity is satisfied. A similar argument can be applied to the submatrix of B obtained by

crossing out the row with the single nonzero entry and the column corresponding to

that entry; that submatrix must also contain a row with a single nonzero entry. This

argument can be continued, establishing that the basis B is triangular. �

Example 2. As an illustration of the Basis Triangularity Theorem, consider the ba-

sis selected by the Northwest Corner Rule in Example 1. This basis is represented

below, except that only the basic variables are indicated, not their values.

x11 x12 30

x22 x23 x24 80

x34 10

x44 x45 60

10 50 20 80 20

A row in a basis matrix corresponds to an equation in the original system and is

associated with a constraint either on a row or column sum in the solution array. In

this example the equation corresponding to the first column sum contains only one

62 3 The Simplex Method

basis variable, x11. The value of this variable can be found immediately to be 10.

The next equation corresponds to the first row sum. The corresponding variable is

x12, which can be found to be 20, since x11 is known. Progression in this manner

through the basis variables is equivalent to back substitution.

The importance of triangularity is, of course, the associated method of back

substitution for the solution of a triangular system of equations, as discussed in

Appendix C. Moreover, since any basis matrix is triangular and all nonzero ele-

ments are equal to one (or minus one if the signs of some equations are changed), it

follows that the process of back substitution will simply involve repeated additions

and subtractions of the given row and column sums. No multiplication is required. It

therefore follows that if the original row and column totals are integers, the values of

all basic variables will be integers. This is an important result, which we summarize

by a corollary to the Basis Triangularity Theorem.

Corollary. If the row and column sums of a transportation problem are integers, then the

basic variables in any basic solution are integers.

The Transportation Simplex Method

Now that the structural properties of the transportation problem have been devel-

oped, it is a relatively straightforward task to work out the details of the simplex

method for the transportation problem. A major objective is to exploit fully the tri-

angularity property of bases in order to achieve both computational efficiency and

a compact representation of the method. The method used is actually a direct adap-

tation of the version of the revised simplex method presented in the first part of

Sect. 3.6. The basis is never inverted; instead, its triangular form is used directly to

solve for all required variables.

Simplex Multipliers

Simplex multipliers are associated with the constraint equations. In this case we

partition the vector of multipliers as y = (u, v). Here, ui represents the multiplier

associated with the ith row sum constraint, and v j represents the multiplier associ-

ated with the jth column sum constraint. Since one of the constraints is redundant,

an arbitrary value may be assigned to any one of the multipliers (see Exercise 4,

Chap. 4). For notational simplicity we shall at this point set vn = 0.

Given a basis B, the simplex multipliers are found to be the solution to the

equation yT B = cT
B

. To determine the explicit form of these equations, we again

refer to the original system of constraints (3.36). If xi j is basic, then the correspond-

ing column from A will be included in B. This column has exactly two +1 entries:

one in the ith position of the top portion and one in the jth position of the bottom

3.7 Simplex Method for Transportation Problems 63

portion. This column thus generates the simplex multiplier equation ui + v j = ci j,

since ui and v j are the corresponding components of the multiplier vector. Overall,

the simplex multiplier equations are

ui + v j = ci j, (3.42)

for all i, j for which xi j is basic. The coefficient matrix of this system is the transpose

of the basis matrix and hence it is triangular. Thus, this system can be solved by back

substitution. This is similar to the procedure for finding the values of basic variables

and, accordingly, as another corollary of the Triangular Basis Theorem, an integer

property holds for simplex multipliers.

Corollary. If the unit costs ci j of a transportation problem are all integers, then (assuming

one simplex multiplier is set arbitrarily equal to an integer) the simplex multipliers associ-

ated with any basis are integers.

Once the simplex multipliers are known, the relative cost coefficients for nonba-

sic variables can be found in the usual manner as rT
D
= cT

D
− yT D. In this case the

relative cost coefficients are

ri j = ci j − ui − v j for i = 1, 2, . . . ,m

j = 1, 2, . . . , n. (3.43)

This relation is valid for basic variables as well if we define relative cost coefficients

for them—having value zero.

Given a basis, computation of the simplex multipliers is quite similar to the cal-

culation of the values of the basic variables. The calculation is easily carried out

on an array of the form shown below, where the circled elements correspond to the

positions of the basic variables in the current basis.

In this case the main part of the array, with the coefficients ci j, remains fixed, and

we calculate the extra column and row corresponding to u and v.

The procedure for calculating the simplex multipliers is this:

Step 1. Assign an arbitrary value to any one of the multipliers.

Step 2. Scan the rows and columns of the array until a circled element ci j is found

such that either ui or v j (but not both) has already been determined.

Step 3. Compute the undetermined ui or v j from the equation ci j = ui + v j. If all

multipliers are determined, stop. Otherwise, return to Step 2.

The triangularity of the basis guarantees that this procedure can be carried

through to determine all the simplex multipliers.

64 3 The Simplex Method

Example 1. Consider the cost array of Example 1 of Sect. 5.1, which is shown below

with the circled elements corresponding to a basic feasible solution (found by the

Northwest Corner Rule). Only these numbers are used in the calculation of the

multipliers.
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

➂ ➃ 6 8 9
2 ➁ ➃ ➄ 5
2 2 2 ➂ 2
3 3 2 ➃ ➁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

We first arbitrarily set v5 = 0. We then scan the cells, searching for a circled element

for which only one multiplier must be determined. This is the bottom right corner

element, and it gives u4 = 2. Then, from the equation 4 = 2+ v4, v4 is found to be 2.

Next, u3 and u2 are determined, then v3 and v2, and finally u1 and v1. The result is

shown below:

Cycle of Change

In accordance with the general simplex procedure, if a nonbasic variable has an

associated relative cost coefficient that is negative, then that variable is a candidate

for entry into the basis. As the value of this variable is gradually increased, the

values of the current basic variables will change continuously in order to maintain

feasibility. Then, as usual, the value of the new variable is increased precisely to the

point where one of the old basic variables is driven to zero.

We must work out the details of how the values of the current basic variables

change as a new variable is entered. If the new basic vector is d, then the change

in the other variables is given by −B−1d, where B is the current basis. Hence, once

again we are faced with a problem of solving a system associated with the triangular

basis, and once again the solution has special properties. In the next theorem recall

that A is defined by (3.37).

Theorem. Let B be a basis from A (ignoring one row), and let d be another column. Then

the components of the vector w = B−1d are either 0, +1, or −1.

Proof. Let w be the solution to the equation Bw = d. Then w is the representation

of d in terms of the basis. This equation can be solved by Cramer’s rule as

wk =
det Bk

det B
,

3.7 Simplex Method for Transportation Problems 65

where Bk is the matrix obtained by replacing the kth column of B by d. Both B and

Bk are submatrices of the original constraint matrix A. The matrix B may be put

in triangular form with all diagonal elements equal to +1. Hence, accounting for

the sign change that may result from the combined row and column interchanges,

det B = +1 or −1. Likewise, it can be shown (see Exercise 3) that det Bk = 0,+1,

or −1. We conclude that each component of w is either 0, +1, or −1. �

The implication of the above result is that when a new variable is added to the

solution at a unit level, the current basic variables will each change by +1, −1, or 0.

If the new variable has a value θ, then, correspondingly, the basic variables change

by +θ, −θ, or 0. It is therefore only necessary to determine the signs of change for

each basic variable.

The determination of these signs is again accomplished by row and column scan-

ning. Operationally, one assigns a + to the cell of the entering variable to represent

a change of +θ, where θ is yet to be determined. Then +’s, −’s, and 0’s are assigned,

one by one, to the cells of some basic variables, indicating changes of +θ, −θ, or

0 to maintain a solution. As usual, after each step there will always be an equation

that uniquely determines the sign to be assigned to another basic variable. The result

will be a sequence of pluses and minuses assigned to cells that form a cycle leading

from the cell of the entering variable back to that cell. In essence, the new change is

part of a cycle of redistribution of the commodity flow in the transportation system.

Once the sequence of +’s, −’s, and 0’s is determined, the new basic feasible

solution is found by setting the level of the change θ. This is set so as to drive one

of the old basic variables to zero. One must simply examine those basic variables

for which a minus sign has been assigned, for these are the ones that will decrease

as the new variable is introduced. Then θ is set equal to the smallest magnitude of

these variables. This value is added to all cells that have a + assigned to them and

subtracted from all cells that have a − assigned. The result will be the new basic

feasible solution.

The procedure is illustrated by the following example.

Example 2. A completed solution array is shown below:

100 10

20− 10+ 30

20+ 100 30− 60

100 10

10− + 400 50

40 10 30 40 40

In this example x53 is the entering variable, so a plus sign is assigned there. The

signs of the other cells were determined in the order x13, x23, x25, x35, x32, x31, x41,

x51, x54. The smallest variable with a minus assigned to it is x51 = 10. Thus we set

θ = 10.

66 3 The Simplex Method

The Transportation Simplex Algorithm

It is now possible to put together the components developed to this point in the form

of a complete revised simplex procedure for the transportation problem. The steps

are:

Step 1. Compute an initial basic feasible solution using the Northwest Corner

Rule or some other method.

Step 2. Compute the simplex multipliers and the relative cost coefficients. If all

relative cost coefficients are nonnegative, stop; the solution is optimal. Otherwise,

go to Step 3.

Step 3. Select a nonbasic variable corresponding to a negative cost coefficient to

enter the basis (usually the one corresponding to the most negative cost coeffi-

cient). Compute the cycle of change and set θ equal to the smallest basic variable

with a minus assigned to it. Update the solution. Go to Step 2.

Example 3. We can now completely solve the problem that was introduced in Exam-

ple 1 of the first section. The requirements and a first basic feasible solution obtained

by the Northwest Corner Rule are shown below. The plus and minus signs indicated

on the array should be ignored at this point, since they cannot be computed until the

next step is completed.

10 20 30

30 20− 30+ 80

100 10

+ 40− 200 60

10 50 20 80 20

The cost coefficients of the problem are shown in the array below, with the circled

cells corresponding to the current basic variables. The simplex multipliers, com-

puted by row and column scanning, are shown as well.

➂ ➃ 6 8 9 5
2 ➁ ➃ ➄ 5 3
2 2 2 ➂ 2 1
3 3 2 ➃ ➁ 2

−2 −1 1 2 0

The relative cost coefficients are found by subtracting u j + v j from ci j. In this case

the only negative result is in cell 4,3; so variable x43 will be brought into the basis.

Thus a + is entered into this cell in the original array, and the cycle of zeros and plus

and minus signs is determined as shown in that array. (It is not necessary to continue

scanning once a complete cycle is determined.)

The smallest basic variable with a minus sign is 20 and, accordingly, 20 is added

or subtracted from elements of the cycle as indicated by the signs. This leads to the

new basic feasible solution shown in the array below:

3.7 Simplex Method for Transportation Problems 67

10 20 30

30 50 80

10 10

20 20 20 60

10 50 20 80 20

The new simplex multipliers corresponding to the new basis are computed, and

the cost array is revised as shown below. In this case all relative cost coefficients are

positive, indicating that the current solution is optimal.

➂ ➃ 6 8 9 5
2 ➁ 4 ➄ 5 3
2 2 2 ➂ 2 1
3 3 ➁ ➃ ➁ 2

−2 −1 0 2 0

Degeneracy

As in all linear programming problems, degeneracy, corresponding to a basic vari-

able having the value zero, can occur in the transportation problem. If degeneracy

is encountered in the simplex procedure, it can be handled quite easily by introduc-

tion of the standard perturbation method (see Exercise 15, Chap. 3). In this method

a zero-valued basic variable is assigned the value ε and is then treated in the usual

way. If it later leaves the basis, then the ε can be dropped.

Example 4. To illustrate the method of dealing with degeneracy, consider a modifi-

cation of Example 3, with the fourth row sum changed from 60 to 20 and the fourth

column sum changed from 80 to 40. Then the initial basic feasible solution found

by the Northwest Corner Rule is degenerate. An ε is placed in the array for the

zero-valued basic variable as shown below:

10 20 30

30 20− 30+ 80

100 10

+ ε− 200 20

10 50 20 40 20

The relative cost coefficients will be the same as in Example 3, and hence again

x43 should be chosen to enter, and the cycle of change is the same as before. In

this case, however, the change is only ε, and variable x44 leaves the basis. The new

68 3 The Simplex Method

relative cost coefficients are all positive, indicating that the new solution is optimal.

Now the ε can be dropped to yield the final solution (which is, itself, degenerate in

this case).

10 20 30

30 20 30 80

10 10

ε 20 20

10 50 20 40 20

*3.8 Decomposition

Large linear programming problems usually have some special structural form that

can (and should) be exploited to develop efficient computational procedures. One

common structure is where there are a number of separate activity areas that are

linked through common resource constraints. An example is provided by a multidi-

visional firm attempting to minimize the total cost of its operations. The divisions

of the firm must each meet internal requirements that do not interact with the con-

straints of other divisions; but in addition there are common resources that must be

shared among divisions and thereby represent linking constraints.

A problem of this form can be solved by the Dantzig-Wolfe decomposition

method described in this section. The method is an iterative process where at each

step a number of separate subproblems are solved. The subproblems are themselves

linear programs within the separate areas (or within divisions in the example of

the firm). The objective functions of these subproblems are varied from iteration to

iteration and are determined by a separate calculation based on the results of the

previous iteration. This action coordinates the individual subproblems so that, ulti-

mately, the solution to the overall problem is solved. The method can be derived as

a special version of the revised simplex method, where the subproblems correspond

to evaluation of reduced cost coefficients for the main problem.

To describe the method we consider the linear program in standard form

minimize cT x

subject to Ax = b, x � 0.
(3.44)

Suppose, for purposes of this entire section, that the A matrix has the special “block-

angular” structure:

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

L1 L2 · · · LN

A1

A2

. . .

AN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.45)

3.8 Decomposition 69

By partitioning the vectors x, cT , and b consistent with this partition of A, the

problem can be rewritten as

minimize

N
∑

i=1

cT
i xi

subject to

N
∑

i=1

Lixi = b0 (3.46)

Aixi = bi

xi � 0, i = 1, . . . , N.

This may be viewed as a problem of minimizing the total cost of N different linear

programs that are independent except for the first constraint, which is a linking

constraint of, say, dimension m.

Each of the subproblems is of the form

minimize cT
i xi

subject to Aixi = bi, xi � 0.

The constraint set for the ith subproblem is S i = {xi : Aixi = bi, xi � 0}. As

for any linear program, this constraint set S i is a polytope and can be expressed

as the intersection of a finite number of closed half-spaces. There is no guarantee

that each S i is bounded, even if the original linear program (3.44) has a bounded

constraint set. We shall assume for simplicity, however, that each of the polytopes

S i, i = 1, . . . , N is indeed bounded and hence is a polyhedron. One may guarantee

that this assumption is satisfied by placing artificial (large) upper bounds on each xi.

Under the boundedness assumption, each polyhedron S i consists entirely of

points that are convex combinations of its extreme points. Thus, if the extreme points

of S i are {xi1, xi2, . . . , xiKi
}, then any point xi ∈ S i can be expressed in the form

xi =
Ki
∑

j=1
αijxij,

where
Ki
∑

j=1
αij = 1

and αij � 0, j = 1, . . . , Ki.

(3.47)

The αij’s are the weighting coefficients of the extreme points.

We now convert the original linear program to an equivalent master problem,

of which the objective is to find the optimal weighting coefficients for each poly-

hedron, S i. Corresponding to each extreme point xij in S i, define pij = cT
i

xij and

qij = Lixij. Clearly pij is the equivalent cost of the extreme point xij, and qij is its

equivalent activity vector in the linking constraints.

70 3 The Simplex Method

Then the original linear program (3.44) is equivalent, using (3.47), to the master

problem:

minimize

N
∑

i=1

Ki
∑

j=1

pijαij

subject to

N
∑

i=1

Ki
∑

j=1

qijαij = b0 (3.48)

Ki
∑

j=1
αi j = 1

αij � 0, j = 1, . . . , Ki

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

i = 1, . . . , N.

This master problem has variables

αT =
(

α11, . . . , α1K1
, α21, . . . , α2K2

, . . . , αN1, . . . , αNKN

)

and can be expressed more compactly as

minimize pTα

subject to Qα = g,α � 0 (3.49)

where gT = [bT
0 , 1, 1, . . . , 1]; the element of p associated with αij is pij; and the

column of Q associated with αij is

[

qij

ei

]

,

with ei denoting the ith unit vector in EN .

Suppose that at some stage of the revised simplex method for the master prob-

lem we know the basis B and corresponding simplex multipliers yT = pT
B

B−1. The

corresponding relative cost vector is rT
D
= cT

D
− yT D, having components

rij = pij − yT

[

qij

ei

]

. (3.50)

It is not necessary to calculate all the rij’s; it is only necessary to determine the

minimal rij. If the minimal value is nonnegative, the current solution is optimal and

the process terminates. If, on the other hand, the minimal element is negative, the

corresponding column should enter the basis.

The search for the minimal element in (3.50) is normally made with respect

to nonbasic columns only. The search can be formally extended to include basic

columns as well, however, since for basic elements

pij − yT

[

qij

ei

]

= 0.

3.8 Decomposition 71

The extra zero values do not influence the subsequent procedure, since a new column

will enter only if the minimal value is less than zero.

We therefore define r∗ as the minimum relative cost coefficient for all possible

basis vectors. That is,

r∗ = minimum
i∈{1,...,N}

{

r∗i = minimum
j∈{1,...,Ki}

{pij − yT

[

qij

ei

]

}
}

.

Using the definitions of pij and qij, this becomes

r∗i = minimum
j∈{1,...,Ki}

{

cT
i xij − yT

0 L jxij − ym+i

}

, (3.51)

where y0 is the vector made up of the first m elements of y, m being the number of

rows of L j [the number of linking constraints in (3.47)].

The minimization problem in (3.51) is actually solved by the ith subproblem:

minimize (cT
i − yT

0 L j)x j

subject to A jx j = b j, x j � 0 (3.52)

This follows from the fact that ym+i is independent of the extreme point index j

(since y is fixed during the determination of the r j’s), and that the solution of (3.52)

must be that extreme point of S i, say xik, of minimum cost, using the adjusted cost

coefficients cT
i
− yT

0 L j.

Thus, an algorithm for this special version of the revised simplex method applied

to the master problem is the following: Given a basis B

Step 1. Calculate the current basic solution xB, and solve yT B = cT
B

for y.

Step 2. For each i = 1, 2, . . . , N, determine the optimal solution x∗
i

of the ith

subproblem (3.52) and calculate

r∗i = (cT
i − yT

0 L j)x
∗
i − ym+i. (3.53)

If all r∗
i
> 0, stop; the current solution is optimal.

Step 3. Determine which column is to enter the basis by selecting the minimal r∗
i
.

Step 4. Update the basis of the master problem as usual.

This algorithm has an interesting economic interpretation in the context of a

multidivisional firm minimizing its total cost of operations as described earlier.

Division i’s activities are internally constrained by Axi = b j, and the common res-

ources b0 impose linking constraints. At Step 1 of the algorithm, the firm’s central

management formulates its current master plan, which is perhaps suboptimal, and

announces a new set of prices that each division must use to revise its recommended

strategy at Step 2. In particular, −y0 reflects the new prices that higher management

has placed on the common resources. The division that reports the greatest rate of

potential cost improvement has its recommendations incorporated in the new mas-

ter plan at Step 3, and the process is repeated. If no cost improvement is possible,

central management settles on the current master plan.

72 3 The Simplex Method

3.9 Summary

The simplex method is founded on the fact that the optimal value of a linear pro-

gram, if finite, is always attained at a basic feasible solution. Using this foundation

there are two ways in which to visualize the simplex process. The first is to view the

process as one of continuous change. One starts with a basic feasible solution and

imagines that some nonbasic variable is increased slowly from zero. As the value of

this variable is increased, the values of the current basic variables are continuously

adjusted so that the overall vector continues to satisfy the system of linear equality

constraints. The change in the objective function due to a unit change in this non-

basic variable, taking into account the corresponding required changes in the values

of the basic variables, is the relative cost coefficient associated with the nonbasic

variable. If this coefficient is negative, then the objective value will be continuously

improved as the value of this nonbasic variable is increased, and therefore one inc-

reases the variable as far as possible, to the point where further increase would

violate feasibility. At this point the value of one of the basic variables is zero, and

that variable is declared nonbasic, while the nonbasic variable that was increased is

declared basic.

The other viewpoint is more discrete in nature. Realizing that only basic feasible

solutions need be considered, various bases are selected and the corresponding basic

solutions are calculated by solving the associated set of linear equations. The logic

for the systematic selection of new bases again involves the relative cost coefficients

and, of course, is derived largely from the first, continuous, viewpoint.

Problems of special structure are important both for applications and for theory.

The transportation problem represents an important class of linear programs with

structural properties that lead to an efficient implementation of the simplex method.

The most important property of the transportation problem is that any basis is trian-

gular. This means that the basic variables can be found, one by one, directly by back

substitution, and the basis need never be inverted. Likewise, the simplex multipli-

ers can be found by back substitution, since they solve a set of equations involving

the transpose of the basis. Moreover, when any basis matrix is triangular and all

nonzero elements are equal to one (or minus one if the signs of some equations

are changed), it follows that the process of back substitution will simply involve

repeated additions and subtractions of the given row and column sums. No multi-

plication or division is required. It therefore follows that if the original right-hand

side are integers, the values of all basic variables will be integers. Hence, an opti-

mal basic solution, where each entry is integral, always exists; that is, there is no

gap between continuous linear program and integer linear program (or the integral-

ity gap is zero). The transportation problem can be generalized to a minimum cost

flow problem in a network. This leads to the interpretation of a simplex basis as

corresponding to a spanning tree in the network; see Appendix D.

Many linear programming methods have implemented a Presolver procedure to

eliminate redundant or duplicate constraints and/or value fixed variables, and to

check possible constraint inconsistency and unboundedness. This typically results

in problem size reduction and possible infeasibility detection.

3.10 Exercises 73

3.10 Exercises

1. Using pivoting, solve the simultaneous equations

3x1 + 2x2 = 5

5x1 + x2 = 9.

2. Using pivoting, solve the simultaneous equations

x1 + 2x2 + x3 = 7

2x1 − x2 + 2x3 = 6

x1 + x2 + 3x3 = 12.

3. Solve the equations in Exercise 2 by Gaussian elimination as described in

Appendix C.

4. Suppose B is an m × m square nonsingular matrix, and let the tableau T be

constructed, T = [I, B] where I is the m×m identity matrix. Suppose that pivot

operations are performed on this tableau so that it takes the form [C, I]. Show

that C = B−1.

5. Show that if the vectors a1, a2, . . . , am are a basis in Em, the vectors a1,

a2, . . . , ap−1,

aq, ap+1, . . . , am also are a basis if and only if āpq � 0, where āpq is defined by

the tableau (3.5).

6. If r j > 0 for every j corresponding to a variable x j that is not basic, show that

the corresponding basic feasible solution is the unique optimal solution.

7. Show that a degenerate basic feasible solution may be optimal without satisfy-

ing r j � 0 for all j.

8.

(a) Using the simplex procedure, solve

maximize −x1 + x2

subject to x1 − x2 � 2

x1 + x2 � 6

x1 � 0, x2 � 0.

(b) Draw a graphical representation of the problem in x1, x2 space and indicate the

path of the simplex steps.

(c) Repeat for the problem

maximize x1 + x2

subject to −2x1 + x2 � 1

x1 − x2 � 1

x1 � 0, x2 � 0.

74 3 The Simplex Method

9. Using the simplex procedure, solve the spare-parts manufacturer’s problem

(Exercise 4, Chap. 2).

10. Using the simplex procedure, solve

minimize 2x1 + 4x2 + x3 + x4

subject to x1 + 3x2 + x4 � 4

2x1 + x2 � 3

x2 + 4x3 + x4 � 3

x1 � 0 i = 1, 2, 3, 4.

11. For the linear program of Exercise 10

(a) How much can the elements of b = (4, 3, 3) be changed without changing the

optimal basis?

(b) How much can the elements of c = (2, 4, 1, 1) be changed without changing the

optimal basis?

(c) What happens to the optimal cost for small changes in b?

(d) What happens to the optimal cost for small changes in c?

12. Consider the problem

minimize x1 − 3x2 − 0.4x3

subject to 3x1 − x2 + 2x3 � 7

−2x1 + 4x2 � 12

−4x1 + 3x2 + 3x3 � 14

x1 � 0, x2 � 0, x3 � 0.

(a) Find an optimal solution.

(b) How many optimal basic feasible solutions are there?

(c) Show that if c4 +
1
3
a14 +

4
5
a24 � 0, then another activity x4 can be introduced

with cost coefficient c1 and activity vector (a14, a24, a34) without changing the

optimal solution.

13. Rather than select the variable corresponding to the most negative relative cost

coefficient as the variable to enter the basis, it has been suggested that a better

criterion would be to select that variable which, when pivoted in, will pro-

duce the greatest improvement in the objective function. Show that this crite-

rion leads to selecting the variable xk corresponding to the index k minimizing

max
i,āik>0

rkāi0/āik.

14. In the ordinary simplex method one new vector is brought into the basis and

one removed at every step. Consider the possibility of bringing two new vectors

into the basis and removing two at each stage. Develop a complete procedure

that operates in this fashion.

15. Degeneracy. If a basic feasible solution is degenerate, it is then theoretically

possible that a sequence of degenerate basic feasible solutions will be generated

that endlessly cycles without making progress. It is the purpose of this exercise

and the next two to develop a technique that can be applied to the simplex

method to avoid this cycling.

3.10 Exercises 75

Corresponding to the linear system Ax = b where A = [a1, a2, . . . , an] define

the perturbed system Ax = b(ε) where b(ε) = b + εa1 + ε
2a2 + · · · + εnan, ε >

0. Show that if there is a basic feasible solution (possibly degenerate) to the

unperturbed system with basis B = [a1, a2, . . . , am], then corresponding to

the same basis, there is a nondegenerate basic feasible solution to the perturbed

system for some range of ε > 0.

16. Show that corresponding to any basic feasible solution to the perturbed system

of Exercise 15, which is nondegenerate for some range of ε > 0, and to a vector

ak not in the basis, there is a unique vector a j in the basis which when replaced

by ak leads to a basic feasible solution; and that solution is nondegenerate for a

range of ε > 0.

17. Show that the tableau associated with a basic feasible solution of the perturbed

system of Exercise 15, and which is nondegenerate for a range of ε > 0, is

identical with that of the unperturbed system except in the column under b(ε).

Show how the proper pivot in a given column to preserve feasibility of the

perturbed system can be determined from the tableau of the unperturbed system.

Conclude that the simplex method will avoid cycling if whenever there is a

choice in the pivot element of a column k, arising from a tie in the minimum of

āi0/āik among the elements i ∈ I0, the tie is resolved by finding the minimum

of āi1/āik, i ∈ I0. If there still remainties among elements i ∈ I, the process is

repeated with āi2/āik, etc., until there is a unique element.

18. Using the two-phase simplex procedure solve

(a)
minimize −3x1 + x2 + 3x3 − x4

subject to x1 + 2x2 − x3 + x4 = 0

2x1 − 2x2 + 3x3 + 3x4 = 9

x1 − x2 + 2x3 − x4 = 6

x1 � 0, i = 1, 2, 3, 4.

(b)
minimize x1 + 6x2 − 7x3 + x4 + 5x5

subject to 5x1 − 4x2 + 13x3 − 2x4 + x5 = 20

x1 − x2 + 5x3 − x4 + x5 = 8

x1 � 0, i = 1, 2, 3.4, 5.

19. Solve the oil refinery problem (Exercise 3, Chap. 2).

20. Show that in the phase I procedure of a problem that has feasible solutions, if an

artificial variable becomes nonbasic, it need never again be made basic. Thus,

when an artificial variable becomes nonbasic its column can be eliminated from

future tableaus.

21. Suppose the phase I procedure is applied to the system Ax = b, x � 0, and that

the resulting tableau (ignoring the cost row) has the form

76 3 The Simplex Method

This corresponds to having m − k basic artificial variables at zero level.

(a) Show that any nonzero element in R2 can be used as a pivot to eliminate a basic

artificial variable, thus yielding a similar tableau but with k increased by one.

(b) Suppose that the process in (a) has been repeated to the point where R2 = 0.

Show that the original system is redundant, and show how phase II may proceed

by eliminating the bottom rows.

(c) Use the above method to solve the linear program

minimize 2x1 + 6x2 + x3 + x4

subject to x1 + 2x2 + x4 = 6

x1 + 2x2 + x3 + x4 = 7

x1 + 3x2 − x3 + 2x4 = 7

x1 + x2 + x3 = 5

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

22. Find a basic feasible solution to

x1 + 2x2 − x3 + x4 = 3

2x1 + 4x2 + x3 + 2x4 = 12

x1 + 4x2 + 2x3 + x4 = 9

x1 � 0, i = 1, 2, 3, 4.

23. Consider the system of linear inequalities Ax � b, x � 0 with b � 0. This

system can be transformed to standard form by the introduction of m surplus

variables so that it becomes Ax–y = b, x � 0, y � 0. Let bk = maxi bi and

consider the new system in standard form obtained by adding the kth row to the

negative of every other row. Show that the new system requires the addition of

only a single artificial variable to obtain an initial basic feasible solution.

Use this technique to find a basic feasible solution to the system.

x1 + 2x2 + x3 � 4

2x1 + x2 + x3 � 5

2x1 + 3x2 + 2x3 � 6

x j � 0, i = 1, 2, 3.

3.10 Exercises 77

24. It is possible to combine the two phases of the two-phase method into a single

procedure by the big-M method. Given the linear program in standard form

minimize cT x

subject to Ax = b, x � 0,

one forms the approximating problem

minimize cT x +M

m
∑

i=1

ui

subject to Ax + u = b

x � 0, u � 0.

In this problem u = (u1, u2, . . . , um) is a vector of artificial variables and M is

a large constant. The term M

m
∑

i=1

u j serves as a penalty term for nonzero ui’s.

If this problem is solved by the simplex method, show the following:

(a) If an optimal solution is found with y = 0, then the corresponding x is an

optimal basic feasible solution to the original problem.

(b) If for every M > 0 an optimal solution is found with y � 0, then the original

problem is infeasible.

(c) If for every M > 0 the approximating problem is unbounded, then the original

problem is either unbounded or infeasible.

(d) Suppose now that the original problem has a finite optimal value V(∞). Let

V(M) be the optimal value of the approximating problem. Show that

V(M) � V(∞).

(e) Show that for M1 � M2 we have V(M1) � V(M2).

(f) Show that there is a value M0 such that for M � M0, V(M) = V(∞), and hence

conclude that the big-M method will produce the right solution for large enough

values of M.

25. Using the revised simplex method find a basic feasible solution to

x1 +2x2 − x3 + x4 = 3

2x1 +4x2 + x3 + 2x4 = 12

x1 +4x2 + 2x3 + x4 = 9

x1 � 0, i = 1, 2, 3, 4.

26. The following tableau is an intermediate stage in the solution of a minimization

problem:
y1 y2 y3 y4 y5 y6 y0

1 2/3 0 0 4/3 0 4

0 −7/3 3 1 −2/3 0 2

0 −2/3 −2 0 2/3 1 2

rT 0 8/3 −11 0 4/3 0 −8

78 3 The Simplex Method

(a) Determine the next pivot element.

(b) Given that the inverse of the current basis is

B−1 = [a1, a4, a6]−1 =
1

3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 −1

1 −2 2

−1 2 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and the corresponding cost coefficients are

cT
B = (c1, c4, c6) = (−1, −3, 1),

find the original problem.

27. In many applications of linear programming it may be sufficient, for practical

purposes, to obtain a solution for which the value of the objective function is

within a predetermined tolerance ε from the minimum value z∗. Stopping the

simplex algorithm at such a solution rather than searching for the true minimum

may considerably reduce the computations.

(a) Consider a linear programming problem for which the sum of the variables is

known to be bounded above by s. Let z0 denote the current value of the objective

function at some stage of the simplex algorithm, (c j − z j) the corresponding

relative cost coefficients, and

M = max(z j − c j) j.

Show that if M � ε/s, then z0 − z∗ ≤ ε.
(b) Consider the transportation problem described in Sect. 2.2 (Example 3). Assum-

ing this problem is solved by the simplex method and it is sufficient to obtain

a solution within ε tolerance from the optimal value of the objective function,

specify a stopping criterion for the algorithm in terms of ε and the parameters

of the problem.

28. A matrix A is said to be totally unimodular if the determinant of every square

submatrix formed from it has value 0, +1, or −1

(a) Show that the matrix A defining the equality constraints of a transportation

problem is totally unimodular.

(b) In the system of equations Ax = b, assume that A is totally unimodular and

that all elements of A and b are integers. Show that all basic solutions have

integer components.

29. For the arrays below:

(a) Compute the basic solutions indicated. (Note: They may be infeasible.)

(b) Write the equations for the basic variables, corresponding to the indicated

basic solutions, in lower triangular form.

x x 10

x 20

x x 30

20 20 20

x x 10

x 20

x x 30

20 20 20

3.10 Exercises 79

30. For the arrays of cost coefficients below, the circled positions indicate basic

variables.

(a) Compute the simplex multipliers.

(b) Write the equations for the simplex multipliers in upper triangular form,

and compare with Part(b) of Exercise 4.

3 ➅ ➆

2 ➃ 3

➀ 5 ➁

➂ 6 ➆

2 ➃ 3

1 ➄ ➁

31. Consider the modified transportation problem where there is more available at

origins than is required at destinations (i.e.,
m
∑

i=1
ai >

n
∑

j=1
b j).

minimize

m
∑

j=1

n
∑

i=1

ci jxi j

subject to

n
∑

j=1

xi j � ai, i = 1, 2, . . . ,m

n
∑

i=1

xi j = b j, j = 1, 2, . . . , n

xi j � 0, for all i, j.

(a) Show how to convert it to an ordinary transportation problem.

(b) Suppose there is a storage cost of si per unit at origin i for goods not trans-

ported to a destination. Repeat Part(a) with this assumption.

32. Solve the following transportation problem, which is an original example of

Hitchcock.

a =
(

25 25 50
)

b =
(

15 20 30 35
) C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

10 5 6 7

8 2 7 6

9 3 4 8

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

33. In a transportation problem, suppose that two rows or two columns of the cost

coefficient array differ by a constant. Show that the problem can be reduced by

combining those rows or columns.

34. The transportation problem is often solved more quickly by carefully selecting

the starting basic feasible solution. The matrix minimum technique for finding

a starting solution is: (3.34) Find the lowest cost unallocated cell in the array,

and allocate the maximum possible to it, (3.35) Reduce the corresponding row

and column requirements, and drop the row or column having zero remaining

requirement. Go back to Step 1 unless all remaining requirements are zero.

(a) Show that this procedure yields a basic feasible solution.

(b) Apply the method to Exercise 7.

80 3 The Simplex Method

35. The caterer problem. A caterer is booked to cater a banquet each evening for the

next T days. He requires rt clean napkins on the tth day for t = 1, 2, . . . , T . He

may send dirty napkins to the laundry, which has two speeds of service—fast

and slow. The napkins sent to the fast service will be ready for the next day’s

banquet; those sent to the slow service will be ready for the banquet 2 days later.

Fast and slow service cost c1 and c2 per napkin, respectively, with c1 > c2. The

caterer may also purchase new napkins at any time at cost c0. He has an initial

stock of s napkins and wishes to minimize the total cost of supplying fresh

napkins.

(a) Formulate the problem as a transportation problem. (Hint: Use T+1 sources

and T destinations.)

(b) Using the values T = 4, s = 200, r1 = 100, r2 = 130, r3 = 150, r4 =

140, c1 = 6, c2 = 4, c0 = 12, solve the problem.

36. The marriage assignment problem. A group of n men and n women live on an

island. The amount of happiness that the ith man and the jth woman derive by

spending a fraction xi j of their lives together is ci jxi j. What is the nature of the

living arrangements that maximizes the total happiness of the islanders?

37. Anticycling Rule. A remarkably simple procedure for avoiding cycling was

developed by Bland, and we discuss it here.

Bland’s Rule. In the simplex method:

(a) Select the column to enter the basis by j = min{ j : r j < 0}; that is, select the

lowest indexed favorable column.

(b) In case ties occur in the criterion for determining which column is to leave the

basis, select the one with lowest index.

We can prove by contradiction that the use of Bland’s rule prohibits cycling.

Suppose that cycling occurs. During the cycle a finite number of columns enter

and leave the basis. Each of these columns enters at level zero, and the cost

function does not change.

Delete all rows and columns that do not contain pivots during a cycle, obtaining

a new linear program that also cycles. Assume that this reduced linear program

has m rows and n columns. Consider the solution stage where column n is about

to leave the basis, being replaced by column p. The corresponding tableau is as

follows (where the entries shown are explained below):

a1 · · · ap · · · an b

�0 0 0

�0 0 0
...

...
...

> 0 1 0

cT < 0 0 0

Without loss of generality, we assume that the current basis consists of the last

m columns. In fact, we may define the reduced linear program in terms of this

tableau, calling the current coefficient array A and the current relative cost vec-

tor c. In this tableau we pivot on amp, so amp > 0. By Part(b) of Bland’s rule,

References 81

an can leave the basis only if there are no ties in the ratio test, and since b = 0

because all rows are in the cycle, it follows that aip � 0 for all i � m.

Now consider the situation when column n is about to reenter the basis. Part(a)

of Bland’s rule ensures that rn < 0 and r j � 0 for all i � n. Apply the formula

ri = ci − yT ai to the last m columns to show that each component of y except ym

is nonpositive; and ym > 0. Then use this to show that rp = cp − yT ap < cp < 0,

contradicting rp � 0.

38. Use the Dantzig-Wolfe decomposition method to solve

minimize −4x1 − x2 − 3x3 − 2x4

subject to 2x1 + 2x2 + x3 + 2x4 � 6

x2 + 2x3 + 3x4 � 4

2x1 + x2 � 5

x2 � 1

− x3 + 2x4 � 2

x3 + 2x4 � 6

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

References

3.1–3.5 All of this is now standard material contained in most courses in linear

programming. See the references cited at the end of Chap. 2. For the orig-

inal work in this area, see Dantzig [D2] for development of the simplex

method; Orden [O2] for the artificial basis technique; Dantzig, Orden and

Wolfe [D8], Orchard-Hays [O1], and Dantzig [D4] for the revised simplex

method; and Charnes and Lemke [C3] and Dantzig [D5] for upper bounds.

The synthetic carrot interpretation is due to Gale [G2].

3.6 The idea of using LU decomposition for the simplex method is due to Bar-

tels and Golub [B2]. See also Bartels [B1]. For a nice simple introduction

to Gaussian elimination, see Forsythe and Moler [F15]. For an expository

treatment of modern computer implementation issues of linear program-

ming, see Murtagh [M9].

3.7 The transportation problem in its present form was first formulated by

Hitchcock [H11]. Koopmans [K8] also contributed significantly to the early

development of the problem. The simplex method for the transportation

problem was developed by Dantzig [D3]. Most textbooks on linear pro-

gramming include a discussion of the transportation problem. See espe-

cially Simonnard [S6], Murty [M11], and Bazaraa and Jarvis [B5]. The

method of changing basis is often called the stepping stone method. The as-

signment problem has a long and interesting history. The important fact that

the integer problem is solved by a standard linear programming problem

follows from a theorem of Birkhoff [B16], which states that the extreme

points of the set of feasible assignments are permutation matrices.

82 3 The Simplex Method

3.8 For a more comprehensive description of the Dantzig and Wolfe [D11]

decomposition method, see Dantzig [D6].

The degeneracy technique discussed in Exercises 15–17 is due to Charnes

[C2]. The anticycling method of Exercise 35 is due to Bland [B19]. For the

state of the art in Simplex solvers see Bixby [B18].

Chapter 4

Duality and Complementarity

Associated with every linear program, and intimately related to it, is a corresponding

dual linear program. Both programs are constructed from the same underlying cost

and constraint coefficients but in such a way that if one of these problems is one of

minimization the other is one of maximization, and the optimal values of the corre-

sponding objective functions, if finite, are equal. The variables of the dual problem

can be interpreted as prices associated with the constraints of the original (primal)

problem, and through this association it is possible to give an economically mean-

ingful characterization to the dual whenever there is such a characterization for the

primal.

The variables of the dual problem are also intimately related to the calculation of

the relative cost coefficients in the simplex method. Thus, a study of duality sharp-

ens our understanding of the simplex procedure and motivates certain alternative

solution methods. Indeed, the simultaneous consideration of a problem from both

the primal and dual viewpoints often provides significant computational advantage

as well as economic insight.

4.1 Dual Linear Programs

In this section we define the dual program that is associated with a given linear pro-

gram. Initially, we depart from our usual strategy of considering programs in stan-

dard form, since the duality relationship is most symmetric for programs expressed

solely in terms of inequalities. Specifically then, we define duality through the pair

of programs displayed below.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 4

83

84 4 Duality and Complementarity

Primal Dual

minimize cT x maximize yT b

subject to Ax � b subject to yT A � cT

x � 0 y � 0

(4.1)

If A is an m × n matrix, then x is an m-dimensional column vector, b is an

n-dimensional column vector, cT is an n-dimensional row vector, and yT is an

m-dimensional row vector. The vector x is the variable of the primal program, and y

is the variable of the dual program.

The pair of programs (4.1) is called the symmetric form of duality and, as ex-

plained below, can be used to define the dual of any linear program. It is important

to note that the role of primal and dual can be reversed. Thus, studying in detail

the process by which the dual is obtained from the primal: interchange of cost and

constraint vectors, transposition of coefficient matrix, reversal of constraint inequal-

ities, and change of minimization to maximization; we see that this same process

applied to the dual yields the primal. Put another way, if the dual is transformed,

by multiplying the objective and the constraints by minus unity, so that it has the

structure of the primal (but is still expressed in terms of y), its corresponding dual

will be equivalent to the original primal.

The dual of any linear program can be found by converting the program to the

form of the primal shown above. For example, given a linear program in standard

form

minimize cT x

subject to Ax = b, x � 0,

we write it in the equivalent form

minimize cT x

subject to Ax � b

−Ax � −b

x � 0,

which is in the form of the primal of (4.1) but with coefficient matrix

[

A

−A

]

. Using

a dual vector partitioned as (u, v), the corresponding dual is

maximize uT b − vT b

subject to uT A − vT A � cT

u � 0, v � 0.

Letting y = u − v we may simplify the representation of the dual program so that

we obtain the pair of problems displayed below:

Primal Dual

minimize cT x maximize yT b

subject to Ax = b, x � 0 subject to yT A � cT .

(4.2)

4.1 Dual Linear Programs 85

This is the asymmetric form of the duality relation. In this form the dual vector y

(which is really a composite of u and v) is not restricted to be nonnegative.

Similar transformations can be worked out for any linear program to first get the

primal in the form (4.1), calculate the dual, and then simplify the dual to account

for special structure.

In general, if some of the linear inequalities in the primal (4.1) are changed to

equality, the corresponding components of y in the dual become free variables.

If some of the components of x in the primal are free variables, then the corre-

sponding inequalities in yT A � cT are changed to equality in the dual. We mention

again that these are not arbitrary rules but are direct consequences of the original

definition and the equivalence of various forms of linear programs.

Example 1 (Dual of the Diet Problem). The diet problem, Example 1, Sect. 2.2, was

the problem faced by a dietitian trying to select a combination of foods to meet

certain nutritional requirements at minimum cost. This problem has the form

minimize cT x

subject to Ax � b, x � 0

and hence can be regarded as the primal program of the symmetric pair above. We

describe an interpretation of the dual problem.

Imagine a pharmaceutical company that produces in pill form each of the

nutrients considered important by the dietitian. The pharmaceutical company tries

to convince the dietitian to buy pills, and thereby supply the nutrients directly rather

than through purchase of various foods. The problem faced by the drug company

is that of determining positive unit prices λ1, λ2, . . . , λm for the nutrients so as to

maximize revenue while at the same time being competitive with real food. To be

competitive with real food, the cost of a unit of food i made synthetically from

pure nutrients bought from the druggist must be no greater than ci, the market price

of the food. Thus, denoting by ai the ith food, the company must satisfy yT ai � ci

for each i. In matrix form this is equivalent to yT A � cT . Since b j units of the jth

nutrient will be purchased, the problem of the druggist is

maximize yT b

subject to yT A � cT , y � 0,

which is the dual problem.

Example 2 (Dual of the Transportation Problem). The transportation problem,

Example 3, Sect. 2.2, is the problem, faced by a manufacturer, of selecting the

pattern of product shipments between several fixed origins and destinations so as to

minimize transportation cost while satisfying demand. Referring to (4.6) and (4.7)

of Chap. 2, the problem is in standard form, and hence the asymmetric version of

the duality relation applies. There is a dual variable for each constraint. In this case

we denote the variables ui, i = 1, 2, . . . , m for (4.6) and v j, j = 1, 2, . . . , n for (4.7).

Accordingly, the dual is

86 4 Duality and Complementarity

maximize
m
∑

i=1
aiui +

n
∑

j=1
b jv j

subject to ui + v j � cij, i = 1, 2, . . . , m,

j = 1, 2, . . . , n.

To interpret the dual problem, we imagine an entrepreneur who, feeling that he can

ship more efficiently, comes to the manufacturer with the offer to buy his product at

the plant sites (origins) and sell it at the warehouses (destinations). The product price

that is to be used in these transactions varies from point to point, and is determined

by the entrepreneur in advance. He must choose these prices, of course, so that his

offer will be attractive to the manufacturer.

The entrepreneur, then, must select prices −u1,−u2, . . . ,−um for the m origins

and v1, v2, . . . , vn for the n destinations. To be competitive with usual transportation

modes, his prices must satisfy ui + v j � cij for all i, j, since ui + v j represents the

net amount the manufacturer must pay to sell a unit of product at origin i and buy

it back again at destination j. Subject to this constraint, the entrepreneur will adjust

his prices to maximize his revenue. Thus, his problem is as given above.

4.2 The Duality Theorem

To this point the relation between the primal and dual programs has been simply a

formal one based on what might appear as an arbitrary definition. In this section,

however, the deeper connection between a program and its dual, as expressed by the

Duality Theorem, is derived.

The proof of the Duality Theorem given in this section relies on the Separating

Hyperplane Theorem (Appendix B) and is therefore somewhat more advanced than

previous arguments. It is given here so that the most general form of the Duality

Theorem is established directly. An alternative approach is to use the theory of the

simplex method to derive the duality result. A simplified version of this alternative

approach is given in the next section.

Throughout this section we consider the primal program in standard form

minimize cT x

subject to Ax = b, x � 0
(4.3)

and its corresponding dual

maximize yT b

subject to yT A � cT .
(4.4)

In this section it is not assumed that A is necessarily of full rank. The following

lemma is easily established and gives us an important relation between the two

problems.

4.2 The Duality Theorem 87

Fig. 4.1 Relation of primal and dual values

Lemma 1 (Weak Duality Lemma). If x and y are feasible for (4.3) and (4.4),respectively,

then cT x � yT b.

Proof. We have

yT b = yT Ax � cT x,

the last inequality being valid since x � 0 and yT A � cT . �

This lemma shows that a feasible vector to either problem yields a bound on the

value of the other problem. The values associated with the primal are all larger than

the values associated with the dual as illustrated in Fig. 4.1. Since the primal seeks

a minimum and the dual seeks a maximum, each seeks to reach the other. From this

we have an important corollary.

Corollary. If x0 and y0 are feasible for (4.3) and (4.4), respectively, and if cT x0 = yT
0

b,

then x0 and y0 are optimal for their respective problems.

The above corollary shows that if a pair of feasible vectors can be found to the

primal and dual programs with equal objective values, then these are both optimal.

The Duality Theorem of linear programming states that the converse is also true,

and that, in fact, the two regions in Fig. 4.1 actually have a common point; there is

no “gap.”

Duality Theorem of Linear Programming. If either of the problems (4.3) or (4.4) has a

finite optimal solution, so does the other, and the corresponding values of the objective

functions are equal. If either problem has an unbounded objective, the other problem has

no feasible solution.

Proof. We note first that the second statement is an immediate consequence of

Lemma 1. For if the primal is unbounded and y is feasible for the dual, we must

have yT b � −M for arbitrarily large M, which is clearly impossible.

Second we note that although the primal and dual are not stated in symmetric

form it is sufficient, in proving the first statement, to assume that the primal has

a finite optimal solution and then show that the dual has a solution with the same

value. This follows because either problem can be converted to standard form and

because the roles of primal and dual are reversible.

Suppose (4.3) has a finite optimal solution with value z0. In the space Em+1 define

the convex set

C = {(r, w) : r = tz0 − cT x, w = tb − Ax, x � 0, t � 0}.

It is easily verified that C is in fact a closed convex cone. We show that the point (1,

0) is not in C. If w = t0b − Ax0 = 0 with t0 > 0, x0 � 0, then x = x0/t0 is feasible

for (4.3) and hence r/t0 = z0 − cT x � 0; which means r � 0. If w = −Ax0 = 0

88 4 Duality and Complementarity

with x0 � 0 and cT x0 = −1, and if x is any feasible solution to (4.3), then x + αx0 is

feasible for any α � 0 and gives arbitrarily small objective values as α is increased.

This contradicts our assumption on the existence of a finite optimum and thus we

conclude that no such x0 exists. Hence (1, 0) � C.

Now since C is a closed convex set, there is by Theorem 4.4, Sect. B.3, a hyper-

plane separating (1, 0) and C. Thus there is a nonzero vector [s, y] ∈ Em+1 and a

constant c such that

s < c = inf{sr + yT w : (r, w) ∈ C}.

Now since C is a cone, it follows that c � 0. For if there were (r, w) ∈ C such that

sr + yT w < 0, then α(r, w) for large α would violate the hyperplane inequality. On

the other hand, since (0, 0) ∈ C we must have c � 0. Thus c = 0. As a consequence

s < 0, and without loss of generality we may assume s = −1.

We have to this point established the existence of y ∈ Em such that

−r + yT w � 0

for all (r, w) ∈ C. Equivalently, using the definition of C,

(c − yT A)x − tz0 + tyT b � 0

for all x � 0, t � 0. Setting t = 0 yields yT A � cT , which says y is feasible for the

dual. Setting x = 0 and t = 1 yields yT b � z0, which in view of Lemma 1 and its

corollary shows that y is optimal for the dual. �

4.3 Relations to the Simplex Procedure

In this section the Duality Theorem is proved by making explicit use of the char-

acteristics of the simplex procedure. As a result of this proof it becomes clear that

once the primal is solved by the simplex procedure a solution to the dual is readily

obtainable.

Suppose that for the linear program

minimize cT x

subject to Ax = b, x � 0,
(4.5)

we have the optimal basic feasible solution x = (xB, 0) with corresponding basis B.

We shall determine a solution of the dual program

maximize yT b

subject to yT A � cT (4.6)

in terms of B.

4.3 Relations to the Simplex Procedure 89

We partition A as A = [B, D]. Since the basic feasible solution xB = B−1b is

optimal, the relative cost vector r must be nonnegative in each component. From

Sect. 3.6 we have

rT
D = cT

D − cT
BB−1D,

and since rD is nonnegative in each component we have cT
B

B−1D � cT
D

.

Now define yT = cT
B

B−1. We show that this choice of y solves the dual problem.

We have

yT A = [yT B, yT D] = [cT
B, cT

BB−1D] � [cT
B, cT

D] = cT .

Thus since yT A � cT , y is feasible for the dual. On the other hand,

yT b = cT
BB−1b = cT

BxB,

and thus the value of the dual objective function for this y is equal to the value of

the primal problem. This, in view of Lemma 1, Sect. 4.2, establishes the optimality

of y for the dual. The above discussion yields an alternative derivation of the main

portion of the Duality Theorem.

Theorem. Let the linear program (4.5) have an optimal basic feasible solution correspond-

ing to the basis B. Then the vector y satisfying yT = cT
B

B−1 is an optimal solution to the

dual program (4.6). The optimal values of both problems are equal.

We turn now to a discussion of how the solution of the dual can be obtained

directly from the final simplex tableau of the primal. Suppose that embedded in the

original matrix A is an m × m identity matrix. This will be the case if, for example,

m slack variables are employed to convert inequalities to equalities. Then in the

final tableau the matrix B−1 appears where the identity appeared in the beginning.

Furthermore, in the last row the components corresponding to this identity matrix

will be cT
I
− cT

B
B−1, where cI is the m-vector representing the cost coefficients of

the variables corresponding to the columns of the original identity matrix. Thus by

subtracting these cost coefficients from the corresponding elements in the last row,

the negative of the solution yT = cT
B

B−1 to the dual is obtained. In particular, if, as

is the case with slack variables, cI = 0, then the elements in the last row under B−1

are equal to the negative of components of the solution to the dual.

Example. Consider the primal program

minimize −x1 − 4x2 − 3x3

subject to 2x1 + 2x2 + x3 � 4

x1 + 2x2 + 2x3 � 6

x1 � 0, x2 � 0, x3 � 0.

This can be solved by introducing slack variables and using the simplex proce-

dure. The appropriate sequence of tableaus is given below without explanation.

90 4 Duality and Complementarity

2 ➁ 1 1 0 4

1 2 2 0 1 6

−1 −4 −3 0 0 0

1 1 1/2 1/2 0 2

−1 0 ➀ −1 1 2

3 0 −1 2 0 8

3/2 1 0 1 −1/2 1

−1 0 1 −1 1 2

2 0 0 1 1 10

The optimal solution is x1 = 0, x2 = 1, x3 = 2. The corresponding dual program is

maximize 4λ1 + 6λ2

subject to 2λ1 + λ2 � −1

2λ1 + 2λ2 � −4

λ1 + 2λ2 � −3

λ1 � 0, λ2 � 0.

The optimal solution to the dual is obtained directly from the last row of the sim-

plex tableau under the columns where the identity appeared in the first tableau:

λ1 = −1, λ2 = −1.

Geometric Interpretation

The duality relations can be viewed in terms of the dual interpretations of linear

constraints emphasized in Chap. 3. Consider a linear program in standard form. For

sake of concreteness we consider the problem

minimize 18x1 + 12x2 + 2x3 + 6x4

subject to 3x1 + x2 − 2x3 + x4 = 2

x1 + 3x2 − x4 = 2

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

The columns of the constraints are represented in requirements space in Fig. 4.2.

A basic solution represents construction of b with positive weights on two of the ai’s.

The dual problem is

maximize 2λ1 + 2λ2

subject to 3λ1 + λ2 � 18

λ1 + 3λ2 � 12

−2λ1 � 2

λ1 − λ2 � 6.

The dual problem is shown geometrically in Fig. 4.3. Each column ai of the pri-

mal defines a constraint of the dual as a half-space whose boundary is orthogonal

4.3 Relations to the Simplex Procedure 91

Fig. 4.2 The primal requirements space

to that column vector and is located at a point determined by ci. The dual objective

is maximized at an extreme point of the dual feasible region. At this point exactly

two dual constraints are active. These active constraints correspond to an optimal

basis of the primal. In fact, the vector defining the dual objective is a positive linear

combination of the vectors. In the specific example, b is a positive combination of

a1 and a2. The weights in this combination are the xi’s in the solution of the primal.

Fig. 4.3 The dual in activity space

92 4 Duality and Complementarity

Simplex Multipliers

We conclude this section by giving an economic interpretation of the relation

between the simplex basis and the vector y. At any point in the simplex procedure

we may form the vector y satisfying yT = cT
B

B−1. This vector is not a solution to the

dual unless B is an optimal basis for the primal, but nevertheless, it has an economic

interpretation. Furthermore, as we have seen in the development of the revised sim-

plex method, this y vector can be used at every step to calculate the relative cost

coefficients. For this reason yT = cT
B

B−1, corresponding to any basis, is often called

the vector of simplex multipliers.

Let us pursue the economic interpretation of these simplex multipliers. As usual,

denote the columns of A by a1, a2, . . . , an and denote by e1, e2, . . . , em the m unit

vectors in Em. The components of the ai’s and b tell how to construct these vectors

from the ei’s.

Given any basis B, however, consisting of m columns of A, any other vector

can be constructed (synthetically) as a linear combination of these basis vectors.

If there is a unit cost ci associated with each basis vector ai, then the cost of a

(synthetic) vector constructed from the basis can be calculated as the corresponding

linear combination of the ci’s associated with the basis. In particular, the cost of the

jth unit vector, e j, when constructed from the basis B, is λ j, the jth component of

yT = cT
B

B−1. Thus the λ j’s can be interpreted as synthetic prices of the unit vectors.

Now, any vector can be expressed in terms of the basis B in two steps: (1) express

the unit vectors in terms of the basis, and then (2) express the desired vector as a

linear combination of unit vectors. The corresponding synthetic cost of a vector con-

structed from the basis B can correspondingly be computed directly by: (1) finding

the synthetic price of the unit vectors, and then (2) using these prices to evaluate the

cost of the linear combination of unit vectors. Thus, the simplex multipliers can be

used to quickly evaluate the synthetic cost of any vector that is expressed in terms of

the unit vectors. The difference between the true cost of this vector and the synthetic

cost is the relative cost. The process of calculating the synthetic cost of a vector,

with respect to a given basis, by using the simplex multipliers is sometimes referred

to as pricing out the vector.

Optimality of the primal corresponds to the situation where every vector a1, a2,

. . . , an is cheaper when constructed from the basis than when purchased directly at

its own price. Thus we have yT ai � ci for i = 1, 2, . . . , n or equivalently yT A � cT .

4.4 Sensitivity and Complementary Slackness

The optimal values of the dual variables in a linear program can, as we have seen, be

interpreted as prices. In this section this interpretation is explored in further detail.

4.4 Sensitivity and Complementary Slackness 93

Sensitivity

Suppose in the linear program

minimize cT x

subject to Ax = b, x � 0,
(4.7)

the optimal basis is B with corresponding solution (xB, 0), where xB = B−1b. A

solution to the corresponding dual is yT = cT
B

B−1.

Now, assuming nondegeneracy, small changes in the vector b will not cause the

optimal basis to change. Thus for b + ∆b the optimal solution is

x = (xB + ∆xB, 0),

where ∆xB = B−1
∆b. Thus the corresponding increment in the cost function is

∆z = cT
B∆xB = yT

∆b. (4.8)

This equation shows that y gives the sensitivity of the optimal cost with respect to

small changes in the vector b. In other words, if a new program were solved with b

changed to b + ∆b, the change in the optimal value of the objective function would

be yT
∆b.

This interpretation of the dual vector y is intimately related to its interpretation

as a vector of simplex multipliers. Since λ j is the price of the unit vector e j when

constructed from the basis B, it directly measures the change in cost due to a change

in the jth component of the vector b. Thus, λ j may equivalently be considered as

the marginal price of the component b j, since if b j is changed to b j + ∆b j the value

of the optimal solution changes by λ j∆b j.

If the linear program is interpreted as a diet problem, for instance, then λ j is

the maximum price per unit that the dietitian would be willing to pay for a small

amount of the jth nutrient, because decreasing the amount of nutrient that must

be supplied by food will reduce the food bill by λ j dollars per unit. If, as another

example, the linear program is interpreted as the problem faced by a manufacturer

who must select levels x1, x2, . . . , xn of n production activities in order to meet

certain required levels of output b1, b2, . . . , bm while minimizing production costs,

the λi’s are the marginal prices of the outputs. They show directly how much the

production cost varies if a small change is made in the output levels.

Complementary Slackness

The optimal solutions to primal and dual programs satisfy an additional relation

that has an economic interpretation. This relation can be stated for any pair of dual

linear programs, but we state it here only for the asymmetric and the symmetric

pairs defined in Sect. 4.1.

94 4 Duality and Complementarity

Theorem. (Complementary slackness—asymmetric form). Let x and y be feasible solu-

tions for the primal and dual programs, respectively, in the pair (4.2). A necessary and

sufficient condition that they both be optimal solutions is that† for all i

i) xi > 0⇒ yT ai = ci

ii) xi = 0⇐ yT a j < c j.

Proof. If the stated conditions hold, then clearly (yT A − cT)x = 0. Thus yT b =

cT x, and by the corollary to Lemma 1, Sect. 4.2, the two solutions are optimal.

Conversely, if the two solutions are optimal, it must hold, by the Duality Theo-

rem, that yT b = cT x and hence that (yT A − cT)x = 0. Since each component of x is

nonnegative and each component of yT A − cT is nonpositive, the conditions (i) and

(ii) must hold. �

Theorem. (Complementary slackness—symmetric form). Let x and y be feasible solutions

for the primal and dual programs, respectively, in the pair (4.1). A necessary and sufficient

condition that they both be optimal solutions is that for all i and j

i) xi > 0⇒ yT ai = ci

ii) xi = 0⇐ yT ai < ci

iii) λ j > 0⇒ a jx = b j

iv) λ j = 0⇐ a jx > b j,

(where a j is the jth row of A).

Proof. This follows by transforming the previous theorem. �

The complementary slackness conditions have a rather obvious economic inter-

pretation. Thinking in terms of the diet problem, for example, which is the primal

part of a symmetric pair of dual problems, suppose that the optimal diet supplies

more than b j units of the jth nutrient. This means that the dietitian would be unwill-

ing to pay anything for small quantities of that nutrient, since availability of it would

not reduce the cost of the optimal diet. This, in view of our previous interpretation

of λ j as a marginal price, implies λ j = 0 which is (iv) of Theorem 4.4. The other

conditions have similar interpretations which the reader can work out.

4.5 Max Flow–Min Cut Theorem

One of the most exemplary pairs of linear primal and dual problems is the max-flow

and min-cut theorem, which we describe in this section. The maximal flow problem

described in Chap. 2 can be expressed more compactly in terms of the node–arc

incidence matrix (see Appendix D). Let x be the vector of arc flows xi j (ordered in

any way). Let A be the corresponding node-arc incidence matrix. Finally, let e be a

† The symbol⇒ means “implies” and⇐ means “is implied by.”

4.5 Max Flow–Min Cut Theorem 95

vector with dimension equal to the number of nodes and having a + 1 component on

node 1, a – 1 on node m, and all other components zero. The maximal flow problem

is then

maximize f

subject to Ax − f e = 0 (4.9)

x � k.

The coefficient matrix of this problem is equal to the node–arc incidence matrix with

an additional column for the flow variable f . Any basis of this matrix is triangular,

and hence as indicated by the theory in the transportation problem in Chap. 3, the

simplex method can be effectively employed to solve this problem. However, instead

of the simplex method, a simple algorithm based on the tree algorithm (also see

Appendix D) can be used.

Max Flow Augmenting Algorithm

The basic strategy of the algorithm is quite simple. First we recognize that it is

possible to send nonzero flow from node 1 to node m only if node m is reachable

from node 1. The tree procedure can be used to determine if m is in fact reachable;

and if it is reachable, the algorithm will produce a path from 1 to m. By examining

the arcs along this path, we can determine the one with minimum capacity. We may

then construct a flow equal to this capacity from 1 to m by using this path. This gives

us a strictly positive (and integer-valued) initial flow.

Next consider the nature of the network at this point in terms of additional flows

that might be assigned. If there is already flow xi j in the arc (i, j), then the effective

capacity of that arc is reduced by xi j(to ki j − xi j), since that is the maximal amount

of additional flow that can be assigned to that arc. On the other hand, the effective

reverse capacity, on the arc (j, i), is increased by xi j(to k ji + xi j), since a small incre-

mental backward flow is actually realized as a reduction in the forward flow through

that arc. Once these changes in capacities have been made, the tree procedure can

again be used to find a path from node 1 to node m on which to assign additional

flow. (Such a path is termed an augmenting path.) Finally, if m is not reachable

from 1, no additional flow can be assigned, and the procedure is complete.

It is seen that the method outlined above is based on repeated application of

the tree procedure, which is implemented by labeling and scanning. By including

slightly more information in the labels than in the basic tree algorithm, the minimum

arc capacity of the augmenting path can be determined during the initial scanning,

instead of by reexamining the arcs after the path is found. A typical label at a node

i has the form (k, ci), where k denotes a precursor node and ci is the maximal flow

that can be sent from the source to node i through the path created by the previous

labeling and scanning. The complete procedure is this:

96 4 Duality and Complementarity

Step 0. Set all xi j = 0 and f = 0.

Step 1. Label node 1 (−, ∞). All other nodes are unlabeled.

Step 2. Select any labeled node i for scanning. Say it has label (k, ci). For all

unlabeled nodes j such that (i, j) is an arc with xi j < ki j, assign the label (i, c j),

where c j = min {ci, ki j − xi j}. For all unlabeled nodes j such that (j, i) is an arc

with x ji > 0, assign the label (i, c j), where c j = min {ci, x ji}.
Step 3. Repeat Step 2 until either node m is labeled or until no more labels can

be assigned. In this latter case, the current solution is optimal.

Step 4. (Augmentation.) If the node m is labeled (i, cm), then increase f and

the flow on arc (i,m) by cm. Continue to work backward along the augmenting

path determined by the nodes, increasing the flow on each arc of the path by cm.

Return to Step 1.

The validity of the algorithm should be fairly apparent, that is, the finite termi-

nation of the algorithm. However, a complete proof is deferred until we consider

the max flow-min cut theorem below.

Example. An example of the above procedure is shown in Fig. 4.4. Node 1 is the

source, and node 6 is the sink. The original network with capacities indicated on the

arcs is shown in Fig. 4.4a. Also shown in that figure are the initial labels obtained by

the procedure. In this case the sink node is labeled, indicating that a flow of 1 unit

can be achieved. The augmenting path of this flow is shown in Fig. 4.4b. Numbers

in square boxes indicate the total flow in an arc. The new labels are then found and

added to that figure. Note that node 2 cannot be labeled from node 1 because there

is no unused capacity in that direction. Node 2 can, however, be labeled from node

4, since the existing flow provides a reverse capacity of 1 unit. Again the sink is

labeled, and 1 unit more flow can be constructed. The augmenting path is shown in

Fig. 4.4c. A new labeling is appended to that figure. Again the sink is labeled, and

an additional 1 unit of flow can be sent from source to sink. The path of this 1 unit is

shown in Fig. 4.4d. Note that it includes a flow from node 4 to node 2, even though

flow was not allowed in this direction in the original network. This flow is allowable

now, however, because there is already flow in the opposite direction. The total flow

at this point is shown in Fig. 4.4e. The flow levels are again in square boxes. This

flow is maximal, since only the source node can be labeled.

Max Flow–Min Cut Theorem

A great deal of insight and some further results can be obtained through the

introduction of the notion of cuts in a network. Given a network with source node

1 and sink node m, divide the nodes arbitrarily into two sets S and S̄ such that

the source node is in S and the sink is in S̄ . The set of arcs from S to S̄ is a cut and

is denoted (S , S̄). The capacity of the cut is the sum of the capacities of the arcs in

the cut.

An example of a cut is shown in Fig. 4.5. The set S consists of nodes 1 and 2,

while S̄ consists of 3, 4, 5, 6. The capacity of this cut is 4.

4.5 Max Flow–Min Cut Theorem 97

Fig. 4.4 Illustration of algorithmic steps of the maximal flow example

98 4 Duality and Complementarity

Fig. 4.5 A cut

It should be clear that a path from node 1 to node m must include at least one arc

in any cut, for the path must have an arc from the set S to the set S̄ . Furthermore, it

is clear that the maximal amount of flow that can be sent through a cut is equal to

its capacity. Thus each cut gives an upper bound on the value of the maximal flow

problem. The max flow-min cut theorem states that equality is actually achieved for

some cut. That is, the maximal flow is equal to the minimal cut capacity. It should

be noted that the proof of the theorem also establishes the maximality of the flow

obtained by the maximal flow algorithm.

Max Flow–Min Cut Theorem. In a network the maximal flow between a source and a sink

is equal to the minimal cut capacity of all cuts separating the source and sink.

Proof. Since any cut capacity must be greater than or equal to the maximal flow, it is

only necessary to exhibit a flow and a cut for which equality is achieved. Begin with

a flow in the network that cannot be augmented by the maximal flow algorithm. For

this flow find the effective arc capacities of all arcs for incremental flow changes as

described earlier and apply the labeling procedure of the maximal flow algorithm.

Since no augmenting path exists, the algorithm must terminate before the sink is

labeled.

Let S and S̄ consist of all labeled and unlabeled nodes, respectively. This defines

a cut separating the source from the sink. All arcs originating in S and terminating

in S̄ have zero incremental capacity, or else a node in S̄ could have been labeled.

This means that each arc in the cut is saturated by the original flow; that is, the

flow is equal to the capacity. Any arc originating in S̄ and terminating in S , on the

other hand, must have zero flow; otherwise, this would imply a positive incremental

capacity in the reverse direction, and the originating node in S̄ would be labeled.

Thus, there is a total flow from S to S̄ equal to the cut capacity, and zero flow from

S̄ to S . This means that the flow from source to sink is equal to the cut capacity.

Thus the cut capacity must be minimal, and the flow must be maximal. �

In the network of Fig. 4.4, the minimal cut corresponds to the S consisting only

of the source. That cut capacity is 3. Note that in accordance with the max flow–

min cut theorem, this is equal to the value of the maximal flow, and the minimal

4.5 Max Flow–Min Cut Theorem 99

cut is determined by the final labeling in Fig. 4.4e. In Fig. 4.5 the cut shown is also

minimal, and the reader should easily be able to determine the pattern of maximal

flow.

Relation to Duality

The character of the max flow–min cut theorem suggests a connection with the

Duality Theorem. We conclude this section by exploring this connection.

The maximal flow problem is a linear program, which is expressed formally

by (4.9). The dual problem is found to be

minimize wT k

subject to uT A = wT (4.10)

uT e = 1

w ≥ 0.

When written out in detail, the dual is

minimize
∑

i j

wi jki j

subject to ui − u j = wi j

u1 − um = 1 (4.11)

wi j ≥ 0.

A pair i, j is included in the above only if (i, j) is an arc of the network.

A feasible solution to this dual problem can be found in terms of any cut

set (S , S̄). In particular, it is easily seen that

ui =

{

1 if i ∈ S

0 if i ∈ S̄
(4.12)

wi j =

{

1 if (i, j) ∈ (S , S̄)

0 otherwise

is a feasible solution. The value of the dual problem corresponding to this solution

is the cut capacity. If we take the cut set to be the one determined by the labeling

procedure of the maximal flow algorithm as described in the proof of the theorem

above, it can be seen to be optimal by verifying the complementary slackness con-

ditions (a task we leave to the reader). The minimum value of the dual is therefore

equal to the minimum cut capacity.

100 4 Duality and Complementarity

4.6 The Dual Simplex Method

Often there is available a basic solution to a linear program which is not feasible but

which prices out optimally; that is, the simplex multipliers are feasible for the dual

problem. In the simplex tableau this situation corresponds to having no negative ele-

ments in the bottom row but an infeasible basic solution. Such a situation may arise,

for example, if a solution to a certain linear programming problem is calculated and

then a new problem is constructed by changing the vector b. In such situations a

basic feasible solution to the dual is available and hence it is desirable to pivot in

such a way as to optimize the dual.

Rather than constructing a tableau for the dual problem (which, if the primal is

in standard form; involves m free variables and n nonnegative slack variables), it is

more efficient to work on the dual from the primal tableau. The complete technique

based on this idea is the dual simplex method. In terms of the primal problem,

it operates by maintaining the optimality condition of the last row while working

toward feasibility. In terms of the dual problem, however, it maintains feasibility

while working toward optimality.

Given the linear program

minimize cT x

subject to Ax = b, x � 0,
(4.13)

suppose a basis B is known such that y defined by yT = cT
B

B−1 is feasible for the

dual. In this case we say that the corresponding basic solution to the primal, xB =

B−1b, is dual feasible. If xB � 0 then this solution is also primal feasible and hence

optimal.

The given vector y is feasible for the dual and thus satisfies yT a j � c j, for j =

1, 2, . . . , n. Indeed, assuming as usual that the basis is the first m columns of A,

there is equality

yT a j = c j, for j = 1, 2, . . . , m, (4.14a)

and (barring degeneracy in the dual) there is inequality

yT a j < c j, for j = m + 1, . . . , n. (4.14b)

To develop one cycle of the dual simplex method, we find a new vector y such that

one of the equalities becomes an inequality and one of the inequalities becomes

equality, while at the same time increasing the value of the dual objective function.

The m equalities in the new solution then determine a new basis.

Denote the ith row of B−1 by ui. Then for

y
T
= yT − εui, (4.15)

we have y
T

a j = yT a j − εu ja j. Thus, recalling that z j = yT a j and noting that uia j =

yij, the ijth element of the tableau, we have

4.6 The Dual Simplex Method 101

y
T

a j = c j, j = 1, 2, . . . , m, i � j (4.16a)

y
T

ai = ci − ε (4.16b)

y
T

a j = z j − εyij, j = m + 1, m + 2, . . . , n. (4.16c)

Also,

y
T

b = yT b − εxBi. (4.17)

These last equations lead directly to the algorithm:

Step 1. Given a dual feasible basic solution xB, if xB � 0 the solution is optimal.

If xB is not nonnegative, select an index i such that the ith component of xB, xBi <

0.

Step 2. If all yij � 0, j = 1, 2, . . . , n, then the dual has no maximum (this follows

since by (4.16) λ̄ is feasible for all ε > 0). If yij < 0 for some j, then let

ε0 =
zk − ck

yik

= min
j

{

z j − c j

yij

: yij < 0

}

. (4.18)

Step 3. Form a new basis B by replacing ai by ak. Using this basis determine the

corresponding basic dual feasible solution xB and return to Step 1.

The proof that the algorithm converges to the optimal solution is similar in its

details to the proof for the primal simplex procedure. The essential observations are:

(a) from the choice of k in (4.18) and from (4.16a), (4.16b), 4.16c) the new solution

will again be dual feasible; (b) by (4.17) and the choice xBi
< 0, the value of the dual

objective will increase; (c) the procedure cannot terminate at a nonoptimum point;

and (d) since there are only a finite number of bases, the optimum must be achieved

in a finite number of steps.

Example. A form of problem arising frequently is that of minimizing a positive

combination of positive variables subject to a series of “greater than” type inequal-

ities having positive coefficients. Such problems are natural candidates for applica-

tion of the dual simplex procedure. The classical diet problem is of this type as is

the simple example below.

minimize 3x1 + 4x2 + 5x3

subject to xi + 2x2 + 3x3 � 5

2x1 + 2x2 + x3 � 6

x1 � 0, x2 � 0, x3 � 0.

By introducing surplus variables and by changing the sign of the inequalities we

obtain the initial tableau

−1 −2 −3 1 0 −5

−➁ −2 −1 0 1 −6

3 4 5 0 0 0

Initial tableau

102 4 Duality and Complementarity

The basis corresponds to a dual feasible solution since all of the c j − z j’s are

nonnegative. We select any xBi
< 0, say x5 = −6, to remove from the set of basic

variables. To find the appropriate pivot element in the second row we compute the

ratios (z j − c j)/y2 j and select the minimum positive ratio. This yields the pivot indi-

cated. Continuing, the remaining tableaus are

0 −➀ −5/2 1 −1/2 −2

1 1 1/2 0 −1/2 3

0 1 7/2 0 3/2 9

Second tableau

0 1 5/2 −1 1/2 2

1 0 −2 1 −1 1

0 0 1 1 1 11

Final tableau

The third tableau yields a feasible solution to the primal which must be optimal.

Thus the solution is x1 = 1, x2 = 2, x3 = 0.

*4.7 ∗The Primal-Dual Algorithm

In this section a procedure is described for solving linear programming problems by

working simultaneously on the primal and the dual problems. The procedure begins

with a feasible solution to the dual that is improved at each step by optimizing an

associated restricted primal problem. As the method progresses it can be regarded

as striving to achieve the complementary slackness conditions for optimality. Orig-

inally, the primal-dual method was developed for solving a special kind of linear

program arising in network flow problems, and it continues to be the most efficient

procedure for these problems. (For general linear programs the dual simplex method

is most frequently used). In this section we describe the generalized version of the

algorithm and point out an interesting economic interpretation of it. We consider the

program

minimize cT x

subject to Ax = b, x � 0
(4.19)

and the corresponding dual program

maximize yT b

subject to yT A � cT .
(4.20)

Given a feasible solution y to the dual, define the subset P of 1, 2, . . . , n by

i ∈ P if yT ai = ci where ai is the ith column of A. Thus, since y is dual feasible, it

follows that i � P implies yT ai < ci. Now corresponding to y and P, we define the

associated restricted primal problem

4.7 ∗The Primal-Dual Algorithm 103

minimize 1T y

subject to Ax + y = b

x � 0, xi = 0 for i � P

y � 0,

(4.21)

where 1 denotes the m-vector (1, 1, . . ., 1).

The dual of this associated restricted primal is called the associated restricted

dual. It is
maximize uT b

subject to uT ai � 0, i � P

u � 1.

(4.22)

The condition for optimality of the primal-dual method is expressed in the following

theorem.

Primal-Dual Optimality Theorem. Suppose that y is feasible for the dual and that x and

y = 0 is feasible (and of course optimal) for the associated restricted primal. Then x and y

are optimal for the original primal and dual programs, respectively.

Proof. Clearly x is feasible for the primal. Also we have cT x = yT Ax, because yT A

is identical to cT on the components corresponding to nonzero elements of x. Thus

cT x = yT Ax = yT b and optimality follows from Lemma 1, Sect. 4.2. �

The primal–dual method starts with a feasible solution to the dual and then

optimizes the associated restricted primal. If the optimal solution to this associated

restricted primal is not feasible for the primal, the feasible solution to the dual is

improved and a new associated restricted primal is determined. Here are the details:

Step 1. Given a feasible solution y0 to the dual program (4.20), determine the

associated restricted primal according to (4.21).

Step 2. Optimize the associated restricted primal. If the minimal-value of this

problem is zero, the corresponding solution is optimal for the original primal

by the Primal-Dual Optimality Theorem.

Step 3. If the minimal value of the associated restricted primal is strictly posi-

tive, obtain from the final simplex tableau of the restricted primal, the solution

u0 of the associated restricted dual (4.22). If there is no j for which uT
0

a j > 0

conclude the primal has no feasible solutions. If, on the other hand, for at least

one j, uT
0 a j > 0, define the new dual feasible vector

y = y0 + ε0u0

where

ε0 =
ck − yT

0
ak

uT
0

ak

= min
j

⎧

⎪

⎨

⎪

⎩

c j − yT
0

a j

uT
0

a j

: uT
0 a j > 0

⎫

⎪

⎬

⎪

⎭

.

Now go back to Step 1 using this y.

To prove convergence of this method a few simple observations and explanations

must be made. First we verify the statement made in Step 3 that uT
0 a j � 0 for all j

104 4 Duality and Complementarity

implies that the primal has no feasible solution. The vector yε = y0 + εu0 is feasible

for the dual problem for all positive ε, since uT
0

A � 0. In addition, yT
ε b = yT

0
b+εuT

0
b

and, since uT
0

b = 1T y > 0, we see that as ε is increased we obtain an unbounded

solution to the dual. In view of the Duality Theorem, this implies that there is no

feasible solution to the primal.

Next suppose that in Step 3, for at least one j, uT
0

a j > 0. Again we define the

family of vectors yε = y0 + εu0. Since u0 is a solution to (4.22) we have uT
0 ai � 0

for i ∈ P, and hence for small positive ε the vector yε is feasible for the dual. We

increase ε to the first point where one of inequalities yT
ε a j < c j, j � P becomes

an equality. This determines ε0 > 0 and k. The new y vector corresponds to an in-

creased value of the dual objective yT b = yT
0

b+εuT
0

b. In addition, the corresponding

new set P now includes the index k. Any other index i that corresponded to a pos-

itive value of xi in the associated restricted primal is in the new set P, because by

complementary slackness uT
0

ai = 0 for such an i and thus yT ai = yT
0

ai+ε0uT
0

ai = ci.

This means that the old optimal solution is feasible for the new associated restricted

primal and that ak can be pivoted into the basis. Since uT
0 ak > 0, pivoting in ak will

decrease the value of the associated restricted primal.

In summary, it has been shown that at each step either an improvement in the

associated primal is made or an infeasibility condition is detected. Assuming non-

degeneracy, this implies that no basis of the associated primal is repeated—and since

there are only a finite number of possible bases, the solution is reached in a finite

number of steps.

The primal-dual algorithm can be given an interesting interpretation in terms of

the manufacturing problem in Example 2, Sect. 2.2. Suppose we own a facility that

is capable of engaging in n different production activities each of which produces

various amounts of m commodities. Each activity i can be operated at any level

xi � 0, but when operated at the unity level the ith activity costs ci dollars and yields

the m commodities in the amounts specified by the m-vector ai. Assuming linearity

of the production facility, if we are given a vector b describing output requirements

of the m commodities, and we wish to produce these at minimum cost, ours is the

primal problem.

Imagine that an entrepreneur not knowing the value of our requirements vector b

decides to sell us these requirements directly. He assigns a price vector y0 to these

requirements such that yT
0 A � c. In this way his prices are competitive with our

production activities, and he can assure us that purchasing directly from him is no

more costly than engaging activities. As owner of the production facilities we are

reluctant to abandon our production enterprise but, on the other hand, we deem it not

frugal to engage an activity whose output can be duplicated by direct purchase for

lower cost. Therefore, we decide to engage only activities that cannot be duplicated

cheaper, and at the same time we attempt to minimize the total business volume

given the entrepreneur. Ours is the associated restricted primal problem.

Upon receiving our order, the greedy entrepreneur decides to modify his prices

in such a manner as to keep them competitive with our activities but increase the

cost of our order. As a reasonable and simple approach he seeks new prices of the

form

4.7 ∗The Primal-Dual Algorithm 105

y = y0 + εu0,

where he selects u0 as the solution to

maximize uT y

subject to uT ai � 0, i ∈ P

u � 1.

The first set of constraints is to maintain competitiveness of his new price vector for

small ε, while the second set is an arbitrary bound imposed to keep this subproblem

bounded. It is easily shown that the solution u0 to this problem is identical to the

solution of the associated dual (4.22). After determining the maximum ε to maintain

feasibility, he announces his new prices.

At this point, rather than concede to the price adjustment, we recalculate the new

minimum volume order based on the new prices. As the greedy (and shortsighted)

entrepreneur continues to change his prices in an attempt to maximize profit he

eventually finds he has reduced his business to zero! At that point we have, with his

help, solved the original primal problem.

Example. To illustrate the primal-dual method and indicate how it can be imple-

mented through use of the tableau format consider the following problem:

minimize 2x1 + x2 + 4x3

subject to x1 + x2 + 2x3 = 3

2x1 + x2 + 3x3 = 5

x1 � 0, x2 � 0, x3 � 0.

Because all of the coefficients in the objective function are nonnegative, y = (0, 0)

is a feasible vector for the dual. We lay out the simplex tableau shown below

a1 a2 a3 · · b

1 1 2 1 0 3

2 1 3 0 1 5

−3 −2 −5 0 0 −8

ci − yT ai → 2 1 4 · · ·
First tableau

To form this tableau we have adjoined artificial variables in the usual manner.

The third row gives the relative cost coefficients of the associated primal problem—

the same as the row that would be used in a phase I procedure. In the fourth row

are listed the ci − yT ai’s for the current y. The allowable columns in the associated

restricted primal are determined by the zeros in this last row.

Since there are no zeros in the last row, no progress can be made in the associated

restricted primal and hence the original solution x1 = x2 = x3 = 0, y1 = 3, y2 = 5 is

optimal for this y. The solution u0 to the associated restricted dual is u0 = (1, 1), and

the numbers −uT
0 ai, i = 1, 2, 3 are equal to the first three elements in the third row.

106 4 Duality and Complementarity

Thus, we compute the three ratios 2
3
, 1

2
, 4

5
from which we find ε0 =

1
2
. The new

values for the fourth row are now found by adding ε0 times the (first three) elements

of the third row to the fourth row.

a1 a2 a3 · · b

1 ➀ 2 1 0 3

2 1 3 0 1 5

−3 −2 −5 0 0 −8

1/2 0 3/2 · · ·
Second tableau

Minimizing the new associated restricted primal by pivoting as indicated we obtain

a1 a2 a3 · · b

1 1 2 1 0 3

1 0 1 −1 1 2

−1 0 −1 2 0 −2

−1/2 0 3/2 · · ·

Now we again calculate the ratios 1
2
, 3

2
obtaining ε0 =

1
2
, and add this multiple of

the third row to the fourth row to obtain the next tableau.

a1 a2 a3 · · b

1 1 2 1 0 3

➀ 0 1 −1 1 2

−1 0 −1 2 0 −2

0 0 1 · · ·
Third tableau

optimizing the new restricted primal we obtain the tableau:

a1 a2 a3 · · b

0 1 1 2 −1 1

1 0 1 −1 1 2

0 0 0 1 1 0

0 0 1 · · ·
Final tableau

Having obtained feasibility in the primal, we conclude that the solution is also

optimal: x1 = 2, x2 = 1, x3 = 0.

4.8 Summary

There is a corresponding dual linear program associated with every (primal) linear

program. Both programs share the same underlying cost and constraint coefficients.

We have demonstrated rich theorems to relate the pair. The variables of the dual

4.9 Exercises 107

problem can be interpreted as prices associated with the constraints of the original

(primal) problem, and through this association it is possible to give an economically

meaningful characterization to the dual whenever there is such a characterization

for the primal.

Mathematically, the pair also establish an optimality certificate to each other:

one cannot claim an optimal objective value unless you find an solution for the

dual to achieve the same value of the dual objective. This also leads to the set of

optimality conditions, including the complementarity conditions, that we would see

many times in the rest of the book.

4.9 Exercises

1. Verify in detail that the dual of a linear program is the original problem.

2. Show that if a linear inequality in a linear program is changed to equality, the

corresponding dual variable becomes free.

3. Find the dual of
minimize cT x

subject to Ax = b, x � a

where a � 0.

4. Show that in the transportation problem the linear equality constraints are not

linearly independent, and that in an optimal solution to the dual problem the

dual variables are not unique. Generalize this observation to any linear program

having redundant equality constraints.

5. Construct an example of a primal problem that has no feasible solutions and

whose corresponding dual also has no feasible solutions.

6. Let A be an m×n matrix and b be an n-vector. Prove that Ax � 0 implies cT x � 0

if and only if cT = yT A for some y � 0. Give a geometric interpretation of the

result.

7. There is in general a strong connection between the theories of optimization and

free competition, which is illustrated by an idealized model of activity location.

Suppose there are n economic activities (various factories, homes, stores, etc.)

that are to be individually located on n distinct parcels of land. If activity i is

located on parcel j that activity can yield sij units (dollars) of value.

If the assignment of activities to land parcels is made by a central authority, it

might be made in such a way as to maximize the total value generated. In other

words, the assignment would be made so as to maximize
∑

i

∑

j sij xij where

xij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if activity i is assigned to parcel j

0 otherwise

108 4 Duality and Complementarity

More explicitly this approach leads to the optimization problem

maximize
∑

i

∑

j

sij xij

subject to
∑

j

xij = 1, i = 1, 2, . . . , n

∑

i

xij = 1, j = 1, 2, . . . , n

xij � 0, xij = 0 or 1.

Actually, it can be shown that the final requirement (xij = 0 or 1) is automati-

cally satisfied at any extreme point of the set defined by the other constraints, so

that in fact the optimal assignment can be found by using the simplex method

of linear programming.

If one considers the problem from the viewpoint of free competition, it is

assumed that, rather than a central authority determining the assignment, the

individual activities bid for the land and thereby establish prices.

(a) Show that there exists a set of activity prices pi, i = 1, 2, . . . , n and land

prices q j, j = 1, 2, . . . , n such that

pi + q j � sij, i = 1, 2, . . . , n, j = 1, 2, . . . , n

with equality holding if in an optimal assignment activity i is assigned to

parcel j.

(b) Show that Part (a) implies that if activity i is optimally assigned to parcel j

and if j′ is any other parcel

sij − q j � sij′ − q j′ .

Give an economic interpretation of this result and explain the relation

between free competition and optimality in this context.

(c) Assuming that each sij is positive, show that the prices can all be assumed

to be nonnegative.

8. Construct the dual of the combinatorial auction problem of Example 7 of

Chap. 2, and give an economical interpretation for each type of the dual vari-

ables.

9. Game theory is in part related to linear programming theory. Consider the game

in which player X may select any one of m moves, and player Y may select any

one of n moves. If X selects i and Y selects j, then X wins an amount aij from Y.

The game is repeated many times. Player X develops a mixed strategy where the

various moves are played according to probabilities represented by the compo-

nents of the vector x = (x1, x2, . . . , xm), where x1 � 0, i = 1, 2, . . . , m

and
m
∑

i=1
xi = 1. Likewise Y develops a mixed strategy y = (y1, y2, . . . , yn),

where yi � 0, i = 1, 2, . . . , n and
n
∑

i=1
yi = 1. The average payoff to X is then

P(x, y) = xT Ay.

4.9 Exercises 109

(a) Suppose X selects x as the solution to the linear program

maximize A

subject to
m
∑

i=1
xi = 1

m
∑

i=1
xiaij � A, j = 1, 2, . . . , n

xi � 0, i = 1, 2, . . . , m.

Show that X is guaranteed a payoff of at least A no matter what y is chosen

by Y.

(b) Show that the dual of the problem above is

minimize B

subject to
n
∑

j=1
y j = 1

n
∑

j=1
aijy j � B, i = 1, 2, . . . , m

y j � 0, j = 1, 2, . . . , n.

(c) Prove that max A = min B. (The common value is called the value of the

game.)

(d) Consider the “matching” game. Each player selects heads or tails. If the

choices match, X wins $1 from Y; if they do not match, Y wins $1 from X.

Find the value of this game and the optimal mixed strategies.

(e) Repeat Part (d) for the game where each player selects either 1, 2, or 3.

The player with the highest number wins $1 unless that number is exactly

1 higher than the other player’s number, in which case he loses $3. When

the numbers are equal there is no payoff.

10. Consider the primal linear program in the standard form. Suppose that this

program and its dual are feasible. Let y be a known optimal solution to the

dual.

(a) If the kth equation of the primal is multiplied by μ � 0, determine an opti-

mal solution w to the dual of this new problem.

(b) Suppose that, in the original primal, we add μ times the kth equation to

the rth equation. What is an optimal solution w to the corresponding dual

problem?

(c) Suppose, in the original primal, we add μ times the kth row of A to c. What

is an optimal solution to the corresponding dual problem?

11. Consider the linear program (P) of the form

minimize qT z

subject to Mz ≥ −q, z ≥ 0

in which the matrix M is skew symmetric; that is, M = −MT .

110 4 Duality and Complementarity

(a) Show that problem (P) and its dual are the same.

(b) A problem of the kind in part (a) is said to be self-dual. An example of a

self-dual problem has

M =

[

0 −AT

A 0

]

, q =

[

c

−b

]

, z =

[

x

y

]

.

Give an interpretation of the problem with this data.

(c) Show that a self-dual linear program has an optimal solution if and only if

it is feasible.

12. A company may manufacture n different products, each of which uses various

amounts of m limited resources. Each unit of product i yields a profit of ci

dollars and uses aji units of the jth resource. The available amount of the jth

resource is b j. To maximize profit the company selects the quantities xi to be

manufactured of each product by solving

maximize cT x

subject to Ax = b, x � 0.

The unit profits ci already take into account the variable cost associated with

manufacturing each unit. In addition to that cost, the company incurs a fixed

overhead H, and for accounting purposes it wants to allocate this overhead to

each of its products. In other words, it wants to adjust the unit profits so as to

account for the overhead. Such an overhead allocation scheme must satisfy two

conditions: (4.1) Since H is fixed regardless of the product mix, the overhead

allocation scheme must not alter the optimal solution, (4.2) All the overhead

must be allocated; that is, the optimal value of the objective with the modified

cost coefficients must be H dollars lower than z—the original optimal value of

the objective.

(a) Consider the allocation scheme in which the unit profits are modified

according to ĉT = cT−ryT
0 A, where y0 is the optimal solution to the original

dual and r = H/z0 (assume H � z0).

(i) Show that the optimal x for the modified problem is the same as that

for the original problem, and the new dual solution is ŷ0 = (1 − r)y0.

(ii) Show that this approach fully allocates H.

(b) Suppose that the overhead can be traced to each of the resource constraints.

Let Hi � 0 be the amount of overhead associated with the ith resource,

where
m
∑

i=1
Hi � z0 and ri = Hi/bi � λ

0
i

for i = 1, . . . , m. Based on this

information, an allocation scheme has been proposed where the unit profits

are modified such that ĉT = cT − rT A.

(i) Show that the optimal x for this modified problem is the same as that for

the original problem, and the corresponding dual solution is ŷ0 = y0−r.

(ii) Show that this scheme fully allocates H.

4.9 Exercises 111

13. Solve the linear inequalities

−2x1 + 2x2 � −1

2x1 − x2 � 2

− 4x2 � 3

−15x1 − 12x2 � −2

12x1 + 20x2 � −1.

Note that x1 and x2 are not restricted to be positive. Solve this problem by

considering the problem of maximizing 0 · x1+0 · x2 subject to these constraints,

taking the dual and using the simplex method.

14. (a) Using the simplex method solve

minimize 2x1 − x2

subject to 2x1 − x2 − x3 � 3

x1 − x2 + x3 � 2

xi � 0, i = 1, 2, 3.

(Hint: Note that x1 = 2 gives a feasible solution.)

(b) What is the dual problem and its optimal solution?

15. (a) Using the simplex method solve

minimize 2x1 + 3x2 + 2x3 + 2x4

subject to x1 + 2x2 + x3 + 2x4 = 3

x1 + x2 + 2x3 + 4x4 = 5

xi � 0, i = 1, 2, 3, 4.

(b) Using the work done in Part (a) and the dual simplex method, solve the

same problem but with the right-hand sides of the equations changed to 8

and 7 respectively.

16. For the problem

minimize 5x1 + 3x2

subject to 2x1 − x2 + 4x3 � 4

x1 + x2 + 2x3 � 5

2x1 − x2 + x3 � 1

x1 � 0, x2 � 0, x3 � 0;

(a) Using a single pivot operation with pivot element 1, find a feasible solution.

(b) Using the simplex method, solve the problem.

(c) What is the dual problem?

(d) What is the solution to the dual?

112 4 Duality and Complementarity

17. Solve the following problem by the dual simplex method:

minimize − 7x1 + 7x2 − 2x3 − x4 − 6x5

subject to 3x1 − x2 + x3 − 2x4 = −3

2x1 + x2 + x4 + x5 = 4

−x1 + 3x2 − 3x4 + x6 = 12

and xi � 0, i = 1, . . . , 6.

18. Given the linear programming problem in standard form (4.3) suppose a basis B

and the corresponding (not necessarily feasible) primal and dual basic solutions

x and y are known. Assume that at least one relative cost coefficient ci − yT ai is

negative. Consider the auxiliary problem

minimize cT x

subject to Ax = b
∑

i∈T
xi + y = M

x � 0, y � 0,

where T = {i : ci − yT ai < 0}, y is a slack variable, and M is a large positive

constant. Show that if k is the index corresponding to the most negative rela-

tive cost coefficient in the original solution, then (y, ck − yT ak) is dual feasible

for the auxiliary problem. Based on this observation, develop a big-M artificial

constraint method for the dual simplex method. (Refer to Exercise 24, Chap. 3.)

19. A textile firm is capable of producing three products—x1, x2, x3. Its production

plan for next month must satisfy the constraints

x1 + 2x2 + 2x3 � 12

2x1 + 4x2 + x3 � f

x1 � 0, x2 � 0, x3 � 0.

The first constraint is determined by equipment availability and is fixed. The

second constraint is determined by the availability of cotton. The net profits of

the products are 2, 3, and 3, respectively, exclusive of the cost of cotton and

fixed costs.

(a) Find the shadow price λ2 of the cotton input as a function of f . (Hint: Use

the dual simplex method.) Plot λ2(f) and the net profit z(f) exclusive of the

cost for cotton.

(b) The firm may purchase cotton on the open market at a price of 1/6. How-

ever, it may acquire a limited amount at a price of 1/12 from a major sup-

plier that it purchases from frequently. Determine the net profit of the firm

π(s) as a function of s.

4.9 Exercises 113

20. A certain telephone company would like to determine the maximum number

of long-distance calls from Westburgh to Eastville that it can handle at any one

time. The company has cables linking these cities via several intermediary cities

as follows:

Each cable can handle a maximum number of calls simultaneously as indicated

in the figure. For example, the number of calls routed from Westburgh to North-

gate cannot exceed five at any one time. A call from Westburgh to Eastville can

be routed through any other city, as long as there is a cable available that is not

currently being used to its capacity. In addition to determining the maximum

number of calls from Westburgh to Eastville, the company would, of course,

like to know the optimal routing of these calls. Assume calls can be routed only

in the directions indicated by the arrows.

(a) Formulate the above problem as a linear programming problem with upper

bounds.

(Hint: Denote by xij the number of calls routed from city i to city j.)

(b) Find the solution by inspection of the graph.

21. Apply the maximal flow algorithm to the network below. All arcs have capacity

1 unless otherwise indicated.

22. Consider the problem

minimize 2x1 + x2 + 4x3

subject to x1 + x2 + 2x3 = 3

2x1 + x2 + 3x3 = 5

xi � 0, x2 � 0, x3 � 0.

114 4 Duality and Complementarity

(a) What is the dual problem?

(b) Note that y = (1, 0) is feasible for the dual. Starting with this y, solve the

primal using the primal-dual algorithm.

23. Show that in the associated restricted dual of the primal-dual method the

objective yT b can be replaced by yT y.

24. Consider the primal feasible region in standard form Ax = b, x � 0, where A is

an m × n matrix, b is a constant nonzero m-vector, and x is a variable n-vector.

(a)A variable xi is said to be a null variable if xi = 0 in every feasible solution.

Prove that, if the feasible region is non-empty, xi is a null variable if and only

if there is a nonzero vector y ∈ Em such that yT A ≥ 0, yT b = 0. and the ith

component of yT A is strictly positive.

(b)Strict complementarity Let the feasible region be nonempty. Then there is a

feasible x and vector y ∈ Em such that

yT A ≥ 0, yT b = 0, yT b + x > 0.

(c)A variable xi is a nonextremal variable if xi > 0 in every feasible solution.

Prove that, if the feasible region is non-empty, xi is a nonextremal variable

if and only if there is y ∈ Em and d ∈ En such that yT A = dT , where

di = −1, d j � 0 for j � i; and such that yT b < 0.

References

4.1–4.4 Again most of the material in this chapter is now quite standard. See the

references of Chap. 2. A particularly careful discussion of duality can be

found in Simonnard [S6].

4.5 Koopmans [K8] was the first to discover the relationship between bases and

tree structures in a network. The classic reference for network flow theory is

Ford and Fulkerson [F13]. For discussion of even more efficient versions of

the maximal flow algorithm, see Lawler [L2] and Papadimitriou and Stei-

glitz [P2]. The Hungarian method for the assignment problem was designed

by Kuhn [K10]. It is called the Hungarian method because it was based on

work by the Hungarian mathematicians Egerváry and König. Ultimately,

this led to the general primal–dual algorithm for linear programming.

4.6 The dual simplex method is due to Lemke [L4].

4.7 The general primal-dual algorithm is due to Dantzig, Ford and Fulker-

son [D7]. See also Ford and Fulkerson [F13]. The economic interpretation

given in this section is apparently novel.

The concepts of reduction are due to Shefi [S5], who has developed a

complete theory in this area. For more details along the lines presented

here, see Luenberger [L15].

Chapter 5

Interior-Point Methods

Linear programs can be viewed in two somewhat complementary ways. They are,

in one view, a class of continuous optimization problems each with continuous vari-

ables defined on a convex feasible region and with a continuous objective function.

They are, therefore, a special case of the general form of problem considered in

this text. However, linearity implies a certain degree of degeneracy, since for exam-

ple the derivatives of all functions are constants and hence the differential methods

of general optimization theory cannot be directly used. From an alternative view,

linear programs can be considered as a class of combinatorial problems because it

is known that solutions can be found by restricting attention to the vertices of the

convex polyhedron defined by the constraints. Indeed, this view is natural when con-

sidering network problems such as those of early chapters. However, the number of

vertices may be large, up to n!/m!(n−m) !, making direct search impossible for even

modest size problems.

The simplex method embodies both of these viewpoints, for it restricts attention

to vertices, but exploits the continuous nature of the variables to govern the progress

from one vertex to another, defining a sequence of adjacent vertices with improving

values of the objective as the process reaches an optimal point. The simplex method,

with ever-evolving improvements, has for five decades provided an efficient general

method for solving linear programs.

Although it performs well in practice, visiting only a small fraction of the total

number of vertices, a definitive theory of the simplex method’s performance was

unavailable. However, in 1972, Klee and Minty showed by examples that for certain

linear programs the simplex method will examine every vertex f. These examples

proved that in the worst case, the simplex method requires a number of steps that is

exponential in the size of the problem.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 5

115

116 5 Interior-Point Methods

In view of this result, many researchers believed that a good algorithm, differ-

ent than the simplex method, might be devised whose number of steps would be

polynomial rather than exponential in the program’s size—that is, the time required

to compute the solution would be bounded above by a polynomial in the size of the

problem.1

Indeed, in 1979, a new approach to linear programming, Khachiyan’s ellipsoid

method was announced with great acclaim. The method is quite different in struc-

ture than the simplex method, for it constructs a sequence of shrinking ellipsoids

each of which contains the optimal solution set and each member of the sequence

is smaller in volume than its predecessor by at least a certain fixed factor. There-

fore, the solution set can be found to any desired degree of approximation by con-

tinuing the process. Khachiyan proved that the ellipsoid method, developed dur-

ing the 1970s by other mathematicians, is a polynomial-time algorithm for linear

programming.

Practical experience, however, was disappointing. In almost all cases, the simplex

method was much faster than the ellipsoid method. However, Khachiyan’s ellipsoid

method showed that polynomial time algorithms for linear programming do exist.

It left open the question of whether one could be found that, in practice, was faster

than the simplex method.

It is then perhaps not surprising that the announcement by Karmarkar in 1984

of a new polynomial time algorithm, an interior-point method, with the potential

to improve the practical effectiveness of the simplex method made front-page news

in major newspapers and magazines throughout the world. It is this interior-point

approach that is the subject of this chapter and the next.

This chapter begins with a brief introduction to complexity theory, which is the

basis for a way to quantify the performance of iterative algorithms, distinguishing

polynomial-time algorithms from others.

Next the example of Klee and Minty showing that the simplex method is not

a polynomial-time algorithm in the worst case is presented. Following that the

ellipsoid algorithm is defined and shown to be a polynomial-time algorithm. These

two sections provide a deeper understanding of how the modern theory of linear

programming evolved, and help make clear how complexity theory impacts linear

programming. However, the reader may wish to consider them optional and omit

them at first reading.

The development of the basics of interior-point theory begins with Sect. 5.4

which introduces the concept of barrier functions and the analytic center. Section 5.5

introduces the central path which underlies interior-point algorithms. The relations

between primal and dual in this context are examined. An overview of the details

of specific interior-point algorithms based on the theory are presented in Sects. 5.6

and 5.7

1 We will be more precise about complexity notions such as “polynomial algorithm” in Sect. 5.1
below.

5.1 Elements of Complexity Theory 117

5.1 Elements of Complexity Theory

Complexity theory is arguably the foundation for analysis of computer algorithms.

The goal of the theory is twofold: to develop criteria for measuring the effectiveness

of various algorithms (and thus, be able to compare algorithms using these criteria),

and to assess the inherent difficulty of various problems.

The term complexity refers to the amount of resources required by a computa-

tion. In this chapter we focus on a particular resource, namely, computing time. In

complexity theory, however, one is not interested in the execution time of a pro-

gram implemented in a particular programming language, running on a particular

computer over a particular input. This involves too many contingent factors. In-

stead, one wishes to associate to an algorithm more intrinsic measures of its time

requirements.

Roughly speaking, to do so one needs to define:

• a notion of input size,

• a set of basic operations, and

• a cost for each basic operation.

The last two allow one to associate a cost of a computation. If x is any input, the

cost C(x) of the computation with input x is the sum of the costs of all the basic

operations performed during this computation.

Let A be an algorithm and Jn be the set of all its inputs having size n. The

worst-case cost function ofA is the function T w
A defined by

T w
A(n) = sup

x∈Jn

C(x).

If there is a probability structure on Jn it is possible to define the average-case cost

function T a
A given by

T a
A(n) = En(C(x)).

where En is the expectation over Jn. However, the average is usually more difficult

to find, and there is of course the issue of what probabilities to assign.

We now discuss how the objects in the three items above are selected. The selec-

tion of a set of basic operations is generally easy. For the algorithms we consider

in this chapter, the obvious choice is the set {+, −, ×, /, ≤} of the four arithmetic

operations and the comparison. Selecting a notion of input size and a cost for the

basic operations depends on the kind of data dealt with by the algorithm. Some

kinds can be represented within a fixed amount of computer memory; others require

a variable amount.

Examples of the first are fixed-precision floating-point numbers, stored in a fixed

amount of memory (usually 32 or 64 bits). For this kind of data the size of an

element is usually taken to be 1 and consequently to have unit size per number.

Examples of the second are integer numbers which require a number of bits

approximately equal to the logarithm of their absolute value. This (base 2) logarithm

is usually referred to as the bit size of the integer. Similar ideas apply for rational

numbers.

118 5 Interior-Point Methods

Let A be some kind of data and x = (x1, . . . , xn) ∈ An. If A is of the first kind

above then we define size(x) = n. Otherwise, we define size(x) =
∑n

i=1 bit-size (xi).

The cost of operating on two unit-size numbers is taken to be 1 and is called the

unit cost. In the bit-size case, the cost of operating on two numbers is the product of

their bit-sizes (for multiplications and divisions) or their maximum (for additions,

subtractions, and comparisons).

The consideration of integer or rational data with their associated bit size and

bit cost for the arithmetic operations is usually referred to as the Turing model of

computation. The consideration of idealized reals with unit size and unit cost is

today referred as the real number arithmetic model. When comparing algorithms,

one should make clear which model of computation is used to derive complexity

bounds.

A basic concept related to both models of computation is that of polynomial

time. An algorithmA is said to be a polynomial time algorithm if T w
A(n) is bounded

above by a polynomial. A problem can be solved in polynomial time if there is a

polynomial time algorithm solving the problem. The notion of average polynomial

time is defined similarly, replacing T w
A by T a

A.

The notion of polynomial time is usually taken as the formalization of efficiency

in complexity theory.

*5.2 ∗The Simplex Method Is Not Polynomial-Time

When the simplex method is used to solve a linear program in standard form with

coefficient matrix A ∈ Em×n, b ∈ Em and c ∈ En, the number of pivot steps to solve

the problem starting from a basic feasible solution is typically a small multiple of

m: usually between 2m and 3m. In fact, Dantzig observed that for problems with

m ≤ 50 and n ≤ 200 the number of iterations is ordinarily less than 1.5m.

At one time researchers believed—and attempted to prove—that the simplex

algorithm (or some variant thereof) always requires a number of iterations that is

bounded by a polynomial expression in the problem size. That was until Victor Klee

and George Minty exhibited a class of linear programs each of which requires an

exponential number of iterations when solved by the conventional simplex method.

One form of the Klee–Minty example is

maximize

n
∑

j=1

10n− jx j

subject to 2

i−1
∑

j=1

10i− jx j + xi ≤ 100i−1i = 1, . . . , n (5.1)

x j ≥ 0 j = 1, . . . , n

The problem above is easily cast as a linear program in standard form.

5.3 ∗The Ellipsoid Method 119

A specific case is that for n = 3, giving

maximize 100x1 + 10x2 + x3

subject to x1 ≤ 1

20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10, 000

x1 � 0, x2 � 0, x3 � 0.

In this case, we have three constraints and three variables (along with their non-

negativity constraints). After adding slack variables, the problem is in standard form.

The system has m = 3 equations and n = 6 nonnegative variables. It can be verified

that it takes 23 − 1 = 7 pivot steps to solve the problem with the simplex method

when at each step the pivot column is chosen to be the one with the largest (because

this a maximization problem) reduced cost. (See Exercise 1.)

The general problem of the class (1) takes 2n − 1 pivot steps and this is in fact

the number of vertices minus one (which is the starting vertex). To get an idea of

how bad this can be, consider the case where n = 50. We have 250 − 1 ≈ 1015. In

a year with 365 days, there are approximately 3 × 107 s. If a computer ran contin-

uously, performing a million pivots of the simplex algorithm per second, it would

take approximately
1015

3 × 107 × 106
≈ 33 years

to solve a problem of this class using the greedy pivot selection rule.

Although it is not polynomial in the worst case, the simplex method remains

one of major solvers for linear programming. In fact, the method has been recently

proved to be (strongly) polynomial for solving the Markov Decision Process with

any fixed discount rate.

*5.3 ∗The Ellipsoid Method

The basic ideas of the ellipsoid method stem from research done in the 1960s and

1970s mainly in the Soviet Union (as it was then called) by others who preceded

Khachiyan. In essence, the idea is to enclose the region of interest in ever smaller

ellipsoids.

The significant contribution of Khachiyan was to demonstrate in that under cer-

tain assumptions, the ellipsoid method constitutes a polynomially bounded algorithm

for linear programming.

The version of the method discussed here is really aimed at finding a point of a

polyhedral set Ω given by a system of linear inequalities.

Ω = {y ∈ Em : yT a j ≤ c j, j = 1, . . . n}

120 5 Interior-Point Methods

Finding a point ofΩ can be thought of as equivalent to solving a linear programming

problem.

Two important assumptions are made regarding this problem:

(A1) There is a vector y0 ∈ Em and a scalar R > 0 such that the closed ball S (y0, R)

with center y0 and radius R, that is

{y ∈ Em : |y − y0| ≤ R},

contains Ω.

(A2) If Ω is nonempty, there is a known scalar r > 0 such that Ω contains a ball

of the form S (y∗, r) with center at y∗ and radius r. (This assumption implies

that if Ω is nonempty, then it has a nonempty interior and its volume is at least

vol(S (0, r)).)2

Definition. An ellipsoid in Em is a set of the form

E = {y ∈ Em : (y − z)T Q(y − z) ≤ 1}

where z ∈ Em is a given point (called the center) and Q is a positive definite matrix (see
Sect. A.4 of Appendix A) of dimension m × m. This ellipsoid is denoted E(z, Q).

The unit sphere S (0, 1) centered at the origin 0 is a special ellipsoid with Q = I, the

identity matrix.

The axes of a general ellipsoid are the eigenvectors of Q and the lengths of the

axes are λ−1/2
1
, λ
−1/2
2
, . . . , λ

−1/2
m , where the λi’s are the corresponding eigenvalues.

It can be shown that the volume of an ellipsoid is

vol(E) = vol(S (0, 1))Πm
i=1λ

−1/2
i
= vol(S (0, 1)) det(Q−1/2).

Cutting Plane and New Containing Ellipsoid

In the ellipsoid method, a series of ellipsoids Ek is defined, with centers yk and with

the defining Q = B−1
k

, where Bk is symmetric and positive definite.

At each iteration of the algorithm, we have Ω ⊂ Ek. It is then possible to check

whether yk ∈ Ω. If so, we have found an element of Ω as required. If not, there is at

least one constraint that is violated. Suppose aT
j
yk > c j. Then

Ω ⊂ 1

2
Ek = {y ∈ Ek : aT

j y ≤ aT
j yk}

This set is half of the ellipsoid, obtained by cutting the ellipsoid in half through its

center (Fig. 5.1).

2 The (topological) interior of any set Ω is the set of points inΩ which are the centers of some balls
contained in Ω.

5.3 ∗The Ellipsoid Method 121

The successor ellipsoid Ek+1 is defined to be the minimal-volume ellipsoid

containing (1/2)Ek. It is constructed as follows. Define

τ =
1

m + 1
, δ =

m2

m2 − 1
, σ = 2τ.

Fig. 5.1 A half-ellipsoid

Then put

yk+1 = yk −
τ

(aT
j
Bka j)1/2

Bka j

Bk+1 = δ

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Bk − σ
Bka ja

T
j
Bk

aT
j
Bka j

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(5.2)

Theorem 1. The ellipsoid Ek+1 = E(yk+1, B−1
k+1

) defined as above is the ellipsoid of least

volume containing (1/2)Ek . Moreover,

vol(Ek+1)

vol(Ek)
=

(

m2

m2 − 1

)(m−1)/2
m

m + 1
< exp

(

− 1

2(m + 1)

)

< 1.

Proof. We shall not prove the statement about the new ellipsoid being of least

volume, since that is not necessary for the results that follow. To prove the remainder

of the statement, we have

vol(Ek+1)

vol(Ek)
=

det(B1/2
k+1

)

det(B1/2
k

)

For simplicity, by a change of coordinates, we may take Bk = I. Then Bk+1 has m−1

eigenvalues equal to δ = m2

m2−1
and one eigenvalue equal to δ−2δτ = m2

m2−1
(1− 2

m+1
) =

(m
m+1

)2. The reduction in volume is the product of the square roots of these, giving

the equality in the theorem.

122 5 Interior-Point Methods

Then using (1 + x)p
� exp, we have

(

m2

m2 − 1

)(m−1)/2
m

m + 1
=

(

1 +
1

m2 − 1

)(m−1)/2 (

1 − 1

m + 1

)

< exp

(

1

2(m + 1)
− 1

(m + 1)

)

= exp

(

− 1

2(m + 1)

)

. �

Convergence

The ellipsoid method is initiated by selecting y0 and R such that condition (A1) is

satisfied. Then B0 = R2I, and the corresponding E0 contains Ω. The updating of the

Ek’s is continued until a solution is found.

Under the assumptions stated above, a single repetition of the ellipsoid method

reduces the volume of an ellipsoid to one-half of its initial value in O(m) iterations.

(See Appendix A for O notation.) Hence it can reduce the volume to less than that

of a sphere of radius r in O(m2 log(R/r)) iterations, since its volume is bounded

from below by vol(S (0, 1))rm and the initial volume is vol(S (0, 1))Rm. Generally

a single iteration requires O(m2) arithmetic operations. Hence the entire process

requires O(m4 log(R/r)) arithmetic operations.3

Ellipsoid Method for Usual Form of LP

Now consider the linear program (where A is m × n)

(P)
maximize cT x

subject to Ax ≤ b, x ≥ 0

and its dual

(D)
minimize yT b

subject to yT A ≥ cT , y ≥ 0.

Note that both problems can be solved by finding a feasible point to inequalities

− cT x + bT y ≤ 0

Ax ≤ b

−AT y ≤ −c (5.3)

x, y ≥ 0,

where both x and y are variables. Thus, the total number of arithmetic operations

for solving a linear program is bounded by O((m + n)4 log(R/r)).

3 Assumption (A2) is sometimes too strong. It has been shown, however, that when the data consists
of integers, it is possible to perturb the problem so that (A2) is satisfied and if the perturbed problem
has a feasible solution, so does the original Ω.

5.4 The Analytic Center 123

5.4 The Analytic Center

The new interior-point algorithms introduced by Karmarkar move by successive

steps inside the feasible region. It is the interior of the feasible set rather than the ver-

tices and edges that plays a dominant role in this type of algorithm. In fact, these

algorithms purposely avoid the edges of the set, only eventually converging to one

as a solution.

Our study of these algorithms begins in the next section, but it is useful at this

point to introduce a concept that definitely focuses on the interior of a set, termed

the set’s analytic center. As the name implies, the center is away from the edge.

In addition, the study of the analytic center introduces a special structure, termed

a barrier or potential that is fundamental to interior-point methods.

Consider a set S in a subset of X of En defined by a group of inequalities as

S = {x ∈ X : g j(x) � 0, j = 1, 2, . . . , m},

and assume that the functions g j are continuous. S has a nonempty interior S̊ =
{x ∈ X : g j(x) > 0, all j}. Associated with this definition of the set is the potential

function

ψ(x) = −
m

∑

j=1

log g j(x)

defined on S̊.

The analytic center of S is the vector (or set of vectors) that minimizes the

potential; that is, the vector (or vectors) that solve

minψ(x) = min

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
m

∑

j=1

log g j(x) : x ∈ X, g j(x) > 0 for each j

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

Example 1 (A Cube). Consider the set S defined by xi � 0, (1 − xi) � 0, for i =

1, 2, . . . , n. This isS = [0, 1]n, the unit cube in En. The analytic center can be found

by differentiation to be xi = 1/2, for all i. Hence, the analytic center is identical to

what one would normally call the center of the unit cube.

In general, the analytic center depends on how the set is defined—on the partic-

ular inequalities used in the definition. For instance, the unit cube is also defined by

the inequalities xi � 0, (1 − xi)
d
� 0 with odd d > 1. In this case the solution is

xi = 1/(d+1) for all i. For large d this point is near the inner corner of the unit cube.

Also, the addition of redundant inequalities can change the location of the

analytic center. For example, repeating a given inequality will change the center’s

location.

There are several sets associated with linear programs for which the analytic

center is of particular interest. One such set is the feasible region itself. Another is

the set of optimal solutions. There are also sets associated with dual and primal-dual

formulations. All of these are related in important ways.

124 5 Interior-Point Methods

Let us illustrate by considering the analytic center associated with a bounded

polytopeΩ in Em represented by n(> m) linear inequalities; that is,

Ω = {y ∈ Em : cT − yT A � 0},

where A ∈ Em×n and c ∈ En are given and A has rank m. Denote the interior ofΩ by

Ω̊ = {y ∈ Em : cT − yT A > 0}.

The potential function for this set is

ψΩ(y) ≡ −
n

∑

j=1

log(c j − yT a j) = −
n

∑

j=1

log s j, (5.4)

where s ≡ c − AT y is a slack vector. Hence the potential function is the negative

sum of the logarithms of the slack variables.

The analytic center of Ω is the interior point of Ω that minimizes the poten-

tial function. This point is denoted by ya and has the associated sa = c − AT ya.

The pair (ya, sa) is uniquely defined, since the potential function is strictly convex

(see Sect. 7.4) in the bounded convex set Ω.

Setting to zero the derivatives of ψ(y) with respect to each yi gives

n
∑

j=1

ai j

c j − yT a j

= 0, for all i.

which can be written
n

∑

j=1

ai j

s j

= 0, for all i.

Now define x j = 1/s j for each j. We introduce the notation

x ◦ s ≡ (x1s1, x2s2, . . . , xnsn)T ,

which is component multiplication. Then the analytic center is defined by the

conditions

x ◦ s = 1

Ax = 0

AT y + s = c.

The analytic center can be defined when the interior is empty or equalities are

present, such as

Ω = {y ∈ Em : cT − yT A � 0, By = b}.
In this case the analytic center is chosen on the linear surface {y : By = b} to

maximize the product of the slack variables s = c − AT y. Thus, in this context

5.5 The Central Path 125

the interior of Ω refers to the interior of the positive orthant of slack variables:

Rn
+ ≡ {s : s � 0}. This definition of interior depends only on the region of the slack

variables. Even if there is only a single point in Ω with s = c − AT y for some y

where By = b with s > 0, we still say that Ω̊ is not empty.

5.5 The Central Path

The concept underlying interior-point methods for linear programming is to use

nonlinear programming techniques of analysis and methodology. The analysis is

often based on differentiation of the functions defining the problem. Traditional

linear programming does not require these techniques since the defining functions

are linear. Duality in general nonlinear programs is typically manifested through

Lagrange multipliers (which are called dual variables in linear programming). The

analysis and algorithms of the remaining sections of the chapter use these nonlin-

ear techniques. These techniques are discussed systematically in later chapters, so

rather than treat them in detail at this point, these current sections provide only

minimal detail in their application to linear programming. It is expected that most

readers are already familiar with the basic method for minimizing a function by set-

ting its derivative to zero, and for incorporating constraints by introducing Lagrange

multipliers. These methods are discussed in detail in Chaps. 11–15.

The computational algorithms of nonlinear programming are typically iterative

in nature, often characterized as search algorithms. At any step with a given point,

a direction for search is established and then a move in that direction is made to

define the next point. There are many varieties of such search algorithms and they

are systematically presented throughout the text. In this chapter, we use versions of

Newton’s method as the search algorithm, but we postpone a detailed study of the

method until later chapters.

Not only have nonlinear methods improved linear programming, but interior-

point methods for linear programming have been extended to provide new ap-

proaches to nonlinear programming. This chapter is intended to show how this

merger of linear and nonlinear programming produces elegant and effective methods.

These ideas take an especially pleasing form when applied to linear programming.

Study of them here, even without all the detailed analysis, should provide good

intuitive background for the more general manifestations.

Consider a primal linear program in standard form

(LP) minimize cT x (5.5)

subject to Ax = b, x � 0.

We denote the feasible region of this program by Fp. We assume that F̊p = {x :

Ax = b, x > 0} is nonempty and the optimal solution set of the problem is bounded.

126 5 Interior-Point Methods

Associated with this problem, we define for μ � 0 the barrier problem

(BP) minimize cT x − μ
n

∑

j=1

log x j (5.6)

subject to Ax = b, x > 0.

It is clear that μ = 0 corresponds to the original problem (5.5). As μ → ∞, the

solution approaches the analytic center of the feasible region (when it is bounded),

since the barrier term swamps out cT x in the objective. As μ is varied continuously

toward 0, there is a path x(μ) defined by the solution to (BP). This path x(μ) is

termed the primal central path. As μ → 0 this path converges to the analytic center

of the optimal face {x : cT x = z∗, Ax = b, x � 0}, where z∗ is the optimal value of

(LP).

A strategy for solving (LP) is to solve (BP) for smaller and smaller values of μ

and thereby approach a solution to (LP). This is indeed the basic idea of interior-

point methods.

At any μ > 0, under the assumptions that we have made for problem (5.5), the

necessary and sufficient conditions for a unique and bounded solution are obtained

by introducing a Lagrange multiplier vector y for the linear equality constraints to

form the Lagrangian (see Chap. 11)

cT x − μ
n

∑

j=1

log x j − yT (Ax − b).

The derivatives with respect to the x j’s are set to zero, leading to the conditions

c j − μ/x j − yT a j = 0, for each j

or equivalently

μX−11 + AT y = c (5.7)

where as before a j is the jth column of A, 1 is the vector of 1’s, and X is the diagonal

matrix whose diagonal entries are the components of x > 0. Setting s j = μ/x j the

complete set of conditions can be rewritten

x ◦ s = μ1

Ax = b (5.8)

AT y + s = c.

Note that y is a dual feasible solution and c − AT y > 0 (see Exercise 4).

Example 2 (A Square Primal). Consider the problem of maximizing x1 within the

unit square S = [0, 1]2. The problem is formulated as

5.5 The Central Path 127

min −x1

s.t. x1 + x3 = 1

x2 + x4 = 1

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

Here x3 and x4 are slack variables for the original problem to put it in standard

form. The optimality conditions for x(μ) consist of the original two linear constraint

equations and the four equations

y1 + s1 = −1, y2 + s2 = 0, y1 + s3 = 0, y2 + s4 = 0

together with the relations si = μ/xi for i = 1, 2 . . . , 4. These equations are readily

solved with a series of elementary variable eliminations to find

x1(μ) =
1 − 2μ ±

√

1 + 4μ2

2
x2(μ) = 1/2.

Using the “+” solution, it is seen that as μ → 0 the solution goes to x → (1, 1/2).

Note that this solution is not a corner of the cube. Instead it is at the analytic center

of the optimal face {x : x1 = 1, 0 � x2 � 1}. See Fig. 5.2. The limit of x(μ) as

μ → ∞ can be seen to be the point (1/2, 1/2). Hence, the central path in this case is

a straight line progressing from the analytic center of the square (at μ → ∞) to the

analytic center of the optimal face (at μ→ 0).

Dual Central Path

Now consider the dual problem

(LD) maximize yT b

subject to yT A + sT = cT , s � 0.

We may apply the barrier approach to this problem by formulating the problem

(BD) maximize yT b + μ

n
∑

j=1

log s j

subject to yT A + sT = cT , s > 0.

We assume that the dual feasible set Fd has an interior F̊d = {(y, s) : yT A + sT =

cT , s > 0} is nonempty and the optimal solution set of (LD) is bounded. Then, as μ

is varied continuously toward 0, there is a path (y(μ), s(μ)) defined by the solution

to (BD). This path is termed the dual central path.

128 5 Interior-Point Methods

Fig. 5.2 The analytic path for the square

To work out the necessary and sufficient conditions we introduce x as a Lagrange

multiplier and form the Lagrangian

yT b + μ

n
∑

j=1

log s j − (yT A + sT − cT)x.

Setting to zero the derivative with respect to yi leads to

bi − aix = 0, for all i

where ai is the ith row of A. Setting to zero the derivative with respect to s j leads to

μ/s j − x j = 0, or 1 − x js j = 0, for all j.

Combining these equations and including the original constraint yields the complete

set of conditions which are identical to the optimality conditions for the primal

central path (5.8). Note that x is indeed a primal feasible solution and x > 0.

To see the geometric representation of the dual central path, consider the dual

level set

Ω(z) = {y : cT − yT A � 0, yT b � z}
for any z < z∗ where z∗ is the optimal value of (LD). Then, the analytic center

(y(z), s(z)) of Ω(z) coincides with the dual central path as z tends to the optimal

value z∗ from below. This is illustrated in Fig. 5.3, where the feasible region of the

dual set (not the primal) is shown. The level sets Ω(z) are shown for various values

of z. The analytic centers of these level sets correspond to the dual central path.

Example 3 (The Square Dual). Consider the dual of Example 2. This is

max y1 + y2

subject to y1 � −1

y2 � 0.

(The values of s1 and s2 are the slack variables of the inequalities.) The solution

to the dual barrier problem is easily found from the solution of the primal barrier

5.5 The Central Path 129

problem to be

y1(μ) = −1 − μ/x1(μ), y2 = −2μ.

Fig. 5.3 The central path as analytic centers in the dual feasible region

As μ → 0, we have y1 → −1, y2 → 0, which is the unique solution to the dual LP.

However, as μ→ ∞, the vector y is unbounded, for in this case the dual feasible set

is itself unbounded.

Primal–Dual Central Path

Suppose the feasible region of the primal (LP) has interior points and its optimal

solution set is bounded. Then, the dual also has interior points (see Exercise 4). The

primal–dual path is defined to be the set of vectors (x(μ) > 0, y(μ), s(μ) > 0) that

satisfy the conditions

x ◦ s = μ1

Ax = b

AT y + s = c

for 0 � μ � ∞. Hence the central path is defined without explicit reference to

an optimization problem. It is simply defined in terms of the set of equality and

inequality conditions.

Since conditions (5.8) and (5.9) are identical, the primal–dual central path can be

split into two components by projecting onto the relevant space, as described in the

following proposition.

Proposition 1. Suppose the feasible sets of the primal and dual programs contain interior

points. Then the primal–dual central path (x(μ), y(μ), s(μ)) exists for all μ, 0 � μ < ∞.

Furthermore, x(μ) is the primal central path, and (y(μ), s(μ)) is the dual central path. More-

130 5 Interior-Point Methods

over, x(μ) and (y(μ), s(μ)) converge to the analytic centers of the optimal primal solution

and dual solution faces, respectively, as μ→ 0.

Duality Gap

Let (x(μ), y(μ), s(μ)) be on the primal-dual central path. Then from (5.9) it follows

that

cT x − yT b = yT Ax + sT x − yT b = sT x = nμ.

The value cT x − yT b = sT x is the difference between the primal objective value

and the dual objective value. This value is always nonnegative (see the weak duality

lemma in Sect. 4.2) and is termed the duality gap. At any point on the primal–dual

central path, the duality gap is equal to nμ. It is clear that as μ → 0 the duality

gap goes to zero, and hence both x(μ) and (y(μ), s(μ)) approach optimality for the

primal and dual, respectively.

The duality gap provides a measure of closeness to optimality. For any primal

feasible x, the value cT x gives an upper bound as cT x � z∗ where z∗ is the optimal

value of the primal. Likewise, for any dual feasible pair (y, s), the value yT b gives

a lower bound as yT b � z∗. The difference, the duality gap g = cT x − yT b, provides

a bound on z∗ as z∗ � cT x − g. Hence if at a feasible point x, a dual feasible (y, s)

is available, the quality of x can be measured as cT x − z∗ � g.

5.6 Solution Strategies

The various definitions of the central path directly suggest corresponding strate-

gies for solution of a linear program. We outline three general approaches here:

the primal barrier or path-following method, the primal-dual path-following method

and the primal-dual potential-reduction method, although the details of their im-

plementation and analysis must be deferred to later chapters after study of general

nonlinear methods. Table 5.1 depicts these solution strategies and the simplex meth-

ods described in Chaps. 3 and 4 with respect to how they meet the three optimality

conditions: Primal Feasibility, Dual Feasibility, and Zero-Duality during the itera-

tive process.

Table 5.1 Properties of algorithms

P-F D-F 0-Duality

Primal simplex
√ √

Dual simplex
√ √

Primal barrier
√

Primal-dual path-following
√ √

Primal-dual potential-reduction
√ √

5.6 Solution Strategies 131

For example, the primal simplex method keeps improving a primal feasible so-

lution, maintains the zero-duality gap (complementarity slackness condition) and

moves toward dual feasibility; while the dual simplex method keeps improving a

dual feasible solution, maintains the zero-duality gap (complementarity condition)

and moves toward primal feasibility (see Sect. 4.3). The primal barrier method keeps

improving a primal feasible solution and moves toward dual feasibility and comple-

mentarity; and the primal-dual interior-point methods keep improving a primal and

dual feasible solution pair and move toward complementarity.

Primal Barrier Method

A direct approach is to use the barrier construction and solve the the problem

minimize cT x − μ
∑n

j=1
log x j (5.9)

subject to Ax = b, x > 0,

for a very small value of μ. In fact, if we desire to reduce the duality gap to ε it is

only necessary to solve the problem for μ = ε/n. Unfortunately, when μ is small,

the problem (5.9) could be highly ill-conditioned in the sense that the necessary

conditions are nearly singular. This makes it difficult to directly solve the problem

for small μ.

An overall strategy, therefore, is to start with a moderately large μ (say μ =

100) and solve that problem approximately. The corresponding solution is a point

approximately on the primal central path, but it is likely to be quite distant from the

point corresponding to the limit of μ → 0. However this solution point at μ = 100

can be used as the starting point for the problem with a slightly smaller μ, for this

point is likely to be close to the solution of the new problem. The value of μ might

be reduced at each stage by a specific factor, giving μk+1 = γμk, where γ is a fixed

positive parameter less than one and k is the stage count.

If the strategy is begun with a value μ0, then at the kth stage we have μk = γ
kμ0.

Hence to reduce μk/μ0 to below ε, requires

k =
log ε

log γ

stages.

Often a version of Newton’s method for minimization is used to solve each of the

problems. For the current strategy, Newton’s method works on problem (5.9) with

fixed μ by considering the central path equations (5.8)

x ◦ s = μ1

Ax = b (5.10)

AT y + s = c.

132 5 Interior-Point Methods

From a given point x ∈ F̊p, Newton’s method moves to a closer point x+ ∈ F̊p

by moving in the directions dx, dy and ds determined from the linearized version

of (5.10)

μX−2dx + ds = μX
−11 − c,

Adx = 0, (5.11)

−AT dy − ds = 0.

(Recall that X is the diagonal matrix whose diagonal entries are components of

x > 0.) The new point is then updated by taking a step in the direction of dx, as

x+ = x + dx.

Notice that if x ◦ s = μ1 for some s = c−AT y, then d ≡ (dx, dy, ds) = 0 because

the current point satisfies Ax = b and hence is already the central path solution

for μ. If some component of x ◦ s is less than μ, then d will tend to increment the

solution so as to increase that component. The converse will occur for components

of x ◦ s greater than μ.

This process may be repeated several times until a point close enough to the

proper solution to the barrier problem for the given value of μ is obtained. That is,

until the necessary and sufficient conditions (5.7) are (approximately) satisfied.

There are several details involved in a complete implementation and analysis of

Newton’s method. These items are discussed in later chapters of the text. However,

the method works well if either μ is moderately large, or if the algorithm is initi-

ated at a point very close to the solution, exactly as needed for the barrier strategy

discussed in this subsection.

To solve (5.11), premultiplying both sides by X2 we have

μdx + X2ds = μX1 − X2c.

Then, premultiplying by A and using Adx = 0, we have

AX2ds = μAX1 − AX2c.

Using ds = −AT dy we have

(AX2AT)dy = −μAX1 + AX2c.

Thus, dy can be computed by solving the above linear system of equations. Then ds

can be found from the third equation in (5.11) and finally dx can be found from the

first equation in (5.11), together this amounts to O(nm2 + m3) arithmetic operations

for each Newton step.

5.6 Solution Strategies 133

Primal-Dual Path-Following

Another strategy for solving a linear program is to follow the central path from a

given initial primal-dual solution pair. Consider a linear program in standard form

Primal Dual

minimize cT x maximize yT b

subject to Ax = b, x � 0 subject to yT A � cT .

Assume that the interior of both primal and dual feasible regions F̊ � ∅; that is,

both4

F̊p = {x : Ax = b, x > 0} � ∅ and F̊d = {(y, s) : s = c − AT y > 0} � ∅;

and denote by z∗ the optimal objective value.

The central path can be expressed as

C =
{

(x, y, s) ∈ F̊ : x ◦ s =
xT s

n
1

}

in the primal-dual form. On the path we have x ◦ s = μ1 and hence sT x = nμ.

A neighborhood of the central path C is of the form

N(η) = {(x, y, s) ∈ F̊ : |s ◦ x − μ1| < ημ, where μ = sT x/n} (5.12)

for some η ∈ (0, 1), say η = 1/4. This can be thought of as a tube whose center is

the central path.

The idea of the path-following method is to move within a tubular neighborhood

of the central path toward the solution point. A suitable initial point (x0, y0, s0) ∈
N(η) can be found by solving the barrier problem for some fixed μ0 or from an ini-

tialization phase proposed later. After that, step by step moves are made, alternating

between a predictor step and a corrector step. After each pair of steps, the point

achieved is again in the fixed given neighborhood of the central path, but closer to

the linear program’s solution set.

The predictor step is designed to move essentially parallel to the true central

path. The step d ≡ (dx, dy, ds) is determined from the linearized version of the

primal–dual central path equations of (5.9), as

s ◦ dx + x ◦ ds = γμ1 − x ◦ s,

Adx = 0, (5.13)

−AT dy − ds = 0,

where here one selects γ = 0. (To show the dependence of d on the current pair

(x, s) and the parameter γ, we write d = d(x, s, γ).)

4 The symbol ∅ denotes the empty set.

134 5 Interior-Point Methods

The new point is then found by taking a step in the direction of d, as (x+, y+, s+) =

(x, y, s) + α(dx, dy, ds), where α is the step-size. Note that dT
x ds = −dT

x AT dy = 0

here. Then

(x+)T s+ = (x + αdx)T (s + αds) = xT s + α(dT
x s + xT ds) = (1 − α)xT s,

where the last step follows by multiplying the first equation in (5.13) by 1T . Thus,

the predictor step reduces the duality gap by a factor 1 − α. The maximum possible

step-size α in that direction is made in that parallel direction without going outside

of the neighborhoodN(2η).

The corrector step essentially moves perpendicular to the central path in order to

get closer to it. This step moves the solution back to within the neighborhoodN(η),

and the step is determined by selecting γ = 1 in (5.13) with μ = xT s/n. Notice that

if x ◦ s = μ1, then d = 0 because the current point is already a central path solution.

This corrector step is identical to one step of the barrier method. Note, however,

that the predictor–corrector method requires only one sequence of steps, each con-

sisting of a single predictor and corrector. This contrasts with the barrier method

which requires a complete sequence for each μ to get back to the central path, and

then an outer sequence to reduce the μ’s.

One can prove that for any (x, y, s) ∈ N(η) with μ = xT s/n, the step-size in the

predictor stop satisfies

α �
1

2
√

n
.

Thus, the iteration complexity of the method is O(
√

n) log(1/ε)) to achieve μ/μ0 � ε

where nμ0 is the initial duality gap. Moreover, one can prove that the step-size α→ 1

as xT s → 0, that is, the duality reduction speed is accelerated as the gap becomes

smaller.

Primal-Dual Potential Reduction Algorithm

In this method a primal-dual potential function is used to measure the solution’s

progress. The potential is reduced at each iteration. There is no restriction on either

neighborhood or step-size during the iterative process as long as the potential is

reduced. The greater the reduction of the potential function, the faster the conver-

gence of the algorithm. Thus, from a practical point of view, potential-reduction

algorithms may have an advantage over path-following algorithms where iterates

are confined to lie in certain neighborhoods of the central path.

For x ∈ F̊p and (y, s) ∈ F̊d the primal-dual potential function is defined by

ψn+ρ(x, s) ≡ (n + ρ) log(xT s) −
n

∑

j=1

log(x js j), (5.14)

where ρ � 0.

5.6 Solution Strategies 135

From the arithmetic and geometric mean inequality (also see Exercise 10) we

can derive that

n log(xT s) −
n

∑

j=1

log(x js j) � n log n.

Then

ψn+ρ(x, s) = ρ log(xT s) + n log(xT s) −
n

∑

j=1

log(x js j) � ρ log(xT s) + n log n. (5.15)

Thus, for ρ > 0, ψn+ρ(x, s) → −∞ implies that xT s → 0. More precisely, we have

from (5.15)

xT s � exp

(

ψn+ρ(x, s) − n log n

ρ

)

.

Hence the primal–dual potential function gives an explicit bound on the magnitude

of the duality gap.

The objective of this method is to drive the potential function down toward minus

infinity. The method of reduction is a version of Newton’s method (5.13). In this

case we select γ = n/(n + ρ) in (5.13). Notice that is a combination of a predictor

and corrector choice. The predictor uses γ = 0 and the corrector uses γ = 1. The

primal–dual potential method uses something in between. This seems logical, for

the predictor moves parallel to the central path toward a lower duality gap, and the

corrector moves perpendicular to get close to the central path. This new method

does both at once. Of course, this intuitive notion must be made precise.

For ρ �
√

n, there is in fact a guaranteed decrease in the potential function by a

fixed amount δ (see Exercises 12 and 13). Specifically,

ψn+ρ(x
+, s+) − ψn+ρ(x, s) � −δ (5.16)

for a constant δ � 0.2. This result provides a theoretical bound on the number of

required iterations and the bound is competitive with other methods. However, a

faster algorithm may be achieved by conducting a line search along direction d to

achieve the greatest reduction in the primal-dual potential function at each iteration.

We outline the algorithm here:

Step 1. Start at a point (x0, y0, s0) ∈ F̊ with ψn+ρ(x0, s0) ≤ ρ log((s0)T x0) +

n log n+O(
√

n log n) which is determined by an initiation procedure, as discussed

in Sect. 5.7. Set ρ ≥ √n. Set k = 0 and γ = n/(n + ρ). Select an accuracy

parameter ε > 0.

Step 2. Set (x, s) = (xk, sk) and compute (dx, dy, ds) from (5.13).

Step 3. Let xk+1 = xk + ᾱdx, yk+1 = yk + ᾱdy, and sk+1 = sk + ᾱds where

ᾱ = arg min
α≥0
ψn+ρ(xk + αdx, sk + αds).

Step 4. Let k = k + 1. If
sT

k
xk

sT
0

x0
≤ ε, Stop. Otherwise return to Step 2.

136 5 Interior-Point Methods

Theorem 2. The algorithm above terminates in at most O(ρ log(n/ε)) iterations with

(sk)T xk

(s0)T x0

≤ ε.

Proof. Note that after k iterations, we have from (5.16)

ψn+ρ(xk, sk) ≤ ψn+ρ(x0, s0) − k · δ ≤ ρ log((s0)T x0) + n log n + O(
√

n log n) − k · δ.

Thus, from the inequality (5.15),

ρ log(sT
k xk) + n log n ≤ ρ log(sT

0 x0) + n log n + O(
√

n log n) − k · δ,

or

ρ(log(sT
k xk) − log(sT

0 x0)) ≤ −k · δ + O(
√

n log n).

Therefore, as soon as k ≥ O(ρ log(n/ε)), we must have

ρ(log(sT
k xk) − log(sT

0 x0)) ≤ −ρ log(1/ε),

or

sT
k

xk

sT
0

x0

≤ ε.�

Theorem 2 holds for any ρ ≥ √n. Thus, by choosing ρ =
√

n, the iteration

complexity bound becomes O(
√

n log(n/ε)).

Iteration Complexity

The computation of each iteration basically requires solving (5.13) for d. Note that

the first equation of (5.13) can be written as

Sdx + Xds = γμ1 − XS1

where X and S are two diagonal matrices whose diagonal entries are components of

x > 0 and s > 0, respectively. Premultiplying both sides by S−1 we have

dx + S−1Xds = γμS
−11 − x.

Then, premultiplying by A and using Adx = 0, we have

AS−1Xds = γμAS−11 − Ax = γμAS−11 − b.

Using ds = −AT dy we have

(AS−1XAT)dy = b − γμAS−11.

5.7 Termination and Initialization 137

Thus, the primary computational cost of each iteration of the interior-point algorithm

discussed in this section is to form and invert the normal matrix AXS−1AT , which

typically requires O(nm2 + m3) arithmetic operations. However, an approximation

of this matrix can be updated and inverted using far fewer arithmetic operations. In

fact, using a rank-one technique (see Chap. 10) to update the approximate inverse of

the normal matrix during the iterative progress, one can reduce the average number

of arithmetic operations per iteration to O(
√

nm2). Thus, if the relative tolerance ε

is viewed as a variable, we have the following total arithmetic operation complexity

bound to solve a linear program:

Corollary. Let ρ =
√

n. Then, the algorithm above Theorem 2 terminates in at most

O(nm2 log(n/ε)) arithmetic operations.

5.7 Termination and Initialization

There are several remaining important issues concerning interior-point algorithms

for linear programs. The first issue involves termination. Unlike the simplex method

which terminates with an exact solution, interior-point algorithms are continuous

optimization algorithms that generate an infinite solution sequence converging to an

optimal solution. If the data of a particular problem are integral or rational, an argu-

ment is made that, after the worst-case time bound, an exact solution can be rounded

from the latest approximate solution. Several questions arise. First, under the real

number computation model (that is, the data consists of real numbers), how can

we terminate at an exact solution? Second, regardless of the data’s status, is there a

practical test, which can be computed cost-effectively during the iterative process, to

identify an exact solution so that the algorithm can be terminated before the worse-

case time bound? Here, by exact solution we mean one that could be found using

exact arithmetic, such as the solution of a system of linear equations, which can be

computed in a number of arithmetic operations bounded by a polynomial in n.

The second issue involves initialization. Almost all interior-point algorithms

require the regularity assumption that F̊ � ∅. What is to be done if this is not true?

A related issue is that interior-point algorithms have to start at a strictly feasible

point near the central path.

∗Termination

Complexity bounds for interior-point algorithms generally depend on an ε which

must be zero in order to obtain an exact optimal solution. Sometimes it is advanta-

geous to employ an early termination or rounding method while ε is still moderately

large. There are five basic approaches.

138 5 Interior-Point Methods

• A “purification” procedure finds a feasible corner whose objective value is at

least as good as the current interior point. This can be accomplished in strongly

polynomial time (that is, the complexity bound is a polynomial only in the

dimensions m and n). One difficulty is that there may be many non-optimal ver-

tices close to the optimal face, and the procedure might require many pivot steps

for difficult problems.

• A second method seeks to identify an optimal basis. It has been shown that if

the linear program is nondegenerate, the unique optimal basis may be identified

early. The procedure seems to work well for some problems but it has diffi-

culty if the problem is degenerate. Unfortunately, most real linear programs are

degenerate.

• The third approach is to slightly perturb the data such that the new program

is nondegenerate and its optimal basis remains one of the optimal bases of the

original program. There are questions about how and when to perturb the data

during the iterative process, decisions which can significantly affect the success

of the effort.

• The fourth approach is to guess the optimal face and find a feasible solution on

that face. It consists of two phases: the first phase uses interior point algorithms to

identify the complementarity partition (P∗, Z∗) (see Exercise 6), and the second

phase adapts the simplex method to find an optimal primal (or dual) basic solu-

tion and one can use (P∗, Z∗) as a starting base for the second phase. This method

is often called the cross-over method. It is guaranteed to work in finite time and

is implemented in several popular linear programming software packages.

• The fifth approach is to guess the optimal face and project the current interior

point onto the interior of the optimal face. See Fig. 5.4. The termination criterion

is guaranteed to work in finite time.

The fourth and fifth methods above are based on the fact that (as observed in practice

and subsequently proved) many interior-point algorithms for linear programming

generate solution sequences that converge to a strictly complementary solution or

an interior solution on the optimal face; see Exercise 8.

Initialization

Most interior-point algorithms must be initiated at a strictly feasible point. The

complexity of obtaining such an initial point is the same as that of solving the

linear program itself. More importantly, a complete algorithm should accomplish

two tasks: (1) detect the infeasibility or unboundedness status of the problem, then

(2) generate an optimal solution if the problem is neither infeasible nor unbounded.

Several approaches have been proposed to accomplish these goals:

• The primal and dual can be combined into a single linear feasibility problem,

and a feasible point found. Theoretically, this approach achieves the currently

best iteration complexity bound, that is, O(
√

n log(1/ε)). Practically, a significant

disadvantage of this approach is the doubled dimension of the system of equations

that must be solved at each iteration.

5.7 Termination and Initialization 139

• The big-M method can be used by adding one or more artificial column(s) and/or

row(s) and a huge penalty parameter M to force solutions to become feasible

during the algorithm. A major disadvantage of this approach is the numerical

problems caused by the addition of coefficients of large magnitude.

• Phase I-then-Phase II methods are effective. A major disadvantage of this

approach is that the two (or three) related linear programs must be solved

sequentially.

Fig. 5.4 Illustration of the projection of an interior point onto the optimal face

• A modified Phase I-Phase II method approaches feasibility and optimality si-

multaneously. To our knowledge, the currently best iteration complexity bound

of this approach is O(n log(1/ε)), as compared to O(
√

n log(1/ε)) of the three

above. Other disadvantages of the method include the assumption of non-empty

interior and the need of an objective lower bound.

The HSD Algorithm

There is an algorithm, termed the Homogeneous Self-Dual Algorithm that over-

comes the difficulties mentioned above. The algorithm achieves the theoretically

best O(
√

n log(1/ε)) complexity bound and is often used in linear programming

software packages.

The algorithm is based on the construction of a homogeneous and self-dual linear

program related to (LP) and (LD) (see Sect. 5.5). We now briefly explain the two

major concepts, homogeneity and self-duality, used in the construction.

In general, a system of linear equations of inequalities is homogeneous if the right

hand side components are all zero. Then if a solution is found, any positive mul-

tiple of that solution is also a solution. In the construction used below, we allow a

single inhomogeneous constraint, often called a normalizing constraint. Karmarkar’s

original canonical form is a homogeneous linear program.

140 5 Interior-Point Methods

A linear program is termed self-dual if the dual of the problem is equivalent to

the primal. The advantage of self-duality is that we can apply a primal-dual interior-

point algorithm to solve the self-dual problem without doubling the dimension of

the linear system solved at each iteration.

The homogeneous and self-dual linear program (HSDP) is constructed from (LP)

and (LD) in such a way that the point x = 1, y = 0, τ = 1, z = 1, θ = 1 is feasible.

The primal program is

(HS DP) minimize (n + 1)θ

subject to Ax −bτ +b̄θ = 0,

−AT y +cτ −c̄θ ≥ 0,

bT y −cT x +z̄θ ≥ 0,

−b̄T y +c̄T x −z̄τ = −(n + 1),

y free, x ≥ 0, τ ≥ 0, θ free;

where

b̄ = b − Al, c̄ = c − 1, z̄ = cT 1 + 1. (5.17)

Notice that b̄, c̄, and z̄ represent the “infeasibility” of the initial primal point, dual

point, and primal-dual “gap,” respectively. They are chosen so that the system is

feasible. For example, for the point x = 1, y = 0, τ = 1, θ = 1, the last equation

becomes

0 + cT x − 1T x − (cT x + 1) = −n − 1.

Note also that the top two constraints in (HSDP), with τ = 1 and θ = 0, represent

primal and dual feasibility (with x ≥ 0). The third equation represents reversed

weak duality (with bT y ≥ cT x) rather than the reverse. So if these three equations

are satisfied with τ = 1 and θ = 0 they define primal and dual optimal solutions.

Then, to achieve primal and dual feasibility for x = 1, (y, s) = (0, 1), we add the

artificial variable θ. The fourth constraint is added to achieve self-duality.

The problem is self-dual because its overall coefficient matrix has the property

that its transpose is equal to its negative. It is skew-symmetric.

Denote by s the slack vector for the second constraint and by κ the slack scalar for

the third constraint. Denote by Fh the set of all points (y, x, τ, θ, s, κ) that are feasi-

ble for (HSDP). Denote by F 0
h

the set of strictly feasible points with (x, τ, s, κ) > 0

in Fh. By combining the constraints (Exercise 14) we can write the last (equality)

constraint as

1T x + 1T s + τ + κ − (n + 1)θ = (n + 1), (5.18)

which serves as a normalizing constraint for (HSDP). This implies that for 0 ≤ θ ≤ 1

the variables in this equation are bounded.

We state without proof the following basic result.

Theorem 1. Consider problems (HSDP).

(i) (HSDP) has an optimal solution and its optimal solution set is bounded.

(ii) The optimal value of (HSDP) is zero, and

5.7 Termination and Initialization 141

(y, x, τ, θ, s, κ) ∈ Fh implies that (n + 1)θ = xT s + τκ.

(iii) There is an optimal solution (y∗, x∗, τ∗, θ∗ = 0, s∗, κ∗) ∈ Fh such that

(

x∗ + s∗

τ∗ + κ∗

)

> 0,

which we call a strictly self-complementary solution.

Part (ii) of the theorem shows that as θ goes to zero, the solution tends toward

satisfying complementary slackness between x and s and between τ and κ. Part (iii)

shows that at a solution with θ = 0, the complementary slackness is strict in the sense

that at least one member of a complementary pair must be positive. For example,

x1s1 = 0 is required by complementary slackness, but in this case x1 = 0, s1 = 0

will not occur; exactly one of them must be positive.

We now relate optimal solutions to (HSDP) to those for (LP) and (LD).

Theorem 2. Let (y∗ , x∗, τ∗, θ∗ = 0, s∗, κ∗) be a strictly-self complementary solution for

(HSDP).

(i) (LP) has a solution (feasible and bounded) if and only if τ∗ > 0. In this case, x∗/τ∗ is

an optimal solution for (LP) and y∗/τ∗, s∗/τ∗ is an optimal solution for (LD).

(ii) (LP) has no solution if and only if κ∗ > 0. In this case, x∗/κ∗ or y∗/κ∗or both are

certificates for proving infeasibility: if cT x∗ < 0 then (LD) is infeasible; if −bT y∗ < 0
then (LP) is infeasible; and if both cT x∗ < 0 and −bT y∗ < 0 then both (LP) and (LD)

are infeasible.

Proof. We prove the second statement. We first assume that one of (LP) and (LD)

is infeasible, say (LD) is infeasible. Then there is some certificate x̄ ≥ 0 such that

Ax̄ = 0 and cT x̄ = −1. Let (ȳ = 0, s̄ = 0) and

α =
n + 1

1TX̄ + 1T s̄ + 1
> 0.

Then one can verify that

ỹ∗ = αȳ, x̃∗ = αx̄, τ̃∗ = 0, θ̃∗ = 0, s̃∗ = αs̄, κ̃∗ = α

is a self-complementary solution for (HSDP). Since the supporting set (the set of

positive entries) of a strictly complementary solution for (HSDP) is unique (see

Exercise 6), κ∗ > 0 at any strictly complementary solution for (HSDP).

Conversely, if τ∗ = 0, then κ∗ > 0, which implies that cT x∗ − bT y∗ < 0, i.e.,

at least one of cT x∗ and −bT y∗ is strictly less than zero. Let us say cT x∗ < 0. In

addition, we have

Ax∗ = 0, AT y∗ + s∗ = 0, (x∗)T s∗ = 0 and x∗ + s∗ > 0.

From Farkas’ lemma (Exercise 5), x∗/κ∗ is a certificate for proving dual infeasibility.

The other cases hold similarly. �

142 5 Interior-Point Methods

To solve (HSDP), we have the following theorem that resembles the the central

path analyzed for (LP) and (LD).

Theorem 3. Consider problem (HSDP). For any μ > 0, there is a unique (y, x, τ, θ, s, κ)
in F̊h, such that

(

x ◦ s

τκ

)

= μ1.

Moreover, (x, τ) = (1, 1), (y, s, κ) = (0, 0, 1) and θ = 1 is the solution with μ = 1.

Theorem 3 defines an endogenous path associated with (HSDP):

C =
{

(y, x, τ, θ, s, κ) ∈ F 0
h :

(

x ◦ s

τκ

)

=
xT s + τκ

n + 1
1

}

.

Furthermore, the potential function for (HSDP) can be defined as

ψn+1+ρ(x, τ, s, κ) = (n + 1 + ρ) log(xT s + τκ) −
n

∑

j=1

log(x js j) − log(τκ), (5.19)

where ρ ≥ 0. One can then apply the interior-point algorithms described earlier to

solve (HSDP) from the initial point (x, τ) = (1, 1), (y, s, κ) = (0, 1, 1) and θ = 1

with μ = (xT s + τκ)/(n + 1) = 1.

The HSDP method outlined above enjoys the following properties:

• It does not require regularity assumptions concerning the existence of optimal,

feasible, or interior feasible solutions.

• It can be initiated at x = 1, y = 0 and s = 1, feasible or infeasible, on the

central ray of the positive orthant (cone), and it does not require a big-M penalty

parameter or lower bound.

• Each iteration solves a system of linear equations whose dimension is almost the

same as that used in the standard (primal-dual) interior-point algorithms.

• If the linear program has a solution, the algorithm generates a sequence that

approaches feasibility and optimality simultaneously; if the problem is infeasible

or unbounded, the algorithm produces an infeasibility certificate for at least one

of the primal and dual problems; see Exercise 5.

5.8 Summary

The simplex method has for decades been an efficient method for solving linear pro-

grams, despite the fact that there are no theoretical results to support its efficiency.

Indeed, it was shown that in the worst case, the method may visit every vertex of

the feasible region and this can be exponential in the number of variables and con-

straints. If on practical problems the simplex method behaved according to the worst

case, even modest problems would require years of computer time to solve. The

ellipsoid method was the first method that was proved to converge in time propor-

tional to a polynomial in the size of the program, rather than to an exponential in the

5.9 Exercises 143

size. However, in practice, it was disappointingly less fast than the simplex method.

Later, the interior-point method of Karmarkar significantly advanced the field of lin-

ear programming, for it not only was proved to be a polynomial-time method, but it

was found in practice to be faster than the simplex method when applied to general

linear programs.

The interior-point method is based on introducing a logarithmic barrier function

with a weighting parameter μ; and now there is a general theoretical structure defin-

ing the analytic center, the central path of solutions as μ→ 0, and the duals of these

concepts. This structure is useful for specifying and analyzing various versions of

interior point methods.

Most methods employ a step of Newton’s method to find a point near the central

path when moving from one value of μ to another. One approach is the predictor-

corrector method, which first takes a step in the direction of decreasing μ and then a

corrector step to get closer to the central path. Another method employs a potential

function whose value can be decreased at each step, which guarantees convergence

and assures that intermediate points simultaneously make progress toward the solu-

tion while remaining close to the central path.

Complete algorithms based on these approaches require a number of other fea-

tures and details. For example, once systematic movement toward the solution is

terminated, a final phase may move to a nearby vertex or to a non-vertex point on

a face of the constraint set. Also, an initial phase must be employed to obtain an

feasible point that is close to the central path from which the steps of the search

algorithm can be started. These features are incorporated into several commercial

software packages, and generally they perform well, able to solve very large linear

programs in reasonable time.

5.9 Exercises

1. Using the simplex method, solve the program (5.1) and count the number of

pivots required.

2. Prove the volume reduction rate in Theorem 1 for the ellipsoid method.

3. Develop a cutting plane method, based on the ellipsoid method, to find a point

satisfying convex inequalities

fi(x) � 0, i = 1, . . . , m, |x|2 � E2,

where fi’s are convex functions of x in C1.

4. Consider the linear program (5.5) and assume that F̊p = {x : Ax = b, x > 0}
is nonempty and its optimal solution set is bounded. Show that the dual of the

problem has a nonempty interior.

5. (Farkas’ lemma) Prove: Exactly one of the feasible sets {x : Ax = b, x � 0}
and {y : yT A � 0, yT b = 1} is nonempty. A vector y in the latter set is called an

infeasibility certificate for the former.

144 5 Interior-Point Methods

6. (Strict complementarity) Consider any linear program in standard form and its

dual and let both of them be feasible. Then, there always exists a strictly com-

plementary solution pair, (x∗, y∗, s∗), such that

x∗j s
∗
j = 0 and x∗j + s∗j > 0 for all j.

Moreover, the supports of x∗ and s∗, P∗ = { j : x∗
j
> 0} and Z∗ = { j : x∗

j
> 0},

are invariant among all strictly complementary solution pairs.

7. (Central path theorem) Let (x(μ), y(μ), s(μ)) be the central path of (5.9). Then

prove

(a) The central path point (x(μ), y(μ), s(μ)) is bounded for 0 < μ � μ0 and any

given 0 < μ0 < ∞.

(b) For 0 < μ′ < μ,

cT x(μ′) � cT x(μ) and bT y(μ′) � bT y(μ).

Furthermore, if x(μ′) � x(μ) and y(μ′) � y(μ),

cT x(μ′) < cT x(μ) and bT y(μ′) > bT y(μ).

(c) (x(μ), y(μ), s(μ)) converges to an optimal solution pair for (LP) and (LD).

Moreover, the limit point x(0)P∗ is the analytic center on the primal optimal

face, and the limit point s(0)Z∗ is the analytic center on the dual optimal

face, where (P∗, Z∗) is the strict complementarity partition of the index set

{1, 2, . . . , n}.
8. Consider a primal-dual interior point (x, y, s) ∈ N(η) where η < 1. Prove that

there is a fixed quantity δ > 0 such that

x j � δ, for all j ∈ P∗

and

s j � δ, for all j ∈ Z∗,

where (P∗, Z∗) is defined in Exercise 6.

9. (Potential level theorem) Define the potential level set

Ψ(δ) := {(x, y, s) ∈ F̊ : ψn+ρ(x, s) � δ}.

Prove

(a)

Ψ(δ1) ⊂ Ψ(δ2) if δ1
� δ2.

(b) For every δ, Ψ(δ) is bounded and its closure Ψ(δ) has non-empty intersec-

tion with the solution set.

5.9 Exercises 145

10. Given 0 < x, 0 < s ∈ En, show that

n log(xT s) −
n

∑

j=1

log(x js j) � n log n

and

xT s � exp

[

ψn+p(x, s) − n log n

p

]

.

11. (Logarithmic approximation) If d ∈ En such that |d|∞ < 1 then

1T d �

n
∑

i=1

log(1 + di) � 1T d − |d|2
2(1 − |d|∞)

.

[Note:If d = (d1, d2, . . . dn) then |d|∞ ≡ maxi{d j}.]
12. Let the direction (dx, dy, ds) be generated by system (5.13) with γ = n/(n + ρ)

and μ = xT s/n, and let the step size be

α =
θ
√

min(Xs)

|(XS)−1/2(xT s
(n+ρ)

1 − Xs)|
, (5.20)

where θ is a positive constant less than 1. Let

x+ = x + αdx, y+ = y + αdy, and s+ = s + αds.

Then, using Exercise 11 and the concavity of the logarithmic function show

(x+, y+, s+) ∈ F̊ and

ψn+ρ(x
+, s+) − ψn+ρ(x, s)

� −θ
√

min(Xs) |(Xs)−1/2(1 − (n + ρ)

xτS
Xs)| + θ2

2(1 − θ) .

13. Let v = Xs in Exercise 12. Prove

√

min(v)|V−1/2(1 − (n + ρ)

1T V
v)| �

√

3/4,

where V is the diagonal matrix of v. Thus, the two exercises imply

ψn+ρ(x
+, s+) − ψn+ρ(x, s) � −θ

√

3/4 +
θ2

2(1 − θ) = −δ

for a constant δ. One can verify that δ > 0.2 when θ = 0.4.

14. Prove property (5.18) for (HDSP).

15. Prove Theorem 1

146 5 Interior-Point Methods

References

5.1 Computation and complexity models were developed by a number of scien-

tists; see, e.g., Cook [C5], Hartmanis and Stearns [H5] and Papadimitriou

and Steiglitz [P2] for the bit complexity models and Blum et al. [B21] for

the real number arithmetic model. For a general discussion of complexity

see Vavasis [V4]. For a comprehensive treatment which served as the basis

for much of this chapter, see Ye [Y3].

5.2 The Klee Minty example is presented in [K5]. Much of this material is

based on a teaching note of Cottle on Linear Programming taught at Stan-

ford [C6]. Practical performances of the simplex method can be seen in

Bixby [B18]. The simplex method efficiency for the Markov Decision

Process is due to Ye [269].

5.3 The ellipsoid method was developed by Khachiyan [K4]; more develop-

ments of the ellipsoid method can be found in Bland, Goldfarb and Todd

[B20].

5.3 The analytic center for a convex polyhedron given by linear inequalities

was introduced by Huard [H12], and later by Sonnevend [S8]. The barrier

function was introduced by Frisch [F19]. The central path was analyzed

in McLinden [M3], Megiddo [M4], and Bayer and Lagarias [B3, B4], Gill

et al. [G5].

5.5 Path-following algorithms were first developed by Renegar [R1]. A primal

barrier or path-following algorithm was independently analyzed by Gon-

zaga [G13]. Both Gonzaga [G13] and Vaidya [V1] extended the rank-one

updating technique [K2] for solving the Newton equation of each itera-

tion, and proved that each iteration uses O(n2.5) arithmetic operations on

average. Kojima, Mizuno and Yoshise [K6] and Monteiro and Adler [M7]

developed a symmetric primal-dual path-following algorithm with the same

iteration and arithmetic operation bounds.

5.6–5.7 Predictor-corrector algorithms were developed by Mizuno et al. [M6].

A more practical predictor-corrector algorithm was proposed by Mehrotra

[M5] (also see Lustig et al. [L19] and Zhang and Zhang [Z3]). Mehrotra’s

technique has been used in almost all linear programming interior-point

implementations. A primal potential reduction algorithm was initially pro-

posed by Karmarkar [K2]. The primal-dual potential function was proposed

by Tanabe [T2] and Todd and Ye [T5]. The primal-dual potential reduction

algorithm was developed by Ye [Y1], Freund [F18], Kojima, Mizuno and

Yoshise [K7], Goldfarb and Xiao [G11], Gonzaga and Todd [G14], Todd

[T4], Tunςel [T10], Tutuncu [T11], and others. The homogeneous and self-

dual embedding method can be found in Ye et al. [Y2], Luo et al. [L18],

Andersen and Ye [A5], and many others. It is also implemented in most

linear programming software packages such as SEDUMI of Sturm [S11].

References 147

5.1–5.7 There are several comprehensive text books which cover interior-point

linear programming algorithms. They include Bazaraa, Jarvis and Sherali

[B6], Bertsekas [B12], Bertsimas and Tsitsiklis [B13], Cottle [C6], Cottle,

Pang and Stone [C7], Dantzig and Thapa [D9, D10], Fang and Puthen-

pura [F2], den Hertog [H6], Murty [M12], Nash and Sofer [N1], Nesterov

[N2], Roos et al. [R4], Renegar [R2], Saigal [S1], Vanderebei [V3], and

Wright [W8].

Chapter 6

Conic Linear Programming

6.1 Convex Cones

Conic Linear Programming, hereafter CLP, is a natural extension of Linear

programming (LP). In LP, the variables form a vector which is required to be com-

ponentwise nonnegative, while in CLP they are points in a pointed convex cone (see

Appendix B.1) of an Euclidean space, such as vectors as well as matrices of finite

dimensions. For example, Semidefinite programming (SDP) is a kind of CLP, where

the variable points are symmetric matrices constrained to be positive semidefinite.

Both types of problems may have linear equality constraints as well. Although CLPs

have long been known to be convex optimization problems, no efficient solution

algorithm was known until about two decades ago, when it was discovered that

interior-point algorithms for LP discussed in Chap. 5, can be adapted to solve cer-

tain CLPs with both theoretical and practical efficiency. During the same period, it

was discovered that CLP, especially SDP, is representative of a wide assortment of

applications, including combinatorial optimization, statistical computation, robust

optimization, Euclidean distance geometry, quantum computing, optimal control,

etc. CLP is now widely recognized as a powerful mathematical computation model

of general importance.

First, we illustrate several convex cones popularly used in conic linear optimiza-

tion.

Example 1. The followings are all (closed) convex cones.

• The n-dimensional non-negative orthant, En
+ = {x ∈ En : x ≥ 0}, is a convex

cone.

• The set of all n-dimensional symmetric positive semidefinite matrices, denoted

by Sn
+, is a convex cone, called the positive semidefinite matrix cone. When X is

positive semidefinite (positive definite), we often write the property as X � (≻)0.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 6

149

150 6 Conic Linear Programming

• The set {(u; x) ∈ En+1 : u ≥ |x|p} is a convex cone in En+1, called the p-order

cone where 1 ≤ p < ∞. When p = 2, the cone is called second-order cone or

“Ice-cream” cone.

Sometimes, we use the notion of conic inequalities P �K Q or Q �K P, in which

cases we simply mean P −Q ∈ K.

Suppose A and B are k × n matrices. We define the inner product

A • B = trace(AT B) =
∑

i, j

aijbij.

When k = 1, they become n-dimensional vectors and the inner product is the stan-

dard dot product of two vectors. In SDP, this definition is almost always used for the

case where the matrices are both square and symmetric. The matrix norm associated

with the inner product is called Frobenius norm:

|X| f =
√

X • X .

For a cone K, the dual of K is the cone

K∗ := {Y : X •Y ≥ 0 for all X ∈ K}.

It is not difficult to see that the dual cones of the first two cones in Example 1 are all

them self, respectively; while the dual cone of the p-order cone is the q-order cone

where

1

p
+

1

q
= 1.

One can see that when p = 2, q = 2 as well; that is, they are both 2-order cones. For

a closed convex cone K, the dual of the dual cone is itself.

6.2 Conic Linear Programming Problem

Now let C and Ai, i = 1, 2, . . . , m, be given matrices of Ek×n, b ∈ Em, and K be

a closed convex cone in Ek×n. And let X be an unknown matrix of Ek×n. Then, the

standard form (primal) conic linear programming problem is

(CLP) minimize C • X

subject to Ai •X = bi, i = 1, 2, . . . , m, X ∈ K. (6.1)

Note that in CLP we minimize a linear function of the decision matrix constrained

in cone K and subject to linear equality constraints.

6.2 Conic Linear Programming Problem 151

For convenience, we define an operator from a symmetric matrix to a vector:

AX =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A1 • X

A2 • X

· · ·
Am • X

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (6.2)

Then, CLP can be written in a compact form:

(CLP) minimize C • X

subject to AX = b, X ∈ K.

When cone K is the non-negative orthant En
+, CLP reduces to linear programming

(LP) in the standard form, whereA becomes the constraint matrix A. When K is the

positive semidefinite cone Sn
+, CLP is called semidefinite programming (SDP); and

when K is the p-order cone, it is called p-order cone programming. In particular,

when p = 2, the model is called second-order cone programming (SOCP). Fre-

quently, we write variable X in (CLP) as x if it is indeed a vector, such as when K is

the nonnegative orthant or p-order cone.

One can see that the problem (S DP) (that is, (6.1) with the semidefinite cone)

generalizes classical linear programming in standard form:

minimize cT x,

subject to Ax = b, x ≥ 0.

Define C = Diag[c1, c2, . . . , cn], and let Ai = Diag[ai1, ai2, . . . , ain] for i =

1, 2, . . .m. The unknown is the n × n symmetric matrix X which is constrained by

X � 0. Since the trace of C • X and Ai • X depend only on the diagonal elements

of X, we may restrict the solutions X to diagonal matrices. It follows that in this

case the SDP problem is equivalent to a linear program, since a diagonal matrix

is positive semidefinite is and only if its all diagonal elements are nonnegative.

One can further see the role of cones in the following examples.

Example 1. Consider the following optimization problems with three variables.

• This is a linear programming problem in standard form:

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,

(x1; x2; x3) ≥ 0.

• This is a semidefinite programming problem where the dimension of the matrix

is two:
minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,
[

x1 x2

x2 x3

]

� 0,

152 6 Conic Linear Programming

Let

C =

[

2 .5

.5 1

]

and A1 =

[

1 .5

.5 1

]

.

Then, the problem can be written in a standard SDP form

minimize C • X

subject to A1 • X = 1, X ∈ S2
+.

• This is a second-order cone programming problem:

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,
√

x2
2
+ x2

3
≤ x1.

We present several application examples to illustrate the flexibility of this formu-

lation.

Example 2 (Binary Quadratic Optimization). Consider a binary quadratic maxi-

mization problem

maximize xT Qx + 2cT x

subject to x j = {1, −1}, for all j = 1, . . . , n,

which is a difficult nonconvex optimization problem. The problem can be rewrit-

ten as

z∗ ≡ maximize

[

x

1

]T [

Q c

cT 0

] [

x

1

]

subject to (x j)
2 = 1, for all j = 1, . . . , n,

which can be also written as a homogeneous quadratic binary problem

z∗ ≡ maximize

[

Q c

cT 0

]

•
[

x

xn+1

] [

x

xn+1

]T

subject to I j •
[

x

xn+1

] [

x

xn+1

]T

= 1, for all j = 1, . . . , n + 1,

where I j is the (n + 1) × (n + 1) matrix whose components are all zero except at the

jth position on the main diagonal where it is 1. Let (x∗; x∗
n+1

) be an optimal solution

for the homogeneous problem. Then, one can see that x∗/x∗
n+1 would be an optimal

solution to the original problem.

Since

[

x

xn+1

] [

x

xn+1

]T

forms a positive-semidefinite matrix (with rank equal to 1),

a semidefinite relaxation of the problem is defined as

6.2 Conic Linear Programming Problem 153

zS DP ≡ maximize

[

Q c

cT 0

]

• Y

subject to I j • Y = 1, for all j = 1, . . . , n + 1, (6.3)

Y ∈ Sn+1
+ ,

where the symmetric matrix Y has dimension n + 1. Obviously, zS DP is a upper

bound of z∗, since the rank-1 requirement is not enforced in the relaxation.

Let’s see how to use the relaxation. For simplicity, assuming zS DP > 0, it has been

shown that in many cases of this problem an optimal SDP solution either constitutes

an exact solution or can be rounded to a good approximate solution of the original

problem. In the former case, one can show that a rank-1 optimal solution matrix Y

exists for the semidefinite relaxation and it can be found by using a rank-reduction

procedure. For the latter case, one can, using a randomized rank-reduction procedure

or the principle components of Y, find a rank-1 feasible solution matrix Ŷ such that

[

Q c

cT 0

]

• Ŷ ≥ α · ZS DP ≥ α · Z∗

for a provable factor 0 < α ≤ 1. Thus, one can find a feasible solution to the

original problem whose objective value is no less than a factor α of the true maximal

objective cost.

Example 3 (Sensor Localization). This problem is that of determining the location

of sensors (for example, several cell phones scattered in a building) when measure-

ments of some of their separation Euclidean distances can be determined, but their

specific locations are not known. In general, suppose there are n unknown points

x j ∈ Ed, j = 1, . . . , n. We consider an edge to be a path between two points,

say, i and j. There is a known subset Ne of pairs (edges) i j for which the separation

distance di j is known. For example, this distance might be determined by the signal

strength or delay time between the points. Typically, in the cell phone example, Ne

contains those edges whose lengths are small so that there is a strong radio signal.

Then, the localization problem is to find locations x j, j = 1, . . . , n, such that

|xi − x j|2 = (dij)
2, for all (i, j) ∈ Ne,

subject to possible rotation and translation. (If the locations of some of the sensors

are known, these may be sufficient to determine the rotation and translation as well.)

Let X = [x1 x2 . . . xn] be the d × n matrix to be determined. Then

|xi − x j|2 = (ei − e j)
T XT X(ei − e j),

where ei ∈ En is the vector with 1 at the ith position and zero everywhere else. Let

Y = XT X. Then the semidefinite relaxation of the localization problem is to find Y

such that

154 6 Conic Linear Programming

(ei − e j)(ei − e j)
T • Y = (di j)

2, for all (i, j) ∈ Ne,

Y � 0.

This problem is one of finding a feasible solution; the objective function is null. But

if the distance measurements have noise, one can add additional variables and an

error objective to minimize. For example,

minimize
∑

(i, j)∈Ne
|zi j|

subject to (ei − e j)(ei − e j)
T • Y + zi j = (di j)

2, for all (i, j) ∈ Ne,

Y � 0.

This problem can be converted into a conic linear program with mixed nonnegative

orthant and semidefinite cones.

Under certain graph structure, an optimal SDP solution Y of the formulation would

be guaranteed rank-d so that it constitutes an exact solution of the original problem.

Also, in general Y can be rounded to a good approximate solution of the original

problem. For example, one can, using a randomized rank-reduction procedure or the

d principle components of Y, find a rank-d solution matrix Ŷ.

6.3 Farkas’ Lemma for Conic Linear Programming

We first introduce the notion of “interior” of cones.

Definition 1. We call X an interior point of cone K if and only if, for any point

Y ∈ K∗, Y • X = 0 implies Y = 0.

The set of interior points of K is denoted by
◦
K.

Theorem 1. The interior of the followings convex cones are given as:

• The interior of the non-negative orthant cone is the set of all vectors where every entry

is positive.

• The interior of the positive semidefinite cone is the set of all positive definite matrices.

• The interior of p-order cone is the set of {(u; x) ∈ En+1 : u > |x|p}.

We give a sketch of the proof for the second order cone, i.e., p = 2. Let (ū; x̄) � 0

be any second-order cone point but ū = |x̄|. Then, we can choose a dual cone (also

the second-order cone) point (v; y) such that

v = αū, y = −αx̄,

for a positive α. Note that

(ū; x̄) • (v; y) = αv̄2 − α|x̄|2 = 0.

6.3 Farkas’ Lemma for Conic Linear Programming 155

Then, one can let α→ ∞ so that (v; y) cannot be bounded.

Now let (ū; x̄) be any given second-order cone point with ū > |x̄|. We like to prove

that, for any dual cone (also the second-order cone) point (v; y),

(ū; x̄) • (v; y) = 0

implies that (v; y) is bounded. Note that

0 = (ū; x̄) • (v; y) = ūv + x̄ • y

or

ūv ≤ −x̄ • y ≤ |x̄||y|.

If v = 0, we must have y = 0; otherwise,

ū ≤ |x̄||y|/v ≤ |x|,

which contradicts ū > |x̄|.
We leave the proof of the following proposition as an exercise.

Proposition 1. Let X ∈
◦
K and Y ∈ K∗. Then For any nonnegative constant κ, Y • X ≤ κ

implies that Y is bounded.

Let us now consider the feasible region of (CLP) (6.1):

F := {X : AX = b, X ∈ K};

where the interior of the feasible region is

◦
F := {X : AX = b, X ∈

◦
K}.

If F is empty with K = En
+, from Farkas’ lemma for linear programming, a vector

y ∈ Em, with yT A ≤ 0 and yT b > 0, always exists and is called an infeasibility

certificate for the system {x : Ax = b, x ≥ 0}.
Does this alternative relations hold for K being a general closed convex one? Let

us rigorousize the question. Let us define the reverse operator of (6.2) from a vector

to a matrix:

yTA =
m

∑

i=1

Aiyi. (6.4)

Note that, by the definition, for any matrix X ∈ Ek×n

yTA •X = yT (AX),

that is, the association property holds. Also, (yTA)T = AT y, that is, the transpose

operation applies here as well.

Then, the question becomes: when F is empty, does there exist a vector y ∈
Em such that −yTA ∈ K∗ and yT b > 0? Similarly, one can ask: when set

156 6 Conic Linear Programming

{y : CT − yTA ∈ K} is empty, does there exist a matrix X ∈ K∗ such that AX = 0

and C • X < 0? Note that the answer to the second question is also “yes” when

K = En
+.

Example 1. The answer to either question is “not necessarily”; see example below.

• For the first question, consider K = S2
+ and

A1 =

[

1 0

0 0

]

, A2 =

[

0 1

1 0

]

and

b =

[

0

2

]

• For the second question, consider K = S2
+ and

C =

[

0 1

1 0

]

and A1 =

[

1 0

0 0

]

.

However, if the data set A satisfies additional conditions, the answer would be

“yes”; see theorem below.

Theorem 2 (Farkas’ Lemma for CLP). We have

• Consider set

Fp := {X : AX = b, X ∈ K}.

Suppose that there exists a vector
◦
y such that −

◦
y

T

A ∈
◦

K∗. Then,

1. Set C := {AX ∈ Em : X ∈ K} is a closed convex set;

2. Fp has a (feasible) solution if and only if set {y : −yTA ∈ K∗, yT b > 0} has no

feasible solution.

• Consider set

Fd := {y : CT − yTA ∈ K}.

Suppose that there exists a vector
◦
X∈

◦
K∗ such thatA

◦
X= 0. Then,

1. Set C := {S − yTA : S ∈ K} is a closed convex set;

2. Fd has a (feasible) solution if and only if set {X : AX = 0, X ∈ K∗, C •X < 0} has

no feasible solution.

Proof. We prove the first statement of the theorem. We prove the first part. It is

clear that C is a convex set. To prove that C is a closed set, we need to show that

if yk := AXk ∈ Em for Xk ∈ K, k = 1, . . ., converges to a vector ȳ, then ȳ ∈ C or

there is X̄ ∈ K such that ȳ := AX̄. Without loss of generality, we assume that yk is

a bounded sequence. Then, we have, for a positive constant c,

c ≥ −(
◦
y)T yk = −(

◦
y)T (AXk) = −(

◦
y)TA • Xk,∀k.

6.3 Farkas’ Lemma for Conic Linear Programming 157

Since −(
◦
y)TA ∈

◦
K∗, by definition, the sequence of Xk is also bounded. Then there is

at least an accumulate point X̄ ∈ K because K is a closed cone. Thus, we must have

ȳ := AX̄.

We now prove the second part. If Fp has a feasible solution X̄. Then, let y make

−yTA ∈ K∗

−yT b = −yT (AX̄) = −yTA • X̄ ≥ 0.

Thus, it must be true yT b ≤ 0, that is, {y : −yTA ∈ K∗, yT b > 0} must be empty.

On the other hand, let Fp has no feasible solution, or equivalently, b � C. We

now show that {y : −yTA ∈ K∗, yT b > 0} must be nonempty.

Since C is a closed convex set, from the separating hyperplane theorem, there

must exist a ȳ ∈ Em such that

ȳT b > ȳT y, ∀y ∈ C,

or, from y = AX, X ∈ K, we have

ȳT b > ȳT (AX) = ȳTA •X, ∀X ∈ K.

That is, ȳTA • X is bounded above for all X ∈ K.

Immediately, we see ȳT b > 0 since 0 ∈ K. Next, it must be true −ȳTA ∈ K∗.
Otherwise, we must be able to find an X̄ ∈ K such that −ȳTA • X̄ < 0 by the

definition of K and its dual K∗. For any positive constant α we maintain αX̄ ∈ K

and let α go to∞. Then, ȳTA• (αX̄) goes to∞, contradicting the fact that ȳTA•X

is bounded above for all X ∈ K. Thus, ȳ is a feasible solution in {y : −yTA ∈
K∗, yT b > 0}. �

Note that C may not be a closed set if the interior condition of Theorem 2 is not

met. Consider A1, A2 and b in Example 1, and we have

C =

{

AX =

[

A1 • X

A2 • X

]

: X ∈ S2
+

}

.

Let

Xk =

[

1
k

1

1 k

]

∈ S2
+, ∀k = 1,

Then we see

yk = AXk =

[

1
k

2

]

.

As k → ∞ we see yk converges b, but b is not in C.

158 6 Conic Linear Programming

6.4 Conic Linear Programming Duality

Because conic linear programming is an extension of classical linear programming,

it would seem that there is a natural dual to the primal problem, and that this dual

is itself a conic linear program. This is indeed the case, and it is related to the primal

in much the same way as primal and dual linear programs are related. Furthermore,

the primal and dual together lead to the formation a primal-dual solution method,

which is discussed later in this chapter.

The dual of the (primal) CLP (6.1) is

(CLD) maximize yT b

subject to
∑m

i
yiAi + S = CT , S ∈ K∗. (6.5)

On written in a compact form:

(CLD) maximize yT b

subject to yTA + S = CT , S ∈ K∗.

Notice that S represents a slack matrix, and hence the problem can alternatively be

expressed as

maximize yT b

subject to
∑m

i
yiAi �K∗ CT . (6.6)

Recall that conic inequality Q �K P means P −Q ∈ K.

Again, just like linear programming, the dual of (CLD) will be (CLP), and they

form a primal and dual pair. Whichever is the primal, then the other will be the dual.

We would see more primal and dual relations later.

Example 1. Here are dual problems to the three instances in Example 1 where y is

just a scalar.

• The dual to the linear programming instance:

maximize y

subject to y(1, 1, 1) + (s1, s2, s3) = (2, 1, 1),

s = (s1, s2, s3) ∈ K∗ = E3
+.

• The dual to semidefinite programming instance:

maximize y

subject to yA1 + S = C,

S ∈ K∗ = S2
+,

6.4 Conic Linear Programming Duality 159

where recall

C =

[

2 .5

.5 1

]

and A1 =

[

1 .5

.5 1

]

.

• The dual to the second-order cone instance:

maximize y

subject to y(1, 1, 1) + (s1, s2, s3) = (2, 1, 1),
√

s2
2
+ s2

3
≤ s1, or s = (s1, s2, s3) in second-order cone.

Let us consider a couple of more dual examples of the problems we posted earlier.

Example 2 (The Dual of Binary Quadratic Maximization). Consider the semidefi-

nite relaxation (6.3) for the binary quadratic maximization problem. It’s dual is

minimize
∑n+1

j=1
y j

subject to
∑n+1

j=1
y jI j − S =

[

Q c

cT 0

]

, S � 0.

Note that
n+1
∑

j=1

y jI j −
[

Q c

cT 0

]

is exactly the Hessian matrix of the Lagrange function of the quadratic maximization

problem; see Chap. 11. Therefore, there is a close connection between the Lagrange

and conic dualities. The problems is to find a diagonal matrix Diag[(y1; . . . ; yn+1)]

such that the Lagrange Hessian is positive semidefinite and its sum of diagonal

elements is minimized.

Example 3 (The Dual of Sensor Localization). Consider the semidefinite program-

ming relaxation for the sensor localization problem (with no noises). It’s dual is

maximize
∑

(i, j)∈Ne

yi j

subject to
∑

(i, j)∈Ne

yi j(ei − e j)(ei − e j)
T + S = 0, S � 0.

Here, yi j represents an internal force or tension on edge (i, j). Obviously, yi j = 0

for all (i, j) ∈ Ne is a feasible solution for the dual. However, finding non-trivial

internal forces is a fundamental problem in network and structure design, and the

maximization of the dual would help to achieve the goal.

Many optimization problems can be directly cast in the CLD form.

Example 4 (Euclidean Facility Location). This problem is to determine the location

of a facility serving n clients placed in a Euclidean space, whose known locations

are denoted by a j ∈ Ed, j = 1, . . . , n. The location of the facility would minimize

160 6 Conic Linear Programming

the sum of the Euclidean distances from the facility to each of the clients. Let the

location decision be vector f ∈ Ed. Then the problem is

minimize
∑n

j=1 |f − a j| .

The problem can be reformulated as

minimize
∑n

j=1 δ j

subject to s j + f = a j, ∀ j = 1, . . . , n,

|s j| ≤ δ j, ∀ j = 1, . . . , n.

This is a conic formulation in the (CLD) form. To see it clearly, let d = 2 and n = 3

in the example, and let

AT =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0

0 0 0 −1 0

0 0 0 0 −1

0 1 0 0 0

0 0 0 −1 0

0 0 0 0 −1

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ E9×5, b =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

1

1

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ E5, c =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

a1

a2

a3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ E9,

and variable vector

y = [δ1; δ2; δ3; f] ∈ E5.

Then, the facility location problem becomes

minimize yT b

subject to yT A + sT = cT , s ∈ K;

where K is the product of three second-order cones each of which has dimension 3.

More precisely, the first three elements of s ∈ E9 are in the 3-dimensional second-

order cone; and so are the second three elements and the third three elements of s.

In general, the product of (possibly mixed) cones, say K1, K2 and K3, is denoted by

K1 ⊕ K2 ⊕ K3, and X ∈ K1 ⊕ K2 ⊕ K3 means that X is divided into three components

such that

X = (X1; X2; X3), where X1 ∈ K1, X2 ∈ K2, and X3 ∈ K3.

The dual of the facility location problem would be in the (CLP) form:

minimize cT x

subject to Ax = b, x ∈ K∗;

6.4 Conic Linear Programming Duality 161

where

K∗ = (K1 ⊕ K2 ⊕ K3)∗ = K∗1 ⊕ K∗2 ⊕ K∗3 .

That is, in this particular problem, the first three elements of x ∈ E9 are in the

3-dimensional second-order cone; and so are the second three elements and the third

three elements of x.

Consider further the equality constraints, the dual can be simplified as

maximize
∑3

j=1 aT
j
x j

subject to
∑3

j=1 x j = 0 ∈ E2,

|x j| ≤ 1, ∀ j = 1, 2, 3.

Example 5 (Quadratic Constraints). Quadratic constraints can be transformed to

linear semidefinite form by using the concept of Schur complements. Let A be a

(symmetric) m-dimension positive definite matrix, C be a symmetric n-dimension

matrix, and B be an m × n matrix. Then, matrix

S = C − BT A−1B

is called the Schur complement of A in the matrix

Z =

[

A B

BT C

]

.

Moreover, Z is positive semidefinite if and only if S is positive semidefinite.

Now consider a general quadratic constraint of the form

yT BT By − cT y − d ≤ 0. (6.7)

This is equivalent to
[

I By

yT BT cT y + d

]

� 0 (6.8)

because the Schur complement of this matrix with respect to I is the negative of the

left side of the original constraint (6.7). Note that in this larger matrix, the variable

y appears only affinely, not quadratically.

Indeed, (6.8) can be written as

P(y) = P0 + y1P1 + y2P2 + · · · ynPn � 0, (6.9)

where

P0 =

[

I 0

0 d

]

, Pi =

[

0 bi

bT
i

ci

]

for i = 1, 2, . . . n

with bi being the ith column of B and ci being the ith component of c. The constraint

(6.9) is of the form that appears in the dual form of a semidefinite program.

162 6 Conic Linear Programming

There is a more efficient mixed semidefinite and second-order cone formulation

of the inequality (6.7) to reduce the dimension of semidefinite cone. We first intro-

duce slack variable s and s0 by linear constraints:

By − s = 0

Then, we let |s| ≤ s0 (or (s0; s) in the second-order cone) and

[

1 s0

s0 cT y + d

]

� 0.

Again, the matrix constraint is of the dual form of a semidefinite cone, but its

dimension is fixed at 2.

Suppose the original optimization problem has a quadratic objective: mini-

mize q(x). The objective can be written instead as: minimize t subject to q(x) ≤ t,

and then this constraint as well as any number of other quadratic constraints can

be transformed to semidefinite constraints, and hence the entire problem converted

to a mixed second-order cone and semidefinite program. This approach is useful

in many applications, especially in various problems of financial engineering and

control theory.

The duality is manifested by the relation between the optimal values of the primal

and dual programs. The weak form of this relation is spelled out in the following

lemma, the proof of which, like the weak form of other duality relations we have

studied, is essentially an accounting issue.

Weak Duality in CLP. Let X be feasible for (CLP) and (y, S) feasible for (CLD). Then,

C • X ≥ yT b.

Proof. By direct calculation

C • X − yT b = (

m
∑

i=1

yiAi + S) •X − yT b

=

m
∑

i=1

yi(Ai • X) + S •X − yT b

=

m
∑

i=1

yibi + S •X − yT b

= S • X ≥ 0,

where the last inequality comes from X ∈ K and S ∈ K∗. �

As in other instances of duality, the strong duality of conic linear programming

is weak unless other conditions hold. For example, the duality gap may not be zero

at optimality in the following SDP instance.

6.4 Conic Linear Programming Duality 163

Example 6. The following semidefinite program has a duality gap:

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0

1 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, A1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0

0 1 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, A2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −1 0

−1 0 0

0 0 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and

b =

[

0

2

]

.

The primal minimal objective value is 0 achieved by

X =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0

0 0 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and the dual maximal objective value is −2 achieved by y = [0, −1]; so the duality

gap is 2.

However, under certain technical conditions, there would be no duality gap. One

condition is related to weather or not the primal feasible region Fp or dual feasible

region has an interior feasible solution. We say Fp has an interior (feasible solution)

if and only if
◦
F p:= {X : AX = b, X ∈

◦
K}

is non-empty, and Fd has an interior feasible solution if and only if

◦
F d:= {(y, S) : yTA + S = C, S ∈

◦
K
∗
}

is non-empty. We state here a version of the strong duality theorem.

Strong Duality in (CLP).

i) Let (CLP) or (CLD) be infeasible, and furthermore the other be feasible and has an

interior. Then the other is unbounded.

ii) Let (CLP) and (CLD) be both feasible, and furthermore one of them has an interior.

Then there is no duality gap between (CLP) and (CLD).

iii) Let (CLP) and (CLD) be both feasible and have interior. Then, both have optimal

solutions with no duality gap.

Proof. We let cone H = K ⊕ E1
+ in the following proof.

i) Suppose Fd is empty and Fp is feasible and has an interior feasible solution.

Then, we have an X̄ ∈
◦
K and τ̄ = 1 that is an interior feasible solution to (homo-

geneous) conic system:

AX̄ − bτ̄ = 0, (X̄, τ̄) ∈
◦
H .

164 6 Conic Linear Programming

Now, for any z∗, we form an alternative system pair based on Farkas’ Lemma

(Theorem 2):

{(X, τ) : AX − bτ = 0, C • X − z∗τ < 0, (X, τ) ∈ H},

and

{(y; S, κ) : AT y + S = C, −bT y + κ = −z∗, (S, κ) ∈ H∗}.
But the latter is infeasible, so that the former has a feasible solution (X, τ).

At such a feasible solution, if τ > 0, we have C • (X/τ) < z∗ for any z∗.
Otherwise, τ = 0 implies that a new solution X̄ + αX is feasible for (CLP)

for any positive α; and, as α→ ∞, the objective value of the new solution goes

to −∞. Hence, either way we have a feasible solution for (CLP) whose objective

value is unbounded from below.

ii) Let Fp be feasible and have an interior feasible solution, and let z∗ be its objec-

tive infimum. Again, we have an alternative system pair as listed in the proof

of i). But now the former is infeasible, so that we have a solution for the latter.

From the Weak Duality theorem bT y ≤ z∗, thus we must have κ = 0, that is, we

have a solution (y, S) such that

AT y + S = C, bT y = z∗, S ∈ K∗.

iii) We only need to prove that there exist a solution X ∈ Fp such that C • X = z∗,
that is, the infimum of (CLP) is attainable. But this is just the other side of the

proof given that Fd is feasible and has an interior feasible solution, and z∗ is

also the supremum of (CLD). �

Again, if one of (CLP) and (CLD) has no interior feasible solution, the common

objective value may not be attainable. For example,

C =

[

1 0

0 0

]

, A1 =

[

0 1

1 0

]

, and b1 = 2.

The dual is feasible but has no interior, while the primal has an interior. The common

objective value equals 0, but no primal solution attaining the infimum value.

Most of these examples that make the strong duality failed are superficial, and

a small perturbation would overcome the failure. Thus, in real applications and in

the rest of the chapter, we may assume that both (CLP) and (CLD) have interior

when they are feasible. Consequently, any primal and dual optimal solution pair

must satisfy the optimality conditions:

C •X − yT b = 0

AX = b

yTA + S = CT

X ∈ K, S ∈ K∗

; (6.10)

6.4 Conic Linear Programming Duality 165

or

X • S = 0

AX = b

yTA + S = CT

X ∈ K, S ∈ K∗

. (6.11)

We now present an application of the strong duality theorem.

Example 7 (Robust Portfolio Design). The Markowitz portfolio design model (also

see 5) is

minimize xTΣx

subject to 1T x = 1, πT x ≥ π,

where Σ is the covariance matrix and π is the expect return rate vector of a set of

stocks, and π is the desired return rate of the portfolio. The problem can be equiva-

lently written as a mixed conic problem

minimize Σ • X

subject to 1T x = 1, πT x ≥ π,
X − xxT � 0.

Now suppose Σ is incomplete and/or uncertain, and it is expressed by

Σ0 +

m
∑

i=1

yiΣi(� 0),

for some variables yi’s. Then, we like to solve a robust model

minimize

{

maxy

(

Σ0 +
∑m

i=1 yiΣi

)

• X

s.t. Σ0 +
∑m

i=1 yiΣ i � 0

}

subject to 1T x = 1, πT x ≥ π,
X − xxT � 0.

The inner problem is an SDP problem. Assuming strong duality holds, we replace

it by its dual, and have

minimize

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

minY Σ0 • (Y + X)

s.t. Σi • (Y + X) = 0, ∀i = 1, . . . ,m,

Y � 0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

subject to 1T x = 1, πT x ≥ π,
X − xxT � 0.

166 6 Conic Linear Programming

Then, we can integrate the two minimization problems together and form

minimize Σ0 • (Y + X)

subject to 1T x = 1, πT x ≥ π,
Σ i • (Y + X) = 0, ∀i = 1, . . . ,m,

Y � 0, X − xxT � 0.

6.5 Complementarity and Solution Rank of SDP

In linear programming, since x ≥ 0 and s ≥ 0,

0 = x • s = xT s =

n
∑

j=1

x j s j

implies that x js j = 0 for all j = 1, . . . , n. This property is often called complemen-

tarity. Thus, besides feasibility, and optimal linear programming solution pair must

satisfy complementarity.

Now consider semidefinite cone Sn
+. Since X � 0 and S � 0, 0 = X • S implies

XS = 0, that is, the regular matrix product of the two is a zero matrix. In other

words, every column (or row) of X is orthogonal to every column (or row) of X.

We also call such property complementarity. Thus, besides feasibility, an optimal

semidefinite programming solution pair must satisfy complementarity.

Proposition 1. Let X∗ and (y∗, S∗) be any optimal SDP solution pair with zero duality gap.

Then complementarity of X∗ and S∗ implies

rank(X∗) + rank(S∗) ≤ n.

Furthermore, is there an optimal (dual) S∗ such that rankS∗ ≥ d, then the rank of any

optimal (primal) X∗ is bounded above by n − d, where integer 0 ≤ d ≤ n; and the converse

is also true.

In certain SDP problems, one may be interested in finding an optimal solution

whose rank is minimal, while the interior-point algorithm for SDP (developed later)

typically generates solution whose rank is maximal for primal and dual, respec-

tively. Thus, a rank reduction method sometimes is necessary to achieve this goal.

For linear programming in the standard form, it is known that if there is an optimal

solution, then there is an optimal basic solution x∗ whose positive entries have at

most m many. Is there a similar structural fact for semidefinite programming? In

deed, we have

Proposition 2. If there is an optimal solution for SDP, then there is an optimal solution of

SDP whose rank r satisfies
r(r+1)

2
≤ m.

The proposition resembles the linear programming fundamental theorem of

Carathéodory in Sect. 2.4. We now give a sketch of similar constructive proof, as

well as several other rank-reduction methods.

6.5 Complementarity and Solution Rank of SDP 167

Null-Space Rank Reduction

Let X∗ be an optimal solution of SDP with rank r. If r(r + 1)/2 > m, we orthonor-

mally factorize X∗

X∗ = (V∗)T V∗, V∗ ∈ Er×n.

Then we consider a related SDP problem

minimize V∗C(V∗)T • U

subject to V∗Ai(V
∗)T •U = bi, i = 1, . . . ,m

U ∈ Sr
+.

(6.12)

Note that, for any feasible solution of (6.12) one can construct a feasible solution

for original SDP using

X(U) = (V∗)T UV∗ and C •X(U) = V∗C(V∗)T • U.

Thus, the minimal value of (6.12) is also z∗, and in particular U = I (the identity

matrix) is an minimizer of (6.12), since

V∗C(V∗)T • I = C • (V∗)T V∗ = C • X∗ = z∗.

Also, one can show that any feasible solution U of (6.12) is its minimizer, so that

X(U) is a minimizer of original SDP.

Consider the system of homogeneous linear equations:

V∗Ai(V
∗)T •W = 0, i = 1, . . . ,m.

where W ∈ Sr (i.e., a r × r symmetric matrices that does not need to be semidef-

inite). This system has r(r + 1)/2 real variables and m equations. Thus, as long as

r(r + 1)/2 > m, we must be able to find a symmetric matrix W � 0 to satisfy all

the m equations. Without loss of generality, let W be either indefinite or negative

semidefinite (if it is positive semidefinite, we take −W as W), that is, W have at

least one negative eigenvalue. Then we consider

U(α) = I + αW.

Choosing a α∗ sufficiently large such that U(α∗) � 0 and it has at least one 0 eigen-

value (or rankU(α∗) < r). Note that

V∗Ai(V
∗)T • U(α∗) = V∗Ai(V

∗)T • (I + α∗W) = V∗Ai(V
∗)T • I = bi, i = 1, . . . ,m.

That is, U(α∗) is feasible and also optimal for (6.12). Thus, X(U(α∗)) is a new min-

imizer for the original SDP, and its rank is strictly less than r. This process can be

repeated till the system of homogeneous linear equations has only all-zero solution,

which is necessary when r(r + 1)/2 ≤ m. Such a solution rank reduction procedure

is called the Null-space reduction, which is deterministic.

168 6 Conic Linear Programming

To see an application of Proposition 2, consider a general quadratic minimization

with sphere constraint

z∗ ≡ minimize xT Qx + 2cT x

subject to |x|2 = 1, x ∈ En,

where Q is general. The problem has an SDP relaxation:

zS DP ≡ maximize

[

Q c

cT 0

]

• Y

subject to

[

I 0

0T 0

]

• Y = 1,

[

0 0

0T 1

]

• Y = 1,

Y ∈ Sn+1
+ .

Note that the relaxation and its dual both have interior so that the strong duality

theorem holds, and it must have a rank-1 optimal SDP solution because m = 2. But

a rank-1 optimal SDP solution would be optimal to the original quadratic minimiza-

tion with sphere constraint. Thus, we must have z∗ = zS DP.

Gaussian Projection Reduction

There is also a randomized procedure to produce an approximate SDP solution with

a desired low rank d. Again, let X∗ be an optimal solution of SDP with rank r > d

and we factorize X∗ as

X∗ = (V∗)T V∗, V∗ ∈ Er×n.

We then generate i.i.d. Gaussian random variables ξ
j

i
with mean 0 and variance 1/d,

i = 1, . . . , r; j = 1, . . . , d, and form random vectors ξ j = (ξ
j

1
; . . . ; ξ

j
r), j = 1, . . . , d.

Finally, we let

X̂ = (V∗)T

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d
∑

j=1

ξ j(ξ j)T

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

V∗.

Note that the rank of X̂ is d and

E(X̂) = (V∗)T E

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d
∑

j=1

ξ j(ξ j)T

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

V∗ = (V∗)T IV∗ = X∗.

One can further show that X̂ would be a good rank-d approximate SDP solution in

many cases.

6.5 Complementarity and Solution Rank of SDP 169

Randomized Binary Reduction

As discussed in the binary QP optimization, we like to produce a vector x where

each entry is either 1 or −1. A procedure to achieve this is as follows. Let X∗ be any

optimal solution of SDP and we factorize X∗ as

X∗ = (V∗)T V∗, V∗ ∈ En×n.

Then, we generate a random n-dimensional vector ξ where each entry is a i.i.d. Gaus-

sian random variable with mean 0 and variance 1. Then we let

x̂ = sign((V∗)Tξ)

where

sign(x) =

{

1 if x ≥ 0

−1 otherwise.

It was proved by Sheppard [228]:

E[x̂i x̂ j] =
2

π
arcsin(X∗i j), i, j = 1, 2, . . . , n.

Obviously, each entry of x̂ is either 1 or −1.

One can further show x̂ would be a good approximate solution to the origi-

nal binary QP. Let us consider the (homogeneous) binary quadratic maximization

problem

z∗ := maximize xT Qx

subject to x j = {1, −1}, for all j = 1, . . . , n,

where we assume Q is positive semidefinite. Then, the SDP relaxation would be

zS DP := maximize Q •X

subject to I j • X = 1, for all j = 1, . . . , n,

X ∈ Sn
+;

and let X∗ be any optimal solution, from which we produced a random binary vector

x̂. Let us evaluate the expected objective value

E(x̂T Qx̂) = E(Q • x̂x̂T) = Q • E(x̂x̂T) = Q • 2

π
arcsin[X∗] =

2

π
(Q • arcsin[X∗]),

where arcsin[X∗] ∈ Sn whose (i, j) the entry equals arcsin(X∗
i j

). One can further

show

arcsin[X∗] − X∗ � 0

170 6 Conic Linear Programming

so that (from Q � 0)

Q • arcsin[X∗] ≥ Q •X∗ = zS DP ≥ z∗,

that is, the expected objective value of x̂ is no less than factor 2
π

of the maximal

value of the binary QP.

The randomized binary reduction can be extended to quadratic optimization with

simple bound constraints such as x2
j
≤ 1.

6.6 Interior-Point Algorithms for Conic Linear Programming

Since (CLP) is a convex minimization problem, many optimization algorithms are

applicable for solving it. However, the most natural conic linear programming algo-

rithm seems to be an extension of the interior-point linear programming algorithm

described in Chap. 5. We describe what it is now.

To develop efficient interior-point algorithms, the key is to find a suitable barrier

or potential function. There is a general theory on selection of barrier functions for

(CLP), depending on the convex cone involved. We present few for the convex cones

listed in Example 1.

Example 1. The following are barrier function for each of the convex cones.

• The n-dimensional non-negative orthant En
+:

B(x) = −
n

∑

j=1

log(x j).

• The n-dimensional semidefinite cone Sn
+:

B(X) = − log(det X).

• The (n + 1)-dimensional second-order cone {(u; x) : u ≥ |x|}:

B(u; x) = − log(u2 − |x|2).

In the rest of the section, we devote our discussion on solving (SDP). Similar to

LP, we consider (SDP) with the barrier function added in the objective:

(S DPB) minimize C •X − μ log det(X)

subject to X ∈
◦
F p,

or (SDD) with the barrier function added in the objective:

(S DDB) maximize yT b + μ log det(S)

subject to (y, S) ∈
◦
F d,

6.6 Interior-Point Algorithms for Conic Linear Programming 171

where again μ > 0 is called the barrier weight parameter. For a given μ, the mini-

mizers of (SDPB) and (SDDB) satisfy conditions:

XS = μI

AX = b

AT y + S = C

X ≻ 0, S ≻ 0

(6.13)

Since

μ =
trace(XS)

n
=

X • S

n
=

C • X − yT b

n
,

so that μ equals the average of complementarity or duality gap. And, these minimiz-

ers, denoted by (X(μ), y(μ), S(μ)), form the central path of SDP for mu ∈ (0,∞). It is

known that when μ → 0, (X(μ), y(μ), S(μ)) tends to an optimal solution pair whose

rank is maximal (Exercise 11).

We can also extend the primal-dual potential function from LP to SDP as a

descent merit function:

ψn+ρ(X, S) = (n + ρ) log(X • S) − log(det(X) · det(S))

where ρ ≥ 0. Note that if X and S are diagonal matrices, these definitions reduce to

those for linear programming.

Once we have an interior feasible point (X, y, S), we can generate a new iterate

(X+, y+, S+) by solving for (Dx, dy, Ds) from the primal-dual system of linear

equations

D−1DxD−1 + Ds =
n

n + ρ
μX−1 − S,

Ai • Dx = 0, for all i, (6.14)
∑m

i
(dy)iAi + Ds = 0,

where D is the (scaling) matrix

D = X
1
2 (X

1
2 SX

1
2)−

1
2 X

1
2

and μ = X • S/n. Then one assigns X+ = X+ αDx, y+ = y+ αdy, and S+ = s+ αDs

for a step size α > 0. Furthermore, it can be shown that there exists a step size α = ᾱ

such that

ψn+ρ(X
+, S+) − ψn+ρ(X, S) ≤ −δ

for a constant δ > 0.2.

We outline the algorithm here

Step 1. Given (X0, y0, S0) ∈
◦
F . Set ρ ≥ √n and k := 0.

Step 2. Set (X, S) = (Xk, Sk) and compute (Dx, dy,Ds) from (6.14).

172 6 Conic Linear Programming

Step 3. Let Xk+1 = Xk + ᾱDx, yk+1 = yk + ᾱdy, and Sk+1 = Sk + ᾱDs, where

ᾱ = arg min
α≥0
ψn+ρ(X

k + αDx, S
k + αDs).

Step 4. Let k := k + 1. If Xk•Sk

X0•S0 ≤ ǫ, Stop. Otherwise return to Step 2.

Theorem 3. Let ψn+ρ(X
0 , S0) ≤ ρ log(X0 • S0) + n log n. Then, the algorithm terminates in

at most O(ρ log(n/ǫ) iterations.

Initialization: The HSD Algorithm

The linear programming Homogeneous Self-Dual Algorithm is also extendable to

conic linear programming. Consider the minimization problem Homogeneous self-

dual algorithm! for conic linear programming

(HS DCLP) min (n + 1)θ

s.t. AX −bτ +b̄θ = 0,

−AT y +Cτ −C̄θ = S ∈ K∗,
bT y −C • X +z̄θ = κ ≥ 0,

−b̄T y +C̄ • X −z̄τ = −(n + 1),

y free, X ∈ K, τ ≥ 0, θ free,

where

b̄ = b −AX0, C̄ = C − S0, z̄ = C • X0 + 1

Here X0 and S0 are any pair of interior points in the interior of K and K∗ such

that they form a central path point with μ = 1. Note that X0 and S0 don’t need to

satisfy other equality constraint, so that they can be easily identified. For examples,

x0 = y0 = 1 for the nonnegative orthant cone; x0 = y0 = (1; 0) for the p-order cone;

and X0 = X0 = I for the semidefinite cone.

Let F be the set of all feasible points (y,X ∈ K, τ ≥ 0, θ, S ∈ K∗, κ ≥ 0). Then
◦
F

is the set of interior feasible points (y,X ∈
◦
K, τ > 0, θ, S ∈

◦
K
∗
, κ > 0).

Theorem 4. Consider the conic optimization (HSDCLP).

i) (HSDCLP) is self-dual, that is, its dual has an identical form of (HSDCLP).

ii) (HSDCLP) has an optimal solution and its optimal solution set is bounded.

iii) (HSDCLP) has an interior feasible point

y = 0, X = X0, τ = 1, θ = 1, S = S0, κ = 1.

iv) For any feasible point (y,X, τ, θ, S, κ) ∈ F

S0 • X +X0 • S + τ + κ − (n + 1)θ = (n + 1),

and

X • S + τκ = (n + 1)θ.

6.7 Summary 173

v) The optimal objective value of (HSDCLP) is zero, that is, any optimal solution of

(HSDCLP) has

X∗ • S∗ + τ∗κ∗ = (n + 1)θ∗ = 0.

Now we are ready to apply the interior-point algorithm, starting from a available

initial interior-point feasible solution, to solve (HSDCLP). The question is: how is

an optimal solution of (HSDCLP) related to optimal solutions of original (CLP) and

(CLD)? We present the next theorem, and leave this proof as an exercise.

Theorem 5. Let (y∗ ,X∗, τ∗, θ∗ = 0, S∗, κ∗) be a (maximal rank) optimal solution of (HSD-

CLP) (as it is typically computed by interior-point algorithms).

i) (CLP) and (CLD) have an optimal solution pair if and only if τ∗ > 0. In this case,

X∗/τ∗ is an optimal solution for (CLP) and (y∗/τ∗, S∗/τ∗) is an optimal solution for

(CLD).

ii) (CLP) or (CLD) has an infeasibility certificate if and only if κ∗ > 0. In this case, X∗/κ∗

or S∗/κ∗ or both are certificates for proving infeasibility; see Farkas’ lemma for CLP.

iii) For all other cases, τ∗ = κ∗ = 0.

6.7 Summary

A relatively new class of mathematical programming problems, Conic linear pro-

gramming (hereafter CLP), is a natural extension of Linear programming that is a

central decision model in Management Science and Operations Research. In CLP,

the unknown is a vector or matrix in a closed convex cone while its entries are also

restricted by some linear equalities and/or inequalities.

One of cones is the semidefinite cone, that is, the set of all symmetric positive

semidefinite matrices in a given dimension. There is a variety of interesting and

important practical problems that can be naturally cast in this form. Because many

problems which appear nonlinear (such as quadratic problems) become essentially

linear in semidefinite form. We have described some of these applications and se-

lected results in Combinatory Optimization, Robust Optimization, and Engineering

Sensor Network. We have also illustrated some analyses to show why CLP is an

effective model to tackle these difficult optimization problems.

We present fundamental theorems underlying conic linear programming. These

theorems include Farkas’ lemma, weak and strong dualities, and solution rank struc-

ture. We show the common features and differences of these theorems between LP

and CLP.

The efficient interior-point algorithms for linear programming can be extended

to solving these problems as well. We describe these extensions applied to gen-

eral conic programming problems. These algorithms closely parallel those for linear

programming. There is again a central path and potential functions, and Newton’s

method is a good way to follow the path or reduce the potential function. The homo-

geneous and self-dual algorithm, which is popularly used for linear programming,

is also extended to CLP.

174 6 Conic Linear Programming

6.8 Exercises

1. Prove that

i) The dual cone of En
+ is itself.

ii) The dual cone of Sn
+ is itself.

iii) The dual cone of p-order cone is the q-order cone where 1
p
+ 1

q
= 1 and

1 ≤ p ≤ ∞.

2. When both K1 and K2 are closed convex cones. Show

i) (K∗1)∗ = K1.

ii) K1 ⊂ K2 =⇒ K∗2 ⊂ K∗1 .

iii) (K1 ⊕ K2)∗ = K∗1 ⊕ K∗2 .

iv) (K1 + K2)∗ = K∗
1
∩ K∗

2
.

v) (K1 ∩ K2)∗ = K∗1 + K∗2 .

Note: by definition S + T = {s + t : s ∈ S , t ∈ T }.
3. Prove the following:

i) Theorem 1.

ii) Proposition 1.

iii) Let X ∈
◦
K and Y ∈

◦
K∗. Then X •Y > 0.

4. Guess an optimal solution and the optimal objective value of each instance of

Example 1.

5. Prove the second statement of Theorem 2.

6. Verify the weak duality theorem of the three CLP instances in Example 1 in

Sect. 6.2 and Example 1 in Sect. 6.4.

7. Consider the SDP relaxation of the sensor network localization problem with

four sensors:

(ei − e j)(ei − e j)
T • X = 1, ∀i < j = 1, 2, 3, 4,

X ∈ S4
+,

in which m = 6. Show that the SDP problem has the solution with rank 3, which

reaches the bound of Proposition 2.

8. Let A and B be two symmetric and positive semidefinite matrices. Prove that

A • B ≥ 0, and A • B = 0 implies AB = 0.

9. Let X and S both be positive definite. Prove that

n log(X • S) − log(det(X) · det(S)) ≥ n log n.

10. Consider a SDP and the potential level set

Ψ(δ) = {(X, y, S) ∈
◦
F : ψn+ρ(X, S) ≤ δ}.

References 175

Prove that

Ψ(δ1) ⊂ Ψ(δ2) if δ1 ≤ δ2,

and for every δ, Ψ(δ) is bounded and its closure Ψ(δ) has non-empty intersec-

tion with the SDP solution set.

11. Let both (SDP) and (SDD) have interior feasible points. Then for any 0 < μ < ∞,

the central path point (X(μ), y(μ), S(μ)) exists and is unique. Moreover,

i) the central path point (X(μ), y(μ), S(μ)) is bounded where 0 < μ ≤ μ0 for

any given 0 < μ0 < ∞.

ii) For 0 < μ′ < μ,

C •X(μ′) < C •X(μ) and bT y(μ′) > bT y(μ)

if X(μ) � X(μ′) and y(μ) � y(μ′).
iii) (X(μ), y(μ), S(μ)) converges to an optimal solution pair for (SDP) and

(SDD), and the rank of the limit of X(μ) is maximal among all optimal

solutions of (SDP) and the rank of the limit S(μ) is maximal among all

optimal solutions of (SDD).

12. Prove the logarithmic approximation lemma for SDP. Let D ∈ Sn and |D|∞ < 1.

Then,

trace(D) ≥ log det(I + D) ≥ trace(D) − |D|2
2(1 − |D|∞)

.

13. Let V ∈
◦
S

n

+ and ρ ≥ √n. Then,

|V−1/2 − n+ρ

I•V V1/2|
|V−1/2|∞

≥
√

3/4.

14. Prove both Theorems 4 and 5.

References

6.1 Most of the materials presented can be found from convex analysis, such as

Rockeafellar [219].

6.2 Semidefinite relaxations have appeared in relation to relaxations discrete opti-

mization problems. In Lovasz and Shrijver [159], a “lifting” procedure is pre-

sented to obtain a problem in ℜn2

; and then the problem is projected back to

obtain tighter inequalities; see also Balas et al. [12]. Then, there have been

several remarkable results of SDP relaxations for combinatorial optimization.

The binary QP, a generalized Max-Cut problem, was studied by Goemans and

Williamson [G8] and Nesterov [189]. Other SDP relaxations can be found in

the survey by Luo et al. [171] and references therein. More CLP applications

can be found in Boyd et al [B22], Vandenberghe and Boyd [V2], and Lobo,

Vandenberghe and Boyd [156], Lasserre [150], Parrilo [204], etc.

176 6 Conic Linear Programming

The sensor localization problem described here is due to Biswas and Ye [B17].

Note that we can view the Sensor Network Localization problem as a Graph

Realization or Embedding problem in Euclidean spaces, see So and Ye [231]

and references therein; and it is related to the Euclidean Distance Matrix Com-

pletion Problems, see Alfakih et al. [3] and Laurent [151].

6.3 Farkas’ lemma for conic linear constraints are closely linked to convex analysis

(i.e, Rockeafellar [219]) and the CLP duality theorems commented next.

6.4 The conic formulation of the Euclidean facility location problem was due to

Xue and Ye [264]. For discussion of Schur complements see Boyd and Vander-

berghe [B23]. Robust optimization models using SDP can be found in Ben-Tal

and Nemirovski [26] and Goldfarb and Iyengar [112], and etc. The SDP duality

theory was studied by Barvinok [16], Nesterov and Nemirovskii [N2], Ramana

[214], Ramana e al. [215], etc. The SDP example with a duality gap was con-

structed by R. Freund (private communication).

6.5 Complementarity and rank. The exact rank theorem described here is due to

Pataki [205], also see Barvinok [15]. A analysis of the Gaussian projection was

presented by So et al. [232] which can be sees as a generalization of the John-

son and Lindenstrauss theorem [137]. The expectation of the randomized binary

reduction is due to Sheppard [228] in 1900, and it was extensively used in Goe-

mans and Williamson [G8] and Nesterov [189], Ye [265], and Bertsimas and

Ye, [31].

6.6 In interior-point algorithms, the search direction (Dx, dy,Ds) can be determined

by Newton’s method with three different scalings: primal, dual and primal-dual.

A primal-scaling (potential reduction) algorithm for semidefinite programming

is due to Alizadeh [A4, A3] where Yinyu Ye “suggested studying the primal-

dual potential function for this problem” and “looking at symmetric preserving

scalings of the form X
−1/2
0

XX
−1/2
0

”, and to Nesterov and Nemirovskii [N2]. A

dual-scaling algorithm was developed by Benson et al. [25] which exploits the

sparse structure of the dual SDP. The primal-dual SDP algorithm described here

is due to Nesterov and Todd [N3] and references therein.

Efficient interior-point algorithms are also developed for optimization over the

second-order cone; see Nesterov and Nemirovskii [N2] and Xue and Ye [264].

These algorithms have established the best approximation complexity results

for certain combinatorial location problems.

The homogeneous and self-dual initialization model was originally developed

by Ye, Todd and Mizuno for LP [Y2], and for SDP by de Klerk et al. [72], Luo

et al. [L18], and Nesterov et al. [191], and it became the foundational algorithm

implemented in Sturm [S11] and Andersen [6].

Part II

Unconstrained Problems

Chapter 7

Basic Properties of Solutions and Algorithms

In this chapter we consider optimization problems of the form

minimize f (x) (7.1)

subject to x ∈ Ω,

where f is a real-valued function and Ω, the feasible set, is a subset of En.

Throughout most of the chapter attention is restricted to the case where Ω = En,

corresponding to the completely unconstrained case, but sometimes we consider

cases where Ω is some particularly simple subset of En.

The first and third sections of the chapter characterize the first- and second-order

conditions that must hold at a solution point of (7.1). These conditions are simply

extensions to En of the well-known derivative conditions for a function of a single

variable that hold at a maximum or a minimum point. The fourth and fifth sections

of the chapter introduce the important classes of convex and concave functions that

provide zeroth-order conditions as well as a natural formulation for a global theory

of optimization and provide geometric interpretations of the derivative conditions

derived in the first two sections.

The final sections of the chapter are devoted to basic convergence characteristics

of algorithms. Although this material is not exclusively applicable to optimization

problems but applies to general iterative algorithms for solving other problems as

well, it can be regarded as a fundamental prerequisite for a modern treatment of

optimization techniques. Two essential questions are addressed concerning itera-

tive algorithms. The first question, which is qualitative in nature, is whether a given

algorithm in some sense yields, at least in the limit, a solution to the original prob-

lem. This question is treated in Sect. 7.6, and conditions sufficient to guarantee

appropriate convergence are established. The second question, the more quantita-

tive one, is related to how fast the algorithm converges to a solution. This question

is defined more precisely in Sect. 7.7. Several special types of convergence, which

arise frequently in the development of algorithms for optimization, are explored.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 7

179

180 7 Basic Properties of Solutions and Algorithms

7.1 First-Order Necessary Conditions

Perhaps the first question that arises in the study of the minimization problem (7.1)

is whether a solution exists. The main result that can be used to address this issue is

the theorem of Weierstras, which states that if f is continuous and Ω is compact, a

solution exists (see Appendix A.6). This is a valuable result that should be kept in

mind throughout our development; however, our primary concern is with character-

izing solution points and devising effective methods for finding them.

In an investigation of the general problem (7.1) we distinguish two kinds of

solution points: local minimum points, and global minimum points.

Definition. A point x∗ ∈ Ω is said to be a relative minimum point or a local minimum point

of f over Ω if there is an ε > 0 such that f (x) � f (x∗) for all x ∈ Ω within a distance ε of
x∗ (that is, x ∈ Ω and |x − x∗| < ε). If f (x) > f (x∗) for all x ∈ Ω, x � x∗, within a distance ε
of x∗, then x∗ is said to be a strict relative minimum point of f over Ω.

Definition. A point x∗ ∈ Ω is said to be a global minimum point of f overΩ if f (x) � f (x∗)
for all x ∈ Ω. If f (x) > f (x∗) for all x ∈ Ω, x � x∗, then x∗ is said to be a strict global

minimum point of f over Ω.

In formulating and attacking problem (7.1) we are, by definition, explicitly ask-

ing for a global minimum point of f over the set Ω. Practical reality, however, both

from the theoretical and computational viewpoint, dictates that we must in many

circumstances be content with a relative minimum point. In deriving necessary con-

ditions based on the differential calculus, for instance, or when searching for the

minimum point by a convergent stepwise procedure, comparisons of the values of

nearby points is all that is possible and attention focuses on relative minimum points.

Global conditions and global solutions can, as a rule, only be found if the problem

possesses certain convexity properties that essentially guarantee that any relative

minimum is a global minimum. Thus, in formulating and attacking problem (7.1)

we shall, by the dictates of practicality, usually consider, implicitly, that we are

asking for a relative minimum point. If appropriate conditions hold, this will also be

a global minimum point.

Feasible Directions

To derive necessary conditions satisfied by a relative minimum point x∗, the basic

idea is to consider movement away from the point in some given direction. Along

any given direction the objective function can be regarded as a function of a single

variable, the parameter defining movement in this direction, and hence the ordinary

calculus of a single variable is applicable. Thus given x ∈ Ω we are motivated to say

that a vector d is a feasible direction at x if there is an ᾱ > 0 such that x + αd ∈ Ω
for all α, 0 � α � ᾱ. With this simple concept we can state some simple conditions

satisfied by relative minimum points.

7.1 First-Order Necessary Conditions 181

Proposition 1 (First-Order Necessary Conditions). LetΩ be a subset of En and let f ∈ C1

be a function on Ω. If x∗ is a relative minimum point of f over Ω, then for any d ∈ En that

is a feasible direction at x∗, we have ∇ f (x∗)d � 0.

Proof. For any α, 0 � α � ᾱ, the point x(α) = x∗ + αd ∈ Ω. For 0 � α � ᾱ define

the function g(α) = f (x(α)). Then g has a relative minimum at α = 0. A typical g is

shown in Fig. 7.1. By the ordinary calculus we have

g(α) − g(0) = g′(0)α + o(α), (7.2)

where o(α) denotes terms that go to zero faster than α (see Appendix A). If g′(0) < 0

then, for sufficiently small values of α > 0, the right side of (7.2) will be negative,

and hence g(α) − g(0) < 0, which contradicts the minimal nature of g(0). Thus

g′(0) = ∇ f (x∗)d � 0. �

A very important special case is where x∗ is in the interior of Ω (as would be

the case if Ω = En). In this case there are feasible directions emanating in every

direction from x∗, and hence ∇ f (x∗)d � 0 for all d ∈ En. This implies ∇ f (x∗) = 0.

We state this important result as a corollary.

Corollary (Unconstrained Case). Let Ω be a subset of En, and let f ∈ C1 be function’ on

Ω. If x∗ is a relative minimum point of f over Ω and if x∗ is an interior point of Ω, then

∇ f (x∗) = 0.

The necessary conditions in the pure unconstrained case lead to n equations

(one for each component of ∇ f) in n unknowns (the components of x∗), which in

many cases can be solved to determine the solution. In practice, however, as demon-

strated in the following chapters, an optimization problem is solved directly without

explicitly attempting to solve the equations arising from the necessary conditions.

Nevertheless, these conditions form a foundation for the theory.

Fig. 7.1 Construction for proof

182 7 Basic Properties of Solutions and Algorithms

Example 1. Consider the problem

minimize f (x1, x2) = x2
1 − x1 x2 + x2

2 − 3x2.

There are no constraints, soΩ = E2. Setting the partial derivatives of f equal to zero

yields the two equations

2x1 − x2 = 0

−x1 + 2x2 = 3.

These have the unique solution x1 = 1, x2 = 2, which is a global minimum point

of f .

Example 2. Consider the problem

minimize f (x1, x2) = x2
1 − x1 + x2 + x1x2

subject to x1 � 0, x2 � 0.

This problem has a global minimum at x1 =
1
2
, x2 = 0. At this point

∂ f

∂x1

= 2x1 − 1 + x2 = 0

∂ f

∂x2

= 1 + x1 =
3

2
.

Thus, the partial derivatives do not both vanish at the solution, but since any

feasible direction must have an x2 component greater than or equal to zero, we have

∇ f (x∗)d � 0 for all d ∈ E2 such that d is a feasible direction at the point (1/2, 0).

7.2 Examples of Unconstrained Problems

Unconstrained optimization problems occur in a variety of contexts, but most

frequently when the problem formulation is simple. More complex formulations

often involve explicit functional constraints. However, many problems with con-

straints are frequently converted to unconstrained problems, such as using the barrier

functions, e.g., the analytic center problem for (dual) linear programs. We present a

few more examples here that should begin to indicate the wide scope to which the

theory applies.

Example 1 (Logistic Regression). Recall the classification problem where we have

vectors ai ∈ Ed for i = 1, 2, . . . , n1 in a class, and vectors b j ∈ Ed for j =

1, 2, . . . , n2 not. Then we wish to find y ∈ Ed and a number β such that

exp(aT
i

y + β)

1 + exp(aT
i

y + β)

7.2 Examples of Unconstrained Problems 183

is close to 1 for all i, and

exp(bT
j y + β)

1 + exp(bT
j y + β)

is close to 0 for all j. The problem can be cast as a unconstrained optimization

problem, called the max-likelihood,

maximizey, β

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∏

i

exp(aT
i

y + β)

1 + exp(aT
i

y + β)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∏

j

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 −
exp(bT

j y + β)

1 + exp(bT
j y + β)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

which can be also equivalently, using a logarithmic transformation, written as

minimizey, β

∑

i

log
(

1 + exp(−aT
i y − β)

)

+
∑

j

log
(

1 + exp(bT
j y + β)

)

.

Example 2 (Utility Maximization). A common problem in economic theory is the

determination of the best way to combine various inputs in order to maximize a

utility function f (x1, x2, . . . , xn) (in the monetary unit) of the amounts x j of the

inputs, i = 1, 2, . . . , n. The unit prices of the inputs are p1, p2, . . . , pn. The pro-

ducer wishing to maximize profit must solve the problem

maximize f (x1, x2, . . . , xn) − p1x1 − p2x2 . . . − pnxn.

The first-order necessary conditions are that the partial derivatives with respect

to the xi’s each vanish. This leads directly to the n equations

∂ f

∂xi

(x1, x2, . . . , xn) = pi, i = 1, 2, . . . , n.

These equations can be interpreted as stating that, at the solution, the marginal value

due to a small increase in the ith input must be equal to the price pi.

Example 3 (Parametric Estimation). A common use of optimization is for the

purpose of function approximation. Suppose, for example, that through an exper-

iment the value of a function g is observed at m points, x1, x2, . . . , xm. Thus, values

g(x1), g(x2), . . . , g(xm) are known. We wish to approximate the function by a poly-

nomial

h(x) = anxn + an−1xn−1 + . . . + a0

of degree n (or less), where n < m. Corresponding to any choice of the approximating

polynomial, there will be a set of errors εk = g(xk) − h(xk). We define the best

approximation as the polynomial that minimizes the sum of the squares of these

errors; that is, minimizes

m
∑

k=1

(εk)2.

184 7 Basic Properties of Solutions and Algorithms

This in turn means that we minimize

f (a) =

m
∑

k=1

[

g(xk) −
(

anxn
k + an−1xn−1

k + . . . + a0

)]2

with respect to a = (a0, a1, . . . , an) to find the best coefficients. This is a quadratic

expression in the coefficients a. To find a compact representation for this objective

we define qi j =
m
∑

k=1
(xk)i+ j, b j =

m
∑

k=1
g(xk)(xk) j and c =

m
∑

k=1
g(xk)2. Then after a bit of

algebra it can be shown that

f (a) = aT Qa − 2bT a + c

where Q = [qi j], b = (b1, b2, . . . , bn+1).

The first-order necessary conditions state that the gradient of f must vanish. This

leads directly to the system of n + 1 equations

Qa = b.

These can be solved to determine a.

Example 4 (Selection Problem). It is often necessary to select an assortment of fac-

tors to meet a given set of requirements. An example is the problem faced by an

electric utility when selecting its power-generating facilities. The level of power

that the company must supply varies by time of the day, by day of the week, and

by season. Its power-generating requirements are summarized by a curve, h(x), as

shown in Fig. 7.2a, which shows the total hours in a year that a power level of at

least x is required for each x. For convenience the curve is normalized so that the

upper limit is unity.

The power company may meet these requirements by installing generating equip-

ment, such as (7.1) nuclear or (7.2) coal-fired, or by purchasing power from a central

energy grid. Associated with type i(i = 1, 2) of generating equipment is a yearly

unit capital cost bi and a unit operating cost ci. The unit price of power purchased

from the grid is c3.

Nuclear plants have a high capital cost and low operating cost, so they are used to

supply a base load. Coal-fired plants are used for the intermediate level, and power

is purchased directly only for peak demand periods. The requirements are satisfied

as shown in Fig. 7.2b, where x1 and x2 denote the capacities of the nuclear and coal-

fired plants, respectively. (For example, the nuclear power plant can be visualized

as consisting of x1/∆ small generators of capacity ∆, where ∆ is small. The first

such generator is on for about h(∆) hours, supplying ∆h(∆) units of energy; the

next supplies ∆h(2∆) units, and so forth. The total energy supplied by the nuclear

plant is thus the area shown.)

7.3 Second-Order Conditions 185

The total cost is

f (x1, x2) = b1x1 + b2x2 + c1

∫ x1

0

h(x)dx

+c2

∫ x1+x2

x1

h(x)dx + c3

∫ 1

x1+x2

h(x)dx,

Fig. 7.2 (a) Power requirement curve; (b) x1 and x2 denote the capacities of the nuclear and coal-
fired plants, respectively

and the company wishes to minimize this over the set defined by

x1 � 0, x2 � 0, x1 + x2 � 1.

Assuming that the solution is interior to the constraints, by setting the partial

derivatives equal to zero, we obtain the two equations

b1 + (c1 − c2)h(x1) + (c2 − c3)h(x1 + x2) = 0

b2 + (c2 − c3)h(x1 + x2) = 0,

which represent the necessary conditions.

If x1 = 0, then the general necessary condition theorem shows that the first equal-

ity could relax to � 0. Likewise, if x2 = 0, then the second equality could relax to

� 0. The case x1 + x2 = 1 requires a bit more analysis (see Exercise 2).

7.3 Second-Order Conditions

The proof of Proposition 1 in Sect. 7.1 is based on making a first-order approx-

imation to the function f in the neighborhood of the relative minimum point.

Additional conditions can be obtained by considering higher-order approximations.

186 7 Basic Properties of Solutions and Algorithms

The second-order conditions, which are defined in terms of the Hessian matrix

∇
2 f of second partial derivatives of f (see Appendix A), are of extreme theoret-

ical importance and dominate much of the analysis presented in later chapters.

Proposition 1 (Second-Order Necessary Conditions). Let Ω be a subset of En and let

f ∈ C2 be a function on Ω. If x∗ is a relative minimum point of f over Ω, then for any

d ∈ En that is a feasible direction at x∗ we have

i) ∇ f (x∗)d � 0 (7.3)

ii) if ∇ f (x∗)d = 0, then dT
∇

2 f (x∗)d � 0. (7.4)

Proof. The first condition is just Proposition 1, and the second applies only if

∇ f (x∗)d = 0. In this case, introducing x(α) = x∗ + αd and g(α) = f (x(α)) as

before, we have, in view of g′(0) = 0,

g(α) − g(0) =
1

2
g′′(0)α2 + o(α2).

If g′′(0) < 0 the right side of the above equation is negative for sufficiently small α

which contradicts the relative minimum nature of g(0). Thus

g′′(0) = dT
∇

2 f (x∗)d � 0. �

Example 1. For the same problem as Example 2 of Sect. 7.1, we have for d =

(d1, d2)

∇ f (x∗)d =
3

2
d2.

Thus condition (ii) of Proposition 1 applies only if d2 = 0. In that case we have

dT
∇

2 f (x∗)d = 2d2
1
� 0, so condition (ii) is satisfied.

Again of special interest is the case where the minimizing point is an interior

point of Ω, as, for example, in the case of completely unconstrained problems.

We then obtain the following classical result.

Proposition 2 (Second-Order Necessary Conditions—Unconstrained Case). Let x∗ be

an interior point of the set Ω, and suppose x∗ is a relative minimum point over Ω of the

function f ∈ C2. Then

i) ∇ f (x∗) = 0 (7.5)

ii) for all d, dT
∇

2 f (x∗)d � 0. (7.6)

For notational simplicity we often denote ∇2 f (x), the n × n matrix of the second

partial derivatives of f , the Hessian of f , by the alternative notation F(x). Condi-

tion (ii) is equivalent to stating that the matrix F(x∗) is positive semidefinite. As

we shall see, the matrix F(x∗), which arises here quite naturally in a discussion of

necessary conditions, plays a fundamental role in the analysis of iterative methods

for solving unconstrained optimization problems. The structure of this matrix is the

primary determinant of the rate of convergence of algorithms designed to minimize

the function f .

7.3 Second-Order Conditions 187

Example 2. Consider the problem

minimize f (x1, x2) = x3
1 − x2

1x2 + 2x2
2

subject to x1 � 0, x2 � 0.

If we assume that the solution is in the interior of the feasible set, that is, if

x1 > 0, x2 > 0, then the first-order necessary conditions are

3x2
1 − 2x1x2 = 0, −x2

1 + 4x2 = 0.

There is a solution to these at x1 = x2 = 0 which is a boundary point, but there is

also a solution at x1 = 6, x2 = 9. We note that for x1 fixed at x1 = 6, the objective

attains a relative minimum with respect to x2 at x2 = 9. Conversely, with x2 fixed

at x2 = 9, the objective attains a relative minimum with respect to x1 at x1 = 6.

Despite this fact, the point x1 = 6, x2 = 9 is not a relative minimum point, because

the Hessian matrix is

F =

[

6x1 − 2x2 −2x1

−2x1 4

]

,

which, evaluated at the proposed solution x1 = 6, x2 = 9, is

F =

[

18 −12

−12 4

]

.

This matrix is not positive semidefinite, since its determinant is negative. Thus the

proposed solution is not a relative minimum point.

Sufficient Conditions for a Relative Minimum

By slightly strengthening the second condition of Proposition 2 above, we obtain a

set of conditions that imply that the point x∗ is a relative minimum. We give here

the conditions that apply only to unconstrained problems, or to problems where the

minimum point is interior to the feasible region, since the corresponding conditions

for problems where the minimum is achieved on a boundary point of the feasible

set are a good deal more difficult and of marginal practical or theoretical value.

A more general result, applicable to problems with functional constraints, is given

in Chap. 11.

Proposition 3 (Second-Order Sufficient Conditions—Unconstrained Case). Let f ∈ C2

be function defined on a region in which the point x∗is an interior point. Suppose in addition

that

i) ∇ f (x∗) = 0 (7.7)

ii) F(x∗) is positive definite (7.8)

Then x∗ is a strict relative minimum point of f .

188 7 Basic Properties of Solutions and Algorithms

Proof. Since F(x∗) is positive definite, there is an a > 0 such that for all d, dT F(x∗)
d � a|d|2. Thus by the Taylor’s Theorem (with remainder)

f (x∗ + d) − f (x∗) =
1

2
dT F(x∗)d + o(|d|2)

� (a/2)|d|2 + o(|d|2)

For small |d| the first term on the right dominates the second, implying that both

sides are positive for small d. �

7.4 Convex and Concave Functions

In order to develop a theory directed toward characterizing global, rather than local,

minimum points, it is necessary to introduce some sort of convexity assumptions.

This results not only in a more potent, although more restrictive, theory but also pro-

vides an interesting geometric interpretation of the second-order sufficiency result

derived above.

Definition. A function f defined on a convex setΩ is said to be convex if, for every x1, x2 ∈
Ω and every α, 0 � α � 1, there holds

f (αx1 + (1 − α)x2) � α f (x1) + (1 − α) f (x2).

If, for every α, 0 < α < 1, and x1 � x2, there holds

f (αx1 + (1 − α)x2) < α f (x1) + (1 − α) f (x2),

then f is said to be strictly convex.

Several examples of convex or nonconvex functions are shown in Fig. 7.3.

Geometrically, a function is convex if the line joining two points on its graph lies

nowhere below the graph, as shown in Fig. 7.3a, or, thinking of a function in two

dimensions, it is convex if its graph is bowl shaped.

Next we turn to the definition of a concave function.

Definition. A function g defined on a convex set Ω is said to be concave if the function
f = −g is convex. The function g is strictly concave if −g is strictly convex.

Combinations of Convex Functions

We show that convex functions can be combined to yield new convex functions and

that convex functions when used as constraints yield convex constraint sets.

Proposition 1. Let f1 and f2 be convex functions on the convex set Ω. Then the function

f1 + f2 is convex on Ω.

7.4 Convex and Concave Functions 189

Fig. 7.3 Convex and nonconvex functions

190 7 Basic Properties of Solutions and Algorithms

Proof. Let x1, x2 ∈ Ω, and 0 < α < 1. Then

f1(αx1 + (1 − α)x2) + f2(αx1) + (1 − α)x2)

� α[f1(x1) + f2(x1)] + (1 − α)[f1(x2) + f2(x2)]. �

Proposition 2. Let f be a convex function over the convex set Ω. Then the function af is

convex for any a � 0.

Proof. Immediate. �

Note that through repeated application of the above two propositions it follows

that a positive combination a1 f1 + a2 f2 + . . . + am fm of convex functions is again

convex.

Finally, we consider sets defined by convex inequality constraints.

Proposition 3. Let f be a convex function on a convex set Ω. The set Γc = {x : x ∈
Ω, f (x) � c} is convex for every real number c.

Proof. Let x1, x2 ∈ Γc. Then f (x1) � c, f (x2) � c and for 0 < α < 1,

f (αx1 + (1 − α)x2) � α f (x1) + (1 − α) f (x2) � c.

Thus αx1 + (1 − α)x2 ∈ Γc. �

We note that, since the intersection of convex sets is also convex, the set of points

simultaneously satisfying

f1(x) � c1, f2(x) � c2, . . . , fm(x) � cm,

where each fi is a convex function, defines a convex set. This is important in math-

ematical programming, since the constraint set is often defined this way.

Properties of Differentiable Convex Functions

If a function f is differentiable, then there are alternative characterizations of con-

vexity.

Proposition 4. Let f ∈ C1. Then f is convex over a convex set Ω if and only if

f (y) � f (x) + ∇ f (x)(y − x) (7.9)

for all x, y ∈ Ω.

Proof. First suppose f is convex. Then for all α, 0 � α � 1,

f (αy + (1 − α)x) � α f (y) + (1 − α) f (x).

7.4 Convex and Concave Functions 191

Thus for 0 < α � 1

f (x + α(y − x)) − f (x)

α
� f (y) − f (x).

Letting α→ 0 we obtain

∇ f (x) (y − x) � f (y) − f (x).

This proves the “only if” part.

Now assume

f (y) � f (x) + ∇ f (x) (y − x)

for all x, y ∈ Ω. Fix x1, x2 ∈ Ω and α, 0 � α � 1. Setting x = αx1 + (1 − α)x2 and

alternatively y = x1 or y = x2, we have

f (x1) � f (x) + ∇ f (x)(x1 − x) (7.10)

f (x2) � f (x) + ∇ f (x)(x2 − x). (7.11)

Multiplying (7.10) by α and (7.11) by (1 − α) and adding, we obtain

α f (x1) + (1 − α) f (x2) � f (x) + ∇ f (x)[αx1 + (1 − α)x2 − x].

But substituting x = αx1 + (1 − α)x2, we obtain

α f (x1) + (1 − α) f (x2) � f (αx1 + (1 − α)x2). �

The statement of the above proposition is illustrated in Fig. 7.4. It can be regarded

as a sort of dual characterization of the original definition illustrated in Fig. 7.3.

The original definition essentially states that linear interpolation between two points

overestimates the function, while the above proposition states that linear approxima-

tion based on the local derivative underestimates the function.

For twice continuously differentiable functions, there is another characterization

of convexity.

Fig. 7.4 Illustration of Proposition 4

192 7 Basic Properties of Solutions and Algorithms

Proposition 5. Let f ∈ C2. Then f is convex over a convex set Ω containing an interior

point if and only if the Hessian matrix F of f is positive semidefinite throughout Ω.

Proof. By Taylor’s theorem we have

f (y) = f (x) = ∇ f (x)(y − x) +
1

2
(y − x)T F(x + α(y − x))(y − x) (7.12)

for some α, 0 � α � 1. Clearly, if the Hessian is everywhere positive semidefinite,

we have

f (y) � f (x) + ∇ f (x)(y − x), (7.13)

which in view of Proposition 4 implies that f is convex.

Now suppose the Hessian is not positive semidefinite at some point x ∈ Ω.

By continuity of the Hessian it can be assumed, without loss of generality, that x

is an interior point of Ω. There is a y ∈ Ω such that (y − x)T F(x)(y − x) < 0. Again

by the continuity of the Hessian, y may be selected so that for all α, 0 � α � 1,

(y − x)T F(x + α(y − x)) (y − x) < 0.

This in view of (7.12) implies that (7.13) does not hold; which in view of Proposi-

tion 4 implies that f is not convex. �

The Hessian matrix is the generalization to En of the concept of the curvature of a

function, and correspondingly, positive definiteness of the Hessian is the generaliza-

tion of positive curvature. Convex functions have positive (or at least nonnegative)

curvature in every direction. Motivated by these observations, we sometimes refer

to a function as being locally convex if its Hessian matrix is positive semidefinite

in a small region, and locally strictly convex if the Hessian is positive definite in

the region. In these terms we see that the second-order sufficiency result of the last

section requires that the function be locally strictly convex at the point x∗. Thus,

even the local theory, derived solely in terms of the elementary calculus, is actually

intimately related to convexity—at least locally. For this reason we can view the two

theories, local and global, not as disjoint parallel developments but as complemen-

tary and interactive. Results that are based on convexity apply even to nonconvex

problems in a region near the solution, and conversely, local results apply to a global

minimum point.

7.5 Minimization and Maximization of Convex Functions

We turn now to the three classic results concerning minimization or maximization

of convex functions.

Theorem 1. Let f be a convex function defined on the convex set Ω. Then the set Γ where f

achieves its minimum is convex, and any relative minimum of f is a global minimum.

7.5 Minimization and Maximization of Convex Functions 193

Proof. If f has no relative minima the theorem is valid by default. Assume now that

c0 is the minimum of f . Then clearly Γ = {x : f (x) � c0, x ∈ Ω} and this is convex

by Proposition 3 of the last section.

Suppose now that x∗ ∈ Ω is a relative minimum point of f , but that there is

another point y ∈ Ω with f (y) < f (x∗). On the line αy + (1 − α)x∗, 0 < α < 1 we

have

f (αy + (1 − α)x∗) � α f (y) + (1 − α) f (x∗) < f (x∗),

contradicting the fact that x∗ is a relative minimum point. �

We might paraphrase the above theorem as saying that for convex functions, all

minimum points are located together (in a convex set) and all relative minima are

global minima. The next theorem says that if f is continuously differentiable and

convex, then satisfaction of the first-order necessary conditions are both necessary

and sufficient for a point to be a global minimizing point.

Theorem 2. Let f ∈ C1 be convex on the convex set Ω. If there is a point x∗ ∈ Ω such that,

for all y ∈ Ω, ∇ f (x∗)(y − x∗) � 0, then x∗ is a global minimum point of f over Ω.

Proof. We note parenthetically that since y−x∗ is a feasible direction at x∗, the given

condition is equivalent to the first-order necessary condition stated in Sect. 7.1. The

proof of the proposition is immediate, since by Proposition 4 of the last section

f (y) � f (x∗) + ∇ f (x∗)(y − x∗) � f (x∗). �

Next we turn to the question of maximizing a convex function over a convex set.

There is, however, no analog of Theorem 1 for maximization; indeed, the tendency

is for the occurrence of numerous nonglobal relative maximum points. Nevertheless,

it is possible to prove one important result. It is not used in subsequent chapters,

but it is useful for some areas of optimization.

Theorem 3. Let f be a convex function defined on the bounded, closed convex set Ω. If f

has a maximum over Ω it is achieved at an extreme point of Ω.

Proof. Suppose f achieves a global maximum at x∗ ∈ Ω. We show first that this

maximum is achieved at some boundary point of Ω. If x∗ is itself a boundary point,

then there is nothing to prove, so assume x∗ is not a boundary point. Let L be any

line passing through the point x∗. The intersection of this line with Ω is an interval

of the line L having end points y1, y2 which are boundary points of Ω, and we have

x∗ = αy1 + (1 − α)y2 for some α, 0 < α < 1. By convexity of f

f (x∗) � α f (y1) + (1 − α) f (y2) � max{ f (y1), f (y2)}.

Thus either f (y1) or f (y2) must be at least as great as f (x∗). Since x∗ is a maximum

point, so is either y1 or y2.

We have shown that the maximum, if achieved, must be achieved at a boundary

point of Ω. If this boundary point, x∗, is an extreme point of Ω there is nothing

more to prove. If it is not an extreme point, consider the intersection of Ω with a

194 7 Basic Properties of Solutions and Algorithms

supporting hyperplane H at x∗. This intersection, T1, is of dimension n − 1 or less

and the global maximum of f over T1 is equal to f (x∗) and must be achieved at a

boundary point x1 of T1. If this boundary point is an extreme point of T1, it is also an

extreme point ofΩ by Lemma 1, Sect. B.4, and hence the theorem is proved. If x1 is

not an extreme point of T1, we form T2, the intersection of T1 with a hyperplane in

En−1 supporting T1 at x1. This process can continue at most a total of n times when a

set Tn of dimension zero, consisting of a single point, is obtained. This single point

is an extreme point of Tn and also, by repeated application of Lemma 1, Sect. B.4,

an extreme point of Ω. �

*7.6 ∗Zero-Order Conditions

We have considered the problem

minimize f (x)

subject to x ∈ Ω (7.14)

to be unconstrained because there are no functional constraints of the form g(x) � b

or h(x) = c. However, the problem is of course constrained by the set Ω. This

constraint influences the first- and second-order necessary and sufficient conditions

through the relation between feasible directions and derivatives of the function f .

Nevertheless, there is a way to treat this constraint without reference to derivatives.

The resulting conditions are then of zero order. These necessary conditions require

that the problem be convex is a certain way, while the sufficient conditions require

no assumptions at all. The simplest assumptions for the necessary conditions are that

Ω is a convex set and that f is a convex function on all of En.

Fig. 7.5 The epigraph, the tubular region, and the hyperplane

7.6 ∗Zero-Order Conditions 195

To derive the necessary conditions under these assumptions consider the set Γ ⊂
En+1 = {(r, x) : r � f (x), x ∈ En}. In a figure of the graph of f , the set Γ is the

region above the graph, shown in the upper part of Fig. 7.5. This set is called the

epigraph of f . It is easy to verify that the set Γ is convex if f is a convex function.

Suppose that x∗ ∈ Ω is the minimizing point with value f ∗ = f (x∗). We construct

a tubular region with cross section Ω and extending vertically from −∞ up to f ∗,
shown as B in the upper part of Fig. 7.5. This is also a convex set, and it overlaps

the set Γ only at the boundary point (f ∗, b∗) above x∗(or possibly many boundary

points if f is flat near x∗).
According to the separating hyperplane theorem (Appendix B), there is a hyper-

plane separating these two sets. This hyperplane can be represented by a nonzero

vector of the form (s, λ) ∈ En+1 with s a scalar and λ ∈ En, and a separation constant

c. The separation conditions are

sr + λT x � c for all x ∈ En and r � f (x) (7.15)

sr + λT x � c for all x ∈ Ω and r � f ∗. (7.16)

It follows that s � 0; for otherwise λ � 0 and then (7.15) would be violated for some

x ∈ En. It also follows that s � 0 since otherwise (7.16) would be violated by very

negative values of r. Hence, together we find s > 0 and by appropriate scaling we

may take s = 1.

It is easy to see that the above conditions can be expressed alternatively as two

optimization problems, as stated in the following proposition.

Proposition 1 (Zero-Order Necessary Conditions). If x∗ solves (7.14) under the stated

convexity conditions, then there is a nonzero vector λ ∈ En such that x∗ is a solution to the

two problems:

minimize f (x) + λT x

subject to x ∈ En (7.17)

and

maximize λT x

subject to x ∈ Ω. (7.18)

Proof. Problem (7.17) follows from (7.15) (with s = 1) and the fact that f (x) � r

for r � f (x). The value c is attained from above at (f ∗, x∗). Likewise (7.18) follows

from (7.16) and the fact that x∗ and the appropriate r attain c from below. �

Notice that problem (7.17) is completely unconstrained, since x may range over

all of En. The second problem (7.18) is constrained by Ω but has a linear objective

function. It is clear from Fig. 7.5 that the slope of the hyperplane is equal to the

slope of the function f when f is continuously differentiable at the solution x∗.
If the optimal solution x∗ is in the interior of Ω, then the second problem (7.18)

implies that λ = 0, for otherwise there would be a direction of movement from x∗

that increases the product λT x above λT x∗. The hyperplane is horizontal in that case.

196 7 Basic Properties of Solutions and Algorithms

The zeroth-order conditions provide no new information in this situation. However,

when the solution is on a boundary point of Ω the conditions give very useful infor-

mation.

Example 1 (Minimization Over an Interval). Consider a continuously differentiable

function f of a single variable x ∈ E1 defined on the unit interval [0,1] which plays

the role of Ω here. The first problem (7.17) implies f ′(x∗) = −λ. If the solution is

at the left end of the interval (at x = 0) then the second problem (7.18) implies that

λ ≤ 0 which means that f ′(x∗) ≥ 0. The reverse holds if x∗ is at the right end. These

together are identical to the first-order conditions of Sect. 7.1.

Example 2. As a generalization of the above example, let f ∈ C1 on En, and let f

have a minimum with respect to Ω at x∗. Let d ∈ En be a feasible direction at x∗.
Then it follows again from (7.17) that ∇ f (x∗)d ≥ 0.

Sufficient Conditions Theorem. The conditions of Proposition 1 are sufficient for x∗ to be
a minimum even without the convexity assumptions.

Proposition 2 (Zero-Order Sufficiency Conditions). If there is a λ such that x∗ ∈ Ω solves

the problems (7.17) and (7.18), then x∗ solves (7.14).

Proof. Suppose x1 is any other point in Ω. Then from (7.17)

f (x1) + λT x1 � f (x∗) + λT x∗.

This can be rewritten as

f (x1) − f (x∗) � λT x∗ − λT x1.

By problem (7.18) the right hand side of this is greater than or equal to zero. Hence

f (x1) − f (x∗) � 0 which establishes the result. �

7.7 Global Convergence of Descent Algorithms

A good portion of the remainder of this book is devoted to presentation and analysis

of various algorithms designed to solve nonlinear programming problems. Although

these algorithms vary substantially in their motivation, application, and detailed

analysis, ranging from the simple to the highly complex, they have the common

heritage of all being iterative descent algorithms. By iterative, we mean, roughly,

that the algorithm generates a series of points, each point being calculated on the

basis of the points preceding it. By descent, we mean that as each new point is

generated by the algorithm the corresponding value of some function (evaluated at

the most recent point) decreases in value. Ideally, the sequence of points generated

by the algorithm in this way converges in a finite or infinite number of steps to a

solution of the original problem.

7.7 Global Convergence of Descent Algorithms 197

An iterative algorithm is initiated by specifying a starting point. If for arbitrary

starting points the algorithm is guaranteed to generate a sequence of points con-

verging to a solution, then the algorithm is said to be globally convergent. Quite

definitely, not all algorithms have this obviously desirable property. Indeed, many of

the most important algorithms for solving nonlinear programming problems are not

globally convergent in their purest form and thus occasionally generate sequences

that either do not converge at all or converge to points that are not solutions. It is

often possible, however, to modify such algorithms, by appending special devices,

so as to guarantee global convergence.

Fortunately, the subject of global convergence can be treated in a unified manner

through the analysis of a general theory of algorithms developed mainly by Zang-

will. From this analysis, which is presented in this section, we derive the Global

Convergence Theorem that is applicable to the study of any iterative descent algo-

rithm. Frequent reference to this important result is made in subsequent chapters.

Iterative Algorithms

We think of an algorithm as a mapping. Given a point x in some space X, the output

of an algorithm applied to x is a new point. Operated iteratively, an algorithm is

repeatedly reapplied to the new points it generates so as to produce a whole sequence

of points. Thus, as a preliminary definition, we might formally define an algorithm A

as a mapping taking points in a space X into (other) points in X. Operated iteratively,

the algorithm A initiated at x0 ∈ X would generate the sequence {xk} defined by

xk+1 = A(xk).

In practice, the mapping A might be defined explicitly by a simple mathematical

expression or it might be defined implicitly by, say, a lengthy complex computer

program. Given an input vector, both define a corresponding output.

With this intuitive idea of an algorithm in mind, we now generalize the concept

somewhat so as to provide greater flexibility in our analyses.

Definition. An algorithm A is a mapping defined on a space X that assigns to every point
x ∈ X a subset of X.

In this definition the term “space” can be interpreted loosely. Usually X is the

vector space En but it may be only a subset of En or even a more general metric

space. The most important aspect of the definition, however, is that the mapping A,

rather than being a point-to-point mapping of X, is a point-to-set mapping of X.

An algorithm A generates a sequence of points in the following way. Given

xk ∈ X the algorithm yields A(xk) which is a subset of X. From this subset an ar-

bitrary element xk+1 is selected. In this way, given an initial point x0, the algorithm

generates sequences through the iteration

xk+1 ∈ A(xk).

198 7 Basic Properties of Solutions and Algorithms

It is clear that, unlike the case where A is a point-to-point mapping, the sequence

generated by the algorithm A cannot, in general, be predicted solely from knowledge

of the initial point x0. This degree of uncertainty is designed to reflect uncertainty

that we may have in practice as to specific details of an algorithm.

Example 1. Suppose for x on the real line we define

A(x) = [−|x|/2, |x|/2]

so that A(x) is an interval of the real line. Starting at x0 = 100, each of the sequences

below might be generated from iterative application of this algorithm.

100, 50, 25, 12, −6, −2, 1, 1/2, . . .

100, −40, 20, −5, −2, 1, 1/4, 1/8, . . .

100, 10, −1, 1/16, 1/100, −1/1000, 1/10, 100, . . .

The apparent ambiguity that is built into this definition of an algorithm is not meant

to imply that actual algorithms are random in character. In actual implementation

algorithms are not defined ambiguously. Indeed, a particular computer program

executed twice from the same starting point will generate two copies of the same

sequence. In other words, in practice algorithms are point-to-point mappings. The

utility of the more general definition is that it allows one to analyze, in a single step,

the convergence of an infinite family of similar algorithms. Thus, two computer pro-

grams, designed from the same basic idea, may differ slightly in some details, and

therefore perhaps may not produce identical results when given the same starting

point. Both programs may, however, be regarded as implementations of the same

point-to-set mappings. In the example above, for instance, it is not necessary to

know exactly how xk+1 is determined from xk so long as it is known that its absolute

value is no greater than one-half xk’s absolute value. The result will always tend to-

ward zero. In this manner, the generalized concept of an algorithm sometimes leads

to simpler analysis.

Descent

In order to describe the idea of a descent algorithm we first must agree on a subset

Γ of the space X, referred to as the solution set. The basic idea of a descent function,

which is defined below, is that for points outside the solution set, a single step of the

algorithm yields a decrease in the value of the descent function.

Definition. Let Γ ⊂ X be a given solution set and let A be an algorithm on X. A continuous
real-valued function Z on X is said to be a descent function for Γ and A if it satisfies

i) if x � Γ and y ∈ A(x), then Z(y) < Z(x)

ii) if x ∈ Γ and y ∈ A(x), then Z(y) � Z(x).

7.7 Global Convergence of Descent Algorithms 199

There are a number of ways a solution set, algorithm, and descent function can

be defined. A natural set-up for the problem

minimize f (x) (7.19)

subject to x ∈ Ω

is to let Γ be the set of minimizing points, and define an algorithm A on Ω in such a

way that f decreases at each step and thereby serves as a descent function. Indeed,

this is the procedure followed in a majority of cases. Another possibility for uncon-

strained problems is to let Γ be the set of points x satisfying ∇ f (x) = 0. In this case

we might design an algorithm for which |∇ f (x)| serves as a descent function or for

which f (x) serves as a descent function.

∗Closed Mappings

An important property possessed by some algorithms is that they are closed. This

property, which is a generalization for point-to-set mappings of the concept of con-

tinuity for point-to-point mappings, turns out to be the key to establishing a gen-

eral global convergence theorem. In defining this property we allow the point-to-set

mapping to map points in one space X into subsets of another space Y.

Definition. A point-to-set mapping A from X to Y is said to be closed at x ∈ X if the
assumptions

i) xk → x, xk ∈ X,

ii) yk → y, yk ∈ A(xk)

imply

iii) y ∈ A(x).

Fig. 7.6 Graphs of mappings

The point-to-set map A is said to be closed on X if it is closed at each point of X.

200 7 Basic Properties of Solutions and Algorithms

Example 2. As a special case, suppose that the mapping A is a point-to-point map-

ping; that is, for each x ∈ X the set A(x) consists of a single point in Y. Suppose also

that A is continuous at x ∈ X. This means that if xk → x then A(xk) → A(x), and

it follows that A is closed at x. Thus for point-to-point mappings continuity implies

closedness. The converse is, however, not true in general.

The definition of a closed mapping can be visualized in terms of the graph of the

mapping, which is the set {(x, y) : x ∈ X, y ∈ A(x)}. If X is closed, then A is closed

throughout X if and only if this graph is a closed set. This is illustrated in Fig. 7.6.

However, this equivalence is valid only when considering closedness everywhere.

In general a mapping may be closed at some points and not at others.

Example 3. The reader should verify that the point-to-set mapping defined in

Example 1 is closed.

Many complex algorithms that we analyze are most conveniently regarded as the

composition of two or more simple point-to-set mappings. It is therefore natural to

ask whether closedness of the individual maps implies closedness of the composite.

The answer is a qualified “yes.” The technical details of composition are described

in the remainder of this subsection. They can safely be omitted at first reading while

proceeding to the Global Convergence Theorem.

Definition. Let A : X → Y and B : Y → Z be point-to-set mappings. The composite
mapping C = BA is defined as the point-to-set mapping C : X → Z with

C(x) =
⋃

y∈A(x)

B(y).

This definition is illustrated in Fig. 7.7.

Proposition. Let A : X → Y and B : Y → Z be point-to-set mappings. Suppose A is closed

at x and B is closed on A(x). Suppose also that if xk → x and yk ∈ A(xk), there is a y such

that, for some subsequence {yki}, yki → y. Then the composite mapping C = BA is closed

at x.

Proof. Let xk → x and zk → z with zk ∈ C(xk). It must be shown that z ∈ C(x).

Select yk ∈ A(xk) such that zk ∈ B(yk) and according to the hypothesis let y and

{yki} be such that yki → y. Since A is closed at x it follows that y ∈ A(x).

Likewise, since yki → y, zki → z and B is closed at y, it follows that z ∈ B(y) ⊂
BA(x) = C(x). �

Two important corollaries follow immediately.

Corollary 1. Let A : X → Y and B : Y → Z be point-to-set mappings. If A is closed at x, B

is closed on A(x) and Y is compact, then the composite map C = BA is closed at x.

Corollary 2. Let A : X → Y be a point-to-point mapping and B : Y → Z a point-to-

set mapping. If A is continuous at x and B is closed at A(x), then the composite mapping

C = BA is closed at x.

7.7 Global Convergence of Descent Algorithms 201

Fig. 7.7 Composition of mappings

Global Convergence Theorem

The Global Convergence Theorem is used to establish convergence for the follow-

ing general situation. There is a solution set Γ. Points are generated according to

the algorithm xk+1 ∈ A(xk), and each new point always strictly decreases a descent

function Z unless the solution set Γ is reached. For example, in nonlinear program-

ming, the solution set may be the set of minimum points (perhaps only one point),

and the descent function may be the objective function itself. A suitable algorithm

is found that generates points such that each new point strictly reduces the value of

the objective. Then, under appropriate conditions, it follows that the sequence con-

verges to the solution set. The Global Convergence Theorem establishes technical

conditions for which convergence is guaranteed.

Global Convergence Theorem. Let A be an algorithm on X, and suppose that, given x0 the

sequence {xk}∞k=0
is generated satisfying

xk+1 ∈ A(xk).

Let a solution set Γ ⊂ X be given, and suppose

i) all points xk are contained in a compact set S ⊂ X

ii) there is a continuous function Z on X such that

(a) if x � Γ, then Z(y) < Z(x) for all y ∈ A(x)

(b) if x ∈ Γ, then Z(y) � Z(x) for all y ∈ A(x)

iii) the mapping A is closed at points outside Γ.

Then the limit of any convergent subsequence of {xk} is a solution.

Proof. Suppose the convergent subsequence {xk}, k ∈ K converges to the limit x.

Since Z is continuous, it follows that for k ∈ K , Z(xk)→ Z(x). This means that Z is

convergent with respect to the subsequence, and we shall show that it is convergent

202 7 Basic Properties of Solutions and Algorithms

with respect to the entire sequence. By the monotonicity of Z on the sequence {xk}
we have Z(xk) − Z(x) � 0 for all k. By the convergence of Z on the subsequence,

there is, for a given ε > 0, a K ∈ K such that Z(xk) − Z(x) < ε for all k > K, k ∈ K .

Thus for all k > K

Z(xk) − Z(x) = Z(xk) − Z(xK) + Z(xK) − Z(x) < ε,

which shows that Z(xk)→ Z(x).

To complete the proof it is only necessary to show that x is a solution. Sup-

pose x is not a solution. Consider the subsequence {xk+1}K . Since all members of

this sequence are contained in a compact set, there is a K̄ ⊂ K such that {xk+1}K̄
converges to some limit x̄. We thus have xk → x, k ∈ K̄ , and xk+1 ∈ A(xk) with

xk+1 → x̄, k ∈ K̄ . Thus since A is closed at x it follows that x̄ ∈ A(x). But from

above, Z(x̄) = Z(x) which contradicts the fact that Z is a descent function. �

Corollary. If under the conditions of the Global Convergence Theorem Γ consists of a

single point x̄, then the sequence {xk} converges to x̄.

Proof. Suppose to the contrary that there is a subsequence {xk}K and an ε > 0 such

that |xk − x̄| > ε for all k ∈ K . By compactness there must be K ′ ⊂ K such that

{xk}K ′ , converges, say to x′. Clearly, |x′ − x̄| � ε, but by the Global Convergence

Theorem x′ ∈ Γ, which is a contradiction. �

In later chapters the Global Convergence Theorem is used to establish the con-

vergence of several standard algorithms. Here we consider some simple examples

designed to illustrate the roles of the various conditions of the theorem.

Example 4. In many respects condition (iii) of the theorem, the closedness of A out-

side the solution set, is the most important condition. The failure of many popular

algorithms can be traced to nonsatisfaction of this condition. On the real line con-

sider the point-to-point algorithm

A(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2
(x − 1) + 1 x > 1

1
2

x x � 1

and the solution set Γ = {0}. It is easily verified that a descent function for this

solution set and this algorithm is Z(x) = |x|. However, starting from x > 1, the

algorithm generates a sequence converging to x = 1 which is not a solution. The

difficulty is that A is not closed at x = 1.

Example 5. On the real line X consider the solution set to be empty, the descent

function Z(x) = e−x, and the algorithm A(x) = x + 1. All conditions of the conver-

gence theorem except (i) hold. The sequence generated from any starting condition

diverges to infinity. This is not strictly a violation of the conclusion of the theorem

but simply an example illustrating that if no compactness assumption is introduced,

the generated sequence may have no convergent subsequence.

7.7 Global Convergence of Descent Algorithms 203

Example 6. Consider the point-to-set algorithm A defined by the graph in Fig. 7.8

and given explicitly on X = [0, 1] by

A(x) =

{

[0, x) 1 � x > 0

0 x = 0,

where [0, x) denotes a half-open interval (see Appendix A). Letting Γ = {0}, the

function Z(x) = x serves as a descent function, because for x � 0 all points in A(x)

are less than x.

Fig. 7.8 Graph for Example 6

The sequence defined by

x0 = 1

xk+1 = xk −
1

2k+2

satisfies xk+1 ∈ A(xk) but it can easily be seen that xk → 1
2
� Γ. The difficulty here,

of course, is that the algorithm A is not closed outside the solution set.

∗Spacer Steps

In some of the more complex algorithms presented in later chapters, the rule used to

determine a succeeding point in an iteration may depend on several previous points

rather than just the current point, or it may depend on the iteration index k. Such

features are generally introduced in order to obtain a rapid rate of convergence but

they can grossly complicate the analysis of global convergence.

204 7 Basic Properties of Solutions and Algorithms

If in such a complex sequence of steps there is inserted, perhaps irregularly but

infinitely often, a step of an algorithm such as steepest descent that is known to

converge, then it is not difficult to insure that the entire complex process converges.

The step which is repeated infinitely often and guarantees convergence is called a

spacer step, since it separates disjoint portions of the complex sequence. Essentially

the only requirement imposed on the other steps of the process is that they do not

increase the value of the descent function.

This type of situation can be analyzed easily from the following viewpoint.

Suppose B is an algorithm which together with the descent function Z and solu-

tion set Γ, satisfies all the requirements of the Global Convergence Theorem. Define

the algorithm C by C(x) = {y : Z(y) � Z(x)}. In other words, C applied to x can

give any point so long as it does not increase the value of Z. It is easy to verify that

C is closed. We imagine that B represents the spacer step and the complex process

between spacer steps is just some realization of C. Thus the overall process amounts

merely to repeated applications of the composite algorithm CB. With this viewpoint

we may state the Spacer Step Theorem.

Spacer Step Theorem. Suppose B is an algorithm on X which is closed outside the solution

set Γ. Let Z be a descent function corresponding to B and Γ.
Suppose that the sequence {xk}∞k=0 is generated satisfying

xk+1 ∈ B(xk)

for k in an infinite index set K , and that

Z(xk+1) � Z(xk)

for all k. Suppose also that the set S = {x : Z(x) � Z(x0)} is compact. Then the limit of any

convergent subsequence of {xk}K is a solution.

Proof. We first define for any x ∈ X, B̄(x) = S ∩B(x) and then observe that A = CB̄

is closed outside the solution set by Corollary 1. The Global Convergence Theorem

can then be applied to A. Since S is compact, there is a subsequence of {xk}k∈K
converging to a limit x. In view of the above we conclude that x ∈ Γ. �

7.8 Speed of Convergence

The study of speed of convergence is an important but sometimes complex subject.

Nevertheless, there is a rich and yet elementary theory of convergence rates that

enables one to predict with confidence the relative effectiveness of a wide class of

algorithms. In this section we introduce various concepts designed to measure speed

of convergence, and prepare for a study of this most important aspect of nonlinear

programming.

7.8 Speed of Convergence 205

Order of Convergence

Consider a sequence of real numbers {rk}∞k=0
converging to the limit r∗. We define

several notions related to the speed of convergence of such a sequence.

Definition. Let the sequence {rk} converge to r∗. The order of convergence of {rk} is defined
as the supremum of the nonnegative numbers p satisfying

0 � lim
k→∞

|rk+1 − r∗|
|rk − r∗ |p < ∞.

To ensure that the definition is applicable to any sequence, it is stated in terms

of limit superior rather than just limit and 0/0 (which occurs if rk = r∗ for all k)

is regarded as finite. But these technicalities are rarely necessary in actual analysis,

since the sequences generated by algorithms are generally quite well behaved.

It should be noted that the order of convergence, as with all other notions related

to speed of convergence that are introduced, is determined only by the properties

of the sequence that hold as k → ∞. Somewhat loosely but picturesquely, we are

therefore led to refer to the tail of a sequence—that part of the sequence that is

arbitrarily far out. In this language we might say that the order of convergence is a

measure of how good the worst part of the tail is. Larger values of the order p imply,

in a sense, faster convergence, since the distance from the limit r∗ is reduced, at least

in the tail, by the pth power in a single step. Indeed, if the sequence has order p and

(as is the usual case) the limit

β = lim
k→∞

|rk+1 − r∗|
|rk − r∗|p

exists, then asymptotically we have

|rk+1 − r∗| = β|rk − r∗|p.

Example 1. The sequence with rk = ak where 0 < a < 1 converges to zero with

order unity, since rk+1/rk = a.

Example 2. The sequence with rk = a(2k) for 0 < a < 1 converges to zero with order

two, since rk+1/r
2
k
= 1.

Linear Convergence

Most algorithms discussed in this book have an order of convergence equal to unity.

It is therefore appropriate to consider this class in greater detail and distinguish

certain cases within it.

Definition. If the sequence {rk} converges to r∗ in such a way that

lim
k→∞

|rk+1 − r∗|
|rk − r∗ | = β < 1,

the sequence is said to converge linearly to r∗ with convergence ratio (or rate) β.

206 7 Basic Properties of Solutions and Algorithms

Linear convergence is, for our purposes, without doubt the most important type

of convergence behavior. A linearly convergent sequence, with convergence ratio β,

can be said to have a tail that converges at least as fast as the geometric sequence

cβk for some constant c. Thus linear convergence is sometimes referred to as geo-

metric convergence, although in this book we reserve that phrase for the case when

a sequence is exactly geometric.

As a rule, when comparing the relative effectiveness of two competing algorithms

both of which produce linearly convergent sequences, the comparison is based on

their corresponding convergence ratios—the smaller the ratio the faster the rate.

The ultimate case where β = 0 is referred to as superlinear convergence. We note

immediately that convergence of any order greater than unity is superlinear, but it is

also possible for superlinear convergence to correspond to unity order.

Example 3. The sequence rk = (1/k)k is of order unity, since rk+1/r
p

k
→ ∞ for p > 1.

However, rk+1/rk → 0 as k → ∞ and hence this is superlinear convergence.

Arithmetic Convergence

Linear convergence is also called geometric convergence. There is another (slower)

type of convergence:

Definition. If the sequence {rk} converges to r∗ in such a way that

|rk − r∗| ≤ C
|r0 − r∗|

kp
, k ≥ 1, 0 < p < ∞

where C is a fixed positive number, the sequence is said to converge arithmetically to r∗

with order p.

When p = 1, it is referred as arithmetic convergence. The greater of p the faster of

the convergence.

Example 4. The sequence rk = 1/k converges to zero arithmetically. The conver-

gence is of order one but it is not linear, since lim
k→∞

(rk+1/rk) = 1, that is, β is not

strictly less than one.

∗Average Rates

All the definitions given above can be referred to as step-wise concepts of conver-

gence, since they define bounds on the progress made by going a single step: from k

to k + 1. Another approach is to define concepts related to the average progress per

step over a large number of steps. We briefly illustrate how this can be done.

7.8 Speed of Convergence 207

Definition. Let the sequence {rk} converge to r∗. The average order of convergence is the
infimum of the numbers p > 1 such that

lim
k→∞
|rk − r∗|1/pk

= 1.

The order is infinity if the equality holds for no p > 1.

Example 5. For the sequence rk = a(2k), 0 < a < 1, given in Example 2, we have

|rk |1/2
k

= a,

while

|rk|1/p
k

= a(2/p)k → 1

for p > 2. Thus the average order is two.

Example 6. For rk = ak with 0 < a < 1 we have

(rk)1/pk

= ak(1/p)k → 1

for any p > 1. Thus the average order is unity.

As before, the most important case is that of unity order, and in this case we

define the average convergence ratio as lim
k→∞
|rk − r∗|1/k. Thus for the geometric

sequence rk = cak, 0 < a < 1, the average convergence ratio is a. Paralleling

the earlier definitions, the reader can then in a similar manner define corresponding

notions of average linear and average superlinear convergence.

Although the above array of definitions can be further embellished and expanded,

it is quite adequate for our purposes. For the most part we work with the step-wise

definitions, since in analyzing iterative algorithms it is natural to compare one step

with the next. In most situations, moreover, when the sequences are well behaved

and the limits exist in the definitions, then the step-wise and average concepts of

convergence rates coincide.

∗Convergence of Vectors

Suppose {xk}∞k=0 is a sequence of vectors in En converging to a vector x∗. The con-

vergence properties of such a sequence are defined with respect to some particular

function that converts the sequence of vectors into a sequence of numbers. Thus,

if f is a given continuous function on En, the convergence properties of {xk} can

be defined with respect to f by analyzing the convergence of f (xk) to f (x∗). The

function f used in this way to measure convergence is called the error function.

In optimization theory it is common to choose the error function by which to

measure convergence as the same function that defines the objective function of the

original optimization problem. This means we measure convergence by how fast the

208 7 Basic Properties of Solutions and Algorithms

objective converges to its minimum. alternatively, we sometimes use the function

|x − x∗|2 and thereby measure convergence by how fast the (squared) distance from

the solution point decreases to zero.

Generally, the order of convergence of a sequence is insensitive to the particular

error function used; but for step-wise linear convergence the associated convergence

ratio is not. Nevertheless, the average convergence ratio is not too sensitive, as the

following proposition demonstrates, and hence the particular error function used to

measure convergence is not really very important.

Proposition. Let f and g be two error functions satisfying f (x∗) = g(x∗) = 0 and, for all x,

a relation of the form

0 � a1g(x) � f (x) � a2g(x)

for some fixed a1 > 0, a2 > 0. If the sequence {xk}∞k=0
converges to x∗ linearly with average

ratio β with respect to one of these functions, it also does so with respect to the other.

Proof. The statement is easily seen to be symmetric in f and g. Thus we assume

{xk} is linearly convergent with average convergence ratio β with respect to f , and

will prove that the same is true with respect to g. We have

β = lim
k→∞

f (xk)1/k
� lim

k→∞
a

1/k
2

g(xk)
1/k = lim

k→∞
g(xk)

1/k

and

β = lim
k→∞

f (xk)1/k
� lim

k→∞
a

1/k
1

g(xk)1/k = lim
k→∞

g(xk)1/k.

Thus

β = lim
k→∞

g(xk)1/k. �

As an example of an application of the above proposition, consider the case

where g(x) = |x − x∗|2 and f (x) = (x − x∗)T Q(x − x∗), where Q is a positive defi-

nite symmetric matrix. Then a1 and a2 correspond, respectively, to the smallest and

largest eigenvalues of Q. Thus average linear convergence is identical with respect

to any error function constructed from a positive definite quadratic form.

Complexity

Complexity theory as outlined in Sect. 5.1 is an important aspect of convergence

theory. This theory can be used in conjunction with the theory of local convergence.

If an algorithm converges according to any order greater than zero, then for a fixed

problem, the sequence generated by the algorithm will converge in a time that is a

function of the convergence order (and rate, if convergence is linear). For example,

if the order is one with rate 0 < c < 1 and the process begins with an error of R,

a final error of r can be achieved by a number of steps n satisfying cnR � r. Thus

it requires approximately n = log(R/r)/ log(1/c) steps. In this form the number of

steps is not affected by the size of the problem. However, problem size enters in

two possible ways. First, the rate c may depend on the size-say going toward 1 as

7.10 Exercises 209

the size increases so that the speed is slower for large problems. The second way

that size may enter, and this is the more important way, is that the time to exe-

cute a single step almost always increases with problem size. For instance if, for a

problem seeking an optimal vector of dimension m, each step requires a Gaussian

elimination inversion of an m ×m matrix, the solution time will increase by a factor

proportional to m3. Overall the algorithm is therefore a polynomial time algorithm.

Essentially all algorithms in this book employ steps, such as matrix multiplications

or inversion or other algebraic operations, which are polynomial-time in character.

Convergence analysis, therefore, focuses on whether an algorithm is globally con-

vergent, on its local convergence properties, and also on the order of the algebraic

operations required to execute the steps required. The last of these is usually easily

deduced by listing the number and size of the required vector and matrix operations.

7.9 Summary

There are two different but complementary ways to characterize the solution to

unconstrained optimization problems. In the local approach, one examines the re-

lation of a given point to its neighbors. This leads to the conclusion that, at an

unconstrained relative minimum point of a smooth function, the gradient of the

function vanishes and the Hessian is positive semidefinite; and conversely, if at a

point the gradient vanishes and the Hessian is positive definite, that point is a rel-

ative minimum point. This characterization has a natural extension to the global

approach where convexity ensures that if the gradient vanishes at a point, that point

is a global minimum point.

In considering iterative algorithms for finding either local or global minimum

points, there are two distinct issues: global convergence properties and local con-

vergence properties. The first is concerned with whether starting at an arbitrary

point the sequence generated will converge to a solution. This is ensured if the

algorithm is closed, has a descent function, and generates a bounded sequence. It

is also explained that global convergence is guaranteed simply by the inclusion, in

a complex algorithm, of spacer steps. This result is called upon frequently in what

follows. Local convergence properties are a measure of the ultimate speed of con-

vergence and generally determine the relative advantage of one algorithm to another.

7.10 Exercises

1. To approximate a function g over the interval [0, 1] by a polynomial p of degree

n (or less), we minimize the criterion

f (a) =

∫ 1

0

[g(x) − p(x)]2dx,

where p(x) = anxn + an−1xn−1 + . . . + a0. Find the equations satisfied by the

optimal coefficients a = (a0, a1, . . . , an).

210 7 Basic Properties of Solutions and Algorithms

2. In Example 4 of Sect. 7.2 show that if the solution has x1 > 0, x1 + x2 = 1, then

it is necessary that

b1 − b2 + (c1 − c2)h(x1) = 0

b2 + (c2 − c3)h(x1 + x2) � 0.

Hint: One way is to reformulate the problem in terms of the variables x1 and

y = x1 + x2.

3. (a) Using the first-order necessary conditions, find a minimum point of the

function

f (x, y, z) = 2x2 + xy + y2 + yz + z2 − 6x − 7y − 8z + 9.

(b) Verify that the point is a relative minimum point by verifying that the

second-order sufficiency conditions hold.

(c) Prove that the point is a global minimum point.

4. In this exercise and the next we develop a method for determining whether a

given symmetric matrix is positive definite. Given an n × n matrix A let Ak

denote the principal submatrix made up of the first k rows and columns. Show

(by induction) that if the first n − 1 principal submatrices are nonsingular, then

there is a unique lower triangular matrix L with unit diagonal and a unique

upper triangular matrix U such that A = LU. (See Appendix C.)

5. A symmetric matrix is positive definite if and only if the determinant of each

of its principal submatrices is positive. Using this fact and the considerations of

Exercise 4, show that an n×n symmetric matrix A is positive definite if and only

if it has an LU decomposition (without interchange of rows) and the diagonal

elements of U are all positive.

6. Using Exercise 5 show that an n× n matrix A is symmetric and positive definite

if and only if it can be written as A = GGT where G is a lower triangular matrix

with positive diagonal elements. This representation is known as the Cholesky

factorization of A.

7. Let f j, i ∈ I be a collection of convex functions defined on a convex set Ω.

Show that the function f defined by f (x) = sup
i∈I

fi(x) is convex on the region

where it is finite.

8. Let γ be a monotone nondecreasing function of a single variable (that is, γ(r) �

γ(r′) for r′ > r) which is also convex; and let f be a convex function defined

on a convex set Ω. Show that the function γ(f) defined by γ(f)(x) = γ[f (x)] is

convex on Ω.

9. Let f be twice continuously differentiable on a region Ω ⊂ En. Show that a

sufficient condition for a point x∗ in the interior of Ω to be a relative minimum

point of f is that ∇ f (x∗) = 0 and that f be locally convex at x∗.

References 211

10. Define the point-to-set mapping on En by

A(x) = {y : yT x � b},

where b is a fixed constant. Is A closed?

11. Prove the two corollaries in Sect. 7.6 on the closedness of composite mappings.

12. Show that if A is a continuous point-to-point mapping, the Global Conver-

gence Theorem is valid even without assumption (i). Compare with Example 2,

Sect. 7.7.

13. Let {rk}∞k=0
and {ck}∞k=0

be sequences of real numbers. Suppose rk → 0 average

linearly and that there are constants c > 0 and C such that c � ck � C for all k.

Show that ckrk → 0 average linearly.

14. Prove a proposition, similar to the one in Sect. 7.8, showing that the order of

convergence is insensitive to the error function.

15. Show that if rk → r∗ (step-wise) linearly with convergence ratio β, then rk →
r∗(average) linearly with average convergence ratio no greater than β.

References

7.1–7.5 For alternative discussions of the material in these sections, see Hadley

[H2], Fiacco and McCormick [F4], Zangwill [Z2] and Luenberger [L8].

7.6 Although the general concepts of this section are well known, the formula-

tion as zero-order conditions appears to be new.

7.7 The idea of using a descent function (usually the objective itself) in order

to guarantee convergence of minimization algorithms is an old one that

runs through most literature on optimization, and has long been used to

establish global convergence. Formulation of the general Global Conver-

gence Theorem, which captures the essence of many previously diverse

arguments, and the idea of representing an algorithm as a point-to-set map-

ping are both due to Zangwill [Z2]. A version of the Spacer Step Theorem

can be found in Zangwill [Z2] as well.

7.8 Most of the definitions given in this section have been standard for quite

some time. A thorough discussion which contributes substantially to the

unification of these concepts is contained in Ortega and Rheinboldt [O7].

Chapter 8

Basic Descent Methods

We turn now to a description of the basic techniques used for iteratively solving

unconstrained minimization problems. These techniques are, of course, important

for practical application since they often offer the simplest, most direct alternatives

for obtaining solutions; but perhaps their greatest importance is that they establish

certain reference plateaus with respect to difficulty of implementation and speed

of convergence. Thus in later chapters as more efficient techniques and techniques

capable of handling constraints are developed, reference is continually made to the

basic techniques of this chapter both for guidance and as points of comparison.

There is a fundamental underlying structure for almost all the descent algorithms

we discuss. One starts at an initial point; determines, according to a fixed rule, a

direction of movement; and then moves in that direction to a (relative) minimum of

the objective function on that line. At the new point a new direction is determined

and the process is repeated. The primary differences between algorithms (steepest

descent, Newton’s method, etc.) rest with the rule by which successive directions of

movement are selected. Once the selection is made, all algorithms call for movement

to the minimum point on the corresponding line.

The process of determining the minimum point on a given line (one variable

only) is called line search. For general nonlinear functions that cannot be minimized

analytically, this process actually is accomplished by searching, in an intelligent

manner, along the line for the minimum point. These line search techniques, which

are really procedures for solving one-dimensional minimization problems, form the

backbone of nonlinear programming algorithms, since higher dimensional problems

are ultimately solved by executing a sequence of successive line searches. There are

a number of different approaches to this important phase of minimization and the

first half of this chapter is devoted to their, discussion.

The last sections of the chapter are devoted to a description and analysis of

the basic descent algorithms for unconstrained problems; steepest descent, coor-

dinate descent, and Newton’s method. These algorithms serve as primary models

for the development and analysis of all others discussed in the book.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 8

213

214 8 Basic Descent Methods

8.1 Line Search Algorithms

These algorithms are classified by the order of information of the objective functions

f (x) being evaluated.

0th-Order Method: Golden Section Search and Curve Fitting

A very popular method for resolving the line search problem is the Fibonacci search

method described in this section. The method has a certain degree of theoretical

elegance, which no doubt partially accounts for its popularity, but on the whole, as

we shall see, there are other procedures which in most circumstances are superior.

The method determines the minimum value of a function f over a closed interval

[c1, c2]. In applications, f may in fact be defined over a broader domain, but for

this method a fixed interval of search must be specified. The only property that is

assumed of f is that it is unimodal, that is, it has a single relative minimum (see

Fig. 8.1). The minimum point of f is to be determined, at least approximately, by

measuring the value of f at a certain number of points. It should be imagined, as is

indeed the case in the setting of nonlinear programming, that each measurement of

f is somewhat costly—of time if nothing more.

To develop an appropriate search strategy, that is, a strategy for selecting mea-

surement points based on the previously obtained values, we pose the following

problem: Find how to successively select N measurement points so that, without

explicit knowledge of f , we can determine the smallest possible region of uncer-

tainty in which the minimum must lie. In this problem the region of uncertainty is

determined in any particular case by the relative values of the measured points in

conjunction with our assumption that f is unimodal. Thus, after values are known

at N points x1, x2, . . . , xN with

c1 � x1 < x2 . . . < xN−1 < xN � c2,

the region of uncertainty is the interval [xk−1, xk+1] where xk is the minimum point

among the N, and we define x0 = c1, xN+1 = c2 for consistency. The minimum of f

must lie somewhere in this interval.

The derivation of the optimal strategy for successively selecting measurement

points to obtain the smallest region of uncertainty is fairly straight-forward but

somewhat tedious. We simply state the result and give an example.

Let

d1 = c2 − c1, the initial width of uncertainty

dk = width of uncertainty after k measurements

8.1 Line Search Algorithms 215

Fig. 8.1 A unimodal function

Then, if a total of N measurements are to be made, we have

dk =

(

FN−k+1

FN

)

d1, (8.1)

where the integers Fk are members of the Fibonacci sequence generated by the

recurrence relation

FN = FN−1 + FN−2, F0 = F1 = 1. (8.2)

The resulting sequence is 1, 1, 2, 3, 5, 8, 13,

The procedure for reducing the width of uncertainty to dN is this: The first two

measurements are made symmetrically at a distance of (FN−1/FN)d1 from the ends

of the initial intervals; according to which of these is of lesser value, an uncertainty

interval of width d2 = (FN−1/FN)d1 is determined. The third measurement point is

placed symmetrically in this new interval of uncertainty with respect to the measure-

ment already in the interval. The result of this third measurement gives an interval

of uncertainty d3 = (FN−2/FN)d1. In general, each successive measurement point

is placed in the current interval of uncertainty symmetrically with the point already

existing in that interval.

Some examples are shown in Fig. 8.2. In these examples the sequence of mea-

surement points is determined in accordance with the assumption that each measure-

ment is of lower value than its predecessors. Note that the procedure always calls

for the last two measurements to be made at the midpoint of the semifinal interval of

uncertainty. We are to imagine that these two points are actually separated a small

distance so that a comparison of their respective values will reduce the interval to

nearly half. This terminal anomaly of the Fibonacci search process is, of course, of

no great practical consequence.

216 8 Basic Descent Methods

Search by Golden Section

If the number N of allowed measurement points in a Fibonacci search is made to

approach infinity, we obtain the golden section method. It can be argued, based on

the optimal property of the finite Fibonacci method, that the corresponding infinite

version yields a sequence of intervals of uncertainty whose widths tend to zero faster

than that which would be obtained by other methods.

Fig. 8.2 Fibonacci search

The solution to the Fibonacci difference equation

FN = FN−1 + FN−2 (8.3)

is of the form

FN = AτN
1 + BτN

2 , (8.4)

where τ1 and τ2 are roots of the characteristic equation

τ2 = τ + 1.

Explicitly,

τ1 =
1 +
√

5

2
, τ2 =

1 −
√

5

2
.

8.1 Line Search Algorithms 217

(The number τ1 ≃ 1.618 is known as the golden section ratio and was considered by

early Greeks to be the most aesthetic value for the ratio of two adjacent sides of a

rectangle.) For large N the first term on the right side of (8.4) dominates the second,

and hence

lim
N→∞

FN−1

FN

=
1

τ1

≃ 0.618.

It follows from (8.1) that the interval of uncertainty at any point in the process has

width

dk =

(

1

τ1

)k−1

d1, (8.5)

and from this it follows that

dk+1

dk

=
1

τ1

= 0.618. (8.6)

Therefore, we conclude that, with respect to the width of the uncertainty interval, the

search by golden section converges linearly (see Sect. 7.8) to the overall minimum

of the function f with convergence ratio 1/τ1 = 0.618.

The Fibonacci search method has a certain amount of theoretical appeal, since it

assumes only that the function being searched is unimodal and with respect to this

broad class of functions the method is, in some sense, optimal. In most problems,

however, it can be safely assumed that the function being searched, as well as being

unimodal, possesses a certain degree of smoothness, and one might, therefore, ex-

pect that more efficient search techniques exploiting this smoothness can be devised;

and indeed they can. Techniques of this nature are usually based on curve fitting pro-

cedures where a smooth curve is passed through the previously measured points in

order to determine an estimate of the minimum point. A variety of such techniques

can be devised depending on whether or not derivatives of the function as well as the

values can be measured, how many previous points are used to determine the fit, and

the criterion used to determine the fit. In this section a number of possibilities are

outlined and analyzed. All of them have orders of convergence greater than unity.

Quadratic Fit

The scheme that is often most useful in line searching is that of fitting a quadratic

through three given points. This has the advantage of not requiring any deriva-

tive information. Given x1, x2, x3 and corresponding values f (x1) = f1, f (x2) =

f2, f (x3) = f3 we construct the quadratic passing through these points

q(x) =

3
∑

i=1

fi

∏

j�i(x − x j)
∏

j�i(xi − x j)
, (8.7)

218 8 Basic Descent Methods

and determine a new point x4 as the point where the derivative of q vanishes. Thus

x4 =
1

2

b23 f1 + b31 f2 + b12 f3

a23 f1 + a31 f2 + a12 f3
, (8.8)

where ai j = xi − x j, bi j = x2
i
− x2

j
.

Define the errors εi = x∗ − xi, i = 1, 2, 3, 4. The expression for ε4 must be a

polynomial in ε1, ε2, ε3. It must be second order (since it is a quadratic fit). It must

go to zero if any two of the errors ε1, ε2, ε3 is zero. (The reader should check this.)

Finally, it must be symmetric (since the order of points is relevant). It follows that

near a minimum point x∗ of f , the errors are related approximately by

ε4 = M(ε1ε2 + ε2ε3 + ε1ε3), (8.9)

where M depends on the values of the second and third derivatives of f at x∗.
If we assume that εk → 0 with an order greater than unity, then for large k the

error is governed approximately by

εk+2 = Mεkεk−1.

Letting yk = log Mεk this becomes

yk+2 = yk + yk−1

with characteristic equation

λ3 − λ − 1 = 0.

The largest root of this equation is λ ≃ 1.3 which thus determines the rate of growth

of yk and is the order of convergence of the quadratic fit method.

1st-Order Method: Curve Fitting and Methods of False Position

In this section a number fitting methods using the first derivative information are

described. All of them have orders of convergence greater than unity.

Quadratic Fit: Method of False Position

Suppose that at two points xk and xk−1 where measurements f (xk), f ′(xk), f ′(xk−1)

are available, it is possible to fit the quadratic

q(x) = f (xk) + f ′(xk)(x − xk) +
f ′(xk−1) − f ′(xk)

xk−1 − xk

· (x − xk)2

2
,

8.1 Line Search Algorithms 219

which has the same corresponding values. An estimate xk+1 can then be determined

by finding the point where the derivative of q vanishes; thus

xk+1 = xk − f ′(xk)

[

xk−1 − xk

f ′(xk−1) − f ′(xk)

]

. (8.10)

(See Fig. 8.3.) Comparing this formula with Newton’s method, we see again that

the value f (xk) does not enter; hence, our fit could have been passed through either

f (xk) or f (xk−1). Also the formula can be regarded as an approximation to New-

ton’s method where the second derivative is replaced by the difference of two first

derivatives.

Fig. 8.3 False position for minimization

Again, since this method does not depend on values of f directly, it can be

regarded as a method for solving f ′(x) ≡ g(x) = 0. Viewed in this way the method,

which is illustrated in Fig. 8.4, takes the form

xk+1 = xk − g(xk)

[

xk − xk−1

g(xk) − g(xk−1)

]

. (8.11)

We next investigate the order of convergence of the method of false position and

discover that it is order τ1 ≃ 1.618, the golden mean.

Proposition. Let g have a continuous second derivative and suppose x∗ is such that g(x∗) =
0, g′(x∗) � 0. Then for x0 sufficiently close to x∗, the sequence {xk}∞k=0

generated by the

method of false position (8.11) converges to x∗ with order τ1 ≃ 1.618.

Proof. Introducing the notation

g[a, b] =
g(b) − g(a)

b − a
, (8.12)

220 8 Basic Descent Methods

Fig. 8.4 False position for solving equations

we have

xk−1 − x∗ = xk − x∗ − g(xk)

[

xk − xk−1

g(xk) − g(xk−1)

]

= (xk − x∗)

{

g[xk−1, xk] − g[xk, x
∗]

g[xk−1, xk]

}

. (8.13)

Further, upon the introduction of the notation

g[a, b, c] =
g[a, b]− g[b, c]

a − c
,

we may write (8.13) as

xk+1 − x∗ = (xk − x∗)(xk−1 − x∗)

{

g[xk−1, xk, x
∗]

g[xk−1, xk]

}

.

Now, by the mean value theorem with remainder, we have (see Exercise 2)

g[xk−1, xk] = g′(ξk) (8.14)

and

g[xk−1, xk, x∗] =
1

2
g′′(ηk), (8.15)

where ξk and ηk are convex combinations of xk, xk−1 and xk, xk−1, x∗, respectively.

Thus

xk+1 − x∗ =
g′′(ηk)

2g′(ξk)
(xk − x∗)(xk−1 − x∗). (8.16)

It follows immediately that the process converges if it is started sufficiently close

to x∗.
To determine the order of convergence, we note that for large k Eq. (8.16) be-

comes approximately

8.1 Line Search Algorithms 221

xk+1 − x∗ = M(xk − x∗)(xk−1 − x∗),

where

M =
g′′(x∗)

2g′(x∗)
.

Thus defining εk = (xk − x∗) we have, in the limit,

εk+1 = Mεkεk−1. (8.17)

Taking the logarithm of this equation we have, with yk = log Mεk,

yk+1 = yk + yk−1, (8.18)

which is the Fibonacci difference equation discussed in Sect. 7.1. A solution to this

equation will satisfy

yk+1 − τ1yk → 0.

Thus

log Mεk+1 − τ1 log Mεk → 0 or log
Mεk+1

(Mεk)τ1
→ 0,

and hence
εk+1

ε
τ1

k

→ M(τ1−1).�

Having derived the error formula (8.17) by direct analysis, it is now appropriate

to point out a short-cut technique, based on symmetry and other considerations,

that can sometimes be used in even more complicated situations. The right side of

error formula (8.17) must be a polynomial in εk and εk−1, since it is derived from

approximations based on Taylor’s theorem. Furthermore, it must be second order,

since the method reduces to Newton’s method when xk = xk−1. Also, it must go

to zero if either εk or εk−1 go to zero, since the method clearly yields εk+1 = 0 in

that case. Finally, it must be symmetric in εk and εk−1, since the order of points is

irrelevant. The only formula satisfying these requirements is εk+1 = Mεkεk−1.

Cubic Fit

Given the points xk−1 and xk together with the values f (xk−1), f ′(xk−1), f (xk), f ′(xk),

it is also possible to fit a cubic equation to the points having corresponding values.

The next point xk+1 can then be determined as the relative minimum point of this

cubic. This leads to

xk+1 = xk − (xk − xk−1)

[

f ′(xk) + u2 − u1

f ′(xk) − f ′(xk−1) + 2u2

]

, (8.19)

where

u1 = f ′(xk−1) + f ′(xk) − 3
f (xk−1) − f (xk)

xk−1 − xk

u2 = [u2
1 − f ′(xk−1) f ′(xk)]1/2,

222 8 Basic Descent Methods

which is easily implementable for computations.

It can be shown (see Exercise 3) that the order of convergence of the cubic fit

method is 2.0. Thus, although the method is exact for cubic functions indicating

that its order might be three, its order is actually only two.

2nd-Order Method: Newton’s Method

Suppose that the function f of a single variable x is to be minimized, and suppose

that at a point xk where a measurement is made it is possible to evaluate the three

numbers f (xk), f ′(xk), f ′′(xk). It is then possible to construct a quadratic function

q which at xk agrees with f up to second derivatives, that is

q(x) = f (xk) + f ′(xk)(x − xk) +
1

2
f ′′(xk)(x − xk)2. (8.20)

We may then calculate an estimate xk+1 of the minimum point of f by finding the

point where the derivative of q vanishes. Thus setting

0 = q′(xk+1) = f ′(xk) + f ′′(xk)(xk+1 − xk),

Fig. 8.5 Newton’s method for minimization

we find

xk+1 = xk −
f ′(xk)

f ′′(xk)
. (8.21)

This process, which is illustrated in Fig. 8.5, can then be repeated at xk+1.

We note immediately that the new point xk+1 resulting from Newton’s method

does not depend on the value f (xk). The method can more simply be viewed as a

technique for iteratively solving equations of the form

g(x) = 0,

8.1 Line Search Algorithms 223

where, when applied to minimization, we put g(x) ≡ f ′(x). In this notation Newton’s

method takes the form

xk+1 = xk −
g(xk)

g′(xk)
. (8.22)

This form is illustrated in Fig. 8.6.

We now show that Newton’s method has order two convergence:

Proposition. Let the function g have a continuous second derivative, and let x∗ satisfy

g(x∗) = 0, g′(x∗) � 0. Then, provided x0 is sufficiently close to x∗, the sequence {xk}∞k=0

generated by Newton’s method (8.22) converges to x∗ with an order of convergence at least

two.

Proof. For points ξ in a region near x∗ there is a k1 such that |g′′(ξ)| < k1 and a k2

such that |g′(ξ)| > k2. Then since g(x∗) = 0 we can write

xk+1 − x∗ = xk − x∗ − g(xk) − g(x∗)

g′(xk)

= −[g(xk) − g(x∗) + g′(xk)(x∗ − xk)]/g′(xk).

Fig. 8.6 Newton’s method for solving equations

The term in brackets is, by Taylor’s theorem, zero to first-order. In fact, using the

remainder term in a Taylor series expansion about xk, we obtain

xk+1 − x∗ =
1

2

g′′(ξ)

g′(xk)
(xk − x∗)2

for some ξ between x∗ and xk. Thus in the region near x∗,

|xk+1 − x∗| � k1

2k2

|xk − x∗|2.

We see that if |xk − x∗|k1/2k2 < 1, then |xk+1 − x∗| < |xk − x∗| and thus we conclude

that if started close enough to the solution, the method will converge to x∗ with an

order of convergence at least two. �

224 8 Basic Descent Methods

Global Convergence of Curve Fitting

Above, we analyzed the convergence of various curve fitting procedures in the

neighborhood of the solution point. If, however, any of these procedures were

applied in pure form to search a line for a minimum, there is the danger—alas,

the most likely possibility—that the process would diverge or wander about mean-

inglessly. In other words, the process may never get close enough to the solution for

our detailed local convergence analysis to be applicable. It is therefore important to

artfully combine our knowledge of the local behavior with conditions guaranteeing

global convergence to yield a workable and effective procedure.

The key to guaranteeing global convergence is the Global Convergence Theorem

of Chap. 7. Application of this theorem in turn hinges on the construction of a suit-

able descent function and minor modifications of a pure curve fitting algorithm. We

offer below a particular blend of this kind of construction and analysis, taking as

departure point the quadratic fit procedure discussed in Sect. 8.1 above.

Let us assume that the function f that we wish to minimize is strictly unimodal

and has continuous second partial derivatives. We initiate our search procedure by

searching along the line until we find three points x1, x2, x3 with x1 < x2 < x3 such

that f (x1) � f (x2) � f (x3). In other words, the value at the middle of these three

points is less than that at either end. Such a sequence of points can be determined in

a number of ways—see Exercise 7.

The main reason for using points having this pattern is that a quadratic fit to these

points will have a minimum (rather than a maximum) and the minimum point will

lie in the interval [x1, x3]. See Fig. 8.7. We modify the pure quadratic fit algorithm

so that it always works with points in this basic three-point pattern.

The point x4 is calculated from the quadratic fit in the standard way and f (x4)

is measured. Assuming (as in the figure) that x2 < x4 < x3, and accounting for the

unimodal nature of f , there are but two possibilities:

1. f (x4) � f (x2)

2. f (x2) < f (x4) � f (x3).

In either case a new three-point pattern, x̄1, x̄2, x̄3, involving x4 and two of the old

points, can be determined: In case (8.1) it is

(x̄1, x̄2, x̄3) = (x2, x4, x3),

while in case (8.2) it is

(x̄1, x̄2, x̄3) = (x1, x2, x4).

We then use this three-point pattern to fit another quadratic and continue. The pure

quadratic fit procedure determines the next point from the current point and the

previous two points. In the modification above, the next point is determined from

the current point and the two out of three last points that form a three-point pattern

with it. This simple modification leads to global convergence.

8.1 Line Search Algorithms 225

To prove convergence, we note that each three-point pattern can be thought of as

defining a vector x in E3. Corresponding to an x = (x1, x2, x3) such that (x1, x2, x3)

form a three-point pattern with respect to f , we define A(x) = (x̄1, x̄2, x̄3) as dis-

cussed above. For completeness we must consider the case where two or more

of the xi, i = 1, 2, 3 are equal, since this may occur. The appropriate defini-

tions are simply limiting cases of the earlier ones. For example, if x1 = x2, then

(x1, x2, x3) form a three-point pattern if f (x2) � f (x3) and f ′(x2) < 0 (which

is the limiting case of f (x2) < f (x1)). A quadratic is fit in this case by using the

values at the two distinct points and the derivative at the duplicated point. In case

x1 = x2 = x3, (x1, x2, x3)forms a three-point pattern if f ′(x2) = 0 and f ′′(x2) � 0.

Fig. 8.7 Three-point pattern

With these definitions, the map A is well defined. It is also continuous, since curve

fitting depends continuously on the data.

We next define the solution set Γ ⊂ E3 as the points x∗ = (x∗, x∗, x∗) where

f ′(x∗) = 0.

Finally, we let Z(x) = f (x1) + f (x2) + f (x3). It is easy to see that Z is a descent

function for A. After application of A one of the values f (x1), f (x2), f (x3) will be

replaced by f (x4), and by construction, and the assumption that f is unimodal, it will

replace a strictly larger value. Of course, at x∗ = (x∗, x∗, x∗) we have A(x∗) = x∗

and hence Z(A(x∗)) = Z(x∗).
Since all points are contained in the initial interval, we have all the requirements

for the Global Convergence Theorem. Thus the process converges to the solution.

The order of convergence may not be destroyed by this modification, if near the

solution the three-point pattern is always formed from the previous three points. In

this case we would still have convergence of order 1.3. This cannot be guaranteed,

however.

It has often been implicitly suggested, and accepted, that when using the quadratic

fit technique one should require

f (xk+1) < f (xk)

226 8 Basic Descent Methods

so as to guarantee convergence. If the inequality is not satisfied at some cycle, then a

special local search is used to find a better xk+1 that does satisfy it. This philosophy

amounts to taking Z(x) = f (x3) in our general framework and, unfortunately, this

is not a descent function even for unimodal functions, and hence the special local

search is likely to be necessary several times. It is true, of course, that a similar

special local search may, occasionally, be required for the technique we suggest in

regions of multiple minima, but it is never required in a unimodal region.

The above construction, based on the pure quadratic fit technique, can be emu-

lated to produce effective procedures based on other curve fitting techniques. For

application to smooth functions these techniques seem to be the best available in

terms of flexibility to accommodate as much derivative information as is available,

fast convergence, and a guarantee of global convergence.

∗Closedness of Line Search Algorithms

Since searching along a line for a minimum point is a component part of most non-

linear programming algorithms, it is desirable to establish at once that this pro-

cedure is closed; that is, that the end product of the iterative procedures outlined

above, when viewed as a single algorithmic step finding a minimum along a line,

define closed algorithms. That is the objective of this section.

To initiate a line search with respect to a function f , two vectors must be spec-

ified: the initial point x and the direction d in which the search is to be made. The

result of the search is a new point. Thus we define the search algorithm S as a

mapping from E2n to En.

We assume that the search is to be made over the semi-infinite line emanating

from x in the direction d. We also assume, for simplicity, that the search is not made

in vain; that is, we assume that there is a minimum point along the line. This will

be the case, for instance, if f is continuous and increases without bound as x tends

toward infinity.

Definition. The mapping S : E2n → En is defined by

S(x, d) = {y : y = x + αd for some α � 0, f (y) = min
0�α�∞

f (x + αd)}. (8.23)

In some cases there may be many vectors y yielding the minimum, so S is a set-

valued mapping. We must verify that S is closed.

Theorem. Let f be continuous on En. Then the mapping defined by (8.23) is closed at (x, d)
if d � 0.

Proof. Suppose {xk} and {dk} are sequences with xk → x, dk → d � 0. Suppose

also that yk ∈ S(xk, dk) and that yk → y. We must show that y ∈ S(x, d).

For each k we have yk = xk + αkdk for some αk. From this we may write

αk =
|yk − xk |
|dk |

.

8.1 Line Search Algorithms 227

Taking the limit of the right-hand side of the above, we see that

αk → α ≡
|y − x|
|d| .

It then follows that y = x + αd. It still remains to be shown that y ∈ S(x, d).

For each k and each α, 0 � α < ∞,

f (yk) � f (xk + αdk).

Letting k → ∞ we obtain

f (y) � f (x + αd).

Thus

f (y) � min
0�α<∞

f (x + αd),

and hence y ∈ S(x, d). �

The requirement that d � 0 is natural both theoretically and practically. From

a practical point of view this condition implies that, when constructing algorithms,

the choice d = 0 had better occur only in the solution set; but it is clear that if d = 0,

no search will be made. Theoretically, the map S can fail to be closed at d = 0, as

illustrated below.

Example. On E1 define f (x) = (x−1)2. Then S (x, d) is not closed at x = 0, d = 0.

To see this we note that for any d > 0

min
0�α<∞

f (αd) = f (1),

and hence

S (0, d) = 1;

but

min
0�α<∞

f (α · 0) = f (0)

so that

S (0, 0) = 0.

Thus as d → 0, S (0, d)� S (0, 0).

Inaccurate Line Search

In practice, of course, it is impossible to obtain the exact minimum point called

for by the ideal line search algorithm S described above. As a matter of fact, it is

often desirable to sacrifice accuracy in the line search routine in order to conserve

228 8 Basic Descent Methods

overall computation time. Because of these factors we must, to be realistic, be cer-

tain, at every stage of development, that our theory does not crumble if inaccurate

line searches are introduced.

Inaccuracy generally is introduced in a line search algorithm by simply terminat-

ing the search procedure before it has converged. The exact nature of the inaccu-

racy introduced may therefore depend on the particular search technique employed

and the criterion used for terminating the search. We cannot develop a theory that

simultaneously covers every important version of inaccuracy without seriously de-

tracting from the underlying simplicity of the algorithms discussed later. For this

reason our general approach, which is admittedly more free-wheeling in spirit than

necessary but thereby more transparent and less encumbered than a detailed account

of inaccuracy, will be to analyze algorithms as if an accurate line search were

made at every step, and then point out in side remarks and exercises the effect of

inaccuracy.

Armijo’s Rule

A practical and popular criterion for terminating a line search is Armijo’s rule. The

essential idea is that the rule should first guarantee that the selected α is not too

large, and next it should not be too small. Let us define the function

φ(α) = f (xk + αdk).

Armijo’s rule is implemented by consideration of the function φ(0) + εφ′(0)α for

fixed ε, 0 < ε < 1. This function is shown in Fig. 8.8a as the dashed line. A value

of α is considered to be not too large if the corresponding function value lies below

the dashed line; that is, if

φ(α) � φ(0) + εφ′(0)α. (8.24)

To insure that α is not too small, a value η > 1 is selected, and α is then considered

to be not too small if

φ(ηα) > φ(0) + εφ′(0)ηα.

This means that if α is increased by the factor η, it will fail to meet the test (8.24).

The acceptable region defined by the Armijo rule is shown in Fig. 8.8a when η = 2

(there are also other rules can be adapted).

Sometimes in practice, the Armijo test is used to define a simplified line search

technique that does not employ curve fitting methods. One begins with an arbitraryα.

If it satisfies (8.24), it is repeatedly increased by η(η = 2 or η = 10 and ε = .2 are

often used) until (8.24) is not satisfied, and then the penultimate α is selected. If, on

the other hand, the original α does not satisfy (8.24), it is repeatedly divided by η

until the resulting α does satisfy (8.24).

8.2 The Method of Steepest Descent 229

8.2 The Method of Steepest Descent

One of the oldest and most widely known methods for minimizing a function

of several variables is the method of steepest descent (often referred to as the

gradient method). The method is extremely important from a theoretical view-

point, since it is one of the simplest for which a satisfactory analysis exists. More

advanced algorithms are often motivated by an attempt to modify the basic steep-

est descent technique in such a way that the new algorithm will have superior

convergence properties. The method of steepest descent remains, therefore, not only

the technique most often first tried on a new problem but also the standard of ref-

erence against which other techniques are measured. The principles used for its

analysis will be used throughout this book.

The Method

Let f have continuous first partial derivatives on En. We will frequently have need

for the gradient vector of f and therefore we introduce some simplifying notation.

The gradient∇ f (x) is, according to our conventions, defined as a n-dimensional row

vector. For convenience we define the n-dimensional column vector g(x) = ∇ f (x)T .

When there is no chance for ambiguity, we sometimes suppress the argument x and,

for example, write gk for g(xk) = ∇ f (xk)T .

The method of steepest descent is defined by the iterative algorithm

xk+1 = xk − αkgk,

where stepsize αk is a nonnegative scalar possibly minimizing f (xk−αgk). In words,

from the point xk we search along the direction of the negative gradient −gk to a

minimum point on this line; this minimum point is taken to be xk+1.

In formal terms, the overall algorithm A : En → En which gives xk+1 ∈ A(xk)

can be decomposed in the form A = SG. Here G : En → E2n is defined by G(x) =

(x, −g(x)), giving the initial point and direction of a line search. This is followed by

the line search S : E2n → En defined in Sect. 8.1.

Global Convergence and Convergence Speed

It was shown in Sect. 8.1 that S is closed if ∇ f (x) � 0, and it is clear that G is

continuous. Therefore, by Corollary 2 in Sect. 7.7 A is closed.

We define the solution set to be the points x where ∇ f (x) = 0. Then Z(x) = f (x)

is a descent function for A, since for ∇ f (x) � 0

lim
0�α<∞

f (x − αg(x)) < f (x).

230 8 Basic Descent Methods

Fig. 8.8 Stopping rules. (a) Armijo rule. (b) Golden test. (c) Wolfe test

Thus by the Global Convergence Theorem, if the sequence {xk} is bounded, it will

have limit points and each of these is a solution. What about the convergence speed?

Assume that f (x) is convex and differentiable everywhere, admits a minimizer x∗,
and satisfies the (first-order) β-Lipschitz condition, that is, for any two points x and y

|∇ f (x) − ∇ f (y)| ≤ β|x − y|

for a positive real number β. Starting from any point x0, we consider the method of

steepest descent with a fixed step size αk =
1
β

for all k:

8.2 The Method of Steepest Descent 231

xk+1 = xk −
1

β
gk = xk −

1

β
∇ f (xk)T . (8.25)

We first prove a lemma.

Lemma 1. Let f (x) be differentiable everywhere and satisfy the (first-order) β-Lipschitz

condition. Then, for any two points x and y

f (x) − f (y) − ∇ f (y)(x − y) ≤ β
2
|x − y|2.

Then we prove

Theorem 1 (Steepest Descent—Lipschitz Convex Case). Let f (x) be convex and differen-

tiable everywhere, satisfy the (first-order) β-Lipschitz condition, and admit a minimizer x∗.
Then, the method of steepest descent (8.25) generates a sequence of solutions xk such that

|∇ f (xk)| ≤ β2

√
k(k + 1)

|x0 − x∗|,

and

f (xk) − f (x∗) ≤ β

2(k + 1)
|x0 − x∗|2.

Proof. Consider the function gx(y) = f (y) − ∇ f (x)y for any given x. Note that gx is

also convex and satisfies the β-Lipschitz condition. Moreover, x is the minimizer of

gx(y) and ∇gx(y) = ∇ f (y) − ∇ f (x).

Applying Lemma 1 to gx and noting the relations of gx and f (x), we have

f (x) − f (y) − ∇ f (x)(x − y) = gx(x) − gx(y)

≤ gx(y − 1
β
∇gx(y)) − gx(y)

≤ ∇gx(y)(− 1
β
∇gx(y)T) +

β

2
1
β2 |∇gx(y)|2

= − 1
2β
|∇gx(y)|2

= − 1
2β
|∇ f (x) − ∇ f (y)|2.

(8.26)

Similarly, we have

f (y) − f (x) − ∇ f (y)(y − x) ≤ − 1

2β
|∇ f (x) − ∇ f (y)|2.

Adding the above two derived inequalities, we have for any x and y:

(∇ f (x) − ∇ f (y))(x − y) ≥ 1

β
|∇ f (x) − ∇ f (y)|2. (8.27)

For simplification, in what follows let dk = xk − x∗ and δk = [f (xk) − f (x∗)] ≥ 0.

232 8 Basic Descent Methods

Now let x = xk+1 and y = xk in (8.27). Then

−1

β
(gk)T (gk+1 − gk) = (xk+1 − xk)T (gk+1 − gk) ≥ 1

β
|gk+1 − gk |2,

which leads to

|gk+1|2 ≤ (gk+1)T gk ≤ |gk+1||gk |, that is |gk+1| ≤ |gk |. (8.28)

Inequality (8.28) implies that |gk | = |∇ f (xk)| is monotonically decreasing.

Applying inequality (8.26) for x = xk and y = x∗ and noting g∗ = 0 we have

δk ≤ (gk)T dk − 1
2β
|gk |2

= −β(xk+1 − xk)dk − β2 |xk+1 − xk |2
= − β

2
(|xk+1 − xk |2 + 2(xk+1 − xk)T dk)

= − β
2
(|dk+1 − dk |2 + 2(dk+1 − dk)T dk)

=
β

2
(|dk |2 − |dk+1|2).

(8.29)

Summing up (8.29) from 0 to k, we have

k
∑

l=0

δl ≤
β

2
(|d0|2 − |dk+1|2) ≤ β

2
|d0|2. (8.30)

Using (8.26) again for x = xk+1 and y = xk and noting (8.25) we have

δk+1 − δk = f (xk+1) − f (xk)

≤ gT
k+1(− 1

β
gk) − 1

2β
|gk+1 − gk |2

= − 1
2β

(|gk+1|2 + |gk |2).

(8.31)

Noting (8.31) holts for all k, we have

∑k
l=0 δl =

∑k
l=0 δl(l + 1 − l)

=
∑k

l=0 δl(l + 1) −∑k
l=0 δll

=
∑k+1

l=1 δl−1l −∑k
l=1 δll

= δk(k + 1) +
∑k

l=1(δl−1 − δl)l

≥ δk(k + 1) +
∑k

l=1
l

2β
(|gl|2 + |gl−1|2)

≥ δk(k + 1) + k(k+1)
2β
|gk |2

where the last inequality comes |gk| = |∇ f (xk)| is monotonically decreasing.

Using (8.30) we finally have

(k + 1)δk +
k(k + 1)

2β
|gk |2 ≤

β

2
|d0|2. (8.32)

Inequality (8.32), from δk = f (xk) − f (x∗) ≥ 0 and d0 = x0 − x∗, proves the desired

bounds. �

Theorem 1 implies that the convergence speed of the steepest descent method is

arithmetic.

8.2 The Method of Steepest Descent 233

The Quadratic Case

When f (x) is strongly convex, the convergence speed can be increased from arith-

metic to geometric or linear convergence. Since all of the important convergence

characteristics of the method of steepest descent are revealed by an investigation of

the method when applied to quadratic problems, we focus here on

f (x) =
1

2
xT Qx − xT b, (8.33)

where Q is a positive definite symmetric n × n matrix. Since Q is positive definite,

all of its eigenvalues are positive. We assume that these eigenvalues are ordered: 0 <

a = λ1 � λ2 . . . � λn = A. With Q positive definite, it follows (from Proposition 5,

Sect. 7.4) that f is strictly convex.

The unique minimum point of f can be found directly, by setting the gradient to

zero, as the vector x∗ satisfying

Qx∗ = b. (8.34)

Moreover, introducing the function

E(x) =
1

2
(x − x∗)T Q(x − x∗), (8.35)

we have E(x) = f (x) + (1/2)x∗T Qx∗, which shows that the function E differs from

f only by a constant. For many purposes then, it will be convenient to consider that

we are minimizing E rather than f .

The gradient (of both f and E) is given explicitly by

g(x) = Qx − b. (8.36)

Thus the method of steepest descent can be expressed as

xk+1 = xk − αkgk, (8.37)

where gk = Qxk − b and where αk minimizes f (xk − αgk). We can, however, in this

special case, determine the value of αk explicitly. We have, by definition (8.33),

f (xk − αgk) =
1

2
(xk − αgk)T Q(xk − αgk) − (xk − αgk)T b,

which (as can be found by differentiating with respect to α) is minimized at

αk =
gT

k
gk

gT
k

Qgk

. (8.38)

Hence the method of steepest descent (8.37) takes the explicit form

xk+1 = xk −
⎛

⎜

⎜

⎜

⎜

⎝

gT
k

gk

gT
k

Qgk

⎞

⎟

⎟

⎟

⎟

⎠

gk, (8.39)

where gk = Qxk − b.

234 8 Basic Descent Methods

The function f and the steepest descent process can be illustrated as in Fig. 8.9 by

showing contours of constant values of f and a typical sequence developed by the

process. The contours of f are n-dimensional ellipsoids with axes in the directions

of the n-mutually orthogonal eigenvectors of Q. The axis corresponding to the ith

eigenvector has length proportional to 1/λi. We now analyze this process and show

that the rate of convergence depends on the ratio of the lengths of the axes of the

elliptical contours of f , that is, on the eccentricity of the ellipsoids.

Fig. 8.9 Steepest descent

Lemma 2. The iterative process (8.39) satisfies

E(xk+1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 −
(gT

k
gk)2

(gT
k

Qgk)(gT
k

Q−lgk)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

E(xk). (8.40)

Proof. The proof is by direct computation. We have, setting yk = xk − x∗,

E(xk) − E(xk+1)

E(xk)
=

2αkgT
k

Qyk − α2
k
gT

k
Qgk

yT
k

Qyk

.

Using gk = Qyk we have

E(xk) − E(xk+1)

E(xk)
=

2(gT
k

gk)2

(gT
k

Qgk)
− (gT

k
gk)2

(gT
k

Qgk)

gT
k

Q−1gk

=
(gT

k
gk)2

(gT
k

Qgk)(gT
k

Q−lgk)
.�

In order to obtain a bound on the rate of convergence, we need a bound on the right-

hand side of (8.40). The best bound is due to Kantorovich and his lemma, stated

below, is a useful general tool in convergence analysis.

8.2 The Method of Steepest Descent 235

Kantorovich inequality: Let Q be a positive definite symmetric n× n matrix. For any vector

x there holds

(xT x)2

(xT Qx)(xT Q−1x)
�

4aA

(a + A)2
, (8.41)

where a and A are, respectively, the smallest and largest eigenvalues of Q.

Proof. Let the eigenvalues λ1, λ2, . . . , λn of Q satisfy

0 < a = λ1 � λ2 . . . � λn = A.

By an appropriate change of coordinates the matrix Q becomes diagonal with diag-

onal (λ1, λ2, . . . , λn). In this coordinate system we have

(xT x)2

(xT Qx)(xT Q−1x)
=

(
∑n

i=1 x2
i
)2

(
∑n

i=1 λix
2
i
)(
∑n

i=1(x2
i
/λi))
,

which can be written as

(xT x)2

(xT Qx)(xT Q−1x)
=

1/
∑n

i=1 ξiλi
∑n

i=1(ξi/λi)
≡ φ(ξ)
ψ(ξ)
,

where ξi = x2
i
/
∑n

i=1 x2
i
. We have converted the expression to the ratio of two func-

tions involving convex combinations; one a combination of λi’s; the other a com-

bination of 1/λi’s. The situation is shown pictorially in Fig. 8.10. The curve in the

figure represents the function 1/λ. Since
∑n

i=1 ξiλi is a point between λ1 and λn, the

value of φ(ξ) is a point on the curve. On the other hand, the value of ψ(ξ) is a convex

combination of points on the curve and its value corresponds to a point in the shaded

region. For the same vector ξ both functions are represented by points on the same

vertical line. The minimum value of this ratio is achieved for some λ = ξ1λ1 + ξnλn,

with ξ1 + ξn = 1. Using the relation ξ1/λ1 + ξn/λn = (λ1 + λn − ξ1λ1 − ξnλn)/λ1λn,

an appropriate bound is

φ(ξ)

ψ(ξ)
� lim
λ1�λ�λn

(1/λ)

(λ1 + λn − λ)/(λ1λn)
.

The minimum is achieved at λ = (λ1 + λn)/2, yielding

φ(ξ)

ψ(ξ)
�

4λ1λn

(λ1 + λn)2
.�

Combining the above two lemmas, we obtain the central result on the convergence

of the method of steepest descent.

Theorem 2 (Steepest Descent—Quadratic Case). For any x0 ∈ En the method of steepest

descent (8.39) converges to the unique minimum point x∗ of f Furthermore, with E(x) =
1
2
(x − x∗)T Q(x − x∗), there holds at every step k

E(xk+1) �
(

A − a

A + a

)2

E(xk). (8.42)

236 8 Basic Descent Methods

Proof. By Lemma 2 and the Kantorovich inequality

E(xk+1) �

{

1 − 4aA

(A + a)2

}

E(xk) =
(

A − a

A + a

)2

E(xk).

Fig. 8.10 Kantorovich inequality

It follows immediately that E(xk) → 0 and hence, since Q is positive definite, that

xk → x∗. �

Roughly speaking, the above theorem says that the convergence rate of steepest

descent is slowed as the contours of f become more eccentric. If a = A, correspond-

ing to circular contours, convergence occurs in a single step. Note, however, that

even if n− 1 of the n eigenvalues are equal and the remaining one is a great distance

from these, convergence will be slow, and hence a single abnormal eigenvalue can

destroy the effectiveness of steepest descent.

In the terminology introduced in Sect. 7.8, the above theorem states that with

respect to the error function E (or equivalently f) the method of steepest descent

converges linearly with a ratio no greater than [(A − a)/(A + a)]2. The actual rate

depends on the initial point x0. However, for some initial points the bound is actually

achieved. Furthermore, it has been shown by Akaike that, if the ratio is unfavorable,

the process is very likely to converge at a rate close to the bound. Thus, somewhat

loosely but with reasonable justification, we say that the convergence ratio of steep-

est descent is [(A − a)/(A + a)]2.

It should be noted that the convergence rate actually depends only on the ratio

r = A/a of the largest to the smallest eigenvalue. Thus the convergence ratio is

(

A − a

A + a

)2

=

(

r − 1

r + 1

)2

,

8.2 The Method of Steepest Descent 237

which clearly shows that convergence is slowed as r increases. The ratio r, which

is the single number associated with the matrix Q that characterizes convergence, is

often called the condition number of the matrix.

Example. Let us take

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.78 −0.02 −0.12 −0.14

−0.02 0.86 −0.04 0.06

−0.12 −0.04 0.72 −0.08

−0.14 0.06 −0.08 0.74

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

b = (0.76, 0.08, 1.12, 0.68).

For this matrix it can be calculated that a = 0.52, A = 0.94 and hence r = 1.8.

This is a very favorable condition number and leads to the convergence ratio [(A −
a)/(A + a)]2 = 0.081. Thus each iteration will reduce the error in the objective by

more than a factor of ten; or, equivalently, each iteration will add about one more

digit of accuracy. Indeed, starting from the origin the sequence of values obtained

by steepest descent as shown in Table 8.1 is consistent with this estimate.

The Nonquadratic Case

For nonquadratic functions, we expect that steepest descent will also do reason-

ably well if the condition number is modest. Fortunately, we are able to establish

estimates of the progress of the method when the Hessian matrix is always posi-

tive definite. Specifically, we assume that the Hessian matrix is bounded above and

below as aI � F(x̄) � AI. (Thus f is strongly convex.) We present three analyses:

Table 8.1 Solution to Example

Step k f (xk)

0 0
1 −2.1563625
2 −2.1744062
3 −2.1746440
4 −2.1746585
5 −2.1746595
6 −2.1746595

Solution point x∗ = (1.534965, 0.1220097, 1.975156, 1.412954)

1. Exact Line Search. Given a point xk, we have for any α

f (xk − αg(xk)) � f (xk)) − αg(xk)T g(xk) +
Aα2

2
g(xk)T g(xk). (8.43)

238 8 Basic Descent Methods

Minimizing both sides separately with respect to α the inequality will hold for the

two minima. The minimum of the left hand side is f (xk+1). The minimum of the

right hand side occurs at α = 1/A, yielding the result

f (xk+1) � f (xk) − 1

2A
|g(xk)|2.

where |g(xk)|2 ≡ g(xk)T g(xk). Subtracting the optimal value f ∗ = f (x∗) from both

sides produces

f (xk+1) − f∗ � f(xk) − f∗ − 1

2A
|g(xk)|2. (8.44)

In a similar way, for any x there holds

f (x) � f (xk) + g(xk)T (x − xk) +
a

2
|x − xk|2.

Again we can minimize both sides separately. The minimum of the left hand side is

f ∗ the optimal solution value. Minimizing the right hand side leads to the quadratic

optimization problem. The solution is x = xk − g(xk)/a. Substituting this x in the

right hand side of the inequality gives

f ∗ � f (xk) − 1

2a
|g(xk)|2. (8.45)

From (8.45) we have

− |g(xk)|2 � 2a[f ∗ − f (xk)]. (8.46)

Substituting this in (8.44) gives

f (xk+1) − f ∗ � (1 − a/A)[f (xk) − f ∗]. (8.47)

This shows that the method of steepest descent makes progress even when it is not

close to the solution.

2. Other Stopping Criteria. As an example of how other stopping criteria can

be treated, we examine the rate of convergence when using Amijo’s rule with

ε < 0.5 and η > 1. Note first that the inequality t � t2 for 0 � t � 1 implies by a

change of variable that

−α + α
2A

2
≤ −α/2

for 0 � α � 1/A. Then using (8.43) we have that for α < 1/A

f (xk − αg(xk)) ≤ f (xk) − α|g(xk)|2 + 0.5α2A|g(xl)|2

≤ f (xk) − 0.5α|g(xk)|2

< f (xk) − εα|g(xk)|2

since ε < 0.5. This means that the first part of the stopping criterion is satisfied

for α < 1/A.

8.3 Applications of the Convergence Theory 239

The second part of the stopping criterion states that ηα does not satisfy the first

criterion and thus the final α must satisfy α ≥ 1/(ηA). Therefore the inequality of

the first part of the criterion implies

f (xk+1) ≤ f (xk) − ε
ηA
|g(xk)|2.

Subtracting f ∗ from both sides,

f (xk+1) − f ∗ ≤ f (xk) − f ∗ − ε
ηA
|g(xk)|2.

Finally, using (8.46) we obtain

f (xk+1) − f ∗ ≤ [1 − (2εa/ηA)](f (xk) − f ∗).

Clearly 2εa/ηA < 1 and hence there is linear convergence. Notice if that in fact ε is

chosen very close to 0.5 and η is chosen very close to 1, then the stopping condition

demands that the α be restricted to a very small range, and the estimated rate of

convergence is very close to the estimate obtained above for exact line search.

3. Asymptotic Convergence. We expect that as the points generated by steepest

descent approach the solution point, the convergence characteristics will be close

to those inherent for quadratic functions. This is indeed the case.

The general procedure for proving such a result, which is applicable to most

methods having unity order of convergence, is to use the Hessian of the objective at

the solution point as if it were the Q matrix of a quadratic problem. The particular

theorem stated below is a special case of a theorem in Sect. 12.5 so we do not prove

it here; but it illustrates the generalizability of an analysis of quadratic problems.

Theorem. Suppose f is defined on En, has continuous second partial derivatives, and has

a relative minimum at x∗. Suppose further that the Hessian matrix of f , F(x∗), has smallest

eigenvalue a > 0 and largest eigenvalue A > 0. If {xk} is a sequence generated by the

method of steepest descent that converges to x∗, then the sequence of objective values { f (xk)}
converges to f (x∗) linearly with a convergence ratio no greater than [(A − a)/(A + a)]2 .

8.3 Applications of the Convergence Theory

Now that the basic convergence theory, as represented by the formula (8.42) for

the rate of convergence, has been developed and demonstrated to actually charac-

terize the behavior of steepest descent, it is appropriate to illustrate how the theory

can be used. Generally, we do not suggest that one compute the numerical value

of the formula—since it involves eigenvalues, or ratios of eigenvalues, that are not

easily determined. Nevertheless, the formula itself is of immense practical impor-

tance, since it allows one to theoretically compare various situations. Without such

a theory, one would be forced to rely completely on experimental comparisons.

240 8 Basic Descent Methods

Application 1 (Solution of Gradient Equation). One approach to the minimization

of a function f is to consider solving the equations ∇ f (x) = 0 that represent the

necessary conditions. It has been proposed that these equations could be solved by

applying steepest descent to the function h(x) = |∇ f (x)|2. One advantage of this

method is that the minimum value is known. We ask whether this method is likely

to be faster or slower than the application of steepest descent to the original function

f itself.

For simplicity we consider only the case where f is quadratic. Thus let f (x) =

(1/2)xT Qx − bT x. Then the gradient of f is g(x) = Qx − b, and h(x) = |g(x)|2 =
xT Q2x − 2xT Qb + bT b. Thus h(x) is itself a quadratic function. The rate of conver-

gence of steepest descent applied to h will be governed by the eigenvalues of the

matrix Q2. In particular the rate will be

(

r̄ − 1

r̄ + 1

)2

,

where r̄ is the condition number of the matrix Q2. However, the eigenvalues of Q2

are the squares of those of Q itself, so r̄ = r2, where r is the condition number of Q,

and it is clear that the convergence rate for the proposed method will be worse than

for steepest descent applied to the original function.

We can go further and actually estimate how much slower the proposed method

is likely to be. If r is large, we have

steepest descent rate =

(

r − 1

r + 1

)2

≃ (1 − 1/r)4

proposed method rate =

(

r2 − 1

r2 + 1

)2

≃ (1 − 1/r2)4.

Since (1−1/r2)r ≃ 1−1/r, it follows that it takes about r steps of the new method to

equal one step of ordinary steepest descent. We conclude that if the original problem

is difficult to solve with steepest descent, the proposed method will be quite a bit

worse.

Application 2 (Penalty Methods). Let us briefly consider a problem with a single

constraint:

minimize f (x) (8.48)

subject to h(x) = 0.

One method for approaching this problem is to convert it (at least approximately) to

the unconstrained problem

minimize f (x) +
1

2
μh(x)2, (8.49)

8.3 Applications of the Convergence Theory 241

where μ is a (large) penalty coefficient. Because of the penalty, the solution to (8.49)

will tend to have a small h(x). Problem (8.49) can be solved as an unconstrained

problem by the method of steepest descent. How will this behave?

For simplicity let us consider the case where f is quadratic and h is linear. Specif-

ically, we consider the problem

minimize
1

2
xT Qx − bT x (8.50)

subject to cT x = 0.

The objective of the associated penalty problem is (1/2){xT Qx+μxT ccT x}−bT x. The

quadratic form associated with this objective is defined by the matrix Q+ μccT and,

accordingly, the convergence rate of steepest descent will be governed by the condi-

tion number of this matrix. This matrix is the original matrix Q with a large rank-one

matrix added. It should be fairly clear† that this addition will cause one eigenvalue

of the matrix to be large (on the order of μ). Thus the condition number is roughly

proportional to μ. Therefore, as one increases μ in order to get an accurate solution

to the original constrained problem, the rate of convergence becomes extremely

poor. We conclude that the penalty function method used in this simplistic way with

steepest descent will not be very effective. (Penalty functions, and how to minimize

them more rapidly, are considered in detail in Chap. 11.)

Scaling

The performance of the method of steepest descent is dependent on the particular

choice of variables x used to define the problem. A new choice may substantially

alter the convergence characteristics.

Suppose that T is an invertible n × n matrix. We can then represent points in En

either by the standard vector x or by y where Ty = x. The problem of finding x to

minimize f (x) is equivalent to that of finding y to minimize h(y) = f (Ty). Using y

as the underlying set of variables, we then have

∇h = ∇ f T, (8.51)

where ∇ f is the gradient of f with respect to x. Thus, using steepest descent, the

direction of search will be

∇y = −TT
∇ f T , (8.52)

which in the original variables is

∆x = −TTT
∇ f T . (8.53)

†See the Interlocking Eigenvalues Lemma in Sect. 10.6 for a proof that only one eigenvalue
becomes large.

242 8 Basic Descent Methods

Thus we see that the change of variables changes the direction of search.

The rate of convergence of steepest descent with respect to y will be determined

by the eigenvalues of the Hessian of the objective, taken with respect to y. That

Hessian is

∇
2h(y) ≡ H(y) = TT F(Ty)T.

Thus, if x∗ = Ty∗ is the solution point, the rate of convergence is governed by the

matrix

H(y∗) = TT F(x∗)T. (8.54)

Very little can be said in comparison of the convergence ratio associated with H

and that of F. If T is an orthonormal matrix, corresponding to y being defined from

x by a simple rotation of coordinates, then TT T = I, and we see from (8.48) that the

directions remain unchanged and the eigenvalues of H are the same as those of F.

In general, before attacking a problem with steepest descent, it is desirable, if it is

feasible, to introduce a change of variables that leads to a more favorable eigenvalue

structure. Usually the only kind of transformation that is at all practical is one having

T equal to a diagonal matrix, corresponding to the introduction of scale factors on

each of the variables. One should strive, in doing this, to make the second derivatives

with respect to each variable roughly the same. Although appropriate scaling can

potentially lead to substantial payoff in terms of enhanced convergence rate, we

largely ignore this possibility in our discussions of steepest descent. However, see

the next application for a situation that frequently occurs.

Application 3 (Program Design). In applied work it is extremely rare that one

solves just a single optimization problem of a given type. It is far more usual that

once a problem is coded for computer solution, it will be solved repeatedly for

various parameter values. Thus, for example, if one is seeking to find the optimal

production plan (as in Example 2 of Sect. 7.2), the problem will be solved for the

different values of the input prices. Similarly, other optimization problems will be

solved under various assumptions and constraint values. It is for this reason that

speed of convergence and convergence analysis is so important. One wants a pro-

gram that can be used efficiently. In many such situations, the effort devoted to

proper scaling repays itself, not with the first execution, but in the long run.

As a simple illustration consider the problem of minimizing the function

f (x) = x2 − 5xy + y4 − ax − by.

It is desirable to obtain solutions quickly for different values of the parameters a

and b. We begin with the values a = 25, b = 8.

The result of steepest descent applied to this problem directly is shown in Ta-

ble 8.2, column (a). It requires eighty iterations for convergence, which could be

regarded as disappointing.

The reason for this poor performance is revealed by examining the Hessian

matrix

F =

[

2 −5

−5 12y2

]

8.4 Accelerated Steepest Descent 243

Using the results of our first experiment, we know that y = 3. Hence the diagonal

elements of the Hessian, at the solution, differ by a factor of 54. (In fact, the condi-

tion number is about 61.) As a simple remedy we scale the problem by replacing the

variable y by z = ty. The new lower right-corner term of the Hessian then becomes

12z2/t4, which has magnitude 12 × t2 × 32/t4 = 108/t2. Thus we might put t = 7 in

order to make the two diagonal terms approximately equal. The result of applying

steepest descent to the problem scaled this way is shown in Table 8.2, column (b).

(This superior performance is in accordance with our general theory, since the con-

dition number of the scaled problem is about two.) For other nearby values of a and

b, similar speeds will be attained.

Table 8.2 Solution to scaling application

Value of f

Iteration (a) (b)
no. Unscaled Scaled

0 0.0000 0.0000
1 −230.9958 −162.2000
2 −256.4042 −289.3124
4 −293.1705 −341.9802
6 −313.3619 −342.9865
8 −324.9978 −342.9998
9 −329.0408 −343.0000
15 −339.6124
20 −341.9022
25 −342.6004
30 −342.8372
35 −342.9275
40 −342.9650
45 −342.9825
50 −342.9909
55 −342.9951
60 −342.9971 Solution
65 −342.9883 x = 20.0
70 −342.9990 y = 3.0
75 −342.9994
80 −342.9997

8.4 Accelerated Steepest Descent

There is an accelerated steepest descent method that works as follows:

λ0 = 0, λk+1 =
1+
√

1+4(λk)2

2
, αk =

1 − λk

λk+1

, (8.55)

x̃k+1 = xk − 1
β
∇ f (xk)T , xk+1 = (1 − αk)x̃k+1 + αkx̃k. (8.56)

244 8 Basic Descent Methods

Note that (λk)2 = λk+1(λk+1 − 1), λk > k/2 and αk ≤ 0. One can prove:

Theorem (Accelerated Steepest Descent). Let f (x) be convex and differentiable every-

where, satisfies the (first-order) β-Lipschitz condition, and admits a minimizer x∗. Then,

the method of accelerated steepest descent generates a sequence of solutions such that

f (x̃k+1) − f (x∗) ≤ 2β

k2
|x0 − x∗ |2, ∀k ≥ 1.

Proof. We now let dk = λkxk − (λk − 1)x̃k − x∗, and δk = f (x̃k) − f (x∗)(≥ 0).

Applying Lemma 1 for x = x̃k+1 and y = x̃k, convexity of f and (8.56), we have

δk+1 − δk = f (x̃k+1) − f (xk) + f (xk) − f (x̃k)

≤ − β
2
|x̃k+1 − xk|2 + f (xk) − f (x̃k)

≤ − β
2
|x̃k+1 − xk|2 + (gk)T (xk − x̃k)

= − β
2
|x̃k+1 − xk|2 − β(x̃k+1 − xk)T (xk − x̃k).

(8.57)

Applying Lemma 1 for x = x̃k+1 and y = x∗, convexity of f and (8.56), we have

δk+1 = f (x̃k+1) − f (xk) + f (xk) − f (x∗)

≤ − β
2
|x̃k+1 − xk |2 + f (xk) − f (x∗)

≤ − β
2
|x̃k+1 − xk |2 + (gk)T (xk − x∗)

= − β
2
|x̃k+1 − xk |2 − β(x̃k+1 − xk)T (xk − x∗).

(8.58)

Multiplying (8.57) by λk(λk − 1) and (8.58) by λk respectively, and summing the

two, we have
(λk)2δk+1 − (λk−1)2δk

≤ −(λk)2 β

2
|x̃k+1 − xk |2 − λkβ(x̃k+1 − xk)T dk

= − β
2
((λk)2|x̃k+1 − xk |2 + 2λk(x̃k+1 − xk)T dk)

= − β
2
(|λkx̃k+1 − (λk − 1)x̃k − x∗|2 − |dk |2)

=
β

2
(|dk |2 − |λkx̃k+1 − (λk − 1)x̃k − x∗|2).

Using (8.55) and (8.56) we derive

λkx̃k+1 − (λk − 1)x̃k = λk+1xk+1 − (λk+1 − 1)x̃k+1.

Thus,

(λk)2δk+1 − (λk−1)2δk ≤
β

2
(|dk |2 − |dk+1|2.) (8.59)

Summing up (8.59) from 1 to k we have

δk+1 ≤
β

2(λk)2
|d1|2 ≤

2β

k2
|d0|2

where we used facts λk ≥ k/2 and |d1| ≤ |d0|. �

8.5 Newton’s Method 245

The Method of False Position

Yet there is another steepest descent method, commonly called the BB method, that

works as follows:

∆x
k = xk − xk−1 and ∆

g

k
= ∇ f (xk) − ∇ f (xk−1), (8.60)

αk =
(∆x

k)T∆
g

k

(∆
g

k
)T∆

g

k

or αk =
(∆x

k
)T∆x

k

(∆x
k
)T∆

g

k

,

Then

xk+1 = xk − αkgk = xk − αk∇ f (xk)T . (8.61)

The step size of the BB method resembles the one used in quadratic curve fitting

discussed for line search. There, the step size of (8.10) is given as xk−1−xk

f ′(xk−1)− f ′(xk)
. If

we let δx
k
= xk − xk−1 and δ

g

k
= f ′(xk) − f ′(xk−1), this quantity can be written as

δx
k
δ

g

k

(δ
g

k
)2

or
(δx

k
)2

δx
k
δ

g

k

. In the vector case, multiplication is replaced by inner product.

There was another explanation on the step size of the BB method. Consider con-

vex quadratic minimization, and let the distinct positive eigenvalues of the Hessian

Q be λ1, λ2, . . . λK . Then, if we let the step size in the method of steepest descent be

αk =
1
λk

, k = 1, . . . ,K, the method terminates in K iterations (which we leave as an

exercise). In the BB method, αk minimizes

|∆x
k − α∆

g

k
| = |∆x

k − αQ∆x
k |.

If the error becomes 0 plus |∆x
k | � 0, 1

αk
will be a positive eigenvalue of Q. Notice that

the objective values of the iterates generated by the BB method is not monotonically

decreasing; the method may overshoot in order to have a better position in the long

run.

8.5 Newton’s Method

The idea behind Newton’s method is that the function f being minimized is approx-

imated locally by a quadratic function, and this approximate function is minimized

exactly. Thus near xk we can approximate f by the truncated Taylor series

f (x) ≃ f (xk) + ∇ f (xk)(x − xk) +
1

2
(x − xk)T F(xk)(x − xk).

The right-hand side is minimized at

xk+1 = xk − [F(xk)]−1
∇ f (xk)T , (8.62)

246 8 Basic Descent Methods

and this equation is the pure form of Newton’s method.

In view of the second-order sufficiency conditions for a minimum point, we as-

sume that at a relative minimum point, x∗, the Hessian matrix, F(x∗), is positive

definite. We can then argue that if f has continuous second partial derivatives, F(x)

is positive definite near x∗ and hence the method is well defined near the solution.

Order Two Convergence

Newton’s method has very desirable properties if started sufficiently close to the

solution point. Its order of convergence is two.

Theorem (Newton’s Method). Let f ∈ C3 on En, and assume that at the local minimum

point x∗, the Hessian F(x∗) is positive definite. Then if started sufficiently close to x∗, the

points generated by Newton’s method converge to x∗. The order of convergence is at least

two.

Proof. There are ρ > 0, β1 > 0, β2 > 0 such that for all x with |x − x∗| < ρ, there

holds |F(x)−1| < β1 (see Appendix A for the definition of the norm of a matrix) and

|∇ f (x∗)T − ∇ f (x)T − F(x)(x∗ − x)| � β2|x − x∗|2. Now suppose xk is selected with

β1β2|xk − x∗| < 1 and |xk − x∗| < ρ. Then

|xk+1 − x∗| = |xk − x∗ − F(xk)−1
∇ f (xk)T |

= |F(xk)−1[∇ f (x∗)T − ∇ f (xk)T − F(xk)(x∗ − xk)]|
� |F(xk)−1|β2|xk − x∗|2

� β1β2|xk − x∗|2 < |xk − x∗|.

The final inequality shows that the new point is closer to x∗ than the old point, and

hence all conditions apply again to xk+1. The previous inequality establishes that

convergence is second order. �

Modifications

Although Newton’s method is very attractive in terms of its convergence properties

near the solution, it requires modification before it can be used at points that are

remote from the solution. The general nature of these modifications is discussed in

the remainder of this section.

1. Damping. The first modification is that usually a search parameter α is intro-

duced so that the method takes the form

xk+1 = xk − αk[F(xk)]−1
∇ f (xk)T ,

8.5 Newton’s Method 247

where αk is selected to minimize f . Near the solution we expect, on the basis of

how Newton’s method was derived, that αk ≃ 1. Introducing the parameter for

general points, however, guards against the possibility that the objective might

increase with αk = 1, due to nonquadratic terms in the objective function.

2. Positive Definiteness. A basic consideration for Newton’s method can be seen

most clearly by a brief examination of the general class of algorithms

xk+1 = xk − αMkgk, (8.63)

where Mk is an n× n matrix, α is a positive search parameter, and gk = ∇ f (xk)T .

We note that both steepest descent (Mk = I) and Newton’s method (Mk =

[F(xk)]−1) belong to this class. The direction vector dk = −Mkgk obtained in

this way is a direction of descent if for small α the value of f decreases as α

increases from zero. For small α we can say

f (xk+1) = f (xk) + ∇ f (xk)(xk+1 − xk) + O(|xk+1 − xk |2).

Employing (8.51) this can be written as

f (xk+1) = f (xk) − αgT
k Mkgk + O(α2).

As α → 0, the second term on the right dominates the third. Hence if one is to

guarantee a decrease in f for small α, we must have gT
k

Mkgk > 0. The simplest

way to insure this is to require that Mk be positive definite.

The best circumstance is that where F(x) is itself positive definite throughout

the search region. The objective function of many important optimization problems

have this property, including for example interior-point approaches to linear pro-

gramming using the logarithm as a barrier function. Indeed, it can be argued that

convexity is an inherent property of the majority of well-formulated optimization

problems.

Therefore, assume that the Hessian matrix F(x) is positive definite throughout

the search region and that f has continuous third derivatives. At a given xk define

the symmetric matrix T = F(xk)−1/2. As in Sect. 8.3 introduce the change of variable

Ty = x. Then according to (8.48) a steepest descent direction with respect to y is

equivalent to a direction with respect to x of d = −TTT g(xk), where g(xk) is the

gradient of f with respect to x at xk. Thus, d = F−1g(xk). In other words, a steepest

descent direction in y is equivalent to a Newton direction in x.

We can turn this relation around to analyze Newton steps in x as equivalent to

gradient steps in y. We know that convergence properties in y depend on the bounds

on the Hessian matrix given by (8.49) as

H(y) = TT F(x)T = F−1/2F(x)F−1/2. (8.64)

Recall that F = F(xk) which is fixed, whereas F(x) denotes the general Hessian

matrix with respect to x near xk. The product (8.64) is the identity matrix at yk

248 8 Basic Descent Methods

but the rate of convergence of steepest descent in y depends on the bounds of the

smallest and largest eigenvalues of H(y) in a region near yk.

These observations tell us that the damped method of Newton’s method will con-

verge at a linear rate at least as fast as c = (1 − a/A) where a and A are lower

and upper bounds on the eigenvalues of F(x0)−1/2F(x0)F(x0)−1/2, where x0 and x0

are arbitrary points in the local search region. These bounds depend, in turn, on

the bounds of the third-order derivatives of f . It is clear, however, by continuity of

F(x) and its derivatives, that the rate becomes very fast near the solution, becoming

superlinear, and in fact, as we know, quadratic.

3. Backtracking. The backtracking method of line search, using α = 1 as the

initial guess, is an attractive procedure for use with Newton’s method. Using

this method the overall progress of Newton’s method divides naturally into two

phases: first a damping phase where backtracking may require α < 1, and sec-

ond a quadratic phase where α = 1 satisfies the backtracking criterion at every

step. The damping phase was discussed above.

Let us now examine the situation when close to the solution. We assume that all

derivatives of f through the third are continuous and uniformly bounded. We also

assume that in the region close to the solution, F(x) is positive definite with a > 0

and A > 0 being, respectively, uniform lower and upper bounds on the eigenvalues

of F(x). Using α = 1 and ε < 0.5 we have for dk = −F(xk)−1g(xk)

f (xk + dk) = f (xk) − g(xk)T F(xk)−1g(xk) +
1

2
g(xk)T F(xk)−1g(xk) + o(|g(xk)|2)

= f (xk) − 1

2
g(xk)T F(xk)−1g(xk) + o(|g(xk)|2)

< f (xk) − εg(xk)T F(xk)−1g(xk) + o(|g(xk)|2),

where the o bound is uniform for all xk. Since |g(xk)| → 0 (uniformly) as xk → x∗, it

follows that once xk is sufficiently close to x∗, then f (xk+dk) < f (xk)−εg(xk)T dk and

hence the backtracking test (the first part of Amijo’s rule) is satisfied. This means

that α = 1 will be used throughout the final phase.

4. General Problems. In practice, Newton’s method must be modified to ac-

commodate the possible nonpositive definiteness at regions remote from the

solution.

A common approach is to take Mk = [εkI+F(xk)]−1 for some non-negative value

of εk. This can be regarded as a kind of compromise between steepest descent (εk

very large) and Newton’s method (εk = 0). There is always an εk that makes Mk

positive definite. We shall present one modification of this type.

Let Fk ≡ F(xk). Fix a constant δ > 0. Given xk, calculate the eigenvalues of Fk

and let εk be the smallest nonnegative constant for which the matrix εkI + Fk has

eigenvalues greater than or equal to δ. Then define

dk = −(εkI + Fk)−1gk (8.65)

8.5 Newton’s Method 249

and iterate according to

xk+1 = xk + αkdk, (8.66)

where αk minimizes f (xk + αdk), α � 0.

This algorithm has the desired global and local properties. First, since the eigen-

values of a matrix depend continuously on its elements, εk is a continuous function

of xk and hence the mapping D : En → E2n defined by D(xk) = (xk, dk) is con-

tinuous. Thus the algorithm A =SD is closed at points outside the solution set

Ω = {x : ∇ f (x) = 0}. Second, since εkI+Fk is positive definite, dk is a descent direc-

tion and thus Z(x) ≡ f (x) is a continuous descent function for A. Therefore, assum-

ing the generated sequence is bounded, the Global Convergence Theorem applies.

Furthermore, if δ > 0 is smaller than the smallest eigenvalue of F(x∗), then for xk

sufficiently close to x∗ we will have εk = 0, and the method reduces to Newton’s

method. Thus this revised method also has order of convergence equal to two.

The selection of an appropriate δ is somewhat of an art. A small δ means that

nearly singular matrices must be inverted, while a large δ means that the order

two convergence may be lost. Experimentation and familiarity with a given class

of problems are often required to find the best δ.

The utility of the above algorithm is hampered by the necessity to calculate the

eigenvalues of F(xk), and in practice an alternate procedure is used. In one class

of methods (Levenberg–Marquardt type methods), for a given value of εk, Cholesky

factorization of the form εkI+F(xk) = GGT (see Exercise 6 of Chap. 7) is employed

to check for positive definiteness. If the factorization breaks down, εk is increased.

The factorization then also provides the direction vector through solution of the

equations GGT dk = gk, which are easily solved, since G is triangular. Then the

value f (xk + dk) is examined. If it is sufficiently below f (xk), then xk+1 is accepted

and a new εk+1 is determined. Essentially, ε serves as a search parameter in these

methods. It should be clear from this discussion that the simplicity that Newton’s

method first seemed to promise is not fully realized in practice.

Newton’s Method and Logarithms

Interior point methods of linear and nonlinear programming use barrier functions,

which usually are based on the logarithm. For linear programming especially, this

means that the only nonlinear terms are logarithms. Newton’s method enjoys some

special properties in this case,

To illustrate, let us apply Newton’s method to the one-dimensional problem

min
x

[tx − ln x] (8.67)

where t is a positive parameter. The derivative at x is

f ′(x) = t − 1

x
,

250 8 Basic Descent Methods

and of course the solution is x∗ = 1/t, or equivalently 1 − tx∗ = 0. The second

derivative is f ′′(x) = 1/x2. Denoting by x+ the result of one step of a pure Newton’s

method (with step length equal to 1) applied to the point x, we find

x+ = x − [f ′′(x)]−1 f ′(x) = x − x2

(

t − 1

x

)

= x − tx2 + x

= 2x − tx2.

Thus

1 − tx+ = 1 − 2tx + x2t2 = (1 − tx)2 (8.68)

Therefore, rather surprisingly, the quadratic nature of convergence of (1 − tx) → 0

is directly evident and exact. Expression (8.68) represents a reduction in the error

magnitude only if |(1 − tx)| < 1, or equivalently, 0 < x < 2/t. If x is too large,

then Newton’s method must be used with damping until the region 0 < x < 2/t is

reached. From then on, a step size of 1 will exhibit pure quadratic error reduction.

The situation is shown in Fig. 8.11. The graph is that of f ′(x) = t−1/x. The root-

finding form of Newton’s method (Sect. 8.1) is then applied to this function. At each

point, the tangent line is followed to the x axis to find the new point. The starting

value marked x1 is far from the solution 1/t and hence following the tangent would

lead to a new point that was negative. Damping must be applied at that starting point.

Once a point x is reached with 0 < x < 1/t, all further points will remain to the left

of 1/t and move toward it quadratically.

Fig. 8.11 Newton’s method applied to minimization of tx − ln x

In interior point methods for linear programming, a logarithmic barrier function

is applied separately to the variables that must remain positive. The convergence

analysis in these situations is an extension of that for the simple case given here,

allowing for estimates of the rate of convergence that do not require knowledge of

bounds of third-order derivatives.

8.5 Newton’s Method 251

Self-concordant Functions

The special properties exhibited above for the logarithm have been extended to the

general class of self-concordant functions of which the logarithm is the primary

example. A function f defined on the real line is self-concordant if it satisfies

| f ′′′(x)| ≤ 2 f ′′(x)3/2, (8.69)

throughout its domain. It is easily verified that f (x) = − ln x satisfies this inequality

with equality for x > 0.

Self-concordancy is preserved by the addition of an affine term since such a term

does not affect the second or third derivatives.

A function defined on En is said to be self-concordant if it is self-concordant in

every direction: that is if f (x + αd) is self-concordant with respect to α for every d

throughout the domain of f .

Self-concordant functions can be combined by addition and even by composition

with affine functions to yield other self-concordant functions. (See Exercise 29.) For

example the function

f (x) = −
m

∑

i=1

ln(b j − aT
i x),

often used in interior point methods for linear programming, is self-concordant.

When a self-concordant function is subjected to Newton’s method, the quadratic

convergence of final phase can be measured in terms of the function

λ(x) = [∇ f (x)F(x)−1∇ f (x)T]1/2,

where as usual F(x) is the Hessian matrix of f at x. Then it can be shown that close

to the solution

2λ(xk+1) ≤ [2λ(xk)]2. (8.70)

Furthermore, in a backtracking procedure, estimates of both the stepwise progress

in the damping phase and the point at which the quadratic phase begins can be

expressed in terms of parameters that depend only on the backtracking parameters.

Although, this knowledge does not generally influence practice, it is theoretically

quite interesting.

Example 1 (The Logarithmic Case). Consider the earlier example of f (x) = tx−ln x.

There

λ(x) = [f ′(x)2/ f ′′(x)]
1
2 = |(t − 1/x)x| = |1 − tx|.

Then (8.70) gives

(1 − tx+) ≤ 2(1 − tx)2.

Actually, for this example, as we found in (8.68), the factor of 2 is not required.

252 8 Basic Descent Methods

There is a relation between the analysis of self-concordant functions and our

earlier convergence analysis.

Recall that one way to analyze Newton’s method is to change variables from x to

y according to ỹ = [F(x)]−(1/2)x̃, where here x is a reference point and x̃ is variable.

The gradient with respect to y at ỹ is then F(x)−(1/2)∇ f (x̃), and hence the norm of the

gradient at y is [∇ f (x)F(x)−1
∇ f (x)T](1/2) ≡ λ(x). Hence it is perhaps not surprising

that λ(x) plays a role analogous to the role played by the norm of the gradient in the

analysis of steepest descent.

8.6 Coordinate Descent Methods

The algorithms discussed in this section are sometimes attractive because of their

easy implementation. Generally, however, their convergence properties are poorer

than steepest descent.

Let f be a function on En having continuous first partial derivatives. Given a

point x = (x1, x2, . . . , xn), descent with respect to the coordinate xi (i fixed) means

that one solves

minimize
xi

f (x1, x2, . . . , xn).

Thus only changes in the single component xi are allowed in seeking a new and

better vector x (one can also consider xi the ith block of variables, called the block-

coordinate method). In our general terminology, each such descent can be regarded

as a descent in the direction ei(or −ei) where ei is the ith unit vector. By sequentially

minimizing with respect to different components, a relative minimum of f might

ultimately be determined.

There are a number of ways that this concept can be developed into a full algo-

rithm. The cyclic coordinate descent algorithm minimizes f cyclically with respect

to the coordinate variables. Thus x1 is changed first, then x2 and so forth through xn.

The process is then repeated starting with x1 again. A variation of this is the Aitken

double sweep method. In this procedure one searches over x1, x2, . . . , xn, in that

order, and then comes back in the order xn−1, xn−2, . . . , x1. These cyclic meth-

ods have the advantage of not requiring any information about ∇ f to determine the

descent directions.

If the gradient of f is available, then it is possible to select the order of descent co-

ordinates on the basis of the gradient. A popular technique is the Gauss−Southwell

Method where at each stage the coordinate corresponding to the largest (in absolute

value) component of the gradient vector is selected for descent. A randomized strat-

egy can be also adapted in which one randomly chooses a coordinate to optimize in

each step; see more discussions later.

8.6 Coordinate Descent Methods 253

Global Convergence

It is simple to prove global convergence for cyclic coordinate descent. The algorith-

mic map A is the composition of 2n maps

A = SCnSCn−1 . . .SC1,

where Ci(x) = (x, ei) with ei equal to the ith unit vector, and S is the usual line search

algorithm but over the doubly infinite line rather than the semi-infinite line. The map

Ci is obviously continuous and S is closed. If we assume that points are restricted

to a compact set, then A is closed by Corollary 1, Sect. 7.7. We define the solution

set Γ = {x : ∇ f (x) = 0}. If we impose the mild assumption on f that a search

along any coordinate direction yields a unique minimum point, then the function

Z(x) ≡ f (x) serves as a continuous descent function for A with respect to Γ. This is

because a search along any coordinate direction either must yield a decrease or, by

the uniqueness assumption, it cannot change position. Therefore, if at a point x we

have ∇ f (x) � 0, then at least one component of ∇ f (x) does not vanish and a search

along the corresponding coordinate direction must yield a decrease.

Local Convergence Rate

It is difficult to compare the rates of convergence of these algorithms with the rates

of others that we analyze. This is partly because coordinate descent algorithms are

from an entirely different general class of algorithms than, for example, steepest

descent and Newton’s method, since coordinate descent algorithms are unaffected

by (diagonal) scale factor changes but are affected by rotation of coordinates—the

opposite being true for steepest descent. Nevertheless, some comparison is possible.

It can be shown (see Exercise 20) that for the same quadratic problem as treated

in Sect. 8.2, there holds for the Gauss−Southwell method

E(xk+1) �

(

1 − a

A(n − 1)

)

E(xk), (8.71)

where a, A are as in Sect. 8.2 and n is the dimension of the problem. Since

(

A − a

A + a

)2

�

(

1 − a

A

)

�

(

1 − a

A(n − 1)

)n−1

, (8.72)

we see that the bound we have for steepest descent is better than the bound we have

for n − 1 applications of the Gauss−Southwell scheme. Hence we might argue that

it takes essentially n − 1 coordinate searches to be as effective as a single gradient

search. This is admittedly a crude guess, since (8.54) is generally not a tight bound,

but the overall conclusion is consistent with the results of many experiments. In-

deed, unless the variables of a problem are essentially uncoupled from each other

254 8 Basic Descent Methods

(corresponding to a nearly diagonal Hessian matrix) coordinate descent methods

seem to require about n line searches to equal the effect of one step of steepest

descent.

The above discussion again illustrates the general objective that we seek in con-

vergence analysis. By comparing the formula giving the rate of convergence for

steepest descent with a bound for coordinate descent, we are able to draw some

general conclusions on the relative performance of the two methods that are not

dependent on specific values of a and A. Our analyses of local convergence proper-

ties, which usually involve specific formulae, are always guided by this objective of

obtaining general qualitative comparisons.

Example. The quadratic problem considered in Sect. 8.2 with

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.78 −0.02 −0.12 −0.14

−0.02 0.86 −0.04 0.06

−0.12 −0.04 0.72 −0.08

−0.14 0.06 −0.08 0.74

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

b = (0.76, 0.08, 1.12, 0.68)

was solved by the various coordinate search methods. The corresponding values of

the objective function are shown in Table 8.3. Observe that the convergence rates

of the three coordinate search methods are approximately equal but that they all

converge about three times slower than steepest descent. This is in accord with the

estimate given above for the Gauss−Southwell method, since in this case n − 1 = 3.

Convergence Speed of a Randomized Coordinate Descent Method

We now describe a randomized strategy in selecting xi in each step of the coordinate

descent method for f that is differentiable and Lipschitz continuous; that is, there

exist some constants βi > 0, i = 1, . . . , n, such that

|∇i f (x + hei) − ∇i f (x)| ≤ βi|h|, ∀ h ∈ E, x ∈ En, (8.73)

where ∇i f (x) denotes the ith partial derivative of f at x, and ei is the ith unit vector

with the ith entry equal 1 and everywhere else equal 0.

Randomized coordinate decent method. Given an initial point x0; repeat for k = 0, 1, 2, . . .

1. Choose ik ∈ {1, . . . , n} randomly with a uniform distribution.

2. Update xk+1 = xk − 1
βik

∇ik f (xk)eik .

Note that after k iterations, the randomized coordinate descent method generates a

random sequence of xk, which depends on the observed realization of the random

variable

ξk−1 = {i0, i1, . . . , ik−1}.

8.6 Coordinate Descent Methods 255

Table 8.3 Solutions to Example

Value of f for various methods
Iteration no. Gauss-Southwell Cyclic Double sweep

0 0.0 0.0 0.0
1 −0.871111 −0.370256 −0.370256
2 −1.445584 −0.376011 −0.376011
3 −2.087054 −1.446460 −1.446460
4 −2.130796 −2.052949 −2.052949
5 −2.163586 −2.149690 −2.060234
6 −2.170272 −2.149693 −2.060237
7 −2.172786 −2.167983 −2.165641
8 −2.174279 −2.173169 −2.165704
9 −2.174583 −2.174392 −2.168440

10 −2.174638 −2.174397 −2.173981
11 −2.174651 −2.174582 −2.174048
12 −2.174655 −2.174643 −2.174054
13 −2.174658 −2.174656 −2.174608
14 −2.174659 −2.174656 −2.174608
15 −2.174659 −2.174658 −2.174622
16 −2.174659 −2.174655

17 −2.174659 −2.174656
18 −2.174656
19 −2.174659
20 −2.174659

Theorem 3 (Randomized Coordinate Descent—Lipschitz Convex Case). Let f (x) be

convex and differentiable everywhere, satisfy the Lipschitz condition (8.73), and admit a

minimizer x∗. Then, the randomized coordinate decent method generates a sequence of

solutions xk such that for any k ≥ 1, the iterate xk satisfies

Eξk−1
[f (xk)] − f (x∗) ≤ n

n + k

(

1

2
|x0 − x∗ |2β + f (x0) − f (x∗)

)

,

where |x|β =
(

∑

i

βix
2
i

)1/2

for all x ∈ En.

Proof. Let r2
k
= |xk − x∗|2

β
=

∑n
i=1 βi((xk)i − x∗

i
)2 for any k ≥ 0. Since xk+1 =

xk − 1
βik

∇ik f (xk)eik , we have

r2
k+1 = r2

k − 2∇ik f (xk)((xk)ik − x∗ik) +
1

βik

(∇ik f (xk))2.

It follows from (8.73), Lemma 1, and xk+1 = xk − 1
βik

∇ik f (xk)eik that

f (xk+1) ≤ f (xk) + ∇ik f (xk)((xk+1)ik − (xk)ik) +
βik

2
((xk+1)ik − (xk)ik)

2

= f (xk) − 1

2βik

(∇ik f (xk))2. (8.74)

256 8 Basic Descent Methods

Combining the above two relations, one has

r2
k+1 ≤ r2

k − 2∇ik f (xk)((xk)ik − x∗ik) + 2(f (xk) − f (xk+1)).

Multiplying both sides by 1/2 and taking expectation with respect to ik yields

Eik

[

1

2
r2

k+1

]

≤ 1

2
r2

k −
1

n
∇ f (xk)(xk − x∗) + f (xk) − Eik

[

f (xk+1)
]

,

which together with the fact that ∇ f (xk)(x∗ − xk) ≤ f (x∗) − f (xk) yields

Eik

[

1

2
r2

k+1

]

≤ 1

2
r2

k +
1

n
f (x∗) +

n − 1

n
f (xk) − Eik

[

f (xk+1)
]

.

By rearranging terms, we obtain that for each k ≥ 0,

Eik

[

1

2
r2

k+1 + f (xk+1) − f (x∗)

]

≤
(

1

2
r2

k + f (xk) − f (x∗)

)

− 1

n
(f (xk) − f (x∗)) .

Let f ∗ = f (x∗). Then, taking expectation with respect to ξk−1 on both sides of the

above relation, we have

Eξk

[

1

2
r2

k+1 + f (xk+1) − f ∗
]

≤ Eξk−1

[

1

2
r2

k + f (xk) − f ∗
]

−
Eξk−1

[

f (xk) − f ∗
]

n
. (8.75)

In addition, it follows from (8.74) that Eξ j
[f (x j+1)] ≤ Eξ j−1

[f (x j)] for all j ≥ 0.

Using this relation and applying the inequality (8.75) recursively, we further obtain

that

Eξk
[

f (xk+1)
] − f ∗ ≤ Eξk

[

1

2
r2

k+1 + f (xk+1) − f ∗
]

≤ 1

2
r2

0 + f (x0) − f ∗ − 1

n

k
∑

j=0

(

Eξ j−1

[

f (x j)
]

− f ∗
)

≤ 1

2
r2

0 + f (x0) − f ∗ − k + 1

n

(

Eξk
[

f (xk+1)
] − f ∗

)

.

This leads to the desired result by moving the last term on the right to the left side.

�

If f is a strongly convex quadratic function, the randomized coordinate decent

method would have an expected average convergence rate (1 − a
An

). However, each

step of the method does 1
n

amount of work of the full steepest descent update; see

an exercise.

8.7 Summary 257

8.7 Summary

Most iterative algorithms for minimization require a line search at every stage of

the process. By employing any one of a variety of curve fitting techniques, however,

the order of convergence of the line search process can be made greater than unity,

which means that as compared to the linear convergence that accompanies most full

descent algorithms (such as steepest descent) the individual line searches are rapid.

Indeed, in common practice, only about three search points are required in any one

line search. If the first derivatives are available, then two search points are required

(method of false position); and if both first and second derivatives are available, then

one search point is required (Newton’s method).

It was also shown in Sect. 8.1 and the exercises that line search algorithms of

varying degrees of accuracy are all closed. Thus line searching is not only rapid

enough to be practical but also behaves in such a way as to make analysis of global

convergence simple.

The most important results of this chapter are the arithmetic convergence of the

method of steepest descent for solving convex minimization, the improved arith-

metic convergence of the accelerated steepest descent method, and the geometric

convergence of the method for solving strongly convex minimization. The fact that

the method of steepest descent converges linearly with a convergence ratio equal to

[(A − a)/(A + a)]2, where a and A are, respectively, the smallest and largest eigen-

values of the Hessian of the objective function evaluated at the solution point. This

formula, which arises frequently throughout the remainder of the book, serves as a

fundamental reference point for other algorithms. It is, however, important to under-

stand that it is the formula and not its value that serves as the reference. We rarely

advocate that the formula be evaluated since it involves quantities (namely eigenval-

ues) that are generally not computable until after the optimal solution is known. The

formula itself, however, even though its value is unknown, can be used to make sig-

nificant comparisons of the effectiveness of steepest descent versus other algorithms.

Newton’s method has order two convergence. However, it must be modified to

insure global convergence, and evaluation of the Hessian at every point can be

costly. Nevertheless, Newton’s method provides another valuable reference point

in the study of algorithms, and is frequently employed in interior point methods

using a logarithmic barrier function.

As optimization problem sizes become bigger and bigger, various coordinate

descent algorithms are extremely popular. They are valuable especially in situations

where the variables are essentially uncoupled or there is special structure that makes

searching in the coordinate directions particularly easy. Typically, steepest descent

can be expected to be faster. Even if the gradient is not directly available, it would

probably be better to evaluate a finite-difference approximation to the gradient, by

taking a single step in each coordinate direction, and use this approximation in a

steepest descent algorithm, rather than executing a full line search in each coordi-

nate direction.

258 8 Basic Descent Methods

8.8 Exercises

1. Show that g[a, b, c] defined by (8.14) is symmetric, that is, interchange of the

arguments does not affect its value.

2. Prove (8.14) and (8.15).

Hint: To prove (8.15) expand it, and subtract and add g′(xk) to the numerator.

3. Argue using symmetry that the error in the cubic fit method approximately sat-

isfies an equation of the form

εk+1 = M(ε2
kεk−1 + εkε

2
k−1)

and then find the order of convergence.

4. What conditions on the values and derivatives at two points guarantee that a

cubic polynomial fit to this data will have a minimum between the two points?

Use your answer to develop a search scheme, based on cubic fit, that is globally

convergent for unimodal functions.

5. Using a symmetry argument, find the order of convergence for a line search

method that fits a cubic to xk−3, xk−2, xk−1, xk in order to find xk+1.

6. Consider the iterative process

xk+1 =
1

2

(

xk +
a

xk

)

,

where a > 0. Assuming the process converges, to what does it converge? What

is the order of convergence?

7. Suppose the continuous real-valued function f of a single variable satisfies

min
x�0

f (x) < f (0).

Starting at any x > 0 show that, through a series of halvings and doublings

of x and evaluation of the corresponding f (x)’s, a three-point pattern can be

determined.

8. For δ > 0 define the map Sδ by

Sδ(x, d) = {y : y = x + αd, 0 � α � δ; f (y) = min
0�β�δ

f (x + βd)}.

Thus Sδ searches the interval [0, δ] for a minimum of f (x + αd), representing

a “limited range” line search. Show that if f is continuous, Sδ is closed at all

(x, d).

9. For ε > 0 define the map εS by

εS(x, d) = {y : y = x + αd, α � 0, f (y) � min
0�β

f (x + βd) + ε}.

Show that if f is continuous, εS is closed at (x, d) if d � 0. This map corre-

sponds to an “inaccurate” line search.

8.8 Exercises 259

10. Referring to the previous two exercises, define and prove a result for εSδ.

11. Define S̄ as the line search algorithm that finds the first relative minimum of

f (x + αd) for α � 0. If f is continuous and d � 0, is S̄ closed?

12. Consider the problem

minimize 5x2 + 5y2 − xy − 11x + 11y + 11.

(a) Find a point satisfying the first-order necessary conditions for a solution.

(b) Show that this point is a global minimum.

(c) What would be the rate of convergence of steepest descent for this problem?

(d) Starting at x = y = 0, how many steepest descent iterations would it take

(at most) to reduce the function value to 10−11?

13. Define the search mapping F that determines the parameter α to within a given

fraction c, 0 � c � 1, by

F(x, d) = {y : y = x + αd, 0 � α < ∞, |α| � cα, where
d

dα
f (x + αd) = 0}.

Show that if d � 0 and (d/dα) f (x+αd) is continuous, then F is closed at (x, d).

14. Let e1, e2, . . . , en denote the eigenvectors of the symmetric positive definite

n × n matrix Q. For the quadratic problem considered in Sect. 8.2, suppose x0

is chosen so that g0 belongs to a subspace M spanned by a subset of the ei’s.

Show that for the method of steepest descent gk ∈ M for all k. Find the rate of

convergence in this case.

15. Suppose we use the method of steepest descent to minimize the quadratic func-

tion f (x) = 1
2
(x − x∗)T Q(x − x∗) but we allow a tolerance ±δαk (δ � 0) in the

line search, that is xk+1 = xk − αkgk, where

(1 − δ)αk � αk � (1 + δ)αk

and αk minimizes f (xk − αgk) over α.

(a) Find the convergence rate of the algorithm in terms of a and A, the smallest

and largest eigenvalues of Q, and the tolerance δ.

Hint: Assume the extreme case αk = (1 + δ)αk.

(b) What is the largest δ that guarantees convergence of the algorithm? Explain

this result geometrically.

(c) Does the sign of δ make any difference?

16. Show that for a quadratic objective function the percentage test and the Gold-

stein test are equivalent.

17. Suppose in the method of steepest descent for the quadratic problem, the value

of αk is not determined to minimize E(xk+1) exactly but instead only satisfies

E(xk) − E(xk+1)

E(xk)
� β

E(xk) − E

E(xk)

260 8 Basic Descent Methods

for some β, 0 < β < 1, where E is the value that corresponds to the best αk.

Find the best estimate for the rate of convergence in this case.

18. Suppose an iterative algorithm of the form xk+1 = xk + αkdk is applied to the

quadratic problem with matrix Q, where αk as usual is chosen as the mini-

mum point of the line search and where dk is a vector satisfying dT
k

gk < 0 and

(dT
k gk)2

� β(dT
k Qdk)(gT

k
Q−1gk), where 0 < β � 1. This corresponds to a steep-

est descent algorithm with “sloppy” choice of direction. Estimate the rate of

convergence of this algorithm.

19. Repeat Exercise 18 with the condition on (dT
k gk)2 replaced by

(dT
k gk)2

� β(dT
k dk)(gT

k gk), 0 < β � 1.

20. Use the result of Exercise 19 to derive (8.71) for the Gauss-Southwell method.

21. Let f (x, y) = s2 + y2 + xy − 3x.

(a) Find an unconstrained local minimum point of f .

(b) Why is the solution to (a) actually a global minimum point?

(c) Find the minimum point of f subject to x � 0, y � 0.

(d) If the method of steepest descent were applied to (a), what would be the

rate of convergence of the objective function?

22. Find an estimate for the rate of convergence for the modified Newton method

xk+1 = xk − αk(εkI + Fk)−1gk

given by (8.65) and (8.66) when δ is larger than the smallest eigenvalue of F(x∗).
23. Prove global convergence of the Gauss-Southwell method.

24. Consider a problem of the form

minimize f (x)

subject to x � 0,

where x ∈ En. A gradient-type procedure has been suggested for this kind of

problem that accounts for the constraint. At a given point x = (x1, x2, . . . , xn),

the direction d = (d1, d2, . . . , dn) is determined from the gradient ∇ f (x)T =

g = (g1, g2, . . . , gn) by

di =

{

−gi if xi > 0 or gi < 0

0 if xi = 0 and gi � 0.

This direction is then used as a direction of search in the usual manner.

(a) What are the first-order necessary conditions for a minimum point of this

problem?

(b) Show that d, as determined by the algorithm, is zero only at a point satisfy-

ing the first-order conditions.

(c) Show that if d � 0, it is possible to decrease the value of f by movement

along d.

8.8 Exercises 261

(d) If restricted to a compact region, does the Global Convergence Theorem

apply? Why?

25. Consider the quadratic problem and suppose Q has unity diagonal. Consider a

coordinate descent procedure in which the coordinate to be searched is at every

stage selected randomly, each coordinate being equally likely. Let εk = xk − x∗.

Assuming εk is known, show that εT
k+1

Qεk+1, the expected value of εT
k+1

Qεk+1,

satisfies

εT
k+1

Qεk+1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 −
εT

k
Q2εk

nεT
k

Qεk

⎞

⎟

⎟

⎟

⎟

⎟

⎠

εT
k Qεk �

(

1 − a2

nA

)

εT
k Qεk.

26. If the matrix Q has a condition number of 10, how many iterations of steepest

descent would be required to get six place accuracy in the minimum value of

the objective function of the corresponding quadratic problem?

27. Stopping criterion. A question that arises in using an algorithm such as steep-

est descent to minimize an objective function f is when to stop the iterative

process, or, in other words, how can one tell when the current point is close to

a solution. If, as with steepest descent, it is known that convergence is linear,

this knowledge can be used to develop a stopping criterion. Let { fk}∞k=0 be the

sequence of values obtained by the algorithm. We assume that fk → f ∗ linearly,

but both f ∗ and the convergence ratio β are unknown. However we know that,

at least approximately,

fk+1 − f ∗ = β(fk − f ∗)

and

fk − f ∗ = β(fk−1 − f ∗).

These two equations can be solved for β and f ∗.

(a) Show that

f ∗ =
f 2
k
− fk−1 fk+1

2 fk − fk−1 − fk+1

, β =
fk+1 − fk

fk − fk−1

.

(b) Motivated by the above we form the sequence { f ∗
k
} defined by

f ∗k =
f 2
k
− fk−1 fk+1

2 fk − fk−1 − fk+1

as the original sequence is generated. (This procedure of generating { f ∗
k
}

from { fk} is called the Aitken δ2-process.) If | fk − f ∗| = βk + o(βk) show

that | f ∗
k
− f ∗ | = o(βk) which means that { f ∗

k
} converges to f ∗ faster than

{ fk} does. The iterative search for the minimum of f can then be terminated

when fk − f ∗
k

is smaller than some prescribed tolerance.

28. Show that the concordant requirement (8.69) can be expressed as

∣

∣

∣

∣

∣

d

dx
f ′′(x)−

1
2

∣

∣

∣

∣

∣

≤ 1.

262 8 Basic Descent Methods

29. Assume f (x) and g(x) are self-concordant. Show that the following functions

are also self-concordant.

(a) a f (x) for a > 1

(b) ax + b + f (x)

(c) f (ax + b)

(d) f (x) + g(x)

1. Prove Lemma 1

2. Consider convex quadratic minimization with matrix Q, and let its distinct pos-

itive eigenvalues be λ1, λ2, . . . λK . Then, if we let the step size in the method of

steepest descent be αk =
1
λk

, k = 1, . . . ,K, the method terminates in K iterations.

3. Show that the randomized coordinate descent method has the expected average

convergence rate (1− a
An

) for solving strongly convex quadratic programs where

a and A are smallest and largest eigenvalues of the Hessian matrix.

References

8.1 For a detailed exposition of Fibonacci search techniques, see Wilde and

Beightler [W1]. For an introductory discussion of difference equations, see

Lanczos [L1]. Many of these techniques are standard among numerical analysts.

See, for example, Kowalik and Osborne [K9], or Traub [T9]. Also see Tamir

[T1] for an analysis of high-order fit methods. The use of symmetry arguments

to shortcut the analysis is new. The closedness of line search algorithms was

established by Zangwill [Z2]. For the line search stopping criteria, see Armijo

[A8], Goldstein [G12], and Wolfe [W6].

8.2 For an alternate exposition of this well-known method, see Antosiewicz and

Rheinboldt [A7] or Luenberger [L8]. For a proof that the estimate (8.42) is

essentially exact, see Akaike [A2]. For early work on the nonquadratic case, see

Curry [C10]. For recent work reports in this section see Boyd and Vandenberghe

[B23]. The numerical problem considered in the example is a standard one. See

Faddeev and Faddeeva [F1].

8.4 The accelerated method of steepest descent is due to Nesterov [190], also see

Beck and Teboulle [23]. The BB method is due to Barzilai and Borwein [17],

also see Dai and Fletcher [58].

8.5 For good reviews of modern Newton methods, see Fletcher [F9] and Gill, Mur-

ray, and Wright [G7]. The theory of self-concordant functions was developed

by Nesterov and Nemirovskri, see [N2], [N4], there is a nice reformulation by

Renegar [R2] and an introduction in Boyd and Vandenberghe [B23].

8.6 A detailed analysis of coordinate algorithms can be found in Fox [F17] and

Isaacson and Keller [I1]. For a discussion of the Gauss-Southwell method, see

Forsythe and Wasow [F16]. The proof of convergence speed of the random-

ized coordinate descent method is essentially due to Nesterov [188] and Lu and

Lin [160].

Chapter 9

Conjugate Direction Methods

Conjugate direction methods can be regarded as being somewhat intermediate

between the method of steepest descent and Newton’s method. They are motivated

by the desire to accelerate the typically slow convergence associated with steepest

descent while avoiding the information requirements associated with the evaluation,

storage, and inversion of the Hessian (or at least solution of a corresponding system

of equations) as required by Newton’s method.

Conjugate direction methods invariably are invented and analyzed for the purely

quadratic problem

minimize
1

2
xT Qx − bT x,

where Q is an n×n symmetric positive definite matrix. The techniques once worked

out for this problem are then extended, by approximation, to more general problems;

it being argued that, since near the solution point every problem is approximately

quadratic, convergence behavior is similar to that for the pure quadratic situation.

The area of conjugate direction algorithms has been one of great creativity

in the nonlinear programming field, illustrating that detailed analysis of the pure

quadratic problem can lead to significant practical advances. Indeed, conjugate di-

rection methods, especially the method of conjugate gradients, have proved to be

extremely effective in dealing with general objective functions and are considered

among the best general purpose methods.

9.1 Conjugate Directions

Definition. Given a symmetric matrix Q, two vectors d1 and d2 are said to be Q-orthogonal,
or conjugate with respect to Q, if dT

1 Qd2 = 0.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 9

263

264 9 Conjugate Direction Methods

In the applications that we consider, the matrix Q will be positive definite but this

is not inherent in the basic definition. Thus if Q = 0, any two vectors are conjugate,

while if Q = I, conjugacy is equivalent to the usual notion of orthogonality. A finite

set of vectors d0, d1, . . . , dk is said to be a Q-orthogonal set if dT
i

Qd j = 0 for all

i � j.

Proposition. If Q is positive definite and the set of nonzero vectors d0, d1, d2 , . . . , dk are

Q-orthogonal, then these vectors are linearly independent.

Proof. Suppose there are constants αi, i = 0, 1, 2, . . . , k such that

α0d0 + · · · + αkdk = 0.

Multiplying by Q and taking the scalar product with di yields

αid
T
i Qdi = 0.

Or, since dT
i

Qdi > 0 in view of the positive definiteness of Q, we have αi = 0. �

Before discussing the general conjugate direction algorithm, let us investigate

just why the notion of Q-orthogonality is useful in the solution of the quadratic

problem

minimize
1

2
xT Qx − bT x, (9.1)

when Q is positive definite. Recall that the unique solution to this problem is also

the unique solution to the linear equation

Qx = b, (9.2)

and hence that the quadratic minimization problem is equivalent to a linear equation

problem.

Corresponding to the n × n positive definite matrix Q let d0, d1, . . . , dn−1 be n

nonzero Q-orthogonal vectors. By the above proposition they are linearly indepen-

dent, which implies that the solution x∗ of (9.1) or (9.2) can be expanded in terms

of them as

x∗ = α0d0 + · · · + αn−1dn−1 (9.3)

for some set of αi’s. In fact, multiplying by Q and then taking the scalar product

with di yields directly

αi =
dT

i
Qx∗

dT
i

Qdi

=
dT

i
b

dT
i

Qdi

. (9.4)

This shows that the αi’s and consequently the solution x∗ can be found by evaluation

of simple scalar products. The end result is

x∗ =
n−1
∑

i=0

dT
i

b

dT
i

Qdi

di. (9.5)

9.1 Conjugate Directions 265

There are two basic ideas imbedded in (9.5). The first is the idea of selecting

an orthogonal set of di’s so that by taking an appropriate scalar product, all terms

on the right side of (9.3), except the ith, vanish. This could, of course, have been

accomplished by making the di’s orthogonal in the ordinary sense instead of mak-

ing them Q-orthogonal. The second basic observation, however, is that by using

Q-orthogonality the resulting equation for αi can be expressed in terms of the known

vector b rather than the unknown vector x∗; hence the coefficients can be evaluated

without knowing x∗.
The expansion for x∗ can be considered to be the result of an iterative process

of n steps where at the ith step αidi is added. Viewing the procedure this way, and

allowing for an arbitrary initial point for the iteration, the basic conjugate direction

method is obtained.

Conjugate Direction Theorem. Let {di}n−1
i=0

be a set of nonzero Q-orthogonal vectors. For

any x0 ∈ En the sequence {xk} generated according to

xk+1 = xk + αkdk, k � 0 (9.6)

with

αk = −
gT

k
dk

dT
k

Qdk

(9.7)

and

gk = Qxk − b,

converges to the unique solution, x∗, of Qx = b after n steps, that is, xn = x∗.

Proof. Since the dk’s are linearly independent, we can write

x∗ − x0 = α0d0 + α1d1 + · · · + αn−1dn−1

for some set of αk’s. As we did to get (9.4), we multiply by Q and take the scalar

product with dk to find

αk =
dT

k
Q(x∗ − x0)

dT
k

Qdk

. (9.8)

Now following the iterative process (9.6) from x0 up to xk gives

xk − x0 = α0d0 + α1d1 + · · · + αk−1dk−1, (9.9)

and hence by the Q-orthogonality of the dk’s it follows that

dT
k Q(xk − x0) = 0. (9.10)

Substituting (9.10) into (9.8) produces

αk =
dT

k
Q(x∗ − xk)

dT
k

Qdk

= −
gT

k
dk

dT
k

Qdk

,

which is identical with (9.7). �

266 9 Conjugate Direction Methods

To this point the conjugate direction method has been derived essentially through

the observation that solving (9.1) is equivalent to solving (9.2). The conjugate di-

rection method has been viewed simply as a somewhat special, but nevertheless

straightforward, orthogonal expansion for the solution to (9.2). This viewpoint, al-

though important because of its underlying simplicity, ignores some of the most

important aspects of the algorithm; especially those aspects that are important when

extending the method to nonquadratic problems. These additional properties are dis-

cussed in the next section.

Also, methods for selecting or generating sequences of conjugate directions have

not yet been presented. Some methods for doing this are discussed in the exer-

cises; while the most important method, that of conjugate gradients, is discussed

in Sect. 9.3.

9.2 Descent Properties of the Conjugate Direction Method

We define Bk as the subspace of En spanned by {d0, d1, . . . , dk−1}. We shall show

that as the method of conjugate directions progresses each xk minimizes the objec-

tive over the k-dimensional linear variety x0 + Bk.

Expanding Subspace Theorem. Let {di}n−1
i=0

be a sequence of nonzero Q-orthogonal vectors

in En. Then for any x0 ∈ En the sequence {xk} generated according to

xk+1 = xk + αkdk (9.11)

αk = −
gT

k
dk

dT
k

Qdk

(9.12)

has the property that xk minimizes f (x) = 1
2
xT Qx−bT x on the line x = xk−1 +αdk−1,−∞ <

α < ∞, as well as on the linear variety x0 +Bk.

Proof. It need only be shown that xk minimizes f on the linear variety x0 + Bk,

since it contains the line x = xk−1 + αdk−1. Since f is a strictly convex function,

the conclusion will hold if it can be shown that gk is orthogonal to Bk (that is, the

gradient of f at xk is orthogonal to the subspace Bk). The situation is illustrated in

Fig. 9.1. (Compare Theorem 2, Sect. 7.5.)

We prove gk ⊥ Bk by induction. Since B0 is empty that hypothesis is true for

k = 0. Assuming that it is true for k, that is, assuming gk ⊥ Bk, we show that

gk+1 ⊥ Bk+1. We have

gk+1 = gk + αkQdk, (9.13)

and hence

dT
k gk+1 = dT

k gk + αkdT
k Qdk = 0 (9.14)

by definition of αk. Also for i < k

dT
i gk+1 = dT

i gk + αkdT
i Qdk. (9.15)

9.2 Descent Properties of the Conjugate Direction Method 267

The first term on the right-hand side of (9.15) vanishes because of the induction

hypothesis, while the second vanishes by the Q-orthogonality of the di’s. Thus

gk+1 ⊥ Bk+1. �

Fig. 9.1 Conjugate direction method

Corollary. In the method of conjugate directions the gradients gk, k = 0, 1, . . . , n satisfy

gT
k di = 0 for i < k.

The above theorem is referred to as the Expanding Subspace Theorem, since the

Bk’s form a sequence of subspaces with Bk+1 ⊃ Bk. Since xk minimizes f over

x0 + Bk, it is clear that xn must be the overall minimum of f .

Fig. 9.2 Interpretation of expanding subspace theorem

268 9 Conjugate Direction Methods

To obtain another interpretation of this result we again introduce the function

E(x) =
1

2
(x − x∗)T Q(x − x∗) (9.16)

as a measure of how close the vector x is to the solution x∗. Since E(x) =

f (x) + (1/2)x∗TQx∗ the function E can be regarded as the objective that we seek

to minimize.

By considering the minimization of E we can regard the original problem as one

of minimizing a generalized distance from the point x∗. Indeed, if we had Q = I,

the generalized notion of distance would correspond (within a factor of two) to the

usual Euclidean distance. For an arbitrary positive-definite Q we say E is a general-

ized Euclidean metric or distance function. Vectors di, i = 0, 1, . . . , n − 1 that are

Q-orthogonal may be regarded as orthogonal in this generalized Euclidean space

and this leads to the simple interpretation of the Expanding Subspace Theorem il-

lustrated in Fig. 9.2. For simplicity we assume x0 = 0. In the figure dk is shown as

being orthogonal to Bk with respect to the generalized metric. The point xk mini-

mizes E overBk while xk+1 minimizes E overBk+1. The basic property is that, since

dk is orthogonal to Bk, the point xk+1 can be found by minimizing E along dk and

adding the result to xk.

9.3 The Conjugate Gradient Method

The conjugate gradient method is the conjugate direction method that is obtained by

selecting the successive direction vectors as a conjugate version of the successive

gradients obtained as the method progresses. Thus, the directions are not specified

beforehand, but rather are determined sequentially at each step of the iteration. At

step k one evaluates the current negative gradient vector and adds to it a linear com-

bination of the previous direction vectors to obtain a new conjugate direction vector

along which to move.

There are three primary advantages to this method of direction selection. First,

unless the solution is attained in less than n steps, the gradient is always nonzero

and linearly independent of all previous direction vectors. Indeed, the gradient gk

is orthogonal to the subspace Bk generated by d0, d1, . . . , dk−1. If the solution is

reached before n steps are taken, the gradient vanishes and the process terminates—

it being unnecessary, in this case, to find additional directions.

Second, a more important advantage of the conjugate gradient method is the

especially simple formula that is used to determine the new direction vector. This

simplicity makes the method only slightly more complicated than steepest descent.

Third, because the directions are based on the gradients, the process makes good

uniform progress toward the solution at every step. This is in contrast to the situation

for arbitrary sequences of conjugate directions in which progress may be slight until

the final few steps. Although for the pure quadratic problem uniform progress is of

no great importance, it is important for generalizations to nonquadratic problems.

9.3 The Conjugate Gradient Method 269

Conjugate Gradient Algorithm

Starting at any x0 ∈ En define d0 = −g0 = b −Qx0 and

xk+1 = xk + αkdk (9.17)

αk = −
gT

k
dk

dT
k

Qdk

(9.18)

dk+1 = −gk+1 + βkdk (9.19)

βk =
gT

k+1
Qdk

dT
k

Qdk

, (9.20)

where gk = Qxk − b.

In the algorithm the first step is identical to a steepest descent step; each succeed-

ing step moves in a direction that is a linear combination of the current gradient and

the preceding direction vector. The attractive feature of the algorithm is the simple

formulae, (9.19) and (9.20), for updating the direction vector. The method is only

slightly more complicated to implement than the method of steepest descent but

converges in a finite number of steps.

Verification of the Algorithm

To verify that the algorithm is a conjugate direction algorithm, it is necessary to

verify that the vectors {dk} are Q-orthogonal. It is easiest to prove this by simulta-

neously proving a number of other properties of the algorithm. This is done in the

theorem below where the notation [d0, d1, . . . , dk] is used to denote the subspace

spanned by the vectors d0, d1, . . . , dk.

Conjugate Gradient Theorem. The conjugate gradient algorithm (9.17)–(9.20) is a conju-

gate direction method. If it does not terminate at xk, then

a) [g0, g1, . . . , gk] = [g0 , Qg0, . . . , Qkg0]

b) [d0, d1, . . . , dk] = [g0 , Qg0, . . . , Qkg0]

c) dT
k

Qdi = 0 for i � k − 1

d) αk = gT
k

gk/d
T
k

Qdk

e) βk = gT
k+1gk+1/g

T
k

gk.

Proof. We first prove (a), (b) and (c) simultaneously by induction. Clearly, they are

true for k = 0. Now suppose they are true for k, we show that they are true for k + 1.

We have

gk+1 = gk + αkQdk.

By the induction hypothesis both gk and Qdk belong to [g0, Qg0, . . . , Qk+1g0], the

first by (a) and the second by (b). Thus gk+1 ∈ [g0, Qg0, . . . , Qk+1g0]. Further-

more gk+1 � [g0, Qg0, . . . , Qkg0] = [d0, d1, . . . , dk] since otherwise gk+1 = 0,

270 9 Conjugate Direction Methods

because for any conjugate direction method gk+1 is orthogonal to [d0, d1, . . . , dk].

(The induction hypothesis on (c) guarantees that the method is a conjugate direction

method up to xk+1.) Thus, finally we conclude that

[g0, g1, . . . , gk+1] = [g0, Qg0, . . . , Qk+1g0],

which proves (a).

To prove (b) we write
dk+1 = −gk+1 + βkdk,

and (b) immediately follows from (a) and the induction hypothesis on (b).

Next, to prove (c) we have

dT
k+1Qdi = −gT

k+1Qdi + βkdT
k Qdi.

For i = k the right side is zero by definition of βk. For i < k both terms vanish.

The first term vanishes since Qdi ∈ [d1, d2, . . . , di+1], the induction hypothe-

sis which guarantees the method is a conjugate direction method up to xk+1, and

by the Expanding Subspace Theorem that guarantees that gk+1 is orthogonal to

[d0, d1, . . . , di+1]. The second term vanishes by the induction hypothesis on (c).

This proves (c), which also proves that the method is a conjugate direction method.

To prove (d) we have

−gT
k dk = gT

k gk − βk−1gT
k dk−1,

and the second term is zero by the Expanding Subspace Theorem.

Finally, to prove (e) we note that gT
k+1

gk = 0, because gk ∈ [d0, . . . , dk] and gk+1

is orthogonal to [d0, . . . , dk]. Thus since

Qdk =
1

αk

(gk+1 − gk),

we have

gT
k+1Qdk =

1

αk

gT
k+1gk+1. �

Parts (a) and (b) of this theorem are a formal statement of the interrelation between

the direction vectors and the gradient vectors. Part (c) is the equation that verifies

that the method is a conjugate direction method. Parts (d) and (e) are identities

yielding alternative formulae for αk and βk that are often more convenient than the

original ones.

9.4 The C–G Method as an Optimal Process

We turn now to the description of a special viewpoint that leads quickly to some

very profound convergence results for the method of conjugate gradients. The basis

of the viewpoint is part (b) of the Conjugate Gradient Theorem. This result tells us

9.4 The C–G Method as an Optimal Process 271

the spaces Bk over which we successively minimize are determined by the original

gradient g0 and multiplications of it by Q. Each step of the method brings into

consideration an additional power of Q times g0. It is this observation we exploit.

Let us consider a new general approach for solving the quadratic minimization

problem. Given an arbitrary starting point x0, let

xk+1 = x0 + Pk(Q)g0, (9.21)

where Pk is a polynomial of degree k. Selection of a set of coefficients for each of

the polynomials Pk determines a sequence of xk’s. We have

xk+1 − x∗ = x0 − x∗ + Pk(Q)Q(x0 − x∗)

= [I +QPk(Q)](x0 − x∗), (9.22)

and hence

E(xk+1) =
1

2
(xk+1 − x∗)T Q(xk+1 − x∗)

=
1

2
(x0 − x∗)T Q[I +QPk(Q)]2(x0 − x∗). (9.23)

We may now pose the problem of selecting the polynomial Pk in such a way as to

minimize E(xk+1) with respect to all possible polynomials of degree k. Expanding

(9.21), however, we obtain

xk+1 = x0 + γ0g0 + γ1Qg0 + · · · + γkQkg0, (9.24)

where the γi’s are the coefficients of Pk. In view of

Bk+1 = [d0, d1, . . . , dk] = [g0, Qg0, . . . , Qkg0],

the vector xk+1 = x0+α0d0+α1d1+ . . .+αkdk generated by the method of conjugate

gradients has precisely this form; moreover, according to the Expanding Subspace

Theorem, the coefficients γi determined by the conjugate gradient process are such

as to minimize E(xk+1). Therefore, the problem posed of selecting the optimal Pk is

solved by the conjugate gradient procedure.

The explicit relation between the optimal coefficients γi of Pk and the constants

αi, βi associated with the conjugate gradient method is, of course, somewhat com-

plicated, as is the relation between the coefficients of Pk and those of Pk+1. The

power of the conjugate gradient method is that as it progresses it successively solves

each of the optimal polynomial problems while updating only a small amount of

information.

We summarize the above development by the following very useful theorem.

272 9 Conjugate Direction Methods

Theorem 1. The point xk+1 generated by the conjugate gradient method satisfies

E(xk+1) = min
Pk

1

2
(x0 − x∗)T Q[I +QPk(Q)]2(x0 − x∗), (9.25)

where the minimum is taken with respect to all polynomials Pk of degree k.

Bounds on Convergence

To use Theorem 1 most effectively it is convenient to recast it in terms of eigenvec-

tors and eigenvalues of the matrix Q. Suppose that the vector x0 − x∗ is written in

the eigenvector expansion

x0 − x∗ = ξ1e1 + ξ2e2 + · · · + ξnen,

where the ei’s are normalized eigenvectors of Q. Then since Q(x0 − x∗) = λ1ξ1e1 +

λ2ξ2e2 + . . . + λnξnen and since the eigenvectors are mutually orthogonal, we have

E(x0) =
1

2
(x0 − x∗)T Q(x0 − x∗) =

1

2

n
∑

i=1

λiξ
2
i , (9.26)

where the λi’s are the corresponding eigenvalues of Q. Applying the same manipu-

lations to (9.25), we find that for any polynomial Pk of degree k there holds

E(xk+1) �
1

2

n
∑

i=1

[1 + λiPk(λi)]
2λiξ

2
i .

It then follows that

E(xk+1) � max
λi

[1 + λiPk(λi)]
2 1

2

n
∑

i=1′

λiξ
2
i ,

and hence finally

E(xk+1) � max
λi

[1 + λiPk(λi)]
2E(x0).

We summarize this result by the following theorem.

Theorem 2. In the method of conjugate gradients we have

E(xk+1) � max
λi

[1 + λiPk(λi)]
2E(x0) (9.27)

for any polynomial Pk of degree k, where the maximum is taken over all eigenvalues λi

of Q.

This way of viewing the conjugate gradient method as an optimal process is ex-

ploited in the next section. We note here that it implies the far from obvious fact that

every step of the conjugate gradient method is at least as good as a steepest descent

9.5 The Partial Conjugate Gradient Method 273

step would be from the same point. To see this, suppose xk has been computed by

the conjugate gradient method. From (9.24) we know xk has the form

xk = x0 + γ̄0g0 + γ̄1Qg0 + · · · + γ̄k−1Qk−1g0.

Now if xk+1 is computed from xk by steepest descent, then xk+1 = xk−αkgk for some

αk. In view of part (a) of the Conjugate Gradient Theorem xk+1 will have the form

(9.24). Since for the conjugate direction method E(xk+1) is lower than any other xk+1

of the form (9.24), we obtain the desired conclusion.

Typically when some information about the eigenvalue structure of Q is known,

that information can be exploited by construction of a suitable polynomial Pk to use

in (9.27). Suppose, for example, it were known that Q had only m < n distinct eigen-

values. Then it is clear that by suitable choice of Pm−1 it would be possible to make

the mth degree polynomial 1+λPm−1(λ) have its m zeros at the m eigenvalues. Using

that particular polynomial in (9.27) shows that E(xm) = 0. Thus the optimal solution

will be obtained in at most m, rather than n, steps. More sophisticated examples of

this type of reasoning are contained in the next section and in the exercises at the

end of the chapter.

9.5 The Partial Conjugate Gradient Method

A collection of procedures that are natural to consider at this point are those in

which the conjugate gradient procedure is carried out for m + 1 < n steps and then,

rather than continuing, the process is restarted from the current point and m + 1

more conjugate gradient steps are taken. The special case of m = 0 corresponds

to the standard method of steepest descent, while m = n − 1 corresponds to the

full conjugate gradient method. These partial conjugate gradient methods are of

extreme theoretical and practical importance, and their analysis yields additional

insight into the method of conjugate gradients. The development of the last section

forms the basis of our analysis.

As before, given the problem

minimize
1

2
xT Qx − bT x, (9.28)

we define for any point xk the gradient gk = Qxk−b. We consider an iteration scheme

of the form

xk+1 = xk + Pk(Q)gk, (9.29)

where Pk is a polynomial of degree m. We select the coefficients of the polynomial

Pk so as to minimize

E(xk+1) =
1

2
(xk+1 − x∗)T Q(xk+1 − x∗), (9.30)

274 9 Conjugate Direction Methods

where x∗ is the solution to (9.28). In view of the development of the last section, it

is clear that xk+1 can be found by taking m + 1 conjugate gradient steps rather than

explicitly determining the appropriate polynomial directly. (The sequence indexing

is slightly different here than in the previous section, since now we do not give

separate indices to the intermediate steps of this process. Going from xk to xk+1 by

the partial conjugate gradient method involves m other points.)

The results of the previous section provide a tool for convergence analysis of

this method. In this case, however, we develop a result that is of particular interest

for Q’s having a special eigenvalue structure that occurs frequently in optimization

problems, especially, as shown below and in Chap. 12, in the context of penalty

function methods for solving problems with constraints. We imagine that the eigen-

values of Q are of two kinds: there are m large eigenvalues that may or may not be

located near each other, and n − m smaller eigenvalues located within an interval

[a, b]. Such a distribution of eigenvalues is shown in Fig. 9.3.

As an example, consider as in Sect. 8.3 the problem on En

minimize
1

2
xT Qx − bT x

subject to cT x = 0,

Fig. 9.3 Eigenvalue distribution

where Q is a symmetric positive definite matrix with eigenvalues in the interval

[a, A] and b and c are vectors in En. This is a constrained problem but it can be

approximated by the unconstrained problem

minimize
1

2
xT Qx − bT x +

1

2
μ(cT x)2,

where μ is a large positive constant. The last term in the objective function is called

a penalty term; for large μ minimization with respect to x will tend to make cT x

small.

The total quadratic term in the objective is 1
2
xT (Q + μccT)x, and thus it is appro-

priate to consider the eigenvalues of the matrix Q + μccT . As μ tends to infinity it

can be shown (see Chap. 13) that one eigenvalue of this matrix tends to infinity and

the other n − 1 eigenvalues remain bounded within the original interval [a, A].

As noted before, if steepest descent were applied to a problem with such a struc-

ture, convergence would be governed by the ratio of the smallest to largest eigen-

value, which in this case would be quite unfavorable. In the theorem below it is

stated that by successively repeating m+1 conjugate gradient steps the effects of the

9.5 The Partial Conjugate Gradient Method 275

m largest eigenvalues are eliminated and the rate of convergence is determined as if

they were not present. A computational example of this phenomenon is presented in

Sect. 13.5. The reader may find it interesting to read that section right after this one.

Theorem (Partial Conjugate Gradient Method). Suppose the symmetric positive definite

matrix Q has n−m eigenvalues in the interval [a, b], a > 0 and the remaining m eigenvalues

are greater than b. Then the method of partial conjugate gradients, restarted every m + 1
steps, satisfies

E(xk+1) �

(

b − a

b + a

)2

E(xk). (9.31)

(The point xk+1 is found from xk by taking m + 1 conjugate gradient steps so that each

increment in k is a composite of several simple steps.)

Proof. Application of (9.27) yields

E(xk+1 � max
λi

[1 + λiP(λi)]
2E(xk) (9.32)

for any mth-order polynomial P, where the λi’s are the eigenvalues of Q. Let us

select P so that the (m + 1)th-degree polynomial q(λ) = 1 + λP(λ) vanishes at

(a + b)/2 and at the m large eigenvalues of Q. This is illustrated in Fig. 9.4. For this

choice of P we may write (9.32) as

E(xk+1) � max
a�λi�b

[1 + λiP(λi)]
2E(xk).

Since the polynomial q(λ) = 1 + λP(λ) has m + 1 real roots, q′(λ) will have m real

roots which alternate between the roots of q(λ) on the real axis. Likewise, q′′(λ)
will have m − 1 real roots which alternate between the roots of q′(λ). Thus, since

q(λ) has no root in the interval (−∞, (a + b)/2), we see that q′′(λ) does not change

sign in that interval; and since it is easily verified that q′′(0) > 0 it follows that q(λ)

is convex for λ < (a + b)/2. Therefore, on [0, (a + b)/2], q(λ) lies below the line

1 − [2λ/(a + b)]. Thus we conclude that

q(λ) � 1 − 2λ

a + b

on [0, (a + b)/2] and that

q′
(

a + b

2

)

� − 2

a + b
.

We can see that on [(a + b)/2, b]

q(λ) � 1 − 2λ

a + b
,

since for q(λ) to cross first the line 1− [2λ/(a+b)] and then the λ-axis would require

at least two changes in sign of q′′(λ), whereas, at most one root of q′′(λ) exists to

the left of the second root of q(λ). We see then that the inequality

276 9 Conjugate Direction Methods

|1 + λP(λ)| � |1 − 2λ

a + b
|

is valid on the interval [a, b]. The final result (9.31) follows immediately. �

Fig. 9.4 Construction for proof

In view of this theorem, the method of partial conjugate gradients can be regarded

as a generalization of steepest descent, not only in its philosophy and implementa-

tion, but also in its behavior. Its rate of convergence is bounded by exactly the same

formula as that of steepest descent but with the largest eigenvalues removed from

consideration. (It is worth noting that for m = 0 the above proof provides a simple

derivation of the Steepest Descent Theorem.)

9.6 Extension to Nonquadratic Problems

The general unconstrained minimization problem on En

minimize f (x)

can be attacked by making suitable approximations to the conjugate gradient al-

gorithm. There are a number of ways that this might be accomplished; the choice

depends partially on what properties of f are easily computable. We look at three

methods in this section and another in the following section.

Quadratic Approximation

In the quadratic approximation method we make the following associations at xk:

gk ↔ ∇ f (xk)T , Q↔ F(xk),

9.6 Extension to Nonquadratic Problems 277

and using these associations, reevaluated at each step, all quantities necessary to

implement the basic conjugate gradient algorithm can be evaluated. If f is quadratic,

these associations are identities, so that the general algorithm obtained by using

them is a generalization of the conjugate gradient scheme. This is similar to the

philosophy underlying Newton’s method where at each step the solution of a general

problem is approximated by the solution of a purely quadratic problem through these

same associations.

When applied to nonquadratic problems, conjugate gradient methods will not

usually terminate within n steps. It is possible therefore simply to continue finding

new directions according to the algorithm and terminate only when some termina-

tion criterion is met. Alternatively, the conjugate gradient process can be interrupted

after n or n + 1 steps and restarted with a pure gradient step. Since Q-conjugacy of

the direction vectors in the pure conjugate gradient algorithm is dependent on the

initial direction being the negative gradient, the restarting procedure seems to be

preferred. We always include this restarting procedure. The general conjugate gra-

dient algorithm is then defined as below.

Step 1. Starting at x0 compute g0 = ∇ f (x0)T and set d0 = −g0.

Step 2. For k = 0, 1, . . . , n − 1:

(a) Set xk+1 = xk + αkdk where αk =
−gT

k
dk

dT
k

F(xk)dk
.

(b) Compute gk+1 = ∇ f (xk+1)T .

(c) Unless k = n − 1, set dk+1 = −gk+1 + βkdk where

βk =
gT

k+1
F(xk)dk

dT
k

F(xk)dk

and repeat (a).

Step 3. Replace x0 by xn and go back to Step 1.

An attractive feature of the algorithm is that, just as in the pure form of Newton’s

method, no line searching is required at any stage. Also, the algorithm converges

in a finite number of steps for a quadratic problem. The undesirable features are

that F(xk) must be evaluated at each point, which is often impractical, and that the

algorithm is not, in this form, globally convergent.

Line Search Methods

It is possible to avoid the direct use of the association Q ↔ F(xk). First, instead

of using the formula for αk in Step 2(a) above, αk is found by a line search that

minimizes the objective. This agrees with the formula in the quadratic case. Second,

the formula for βk in Step 2(c) is replaced by a different formula, which is, however,

equivalent to the one in 2(c) in the quadratic case.

278 9 Conjugate Direction Methods

The first such method proposed was the Fletcher–Reeves method, in which Part

(e) of the Conjugate Gradient Theorem is employed; that is,

βk =
gT

k+1
gk+1

gT
k

gk

.

The complete algorithm (using restarts) is:

Step 1. Given x0 compute g0 = ∇ f (x0)T and set d0 = −g0.

Step 2. For k = 0, 1, . . . , n − 1:

(a) Set xk+1 = xk + αkdk where αk minimizes f (xk + αdk).

(b) Compute gk+1 = ∇ f (xk+1)T .

(c) Unless k = n − 1, set dk+1 = −gk+1 + βkdk where

βk =
gT

k+1
gk+1

gT
k

gk

.

Step 3. Replace x0 by xn and go back to Step 1.

Another important method of this type is the Polak–Ribiere method, where

βk =
(gk+1 − gk)T gk+1

gT
k

gk

is used to determine βk. Again this leads to a value identical to the standard for-

mula in the quadratic case. Experimental evidence seems to favor the Polak–Ribiere

method over other methods of this general type.

Convergence

Global convergence of the line search methods is established by noting that a pure

steepest descent step is taken every n steps and serves as a spacer step. Since the

other steps do not increase the objective, and in fact hopefully they decrease it,

global convergence is assured. Thus the restarting aspect of the algorithm is impor-

tant for global convergence analysis, since in general one cannot guarantee that the

directions dk generated by the method are descent directions.

The local convergence properties of both of the above, and most other, non-

quadratic extensions of the conjugate gradient method can be inferred from the

quadratic analysis. Assuming that at the solution, x∗, the matrix F(x∗) is positive

definite, we expect the asymptotic convergence rate per step to be at least as good

as steepest descent, since this is true in the quadratic case. In addition to this bound

on the single step rate we expect that the method is of order two with respect to

each complete cycle of n steps. In other words, since one complete cycle solves a

quadratic problem exactly just as Newton’s method does in one step, we expect that

9.7 ∗Parallel Tangents 279

for general nonquadratic problems there will hold |xk+n − x∗| � c|xk − x∗|2 for some

c and k = 0, n, 2n, 3n, This can indeed be proved, and of course underlies the

original motivation for the method. For problems with large n, however, a result of

this type is in itself of little comfort, since we probably hope to terminate in fewer

than n steps. Further discussion on this general topic is contained in Sect. 10.4.

Scaling and Partial Methods

Convergence of the partial conjugate gradient method, restarted every m + 1 steps,

will in general be linear. The rate will be determined by the eigenvalue structure

of the Hessian matrix F(x∗), and it may be possible to obtain fast convergence

by changing the eigenvalue structure through scaling procedures. If, for example,

the eigenvalues can be arranged to occur in m + 1 bunches, the rate of the partial

method will be relatively fast. Other structures can be analyzed by use of Theorem 2,

Sect. 9.4, by using F(x∗) rather than Q.

*9.7 ∗Parallel Tangents

In early experiments with the method of steepest descent the path of descent was

noticed to be highly zig-zag in character, making slow indirect progress toward the

solution. (This phenomenon is now quite well understood and is predicted by the

convergence analysis of Sect. 8.2.) It was also noticed that in two dimensions the so-

lution point often lies close to the line that connects the zig-zag points, as illustrated

in Fig. 9.5. This observation motivated the accelerated gradient method in which

a complete cycle consists of taking two steepest descent steps and then searching

along the line connecting the initial point and the point obtained after the two gra-

dient steps. The method of parallel tangents (PARTAN) was developed through an

Fig. 9.5 Path of gradient method

280 9 Conjugate Direction Methods

attempt to extend this idea to an acceleration scheme involving all previous steps.

The original development was based largely on a special geometric property of the

tangents to the contours of a quadratic function, but the method is now recognized

as a particular implementation of the method of conjugate gradients, and this is the

context in which it is treated here.

The algorithm is defined by reference to Fig. 9.6. Starting at an arbitrary point x0

the point x1 is found by a standard steepest descent step. After that, from a point xk

the corresponding yk is first found by a standard steepest descent step from xk, and

then xk+1 is taken to be the minimum point on the line connecting xk−1 and yk. The

process is continued for n steps and then restarted with a standard steepest descent

step.

Notice that except for the first step, xk+1 is determined from xk, not by searching

along a single line, but by searching along two lines. The direction dk connecting

two successive points (indicated as dotted lines in the figure) is thus determined

only indirectly. We shall see, however, that, in the case where the objective function

is quadratic, the dk’s are the same directions, and the xk’s are the same points, as

would be generated by the method of conjugate gradients.

PARTAN Theorem. For a quadratic function, PARTAN is equivalent to the method of con-

jugate gradients.

Fig. 9.6 PARTAN

Fig. 9.7 One step of PARTAN

Proof. The proof is by induction. It is certainly true of the first step, since it is a

steepest descent step. Suppose that x0, x1, . . . , xk have been generated by the con-

jugate gradient method and xk+1 is determined according to PARTAN. This single

9.8 Exercises 281

step is shown in Fig. 9.7. We want to show that xk+1 is the same point as would

be generated by another step of the conjugate gradient method. For this to be true

xk+1 must be that point which minimizes f over the plane defined by dk−1 and

gk = ∇ f (xk)T . From the theory of conjugate gradients, this point will also minimize

f over the subspace determined by gk and all previous di’ s. Equivalently, we must

find the point x where ∇ f (x) is orthogonal to both gk and dk−1. Since yk minimizes

f along gk, we see that ∇ f (yk) is orthogonal to gk. Since ∇ f (xk−1) is contained in

the subspace [d0, d1, . . . , dk−1] and because gk is orthogonal to this subspace by

the Expanding Subspace Theorem, we see that ∇ f (xk−1) is also orthogonal to gk.

Since ∇ f (x) is linear in x, it follows that at every point x on the line through xk−1

and yk we have ∇ f (x) orthogonal to gk. By minimizing f along this line, a point

xk+1 is obtained where in addition∇ f (xk+1) is orthogonal to the line. Thus∇ f (xk+1)

is orthogonal to both gk and the line joining xk−1 and yk. It follows that ∇ f (xk+1) is

orthogonal to the plane. �

There are advantages and disadvantages of PARTAN relative to other methods

when applied to nonquadratic problems. One attractive feature of the algorithm is

its simplicity and ease of implementation. Probably its most desirable property, how-

ever, is its strong global convergence characteristics. Each step of the process is at

least as good as steepest descent; since going from xk to yk is exactly steepest de-

scent, and the additional move to xk+1 provides further decrease of the objective

function. Thus global convergence is not tied to the fact that the process is restarted

every n steps. It is suggested, however, that PARTAN should be restarted every n

steps (or n + 1 steps) so that it will behave like the conjugate gradient method near

the solution.

An undesirable feature of the algorithm is that two line searches are required at

each step, except the first, rather than one as is required by, say, the Fletcher–Reeves

method. This is at least partially compensated by the fact that searches need not

be as accurate for PARTAN, for while inaccurate searches in the Fletcher–Reeves

method may yield nonsensical successive search directions, PARTAN will at least

do as well as steepest descent.

9.8 Exercises

1. Let Q be a positive definite symmetric matrix and suppose p0, p1, . . . , pn−1

are linearly independent vectors in En. Show that a Gram–Schmidt procedure

can be used to generate a sequence of Q-conjugate directions from the pi’s.

Specifically, show that d0, d1, . . . , dn−1 defined recursively by

d0 = p0

dk+1 = pk+1 −
k

∑

i=0

pT
k+1Qdi

dT
i

Qdi

di

form’s a Q-conjugate set.

282 9 Conjugate Direction Methods

2. Suppose the pi’s in Exercise 1 are generated as moments of Q, that is, suppose

pk = Qkp0, k = 1, 2, . . . , n − 1. Show that the corresponding dk’s can then

be generated by a (three-term) recursion formula where dk+1 is defined only in

terms of Qdk, dk and dk−1.

3. Suppose the pk’s in Exercise 1 are taken as pk = ek where ek is the kth unit

coordinate vector and the dk’s are constructed accordingly. Show that using dk’s

in a conjugate direction method to minimize (1/2)xTQx − bT x is equivalent to

the application of Gaussian elimination to solve Qx = b.

4. Let f (x) = (1/2)xT Qx − bT x be defined on En with Q positive definite. Let

x1 be a minimum point of f over a subspace of En containing the vector d

and let x2 be the minimum of f over another subspace containing d. Suppose

f (x1) < f (x2). Show that x1 − x2 is Q-conjugate to d.

5. Let Q be a symmetric matrix. Show that any two eigenvectors of Q, correspond-

ing to distinct eigenvalues, are Q-conjugate.

6. Let Q be an n × n symmetric matrix and let d0, d1, . . . , dn−1 be Q-conjugate.

Show how to find an E such that ET QE is diagonal.

7. Show that in the conjugate gradient method Qdk−1 ∈ Bk+1.

8. Derive the rate of convergence of the method of steepest descent by viewing it

as a one-step optimal process.

9. Let Pk(Q) = c0 + c1Q + c2Q2 + · · ·+ cmQm be the optimal polynomial in (9.29)

minimizing (9.30). Show that the ci’s can be found explicitly by solving the

vector equation

−

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

gT
k

Qgk gT
k

Q2gk · · · gT
k

Qm+1gk

gT
k

Q2gk gT
k

Q3gk · · · gT
k

Qm+2gk

...

gT
k

Qm+1gk · · · gT
k

Q2m+1gk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

c0

c1

...

cm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

gT
k

gk

gT
k

Qgk

...

gT
k

Qmgk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Show that this reduces to steepest descent when m = 0.

10. Show that for the method of conjugate directions there holds

E(xk) � 4

(

1 − √γ
1 +
√
γ

)2k

E(x0),

where γ = a/A and a and A are the smallest and largest eigenvalues of Q. Hint:

In (9.27) select Pk−1(λ) so that

1 + λPk−1(λ) =
Tk

(

A+a−2λ
A−a

)

Tk

(

A+a
A−a

) ,

References 283

where Tk(λ) = cos(k arc cos λ) is the kth Chebyshev polynomial. This choice

gives the minimum maximum magnitude on [a, A]. Verify and use the inequality

(1 − γ)k

(1 +
√
γ)2k + (1 − √γ)2k

�

(

1 − √γ
1 +
√
γ

)k

.

11. Suppose it is known that each eigenvalue of Q lies either in the interval [a, A]

or in the interval [a+∆, A+∆] where a, A, and ∆ are all positive. Show that the

partial conjugate gradient method restarted every two steps will converge with

a ratio no greater than [(A − a)/(A + a)]2 no matter how large ∆ is.

12. Modify the first method given in Sect. 9.6 so that it is globally convergent.

13. Show that in the purely quadratic form of the conjugate gradient method

dT
k

Qdk = −dT
k

Qgk. Using this show that to obtain xk+1 from xk it is necessary

to use Q only to evaluate gk and Qgk.

14. Show that in the quadratic problem Qgk can be evaluated by taking a unit step

from xk in the direction of the negative gradient and evaluating the gradient

there. Specifically, if yk = xk − gk and pk = ∇ f (yk)T , then Qgk = gk − pk.

15. Combine the results of Exercises 13 and 14 to derive a conjugate gradient

method for general problems much in the spirit of the first method of Sect. 9.6

but which does not require knowledge of F(xk) or a line search.

References

9.1–9.3 For the original development of conjugate direction methods, see Hestenes

and Stiefel [H10] and Hestenes [H7], [H9]. For another introductory treat-

ment see Beckman [B8]. The method was extended to the case where Q is

not positive definite, which arises in constrained problems, by Luenberger

[L9], [L11].

9.4 The idea of viewing the conjugate gradient method as an optimal process

was originated by Stiefel [S10]. Also see Daniel [D1] and Faddeev and

Faddeeva [F1].

9.5 The partial conjugate gradient method presented here is identical to the

so-called s-step gradient method. See Faddeev and Faddeeva [F1] and

Forsythe [F14]. The bound on the rate of convergence given in this sec-

tion in terms of the interval containing the n − m smallest eigenvalues was

first given in Luenberger [L13]. Although this bound cannot be expected to

be tight, it is a reasonable conjecture that it becomes tight as the m largest

eigenvalues tend to infinity with arbitrarily large separation.

9.6 For the first approximate method, see Daniel [D1]. For the line search meth-

ods, see Fletcher and Reeves [F12], Polak and Ribiere [P5], and Polak [P4].

For proof of the n-step, order two convergence, see Cohen [C4]. For a sur-

vey of computational experience of these methods, see Fletcher [F9].

284 9 Conjugate Direction Methods

9.7 PARTAN is due to Shah, Buehler, and Kempthome [S2]. Also see

Wolfe [W5].

9.8 The approach indicated in Exercises 1 and 2 can be used as a foundation

for the development of conjugate gradients; see Antosiewicz and Rhein-

boldt [A7], Vorobyev [V6], Faddeev and Faddeeva [F1], and Luenberger

[L8]. The result stated in Exercise 3 is due to Hestenes and Stiefel [H10].

Exercise 4 is due to Powell [P6]. For the solution to Exercise 10, see Fad-

deev and Faddeeva [F1] or Daniel [D1].

Chapter 10

Quasi-Newton Methods

In this chapter we take another approach toward the development of methods lying

somewhere intermediate to steepest descent and Newton’s method. Again working

under the assumption that evaluation and use of the Hessian matrix is impractical or

costly, the idea underlying quasi-Newton methods is to use an approximation to the

inverse Hessian in place of the true inverse that is required in Newton’s method. The

form of the approximation varies among different methods—ranging from the sim-

plest where it remains fixed throughout the iterative process, to the more advanced

where improved approximations are built up on the basis of information gathered

during the descent process.

The quasi-Newton methods that build up an approximation to the inverse Hessian

are analytically the most sophisticated methods discussed in this book for solving

unconstrained problems and represent the culmination of the development of algo-

rithms through detailed analysis of the quadratic problem. As might be expected,

the convergence properties of these methods are somewhat more difficult to dis-

cover than those of simpler methods. Nevertheless, we are able, by continuing with

the same basic techniques as before, to illuminate their most important features.

In the course of our analysis we develop two important generalizations of the

method of steepest descent and its corresponding convergence rate theorem. The

first, discussed in Sect. 10.1, modifies steepest descent by taking as the direction

vector a positive definite transformation of the negative gradient. The second, dis-

cussed in Sect. 10.8, is a combination of steepest descent and Newton’s method.

Both of these fundamental methods have convergence properties analogous to those

of steepest descent.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 10

285

286 10 Quasi-Newton Methods

10.1 Modified Newton Method

A very basic iterative process for solving the problem

minimize f (x)

which includes as special cases most of our earlier ones is

xk+1 = xk − αkSk∇ f (xk)T (10.1)

where Sk is a symmetric n × n matrix and where, as usual, αk is chosen to minimize

f (xk+1). If Sk is the inverse of the Hessian of f , we obtain Newton’s method, while

if Sk = I we have steepest descent. It would seem to be a good idea, in general,

to select Sk as an approximation to the inverse of the Hessian. We examine that

philosophy in this section.

First, we note, as in Sect. 8.5, that in order that the process (10.1) be guaranteed

to be a descent method for small values of α, it is necessary in general to require

that Sk be positive definite. We shall therefore always impose this as a requirement.

Because of the similarity of the algorithm (10.1) with steepest descent† it should

not be surprising that its convergence properties are similar in character to our ear-

lier results. We derive the actual rate of convergence by considering, as usual, the

standard quadratic problem with

f (x) =
1

2
xT Qx − bT x, (10.2)

where Q is symmetric and positive definite. For this case we can find an explicit

expression for αk in (10.1). The algorithm becomes

xk+1 = xk − αkSkgk, (10.3a)

where

gk = Qxk − b (10.3b)

αk =
gT

k
Skgk

gT
k

SkQSkgk

. (10.3c)

We may then derive the convergence rate of this algorithm by slightly extending the

analysis carried out for the method of steepest descent.

Modified Newton Method Theorem (Quadratic Case). Let x∗ be the uniqueminimum point

of f , and define E(x) = 1
2
(x − x∗)T Q(x − x∗).

† The algorithm (10.1) is sometimes referred to as the method of deflected gradients, since the
direction vector can be thought of as being determined by deflecting the gradient through multipli-
cation by Sk.

10.1 Modified Newton Method 287

Then for the algorithm (10.3) there holds at every step k

E(xk+1) �

(

Bk − bk

Bk + bk

)2

E(xk), (10.4)

where bk and Bk are, respectively, the smallest and largest eigenvalues of thematrix SkQ.

Proof. We have by direct substitution

E(xk) − E(xk+1)

E(xk)
=

(gT
k

Skgk)2

(gT
k

SkQSkgk)(gT
k

Q−lgk)
.

Letting Tk = S
1/2
k

QS
1/2
k

and pk = S
1/2
k

gk we obtain

E(xk) − E(xk+1)

E(xk)
=

(pT
k

Pk)2

(pT
k

Tkpk)(pT
k

T−1
k pk)

.

From the Kantorovich inequality we obtain easily

E(xk+1) �

(

Bk − bk

Bk + bk

)2

E(xk),

where bk and Bk are the smallest and largest eigenvalues of Tk. Since S
1/2
k

TkS
−1/2
k
=

SkQ, we see that SkQ is similar to Tk and therefore has the same eigenvalues. �

This theorem supports the intuitive notion that for the quadratic problem one

should strive to make Sk close to Q−1 since then both bk and Bk would be close

to unity and convergence would be rapid. For a nonquadratic objective function f

the analog to Q is the Hessian F(x), and hence one should try to make Sk close

to F(xk)−1.

Two remarks may help to put the above result in proper perspective. The first re-

mark is that both the algorithm (10.1) and the theorem stated above are only simple,

minor, and natural extensions of the work presented in Chap. 8 on steepest descent.

As such the result of this section can be regarded, correspondingly, not as a new idea

but as an extension of the basic result on steepest descent. The second remark is that

this one simple result when properly applied can quickly characterize the conver-

gence properties of some fairly complex algorithms. Thus, rather than an isolated

result concerned with a specific form of algorithm, the theorem above should be

regarded as a general tool for convergence analysis. It provides significant insight

into various quasi-Newton methods discussed in this chapter.

A Classical Method

We conclude this section by mentioning the classical modified Newton’s method,

a standard method for approximating Newton’s method without evaluating F(xk)−1

for each k. We set

288 10 Quasi-Newton Methods

xk+1 = xk − αk[F(x0)]−1∇ f (xk)T . (10.5)

In this method the Hessian at the initial point x0 is used throughout the process.

The effectiveness of this procedure is governed largely by how fast the Hessian is

changing—in other words, by the magnitude of the third derivatives of f .

10.2 Construction of the Inverse

The fundamental idea behind most quasi-Newton methods is to try to construct the

inverse Hessian, or an approximation of it, using information gathered as the descent

process progresses. The current approximation Hk is then used at each stage to de-

fine the next descent direction by setting Sk = Hk in the modified Newton method.

Ideally, the approximations converge to the inverse of the Hessian at the solution

point and the overall method behaves somewhat like Newton’s method. In this sec-

tion we show how the inverse Hessian can be built up from gradient information

obtained at various points.

Let f be a function on En that has continuous second partial derivatives. If for

two points xk+1, xk we define gk+1 = ∇ f (xk+1)T , gk = ∇ f (xk)T and pk = xk+1 − xk,

then

gk+1 − gk � F(xk)pk. (10.6)

If the Hessian, F, is constant, then we have

qk ≡ gk+1 − gk = Fpk, (10.7)

and we see that evaluation of the gradient at two points gives information about F. If

n linearly independent directions p0, p1, p2, . . . , pn−1 and the corresponding qk’s are

known, then F is uniquely determined. Indeed, letting P and Q be the n× n matrices

with columns pk and qk respectively, we have F = QP−1.

It is natural to attempt to construct successive approximations Hk to F−1 based

on data obtained from the first k steps of a descent process in such a way that if

F were constant the approximation would be consistent with (10.7) for these steps.

Specifically, if F were constant Hk+1 would satisfy

Hk+1qi = pi, 0 � i � k. (10.8)

After n linearly independent steps we would then have Hn = F−1.

For any k < n the problem of constructing a suitable Hk, with in general serves as

an approximation to the inverse Hessian and which in the case of constant F satis-

fies (10.8), admits an infinity of solutions, since there are more degrees of freedom

than there are constraints. Thus a particular method can take into account addi-

tional considerations. We discuss below one of the simplest schemes that has been

proposed.

10.2 Construction of the Inverse 289

Rank One Correction

Since F and F−1 are symmetric, it is natural to require that Hk, the approximation to

F−1, be symmetric. We investigate the possibility of defining a recursion of the form

Hk+1 = Hk + akzkzT
k , (10.9)

which preserves symmetry. The vector zk and the constant ak define a matrix of (at

most) rank one, by which the approximation to the inverse is updated. We select

them so that (10.8) is satisfied. Setting i equal to k in (10.8) and substituting (10.9)

we obtain

pk = Hk+1qk = Hkqk + akzkzT
k qk. (10.10)

Taking the inner product with qk we have

qT
k pk − qT

k Hkqk = ak

(

zT
k qk

)2
(10.11)

On the other hand, using (10.10) we may write (10.9) as

Hk+1 = Hk +
(pk −Hkqk)(pk −Hkqk)T

ak

(

zT
k

qk

)2
,

which in view of (10.11) leads finally to

Hk+1 = Hk +
(pk −Hkqk)(pk −Hkqk)T

qT
k

(pk −Hkqk)
. (10.12)

We have determined what a rank one correction must be if it is to satisfy (10.8)

for i = k. It remains to be shown that, for the case where F is constant, (10.8) is also

satisfied for i < k. This in turn will imply that the rank one recursion converges to

F−1 after at most n steps.

Theorem. Let F be a fixed symmetric matrix and suppose that p0, p1, p2, . . . , pk are given

vectors. Define the vectors qi = Fpi, i = 0, 1, 2, . . . , k.

Starting with any initial symmetric matrix H0 let

Hi+1 = Hi +
(pi −Hiqi)(pi −Hiqi)

T

qT
i

(pi −Hiqi)
. (10.13)

Then

pi = Hk+1qi f or i � k. (10.14)

Proof. The proof is by induction. Suppose it is true for Hk, and i � k − 1. The

relation was shown above to be true for Hk+1 and i = k. For i < k

Hk+1qi = Hkqi + yk(pT
k qi − qT

k Hkqi), (10.15)

290 10 Quasi-Newton Methods

where

yk =
(pk −Hkqk)

qT
k

(pk −Hkqk)
.

By the induction hypothesis, (10.15) becomes

Hk+1qi = pi + yk

(

pT
k qi − qT

k pi

)

.

From the calculation

qT
k pi = pT

k Fpi = pT
k qi,

it follows that the second term vanishes. �

To incorporate the approximate inverse Hessian in a descent procedure while

simultaneously improving it, we calculate the direction dk From

dk = −Hkgk

and then minimize f (xk + αdk) with respect to α � 0. This determines xk+1 =

xk + αkdk, pk = αkdk, and gk+1. Then Hk+1 can be calculated according to (10.12).

There are some difficulties with this simple rank one procedure. First, the up-

dating formula (10.12) preserves positive definiteness only if qT
k

(pk − Hkqk) > 0,

which cannot be guaranteed (see Exercise 6). Also, even if qT
k

(pk − Hkqk) is pos-

itive, it may be small, which can lead to numerical difficulties. Thus, although an

excellent simple example of how information gathered during the descent process

can in principle be used to update an approximation to the inverse Hessian, the rank

one method possesses some limitations.

10.3 Davidon-Fletcher-Powell Method

The earliest, and certainly one of the most clever schemes for constructing the in-

verse Hessian, was originally proposed by Davidon and later developed by Fletcher

and Powell. It has the fascinating and desirable property that, for a quadratic ob-

jective, it simultaneously generates the directions of the conjugate gradient method

while constructing the inverse Hessian. At each step the inverse Hessian is updated

by the sum of two symmetric rank one matrices, and this scheme is therefore often

referred to as a rank two correction procedure. The method is also often referred to

as the variable metric method, the name originally suggested by Davidon.

The procedure is this: Starting with any symmetric positive definite matrix H0,

any point x0, and with k = 0,

Step 1. Set dk = −Hkgk.

Step 2. Minimize f (xk + αdk) with respect to α � 0 to obtain xk+1, pk = αkdk,

and gk+1.

Step 3. Set qk = gk+1 − gk and

10.3 Davidon-Fletcher-Powell Method 291

Hk+1 = Hk +
pkpT

k

pT
k

qk

−
HkqkqT

k
Hk

qT
k

Hkqk

. (10.16)

Update k and return to Step 1.

Positive Definiteness

We first demonstrate that if Hk is positive definite, then so is Hk+1. For any x ∈ En

we have

xT Hk+1x = xT Hkx +
(xT pk)2

pT
k

qk

− (xT Hkqk)2

qT
k

Hkqk

. (10.17)

Defining a = H
1/2
k

x, b = H
1/2
k

qk we may rewrite (10.17) as

xT Hk+1x =
(aT a)(bT b) − (aT b)2

(bT b)
+

(xT pk)2

pT
k

qk

.

We also have

pT
k qk = pT

k gk+1 − pT
k gk = −pT

k gk, (10.18)

since

pT
k gk+1 = 0, (10.19)

because xk+1 is the minimum point of f along pk. Thus by definition of pk

pT
k qk = αkgT

k Hkgk, (10.20)

and hence

xT Hk+1x =
(aT a)(bT b) − (aT b)2

(bT b)
+

(xT pk)2

αkgT
k

Hkgk

. (10.21)

Both terms on the right of (10.21) are nonnegative—the first by the Cauchy–

Schwarz inequality. We must only show they do not both vanish simultaneously.

The first term vanishes only if a and b are proportional. This in turn implies that x

and qk are proportional, say x = βqk. In that case, however,

pT
k x = βpT

k qk = βαkgT
k Hkgk � 0

from (10.20). Thus xT Hk+1x > 0 for all nonzero x.

It is of interest to note that in the proof above the fact that αk is chosen as the

minimum point of the line search was used in (10.19), which led to the important

conclusion pT
k

qk > 0. Actually any αk, whether the minimum point or not, that

gives pT
k

qk > 0 can be used in the algorithm, and Hk+1 will be positive definite (see

Exercises 8 and 9).

292 10 Quasi-Newton Methods

Finite Step Convergence

We assume now that f is quadratic with (constant) Hessian F. We show in this

case that the Davidon-Fletcher-Powell method produces direction vectors pk that are

F-orthogonal and that if the method is carried n steps then Hn = F−1.

Theorem. If f is quadratic with positive definite Hessian F, then for the Davidon-Fletcher-

Powell method

pT
i Fp j = 0, 0 � i < j � k (10.22)

Hk+1Fpi = pi f or 0 � i � k. (10.23)

Proof. We note that for the quadratic case

qk = gk+1 − gk = Fxk+1 − Fxk = Fpk. (10.24)

Also

Hk+1Fpk = Hk+1qk = pk (10.25)

from (10.16).

We now prove (10.22) and (10.23) by induction. From (10.25) we see that they

are true for k = 0. Assuming they are true for k− 1, we prove they are true for k. We

have

gk = gi+1 + F(pi+1 + · · · + pk−1).

Therefore from (10.22) and (10.19)

pT
i gk = pT

i gi+1 = 0 for 0 � i < k. (10.26)

Hence from (10.23)

pT
i FHkgk = 0. (10.27)

Thus since pk = −αkHkgk and since αk � 0, we obtain

pT
i Fpk = 0 for i < k, (10.28)

which proves (10.22) for k.

Now since from (10.23) for k − 1, (10.24) and (10.28)

qT
k HkFpi = qT

k pi = pT
k Fpi = 0, 0 � i < k

we have

Hk+1Fpi = HkFpi = pi, 0 � i < k.

This together with (10.25) proves (10.23) for k. �

Since the pk’s are F-orthogonal and since we minimize f successively in these

directions, we see that the method is a conjugate direction method. Furthermore,

10.4 The Broyden Family 293

if the initial approximation H0 is taken equal to the identity matrix, the method

becomes the conjugate gradient method. In any case the process obtains the overall

minimum point within n steps.

Finally, (10.23) shows that p0, p1, p2, . . . , pk are eigenvectors corresponding to

unity eigenvalue for the matrix Hk+1F. These eigenvectors are linearly independent,

since they are F-orthogonal, and therefore Hn = F−1.

10.4 The Broyden Family

The updating formulae for the inverse Hessian considered in the previous two sec-

tions are based on satisfying

Hk+1qi = pi, 0 � i � k, (10.29)

which is derived from the relation

qi = Fpi, 0 � i � k, (10.30)

which would hold in the purely quadratic case. It is also possible to update ap-

proximations to the Hessian F itself, rather than its inverse. Thus, denoting the kth

approximation of F by Bk, we would, analogously, seek to satisfy

qi = Bk+1pi, 0 � i � k. (10.31)

Equation (10.31) has exactly the same form as (10.29) except that qi and pi are

interchanged and H is replaced by B. It should be clear that this implies that any

update formula for H derived to satisfy (10.29) can be transformed into a corre-

sponding update formula for B. Specifically, given any update formula for H, the

complementary formula is found by interchanging the roles of B and H and of q

and p. Likewise, any updating formula for B that satisfies (10.31) can be converted

by the same process to a complementary formula for updating H. It is easily seen

that taking the complement of a complement restores the original formula.

To illustrate complementary formulae, consider the rank one update of Sect. 10.2,

which is

Hk+1 = Hk +
(pk −Hkqk)(pk −Hkqk)T

qT
k

(pk −Hkqk)
. (10.32)

The corresponding complementary formula is

Bk+1 = Bk +
(qk − Bkpk)(qk − Bkpk)T

pT
k

(qk − Bkpk)
. (10.33)

294 10 Quasi-Newton Methods

Likewise, the Davidon-Fletcher-Powell (or simply DFP) formula is

HDFP
k+1 = Hk +

pkpT
k

pT
k

qk

−
HkqkqT

k
Hk

qT
k

Hkqk

, (10.34)

and its complement is

Bk+1 = Bk +
qkqT

k

qT
k

pk

−
BkpkpT

k
Bk

pT
k

Bkpk

. (10.35)

This last update is known as the Broyden-Fletcher-Goldfarb-Shanno update of Bk,

and it plays an important role in what follows.

Another way to convert an updating formula for H to one for B or vice versa is

to take the inverse. Clearly, if

Hk+1qi = pi, 0 � i � k, (10.36)

then

qi = H−1
k+1pi, 0 � i � k, (10.37)

which implies that H−1
k+1

satisfies (10.31), the criterion for an update of B. Also, most

importantly, the inverse of a rank two formula is itself a rank two formula.

The new formula can be found explicitly by two applications of the general in-

version identity (often referred to as the Sherman-Morrison formula)

[

A + abT
]−1
= A−1 − A−1abT A−1

1 + bT A−1a
, (10.38)

where A is an n × n matrix, and a and b are n-vectors, which is valid provided the

inverses exist. (This is easily verified by multiplying through by A + abT .)

The Broyden-Fletcher-Goldfard-Shanno update for B produces, by taking the

inverse, a corresponding update for H of the form

HBFGS
k+1 = Hk +

⎛

⎜

⎜

⎜

⎜

⎝

1 + qT
k

Hkqk

qT
k

qk

⎞

⎟

⎟

⎟

⎟

⎠

pkpT
k

pT
k

qk

−
pkqT

k
Hk +HkqkqT

k

qT
k

pk

. (10.39)

This is an important update formula that can be used exactly like the DFP formula.

Numerical experiments have repeatedly indicated that its performance is superior to

that of the DFP formula, and for this reason it is now generally preferred.

It can be noted that both the DFP and the BFGS updates have symmetric rank

two corrections that are constructed from the vectors pk and Hkqk. Weighted combi-

nations of these formulae will therefore also be of this same type (symmetric, rank

two, and constructed from pk and Hkqk). This observation naturally leads to consid-

eration of a whole collection of updates, known as the Broyden family, defined by

Hφ = (1 − φ)HDFP + φHBFGS, (10.40)

10.4 The Broyden Family 295

where φ is a parameter that may take any real value. Clearly φ = 0 and φ = 1 yield

the DFP and BFGS updates, respectively. The Broyden family also includes the rank

one update (see Exercise 12).

An explicit representation of the Broyden family can be found, after a fair amount

of algebra, to be

H
φ

k+1
= Hk +

pkpT
k

pT
k

qk

−
HkqkqT

k
Hk

qT
k

Hkqk

+ φvkvT
k = HDFP

k+1 + φvkvT
k , (10.41)

where

vk = (qT
k Hkqk)1/2

⎛

⎜

⎜

⎜

⎜

⎝

pk

pT
k

qk

− Hkqk

qT
k

Hkqk

⎞

⎟

⎟

⎟

⎟

⎠

.

This form will be useful in some later developments.

A Broyden method is defined as a quasi-Newton method in which at each iteration

a member of the Broyden family is used as the updating formula. The parameter φ

is, in general, allowed to vary from one iteration to another, so a particular Broyden

method is defined by a sequence φ1, φ2, . . ., of parameter values. A pure Broyden

method is one that uses a constant φ.

Since both HDFP and HBFGS satisfy the fundamental relation (10.29) for updates,

this relation is also satisfied by all members of the Broyden family. Thus it can be

expected that many properties that were found to hold for the DFP method will

also hold for any Broyden method, and indeed this is so. The following is a direct

extension of the theorem of Sect. 10.3.

Theorem. If f is quadratic with positive definite Hessian F, then for a Broydenmethod

pT
i Fp j = 0, 0 � i < j � k

Hk+1Fpi = pi f or 0 � i � k.

Proof. The proof parallels that of Sect. 10.3, since the results depend only on the

basic relation (10.29) and the orthogonality (10.19) because of exact line search. �

The Broyden family does not necessarily preserve positive definiteness of Hφ

for all values of φ. However, we know that the DFP method does preserve positive

definiteness. Hence from (10.41) it follows that positive definiteness is preserved

for any φ � 0, since the sum of a positive definite matrix and a positive semidefinite

matrix is positive definite. For φ < 0 there is the possibility that Hφ may become

singular, and thus special precautions should be introduced. In practice φ � 0 is

usually imposed to avoid difficulties.

There has been considerable experimentation with Broyden methods to deter-

mine superior strategies for selecting the sequence of parameters φk.

The above theorem shows that the choice is irrelevant in the case of a quadratic

objective and accurate line search. More surprisingly, it has been shown that even for

the case of nonquadratic functions and accurate line searches, the points generated

296 10 Quasi-Newton Methods

by all Broyden methods will coincide (provided singularities are avoided and

multiple minima are resolved consistently). This means that differences in methods

are important only with inaccurate line search.

For general nonquadratic functions of modest dimension, Broyden methods seem

to offer a combination of advantages as attractive general procedures. First, they re-

quire only that first-order (that is, gradient) information be available. Second, the

directions generated can always be guaranteed to be directions of descent by arrang-

ing for Hk to be positive definite throughout the process. Third, since for a quadratic

problem the matrices Hk converge to the inverse Hessian in at most n steps, it might

be argued that in the general case Hk will converge to the inverse Hessian at the

solution, and hence convergence will be superlinear. Unfortunately, while the meth-

ods are certainly excellent, their convergence characteristics require more careful

analysis, and this will lead us to an important additional modification.

Partial Quasi-Newton Methods

There is, of course, the option of restarting a Broyden method every m + 1 steps,

where m + 1 < n. This would yield a partial quasi-Newton method that, for small

values of m, would have modest storage requirements, since the approximate inverse

Hessian could be stored implicitly by storing only the vectors pi and qi, i � m+1. In

the quadratic case this method exactly corresponds to the partial conjugate gradient

method and hence it has similar convergence properties.

10.5 Convergence Properties

The various schemes for simultaneously generating and using an approximation to

the inverse Hessian are difficult to analyze definitively. One must therefore, to some

extent, resort to the use of analogy and approximate analyses to determine their

effectiveness. Nevertheless, the machinery we developed earlier provides a basis for

at least a preliminary analysis.

Global Convergence

In practice, quasi-Newton methods are usually executed in a continuing fashion,

starting with an initial approximation and successively improving it throughout the

iterative process. Under various and somewhat stringent conditions, it can be proved

that this procedure is globally convergent. If, on the other hand, the quasi-Newton

methods are restarted every n or n + 1 steps by resetting the approximate inverse

Hessian to its initial value, then global convergence is guaranteed by the presence

of the first descent step of each cycle (which acts as a spacer step).

10.5 Convergence Properties 297

Local Convergence

The local convergence properties of quasi-Newton methods in the pure form dis-

cussed so far are not as good as might first be thought. Let us focus on the local

convergence properties of these methods when executed with the restarting feature.

Specifically, consider a Broyden method and for simplicity assume that at the begin-

ning of each cycle the approximate inverse Hessian is reset to the identity matrix.

Each cycle, if at least n steps in duration, will then contain one complete cycle of an

approximation to the conjugate gradient method. Asymptotically, in the tail of the

generated sequence, this approximation becomes arbitrarily accurate, and hence we

may conclude, as for any method that asymptotically approaches the conjugate gra-

dient method, that the method converges superlinearly (at least if viewed at the end

of each cycle). Although superlinear convergence is attractive, the fact that in this

case it hinges on repeated cycles of n steps in duration can seriously detract from its

practical significance for problems with large n, since we might hope to terminate

the procedure before completing even a single full cycle of n steps.

To obtain insight into the defects of the method, let us consider a special situation.

Suppose that f is quadratic and that the eigenvalues of the Hessian, F, of f are close

together but all very large. If, starting with the identity matrix, an approximation

to the inverse Hessian is updated m times, the matrix HmF will have m eigenvalues

equal to unity and the rest will still be large. Thus, the ratio of smallest to largest

eigenvalue of HmF, the condition number, will be worse than for F itself. Therefore,

if the updating were discontinued and Hm were used as the approximation to F−1 in

future iterations according to the procedure of Sect. 10.1, we see that convergence

would be poorer than it would be for ordinary steepest descent. In other words, the

approximations to F−1 generated by the updating formulas, although accurate over

the subspace traveled, do not necessarily improve and, indeed, are likely to worsen

the eigenvalue structure of the iteration process.

In practice a poor eigenvalue structure arising in this manner will play a domi-

nating role whenever there are factors that tend to weaken its approximation to the

conjugate gradient method. Common factors of this type are round-off errors, in-

accurate line searches, and nonquadratic terms in the objective function. Indeed, it

has been frequently observed, empirically, that performance of the DFP method is

highly sensitive to the accuracy of the line search algorithm—to the point where

superior step-wise convergence properties can only be obtained through excessive

time expenditure in the line search phase.

Example. To illustrate some of these conclusions we consider the six-dimensional

problem defined by

f (x) =
1

2
xT Qx,

298 10 Quasi-Newton Methods

where

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

40 0 0 0 0 0

0 38 0 0 0 0

0 0 36 0 0 0

0 0 0 34 0 0

0 0 0 0 32 0

0 0 0 0 0 30

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

This function was minimized iteratively (the solution is obviously x∗ = 0) starting

at x0 =(10, 10, 10, 10, 10, 10), with f (x0) = 10,500, by using, alternatively, the

method of steepest descent, the DFP method, the DFP method restarted every six

steps, and the self-scaling method described in the next section. For this quadratic

problem the appropriate step size to take at any stage can be calculated by a simple

formula. On different computer runs of a given method, different levels of error were

deliberately introduced into the step size in order to observe the effect of line search

accuracy. This error took the form of a fixed percentage increase over the optimal

value. The results are presented below:

Case 1. No error in step size α

Function value

Iteration Steepest descent DFP DFP (with restart) Self-scaling

1 96.29630 96.29630 96.29630 96.29630

2 1.560669 6.900839× 10−1 6.900839× 10−1 6.900839× 10−1

3 2.932559× 10−2 3.988497× 10−3 3.988497× 10−3 3.988497× 10−3

4 5.787315× 10−4 1.683310× 10−5 1.683310× 10−5 1.683310× 10−5

5 1.164595× 10−5 3.878639× 10−8 3.878639× 10−8 3.878639× 10−8

6 2.359563× 10−7

Case 2. 0.1 % error in step size α

Function value

Iteration Steepest descent DFP DFP (with restart) Self-scaling

1 96.30669 96.30669 96.30669 96.30669

2 1.564971 6.994023× 10−1 6.994023× 10−1 6.902072× 10−1

3 2.939804× 10−2 1.225501× 10−2 1.225501× 10−2 3.989507× 10−3

4 5.810123× 10−4 7.301088× 10−3 7.301088× 10−3 1.684263× 10−5

5 1.169205× 10−5 2.636716× 10−3 2.636716× 10−3 3.881674× 10−8

6 2.372385× 10−7 1.031086× 10−5 1.031086× 10−5

7 3.633330× 10−9 2.399278× 10−8

10.5 Convergence Properties 299

Case 3. 1 % error in step size α

Function value

Iteration Steepest descent DFP DFP (with restart) Self-scaling

1 97.33665 97.33665 97.33665 97.33665

2 1.586251 1.621908 1.621908 0.7024872

3 2.989875× 10−2 8.268893× 10−1 8.268893× 10−1 4.090350× 10−3

4 5.908101× 10−4 4.302943× 10−1 4.302943× 10−1 1.779424× 10−5

5 1.194144× 10−5 4.449852× 10−3 4.449852× 10−3 4.195668× 10−8

6 2.422985× 10−7 5.337835× 10−5 5.337835× 10−5

7 3.767830× 10−5 4.493397× 10−7

8 3.768097× 10−9

Case 4. 10 % error in step size α

Function value

Iteration Steepest descent DFP DFP (with restart) Self-scaling

1 200.333 200.333 200.333 200.333

2 2.732789 93.65457 93.65457 2.811061

3 3.836899× 10−2 56.92999 56.92999 3.562769× 10−2

4 6.376461× 10−4 1.620688 1.620688 4.200600× 10−4

5 1.219515× 10−5 5.251115× 10−1 5.251115× 10−1 4.726918× 10−6

6 2.457944× 10−7 3.323745× 10−1 3.323745× 10−1

7 6.150890× 10−3 8.102700× 10−3

8 3.025393× 10−3 2.973021× 10−3

9 3.025476× 10−5 1.950152× 10−3

10 3.025476× 10−7 2.769299× 10−5

11 1.760320× 10−5

12 1.123844× 10−6

We note first that the error introduced is reported as a percentage of the step

size itself. In terms of the change in function value, the quantity that is most often

monitored to determine when to terminate a line search, the fractional error is the

square of that in the step size. Thus, a one percent error in step size is equivalent to

a 0.01 % error in the change in function value.

Next we note that the method of steepest descent is not radically affected by an

inaccurate line search while the DFP methods are. Thus for this example while DFP

is superior to steepest descent in the case of perfect accuracy, it becomes inferior at

an error of only 0.1 % in step size.

300 10 Quasi-Newton Methods

10.6 Scaling

There is a general viewpoint about what makes up a desirable descent method that

underlies much of our earlier discussions and which we now summarize briefly in

order to motivate the presentation of scaling. A method that converges to the exact

solution after n steps when applied to a quadratic function on En has obvious appeal

especially if, as is usually the case, it can be inferred that for nonquadratic problems

repeated cycles of length n of the method will yield superlinear convergence. For

problems having large n, however, a more sophisticated criterion of performance

needs to be established, since for such problems one usually hopes to be able to

terminate the descent process before completing even a single full cycle of length

n. Thus, with these sorts of problems in mind, the finite-step convergence property

serves at best only as a sign post indicating that the algorithm might, make rapid

progress in its early stages. It is essential to insure that in fact it will make rapid

progress at every stage. Furthermore, the rapid convergence at each step must not

be tied to an assumption on conjugate directions, a property easily destroyed by

inaccurate line search and nonquadratic objective functions. With this viewpoint

it is natural to look for quasi-Newton methods that simultaneously possess favor-

able eigenvalue structure at each step (in the sense of Sect. 10.1) and reduce to the

conjugate gradient method if the objective function happens to be quadratic. Such

methods are developed in this section.

Improvement of Eigenvalue Ratio

Referring to the example presented in the last section where the Davidon-Fletcher-

Powell method performed poorly, we can trace the difficulty to the simple observa-

tion that the eigenvalues of H0Q are all much larger than unity. The DFP algorithm,

or any Broyden method, essentially moves these eigenvalues, one at a time, to unity

thereby producing an unfavorable eigenvalue ratio in each HkQ for 1 � k < n. This

phenomenon can be attributed to the fact that the methods are sensitive to simple

scale factors. In particular if H0 were multiplied by a constant, the whole process

would be different. In the example of the last section, if H0 were scaled by, for in-

stance, multiplying it by 1/35, the eigenvalues of H0Q would be spread above and

below unity, and in that case one might suspect that the poor performance would not

show up.

Motivated by the above considerations, we shall establish conditions under which

the eigenvalue ratio of Hk+1F is at least as favorable as that of HkF in a Broyden

method. These conditions will then be used as a basis for introducing appropriate

scale factors.

We use (but do not prove) the following matrix theoretic result due to Loewner.

Interlocking Eigenvalues Lemma. Let the symmetric n× n matrix A have eigen-

values λ1 � λ2 � . . . � λn. Let a be any vector in En and denote the eigenvalues of

the matrix A + aaT by μ1 � μ2 . . . � μn. Then λ1 � μ1 � λ2 � μ2 . . . � λn � μn.

10.6 Scaling 301

For convenience we introduce the following definitions:

Rk = F
1/2
k

HkF
1/2
k

rk = F
1/2
k

pk.

Then using qk = F
1/2
k

rk, it can be readily verified that (10.41) is equivalent to

R
φ

k+1
= Rk −

RkrkrT
k

Rk

rT
k

Rkrk

+
rkrT

k

rT
k

rk

+ φzkzT
k , (10.42)

where

zk = F1/2Vk =

√

rT
k

Rkrk

⎛

⎜

⎜

⎜

⎜

⎝

rk

rT
k

rk

− Rkrk

rT
k

Rkrk

⎞

⎟

⎟

⎟

⎟

⎠

.

Since Rk is similar to HkF (because HkF = F1/2RkF1/2), both have the same eigen-

values. It is most convenient, however, in view of (10.42) to study Rk, obtaining

conclusions about HkF indirectly.

Before proving the general theorem we shall consider the case φ = 0 correspond-

ing to the DFP formula. Suppose the eigenvalues of Rk are λ1, λ2, . . . , λn with

0 < λ1 � λ2 � . . . � λn. Suppose also that 1 ∈ [λ1, λn]. We will show that the eigen-

values of Rk+1 are all contained in the interval [λ1, λn], which of course implies that

Rk+1 is no worse than Rk in terms of its condition number. Let us first consider the

matrix

P = Rk −
RkrkrT

k
Rk

rT
k

Rkrk

.

We see that Prk = 0 so one eigenvalue of P is zero. If we denote the eigenvalues of

P by μ1 � μ2 � . . . � μn, we have from the above observation and the lemma on

interlocking eigenvalues that

0 = μ1 � λ1 � μ2 � . . . � μn � λn.

Next we consider

Rk+1 = Rk −
RkrkrT

k
Rk

rT
k

Rkrk

+
rkrT

k

rT
k

rk

= P +
rkrT

k

rT
k

rk

. (10.43)

Since rk is an eigenvector of P and since, by symmetry, all other eigenvectors of P

are therefore orthogonal to rk, it follows that the only eigenvalue different in Rk+1

from in P is the one corresponding to rk—it now being unity. Thus Rk+1 has eigen-

values μ2, μ3, . . . , μn and unity. These are all contained in the interval [λ1, λn].

Thus updating does not worsen the eigenvalue ratio. It should be noted that this

result in no way depends on αk being selected to minimize f .

302 10 Quasi-Newton Methods

We now extend the above to the Broyden class with 0 � φ � 1.

Theorem. Let the n eigenvalues of HkF be λ1, λ2 , . . . , λn with 0 < λ1 � λ2 � . . . � λn.

Suppose that 1 ∈ [λ1 , λn]. Then for any φ, 0 � φ � 1, the eigenvalues of H
φ

k+1
F, where

H
φ

k+1
is defined by (10.41), are all contained in [λ1 , λn].

Proof. The result shown above corresponds to φ = 0. Let us now consider φ = 1,

corresponding to the BFGS formula. By our original definition of the BFGS update,

H−1 is defined by the formula that is complementary to the DFP formula. Thus

H−1
k+1 = H−1

k +
qkqT

k

qT
k

pk

−
H−1

k+1pkpT
k

H−1
k

pT
k

H−1
k pk

.

This is equivalent to

R−1
k+1 = R−1

k −
R−1

k rkrT
k

R−1
k

rT
k

R−1
k rk

+
rkrT

k

rT
k

rk

, (10.44)

which is identical to (10.43) except that Rk is replaced by R−1
k

.

The eigenvalues of R−1
k

are 1/λn � 1/λn−1 � . . . � 1/λ1. Clearly, 1 ∈
[1/λn, 1/λ1]. Thus by the preliminary result, if the eigenvalues of R−1

k+1 are de-

noted 1/μn < 1/μn−1 < . . . < 1/μ1, it follows that they are contained in the interval

[1/λn, 1/λ1]. Thus 1/λn < 1/μn and 1/λ1 > 1/μ1. When inverted this yields μ1 > λ1

and μn < λn, which shows that the eigenvalues of Rk+1 are contained in [λ1, λn].

This establishes the result for φ = 1.

For general φ the matrix R
φ

k+1
defined by (10.42) has eigenvalues that are all

monotonically increasing with φ (as can be seen from the interlocking eigenvalues

lemma). However, from above it is known that these eigenvalues are contained in

[λ1, λn] for φ = 0 and φ = 1. Hence, they must be contained in [λ1, λn] for all

φ, 0 � φ � 1. �

Scale Factors

In view of the result derived above, it is clearly advantageous to scale the matrix Hk

so that the eigenvalues of HkF are spread both below and above unity. Of course

in the ideal case of a quadratic problem with perfect line search this is strictly only

necessary for H0, since unity is an eigenvalue of HkF for k > 0. But because of

the inescapable deviations from the ideal, it is useful to consider the possibility of

scaling every Hk.

A scale factor can be incorporated directly into the updating formula. We first

multiply Hk by the scale factor γk and then apply the usual updating formula. This

is equivalent to replacing Hk by γkHk in (10.42) and leads to

10.6 Scaling 303

Hk+1 =

⎛

⎜

⎜

⎜

⎜

⎝

Hk −
HkqkqT

k
Hk

qT
k

Hkqk

+ φkvkvT
k

⎞

⎟

⎟

⎟

⎟

⎠

γk +
pkpT

k

pT
k

qk

. (10.45)

This defines a two-parameter family of updates that reduces to the Broyden family

for γk = 1.

Using γ0, γ1, . . . as arbitrary positive scale factors, we consider the algorithm:

Start with any symmetric positive definite matrix H0 and any point x0, then starting

with k = 0,

Step 1. Set dk = −Hkgk.

Step 2. Minimize f (xk + αdk) with respect to α � 0 to obtain xk+1, Pk = αkdk,

and gk+1.

Step 3. Set qk = gk+1 − gk and

Hk+1 =

⎛

⎜

⎜

⎜

⎜

⎝

Hk −
HkqkqT

k
Hk

qT
k

Hkqk

+ φkvkvT
k

⎞

⎟

⎟

⎟

⎟

⎠

γk +
pkpT

k

pT
k

qk

vk = (qT
k Hqk)1/2

⎛

⎜

⎜

⎜

⎜

⎝

pk

pT
k

qk

− Hkqk

qT
k

Hkqk

⎞

⎟

⎟

⎟

⎟

⎠

. (10.46)

The use of scale factors does destroy the property Hn = F−1 in the quadratic case,

but it does not destroy the conjugate direction property. The following properties of

this method can be proved as simple extensions of the results given in Sect. 10.3.

1. If Hk is positive definite and pT
k

qk > 0, (10.46) yields an Hk+1 that is positive

definite.

2. If f is quadratic with Hessian F, then the vectors P0, p1, . . . , pn−1 are mutually

F-orthogonal, and, for each k, the vectors P0, p1, . . . , pk are eigenvectors of

Hk+1F.

We can conclude that scale factors do not destroy the underlying conjugate be-

havior of the algorithm. Hence we can use scaling to ensure good single-step con-

vergence properties.

A Self-scaling Quasi-Newton Algorithm

The question that arises next is how to select appropriate scale factors. If λ1 �

λ2 � . . . � λn are the eigenvalues of HkF, we want to multiply Hk by γk where

λ1 � 1/γk � λn. This will ensure that the new eigenvalues contain unity in the

interval they span.

Note that in terms of our earlier notation

qT
k

Hkqk

pT
k

qk

=
rT

k
Rkrk

rT
k

rk

.

304 10 Quasi-Newton Methods

Recalling that Rk has the same eigenvalues as HkF and noting that for any rk

λ1 �
rT

k
Rkrk

rT
k

rk

� λn,

we see that

γk =
pT

k
qk

qT
k

Hkqk

(10.47)

serves as a suitable scale factor.

We now state a complete self-scaling, restarting, quasi-Newton method based on

the ideas above. For simplicity we take φ = 0 and thus obtain a modification of the

DFP method. Start at any point x0, k = 0.

Step 1. Set Hk = I.

Step 2. Set dk = −Hkgk.

Step 3. Minimize f (xk + αdk) with respect to α � 0 to obtain αk, xk+1, pk =

αkdk, gk+1 and qk = gk+1 − gk. (Select αk accurately enough to ensure pT
k

qk > 0.)

Step 4. If k is not an integer multiple of n, set

Hk+1 =

⎛

⎜

⎜

⎜

⎜

⎝

Hk −
HkqkqT

k
Hk

qT
k

Hkqk

⎞

⎟

⎟

⎟

⎟

⎠

pT
k

qk

qT
k

Hkqk

+
pkpT

k

pT
k

qk

. (10.48)

Add one to k and return to Step 2. If k is an integer multiple of n, return to Step 1.

This algorithm was run, with various amounts of inaccuracy introduced in the line

search, on the quadratic problem presented in Sect. 10.4. The results are presented

in that section.

10.7 Memoryless Quasi-Newton Methods

The preceding development of quasi-Newton methods can be used as a basis for

reconsideration of conjugate gradient methods. The result is an attractive class of

new procedures.

Consider a simplification of the BFGS quasi-Newton method where Hk+1 is de-

fined by a BFGS update applied to H = I, rather than to Hk. Thus Hk+1 is determined

without reference to the previous Hk, and hence the update procedure is memoryless.

This update procedure leads to the following algorithm: Start at any point x0, k = 0.

Step 1.

Set Hk = I. (10.49)

Step 2.

Set dk = −Hkgk. (10.50)

10.7 Memoryless Quasi-Newton Methods 305

Step 3. Minimize f (xk + αdk) with respect to α � 0 to obtain αk, xk+1, pk =

αkdk, gk+1, and qk = gk+1−gk. (Select αk accurately enough to ensure pT
k

qk > 0.)

Step 4. If k is not an integer multiple of n, set

Hk+1 = I −
qkpT

k
+ pkqT

k

pT
k

qk

+

⎛

⎜

⎜

⎜

⎜

⎝

1 +
qT

k
qk

pT
k

qk

⎞

⎟

⎟

⎟

⎟

⎠

pkpT
k

pT
k

qk

. (10.51)

Add 1 to k and return to Step 2. If k is an integer multiple of n, return to Step 1.

Combining (10.50) and (10.51), it is easily seen that

dk+1 = −gk+1 +
qkpT

k
gk+1 + pkqT

k
gk+1

pT
k

qk

−
⎛

⎜

⎜

⎜

⎜

⎝

1 +
qT

k
qk

pT
k

qk

⎞

⎟

⎟

⎟

⎟

⎠

pkpT
k

gk−1

pT
k

qk

. (10.52)

If the line search is exact, then pT
k

gk+1 = 0 and hence pT
k

qk = −pT
k

gk. In this case

(10.52) is equivalent to

dk+1 = −gk+1 +
qT

k
gk+1

pT
k

qk

pk = −gk+1 + βkdk, (10.53)

where

βk =
qkqT

k+1

gT
k

qk

.

This coincides exactly with the Polak-Ribiere form of the conjugate gradient method.

Thus use of the BFGS update in this way yields an algorithm that is of the modified

Newton type with positive definite coefficient matrix and which is equivalent to a

standard implementation of the conjugate gradient method when the line search is

exact.

The algorithm can be used without exact line search in a form that is similar

to that of the conjugate gradient method by using (10.52). This requires storage of

only the same vectors that are required of the conjugate gradient method. In light

of the theory of quasi-Newton methods, however, the new form can be expected

to be superior when inexact line searches are employed, and indeed experiments

confirm this.

The above idea can be easily extended to produce a memoryless quasi-Newton

method corresponding to any member of the Broyden family. The update formula

(10.51) would simply use the general Broyden update (10.41) with Hk set equal to

I. In the case of exact line search (with pT
k

gk+1 = 0), the resulting formula for dk+1

reduces to

dk+1 = −gk+1 + (1 − φ)
qT

k
gk+1

qT
k

qk

qk + φ
qT

k
gk+1

pT
k

qk

pk. (10.54)

We note that (10.54) is equivalent to the conjugate gradient direction (10.53) only

for φ = 1, corresponding to the BFGS update. For this reason the choice φ = 1 is

generally preferred for this type of method.

306 10 Quasi-Newton Methods

Scaling and Preconditioning

Since the conjugate gradient method implemented as a memoryless quasi-Newton

method is a modified Newton method, the fundamental convergence theory based

on condition number emphasized throughout this part of the book is applicable, as

are the procedures for improving convergence. It is clear that the function scaling

procedures discussed in the previous section can be incorporated.

According to the general theory of modified Newton methods, it is the eigenval-

ues of HkF(xk) that influence the convergence properties of these algorithms. From

the analysis of the last section, the memoryless BFGS update procedure will, in the

pure quadratic case, yield a matrix HkF that has a more favorable eigenvalue ratio

than F itself only if the function f is scaled so that unity is contained in the interval

spanned by the eigenvalues of F. Experimental evidence verifies that at least an ini-

tial scaling of the function in this way can lead to significant improvement. Scaling

can be introduced at every step as well, and complete self-scaling can be effective

in some situations.

It is possible to extend the scaling procedure to a more general precondition-

ing procedure. In this procedure the matrix governing convergence is changed from

F(xk) to HF(xk) for some H. If HF(xk) has its eigenvalues all close to unity, then

the memoryless quasi-Newton method can be expected to perform exceedingly

well, since it possesses simultaneously the advantages of being a conjugate gradient

method and being a well-conditioned modified Newton method.

Preconditioning can be conveniently expressed in the basic algorithm by simply

replacing Hk in the BFGS update formula by H instead of I and replacing I by H in

Step 1. Thus (10.51) becomes

Hk+1 = H −
HqkpT

k
+ pkqT

k
H

qT
k

qk

+

⎛

⎜

⎜

⎜

⎜

⎝

1 +
qT

k
Hqk

pT
k

qk

⎞

⎟

⎟

⎟

⎟

⎠

pkpT
k

pT
k

pk

, (10.55)

and the explicit conjugate gradient version (10.52) is also modified accordingly.

Preconditioning can also be used in conjunction with an (m + 1)-cycle partial

conjugate gradient version of the memoryless quasi-Newton method. This is highly

effective if a simple H can be found (as it sometimes can in problems with structure)

so that the eigenvalues of HF(xk) are such that either all but m are equal to unity or

they are in m bunches. For large-scale problems, methods of this type seem to be

quite promising.

*10.8 ∗Combination of Steepest Descent and Newton’s Method

In this section we digress from the study of quasi-Newton methods, and again

expand our collection of basic principles. We present a combination of steepest de-

scent and Newton’s method which includes them both as special cases. The resulting

10.8 ∗Combination of Steepest Descent and Newton’s Method 307

combined method can be used to develop algorithms for problems having special

structure, as illustrated in Chap. 13. This method and its analysis comprises a fun-

damental element of the modern theory of algorithms.

The method itself is quite simple. Suppose there is a subspace N of En on which

the inverse Hessian of the objective function f is known (we shall make this state-

ment more precise later). Then, in the quadratic case, the minimum of f over any

linear variety parallel to N (that is, any translation of N) can be found in a single

step. To minimize f over the whole space starting at any point xk, we could mini-

mize f over the linear variety parallel to N and containing xk to obtain zk; and then

take a steepest descent step from there. This procedure is illustrated in Fig. 10.1.

Since zk is the minimum point of f over a linear variety parallel to N, the gradient

at zk will be orthogonal to N, and hence the gradient step is orthogonal to N. If f

is not quadratic we can, knowing the Hessian of f on N, approximate the minimum

point of f over a linear variety parallel to N by one step of Newton’s method. To

implement this scheme, that we described in a geometric sense, it is necessary to

agree on a method for defining the subspace N and to determine what information

about the inverse Hessian is required so as to implement a Newton step over N. We

now turn to these questions.

Often, the most convenient way to describe a subspace, and the one we follow

in this development, is in terms of a set of vectors that generate it. Thus, if B is an

n×m matrix consisting of m column vectors that generate N, we may write N as the

set of all vectors of the form Bu where u ∈ Em. For simplicity we always assume

that the columns of B are linearly independent.

To see what information about the inverse Hessian is required, imagine that we

are at a point xk and wish to find the approximate minimum point zk of f with

respect to movement in N. Thus, we seek uk so that

zk = xk + Buk

approximately minimizes f . By “approximately minimizes” we mean that zk should

be the Newton approximation to the minimum over this subspace. We write

f (zk) � f (xk) + ∇ f (xk)Buk +
1

2
uT

k BT F(xk)Buk

and solve for uk to obtain the Newton approximation. We find

uk = −(BT F(xk)B)−1BT∇ f (xk)T

zk = xk − B(BT F(xk)B)−1BT∇ f (xk)T .

We see by analogy with the formula for Newton’s method that the expression

B(BT F(xk)B)−1BT can be interpreted as the inverse of F(xk) restricted to the sub-

space N.

308 10 Quasi-Newton Methods

Fig. 10.1 Combined method

Example. Suppose

B =

[

I

0

]

,

where I is an m × m identity matrix. This corresponds to the case where N is the

subspace generated by the first m unit basis elements of En. Let us partition F =

∇
2 f (xk) as

F =

[

F11 F12

F21 F22

]

,

where F11 is m × m. Then, in this case

(BT FB)−1 = F−1
11 ,

and

B(BT FB)−1BT =

[

F−1
11 0

0 0

]

,

which shows explicitly that it is the inverse of F on N that is required. The general

case can be regarded as being obtained through partitioning in some skew coordinate

system.

Now that the Newton approximation over N has been derived, it is possible to

formalize the details of the algorithm suggested by Fig. 10.1. At a given point xk,

the point xk+1 is determined through

a) Setdk = −B(BT F(xk)B)−1BT∇f(xk)T .

b) zk = xk + βkdk, where βk minimizes f(xk + βdk). (10.56)

c) Set pk = −∇f(zk)T .

d) xk+1 = zk + αkpk, where αk minimizes f(zk + αpk).

The scalar search parameter βk is introduced in the Newton part of the algorithm

simply to assure that the descent conditions required for global convergence are

met. Normally βk will be approximately equal to unity. (See Sect. 8.5.)

10.8 ∗Combination of Steepest Descent and Newton’s Method 309

Analysis of Quadratic Case

Since the method is not a full Newton method, we can conclude that it possesses

only linear convergence and that the dominating aspects of convergence will be re-

vealed by an analysis of the method as applied to a quadratic function. Furthermore,

as might be intuitively anticipated, the associated rate of convergence is governed

by the steepest descent part of algorithm (10.56), and that rate is governed by a

Kantorovich-like ratio defined over the subspace orthogonal to N.

Theorem (Combined Method). Let Q be an n × n symmetric positive definite matrix, and

let x∗ ∈ En. Define the function

E(x) =
1

2
(x − x∗)T Q(x − x∗)

and let b = Qx∗. Let B be an n × m matrix of rank m. Starting at an arbitrary point x0,

define the iterative process

a) uk = −(BT QB)−1BT gk, where gk = Qxk − b.

b) zk = xk + Buk.

c) pk = b −Qzk.

d) xk+1 = zk + αkpk, where αk =
pT

k
pk

pT
k

Qpk

.

This process converges to x∗, and satisfies

E(xk+1) � (1 − δ)E(xk) (10.57)

where δ, 0 � 8 � 1, is the minimum of

(pT p)2

(pT Qp)(pT Q−1p)

over all vectors p in the nullspace of BT .

Proof. The algorithm given in the theorem statement is exactly the general com-

bined algorithm specialized to the quadratic situation. Next we note that

BT pk = BT Q(x∗ − zk) = BT Q(x∗ − xk) − BT QBuk (10.58)

= −BT gk + BQBT (BT QB)−1BT gk = 0,

which merely proves that the gradient at zk is orthogonal to N. Next we calculate

2{E(xk) − E(zk)} = (xk − x∗)T Q(xk − x∗) − (zk − x∗)T Q(zk − x∗)

= −2uT
k BT Q(xk − x∗) − uT

k BT QBuk

= −2uT
k BT gk + uT

k BT QB(BT QB)−1BT gk (10.59)

= −uT
k BT gk = gT

k B(BT QB)−1BT gk.

310 10 Quasi-Newton Methods

Then we compute

2{E(zk) − E(xk+1)} = (zk − x∗)T Q(zk − x∗) − (xk+1 − x∗)T Q(xk+1 − x∗)

= −2αkpT
k Q(zk − x∗) − α2

kpT
k Qpk

= 2αkpT
k pk − α2

kpT
k Qpk (10.60)

= αkpT
k pk =

(pT
k

pk)2

pT
k

Qpk

.

Now using (10.58) and pk = −gk −QBuk we have

2E(xk) = (xk − x∗)T Q(xk − x∗) = gT
k Q−1gk

= (pT
k + uT

k BT Q)Q−1(pk +QBuk) (10.61)

= pT
k Q−1pk + uT

k BT QBuk

= pT
k Q−1pk + gT

k B(BT QB)−1BT gk.

Adding (10.59) and (10.60) and dividing by (10.61) there results

E(xk) − E(xk+1)

E(xk)
=

gT
k

B(BT QB)−1BT gk + (pT
k

pk)2/pT
k

Qpk

pT
k

Q−1pk + gT
k

B(BT QB)−1BT gk

=
q + (pT

k
pk)/(pT

k
Qpk)

q + (pT
k

Q−1pk)/(pT
k

pk)
,

where q � 0. This has the form (q + a)/(q + b) with

a =
pT

k
pk

pT
k

Qpk

, b =
pT

k
Q−1pk

pT
k

pk

.

But for any pk, it follows that a � b. Hence

q + a

q + b
�

a

b
,

and thus
E(xk) − E(xk+1)

E(xk)
�

(pT
k

pk)2

(pT
k

Qpk)(pT
k

Q−1pk)
.

Finally,

E(xk+1) � E(xk)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 −
(pT

k
pk)2

(pT
k

Qpk)(pT
k

Q−1pk)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

� (1 − δ)E(xk),

since BT pk = 0. �

10.8 ∗Combination of Steepest Descent and Newton’s Method 311

The value δ associated with the above theorem is related to the eigenvalue struc-

ture of Q. If p were allowed to vary over the whole space, then the Kantorovich

inequality
(pT p)2

(pT Qp)(pT Q−1p)
�

4aA

(a + A)2
, (10.62)

where a and A are, respectively, the smallest and largest eigenvalues of Q, gives

explicitly

δ =
4aA

(a + A)2
.

When p is restricted to the nullspace of BT , the corresponding value of δ is larger.

In some special cases it is possible to obtain a fairly explicit estimate of δ. Suppose,

for example, that the subspace N were the subspace spanned by m eigenvectors of

Q. Then the subspace in which p is allowed to vary is the space orthogonal to N and

is thus, in this case, the space generated by the other n − m eigenvectors of Q. In

this case since for p in N⊥ (the space orthogonal to N), both Qp and Q−1p are also

in N⊥, the ratio δ satisfies

δ =
(pT p)2

(pT Qp)(pT Q−1p)
�

4aA

(a + A)2
,

where now a and A are, respectively, the smallest and largest of the n − m eigen-

values of Q corresponding to N⊥. Thus the convergence ratio (10.57) reduces to the

familiar form

E(xk+1) �
(

A − a

A + a

)2

E(xk),

where a and A are these special eigenvalues. Thus, if B, or equivalently N, is chosen

to include the eigenvectors corresponding to the most undesirable eigenvalues of Q,

the convergence rate of the combined method will be quite attractive.

Applications

The combination of steepest descent and Newton’s method can be applied usefully

in a number of important situations. Suppose, for example, we are faced with a

problem of the form

minimize f (x, y),

where x ∈ En, y ∈ Em, and where the second partial derivatives with respect to x are

easily computable but those with respect to y are not. We may then employ Newton

steps with respect to x and steepest descent with respect to y.

Another instance where this idea can be greatly effective is when there are a few

vital variables in a problem which, being assigned high costs, tend to dominate the

value of the objective function; in other words, the partial second derivatives with

respect to these variables are large. The poor conditioning induced by these variables

312 10 Quasi-Newton Methods

can to some extent be reduced by proper scaling of variables, but more effectively,

by carrying out Newton’s method with respect to them and steepest descent with

respect to the others.

10.9 Summary

The basic motivation behind quasi-Newton methods is to try to obtain, at least on

the average, the rapid convergence associated with Newton’s method without explic-

itly evaluating the Hessian at every step. This can be accomplished by constructing

approximations to the inverse Hessian based on information gathered during the de-

scent process, and results in methods which viewed in blocks of n steps (where n is

the dimension of the problem) generally possess superlinear convergence.

Good, or even superlinear, convergence measured in terms of large blocks, how-

ever, is not always indicative of rapid convergence measured in terms of individual

steps. It is important, therefore, to design quasi-Newton methods so that their single

step convergence is rapid and relatively insensitive to line search inaccuracies. We

discussed two general principles for examining these aspects of descent algorithms.

The first of these is the modified Newton method in which the direction of descent

is taken as the result of multiplication of the negative gradient by a positive def-

inite matrix S. The single step convergence ratio of this method is determined by

the usual steepest descent formula, but with the condition number of SF rather than

just F used. This result was used to analyze some popular quasi-Newton methods,

to develop the self-scaling method having good single step convergence properties,

and to reexamine conjugate gradient methods.

The second principle method is the combined method in which Newton’s method

is executed over a subspace where the Hessian is known and steepest descent is

executed elsewhere. This method converges at least as fast as steepest descent, and

by incorporating the information gathered as the method progresses, the Newton

portion can be executed over larger and larger subspaces.

At this point, it is perhaps valuable to summarize some of the main themes that

have been developed throughout the four chapters comprising Part II. These chap-

ters contain several important and popular algorithms that illustrate the range of

possibilities available for minimizing a general nonlinear function. From a broad

perspective, however, these individual algorithms can be considered simply as spe-

cific patterns on the analytical fabric that is woven through the chapters—the fabric

that will support new algorithms and future developments.

One unifying element, that has reproved its value several times, is the Global

Convergence Theorem. This result helped mold the final form of every algorithm

presented in Part II and has effectively resolved the major questions concerning

global convergence.

Another unifying element is the speed of convergence of an algorithm, which

we have defined in terms of the asymptotic properties of the sequences an algo-

rithm generates. Initially, it might have been argued that such measures, based on

10.10 Exercises 313

properties of the tail of the sequence, are perhaps not truly indicative of the ac-

tual time required to solve a problem—after all, a sequence generated in practice

is a truncated version of the potentially infinite sequence, and asymptotic proper-

ties may not be representative of the finite version—a more complex measure of the

speed of convergence may be required. It is fair to demand that the validity of the

asymptotic measures we have proposed be judged in terms of how well they pre-

dict the performance of algorithms applied to specific examples. On this basis, as

illustrated by the numerical examples presented in these chapters, and on others, the

asymptotic rates are extremely reliable predictors of performance—provided that

one carefully tempers one’s analysis with common sense (by, for example, not con-

cluding that superlinear convergence is necessarily superior to linear convergence

when the superlinear convergence is based on repeated cycles of length n). A ma-

jor conclusion, therefore, of the previous chapters is the essential validity of the

asymptotic approach to convergence analysis. This conclusion is a major strand in

the analytical fabric of nonlinear programming.

10.10 Exercises

1. Prove (10.4) directly for the modified Newton method by showing that each

step of the modified Newton method is simply the ordinary method of steepest

descent applied to a scaled version of the original problem.

2. Find the rate of convergence of the version of Newton’s method defined by

(10.50), (10.51) of Chap. 8. Show that convergence is only linear if δ is larger

than the smallest eigenvalue of F(x∗).
3. Consider the problem of minimizing a quadratic function

f (x) =
1

2
xT Qx − xT b,

where Q is symmetric and sparse (that is, there are relatively few nonzero en-

tries in Q). The matrix Q has the form

Q = I + V,

where I is the identity and V is a matrix with eigenvalues bounded by e < 1 in

magnitude.

(a) With the given information, what is the best bound you can give for the rate of

convergence of steepest descent applied to this problem?

(b) In general it is difficult to invert Q but the inverse can be approximated by I–V,

which is easy to calculate. (The approximation is very good for small e.) We are

thus led to consider the iterative process

xk−l = xk − αk[I − V]gk,

314 10 Quasi-Newton Methods

where gk = Qxk − b and αk is chosen to minimize f in the usual way. With

the information given, what is the best bound on the rate of convergence of this

method?

(c) Show that for e < (
√

5 − 1)/2 the method in part (b) is always superior to

steepest descent.

4. This problem shows that the modified Newton’s method is globally convergent

under very weak assumptions.

Let a > 0 and b � a be given constants. Consider the collection P of all n × n

symmetric positive definite matrices P having all eigenvalues greater than or

equal to a and all elements bounded in absolute value by b. Define the point-

to-set mapping B : En → En+n2

by B(x) = {(x, P) : P ∈ P}. Show that B is a

closed mapping.

Now given an objective function f ∈ C1, consider the iterative algorithm

xk+1 = xk − αkPkgk,

where gk = g(xk) is the gradient of f at xk, Pk is any matrix from P and αk

is chosen to minimize f (xk+1). This algorithm can be represented by A which

can be decomposed as A = SCB where B is defined above, C is defined by

C(x, P) = (x, −Pg(x)), and S is the standard line search mapping. Show that if

restricted to a compact set in En, the mapping A is closed.

Assuming that a sequence {xk} generated by this algorithm is bounded, show

that the limit x∗ of any convergent subsequence satisfies g(x∗) = 0.

5. The following algorithm has been proposed for minimizing unconstrained func-

tions f (x), x ∈ En, without using gradients: Starting with some arbitrary point

x0, obtain a direction of search dk such that for each component of dk

f (xk = (dk)iei) = min
di

f (xk + diei),

where e j denotes the ith column of the identity matrix. In other words, the ith

component of dk is determined through a line search minimizing f (x) along the

ith component.

The next point xk+1 is then determined in the usual way through a line search

along dk; that is,

xk+1 = xk + αkdk,

where dk minimizes f (xk+1).

(a) Obtain an explicit representation for the algorithm for the quadratic case where

f (x) =
1

2
(x − x∗)T Q(x − x∗) + f (x∗).

(b) What condition on f (x) or its derivatives will guarantee descent of this algo-

rithm for general f (x)?

(c) Derive the convergence rate of this algorithm (assuming a quadratic objective).

Express your answer in terms of the condition number of some matrix.

10.10 Exercises 315

6. Suppose that the rank one correction method of Sect. 10.2 is applied to the

quadratic problem (10.2) and suppose that the matrix R0 = F1/2H0F1/2 has

m < n eigenvalues less than unity and n − m eigenvalues greater than unity.

Show that the condition qT
k

(pk − Hkqk) > 0 will be satisfied at most m times

during the course of the method and hence, if updating is performed only when

this condition holds, the sequence {Hk} will not converge to F−1. Infer from this

that, in using the rank one correction method, H0 should be taken very small;

but that, despite such a precaution, on nonquadratic problems the method is

subject to difficulty.

7. Show that if H0 = I the Davidon-Fletcher-Powell method is the conjugate gra-

dient method. What similar statement can be made when H0 is an arbitrary

symmetric positive definite matrix?

8. In the text it is shown that for the Davidon-Fletcher-Powell method Hk+1 is pos-

itive definite if Hk is. The proof assumed that αk is chosen to exactly minimize

f (xk + αdk). Show that any αk > 0 which leads to pT
k

qk > 0 will guarantee

the positive definiteness of Hk+1. Show that for a quadratic problem any αk � 0

leads to a positive definite Hk+1.

9. Suppose along the line xk+αdk, α > 0, the function f (xk+αdk) is unimodal and

differentiable. Let αk be the minimizing value of α. Show that if any αk > αk is

selected to define xk+1 = xk + αkdk, then pT
k

qk > 0. (Refer to Sect. 10.3.)

10. Let {Hk}, k = 0, 1, 2 . . . be the sequence of matrices generated by the Davidon-

Fletcher-Powell method applied, without restarting, to a function f having con-

tinuous second partial derivatives. Assuming that there is a > 0, A > 0 such

that for all k we have Hk−aI and AI−Hk positive definite and the corresponding

sequence of xk’s is bounded, show that the method is globally convergent.

11. Verify Eq. (10.41).

12.

(a) Show that starting with the rank one update formula for H, forming the com-

plementary formula, and then taking the inverse restores the original formula.

(b) What value of φ in the Broyden class corresponds to the rank one formula?

13. Explain how the partial Davidon method can be implemented for m < n/2, with

less storage than required by the full method.

14. Prove statements (10.1) and (10.2) below Eq. (10.46) in Sect. 10.6.

15. Consider using

γk =
pT

k
H−1

k pk

pT
k

qk

instead of (10.47).

(a) Show that this also serves as a suitable scale factor for a self-scaling quasi-

Newton method.

(b) Extend part (a) to

γk = (1 − φ)
pT

k
qk

qT
k

Hkqk

+ φ
pT

k
H−1

k pk

pT
k

qk

for 0 � φ � 1.

316 10 Quasi-Newton Methods

16. Prove global convergence of the combination of steepest descent and Newton’s

method.

17. Formulate a rate of convergence theorem for the application of the combination

of steepest and Newton’s method to nonquadratic problems.

18. Prove that if Q is positive definite

(pT p)

pT Qp
�

pT Q−1p

pT p

for any vector p.

19. It is possible to combine Newton’s method and the partial conjugate gradient

method. Given a subspace N ⊂ En, xk+1 is generated from xk by first finding

zk by taking a Newton step in the linear variety through xk parallel to N, and

then taking m conjugate gradient steps from zk. What is a bound on the rate of

convergence of this method?

20. In this exercise we explore how the combined method of Sect. 10.7 can be

updated as more information becomes available. Begin with N0 = {0}. If Nk is

represented by the corresponding matrix Bk, define Nk+1 by the corresponding

Bk+1 = [Bk, pk], where pk = xk+1 − zk.

(a) If Dk = Bk(BT
k FBk)−1BT

k is known, show that

Dk+1 = Dk =
(pk − Dkqk)(pk − Dkqk)T

(pk − Dkqk)T qk

,

where qk = gk+1 − gk. (This is the rank one correction of Sect. 10.2.)

(b) Develop an algorithm that uses (a) in conjunction with the combined method of

Sect. 10.8 and discuss its convergence properties.

References

10.1 An early analysis of this method was given by Crockett and Chenoff

[C9].

10.2–10.3 The variable metric method was originally developed by Davidon [D12],

and its relation to the conjugate gradient method was discovered by

Fletcher and Powell [F11]. The rank one method was later developed

by Davidon [D13] and Broyden [B24]. For an early general discussion

of these methods, see Murtagh and Sargent [M10], and for an excellent

recent review, see Dennis and Moré [D15].

10.4 The Broyden family was introduced in Broyden [B24]. The BFGS

method was suggested independently by Broyden [B25], Fletcher [F6],

Goldfarb [G9], and Shanno [S3]. The beautiful concept of complemen-

tarity, which leads easily to the BFGS update and definition of the Broy-

den class as presented in the text, is due to Fletcher. Another larger class

was defined by Huang [H13]. A variational approach to deriving variable

10.10 Exercises 317

metric methods was introduced by Greenstadt [G15]. Also see Dennis

and Schnabel [D16]. Originally there was considerable effort devoted to

searching for a best sequence of φk’s in a Broyden method, but Dixon

[D17] showed that all methods are identical in the case of exact linear

search. There are a number of numerical analysis and implementation is-

sues that arise in connection with quasi-Newton updating methods. From

this viewpoint Gill and Murray [G6] have suggested working directly

with Bk, an approximation to the Hessian itself, and updating a triangu-

lar factorization at each step.

10.5 Under various assumptions on the criterion function, it has been shown

that quasi- Newton methods converge globally and superlinearly, pro-

vided that accurate exact line search is used. See Powell [P8] and Dennis

and Moré [D15]. With inexact line search, restarting is generally required

to establish global convergence.

10.6 The lemma on interlocking eigenvalues is due to Loewner [L6]. An anal-

ysis of the one-by-one shift of the eigenvalues to unity is contained

in Fletcher [F6]. The scaling concept, including the self-scaling algo-

rithm, is due to Oren and Luenberger [O5]. Also see Oren [O4]. The

two-parameter class of updates defined by the scaling procedure can be

shown to be equivalent to the symmetric Huang class. Oren and Spedi-

cato [O6] developed a procedure for selecting the scaling parameter so

as to optimize the condition number of the update.

10.7 The idea of expressing conjugate gradient methods as update formulae is

due to Perry [P3]. The development of the form presented here is due to

Shanno [S4]. Preconditioning for conjugate gradient methods was sug-

gested by Bertsekas [B9].

10.8 The combined method appears in Luenberger [L10].

Part III

Constrained Minimization

Chapter 11

Constrained Minimization Conditions

We turn now, in this final part of the book, to the study of minimization problems

having constraints. We begin by studying in this chapter the necessary and sufficient

conditions satisfied at solution points. These conditions, aside from their intrinsic

value in characterizing solutions, define Lagrange multipliers and a certain Hessian

matrix which, taken together, form the foundation for both the development and

analysis of algorithms presented in subsequent chapters.

The general method used in this chapter to derive necessary and sufficient condi-

tions is a straightforward extension of that used in Chap. 7 for unconstrained prob-

lems. In the case of equality constraints, the feasible region is a curved surface

embedded in En. Differential conditions satisfied at an optimal point are derived by

considering the value of the objective function along curves on this surface passing

through the optimal point. Thus the arguments run almost identically to those for the

unconstrained case; families of curves on the constraint surface replacing the ear-

lier artifice of considering feasible directions. There is also a theory of zero-order

conditions that is presented in the final section of the chapter.

11.1 Constraints

We deal with general nonlinear programming problems of the form

minimize f (x)

subject to h1(x) = 0, g1(x) � 0

h2(x) = 0, g2(x) � 0
...

...

hm(x) = 0, gp(x) � 0

x ∈ Ω ⊂ En,

(11.1)

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 11

321

322 11 Constrained Minimization Conditions

where m � n and the functions f , hi, i = 1, 2, . . . ,m and g j, j = 1, 2, . . . , p are con-

tinuous, and usually assumed to possess continuous second partial derivatives. For

notational simplicity, we introduce the vector-valued functions h = (h1, h2, . . . , hm)

and g = (g1, g2, . . . , gP) and rewrite (11.1) as

minimize f (x)

subject to h(x) = 0, g(x) � 0

x ∈ Ω.
(11.2)

The constraints h(x) = 0, g(x) � 0 are referred to as functional constraints, while

the constraint x ∈ Ω is a set constraint. As before we continue to de-emphasize the

set constraint, assuming in most cases that eitherΩ is the whole space En or that the

solution to (11.2) is in the interior ofΩ. A point x ∈ Ω that satisfies all the functional

constraints is said to be feasible.

A fundamental concept that provides a great deal of insight as well as simplifying

the required theoretical development is that of an active constraint. An inequality

constraint gi(x) � 0 is said to be active at a feasible point x if gi(x) = 0 and inactive

at x if gi(x) < 0. By convention we refer to any equality constraint hi(x) = 0 as active

at any feasible point. The constraints active at a feasible point x restrict the domain

of feasibility in neighborhoods of x, while the other, inactive constraints, have no

influence in neighborhoods of x. Therefore, in studying the properties of a local

minimum point, it is clear that attention can be restricted to the active constraints.

This is illustrated in Fig. 11.1 where local properties satisfied by the solution x∗

obviously do not depend on the inactive constraints g2 and g3.

It is clear that, if it were known a priori which constraints were active at the solu-

tion to (11.1), the solution would be a local minimum point of the problem defined

by ignoring the inactive constraints and treating all active constraints as equality

constraints. Hence, with respect to local (or relative) solutions, the problem could

be regarded as having equality constraints only. This observation suggests that the

Fig. 11.1 Example of inactive constraints

11.2 Tangent Plane 323

majority of insight and theory applicable to (11.1) can be derived by consideration of

equality constraints alone, later making additions to account for the selection of the

active constraints. This is indeed so. Therefore, in the early portion of this chapter

we consider problems having only equality constraints, thereby both economizing

on notation and isolating the primary ideas associated with constrained problems.

We then extend these results to the more general situation.

11.2 Tangent Plane

A set of equality constraints on En

h1(x) = 0

h2(x) = 0
...

hm(x) = 0

(11.3)

defines a subset of En which is best viewed as a hypersurface. If the constraints

are everywhere regular, in a sense to be described below, this hypersurface is of

dimension n − m. If, as we assume in this section, the functions hi, i = 1, 2, . . . , m

belong to C1, the surface defined by them is said to be smooth.

Associated with a point on a smooth surface is the tangent plane at that point,

a term which in two or three dimensions has an obvious meaning. To formalize

the general notion, we begin by defining curves on a surface. A curve on a surface

S is a family of points x(t) ∈ S continuously parameterized by t for a � t � b.

The curve is differentiable if ẋ ≡ (d/dt)x(t) exists, and is twice differentiable if

ẍ(t) exists. A curve x(t) is said to pass through the point x∗ if x∗ = x(t∗) for some

t∗, a � t∗ � b. The derivative of the curve at x∗ is, of course, defined as ẋ(t∗). It is

itself a vector in En.

Now consider all differentiable curves on S passing through a point x∗. The tan-

gent plane at x∗ is defined as the collection of the derivatives at x∗ of all these

differentiable curves. The tangent plane is a subspace of En.

For surfaces defined through a set of constraint relations such as (11.3), the prob-

lem of obtaining an explicit representation for the tangent plane is a fundamental

problem that we now address. Ideally, we would like to express this tangent plane

in terms of derivatives of functions hi that define the surface. We introduce the sub-

space

M = {y : ∇h(x∗)y = 0}
and investigate under what conditions M is equal to the tangent plane at x∗. The key

concept for this purpose is that of a regular point. Figure 11.2 shows some examples

where for visual clarity the tangent planes (which are sub-spaces) are translated to

the point x∗.

324 11 Constrained Minimization Conditions

Fig. 11.2 Three examples of tangent planes (translated to x∗)

11.2 Tangent Plane 325

Definition. A point x∗ satisfying the constraint h(x∗) = 0 is said to be a regular point of the
constraint if the gradient vectors ∇h1(x∗), ∇h2(x∗), . . . , ∇hm(x∗) are linearly independent.

Note that if h is affine, h(x) = Ax+b, regularity is equivalent to A having rank equal

to m, and this condition is independent of x.

In general, at regular points it is possible to characterize the tangent plane in

terms of the gradients of the constraint functions.

Theorem. At a regular point x∗ of the surface S defined by h(x) = 0 the tangent plane is

equal to

M = {y : ∇h(x∗)y = 0}.

Proof. Let T be the tangent plane at x∗. It is clear that T ⊂ M whether x∗ is regular

or not, for any curve x(t) passing through x∗ at t = t∗ having derivative ẋ(t∗) such

that ∇h(x∗)ẋ(t∗) � 0 would not lie on S .

To prove that M ⊂ T we must show that if y ∈ M then there is a curve on

S passing through x∗ with derivative y. To construct such a curve we consider the

equations

h(x∗ + ty + ∇h(x∗)T u(t)) = 0, (11.4)

where for fixed t we consider u(t) ∈ Em to be the unknown. This is a nonlinear

system of m equations and m unknowns, parameterized continuously, by t. At t = 0

there is a solution u(0) = 0. The Jacobian matrix of the system with respect to u at

t = 0 is the m × m matrix

∇h(x∗)∇h(x∗)T ,

which is nonsingular, since∇h(x∗) is of full rank if x∗ is a regular point. Thus, by the

Implicit Function Theorem (see Appendix A) there is a continuously differentiable

solution u(t) in some region −a � t � a.

The curve x(t) = x∗ + ty+∇h(x∗)T u(t) is thus, by construction, a curve on S . By

differentiating the system (11.4) with respect to t at t = 0 we obtain

0 =
d

dt
h(x(t))

]

t=0

= ∇h(x∗)y + ∇h(x∗)∇h(x∗)T u̇(0).

By definition of y we have ∇h(x∗)y = 0 and thus, again since ∇h(x∗)∇h(x∗)T is

nonsingular, we conclude that ẋ(0) = 0. Therefore

ẋ(0) = y + ∇h(x∗)T ẋ(0) = y,

and the constructed curve has derivative y at x∗. �

It is important to recognize that the condition of being a regular point is not a

condition on the constraint surface itself but on its representation in terms of an h.

The tangent plane is defined independently of the representation, while M is not.

Example. In E2 let h(x1, x2) = x1. Then h(x) = 0 yields the x2 axis, and every point

on that axis is regular. If instead we put h(x1, x2) = x2
1
, again S is the x2 axis but

now no point on the axis is regular. Indeed in this case M = E2, while the tangent

plane is the x2 axis.

326 11 Constrained Minimization Conditions

11.3 First-Order Necessary Conditions (Equality Constraints)

The derivation of necessary and sufficient conditions for a point to be a local min-

imum point subject to equality constraints is fairly simple now that the representa-

tion of the tangent plane is known. We begin by deriving the first-order necessary

conditions.

Lemma. Let x∗ be a regular point of the constraints h(x) = 0 and a local extremum

point (a minimum or maximum) of f subject to these constraints.

Then all y ∈ En satisfying

∇h(x∗)y = 0 (11.5)

must also satisfy

∇ f (x∗)y = 0. (11.6)

Proof. Let y be any vector in the tangent plane at x∗ and let x(t) be any smooth

curve on the constraint surface passing through x∗ with derivative y at x∗; that is,

x(0) = x∗, ẋ(0) = y, and h(x(t)) = 0 for −a � t � a for some a > 0.

Since x∗ is a regular point, the tangent plane is identical with the set of y’s sat-

isfying ∇h(x∗)y = 0. Then, since x∗ is a constrained local extremum point of f , we

have
d

dt
f (x(t))

]

t=0

= 0,

or equivalently,

∇ f (x∗)y = 0. �

The above Lemma says that ∇ f (x∗) is orthogonal to the tangent plane. Next we

conclude that this implies that ∇ f (x∗) is a linear combination of the gradients of h

at x∗, a relation that leads to the introduction of Lagrange multipliers. As in much

of nonlinear programming, the Lagrange multiplier vector is often labeled λ rather

than y in linear programming, and this convention is followed here.

Theorem. Let x∗ be a local extremum point of f subject to the constraints h(x) = 0. Assume

further that x∗ is a regular point of these constraints. Then there is a λ ∈ Em such that

∇ f (x∗) + λT
∇h(x∗) = 0. (11.7)

Proof. From the Lemma we may conclude that the value of the linear program

maximize ∇ f (x∗)y

subject to ∇h(x∗)y = 0

is zero. Thus, by the Duality Theorem of linear programming (Sect. 4.2) the dual

problem is feasible. Specifically, there is λ ∈ Em such that ∇ f (x∗) + λT
∇h(x∗)

= 0. �

11.4 Examples 327

It should be noted that the first-order necessary conditions

∇ f (x∗) + λT
∇h(x∗) = 0

together with the constraints

h(x∗) = 0

give a total of n+m (generally nonlinear) equations in the n+m variables comprising

x∗, λ. Thus the necessary conditions are a complete set since, at least locally, they

determine a unique solution.

It is convenient to introduce the Lagrangian associated with the constrained prob-

lem, defined as

l(x, λ) = f (x) + λT h(x). (11.8)

The necessary conditions can then be expressed in the form

∇xl(x, λ) = 0 (11.9)

∇λl(x, λ) = 0, (11.10)

the second of these being simply a restatement of the constraints.

11.4 Examples

We digress briefly from our mathematical development to consider some examples

of constrained optimization problems. We present five simple examples that can

be treated explicitly in a short space and then briefly discuss a broader range of

applications.

Example 1. Consider the problem

minimize x1x2 + x2x3 + x1x3

subject to x1 + x2 + x3 = 3.

The necessary conditions become

x2 + x3 + λ = 0

x1 + x3 + λ = 0

x1 + x2 + λ = 0.

These three equations together with the one constraint equation give four equations

that can be solved for the four unknowns x1, x2, x3, λ. Solution yields x1 = x2 =

x3 = 1, λ = −2.

Example 2 (Maximum Volume). Let us consider an example of the type that is now

standard in textbooks and which has a structure similar to that of the example above.

328 11 Constrained Minimization Conditions

We seek to construct a cardboard box of maximum volume, given a fixed area of

cardboard.

Denoting the dimensions of the box by x, y, z, the problem can be expressed as

maximize xyz

subject to (xy + yz + xz) =
c

2
, (11.11)

where c > 0 is the given area of cardboard. Introducing a Lagrange multiplier, the

first-order necessary conditions are easily found to be

yz + λ(y + z) = 0

xz + λ(x + z) = 0 (11.12)

xy + λ(x + y) = 0

together with the constraint. Before solving these, let us note that the sum of these

equations is (xy + yz + xz) + 2λ(x + y + z) = 0. Using the constraint this becomes

c/2 + 2λ(x + y + z) = 0. From this it is clear that λ � 0. Now we can show that

x, y, and z are nonzero. This follows because x = 0 implies z = 0 from the second

equation and y = 0 from the third equation. In a similar way, it is seen that if either

x, y, or z are zero, all must be zero, which is impossible.

To solve the equations, multiply the first by x and the second by y, and then

subtract the two to obtain

λ(x − y)z = 0.

Operate similarly on the second and third to obtain

λ(y − z)x = 0.

Since no variables can be zero, it follows that x = y = z =
√

c/6 is the unique

solution to the necessary conditions. The box must be a cube.

Example 3 (Entropy). optimization problems often describe natural phenomena. An

example is the characterization of naturally occurring probability distributions as

maximum entropy distributions.

As a specific example consider a discrete probability density corresponding to a

measured value taking one of n values x1, x2, . . . , xn. The probability associated

with xi is pi. The pi’s satisfy pi � 0 and
n
∑

i=1
pi = 1.

The entropy of such a density is

ε = −
n

∑

i=1

pi log(pi).

The mean value of the density is
n
∑

i=1
xi pi.

11.4 Examples 329

If the value of mean is known to be m (by the physical situation), the maximum

entropy argument suggests that the density should be taken as that which solves the

following problem:

maximize −
n

∑

i=1

pi log(pi)

subject to

n
∑

i=1

pi = 1 (11.13)

n
∑

i=1

xi pi = m

pi ≥ 0, i = 1, 2, . . . , n.

We begin by ignoring the nonnegativity constraints, believing that they may be

inactive. Introducing two Lagrange multipliers, λ and μ, the Lagrangian is

l =

n
∑

i=1

{−pi log pi + λpi + μxi pi} − λ − μm.

The necessary conditions are immediately found to be

− log pi − 1 + λ + μxi = 0, i = 1, 2, . . . , n.

This leads to

pi = exp{(λ − 1) + μxi}, i = 1, 2, . . . , n. (11.14)

We note that pi > 0, so the nonnegativity constraints are indeed inactive. The re-

sult (11.14) is known as an exponential density. The Lagrange multipliers λ and μ

are parameters that must be selected so that the two equality constraints are satisfied.

Example 4 (Hanging Chain). A chain is suspended from two thin hooks that are

16 ft apart on a horizontal line as shown in Fig. 11.3. The chain itself consists of

20 links of stiff steel. Each link is one foot in length (measured inside). We wish to

formulate the problem to determine the equilibrium shape of the chain.

The solution can be found by minimizing the potential energy of the chain. Let

us number the links consecutively from 1 to 20 starting with the left end. We let link

i span an x distance of xi and a y distance of yi. Then x2
i
+ y2

i
= 1. The potential

energy of a link is its weight times its vertical height (from some reference). The

potential energy of the chain is the sum of the potential energies of each link. We

may take the top of the chain as reference and assume that the mass of each link is

concentrated at its center. Assuming unit weight, the potential energy is then

330 11 Constrained Minimization Conditions

Fig. 11.3 A hanging chain

1

2
y1 +

(

y1 +
1

2
y2

)

+

(

y1 + y2 +
1

2
y3

)

+ · · ·

+

(

y1 + y2 + · · · + yn−1 +
1

2
yn

)

=

n
∑

i=1

(

n − i +
1

2

)

yi,

where n = 20 in our example.

The chain is subject to two constraints: The total y displacement is zero, and the

total x displacement is 16. Thus the equilibrium shape is the solution of

minimize

n
∑

i=1

(

n − i +
1

2

)

yi

subject to

n
∑

i=1

yi = 0 (11.15)

n
∑

i=1

√

1 − y2
i
= 16.

The first-order necessary conditions are

(

n − i +
1

2

)

+ λ − μyi
√

1 − y2
i

= 0 (11.16)

for i = 1, 2, . . . , n. This leads directly to

yi = −
n − i + 1

2
+ λ

√

μ2 +
(

n − i + 1
2
+ λ

)2
. (11.17)

As in Example 2 the solution is determined once the Lagrange multipliers are

known. They must be selected so that the solution satisfies the two constraints.

11.4 Examples 331

It is useful to point out that problems of this type may have local minimum points.

The reader can examine this by considering a short chain of, say, four links and v

and w configurations.

Example 5 (Portfolio Design). Suppose there are n securities indexed by i = 1, 2,

. . . , n. Each security i is characterized by its random rate of return ri which has

mean value r̄i. Its covariances with the rates of return of other securities are σij, for

j = 1, 2, . . . , n. The portfolio problem is to allocate total available wealth among

these n securities, allocating a fraction wi of wealth to the security i.

The overall rate of return of a portfolio is r =
∑n

i=1 wir̄i and variance σ2 =
∑n

i, j=1

wiσijw j.

Markowitz introduced the concept of devising efficient portfolios which for a

given expected rate of return r̄ have minimum possible variance. Such a portfolio is

the solution to the problem

min
wi,w2,...wn

∑n

i, j=1
wiσijw j

subject to
∑n

i=1
wir̄i = r̄

∑n

i=1
wi = 1.

The second constraint forces the sum of the weights to equal one. There may be the

further restriction that each wi ≥ 0 which would imply that the securities must not

be shorted (that is, sold short).

Introducing Lagrange multipliers λ and μ for the two constraints leads easily to

the n + 2 linear equations

n
∑

j=1

σijw j + λr̄i + μ = 0 for i = 1, 2, . . . , n

n
∑

i=1

wir̄i = r̄

n
∑

i=1

wi = 1

in the n + 2 unknowns (the wi’s, λ and μ).

Large-Scale Applications

The problems that serve as the primary motivation for the methods described in

this part of the book are actually somewhat different in character than the prob-

lems represented by the above examples, which by necessity are quite simple.

Larger, more complex, nonlinear programming problems arise frequently in modern

332 11 Constrained Minimization Conditions

applied analysis in a wide variety of disciplines. Indeed, within the past few decades

nonlinear programming has advanced from a relatively young and primarily analytic

subject to a substantial general tool for problem solving.

Large nonlinear programming problems arise in problems of mechanical struc-

tures, such as determining optimal configurations for bridges, trusses, and so forth.

Some mechanical designs and configurations that in the past were found by solving

differential equations are now often found by solving suitable optimization prob-

lems. An example that is somewhat similar to the hanging chain problem is the

determination of the shape of a stiff cable suspended between two points and sup-

porting a load.

A wide assortment, of large-scale optimization problems arise in a similar way as

methods for solving partial differential equations. In situations where the underlying

continuous variables are defined over a two- or three-dimensional region, the con-

tinuous region is replaced by a grid consisting of perhaps several thousand discrete

points. The corresponding discrete approximation to the partial differential equation

is then solved indirectly by formulating an equivalent optimization problem. This

approach is used in studies of plasticity, in heat equations, in the flow of fluids, in

atomic physics, and indeed in almost all branches of physical science.

Problems of optimal control lead to large-scale nonlinear programming prob-

lems. In these problems a dynamic system, often described by an ordinary differ-

ential equation, relates control variables to a trajectory of the system state. This

differential equation, or a discretized version of it, defines one set of constraints.

The problem is to select the control variables so that the resulting trajectory satisfies

various additional constraints and minimizes some criterion. An early example of

such a problem that was solved numerically was the determination of the trajectory

of a rocket to the moon that required the minimum fuel consumption.

There are many examples of nonlinear programming in industrial operations and

business decision making. Many of these are nonlinear versions of the kinds of ex-

amples that were discussed in the linear programming part of the book. Nonlinear-

ities can arise in production functions, cost curves, and, in fact, in almost all facets

of problem formulation.

Portfolio analysis, in the context of both stock market investment and evaluation

of a complex project within a firm, is an area where nonlinear programming is be-

coming increasingly useful. These problems can easily have thousands of variables.

In many areas of model building and analysis, optimization formulations are

increasingly replacing the direct formulation of systems of equations. Thus large

economic forecasting models often determine equilibrium prices by minimizing an

objective termed consumer surplus. Physical models are often formulated as mini-

mization of energy. Decision problems are formulated as maximizing expected util-

ity. Data analysis procedures are based on minimizing an average error or maxi-

mizing a probability. As the methodology for solution of nonlinear programming

improves, one can expect that this trend will continue.

11.5 Second-Order Conditions 333

11.5 Second-Order Conditions

By an argument analogous to that used for the unconstrained case, we can also derive

the corresponding second-order conditions for constrained problems. Throughout

this section it is assumed that f , h ∈ C2.

Second-Order Necessary Conditions. Suppose that x∗ is a local minimum of f subject to

h(x) = 0 and that x∗ is a regular point of these constraints. Then there is a λ ∈ Em such that

∇ f (x∗) + λT
∇h(x∗) = 0. (11.18)

If we denote by M the tangent plane M = {y : ∇h(x∗)y = 0}, then the matrix

L(x∗) = F(x∗) + λT H(x∗) (11.19)

is positive semidefinite on M, that is, yT L(x∗)y � 0 for all y ∈ M.

Proof. From elementary calculus it is clear that for every twice differentiable curve

on the constraint surface S through x∗ (with x(0) = x∗) we have

d2

dt2
f (x(t))

]

t=0

� 0. (11.20)

By definition

d2

dt2
f (x(t))

]

t=0

= ẋ(0)T F(x∗)ẋ(0) + ∇ f (x∗)ẍ(0). (11.21)

Furthermore, differentiating the relation λT h(x(t)) = 0 twice, we obtain

ẋ(0)TλT H(x∗)ẋ(0) + λT
∇h(x∗)ẍ(0) = 0. (11.22)

Adding (11.22) to (11.21), while taking account of (11.20), yields the result

d2

dt2
f (x(t))

]

t=0

= ẋ(0)T L(x∗)ẋ(0) � 0.

Since ẋ(0) is arbitrary in M, we immediately have the stated conclusion. �

The above theorem is our first encounter with the matrix L = F + λT H which

is the matrix of second partial derivatives, with respect to x, of the Lagrangian l.

(See Appendix A, Sect. A.6, for a discussion of the notation λT H used here.) This

matrix is the backbone of the theory of algorithms for constrained problems, and it

is encountered often in subsequent chapters.

We next state the corresponding set of sufficient conditions.

Second-Order Sufficiency Conditions. Suppose there is a point x∗ satisfying h(x∗) = 0, and

a λ ∈ Em such that

∇ f (x∗) + λT
∇h(x∗) = 0. (11.23)

334 11 Constrained Minimization Conditions

Suppose also that the matrix L(x∗) = F(x∗) + λ
T H(x∗) is positive definite on M = {y :

∇h(x∗)y = 0}, that is, for y ∈ M, y � 0 there holds yT L(x∗)y > 0. Then x∗ is a strict local

minimum of f subject to h(x) = 0.

Proof. If x∗ is not a strict relative minimum point, there exists a sequence of feasible

points {yk} converging to x∗ such that for each k, f (yk) � f (x∗). Write each yk in

the form yk = x∗ + δksk where sk ∈ En, |sk | = 1, and δk > 0 for each k. Clearly,

δk → 0 and the sequence {sk}, being bounded, must have a convergent subsequence

converging to some s∗. For convenience of notation, we assume that the sequence

{sk} is itself convergent to s∗. We also have h(yk)−h(x∗) = 0, and dividing by δk and

letting k → ∞ we see that ∇h(x∗)s∗ = 0.

Now by Taylor’s theorem, we have for each j

0 = h j(yk) = h j(x
∗) + δk∇h j(x

∗)sk +
δ2

k

2
sT

k∇
2h j(η j)sk (11.24)

and

0 � f (yk) − f (x∗) = δk∇ f (x∗)sk +
δ2

k

2
sT

k∇
2 f (η0)sk, (11.25)

where each η j is a point on the line segment joining x∗ and yk. Multiplying (11.24)

by λ j and adding these to (11.25) we obtain, on accounting for (11.23),

0 �
δ2

k

2
sT

k

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇
2 f (η0) +

m
∑

i=1

λi∇
2hi(ηi)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

sk,

which yields a contradiction as k → ∞. �

Example 1. Consider the problem

maximize x1 x2 + x2x3 + x1x3

subject to x1 + x2 + x3 = 3.

In Example 1 of Sect. 11.4 it was found that x1 = x2 = x3 = 1, λ = −2 satisfy the

first-order conditions. The matrix F + λT H becomes in this case

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 1

1 0 1

1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

which itself is neither positive nor negative definite. On the subspace M = {y: y1 +

y2 + y3 = 0}, however, we note that

yT Ly = y1(y2 + y3) + y2(y1 + y3) + y3(y1 + y2)

= −(y2
1 + y2

2 + y2
3),

and thus L is negative definite on M. Therefore, the solution we found is at least a

local maximum.

11.6 Eigenvalues in Tangent Subspace 335

11.6 Eigenvalues in Tangent Subspace

In the last section it was shown that the matrix L restricted to the subspace M that

is tangent to the constraint surface plays a role in second-order conditions entirely

analogous to that of the Hessian of the objective function in the unconstrained case.

It is perhaps not surprising, in view of this, that the structure of L restricted to M

also determines rates of convergence of algorithms designed for constrained prob-

lems in the same way that the structure of the Hessian of the objective function

does for unconstrained algorithms. Indeed, we shall see that the eigenvalues of L

restricted to M determine the natural rates of convergence for algorithms designed

for constrained problems. It is important, therefore, to understand what these re-

stricted eigenvalues represent. We first determine geometrically what we mean by

the restriction of L to M which we denote by LM . Next we define the eigenvalues of

the operator LM . Finally we indicate how these various quantities can be computed.

Given any vector y ∈ M, the vector Ly is in En but not necessarily in M. We

project Ly orthogonally back onto M, as shown in Fig. 11.4, and the result is said to

be the restriction of L to M operating on y. In this way we obtain a linear transforma-

tion from M to M. The transformation is determined somewhat implicitly, however,

since we do not have an explicit matrix representation.

Fig. 11.4 Definition of LM

A vector y ∈ M is an eigenvector of LM if there is a real number λ such that

LMy = λy; the corresponding λ is an eigenvalue of LM . This coincides with the

standard definition. In terms of L we see that y is an eigenvector of LM if Ly can be

written as the sum of λy and a vector orthogonal to M. See Fig. 11.5.

To obtain a matrix representation for LM it is necessary to introduce a basis in

the subspace M. For simplicity it is best to introduce an orthonormal basis, say

e1, e2, . . . , en−m. Define the matrix E to be the n × (n − m) matrix whose columns

consist of the vectors ei. Then any vector y in M can be written as y = Ez for some

z ∈ En−m and, of course, LEz represents the action of L on such a vector. To project

this result back into M and express the result in terms of the basis e1, e2, . . . , en−m,

336 11 Constrained Minimization Conditions

Fig. 11.5 Eigenvector of LM

we merely multiply by ET . Thus ET LEz is the vector whose components give the

representation in terms of the basis; and, correspondingly, the (n − m) × (n − m)

matrix ET LE is the matrix representation of L restricted to M.

The eigenvalues of L restricted to M can be found by determining the eigenvalues

of ET LE. These eigenvalues are independent of the particular orthonormal basis E.

Example 1. In the last section we considered

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 1

1 0 1

1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

restricted to M = {y : y1 + y2 + y3 = 0}. To obtain an explicit matrix representation

on M let us introduce the orthonormal basis:

e1 =
1√
2

(1, 0, −1)

e2 =
1√
6

(1, −2, 1).

This gives, upon expansion,

ET LE =

[

−1 0

0 −1

]

,

and hence L restricted to M acts like the negative of the identity.

Example 2. Let us consider the problem

extremize x1 + x2
2 + x2x3 + 2x2

3

subject to
1

2
(x2

1 + x2
2 + x2

3) = 1.

11.6 Eigenvalues in Tangent Subspace 337

The first-order necessary conditions are

1 + λx1 = 0

2x2 + x3 + λx2 = 0

x2 + 4x3 + λx3 = 0.

One solution to this set is easily seen to be x1 = 1, x2 = 0, x3 = 0, λ = −1. Let us

examine the second-order conditions at this solution point. The Lagrangian matrix

there is

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 0 0

0 1 1

0 1 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and the corresponding subspace M is

M = {y : y1 = 0}.

In this case M is the subspace spanned by the second two basis vectors in E3 and

hence the restriction of L to M can be found by taking the corresponding submatrix

of L. Thus, in this case,

ET LE =

[

1 1

1 3

]

.

The characteristic polynomial of this matrix is

det

[

1 − λ 1

1 3 − λ

]

= (1 − λ)(3 − λ) − 1 = λ2 − 4λ + 2.

The eigenvalues of LM are thus λ = 2 ±
√

2, and LM is positive definite.

Since the LM matrix is positive definite, we conclude that the point found is a

relative minimum point. This example illustrates that, in general, the restriction of

L to M can be thought of as a submatrix of L, although it can be read directly from

the original matrix only if the subspace M is spanned by a subset of the original

basis vectors.

Projected Hessians

The above approach for determining the eigenvalues of L projected onto M is quite

direct and relatively simple. There is another approach, however, that is useful in

some theoretical arguments and convenient for simple applications. It is based on

constructing matrices and determinants of order n rather than n − m, but there is

no need to find the orthonormal basis E. For simplicity, let A = ∇h which has full

row rank.

338 11 Constrained Minimization Conditions

Any x satisfying Ax = 0 can be expressed as

x = (I − AT (AAT)−1A)z

for some z (and the converse is also true), where PA = (I − AT (AAT)−1A) is the so

called projection matrix to the null space of A (that is, M). If xT Lx ≥ 0 for all x in

this null space, then zT PALPAz ≥ 0 for all z ∈ En, or the n-dimensional symmetric

matrix PALPA is positive semidefinite. Furthermore, if PALPA has rank n − m, then

LM is positive definite, which results the following test.

Projected Hessian Test. The matrix L is positive definite on the subspace M = {x : ∇hx = 0}
if and only if the projected Hessian matrix to the null space of ∇h is positive semidefinite

and has rank n −m.

Example 3. Approaching Example 2 in this way and noting A = ∇h = (1, 0, 0) we

have

PA = I −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0

0 1 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Then

PALPA =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0

0 1 1

0 1 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

which is clearly positive semidefinite and has rank 2.

11.7 Sensitivity

The Lagrange multipliers associated with a constrained minimization problem have

an interpretation as prices, similar to the prices associated with constraints in linear

programming. In the nonlinear case the multipliers are associated with the particu-

lar solution point and correspond to incremental or marginal prices, that is, prices

associated with small variations in the constraint requirements.

Suppose the problem

minimize f (x)

subject to h(x) = 0 (11.26)

has a solution at the point x∗ which is a regular point of the constraints. Let λ be the

corresponding Lagrange multiplier vector. Now consider the family of problems

minimize f (x)

subject to h(x) = c, (11.27)

where c ∈ Em. For a sufficiently small range of c near the zero vector, the problem

will have a solution point x(c) near x(0) ≡ x∗. For each of these solutions there is a

11.7 Sensitivity 339

corresponding value f (x(c)), and this value can be regarded as a function of c, the

right-hand side of the constraints. The components of the gradient of this function

can be interpreted as the incremental rate of change in value per unit change in

the constraint requirements. Thus, they are the incremental prices of the constraint

requirements measured in units of the objective. We show below how these prices

are related to the Lagrange multipliers of the problem having c = 0.

Sensitivity Theorem. Let f , h ∈ C2 and consider the family of problems

minimize f (x)

subject to h(x) = c. (11.29)

Suppose for c = 0 there is a local solution x∗ that is a regular point and that, together with

its associated Lagrange multiplier vector λ, satisfies the second-order sufficiency conditions

for a strict local minimum. Then for every c ∈ Emin a region containing 0 there is an x(c),
depending continuously on c, such that x(0) = x∗ and such that x(c) is a local minimum

of (11.27). Furthermore,

∇c f (x(c))
]

c=0 = −λT .

Proof. Consider the system of equations

∇ f (x) + λT
∇h(x) = 0 (11.30)

h(x) = c. (11.31)

By hypothesis, there is a solution x∗, λ to this system when c = 0. The Jacobian

matrix of the system at this solution is

[

L(x∗) ∇h(x∗)T

∇h(x∗) 0

]

.

Because by assumption x∗ is a regular point and L(x∗) is positive definite on M,

it follows that this matrix is nonsingular (see Exercise 11). Thus, by the Implicit

Function Theorem, there is a solution x(c), λ(c) to the system which is in fact con-

tinuously differentiable.

By the chain rule we have

∇c f (x(c))
]

c=0 = ∇x f (x∗)∇cx(0).

and

∇ch(x(c))]c=0 = ∇xh(x∗)∇cx(0).

In view of (11.31), the second of these is equal to the identity I on Em, while this, in

view of (11.30), implies that the first can be written

∇c f (x(c))
]

c=0 = −λT . �

340 11 Constrained Minimization Conditions

11.8 Inequality Constraints

We consider now problems of the form

minimize f (x)

subject to h(x) = 0, g(x) � 0. (11.32)

We assume that f and h are as before and that g is a p-dimensional function. Initially,

we assume f , h, g ∈ C1.

There are a number of distinct theories concerning this problem, based on various

regularity conditions or constraint qualifications, which are directed toward obtain-

ing definitive general statements of necessary and sufficient conditions. One can by

no means pretend that all such results can be obtained as minor extensions of the

theory for problems having equality constraints only. To date, however, these al-

ternative results concerning necessary conditions have been of isolated theoretical

interest only—for they have not had an influence on the development of algorithms,

and have not contributed to the theory of algorithms. Their use has been limited to

small-scale programming problems of two or three variables. We therefore choose to

emphasize the simplicity of incorporating inequalities rather than the possible com-

plexities, not only for ease of presentation and insight, but also because it is

this viewpoint that forms the basis for work beyond that of obtaining necessary

conditions.

First-Order Necessary Conditions

With the following generalization of our previous definition it is possible to parallel

the development of necessary conditions for equality constraints.

Definition. Let x∗ be a point satisfying the constraints

h(x∗) = 0, g(x∗) � 0, (11.33)

and let J be the set of indices j for which g j(x
∗) = 0. Then x∗ is said to be a regular point

of the constraints (11.33) if the gradient vectors ∇hi(x
∗), ∇gi(x

∗), 1 � i � m, j ∈ J are
linearly independent.

We note that, following the definition of active constraints given in Sect. 11.1, a

point x∗ is a regular point if the gradients of the active constraints are linearly inde-

pendent. Or, equivalently, x∗ is regular for the constraints if it is regular in the sense

of the earlier definition for equality constraints applied to the active constraints.

Karush-Kuhn-Tucker Conditions. Let x∗ be a relative minimum point for the problem

minimize f (x)

subject to h(x) = 0, g(x) � 0, (11.34)

11.8 Inequality Constraints 341

and suppose x∗ is a regular point for the constraints. Then there is a vector λ ∈ Em and a

vector µ ∈ E p with µ � 0 such that

∇ f (x∗) + λT
∇h(x∗) + µT

∇g(x∗) = 0 (11.35)

µT g(x∗) = 0. (11.36)

Proof. We note first, since µ � 0 and g(x∗) � 0, (11.36) is equivalent to the state-

ment that a component of µ may be nonzero only if the corresponding constraint

is active. This a complementary slackness condition, stating that g(x∗)i < 0 implies

μi = 0 and μi > 0 implies g(x∗)i = 0.

Since x∗ is a relative minimum point over the constraint set, it is also a relative

minimum over the subset of that set defined by setting the active constraints to zero.

Thus, for the resulting equality constrained problem defined in a neighborhood of

x∗, there are Lagrange multipliers. Therefore, we conclude that (11.35) holds with

μ j = 0 if g j(x
∗) � 0 (and hence (11.36) also holds).

It remains to be shown that µ ≥ 0. Suppose μk < 0 for some k ∈ J. Let S and M

be the surface and tangent plane, respectively, defined by all other active constraints

at x∗. By the regularity assumption, there is a y such that y ∈ M and ∇gk(x∗)y < 0.

Let x(t) be a curve on S passing through x∗(at t = 0) with ẋ(0) = y. Then for small

t ≥ 0, x(t) is feasible, and

df

dt
(x(t))

]

t=0

= ∇ f (x∗)y < 0

by (11.35), which contradicts the minimality of x∗. �

Example. Consider the problem

minimize 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2

subject to x2
1 + x2

2 � 5

3x1 + x2 � 6.

The first-order necessary conditions, in addition to the constraints, are

4x1 + 2x2 − 10 + 2μ1x1 + 3μ2 = 0

2x1 + 2x2 − 10 + 2μ1x2 + μ2 = 0

μ1 ≥ 0, μ2 ≥ 0

μ1(x2
1 + x2

2 − 5) = 0

μ2(3x1 + x2 − 6) = 0.

To find a solution we define various combinations of active constraints and check

the signs of the resulting Lagrange multipliers. In this problem we can try setting

none, one, or two constraints active. Assuming the first constraint is active and the

second is inactive yields the equations

342 11 Constrained Minimization Conditions

4x1 + 2x2 − 10 + 2μ1x1 = 0

2x1 + 2x2 − 10 + 2μ1x2 = 0

x2
1 + x2

2 = 5,

which has the solution

x1 = 1, x2 = 2, μ1 = 1.

This yields 3x1 + x2 = 5 and hence the second constraint is satisfied. Thus, since

μ1 > 0, we conclude that this solution satisfies the first-order necessary conditions.

Second-Order Conditions

The second-order conditions, both necessary and sufficient, for problems with in-

equality constraints, are derived essentially by consideration only of the equality

constrained problem that is implied by the active constraints. The appropriate tan-

gent plane for these problems is the plane tangent to the active constraints.

Second-Order Necessary Conditions. Suppose the functions f , g, h ∈ C2 and that x∗ is a

regular point of the constraints (11.33). If x∗ is a relative minimumpoint for problem (11.32),

then there is a λ ∈ Em, µ ∈ E p, µ ≥ 0 such that (11.35) and (36) hold and such that

L(x∗) = F(x∗) + λT H(x∗) + µT G(x∗) (11.37)

is positive semidefinite on the tangent subspace of the active constraints at x∗.

Proof. If x∗ is a relative minimum point over the constraints (11.33), it is also a

relative minimum point for the problem with the active constraints taken as equality

constraints. �

Just as in the theory of unconstrained minimization, it is possible to formulate a

converse to the Second-Order Necessary Condition Theorem and thereby obtain a

Second-Order Sufficiency Condition Theorem. By analogy with the unconstrained

situation, one can guess that the required hypothesis is that L(x∗) be positive definite

on the tangent plane M. This is indeed sufficient in most situations. However, if there

are degenerate inequality constraints (that is, active inequality constraints having

zero as associated Lagrange multiplier), we must require L(x∗) to be positive definite

on a subspace that is larger than M.

Second-Order Sufficiency Conditions. Let f , g, h ∈ C2. Sufficient conditions that a point

x∗ satisfying (33) be a strict relative minimum point of problem (11.32) is that there exist

λ ∈ Em, µ ∈ E p, such that

µ ≥ 0 (11.38)

µT g(x∗) = 0 (11.39)

∇ f (x∗) + λT
∇h(x∗) + µT1∇g(x∗) = 0, (11.40)

11.8 Inequality Constraints 343

and the Hessian matrix

L(x∗) = F(x∗) + λT H(x∗) + μT G(x∗) (11.41)

is positive definite on the subspace

M′ =
{

y : ∇h(x∗)y = 0, ∇g j(x
∗)y = 0 f or all j ∈ J

}

,

where J =
{

j : g j(x
∗) = 0, μ j > 0

}

.

Proof. As in the proof of the corresponding theorem for equality constraints in

Sect. 11.5, assume that x∗ is not a strict relative minimum point; let {yk} be a se-

quence of feasible points converging to x∗ such that f (yk) � f (x∗), and write each

yk in the form yk = x∗ + δksk with |sk | = 1, δk > 0. We may assume that δk → 0 and

sk → s∗. We have 0 ≥ ∇ f (x∗)s∗, and for each i = 1, . . . , m we have

∇hi(x
∗)s∗ = 0.

Also for each active constraint g j we have g j(yk) − g j(x
∗) � 0, and hence

∇g j(x
∗)s∗ � 0.

If ∇g j(x
∗)s∗ = 0 for all j ∈ J, then the proof goes through just as in Sect. 11.5. If

∇g j(x
∗)s∗ < 0 for at least one j ∈ J, then

0 � ∇ f (x∗)s∗ = −λT
∇h(x∗)s∗ − µT

∇g(x∗)s∗ > 0,

which is a contradiction. �

We note in particular that if all active inequality constraints have strictly positive

corresponding Lagrange multipliers (no degenerate inequalities), then the set J in-

cludes all of the active inequalities. In this case the sufficient condition is that the

Lagrangian be positive definite on M, the tangent plane of active constraints.

Sensitivity

The sensitivity result for problems with inequalities is a simple restatement of the

result for equalities. In this case, a nondegeneracy assumption is introduced so that

the small variations produced in Lagrange multipliers when the constraints are var-

ied will not violate the positivity requirement.

Sensitivity Theorem. Let f , g, h ∈ C2 and consider the family of problems

minimize f (x)

subject to h(x) = c, g(x) � d. (11.42)

Suppose that for c = 0, d = 0, there is a local solution x∗ that is a regularpoint and

that, together with the associated Lagrange multipliers, λ, µ ≥ 0,satisfies the second-order

344 11 Constrained Minimization Conditions

sufficiency conditions for a strict local minimum.Assume further that no active inequality

constraint is degenerate. Then for every (c, d) ∈ Em+p in a region containing (0, 0) there is

a solution x(c, d),depending continuously on (c, d), such that x(0, 0) = x∗, and such that

x(c, d)is a relative minimum point of (11.42). Furthermore,

∇c f (x(c, d))
]

0,0 = −λT (11.43)

∇d f (x(c, d))
]

0,0 = −µT. (11.44)

11.9 Zero-Order Conditions and Lagrangian Relaxation

Zero-order conditions for functionally constrained problems express conditions in

terms of Lagrange multipliers without the use of derivatives. This theory is not only

of great practical value, but it also gives new insight into the meaning of Lagrange

multipliers. Rather than regarding the Lagrange multipliers as separate scalars, they

are identified as components of a single vector that has a strong geometric interpre-

tation. As before, the basic constrained problem is

minimize f (x)

subject to h(x) = 0, g(x) ≤ 0

x ∈ Ω,
(11.45)

where x is a vector in En, and h and g are m-dimensional and p-dimensional func-

tions, respectively.

In purest form, zero-order conditions require that the functions that define the

objective and the constraints are convex functions and sets. (See Appendix B.)

The vector-valued function g consisting of p individual component functions

g1, g2, . . . , gp is said to be convex if each of the component functions is convex.

The programming problem (11.45) above is termed a convex programming prob-

lem if the functions f and g are convex, the function h is affine (that is, linear plus a

constant and can be written as Ax − b), and the set Ω ⊂ En is convex.

Notice that according to Proposition 3, Sect. 7.4, the set defined by each of the

inequalities g j(x) � 0 is convex. This is true also of a set defined by hi(x) = 0.

Since the overall constraint set is the intersection of these and Ω it follows from

Proposition 1 of Appendix B that this overall constraint set is itself convex. Hence

the problem can be regarded as minimize f (x), x ∈ Ω1 where Ω1 is a convex sub-

set of Ω.

With this view, one could apply the zero-order conditions of Sect. 7.6 to the prob-

lem with constraint set Ω1. However, in the case of functional constraints it is com-

mon to keep the structure of the constraints explicit instead of folding them into an

amorphous set.

Although it is possible to derive the zero-order conditions for (11.45) all at once,

treating both equality and inequality constraints together, it is notationally cumber-

some to do so and it may obscure the basic simplicity of the arguments. For this

reason, we treat equality constraints first, then inequality constraints, and finally the

combination of the two.

11.9 Zero-Order Conditions and Lagrangian Relaxation 345

The equality problem is

minimize f (x)

subject to h(x) = 0

x ∈ Ω.
(11.46)

Letting Y = Em, we have h(x) ∈ Y for all x. For this problem we require a regularity

condition.

Definition. An affine function h is regular with respect to Ω if the set C in Y defined by
C = {y : h(x) = y for some x ∈ Ω} contains an open sphere around 0; that is, C contains a
set of the form {y : |y| < ε} for some ε > 0.

This condition means that h(x) can attain 0 and can vary in arbitrary directions

from 0. Notice that this condition is similar to the definition of a regular point in

the context of first-order conditions. If h has continuous derivatives at a point x∗

the earlier regularity condition implies that ∇h(x∗) is of full rank and the Implicit

Function Theorem (of Appendix A) then guarantees that there is an ε > 0 such that

for any y with |y − h(x∗)| < ε there is an x such that h(x) = y. In other words, there

is an open sphere around y∗ = h(x∗) that is attainable. In the present situation we

assume this attainability directly, at the point 0 ∈ Y.

Next we introduce the following important construction.

Definition. The primal function associated with problem (11.46) is

w(y) = inf{ f (x) : h(x) = y, x ∈ Ω},

defined for all y ∈ C.

Notice that the primal function is defined by varying the right hand side of the

constraint. The original problem (11.46) corresponds to ω(0). The primal function

is illustrated in Fig. 11.6.

Proposition 1. Suppose Ω is convex, the function f is convex, and h is affine. Then the

primal function ω is convex.

Fig. 11.6 The primal function

346 11 Constrained Minimization Conditions

Proof. For simplicity of notation we assume that Ω is the entire space X. Then we

observe

Ω(αy1 + (1 − α)y2) = inf{ f (x) : h(x) = αy1 + (1 − α)y2}
≤ inf{ f (x) : x = αx1 + (1 − α)x2, h(x1) = y1, h(x2) = y2}
≤ α inf{ f (x1) : h(x1) = y1} + (1 − α) inf{ f x2) : h(x2) = y2}
= α ω(y1) + (1 − α)ω(y2). �

We now turn to the derivation of the Lagrange multiplier result for (11.46).

Proposition 2. Assume that Ω ⊂ En is convex, f is a convex function on Ω and h is an

m-dimensional affine function on Ω. Assume that h is regular with respect to Ω. If x∗

solves (11.46), then there is λ ∈ Em such that x∗ solves the Lagrangian relaxation prob-

lem

minimize f (x) + λT h(x)

sub ject to x ∈ Ω.

Proof. Let f ∗ = f (x∗). Define the sets A and B in Em+1 as

A = {(r, y) : r ≥ ω(y), y ∈ C} and B = {(r, y) : r � f ∗, y = 0}.

A is the epigraph of ω (see Sect. 7.6) and B is the vertical line extending below f ∗

and aligned with the origin. Both A and B are convex sets. Their only common point

is at (f ∗, 0). See Fig. 11.7.

Fig. 11.7 The sets A and B and the separating hyperplane

According to the separating hyperplane theorem (Appendix B), there is a hyper-

plane separating A and B. This hyperplane can be represented by a nonzero vector

in Em+1 of the form (s, λ), with λ ∈ Em, and a separation constant c. The separation

conditions are

sr + λT y ≥ c for all (r, y) ∈ A and sr + λT y � c for all (r, y) ∈ B.

It follows immediately that s ≥ 0 for otherwise points (r, 0) ∈ B with r very negative

would violate the second inequality.

11.9 Zero-Order Conditions and Lagrangian Relaxation 347

Geometrically, if s = 0 the hyperplane would be vertical. We wish to show that

s � 0, and it is for this purpose that we make use of the regularity condition. Suppose

s = 0. Then λ � 0 since both s and λ cannot be zero. It follows from the second

separation inequality that c = 0 because the hyperplane must include the point

(f ∗, 0). Now, as y ranges over a sphere centered at 0 ∈ C, the left hand side of the

first separation inequality ranges correspondingly over λT y which is negative for

some y’s. This contradicts the first separation inequality. Thus s � 0 and thus in fact

s > 0. Without loss of generality we may, by rescaling if necessary, assume that

s = 1.

Finally, suppose x ∈ Ω. Then (f (x), h(x)) ∈ A and (f (x∗), 0) ∈ B. Thus, from

the separation inequality (with s = 1) we have

f (x) + λT h(x) ≥ f (x∗) = f (x∗) + λT h(x∗).

Hence x∗ solves the stated minimization problem. �

Example 1 (Best Rectangle). Consider the classic problem of finding the rectangle

of maximum area while limiting the perimeter to a length of 4. This can be formu-

lated as

minimize − x1x2

subject to x1 + x2 − 2 = 0

x1 ≥ 0, x2 ≥ 0.

The regularity condition is met because it is possible to make the right hand side of

the functional constraint slightly positive or slightly negative with nonnegative x1

and x2. We know the answer to the problem is x1 = x2 = 1. The Lagrange multiplier

is λ = 1. The Lagrangian problem of Proposition 2 is

minimize − x1x2 + 1 · (x1 + x2 − 2)

subject to x1 ≥ 0, x2 ≥ 0.

This can be solved by differentiation to obtain x1 = x2 = 1.

However the conclusion of the proposition is not satisfied! The value of the La-

grangian at the solution is V = −1 + 1 + 1 − 2 = −1. However, at x1 = x2 = 0

the value of the Lagrangian is V ′ = −2 which is less than V . The Lagrangian is

not minimized at the solution. The proposition breaks down because the objective

function f (x1, x2) = −x1x2 is not convex.

Example 2 (Best Diagonal). As an alternative problem, consider minimizing the

length of the diagonal of a rectangle subject to the perimeter being of length 4.

This problem can be formulated as

minimize 1
2
(x2

1
+ x2

2
)

subject to x1 + x2 − 2 = 0

x1 ≥ 0, x2 ≥ 0.

348 11 Constrained Minimization Conditions

In this case the objective function is convex. The solution is x1 = x2 = 1 and the

Lagrange multiplier is λ = −1. The Lagrangian problem is

minimize
1

2
(x2

1 + x2
2) − 1 · (x1 + x2 − 2)

subject to x1 ≥ 0, x2 ≥ 0.

The value of the Lagrangian at the solution is V = 1 which in this case is a minimum

as guaranteed by the proposition. (The value at x1 = x2 = 0 is V ′ = 2.)

Inequality Constraints

We outline the parallel results for the inequality constrained problem

minimize f (x)

subject to g(x) ≤ 0 (11.47)

x ∈ Ω,

where g is a p-dimensional function.

We let Z = Ep and define D ⊂ Z as D = {z ∈ Z : g(x) � z for some x ∈ Ω}.
The regularity condition (called the Slater condition) is that there is a z1 ∈ D with

z1 < 0.

As before we introduce the primal function.

Definition. The primal function associated with problem (11.47) is

w(z) = inf{ f (x) : g(x) ≤ z, x ∈ Ω}.

The primal function is again defined by varying the right hand side of the constraint

function, using the variable z. Now the primal function in monotonically decreasing

with z, since an increase in z enlarges the constraint region.

Proposition 3. Suppose Ω ⊂ En is convex and f and g are convex functions. Then the

primal function ω is also convex.

Proof. The proof parallels that of Proposition 1. One simply substitutes g(x) ≤ 0 for

h(x) = y throughout the series of inequalities. �

The zero-order necessary Lagrangian conditions are then given by the proposi-

tion below.

Proposition 4. Assume Ω is a convex subset of En and that f and g are convex functions.

Assume also that there is a point x1 ∈ Ω such that g(x1) < 0. Then, if x∗ solves (11.47),

there is a vector µ ∈ E p with µ ≥ 0 such that x∗ solves the Lagrangian relaxation problem

minimize f (x∗) + µT g(x) (11.48)

subject to x ∈ Ω.

Furthermore, µT g(x∗) = 0.

11.9 Zero-Order Conditions and Lagrangian Relaxation 349

Proof. Here is the proof outline. Let f ∗ = f (x∗). In this case define in Ep+1 the

two sets

A = {(r, 0) : r ≥ f (x), 0 ≥ g(x), for some x ∈ Ω} and B = {(r, 0) : r ≤ f ∗, 0 ≤ 0}.

A is the epigraph of the primal function ω. The set B is the rectangular region at or

to the left of the vertical axis and at or lower than f ∗. Both A and B are convex. See

Fig. 11.8.

Fig. 11.8 The sets A and B and the separating hyperplane for inequalities

The proof is made by constructing a hyperplane separating A and B. The regu-

larity condition guarantees that this hyperplane is not vertical. �

The condition µT g(x∗) = 0 is the complementary slackness condition that is

characteristic of necessary conditions for problems with inequality constraints.

Example 4 (Quadratic Program). Consider the quadratic program

minimize xT Qx + cT x

subject to aT x ≤ b

x ≥ 0.

Let Ω = {x : x ≥ 0} and g(x) = aT x − b. Assume that the n × n matrix Q is positive

definite, in which case the objective function is convex. Assuming that b > 0, the

Slater regularity condition is satisfied. Hence there is a Lagrange multiplier μ ≥ 0

(a scalar in this case) such that the solution x∗ to the quadratic program is also a

solution to

minimize xT Qx + cT x + μ(aT x − b)

subject to x ≥ 0 and μ(aT x∗ − b) = 0.

350 11 Constrained Minimization Conditions

Mixed Constraints

The two previous results can be combined to obtain zero-order conditions for the

problem
minimize f (x)

subject to h(x) = 0, g(x) ≤ 0

x ∈ Ω.
(11.49)

Zero-order Lagrange Theorem. Assume that Ω ⊂ En is a convex set, f and g are convex

functions of dimension 1 and p, respectively, and h is affine ofdimension m. Assume also

that h satisfies the regularity condition with respect to Ω and that there is an x1 ∈ Ω with

h(x1) = 0 and g(x1) < 0. Suppose x∗ solves (11.49). Then there are vectors λ ∈ Em and

µ ∈ E p with µ ≥ 0 such that x∗ solves the Lagrangian relaxation problem

minimize f (x) + λT h(x) + µT g(x) (11.50)

subject to x ∈ Ω.

Furthermore, µT g(x∗) = 0.

The convexity requirements of this result are satisfied in many practical problems.

Indeed convex programming problems are both pervasive and relatively well treated

by theory and numerical methods. The corresponding theory also motivates many

approaches to general nonlinear programming problems. In fact, it will be apparent

that many methods attempt to “convexify” a general nonlinear problem either by

changing the formulation of the underlying application or by introducing devices

that temporarily relax as the method progresses.

Zero-Order Sufficient Conditions

The sufficiency conditions are very strong and do not require convexity.

Proposition 5 (Sufficiency Conditions). Suppose f is a real-valued function on a set Ω ⊂
En. Suppose also that h and g are, respectively, m-dimensionaland p-dimensional functions

on Ω. Finally, suppose there are vectors x∗ ∈ Ω, λ ∈ Em, and µ ∈ E p with µ ≥ 0 such that

f (x∗) + λT h(x∗) + µT g(x∗) ≤ f (x) + λT h(x) + µT g(x)

for all x ∈ Ω. Then x∗ solves

minimize f (x)
subject to h(x) = h(x∗), g(x) ≤ g(x∗)

x ∈ Ω.

Proof. Suppose there is x1 ∈ Ω with f (x1) < f (x∗), h(x1) = h(x∗), and g(x1) ≤
g(x∗). Fromµ ≥ 0 it is clear that µT g(x1) ≤ µT g(x∗). It follows that f (x1)+λT h(x1)+

µT g(x1) < f (x∗) + λT h(x∗) + µT g(x∗), which is a contradiction. �

Notice that the constraint of the Lagrangian relaxation problem is significantly

simpler, and typically much easier to solve for given λ and µ. The result suggests

11.10 Summary 351

that Lagrange multiplier values might be guessed and used to define an initial La-

grangian relaxation problem which is subsequently minimized. This will produce

a solution of x and its constraint values. If these values meet the given right-hand

side requirement, then x is optimal. Otherwise, one may adjust Lagrange multiplier

values accordingly. Indeed, this approach, the Lagrangian relaxation method, will

be characteristic of a duality method treated in Chap. 14.

The theory of this section has an inherent geometric simplicity captured clearly

by Figs. 11.7 and 11.8. It raises ones’ s level of understanding of Lagrange multi-

pliers and sets the stage for the theory of convex duality presented in Chap. 14. It is

certainly possible to jump ahead and read that now.

11.10 Summary

Given a minimization problem subject to equality constraints in which all functions

are smooth, a necessary condition satisfied at a minimum point is that the gradient

of the objective function is orthogonal to the tangent plane of the constraint surface.

If the point is regular, then the tangent plane has a simple representation in terms of

the gradients of the constraint functions, and the above condition can be expressed

in terms of Lagrange multipliers.

If the functions have continuous second partial derivatives and Lagrange multi-

pliers exist, then the Hessian of the Lagrangian restricted to the tangent plane plays

a role in second-order conditions analogous to that played by the Hessian of the

objective function in unconstrained problems. Specifically, the restricted Hessian

must be positive semidefinite at a relative minimum point and, conversely, if it is

positive definite at a point satisfying the first-order conditions, that point is a strict

local minimum point.

Inequalities are treated by determining which of them are active at a solution.

An active inequality then acts just like an equality, except that its associated La-

grange multiplier can never be negative because of the sensitivity interpretation of

the multipliers.

The necessary conditions for convex problems can be expressed without deriva-

tives, and these are according termed zero-order conditions. These conditions are

highly geometric in character and explicitly treat the Lagrange multiplier as a vector

in a space having dimension equal to that of the right-hand-side of the constraints.

This Lagrange multiplier vector defines a hyperplane that separates the epigraph of

the primal function from a set of unattainable objective and constraint value combi-

nations.

The “zero-order” optimality condition developed in this chapter establishes a

theoretical base of the Lagrangian relaxation method, which would be introduced

later and is extremely popular for large-scale optimization.

352 11 Constrained Minimization Conditions

11.11 Exercises

1. In E2 consider the constraints

x1 � 0, x2 � 0

x2 − (x1 − 1)2
� 0.

Show that the point x1 = 1, x2 = 0 is feasible but is not a regular point.

2. Find the rectangle of given perimeter that has greatest area by solving the first-

order necessary conditions. Verify that the second-order sufficiency conditions

are satisfied.

3. Verify the second-order conditions for the entropy example of Sect. 11.4.

4. A cardboard box for packing quantities of small foam balls is to be manufac-

tured as shown in Fig. 11.9. The top, bottom, and front faces must be of double

weight (i.e., two pieces of cardboard). A problem posed is to find the dimen-

sions of such a box that maximize the volume for a given amount of cardboard,

equal to 72 sq. ft.

(a) What are the first-order necessary conditions?

(b) Find x, y, z.

(c) Verify the second-order conditions.

Fig. 11.9 Packing box

5. Define

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4 3 2

3 1 1

2 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, h = (1, 1, 0),

and let M be the subspace consisting of those points x = (x1, x2, x3) satisfying

hT x = 0.

(a) Find LM .

(b) Find the eigenvalues of LM .

11.11 Exercises 353

(c) Find

p(λ) = det

[

0 hT

−h L − Iλ

]

.

(d) Apply the projected Hessian test.

6. Show that zT x = 0 for all x satisfying Ax = 0 if and only if z = AT w for

some w. (Hint: Use the Duality Theorem of Linear Programming.)

7. After a heavy military campaign a certain army requires many new shoes. The

quartermaster can order three sizes of shoes. Although he does not know pre-

cisely how many of each size are required, he feels that the demand for the three

sizes are independent and the demand for each size is uniformly distributed be-

tween zero and three thousand pairs. He wishes to allocate his shoe budget of

$4,000 among the three sizes so as to maximize the expected number of men

properly shod. Small shoes cost $1 per pair, medium shoes cost $2 per pair, and

large shoes cost $4 per pair. How many pairs of each size should he order?

8. Optimal control. A one-dimensional dynamic process is governed by a differ-

ence equation

x(k + 1) = φ(x(k), u(k), k)

with initial condition x(0) = x0. In this equation the value x(k) is called the state

at step k and u(k) is the control at step k. Associated with this system there is an

objective function of the form

J =

N
∑

k=0

ψ(x(k), u(k), k).

In addition, there is a terminal constraint of the form

g(x(N + 1)) = 0.

The problem is to find the sequence of controls u(0), u(11.1), u(11.2), . . . , u(N)

and corresponding state values to minimize the objective function while satisfy-

ing the terminal constraint. Assuming all functions have continuous first partial

derivatives and that the regularity condition is satisfied, show that associated

with an optimal solution there is a sequence λ(k), k = 0, 1, . . . , N and a μ such

that

λ(k − 1) = λ(k)φx(x(k), u(k), k) + ψx(x(k), u(k), k), k = 1, 2, . . . , N

λ(N) = μgx(x(N + 1))

ψu(x(k), u(k), k) + λ(k)φu(x(k), u(k), k) = 0, k = 0, 1, 2, . . . , N.

9. Generalize Exercise 9 to include the case where the state x(k) is an n-dimensional

vector and the control u(k) is an m-dimensional vector at each stage k.

10. An egocentric young man has just inherited a fortune F and is now planning

how to spend it so as to maximize his total lifetime enjoyment. He deduces

354 11 Constrained Minimization Conditions

that if x(k) denotes his capital at the beginning of year k, his holdings will be

approximately governed by the difference equation

x(k + 1) = αx(k) − u(k), x(0) = F,

where α � 1 (with α− 1 as the interest rate of investment) and where u(k) is the

amount spent in year k. He decides that the enjoyment achieved in year k can

be expressed as ψ(u(k)) where ψ, his utility function, is a smooth function, and

that his total lifetime enjoyment is

J =

N
∑

k=0

ψ(u(k))βk,

where the term βk(0 < β < 1) reflects the notion that future enjoyment is

counted less today. The young man wishes to determine the sequence of ex-

penditures that will maximize his total enjoyment subject to the condition

x(N + 1) = 0.

(a) Find the general optimality relationship for this problem.

(b) Find the solution for the special case ψ(u) = u1/2.

11. Let A be an m×n matrix of rank m and let L be an n×n matrix that is symmetric

and positive definite on the subspace M = {x : Ax = 0}. Show that the (n+m)×
(n + m) matrix

[

L AT

A 0

]

is nonsingular.

12. Consider the quadratic program

minimize
1

2
xT Qx − bT x

subject to Ax = c.

Prove that x∗ is a local minimum point if and only if it is a global minimum

point. (No convexity is assumed.)

13. Maximize 14x − x2 + 6y − y2 + 7 subject to x + y � 2, x + 2y � 3.

14. In the quadratic program example of Sect. 11.9, what are more general condi-

tions on a and b that satisfy the Slater condition?

15. What are the general zero-order Lagrangian conditions for the problem (11.46)

without the regularity condition? [The coefficient of f will be zero, so there is

no real condition.]

16. Show that the problem of finding the rectangle of maximum area with a diago-

nal of unit length can be formulated as an unconstrained convex programming

problem using trigonometric functions. [Hint: use variable θ over the range

0 ≤ θ ≤ 45◦.]

References 355

References

11.1–11.5 For a classic treatment of Lagrange multipliers see Hancock [H4]. Also

see Fiacco and McCormick [F4], Luenberger [L8], or McCormick [M2].

11.6 The simple formula for the characteristic polynomial of LM as an (n+m)

th-order determinant is apparently due to Luenberger [L17].

11.8 The systematic treatment of inequality constraints was published by

Kuhn and Tucker [K11]. Later it was found that the essential elements

of the theory were contained in the 1939 unpublished M.Sci Disertation

of W. Karush in the Department of Mathematics, University of Chicago.

It is common to recognize this contribution by including his name to the

conditions for optimality.

11.9 The theory of convex problems and the corresponding Lagrange multi-

plier theory was developed by Slater [S7]. For presentations similar to

this section, see Hurwicz [H14] and Luenberger [L8].

Chapter 12

Primal Methods

In this chapter we initiate the presentation, analysis, and comparison of algorithms

designed to solve constrained minimization problems. The four chapters that con-

sider such problems roughly correspond to the following classification scheme.

Consider a constrained minimization problem having n variables and m constraints.

Methods can be devised for solving this problem that work in spaces of dimension

n − m, n, m, or n + m. Each of the following chapters corresponds to methods in

one of these spaces. Thus, the methods in the different chapters represent quite dif-

ferent approaches and are founded on different aspects of the theory. However, there

are also strong interconnections between the methods of the various chapters, both

in the final form of implementation and in their performance. Indeed, there soon

emerges the theme that the rates of convergence of most practical algorithms are

determined by the structure of the Hessian of the Lagrangian much like the struc-

ture of the Hessian of the objective function determines the rates of convergence

for a wide assortment of methods for unconstrained problems. Thus, although the

various algorithms of these chapters differ substantially in their motivation, they are

ultimately found to be governed by a common set of principles.

12.1 Advantage of Primal Methods

We consider the question of solving the general nonlinear programming problem

minimize f (x)

subject to h(x) = 0, g(x) � 0
(12.1)

where x is of dimension n, while f , g, and h have dimensions 1, p, and m, respec-

tively. It is assumed throughout the chapter that all of the functions have continuous

partial derivatives of order three. Geometrically, we regard the problem as that of

minimizing f over the region in En defined by the constraints.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 12

357

358 12 Primal Methods

By a primal method of solution we mean a search method that works on the

original problem directly by searching through the feasible region for the optimal

solution. Each point in the process is feasible and the value of the objective func-

tion constantly decreases. For a problem with n variables and having m equality

constraints only, primal methods work in the feasible space, which has dimension

n − m.

Primal methods possess three significant advantages that recommend their use

as general procedures applicable to almost all nonlinear programming problems.

First, since each point generated in the search procedure is feasible, if the process

is terminated before reaching the solution (as practicality almost always dictates

for nonlinear problems), the terminating point is feasible. Thus this final point is a

feasible and probably nearly optimal solution to the original problem and therefore

may represent an acceptable solution to the practical problem that motivated the

nonlinear program. A second attractive feature of primal methods is that, often, it

can be guaranteed that if they generate a convergent sequence, the limit point of that

sequence must be at least a local constrained minimum. Finally, a major advantage

is that most primal methods do not rely on special problem structure, such as con-

vexity, and hence these methods are applicable to general nonlinear programming

problems.

Primal methods are not, however, without major disadvantages. They require a

phase I procedure (see Sect. 3.5) to obtain an initial feasible point, and they are all

plagued, particularly for problems with nonlinear constraints, with computational

difficulties arising from the necessity to remain within the feasible region as the

method progresses. Some methods can fail to converge for problems with inequality

constraints unless elaborate precautions are taken.

The convergence rates of primal methods are competitive with those of other

methods, and particularly for linear constraints, they are often among the most effi-

cient. On balance their general applicability and simplicity place these methods in a

role of central importance among nonlinear programming algorithms.

12.2 Feasible Direction Methods

The idea of feasible direction methods is to take steps through the feasible region of

the form

xk+1 = xk + αkdk, (12.2)

where dk is a direction vector and αk is a nonnegative scalar. The scalar is chosen

to minimize the objective function f with the restriction that the point xk+1 and

the line segment joining xk and xk+1 be feasible. Thus, in order that the process

of minimizing with respect to α be nontrivial, an initial segment of the ray xk +

αdk, α > 0 must be contained in the feasible region. This motivates the use of

feasible directions for the directions of search. We recall from Sect. 7.1 that a vector

dk is a feasible direction (at xk) if there is an ᾱ > 0 such that xk + αdk is feasible

12.2 Feasible Direction Methods 359

for all α, 0 � α � ᾱ. A feasible direction method can be considered as a natural

extension of our unconstrained descent methods. Each step is the composition of

selecting a feasible direction and a constrained line search.

Let us consider the problem with linear inequality constraints

minimize f (x)

subject to aT
i

x � bi, i = 1, . . .,m.
(12.3)

Example 1 (Frank-Wolfe Method). One of the earliest proposals for a feasible direc-

tion method uses a sequential linear programming subproblem approach. Given a

feasible point xk, the direction vector

dk = x∗k − xk

where x∗
k

is a solution to the linear program

minimize ∇ f (xk)x

subject to aT
i

x � bi, i = 1, . . .,m.

Example 2 (Simplified Zoutendijk Method). Another proposal solves a sequence of

linear subprograms as follows. Given a feasible point, xk, let I be the set of indices

representing active constraints, that is, aT
i

xk = bi for i ∈ I. The direction vector dk

is then chosen as a solution to the linear program

minimize ∇ f (xk)d

subject to aT
i

d � 0, i ∈ I
n
∑

i=1
|di| = 1,

(12.4)

where d = (d1, d2, . . . , dn). The last equation is a normalizing equation that en-

sures a bounded solution. (Even though it is written in terms of absolute values, the

problem can be converted to a linear program; see Exercise 1.) The other constraints

assure that vectors of the form xk + αdk will be feasible for sufficiently small α > 0,

and subject to these conditions, d is chosen to line up as closely as possible with

the negative gradient of f . In some sense this will result in the locally best direc-

tion in which to proceed. The overall procedure progresses by generating feasible

directions in this manner, and moving along them to decrease the objective.

There are two major shortcomings of feasible direction methods that require that

they be modified in most cases. The first shortcoming is that for general problems

there may not exist any feasible directions. If, for example, a problem had nonlinear

equality constraints, we might find ourselves in the situation depicted by Fig. 12.1

where no straight line from xk has a feasible segment. For such problems it is nec-

essary either to relax our requirement of feasibility by allowing points to deviate

slightly from the constraint surface or to introduce the concept of moving along

curves rather than straight lines.

360 12 Primal Methods

Fig. 12.1 No feasible direction

A second shortcoming is that in simplest form most feasible direction methods,

such as the simplified Zoutendijk method, are not globally convergent. They are sub-

ject to jamming (sometimes referred to as zigzagging) where the sequence of points

generated by the process converges to a point that is not even a constrained local

minimum point. This phenomenon can be explained by the fact that the algorithmic

map is not closed.

It is possible to develop feasible direction algorithms that are closed and hence

not subject to jamming. Some procedures for doing so are discussed in Exercises

4–7. However, such methods can become somewhat complicated. A simpler ap-

proach for treating inequality constraints is to use an active set method, as discussed

in the next section.

12.3 Active Set Methods

The idea underlying active set methods is to partition inequality constraints into

two groups: those that are to be treated as active and those that are to be treated as

inactive. The constraints treated as inactive are essentially ignored.

Consider the constrained problem

minimize f (x)

subject to g(x) � 0,
(12.5)

which for simplicity of the current discussion is taken to have inequality constraints

only. The inclusion of equality constraints is straightforward, as will become clear.

The necessary conditions for this problem are

∇ f (x) + λT
∇g(x) = 0

g(x) � 0

λT g(x) = 0 (12.6)

λ � 0.

(See Sect. 11.8.) These conditions can be expressed in a somewhat simpler form in

terms of the set of active constraints. Let A denote the index set of active constraints;

that is, A is the set of i such that gi(x
∗) = 0. Then the necessary conditions (12.6)

become

12.3 Active Set Methods 361

∇ f (x) +
∑

i∈A
λi∇gi(x) = 0

gi(x) = 0, i ∈ A

gi(x) < 0, i � A (12.7)

λi � 0, i ∈ A

λi = 0, i � A

The first two lines of these conditions correspond identically to the necessary condi-

tions of the equality constrained problem obtained by requiring the active constraints

to be zero. The next line guarantees that the inactive constraints are satisfied, and the

sign requirement of the Lagrange multipliers guarantees that every constraint that is

active should be active.

It is clear that if the active set were known, the original problem could be replaced

by the corresponding problem having equality constraints only. Alternatively, sup-

pose an active set was guessed and the corresponding equality constrained problem

solved. Then if the other constraints were satisfied and the Lagrange multipliers

turned out to be nonnegative, that solution would be correct.

The idea of active set methods is to define at each step, or at each phase, of

an algorithm a set of constraints, termed the working set, that is to be treated as

the active set. The working set is chosen to be a subset of the constraints that are

actually active at the current point, and hence the current point is feasible for the

working set. The algorithm then proceeds to move on the surface defined by the

working set of constraints to an improved point. At this new point the working

set may be changed. Overall, then, an active set method consists of the following

components: (1) determination of a current working set that is a subset of the current

active constraints, and (2) movement on the surface defined by the working set to an

improved point.

There are several methods for determining the movement on the surface defined

by the working set. (This surface will be called the working surface.) The most im-

portant of these methods are discussed in the following sections. The direction of

movement is generally determined by first-order or second-order approximations

of the functions at the current point in a manner similar to that for unconstrained

problems. The asymptotic convergence properties of active set methods depend en-

tirely on the procedure for moving on the working surface, since near the solution

the working set is generally equal to the correct active set, and the process simply

moves successively on the surface determined by those constraints.

Changes in Working Set

Suppose that for a given working set W the problem with equality constraints

minimize f (x)

subject to gi(x) = 0, i ∈ W

362 12 Primal Methods

is solved yielding the point xW that satisfies gi(xW) < 0, i � W. This point satisfies

the necessary conditions

∇ f (xW) +
∑

i∈W
λ j∇gi(xW) = 0. (12.8)

If λi � 0 for all i ∈ W, then the point xW is a local solution to the original prob-

lem. If, on the other hand, there is an i ∈ W such that λi < 0, then the objective

can be decreased by relaxing constraint i. This follows directly from the sensitiv-

ity interpretation of Lagrange multipliers, since a small decrease in the constraint

value from 0 to −c would lead to a change in the objective function of λic, which

is negative. Thus, by dropping the constraint i from the working set, an improved

solution can be obtained. The Lagrange multiplier of a problem thereby serves as

an indication of which constraints should be dropped from the working set. This is

illustrated in Fig. 12.2. In the figure, x is the minimum point of f on the surface (a

curve in this case) defined by g1(x) = 0. However, it is clear that the corresponding

Lagrange multiplier λ1 is negative, implying that g1 should be dropped. Since ∇ f

points outside, it is clear that a movement toward the interior of the feasible region

will indeed decrease f .

During the course of minimizing f (x) over the working surface, it is necessary

to monitor the values of the other constraints to be sure that they are not violated,

since all points defined by the algorithm must be feasible. It often happens that

while moving on the working surface a new constraint boundary is encountered. It

is then convenient to add this constraint to the working set, proceeding on a surface

of one lower dimension than before. This is illustrated in Fig. 12.3. In the figure the

working constraint is just g1 = 0 for x1, x2, x3. A boundary is encountered at the

next step, and therefore g2 = 0 is adjoined to the set of working constraints.

Fig. 12.2 Constraint to be dropped

A complete active set strategy for systematically dropping and adding constraints

can be developed by combining the above two ideas. One starts with a given working

set and begins minimizing over the corresponding working surface. If new constraint

boundaries are encountered, they may be added to the working set, but no constraints

are dropped from the working set. Finally, a point is obtained that minimizes f

12.3 Active Set Methods 363

Fig. 12.3 Constraint added to working set

with respect to the current working set of constraints. The corresponding Lagrange

multipliers are determined, and if they are all nonnegative the solution is optimal.

Otherwise, one or more constraints with negative Lagrange multipliers are dropped

from the working set. The procedure is reinitiated with this new working set, and f

will strictly decrease on the next step.

An active set method built upon this basic active set strategy requires that a pro-

cedure be defined for minimization on a working surface that allows constraints to

be added to the working set when they are encountered, and that, after dropping a

constraint, insures that the objective is strictly decreased. Such a method is guaran-

teed to converge to the optimal solution, as shown below.

Active Set Theorem. Suppose that for every subset W of the constraint indices, the con-

strained problem

minimize f (x)
subject to gi(x) = 0, i ∈ W

(12.9)

is well-defined with a unique nondegenerate solution (that is, for all i ∈ W, λi � 0). Then

the sequence of points generated by the basic active set strategy converges to the solution

of the inequality constrained problem (12.6).

Proof. After the solution corresponding to one working set is found, a decrease in

the objective is made, and hence it is not possible to return to that working set. Since

there are only a finite number of working sets, the process must terminate. �

The difficulty with the above procedure is that several problems with incorrect

active sets must be solved. Furthermore, the solutions to these intermediate prob-

lems must, in general, be exact global minimum points in order to determine the

correct sign of the Lagrange multipliers and to assure that during the subsequent

descent process the current working surface is not encountered again.

In practice one deviates from the ideal basic method outlined above by dropping

constraints using various criteria before an exact minimum on the working surface

is found. Convergence cannot be guaranteed for many of these methods, and in-

deed they are subject to zigzagging (or jamming) where the working set changes

364 12 Primal Methods

an infinite number of times. However, experience has shown that zigzagging is very

rare for many algorithms, and in practice the active set strategy with various refine-

ment is often very effective.

It is clear that a fundamental component of an active set method is the algorithm

for solving a problem with equality constraints only, that is, for minimizing on the

working surface. Such methods and their analyses are presented in the following

sections.

12.4 The Gradient Projection Method

The gradient projection method is motivated by the ordinary method of steepest

descent for unconstrained problems. The negative gradient is projected onto the

working surface in order to define the direction of movement. We present it here in

a simplified form that is based on a pure active set strategy.

Linear Constraints

Consider first problems of the form

minimize f (x)

subject to aT
i

x � bi, i ∈ I1

aT
i

x = bi, i ∈ I2

(12.10)

having linear equalities and inequalities.

A feasible solution to the constraints, if one exists, can be found by application

of the phase I procedure of linear programming; so we shall always assume that

our descent process is initiated at such a feasible point. At a given feasible point x

there will be a certain number q of active constraints satisfying aT
i

x = bi and some

inactive constraints aT
i

x < bi. We initially take the working set W(x) to be the set of

active constraints.

At the feasible point x we seek a feasible direction vector d satisfying ∇ f (x)d <

0, so that movement in the direction d will cause a decrease in the function f . Ini-

tially, we consider directions satisfying aT
i

d = 0, i ∈ W(x) so that all working

constraints remain active. This requirement amounts to requiring that the direction

vector d lie in the tangent subspace M defined by the working set of constraints. The

particular direction vector that we shall use is the projection of the negative gradient

onto this subspace.

To compute this projection let Aq be defined as composed of the rows of working

constraints. Assuming regularity of the constraints, as we shall always assume, Aq

will be a q × n matrix of rank q < n. The tangent subspace M in which d must

lie is the subspace of vectors satisfying Aqd = 0. This means that the subspace N

12.4 The Gradient Projection Method 365

consisting of the vectors making up the rows of Aq (that is, all vectors of the form

AT
qλ for λ ∈ Eq) is orthogonal to M. Indeed, any vector can be written as the sum of

vectors from each of these two complementary subspaces. In particular, the negative

gradient vector −gk can be written

− gk = dk + AT
qλk (12.11)

where dk ∈ M and λk ∈ Eq. We may solve for λk through the requirement that

Aqdk = 0. Thus

Aqdk = −Aqgk − (AqAT
q)λk = 0, (12.12)

which leads to

λk = −(AqAT
q)−1Aqgk (12.13)

and

dk = −[I − AT
q (AqAT

q)−1Aq]gk = −Pkgk. (12.14)

The matrix

Pk = [I − AT
q (AqAT

q)−1Aq] (12.15)

is called the projection matrix corresponding to the subspace M. Action by it on any

vector yields the projection of that vector onto M. See Exercises 8 and 9 for other

derivations of this result.

We easily check that if dk � 0, then it is a direction of descent. Since gk + dk is

orthogonal to dk, we have

gT
k dk = (gT

k + dT
k − dT

k)dk = −|dk |2.

Thus if dk as computed from (12.14) turns out to be nonzero, it is a feasible direction

of descent on the working surface.

We next consider selection of the step size. As α is increased from zero, the

point x + αd will initially remain feasible and the corresponding value of f will

decrease. We find the length of the feasible segment of the line emanating from x

and then minimize f over this segment. If the minimum occurs at the endpoint, a

new constraint will become active and will be added to the working set.

Next, consider the possibility that the projected negative gradient is zero. We

have in that case

∇ f (xk) + λT
k Aq = 0, (12.16)

and the point xk satisfies the necessary conditions for a minimum on the working

surface. If the components of λk corresponding to the active inequalities are all non-

negative, then this fact together with (12.16) implies that the Karush-Kuhn-Tucker

conditions for the original problem are satisfied at xk and the process terminates. In

this case the λk found by projecting the negative gradient is essentially the Lagrange

multiplier vector for the original problem (except that zero-valued multipliers must

be appended for the inactive constraints).

If, however, at least one of those components of λk is negative, it is possible, by

relaxing the corresponding inequality, to move in a new direction to an improved

366 12 Primal Methods

point. Suppose that λjk, the jth component of λk, is negative and the indexing is ar-

ranged so that the corresponding constraint is the inequality aT
j
x � b j. We determine

the new direction vector by relaxing the jth constraint and projecting the negative

gradient onto the subspace determined by the remaining q−1 active constraints. Let

Aq̄ denote the matrix Aq with row a j deleted. We have for some λ̄k

− gk = AT
q λk (12.17)

−gk = dk + AT
q
λk, (12.18)

where dk is the projection of −gk using Aq̄. It is immediately clear that dk � 0,

since otherwise (12.18) would be a special case of (12.17) with λjk = 0 which

is impossible, since the rows of Aq are linearly independent. From our previous

work we know that gT
k

d̄k < 0. Multiplying the transpose of (12.17) by dk and using

Aq̄dk = 0 we obtain

0 > gT
k dk = −λjkaT

j dk. (12.19)

Since λjk < 0 we conclude that aT
j
dk < 0. Thus the vector dk is not only a direction

of descent, but it is a feasible direction, since aT
j
dk = 0, i ∈ W(xk), i � j, and

aT
j
dk < 0. Hence j can be dropped from W(xk).

In summary, one step of the algorithm is as follows: Given a feasible point x

1. Find the subspace of active constraints M, and form Aq, W(x).

2. Calculate P = I − AT
q (AqAT

q)−1Aq and d = −P∇ f (x)T .

3. If d � 0, find α1 and α2 achieving, respectively,

max{α : x + αd is feasible}
min{ f (x + αd) : 0 � α � α1}.

Set x to x + α2d and return to (12.1).

4. If d = 0, find λ = −(AqAT
q)−1Aq∇ f (x)T .

(a) If λ j � 0, for all j corresponding to active inequalities, stop; x satisfies the

Karush-Kuhn-Tucker conditions.

(b) Otherwise, delete the row from Aq corresponding to the inequality with the

most negative component of λ (and drop the corresponding constraint from

W(x)) and return to (12.2).

The projection matrix need not be recomputed in its entirety at each new point.

Since the set of active constraints in the working set changes by at most one con-

straint at a time, it is possible to calculate one required projection matrix from the

previous one by an updating procedure. (See Exercise 11.) This is an important fea-

ture of the gradient projection method and greatly reduces the computation required

at each step.

12.4 The Gradient Projection Method 367

Example. Consider the problem

minimize x2
1
+ x2

2
+ x2

3
+ x2

4
− 2x1 − 3x4

subject to 2x1 + x2 + x3 + 4x4 = 7

x1 + x2 + 2x3 + x4 = 6

xi � 0, i = 1, 2, 3, 4.

(12.20)

Suppose that given the feasible point x = (2, 2, 1, 0) we wish to find the direction of

the projected negative gradient. The active constraints are the two equalities and the

inequality x4 � 0. Thus

Aq =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 1 1 4

1 1 2 1

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (12.21)

and hence

AqAT
q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

22 9 4

9 7 1

4 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

After considerable calculation we then find

(AqAT
q)−1 =

1

11

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

6 −5 −19

−5 6 14

−19 14 73

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and finally

P =
1

11

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −3 1 0

−3 9 −3 0

1 −3 1 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (12.22)

The gradient at the point (2, 2, 1, 0) is g = (2, 4, 2,−3) and hence we find

d = −Pg =
1

11
(−8, 24,−8, 0),

or normalizing by 8/11

d = (−1, 3,−1, 0). (12.23)

It can be easily verified that movement in this direction does not violate the

constraints.

Nonlinear Constraints

In extending the gradient projection method to problems of the form

minimize f (x)

subject to h(x) = 0, g(x) � 0,
(12.24)

368 12 Primal Methods

the basic idea is that at a feasible point xk one determines the active constraints and

projects the negative gradient onto the subspace tangent to the surface determined

by these constraints. This vector, if it is nonzero, determines the direction for the

next step. The vector itself, however, is not in general a feasible direction, since the

surface may be curved as illustrated in Fig. 12.4. It is therefore not always possible

to move along this projected negative gradient to obtain the next point.

What is typically done in the face of this difficulty is essentially to search along

a curve on the constraint surface, the direction of the curve being defined by the

projected negative gradient. A new point is found in the following way: First, a

move is made along the projected negative gradient to a point y. Then a move is

made in the direction perpendicular to the tangent plane at the original point to a

nearby feasible point on the working surface, as illustrated in Fig. 12.4. Once this

point is found the value of the objective is determined. This is repeated with various

y’s until a feasible point is found that satisfies one of the standard descent criteria

for improvement relative to the original point.

Fig. 12.4 Gradient projection method

This procedure of tentatively moving away from the feasible region and then

coming back introduces a number of additional difficulties that require a series of

interpolations and nonlinear equation solutions for their resolution. A satisfactory

general routine implementing the gradient projection philosophy is therefore of ne-

cessity quite complex. It is not our purpose here to elaborate on these details but

simply to point out the general nature of the difficulties and the basic devices for

surmounting them.

One difficulty is illustrated in Fig. 12.5. If, after moving along the projected neg-

ative gradient to a point y, one attempts to return to a point that satisfies the old

active constraints, some inequalities that were originally satisfied may then be vio-

lated. One must in this circumstance use an interpolation scheme to find a new point

y along the negative gradient so that when returning to the active constraints no orig-

inally nonactive constraint is violated. Finding an appropriate y is to some extent a

trial and error process. Finally, the job of returning to the active constraints is itself

12.4 The Gradient Projection Method 369

a nonlinear problem which must be solved with an iterative technique. Such a tech-

nique is described below, but within a finite number of iterations, it cannot exactly

reach the surface. Thus typically an error tolerance δ is introduced, and throughout

the procedure the constraints are satisfied only to within δ.

Computation of the projections is also more difficult in the nonlinear case. Lump-

ing, for notational convenience, the active inequalities together with the equalities

into h(xk), the projection matrix at xk is

Pk = I − ∇h(xk)T [∇h(xk)∇h(xk)T]−1
∇h(xk). (12.25)

At the point xk this matrix can be updated to account for one more or one less

constraint, just as in the linear case. When moving from xk to xk+1, however, ∇h

will change and the new projection matrix cannot be found from the old, and hence

this matrix must be recomputed at each step.

Fig. 12.5 Interpolation to obtain feasible point

The most important new feature of the method is the problem of returning to the

feasible region from points outside this region. The type of iterative technique em-

ployed is a common one in nonlinear programming, including interior-point meth-

ods of linear programming, and we describe it here. The idea is, from any point near

xk, to move back to the constraint surface in a direction orthogonal to the tangent

plane at xk. Thus from a point y we seek a point of the form y+∇h(xk)Tα = y∗ such

that h(y∗) = 0. As shown in Fig. 12.6 such a solution may not always exist, but it

does for y sufficiently close to xk.

To find a suitable first approximation to α, and hence to y∗, we linearize the

equation at xk obtaining

h(y + ∇h(xk)Tα) ≃ h(y) + ∇h(xk)∇h(xk)Tα, (12.26)

the approximation being accurate for |α| and |y − x| small. This motivates the first

approximation

370 12 Primal Methods

α1 = −[∇h(xk)∇h(xk)T]−1h(y) (12.27)

y1 = y − ∇h(xk)T [∇h(xk)∇h(xk)T]−1h(y). (12.28)

Substituting y1 for y and successively repeating the process yields the sequence {y j}
generated by

y j+1 = y j − ∇h(xk)T [∇h(xk)∇h(xk)T]−1h(y j), (12.29)

which, started close enough to xk and the constraint surface, will converge to a

solution y∗. We note that this process requires the same matrices as the projection

operation.

The gradient projection method has been successfully implemented and has been

found to be effective in solving general nonlinear programming problems. Success-

ful implementation resolving the several difficulties introduced by the requirement

of staying in the feasible region requires, as one would expect, some degree of skill.

The true value of the method, however, can be determined only through an analysis

of its rate of convergence.

Fig. 12.6 Case in which it is impossible to return to surface

12.5 Convergence Rate of the Gradient Projection Method

An analysis that directly attacked the nonlinear version of the gradient projection

method, with all of its iterative and interpolative devices, would quickly become

monstrous. To obtain the asymptotic rate of convergence, however, it is not neces-

sary to analyze this complex algorithm directly—instead it is sufficient to analyze an

alternate simplified algorithm that asymptotically duplicates the gradient projection

method near the solution. Through the introduction of this idealized algorithm we

show that the rate of convergence of the gradient projection method is governed by

the eigenvalue structure of the Hessian of the Lagrangian restricted to the constraint

tangent subspace.

12.5 Convergence Rate of the Gradient Projection Method 371

Geodesic Descent

For simplicity we consider first the problem having only equality constraints

minimize f (x)

subject to h(x) = 0.
(12.30)

The constraints define a continuous surface Ω in En.

In considering our own difficulties with this problem, owing to the fact that the

surface is nonlinear thereby making directions of descent difficult to define, it is

well to also consider the problem as it would be viewed by a small bug confined to

the constraint surface who imagines it to be his total universe. To him the problem

seems to be a simple one. It is unconstrained, with respect to his universe, and is

only (n − m)-dimensional. He would characterize a solution point as a point where

the gradient of f (as measured on the surface) vanishes and where the appropriate

(n − m)-dimensional Hessian of f is positive semidefinite. If asked to develop a

computational procedure for this problem, he would undoubtedly suggest, since he

views the problem as unconstrained, the method of steepest descent. He would com-

pute the gradient, as measured on his surface, and would move along what would

appear to him to be straight lines.

Exactly what the bug would compute as the gradient and exactly what he would

consider as straight lines would depend basically on how distance between two

points on his surface were measured. If, as is most natural, we assume that he in-

herits his notion of distance from the one which we are using in En, then the path

x(t) between two points x1 and x2 on his surface that minimizes
∫ x2

x1
|ẋ(t)|dt would be

considered a straight line by him. Such a curve, having minimum arc length between

two given points, is called a geodesic.

Returning to our own view of the problem, we note, as we have previously, that if

we project the negative gradient onto the tangent plane of the constraint surface at a

point xk, we cannot move along this projection itself and remain feasible. We might,

however, consider moving along a curve which had the same initial heading as the

projected negative gradient but which remained on the surface. Exactly which such

curve to move along is somewhat arbitrary, but a natural choice, inspired perhaps

by the considerations of the bug, is a geodesic. Specifically, at a given point on the

surface, we would determine the geodesic curve passing through that point that had

an initial heading identical to that of the projected negative gradient. We would then

move along this geodesic to a new point on the surface having a lesser value of f .

The idealized procedure then, which the bug would use without a second thought,

and which we would use if it were computationally feasible (which it definitely is

not), would at a given feasible point xk (see Fig. 12.7):

1. Calculate the projection p of −∇ f (xk)T onto the tangent plane at xk.

2. Find the geodesic, x(t), t � 0, of the constraint surface having x(0) = xk,

ẋ(0) = p.

3. Minimize f (x(t)) with respect to t � 0, obtaining tk and xk+1 = x(tk).

372 12 Primal Methods

At this point we emphasize that this technique (which we refer to as geodesic de-

scent) is proposed essentially for theoretical purposes only. It does, however, capture

the main philosophy of the gradient projection method. Furthermore, as the step size

of the methods go to zero, as it does near the solution point, the distance between

the point that would be determined by the gradient projection method and the point

found by the idealized method goes to zero even faster. Thus the asymptotic rates of

convergence for the two methods will be equal, and it is, therefore, appropriate to

concentrate on the idealized method only.

Our bug confined to the surface would have no hesitation in estimating the rate

of convergence of this method. He would simply express it in terms of the smallest

and largest eigenvalues of the Hessian of f as measured on his surface. It should not

be surprising, then, that we show that the asymptotic convergence ratio is

(

A − a

A + a

)2

, (12.31)

Fig. 12.7 Geodesic descent

where a and A are, respectively, the smallest and largest eigenvalues of L, the Hes-

sian of the Lagrangian, restricted to the tangent subspace M. This result parallels

the convergence rate of the method of steepest descent, but with the eigenvalues

determined from the same restricted Hessian matrix that is important in the general

theory of necessary and sufficient conditions for constrained problems. This rate,

which almost invariably arises when studying algorithms designed for constrained

problems, will be referred to as the canonical rate.

We emphasize again that, since this convergence ratio governs the convergence

of a large family of algorithms, it is the formula itself rather than its numerical

value that is important. For any given problem we do not suggest that this ratio be

evaluated, since this would be extremely difficult. Instead, the potency of the result

derives from the fact that fairly comprehensive comparisons among algorithms can

be made, on the basis of this formula, that apply to general classes of problems

rather than simply to particular problems.

12.5 Convergence Rate of the Gradient Projection Method 373

The remainder of this section is devoted to the analysis that is required to estab-

lish the convergence rate. Since this analysis is somewhat involved and not crucial

for an understanding of remaining material, some readers may wish to simply read

the theorem statement and proceed to the next section.

Geodesics

Given the surface Ω = {x : h(x) = 0} ⊂ En, a smooth curve, x(t) ∈ Ω, 0 � t � T

starting at x(0) and terminating at x(T) that minimizes the total arc length

∫ T

0

|ẋ(t)|dt

with respect to all other such curves on Ω is said to be a geodesic connecting x(0)

and x(T).

It is common to parameterize a geodesic x(t), 0 � t � T so that |ẋ(t)| = 1. The

parameter t is then itself the arc length. If the parameter t is also regarded as time,

then this parameterization corresponds to moving along the geodesic curve with unit

velocity. Parameterized in this way, the geodesic is said to be normalized. On any

linear subspace of En geodesics are straight lines. On a three-dimensional sphere,

the geodesics are arcs of great circles.

It can be shown, using the calculus of variations, that any normalized geodesic

on Ω satisfies the condition

ẍ(t) = ∇hT (x(t))ω(t) (12.32)

for some function ω taking values in Em. Geometrically, this condition says that

if one moves along the geodesic curve with unit velocity, the acceleration at every

point will be orthogonal to the surface. Indeed, this property can be regarded as

the fundamental defining characteristic of a geodesic. To stay on the surface Ω, the

geodesic must also satisfy the equation

∇h(x(t))ẋ(t) = 0, (12.33)

since the velocity vector at every point is tangent to Ω. At a regular point x0 these

two differential equations, together with the initial conditions x(0) = x0, ẋ(0) spec-

ified, and |ẋ(0)| = 1, uniquely specify a curve x(t), t � 0 that can be continued as

long as points on the curve are regular. Furthermore, |ẋ(t)| = 1 for t � 0. Hence

geodesic curves emanate in every direction from a regular point. Thus, for example,

at any point on a sphere there is a unique great circle passing through the point in a

given direction.

374 12 Primal Methods

Lagrangian and Geodesics

Corresponding to any regular point x ∈ Ω we may define a corresponding Lagrange

multiplier λ(x) by calculating the projection of the gradient of f onto the tangent

subspace at x, denoted M(x). The matrix that, when operating on a vector, projects

it onto M(x) is

P(x) = I − ∇h(x)T [∇h(x)∇h(x)T]−1
∇h(x),

and it follows immediately that the projection of ∇ f (x)T onto M(x) has the form

y(x) = [∇ f (x) + λ(x)T
∇h(x)]T , (12.34)

where λ(x) is given explicitly as

λ(x)T = −∇ f (x)∇h(x)T [∇h(x)∇h(x)T]−1. (12.35)

Thus, in terms of the Lagrangian function l(x, λ) = f (x) + λT h(x), the projected

gradient is

y(x) = lx(x, λ(x))T . (12.36)

If a local solution to the original problem occurs at a regular point x∗ ∈ Ω, then as

we know

lx(x∗, λ(x∗)) = 0, (12.37)

which states that the projected gradient must vanish at x∗. Defining L(x) = lxx(x, λ(x)) =

F(x) + λ(x)T H(x) we also know that at x∗ we have the second-order necessary con-

dition that L(x∗) is positive semidefinite on M(x∗); that is, zT L(x∗)z � 0 for all

z ∈ M(x∗). Equivalently, letting

L(x) = P(x)L(x)P(x), (12.38)

it follows that L(x∗) is positive semidefinite.

We then have the following fundamental and simple result, valid along a geodesic.

Proposition 1. Let x(t), 0 � t � T, be a geodesic on Ω. Then

d

dt
f (x(t)) = lx(x, λ(x))ẋ(t) (12.39)

d2

dt2
f (x(t)) = ẋ(t)T L(x(t))ẋ(t). (12.40)

Proof. We have

d

dt
f (x(t)) = ∇ f (x(t))ẋ(t) = lx(x, λ(x))ẋ(t),

the second equality following from the fact that ẋ(t) ∈ M(x). Next,

d2

dt2
f (x(t)) = ẋ(t)T F(x(t))ẋ(t) + ∇ f (x(t))ẍ(t). (12.41)

12.5 Convergence Rate of the Gradient Projection Method 375

But differentiating the relation λT h(x(t)) = 0 twice, for fixed λ, yields

ẋ(t)TλT H(x(t))ẋ(t) + λT
∇h(x(t))ẍ(t) = 0.

Adding this to (12.41), we have

d2

dt2
f (x(t)) = ẋ(t)T (F + λT H)ẋ(t) + (∇ f (x) + λT

∇h(x))ẍ(t),

which is true for any fixed λ. Setting λ = λ(x) determined as above, (∇f + λT
∇h)T

is in M(x) and hence orthogonal to ẍ(t), since x(t) is a normalized geodesic. This

gives (12.40). �

It should be noted that we proved a simplified version of this result in Chap. 11.

There the result was given only for the optimal point x∗, although it was valid for

any curve. Here we have shown that essentially the same result is valid at any point

provided that we move along a geodesic.

Rate of Convergence

We now prove the main theorem regarding the rate of convergence. We assume

that all functions are three times continuously differentiable and that every point

in a region near the solution x∗ is regular. This theorem only establishes the rate

of convergence and not convergence itself so for that reason the stated hypotheses

assume that the method of geodesic descent generates a sequence {xk} converging

to x∗.

Theorem. Theorem. Let x∗ be a local solution to the problem (12.30) and suppose that

A and a > 0 are, respectively, the largest and smallest eigenvalues of L(x∗) restricted to

the tangent subspace M(x∗). If {xk} is a sequence generated by the method of geodesic

descent that converges to x∗, then the sequence of objective values { f (xk)} converges to

f (x∗) linearly with a ratio no greater than [(A − a)/(A + a)]2 .

Proof. Without loss of generality we may assume f (x∗) = 0. Given a point xk it

will be convenient to define its distance from the solution point x∗ as the arc length

of the geodesic connecting x∗ and xk. Thus if x(t) is a parameterized version of the

geodesic with x(0) = x∗, |ẋ(t)| = 1, x(T) = xk, then T is the distance of xk from

x∗. Associated with such a geodesic we also have the family y(t), 0 � t � T , of

corresponding projected gradients y(t) = lx(x, λ(x))T , and Hessians L(t) = L(x(t)).

We write yk = y(xk), Lk = L(xk).

We now derive an estimate for f (xk). Using the geodesic discussed above we can

write (setting ẋk = ẋ(T))

f (x∗) − f (xk) = − f (xk) = −yT
k ẋkT +

1

2
T 2ẋT

k Lkẋk + o(T 2), (12.42)

376 12 Primal Methods

which follows from Proposition 1. We also have

yk = −y(x∗) + y(xk) = ẏkT + o(T). (12.43)

But differentiating (12.34) we obtain

ẏk = Lkẋk + ∇h(xk)T λ̇
T

k , (12.44)

and hence if Pk is the projection matrix onto M(xk) = Mk, we have

Pkẏk = PkLkẋk. (12.45)

Multiplying (12.43) by Pk and accounting for Pkyk = yk we have

PkẏkT = yk + o(T). (12.46)

Substituting (12.45) into this we obtain

PkLkẋkT = yk + o(T).

Since Pkẋk = ẋk we have, defining Lk = PkLkPk,

LkẋkT = yk + o(T). (12.47)

The matrix Lk is related to LMk
, the restriction of Lk to Mk, the only difference

being that while LMk
is defined only on Mk, the matrix Lk is defined on all of En

but in such a way that it agrees with LMk
on Mk and is zero on M⊥

k
. The matrix Lk

is not invertible, but for yk ∈ Mk there is a unique solution z ∈ Mk to the equation

Lkz = yk which we denote† Lk

−1
yk. With this notation we obtain from (12.47)

ẋkT = Lk

−1
yk + o(T). (12.48)

Substituting this last result into (12.42) and accounting for |yk | = O(T) (see (12.43))

we have

f (xk) =
1

2
yT

k L
−1

k yk + o(T 2), (12.49)

which expresses the objective value at xk in terms of the projected gradient.

Since |ẋk | = 1 and since Lk → L
∗

as xk → x∗, we see from (12.47) that

o(T) + aT � |yk| � AT + o(T), (12.50)

which means that not only do we have |yk | = O(T), which was known before, but

also |yk | � o(T). We may therefore write our estimate (12.49) in the alternate form

† Actually a more standard procedure is to define the pseudoinverse L
†
k , and then z = L

†
kyk.

12.5 Convergence Rate of the Gradient Projection Method 377

f (xk) =
1

2
yT

k Lk

−1
yk

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +
o(T 2)

yT
k

L
−1

k yk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (12.51)

and since o(T 2) � yT
k

L
−1

k yk = O(T 2), we have

f (xk) =
1

2
yT

k L
−1

k yk(1 + O(T)), (12.52)

which is the desired estimate.

Next, we estimate f (xk+1) in terms of f (xk). Given xk now let x(t), t � 0, be

the normalized geodesic emanating from xk ≡ x(0) in the direction of the negative

projected gradient, that is,

ẋ(0) ≡ ẋk = −yk/|yk |.
Then

f (x(t)) = f (xk) + tyT
k ẋk +

t2

2
ẋT

k Lkẋk + o(t2). (12.53)

This is minimized at

tk = −
yT

k
ẋk

ẋT
k

Lkẋk

+ o(tk). (12.54)

In view of (12.50) this implies that tk = O(T), tk � o(T). Thus tk goes to zero at

essentially the same rate as T . Thus we have

f (xk+1) = f (xk) − 1

2

(yT
k

ẋk)2

ẋT
k

Lkẋk

+ o(T 2). (12.55)

Using the same argument as before we can express this as

f (xk) − f (xk+1) =
1

2

(yT
k

yk)2

yT
k

Lkyk

(1 + O(T)), (12.56)

which is the other required estimate.

Finally, dividing (12.56) by (12.52) we find

f (xk) − f (xk+1)

f (xk)
=

(yT
k

yk)2(1 + O(T))

(yT
k

Lkyk)(yT
k

Lk

−1
yk)
, (12.57)

and thus

f (xk+1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −
(yT

k
yk)2(1 + O(T))

(yT
k

Lkyk)(yT
k

Lk

−1
yk)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

f (xk). (12.58)

Using the fact that Lk → L∗ and applying the Kantorovich inequality leads to

f (xk+1) �

[

(

A − a

A + a

)2

+ O(T)

]

f (xk). � (12.59)

378 12 Primal Methods

Problems with Inequalities

The idealized version of gradient projection could easily be extended to prob-

lems having nonlinear inequalities as well as equalities by following the pattern of

Sect. 12.4. Such an extension, however, has no real value, since the idealized scheme

cannot be implemented. The idealized procedure was devised only as a technique

for analyzing the asymptotic rate of convergence of the analytically more complex,

but more practical, gradient projection method.

The analysis of the idealized version of gradient projection given above, never-

theless, does apply to problems having inequality as well as equality constraints. If

a computationally feasible procedure is employed that avoids jamming and does not

bounce on and off constraint boundaries an infinite number of times, then near the

solution the active constraints will remain fixed. This means that near the solution

the method acts just as if it were solving a problem having the active constraints as

equality constraints. Thus the asymptotic rate of convergence of the gradient projec-

tion method applied to a problem with inequalities is also given by (12.59) but with

L(x∗) and M(x∗) (and hence a and A) determined by the active constraints at the so-

lution point x∗. In every case, therefore, the rate of convergence is determined by the

eigenvalues of the same restricted Hessian that arises in the necessary conditions.

12.6 The Reduced Gradient Method

From a computational viewpoint, the reduced gradient method, discussed in this

section and the next, is closely related to the simplex method of linear programming

in that the problem variables are partitioned into basic and nonbasic groups. From

a theoretical viewpoint, the method can be shown to behave very much like the

gradient projection method.

Linear Constraints

Consider the problem
minimize f (x)

subject to Ax = b, x � 0,
(12.60)

where x ∈ En, b ∈ Em, A is m × n, and f is a function in C2. The constraints are

expressed in the format of the standard form of linear programming. For simplic-

ity of notation it is assumed that each variable is required to be non-negative—if

some variables were free, the procedure (but not the notation) would be somewhat

simplified.

We invoke the nondegeneracy assumptions that every collection of m columns

from A is linearly independent and every basic solution to the constraints has m

12.6 The Reduced Gradient Method 379

strictly positive variables. With these assumptions any feasible solution will have at

most n−m variables taking the value zero. Given a vector x satisfying the constraints,

we partition the variables into two groups: x = (y, z) where y has dimension m and

z has dimension n − m. This partition is formed in such a way that all variables in

y are strictly positive (for simplicity of notation we indicate the basic variables as

being the first m components of x but, of course, in general this will not be so). With

respect to the partition, the original problem can be expressed as

minimize f (y, z) (12.61a)

subject to By + Cz = b (12.61b)

y � 0, z � 0, (12.61c)

where, of course, A = [B, C]. We can regard z as consisting of the indepen-

dent variables and y the dependent variables, since if z is specified, (12.61b) can

be uniquely solved for y. Furthermore, a small change ∆z from the original value

that leaves z+∆z nonnegative will, upon solution of (12.61b), yield another feasible

solution, since y was originally taken to be strictly positive and thus y + ∆y will

also be positive for small ∆y. We may therefore move from one feasible solution to

another by selecting a ∆z and moving z on the line z + α∆z, α � 0. Accordingly,

y will move along a corresponding line y + α∆y. If in moving this way some vari-

able becomes zero, a new inequality constraint becomes active. If some independent

variable becomes zero, a new direction ∆z must be chosen. If a dependent (basic)

variable becomes zero, the partition must be modified. The zero-valued basic vari-

able is declared independent and one of the strictly positive independent variables

is made dependent. Operationally, this interchange will be associated with a pivot

operation.

The idea of the reduced gradient method is to consider, at each stage, the problem

only in terms of the independent variables. Since the vector of dependent variables

y is determined through the constraints (12.61b) from the vector of independent

variables z, the objective function can be considered to be a function of z only.

Hence a simple modification of steepest descent, accounting for the constraints, can

be executed. The gradient with respect to the independent variables z (the reduced

gradient) is found by evaluating the gradient of f (B−1b − B−1 Cz z). It is equal to

rT = ∇z f (y, z) − ∇y f (y, z)B−1C. (12.62)

It is easy to see that a point (y, z) satisfies the first-order necessary conditions for

optimality if and only if

ri = 0 for all zi > 0

ri � 0 for all zi = 0.

In the active set form of the reduced gradient method the vector z is moved in

the direction of the reduced gradient on the working surface. Thus at each step, a

direction of the form

380 12 Primal Methods

∆zi =

{

−ri, i � W(z)

0, i ∈ W(z)

is determined and a descent is made in this direction. The working set is augmented

whenever a new variable reaches zero; if it is a basic variable, a new partition is also

formed. If a point is found where ri = 0 for all i � W(z) (representing a vanishing

reduced gradient on the working surface) but r j < 0 for some j ∈ W(z), then j is

deleted from W(z) as in the standard active set strategy.

It is possible to avoid the pure active set strategy by moving away from our active

constraint whenever that would lead to an improvement, rather than waiting until an

exact minimum on the working surface is found. Indeed, this type of procedure is

often used in practice. One version progresses by moving the vector z in the direc-

tion of the overall negative reduced gradient, except that zero-valued components of

z that would thereby become negative are held at zero. One step of the procedure is

as follows:

1. Let ∆zi =

{

−ri if ri < 0 or zi > 0

0 otherwise.
2. If ∆z is zero, stop; the current point is a solution. Otherwise, find ∆y =

−B−1C∆z.

3. Find α1, α2, α3 achieving, respectively,

max{α : y + α∆y � 0}
max{α : z + α∆z � 0}
min{ f (x + α∆x) : 0 � α � α1, 0 � α � α2}

Let x = x + α3∆x.

4. If α3 < α1, return to (12.1). Otherwise, declare the vanishing variable in the

dependent set independent and declare a strictly positive variable in the inde-

pendent set dependent. Update B and C.

Example. We consider the example presented in Sect. 12.4 where the projected

negative gradient was computed:

minimize x2
1 + x2

2 + x2
3 + x2

4 − 2x1 − 3x4

subject to 2x1 + x2 + x3 + 4x4 = 7

x1 + x2 + 2x3 + x4 = 6

xi � 0, i = 1, 2, 3, 4.

We are given the feasible point x = (2, 2, 1, 0). We may select any two of the strictly

positive variables to be the basic variables. Suppose y = (x1, x2) is selected. In

standard form the constraints are then

x1 + 0 − x3 + 3x4 = 1

0 + x2 + 3x3 − 2x4 = 5

xi � 0, i = 1, 2, 3, 4.

12.6 The Reduced Gradient Method 381

The gradient at the current point is g = (2, 4, 2,−3). The corresponding reduced

gradient (with respect to z = (x3, x4)) is then found by pricing-out in the usual

manner. The situation at the current point can then be summarized by the tableau

In this solution x3 and x4 would be increased together in a ratio of eight to one.

As they increase, x1 and x2 would follow in such a way as to keep the constraints

satisfied. Overall, in E4, the implied direction of movement is thus

d = (5,−22, 8, 1).

If the reader carefully supplies the computational details not shown in the presenta-

tion of the example as worked here and in Sect. 12.4, he will undoubtedly develop a

considerable appreciation for the relative simplicity of the reduced gradient method.

It should be clear that the reduced gradient method can, as illustrated in the ex-

ample above, be executed with the aid of a tableau. At each step the tableau of

constraints is arranged so that an identity matrix appears over the m dependent vari-

ables, and thus the dependent variables can be easily calculated from the values of

the independent variables. The reduced gradient at any step is calculated by evaluat-

ing the n-dimensional gradient and “pricing out” the dependent variables just as the

reduced cost vector is calculated in linear programming. And when the partition of

basic and non-basic variables must be changed, a simple pivot operation is all that

is required.

Global Convergence

The perceptive reader will note the direction finding algorithm that results from the

second form of the reduced gradient method is not closed, since slight movement

away from the boundary of an inequality constraint can cause a sudden change in

the direction of search. Thus one might suspect, and correctly so, that this method

is subject to jamming. However, a trivial modification will yield a closed mapping;

and hence global convergence. This is discussed in Exercise 19.

382 12 Primal Methods

Nonlinear Constraints

The generalized reduced gradient method solves nonlinear programming problems

in the standard form

minimize f (x)

subject to h(x) = 0, a � x � b,

where h(x) is of dimension m. A general nonlinear programming problem can al-

ways be expressed in this form by the introduction of slack variables, if required,

and by allowing some components of a and b to take on the values +∞ or −∞, if

necessary.

In a manner quite analogous to that of the case of linear constraints, we introduce

a nondegeneracy assumption that, at each point x, hypothesizes the existence of a

partition of x into x = (y, z) having the following properties:

(i) y is of dimension m, and z is of dimension n − m.

(ii) If a = (ay, az) and b = (by, bz) are the corresponding partitions of a, b, then

ay < y < by.

(iii) The m × m matrix ∇yh(y, z) is nonsingular at x = (y, z).

Again y and z are referred to as the vectors of dependent and independent vari-

ables, respectively.

The reduced gradient (with respect to z) is in this case:

rT = ∇z f (y, z) + λT
∇zh(y, z),

where λ satisfies

∇y f (y, z) + λT
∇yh(y, z) = 0.

Equivalently, we have

rT = ∇z f (y, z) − ∇y f (y, z)[∇yh(y, z)]−1
∇zh(y, z). (12.63)

The actual procedure is roughly the same as for linear constraints in that moves

are taken by changing z in the direction of the negative reduced gradient (with

components of z on their boundary held fixed if the movement would violate the

bound). The difference here is that although z moves along a straight line as before,

the vector of dependent variables y must move nonlinearly to continuously satisfy

the equality constraints. Computationally, this is accomplished by first moving lin-

early along the tangent to the surface defined by z → z + ∆z, y → y + ∆y with

∆y = −[∇yh]−1
∇zh∆z. Then a correction procedure, much like that employed in the

gradient projection method, is used to return to the constraint surface and the mag-

nitude bounds on the dependent variables are checked for feasibility. As with the

gradient projection method, a feasibility tolerance must be introduced to acknowl-

edge the impossibility of returning exactly to the constraint surface. An example

corresponding to n = 3, m = 1, a = 0, b = +∞ is shown in Fig. 12.8.

12.7 Convergence Rate of the Reduced Gradient Method 383

To return to the surface once a tentative move along the tangent is made, an

iterative scheme is employed. If the point xk was the point at the previous step, then

from any point x = (v, w) near xk one gets back to the constraint surface by solving

the nonlinear equation

h(y,w) = 0 (12.64)

for y (with w fixed). This is accomplished through the iterative process

y j+1 = y j − [∇yh(xk)]−1h(y j, w), (12.65)

which, if started close enough to xk, will produce {y j} with y j → y, solving (12.64).

The reduced gradient method suffers from the same basic difficulties as the gradi-

ent projection method, but as with the latter method, these difficulties can all be more

or less successfully resolved. Computation is somewhat less complex in the case of

the reduced gradient method, because rather than compute with [∇h(x)∇h(x)T]−1 at

each step, the matrix [∇yh(y, z)]−1 is used.

Fig. 12.8 Reduced gradient method

12.7 Convergence Rate of the Reduced Gradient Method

As argued before, for purposes of analyzing the rate of convergence, it is sufficient

to consider the problem having only equality constraints

minimize f (x)

subject to h(x) = 0.
(12.66)

We then regard the problem as being defined over a surface Ω of dimension

n − m. At this point it is again timely to consider the view of our bug, who lives on

this constraint surface. Invariably, he continues to regard the problem as extremely

elementary, and indeed would have little appreciation for the complexity that seems

384 12 Primal Methods

to face us. To him the problem is an unconstrained problem in n−m dimensions not,

as we see it, a constrained problem in n dimensions. The bug will tenaciously hold

to the method of steepest descent. We can emulate him provided that we know how

he measures distance on his surface and thus how he calculates gradients and what

he considers to be straight lines.

Rather than imagine that the measure of distance on his surface is the one that

would be inherited from us in n dimensions, as we did when studying the gradient

projection method, we, in this instance, follow the construction shown in Fig. 12.9.

In our n-dimensional space, n − m coordinates are selected as independent vari-

ables in such a way that, given their values, the values of the remaining (dependent)

variables are determined by the surface. There is already a coordinate system in the

space of independent variables, and it can be used on the surface by projecting it par-

allel to the space of the remaining dependent variables. Thus, an arc on the surface is

considered to be straight if its projection onto the space of independent variables is a

segment of a straight line. With this method for inducing a geometry on the surface,

the bug’s notion of steepest descent exactly coincides with an idealized version of

the reduced gradient method.

Fig. 12.9 Induced coordinate system

In the idealized version of the reduced gradient method for solving (12.66), the

vector x is partitioned as x = (y, z) where y ∈ Em, z ∈ En−m. It is assumed that the

m × m matrix ∇yh(y, z) is nonsingular throughout a given region of interest. (With

respect to the more general problem, this region is a small neighborhood around the

solution where it is not necessary to change the partition.) The vector y is regarded

as an implicit function of z through the equation

h(y(z), z) = 0. (12.67)

The ordinary method of steepest descent is then applied to the function q(z) =

f (y(z), z). We note that the gradient rT of this function is given by (12.63).

Since the method is really just the ordinary method of steepest descent with re-

spect to z, the rate of convergence is determined by the eigenvalues of the Hessian

of the function q at the solution. We therefore turn to the question of evaluating this

Hessian.

12.7 Convergence Rate of the Reduced Gradient Method 385

Denote by Y(z) the first derivatives of the implicit function y(z), that is, Y(z) ≡
∇zy(z). Explicitly,

Y(z) = −[∇yh(y, z)]−1
∇zh(y, z). (12.68)

For any λ ∈ Em we have

q(z) = f (y(z), z) = f (y(z), z) + λT h(y(z), z). (12.69)

Thus

∇q(z) = [∇y f (y, z) + λT
∇yh(y, z)]Y(z) + ∇z f (y, z) + λT

∇zh(y, z). (12.70)

Now if at a given point x∗ = (y∗, z∗) = (y(z∗), z∗), we let λ satisfy

∇y f (y∗, z∗) + λT
∇yh(y∗, z∗) = 0; (12.71)

then introducing the Lagrangian l(y, z, λ) = f (y, z) + λT h(y, z), we obtain by

differentiating (12.70)

∇
2q(z∗) = Y(z∗)T

∇
2
yyl(y∗, z∗)Y(z∗) + ∇2

zyl(y∗, z∗)Y(z∗)

+Y(z∗)T
∇

2
yzl(y

∗, z∗) + ∇2
zzl(y

∗, z∗). (12.72)

Or defining the n × (n − m) matrix

C =

[

Y(z∗)

I

]

, (12.73)

where I is the (n − m) × (n − m) identity, we have

Q ≡ ∇2q(z∗) = CT L(x∗)C. (12.74)

The matrix L(x∗) is the n × n Hessian of the Lagrangian at x∗, and ∇2q(z∗) is an

(n − m) × (n − m) matrix that is a restriction of L(x∗) to the tangent subspace M,

but it is not the usual restriction. We summarize our conclusion with the following

theorem.

Theorem. Let x∗ be a local solution of problem (12.66). Suppose that the idealized reduced

gradient method produces a sequence {xk} converging to x∗ and that the partition x = (y, z)
is used throughout the tail of the sequence. Let L be the Hessian of the Lagrangian at x∗ and

define the matrix C by (12.73) and (12.68). Then the sequence of objective values { f (xk)}
converges to f (x∗) linearly with a ratio no greater than [(B − b)/(B + b)]2 where b and B

are, respectively, the smallest and largest eigenvalues of the matrix Q = CT LC.

To compare the matrix CT LC with the usual restriction of L to M that determines

the convergence rate of most methods, we note that the n × (n − m) matrix C maps

∆z ∈ En−m into (∆y, ∆z) ∈ En lying in the tangent subspace M; that is, ∇yh∆y +

∇zh∆z = 0. Thus the columns of C form a basis for the subspace M. Next note that

the columns of the matrix

E = C(CT C)−1/2 (12.75)

386 12 Primal Methods

form an orthonormal basis for M, since each column of E is just a linear combina-

tion of columns of C and by direct calculation we see that ET E = I. Thus by the

procedure described in Sect. 11.6 we see that a representation for the usual restric-

tion of L to M is

LM = (CT C)−1/2CT LC(CT C)−1/2. (12.76)

Comparing (12.76) with (12.74) we deduce that

Q = (CT C)1/2LM(CT C)1/2. (12.77)

This means that the Hessian matrix for the reduced gradient method is the restriction

of L to M but pre- and post-multiplied by a positive definite symmetric matrix.

The eigenvalues of Q depend on the exact nature of C as well as LM . Thus, the

rate of convergence of the reduced gradient method is not coordinate independent

but depends strongly on just which variables are declared as independent at the final

stage of the process. The convergence rate can be either faster or slower than that

of the gradient projection method. In general, however, if C is well-behaved (that

is, well-conditioned), the ratio of eigenvalues for the reduced gradient method can

be expected to be the same order of magnitude as that of the gradient projection

method. If, however, C should be ill-conditioned, as would arise in the case where

the implicit equation h(y, z) = 0 is itself ill-conditioned, then it can be shown that

the eigenvalue ratio for the reduced gradient method will most likely be considerably

worsened. This suggests that care should be taken to select a set of basic variables y

that leads to a well-behaved C matrix.

Example (The Hanging Chain Problem). Consider again the hanging chain prob-

lem discussed in Sect. 11.4. This problem can be used to illustrate a wide assortment

of theoretical principles and practical techniques. Indeed, a study of this example

clearly reveals the predictive power that can be derived from an interplay of theory

and physical intuition.

The problem is

minimize
n
∑

i=1
(n − i + 0.5)yi

subject to
n
∑

i=1
yi = 0

n
∑

i=1

√

1 − y2
i
= 16,

where in the original formulation n = 20.

This problem has been solved numerically by the reduced gradient method.∗ An

initial feasible solution was the triangular shape shown in Fig. 12.10a with

∗ The exact solution is obviously symmetric about the center of the chain, and hence the problem
could be reduced to having ten links and only one constraint. However, this symmetry disappears
if the first constraint value is specified as nonzero. Therefore for generality we solve the full chain
problem.

12.7 Convergence Rate of the Reduced Gradient Method 387

yi =

{

−0.6, 1 � i � 10

0.6, 11 � i � 20.

Table 12.1 Results of original chain problem

Iteration Value Solution (1/2 of chain)

0 −60.00000 y1 = −0.8148260
10 −66.47610 y2 = −0.7826505
20 −66.52180 y3 = −0.7429208
30 −66.53595 y4 = −0.6930959
40 −66.54154 y5 = −0.6310976
50 −66.54537 y6 = −0.5541078
60 −66.54628 y7 = −0.4597160
69 −66.54659 y8 = −0.3468334
70 −66.54659 y9 = −0.2169879

y10 = −0.07492541
Lagrange multipliers −9.993817, −6.763148

The results obtained from a reduced gradient package are shown in Table 12.1.

Note that convergence is obtained in approximately 70 iterations.

The Lagrange multipliers of the constraints are a by-product of the solution.

These can be used to estimate the change in solution value if the constraint values

are changed slightly. For example, suppose we wish to estimate, without resolving

the problem, the change in potential energy (the objective function) that would re-

sult if the separation between the two supports were increased by, say, one inch. The

change can be estimated by the formula ∆u = −λ2/12 = 0.0833 × (6.76) = 0.563.

(When solved again numerically the change is found to be 0.568.)

Let us now pose some more challenging questions. Consider two variations of the

original problem. In the first variation the chain is replaced by one having twice as

many links, but each link is now half the size of the original links. The overall chain

length is therefore the same as before. In the second variation the original chain is

replaced by one having twice as many links, but each link is the same size as the

original links. The chain length doubles in this case. If these problems are solved by

the same method as the original problem, approximately how many iterations will

be required—about the same number, many more, or substantially less?

These questions can be easily answered by using the theory of convergence rates

developed in this chapter. The Hessian of the Lagrangian is

L = F + λ1H1 + λ2H2.

However, since the objective function and the first constraint are both linear, the

only nonzero term in the above equation is λ2H2. Furthermore, since convergence

rates depend only on eigenvalue ratios, the λ2 can be ignored. Thus the eigenvalues

of H2 determine the canonical convergence rate.

388 12 Primal Methods

Fig. 12.10 The chain example. (a) Original configuration of chain. (b) Final configuration.
(c) Long chain

12.7 Convergence Rate of the Reduced Gradient Method 389

It is easily seen that H2 is diagonal with ith diagonal term,

(H2)ii = −(1 − y2
i)−3/2,

and these values are the eigenvalues of H2. The canonical convergence rate is de-

fined by the eigenvalues of H22 in the (n − 2)-dimensional tangent subspace M. We

cannot exactly determine these eigenvalues without a lot of work, but we can assume

that they are close to the eigenvalues of H22. (Indeed, a version of the Interlocking

Eigenvalues Lemma states that the n− 2 eigenvalues are interlocked with the eigen-

values of H22.) Then the convergence rate of the gradient projection method will

be governed by these eigenvalues. The reduced gradient method will most likely be

somewhat slower.

The eigenvalue of smallest absolute value corresponds to the center links, where

yi ≃ 0. Conversely, the eigenvalue of largest absolute value corresponds to the first

or last link, where yi is largest in absolute value. Thus the relevant eigenvalue ratio

is approximately

r =
1

(1 − y2
1
)3/2
=

1

(sin θ)3/2
,

where θ is the angle shown in Fig. 12.10b.

For very little effort we have obtained a powerful understanding of the chain

problem and its convergence properties. We can use this to answer the questions

posed earlier. For the first variation, with twice as many links but each of half size,

the angle θ will be about the same (perhaps a little smaller because of increased flex-

ibility of the chain). Thus the number of iterations should be slightly larger because

of the increase in θ and somewhat larger again because there are more variables

(which tends to increase the condition number of CT C). Note in Table 12.2 that

about 122 iterations were required, which is consistent with this estimate.

For the second variation the chain will hang more vertically; hence y1 will be

larger, and therefore convergence will be fundamentally slower. To be more specific

it is necessary to substitute a few numbers in our simple formula. For the original

case we have y1 ≃ −.81. This yields

r = (1 − .812)−3/2 = 4.9

and a convergence factor of

R =

(

r − 1

r + 1

)2

≃ .44.

This is a modest value and quite consistent with the observed result of 70 iterations

for a reduced gradient method. For the long chain we can estimate that y1 ≃ 98. This

yields

390 12 Primal Methods

Table 12.2 Results of modified chain problems

Short links Long chain

Iteration Value Iteration Value

0 −60.00000 0 −366.6061
10 −66.45499 10 −375.6423
20 −66.56377 20 −375.9123
40 −66.58443 50 −376.5128
60 −66.59191 100 −377.1625
80 −66.59514 200 −377.8983

100 −66.59656 500 −378.7989
120 −66.59825 1000 −379.3012
121 −66.59827 1500 −379.4994
122 −66.59827 2000 −379.5965

2500 −379.6489
y1 = 0.4109519 y1 = 0.9886223

r = (1 − .982)−3/2 ≃ 127

R =

(

r − 1

r + 1

)2

≃ .969.

This last number represents extremely slow convergence. Indeed, since (0.969)25 ≃
0.44, we expect that it may easily take 25 times as many iterations for the long chain

problem to converge as the original problem (although quantitative estimates of this

type are rough at best). This again is verified by the results shown in Table 12.2,

where it is indicated that over 2,500 iterations were required by a version of the

reduced gradient method.

*12.8 ∗Variations

It is possible to modify either the gradient projection method or the reduced gradient

method so as to move in directions that are determined through additional consid-

erations. For example, analogs of the conjugate gradient method, PARTAN, or any

of the quasi-Newton methods can be applied to constrained problems by handling

constraints through projection or reduction. The corresponding asymptotic rates of

convergence for such methods are easily determined by applying the results for un-

constrained problems on the (n−m)-dimensional surface of constraints, as illustrated

in this chapter.

Although such generalizations can sometimes lead to substantial improvement

in convergence rates, one must recognize that the detailed logic for a complicated

generalization can become lengthy. If the method relies on the use of an approxi-

mate inverse Hessian restricted to the constraint surface, there must be an effective

12.8 ∗Variations 391

procedure for updating the approximation when the iterative process progresses

from one set of active constraints to another. One would also like to insure that the

poor eigenvalue structure sometimes associated with quasi-Newton methods does

not dominate the short-term convergence characteristics of the extended method

when the active constraint set changes. In other words, one would like to be able to

achieve simultaneously both superlinear convergence and a guarantee of fast single

step progress. There has been some work in this general area and it appears to be

one of potential promise.

∗Convex Simplex Method

A popular modification of the reduced gradient method, termed the convex simplex

method, most closely parallels the highly effective simplex method for solving lin-

ear programs. The major difference between this method and the reduced gradient

method is that instead of moving all (or several) of the independent variables in the

direction of the negative reduced gradient, only one independent variable is changed

at a time. The selection of the one independent variable to change is made much as

in the ordinary simplex method.

At a given feasible point, let x = (y, z) be the partition of x into dependent and

independent parts, and assume for simplicity that the bounds on x are x � 0. Given

the reduced gradient rT at the current point, the component zi to be changed is found

from:

1. Let ri1 = min
i
{ri}.

2. Let ri2zi2 = max
i
{rizi}

If ri1 = ri2zi2 = 0, terminate. Otherwise

If ri1 � −|ri2zi2|, increase zi1

If ri1 � −|ri2zi2|, decrease zi2.

The rule in Step 2 amounts to selecting the variable that yields the best potential

decrease in the cost function. The rule accounts for the non-negativity constraint

on the independent variables by weighting the cost coefficients of those variables

that are candidates to be decreased by their distance from zero. This feature ensures

global convergence of the method.

The remaining details of the method are identical to those of the reduced gradient

method. Once a particular component of z is selected for change, according to the

above criterion, the corresponding y vector is computed as a function of the change

in that component so as to continuously satisfy the constraints. The component of z

is continuously changed until either a local minimum with respect to that component

is attained or the boundary of one nonnegativity constraint is reached.

Just as in the discussion of the reduced gradient method, it is convenient, for pur-

poses of convergence analysis, to view the problem as unconstrained with respect

to the independent variables. The convex simplex method is then seen to be a co-

ordinate descent procedure in the space of these n − m variables. Indeed, since the

component selected is based on the magnitude of the components of the reduced

392 12 Primal Methods

gradient, the method is merely an adaptation of the Gauss-Southwell scheme dis-

cussed in Sect. 8.6 to the constrained situation. Hence, although it is difficult to pin

down precisely, we expect that it would take approximately n − m steps of this co-

ordinate descent method to make the progress of a single reduced gradient step. To

be competitive with the reduced gradient method; therefore, the difficulties associ-

ated with a single step—line searching and constraint evaluation—must be approx-

imately n − m times simpler when only a single component is varied than when all

n − m are varied simultaneously. This is indeed the case for linear programs and

for some quadratic programs but not for nonlinear problems that require the full

line search machinery. Hence, in general, the convex simplex method may not be a

bargain.

12.9 Summary

The concept of feasible direction methods is a straightforward and logical extension

of the methods used for unconstrained problems but leads to some subtle difficulties.

These methods are susceptible to jamming (lack of global convergence) because

many simple direction finding mappings and the usual line search mapping are not

closed.

Problems with inequality constraints can be approached with an active set strat-

egy. In this approach certain constraints are treated as active and the others are

treated as inactive. By systematically adding and dropping constraints from the

working set, the correct set of active constraints is determined during the search pro-

cess. In general, however, an active set method may require that several constrained

problems be solved exactly.

The most practical primal methods are the gradient projection methods and

the reduced gradient method. Both of these basic methods can be regarded as the

method of steepest descent applied on the surface defined by the active constraints.

The rate of convergence for the two methods can be expected to be approximately

equal and is determined by the eigenvalues of the Hessian of the Lagrangian re-

stricted to the subspace tangent to the active constraints. Of the two methods, the re-

duced gradient method seems to be best. It can be easily modified to ensure against

jamming and it requires fewer computations per iterative step and therefore, for most

problems, will probably converge in less time than the gradient projection method.

12.10 Exercises

1. Show that the Frank-Wolfe method is globally convergent if the intersection of

the feasible region and the objective level set {x : f (x) ≤ f (x0)} is bounded.

2. Sometimes a different normalizing term is used in (12.4). Show that the problem

of finding d = (d1, d2, . . . , dn) to

12.10 Exercises 393

minimize cT d

subject to Ad � 0, (
∑

i

|di|p)1/p = 1

for p = 1 or p = ∞ can be converted to a linear program.

3. Perhaps the most natural normalizing term to use in (12.4) is one based on the

Euclidean norm. This leads to the problem of finding d = (d1, d2, . . . , dn) to

minimize cT d

subject to Ad � 0,
n
∑

i=1
d2

i
= 1.

Find the Karush-Kuhn–Tucker necessary conditions for this problem and show

how they can be solved by a modification of the simplex procedure.

4. Let Ω ⊂ En be a given feasible region. A set Γ ⊂ E2n consisting of pairs (x, d),

with x ∈ Ω and d a feasible direction at x, is said to be a set of uniformly feasible

direction vectors if there is a δ > 0 such that (x, d) ∈ Γ implies that x + αd is

feasible for all α, 0 � α � δ. The number δ is referred to as the feasibility

constant of the set Γ.

Let Γ ⊂ E2n be a set of uniformly feasible direction vectors for Ω, with feasi-

bility constant δ. Define the mapping

Mδ(x, d) = {y : f (y) � f (x + τd) for all τ, 0 � τ � δ; y = x + αd,

for some α, 0 � α � ∞, y ∈ Ω}.

Show that if d � 0, the map Mδ is closed at (x, d).

5. Let Γ ⊂ E2n be a set of uniformly feasible direction vectors forΩwith feasibility

constant δ. For ε > 0 define the map εMδ or Γ by

εMδ(x, d) = {y : f (y) � f (x + τd) + ε for all τ, 0 � τ � δ; y = x + αd,

for some α, 0 � α � ∞, y ∈ Ω}.

The map εMδ corresponds to an “inaccurate” constrained line search. Show that

this map is closed if d � 0.

6. For the problem

minimize f (x)

subject to aT
i

x � bi, i = 1, 2, . . . , m

consider selecting d = (d1, d2, . . . , dn) at a feasible point x by solving the

problem
minimize ∇ f (x)d

subject to aT
i

d � (bi − aT
i

x)M, i = 1, 2, . . . , m
n
∑

i=1
|di| = 1,

where M is some given positive constant. For large M the ith inequality of this

subsidiary problem will be active only if the corresponding inequality in the

394 12 Primal Methods

original problem is nearly active at x (indeed, note that M → ∞ corresponds to

Zoutendijk’s method). Show that this direction finding mapping is closed and

generates uniformly feasible directions with feasibility constant 1/M.

7. Generalize the method of Exercise 6 so that it is applicable to nonlinear inequal-

ities.

8. An alternate, but equivalent, definition of the projected gradient p is that it is

the vector solving
minimize |g − p|2
subject to Aqp = 0.

Using the Karush-Kuhn–Tucker necessary conditions, solve this problem and

thereby derive the formula for the projected gradient.

9. Show that finding the d that solves

minimize gT d

subject to Aqd = 0, |d|2 = 1

gives a vector d that has the same direction as the negative projected gradient.

10. Let P be a projection matrix. Show that PT = P, P2 = P.

11. Suppose Aq = [aT , Aq] so that Aq is the matrix Aq with the row aT adjoined.

Show that (AqAT
q)−1 can be found from (AqAT

q
)−1 from the formula

(AqAT
q)−1 =

[

ε −εaT AT
q

(AqAT
q

)−1

−ε(AqAT
q

)−1Aqa (AqAT
q

)−1[I + AqaaT AT
q

(AqAT
q

)−1]

]

,

where

ε =
1

aT a − aT AT
q

(AqAT
q

)−1Aqa
.

Develop a similar formula for (AqAq)−1 in terms of (AqAq)−1.

12. Show that the gradient projection method will solve a linear program in a finite

number of steps.

13. Suppose that the projected negative gradient d is calculated satisfying

−g = d + AT
q λ

and that some component λi of λ, corresponding to an inequality, is negative.

Show that if the ith inequality is dropped, the projection di of the negative gra-

dient onto the remaining constraints is a feasible direction of descent.

14. Using the result of Exercise 13, it is possible to avoid the discontinuity at d = 0

in the direction finding mapping of the simple gradient projection method. At

a given point let γ = −min{0, λi}, with the minimum taken with respect to the

indices i corresponding the active inequalities. The direction to be taken at this

point is d = −Pg if |Pg| � γ, or d, defined by dropping the inequality i for

which λi = −γ, if |Pg| � γ. (In case of equality either direction is selected.)

Show that this direction finding map is closed over a region where the set of

active inequalities does not change.

12.10 Exercises 395

15. Consider the problem of maximizing entropy discussed in Example 3, Sect. 14.4.

Suppose this problem were solved numerically with two constraints by the gra-

dient projection method. Derive an estimate for the rate of convergence in terms

of the optimal pi’s.

16. Find the geodesics of

(a) a two-dimensional plane

(b) a sphere.

17. Suppose that the problem

minimize f (x)

subject to h(x) = 0

is such that every point is a regular point. And suppose that the sequence of

points {xk}∞k=0
generated by geodesic descent is bounded. Prove that every limit

point of the sequence satisfies the first-order necessary conditions for a con-

strained minimum.

18. Show that, for linear constraints, if at some point in the reduced gradient method

∆z is zero, that point satisfies the Karush-Kuhn–Tucker first-order necessary

conditions for a constrained minimum.

19. Consider the problem

minimize f (x)

subject to Ax = b, x � 0,

where A is m × n. Assume f ∈ C1, that the feasible set is bounded, and that

the nondegeneracy assumption holds. Suppose a “modified” reduced gradient

algorithm is defined following the procedure in Sect. 12.6 but with two modifi-

cations: (1) the basic variables are, at the beginning of an iteration, always taken

as the m largest variables (ties are broken arbitrarily); (2) the formula for ∆z is

replaced by

∆zi =

{

−ri if ri � 0

−xiri if ri > 0

Establish the global convergence of this algorithm.

20. Find the exact solution to the example presented in Sect. 12.4.

21. Find the direction of movement that would be taken by the gradient projection

method if in the example of Sect. 12.4 the constraint x4 = 0 were relaxed. Show

that if the term −3x4 in the objective function were replaced by −x4, then both

the gradient projection method and the reduced gradient method would move in

identical directions.

22. Show that in terms of convergence characteristics, the reduced gradient method

behaves like the gradient projection method applied to a scaled version of the

problem.

396 12 Primal Methods

23. Let r be the condition number of LM and s the condition number of CT C. Show

that the rate of convergence of the reduced gradient method is no worse than

[(sr − 1)/(sr + 1)]2.

24. Formulate the symmetric version of the hanging chain problem using a single

constraint. Find an explicit expression for the condition number of the corre-

sponding CT C matrix (assuming y1 is basic). Use Exercise 23 to obtain an es-

timate of the convergence rate of the reduced gradient method applied to this

problem, and compare it with the rate obtained in Table 12.1, Sect. 12.7. Repeat

for the two-constraint formulation (assuming y1 and yn are basic).

25. Referring to Exercise 19 establish a global convergence result for the convex

simplex method.

References

12.2 Feasible direction methods of various types were originally suggested

and developed by Zoutendijk [Z4]. The systematic study of the global

convergence properties of feasible direction methods was begun by Top-

kis and Veinott [T8] and by Zangwill [Z2]. The Frank-Wolfe method was

initially proposed in [98].

12.3–12.4 The gradient projection method was proposed and developed (more com-

pletely than discussed here) by Rosen [R5, R6], who also introduced the

notion of an active set strategy. See Gill, Murray, and Wright [G7] for a

discussion of working sets and active set strategies.

12.5 This material is taken from Luenberger [L14].

12.6–12.7 The reduced gradient method was originally proposed by Wolfe [W5] for

problems with linear constraints and generalized to nonlinear constraints

by Abadie and Carpentier [A1]. Wolfe [W4] presents an example of jam-

ming in the reduced gradient method. The convergence analysis given in

this section is new.

12.8 The convex simplex method, for problems with linear constraints, to-

gether with a proof of its global convergence is due to Zangwill [Z2].

Chapter 13

Penalty and Barrier Methods

Penalty and barrier methods are procedures for approximating constrained optimiza-

tion problems by unconstrained problems. The approximation is accomplished in

the case of penalty methods by adding to the objective function a term that pre-

scribes a high cost for violation of the constraints, and in the case of barrier meth-

ods by adding a term that favors points interior to the feasible region over those near

the boundary. Associated with these methods is a parameter c or μ that determines

the severity of the penalty or barrier and consequently the degree to which the unc-

onstrained problem approximates the original constrained problem. For a problem

with n variables and m constraints, penalty and barrier methods work directly in

the n-dimensional space of variables, as compared to primal methods that work in

(n − m)-dimensional space.

There are two fundamental issues associated with the methods of this chapter.

The first has to do with how well the unconstrained problem approximates the con-

strained one. This is essential in examining whether, as the parameter c is increased

toward infinity, the solution of the unconstrained problem converges to a solution

of the constrained problem. The other issue, most important from a practical view-

point, is the question of how to solve a given unconstrained problem when its obj-

ective function contains a penalty or barrier term. It turns out that as c is increased

to yield a good approximating problem, the corresponding structure of the resulting

unconstrained problem becomes increasingly unfavorable thereby slowing the con-

vergence rate of many algorithms that might be applied. (Exact penalty functions

also have a very unfavorable structure.) It is necessary, then, to devise acceleration

procedures that circumvent this slow convergence phenomenon.

Penalty and barrier methods are of great interest to both the practitioner and

the theorist. To the practitioner they offer a simple straightforward method for han-

dling constrained problems that can be implemented without sophisticated com-

puter programming and that possess much the same degree of generality as primal

methods. The theorist, striving to make this approach practical by overcoming its

inherently slow convergence, finds it appropriate to bring into play nearly all aspects

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 13

397

398 13 Penalty and Barrier Methods

of optimization theory; including Lagrange multipliers, necessary conditions, and

many of the algorithms discussed earlier in this book. The canonical rate of conver-

gence associated with the original constrained problem again asserts its fundamental

role by essentially determining the natural accelerated rate of convergence for unc-

onstrained penalty or barrier problems.

13.1 Penalty Methods

Consider the problem

minimize f (x)

subject to x ∈ S ,
(13.1)

where f is a continuous function on En and S is a constraint set in En. In most

applications S is defined implicitly by a number of functional constraints, but in

this section the more general description in (13.1) can be handled. The idea of a

penalty function method is to replace problem (13.1) by an unconstrained problem

of the form
minimize f (x) + cP(x), (13.2)

where c is a positive constant and P is a function on En satisfying: (i) P is continu-

ous, (ii) P(x) � 0 for all x ∈ En, and (iii) P(x) = 0 if and only if x ∈ S .

Example 1. Suppose S is defined by a number of inequality constraints:

S = {x : gi(x) � 0, i = 1, 2, . . . , p}.
A very useful penalty function in this case is

P(x) =
1

2

P
∑

i=1

(max[0, gi(x)])2.

The function cP(x) is illustrated in Fig. 13.1 for the one-dimensional case with

g1(x) = x − b, g2(x) = a − x.

For large c it is clear that the minimum point of problem (13.2) will be in a region

where P is small. Thus, for increasing c it is expected that the corresponding so-

lution points will approach the feasible region S and, subject to being close, will

minimize f . Ideally then, as c → ∞ the solution point of the penalty problem will

converge to a solution of the constrained problem.

The Method

The procedure for solving problem (13.1) by the penalty function method is this:

Let {ck}, k = 1, 2, . . ., be a sequence tending to infinity such that for each

k, ck � 0, ck+1 > ck. Define the function

q(c, x) = f (x) + cP(x). (13.3)

13.1 Penalty Methods 399

Fig. 13.1 Plot of cP(x)

For each k solve the problem

minimize q(ck, x), (13.4)

obtaining a solution point xk.

We assume here that, for each k, problem (13.4) has a solution. This will be true,

for example, if q(c, x) increases unboundedly as |x| → ∞. (Also see Exercise 2 to

see that it is not necessary to obtain the minimum precisely.)

Convergence

The following lemma gives a set of inequalities that follow directly from the defini-

tion of xk and the inequality ck+1 > ck.

Lemma 1.

q(ck , xk) � q(ck+1 , xk+1) (13.5)

P(xk) � P(xk+1) (13.6)

f (xk) � f (xk+1). (13.7)

Proof.

q(ck+1, xk+1) = f (xk+1) + ck+1P(xk+1) � f (xk+1) + ckP(xk+1)

� f (xk) + ckP(xk) = q(ck, xk),

which proves (13.5).

We also have

f (xk) + ckP(xk) � f (xk+1) + ckP(xk+1) (13.8)

f (xk+1) + ck+1P(xk+1) � f (xk) + ck+1P(xk). (13.9)

400 13 Penalty and Barrier Methods

Adding (13.8) and (13.9) yields

(ck+1 − ck)P(xk+1) � (ck+1 − ck)P(xk),

which proves (13.6).

Also

f (xk+1) + ckP(xk+1) � f (xk) + ckP(xk),

and hence using (13.6) we obtain (13.7). �

Lemma 2. Let x∗ be a solution to problem (13.1). Then for each k

f (x∗) � q(ck , xk) � f (xk).

Proof.

f (x∗) = f (x∗) + ckP(x∗) � f (xk) + ckP(xk) � f (xk). �

Global convergence of the penalty method, or more precisely verification that any

limit point of the sequence is a solution, follows easily from the two lemmas above.

Theorem. Let {xk} be a sequence generated by the penalty method. Then, any limit point of

the sequence is a solution to (13.1).

Proof. Suppose the subsequence {xk}, k ∈ K is a convergent subsequence of {xk}
having limit x. Then by the continuity of f , we have

limit
k∈K

f (xk) = f (x). (13.10)

Let f ∗ be the optimal value associated with problem (13.1). Then according to

Lemmas 1 and 2, the sequence of values q(ck, xk) is nondecreasing and bounded

above by f ∗. Thus

limit
k∈K

q(ck, xk) = q∗ � f ∗. (13.11)

Subtracting (13.10) from (13.11) yields

limit
k∈K

ckP(xk) = q∗ − f (x). (13.12)

Since P(xk) � 0 and ck → ∞, (13.12) implies

limit
k∈K

P(xk) = 0.

Using the continuity of P, this implies P(x) = 0. We therefore have shown that the

limit point x is feasible for (13.1).

To show that x is optimal we note that from Lemma 2, f (xk) � f ∗ and hence

f (x) = limitk∈K f (xk) � f ∗.�

13.2 Barrier Methods 401

13.2 Barrier Methods

Barrier methods are applicable to problems of the form

minimize f (x)

subject to x ∈ S ,
(13.13)

where the constraint set S has a nonempty interior that is arbitrarily close to any

point of S . Intuitively, what this means is that the set has an interior and it is possible

to get to any boundary point by approaching it from the interior. We shall refer to

such a set as robust. Some examples of robust and nonrobust sets are shown in

Fig. 13.2. This kind of set often arises in conjunction with inequality constraints,

where S takes the form

S = {x : gi(x) � 0, i = 1, 2, . . . , p}

Barrier methods are also termed interior methods. They work by establishing a bar-

rier on the boundary of the feasible region that prevents a search procedure from

leaving the region. A barrier function is a function B defined on the interior of S

such that: (i) B is continuous, (ii) B(x) � 0, (iii) B(x) → ∞ as x approaches the

boundary of S .

Example 1. Let gi, i = 1, 2, . . . , p be continuous functions on En. Suppose

S = {x : gi(x) � 0, i = 1, 2, . . . , p}.

is robust, and suppose the interior of S is the set of x’s where gi(x) < 0, i =

1, 2, . . . , p. Then the function

B(x) = −
p

∑

i=1

1

gi(x)
,

defined on the interior of S , is a barrier function. It is illustrated in one dimension

for g1 = x − a, g2 = x − b in Fig. 13.3.

Fig. 13.2 Examples

402 13 Penalty and Barrier Methods

Example 2. For the same situation as Example 1, we may use the logarithmic utility

function

B(x) = −
p

∑

i=1

log[−gi(x)].

This is the barrier function commonly used in linear programming interior point

methods, and it is frequently used more generally as well.

Corresponding to the problem (13.13), consider the approximate problem

minimize f (x) + 1
c
B(x)

subject to x ∈ interior of S ,
(13.14)

where c is a positive constant.

Alternatively, it is common to formulate the barrier method as

minimize f (x) + μB(x)

subject to x ∈ interior of S .
(13.15)

Fig. 13.3 Barrier function

When formulated with c we take c large (going to infinity); while when for-

mulated with μ we take μ small (going to zero). Either way the result is a con-

strained problem, and indeed the constraint is somewhat more complicated than in

the original problem (13.13). The advantage of this problem, however, is that it can

be solved by using an unconstrained search technique. To find the solution one starts

at an initial interior point and then searches from that point using steepest descent

or some other iterative descent method applicable to unconstrained problems. Since

the value of the objective function approaches infinity near the boundary of S , the

search technique (if carefully implemented) will automatically remain within the

13.3 Properties of Penalty and Barrier Functions 403

interior of S , and the constraint need not be accounted for explicitly. Thus, although

problem (13.14) or (13.15) is from a formal viewpoint a constrained problem, from

a computational viewpoint it is unconstrained.

The Method

The barrier method is quite analogous to the penalty method. Let {ck} be a sequence

tending to infinity such that for each k, k = 1, 2, . . . , ck � 0, ck+1 > ck. Define the

function

r(c, x) = f (x) +
1

c
B(x).

For each k solve the problem

minimize r(ck, x)

subject to x ∈ interior ofS ,

obtaining the point xk.

Convergence

Virtually the same convergence properties hold for the barrier method as for the

penalty method. We leave to the reader the proof of the following result.

Theorem. Any limit point of a sequence {xk} generated by the barrier method is a solution

to problem (13.13).

13.3 Properties of Penalty and Barrier Functions

Penalty and barrier methods are applicable to nonlinear programming problems

having a very general form of constraint set S . In most situations, however, this

set is not given explicitly but is defined implicitly by a number of functional con-

straints. In these situations, the penalty or barrier function is invariably defined in

terms of the constraint functions themselves; and although there are an unlimited

number of ways in which this can be done, some important general implications

follow from this kind of construction.

For economy of notation we consider problems of the form

minimize f (x)

subject to gi (x) � 0, i = 1, 2, . . . , p.
(13.16)

404 13 Penalty and Barrier Methods

For our present purposes, equality constraints are suppressed, at least notationally,

by writing each of them as two inequalities. If the problem is to be attacked with

a barrier method, then, of course, equality constraints are not present even in an

unsuppressed version.

Penalty Functions

A penalty function for a problem expressed in the form (13.16) will most naturally

be expressed in terms of the auxiliary constraint functions

g+i (x) ≡ max[0, gi(x)], i = 1, 2, . . . , p. (13.17)

This is because in the interior of the constraint region P(x) ≡ 0 and hence P should

be a function only of violated constraints. Denoting by g+(x) the p-dimensional

vector made up of the g+
i
(x)’s, we consider the general class of penalty functions

P(x) = γ(g+(x)), (13.18)

where γ is a continuous function from Ep to the real numbers, defined in such a way

that P satisfies the requirements demanded of a penalty function.

Example 1. Set

P(x) =
1

2

p
∑

i=1

g+i (x)2 =
1

2
|g+(x)|2,

which is without doubt the most popular penalty function. In this case γ is one-half

times the identity quadratic form on Ep, that is, γ(y) = 1
2
|y|2.

Example 2. By letting

γ(y) = yT
Γy,

where Γ is a symmetric positive definite p× p matrix, we obtain the penalty function

P(x) = g+(x)T
Γg+(x).

Example 3. A general class of penalty functions is

P(x) =

p
∑

i=1

(g+i (x))ε

for some ε > 0.

13.3 Properties of Penalty and Barrier Functions 405

Lagrange Multipliers

In the penalty method we solve, for various ck, the unconstrained problem

minimize f (x) + ckP(x). (13.19)

Most algorithms require that the objective function has continuous first partial

derivatives. Since we shall, as usual, assume that both f and g ∈ C1, it is natural

to require, then, that the penalty function P ∈ C1. We define

∇g+i (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇gi(x) if gi(x) � 0

0 if gi(x) < 0
, (13.20)

and, of course, ∇g+(x) is the m× n matrix whose rows are the ∇g+
i
’s. Unfortunately,

∇g+ is usually discontinuous at points where g+
i
(x) = 0 for some i = 1, 2, . . . , p,

and thus some restrictions must be placed on γ in order to guarantee P ∈ C1. We

assume that γ ∈ C1 and that if y = (y1, y2, . . . , yn), ∇γ(y) = (∇γ1, ∇γ2, . . . , ∇γn),

then

yi = 0 implies ∇γi = 0. (13.21)

(In Example 3 above, for instance, this condition is satisfied only for ε > 1.) With

this assumption, the derivative of γ(g+(x)) with respect to x is continuous and can be

written as ∇γ(g+(x))∇g(x). In this result ∇g(x) legitimately replaces the discontin-

uous ∇g+(x), because it is premultiplied by ∇γ(g+(x)). Of course, these considera-

tions are necessary only for inequality constraints. If equality constraints are treated

directly, the situation is far simpler.

In view of this assumption, problem (13.19) will have its solution at a point xk

satisfying

∇ f (xk) + ck∇γ(g
+(xk))∇g(xk) = 0,

which can be written as

∇ f (xk) + λT
k∇g(xk) = 0, (13.22)

where

λT
k ≡ ck∇γ(g

+(xk)). (13.23)

Thus, associated with every c is a Lagrange multiplier vector that is determined after

the unconstrained minimization is performed.

If a solution x∗ to the original problem (13.16) is a regular point of the constraints,

then there is a unique Lagrange multiplier vector λ∗ associated with the solution. The

result stated below says that λk → λ∗.
Proposition. Suppose that the penalty function method is applied to problem (13.16) using

a penalty function of the form (13.18) with γ ∈ C1 and satisfying (13.21). Corresponding

to the sequence {xk} generated by this method, define λT
k = ck∇γ(g

+(xk)). If xk → x∗,
a solution to (13.16), and this solution is a regular point, then λk → λ∗, the Lagrange

multiplier associated with problem (13.16).

Proof left to the reader.

406 13 Penalty and Barrier Methods

Example 4. For P(x) = 1
2
|g+(x)|2 we have λk = ckg+(xk).

As a final observation we note that in general if xk → x∗, then since λk =

ck∇γ(g
+(xk))T → λ∗, the sequence xk approaches x∗ from outside the constraint

region. Indeed, as xk approaches x∗ all constraints that are active at x∗ and have

positive Lagrange multipliers will be violated at xk because the corresponding com-

ponents of∇γ(g+(xk)) are positive. Thus, if we assume that the active constraints are

nondegenerate (all Lagrange multipliers are strictly positive), every active constraint

will be approached from the outside.

The Hessian Matrix

Since the penalty function method must, for various (large) values of c, solve the

unconstrained problem

minimize f (x) + cP(x), (13.24)

it is important, in order to evaluate the difficulty of such a problem, to determine

the eigenvalue structure of the Hessian of this modified objective function. We show

here that the structure becomes increasingly unfavorable as c increases.

Although in this section we require that the function P ∈ C1, we do not require

that P ∈ C2. In particular, the most popular penalty function P(x) = 1
2
|g+(x)|2,

illustrated in Fig. 13.1 for one component, has a discontinuity in its second derivative

at any point where a component of g is zero. At first this might appear to be a

serious drawback, since it means the Hessian is discontinuous at the boundary of the

constraint region—right where, in general, the solution is expected to lie. However,

as pointed out above, the penalty method generates points that approach a boundary

solution from outside the constraint region. Thus, except for some possible chance

occurrences, the sequence will, as xk → x∗, be at points where the Hessian is well-

defined. Furthermore, in iteratively solving the unconstrained problem (13.24) with

a fixed ck, a sequence will be generated that converges to xk which is (for most

values of k) a point where the Hessian is well-defined, and hence the standard type

of analysis will be applicable to the tail of such a sequence.

Defining q(c, x) = f (x)+cγ(g+(x)) we have for the Hessian, Q, of q (with respect

to x)

Q(c, x) = F(x) + c∇γ(g+(x))G(x) + c∇g+(x)T
Γ(g+(x))∇g+(x),

where F, G, and Γ are, respectively, the Hessians of f , g, and γ. For a fixed ck we

use the definition of λk given by (13.23) and introduce the rather natural definition

Lk(xk) = F(xk) + λT
k G(xk), (13.25)

which is the Hessian of the corresponding Lagrangian. Then we have

Q(ck, xk) = Lk(xk) + ck∇g+(xk)T
Γ(g+(xk))∇g+(xk), (13.26)

which is the desired expression.

13.3 Properties of Penalty and Barrier Functions 407

The first term on the right side of (13.26) converges to the Hessian of the La-

grangian of the original constrained problem as xk → x∗, and hence has a limit that

is independent of ck. The second term is a matrix having rank equal to the rank of

the active constraints and having a magnitude tending to infinity. (See Exercise 7.)

Example 5. For P(x) = 1
2
|g+(x)|2 we have

Γ(g+(xk)) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

e1 0 · · · 0

0 e2 0

0 · ·
· · ·
· · ·
0 · · · 0 ep

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where

ei =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if gi(xk) > 0

0 if gi(xk) < 0

undefined if gi(xk) = 0

Thus

ck∇g+(xk)T (g+(xk))∇g+(xk) = ck∇g+(xk)T
∇g+(xk),

which is ck times a matrix that approaches ∇g+(x∗)T
∇g+(x∗). This matrix has rank

equal to the rank of the active constraints at x∗ [refer to (13.20)].

Assuming that there are r active constraints at the solution x∗, then for well-

behaved γ, the Hessian matrix Q(ck, xk) has r eigenvalues that tend to infinity as

ck → ∞, arising from the second term on the right side of (13.26). There will be

n − r other eigenvalues that, although varying with ck, tend to finite limits. These

limits turn out to be, as is perhaps not too surprising at this point, the eigenvalues

of L(x∗) restricted to the tangent subspace M of the active constraints. The proof of

this requires some further analysis.

Lemma 1. Let A(c) be a symmetric matrix written in partitioned form

A(c) =

[

A1(c) A2(c)

AT
2 (c) A3(c)

]

, (13.27)

where A1(c) tends to a positive definite matrix A1, A2(c) tends to a finite matrix, and A3(c)
is a positive definite matrix tending to infinity with c (that is, for any s > 0, A3(c) ⇁ sI is

positive definite for sufficiently large c). Then

A−1(c) →
[

A−1
1 0

0 0

]

(13.28)

as c→∞.

Proof. We have the identity

[

A1 A2

AT
2 A3

]−1

=

[

(A1 − A2A−1
3 AT

2)−1 −(A1 − A2A−1
3 AT

2)A2A−1
3

−A−1
3 AT

2 (A1 − A2A−1
3 AT

2)−1 (A3 − AT
2 A−1

1 A2)−1

]

. (13.29)

Using the fact that A−1
3 (c)→ 0 gives the result. �

408 13 Penalty and Barrier Methods

To apply this result to the Hessian matrix (13.26) we associate A with Q(ck, xk)

and let the partition of A correspond to the partition of the space En into the subspace

M and the subspace N that is orthogonal to M; that is, N is the subspace spanned by

the gradients of the active constraints. In this partition, LM , the restriction of L to

M, corresponds to the matrix A1.

We leave the details of the required continuity arguments to the reader. The

important conclusion is that if x∗ is a solution to (13.16), is a regular point, and

has exactly r active constraints none of which are degenerate, then the Hessian ma-

trices Q(ck, xk) of a penalty function of form (13.18) have r eigenvalues tending to

infinity as ck → ∞, and n − r eigenvalues tending to the eigenvalues of LM .

This explicit characterization of the structure of penalty function Hessians is of

great importance in the remainder of the chapter. The fundamental point is that

virtually any choice of penalty function (within the class considered) leads both to

an ill-conditioned Hessian and to consideration of the ubiquitous Hessian of the

Lagrangian restricted to M.

Barrier Functions

Essentially the same story holds for barrier function. If we consider for Prob-

lem (13.16) barrier functions of the form

B(x) = η(g(x)), (13.30)

then Lagrange multipliers and ill-conditioned Hessians are again inevitable. Rather

than parallel the earlier analysis of penalty functions, we illustrate the conclusions

with two examples.

Example 1. Define

B(x) =

p
∑

i=1

− 1

gi(x)
. (13.31)

The barrier objective

r(ck, x) = f (x) − 1

ck

p
∑

i=1

1

gi(x)

has its minimum at a point xk satisfying

∇ f (xk) +
1

ck

p
∑

i=1

1

gi(xk)2
∇gi(xk) = 0. (13.32)

Thus, we define λk to be the vector having ith component 1
ck
. 1

gi(xk)2 . Then (13.32)

can be written as

∇ f (xk) + λT
k∇g(xk) = 0.

13.3 Properties of Penalty and Barrier Functions 409

Again, assuming xk → x∗, the solution of (13.16), we can show that λk → λ∗, the

Lagrange multiplier vector associated with the solution. This implies that if gi is an

active constraint,

1

ckgi(xk)2
→ λ∗i < ∞. (13.33)

Next, evaluating the Hessian R(ck, xk) of r(ck, xk), we have

R(ck, xk) = F(xk) +
1

ck

p
∑

i=1

1

gi(xk)2
Gi(xk) − 1

ck

p
∑

i=1

2

gi(xk)3
∇gi(xk)T

∇gi(xk)

= L(xk) − 1

ck

p
∑

i=1

2

gi(xk)3
∇gi(xk)T

∇gi(xk).

As ck → ∞ we have

−1

ckgi(xk)3
→

{

∞ if gi is active at x∗

0 if gi is inactive at x∗

so that we may write, from (13.33),

R(ck, xk)→ L(xk) +
∑

i∈1
− λi,k

gi(xk)
∇gi(xk)T

∇gi(xk),

where I is the set of indices corresponding to active constraints. Thus the Hessian

of the barrier objective function has exactly the same structure as that of penalty

objective functions.

Example 2. Let us use the logarithmic barrier function

B(x) = −
p

∑

i=1

log[−gi(x)]

In this case we will define the barrier objective in terms of μ as

r(μ, x) = f (x) − μ
p

∑

i=1

log[−gi(x)]

The minimum point xμ satisfies

0 = ∇ f (xμ) + μ

p
∑

i=1

−1

gi(xμ)
∇gi(xμ). (13.34)

Defining

λμ,i = μ
−1

gi(xμ)

410 13 Penalty and Barrier Methods

(13.34) can be written as

∇ f (xμ) + λ
T
μ∇g(xμ) = 0.

Further we expect that λμ → λ∗ as μ→ 0.

The Hessian of r(μ, x) is

R(μ, xμ) = F(xμ) +

p
∑

i=1

λi,μGi(xμ) +

p
∑

i=1

−
λi,μ

gI(xμ)
∇gi(xμ)

T
∇gi(xμ).

Hence, for small μ it has the same structure as that found in Example 1.

The Central Path

The definition of the central path associated with linear programs is easily extended

to general nonlinear programs. For example, consider the problem

minimize f (x)

subject to h(x) = 0, g(x) ≤ 0.

We assume that F̊ = {x : h(x) = 0, g(x) < 0} � φ. Then we use the logarithmic

barrier function to define the problems

minimize f (x) − μ∑p

i=1
log[−gi(x)]

subject to h(x) = 0.

The solution xμ parameterized by μ→ 0 is called the central path; see Chap. 5.

The necessary conditions for the problem can be written as

∇ f (xμ) + sT
∇g(xμ) + yT

∇h(xμ) = 0

h(xμ) = 0.

sigi(xμ) = −μ; i = 1, 2, . . . , p

where y is the Lagrange multiplier vector for the constraint h(xμ) = 0. Then, the

Newton method can be applied to solving the condition system as μ is gradually

reduced to 0, that is, following the path.

Geometric Interpretation: The Primal Function

There is a geometric construction that provides a simple interpretation of penalty

functions. The basis of the construction itself is also useful in other areas of opti-

mization, especially duality theory, as explained in the next chapter.

13.3 Properties of Penalty and Barrier Functions 411

Let us again consider the problem

minimize f (x)

subject to h(x) = 0,
(13.35)

where h(x) ∈ Em. We assume that the solution point x∗ of (13.35) is a regular point

and that the second-order sufficiency conditions are satisfied. Corresponding to this

problem we introduce the following definition:

Definition. Corresponding to the constrained minimization problem (13.35), the primal

function ω is defined on Em in a neighborhood of 0 to be

ω(y) = min{ f (x) : h(x) = y}. (13.36)

The primal function gives the optimal value of the objective for various values of

the right-hand side. In particular ω(0) gives the value of the original problem.

Strictly speaking the minimum in the definition (13.36) must be specified as a

local minimum, in a neighborhood of x∗. The existence of ω(y) then follows di-

rectly from the Sensitivity Theorem in Sect. 11.7. Furthermore, from that theorem it

follows that ∇ω(0) = −λ∗T .

Now consider the penalty problem and note the following relations:

min{ f (x) +
1

2
c|h(x)|2} = minx,y{ f (x) +

1

2
c|y|2 : h(x) = y}

= miny{ω(y) +
1

2
c|y|2}. (13.37)

Fig. 13.4 The primal function

This is illustrated in Fig. 13.4 for the case where y is one-dimensional. The primal

function is the lowest curve in the figure. Its value at y = 0 is the value of the

412 13 Penalty and Barrier Methods

original constrained problem. Above the primal function are the curves ω(y) + 1
2
cy2

for various values of c. The value of the penalty problem is shown by (13.37) to be

the minimum point of this curve. For large values of c this curve becomes convex

near 0 even if ω(y) is not convex. Viewed in this way, the penalty functions can be

thought of as convexifying the primal.

Also, as c increases, the associated minimum point moves toward 0. However, it

is never zero for finite c. Furthermore, in general, the criterion for u to be optimal

for the penalty problem is that the gradient of ω(y) + 1
2
cy2 equals zero. This yields

∇ω(y) + cyT = 0. Using ∇ω(y) = −λT and y = h(xc), where now xc denotes

the minimum point of the penalty problem, gives λ = ch(xc), which is the same

as (13.23).

13.4 Newton’s Method and Penalty Functions

In the next few sections we address the problem of efficiently solving the uncon-

strained problems associated with a penalty or barrier method. The main difficulty

is the extremely unfavorable eigenvalue structure that, as explained in Sect. 13.3,

always accompanies unconstrained problems derived in this way. Certainly straight-

forward application of the method of steepest descent is out of the question!

One method for avoiding slow convergence for these problems is to apply New-

ton’s method (or one of its variations), since the order two convergence of Newton’s

method is unaffected by the poor eigenvalue structure. In applying the method, how-

ever, special care must be devoted to the manner by which the Hessian is inverted,

since it is ill-conditioned. Nevertheless, if second-order information is easily avail-

able, Newton’s method offers an extremely attractive and effective method for solv-

ing modest size penalty or barrier optimization problems. When such information

is not readily available, or if data handling and storage requirements of Newton’s

method are excessive, attention naturally focuses on first-order methods.

A simple modified Newton’s method can often be quite effective for some penalty

problems. For example, consider the problem having only equality constraints

minimize f (x)

subject to h(x) = 0
(13.38)

with x ∈ En, h(x) ∈ Em, m < n. Applying the standard quadratic penalty method

we solve instead the unconstrained problem

minimize f (x) + 1
2
c|h(x)|2 (13.39)

for some large c. Calling the penalty objective function q(x) we consider the iterative

process

xk+1 = xk − αk[I + c∇h(xk)T
∇h(xk)]−1

∇q(xk)T , (13.40)

13.5 Conjugate Gradients and Penalty Methods 413

where αk is chosen to minimize q(xk+1). The matrix I + c∇h(xk)T
∇h(xk) is positive

definite and although quite ill-conditioned it can be inverted efficiently (see

Exercise 11).

According to the Modified Newton Method Theorem (Sect. 10.1) the rate of con-

vergence of this method is determined by the eigenvalues of the matrix

[I + c∇h(xk)T
∇h(xk)]−1Q(xk), (13.41)

where Q(xk) is the Hessian of q at xk. In view of (13.26), as c → ∞ the ma-

trix (13.41) will have m eigenvalues that approach unity, while the remaining n − m

eigenvalues approach the eigenvalues of LM evaluated at the solution x∗ of (13.38).

Thus, if the smallest and largest eigenvalues of LM , a and A, are located such that

the interval [a, A] contains unity, the convergence ratio of this modified Newton’s

method will be equal (in the limit of c→ ∞) to the canonical ratio [(A−a)/(A+a)]2

for problem (13.38).

If the eigenvalues of LM are not spread below and above unity, the convergence

rate will be slowed. If a point in the interval containing the eigenvalues of LM is

known, a scalar factor can be introduced so that the canonical rate is achieved, but

such information is often not easily available.

Inequalities

If there are inequality as well as equality constraints in the problem, the analogous

procedure can be applied to the associated penalty objective function. The unusual

feature of this case is that corresponding to an inequality constraint gi(x) � 0,

the term ∇g+
i
(x)T
∇g+

i
(x) used in the iteration matrix will suddenly appear if the

constraint is violated. Thus the iteration matrix is discontinuous with respect to x,

and as the method progresses its nature changes according to which constraints are

violated. This discontinuity does not, however, imply that the method is subject to

jamming, since the result of Exercise 4, Chap. 10 is applicable to this method.

13.5 Conjugate Gradients and Penalty Methods

The partial conjugate gradient method proposed and analyzed in Sect. 9.5 is ideally

suited to penalty or barrier problems having only a few active constraints. If there are

m active constraints, then taking cycles of m + 1 conjugate gradient steps will yield

a rate of convergence that is independent of the penalty constant c. For example,

consider the problem having only equality constraints:

minimize f (x)

subject to h(x) = 0,
(13.42)

414 13 Penalty and Barrier Methods

where x ∈ En, h(x) ∈ Em, m < n. Applying the standard quadratic penalty method,

we solve instead the unconstrained problem

minimize f (x) + 1
2
c|h(x)|2 (13.43)

for some large c. The objective function of this problem has a Hessian matrix that

has m eigenvalues that are of the order c in magnitude, while the remaining n − m

eigenvalues are close to the eigenvalues of the matrix LM , corresponding to problem

(13.42). Thus, letting xk+1 be determined from xk by taking m + 1 steps of a (non-

quadratic) conjugate gradient method, and assuming xk → x, a solution to (13.43),

the sequence { f (xk)} converges linearly to f (x) with a convergence ratio equal to

approximately
(

A − a

A + a

)2

(13.44)

where a and A are, respectively, the smallest and largest eigenvalues of LM(x).

This is an extremely effective technique when m is relatively small. The pro-

gramming logic required is only slightly greater than that of steepest descent, and

the time per iteration is only about m + 1 times as great as for steepest descent.

The method can be used for problems having inequality constraints as well but it is

advisable to change the cycle length, depending on the number of constraints active

at the end of the previous cycle.

Example 3.

minimize f (x1, x2, . . . , x10) =
10
∑

k=1
kx2

k

subject to 1.5x1 + x2 + x3 + 0.5x4 + 0.5x5 = 5.5

2.0x6 − 0.5x7 − 0.5x8 + x9 − x10 = 2.0

x1 + x3 + x5 + x7 + x9 = 10

x2 + x4 + x6 + x8 + x10 = 15.

This problem was treated by the penalty function approach, and the resulting com-

posite function was then solved for various values of c by using various cycle lengths

of a conjugate gradient algorithm. In Table 13.1 p is the number of conjugate gra-

dient steps in a cycle. Thus, p = 1 corresponds to ordinary steepest descent; p = 5

corresponds, by the theory of Sect. 9.5, to the smallest value of p for which the rate

of convergence is independent of c; and p = 10 is the standard conjugate gradient

method. Note that for p < 5 the convergence rate does indeed depend on c, while it

is more or less constant for p � 5. The value of c’s selected are not artificially large,

since for c = 200 the constraints are satisfied only to within 0.5 % of their right-

hand sides. For problems with nonlinear constraints the results will most likely be

somewhat less favorable, since the predicted convergence rate would apply only to

the tail of the sequence.

13.6 Normalization of Penalty Functions 415

Table 13.1 Results for example 3

p (steps
per cycle)

Number
of cycles
to conver-
gence

No. of steps Value of modified objective

c = 20
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

3

5

7

90 90 388.565
8 24 388.563
3 15 388.563
3 21 388.563

c = 200
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

3

5

7

230a 230 488.607
21 63 487.446
4 20 487.438
2 14 487.433

c = 2000
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

3

5

7

260a 260 525.238
45a 135 503.550
3 15 500.910
3 21 500.882

a Program not run to convergence due to excessive time

13.6 Normalization of Penalty Functions

There is a good deal of freedom in the selection of penalty or barrier functions that

can be exploited to accelerate convergence. We propose here a simple normaliza-

tion procedure that together with a two-step cycle of conjugate gradients yields the

canonical rate of convergence. Again for simplicity we illustrate the technique for

the penalty method applied to the problem

minimize f (x)

subject to h(x) = 0
(13.45)

as in Sects. 13.4 and 13.5, but the idea is easily extended to other penalty or barrier

situations.

Corresponding to (13.45) we consider the family of quadratic penalty functions

P(x) =
1

2
h(x)T

Γh(x), (13.46)

where Γ is a symmetric positive definite m ×m matrix. We ask what the best choice

of Γ might be.

Letting

q(c, x) = f (x) + cP(x), (13.47)

the Hessian of q turns out to be, using (13.26),

Q(c, xk) = L(xk) + c∇h(xk)T
Γ∇h(xk). (13.48)

416 13 Penalty and Barrier Methods

The m large eigenvalues are due to the second term on the right. The observation

we make is that although the m large eigenvalues are all proportional to c, they

are not necessarily all equal. Indeed, for very large c these eigenvalues are deter-

mined almost exclusively by the second term, and are therefore c times the nonzero

eigenvalues of the matrix ∇h(xk)T
Γ∇h(xk). We would like to select Γ so that these

eigenvalues are not spread out but are nearly equal to one another. An ideal choice

for the kth iteration would be

Γ = [∇h(xk)∇h(xk)T]−1, (13.49)

since then all nonzero eigenvalues would be exactly equal. However, we do not

allow to change at each step, and therefore compromise by setting

Γ = [∇h(x0)∇h(x0)T]−1, (13.50)

where x0 is the initial point of the iteration.

Using this penalty function, the corresponding eigenvalue structure will at any

point look approximately like that shown in Fig. 13.5. The eigenvalues are bunched

into two separate groups. As c is increased the smaller eigenvalues move into the

interval [a, A] where a and A are, as usual, the smallest and largest eigenvalues of

LM at the solution to (13.45). The larger eigenvalues move forward to the right and

spread further apart.

Fig. 13.5 Eigenvalue distributions

Using the result of Exercise 11, Chap. 9, we see that if xk+1 is determined from

xk by two conjugate gradient steps, the rate of convergence will be linear at a ratio

determined by the widest of the two eigenvalue groups. If our normalization is suf-

ficiently accurate, the large-valued group will have the lesser width. In that case

convergence of this scheme is approximately that of the canonical rate for the origi-

nal problem. Thus, by proper normalization it is possible to obtain the canonical rate

of convergence for only about twice the time per iteration as required by steepest

descent.

There are, of course, numerous variations of this method that can be used in

practice.Γ can, for example, be allowed to vary at each step, or it can be occasionally

updated.

Example. The example problem presented in the previous section was also solved

by the normalization method presented above. The results for various values of c

and for cycle lengths of one, two, and three are presented in Table 13.2. (All runs

were initiated from the zero vector.)

13.7 Penalty Functions and Gradient Projection 417

Table 13.2 Results for example 3

p (steps
per cycle)

Number
of cycles
to conver-
gence

No. of steps Value of modified objective

c = 10
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

2

3

28 28 251.2657
9 18 251.2657
5 15 251.2657

c = 100
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

2

3

153 153 379.5955
13 26 379.5955
11 33 379.5955

c = 1000
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

2

3

261a 261 402.0903
14 28 400.1687
13 39 400.1687

a Program not run to convergence due to excessive time

13.7 Penalty Functions and Gradient Projection

The penalty function method can be combined with the idea of the gradient projec-

tion method to yield an attractive general purpose procedure for solving constrained

optimization problems. The proposed combination method can be viewed either as a

way of accelerating the rate of convergence of the penalty function method by elim-

inating the effect of the large eigenvalues, or as a technique for efficiently handling

the delicate and usually cumbersome requirement in the gradient projection method

that each point be feasible. The combined method converges at the canonical rate

(the same as does the gradient projection method), is globally convergent (unlike

the gradient projection method), and avoids much of the computational difficulty

associated with staying feasible.

Underlying Concept

The basic theoretical result that motivates the development of this algorithm is the

Combined Steepest Descent and Newton’s Method Theorem of Sect. 10.7. The idea

is to apply this combined method to a penalty problem. For simplicity we first con-

sider the equality constrained problem

minimize f (x)

subject to h(x) = 0,
(13.51)

where x ∈ En, h(x) ∈ Em. The associated unconstrained penalty problem that we

consider is
minimize q(x), (13.52)

418 13 Penalty and Barrier Methods

where

q(x) = f (x) +
1

2
c|h(x)|2.

At any point xk let M(xk) be the subspace tangent to the surface S k = {x : h(x) =

h(xk)}. This is a slight extension of the tangent subspaces that we have considered

before, since M(xk) is defined even for points that are not feasible. If the sequence

{xk} converges to a solution xc of problem (13.52), then we expect that M(xk) will

in some sense converge to M(xc). The orthogonal complement of M(xk) is the space

generated by the gradients of the constraint functions evaluated at xk. Let us denote

this space by N(xk). The idea of the algorithm is to take N as the subspace over

which Newton’s method is applied, and M as the space over which the gradient

method is applied. A cycle of the algorithm would be as follows:

1. Given xk, apply one step of Newton’s method over, the subspace N(xk) to obtain

a point wk of the form

wk = xk + ∇h(xk)T uk

uk ∈ Em.

2. From wk, take an ordinary steepest descent step to obtain xk+1.

Of course, we must show how Step 1 can be easily executed, and this is done below,

but first, without drawing out the details, let us examine the general structure of this

algorithm.

The process is illustrated in Fig. 13.6. The first step is analogous to the step

in the gradient projection method that returns to the feasible surface; except that

here the criterion is reduction of the objective function rather than satisfaction of

constraints. To interpret the second step, suppose for the moment that the origi-

nal problem (13.51) has a quadratic objective and linear constraints; so that, con-

sequently, the penalty problem (13.52) has a quadratic objective and N(x), M(x)

and ∇h(x) are independent of x. In that case the first (Newton) step would exactly

minimize q with respect to N, so that the gradient of q at wk would be orthog-

onal to N; that is, the gradient would lie in the subspace M. Furthermore, since

∇q(wk) = ∇ f (wk) + ch(wk)∇h(wk), we see that ∇q(wk) would in that case be equal

to the projection of the gradient of f onto M. Hence, the second step is, in the

quadratic case exactly, and in the general case approximately, a move in the direc-

tion of the projected negative gradient of the original objective function.

The convergence properties of such a scheme are easily predicted from the

theorem on the Combined Steepest Descent and Newton’s Method, in Sect. 10.7,

and our analysis of the structure of the Hessian of the penalty objective function

given by (13.26). As xk → xc the rate will be determined by the ratio of largest to

smallest eigenvalues of the Hessian restricted to M(xc).

This leads, however, by what was shown in Sect. 12.3, to approximately the

canonical rate for problem (13.51). Thus this combined method will yield again

the canonical rate as c→ ∞.

13.7 Penalty Functions and Gradient Projection 419

Fig. 13.6 Illustration of the method

Implementing the First Step

To implement the first step of the algorithm suggested above it is necessary to show

how a Newton step can be taken in the subspace N(xk). We show that, again for

large values of c, this can be accomplished easily.

At the point xk the function b, defined by

b(u) = q(xk + ∇h(xk)T u) (13.53)

for u ∈ Em, measures the variations in q with respect to displacements in N(xk).

We shall, for simplicity, assume that at each point, xk, ∇h(xk) has rank m. We can

immediately calculate the gradient with respect to u,

∇b(u) = ∇q(xk + ∇h(xk)T u)∇h(xk)T , (13.54)

and the m × n Hessian with respect to u at u = 0,

B = ∇h(xk)Q(xk)∇h(xk)T . (13.55)

where Q is the n× n Hessian of q with respect to x. From (13.26) we have that at xk

Q(xk) = Lk(xk) + c∇h(xk)T
∇h(xk). (13.56)

And given B, the direction for the Newton step in N would be

dk = −∇h(xk)T B−1
∇c(0)T

= −∇h(xk)T B−1
∇h(xk)∇q(xk)T . (13.57)

It is clear from (13.55) and (13.56) that exact evaluation of the Newton step

requires knowledge of L(xk) which usually is costly to obtain. For large values of c,

however, B can be approximated by

B ≃ c[∇h(xk)∇h(xk)T]2, (13.58)

420 13 Penalty and Barrier Methods

and hence a good approximation to the Newton direction is

dk = −
1

c
∇h(xk)T [∇h(xk)∇h(xk)T]−2

∇h(xk)∇q(xk)T . (13.59)

Thus a suitable implementation of one cycle of the algorithm is:

1. Calculate

dk = −
1

c
∇h(xk)T [∇h(xk)∇h(xk)T]−2

∇h(xk)∇q(xk)T .

2. Find βk to minimize q(xk +βdk) (using βk = 1 as an initial search point), and set

wk = xk + βkdk.

3. Calculate pk = −∇q(wk)T .

4. Find αk to minimize q(wk + αpk), and set xk+1 = wk + αkpk.

It is interesting to compare the Newton step of this version of the algorithm with

the step for returning to the feasible region used in the ordinary gradient projection

method. We have

∇q(xk)T = ∇ f (xk)T + c∇h(xk)T h(xk). (13.60)

If we neglect ∇ f (xk)T on the right (as would be valid if we are a long distance from

the constraint boundary) then the vector dk reduces to

dk = −∇h(xk)T [∇h(xk)∇h(xk)T]−1h(xk),

which is precisely the first estimate used to return to the boundary in the gradient

projection method. The scheme developed in this section can therefore be regarded

as one which corrects this estimate by accounting for the variation in f .

An important advantage of the present method is that it is not necessary to carry

out the search in detail. If β = 1 yields an improved value for the penalty objective,

no further search is required. If not, one need search only until some improvement

is obtained. At worst, if this search is poorly performed, the method degenerates

to steepest descent. When one finally gets close to the solution, however, β = 1 is

bound to yield an improvement and terminal convergence will progress at nearly the

canonical rate.

Inequality Constraints

The procedure is conceptually the same for problems with inequality constraints.

The only difference is that at the beginning of each cycle the subspace M(xk) is

calculated on the basis of those constraints that are either active or violated at xk,

the others being ignored. The resulting technique is a descent algorithm in that

the penalty objective function decreases at each cycle; it is globally convergent

because of the pure gradient step taken at the end of each cycle; its rate of conver-

gence approaches the canonical rate for the original constrained problem as c→ ∞;

and there are no feasibility tolerances or subroutine iterations required.

13.8 ∗Exact Penalty Functions 421

*13.8 ∗Exact Penalty Functions

It is possible to construct penalty functions that are exact in the sense that the

solution of the penalty problem yields the exact solution to the original problem

for a finite value of the penalty parameter. With these functions it is not necessary

to solve an infinite sequence of penalty problems to obtain the correct solution.

However, a new difficulty introduced by these penalty functions is that they are non-

differentiable.

For the general constrained problem

minimize f (x)

subject to h(x) = 0, g(x) � 0,
(13.61)

consider the absolute-value penalty function

P(x) =

m
∑

i=1

|hi(x)| +
p

∑

j=1

max(0, g j(x)). (13.62)

The penalty problem is then, as usual,

minimize f (x) + cP(x) (13.63)

for some positive constant c. We investigate the properties of the absolute-value

penalty function through an example and then generalize the results.

Example 1. Consider the simple quadratic problem

minimize 2x2 + 2xy + y2 − 2y

subject to x = 0. (13.64)

It is easy to solve this problem directly by substituting x = 0 into the objective. This

leads immediately to x = 0, y = 1.

If a standard quadratic penalty function is used, we minimize the objective

2x2 + 2xy + y2 − 2y +
1

2
cx2 (13.65)

for c > 0. The solution again can be easily found and is x = −2/(2 + c), y =

1 − 2/(2 + c). This solution approaches the true solution as c → ∞, as predicted by

the general theory. However, for any finite c the solution is inexact.

Now let us use the absolute-value penalty function. We minimize the function

2x2 + 2xy + y2 − 2y + c|x|. (13.66)

422 13 Penalty and Barrier Methods

We rewrite (13.66) as

2x2 + 2xy + y2 − 2y + c|x|
= 2x2 + 2xy + c|x| + (y − 1)2 − 1

= 2x2 + 2x + c|x| + (y − 1)2 + 2x(y − 1) − 1 (13.67)

= x2 + (2x + c|x|) + (y − 1 + x)2 − 1.

All terms (except the −l) are nonnegative if c > 2. Therefore, the minimum value

of this expression is −1, which is achieved (uniquely) by x = 0, y = 1. Therefore,

for c > 2 the minimum point of the penalty problem is the correct solution to the

original problem (13.64).

We let the reader verify that λ = −2 for this example. The fact that c > |λ| is
required for the solution to be exact is an illustration of a general result given by the

following theorem.

Exact Penalty Theorem. Suppose that the point x∗ satisfies the second-order sufficiency

conditions for a local minimum of the constrained problem (13.61). Let λ and µ be the
corresponding Lagrange multipliers. Then for c > max{|λi |, μ j : i = 1, 2, . . . , m, j =

1, 2, . . . , p}, x∗ is also a local minimum of the absolute-value penalty objective (13.62).

Proof. For simplicity we assume that there are equality constraints only. Define the

primal function

ω(z) = min
x
{ f (x) : hi(x) = zi for i = 1, 2, . . . , m}. (13.68)

The primal function was introduced in Sect. 12.3. Under our assumption the function

exists in a neighborhood of x∗ and is continuously differentiable, with∇ω(0) = −λT .

Now define

ωc(z) = ω(z) + c

m
∑

i=1

|zi|.

Then we have

min
x
{ f (x) + c

m
∑

i=1

|hi(x)|} = min
x,u
{ f (x) + c

m
∑

i=1

|zi| : h(x) = z}

= min
u
{p(z) + c

m
∑

i=1

|zi|}

= min
u

pc(z).

By the Mean Value Theorem,

ω(z) = ω(0) + ∇ω(αz)z

for some α, 0 � α � 1. Therefore,

ωc(z) = ω(0) + ∇ω(αz)z + c

m
∑

i=1

|zi|. (13.69)

13.9 Summary 423

We know that∇ω(z) is continuous at 0, and thus given ε > 0 there is a neighborhood

of 0 such that |∇ω(z)i| < |λi| + ε. Thus

∇ω(αz)z =

m
∑

i=1

∇ω(αz)izi � −{max
i
|∇ω(αz)i|}

m
∑

i=1

|zi|

� −{max
i

(|λi| + ε)}
m

∑

i=1

|zi|.

Using this in (13.69), we obtain

ωc(z) � p(0) + (c − ε −max |λi|)
m

∑

i=1

|zi|.

For c > ε+max |λi| it follows thatωc(z) is minimized at z = 0. Since εwas arbitrary,

the result holds for c > max |λi|.
This result is easily extended to include inequality constraints. (See Exercise 16.)

�

It is possible to develop a geometric interpretation of the absolute-value penalty

function analogous to the interpretation for ordinary penalty functions given in

Fig. 13.4. Figure 13.7 corresponds to a problem for a single constraint. The smooth

curve represents the primal function of the problem. Its value at 0 is the value of the

original problem, and its slope at 0 is −λ. The function ωc(z) is obtained by adding

c|z| to the primal function, and this function has a discontinuous derivative at z = 0.

It is clear that for c > |λ|, this composite function has a minimum at exactly z = 0,

corresponding to the correct solution.

There are other exact penalty functions but, like the absolute-value penalty

function, most are nondifferentiable at the solution. Such penalty functions are for

this reason difficult to use directly; special descent algorithms for nondifferentiable

objective functions have been developed, but they can be cumbersome. Furthermore,

although these penalty functions are exact for a large enough c, it is not known at the

outset what magnitude is sufficient. In practice a progression of c’s must often be

used. Because of these difficulties, the major use of exact penalty functions in non-

linear programming is as merit functions–measuring the progress of descent but not

entering into the determination of the direction of movement. This idea is discussed

in Chap. 15.

13.9 Summary

Penalty methods approximate a constrained problem by an unconstrained prob-

lem that assigns high cost to points that are far from the feasible region. As the

approximation is made more exact (by letting the parameter c tend to infinity)

the solution of the unconstrained penalty problem approaches the solution to the

424 13 Penalty and Barrier Methods

Fig. 13.7 Geometric interpretation of absolute-value penalty function

original constrained problem from outside the active constraints. Barrier methods,

on the other hand, approximate a constrained problem by an (essentially) uncon-

strained problem that assigns high cost to being near the boundary of the feasible

region, but unlike penalty methods, these methods are applicable only to problems

having a robust feasible region. As the approximation is made more exact, the

solution of the unconstrained barrier problem approaches the solution to the original

constrained problem from inside the feasible region.

The objective functions of all penalty and barrier methods of the form P(x) =

γ(h(x)), B(x) = η(g(x)) are ill-conditioned. If they are differentiable, then as c→ ∞
the Hessian (at the solution) is equal to the sum of L, the Hessian of the Lagrangian

associated with the original constrained problem, and a matrix of rank r that tends to

infinity (where r is the number of active constraints). This is a fundamental property

of these methods.

Effective exploitation of differentiable penalty and barrier functions requires that

schemes be devised that eliminate the effect of the associated large eigenvalues. For

this purpose the three general principles developed in earlier chapters, The Partial

Conjugate Gradient Method, The Modified Newton Method, and The Combination

of Steepest Descent and Newton’s Method, when creatively applied, all yield meth-

ods that converge at approximately the canonical rate associated with the original

constrained problem.

It is necessary to add a point of qualification with respect to some of the algo-

rithms introduced in this chapter, lest it be inferred that they are offered as panaceas

for the general programming problem. As has been repeatedly emphasized, the ideal

study of convergence is a careful blend of analysis, good sense, and experimentation.

The rate of convergence does not always tell the whole story, although it is often a

major component of it. Although some of the algorithms presented in this chapter

asymptotically achieve the canonical rate of convergence (at least approximately),

13.10 Exercises 425

for large c the points may have to be quite close to the solution before this rate

characterizes the process. In other words, for large c the process may converge

slowly in its initial phase, and, to obtain a truly representative analysis, one must

look beyond the first-order convergence properties of these methods. For this reason

many people find Newton’s method attractive, although the work at each step can

be substantial.

13.10 Exercises

1. Show that if q(c, x) is continuous (with respect to x) and q(c, x) → ∞ as

|x| → ∞, then q(c, x) has a minimum.

2. Suppose problem (13.1), with f continuous, is approximated by the penalty

problem (13.2), and let {ck} be an increasing sequence of positive constants

tending to infinity. Define q(c, x) = f (x) + cP(x), and fix ε > 0. For each k let

xk be determined satisfying

q(ck, xk) � [min
x

q(ck, x)] + ε.

Show that if x∗ is a solution to (13.1), any limit point, x, of the sequence {xk} is

feasible and satisfies f (x) � f (x∗) + ε.
3. Construct an example problem and a penalty function such that, as c → ∞, the

solution to the penalty problem diverges to infinity.

4. Combined penalty and barrier method. Consider a problem of the form

minimize f (x)

subject to x ∈ S ∩ T

and suppose P is a penalty function for S and B is a barrier function for T .

Define

d(c, x) = f (x) + cP(x) +
1

c
B(x).

Let {ck} be a sequence ck → ∞, and for k = 1, 2, . . . let xk be a solution to

minimize d(ck, x)

subject to x ∈ interior of T . Assume all functions are continuous, T is compact

(and robust), the original problem has a solution x∗, and that S∩ [interior of T]

is not empty. Show that

(a) limit
k∈∞

d(ck, xk) = f (x∗).

(b) limit
k∈∞

ckP(xk) = 0.

(c) limit
k∈∞

1
ck

B(xk) = 0.

426 13 Penalty and Barrier Methods

5. Prove the Theorem at the end of Sect. 13.2.

6. Find the central path for the problem of minimizing x2 subject to x � 0.

7. Consider a penalty function for the equality constraints

h(x) = 0, h(x) ∈ Em,

having the form

P(x) = γ(h(x)) =

m
∑

i=1

w(hi(x)),

where w is a function whose derivative w′ is analytic and has a zero of order

s � 1 at zero.

(a) Show that corresponding to (13.26) we have

Q(ck, xk) = Lk(xk) + ck

m
∑

i=1

{w′′(hi(xk))}∇hi(xk)T
∇hi(xk).

(b) Show that as ck → ∞, m eigenvalues of Q(ck, xk) have magnitude on the

order of (ck)1/s.

8. Corresponding to the problem

minimize f (x)

subject to g(x) � 0,

consider the sequence of unconstrained problems

minimize f (x) + [g+(x) + 1]k − 1,

and suppose xk is the solution to the kth problem.

(a) Find an appropriate definition of a Lagrange multiplier λk to associate

with xk.

(b) Find the limiting form of the Hessian of the associated objective function,

and determine how fast the largest eigenvalues tend to infinity.

9. Repeat Exercise 8 for the sequence of unconstrained problems

minimize f (x) + [(g(x) + 1)+]k.

10. Morrison ’s method. Suppose the problem

minimize f (x)

subject to h(x) = 0
(13.70)

has solution x∗. Let M be an optimistic estimate of f (x∗), that is, M � f (x∗).
Define v(M, x) = [f (x) − M]2 + |h(x)|2 and define the unconstrained problem

minimize v(M, x). (13.71)

13.10 Exercises 427

Given Mk � f (x∗), a solution xMk
to the corresponding problem (13.71) is

found, then Mk is updated through

Mk+1 = Mk + [v(Mk, xMk
)]1/2 (13.72)

and the process repeated.

(a) Show that if M = f (x∗), a solution to (13.71) is a solution to (13.70).

(b) Show that if xM is a solution to (13.71), then f (xM) � f (x∗).
(c) Show that if Mk � f (x∗) then Mk+1 determined by (13.72) satisfies

Mk+1 � f (x∗).
(d) Show that Mk → f (x∗).
(e) Find the Hessian of v(M, x) (with respect to x∗). Show that, to within a scale

factor, it is identical to that associated with the standard penalty function

method.

11. Let A be an m × n matrix of rank m. Prove the matrix identity

[I + AT A]−1 = I − AT [I + AAT]−1A

and discuss how it can be used in conjunction with the method of Sect. 13.4.

12. Show that in the limit of large c, a single cycle of the normalization method of

Sect. 13.6 is exactly the same as a single cycle of the combined penalty function

and gradient projection method of Sect. 13.7.

13. Suppose that at some step k of the combined penalty function and gradient pro-

jection method, the m×n matrix∇h(xk) is not of rank m. Show how the method

can be continued by temporarily executing the Newton step over a subspace of

dimension less than m.

14. For a problem with equality constraints, show that in the combined penalty

function and gradient projection method the second step (the steepest descent

step) can be replaced by a step in the direction of the negative projected gradient

(projected onto Mk) without destroying the global convergence property and

without changing the rate of convergence.

15. Develop a method that is analogous to that of Sect. 13.7, but which is a combi-

nation of penalty functions and the reduced gradient method. Establish that the

rate of convergence of the method is identical to that of the reduced gradient

method.

16. Extend the result of the Exact Penalty Theorem of Sect. 13.8 to inequalities.

Write g j(x) � 0 in the form of an equality as g j(x) + y2
j
= 0 and show that the

original theorem applies.

17. Develop a result analogous to that of the Exact Penalty Theorem of Sect. 13.8

for the penalty function

P(x) = max{0, gi(x), g2(x), . . . , gp(x), |hi(x)|, |h2(x)|, . . . , |hm(x)|}.

428 13 Penalty and Barrier Methods

18. Solve the problem

minimize x2 + xy + y2 − 2y

subject to x + y = 2

three ways analytically

(a) with the necessary conditions.

(b) with a quadratic penalty function.

(c) with an exact penalty function.

References

13.1 The penalty approach to constrained optimization is generally attributed to

Courant [C8]. For more details than presented here, see Butler and Martin

[B26] or Zangwill [Z1].

13.2 The barrier method is due to Carroll [C1], but was developed and popularized

by Fiacco and McCormick [F4] who proved the general effectiveness of the

method. Also see Frisch [F19].

13.3 It has long been known that penalty problems are solved slowly by steep-

est descent, and the difficulty has been traced to the ill-conditioning of the

Hessian. The explicit characterization given here is a generalization of that

in Luenberger [L10]. For the geometric interpretation, see Luenberger [L8].

The central path for nonlinear programming was analyzed by Nesterov and

Nemirovskii [N2], Jarre [J2] and den Hertog [H6].

13.5 Most previous successful implementations of penalty or barrier methods have

employed Newton’s method to solve the unconstrained problems and thereby

have largely avoided the effects of the ill-conditioned Hessian. See Fiacco

and McCormick [F4] for some suggestions. The technique at the end of the

section is new.

13.6 This method was first presented in Luenberger [L13].

13.8 See Luenberger [L10], for further analysis of this method.

13.9 The fact that the absolute-value penalty function is exact was discovered by

Zangwill [Z1]. The fact that c > |λ| is sufficient for exactness was pointed

out by Luenberger [L12]. Line search methods have been developed for non-

smooth functions. See Lemarechal and Mifflin [L3].

13.10 For analysis along the lines of Exercise 7, see Lootsma [L7]. For the functions

suggested in Exercises 8 and 9, see Levitin and Polyak [L5]. For the method

of Exercise 10, see Morrison [M8].

Chapter 14

Duality and Dual Methods

We first derive the duality theory of for constrained optimization, which is based

on our earlier zero-order optimality conditions and the Lagrangian relaxations. The

variables of the dual are typically the Lagrange multipliers associated with the con-

straints in the primal problem—the original constrained optimization problem.

Thus, dual methods are based on the viewpoint that it is the Lagrange multipliers

which are the fundamental unknowns associated with a constrained problem; once

these multipliers are known determination of the solution point is simple (at least

in some situations). Dual methods, therefore, do not attack the original constrained

problem directly but instead attack an alternate problem, the dual problem, whose

unknowns are the Lagrange multipliers of the first problem. For a problem with n

variables and m equality constraints, dual methods thus work in the m-dimensional

space of Lagrange multipliers. Because Lagrange multipliers measure sensitivities

and hence often have meaningful intuitive interpretations as prices associated with

constraint resources, searching for these multipliers, is often, in the context of a

given practical problem, as appealing as searching for the values of the original

problem variables.

The study of dual methods, and more particularly the introduction of the dual

problem, precipitates some extensions of earlier concepts. One interesting feature of

this chapter is the calculation of the Hessian of the dual problem and the discovery

of a dual canonical convergence ratio associated with a constrained problem that

governs the convergence of steepest ascent applied to the dual.

The convergence ratio theory lead to a popular method, the method of multipli-

ers based on the augmented Lagrangian, in which the Hessian condition would be

significantly improved to facilitate faster convergence.

The alternate direction method of multipliers is based on an idea resembling

that in the coordinate descent method. Here, the gradient of the dual is calculated

approximately in a block coordinate fashion using primal variables. This method is

particularly effective for large-scale optimization.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 14

429

430 14 Duality and Dual Methods

Cutting plane algorithms, exceedingly elementary in principle, develop a series

of ever-improving approximating linear programs, whose solutions converge to the

solution of the original problem. The methods differ only in the manner by which

an improved approximating problem is constructed once a solution to the old app-

roximation is known. The theory associated with these algorithms is, unfortunately,

scant and their convergence properties are not particularly attractive. They are,

however, often very easy to implement.

14.1 Global Duality

Duality in nonlinear programming takes its most elegant form when it is formulated

globally in terms of sets and hyperplanes that touch those sets. This theory makes

clear the role of Lagrange multipliers as defining hyperplanes which can be consid-

ered as dual to points in a vector space. The theory provides a symmetry between

primal and dual problems and this symmetry can be considered as perfect for con-

vex problems. For non-convex problems the “imperfection” is made clear by the

duality gap which has a simple geometric interpretation. The global theory, which

is presented in this section, serves as useful background when later we specialize to

a local duality theory that can be used even without convexity and which is central

to the understanding of the convergence of dual algorithms.

As a counterpoint to Sect. 11.9 where equality constraints were considered before

inequality constraints, here we shall first consider a problem with inequality con-

straints. In particular, consider the problem

minimize f (x) (14.1)

subject to g(x) ≤ 0

x ∈ Ω.

Ω ⊂ En is a convex set, and the functions f and g are defined on Ω. The function g

is p-dimensional. The problem is not necessarily convex, but we assume that there

is a feasible point. Recall that the primal function associated with (14.1) is defined

for z ∈ Ep as

ω(z) = inf{ f (x) : g(x) ≤ z, x ∈ Ω}, (14.2)

defined by letting the right hand side of inequality constraint take on arbitrary

values. It is understood that (14.2) is defined on the set D = {z : g(x) ≤ z, for

some x ∈ Ω}.
If problem (14.1) has a solution x∗ with value f ∗ = f (x∗), then f ∗ is the point on

the vertical axis in Ep+1 where the primal function passes through the axis. If (14.1)

does not have a solution, then f ∗ = inf{ f (x) : g(x) ≤ 0, x ∈ Ω} is the intersection

point.

14.1 Global Duality 431

The duality principle is derived from consideration of all hyperplanes that lie

below the primal function. As illustrated in Fig. 14.1 the intercept with the vertical

axis of such a hyperplanes lies below (or at) the value f ∗.
To express this property we define the dual function defined on the positive cone

in Ep as

φ(µ) = inf{ f (x) + µT g(x) : x ∈ Ω}. (14.3)

Fig. 14.1 Hyperplane below ω(z)

In general, φ may not be finite throughout the positive orthant E
p
+ but the region

where it is finite is convex.

Proposition 1. The dual function is concave on the region where it is finite.

Proof. Suppose µ1, µ2 are in the finite region, and let 0 ≤ α ≤ 1. Then

φ(αµ1 + (1 − αµ2)) = inf{ f (x) + (αµ1 + (1 − α)µ2)T g(x) : x ∈ Ω}
≥ inf{α f (x1) + αµT

l g(x1) : x1 ∈ Ω}
+ inf{(1 − α) f (x2) + (1 − α)µT

2 g(x2) : x2 ∈ Ω}
= αφ(µ1) + (1 − α)φ(µ2).�

We define φ∗ = sup{φ(µ) : µ ≥ 0} where it is understood that the supremum is

taken over the region where φ is finite. We can now state the weak form of global

duality.

Weak Duality Proposition. φ∗ ≤ f ∗.

Proof. For every µ ≥ 0 we have

φ(µ) = inf{ f (x) + µT g(x) : x ∈ Ω}
≤ inf{ f (x) + µT g(x) : g(x) ≤ 0, x ∈ Ω}
≤ inf{ f (x) : g(x) ≤ 0, x ∈ Ω} = f ∗.

Taking the supremum over the left hand side gives φ∗ ≤ f ∗. �

432 14 Duality and Dual Methods

Hence the dual function gives lower bounds on the optimal value f ∗.
This dual function has a strong geometric interpretation. Consider a p + 1-

dimensional vector (1, µ) ∈ Ep+1 with µ ≥ 0 and a constant c. The set of vectors

(r, z) such that the inner product (1, µ)T (r, z) ≡ r + µT z = c defines a hyperplane

in Ep+1. Different values of c give different hyperplanes, all of which are parallel.

For a given (1, µ) we consider the lowest possible hyperplane of this form

that just barely touches (supports) the region above the primal function of prob-

lem (14.1). Suppose x1 defines the touching point with values r = f (x1) and

z = g(x1). Then c = f (x1) + µT g(x1) = φ(µ).

The hyperplane intersects the vertical axis at a point of the form (r0, 0). This

point also must satisfy (1, µ)T (r0, 0) = c = φ(µ). This gives c = r0. Thus the

intercept gives φ(µ) directly. Thus the dual function at µ is equal to the intercept of

the hyperplane defined by µ that just touches the epigraph of the primal function.

Fig. 14.2 The highest hyperplane

Furthermore, this intercept (and dual function value) is maximized by the

Lagrange multiplier which corresponds to the largest possible intercept, at a point

no higher than the optimal value f ∗. See Fig. 14.2.

By introducing convexity assumptions, the foregoing analysis can be strength-

ened to give the strong duality theorem, with no duality gap when the intercept is

at f ∗. See Fig. 14.3.

We shall state the result for the more general problem that includes equality con-

straints of the form h(x) = 0, as in Sect. 11.9. Specifically, we consider the problem

maximize f (x) (14.4)

subject to h(x) = 0, g(x) ≤ 0

x ∈ Ω
where h is affine of dimension m, g is convex of dimension p, andΩ is a convex set.

In this case the dual function is

φ(λ, µ) = inf{ f (x) + λT h(x) + µT g(x) : x ∈ Ω}.

14.1 Global Duality 433

And let

φ∗ = sup{φ(λ, µ) : λ ∈ Em, µ ∈ Ep, µ ≥ 0}.

Fig. 14.3 The strong duality theorem. There is no duality gap

Strong Duality Theorem. Suppose in the problem (14.4), h is affine and regular with respect

to Ω and there is a point x1 ∈ Ω with that h(x) = 0 and g(x) < 0.

Suppose the problem has solution x∗ with value f (x∗) = f ∗. Then for every λ and µ ≥ 0

there holds

φ∗ ≤ f ∗.

Furthermore, there are λ, µ ≥ 0 such that

φ(λ, µ) = f ∗

and hence φ∗ = f ∗. Moreover, the λ and µ above are Lagrange multipliers for the original

problem.

Proof. The proof follows almost immediately from the zero-order Lagrange theorem

of Sect. 11.9. The Lagrange multipliers of that theorem give

f ∗ = max{ f (x) + λT h(x) + µT g(x) : x ∈ Ω}
= φ(λ, µ) ≤ φ∗ ≤ f ∗.

Equality must hold across the inequalities, which establishes the results. �

As a nice summary we can place the primal and dual problems together for the

problem with inequality constraints.

Primal Dual

f ∗ = minimize ω(z) φ∗ = maximize φ(µ)

subject to z ≤ 0 subject to µ ≥ 0.

434 14 Duality and Dual Methods

Example 1 (Quadratic Program). Consider the problem

minimize
1

2
xT Qx (14.5)

subject to Bx − b ≤ 0.

The dual function is

φ(µ) = min
x

1

2
xT Qx + µT (Bx − b).

This gives the necessary conditions

Qx + BTµ = 0

and hence x = −Q−1BTµ. Substituting this into φ(µ) gives

φ(µ) = −1

2
µT BQ−1BTµ − µT b.

Hence the dual problem is

maximize − 1

2
µT BQ−1BTµ − µT b (14.6)

subject to µ ≥ 0,

which is also a quadratic programming problem. If this problem is solved for µ, that

µ will be the Lagrange multiplier for the primal problem (14.5).

Note that the first-order conditions for the dual problem (14.6) imply

µT [−BQ−1BTµ − b] = 0,

which by substituting the formula for x is equivalent to

µT [Bx − b] = 0.

This is the complementary slackness condition for the original (primal) prob-

lem (14.5).

Example 2 (Integer Solutions). Duality gaps may arise if the object function or the

constraint functions are not convex. A gap may also arise if the underlying set is not

convex. This is characteristic, for example, of problems in which the components of

the solution vector are constrained to be integers. For instance, consider the problem

minimize x2
1 + 2x2

2

subject to x1 + x2 ≥ 1/2

x1, x2 nonnegative integers

14.2 Local Duality 435

It is clear that the solution is x1 = 1, x2 = 0, with objective value f ∗ = 1. To put this

problem in the standard form we have discussed, we write the constraint as

−x1 − x2 + 1/2 ≤ z, where z = 0.

The primal function ω(z) is equal to 0 for z ≥ 1/2 since then x1 = x2 = 0 is feasible.

The entire primal function has steps as z steps negatively integer by integer, as shown

in Fig. 14.4.

Fig. 14.4 Duality for an integer problem

The dual function is

φ(μ) = max{x2
1 + x2

2 − λ(x1 + x2 − 1/2)}
where the maximum is taken with respect to the integer constraint. Analytically, the

solution for small values of µ is

φ(μ) = μ/2 for 0 ≤ μ ≤ 1,

= 1 − μ/2 for 1 ≤ μ ≤ 2,

... and more

The maximum value of φ(μ) is the maximum intercept of the corresponding hy-

perplanes (lines, in this case) with the vertical axis. This occurs for μ = 1 with

a corresponding value of φ∗ = φ(1) = 1/2. We have φ∗ < f ∗ and the difference

f ∗ − φ∗ = 1/2 is the duality gap.

14.2 Local Duality

In practice the mechanics of duality are frequently carried out locally, by setting

derivatives to zero, or moving in the direction of a gradient. For these operations

the beautiful global theory can in large measure be replaced by a weaker but often

436 14 Duality and Dual Methods

more useful local theory. This theory requires a minimum of convexity assumptions

defined locally. We present such a theory in this section, since it is in keeping with

the spirit of the earlier chapters and is perhaps the simplest way to develop compu-

tationally useful duality results.

As often done before for convenience, we again consider nonlinear programming

problems of the form

minimize f (x) (14.7)

subject to h(x) = 0,

where x ∈ En, h(x) ∈ En and f , h ∈ C2. Global convexity is not assumed here.

Everything we do can be easily extended to problems having inequality as well as

equality constraints, for the price of a somewhat more involved notation.

We focus attention on a local solution x∗ of (14.7). Assuming that x∗ is a regular

point of the constraints, then, as we know, there will be a corresponding Lagrange

multiplier (row) vector λ∗ such that

∇ f (x∗) + (λ∗)T
∇h(x∗) = 0, (14.8)

and the Hessian of the Lagrangian

L(x∗) = F(x∗) + (λ∗)T H(x∗) (14.9)

must be positive semidefinite on the tangent subspace

M = {x : ∇h(x∗)x = 0}.

At this point we introduce the special local convexity assumption necessary for

the development of the local duality theory. Specifically, we assume that the Hessian

L(x∗) is positive definite. Of course, it should be emphasized that by this we mean

L(x∗) is positive definite on the whole space En, not just on the subspace M. The

assumption guarantees that the Lagrangian l(x) = f (x)+ (λ∗)T h(x) is locally convex

at x∗.
With this assumption, the point x∗ is not only a local solution to the constrained

problem (14.7); it is also a local solution to the unconstrained problem

minimize f (x) + (λ∗)T h(x), (14.10)

since it satisfies the first- and second-order sufficiency conditions for a local mini-

mum point. Furthermore, for any λ sufficiently close to λ∗ the function f (x)+λT h(x)

will have a local minimum point at a point x near x∗. This follows by noting that, by

the Implicit Function Theorem, the equation

∇ f (x) + λT
∇h(x) = 0 (14.11)

14.2 Local Duality 437

has a solution x near x∗ when λ is near λ∗, because L∗ is nonsingular; and by the fact

that, at this solution x, the Hessian F(x) + λT H(x) is positive definite. Thus locally

there is a unique correspondence between λ and x through solution of the uncon-

strained problem

minimize f (x) + λT h(x). (14.12)

Furthermore, this correspondence is continuously differentiable.

Near λ∗ we define the dual function φ by the equation

φ(λ) = minimum [f (x) + λT h(x)], (14.13)

where here it is understood that the minimum is taken locally with respect to x

near x∗. We are then able to show (and will do so below) that locally the original

constrained problem (14.7) is equivalent to unconstrained local maximization of the

dual function φ with respect to λ. Hence we establish an equivalence between a

constrained problem in x and an unconstrained problem in λ.

To establish the duality relation we must prove two important lemmas. In the

statements below we denote by x(λ) the unique solution to (14.12) in the neighbor-

hood of x∗.

Lemma 1. The dual function φ has gradient

∇φ(λ) = h(x(λ))T (14.14)

Proof. We have explicitly, from (14.13),

φ(λ) = f (x(λ)) + λT h(x(λ)).

Thus

∇φ(λ) = [∇ f (x(λ)) + λT
∇h(x(λ))]∇x(λ) + h(x(λ))T .

Since the first term on the right vanishes by definition of x(λ), we obtain (14.14). �

Lemma 1 is of extreme practical importance, since it shows that the gradient of

the dual function is simple to calculate. Once the dual function itself is evaluated,

by minimization with respect to x, the corresponding h(x)T , which is the gradient,

can be evaluated without further calculation.

The Hessian of the dual function can be expressed in terms of the Hessian of the

Lagrangian. We use the notation L(x, λ) = F(x) + λT H(x), explicitly indicating the

dependence on λ. (We continue to use L(x∗) when λ = λ∗ is understood.) We then

have the following lemma.

Lemma 2. The Hessian of the dual function is

Φ(λ) = −∇h(x(λ))L−1(x(λ), λ)∇h(x(λ))T . (14.15)

Proof. The Hessian is the derivative of the gradient. Thus, by Lemma 1,

Φ(λ) = ∇h(x(λ))∇x(λ). (14.16)

438 14 Duality and Dual Methods

By definition we have

∇ f (x(λ)) + λT
∇h(x(λ)) = 0,

and differentiating this with respect to λ we obtain

L(x(λ), λ)∇x(λ) + ∇h(x(λ))T = 0.

Solving for ∇x(λ) and substituting in (14.16) we obtain (14.15). �

Since L−1(x(λ)) is positive definite, and since ∇h(x(λ)) is of full rank near x∗,
we have as an immediate consequence of Lemma 2 that the m × m Hessian of φ is

negative definite. As might be expected, this Hessian plays a dominant role in the

analysis of dual methods.

Local Duality Theorem. Suppose that the problem

minimize f (x) (14.17)

subject to h(x) = 0

has a local solution at x∗ with corresponding value r∗ and Lagrange multiplier λ∗. Suppose

also that x∗ is a regular point of the constraints and that the corresponding Hessian of the

Lagrangian L∗ = L(x∗) is positive definite. Then the dual problem

maximize φ(λ) (14.18)

has a local solution at λ∗ with corresponding value r∗ and x∗ as the point corresponding to

λ∗ in the definition of φ.

Proof. It is clear that x∗ corresponds to λ∗ in the definition of φ. Now at λ∗ we have

by Lemma 1

∇φ(λ∗) = h(x∗)T = 0,

and by Lemma 2 the Hessian of φ is negative definite. Thus λ∗ satisfies the first- and

second-order sufficiency conditions for an unconstrained maximum point of φ. The

corresponding value φ(λ∗) is found from the definition of φ to be r∗. �

Example 1. Consider the problem in two variables

minimize − xy

subject to (x − 3)2 + y2 = 5.

The first-order necessary conditions are

−y + (2x − 6)λ = 0

−x + 2yλ = 0

together with the constraint. These equations have a solution at

x = 4, y = 2, λ = 1.

14.2 Local Duality 439

The Hessian of the corresponding Lagrangian is

L =

[

2 −1

−1 2

]

.

Since this is positive definite, we conclude that the solution obtained is a local

minimum. (It can be shown, in fact, that it is the global solution.)

Since L is positive definite, we can apply the local duality theory near this

solution. We define

φ(λ) = min{−xy + λ[(x − 3)2 + y2 − 5]},

which leads to

φ(λ) =
4λ + 4λ3 − 80λ5

(4λ2 − 1)2

valid for λ > 1
2
. It can be verified that φ has a local maximum at λ = 1.

Inequality Constraints

For problems having inequality constraints as well as equality constraints the above

development requires only minor modification. Consider the problem

minimize f (x)

subject to h(x) = 0 (14.19)

g(x) ≤ 0,

where g(x) ∈ Ep, g ∈ C2 and everything else is as before. Suppose x∗ is a local

solution of (14.19) and is a regular point of the constraints. Then, as we know, there

are Lagrange multipliers λ∗ and µ∗ ≥ 0 such that

∇ f (x∗) + (λ∗)T
∇h(x∗) + (µ∗)T

∇g(x∗) = 0 (14.20)

(µ∗)T g(x∗) = 0. (14.21)

We impose the local convexity assumptions that the Hessian of the Lagrangian

L(x∗) = F(x∗) + (λ∗)T H(x∗) + (µ∗)T G(x∗) (14.22)

is positive definite (on the whole space).

For λ and µ ≥ 0 near λ∗ and µ∗ we define the dual function

φ(λ, µ) = min[f (x) + λT h(x) + µT g(x)], (14.23)

where the minimum is taken locally near x∗. Then, it is easy to show, paralleling the

development above for equality constraints, that φ achieves a local maximum with

respect to λ, µ ≥ 0 at λ∗, µ∗.

440 14 Duality and Dual Methods

Partial Duality

It is not necessary to include the Lagrange multipliers of all the constraints of a

problem in the definition of the dual function. In general, if the local convexity ass-

umption holds, local duality can be defined with respect to any subset of functional

constraints. Thus, for example, in the problem

minimize f (x)

subject to h(x) = 0 (14.24)

g(x) ≤ 0,

we might define the dual function with respect to only the equality constraints. In

this case we would define

φ(λ) = min
g(x)≤0
{ f (x) + λT h(x)}, (14.25)

where the minimum is taken locally near the solution x∗ but constrained by the

remaining constraints g(x) ≤ 0. Again, the dual function defined in this way will

achieve a local maximum at the optimal Lagrange multiplier λ∗. The partial dual is

especially useful when constraints g(x) ≤ 0 are simple such as x ≤ 0 or in a box.

14.3 Canonical Convergence Rate of Dual Steepest Ascent

Constrained problems satisfying the local convexity assumption can be solved by

solving the associated unconstrained dual problem, and any of the standard algo-

rithms discussed in Chaps. 7 through 10 can be used for this purpose. Of course,

the method that suggests itself immediately is the method of steepest ascent. It can

be implemented by noting that, according to Lemma 1. Section 14.2, the gradient

of φ is available almost without cost once φ itself is evaluated. Without some spe-

cial properties, however, the method as a whole can be extremely costly to execute,

since every evaluation of φ requires the solution of an unconstrained problem in the

unknown x. Nevertheless, as shown in the next section, many important problems

do have a structure which is suited to this approach.

The method of steepest ascent, and other gradient-based algorithms, when applied

to the dual problem will have a convergence rate governed by the eigenvalue struc-

ture of the Hessian of the dual function φ. At the Lagrange multiplier λ∗ correspond-

ing to a solution x∗ this Hessian is (according to Lemma 2, Sect. 13.1)

Φ = −∇h(x∗)(L∗)−1
∇h(x∗)T .

This expression shows thatΦ is in some sense a restriction of the matrix (L∗)−1 to the

subspace spanned by the gradients of the constraint functions, which is the orthog-

onal complement of the tangent subspace M. This restriction is not the orthogonal

14.4 Separable Problems and Their Duals 441

restriction of (L∗)−1 onto the complement of M since the particular representation of

the constraints affects the structure of the Hessian. We see, however, that while the

convergence of primal methods is governed by the restriction of L∗ to M, the con-

vergence of dual methods is governed by a restriction of (L∗)−1 to the orthogonal

complement of M.

The dual canonical convergence rate associated with the original constrained

problem, which is the rate of convergence of steepest ascent applied to the dual,

is (B − b)2/(B + b)2 where b and B are, respectively, the smallest and largest

eigenvalues of

−Φ = ∇h(x∗)(L∗)−1
∇h(x∗)T .

For locally convex programming problems, this rate is as important as the primal

canonical rate.

Scaling

We conclude this section by pointing out a kind of complementarity that exists

between the primal and dual rates. Suppose one calculates the primal and dual

canonical rates associated with the locally convex constrained problem

minimize f (x)

subject to h(x) = 0.

If a change of primal variables x is introduced, the primal rate will in general change

but the dual rate will not. On the other hand, if the constraints are transformed (by

replacing them by Th(x) = 0 where T is a nonsingular m × m matrix), the dual rate

will change but the primal rate will not.

14.4 Separable Problems and Their Duals

A structure that arises frequently in mathematical programming applications is that

of the separable problem:

minimize

q
∑

i=1

fi(xi) (14.26)

subject to

q
∑

i=1

hi(xi) = 0 (14.27)

q
∑

i=1

gi(xi) ≤ 0. (14.28)

442 14 Duality and Dual Methods

In this formulation the components of the n-vector x are partitioned into q disjoint

groups, x = (x1, x2, . . . , xq) where the groups may or may not have the same

number of components. Both the objective function and the constraints separate into

sums of functions of the individual groups. For each i, the functions fi, hi, and gi are

twice continuously differentiable functions of dimensions 1, m, and p, respectively.

Example 1. Suppose that we have a fixed budget of, say, A dollars that may be

allocated among n activities. If xi dollars is allocated to the ith activity, then there

will be a benefit (measured in some units) of fi(xi). To obtain the maximum benefit

within our budget, we solve the separable problem

maximize

n
∑

i=1

fi(xi)

subject to

n
∑

i=1

xi � A (14.29)

xi � 0.

In the example x is partitioned into its individual components.

Example 2. Problems involving a series of decisions made at distinct times are often

separable. For illustration, consider the problem of scheduling water release through

a dam to produce as much electric power as possible over a given time interval

while satisfying constraints on acceptable water levels. A discrete-time model of

this problem is to

maximize

N
∑

k=1

f (y(k), u(k))

subject to y(k) = y(k − 1) − u(k) + s(k), k = 1, . . . , N

c � y(k) � d, k = 1, . . . , N

0 � u(k), k = 1, . . . , N.

Here y(k) represents the water volume behind the dam at the end of period k, u(k)

represents the volume flow through the dam during period k, and s(k) is the volume

flowing into the lake behind the dam during period k from upper streams. The func-

tion f gives the power generation, and c and d are bounds on lake volume. The

initial volume y(0) is given.

In this example we consider x as the 2N-dimensional vector of unknowns

y(k), u(k), k = 1, 2, . . . , N. This vector is partitioned into the pairs xk = (y(k), u(k)).

The objective function is then clearly in separable form. The constraints can be

viewed as being in the form (14.27) with hk(xk) having dimension N and such that

hk(xk) is identically zero except in the k and k + 1 components.

14.4 Separable Problems and Their Duals 443

Decomposition

Separable problems are ideally suited to dual methods, because the required unconst-

rained minimization decomposes into small subproblems. To see this we recall

that the generally most difficult aspect of a dual method is evaluation of the

dual function. For a separable problem, if we associate λ with the equality con-

straints (14.27) and µ � 0 with the inequality constraints (14.28), the required dual

function is

φ(λ, µ) = min

q
∑

i=1

(

fi(xi) + λ
T hi(xi) + µ

T gi(xi)
)

.

This minimization problem decomposes into the q separate problems

min
xi

fi(xi) + λ
T hi(xi) + µ

T gi(xi).

The solution of these subproblems can usually be accomplished relatively effi-

ciently, since they are of smaller dimension than the original problem.

Example 3. In Example 1 using duality with respect to the budget constraint, the ith

subproblem becomes, for μ > 0

max
xi�0

fi(xi) − μxi,

which is only a one-dimensional problem. It can be interpreted as setting a benefit

value μ for dollars and then maximizing total benefit from activity i, accounting for

the dollar expenditure.

Example 4. In Example 1 using duality with respect to the equality constraints we

denote the dual variables by λ(k), k = 1, 2, . . . , N. The kth subproblem becomes

max
c�y(k)�d

0�u(k)

{ f (y(k), u(k)) + [λ(k + 1) − λ(k)]y(k) − λ(k)[u(k) − s(k)]}

which is a two-dimensional optimization problem. Selection of λ ∈ EN decom-

poses the problem into separate problems for each time period. The variable λ(k)

can be regarded as a value, measured in units of power, for water at the beginning

of period k. The kth subproblem can then be interpreted as that faced by an ent-

repreneur who leased the dam for one period. He can buy water for the dam at the

beginning of the period at price λ(k) and sell what he has left at the end of the period

at price λ(k+1). His problem is to determine y(k) and u(k) so that his net profit, acc-

ruing from sale of generated power and purchase and sale of water, is maximized.

Example 5 (The Hanging Chain). Consider again the problem of finding the equi-

librium position of the hanging chain considered in Example 4, Sect. 11.3, and

Example 1, Sect. 12.7. The problem is

444 14 Duality and Dual Methods

minimize

n
∑

i=1

ciyi

subject to

n
∑

i=1

yi = 0

n
∑

i=1

√

1 − y2
i
= L,

where ci = n − i + 1
2
, L = 16. This problem is locally convex, since as shown in

Sect. 12.7 the Hessian of the Lagrangian is positive definite. The dual function is

accordingly

φ(λ, μ) = min

n
∑

i=1

{

ciyi + λyi + μ

√

1 − y2
i

}

− Lμ.

Since the problem is separable, the minimization divides into a separate minimiza-

tion for each yi, yielding the equations

ci + λ −
μyi

√

1 − y2
i

= 0

or

(ci + λ)
2(1 − y2

i) = µ2y2
i .

This yields

yi =
−(ci + λ)

[(ci + λ)2 + μ2]1/2
. (14.30)

The above represents a local minimum point provided μ < 0; and the minus sign

must be taken for consistency.

The dual function is then

φ(λ, μ) =

n
∑

i=1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−(ci + λ)
2

[(ci + λ)2 + μ2]1/2
+ μ

[

μ2

[(ci + λ)2 + μ2]

]1/2
⎫

⎪

⎪

⎬

⎪

⎪

⎭

− Lμ

or finally, using
√

μ2 = −μ for μ < 0,

φ(λ, μ) = −Lμ −
n

∑

i=1

√

(ci + λ)2 + μ2.

The correct values of λ and μ can be found by maximizing φ(λ, μ). One way to do

this is to use steepest ascent. The results of this calculation, starting at λ = μ = 0,

are shown in Table 14.1. The values of yi can then be found from (14.30).

14.5 Augmented Lagrangian 445

Table 14.1 Results of dual of chain problem

Final solution
λ = −10.00048

Iteration Value μ = −6.761136

0 −200.00000 y1 = −0.8147154
1 −66.94638 y2 = −0.7825940
2 −66.61959 y3 = −0.7427243
3 −66.55867 y4 = −0.6930215
4 −66.54845 y5 = −0.6310140
5 −66.54683 y6 = −0.5540263
6 −66.54658 y7 = −0.4596696
7 −66.54654 y8 = −0.3467526
8 −66.54653 y9 = −0.2165239
9 −66.54653 y10 = −0.0736802

14.5 Augmented Lagrangian

One of the most effective general classes of nonlinear programming methods is

the augmented Lagrangian methods, alternatively referred to as methods of mul-

tiplier. These methods can be viewed as a combination of penalty functions and

local duality methods; the two concepts work together to eliminate many of the dis-

advantages associated with either method alone. The augmented Lagrangian for the

equality constrained problem

minimize f (x)

subject to h(x) = 0, x ∈ Ω (14.31)

is the function
lc(x, λ) = f (x) + λT h(x) +

1

2
c|h(x)|2

for some positive constant c. We shall briefly indicate how the augmented Lag-

rangian can be viewed as either a special penalty function or as the basis for a dual

problem. These two viewpoints are then explored further in this and the next section.

From a penalty function viewpoint the augmented Lagrangian, for a fixed value

of the vector λ, is simply the standard quadratic penalty function for the problem

minimize f (x) + λT h(x)

subject to h(x) = 0, x ∈ Ω (14.32)

This problem is clearly equivalent to the original problem (14.31), since combina-

tions of the constraints adjoined to f (x) do not affect the minimum point or the

minimum value.

A typical step of an augmented Lagrangian method starts with a vector λk. Then

x(λk) is found as the minimum point of

minimize f (x) + λT
k h(x) +

1

2
c|h(x)|2 subject to x ∈ Ω. (14.33)

446 14 Duality and Dual Methods

Next λk is updated to λk+1. A standard method for the update is

λk+1 = λk + ch(x(λk)).

To motivate the adjustment procedure, consider Ω = En and the constrained prob-

lem (14.32) with λ = λk. The Lagrange multiplier corresponding to this prob-

lem is λ∗ − λk, where λ∗ is the Lagrange multiplier of (14.31). On the other hand

since (14.33) is the penalty function corresponding to (14.32), it follows from the

results of Sect. 13.3 that ch(x(λk)) is approximately equal to the Lagrange multiplier

of (14.32). Combining these two facts, we obtain ch(x(λk)) ≃ λ∗ − λk. Therefore, a

good approximation to the unknown λ∗ is λk+1 = λk + ch(x(λk)).

Although the main iteration in augmented Lagrangian methods is with respect to

λ, the penalty parameter c may also be adjusted during the process. As in ordinary

penalty function methods, the sequence of c’s is usually preselected; c is either held

fixed, is increased toward a finite value, or tends (slowly) toward infinity. Since in

this method it is not necessary for c to go to infinity, and in fact it may remain

of relatively modest value, the ill-conditioning usually associated with the penalty

function approach is mediated.

From the viewpoint of duality theory, the augmented Lagrangian is simply the

standard Lagrangian for the problem

minimize f (x) +
1

2
c|h(x)|2

subject to h(x) = 0, x ∈ Ω. (14.34)

This problem is equivalent to the original problem (14.31), since the addition of

the term 1
2
c|h(x)|2 to the objective does not change the optimal value, the opti-

mum solution point, nor the Lagrange multiplier. However, whereas the original

Lagrangian may not be convex near the solution, and hence the standard duality

method cannot be applied, the term 1
2
c|h(x)|2 tends to “convexify” the Lagrangian.

For sufficiently large c, the Lagrangian will indeed be locally convex. Thus the

duality method can be employed, and the corresponding dual problem can be solved

by an iterative process in λ. This viewpoint leads to the development of additional

multiplier adjustment processes.

The Penalty Viewpoint

We begin our more detailed analysis of augmented Lagrangian methods by showing

that if the penalty parameter c is sufficiently large, the augmented Lagrangian has a

local minimum point near the true optimal point. This follows from the following

simple lemma. (Again, we consider Ω = En for simplicity.)

Lemma. Let A and B be n× n symmetric matrices. Suppose that B is positive semi-definite

and that A is positive definite on the subspace Bx = 0. Then there is a c∗ such that for all

c ≥ c∗the matrix A + cB is positive definite.

14.5 Augmented Lagrangian 447

Proof. Suppose to the contrary that for every k there were an xk with |xk | = 1 such

that xT
k

(A + kB)xk ≤ 0. The sequence {xk} must have a convergent subsequence

converging to a limit x. Now since xT
k

Bxk ≥ 0, it follows that x
T

Bx = 0. It also

follows that x
T

Ax ≤ 0. However, this contradicts the hypothesis of the lemma. �

This lemma applies directly to the Hessian of the augmented Lagrangian evalu-

ated at the optimal solution pair x∗, λ∗. We assume as usual that the second-order

sufficiency conditions for a constrained minimum hold at x∗, λ∗. The Hessian of the

augmented Lagrangian evaluated at the optimal pair x∗, λ∗ is

Lc(x∗, λ∗) = F(x∗) + (λ∗)T H(x∗) + c∇h(x∗)T
∇h(x∗)

= L(x∗) + c∇h(x∗)T
∇h(x∗).

The first term, the Hessian of the normal Lagrangian, is positive definite on the sub-

space ∇h(x∗)x = 0. This corresponds to the matrix A in the lemma. The matrix

∇h(x∗)T
∇h(x∗) is positive semi-definite and corresponds to B in the lemma. It

follows that there is a c∗ such that for all c > c∗, Lc(x∗, λ∗) is positive definite.

This leads directly to the first basic result concerning augmented Lagrangian.

Proposition 1. Assume that the second-order sufficiency conditions for a local minimum

are satisfied at x∗, λ∗. Then there is a c∗ such that for all c ≥ c∗, the augmented Lagrangian

lc(x, λ∗) has a local minimum point at x∗.

By a continuity argument the result of the above proposition can be extended to

a neighborhood around x∗, λ∗. That is, for any λ near λ∗, the augmented Lagrangian

has a unique local minimum point near x∗. This correspondence defines a continuous

function. If a value of λ can be found such that h(x(λ)) = 0, then that λ must in

fact be λ∗, since x(λ) satisfies the necessary conditions of the original problem.

Therefore, the problem of determining the proper value of λ can be viewed as one

of solving the equation h(x(λ)) = 0. For this purpose the iterative process

λk+1 = λk + ch(x(λk)),

is a method of successive approximation. This process will converge linearly in a

neighborhood around λ∗, although a rigorous proof is somewhat complex. We shall

give more definite convergence results when we consider the duality viewpoint.

Example 1. Consider the simple quadratic problem studied in Sect. 13.8

minimize 2x2 + 2xy + y2 − 2y

subject to x = 0.

The augmented Lagrangian for this problem is

lc(x, y, λ) = 2x2 + 2xy + y2 − 2y + λx +
1

2
cx2.

448 14 Duality and Dual Methods

The minimum of this can be found analytically to be x = −(2 + λ)/(2 + c), y =

(4 + c + λ)/(2 + c). Since h(x, y) = x in this example, it follows that the iterative

process for λk is

λk+1 = λk −
c(2 + λk)

2 + c

or

λk+1 =

(

2

2 + c

)

λk −
2c

2 + c
.

This converges to λ = −2 for any c > 0. The coefficient 2/(2 + c) governs the rate

of convergence, and clearly, as c is increased the rate improves.

Geometric Interpretation

The augmented Lagrangian method can be interpreted geometrically in terms of the

primal function in a manner analogous to that in Sects. 13.3 and 13.8 for the ordinary

quadratic penalty function and the absolute-value penalty function. Consider again

the primal function ω(y) defined as

ω(y) = min{ f (x) : h(x) = y},

where the minimum is understood to be taken locally near x∗. We remind the

reader that ω(0) = f (x∗) and that ∇ω(0)T = −λ∗. The minimum of the augmented

Lagrangian at step k can be expressed in terms of the primal function as follows:

min lc(x, λk) = min
x
{ f (x) + λT

k h(x) +
1

2
c|h(x)|2}

= min
x,u
{ f (x) + λT

k y +
1

2
c|y|2 : h(x) = y} (14.35)

= min
u
{ω(y) + λT

k y +
1

2
c|y|2},

where the minimization with respect to y is to be taken locally near y = 0. This min-

imization is illustrated geometrically for the case of a single constraint in Fig. 14.5.

The lower curve represents ω(y), and the upper curve represents ω(y) + 1
2
c|y|2. The

minimum point yk of (14.30) occurs at the point where this upper curve has slope

equal to −λk. It is seen that for c sufficiently large this curve will be convex at y = 0.

If λk is close to λ∗, it is clear that this minimum point will be close to 0; it will be

exact if λk = λ
∗.

The process for updating λk is also illustrated in Fig. 14.5. Note that in general, if

x(λk) minimizes lc(x, λk), then yk = h(x(λk)) is the minimum point of ω(y) + λT
k y +

1
2
c|y|2. At that point we have as before

∇ω(yk)T + cyk = −λk

14.6 The Method of Multipliers 449

Fig. 14.5 Primal function and augmented Lagrangian

or equivalently,

∇ω(yk)T = −(λk + cyk) = −(λk + ch(x(λk))).

It follows that for the next multiplier we have

λk+1 = λk + ch(x(λk)) = −∇ω(yk)T ,

as shown in Fig. 14.5 for the one-dimensional case. In the figure the next point yk+1

is the point where ω(y)+ 1
2
c|y|2 has slope −λk+1, which will yield a positive value of

yk+1 in this case. It can be seen that if λk is sufficiently close to λ∗, then λk+1 will be

even closer, and the iterative process will converge.

14.6 The Method of Multipliers

In the augmented Lagrangian method (the method of multipliers), the primary

iteration is with respect to λ, and therefore it is most natural to consider the method

from the dual viewpoint. This is in fact the more powerful viewpoint and leads to

improvements in the algorithm.

450 14 Duality and Dual Methods

As we observed earlier, the constrained problem

minimize f (x)

subject to h(x) = 0, x ∈ Ω (14.36)

is equivalent to the problem

minimize f (x) +
1

2
c|h(x)|2

subject to h(x) = 0, x ∈ Ω (14.37)

in the sense that the solution points, the optimal values, and the Lagrange multipliers

are the same for both problems. However, as spelled out by Proposition 1 of the pre-

vious section, whereas problem (14.36) may not be locally convex, problem (14.37)

is locally convex for sufficiently large c; specifically, the Hessian of the Lagrangian

is positive definite at the solution pair x∗, λ∗. Thus local duality theory is applicable

to problem (14.37) for sufficiently large c.

To apply the dual method to (14.37), we define the dual function

φ(λ) = min{ f (x) + λT h(x) +
1

2
c|h(x)|2} (14.38)

in a region near x∗, λ∗. If x(λ) is the vector minimizing the right-hand side

of (14.38), then as we have seen in Sect. 14.2, h(x(λ)) is the gradient of φ. Thus

the iterative process

λk+1 = λk + ch(x(λk))

used in the basic augmented Lagrangian method is seen to be a steepest ascent

iteration for maximizing the dual function φ. It is a simple form of steepest ascent,

using a constant stepsize c.

Although the stepsize c is a good choice (as will become even more evident

later), it is clearly advantageous to apply the algorithmic principles of optimization

developed previously by selecting the stepsize so that the new value of the dual

function satisfies an ascent criterion. This can extend the range of convergence of

the algorithm.

The rate of convergence of the optimal steepest ascent method (where the stepsize

is selected to maximize φ in the gradient direction) is determined by the eigenvalues

of the Hessian of φ. The Hessian of φ is found from (14.15) to be

∇h(x(λ))[L(x(λ), λ) + c∇h(x(λ))T
∇h(x(λ))]−1

∇h(x)T . (14.39)

The eigenvalues of this matrix at the solution point x∗, λ∗ determine the convergence

rate of the method of steepest ascent.

To analyze the eigenvalues we make use of the matrix identity

cB(A + cBT B)−1BT = I − (I + cBA−1BT)−1,

14.6 The Method of Multipliers 451

which is a generalization of the Sherman-Morrison formula. (See Sect. 10.4.) It

is easily seen from the above identity that the matrices B(A + cBT B)−1BT and

(BA−1BT) have identical eigenvectors. One way to see this is to multiply both sides

of the identity by (I + cBA−1BT) on the right to obtain

cB(A + cBT B)−1BT (I + cBA−1BT) = cBA−1BT .

Suppose both sides are applied to an eigenvector e of BA−1BT having eigenvalue w.

Then we obtain

cB(A + cBT B)−1BT (1 + cw)e = cwe.

It follows that e is also an eigenvector of B(A + cBT B)−1BT , and if v is the corre-

sponding eigenvalue, the relation

cu(1 + cw) = cw

must hold. Therefore, the eigenvalues are related by

u =
w

1 + cw
. (14.40)

The above relations apply directly to the Hessian (14.39) through the associations

A = L(x∗, λ∗) and B = ∇h(x∗). Note that the matrix ∇h(x∗)L(x∗, λ∗)−1
∇h(x∗)T ,

corresponding to BA−1BT above, is the Hessian of the dual function of the original

problem (14.36). As shown in Sect. 14.3 the eigenvalues of this matrix determine the

rate of convergence for the ordinary dual method. Let w and W be the smallest and

largest eigenvalues of this matrix. From (14.40) it follows that the ratio of smallest

to largest eigenvalues of the Hessian of the dual for the augmented problem is

1
w
+ c

1
w
+ c
.

This shows explicitly how the rate of convergence of the multiplier method depends

on c. As c goes to infinity, the ratio of eigenvalues goes to unity, implying arbitrarily

fast convergence.

Other unconstrained optimization techniques may be applied to the maximiza-

tion of the dual function defined by the augmented Lagrangian; conjugate gradient

methods, Newton’s method, and quasi-Newton methods can all be used. The use

of Newton’s method requires evaluation of the Hessian matrix (14.39). For some

problems this may be feasible, but for others some sort of approximation is desir-

able. One approximation is obtained by noting that for large values of c, the Hes-

sian (14.39) is approximately equal to (1/c)I. Using this value for the Hessian and

h(x(λ)) for the gradient, we are led to the iterative scheme

λk+1 = λk + ch(x(λk)),

which is exactly the simple method of multipliers originally proposed.

452 14 Duality and Dual Methods

We might summarize the above observations by the following statement relating

primal and dual convergence rates. If a penalty term is incorporated into a problem,

the condition number of the primal problem becomes increasingly poor as c → ∞
but the condition number of the dual becomes increasingly good. To apply the dual

method, however, an unconstrained penalty problem of poor condition number must

be solved at each step.

Inequality Constraints

The advantage of augmented Lagrangian methods is mostly in dealing with equal-

ities. But certain inequality constraints can be easily incorporated. Let us consider

the problem with p inequality constraints:

minimize f (x)

subject to g(x) ≤ 0. (14.41)

We assume that this problem has a well-defined solution x∗, which is a regular

point of the constraints and which satisfies the second-order sufficiency conditions

for a local minimum as specified in Sect. 11.8. This problem can be written as an

equivalent problem with equality constraints:

minimize f (x)

subject to g(x) + u = 0, u ≥ 0. (14.42)

Through this conversion we can hope to simply apply the theory for equality con-

straints to problems with inequalities.

In order to do so we must insure that (14.42) satisfies the second-order suffi-

ciency conditions of Sect. 11.5. These conditions will not hold unless we impose a

strict complementarity assumption that g j(x
∗) = 0 implies μ∗

j
> 0 as well as the

usual second-order sufficiency conditions for the original problem (14.41). (See Ex-

ercise 10.)

With these assumptions we define the (partial) dual function corresponding to the

augmented Lagrangian method as

φ(µ) = min
u≥0, x

f (x) + µT [g(x) + u] +
1

2
c|g(x) + u|2. (14.43)

The minimization with respect to u in (14.43) can be carried out analytically, and

this will lead to a definition of the dual function that only involves minimization with

respect to x. The variable u j enters the objective of the dual function only through

the univariate quadratic expression

P j = μ j[g j(x) + u j] +
1

2
c[g j(x) + u j]

2. (14.44)

14.6 The Method of Multipliers 453

It is this expression that we must minimize with respect to u j ≥ 0. This is easily

accomplished by differentiation: If u j > 0, the derivative must vanish; if u j = 0, the

derivative must be nonnegative. The derivative is zero at z j = −g j(x) − µ j/c. Thus

we obtain the solution

u j =

{

−g j(x) − µ j

c
, if − g j(x) − μ j

c
≥ 0

0, otherwise

or equivalently,

u j = max
{

0, −g j(x) −
μ j

c

}

. (14.45)

We now substitute this into (14.44) in order to obtain an explicit expression for the

minimum of P j.

For u j = 0, we have

P j =
1

2c

(

2μ jcg j(x) + c2g j(x)2
)

=
1

2c

(

[μ j + cg j(x)]2 − μ2
j

)

.

For u j = −g j(x) − μ j/c we have

P j = −μ2
j/2c.

These can be combined into the formula

P j =
1

2c

(

[max{0, μ j + cg j(x)}]2 − μ2
j

)

.

In view of the above, let us define the function of two scalar arguments t and µ:

Pc(t, μ) =
1

2c

(

[max{0, µ + ct}]2 − μ2
)

. (14.46)

For a fixed μ > 0, this function is shown in Fig. 14.6. Note that it is a smooth

function with derivative with respect to t equal to μ at t = 0.

The dual function for the inequality problem can now be written as

φ(μ) = min
x

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f (x) +

p
∑

j=1

Pc(g j(x), µ j)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (14.47)

Thus inequality problems can be treated by adjoining to f (x) a special penalty func-

tion (that depends on µ). The Lagrange multiplier µ can then be adjusted to maxi-

mize φ, just as in the case of equality constraints.

454 14 Duality and Dual Methods

Fig. 14.6 Penalty function for inequality problem

14.7 The Alternating Direction Method of Multipliers

Consider the convex minimization model with linear constraints and an objective

function which is the sum of two separable functions:

minimize f1(x1) + f2(x2)

subject to A1x1 + A2x2 = b,

x1 ∈ Ω1, x2 ∈ Ω2,

(14.48)

where Ai ∈ Em×ni (i = 1, 2), b ∈ Em, Ωi ⊂ Eni (i = 1, 2) are closed convex sets;

and fi : Eni → E (i = 1, 2) are convex functions on Ωi, respectively. Then, the

augmented Lagrangian function for (14.48) would be

lc(x1, x2, λ) = f1(x1) + f2(x2) + λT (A1x1 + A2x2 − b) +
c

2
|A1x1 + A2x2 − b|2.

Throughout this section, we assume problem (14.48) has at least one optimal solu-

tion.

In contrast to the method of multipliers in the last section, the alternating direc-

tion method of multipliers (ADMM) is to (approximately) minimize lc(x1, x2, λ) in

an alternative order:

x1
k+1

: = arg minx1∈Ω1
lc(x1 , x2

k
, λk),

x2
k+1

: = arg minx2∈Ω2
lc(x1

k+1
, x2, λk),

λk+1 : = λk + c(A1x1
k+1
+ A2x2

k+1
− b).

(14.49)

The idea is that each of the smaller minimization problems can be solved more

efficiently or even in close forms for certain cases.

14.7 The Alternating Direction Method of Multipliers 455

Convergence Speed Analysis

We present a convergence speed analysis of the ADMM. For simplicity, we shall let

Ωi be Eni and fi be differentiable convex functions [the result is also valid for the

ADMM applied to the aforementioned more general problem (14.48)]. Then, any

optimal solution and multiplier (x1
∗, x

2
∗, λ∗) satisfy

∇ f1(x1
∗)

T + AT
1 λ∗ = 0, ∇ f2(x2

∗)
T + AT

2 λ∗ = 0, A1x1
∗ + A2x2

∗ − b = 0, (14.50)

and these conditions are also sufficient.

We first establish a key lemma.

Lemma 1. Let di
k
= Ai(x

i
k
− xi
∗), i = 1, 2, and dλ

k
= λk − λ∗; and {x1

k
, x2

k
, λk} be the sequence

generated by ADMM (14.49). Then, it holds that

c
∣

∣

∣A2(x2
k+1 − x2

k)
∣

∣

∣

2
+

1

c
|λk+1 − λk |2 ≤

(

c
∣

∣

∣A2d2
k

∣

∣

∣

2
+

1

c

∣

∣

∣dλk

∣

∣

∣

2
)

−
(

c
∣

∣

∣A2d2
k+1

∣

∣

∣

2
+

1

c

∣

∣

∣dλk+1

∣

∣

∣

2
)

.

Proof. From the first-order optimality conditions of (14.49), we have

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∇ f1(x1
k+1

)T + AT
1

[λk + c(A1x1
k+1
+ A2x2

k
− b)] = 0,

∇ f2(x2
k+1

)T + AT
2

[λk + c(A1x1
k+1
+ A2x2

k+1
− b)] = 0,

λk+1 = λk + c(A1x1
k+1 + A2x2

k+1 − b).

(14.51)

Substituting the last equation into other equations in (14.51), we obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∇ f1(x1
k+1)T + AT

1 λk+1 = −cAT
1 A2(x2

k
− x2

k+1),

∇ f2(x2
k+1)T + AT

2 λk+1 = 0,

A1x1
k+1
+ A2x2

k+1
− b = 1

c
(λk+1 − λk).

(14.52)

Moreover, the convexity of fi, i = 1, 2, implies

(∇ f1(x1
k+1) − ∇ f1(x1

∗))(x
1
k+1 − x1

∗) ≥ 0 and (∇ f2(x2
k+1) − ∇ f2(x2

∗))(x
2
k+1 − x2

∗) ≥ 0.

On the other hand, from (14.50) and (14.52),

∇ f1(x1
k+1)T − ∇ f1(x1

∗)
T = ∇ f1(x1

k+1) + AT
1 λ∗ = −AT

1 dλk+1 − cAT
1 A2(x2

k − x2
k+1)

∇ f2(x2
k+1)T − ∇ f2(x2

∗)
T = ∇ f2(x2

k+1) + AT
2 λ∗ = −AT

2 dλk+1

and

0 = A1x1
k+1 + A2x2

k+1 − b − 1

c
(λk+1 − λk) = A1d1

k+1 + A2dk+1
2 +

1

c
(λk − λk+1).

456 14 Duality and Dual Methods

Thus,

0 ≤

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1
k+1

dk+1
2

dλ
k+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

T ⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∇ f1(x1
k+1

)T − ∇ f1(x1
∗)

T

∇ f2(x2
k+1)T − ∇ f2(x2

∗)
T

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1
k+1

dk+1
2

dλ
k+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

T ⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−AT
1 dλ

k+1
− cAT

1 A2(x2
k
− x2

k+1)

−AT
2

dλ
k+1

A1d1
k+1 + A2dk+1

2
+ 1

c
(λk − λk+1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1
k+1

dk+1
2

dλ
k+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

T ⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−AT
1 dλ

k+1

−AT
2 dλ

k+1

A1d1
k+1
+ A2dk+1

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−cAT
1 A2(x2

k
− x2

k+1
)

0
1
c
(λk − λk+1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1
k+1

dk+1
2

dλ
k+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

T ⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−cAT
1

A2(x2
k
− x2

k+1
)

0
1
c
(λk − λk+1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

(

−A1d1
k+1

dλ
k+1

)T (

cA2(x2
k
− x2

k+1
)

1
c
(λk − λk+1)

)

(14.53)

Again from −A1d1
k+1
= 1

c
(λk+1 − λk) + A2d2

k+1
, inequality (14.53) implies

0 ≤
(

1
c
(λk+1 − λk) + A2d2

k+1

dλ
k+1

)T (

cA2(x2
k
− x2

k+1)
1
c
(λk − λk+1)

)

=

(

A2d2
k+1

dλ
k+1

)T (

cA2(x2
k
− x2

k+1)
1
c
(λk − λk+1)

)

+ (λk − λk+1)T A2(x2
k − x2

k+1)

Since ∇ f2(x2
k
) = −λT

k A2 holds for every k ≥ 0, it follows from the convexity of f2
that

(λk − λk+1)T A2(x2
k − x2

k+1) = −(∇ f2(x2
k) − ∇ f2(x2

k+1))(x2
k − x2

k+1) ≤ 0.

Thus,
(

A2d2
k+1

dλ
k+1

)T (

cA2(x2
k
− x2

k+1
)

1
c
(λk − λk+1)

)

≥ 0 or

(√
cA2d2

k+1
1√
c
dλ

k+1

)T (√
cA2(x2

k+1
− x2

k
)

1√
c
(λk+1 − λk)

)

≤ 0.

Representing the left vector by u and the right one by v in the last inequality, we

have

0 ≥ uT v =
1

2
(|u|2 + |v|2 − |u − v|2).

Noting

u − v =

(√
cA2d2

k+1
1√
c
dλ

k+1

)

−
(√

cA2(x2
k+1
− x2

k
)

1√
c
(λk+1 − λk)

)

=

(√
cA2d2

k
1√
c
dλ

k

)

,

we obtain the desired result in Lemma 1. �

For simplicity, let c = 1 in the following. Taking the sum from iterate 0 to iterate

k for the inequality in Lemma 1, we obtain

k
∑

t=0

(

∣

∣

∣A2(x2
t+1 − x2

t)
∣

∣

∣

2
+ |λt+1 − λt |2

)

≤
∣

∣

∣A2x2
0 − A2x2

∗
∣

∣

∣

2
+ |λ0 − λ∗|2 .

14.7 The Alternating Direction Method of Multipliers 457

Thus, we have

min
0≤t≤k

{

∣

∣

∣A2(x2
t+1 − x2

t)
∣

∣

∣

2
+ |λt+1 − λt|2

}

≤ 1

k

(

∣

∣

∣A2(x2
0 − x2

∗)
∣

∣

∣

2
+ |λ0 − λ∗|2

)

.

Therefore, from (14.52) we have

Theorem 1. After k iterations of the ADMM method, there must be at least one iterate

0 ≤ k̄ ≤ k such that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∇ f1(x1
k̄+1

)T + AT
1
λk̄+1

∇ f2(x2
k̄+1

)T + AT
2
λk̄+1

A1x1
k̄+1
+ A2x2

k̄+1
− b

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ 1 + |A1 |
k

(

∣

∣

∣A2(x2
0 − x2

∗)|2 + |λ0 − λ∗
∣

∣

∣

2
)

,

that is, (x1
k̄+1
, x2

k̄+1
, λk̄+1) has its optimality condition error square bounded by the quantity

on the right-hand side that converges 0 arithmetically as k → ∞.

The Three Block Extension

It is natural to consider the ADMM method for solving problems with more than

two blocks:

minimize f1(x1) + f2(x2) + f3(x3)

subject to A1x1 + A2x2 + A3x3 = b,

x1 ∈ Ω1, x2 ∈ Ω2, x3 ∈ Ω3,

(14.54)

where Ai ∈ Em×ni (i = 1, 2, 3), b ∈ Em, Ωi ⊂ Eni (i = 1, 2, 3) are closed convex sets;

and fi : Eni → E (i = 1, 2, 3) are convex functions on Ωi, respectively. With the

same philosophy as the ADMM to take advantage of the separable structure, one

could consider the procedure

x1
k+1 : = arg min

x1∈Ω1

lc(x1 , x2
k , x

3
k , λk),

x2
k+1 : = arg min

x2∈Ω2

lc(x1
k+1 , x

2, x3
k , λk), (14.55)

x3
k+1 : = arg min

x3∈Ω3

lc(x1
k+1 , x

2
k+1, x

3, λk),

λk+1 : = λk + c(A1x1
k+1 + A2x2

k+1 + A3x3
k+1 − b),

where the augmented Lagrangian function

lc(x
1 , x2, x3, λ) =

3
∑

i=1

fi(x
i) + λT (

3
∑

i=1

Aix
i − b

)

+
c

2

∣

∣

∣

3
∑

i=1

Aix
i − b

∣

∣

∣

2
.

Unfortunately, unlike the convergence property for solving two-block problems,

such a direct extension of ADMM not converge for problems with three blocks.

Indeed, consider the following linear homogeneous equation with three variables

458 14 Duality and Dual Methods

(A1, A2, A3)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1

x2

x3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1

1 1 2

1 2 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1

x2

x3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0.

Let c = 1 and each block contain one variable. Then, simple calculation will show

that the direct extension of ADMM (14.55) is divergent from any point in a subspace

of E3. Note that the convergence of ADMM (14.55) applied to solving the linear

equations with a null objective is independent of the selection of the penalty par-

ameter c. We conclude:

Theorem 2. For the three-block convex minimization problem (14.54), the direct extension

of ADMM (14.55) may not converge for any penalty parameter c > 0 starting from any

point in a subspace.

*14.8 ∗Cutting Plane Methods

Cutting plane methods are applied to problems having the general form

minimize cT x

subject to x ∈ S , (14.56)

where S ⊂ En is a closed convex set. Problems that involve minimization of a

convex function over a convex set, such as the problem

minimize f (y)

subject to y ∈ R, (14.57)

where R ⊂ En−1 is a convex set and f is a convex function, can be easily converted

to the form (14.56) by writing (14.57) equivalently as

minimize r

subject to f (y) − r � 0, y ∈ R (14.58)

which, with x = (r, y) ∈ En, is a special case of (14.56).

General Form of Algorithm

The general form of a cutting-plane algorithm for problem (14.56) is as follows:

Given a polytope Pk ⊃ S

Step 1. Minimize cT x over Pk obtaining a point xk in Pk. If xk ∈ S , stop; xk is

optimal. Otherwise,

14.8 ∗Cutting Plane Methods 459

Step 2. Find a hyperplane Hk separating the point xk from S , that is, find ak ∈
En, bk ∈ E1 such that S ⊂ {x : aT

k
x � bk}, xk ∈ {x : aT

k
x > bk}. Update Pk to

obtain Pk+1 including as a constraint aT
k

x � bk.

The process is illustrated in Fig. 14.7.

Specific algorithms differ mainly in the manner in which the hyperplane that

separates the current point xk from the constraint set S is selected. This selection is,

of course, the most important aspect of the algorithm, since it is the deepness of the

cut associated with the separating hyperplane, the distance of the hyperplane from

the current point, that governs how much improvement there is in the approximation

to the constraint set, and hence how fast the method converges.

Fig. 14.7 Cutting plane method

Specific algorithms also differ somewhat with respect to the manner by which

the polytope is updated once the new hyperplane is determined. The most straight-

forward procedure is to simply adjoin the linear inequality associated with that hyp-

erplane to the ones determined previously. This yields the best possible updated

approximation to the constraint set but tends to produce, after a large number of

iterations, an unwieldy number of inequalities expressing the approximation. Thus,

in some algorithms, older inequalities that are not binding at the current point are

discarded from further consideration.

The general cutting plane algorithm can be regarded as an extended application

of duality in linear programming, and although this viewpoint does not particularly

aid in the analysis of the method, it reveals the basic interconnection between cutting

plane and dual methods. The foundation of this viewpoint is the fact that S can be

written as the intersection of all the half-spaces that contain it; thus

S = {x : aT
i x ≤ bi, i ∈ I},

460 14 Duality and Dual Methods

where I is an (infinite) index set corresponding to all half-spaces containing S . With

S viewed in this way problem (14.56) can be thought of as an (infinite) linear pro-

gramming problem.

Corresponding to this linear program there is (at least formally) the dual problem

maximize
∑

i∈I
λibi

subject to
∑

i∈l
λiai = c (14.59)

λi � 0, i ∈ I.

Selecting a finite subset of I, say I, and forming

P = {x : aT
i x � bi, i ∈ I}

gives a polytope that contains S . Minimizing cT x over this polytope yields a point

and a corresponding subset of active constraints IA. The dual problem with the addi-

tional restriction λi = 0 for i � IA will then have a feasible solution, but this solution

will in general not be optimal. Thus, a solution to a polytope problem corresponds

to a feasible but non-optimal solution to the dual. For this reason the cutting plane

method can be regarded as working toward optimality of the (infinite dimensional)

dual.

Kelley’s Convex Cutting Plane Algorithm

The convex cutting plane method was developed to solve convex programming

problems of the form

minimize f (x) (14.60)

subject to gi(x) � 0, i = 1, 2, . . . , p,

where x ∈ En and f and the gi’s are differentiable convex functions. As indicated in

the last section, it is sufficient to consider the case where the objective function is

linear; thus, we consider the problem

minimize cT x (14.61)

subject to g(x) � 0

where x ∈ En and g(x) ∈ Ep is convex and differentiable.

For g convex and differentiable we have the fundamental inequality

g(x) � g(w) + ∇g(w)(x − w) (14.62)

for any x, w. We use this equation to determine the separating hyperplane. Specifi-

cally, the algorithm is as follows:

14.8 ∗Cutting Plane Methods 461

Let S = {x : g(x) � 0} and let P be an initial polytope containing S and such that

cT x is bounded on P. Then

Step 1. Minimize cT x over P obtaining the point x = w. If g(w) � 0, stop; w is an

optimal solution. Otherwise,

Step 2. Let i be an index maximizing gi(w). Clearly gi(w) > 0. Define the new

approximating polytope to be the old one intersected with the half-space

{x : gi(w) + ∇gi(w)(x − w) � 0}. (14.63)

Return to Step 1.

The set defined by (14.63) is actually a half-space if ∇gi(w) � 0. However,

∇gi(w) = 0 would imply that w minimizes gi which is impossible if S is nonempty.

Furthermore, the half-space given by (14.63) contains S , since if g(x) � 0 then

by (14.62) gi(w) + ∇gi(w)(x − w) � gi(x) � 0. The half-space does not contain

the point w since gi(w) > 0. This method for selecting the separating hyperplane is

illustrated in Fig. 14.8 for the one-dimensional case. Note that in one dimension, the

procedure reduces to Newton’s method.

Fig. 14.8 Convex cutting plane

Calculation of the separating hyperplane is exceedingly simple in this algorithm,

and hence the method really amounts to the solution of a series of linear program-

ming problems. It should be noted that this algorithm, valid for any convex program-

ming problem, does not involve any line searches. In that respect it is also similar to

Newton’s method applied to a convex function.

Convergence

Under fairly mild assumptions on the convex function, the convex cutting plane

method is globally convergent. It is possible to apply the general convergence

theorem to prove this, but somewhat easier, in this case, to prove it directly.

462 14 Duality and Dual Methods

Theorem. Let the convex functions gi, i = 1, 2, . . . , p be continuously differentiable, and

suppose the convex cutting plane algorithm generates the sequence of points {wk}. Any limit

point of this sequence is a solution to problem (14.61).

Proof. Suppose {wk}, k ∈ K is a subsequence of {wk} converging to w. By taking

a further subsequence of this, if necessary, we may assume that the index i corre-

sponding to Step 2 of the algorithm is fixed throughout the subsequence. Now if

k ∈ K , k′ ∈ K and k′ > k, then we must have

gi(wk) + ∇gi(wk)(wk′ − wk) � 0,

which implies that

gi(wk) ≤ |∇gi(wk)||wk′ − wk |. (14.64)

Since |∇gi(wk)| is bounded with respect to k ∈ K , the right-hand side of (14.64) goes

to zero as k and k′ go to infinity. The left-hand side goes to gi(w). Thus gi(w) � 0

and we see that w is feasible for problem (14.61).

If f ∗ is the optimal value of problem (14.61), we have cT wk � f ∗ for each k since

wk is obtained by minimizing over a set containing S . Thus, by continuity, cT w � f ∗

and hence w is an optimal solution. �

As with most algorithms based on linear programming concepts, the rate of con-

vergence of cutting plane algorithms has not yet been satisfactorily analyzed. Pre-

liminary research shows that these algorithms converge arithmetically, that is, if x∗

is optimal, then |xk − x∗|2 � c/k for some constant c. This is an exceedingly poor

type of convergence. This estimate, however, may not be the best possible and in-

deed there are indications that the convergence is actually geometric but with a ratio

that goes to unity as the dimension of the problem increases.

Modifications

We now describe the supporting hyperplane algorithm (an alternative method for

determining a cutting plane) and examine the possibility of dropping from consid-

eration some old hyperplanes so that the linear programs do not grow too large.

The convexity requirements are less severe for this algorithm. It is applicable to

problems of the form

minimize cT x

subject to g(x) � 0,

where x ∈ En, g(x) ∈ Ep, the gi’s are continuously differentiable, and the constraint

region S defined by the inequalities is convex. Note that convexity of the functions

themselves is not required. We also assume the existence of a point interior to the

constraint region, that is, we assume the existence of a point y such that g(y) < 0,

and we assume that on the constraint boundary gi(x) = 0 implies ∇gi(x) � 0. The

algorithm is as follows:

14.8 ∗Cutting Plane Methods 463

Start with an initial polytope P containing S and such that cT x is bounded below

on S . Then

Step 1. Determine w = x to minimize cT x over P. If w ∈ S , stop. Otherwise,

Step 2. Find the point u on the line joining y and w that lies on the boundary

of S . Let i be an index for which gi(u) = 0 and define the half-space H = {x:

∇gi(u)(x − u) � 0}. Update P by intersecting with H. Return to Step 1.

The algorithm is illustrated in Fig. 14.9.

The price paid for the generality of this method over the convex cutting plane

method is that an interpolation along the line joining y and w must be executed to

find the point u. This is analogous to the line search for a minimum point required

by most programming algorithms.

Fig. 14.9 Supporting hyperplane algorithm

Dropping Nonbinding Constraints

In all cutting plane algorithms nonbinding constraints can be dropped from the app-

roximating set of linear inequalities so as to keep the complexity of the approx-

imation manageable. Indeed, since n linearly independent hyperplanes determine

a single point in En, the algorithm can be arranged, by discarding the nonbinding

constraints at the end of each step, so that the polytope consists of exactly n linear

inequalities at every stage.

Global convergence is not destroyed by this process, since the sequence of obj-

ective values will still be monotonically increasing. It is not known, however, what

effect this has on the speed of convergence.

464 14 Duality and Dual Methods

14.9 Exercises

1. (Linear programming) Use the global duality theorem to find the dual of the

linear program

minimize cT x

subject to Ax = b, x ≥ 0.

Note that some of the regularity conditions may not be necessary for the linear

case.

2. (Double dual) Show that the for a convex programming problem with a solution,

the dual of the dual is in some sense the original problem.

3. (Non-convex?) Consider the problem

minimize xy

subject to x + y − 4 ≥ 0

1 ≤ x ≤ 5, 1 ≤ y ≤ 5.

Show that although the objective function is not convex, the primal function is

convex. Find the optimal value and the Lagrange multiplier.

4. Find the global maximum of the dual function of Example 1, Sect. 14.2.

5. Show that the function φ defined for λ, µ, (µ � 0), by φ(λ, µ) = minx[f (x) +

λT h(x) + µT g(x)] is concave over any convex region where it is finite.

6. Prove that the dual canonical rate of convergence is not affected by a change of

variables in x.

7. Corresponding to the dual function (14.23):

(a) Find its gradient.

(b) Find its Hessian.

(c) Verify that it has a local maximum at λ∗, µ∗.

8. Find the Hessian of the dual function for a separable problem.

9. Find an explicit formula for the dual function for the entropy problem (Exam-

ple 3, Sect. 11.4).

10. Consider the problems

minimize f (x) (14.65)

subject to gi(x) � 0, j = 1, 2, . . . , p

and

minimize f (x) (14.66)

subject to gi(x) + z2
j = 0, j = 1, 2, . . . , p.

(a) Let x∗, μ∗1, μ
∗
2, . . . , μ

∗
p be a point and set of Lagrange multipliers that

satisfy the first-order necessary conditions for (14.65). For x∗, µ∗, write the

second-order sufficiency conditions for (14.66).

References 465

(b) Show that in general they are not satisfied unless, in addition to satisfying

the sufficiency conditions of Sect. 11.8, g j(x
∗) implies μ∗

j
> 0.

11. Establish global convergence for the supporting hyperplane algorithm.

12. Establish global convergence for an imperfect version of the supporting hyper-

plane algorithm that in interpolating to find the boundary point u actually finds

a point somewhere on the segment joining u and 1
2
u + 1

2
w and establishes a

hyperplane there.

13. Prove that the convex cutting plane method is still globally convergent if it is

modified by discarding from the definition of the polytope at each stage hyper-

planes corresponding to inactive linear inequalities.

References

14.1 Global duality was developed in conjunction with the theory of Sect. 11.9,

by Hurwicz [H14] and Slater [S7]. The theory was presented in this form

in Luenberger [L8].

14.2–14.3 An important early differential form of duality was developed by Wolfe

[W3]. The convex theory can be traced to the Legendre transformation

used in the calculus of variations but it owes its main heritage to Fenchel

[F3]. This line was further developed by Karlin [K1] and Hurwicz [H14].

Also see Luenberger [L8].

14.4 The solution of separable problems by dual methods in this manner was

pioneered by Everett [E2].

14.5–14.6 The method of multipliers was originally suggested by Hestenes [H8]

and from a different viewpoint by Powell [P7]. The relation to duality

was presented briefly in Luenberger [L15]. The method for treating ine-

quality constraints was devised by Rockafellar [R3]. For an excellent

survey of multiplier methods see Bertsekas [B12].

14.7 The alternating direction method of multipliers was due to Gabay and

Mercier[109] and Glowinski and Marrocco [102]; also see Fortin and

Glowinski[96], Eckstein and Bertsekas [78] and Boyd et al. [41]. The

convergence speed analysis was initially done by He and Yuan [124]

and Monteiro and Svaiter [180]. The non-convergence examples of three

blocks were constructed by Chen et al. [50].

14.8 Cutting plane methods were first introduced by Kelley [K3] who dev-

eloped the convex cutting plane method. The supporting hyperplane

algorithm was suggested by Veinott [V5]. To see how global conver-

gence of cutting plane algorithms can be established from the general

convergence theorem see Zangwill [Z2]. For some results on the conver-

gence rates of cutting plane algorithms consult Topkis [T7], Eaves and

Zangwill [E1], and Wolfe [W7].

Chapter 15

Primal-Dual Methods

This chapter discusses methods that work simultaneously with primal and dual

variables, in essence seeking to satisfy the first-order necessary conditions for opti-

mality. The methods employ many of the concepts used in earlier chapters, including

those related to active set methods, various first and second order methods, penalty

methods, and barrier methods. Indeed, a study of this chapter is in a sense a review

and extension of what has been presented earlier.

The first several sections of the chapter discuss methods for solving the standard

nonlinear programming structure that has been treated in the Parts II and III of the

text. These sections provide alternatives to the methods discussed earlier.

15.1 The Standard Problem

Consider again the standard nonlinear program

minimize f (x) (15.1)

subject to h(x) = 0, g(x) � 0.

Together with the feasibility, the first-order necessary conditions for optimality are,

as we know,

∇ f (x) + λT
∇h(x) + µT

∇g(x) = 0 (15.2)

µ � 0

µT g(x) = 0

The last requirement is the complementary slackness condition. If it is known which

of the inequality constraints is active at the solution, these active constraints can be

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3 15

467

468 15 Primal-Dual Methods

rolled into the equality constraints h(x) = 0, and the inactive inequalities along with

the complementary slackness condition dropped, to obtain a problem with equality

constraints only. This indeed is the structure of the problem near the solution.

If in this structure the vector x is n-dimensional and h is m-dimensional, then λ

will also be m-dimensional. The system (15.1) will, in this reduced form, consist of

n + m equations and n + m unknowns, which is an indication that the system may

be well defined, and hence that there is a solution for the pair (x, λ). In essence,

primal-dual methods amount to solving this system of equations, and use additional

strategies to account for inequality constraints.

In view of the above observation it is natural to consider whether in fact the

system of necessary conditions is in fact well conditioned, possessing a unique

solution (x, λ). We investigate this question by considering a linearized version

of the conditions.

A useful and somewhat more generally useful approach is to consider the

quadratic program

minimize
1

2
xT Qx + cT x (15.3)

subject to Ax = b,

where x is n-dimensional and b is m-dimensional.

The first-order conditions for this problem are

Qx + ATλ + c = 0 (15.4)

Ax − b = 0.

These correspond to the necessary conditions (15.2) for equality constraints only.

The following proposition gives conditions under which the system is nonsingular.

Proposition. Let Q and A be n × n and m × n matrices, respectively. Suppose that A has

rank m and that Q is positive definite on the subspace M = {x : Ax = 0}. Then the matrix

[

Q AT

A 0

]

(15.5)

is nonsingular.

Proof. Suppose (x, y) ∈ En+m is such that

Qx + AT y = 0

Ax = 0. (15.6)

Multiplication of the first equation by xT yields

xT Qx + xT AT y = 0,

and substitution of Ax = 0 yields xT Qx = 0. However, clearly x ∈ M, and thus the

hypothesis on Q together with xT Qx = 0 implies that x = 0. It then follows from the

first equation that AT y = 0. The full-rank condition on A then implies that y = 0.

Thus the only solution to (15.6) is x = 0, y = 0. �

15.1 The Standard Problem 469

If, as is often the case, the matrix Q is actually positive definite (over the whole

space), then an explicit formula for the solution of the system can be easily derived

as follows: From the first equation in (15.4) we have

x = −Q−1ATλ −Q−1c.

Substitution of this into the second equation then yields

−AQ−1ATλ − AQ−1c − b = 0,

from which we immediately obtain

λ = −(AQ−1AT)−1[AQ−1c + b] (15.7)

and

x = Q−1AT (AQ−1AT)−1[AQ−1c + b] −Q−1c

= −Q−1[I − AT (AQ−1AT)−1AQ−1]c (15.8)

+ Q−1AT (AQ−1AT)−1b.

Strategies

There are some general strategies that guide the development of the primal-dual

methods of this chapter.

1. Descent Measures. A fundamental concept that we have frequently used is

that of assuring that progress is made at each step of an iterative algorithm.

It is this that is used to guarantee global convergence. In primal methods this

measure of descent is the objective function. Even the simplex method of linear

programming is founded on this idea of making progress with respect to the

objective function. For primal minimization methods, one typically arranges

that the objective function decreases at each step.

The objective function is not the only possible way to measure progress. We

have, for example, when minimizing a function f , considered the quantity

(1/2)|∇ f (x)|2, seeking to monotonically reduce it to zero.

In general, a function used to measure progress is termed a merit function.

Typically, it is defined so as to decrease as progress is made toward the solution

of a minimization problem, but the sign may be reversed in some definitions.

For primal-dual methods, the merit function may depend on both x and λ. One

especially useful merit function for equality constrained problems is

m(x, λ) =
1

2
|∇ f (x) + λT

∇h(x)|2 + 1

2
|h(x))|2.

It is examined in the next section.

470 15 Primal-Dual Methods

We shall examine other merit functions later in the chapter. With interior point

methods or semidefinite programming, we shall use a potential function that

serves as a merit function.

2. Active Set Methods. Inequality constraints can be treated using active set

methods that treat the active constraints as equality constraints, at least for the

current iteration. However, in primal-dual methods, both x and λ are changed.

We shall consider variations of steepest descent, conjugate directions, and

Newton’s method where movement is made in the (x,λ) space.

3. Penalty Functions. In some primal-dual methods, a penalty function can serve

as a merit function, even though the penalty function depends only on x. This

is particularly attractive for recursive quadratic programming methods where a

quadratic program is solved at each stage to determine the direction of change

in the pair (x,λ).

4. Interior (Barrier) Methods. Barrier methods lead to methods that move within

the relative interior of the inequality constraints. This approach leads to the

concept of the primal-dual central path. These methods are used for semidefinite

programming since these problems are characterized as possessing a special

form of inequality constraint.

15.2 A Simple Merit Function

It is very natural, when considering the system of necessary conditions (15.2), to

form the function

m(x, λ) =
1

2
|∇ f (x) + λT

∇h(x)|2 + 1

2
|h(x)|2, (15.9)

and use it as a measure of how close a point (x, λ) is to a solution.

It must be noted, however, that the function m(x, λ) is not always well-behaved;

it may have local minima, and these are of no value in a search for a solution. The

following theorem gives the conditions under which the function m(x, λ) can serve

as a well-behaved merit function. Basically, the main requirement is that the Hessian

of the Lagrangian be positive definite. As usual, we define l(x, λ) = f (x) + λT h(x).

Theorem. Let f and h be twice continuously differentiable functions on En of dimension 1

and m, respectively. Suppose that x∗ and λ
∗ satisfy the first-order necessary conditions for a

local minimum of m(x, λ) = 1
2
|∇ f (x)+λT

∇h(x)|2+ 1
2
|h(x)|2 with respect to x and λ. Suppose

also that at x∗, λ∗, (i) the rank of ∇h(x∗) is m and (ii) the Hessian matrix L(x∗, λ∗) =
F(x∗)+λ∗T H(x∗) is positive definite. Then, x∗, λ∗ is a (possibly nonunique) global minimum

point of m(x, λ), with value m(x∗, λ∗) = 0.

Proof. Since x∗, λ∗ satisfies the first-order conditions for a local minimum point of

m(x, λ), we have

[∇ f (x∗) + λ∗T∇h(x∗)]L(x∗, λ∗) + h(x∗)T
∇h(x∗) = 0 (15.10)

[∇ f (x∗) + λ∗T∇h(x∗)]∇h(x∗)T = 0. (15.11)

15.3 Basic Primal-Dual Methods 471

Multiplying (15.10) on the right by [∇ f (x∗) + λ∗T∇h(x∗)]T and using (15.11) we

obtain†

∇l(x∗, λ∗)L(x∗, λ∗)∇l(x∗, λ∗)T = 0.

Since L(x∗, λ∗) is positive definite, this implies that ∇l(x∗, λ∗) = 0. Using this

in (15.10), we find that h(x∗)T
∇h(x∗) = 0, which, since ∇h(x∗) is of rank m, implies

that h(x∗) = 0. �

The requirement that the Hessian of the Lagrangian L(x∗, λ∗) be positive defi-

nite at a stationary point of the merit function m is actually not too restrictive. This

condition will be satisfied in the case of a convex programming problem where f is

strictly convex and h is linear. Furthermore, even in nonconvex problems one can

often arrange for this condition to hold, at least near a solution to the original con-

strained minimization problem. If it is assumed that the second-order sufficiency

conditions for a constrained minimum hold at x∗, λ∗, then L(x∗, λ∗) is positive

definite on the subspace that defines the tangent to the constraints; that is, on the

subspace defined by ∇h(x∗)x = 0. Now if the original problem is modified with a

penalty term to the problem

minimize f (x) +
1

2
c|h(x)|2 (15.12)

subject to h(x) = 0,

the solution point x∗ will be unchanged. However, as discussed in Chap. 14, the

Hessian of the Lagrangian of this new problem (15.12) at the solution point is

L(x∗, λ∗) + c∇h(x∗)T
∇h(x∗). For sufficiently large c, this matrix will be positive

definite. Thus a problem can be “convexified” (at least locally) before the merit

function method is employed.

An extension to problems with inequality constraints can be defined by partition-

ing the constraints into the two groups active and inactive. However, at this point

the simple merit function for problems with equality constraints is adequate for the

purpose of illustrating the general idea.

15.3 Basic Primal-Dual Methods

Many primal-dual methods are patterned after some of the methods used in ear-

lier chapters, except of course that the emphasis is on equation solving rather than

explicit optimization.

† Unless explicitly indicated to the contrary, the notation ∇l(x, λ) refers to the gradient of l with
respect to x, that is, ∇xl(x, λ).

472 15 Primal-Dual Methods

First-Order Method

We consider first a simple straightforward approach, which in a sense parallels the

idea of steepest descent in that it uses only a first-order approximation to the primal–

dual equations. It is defined by

xk+1 = xk − αk∇l(xk, λk)T (15.13)

λk+1 = λk + αkh(xk),

where αk is not yet determined. This is based on the error in satisfying (15.2). As-

sume that the Hessian of the Lagrangian L(x, λ) is positive definite in some compact

region of interest, and consider the simple merit function

m(x, λ) =
1

2
|∇l(x, λ)|2 + 1

2
|h(x)|2 (15.14)

discussed above. We would like to determine whether the direction of change

in (15.13) is a descent direction with respect to this merit function. The gradient

of the merit function has components corresponding to x and λ of

∇l(x, λ)L(x, λ) + h(x)T
∇h(x) (15.15)

∇l(x, λ)∇h(x)T .

Thus the inner product of this gradient with the direction vector having components

−∇l(x, λ)T , h(x) is

−∇l(x, λ)L(x, λ)∇l(x, λ)T − h(x)T
∇h(x)∇l(x, λ)T + ∇l(x, λ)∇h(x)T h(x)

= −∇l(x, λ)L(x, λ)∇l(x, λ)T
� 0.

This shows that the search direction is in fact a descent direction for the merit

function, unless ∇l(x, λ) = 0. Thus by selecting αk to minimize the merit func-

tion in the search direction at each step, the process will converge to a point where

∇l(x, λ) = 0. However, there is no guarantee that h(x) = 0 at that point.

We can try to improve the method either by changing the way in which the direc-

tion is selected or by changing the merit function. In this case a slight modification

of the merit function will work. Let

w(x, λ, γ) = m(x, λ) − γ[f (x) + λT h(x)]

for some γ > 0. We then calculate that the gradient of w has the two components

corresponding to x and λ

∇l(x, λ)L(x, λ) + h(x)T
∇h(x) − γ∇l(x, λ)

∇l(x, λ)∇h(x)T − γh(x)T ,

and hence the inner product of the gradient with the direction −∇l(x, λ)T , h(x) is

−∇l(x, λ)[L(x, λ) − γI]∇l(x, λ)T − γ|h(x)|2.

15.3 Basic Primal-Dual Methods 473

Now since we are assuming that L(x, λ) is positive definite in a compact region of

interest, there is a γ > 0 such that L(x, λ) − γI is positive definite in this region.

Then according to the above calculation, the direction −∇l(x, λ)T , h(x) is a descent

direction, and the standard descent method will converge to a solution. This method

will not converge very rapidly however. (See Exercise 2 for further analysis of this

method.)

Conjugate Directions

One may also use the conjugate direction. Let us consider the quadratic program

minimize
1

2
xT Qx − bT x (15.16)

subject to Ax = c.

The first-order necessary conditions for this problem are

Qx + ATλ = b (15.17)

Ax = c.

As discussed in the previous section, this problem is equivalent to solving a system

of linear equations whose coefficient matrix is

M =

[

Q AT

A 0

]

. (15.18)

This matrix is symmetric, but it is not positive definite (nor even semidefinite). How-

ever, it is possible to formally generalize the conjugate gradient method to systems

of this type by just applying the conjugate-gradient formulae (15.17)–(15.20) of

Sect. 9.3 with Q replaced by M. A difficulty is that singular directions (defined as

directions p such that pT Mp = 0) may occur and cause the process to break down.

Procedures for overcoming this difficulty have been developed, however. Also, as

in the ordinary conjugate gradient method, the approach can be generalized to treat

nonquadratic problems as well. Overall, however, the application of conjugate di-

rection methods to the Lagrange system of equations, although very promising, is

not currently considered practical.

Second-Order Method: Newton’s Method

Newton’s method for solving systems of equations can be easily applied to the

Lagrange equations. In its most straightforward form, the method solves the system

∇l(x, λ) = 0 (15.19)

h(x) = 0

474 15 Primal-Dual Methods

by solving the linearized version recursively. That is, given xk, λk the new point

xk+1, λk+1 is determined from the equations

∇l(xk, λk)T + L(xk, λk)dk + ∇h(xk)T yk = 0 (15.20)

h(xk) + ∇h(xk)dk = 0

by setting xk+1 = xk + dk, λk+1 = λk + yk. In matrix form the above Newton equa-

tions are
[

L(xk,λk) ∇h(xk)T

∇h(xk) 0

] [

dk

yk

]

=

[

−∇l(xk,λk)T

−h(xk)

]

. (15.21)

The Newton equations have some important structural properties. First, we observe

that by adding ∇h(xk)Tλk to the top equation, the system can be transformed to the

form
[

L(xk,λk) ∇h(xk)T

∇h(xk) 0

] [

dk

λk+1

]

=

[

−∇ f (xk)T

−h(xk)

]

, (15.22)

where again λk+1 = λk + yk. In this form λk appears only in the matrix L(xk, λk).

This conversion between (15.21) and (15.22) will be useful later.

Next we note that the structure of the coefficient matrix of (15.21) or (15.22) is

identical to that of the Proposition of Sect. 15.1. The standard second-order suffi-

ciency conditions imply that ∇h(x∗) is of full rank and that L(x∗, λ∗) is positive

definite on M = {x : ∇h(x∗)x = 0} at the solution. By continuity these conditions

can be assumed to hold in a region near the solution as well. Under these assump-

tions it follows from Proposition 1 that the Newton equation (15.21) has a unique

solution.

It is again worthwhile to point out that, although the Hessian of the Lagrangian

need be positive definite only on the tangent subspace in order for the system (15.21)

to be nonsingular, it is possible to alter the original problem by incorporation of

a quadratic penalty term so that the new Hessian of the Lagrangian is L(x, λ) +

c∇h(x)T
∇h(x). For sufficiently large c, this new Hessian will be positive definite

over the entire space.

If L(x, λ) is positive definite (either originally or through the incorporation of

a penalty term), it is possible to write an explicit expression for the solution of the

system (15.21). Let us define Lk = L(xk, λk), Ak = ∇h(xk), Ik = ∇l(xk, λk)T , hk =

h(xk). The system then takes the form

Lkdk + AT
k yk = −1k (15.23)

Akdk = −hk.

The solution is readily found, as in (15.7) and (15.8) for quadratic programming,

to be

yk = (AkL−1
k AT

k)−1[hk − AkL−1
k Ik] (15.24)

dk = −L−1
k [I − AT

k (AkL−1
k AT

k)−1AkL−1
k]Ik − L−1

k AT
k (AkL−1

k AT
k)−1hk. (15.25)

There are standard results concerning Newton’s method applied to a system of non-

linear equations that are applicable to the system (15.19). These results state that if

15.3 Basic Primal-Dual Methods 475

the linearized system is nonsingular at the solution (as is implied by our assump-

tions) and if the initial point is sufficiently close to the solution, the method will in

fact converge to the solution and the convergence will be of order at least two. To

guarantee convergence from remote initial points and hence be more broadly ap-

plicable, it is desirable to use the method as a descent process. Fortunately, we can

show that the direction generated by Newton’s method is a descent direction for the

simple merit function

m(x, λ) =
1

2
|∇l(x, λ)|2 + 1

2
|h(x)|2.

Given dk, yk satisfying (15.23), the inner product of this direction with the gradient

of m at xk, λk is, referring to (15.15),

[LkIk + AT
k hk, AkIk]T [dk, yk] = IT

k Lkdk + hT
k Akdk + IT

k AT
k yk

= −|Ik |2 − |hk|2.

This is strictly negative unless both Ik = 0 and hk = 0. Thus Newton’s method has

desirable global convergence properties when executed as a descent method with

variable step size.

Note that the calculation above does not employ the explicit formulae (15.24)

and (15.25), and hence it is not necessary that L(x, λ) be positive definite, as long

as the system (15.21) is invertible. We summarize the above discussion by the fol-

lowing theorem.

Theorem. Define the Newton process by

xk+1 = xk + αkdk

λk+1 = λk + αkyk,

where dk, yk are solutions to (15.24) and where αk is selected to minimize the merit function

m(x, λ) =
1

2
|∇l(x, λ)|2 + 1

2
|h(x)|2 .

Assume that dk, yk exist and that the points generated lie in a compact set. Then any limit

point of these points satisfies the first-order necessary conditions for a solution to the con-

strained minimization problem (15.1).

Proof. Most of this follows from the above observations and the Global Conver-

gence Theorem. The one-dimensional search process is well-defined, since the merit

function m is bounded below. �

In view of this result, it is worth pursuing Newton’s method further. We would

like to extend it to problems with inequality constraints. We would also like to avoid

the necessity of evaluating L(xk, λk) at each step and to consider alternative merit

functions—perhaps those that might distinguish a local maximum from a local min-

imum, which the simple merit function does not do. These considerations guide the

developments of the next several sections.

476 15 Primal-Dual Methods

Relation to Sequential Quadratic Programming

It is clear from the development of the preceding discussion that Newton’s method

is closely related to quadratic programming with equality constraints. We explore

this relationship more fully here, which will lead to a generalization of Newton’s

method to problems with inequality constraints.

Consider the problem

minimize IT
k dk +

1

2
dT

k Lkdk (15.26)

subject to Akdk + hk = 0.

The first-order necessary conditions of this problem are exactly (15.21), or equiv-

alently (15.23), where yk corresponds to the Lagrange multiplier of (15.26). Thus,

the solution of (15.26) produces a Newton step.

Alternatively, we may consider the quadratic program

minimize ∇ f (xk)dk +
1

2
dT

k Lkdk (15.27)

subject to Akdk + hk = 0.

The necessary conditions of this problem are exactly (15.22), where λk+1 now cor-

responds to the Lagrange multiplier of (15.27). The program (15.27) is obtained

from (15.26) by merely subtracting λT
k Akdk from the objective function; and this

change has no influence on dk, since Akdk is fixed.

The connection with quadratic programming suggests a procedure for extending

Newton’s method to minimization problems with inequality constraints. Consider

the problem
minimize f (x)

subject to h(x) = 0

g(x) � 0.

Given an estimated solution point xk and estimated Lagrange multipliers λk, µk,

one solves the quadratic program

minimize ∇ f (xk)dk +
1
2
dT

k
Lkdk

subject to ∇h(xk)dk + hk = 0

∇g(xk)dk + gk � 0,

(15.28)

where Lk = F(xk) + λT
k H(xk) + µT

k
G(xk), hk = h(xk), gk = g(xk). The new point is

determined by xk+1 = xk + dk, and the new Lagrange multipliers are the Lagrange

multipliers of the quadratic program (15.28). This is the essence of an early method

for nonlinear programming termed SOLVER. It is a very attractive procedure, since

it applies directly to problems with inequality as well as equality constraints without

the use of an active set strategy (although such a strategy might be used to solve

the required quadratic program). Methods of this general type, where a quadratic

program is solved at each step, are referred to as recursive quadratic programming

methods, and several variations are considered in this chapter.

15.4 Modified Newton Methods 477

As presented here the recursive quadratic programming method extends Newton’s

method to problems with inequality constraints, but the method has limitations. The

quadratic program may not always be well-defined, the method requires second-

order derivative information, and the simple merit function is not a descent function

for the case of inequalities. Of these, the most serious is the requirement of second-

order information, and this is addressed in the next section.

15.4 Modified Newton Methods

A modified Newton method is based on replacing the actual linearized system by an

approximation.

First, we concentrate on the equality constrained optimization problem

minimize f (x)

subject to h(x) = 0
(15.29)

in order to most clearly describe the relationships between the various approaches.

Problems with inequality constraints can be treated within the equality constraint

framework by an active set strategy or, in some cases, by recursive quadratic pro-

gramming.

The basic equations for Newton’s method can be written

[

xk+1

λk+1

]

=

[

xk

λk

]

− αk

[

Lk AT
k

Ak 0

]−1 [

lk
hk

]

,

where as before Lk is the Hessian of the Lagrangian, Ak = ∇h(xk), Ik = [∇ f (xk) +

λT
k ∇h(xk)]T , hk = h(xk). A structured modified Newton method is a method of the

form
[

xk+1

λk+1

]

=

[

xk

λk

]

− αk

[

Bk AT
k

Ak 0

]−1 [

lk
hk

]

, (15.30)

where Bk is an approximation to Lk. The term “structured” derives from the fact that

only second-order information in the original system of equations is approximated;

the first-order information is kept intact.

Of course the method is implemented by solving the system

Bkdk + AT
k yk = −Ik (15.31)

Akdk = −hk

for dk and yk and then setting xk+1 = xk + αkdk, λk+1 = λk + αkyk for some value

of αk. In this section we will not consider the procedure for selection of αk, and thus

for simplicity we take αk = 1. The simple transformation used earlier can be applied

to write (15.31) in the form

478 15 Primal-Dual Methods

Bkdk + AT
k λk+1 = −∇ f (xk)T (15.32)

Akdk = −hk.

Then xk+1 = xk + dk, and λk+1 is found directly as a solution to system (15.32).

There are, of course, various ways to choose the approximation Bk. One is to use

a fixed, constant matrix throughout the iterative process. A second is to base Bk on

some readily accessible information in L(xk, λk), such as setting Bk equal to the

diagonal of L(xk, λk). Finally, a third possibility is to update Bk using one of the

various quasi-Newton formulae.

One important advantage of the structured method is that Bk can be taken to be

positive definite even though Lk is not. If this is done, we can write the explicit

solution

yk = (AkB−1
k AT

k)−1[hk − AkB−1
k Ik] (15.33)

dk = −B−1
k [I − AT

k (AkB−1
k AT

k)−1AkB−1
k]Ik − B−1

k AT
k (AkB−1

k AT
k)−1hk. (15.34)

Consider the quadratic program

minimize ∇ f (xk)dk +
1

2
dT

k Bkdk (15.35)

subject to Akdk + h(xk) = 0.

The first-order necessary conditions for this problem are

Bkdk + AT
k λk+1 = −∇ f (xk)T (15.36)

Akdk = −h(xk),

which are again identical to the system of equations of the structured modified

Newton method—in this case in the form (15.33). The Lagrange multiplier of the

quadratic program is λk+1. The equivalence of (15.35) and (15.36) leads to a recur-

sive quadratic programming method, where at each xk the quadratic program (15.35)

is solved to determine the direction dk. In this case an arbitrary symmetric matrix

Bk is used in place of the Hessian of the Lagrangian. Note that the problem (15.35)

does not explicitly depend on λk; but Bk, often being chosen to approximate the

Hessian of the Lagrangian, may depend on λk.

As before, a principal advantage of the quadratic programming formulation is

that there is an obvious extension to problems with inequality constraints: One

simply employs a linearized version of the inequalities.

15.5 Descent Properties

In order to ensure convergence of the structured modified Newton methods of the

previous section, it is necessary to find a suitable merit function—a merit function

that is compatible with the direction-finding algorithm in the sense that it decreases

15.5 Descent Properties 479

along the direction generated. We must abandon the simple merit function at this

point, since it is not compatible with these methods when Bk � Lk. However, two

other penalty functions considered earlier, the absolute-value exact penalty func-

tion and the quadratic penalty function, are compatible with the modified Newton

approach.

Absolute-Value Penalty Function

Let us consider the constrained minimization problem

minimize f (x) (15.37)

subject to g(x) � 0,

where g(x) is r-dimensional. For notational simplicity we consider the case of ine-

quality constraints only, since it is, in fact, the most difficult case. The extension

to equality constraints is straightforward. In accordance with the recursive quadratic

programming approach, given a current point x, we select the direction of movement

d by solving the quadratic programming problem

minimize
1

2
dT Bd + ∇ f (x)d (15.38)

subject to ∇g(x)d + g(x) � 0,

where B is positive definite.

The first-order necessary conditions for a solution to this quadratic program are

Bd + ∇ f (x)T + ∇g(x)Tµ = 0 (15.39a)

∇g(x)d + g(x) � 0 (15.39b)

µT [∇g(x)d + g(x)] = 0 (15.39c)

µ � 0. (15.39d)

Note that if the solution to the quadratic program has d = 0, then the point x,

together with µ from (15.39), satisfies the first-order necessary conditions for the

original minimization problem (15.37). The following proposition is the fundamen-

tal result concerning the compatibility of the absolute-value penalty function and

the quadratic programming method for determining the direction of movement.

Proposition 1. Let d, µ (with d � 0) be a solution of the quadratic program (15.38). Then

if c � max
j

(μ j), the vector d is a descent direction for the penalty function

P(x) = f (x) + c

r
∑

j=1

g j(x)+.

480 15 Primal-Dual Methods

Proof. Let J(x) = { j : g j(x) > 0}. Now for α > 0,

P(x + αd) = f (x + αd) + c

r
∑

j=1

g j(x + αd)+

= f (x) + α∇ f (x)d + c

r
∑

j=1

[g j(x) + α∇g j(x)d]+ + o(α)

= f (x) + α∇ f (x)d + c

r
∑

j=1

g j(x)+ + αc
∑

j∈J(x)

∇g j(x)d + o(α)

= P(x) + α∇ f (x)d + αc
∑

j∈J(x)

∇g j(x)d + o(α). (15.40)

Where (15.39b) was used in the third line to infer that ∇g j(x) ≤ 0 if g j(x) = 0.

Again using (15.39b) we have

c
∑

j∈J(x)

∇g j(x)d � c
∑

j∈J(x)

−g j(x) = −c

r
∑

j=1

g j(x)+. (15.41)

Using (15.39a) we have

∇f(x)d = −dT Bd −
r

∑

j=1

μ j∇g j(x)d,

which by using the complementary slackness condition (15.39c) leads to

∇ f (x)d = −dT Bd +

r
∑

j=1

μ jg j(x) � −dT Bd +

r
∑

j=1

μ jg j(x)+ (15.42)

≤ −dT Bd +max (μ j)

r
∑

j=1

g j(x)+.

Finally, substituting (15.41) and (15.42) in (15.40), we find

P(x + αd) � P(x) + α{−dT Bd − [c −max(μ j)]

r
∑

j=1

g j(x)+} + o(α),

Since B is positive definite and c ≥ max(μ j), it follows that for α sufficiently small,

P(x + αd) < P(x). �

The above proposition is exceedingly important, for it provides a basis for est-

ablishing the global convergence of modified Newton methods, including recursive

quadratic programming. The following is a simple global convergence result based

on the descent property.

15.5 Descent Properties 481

Theorem. Let B be positive definite and assume that throughout some compact region

⊂ En, the quadratic program (15.38) has a unique solution d, µ such that at each point

the Lagrange multipliers satisfy max
j

(μ j) � c. Let the sequence {xk} be generated by

xk+1 = xk + αkdk,

where dk is the solution to (15.38) at xk and where αk minimizes P(xk+1). Assume that each

xk ∈ Ω. Then every limit point x of {xk} satisfies the first-order necessary conditions for the

constrained minimization problem (15.37).

Proof. The solution to a quadratic program depends continuously on the data, and

hence the direction determined by the quadratic program (15.38) is a continuous

function of x. The function P(x) is also continuous, and by Proposition 1, it fol-

lows that P is a descent function at every point that does not satisfy the first-order

conditions. The result thus follows from the Global Convergence Theorem. �

In view of the above result, recursive quadratic programming in conjunction with

the absolute-value penalty function is an attractive technique. There are, however,

some difficulties to be kept in mind. First, the selection of the parameter αk requires

a one-dimensional search with respect to a nondifferentiable function. Thus the eff-

icient curve-fitting search methods of Chap. 8 cannot be used without significant

modification. Second, use of the absolute-value function requires an estimate of an

upper bound for μ j’s, so that c can be selected properly. In some applications a

suitable bound can be obtained from previous experience, but in general one must

develop a method for revising the estimate upward when necessary.

Another potential difficulty with the quadratic programming approach above is

that the quadratic program (15.38) may be infeasible at some point xk, even though

the original problem (15.37) is feasible. If this happens, the method breaks down.

However, see Exercise 8 for a method that avoids this problem.

The Quadratic Penalty Function

Another penalty function that is compatible with the modified Newton method

approach is the standard quadratic penalty function. It has the added technical adv-

antage that, since this penalty function is differentiable, it is possible to apply our

earlier analytical principles to study the rate of convergence of the method. This

leads to an analytical comparison of primal-dual methods with the methods of other

chapters.

We shall restrict attention to the problem with equality constraints, since that is

all that is required for a rate of convergence analysis. The method can be extended

to problems with inequality constraints either directly or by an active set method.

Thus we consider the problem

minimize f (x) (15.43)

subject to h(x) = 0

482 15 Primal-Dual Methods

and the standard quadratic penalty objective

P(x) = f (x) +
1

2
c|h(x)|2. (15.44)

From the theory in Chap. 13, we know that minimization of the objective with

a quadratic penalty function will not yield an exact solution to (15.43). In fact,

the minimum of the penalty function (15.44) will have ch(x) ≃ λ, where λ is the

Lagrange multiplier of (15.43). Therefore, it seems appropriate in this case to con-

sider the quadratic programming problem

minimize
1

2
dT Bd + ∇ f (x)d (15.45)

subject to ∇h(x)d + h(x) = λ̂/c,

where λ̂ is an estimate of the Lagrange multiplier of the original problem. A partic-

ularly good choice is

λ̂ = [(1/c)I+Q]−1[h(x) − AB−1
∇ f (x)T], (15.46)

where A = ∇h(x), Q = AB − 1AT which is the Lagrange multiplier that would be

obtained by the quadratic program with the penalty method. The proposed method

requires that λ̂ be first estimated from (15.46) and then used in the quadratic pro-

gramming problem (15.45).

The following proposition shows that this procedure produces a descent direction

for the quadratic penalty objective.

Proposition 2. For any c > 0, let d, λ (with d � 0) be a solution to the quadratic pro-

gram (15.45). Then d is a descent direction of the function P(x) = f (x) + (1/2)c|h(x)|2 .

Proof. We have from the constraint equation

Ad = (1/c)λ̂ − h(x),

which yields

cAT Ad = AT λ̂ − cAT h(x).

Solving the necessary conditions for (15.45) yields (see the top part of (15.9) for a

similar expression with Q = B there)

Bd = AT Q−1[AB−1
∇f(x)T + (1/c)λ̂ − h(x)] − ∇ f (x)T .

Therefore,

(B + cAT A)d = AT Q−1[AB−1
∇ f (x)T − h(x)]

+ AT [(1/c)Q−1 + I]λ̂ − ∇ f (x)T − cAT h(x)

= AT Q−1{AB−1
∇ f (x)τ − h(x) + ((1/c)I +Q)λ̂}

− ∇ f (x)T − cAT h(x)

= −∇ f (x)T − cAT h(x) = −∇P(x)T .

The matrix (B+cAT A) is positive definite for any c � 0. It follows that∇P(x)d < 0.

�

15.6 ∗Rate of Convergence 483

*15.6 ∗Rate of Convergence

It is now appropriate to apply the principles of convergence analysis that have been

repeatedly emphasized in previous chapters to the recursive quadratic programming

approach. We expect that, if this new approach is well founded, then the rate of

convergence of the algorithm should be related to the familiar canonical rate, which

we have learned is a fundamental measure of the complexity of the problem. If it is

not so related, then some modification of the algorithm is probably required. Indeed,

we shall find that a small but important modification is required.

From the proof of Proposition 2 of Sect. 15.5, we have the formula

(B + cAT A)d = −∇P(x)T ,

which can be written as

d = −(B + cAT A)−1
∇P(x)T .

This shows that the method is a modified Newton method applied to the uncon-

strained minimization of P(x). From the Modified Newton Method Theorem of

Sect. 10.1, we see immediately that the rate of convergence is determined by the

eigenvalues of the matrix that is the product of the coefficient matrix (B + cAT A)−1

and the Hessian of the function P at the solution point. The Hessian of P is

(L + cAT A), where L = F(x) + ch(x)T H(x). We know that the vector ch(x) at

the solution of the penalty problem is equal to λc, where ∇ f (x) + λT
c∇h(x) = 0.

Therefore, the rate of convergence is determined by the eigenvalues of

(B + cAT A)−1(L + cAT A), (15.47)

where all quantities are evaluated at the solution to the penalty problem and L =

F + λT
c H. For large values of c, all quantities are approximately equal to the values

at the optimal solution to the constrained problem.

Now what we wish to show is that as c→ ∞, the matrix (15.47) looks like B−1
M

LM

on the subspace, M, and like the identity matrix on M⊥, the subspace orthogonal to

M. To do this in detail, let C be an n × (n − m) matrix whose columns form an

orthonormal basis for M, the tangent subspace {x : Ax = 0}. Let D = AT (AAT)−1.

Then AC = 0, AD = I, CT C = I, CT D = 0.

The eigenvalues of (B + cAT A)−1(L + cAT A) are equal to those of

[C, D]−1(B + cAT A)−1{[C, D]T }−1[C, D]T (L + cAT A)[C, D]

=

[

CT BC CT BD

DT BC DT BC + cI

]−1 [

CT LC CT LD

DT LC DT LD + cI

]

.

Now as c→ ∞, the matrix above approaches

[

B−1
M

LM BMCT (L − B)D

0 I

]

,

484 15 Primal-Dual Methods

where BM = CT BC, LM = CT LC (see Exercise 6). The eigenvalues of this matrix

are those of B−1
M

LM together with those of I. This analysis leads directly to the

following conclusion:

Theorem. Let a, A be the smallest and largest eigenvalues, respectively, of B−1
M LM and

assume that a � 1 � A. Then the structured modified Newton method with quadratic penalty

function has a rate of convergence no greater than [(A − a)/(A + a)]2 as c→∞.

In the special case of B = I, the rate in the above proposition is precisely the

canonical rate, defined by the eigenvalues of L restricted to the tangent plane. It is

important to note, however, that in order for the rate of the theorem to be achieved,

the eigenvalues of B−1
M

LM must be spread around unity; if not, the rate will be poorer.

Thus, even if LM is well-conditioned, but the eigenvalues differ greatly from unity,

the choice B = I may be poor. This is an instance where proper scaling is vital.

(We also point out that the above analysis is closely related to that of Sect. 13.4,

where a similar conclusion is obtained.)

There is a geometric explanation for the scaling property. Take B = I for sim-

plicity. Then the direction of movement d is d = −∇ f (x)T +ATλ for some λ. Using

the fact that the projected gradient is p = ∇ f (x)T + ATµ for some µ, we see that

d = −p + AT (λ + µ). Thus d can be decomposed into two components: one in the

direction of the projected negative gradient, the other in a direction orthogonal to

the tangent plane (see Fig. 15.1). Ideally, these two components should be in proper

proportions so that the constraint surface is reached at the same point as would be

reached by minimization in the direction of the projected negative gradient. If they

are not, convergence will be poor.

Fig. 15.1 Decomposition of the direction d

15.7 Primal-Dual Interior Point Methods 485

15.7 Primal-Dual Interior Point Methods

The primal-dual interior-point methods discussed for linear programming in Chap. 5

are, as mentioned there, closely related to the barrier methods presented in Chap. 13

and the primal-dual methods of the current chapter. They can be naturally extended

to solve nonlinear programming problems while maintaining both theoretical and

practical efficiency.

Consider the inequality constrained problem

minimize f (x)

subject to Ax = b, (15.48)

g(x) ≤ 0,

In general, a weakness of the active constraint method for such a problem is the

combinatorial nature of determining which constraints should be active.

Logarithmic Barrier Function

A method that avoids the necessity to explicitly select a set of active constraints

is based on the logarithmic barrier method, which solves a sequence of equality

constrained minimization problems. Specifically,

minimize f (x) − µ
p

∑

i=1

log(−g j(x)) (15.49)

subject to Ax = b,

where μ = μk > 0, k = 1, . . .,, μk > μk+1, μk → 0. The μks can be pre-determined.

Typically, we have μk+1 = γμk for some constant 0 < γ < 1. Here, we also assume

that the original problem has a feasible interior-point x0; that is,

Ax0 = b and g(x0) < 0,

and A has full row rank.

For fixed μ, and using si = μ/gi, the first-order optimality conditions of the

barrier problem (15.49) are:

− Sg(x) = μ1

Ax = b (15.50)

−AT y + ∇ f (x)T + ∇g(x)T s = 0,

where S = diag(s); that is, a diagonal matrix whose diagonal entries are s, and∇g(x)

is the Jacobian matrix of g(x).

486 15 Primal-Dual Methods

If f (x) and gi(x) are convex functions for all i, f (x) − μ∑i log(−gi(x)) is strictly

convex in the interior of the feasible region, and the objective level set is bounded,

then there is a unique minimizer for the barrier problem. Let (x(μ) > 0, y(μ),

s(μ) > 0) be the (unique) solution of (15.50). Then, these values form the primal-

dual central path of (15.48):

C = {(x(μ), y(μ), s(μ) > 0) : 0 < μ < ∞}.
This can be summarized in the following theorem.

Theorem 1. Let (x(μ), y(μ), s(μ)) be on the central path.

i) If f (x) and gi(x) are convex functions for all i, then s(μ) is unique.

ii) Furthermore, if f (x)− μ∑i log(−gi(x)) is strictly convex,(x(μ), y(μ), s(μ)) are unique,

and they are bounded for 0 < μ � μ0 for any given μ0 > 0.

iii) For 0 < μ′ < μ, f (x(μ′)) < f (x(μ)) if x(μ′) � x(μ).

iv) (x(μ), y(μ), s(μ)) converges to a point satisfying the first-order necessary conditions

for a solution of (15.48) as μ→ 0.

Once we have an approximate solution point (x, y, s) = (xk, yk, sk) for (15.50)

for μ = μk > 0, we can again use the primal-dual methods described for linear

programming to generate a new approximate solution to (15.50) for μ = μk+1 <

μk. The Newton direction vectors (dx, dy, ds) is found from the system of linear

equations:

−S∇g(x)dx −G(x)ds = μ1 + Sg(x), (15.51)

Adx = b − Ax,

−AT dy +

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∇
2 f (x) +

∑

i

si∇
2gi(x)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

dx

+∇g(x)T ds = AT y − ∇ f (x)T − ∇g(x)T s,

where G(x) = diag(g(x)). Then, the new iterate is update to:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(dx, dy, ds)

for a stepsize αk. Recently, this approach has also been used to find points satisfying

the first-order conditions for problems when f (x) and gi(x) are not generally convex

functions.

Interior Point Method for Convex Quadratic Programming

Let f (x) = (1/2)xTQx + cT x and gi(x) = −xi for i = 1, . . . , n, and consider the

quadratic program

minimize
1

2
xT Qx + cT x

subject to Ax = b, (15.52)

x � 0,

15.7 Primal-Dual Interior Point Methods 487

where the given matrix Q ∈ En×n is positive semidefinite (that is, the objective is a

convex function), A ∈ En×m, c ∈ En and b ∈ Em. The problem reduces to finding

x ∈ En, y ∈ Em and s ∈ En satisfying the following optimality conditions:

Sx = 0

Ax = b (15.53)

−AT y +Qx − s = −c

(x, s) ≥ 0.

The optimality conditions with the logarithmic barrier function with parameter μ

are be:

Sx = μ1

Ax = b (15.54)

−AT y +Qx − s = −c.

Note that the bottom two sets of constraints are linear equalities.

Thus, once we have an interior feasible point (x, y, s) for (15.54), with µ =

xT s/n, we can apply Newton’s method to compute a new (approximate) iterate

(x+, y+, s+) by solving for (dx, dy, ds) from the system of linear equations:

Sdx + Xds = γμ1 − Xs,

Adx = 0, (15.55)

−AT dy +Qdx − ds = 0,

where X and S are two diagonal matrices whose diagonal entries are x > 0 and

s > 0, respectively. Here, γ is a fixed positive constant less than 1, which implies

that our targeted μ is reduced by the factor γ at each step.

Potential Function as a Merit Function

For any interior feasible point (x, y, s) of (15.52) and its dual, a suitable merit

function is the potential function introduced in Chap. 5 for linear programming:

ψn+ρ(x, s) = (n + ρ) log(xT s) −
n

∑

j=1

log(x js j).

The main result for this is stated in the following theorem.

Theorem 2. In solving (15.55) for (dx, dy, ds), let γ = n/(n + ρ) < 1 for fixed ρ �
√

n and

assign x+ = x + αdx, y+ = y + αdy, and s+ = s + αds where

α =
α
√

min(Xs)

|(XS)−1/2(xT s
n+ρ

1 − Xs)|
,

488 15 Primal-Dual Methods

where α is any positive constant less than 1. (Again X and S are matrices with components

on the diagonal being those of x and s, respectively.) Then,

ψn+ρ(x
+, s+) − ψn+ρ(x, s) � −α

√

3/4 +
α

2

2(1 − α)
.

The proof of the theorem is also similar to that for linear programming; see

Exercise 12. Notice that, since Q is positive semidefinite, we have

dx
T ds = (dx, dy)T (ds, 0) = dT

x Qdx � 0

while dT
x ds = 0 in the linear programming case.

We outline the algorithm here:

Given any interior feasible (x0, y0, s0) of (15.52) and its dual. Set ρ �
√

n and

k = 0.

1. Set (x, s) = (xk, sk) and γ = n/(n + ρ) and compute (dx, dy, ds) from (15.55).

2. Let xk+1 = xk + αdx, yk+1 = yk + αdy, and sk+1 = sk + αds where

α = arg min
α�0
ψn+ρ(xk + αdx, sk + αds).

3. Let k = k + 1. If sT
k

xk/s
T
0

x0 ≤ ε, stop. Otherwise, return to Step 1.

This algorithm exhibits an iteration complexity bound that is identical to that of

linear programming expressed in Theorem 1, Sect. 5.6.

15.8 Summary

A constrained optimization problem can be solved by directly solving the equations

that represent the first-order necessary conditions for a solution. For a quadratic pro-

gramming problem with linear constraints, these equations are linear and thus can

be solved by standard linear procedures. Quadratic programs with inequality con-

straints can be solved by an active set method in which the direction of movement is

toward the solution of the corresponding equality constrained problem. This method

will solve a quadratic program in a finite number of steps.

For general nonlinear programming problems, many of the standard methods

for solving systems of equations can be adapted to the corresponding necessary

equations. One class consists of first-order methods that move in a direction related

to the residual (that is, the error) in the equations. Another class of methods is based

on extending the method of conjugate directions to nonpositive-definite systems.

Finally, a third class is based on Newton’s method for solving systems of nonlinear

equations, and solving a linearized version of the system at each iteration. Under

appropriate assumptions, Newton’s method has excellent global as well as local con-

vergence properties, since the simple merit function, 1
2
|∇ f (x)+λT

∇h(x)|2+ 1
2
|h(x)|2,

decreases in the Newton direction. An individual step of Newton’s method is

15.9 Exercises 489

equivalent to solving a quadratic programming problem, and thus Newton’s method

can be extended to problems with inequality constraints through recursive quadratic

programming.

More effective methods are developed by accounting for the special structure

of the linearized version of the necessary conditions and by introducing approxi-

mations to the second-order information. In order to assure global convergence of

these methods, a penalty (or merit) function must be specified that is compatible

with the method of direction selection, in the sense that the direction is a direction

of descent for the merit function. The absolute-value penalty function and the stan-

dard quadratic penalty function are both compatible with some versions of recursive

quadratic programming.

The best of the primal-dual methods take full account of special structure, and are

based on direction-finding procedures that are closely related to methods described

in earlier chapters. It is not surprising therefore that the convergence properties of

these methods are also closely related to those of other chapters. Again we find that

the canonical rate is fundamental for properly designed first-order methods.

Interior point methods in the primal-dual model are very effective for treating

problems with inequality constraints, for they avoid (or at least minimize) the diffi-

culties associated with determining which constraints will be active at the solution.

Applied to general nonlinear programming problems, these methods closely parallel

the interior point methods for linear programming. There is again a central path, and

Newton’s method is a good way to follow the path.

15.9 Exercises

1. Solve the quadratic program

minimize x2 − xy + y2 − 3x

subject to x � 0

y � 0

x + y � 4

by use of the active set method starting at x = y = 0.

2. Suppose x∗, λ∗ satisfy

∇ f (x∗) + λ∗T∇h(x∗) = 0

h(x∗) = 0.

Let

C =

[

L(x∗,λ∗) ∇h(x∗)T

∇h(x∗) 0

]

.

Assume that L(x∗, λ∗) is positive definite and that ∇h(x∗) is of full rank.

490 15 Primal-Dual Methods

(a) Show that the real part of each eigenvalue of C is positive.

(b) Using the result of Part (a), show that for some α > 0 the iterative process

xk+1 = xk − α∇l(xk, λk)T and λk+1 = λk + αh(xk)

converges locally to x∗, λ∗. (That is, if started sufficiently close to x∗, λ∗,
the process converges to x∗, λ∗.) Hint: Use Ostroski’s Theorem: Let A(z) be

a continuously differentiable mapping from Ep to Ep, assume A(z∗) = 0,

and let ∇A(z∗) have all eigenvalues strictly inside the unit circle of the

complex plane. Then zk+1 = zk + A(zk) converges locally to z∗.

3. Let A be a real symmetric matrix. A vector x is singular if xT Ax = 0. A pair

of vectors x, y is a hyperbolic pair if both x and y are singular and xT Ay � 0.

Hyperbolic pairs can be used to generalize the conjugate gradient method to the

nonpositive definite case.

(a) If pk is singular, show that if pk+1 is defined as

pk+1 = Apk −
(Apk)T A2pk

2|Apk|2
pk,

then pk, pk+1 is a hyperbolic pair.

(b) Consider a modification of the conjugate gradient process of Sect. 8.1,

where if pk is singular, pk+1 is generated as above, and then

xk+1 = xk + αkpk

xk+2 = xk+1 + αk+1pk+1

αk =
rT

k
pk+1

pT
k

Apk+1

, αk+1 =
rT

k
pk

pT
k

Apk+1

pk+2 = rk+2 −
rT

k+2
Apk+1

pkApk+1

pk.

Show that if pk+1 is the second member of a hyperbolic pair and rk � 0,

then xk+2 � xk+1, which means the process does not get “stuck.”

4. Another method for solving a system Ax = b when A is nonsingular and sym-

metric is the conjugate residual method. In this method the direction vectors are

constructed to be an A2-orthogonalized version of the residuals rk = b − Axk.

The error function E(x) = |Ax − b|2 decreases monotonically in this process.

Since the directions are based on rk rather than the gradient of E, which is

2Ark, the method extends the simplicity of the conjugate gradient method by

implicit use of the fact that A2 is positive definite. The method is this: Set

p1 = r1 = b−Ax1 and repeat the following steps, omitting (a, b) on the first step.

15.9 Exercises 491

If αk−1 � 0,

pk = rk − βkpk−1, βk =
rT

k
A2pk−1

pT
k−1

A2pk−1

. (15.56a)

If αk−1 = 0,

pk = Ark − γkpk−1 − δkpk−2

γk =
rT

k
A3pk−1

pT
k−1

A2pk−1

, δk =
rT

k
A3pk−2

pT
k−2

A3pk−2

(15.56b)

xk+1 = xk + αkpk, αk =
rT

k
Apk

pT
k

A2pk

(15.56c)

rk+1 = b − Axk+1. (15.56d)

Show that the directions pk are A2-orthogonal.

5. Consider the (n + m)-dimensional system of equations

[

L AT

A 0

] [

x

λ

]

=

[

a

b

]

.

Suppose that A = [B, C], where B is m × m and invertible. Let x = (xB, xc),

where xB is the first m components of x. The system can then be written

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

LBB LBC BT

LCB Lcc CT

B C 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

xB

xC

λ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

aB

aC

b

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(a) Assume that L is positive definite on the tangent space {x : Ax = 0}. Derive

an explicit statement equivalent to this assumption in terms of the positive

definiteness of some (n − m) × (n − m) matrix.

(b) Solve the system in terms of the submatrices of the partitioned form.

6. Consider the partitioned square matrix M of the form

M =

[

A B

C D

]

.

Show that

M−1 =

[

Q −QBD−1

−D−1CQ D−1 + D−1CQBD−1

]

,

where Q = (A − BD−1C)−1, provided that all indicated inverses exist. Use this

result to verify the rate of convergence result in Sect. 15.6.

7. For the problem

minimize f (x)

subject to g(x) � 0,

492 15 Primal-Dual Methods

where g(x) is r-dimensional, define the penalty function

p(x) = f (x) + c max{0, g1(x), g2(x), . . . , gr(x)}.

Let d, (d � 0) be a solution to the quadratic program

minimize
1

2
dT Bd + ∇ f (x)d

subject to g(x) + ∇g(x)d � 0,

where B is positive definite. Show that d is a descent direction for p for suffi-

ciently large c.

8. Suppose the quadratic program of Exercise 7 is not feasible. In that case one

may solve

minimize
1

2
dT Bd + ∇ f (x)d + cξ

subject to g(x) + ∇g(x)d � ξ1

ξ � 0.

(a) Show that if d � 0 is a solution, then d is a descent direction for p.

(b) If d = 0 is a solution, show that x is a critical point of p in the sense that for

any d � 0, p(x + αd) > p(x) + o(α).

9. For the equality constrained problem, consider the function

φ(x) = f (x) + λ(x)T h(x) + ch(x)T C(x)C(x)Th(x),

where

C(x) = [∇h(x)∇h(x)T]−1
∇h(x) and λ(x) = C(x)∇ f (x)T .

(a) Under standard assumptions on the original problem, show that for suffi-

ciently large c, φ is (locally) an exact penalty function.

(b) Show that φ(x) can be expressed as

φ(x) = f(x) + π(x)T h(x),

where π(x) is the Lagrange multiplier of the problem

minimize
1

2
cdT d + ∇ f (x)d

subject to ∇h(x)d + h(x) = 0.

(c) Indicate how φ can be defined for problems with inequality constraints.

10. Let {Bk} be a sequence of positive definite symmetric matrices, and assume

that there are constants a > 0, b > 0 such that a|x|2 � xT Bkx � b|x|2 for

all x. Suppose that B is replaced by Bk in the kth step of the recursive quadratic

References 493

programming procedure of the theorem in Sect. 15.4. Show that the conclusions

of that theorem are still valid. Hint: Note that the set of allowable Bk’s is closed.

11. (Central path theorem) Prove the central path theorem, Theorem 1 of Sect. 15.7,

for convex optimization.

12. Prove the potential reduction theorem, Theorem 2 of Sect. 15.7, for convex

quadratic programming. This theorem can be generalized to non-quadratic con-

vex objective functions f (x) satisfying the following condition: let

u : (0, 1)→ (1, ∞)

be a monotone increasing function; then

|X(∇ f (x + dx) − ∇ f (x) − ∇2 f (x)dx)|1 ≤ u(α)dT
x∇ f (x)dx

whenever

x > 0, |X−1dx|∞ ≤ α < 1.

Such condition is called the scaled Lipschitz condition in {x : x > 0}.

References

15.1 An early method for solving quadratic programming problems is the

principal pivoting method of Dantzig and Wolfe; see Dantzig [D6]. For

a discussion of factorization methods applied to quadratic programming,

see Gill, Murray, and Wright [G7].

15.2–15.4 Arrow and Hurwicz [A9] proposed a continuous process (represented

as a system of differential equations) for solving the Lagrange equa-

tions. This early paper showed the value of the simple merit function

in attacking the equations. A formal discussion of the properties of the

simple merit function may be found in Luenberger [L17]. The first-order

method was examined in detail by Polak [P4]. Also see Zangwill [Z2]

for an early analysis of a method for inequality constraints. The conju-

gate direction method was first extended to nonpositive definite cases by

the use of hyperbolic pairs and then by employing conjugate residuals.

(See Exercises 3 and 4, and Luenberger [L9, L11].) Additional meth-

ods with somewhat better numerical properties were later developed by

Paige and Saunders [P1] and by Fletcher [F8]. It is perhaps surprising

that Newton’s method was analyzed in this form only recently, well after

the development of the SOLVER method discussed in Sect. 15.2. For

a comprehensive account of Newton methods, see Bertsekas, Chap. 4

[B11]. The SOLVER method was proposed by Wilson [W2] for convex

programming problems and was later interpreted by Beale [B7]. Garcia-

Palomares and Mangasarian [G3] proposed a quadratic programming

approach to the solution of the first-order equations. See Fletcher [F10]

for a good overview discussion.

494 15 Primal-Dual Methods

15.5–15.6 The discovery that the absolute-value penalty function is compatible

with recursive quadratic programming was made by Pshenichny (see

Pshenichny and Danilin [P10]) and later by Han [H3], who also suggested

that the method be combined with a quasi-Newton update procedure.

The development of recursive quadratic programming for the standard

quadratic penalty function is due to Biggs [B14, B15]. The convergence

rate analysis of Sect. 15.6 first appeared in the second edition of this text.

15.7 Many researchers have applied interior-point algorithms to convex

quadratic problems. These algorithms can be divided into three groups:

the primal algorithm, the dual algorithm, and the primal-dual algorithm.

Relations among these algorithms can be seen in den Hertog [H6],

Anstreicher et al [A6], Sun and Qi [S12], Tseng [T12], and Ye [Y3].

For results similar to those of Exercises 2,7, and 8, see Bertsekas [B11].

For discussion of Exercise 9, see Fletcher [F10].

Appendix A

Mathematical Review

The purpose of this appendix is to set down for reference and review some basic

definitions, notation, and relations that are used frequently in the text.

A.1 Sets

If x is a member of the set S , we write x ∈ S . We write y � S if y is not a member

of S .

A set S may be specified by listing its elements between braces; such as, for

example, S = {1, 2, 3, 4}. Alternatively, a set can be specified in the form S = {x :

P(x)} as the set of elements satisfying property P; such as S = {x : 1 � x �

4, x integer}
The union of two sets S and T is denoted S ∪ T and is the set consisting of

the elements that belong to either S or T . The intersection of two sets S and T is

denoted S ∩ T and is the set consisting of the elements that belong to both S and T .

If S is a subset of T , that is, if every member of S is also a member of T , we write

S ⊂ T or T ⊃ S .

The empty set is denoted φ or ∅. There are two ways that operations such as

minimization over a set are represented. Specifically we write either

min
x∈S

f (x) or min{ f (x) : x ∈ S }

to denote the minimum value of f over the set S . The set of x’s in S that achieve the

minimum is denoted argmin { f (x) : x ∈ S }.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3

495

496 A Mathematical Review

Sets of Real Numbers

If a and b are real numbers, [a, b] denotes the set of real numbers x satisfying

a � x � b. A rounded, instead of square, bracket denotes strict inequality in the

definition. Thus (a, b] denotes all x satisfying a < x � b.

If S is a set of real numbers bounded above, then there is a smallest real number

y such that x � y for all x ∈ S . The number y is called the least upper bound or

supremum of S and is denoted

sup
x∈S

(x) or sup{x : x ∈ S }.

Similarly, the greatest lower bound or infimum of a set S is denoted

inf
x∈S

(x) or inf{x : x ∈ S }.

A.2 Matrix Notation

A matrix is a rectangular array of numbers, called elements. The matrix itself is

denoted by a boldface letter. When specific numbers are not used, the elements are

denoted by italicized lower-case letters, having a double subscript. Thus we write

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...

am1 am2 · · · amn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

for a matrix A having m rows and n columns. Such a matrix is referred to as an

m × n matrix. If we wish to specify a matrix by defining a general element, we use

the notation A = [ai j].

An m × n matrix all of whose elements are zero is called a zero matrix and

denoted 0. A square matrix (a matrix with m = n) whose elements are ai j = 0 for

i � j, and aii = 1 for i = 1, 2, . . . , n is said to be an identity matrix and denoted I.

The sum of two m× n matrices A and B is written A+B and is the matrix whose

elements are the sum of the corresponding elements in A and B. The product of a

matrix A and a scalar λ, written λA or Aλ, is obtained by multiplying each element

of A by λ. The product AB of an m × n matrix A and an n× p matrix B is the m × p

matrix C with elements ci j =
∑n

k=1 aikbk j.

The transpose of an m×n matrix A is the n×m matrix AT with elements aT
i j
= a ji.

A (square) matrix A is symmetric if AT = A. A square matrix A is nonsingular if

there is a matrix A−1, called the inverse of A, such that A−1A = I = AA−1. The

determinant of a square matrix A is denoted by det (A). The determinant is nonzero

if and only if the matrix is nonsingular. Two square n × n matrices A and B are

similar if there is a nonsingular matrix S such that B = S−1AS.

A.3 Spaces 497

Matrices having a single row are referred to as row vectors; matrices having a

single column are referred to as column vectors. Vectors of either type are usually

denoted by lower-case boldface letters. To economize page space, row vectors are

written a = [a1, a2, . . . , an] and column vectors are written a = (a1, a2, . . . , an).

Since column vectors are used frequently, this notation avoids the necessity to dis-

play numerous columns. To further distinguish rows from columns, we write a ∈ En

if a is a column vector with n components, and we write b ∈ En if b is a row vector

with n components.

It is often convenient to partition a matrix into submatrices. This is indicated by

drawing partitioning lines through the matrix, as for example,

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

[

A11 A12

A21 A22

]

.

The resulting submatrices are usually denoted Ai j, as illustrated.

A matrix can be partitioned into either column or row vectors, in which case

a special notation is convenient. Denoting the columns of an m × n matrix A by

a j, j = 1, 2, . . . , n, we write A = [a1, a2, . . . , an]. Similarly, denoting the rows

of A by ai, i = 1, 2, . . . , m, we write A = (a1, a2, . . . , am). Following the same

pattern, we often write A = [B, C] for the partitioned matrix A = [B|C].

A.3 Spaces

We consider the n-component vectors x = (x1, x2, . . . , xn) as elements of a vector

space. The space itself, n-dimensional Euclidean space, is denoted En. Vectors in the

space can be added or multiplied by a scalar, by performing the corresponding op-

erations on the components. We write x � 0 if each component of x is nonnegative.

The line segment connecting two vectors x and y is denoted [x, y] and consists of

all vectors of the form αx + (1 − α)y with 0 � α � 1.

The scalar product of two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

is defined as xT y = yT x =
∑n

i=1 xiyi. The vectors x and y are said to be orthogonal if

xT y = 0. The magnitude or norm of a vector x is |x| = (xT x)1/2. For any two vectors

x and y in En, the Cauchy-Schwarz Inequality holds: |xT y| � |x| · |y|.
A set of vectors a1, a2, . . . , ak is said to be linearly dependent if there are

scalars λ1, λ2, . . . , λk, not all zero, such that
∑k

i=1 λiai = 0. If no such set of scalars

exists, the vectors are said to be linearly independent. A linear combination of the

vectors a1, a2, . . . , ak is a vector of the form
∑k

i=1 λ jai. The set of vectors that are

linear combinations of a1, a2, . . . , ak is the set spanned by the vectors. A linearly

independent set of vectors that span En is said to be a basis for En. Every basis for

En contains exactly n vectors.

498 A Mathematical Review

The rank of a matrix A is equal to the maximum number of linearly independent

columns in A. This number is also equal to the maximum number of linearly inde-

pendent rows in A. The m × n matrix A is said to be of full rank if the rank of A is

equal to the minimum of m and n.

A subspace M of En is a subset that is closed under the operations of vector

addition and scalar multiplication; that is, if a and b are vectors in M, then λa + μb

is also in M for every pair of scalars λ, μ. The dimension of a subspace M is equal

to the maximum number of linearly independent vectors in M. If M is a subspace of

En, the orthogonal complement of M, denoted M⊥, consists of all vectors that are

orthogonal to every vector in M. The orthogonal complement of M is easily seen to

be a subspace, and together M and M⊥ span En in the sense that every vector x ∈ En

can be written uniquely in the form x = a + b with a ∈ M, b ∈ M⊥. In this case a

and b are said to be the orthogonal projections of x onto the subspaces M and M⊥,

respectively.

A correspondence A that associates with each point in a space X a point in a space

Y is said to be a mapping from X to Y. For convenience this situation is symbolized

by A : X → Y. The mapping A may be either linear or nonlinear. The norm of linear

mapping A is defined as |A| = max
|x|≤1
|Ax|. It follows that for any x, |Ax| ≤ |A| · |x|.

A.4 Eigenvalues and Quadratic Forms

Corresponding to an n×n square matrix A, a scalar λ and a nonzero vector x satisfy-

ing the equation Ax = λx are said to be, respectively, an eigenvalue and eigenvector

of A. In order that λ be an eigenvalue it is clear that it is necessary and sufficient for

A − λI to be singular, and hence det(A − λI) = 0. This last result, when expanded,

yields an nth-order polynomial equation which can be solved for n (possibly nondis-

tinct) complex roots λ which are the eigenvalues of A.

Now, for the remainder of this section, assume that A is symmetric. Then the

following properties hold:

(i) The eigenvalues of A are real.

(ii) Eigenvectors associated with distinct eigenvalues are orthogonal.

(iii) There is an orthogonal basis for En, each element of which is an eigenvector

of A.

If the basis u1, u2, . . . , un in (iii) is normalized so that each element has magnitude

unity, then defining the matrix Q = [u1, u2, . . . , un] we note that QT Q = I and

hence QT = Q−1. A matrix with this property is said to be an orthogonal matrix.

Also, we observe, in this case, that

Q−1AQ = QT AQ = QT [Au1, Au2, . . . , Aun]

= QT [λ1u1, λ2u2, . . . , λnun].

A.5 Topological Concepts 499

Thus

Q−1AQ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

λ1

λ2

. . .

λn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and therefore A is similar to a diagonal matrix.

A symmetric matrix A is said to be positive definite if the quadratic form xT Ax is

positive for all nonzero vectors x. Similarly, we define A to be positive semidefinite,

negative definite, or negative semidefinite if xT Ax � 0, < 0, or � 0 for all x. The

matrix A is indefinite if xT Ax is positive for some x and negative for others.

It is easy to obtain a connection between definiteness and the eigenvalues of A.

For any x let y = Q−1x where Q is defined as above. Then xT Ax = yT QT AQy =
∑n

i=1 λiy
2
i
. Since the yi’s are arbitrary (since x is), it is clear that A is positive def-

inite (or positive semidefinite) if and only if all eigenvalues of A are positive (or

nonnegative).

Through diagonalization we can also easily show that a positive semidefinite

matrix A has a positive semidefinite (symmetric) square root A1/2 satisfying A1/2 ·
A1/2 = A. For this we use Q as above and define

A1/2 = Q

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

λ
1/2
1

λ
1/2
2

. . .

λ
1/2
n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

QT ,

which is easily verified to have the desired properties.

A.5 Topological Concepts

A sequence of vectors x0, x1, . . . , xk, . . ., denoted by {xk=0}∞k , or if the index set

is understood, by simply {xk}, is said to converge to the limit x if |xk − x| → 0 as

k → ∞ (that is, if given ε > 0, there is a N such that k � N implies |xk − x| < ε). If

{xk} converges to x, we write xk → x or lim xk = x.

A point x is a limit point of the sequence {xk} if there is a subsequence of {xk}
convergent to x. Thus x is a limit point of {xk} if there is a subset K of the positive

integers such that {xk}k∈K converges to x.

A ball (sphere) around x is a set of the form {y : |y − x| < (=) ε} for some ε > 0.

Such a ball is also referred to as the neighborhood of x of radius ε.

A subset S of En is open if around every point in S there is a sphere that is

contained in S . Equivalently, S is open if given x ∈ S there is an ε > 0 such that

|y − x| < ε implies y ∈ S . Thus the sphere {x : |x| < 1} is open. In general, open sets

can be characterized as sets having no sharp boundaries. The interior of any set S

in En is the set of points x ∈ S which are the center of some sphere contained in S .

500 A Mathematical Review

It is denoted
◦
S . The interior of a set is always open; indeed it is the largest open set

contained in S . The interior of the set {x : |x| � 1} is the sphere {x : |x| < 1}.
A set P is closed if every point that is arbitrarily close to the set P is a member

of P. Equivalently, P is closed if xk → x with xk ∈ P implies x ∈ P. Thus the set

{x : |x| � 1} is closed. The closure of any set P in En is the smallest closed set

containing P. It is denoted S . The boundary of a set is that part of the closure that is

not in the interior.

A set is compact if it is both closed and bounded (that is, if it is closed and is con-

tained within some sphere of finite radius). An important result, due to Weierstrass,

is that if S is a compact set and {xk} is a sequence each member of which belongs

to S , then {xk} has a limit point in S (that is, there is subsequence converging to a

point in S).

Corresponding to a bounded sequence {rk}∞k=0
of real numbers, if we let sk =

sup{ri : i � k} then {sk} converges to some real number so. This number is called the

limit superior of {rk} and is denoted lim
k→∞

(rk).

A.6 Functions

A real-valued function f defined on a subset of En is said to be continuous at x if

xk → x implies f (xk)→ f (x). Equivalently, f is continuous at x if given ε > 0 there

is a δ > 0 such that |y−x| < δ implies | f (y)− f (x)| < ε. An important result connected

with continuous functions is a theorem of Weierstrass: A continuous function f

defined on a compact set S has a minimum point in S ; that is, there is an x∗ ∈ S

such that for all x ∈ S , f (x) � f (x∗).
A set of real-valued functions f1, f2, . . . , fm on En can be regarded as a sin-

gle vector function f = (f1, f2, . . . , fm). This function assigns a vector f(x) =

(f1(x), f2(x), . . . , fm(x)) in Em to every vector x ∈ En. Such a vector-valued func-

tion is said to be continuous if each of its component functions is continuous.

If each component of f = (f1, f2, . . . , fm) is continuous on some open set of

En, then we write f ∈ C. If in addition, each component function has first partial

derivatives which are continuous on this set, we write f ∈ C1. In general, if the

component functions have continuous partial derivatives of order p, we write f ∈ Cp.

If f ∈ C1 is a real-valued function on En, f (x) = f (x1, x2, . . . , xn), we define

the gradient of f to be the vector

∇ f (x) =

[

∂ f (x)

∂x1

,
∂ f (x)

∂x2

, · · · , ∂ f (x)

∂xn

]

.

We sometimes use the alternative notation fx(x) for ∇ f (x). In matrix calculations

the gradient is considered to be a row vector.

A.6 Functions 501

If f ∈ C2 then we define the Hessian of f at x to be the n × n matrix denoted

∇
2 f (x) or F(x) as

F(x) =

[

∂2 f (x)

∂xi∂x j

]

.

Since

∂2 f

∂xi∂x j

=
∂2 f

∂x j∂xi

,

it is easily seen that the Hessian is symmetric.

For a vector-valued function f = (f1, f2, . . . , fm) the situation is similar. If

f ∈ C1, the first derivative is defined as the m × n matrix

∇f(x) =

[

∂ fi(x)

∂x j

]

.

If f ∈ C2 it is possible to define the m Hessians F1(x), F2(x), . . . , Fm(x) corre-

sponding to the m component functions. The second derivative itself, for a vector

function, is a third-order tensor but we do not require its use explicitly. Given any

λT
= [λ1, λ2, . . . , λm] ∈ Em, we note, however, that the real-valued function λT f

has gradient equal to λT
∇f(x) and Hessian, denoted λT F(x), equal to

λT F(x) =

m
∑

i=1

λiFi(x).

Also see Sect. 7.4 for a discussion of convex functions.

Taylor’s Theorem

A group of results that are used frequently in analysis are referred to under the

general heading of Taylor’s Theorem or Mean Value Theorems. If f ∈ C1 in a

region containing the line segment [x1, x2], then there is a θ, 0 � θ � 1 such that

f (x2) = f (x1) + ∇ f (θx1 + (1 − θ)x2)(x2 − x1).

Furthermore, if f ∈ C2 then there is a θ, 0 � θ � 1 such that

f (x2) = f (x1) + ∇ f (x1)(x2 − x1)

+
1

2
(x2 − x1)T F(θx1 + (1 − θ)x2)(x2 − x1),

where F denotes the Hessian of f .

502 A Mathematical Review

Implicit Function Theorem

Suppose we have a set of m equations in n variables

hi(x) = 0, i = 1, 2, . . . , m.

The implicit function theorem addresses the question as to whether if n − m of the

variables are fixed, the equations can be solved for the remaining m variables. Thus

selecting m variables, say x1, x2, . . . , xm, we wish to determine if these may be

expressed in terms of the remaining variables in the form

xi = φi(xm+1, xm+2, . . . , xn), i = 1, 2, . . . , m.

The functions φi, if they exist, are called implicit functions.

Theorem. Let x0 = (x0
1
, x0

2
, . . . , x0

n) be a point in En satisfying the properties:

i) The functions hi ∈ C p, i = 1, 2, . . . , m in some neighborhood of x0, for some p � 1.

ii) hi(x
0) = 0, i = 1, 2, . . . , m.

iii) The m ×m Jacobian matrix

J =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂h1(x0)
∂x1

· · · ∂h1(x0)
∂xm

.

.

.
.
.
.

∂hm(x0)
∂x1

· · · ∂hm(x0)
∂xm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

is nonsingular.

Then there is a neighborhood of x̂0 = (x0
m+1
, x0

m+2
, . . . , x0

n) ∈ En−m such that for x̂ =

(xm+1 , xm+2, . . . , xn) in this neighborhood there are functions φi(x̂), i = 1, 2, . . . , m such

that

i) φi ∈ C p.

ii) x0
i
= φi(x̂

0), i = 1, 2, . . . , m.

iii) hi(φ1(x̂), φ2(x̂), . . . , φm(x̂), x̂) = 0, i = 1, 2, . . . , m.

Example 1. Consider the equation x2
1
+ x2 = 0. A solution is x1 = 0, x2 = 0.

However, in a neighborhood of this solution there is no function φ such that x1 =

φ(x2). At this solution condition (iii) of the implicit function theorem is violated. At

any other solution, however, such a φ exists.

Example 2. Let A be an m × n matrix (m < n) and consider the system of linear

equations Ax = b. If A is partitioned as A = [B, C] where B is m×m then condition

(iii) is satisfied if and only if B is nonsingular. This condition corresponds, of course,

exactly with what the theory of linear equations tells us. In view of this example, the

implicit function can be regarded as a nonlinear generalization of the linear theory.

A.6 Functions 503

o, O Notation

If g is a real-valued function of a real variable, the notation g(x) = O(x) means that

g(x) goes to zero at least as fast as x does. More precisely, it means that there is a

K � 0 such that
∣

∣

∣

∣

∣

g(x)

x

∣

∣

∣

∣

∣

� K as x→ 0.

The notation g(x) = o(x) means that g(x) goes to zero faster than x does; or equiva-

lently, that K above is zero.

Appendix B

Convex Sets

B.1 Basic Definitions

Concepts related to convex sets so dominate the theory of optimization that it is

essential for a student of optimization to have knowledge of their most fundamental

properties. In this appendix is compiled a brief summary of the most important of

these properties.

Definition. A set C in En is said to be convex if for every x1, x2 ∈ C and every real number
α, 0 < α < 1, the point αx1 + (1 − α)x2 ∈ C.

This definition can be interpreted geometrically as stating that a set is convex if,

given two points in the set, every point on the line segment joining these two points

is also a member of the set. This is illustrated in Fig. B.1.

The following proposition shows that certain familiar set operations preserve

convexity.

Proposition 1. Convex sets in En satisfy the following relations:

i) If C is a convex set and β is a real number, the set

βC = {x : x = βc, c ∈ C}

is convex.

ii) If C and D are convex sets, then the set

C + D = {x : x = c + d, c ∈ C, d ∈ D}

is convex.

iii) The intersection of any collection of convex sets is convex.

The proofs of these three properties follow directly from the definition of a con-

vex set and are left to the reader. The properties themselves are illustrated in Fig. B.2.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3

505

506 B Convex Sets

Another important concept is that of forming the smallest convex set containing

a given set.

Fig. B.1 Convexity

Fig. B.2 Properties of convex sets

Definition. Let S be a subset of En. The convex hull of S , denoted co(S), is the set which
is the intersection of all convex sets containing S . The closed convex hull of S is defined as
the closure of co(S).

Finally, we conclude this section by defining a cone and a convex cone. A convex

cone is a special kind of convex set that arises quite frequently.

Definition. A set C is a cone if x ∈ C implies αx ∈ C for all α > 0. A cone that is also
convex is a convex cone.

Some cones are shown in Fig. B.3. Their basic property is that if a point x belongs

to a cone, then the entire half line from the origin through the point (but not the

origin itself) also must belong to the cone.

B.2 Hyperplanes and Polytopes 507

Fig. B.3 Cones

B.2 Hyperplanes and Polytopes

The most important type of convex set (aside from single points) is the hyperplane.

Hyperplanes dominate the entire theory of optimization, appearing under the guise

of Lagrange multipliers, duality theory, or gradient calculations.

The most natural definition of a hyperplane is the logical generalization of the

geometric properties of a plane in three dimensions. We start by giving this geo-

metric definition. For computations and for a concrete description of hyperplanes,

however, there is an equivalent algebraic definition that is more useful. A major

portion of this section is devoted to establishing this equivalence.

Definition. A set V in En is said to be a linear variety, if, given any x1, x2 ∈ V, we have
λx1 + (1 − λ)x2 ∈ V for all real numbers λ.

Note that the only difference between the definition of a linear variety and a

convex set is that in a linear variety the entire line passing through any two points,

rather than simply the line segment between them, must lie in the set. Thus in three

dimensions the nonempty linear varieties are points, lines, two-dimensional planes,

and the whole space. In general, it is clear that we may speak of the dimension of a

linear variety. Thus, for example, a point is a linear variety of dimension zero and

a line is a linear variety of dimension one. In the general case, the dimension of

a linear variety in En can be found by translating it (moving it) so that it contains

the origin and then determining the dimension of the resulting set, which is then a

subspace of En.

Definition. A hyperplane in En is an (n − 1)-dimensional linear variety.

We see that hyperplanes generalize the concept of a two-dimensional plane in

three-dimensional space. They can be regarded as the largest linear varieties in a

space, other than the entire space itself.

We now relate this abstract geometric definition to an algebraic one.

508 B Convex Sets

Proposition 2. Let a be a nonzero n-dimensional column vector, and let c be a real number.

The set

H = {x ∈ En : aT x = c}
is a hyperplane in En.

Proof. It follows directly from the linearity of the equation aT x = c that H is a linear

variety. Let x1 be any vector in H. Translating by −x1 we obtain the set M = H − x1

which is a linear subspace of En. This subspace consists of all vectors x satisfying

aT x = 0; in other words, all vectors orthogonal to a. This is clearly an (n − 1)-

dimensional subspace. �

Proposition 3. Let H be a hyperplane in En. Then there is a nonzero n- dimensional vector

and a constant c such that

H = {x ∈ En : aT x = c}.

Proof. Let x1 ∈ H and translate by −x1 obtaining the set M = H − x1. Since H is a

hyperplane, M is an (n−1)-dimensional subspace. Let a be any nonzero vector that is

orthogonal to this subspace, that is, a belongs to the one-dimensional subspace M⊥.

Clearly M = {x : aT x = 0}. Letting c = aT x1 we see that if x2 ∈ H we have x2−x1 ∈
M and thus aT x2−aT x1 = 0 which implies aT x2 = c. Thus H ⊂ {x : aT x = c}. Since

H is, by definition, of dimension n − 1 and {x : aT x = c} is of dimension n − 1 by

Proposition 2, these two sets must be equal. �

Combining Propositions 2 and 3, we see that a hyperplane is the set of solutions

to a single linear equation. This is illustrated in Fig. B.4. We now use hyperplanes

to build up other important classes of convex sets.

Definition. Let a be a nonzero vector in En and let c be a real number. Corresponding to
the hyperplane H = {x : aT x = c} are the positive and negative closed half spaces

H+ = {x : aT x � c}
H− = {x : aT x � c}

and the positive and negative open half spaces

H̊+ = {x : aT x > c}
H̊− = {x : aT x < c}.

It is easy to see that half spaces are convex sets and that the union of H+ and H−
is the whole space.

Definition. A set which can be expressed as the intersection of a finite number of closed
half spaces is said to be a convex polytope.

We see that convex polytopes are the sets obtained as the family of solutions to a

set of linear inequalities of the form

B.3 Separating and Supporting Hyperplanes 509

Fig. B.4 Hyperplane

Fig. B.5 Polytopes

aT
1 x � b1

aT
2 x � b2

...
...

aT
mx � bm,

since each individual inequality defines a half space and the solution family is the

intersection of these half spaces. (If some ai = 0, the resulting set can still, as the

reader may verify, be expressed as the intersection of a finite number of half spaces.)

Several polytopes are illustrated in Fig. B.5. We note that a polytope may be

empty, bounded, or unbounded. The case of a nonempty bounded polytope is of

special interest and we distinguish this case by the following.

Definition. A nonempty bounded polytope is called a polyhedron.

B.3 Separating and Supporting Hyperplanes

The two theorems in this section are perhaps the most important results related to

convexity. Geometrically, the first states that given a point outside a convex set, a

hyperplane can be passed through the point that does not touch the convex set. The

second, which is a limiting case of the first, states that given a boundary point of a

convex set, there is a hyperplane that contains the boundary point and contains the

convex set on one side of it.

510 B Convex Sets

Theorem 1. Let C be a convex set and let y be a point exterior to the closure of C. Then

there is a vector a such that aT y < inf
x∈C

aT x.

Proof. Let

δ = inf
x∈C
|x − y| > 0.

There is an x0 on the boundary of C such that |x0 − y| = δ. This follows because

the continuous function f (x) = |x − y| achieves its minimum over any closed and

bounded set and it is clearly only necessary to consider x in the intersection of the

closure of C and the sphere of radius 2δ centered at y.

We shall show that setting a = x0 − y satisfies the conditions of the theorem. Let

x ∈ C. For any α, 0 � α � 1, the point x0 + α(x − x0) ∈ C and thus

|x0 + α(x − x0) − y|2 � |x0 − y|2.

Expanding,

2α(x0 − y)T (x − x0) + α2|x − x0|2 � 0.

Thus, considering this as α→ 0+, we obtain

(x0 − y)T (x − x0) � 0

or,

(x0 − y)T x � (x0 − y)T x0 = (x0 − y)T y + (x0 − y)T (x0 − y)

= (x0 − y)T y + δ
2
.

Setting a = x0 − y proves the theorem. �

The geometrical interpretation of Theorem 1 is that, given a convex set C and a

point y exterior to the closure of C, there is a hyperplane containing y that contains

C in one of its open half spaces. We can easily extend this theorem to include the

case where y is a boundary point of C.

Theorem 2. Let C be a convex set and let y be a boundary point of C. Then there is a

hyperplane containing y and containing C in one of its closed half spaces.

Proof. Let {yk} be a sequence of vectors, exterior to the closure of C, converging

to y. Let {ak} be the sequence of corresponding vectors constructed according to

Theorem 1, normalized so that |ak| = 1, such that

aT
k yk < inf

x∈C
aτkx.

Since {ak} is a bounded sequence, it has a convergent subsequence {ak}, k ∈ K with

limit a. For this vector we have for any x ∈ C.

aT y = lim
k∈K

aT
k yk � lim

k∈K
aT

k x = ax. �

B.4 Extreme Points 511

Definition. A hyperplane containing a convex set C in one of its closed half spaces and
containing a boundary point of C is said to be a supporting hyperplane of C.

In terms of this definition, Theorem 2 says that, given a convex set C and a

boundary point y of C, there is a hyperplane supporting C at y.

It is useful in the study of convex sets to consider the relative interior of a convex

set C defined as the largest subset of C that contains no boundary points of C.

Another variation of the theorems of this section is the one that follows, which is

commonly known as the Separating Hyperplane Theorem.

Theorem 3. Let B and C be convex sets with no common relative interior points. (That is

the only common points are boundary points.) Then there is a hyperplane separating B and

D. In particular, there is a nonzero vector a such that supb∈B aT b ≤ infc∈C aT c.

Proof. Consider the set G = C − B. It is easily shown that G is convex and that 0 is

not a relative interior point of G. Hence, Theorem 1 or Theorem 2 applies and gives

the appropriate hyperplane. �

B.4 Extreme Points

Definition. A point x in a convex set C is said to be an extreme point of C if there are no
two distinct points x1 and x2 in C such that x = αx1 + (1 − α)x2 for some α, 0 < α < 1.

For example, in E2 the extreme points of a square are its four corners; the extreme

points of a circular disk are all points on the boundary. Note that a linear variety

consisting of more than one point has no extreme points.

Lemma 1. Let C be a convex set, H a supporting hyperplane of C, and T the intersection

of H and C. Every extreme point of T is an extreme point of C.

Proof. Suppose x0 ∈ T is not an extreme point of C. Then x0 = αx1 + (1 − α)x2 for

some x1, x2 ∈ C, x1 � x2, 0 < α < 1. Let H be described as H = {x : aT x = c} with

C contained in its closed positive half space. Then

aT x1 � c, aT x2 � c.

But, since x0 ∈ H,

c = aT x0 = αaT x1 + (1 − α)aT x2,

and thus x1 and x2 ∈ H. Hence x1, x2 ∈ T and x0 is not an extreme point of T . �

Theorem 4. A closed bounded convex set in En is equal to the closed convex hull of its

extreme points.

Proof. The proof is by induction on the dimension of the space En. The statement

is easily seen to be true for n = 1. Suppose that it is true for n− 1. Let C be a closed

bounded convex set in En, and let K be the closed convex hull of the extreme points

of C. We wish to show that K = C.

512 B Convex Sets

Assume there is y ∈ C y � K. Then by Theorem 1, Sect. B.3, there is a hyperplane

separating y and K; that is, there is a � 0, such that aT y < infx∈K aT x. Let c0 =

inf
x∈C

(aT x). The number c0 is finite and there is an x0 ∈ C for which aT x0 = c0, because

by Weierstrass’ Theorem, the continuous function aT x achieves its minimum over

any closed bounded set. Thus the hyperplane H = {x : aT x = c0} is a supporting

hyperplane to C. It is disjoint from K since c0 < inf
x∈K

(aT x).

Let T = H ∩ C. Then T is a bounded closed convex subset of H which can be

regarded as a space of dimension n − 1. T is nonempty, since it contains x0. Thus,

by the induction hypothesis, T contains extreme points; and by Lemma 1 these are

also extreme points of C. Thus we have found extreme points of C not in K, which

is a contradiction. �

Let us investigate the implications of this theorem for convex polyhedra. We

recall that a convex polyhedron is a bounded polytope. Being the intersection of

closed half spaces, a convex polyhedron is also closed. Thus any convex polyhedron

is the closed convex hull of its extreme points. It can be shown (see Sect. 2.5) that

any polytope has at most a finite number of extreme points and hence a convex

polyhedron is equal to the convex hull of a finite number of points. The converse

can also be established, yielding the following two equivalent characterizations.

Theorem 5. A convex polyhedron can be described either as a bounded intersection of a

finite number of closed half spaces, or as the convex hull of a finite number of points.

Appendix C

Gaussian Elimination

This appendix describes the method for solving systems of linear equations that has

proved to be, not only the most popular, but also the fastest and least susceptible

to round-off error accumulation—the method of Gaussian elimination. Attention is

directed toward explaining this classical elimination technique itself and its relation

to the theory of LU decomposition of a non-singular square matrix.

We first note how easily triangular systems of equations can be solved. Thus the

system

a11x1 = b1

a21x1 + a22x2 = b2

...
...

an1x1 + an2x2 + · · · + annxn = bn

can be solved recursively as follows:

x1 = b1/a11

x2 = (b2 − a21x1)/a22

...

xn = (bn − an1x1 − an2x2 . . . − ann−1xn−1)/ann,

provided that each of the diagonal terms aii, i = 1, 2, . . . , n is nonzero (as they

must be if the system is nonsingular). This observation motivates us to attempt to

reduce an arbitrary system of equations to a triangular one.

Definition. A square matrix C = [cij] is said to be lower triangular if cij = 0 for

i < j. Similarly, C is said to be upper triangular if cij = 0 for i > j.

In matrix notation, the idea of Gaussian elimination is to somehow find a decom-

position of a given n× n matrix A in the form A = LU where L is a lower triangular

and U an upper triangular matrix. The system

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3

513

514 C Gaussian Elimination

Ax = b (C.1)

can then be solved by solving the two triangular systems

Ly = b, Ux = y. (C.2)

The calculation of L and U together with solution of the first of these systems is

usually referred to as forward elimination, while solution of the second triangular

system is called back substitution.

Every nonsingular square matrix A has an LU decomposition, provided that int-

erchanges of rows of A are introduced if necessary. This interchange of rows cor-

responds to a simple reordering of the system of equations, and hence amounts to

no loss of generality in the method. For simplicity of notation, however, we assume

that no such interchanges are required.

We turn now to the problem of explicitly determining L and U, by elimination,

for a nonsingular matrix A. Given the system, we attempt to transform it so that

zeros appear below the main diagonal. Assuming that a11 � 0 we subtract multiples

of the first equation from each of the others in order to get zeros in the first column

below a11. If we define mk1 = ak1/a11 and let

M1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

−m21 1

−m31 1

•
•
•
−mn1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

the resulting new system of equations can be expressed as

A(2)x = b(2)

with

A(2) =M1A, b(2) =M1b.

The matrix A(2) = [a(2)
ij

] has a
(2)
k1
= 0, k > 1.

Next, assuming a
(2)
22
� 0, multiples of the second equation of the new system

are subtracted from equations 3 through n to yield zeros below a
(2)
22

in the second

column. This is equivalent in premultiplying A(2) and b(2) by

M2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0

0 1

• −m32 1

• −m42

• •
•
•
−mn2 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where mk2 = a
(2)

k2
/a

(2)
22

. This yields A(3) =M2A(2) and b(3) =M2A(2).

C Gaussian Elimination 515

Proceeding in this way we obtain A(n) =Mn−1Mn−2 . . .M1A, an upper triangular

matrix which we denote by U. The matrix M = Mn−1Mn−2 . . .M1 is a lower trian-

gular matrix, and since MA = U we have A = M−1U. The matrix L = M−1 is also

lower triangular and becomes the L of the desired LU decomposition for A.

The representation for L can be made more explicit by noting that M−1
k

is the

same as Mk except that the off-diagonal terms have the opposite sign. Furthermore,

we have L =M−1 =M−1
1 M−1

2 . . .M
−1
n−1 which is easily verified to be

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0

m21 1

m31 m32 1

• • •
• • •
• • •

mn1 mn2 • • • 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

•

Hence L can be evaluated directly in terms of the calculations required by the elim-

ination process. Of course, an explicit representation for M = L−1 would actually

be more useful but a simple representation for M does not exist. Thus we content

ourselves with the explicit representation for L and use it in (C.2).

If the original system (C.1) is to be solved for a single b vector, the vector y

satisfying Ly = b is usually calculated simultaneously with L in the form y =

b(n) = Mb. The final solution x is then found by a single back substitution, from

Ux = y. Once the LU decomposition of A has been obtained, however, the solution

corresponding to any right-hand side can be found by solving the two systems (C.2).

In practice, the diagonal element a
(k)

kk
of A(k) may become zero or very close

to zero. In this case it is important that the kth row be interchanged with a row

that is below it. Indeed, for considerations of numerical accuracy, it is desirable to

continuously introduce row interchanges of this type in such a way to insure |mij| � 1

for all i, j. If this is done, the Gaussian elimination procedure has exceptionally

good stability properties.

Appendix D

Basic Network Concepts

This appendix describes some of the basic graph and network terminology and

concepts necessary for the development of this alternative approach.

A graph consists of a finite collection of elements called nodes together with a

subset of unordered pairs of the nodes called arcs. The nodes of a graph are usually

numbered, say, 1, 2, 3, . . . , n. An arc between nodes i and j is then represented by

the unordered pair (i, j). A graph is typically represented as shown in Fig. D.1. The

nodes are designated by circles, with the number inside each circle denoting the

index of that node. The arcs are represented by the lines between the nodes.

Fig. D.1 A graph

There are a number of other elementary definitions associated with graphs that

are useful in describing their structure. A chain between nodes i and j is a sequence

of arcs connecting them. The sequence must have the form (i, k1), (k1, k2), (k2, k3),

. . . , (km, j). In Fig. D.1, (1, 2), (2, 4), (4, 3) is a chain between nodes 1 and 3. If a

direction of movement along a chain is specified—say from node i to node j—it is

then called a path from i to j. A cycle is a chain leading from node i back to node i.

The chain (1, 2), (2, 4), (4, 3), (3, 1) is a cycle for the graph in Fig. D.1.

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3

517

518 D Basic Network Concepts

A graph is connected if there is a chain between any two nodes. Thus, the graph

of Fig. D.1 is connected. A graph is a tree if it is connected and has no cycles.

Removal of any one of the arcs (1, 2), (1, 3), (2, 4), (3, 4) would transform the graph

of Fig. D.1 into a tree. Sometimes we consider a tree within a graph G, which is just

a tree made up of a subset of arcs from G. Such a tree is a spanning tree if it touches

all nodes of G. It is easy to see that a graph is connected if and only if it contains a

spanning tree.

In directed graphs a sense of orientation is given to each arc. In this case an

arc is considered to be an ordered pair of nodes (i, j), and we say that the arc is

from node i to node j. This is indicated on the graph by having an arrow on the arc

pointing from i to j as shown in Fig. D.2. When working with directed graphs, some

node pairs may have an arc in both directions between them. Rather than explicitly

indicating both arcs in such a case, it is customary to indicate a single undirected

arc. The notions of paths and cycles can be directly applied to directed graphs. In

addition we say that node j is reachable from i if there is a path from node i to j.

In addition to the visual representation of a directed graph characterized by

Fig. D.2, another common method of representation is in terms of a graph’s node-

arc incidence matrix. This is constructed by listing the nodes vertically and the arcs

horizontally. Then in the column under arc (i, j), a +1 is placed in the position cor-

responding to node i and a −1 is placed in the position corresponding to node j. The

incidence matrix for the graph of Fig. D.2 is shown in Table D.1.

Fig. D.2 A directed graph

(1,2) (1,4) (2,3) (2,4) (4,2)
1 1 1
2 –1 1 1 –1
3 –1
4 –1 –1 1

Table D.1 Incidence matrix for example

D.2 Tree Procedure 519

Clearly, all information about the structure of the graph is contained in the node-

arc incidence matrix. This representation is often very useful for computational pur-

poses, since it is easily stored in a computer.

D.1 Flows in Networks

A graph is an effective way to represent the communication structure between nodes.

When there is the possibility of flow along the arcs, we refer to the directed graph as

a network. In applications the network might represent a transportation system or a

communication network, or it may simply be a representation used for mathematical

purposes (such as in the assignment problem).

A flow in a given directed arc (i, j) is a number xi j � 0. Flows in the arcs of

the network must jointly satisfy a conservation criterion at each node. Specifically,

unless the node is a source or sink as discussed below, flow cannot be created or lost

at a node; the total flow into a node must equal the total flow out of the node. Thus

at each such node i
n

∑

j=1

xi j −
n

∑

k=1

xki = 0.

The first sum is the total flow from i, and the second sum is the total flow to i.

(Of course xi j does not exist if there is no arc from i to j.) It should be clear that

for nonzero flows to exist in a network without sources or sinks, the network must

contain a cycle.

In many applications, some nodes are in fact designated as sources or sinks (or,

alternatively, supply nodes or demand nodes). The net flow out of a source may be

positive, and the level of this net flow may either be fixed or variable, depending on

the application. Similarly, the net flow into a sink may be positive.

D.2 Tree Procedure

Recall that node j is reachable from node i in a directed graph if there is a path

from node i to node j. For simple graphs, determination of reachability can be ac-

complished by inspection, but for large graphs it generally cannot. The problem can

be solved systematically by a process of repeatedly labeling and scanning various

nodes in the graph. This procedure is the backbone of a number of methods for solv-

ing more complex graph and network problems, as illustrated later. It can also be

used to establish quickly some important theoretical results.

Assume that we wish to determine whether a path from node 1 to node m exists.

At each step of the algorithm, each node is either unlabeled, labeled but unscanned,

or labeled and scanned. The procedure consists of these steps:

520 D Basic Network Concepts

Step 1. Label node 1 with any mark. All other nodes are unlabeled.

Step 2. For any labeled but unscanned node i, scan the node by finding all unla-

beled nodes reachable from i by a single arc. Label these nodes with an i.

Step 3. If node m is labeled, stop; a breakthrough has been achieved—a path

exists. If no unlabeled nodes can be labeled, stop; no connecting path exists.

Otherwise, go to Step 2.

The process is illustrated in Fig. D.3, where a path between nodes 1 and 10 is

sought. The nodes have been labeled and scanned in the order 1, 2, 3, 5, 6, 8, 4, 7,

9, 10. The labels are indicated close to the nodes. The arcs that were used in the

scanning processes are indicated by heavy lines. Note that the collection of nodes

and arcs selected by the process, regarded as an undirected graph, form a tree—

a graph without cycles. This, of course, accounts for the name of the process, the

tree procedure. If one is interested only in determining whether a connecting path

exists and does not need to find the path itself, then the labels need only be simple

check marks rather than node indices. However, if node indices are used as labels,

then after successful completion of the algorithm, the actual connecting path can be

found by tracing backward from node m by following the labels. In the example,

one begins at 10 and moves to node 7 as indicated; then to 6, 3, and 1. The path

follows the reverse of this sequence.

It is easy to prove that the algorithm does indeed resolve the issue of the existence

of a connecting path. At each stage of the process, either a new node is labeled,

it is impossible to continue, or node m is labeled and the process is successfully

terminated. Clearly, the process can continue for at most n− 1 stages, where n is the

number of nodes in the graph. Suppose at some stage it is impossible to continue.

Let S be the set of labeled nodes at that stage and let S̄ be the set of unlabeled nodes.

Clearly, node 1 is contained in S , and node m is contained in S̄ . If there were a path

connecting node 1 with node m, then there must be an arc in that path from a node k

in S to a node in S̄ . However, this would imply that node k was not scanned, which

is a contradiction. Conversely, if the algorithm does continue until reaching node

m, then it is clear that a connecting path can be constructed backward as outlined

above.

Fig. D.3 The scanning procedure

D.3 Capacitated Networks 521

D.3 Capacitated Networks

In some network applications it is useful to assume that there are upper bounds

on the allowable flow in various arcs. This motivates the concept of a capacitated

network. A capacitated network is a network in which some arcs are assigned non-

negative capacities, which define the maximum allowable flow in those arcs. The

capacity of an arc (i, j) is denoted ki j, and this capacity is indicated on the graph by

placing the number ki j adjacent to the arc. Figure 2.1 shows an example of a network

with the capacities indicated. Thus the capacity from node 1 to node 2 is 12, while

that from node 2 to node 1 is 6.

Bibliography

[A1] J. Abadie, J. Carpentier, Generalization of the Wolfe reduced gradient

method to the case of nonlinear constraints, in Optimization, ed. by R.

Fletcher (Academic, London, 1969), pp. 37–47

[A2] H. Akaike, On a successive transformation of probability distribution and

its application to the analysis of the optimum gradient method. Ann. Inst.

Stat. Math. 11, 1–17 (1959)

[3] A.Y. Alfakih, A. Khandani, H. Wolkowicz, Solving euclidean distance

matrix completion problems via semidefinite programming. Comput. Opt.

Appl. 12, 13–30 (1999)

[A3] F. Alizadeh, Combinatorial optimization with interior point methods and

semi-definite matrices, Ph.D. thesis, University of Minnesota, Minneapolis,

1991

[A4] F. Alizadeh, Optimization over the positive semi-definite cone: interior-

point methods and combinatorial applications, in Advances in Optimization

and Parallel Computing, ed. by P.M. Pardalos (North Holland, Amsterdam,

1992), pp. 1–25

[6] E.D. Andersen, MOSEK: high performance software for large-scale LP, QP,

SOCP, SDP and MIP, http://www.mosek.com/ (1997)

[A5] E.D. Andersen, Y. Ye, On a homogeneous algorithm for the monotone com-

plementarity problem. Math. Prog. 84, 375–400 (1999)

[A6] K.M. Anstreicher, D. den Hertog, C. Roos, T. Terlaky, A long step bar-

rier method for convex quadratic programming. Algorithmica 10, 365–382

(1993)

[A7] H.A. Antosiewicz, W.C. Rheinboldt, Numerical analysis and functional

analysis, in Survey of Numerical Analysis, ed. by J. Todd, Chap. 14

(McGraw-Hill, New York, 1962)

[A8] L. Armijo, Minimization of functions having lipschitz continuous first-

partial derivatives. Pac. J. Math. 16(1), 1–3 (1966)

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3

523

http://www.mosek.com/

524 Bibliography

[A9] K.J. Arrow, L. Hurwicz, Gradient method for concave programming, I.: lo-

cal results, in Studies in Linear and Nonlinear Programming, ed. by K.J.

Arrow, L. Hurwicz, H. Uzawa (Stanford University Press, Stanford, CA,

1958)

[12] E. Balas, S. Ceria, G. Cornuejols, A lift-and-project cutting plane algorithm

for mixed 0-1 programs. Math. Program. 58, 295–324 (1993)

[B1] R.H. Bartels, A numerical investigation of the simplex method. Technical

Report No. CS 104, Computer Science Department, Stanford University,

Stanford, CA (31 July 1968)

[B2] R.H. Bartels, G.H Golub, The simplex method of linear programming using

LU decomposition. Commun. ACM 12(5), 266–268 (1969)

[15] A. Barvinok, A remark on the rank of positive semidefinite matrices subject

to affine constraints. Discrete Comput. Geom. 25, 23–31 (2001)

[16] A. Barvinok, A Course in Convexity. Graduate Studies in Mathematics, vol.

54 (American Mathematical Society, Providence, RI, 2002)

[17] J. Barzilai, J.M. Borwein, Two-point step size gradient methods. IMA

J. Numer. Anal. 8, 141–148 (2008)

[B3] D.A., Bayer, J.C. Lagarias, The nonlinear geometry of linear program-

ming, part i: affine and projective scaling trajectories. Trans. Am. Math. Soc

314(2), 499–526 (1989)

[B4] D.A. Bayer, J.C. Lagarias, The nonlinear geometry of linear programming,

part ii: legendre transform coordinates. Trans. Am. Math. Soc. 314(2),

527–581 (1989)

[B5] M.S. Bazaraa, J.J. Jarvis, Linear Programming and Network Flows (Wiley,

New York, 1977)

[B6] M.S. Bazaraa, J.J. Jarvis, H.F. Sherali, Karmarkar’s projective algorithm

(Chap. 8.4), pp. 380–394; Analysis of Karmarkar’s algorithm (Chap. 8.5),

pp. 394–418, in Linear Programming and Network Flows, 2nd edn. (Wiley

New York, 1990)

[B7] E.M.L. Beale, in Numerical Methods, Nonlinear Programming, ed. by J.

Abadie (North-Holland, Amsterdam, 1967)

[23] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

[B8] F.S. Beckman, The solution of linear equations by the conjugate gradient

method, in Mathematical Methods for Digital Computers, ed. by A. Ralston,

H.S. Wilf, vol. 1 (Wiley, New York, 1960)

[25] S.J. Benson, Y. Ye, X. Zhang, Solving large-scale sparse semidefinite pro-

grams for combinatorial optimization. SIAM J. Optim. 10, 443–461 (2000)

[26] A. Ben-Tal, A. Nemirovski, Structural design via semidefinite program-

ming, in Handbook on Semidefinite Programming (Kluwer, Boston, 2000),

pp. 443–467

[B9] D.P. Bertsekas, Partial conjugate gradient methods for a class of optimal

control problems. IEEE Trans. Autom. Control 19, 209–217 (1973)

[B10] D.P. Bertsekas, Multiplier methods: a survey. Automatica 12(2), 133–145

(1976)

Bibliography 525

[B11] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Meth-

ods (Academic, New York, 1982)

[B12] D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, 1995)

[31] D. Bertsimas, Y. Ye, Semidefinite relaxations, multivariate normal distri-

butions, and order statistics, in Handbook of Combinatorial Optimization

(Springer, New York, 1999), pp. 1473–1491

[B13] D.M. Bertsimas, J.N. Tsitsiklis, Linear Optimization (Athena Scientific,

Belmont, 1997)

[B14] M.C. Biggs, Constrained minimization using recursive quadratic program-

ming: some alternative sub-problem formulations, in Towards Global Op-

timization, ed. by L.C.W. Dixon, G.P. Szego (North-Holland, Amsterdam,

1975)

[B15] M.C. Biggs, On the convergence of some constrained minimization algo-

rithms based on recursive quadratic programming. J. Inst. Math. Appl. 21,

67–81 (1978)

[B16] G. Birkhoff, Three observations on linear algebra. Rev. Univ. Nac. Tu-

cumán, Ser. A. 5, 147–151 (1946)

[B17] P. Biswas, Y. Ye, Semidefinite programming for ad hoc wireless sensor net-

work localization, in Proceedings of the 3rd IPSN, 2004, pp. 46–54

[B18] R.E. Bixby, Progress in linear programming. ORSA J. Comput. 6(1), 15–22

(1994)

[B19] R.G. Bland, New finite pivoting rules for the simplex method. Math. Oper.

Res. 2(2), 103–107 (1977)

[B20] R.G. Bland, D. Goldfarb, M.J. Todd, The ellipsoidal method: a survey. Oper.

Res. 29, 1039–1091 (1981)

[B21] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation

(Springer, New York, 1996)

[41] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization

and statistical learning via the alternating direction method of multipliers.

Found. Trends Mach. Learn. 3, 1–122 (2010)

[B22] S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities

in System and Control Science (SIAM, Philadelphia, 1994)

[B23] S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University

Press, Cambridge, 2004)

[B24] C.G. Broyden, Quasi-Newton methods and their application to function

minimization. Math. Comput. 21, 368–381 (1967)

[B25] C.G. Broyden, The convergence of a class of double rank minimization

algorithms: parts I and II. J. Inst. Math. Appl. 6, 76–90, 222–231 (1970)

[B26] T. Butler, A.V. Martin, On a method of courant for minimizing functionals.

J. Math. Phys. 41, 291–299 (1962)

[C1] C.W. Carroll, The created response surface technique for optimizing non-

linear restrained systems. Oper. Res. 9(12), 169–184 (1961)

[C2] A. Charnes, Optimality and degeneracy in linear programming. Economet-

rica 20, 160–170 (1952)

526 Bibliography

[C3] A. Charnes, C.E. Lemke, The bounded variables problem. ONR Research

Memorandum 10, Graduate School of Industrial Administration, Carnegie

Institute of Technology, Pittsburgh (1954)

[50] C.H. Chen, B.S. He, Y.Y. Ye, X.M. Yuan, The direct extension of ADMM

for multi-block convex minimization problems is not necessarily conver-

gent. Math. Program. (2014). doi:10.1007/s10107-014-0826-5

[C4] A. Cohen, Rate of convergence for root finding and optimization algorithms.

Ph.D. dissertation, University of California, Berkeley, 1970

[C5] S.A. Cook, The complexity of theorem-proving procedures, in Proceedings

of 3rd ACM Symposium on the Theory of Computing, 1971, pp. 151–158

[C6] R.W. Cottle, Linear Programming. Lecture Notes for MS& E 310 (Stanford

University, Stanford, 2002)

[C7] R. Cottle, J.S. Pang, R.E. Stone, Interior-Point Methods (Chap. 5.9), in The

Linear Complementarity Problem (Academic, Boston, 1992), pp. 461–475

[C8] R. Courant, Calculus of variations and supplementary notes and exercises

(mimeographed notes), supplementary notes by M. Kruskal and H. Rubin,

revised and amended by J. Moser, New York University (1962)

[C9] J.B. Crockett, H. Chernoff, Gradient methods of maximization. Pac. J.

Math. 5, 33–50 (1955)

[C10] H. Curry, The method of steepest descent for nonlinear minimization

problems. Q. Appl. Math. 2, 258–261 (1944)

[58] Y.-H. Dai, R. Fletcher, Projected Barzilai-Borwein methods for large-scale

box-constrained quadratic programming. Numer. Math. 100, 21–47 (2005)

[D1] J.W. Daniel, The conjugate gradient method for linear and nonlinear opera-

tor equations. SIAM J. Numer. Anal. 4(1), 10–26 (1967)

[D2] G.B. Dantzig, Maximization of a linear function of variables subject to lin-

ear inequalities (Chap. XXI), in Activity Analysis of Production and Allo-

cation, ed. by T.C. Koopmans. Cowles Commission Monograph, vol. 13

(Wiley, New York, 1951)

[D3] G.B., Dantzig, Application of the simplex method to a transportation prob-

lem, in Activity Analysis of Production and Allocation, ed. by T.C. Koop-

mans (Wiley, New York, 1951), pp. 359–373

[D4] G.B. Dantzig, Computational algorithm of the revised simplex method.

RAND Report RM-1266, The RAND Corporation, Santa Monica, CA

(1953)

[D5] G.B. Dantzig, Variables with upper bounds in linear programming. RAND

Report RM-1271, The RAND Corporation, Santa Monica, CA (1954)

[D6] G.B. Dantzig, Linear Programming and Extensions (Princeton University

Press, Princeton, 1963)

[D7] G.B. Dantzig, L.R. Ford Jr., D.R. Fulkerson, A primal-dual algorithm, in

Linear Inequalities and Related Systems. Annals of Mathematics Study, vol.

38 (Princeton University Press, Princeton, NJ, 1956), pp. 171–181

[D8] G.B. Dantzig, A. Orden, P. Wolfe, Generalized simplex method for minimiz-

ing a linear form under linear inequality restraints. RAND Report RM-1264,

The RAND Corporation, Santa Monica, CA (1954)

Bibliography 527

[D9] G.B. Dantzig, M.N. Thapa, Linear Programming 1: Introduction (Springer,

New York, 1997)

[D10] G.B. Dantzig, M.N. Thapa, Linear Programming 2: Theory and Extensions

(Springer, New York, 2003)

[D11] G.B. Dantzig, P. Wolfe, Decomposition principle for linear programs. Oper.

Res. 8, 101–111 (1960)

[D12] W.C. Davidon, Variable metric method for minimization. Research and

Development Report ANL-5990 (Ref.) U.S. Atomic Energy Commission,

Argonne National Laboratories (1959)

[D13] W.C. Davidon, Variance algorithm for minimization. Comput. J. 10,

406–410 (1968)

[72] E. de Klerk, C. Roos, T. Terlaky, Initialization in semidefinite programming

via a self–dual skew–symmetric embedding. Oper. Res. Lett. 20, 213–221

(1997)

[D14] R.S. Dembo, S.C. Eisenstat, T. Steinhaug, Inexact Newton methods. SIAM

J. Numer. Anal. 19(2), 400–408 (1982)

[D15] J.E. Dennis Jr., J.J. Moré, Quasi-Newton methods, motivation and theory.

SIAM Rev. 19, 46–89 (1977)

[D16] J.E. Dennis Jr., R.E. Schnabel, Least change secant updates for quasi-

Newton methods. SIAM Rev. 21, 443–469 (1979)

[D17] L.C.W. Dixon, Quasi-Newton algorithms generate identical points. Math.

Prog. 2, 383–387 (1972)

[E1] B.C. Eaves, W.I. Zangwill, Generalized cutting plane algorithms. Working

Paper No. 274, Center for Research in Management Science, University of

California, Berkeley (July 1969)

[78] J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and

the proximal point algorithm for maximal monotone operators. Math. Pro-

gram. 55, 293–318 (1992)

[E2] H. Everett III, Generalized lagrange multiplier method for solving problems

of optimum allocation of resources. Oper. Res. 11, 399–417 (1963)

[F1] D.K. Faddeev, V.N. Faddeeva, Computational Methods of Linear Algebra

(W. H. Freeman, San Francisco, CA, 1963)

[F2] S.C. Fang, S. Puthenpura, Linear Optimization and Extensions (Prentice-

Hall, Englewood Cliffs, NJ, 1994)

[F3] W. Fenchel, Convex Cones, Sets, and Functions. Lecture Notes (Department

of Mathematics, Princeton University, Princeton, NJ, 1953)

[F4] A.V. Fiacco, G.P. McCormick, Nonlinear Programming: Sequential Uncon-

strained Minimization Techniques (Wiley, New York, 1968)

[F5] A.V. Fiacco, G.P. McCormick, Nonlinear Programming: Sequential Uncon-

strained Minimization Techniques (Wiley, New York, 1968). Reprint: Vol-

ume 4 of SIAM Classics in Applied Mathematics (SIAM Publications,

Philadelphia, PA, 1990)

[F6] R. Fletcher, A new approach to variable metric algorithms. Comput. J.

13(13), 317–322 (1970)

528 Bibliography

[F7] R. Fletcher, An exact penalty function for nonlinear programming with ine-

qualities. Math. Program. 5, 129–150 (1973)

[F8] R. Fletcher, Conjugate gradient methods for indefinite systems. Numerical

Analysis Report, 11. Department of Mathematics, University of Dundee,

Scotland (September 1975)

[F9] R. Fletcher, Practical Methods of Optimization 1: Unconstrained Optimiza-

tion (Wiley, Chichester, 1980)

[F10] R. Fletcher, Practical Methods of Optimization 2: Constrained Optimization

(Wiley, Chichester, 1981)

[F11] R. Fletcher, M.J.D. Powell, A rapidly convergent descent method for mini-

mization. Comput. J. 6, 163–168 (1963)

[F12] R. Fletcher, C.M. Reeves, Function minimization by conjugate gradients.

Comput. J. 7, 149–154 (1964)

[F13] L.K. Ford Jr., D.K. Fulkerson, Flows in Networks (Princeton University

Press, Princeton, NJ, 1962)

[F14] G.E. Forsythe, On the asymptotic directions of the s-dimensional optimum

gradient method. Numer. Math. 11, 57–76 (1968)

[F15] G.E. Forsythe, C.B. Moler, Computer Solution of Linear Algebraic Systems

(Prentice-Hall, Englewood Cliffs, NJ, 1967)

[F16] G.E. Forsythe, W.R. Wasow, Finite-Difference Methods for Partial Differ-

ential Equations (Wiley, New York, 1960)

[96] M. Fortin, R. Glowinski, On decomposition-coordination methods using an

augmented Lagrangian, in Augmented Lagrangian Methods: Applications to

the Solution of Boundary Problems, ed. by M. Fortin, R. Glowinski (North-

Holland, Amsterdam, 1983)

[F17] K. Fox, An Introduction to Numerical Linear Algebra (Clarendon Press,

Oxford, 1964)

[98] M. Frank, P. Wolfe, An algorithm for quadratic programming. Naval Res.

Logist. Q. 3, 95–110 (1956)

[F18] R.M. Freund, Polynomial-time algorithms for linear programming based

only on primal scaling and projected gradients of a potential function. Math.

Program. 51, 203–222 (1991)

[F19] K.R. Frisch, The logarithmic potential method for convex programming.

Unpublished Manuscript, Institute of Economics, University of Oslo, Oslo

(1955)

[G1] D. Gabay, Reduced quasi-Newton methods with feasibility improvement for

nonlinear constrained optimization, in Mathematical Programming Studies,

vol. 16 (North-Holland, Amsterdam, 1982), pp. 18–44

[102] D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear varia-

tional problems via finite element approximations. Comput. Math. Appl. 2,

17–40 (1976)

[G2] D. Gale, The Theory of Linear Economic Models (McGraw-Hill, New York,

1960)

Bibliography 529

[G3] U.M. Garcia-Palomares, O.L. Mangasarian, Superlinearly convergent quasi-

Newton algorithms for nonlinearly constrained optimization problems.

Math. Program. 11, 1–13 (1976)

[G4] S.I. Gass, Linear Programming, 3rd edn. (McGraw-Hill, New York, 1969)

[G5] P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin, M.H. Wright, On pro-

jected Newton barrier methods for linear programming and an equivalence

to Karmarkar’s projective method. Math. Program. 36, 183–209 (1986)

[G6] P.E., Gill, W. Murray, Quasi-Newton methods for unconstrained optimiza-

tion. J. Inst. Math. Appl. 9, 91–108 (1972)

[G7] P.E. Gill, W. Murray, M.H. Wright, Practical Optimization (Academic,

London, 1981)

[109] R. Glowinski, A. Marrocco, Approximation par éléments finis d’ordre un et

résolution par pénalisation-dualité d’une classe de problèmes non linéaires.

R.A.I.R.O. R2 2, 41–76 (1975)

[G8] M.X. Goemans, D.P. Williamson, Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming.

J. Assoc. Comput. Mach. 42, 1115–1145 (1995)

[G9] D. Goldfarb, A family of variable metric methods derived by variational

means. Math. Comput. 24, 23–26 (1970)

[112] D. Goldfarb, G. Iyengar, Robust portfolio selection problems. Math. Oper.

Res. 28, 1–38 (2002)

[G10] D. Goldfarb, M.J. Todd, Linear programming, in Optimization, ed. by

G.L. Nemhauser, A.H.G. Rinnooy Kan, M.J. Todd. Handbooks in Opera-

tions Research and Management Science, vol. 1 (North Holland, Amster-

dam, 1989), pp. 141–170

[G11] D. Goldfarb, D. Xiao, A primal projective interior point method for linear

programming. Math. Program. 51, 17–43 (1991)

[G12] A.A. Goldstein, On steepest descent. SIAM J. Control 3, 147–151 (1965)

[G13] C.C. Gonzaga, An algorithm for solving linear programming problems in

O(n3L) operations, in Progress in Mathematical Programming: Interior

Point and Related Methods, ed. by N. Megiddo (Springer, New York, 1989),

pp. 1–28

[G14] C.C. Gonzaga, M.J. Todd, An O(
√

nL)-iteration large-step primal-dual

affine algorithm for linear programming. SIAM J. Optim. 2, 349–359 (1992)

[G15] J. Greenstadt, Variations on variable metric methods. Math. Comput. 24,

1–22 (1970)

[H1] G. Hadley, Linear Programming (Addison-Wesley, Reading, MA, 1962)

[H2] G. Hadley, Nonlinear and Dynamic Programming (Addison-Wesley, Read-

ing, MA, 1964)

[H3] S.P. Han, A globally convergent method for nonlinear programming. J. Op-

tim. Theory Appl. 22(3), 297–309 (1977)

[H4] H. Hancock, Theory of Maxima and Minima (Ginn, Boston, 1917)

[H5] J. Hartmanis, R.E. Stearns, On the computational complexity of algorithms.

Trans. Am. Math. Soc. 117, 285–306 (1965)

530 Bibliography

[124] B.S. He, X.M. Yuan, On the O(1/n) convergence rate of the Douglas-

Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709

(2012)

[H6] D. den Hertog, Interior point approach to linear, quadratic and convex pro-

gramming, algorithms and complexity, Ph.D. thesis, Faculty of Mathematics

and Informatics, TU Delft, BL Delft, 1992

[H7] M.R. Hestenes, The conjugate gradient method for solving linear systems,

in Proceeding of Symposium in Applied Mathematics, vol. VI, Numerical

Analysis (McGraw-Hill, New York 1956), pp. 83–102

[H8] M.R. Hestenes, Multiplier and gradient methods. J. Opt. Theory Appl. 4(5),

303–320 (1969)

[H9] M.R. Hestenes, Conjugate-Direction Methods in Optimization (Springer,

Berlin, 1980)

[H10] M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving lin-

ear systems. J. Res. Natl. Bur. Stand. Sect. B 49, 409–436 (1952)

[H11] F.L. Hitchcock, The distribution of a product from several sources to numer-

ous localities. J. Math. Phys. 20, 224–230 (1941)

[H12] P. Huard, Resolution of mathematical programming with nonlinear con-

straints by the method of centers, in Nonlinear Programming, ed. by J.

Abadie (North Holland, Amsterdam, 1967), pp. 207–219

[H13] H.Y. Huang, Unified approach to quadratically convergent algorithms for

function minimization. J. Optim. Theory Appl. 5, 405–423 (1970)

[H14] L. Hurwicz, Programming in linear spaces, in Studies in Linear and Non-

linear Programming, ed. by K.J. Arrow, L. Hurwicz, H. Uzawa (Stanford

University Press, Stanford, CA, 1958)

[I1] E. Isaacson, H.B. Keller, Analysis of Numerical Methods (Wiley, New York,

1966)

[J1] W. Jacobs, The caterer problem. Naval Res. Logist. Q. 1, 154–165 (1954)

[J2] F. Jarre, Interior-point methods for convex programming. Appl. Math. Op-

tim. 26, 287–311 (1992)

[137] W.B. Johnson, J. Lindenstrauss, Extensions of lipshitz mapping into Hilbert

space. Comtemp. Math. 26, 189–206 (1984)

[K1] S. Karlin, Mathematical Methods and Theory in Games, Programming, and

Economics, vol. I (Addison-Wesley, Reading, MA, 1959)

[K2] N.K. Karmarkar, A new polynomial-time algorithm for linear programming.

Combinatorica 4, 373–395 (1984)

[K3] J.E. Kelley, The cutting-plane method for solving convex programs. J. Soc.

Ind. Appl. Math. VIII(4), 703–712 (1960)

[K4] L.G. Khachiyan, A polynomial algorithm for linear programming. Doklady

Akad. Nauk USSR 244, 1093–1096 (1979). Translated in Soviet Math. Dok-

lady 20, 191–194 (1979)

[K5] V. Klee, G.J. Minty, How good is the simplex method, in Inequalities III,

ed. by O. Shisha (Academic, New York, 1972)

[K6] M. Kojima, S. Mizuno, A. Yoshise, A polynomial-time algorithm for a class

of linear complementarity problems. Math. Program. 44, 1–26 (1989)

Bibliography 531

[K7] M. Kojima, S. Mizuno, A. Yoshise, An O(
√

nL) iteration potential reduction

algorithm for linear complementarity problems. Math. Program. 50, 331–

342 (1991)

[K8] T.C. Koopmans, Optimum utilization of the transportation system, in Pro-

ceedings of the International Statistical Conference, Washington, DC, 1947

[K9] J. Kowalik, M.R. Osborne, Methods for Unconstrained Optimization Prob-

lems (Elsevier, New York, 1968)

[K10] H.W. Kuhn, The Hungarian method for the assignment problem. Naval Res.

Logist. Q. 2, 83–97 (1955)

[K11] H.W. Kuhn, A.W. Tucker, Nonlinear programming, in Proceedings of the

Second Berkeley Symposium on Mathematical Statistics and Probability,

ed. by J. Neyman (University of California Press, Berkeley/Los Angeles,

CA, 1961), pp. 481–492

[L1] C. Lanczos, Applied Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1956)

[150] J.B. Lasserre, Global optimization with polynomials and the problem of

moments related. SIAM J. Optim. 11, 796–817 (2001)

[151] M. Laurent, Matrix completion problems. Encycl. Optim. 3, 221–229

(2001)

[L2] E. Lawler, Combinatorial Optimization: Networks and Matroids (Holt,

Rinehart, and Winston, New York, 1976)

[L3] C. Lemarechal, R. Mifflin, Nonsmooth optimization, in IIASA Proceedings

III (Pergamon Press, Oxford, 1978)

[L4] C.E. Lemke, The dual method of solving the linear programming problem.

Naval Res. Logist. Q. 1(1), 36–47 (1954)

[L5] E.S. Levitin, B.T. Polyak, Constrained minimization methods. Zh. vychisl.

Math. Math. Fiz 6(5), 787–823 (1966)

[156] M.S. Lobo, L. Vandenberghe, S. Boyd, Applications of second-order cone

programming. Linear Algebra Appl. 284, 193–228 (1998)

[L6] C. Loewner, Über monotone Matrixfunktionen. Math. Zeir. 38, 177–216

(1934). Also see C. Loewner, Advanced matrix theory, mimeo notes, Stan-

ford University, 1957

[L7] F.A. Lootsma, Boundary properties of penalty functions for constrained

minimization, Doctoral dissertation, Technical University, Eindhoven, May

1970

[159] L. Lovász, A. Shrijver, Cones of matrices and setfunctions, and 0 − 1 opti-

mization. SIAM J. Optim. 1, 166–190 (1990)

[160] Z. Lu, L. Xiao, On the complexity analysis of randomized block-coordinate

descent methods. Math. Program. (2013). doi: 10.1007/s10107-014-0800-2

[L8] D.G. Luenberger, Optimization by Vector Space Methods (Wiley, New York,

1969)

[L9] D.G. Luenberger, Hyperbolic pairs in the method of conjugate gradients.

SIAM J. Appl. Math. 17(6), 1263–1267 (1969)

[L10] D.G. Luenberger, A combined penalty function and gradient projec-

tion method for nonlinear programming, Internal Memo, Department of

Engineering-Economic Systems, Stanford University (June 1970)

532 Bibliography

[L11] D. G. Luenberger, The conjugate residual method for constrained minimiza-

tion problems. SIAM J. Numer. Anal. 7(3), 390–398 (1970)

[L12] D.G. Luenberger, Control problems with kinks. IEEE Trans. Autom. Con-

trol AC-15(5), 570–575 (1970)

[L13] D.G. Luenberger, Convergence rate of a penalty-function scheme. J. Optim.

Theory Appl. 7(1), 39–51 (1971)

[L14] D.G. Luenberger, The gradient projection method along geodesics. Manag.

Sci. 18(11), 620–631 (1972)

[L15] D.G. Luenberger, Introduction to Linear and Nonlinear Programming, 1st

edn. (Addison-Wesley, Reading, MA, 1973)

[L16] D.G. Luenberger, Linear and Nonlinear Programming, 2nd edn. (Addison-

Wesley, Reading, MA, 1984)

[L17] D.G. Luenberger, An approach to nonlinear programming. J. Optim. Theory

Appl. 11(3), 219–227 (1973)

[171] Z.Q. Luo, W. Ma, A.M. So, Y. Ye, S. Zhang, Semidefinite relaxation of

quadratic optimization problems. IEEE Signal Process. Mag. 27, 20–34

(2010)

[L18] Z.Q. Luo, J. Sturm, S. Zhang, Conic convex programming and self-dual

embedding. Optim. Methods Softw. 14, 169–218 (2000)

[L19] I.J. Lustig, R.E. Marsten, D.F. Shanno, On implementing mehrotra’s

predictor-corrector interior point method for linear programming. SIAM J.

Optim. 2, 435–449 (1992)

[M1] N. Maratos, Exact penalty function algorithms for finite dimensional and

control optimization problems, Ph.D. thesis, Imperial College Sci. Tech.,

University of London, 1978

[M2] G.P. McCormick, Optimality criteria in nonlinear programming, in Nonlin-

ear Programming, SIAM-AMS Proceedings, vol. IX, 1976, pp. 27–38

[M3] L. McLinden, The analogue of Moreau’s proximation theorem, with appli-

cations to the nonlinear complementarity problem. Pac. J. Math. 88, 101–

161 (1980)

[M4] N. Megiddo, Pathways to the optimal set in linear programming, in Progress

in Mathematical Programming: Interior Point and Related Methods, ed. by

N. Megiddo (Springer, New York, 1989), pp. 131–158

[M5] S. Mehrotra, On the implementation of a primal-dual interior point method.

SIAM J. Optim. 2(4), 575–601 (1992)

[M6] S. Mizuno, M.J. Todd, Y. Ye, On adaptive step primal-dual interior point

algorithms for linear programming. Math. Oper. Res. 18, 964–981 (1993)

[180] R.D.C. Monteiro, B.F. Svaiter, Iteration-complexity of block-decomposition

algorithms and the alternating direction method of multipliers. SIAM J. Op-

tim. 23, 475–507 (2013)

[M7] R.D.C. Monteiro, I. Adler, Interior path following primal-dual algorithms:

part i: linear programming. Math. Program. 44, 27–41 (1989)

[M8] D.D. Morrison, Optimization by least squares. SIAM J. Numer. Anal. 5,

83–88 (1968)

Bibliography 533

[M9] B.A. Murtagh, Advanced Linear Programming (McGraw-Hill, New York,

1981)

[M10] B.A. Murtagh, R.W.H. Sargent, A constrained minimization method with

quadratic convergence (Chap. 14), in Optimization, ed. by R. Fletcher (Aca-

demic, London, 1969)

[M11] K.G. Murty, Linear and Combinatorial Programming (Wiley, New York,

1976)

[M12] K.G. Murty, The Karmarkar’s algorithm for linear programming

(Chap. 11.4.1), in Linear Complementarity, Linear and Nonlinear Program-

ming. Sigma Series in Applied Mathematics, vol. 3 (Heldermann Verlag,

Berlin, 1988), pp. 469–494

[N1] S.G., Nash, A. Sofer Linear and Nonlinear Programming (McGraw-Hill

Companies, New York, 1996)

[188] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale opti-

mization problems. SIAM J. Optim. 22, 341–362 (2012)

[189] Y.E. Nesterov, Semidefinite relaxation and nonconvex quadratic optimiza-

tion. Optim. Methods Softw. 9, 141–160 (1998)

[190] Y. Nesterov, A method of solving a convex programming problem with con-

vergence rate O((1/k2)). Soviet Math. Doklady 27(2), 372–376 (1983)

[191] Y. Nesterov, M.J. Todd, Y. Ye, Infeasible-start primal-dual methods and inf-

easibility detectors for nonlinear programming problems. Math. Program.

84, 227–267 (1999)

[N2] Y. Nesterov, A. Nemirovskii, Interior Point Polynomial Methods in Convex

Programming: Theory and Algorithms (SIAM Publications, Philadelphia,

1994)

[N3] Y. Nesterov, M.J. Todd, Self-scaled barriers and interior-point methods for

convex programming. Math. Oper. Res. 22(1) 1–42 (1997)

[N4] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course

(Kluwer, Boston, 2004)

[O1] W. Orchard-Hays, Background development and extensions of the revised

simplex method. RAND Report RM-1433, The RAND Corporation, Santa

Monica, CA (1954)

[O2] A. Orden, Application of the simplex method to a variety of matrix

problems, in Directorate of Management Analysis: “Symposium on Lin-

ear Inequalities and Programming”, ed. by A. Orden, L. Goldstein

(DCS/Comptroller, Headquarters, U.S. Air Force, Washington, DC, 1952),

pp. 28–50

[O3] A. Orden, The transshipment problem. Manag. Sci. 2(3), 276–285 (1956)

[O4] S.S. Oren, Self-scaling variable metric (ssvm) algorithms ii: implementation

and experiments. Manag. Sci. 20, 863–874 (1974)

[O5] S.S. Oren, D.G. Luenberger, Self-scaling variable metric (ssvm) algorithms

i: criteria and sufficient conditions for scaling a class of algorithms. Manag.

Sci. 20, 845–862 (1974)

[O6] S.S. Oren, E. Spedicato, Optimal conditioning of self-scaling variable met-

ric algorithms. Math. Program. 10, 70–90 (1976)

534 Bibliography

[O7] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in

Several Variables (Academic, New York, 1970)

[P1] C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear

equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975)

[P2] C. Papadimitriou, K. Steiglitz, Combinatorial Optimization Algorithms and

Complexity (Prentice-Hall, Englewood Cliffs, NJ, 1982)

[204] P. Parrilo, Semidefinite programming relaxations for semialgebraic prob-

lems. Math. Program. 96, 293–320 (2003)

[205] G. Pataki, On the rank of extreme matrices in semidefinite programs and the

multiplicity of optimal eigenvalues. Math. Oper. Res. 23, 339–358 (1998)

[P3] A. Perry, A modified conjugate gradient algorithm, Discussion Paper No.

229, Center for Mathematical Studies in Economics and Management Sci-

ence, North-Western University, Evanston, IL (1976)

[P4] E. Polak, Computational Methods in Optimization: A Unified Approach

(Academic, New York, 1971)

[P5] E. Polak, G. Ribiere, Note sur la Convergence de Methods de Directions

Conjugres. Revue Francaise Informat. Recherche Operationnelle 16, 35–

43 (1969)

[P6] M.J.D. Powell, An efficient method for finding the minimum of a function

of several variables without calculating derivatives. Comput. J. 7, 155–162

(1964)

[P7] M.J.D. Powell, A method for nonlinear constraints in minimization prob-

lems, in Optimization, ed. by R. Fletcher Powell (Academic, London, 1969),

pp. 283–298

[P8] M.J.D. Powell, On the convergence of the variable metric algorithm. Math-

ematics Branch, Atomic Energy Research Establishment, Harwell, Berk-

shire, England, (October 1969)

[P9] M.J.D. Powell, Algorithms for nonlinear constraints that use lagrangian

functions. Math. Program. 14, 224–248 (1978)

[P10] B.N. Pshenichny, Y.M. Danilin, Numerical Methods in Extremal Problems

(translated from Russian by V. Zhitomirsky) (MIR Publishers, Moscow,

1978)

[214] M. Ramana, An exact duality theory for semidefinite programming and its

complexity implications. Math. Program. 77, 129–162 (1997)

[215] M. Ramana, L. Tuncel H. Wolkowicz, Strong duality for semidefinite pro-

gramming. SIAM J. Optim. 7, 641–662 (1997)

[R1] J. Renegar, A polynomial-time algorithm, based on Newton’s method, for

linear programming. Math. Program. 40, 59–93 (1988)

[R2] J. Renegar, A Mathematical View of Interior-Point Methods in Convex Op-

timization (Society for Industrial and Applied Mathematics, Philadelphia,

2001)

[R3] R.T. Rockafellar, The multiplier method of hestenes and powell applied to

convex programming. J. Optim. Theory Appl. 12, 555–562 (1973)

[219] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton,

NJ, 1970)

Bibliography 535

[R4] C. Roos, T. Terlaky, J.-Ph. Vial, Theory and Algorithms for Linear Opti-

mization: An Interior Point Approach (Wiley, Chichester, 1997)

[R5] J. Rosen, The gradient projection method for nonlinear programming, I. Lin-

ear contraints. J. Soc. Ind. Appl. Math. 8, 181–217 (1960)

[R6] J. Rosen, The gradient projection method for nonlinear programming, II.

Non-linear constraints. J. Soc. Ind. Appl. Math. 9, 514–532 (1961)

[S1] R. Saigal, Linear Programming: Modern Integrated Analysis (Kluwer Aca-

demic Publisher, Boston, 1995)

[S2] B. Shah, R. Buehler, O. Kempthorne, Some algorithms for minimizing a

function of several variables. J. Soc. Ind. Appl. Math. 12, 74–92 (1964)

[S3] D.F. Shanno, Conditioning of quasi-Newton methods for function mini-

mization. Math. Comput. 24, 647–656 (1970)

[S4] D.F. Shanno, Conjugate gradient methods with inexact line searches. Math.

Oper. Res. 3(3) 244–2560 (1978)

[S5] A. Shefi, Reduction of linear inequality constraints and determination of

all feasible extreme points, Ph.D. dissertation, Department of Engineering-

Economic Systems, Stanford University, Stanford, CA, October 1969

[228] W.F. Sheppard, On the calculation of the double integral expressing normal

correlation. Trans. Camb. Philos. Soc. 19, 23–66 (1900)

[S6] M. Simonnard, Linear Programming, translated by William S. Jewell

(Prentice-Hall, Englewood Cliffs, NJ, 1966)

[S7] M. Slater, Lagrange multipliers revisited: a contribution to non-linear pro-

gramming. Cowles Commission Discussion Paper, Math 403 (November

1950)

[231] A.M. So, Y. Ye, Theory of semidefinite programming for sensor network

localization. Math. Program. 109, 367–384 (2007)

[232] A.M. So, Y. Ye, J. Zhang, A unified theorem on SDP rank reduction. Math.

Oper. Res. 33, 910–920 (2008)

[S8] G. Sonnevend, An ‘analytic center’ for polyhedrons and new classes of

global algorithms for linear (smooth, convex) programming, in System Mod-

elling and Optimization: Proceedings of the 12th IFIP-Conference held

in Budapest, Hungary, September 1985, ed. by A. Prekopa, J. Szelezsan,

B. Strazicky. Lecture Notes in Control and Information Sciences, vol. 84

(Springer, Berlin, 1986), pp. 866–876

[S9] G.W. Stewart, A modification of Davidon’s minimization method to accept

difference approximations of derivatives. J. ACM 14, 72–83 (1967)

[S10] E.L. Stiefel, Kernel polynomials in linear algebra and their numerical appli-

cations. Nat. Bur. Stand. Appl. Math. Ser. 49, 1–22 (1958)

[S11] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over

symmetric cones. Optim. Methods Softw. 11&12, 625–633 (1999)

[S12] J. Sun, L. Qi, An interior point algorithm of O(
√

n| ln(ǫ)|) iterations for C1-

convex programming. Math. Program. 57, 239–257 (1992)

[T1] A. Tamir, Line search techniques based on interpolating polynomials using

function values only. Manag. Sci. 22(5), 576–586 (1976)

536 Bibliography

[T2] K. Tanabe, Complementarity-enforced centered Newton method for mathe-

matical programming, in New Methods for Linear Programming, ed. by K.

Tone (The Institute of Statistical Mathematics, Tokyo, 1987), pp. 118–144

[T3] R.A. Tapia, Quasi-Newton methods for equality constrained optimization:

equivalents of existing methods and new implementation, in Symposium on

Nonlinear Programming III, ed. by O. Mangasarian, R. Meyer, S. Robinson

(Academic, New York, 1978), pp. 125–164

[T4] M.J. Todd, A low complexity interior point algorithm for linear program-

ming. SIAM J. Optim. 2, 198–209 (1992)

[T5] M.J. Todd, Y. Ye, A centered projective algorithm for linear programming.

Math. Oper. Res. 15, 508–529 (1990)

[T6] K. Tone, Revisions of constraint approximations in the successive qp

method for nonlinear programming problems. Math. Program. 26(2), 144–

152 (1983)

[T7] D.M. Topkis, A note on cutting-plane methods without nested constraint

sets. ORC 69-36, Operations Research Center, College of Engineering,

Berkeley, CA (December 1969)

[T8] D.M. Topkis, A.F. Veinott Jr., On the convergence of some feasible direction

algorithms for nonlinear programming. J. SIAM Control 5(2), 268–279

(1967)

[T9] J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall,

Englewood Cliffs, NJ, 1964)

[T10] L. Tunçel, Constant potential primal-dual algorithms: a framework. Math.

Prog. 66, 145–159 (1994)

[T11] R. Tutuncu, An infeasible-interior-point potential-reduction algorithm for

linear programming, Ph.D. thesis, School of Operations Research and In-

dustrial Engineering, Cornell University, Ithaca, NY, 1995

[T12] P. Tseng, Complexity analysis of a linear complementarity algorithm based

on a Lyapunov function. Math. Program. 53, 297–306 (1992)

[V1] P.M. Vaidya, An algorithm for linear programming which requires O((m +

n)n2 + (m+ n)1.5nL) arithmetic operations. Math. Prog. 47, 175–201 (1990).

Condensed version in: Proceedings of the 19th Annual ACM Symposium

on Theory of Computing, 1987, pp. 29–38

[V2] L. Vandenberghe, S. Boyd, Semidefinite programming. SIAM Rev. 38(1)

49–95 (1996)

[V3] R.J. Vanderbei, Linear Programming: Foundations and Extensions (Kluwer

Academic Publishers, Boston, 1997)

[V4] S.A. Vavasis, Nonlinear Optimization: Complexity Issues (Oxford Science,

New York, NY, 1991)

[V5] A.F. Veinott Jr., The supporting hyperplane method for unimodal program-

ming. Oper. Res. XV 1, 147–152 (1967)

[V6] Y.V. Vorobyev, Methods of Moments in Applied Mathematics (Gordon and

Breach, New York, 1965)

[W1] D.J. Wilde, C.S. Beightler, Foundations of Optimization (Prentice-Hall, En-

glewood Cliffs, NJ, 1967)

Bibliography 537

[W2] R.B. Wilson, A simplicial algorithm for concave programming, Ph.D. dis-

sertation, Harvard University Graduate School of Business Administration,

1963

[W3] P. Wolfe, A duality theorem for nonlinear programming. Q. Appl. Math. 19,

239–244 (1961)

[W4] P. Wolfe, On the convergence of gradient methods under constraints. IBM

Research Report RZ 204, Zurich (1966)

[W5] P. Wolfe, Methods of nonlinear programming (Chap. 6), in Nonlinear

Programming, ed. by J. Abadie. Interscience (Wiley, New York, 1967),

pp. 97–131

[W6] P. Wolfe, Convergence conditions for ascent methods. SIAM Rev. 11,

226–235 (1969)

[W7] P. Wolfe, Convergence theory in nonlinear programming (Chap. 1), in Inte-

ger and Nonlinear Programming, ed. by J. Abadie (North-Holland Publish-

ing Company, Amsterdam, 1970)

[W8] S.J. Wright, Primal-Dual Interior-Point Methods (SIAM, Philadelphia,

1996)

[264] G. Xue, Y. Ye, Efficient algorithms for minimizing a sum of Euclidean

norms with applications. SIAM J. Optim. 7, 1017–1036 (1997)

[265] Y. Ye, Approximating quadratic programming with bound and quadratic

constraints. Math. Program. 84, 219–226 (1999)

[Y1] Y. Ye, An O(n3L) potential reduction algorithm for linear programming.

Math. Program. 50, 239–258 (1991)

[Y2] Y. Ye, M.J. Todd, S. Mizuno, An O(
√

nL)-iteration homogeneous and self-

dual linear programming algorithm. Math. Oper. Res. 19, 53–67 (1994)

[Y3] Y. Ye, Interior Point Algorithms (Wiley, New York, 1997)

[269] Y. Ye, A new complexity result on solving the markov decision problem.

Math. Oper. Res. 30, 733–749 (2005)

[Z1] W.I. Zangwill, Nonlinear programming via penalty functions. Manag. Sci.

13(5), 344–358 (1967)

[Z2] W.I. Zangwill, Nonlinear Programming: A Unified Approach (Prentice-

Hall, Englewood Cliffs, NJ, 1969)

[Z3] Y. Zhang, D. Zhang, On polynomiality of the mehrotra-type predictor-

corrector interior-point algorithms. Math. Program. 68, 303–317 (1995)

[Z4] G. Zoutendijk, Methods of Feasible Directions (Elsevier, Amsterdam, 1960)

Index

A

Absolute-value penalty function, 421, 423,
424, 444, 479–481, 489

Active constraints, 91, 322, 323, 340–343,
359–361, 364–368, 378, 391, 392,
406–409, 413, 424, 460, 467, 470,
485

Active set methods, 360–364, 392, 467, 470,
481, 488, 489

convergence properties of, 361
Active set theorem, 363–364
Activity space, 41, 92
Adjacent extreme points, 38–42

Aitken δ2 method, 261
Aitken double sweep method, 252
Algorithms

accelerated steepest descent, 243–244
arithmetic convergence, 206, 257
BB method, 245
coordinate descent, 252, 253
ellipsoid, 116
Frank–Wolfe, 359
geometric convergence, 206
interior, 123
interior-point, 116, 123, 137, 138, 142,

149, 166, 170–173
iterative, 6–8, 116, 179, 186, 192, 193,

197–198, 207, 209, 226, 229, 257,
260, 261, 314, 469

line search, 135, 214–229, 257, 259, 277,
281, 297, 305, 463

maximal flow, 98, 99, 113
2nd-order method, 222–223
Newton’s method, 125, 213, 247, 249, 253,

257, 307–309, 417

path-following, 130, 131, 134
polynomial time, 7, 116, 118, 209
potential reduction, 130, 134–137, 493
randomized coordinate descent, 254–256,

262
simplex method, 33–81, 115–119, 130,

131, 137, 138, 142, 143, 378, 391,
392, 469

steepest descent, 204, 213, 229, 257, 280,
282, 287, 417

0th-order method, 214–218
1th-order method, 218–222
transportation, 66–67

Alternating direction method of multipliers,
454–458

Analytic center, 116, 123–130, 143, 144,
182

Arcs, 95, 96, 98, 113, 169, 170, 373. See also

Nodes
artificial, 170
basic, 6, 169

Armijo rule, 228, 230
Artificial variables, 50–52, 75–77, 105,

140
Assignment problem, 80, 107, 108
Associated restricted dual, 103, 105, 114
Associated restricted primal, 102–104,

106
Asymptotic convergence, 239, 278, 361,

372
Augmented Lagrangian methods, 429,

445–452, 454, 457
Augmenting path, 95, 96, 98
Average convergence ratio, 207, 208, 211
Average rates, 206–207

© Springer International Publishing Switzerland 2016

D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
DOI 10.1007/978-3-319-18842-3

539

540 Index

B

Back substitution, 62, 72

Backtracking, 248, 251
Barrier methods, 116, 131–132, 134, 143, 170,

247, 249, 250, 257, 397–428, 467,
470, 485. See also Penalty methods

Barrier problem, 126, 128, 132, 133, 398, 413,
424, 485, 486

Basic feasible solution, 20–25, 33, 38–42, 44,
45, 47, 49–53, 58–60, 64–67,
72–77, 79, 88, 89, 100, 118

Basic variables, 19, 20, 35, 36, 38, 39, 43, 44,
46–48, 50, 54, 61–67, 72, 78,
379–381, 386, 395

Basis Triangularity theorem, 60–62
Big-M method, 77, 112, 139

Bland’s rule, 49, 80, 81
Block-angular structure, 68

Bordered Hessian test, 338, 353
Broyden family, 293–296, 303, 305

Broyden–Fletcher–Goldfarb–Shanno
update, 294

Broyden method, 295–297, 300
Bug, 371, 372, 383, 384

C

Canonical form, 34–38, 45, 47, 48, 50, 55, 139
Canonical rate, 8, 372, 398, 413, 415–418,

420, 424, 441, 464, 483, 484, 489

Capacitated networks, 16

Carathéodory theorem, 20, 166
Caterer problem, 78

Cauchy–Schwarz inequality, 291
Central path, 116, 125–135, 137, 143, 144,

146, 171–173, 175, 410, 426, 486,
489, 493

dual, 125–130, 143
primal-dual, 129–130, 133–134, 470, 486

Chain, 329–331, 339, 387–390, 445
hanging, 329–332, 386, 396, 443

Cholesky factorization, 210, 249
Closed mappings, 199–201, 314, 381

Closed set, 156, 157, 200
Combinatorial auction, 18, 108

Compact set, 201, 202, 253, 314, 475
Complementary formula, 293

Complementary slackness, 92–94, 99, 102,
141, 341, 349, 434, 467, 468, 480

Complexity theory, 116–118, 208
Concave functions, 179, 188–192

Condition number, 237, 240, 241, 261, 297,
301, 306, 312, 314, 389, 396, 452

Cone

dual, 150, 155, 174

interior, 154

self-dual, 172

Conic linear programming (CLP), 149–175

compact form, 151, 158

duality, 158–166, 168, 171, 173, 174

duality gap, 162, 163, 166, 171

dual problem, 158

facility location, 159, 160

Farkas’ lemma, 54–157, 164, 173

infeasibility certificate, 155, 173

interior-point algorithm, 149, 166,
170–173

linear programming, 149–175

matrix to vector operator, 151, 155

optimality conditions, 164

p-order cone programming, 150, 151, 154,
172, 174

potential reduction algorithm, 134

SDP, 149–154, 158, 159, 161–163,
165–171, 174, 175

second-order cone programming, 150–152,
154, 155, 159–162, 170

strong duality, 162–165, 168, 173

vector to matrix operator, 151, 155

weak duality, 162, 164, 174

Conjugate direction method, 263–283, 292,
473, 488

algorithm, 263, 264, 266, 269–270, 277,
278, 280, 281

descent properties of, 266–268

theorem, 265–276, 278–281

Conjugate gradient method, 263, 266,
268–283, 290, 293, 296, 297, 300,
304–306, 312, 316, 390, 413–415,
424, 451, 473, 490

algorithm, 269, 277, 414

non-quadratic, 268, 276–279

PARTAN, 280, 281, 390

partial, 273–276, 279, 283, 296, 306, 316,
413, 424

theorem, 269, 270, 273, 278

Conjugate residual method, 490

Constrained problems, 2–5, 241, 274, 323,
333, 335, 341, 342, 344, 348, 360,
361, 363, 372, 384, 390, 397, 398,
403, 407, 411–412, 417–424, 429,
437, 440, 441, 445, 450, 469, 483,
485, 488, 492

Constraints

active, 91, 322, 323, 340–343, 359–361,
364–368, 378, 391, 392, 406–409,
413, 424, 460, 467–468, 470, 485

inactive, 322, 361, 364, 365

Index 541

inequality, 190, 340–344, 348–349, 359,
360, 379, 381, 392, 398, 401, 405,
413, 414, 420, 423, 430, 433, 439,
443, 452–454, 467, 468, 470, 471,
475–478, 481, 489, 492

nonnegativity, 14, 15, 329, 347, 391

quadratic, 161, 162

redundant, 62, 72, 107

Consumer surplus, 332

Control example, 149, 332

Convergence

analysis, 7–8, 209, 224, 234, 242, 252, 274,
278, 279, 287, 313, 391, 481, 483

average order of, 207

canonical rate of, 8, 398, 413, 415, 416,
420, 424, 483

of descent algorithms, 196–204

dual canonical rate of, 429, 441, 464

of ellipsoid method, 122, 142

geometric, 206

global theorem, 430

linear, 205–206, 208, 233, 239, 257, 309,
313

of Newton’s method, 223, 246–253, 257,
260, 278, 285–287, 308, 309, 311,
313, 314, 412, 413, 475, 478, 480,
484, 488

order, 208, 225

of partial C–G, 224, 279

of penalty and barrier methods, 397–400,
403, 412–418, 420, 424, 425, 427

of quasi-Newton, 285–287, 292–293,
296–299, 306, 308, 309, 311–316

rate, 7, 8, 204, 207, 236, 240–242,
253–254, 256, 259, 262, 278, 285,
286, 311, 314, 358, 370–378,
383–390, 396, 414, 440–441, 452

ratio, 31, 205–208, 211, 217, 236, 237,
239, 242, 257, 261, 312, 372, 413,
414, 429

speed of, 229–233, 254–256, 455.–457

arithmetic convergence, 206, 232, 257,
457

linear convergence, 233

order of convergence, 205, 207, 208,

218–220, 222, 223, 225, 239, 246,
249, 257, 258

superlinear convergence, 206, 207, 297,
300, 312, 313, 391

of steepest descent, 229–242, 247–248,
252–254, 256, 257, 259–261, 274,
276, 278, 282, 285, 286, 308, 309,
311–313, 414

superlinear, 206, 207, 296, 297, 300, 312,
313, 391

theory of, 239–243, 306

of vectors, 6, 207–208
Convex cones, 87, 149–150, 154, 170, 173,

174
barrier function, 170

conic-inequality, 150
interior of cone, 154

nonnegative orthant, 149, 151
p-order cone, 150, 154

product of cones, 150
second-order cone, 150, 170

semidefinite matrix, 149, 150
Convex duality, 351

Convex functions, 143, 188–195, 210, 266,
344, 346, 348, 454, 455, 457, 458,
460–462, 486, 487

Convex polyhedron, 115

Convex polytope, 23, 24

Convex programing problem, 344, 350, 354,
441, 460, 461, 464, 471

Convex sets, 22–24, 30, 41, 87, 88, 124, 156,
157, 188, 190, 192–195, 210, 346,
350, 430, 432, 454, 457, 458

theory of, 22, 23
Convex simplex method, 391–392

Coordinate descent, 252–256, 261, 262,
429

Cubic fit, 221–222, 258

Curve fitting, 214–215, 217–222, 224–226,
228, 245, 257, 481

Cutting plane methods, 143, 458–463, 465

Cycle, in linear programming, 80
Cyclic coordinate descent, 252, 253

D

Damping, 246–248, 250, 251

Dantzig–Wolfe decomposition method, 68, 81
Data analysis procedures, 332

Davidon–Fletcher–Powell method (DFP),
290–294, 300, 315

Decision problems, 1, 15, 332

Decomposition, 68–71, 443–445, 484
LP, 68–71

LU, 55–56, 210
Deflected gradients, 286

Degeneracy, 39, 49, 50, 67–68, 74, 100, 104,
115

Descent
algorithms, 196–204, 213, 252, 253, 257,

260, 312, 420, 423

function, 198, 199, 201–204, 209, 224,
226, 229, 249, 253, 477, 481

542 Index

Diet problem, 14, 45, 85, 93, 94, 101
dual of, 85

Differentiable convex functions, properties of,
190–192

Directed graphs, 250
Duality, 83–114, 125, 130, 140, 158–166, 168,

351, 429–465
asymmetric form of, 85
canonical convergence rate, 429, 441, 464
central path, 127–129
feasible, 91, 100–103, 112, 126, 127,

129–131, 133, 140, 163
function defined, 431, 437, 439, 440,

450–452
gap, 130, 131, 134, 135, 162, 163, 166,

171, 430, 432–435
linear program, 83–86, 106, 158, 182
local, 430, 435–440, 445, 450
simplex method, 100–102, 111, 112, 131
theorem, 86–89, 94, 99, 104, 163–165,

174, 326, 353, 410, 429, 430, 432,
433, 436, 438, 439, 446, 450, 464

E

Economic interpretation
of Dantzig–Wolfe decomposition, 68, 81
of decomposition, 71
of primal-dual algorithm, 102
of relative cost coefficients, 83
of simplex multipliers, 92

Eigenvalues, 120, 167, 208, 233, 272, 287,
335, 370, 406, 440, 483

interlocking, 241, 300–302, 389
steepest descent rate, 240
in tangent space, 491

Eigenvector, 120, 234, 259, 272, 282, 293,
301, 303, 311, 335, 336, 451

Ellipsoid method, 116, 119–122, 142, 143
Entropy, 328, 329, 352, 395, 464
Epigraph, 194, 195, 346, 349, 351, 432
Error

function, 207, 208, 211, 236, 490
tolerance, 369

Exact penalty theorem, 422, 427
Expanding subspace theorem, 266–268, 270,

271, 281
Exponential density, 329

Extreme point, 23–26, 28, 30, 33, 38–42, 69,
71, 91, 108, 193, 194

F

False position method, 218–222, 245, 257
Feasible direction methods, 358–360, 392
Feasible solution, 20, 33, 87, 118, 153, 364,

398, 460
Fibonacci search method, 214–217
First-order necessary conditions, 180–182,

186–187, 193, 194, 210, 259, 260,
326–328, 330, 333, 337, 340–342,
352, 379, 395, 438, 464, 467, 470,
473, 475, 476, 478, 479, 481, 486,
488

Fletcher–Reeves method, 278, 281
Free variables, 13, 52–53, 85, 100
Full rank assumption, 20

G

Game theory, 108–109
Gaussian elimination, 34, 60, 73, 168, 208, 282
Gauss–Southwell method, 252–254, 260
Generalized reduced gradient method, 382
Geodesics, 371–375, 377, 395
Geometric convergence, 206, 233, 257
Global convergence, 7, 196–204, 209,

224–226, 229–239, 253, 257, 260,
261, 278, 281, 296, 308, 312, 316,
381, 391, 392, 395, 396, 400, 427,
463, 465, 469, 475, 480, 489

theorem, 224, 225, 481
Global duality, 430–435, 464
Global minimum points, 180, 182, 193, 209,

210, 259, 260, 354, 363, 470
Golden section ratio, 217
Goldstein test, 259
Gradient projection method, 364–378, 382,

386, 389, 390, 392, 394, 395,
417–420

convergence rate of the, 370–378, 383–390
Graph, 73, 113, 154, 188, 195, 199, 200, 203,

250

H

Half space, 69, 90, 459–461, 463
Hanging chain, 329–332, 386–390, 396,

443–445
Hessian matrix, 159, 186, 187, 192, 237, 239,

246, 247, 251, 254, 262, 279, 285,
338, 342–343, 372, 386, 406–408,
414, 451, 470

Index 543

Hessian of dual, 425, 437–438, 440, 444, 451,
464

Hessian of the Lagrangian, 351, 357, 370, 385,
387, 392, 406–408, 424, 436–439,
444, 447, 450, 471, 472, 474, 477,
478

Homogeneous self-dual algorithm (HSD),
139–142, 172, 173

infeasibility certificate CLP, 173
infeasibility certificate LP, 142

optimal solution CLP, 172, 173
optimal solution LP, 141

Hyperplanes, 17, 86, 88, 157, 194, 195, 346,
347, 349, 351, 430–432, 459–463,
465

I

Implicit function theorem, 325, 339, 345, 436
Inaccurate line search, 227–228, 258, 296,

299, 300, 393

Incidence matrix, 94, 95
Initialization, 137–142, 172–173
Integrality gap, 72

Interior-point methods, 3, 6, 7, 115–145,
249–251, 257, 369, 402, 485–489

Interlocking eigenvalues lemma, 241, 300, 389
Iterative algorithm, 6–8, 116, 179, 197–198,

207, 209, 229, 257, 260, 314, 469

J

Jacobian matrix, 325, 339, 485
Jamming, 360, 363, 378, 381, 392, 413

K

Kantorovich inequality, 235, 236, 287, 311,
377

Karush–Kuhn–Tucker conditions, 5, 340–341,
365, 366, 393–395

Kelley’s convex cutting plane algorithm,
460–463, 465

Khachiyan’s ellipsoid method, 116

L

Lagrange multiplier, 5, 125, 126, 128, 321,
326, 328–331, 338, 339, 341–344,
346–351, 361–363, 365, 374, 387,
398, 405–406, 408–410, 422, 426,
429, 430, 432–434, 436, 438–440,
446, 450, 453, 464, 476, 478, 481,
482, 492

Levenberg–Marquardt type methods, 249
Limit superior, 205

Linear convergence, 205–208, 233, 239, 257,
309, 313

Linear programing, 2, 11, 35, 83, 115, 149,
182, 226, 326, 359, 402, 430, 469

analytic center, 123, 182

central path, 125, 130, 133, 172, 173, 410

complementarity, 83–86, 88–90, 92, 93, 99,
100, 102, 106–110, 112, 113, 138,
166–171

duality, 83–86, 88–90, 92, 93, 99, 100, 102,
106–110, 112, 113, 125, 158–166,
430, 459–464

examples of, 2, 12, 14–19, 332

fundamental theorem of, 20–22, 24, 166,
173

potential function, 170, 173, 487, 488

presolver, 72
Linear variety, 34, 266, 307, 316

Line search, 135, 213–229, 237–239, 245, 248,
253, 254, 257–260, 277–278, 281,
283, 291, 295–300, 302, 305, 312,
314, 359, 392, 393, 461

Lipschitz condition, 255, 493
Local convergence, 7, 208, 209, 224, 253–254,

278, 297–299

Local duality, 435–440, 445
Local minimum point, 180, 246, 260, 322, 331,

351, 354, 436, 444, 446, 447, 470

Logarithmic barrier method, 143, 250, 257,
409, 410, 485–487

LU decomposition, 55–56, 210

M

Manufacturing problem, 14, 104
Mappings, 197–201, 226, 249, 259, 314, 381,

392–394, 490

Marginal price, 93, 94, 338
Markowitz portfolio model, 165

Marriage problem, 80

Master problem, 69–71
Matrix

Frobenius norm, 150
inner product, 150, 289

notation, 57

positive definite, 120, 149, 154, 161, 192,
208, 210, 233, 235, 246–249, 259,
263, 274, 275, 281, 290, 295, 303,
305, 309, 314, 315, 337, 339, 354,
386, 404, 407, 415, 446, 447, 468,
470, 471, 473, 474, 482, 492

projection matrix, 338, 365, 366, 369, 376,
394

Max flow-min cut theorem, 94–99
Maximal flow, 16, 94, 95, 97–99, 113

Mean value theorem, 220, 422

Memoryless quasi-Newton method, 304–306

544 Index

Minimum point, 179–182, 185–188, 192, 193,
201, 209, 210, 213, 214, 217, 218,
221, 222, 224, 226, 227, 229, 233,
235, 246, 253, 260, 280, 282, 286,
291, 293, 307, 322, 331, 337,
340–344, 351, 354, 360, 362, 363,
398, 409, 412, 422, 436, 444–448,
463, 470

Morrison’s method, 426–427
Multiplier methods, 429, 449–454

N

Newton’s method, 125, 173, 213, 263, 285,
390, 410, 451, 470

modified, 248, 257, 260, 286–288, 305,
306, 312–314, 412, 413, 424,
477–481, 483, 484

Node-arc incidence matrix, 94, 95
Nodes, 16, 94–96, 98
Nondegeneracy, 20, 39, 44, 46, 47, 49, 58, 75,

93, 138, 343, 363, 378, 382, 395,
406

Nonextremal variable, 114
Normalizing constraint, 139, 140
Northwest corner rule, 59–61, 64, 66, 67
Null variables, 114

O

Oil refinery problem, 75
Optimal control, 5, 149, 332, 353
Optimal feasible solution, 20–22, 33
Order of convergence, 205–208, 211,

218–220, 222, 223, 225, 239, 246,
249, 257, 258

Orthogonal complement, 418, 440, 441
Orthogonal matrix, 51, 166, 264

P

Parallel tangents method. See PARTAN
Parimutuel auction, 18
PARTAN, 275–277, 376

advantages and disadvantages of, 277
theorem, 276–277

Partial conjugate gradient method, 273–276,
279, 296, 316, 413

Partial duality, 440
Partial quasi-Newton method, 296
Path-following, 126, 127, 129–131, 374, 472,

499
Penalty methods, 241, 397, 398, 404–406,

408, 412–428, 445, 446, 448, 453,
454, 470, 479–482, 489, 492

interpretation of, 423
normalization of, 415–417

Percentage test, 259
Pivoting, 33, 35, 36, 41, 47, 51, 55, 73, 104,

106
Pivot transformations, 54
Point-to-set mappings, 197–200, 211
Polak–Ribiere method, 278, 305
Polyhedron, 24, 69, 115, 119
Polynomial time, 7, 116, 118–119, 138, 143,

209
Polytopes, 23, 24, 69, 124, 458–461, 463, 465
Portfolio analysis, 332
Positive definite matrix, 120, 154, 161, 264,

295, 312, 407
Potential function, 123, 124, 134, 135, 142,

143, 170–173, 470, 487–488
conic linear programming, 170
convex quadratic programming, 486–487
linear programming, 142

Power generating example, 184–185
Preconditioning, 306
Predictor–corrector method, 134, 143
Primal central path, 126, 128, 131
Primal-dual

algorithm for LP, 102–106
central path, 129–130, 133, 470, 486
methods, 102, 103, 105–106, 467–493
optimality theorem, 103
path, 128–130, 133–134

potential function, 134–135, 171
Primal method, 345, 348, 349, 351, 357–397,

410–412, 422, 423, 430, 432, 435,
441, 448, 449, 464, 469

advantage of, 357–358
Projected Hessian test, 338, 353
Projection matrix, 338, 365, 366, 369, 376,

394
Purification procedure, 138

Q

Quadratic
approximation, 276–277
binary optimization, 152–153
fit method, 218–221
minimization problem, 264, 271
penalty function, 412, 414, 415, 421, 428,

448, 479, 481, 482, 489
program, 262, 349, 354, 396, 434, 468,

470, 473, 474, 476–483, 486–489,
492, 493

Schur complements, 161
second-order cone program, 151, 152

Index 545

semidefinite program, 158, 159, 161
semidefinite relaxation, 152, 153, 159, 168

Quasi-Newton methods, 285–316, 390, 391,
451

memoryless, 304–306

R

Rank, 19–21, 23, 30, 50, 86, 124, 137,
152–154, 166–171, 173–175, 241,
289–290, 293–295, 309, 315, 316,
325, 337, 338, 345, 354, 364, 407,
419, 424, 427, 438, 468, 470, 471,
474, 485, 489

Rank-one correction, 289–290, 315
Rank-reduction procedure, 153, 154, 167
Rank-two correction, 290, 294
Rate of convergence, 186, 203, 234, 238–242,

247–248, 250, 253, 254, 259, 260,
274–276, 282, 286, 309, 313, 314,
316, 335, 357, 370, 372, 375–378,
383, 384, 386, 392, 395, 396, 398,
413–417, 420, 424–425, 427, 441,
448, 450, 451, 464, 481, 483–484,
491

Real number
arithmetic model, 118
sets of, 350, 404

Recursive quadratic programing, 470,
476–481, 483, 489, 492–493

Reduced cost coefficients, 44, 68

Reduced gradient method, 378–392, 395, 396
convergence rate of the, 383–390

Redundant equations, 58, 61
Relative cost coefficients, 44–47, 55, 63, 64,

66, 68, 71, 72, 74, 78, 79, 83, 92,
105, 112

Requirements space, 41–42, 90, 91
Revised simplex method, 55–56, 62, 68, 70,

71, 77, 92
Robust set, 401

S

Scaling, 171, 195, 241–243, 253, 279, 298,
300–304, 306, 311–313, 315,
331–332, 340, 347, 395, 441, 484,
493

SDP relaxation
approximation ratio, 168–169, 175
quadratic optimization, 152–153
rank-d solution, 154
rank-1 solution, 153, 168

Search by golden section, 214–218
Second-order conditions, 179, 185–188,

333–335, 337, 342–343, 351, 352
Self-concordant function, 251–252, 262
Self-dual linear program, 110, 139, 140
Semidefinite programing (SDP), 149–154,

158–159, 161–163, 165–171, 174,
175, 470

central path, 171, 175
complementarity conditions, 166–170
exact rank reduction, 153, 154
primal-dual potential function, 171
randomized binary reduction, 169–170
randomized rank reduction, 153, 154
solution rank, 166–170

Sensitivity, 92–94, 208, 297, 300, 338–339,
343–344, 351, 362, 411, 429

Sensor network localization, 153–154, 159,
173, 174

Separable problem, 441–445, 464
Separating hyperplane theorem, 86, 157, 195,

346
Sets, 12, 22, 23, 96, 123, 128, 129, 143, 188,

190, 195, 344, 346, 349, 351, 363,
401, 430, 454, 457, 487

Sherman–Morrison formula, 294, 451
Simple merit function, 470–472, 475, 477,

479, 488
Simplex method, 3, 6, 7, 13, 20, 33–81, 83, 86,

95, 108, 111, 112, 115, 116, 118,

119, 130, 131, 137, 138, 142, 143,
378, 469

for dual, 33, 39, 41, 54, 83, 86, 95, 98–102,
108, 111, 112, 130, 131, 138

and dual problem, 83–90, 93, 94, 99, 100,
102, 104, 107, 109, 111, 114

and LU decomposition, 55–56
matrix form of, 54–55
for minimum cost flow, 71, 72
revised, 55–56, 62, 68, 70, 71, 77
for transportation problems, 56–68

Simplex multipliers, 62–64, 66, 67, 70, 79, 92,
93, 100

Simplex tableau, 45, 46, 52, 55, 89, 100, 103,
105

Slack variables, 12, 17, 26, 47–49, 51, 89, 100,
112, 119, 124, 125, 127, 128, 162,
382

Slack vector, 124, 140
Slater condition, 348, 349, 354
Spacer step, 203–204, 209, 278, 296

546 Index

Steepest descent, 204, 213, 229–245, 247–248,
252–254, 256, 257, 259–263, 268,
269, 272–274, 276, 278–282,
285–287, 297–299, 306–314, 316,
364, 371, 372, 379, 384, 392, 402,
412, 414, 416–418, 420, 424, 427

applications, 240–243
Stopping criterion, 78, 238–239, 261. See also

Termination
Strong duality theorem, 163, 165, 432–434
Superlinear convergence, 206, 207, 297, 300,

312, 313, 391
Supporting hyperplane, 193–194, 462, 463,

465
Support vector machines, 17
Surplus variables, 12–13, 76, 101
Synthetic carrot, 45

T

Tableau, 35, 37, 38, 40–43, 45–48, 50–55, 73,
75–77, 80, 89, 90, 100–103, 105,
106, 381

Tangent plane, 323–326, 333, 341–343, 351,
368, 369, 371, 484

Taylor’s Theorem, 188, 192, 221, 223, 334
Termination, 47, 70, 98, 136–143, 172, 228,

245, 261, 262, 268, 277, 279, 297,
299, 300, 358, 363, 365, 373, 391

Transportation problem, 6, 15–16, 29, 56–68,
72, 78–81, 85–86, 95, 107

dual of, 85–86
northwest corner rule, 59–61, 64, 66, 67
simplex method for, 56–68

Transshipment problem, 15–16, 56, 58
Tree algorithm, 95
Triangularity, 23, 34, 60–63, 65, 72, 78, 79,

95, 249, 317, 386
bases, 60–62, 64
matrices, 56, 60, 210

Triangularization procedure, 63
Turing model of computation, 118

U

Unimodal, 214, 215, 217, 224–226, 258, 315
Unimodular, 78
Upper triangular, 56, 79, 210

V

Variable metric method, 290

W

Warehousing problem, 16
Weak duality

lemma, 87, 130
proposition, 431

Wolfe test, 230
Working set, 361–366, 380, 392
Working surface, 361–365, 368, 379, 380

Z

Zero-duality gap, 131, 166
Zero-order

conditions, 194–196, 344–351

Lagrange theorem, 350, 433
Zigzagging, 360, 363, 364
Zoutendijk method, 359, 360

	Preface
	Contents
	1 Introduction
	1.1 Optimization
	1.2 Types of Problems
	1.3 Size of Problems
	1.4 Iterative Algorithms and Convergence

	Part I Linear Programming
	2 Basic Properties of Linear Programs
	2.1 Introduction
	2.2 Examples of Linear Programming Problems
	2.3 Basic Solutions
	2.4 The Fundamental Theorem of Linear Programming
	2.5 Relations to Convexity
	2.6 Exercises

	3 The Simplex Method
	3.1 Pivots
	3.2 Adjacent Extreme Points
	3.3 Determining a Minimum Feasible Solution
	3.4 Computational Procedure: Simplex Method
	3.5 Finding a Basic Feasible Solution
	3.6 Matrix Form of the Simplex Method
	3.7 Simplex Method for Transportation Problems
	3.8 Decomposition
	3.9 Summary
	3.10 Exercises

	4 Duality and Complementarity
	4.1 Dual Linear Programs
	4.2 The Duality Theorem
	4.3 Relations to the Simplex Procedure
	4.4 Sensitivity and Complementary Slackness
	4.5 Max Flow–Min Cut Theorem
	4.6 The Dual Simplex Method
	4.7 The Primal-Dual Algorithm
	4.8 Summary
	4.9 Exercises

	5 Interior-Point Methods
	5.1 Elements of Complexity Theory
	5.2 The Simplex Method Is Not Polynomial-Time
	5.3 The Ellipsoid Method
	5.4 The Analytic Center
	5.5 The Central Path
	5.6 Solution Strategies
	5.7 Termination and Initialization
	5.8 Summary
	5.9 Exercises

	6 Conic Linear Programming
	6.1 Convex Cones
	6.2 Conic Linear Programming Problem
	6.3 Farkas' Lemma for Conic Linear Programming
	6.4 Conic Linear Programming Duality
	6.5 Complementarity and Solution Rank of SDP
	6.6 Interior-Point Algorithms for Conic Linear Programming
	6.7 Summary
	6.8 Exercises

	Part II Unconstrained Problems
	7 Basic Properties of Solutions and Algorithms
	7.1 First-Order Necessary Conditions
	7.2 Examples of Unconstrained Problems
	7.3 Second-Order Conditions
	7.4 Convex and Concave Functions
	7.5 Minimization and Maximization of Convex Functions
	7.6 Zero-Order Conditions
	7.7 Global Convergence of Descent Algorithms
	7.8 Speed of Convergence
	7.9 Summary
	7.10 Exercises

	8 Basic Descent Methods
	8.1 Line Search Algorithms
	8.2 The Method of Steepest Descent
	8.3 Applications of the Convergence Theory
	8.4 Accelerated Steepest Descent
	8.5 Newton's Method
	8.6 Coordinate Descent Methods
	8.7 Summary
	8.8 Exercises

	9 Conjugate Direction Methods
	9.1 Conjugate Directions
	9.2 Descent Properties of the Conjugate Direction Method
	9.3 The Conjugate Gradient Method
	9.4 The C–G Method as an Optimal Process
	9.5 The Partial Conjugate Gradient Method
	9.6 Extension to Nonquadratic Problems
	9.7 Parallel Tangents
	9.8 Exercises

	10 Quasi-Newton Methods
	10.1 Modified Newton Method
	10.2 Construction of the Inverse
	10.3 Davidon-Fletcher-Powell Method
	10.4 The Broyden Family
	10.5 Convergence Properties
	10.6 Scaling
	10.7 Memoryless Quasi-Newton Methods
	10.8 Combination of Steepest Descent and Newton's Method
	10.9 Summary
	10.10 Exercises

	Part III Constrained Minimization
	11 Constrained Minimization Conditions
	11.1 Constraints
	11.2 Tangent Plane
	11.3 First-Order Necessary Conditions (Equality Constraints)
	11.4 Examples
	11.5 Second-Order Conditions
	11.6 Eigenvalues in Tangent Subspace
	11.7 Sensitivity
	11.8 Inequality Constraints
	11.9 Zero-Order Conditions and Lagrangian Relaxation
	11.10 Summary
	11.11 Exercises

	12 Primal Methods
	12.1 Advantage of Primal Methods
	12.2 Feasible Direction Methods
	12.3 Active Set Methods
	12.4 The Gradient Projection Method
	12.5 Convergence Rate of the Gradient Projection Method
	12.6 The Reduced Gradient Method
	12.7 Convergence Rate of the Reduced Gradient Method
	12.8 Variations
	12.9 Summary
	12.10 Exercises

	13 Penalty and Barrier Methods
	13.1 Penalty Methods
	13.2 Barrier Methods
	13.3 Properties of Penalty and Barrier Functions
	13.4 Newton's Method and Penalty Functions
	13.5 Conjugate Gradients and Penalty Methods
	13.6 Normalization of Penalty Functions
	13.7 Penalty Functions and Gradient Projection
	13.8 Exact Penalty Functions
	13.9 Summary
	13.10 Exercises

	14 Duality and Dual Methods
	14.1 Global Duality
	14.2 Local Duality
	14.3 Canonical Convergence Rate of Dual Steepest Ascent
	14.4 Separable Problems and Their Duals
	14.5 Augmented Lagrangian
	14.6 The Method of Multipliers
	14.7 The Alternating Direction Method of Multipliers
	14.8 Cutting Plane Methods
	14.9 Exercises

	15 Primal-Dual Methods
	15.1 The Standard Problem
	15.2 A Simple Merit Function
	15.3 Basic Primal-Dual Methods
	15.4 Modified Newton Methods
	15.5 Descent Properties
	15.6 Rate of Convergence
	15.7 Primal-Dual Interior Point Methods
	15.8 Summary
	15.9 Exercises

	A Mathematical Review
	A.1 Sets
	A.2 Matrix Notation
	A.3 Spaces
	A.4 Eigenvalues and Quadratic Forms
	A.5 Topological Concepts
	A.6 Functions

	B Convex Sets
	B.1 Basic Definitions
	B.2 Hyperplanes and Polytopes
	B.3 Separating and Supporting Hyperplanes
	B.4 Extreme Points

	C Gaussian Elimination
	D Basic Network Concepts
	D.1 Flows in Networks
	D.2 Tree Procedure
	D.3 Capacitated Networks

	Bibliography
	Index

