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Chapter 1
Introduction

Donna L. Gruol, Noriyuki Koibuchi, Mario Manto, Marco Molinari,
Jeremy D. Schmahmann, and Ying Shen

Abstract The depth and breadth of knowledge regarding cerebellar functions in health
and disease continue to grow exponentially. Most of the currently available books deal-
ing with the cerebellum and its disorders are highly specialized, usually written for
neurologists with a particular interest in the cerebellar disorders. The four-volume
Handbook of the Cerebellum and Cerebellar Disorders (Springer 2013) is the most
comprehensive monograph on the cerebellum published to date covering both funda-
mental and clinical aspects. As valuable a resource as this has proven to be, however,
the treatise is too extensive for students, and not practical as a brief, authoritative over-
view of the subject. The editors therefore concluded that there is a compelling need to
distill the vast amount of basic science and clinical information in the four-volume text
into a clear and concise précis of the work accessible to clinicians and students. Hence,
this work, Essentials of the Handbook of the Cerebellum and Cerebellar Disorders.
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2 D.L. Gruol et al.

The depth and breadth of knowledge regarding cerebellar functions in health and
disease continue to grow exponentially. Most of the currently available books deal-
ing with the cerebellum and its disorders are highly specialized, usually written for
neurologists with a particular interest in the cerebellar disorders. The four-volume
Handbook of the Cerebellum and Cerebellar Disorders (Springer 2013) is the most
comprehensive monograph on the cerebellum published to date on fundamental and
clinical aspects. As valuable a resource as this has proven to be, however, the trea-
tise is too extensive for students, and not practical as a brief, authoritative overview
of the subject. The editors therefore concluded that there is a compelling need to
distill the vast amount of basic science and clinical information in the four-volume
text into a clear and concise précis of the work accessible to clinicians and students.
Hence, this work, Essentials of the Handbook of the Cerebellum and Cerebellar
Disorders.

The editors of Essentials have selected what we believe to be major topics with
direct scientific and clinical implications for understanding cerebellar anatomy,
physiology, clinical neurology, and management of cerebellar disorders. With this
monograph, we hope to foster a deeper understanding of the most important aspects
of the complex phenomena that characterize cerebellar neurology. In so doing, we
hope to encourage students to further explore its many facets, ranging from ataxiol-
ogy (the study of cerebellar motor disorders) to the cognitive neuroscience of the
cerebellum and its connections.

The pocket format of the book makes it readily available for consultation. The
chapters are arranged in eleven sections covering fundamental, translational and
clinical aspects of the cerebellum and cerebellar disorders. The length of each chap-
ter is approximately four printed pages, enabling the reader to review the necessary
information rapidly and efficiently. Critical references provided at the end of each
chapter can be consulted for more in-depth information.

The editors are grateful for the outstanding contributions to this work by the
renowned international panel of experts in some of the premier clinical centers,
universities, and research centers in the USA, Europe, and Asia. We hope that this
concise volume achieves its purpose of stimulating students, trainees, and practitio-
ners to enhance their knowledge of the cerebellum and its disorders, and promote
further clinical and scientific exploration in the field.
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Chapter 2
A Brief History of the Cerebellum

Jeremy D. Schmahmann

Abstract Cerebellar structure and function have intrigued investigators and clini-
cians for millennia. Major anatomic features were recognized early, and the role of
the cerebellum in coordinating movements was established two centuries ago.
Cerebellar involvement in nonmotor functions was described in clinical and experi-
mental observations starting around the same time, but attention to their importance
rose to the fore only recently. Functional localization was first derived from com-
parative morphology. Ablation degeneration and physiological studies in animals
and neurological observations in patients with focal injury led to the lobular theory
of organization. This was refined by delineation of the mediolateral parasagittal
zonal organization of cerebellar connections. Histological studies date back to
Cajal, with descriptions of additional neuronal elements and circuitry evolving over
the years. Recognition of the cerebellar cognitive affective syndrome and the neuro-
psychiatry of the cerebellum, observations from connectional neuroanatomy, and
advances in anatomic, task-based, and functional connectivity magnetic resonance
neuroimaging provide contemporary support for the earliest notions that cerebellum
is engaged in a wide range of neurological functions. Together with new theories of
cerebellar function, and elucidation of the genetic basis of inherited or sporadic
ataxias and neurobehavioral disorders, the cerebellum has become increasingly rel-
evant to contemporary clinical neurology and neuropsychiatry.

Keywords Historical background ¢ Cerebellum ¢ Ataxia ® Dysmetria ® Cognition ®
Vestibular

The cerebellum has been recognized since antiquity. Notions regarding its functions
included the belief that it imparted strength to the motor nerves (Galen A.D.
129/130-200/201), was a center for memory (Nemesius, c.A.D. 390, and Albert von
Bollstadt/Albertus Magnus, 1193—-1280), controlled sensory functions including
unconscious sensibility (Co(n)stanzo Varolio/Variolus, 1543—1575), was involved

J.D. Schmahmann (><)

Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and
Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital,
Harvard Medical School, Boston, MA, USA

e-mail: jschmahmann @mgh.harvard.edu
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with involuntary activity including the functions of the heart and respiration
(Thomas Willis, 1621-1675), and was the seat of amative love (Franz Joseph Gall,
1758-1828) (Citations in Neuburger, 1897/1981; Clarke and O’Malley 1996;
Schmahmann and Pandya 2006). As is apparent from the historical account below,
the conclusions of these pioneers, although based on flimsy or fanciful evidence,
were actually rather prescient.

2.1 Early and Evolving Views of Cerebellar Organization
and Function

Luigi Rolando (1809) first demonstrated that ablation of the cerebellum results in
disturbances of posture and voluntary movement. Michele Fodera (1823) showed
release of postural mechanisms, and extensor hypotonia following acute cerebellar
injury in pigeons, guinea pigs and rabbits. Marie-Jean-Pierre Flourens (1824)
showed in pigeons that the cerebellum is responsible for the coordination, rather
than generation, of voluntary movement and gait, a concept that has remained the
guiding principle of cerebellar function. Frangois Magendie’s lesion studies (1824)
led to the understanding that the cerebellum is essential for equilibrium. Disturbances
of motor control following focal cerebellar lesions in monkeys were demonstrated
by Luigi Luciani (1891), David Ferrier and William Aldren Turner (1893) and
Rissien Russell (1894).

Comparative anatomists such as Lodewijk ‘Louis’ Bolk (Bolk 1902; Glickstein
and Voogd 1995) derived structure-function correlations by comparing the size of a
cerebellar region with the characteristics of the species to which it belonged. They
concluded that the vermis coordinates bilateral symmetrical movements, the cere-
bellar hemispheres coordinate unilateral movements of the limbs, and the develop-
ment of manual dexterity corresponded with the expansion of the lateral cerebellar
hemispheres. The lobular theory (Fulton and Dow 1937; Larsell 1970; Brodal 1967,
see Angevine et al. 1961) held that the cerebellum is functionally organized into
lobes. The flocculonodular lobe, archicerebellum, and vestibulocerebellum became
synonymous. The anterior lobe, pyramis and uvula in the vermis of the posterior
lobe, and the paraflocculus were termed the paleocerebellum or spinocerebellum.
The lateral parts of the cerebellar hemispheres and the middle portion of the vermis
were termed the neocerebellum, or pontocerebellum.

Ablation-degeneration studies in animals (Jansen and Brodal 1940; Chambers
and Sprague 1955a, b) introduced the concept of the organization of cerebellum into
three bilaterally symmetrical longitudinal corticonuclear zones. These studies (see
Dow and Moruzzi 1958 for review) showed that the medial zone (vermis and fasti-
gial nucleus) regulates vestibular function and the tone, posture, locomotion, and
equilibrium of the body, with somatotopic localization in the vermal cortex — the
head, neck and eyes at the posterior vermis, the tail and lower limbs at the rostral
aspect of the anterior vermis, and the upper limbs situated in between. The interme-
diate zone (paravermal cortex and nucleus interpositus) regulates spatially orga-
nized and skilled movements and the tone and posture associated with these



2 Historical Overview 7

movements of the ipsilateral limb, and lesions in the intermediate zone produced
motor deficits including tremor, ataxia, and postural instability. The lateral zone
(hemispheral cortex and dentate nucleus) was thought to be involved in skilled and
spatially organized movements of the ipsilateral limbs, although lateral hemispheres
or dentate nucleus lesions produced only minor impairments of the distal extremi-
ties, without clear somatotopic organization. Dow (1942, 1974) identified the den-
tate nucleus in man and anthropoid apes as consisting of two parts, a dorsomedial
microgyric, magnocellular older part homologous to the dentate nucleus of lower
forms, and an expanded new part comprising the bulk of the dentate nucleus, the
ventro-lateral macrogyric parvicellular part. He postulated that the newer “neoden-
tate” expanded in concert with, and was connected to, the frontal, temporal and
parietal association areas of higher primates and man, an idea he later expanded
upon with Leiner et al. (1986).

The study of the cerebellar role in nonmotor functions has a rich history (see
Schmahmann 1991, 1997a, b, 2010 for review and citations). Physiological and
ablation studies demonstrated cerebellum to be engaged in autonomic functions
such as pupil diameter, blood pressure, and sleep wake cycle. Cerebellar stimulation
influenced size of stroke following middle cerebral artery ligation in rats, produced
generalized arousal of the electroencephalogram, evoked hyperactivity in monkey
and cat, and produced complex behaviors including grooming, predatory attack,
aggression and sham rage. Studies also showed cerebellum to be essential for con-
ditional associative learning including fear-conditioned bradycardia in the rat and
the nictitating membrane response in rabbit, in addition to its role in spatial naviga-
tion and visual spatial learning.

2.2 Cerebellar Cortex

Jan Evangelista Purkyné (1787-1869) described the cell that would came to bear his
name (Purkiny€ 1837), and Santiago Ramon y Cajal (1909) provided the first
detailed description of the neuronal architecture of the cerebellar cortex, including
mossy fibers, granule cell glomeruli, and parallel and climbing fibers (Eccles et al.
1967; Palay and Chan-Palay 1974; Brodal et al. 1975) (Fig. 2.1). Later investigators
described Lugaro cells (Fox 1959; Palay and Chan-Palay 1974) and unipolar brush
cells in the vestibulocerebellum (Mugnaini and Floris 1994). Using acetylcholines-
terase, Voogd and colleagues (Voogd 1967, 1969; Marani and Voogd 1977) demon-
strated parasagittal zonal organization in cerebellar white matter: zones A and B at
the vermis, paravermal zones C1, 2, and 3, and zones D1 and 2 in the hemispheres.
Hawkes and colleagues (Gravel and Hawkes 1990) demonstrated this zonal pattern
in the cortex using monoclonal antibodies. Histochemical markers confirmed these
parasagittal zones, each with topographically arranged connections with the deep
cerebellar nuclei (Haines 1981) and inferior olive (Groenewegen and Voogd 1977,
Hoddevik and Brodal 1977; Groenewegen et al. 1979). The demonstration of
fractured somatotopy in sensory projections to cerebellum (Shambes et al. 1978;
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Fig. 2.1 General organization of the cerebellar cortex. (a) Santiago Ramon y Cajal’s (1911/1995)
diagram of the neurons in the cerebellar cortex oriented perpendicular to the long axis of the
folium, as well as fibers and glial cells. Abbreviations: A molecular layer, a Purkinje cell, B granu-
lar layer, b basket cell, C white matter of the folium, d pericellular baskets around the PC soma
formed by the basket cell axon, e superficial stellate cell, f Golgi cell, g granule cell, 7 mossy fiber,
i ascending axon of granule cell, j Bergmann glial cell, m astroglial cell, n climbing fiber, o recur-
rent collateral branches of a PC. (b) Diagram redrawn from Eccles et al. (1967) in Gray’s Anatomy
(1995). A single cerebellar folium is shown sectioned in its longitudinal axis (diagram right) and
transversely (left). Purkinje cells are red; superficial and deep stellate, basket and Golgi cells are
black; granule cells and ascending axons and parallel fibers are yellow; mossy and climbing fibers
are blue. Also shown are the glomeruli with mossy fiber rosettes, claw-like dendrites of granule
cells, and Golgi axons. Lugaro and unipolar brush cells are not shown (Figures reproduced with
permission)
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Bower and Kassel 1990) is consistent with the observation that Purkinje cells (PCs)
can be activated by the ascending axons of granule cells (Llinas 1984; Cohen and
Yarom 1998) as well as by beams of parallel fibers.

2.3 Connectional Anatomy

Myelin and degeneration studies in the nineteenth and early twentieth centuries
revealed that cerebellar connections with spinal cord, vestibular system, brainstem,
and cerebral cortex are topographically arranged. Bechterew (1888) showed that the
caudal pons is linked with the cerebellar anterior lobe, but rostral pons is linked with
the cerebellar posterior lobe. Sherrington’s (1906) physiological studies showed
cerebellar afferents from the proprioceptive system (he viewed cerebellum as the
“head ganglion of the proprioceptive system”), and others showed topographically
arranged inputs to cerebellum following proprioceptive, cutaneous (Dow and
Anderson 1942; Snider and Stowell 1942; Hampson et al. 1952) vagal, visual, and
auditory stimulation (Snider and Stowell 1942; Dow and Moruzzi 1958).

Oscarsson (1965) demonstrated that spinocerebellar tracts terminate exclusively
in the anterior lobe and lobule VIII (sensorimotor areas of cerebellum). Spinal-
recipient olivary nuclei project to sensorimotor cerebellum (anterior lobe and lobule
VIII), whereas most of the principal olive (devoid of spinal afferents) projects to the
cerebellar posterior lobe (Oscarsson 1980; Ruigrok et al. 1992; Groenewegen et al.
1979).

Anatomical studies of the feedforward loop of the cerebrocerebellar system
(Brodal 1978; Glickstein et al. 1985; see Schmahmann 2004 ), and electrophysiolog-
ical experiments of the cerebrocerebellar system (Henneman et al. 1952; Sasaki
etal. 1975; Allen and Tsukuhara 1974) demonstrated predominantly motor connec-
tions of cerebellum in a topographically precise manner. Studies also linked cere-
bellum with limbic structures — hippocampus, septum and amygdala (Maiti and
Snider 1975; Heath and Harper 1974). Anterograde isotope studies of corticopon-
tine pathways demonstrated precisely arranged inputs from motor and supplemen-
tary motor areas (Schmahmann et al. 2004), and also from associative and paralimbic
regions of the prefrontal, posterior parietal, superior temporal, and parastriate corti-
ces concerned with higher order functions (Schmahmann and Pandya 1997a, b; see
Schmahmann 2010). Transynaptic viral tracing studies revealed that cerebellar link-
age with association areas is reciprocal — cerebral areas that project via pons to
cerebellum in turn receive projections back via thalamus from the cerebellum
(Middleton and Strick 1994). They also showed that cerebellar anterior lobe and
dorsal dentate nucleus are linked with motor corticices, whereas cerebellar posterior
lobe and ventral dentate nucleus are linked with prefrontal and posterior parietal
regions (Clower et al. 2001; Dum and Strick 2003).
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2.4 The Cerebellar Motor Syndrome

Early studies in patients with Friedreich’s ataxia, cerebellar cortical atrophy and
penetrating gunshot injuries of the cerebellum (Sanger Brown 1892; Pierre Marie
1893; Joseph Francois Felix Babinski 1899; Gordon Holmes 1907) established the
critical role of cerebellum in coordination of extremity movement, gait, posture,
equilibrium, and speech. Holmes (1939) later analyzed the motor and speech
deficits resulting from focal cerebellar injury. Much of Holmes’ terminology and
neurologic examination remain in contemporary use. (See Chap. 3). These clinical
studies confirmed in human that the vestibular cerebellum was important for posture
and equilibrium, the spinocerebellum for locomotion and extremity movement, and
they suggested that the neocerebellum was important for manual dexterity. The
anterior superior cerebellar vermis was particularly important for gait. Hypotonicity
was a frequent accompaniment of bilateral cerebellar lesions. Lesions involving
both cerebellar hemispheres produced characteristic cerebellar dysarthria. More than
a century of clinical neurology has further refined the understanding of the cerebellar
motor syndrome, and now clinical rating scales are helpful in defining the nature
and severity of the motor incapacity.

2.5 The Cerebellar Cognitive Affective Syndrome

From the earliest days of clinical case reporting, at least since 1831 (Combette
1831), instances of mental and intellectual dysfunction were described in the setting
of cerebellar pathology (Schmahmann 1991). Sizable posterior lobe strokes may
produce only nausea and vertigo at the onset, and gait impairment subsides once the
vestibular syndrome improves (Duncan et al. 1975; Schmahmann et al. 2009).
Surgically induced dentate nucleus lesions in humans do not produce motor disabil-
ity (Zervas et al. 1967). Cerebellar abnormalities have been identified in autism
(Bauman and Kemper 1985), schizophrenia (Moriguchi 1981; Snider 1982), and
attention deficit disorder (Berquin et al. 1998). Cognitive impairments were noted
in patients with cerebellar stroke (Botez-Marquard et al. 1994; Silveri et al. 1994),
cerebellar cortical atrophy (Grafman et al. 1992), and in those with cerebellar devel-
opmental disorders (Joubert et al. 1969; see Schmahmann 1991, 1997a). The spino-
cerebellar ataxias have changes in cognition to varying degrees throughout the
course of the illness (Manto 2014); and in children, mutism and subsequent dysar-
thria occur following excision of cerebellar tumors (Wisoff and Epstein 1984), often
accompanied by regressive personality changes, emotional lability and poor initia-
tion of voluntary movement (Pollack et al. 1995; Levisohn et al. 2000).
Schmahmann and Sherman (1998) described the cerebellar cognitive affective
syndrome (CCAS) in patients with acquired cerebellar lesions characterized by
impairment of executive functions such as planning, set-shifting, verbal fluency,
abstract reasoning, and working memory; difficulties with spatial cognition
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including visual-spatial organization and memory; personality change with blunt-
ing of affect or disinhibited and inappropriate behavior; and language deficits
including agrammatism and dysprosodia. The CCAS occurred following lesions
of the cerebellar posterior lobe, and the vermis was usually involved when there
was a prominent affective component. The CCAS was then described in children
(Levisohn et al. 2000) with a similar pattern of cognitive deficits, the affective
changes reflecting damage to the vermis, and it has been replicated widely (e.g.,
Neau et al. 2000; Riva and Giorgi 2000; Tedesco et al. 2011). Metalinguistic defi-
cits (Guéll et al. 2015) are related to impaired social cognition (Hoche et al. 2015),
and neuropsychiatric symptoms occur in the domains of attention, mood, social
cognition, autism and psychosis spectrum behaviors (Schmahmann et al. 2007). It
is now apparent that there is a double dissociation in the motor vs cognitive
dichotomy of cerebellar clinical neurology. Holmes’ (1917) cerebellar motor syn-
drome of ataxia, dysmetria and dysarthria arises following lesions of the senso-
rimotor anterior lobe but not the posterior lobe; the CCAS/Schmahmann
syndrome (Manto and Marién 2015) arises from the cognitive — affective poste-
rior lobe, but not the anterior lobe (Schmahmann and Sherman 1998; Levisohn
et al. 2000; Schmahmann et al. 2009). The cognitive and limbic consequences of
cerebellar injury and the underlying neurobiology and theory of the putative cer-
ebellar role in cognition were crystallized in the 1997 monograph on this topic
(Schmahmann 1997b).

2.6 Atlases and Functional Neuroimaging

Vincenzo Malacarne provided the first detailed description of the cerebellum
(Malacarne 1776), naming the vermis, lingula and tonsil. The atlas of Felix Vicg-
d’Azyr (1786) showed the structure of the cerebellum. Depictions of cerebellum
and brainstem were included in drawings by Franz Joseph Gall (Gall and Spurzheim
1810) and Herbert Mayo (1827), and in numerous volumes on cerebellum (Bolk
1906; Edinger 1909; Ingvar 1918; Riley 1929; Ziehen 1934; Larsell and Jansen
1972) (Fig. 2.2). The most detailed human atlas available was that of Angevine et al.
(1961), until the introduction of the three dimensional MRI Atlas of the Human
Cerebellum (Schmahmann et al. 2000) for use with anatomic and functional neuro-
imaging. It depicted cerebellum in the 3 cardinal planes in Montreal Neurologic
Institute stereotaxic space, included histological specimens with cerebellar nuclei,
and revised Larsell’s nomenclature. This atlas facilitated the development of the
on-line SUIT atlas (Diedrichsen 2006) for functional neuroimaging.

Magnetic resonance imaging (MRI) revolutionized the ability to visualize poste-
rior fossa structures and lesions. Task based functional MRI reliably shows cerebel-
lar activation by motor (Fox et al. 1985) and nonmotor tasks (Petersen et al. 1989;
Gao et al. 1996). The topography of functions in cerebellum is exemplified in an
fMRI meta-analysis and prospective study showing areas of cerebellum dedicated
to motor control, cognition and emotion (Stoodley and Schmahmann 2009; Stoodley
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Fig. 2.2 Depictions of the cerebellum by early anatomists. (a) Image from the atlas of Félix Vicq
D’Azyr (1786). His Plate IV includes the cerebellum. The image is flipped vertically, as in the atlas
the cerebellum is shown at the fop. (b) Images from the atlas of Franz Joseph Gall and Johann
Kaspar Spurzheim (Gall and Spurzheim 1810). i Gall and Spurzheim’s Plate IV, shows the base of
the brain with cerebral hemispheres, cerebellum and brainstem. ii Plate XIII, shows dissections of
the cerebral hemisphere and cerebellum. iii Plate X, shows cerebral and cerebellar hemispheres
partially dissected in the sagittal plane. (¢) Depictions of white matter dissections of the cerebral
hemisphere, cerebellum and brainstem by Herbert Mayo (1827). i Plate III shows dissection of the
middle cerebellar peduncle. In ii Plate IV, brainstem and cerebellar dissection with removal of the
MCP reveals the inferior and superior cerebellar peduncles

etal. 2012). Resting state functional connectivity MRI has added physiological con-
nectivity evidence to the connectional data from non-human primates, showing
functionally and anatomically distinct cerebrocerebellar circuits (Buckner et al.
2011; Habas et al. 2009; O’Reilly et al. 2010).

2.7 Evolving Techniques

Walker (1938) showed that stimulation of the cerebellum alters electrical activity of
the motor cortex. Cerebellar stimulation in patients produced amelioration of
aggression (Heath 1977) and reduced the frequency of seizures (Riklan et al. 1974).

Transcranial magnetic stimulation (TMS) has been used to study cerebrocerebel-
lar interactions in health (Hashimoto and Ohtsuka 1995) and disease (e.g., Wessel
et al. 1996) and cerebellar TMS has been explored as a therapeutic option in ataxias
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(Grimaldi et al. 2014) and neuropsychiatric illness (Demirtas-Tatlidede et al. 2010).
Magnetoencephalography (MEG) can record activity in the human cerebellum
(Tesche and Karhu 1997), and provides a temporal dimension to the study of
cerebellar circuitry and function. Magnetic resonance spectroscopy (MRS) is sensi-
tive to metabolic changes (Ross and Michaelis 1996), is abnormal in patients with
cerebellar degeneration (Tedeschi et al. 1996), and may be useful as a biomarker of
cerebellar dysfunction in ataxia (Oz et al. 2011).

2.8 Genetics

Since the discovery of the genetic basis of Friedreich’s ataxia (Campuzano et al.
1996), the understanding of autosomal dominant spinocerebellar ataxias and reces-
sive ataxias has produced a paradigm shift in the care of patients and families with
heritable cerebellar disorders. Exome sequencing and the promise of genome
sequencing has catapulted this further forward.

2.9 Theories

Snider (1952) proposed that cerebellum is the great modulator of neurologic func-
tion, Heath (1977) regarded it as an emotional pacemaker for the brain. Gilbert and
Thach (1977) confirmed the hypothesis of Marr (1969) and Albus (1971) that cere-
bellar climbing fibers and mossy fibers work in collaboration to facilitate a cerebel-
lar role in motor learning. Ito used the model of the vestibular ocular reflex (Lisberger
and Fuchs 1978) to suggest that the cerebellum engages in error correction in the
realms both of movement (Ito 1984) and of thought (Ito 1993). Leiner et al. (1986;
Leiner and Leiner 1997) drew on evolutionary considerations of the dentate nucleus
expanding in concert with cerebral association areas to propose that cerebellum
serves as a multi-purpose computer designed to smooth out performance of mental
operations. Thach (1996) suggested that the cerebellum uses the mechanism of con-
text-response linkage for motor adaptation, motor learning, and higher function.
Llinas and Welsh (1993) highlighted the role of the olivocerebellar system in
entraining cerebellar neuronal firing, focusing on the cerebellar role in movement.
Other ideas include the view that the cerebellum is critical for timing (Ivry and
Keele 1989), sensory perception (Bower 1995), anticipation and prediction
(Courchesne and Allen 1997), and sequence learning (Molinari et al. 1997).
Schmahmann’s dysmetria of thought theory (Schmahmann 1991, 2000, 2010) holds
that there is a universal cerebellar transform that maintains function around a
homeostatic baseline according to context; information being modulated is deter-
mined by topographically arranged anatomical circuits; the universal cerebellar
impairment is dysmetria — resulting in the motor ataxia syndrome when the motor
cerebellum is damaged, the CCAS when the cognitive-limbic cerebellum is damaged.
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2.10 Therapies

Physical, occupational and speech rehabilitation strategies have long been the main-
stay of therapy for ataxia. Many non-ataxic symptoms, including rest tremor are
now amenable to intervention. Medications are being repurposed or newly devel-
oped for the treatment of kinetic ataxia that address the underlying molecular and
physiological defects that produce cerebellar motor, cognitive and other
syndromes.
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Chapter 3
Pivotal Insights: The Contributions of Gordon
Holmes (1876-1965) and Olof Larsell

(1886-1964) to Our Understanding
of Cerebellar Function and Structure

Duane E. Haines

Abstract Among the notables who have contributed to our knowledge of cerebellar
structure and function, two individuals stand out. The neurologist Gordon
M. Holmes, consequent to his clinical observations on patients with cerebellar dam-
age, especially those with injuries in WW I, provided a remarkable understanding
of deficits, their laterality in relation to lesion location, and whether or not it involved
cortex, nuclei, or both. He also defined, and refined, the clinical terminology
describing cerebellar deficits to a level of accuracy, and especially relevance, that it
is commonly used today. The anatomist Olof Larsell, in 1920, embarked on a line
of investigation that would result, over 25+ years later, in a coherent and organized
terminology for the lobes and lobules of the cerebellum that is widely used today
and was the structural basis for numerous later experimental investigations. In this
effort Larsell used a developmental approach, mapped the sequential approach of
the cerebellar fissures and folia, and offered a terminology that clarified the existing,
and confusing, approach that existed prior to 1920.

Keywords Gordon Holmes ¢ Olof Larsell ¢ Cerebellum *History of neuroscience

Discoveries in function commonly follow the clarification provided by dogged
investigations of brain morphology. Based on chronology, one could argue that the
reverse is seen in the contributions of the protagonists in this brief story: the British
clinical neurologist, Gordon Morgan Holmes (Feb. 22, 1876-Dec. 29, 1965) and the
American neuroanatomist Olof Larsell (Mar. 13, 1886-Ap. 8, 1964).
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3.1 Gordon M. Holmes

Holmes (Fig. 3.1) received his medical training at Trinity College, Dublin (1899).
Consequent to a successful stint at the Richmond Asylum, Dublin, he spent over 2
years studying with Karl Weigert and Ludwig Edinger where he gained appreciation
for the intricacies of brain morphology. He went on to hold positions at the National,
Charing Cross, and Moorfields Ophthalmic Hospitals.

With the beginning of World War (WW) I Holmes attempted to enlist but was
rejected (he was myopic). He bypassed this obstacle by joining a Red Cross hospital
immediately behind the front where he rose through the ranks. The combination of
his work ethic, skill as a neurologist and the unfortunate availability of injured sol-
ders, provided the means for Holmes to make clinical observations that were
remarkably insightful for their time.

This great World War provided literally hundreds of soldiers with injury to the
occipital region and the cerebellum, due to poorly designed helmets. This provided
Holmes the opportunity to observe, study, and refine clinical concepts of cerebellar
function that stand to this day. Quotes are liberally used here to clearly illustrate the
contemporary nature of Holmes’ (and Larsell’s) descriptions.

Fig. 3.1 Holmes (light suit, hands in pockets) during a stay at the Senkenberg Institute. Back row,
L to R: Juliusberg, Rosenberg, Jensen, Philipp, Franz. Front row, L to R: Von Jagic, Southard,
Edinger, Holmes, Herxheimer, Tiegel, Kunicke, Friedmann. Sitting, Weigert (Courtesy of The
Cerebellum, 2007, 6: 141-156)
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Holmes published a large body of information regarding cerebellar influence on
somatomotor activity from his clinical research (Holmes 1917), and presented in
his Croonian Lectures of 1922 (Holmes 1922a, b, ¢, d). He acknowledged that his
cases were:

...determined largely by the opportunities I have had of observing the effects of local
lesions of the cerebellum in both warfare and civil life.

While he acknowledged the numerous prior studies that attempted to answer
fundamental questions he noted:

...there is still a remarkable divergence between the symptoms attributed in various text-
books and monographs to lesions of the cerebellum in man.

Holmes made detailed studies of patients (acute and long term) with cerebellar
lesions to clarify the unique traits of particular somatomotor deficits. Using this
patient population, he made definitive observations that not only clarified previous
misconceptions, but expanded the understanding of cerebellar function at that time.
Many ideas and concepts were clarified, or discovered, by Holmes and described in
terms/phrases that could come from any twenty-first century comprehensive
textbook.

First, Holmes definitively clarified the fact that

The effects of cerebellar injuries fall almost exclusively upon the motor system, ... of the
same side.

This is now a well established concept, along with the newer recognition of the
wider role of the cerebellum.

Second, Holmes noted the difficulty of sorting out what difference may exist
between lesions of only the cerebellar cortex versus cortex plus nuclei. He described
deficits resultant from clearly superficial lesions (cortex) and those with deeper
damage (cortex + nuclei) and concluded:

... we find that when the lesion is so superficial that the nuclei cannot have been directly
injured the symptoms are less intense, less regular, and that they disappear much more
rapidly. ... rapid improvement is never seen when the damage extends to the neighborhood
of the central nuclei.

This is observed in the contemporary clinic: a distal PICA lesion (cortex) results
in a cascade of vestibular and motor deficits that resolve quickly, within days to very
few weeks, while a SCA lesion (cortex + nuclei) results in a similar cascade of motor
deficits lasting weeks, months, or years.

Third, Holmes noted that a “...most striking feature...” is a decrease in muscle
tone. He reported that;

When a lesion involves a large part of one-half of the cerebellum, ... the hypotonia is rigidly
limited to ... the same side ... often most pronounced at the proximal than at the distal
joints.

He clarified the variety of tests that could be used to arrive at an accurate
diagnosis.
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Fourth, Holmes accurately described the variety of movement disorders that
characterize cerebellar lesions;

Dysmetria ... striking abnormality in the affected limbs ... their movements are not cor-
rectly adapted or proportioned ... they are ill-measured.

He noted that dysmetria may exist in two forms:

... the range of movement is most commonly excessive ...” (hypermetria) or that “... the
movement is arrested or slowed down before the point the patient wishes to attain is reached
...” (hypometria).

Fifth, three common cerebellar deficits are the rebound phenomenon, diadocho-
kinesia, and the intention tremor. Concerning the first Holmes noted (see also
Koehler et al. 2000):

... resistance that effectively prevents a movement of a normal limb in response to a strong
voluntary effort be suddenly released, the limb, after moving a short distance ... is arrested
abruptly by the action of the antagonist muscles... this sudden arrest fails frequently in
cerebellar disease ... when the grasp is suddenly relaxed the hand on the affected side
swings violently toward his face or shoulder, and ... may be flung above his head.

Diadochokinesia is the inability of a patient to rapidly;

... pronate and supinate his forearms ... a very striking difference is noticed between the
movements on the two sides ....

Holmes noted that if the limb was hypotonic the abnormal movements may be
slow, irregular in “... rate and range ...” and “... become more pronounced the
longer the effort is continued ...”. Holmes described the intention tremor as com-
plex movements, its individual components are disrupted, uncoordinated, and
largely ineffective. He noted:

In the early part of the movement the limb sways about in a purposeless manner as soon as
it is raised from its support ... in trying to touch his nose, his finger, for instance, often
comes to his cheek or eye.

A remarkable element of the work by Holmes on the cerebellum is its accuracy,
detail, insights, and relevance to modern day neurology. In fact, one can read
Holmes and get information that is just as detailed, correct, and useful with respect
to the motor phenomena following cerebellar injury as in any contemporary text.

3.2 Olof Larsell

Larsell (Fig. 3.2, Mar, 13, 1886-April 8, 1964) was born in Rittvik, Sweden and
came to the United States with his mother at age 5; his father had established a home
in Tacoma, Washington. He received the B.S degree (in Biology) from McMinnville
(now Linfield) College in 1910. His academic travels were circuitous. He taught at
Linfield (1910-1913), attended Northwestern University (1913-1914, M.S. degree
in Zoology), taught at Linfield (1914-1915), re-entered Northwestern in 1915 and
received his Ph.D. degree in 1918 (Haines 1999).
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Fig. 3.2 Olof Larsell in
his office at the University
of Oregon Medical School,
ca. 1945. Author’s
collection (Courtesy of Mr.
Robert Larsell)

During the summers of 1913 and 1914 Larsell took summer courses at the
University of Chicago under the renowned American neuroanatomist, Charles
Judson Herrick. These fortuitous summer experiences greatly influenced Larsell’s
thinking, research direction, and life-long fascination with brain anatomy.

3.3 The Problem

During the period spanning the 1880s and up to about the mid 1940s, the terminol-
ogy utilized to designate the lobes/lobules, folia, and fissures of the cerebellum was
highly variable. It consisted of different names being given to the same folia/lobes/
lobules; in some cases lower and upper case letters intermixed with numbers/numer-
als (Arabic and Roman) and what constituted a lobe was inconsistently applied
(Angevine et al. 1961). For example, the vermis part of the culminate lobule (IV and
V of Larsell) was called the culmen, culmen monticule, pars culminus of the lobus
anterior, lobe B, or lobules 3 and 4. This represented a significant confusion of
terminology.

Stemming from his time with Herrick, Larsell began a series of studies that
would span over 40 years and focus on the morphology of the cerebellum utilizing
a developmental approach. Whether or not Larsell realized it, this approach would
reveal homologies in lobes, lobules, and fissures across a wide range of biological
forms that are not evident in a study of the adult form. This would clearly establish
a broad-based biological pattern. Larsell’s first paper, published in 1920, and identi-
fies the source of his motivation:

It was at the suggestion of Professor Herrick that the present study was begun. It is a plea-
sure for the writer to acknowledge his sense of indebtedness to Professor Herrick....
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3.4 Early Studies, 1920-1932

Larsell’s first paper, “The cerebellum of Amblystoma” appeared in 1920. This early
period focused on non-mammalian forms. Interestingly, Larsell listed his first
affiliation as the “Anatomical Laboratories of the University of Chicago” and
“the University of Wisconsin” where he was an Assistant Professor (1918-1920).
While Herrick had influenced the study, and provided some material, Larsell was
not in residence at Chicago.

In this time frame Larsell methodically detailed the cerebelli of the tiger sala-
mander, frog, newt, and a variety of snakes and lizards. He used silver impregna-
tion methods (Golgi, Cajal), myelin and hematoxylin stains, and the Marchi
method. He described aspects of development and the external anatomy of adult
forms, specified a larger corpus cerebelli and a smaller auricular lobe, the cortical
histology of these primitive forms, and the primordial cerebellar nuclei. He did not
use a lobule designation, but the dye was cast (Larsell 1920, 1923, 1925, 1926,
1931, 1932a, b).

3.5 The Middle Period, 1932-1947

In this period Larsell expanded on the concept of a large cerebellar mass, the corpus
cerebelli. The first superficial feature to appear was a shallow fissure along the cau-
dal and lateral edge of the cerebellar anlage. Larsell identified the lateral part of this
groove as the “parafloccular fissure” and the medial part as the “uvulonodular fis-
sure” (or floccular fissure), terms used by previous investigators. This combined
fissure separated a large rostral part of the cerebellum, the “corpus cerebelli”, from
a smaller caudal part, the “vestibular floccular lobe” (Larsell 1931, 1932a, 1934,
1936a, b, 1937, 1947a, b).

In studies during this period on opossum, bat, and human specimens, Larsell
carefully refined the basis for his new nomenclature. He noted that a “posterolateral
fissure” (his term) replaced the combined terms of parafloccular and uvulonodular
fissures, that this fissure was first to appear in the cerebellar anlage dividing it into
a “flocculonodular lobe” and “corpus cerebelli”, and that the “primary fissure” was
the second to appear and divided the corpus cerebelli into anterior and posterior
lobes. Larsell (1935, 1936a, b, 1945, 1947a, b) noted:

The flocculonodular lobe and the corpus cerebelli are the fundamental cerebellar divisions
morphologically, and ... functionally.

At this point two old concepts were disproven; first, the primary fissure was not
the first to appear in development, and second, the concept of a ‘median lobe’ was
no longer viable,
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3.6 Later Studies and the Solution, 1948—-1954

After 10 years of study on the avian cerebellum, Larsell used, for the first time
(1948), the unique terminology that he had been working toward since 1920. He
noted that the posterolateral fissure was first to appear in the cerebellar plate divid-
ing it into a flocculonodular lobe and the corpus cerebelli. Larsell (1948) indicated
that an orderly appearance of subsequent fissures in the corpus cerebelli resulted in
an adult structure of 10 main folia (Roman numerals [-X).

For convenience of description they will be numbered I to X beginning anteriorly.

In this introduction of his method Larsell used the term “...folia...” recognizing
the simple structure of the avian cerebellum, which lacked a hemisphere, and the
vermis consisted of leaf-like structures.

Between 1952 and 1954 Larsell reported his extensive observations on the cere-
bellum of the white rat, cat, monkey, pig, and human using developmental stages
and adult specimens (Larsell 1952, 1953a, b, 1954; Larsell and Dow 1939; Larsell
and Whitlock 1952). Using these mammals he clearly showed that the mature mam-
malian cerebellum was composed of subdivisions called “...lobules...”.

I have pointed out...the striking similarities between folia I-X of birds and the vermian
segments of the rat which the present investigation has brought to light ... I shall call these
segments lobules I-X, corresponding to the similarly named avian folia.

Each lobule of the vermis, beginning with the lingual and ending with the nodu-
lus, was identified by Roman numerals (I, II, III ... X). The lateral extension of each
vermis lobule, the hemisphere portion, was identified by the same Roman numeral
but with the prefix H (HII, HIII ... HX) specifying “hemisphere portion of...”.
Larsell recognized that the basic pattern of a cerebellar plate being transected by
two fissures (joining to make one — the posterolateral) formed a larger corpus cere-
belli and a smaller flocculonodular lobe. In concert he noted that the development
of the primary fissure, the second to appear and first in the corpus cerebelli, resulted
in an anterior lobe (lobules I-V) and a posterior lobe (lobules VI-IX); the further
development of additional fissures in these lobes clearly established to a fundamen-
tal plan. He postulated that this ten lobule arrangement would prove to be applicable
to a wide range of forms, a point well-taken.

In studying Larsell’s correspondence with Herrick, it is clear that he was a quiet,
reserved man who was concerned about the wider impact of his life-long work. In a
letter to Herrick (dated July 20, 1948) Larsell says;

I treaded on Brouwer’s and Ingvar’s toes somewhat — gently enough I hope..., but I do not
think my work will need repeating.

Indeed, it did not merit repeating, and by the late 1950s and 1960s was adopted
by giants of the day and, to the present, is the standard.
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Chapter 4
Gross Anatomy of the Cerebellum

Jan Voogd and Enrico Marani

Abstract After the first description of the cerebellar foliation by Vincenzo
Malacarne (1744-1816) in his “Vera struttura del cervelletto umano” (the genuine
structure of the human cerebellum, Malacarne V, Nuova espozisione della vera
struttura del cervelletto umano. G. Briolo, Torino, 1776) many different nomencla-
tures have been proposed for the gross anatomy of the cerebellum (Angevine Jr
JNB, Mancall EL, Yakovlev PI, The human cerebellum. Little Brown, Boston,
1961). Here we will consider the classical nomenclature of the human cerebellum
and the comparative anatomical nomenclatures of Bolk (Das Cerebellum der Sdug
etiere. Fischer, Haarlem, 1906), Larsell (J Comp Neurol 97:281-356. 1952), and
Larsell and Jansen (The comparative anatomy and histology of the cerebellum.
III. The human cerebellum, cerebellar connections, and cerebellar cortex . University
of Minnesota Press, Minneapolis, 1972) and their application to the human cerebel-
lum, and to the small cerebellum of the mouse.

Keywords Vermis * Hemisphere ¢ Fissures ¢ Lobules * Folal cains * Mouse cere-
bellum * Human cerebellum

After the first description of the cerebellar foliation by Vincenzo Malacarne (1744—
1816) in his “Vera struttura del cervelletto umano” (the genuine structure of the
human cerebellum, 1776) many different nomenclatures have been proposed for the
gross anatomy of the cerebellum (Angevine et al. 1961). Here we will consider the
classical nomenclature of the human cerebellum and the comparative anatomical
nomenclatures of Bolk (1906), Larsell (1952), and Larsell and Jansen (1972) and
their application to the human cerebellum, and to the small cerebellum of the mouse.
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Fig. 4.1 Nomenclature of the cerebellum. Left panel illustrates the comparative anatomical
nomenclature for the hemisphere and Larsell’s (1952) numbering system for the lobules of the
vermis and hemispheres. Right panel shows the classical nomenclature of the human cerebellum.
The homology of these lobules is indicated using the same color. Asterisks denote areas devoid of
cortex in the center of folial rosettes of the ansiform lobule and the paraflocculus. Abbreviations:
Cop copulapyramidis, PMV posterior medullary velum

In the classical nomenclature of the human cerebellum vermis and hemispheres,
separated by the paramedian sulcus, are distinguished (Figs. 4.1, right panel and
4.2). The paramedian sulcus is shallow in the anterior cerebellum, but is a deep cleft
posterior to the posterior superior sulcus. Here, the cortex can be interrupted, with
white matter appearing at the surface. In the antero-posterior subdivision the cere-
bellum is divided into anterior and posterior lobes, separated by the primary fissure,
the deepest fissure on a midsagittal section of the cerebellum. Names of the lobules
are derived from their shape or their resemblance to particular structures (Malacarne
1776; Glickstein et al. 2009).

Bolk (1906) based his nomenclature on the comparison of numerous species of
mammals. Bolk considered the vermis and the hemispheres as folial chains (Figs.
4.1, left panel and 4.2¢). The cortex within a chain is always continuous, in the
paramedian sulcus the cortex, or more precisely, the parallel fibers in the molecular
layer may be interrupted. In the anterior lobe and in the simplex lobule, located
immediately caudal to the primary fissure, the folial chains of vermis and hemi-
sphere are aligned and the transverse fissures continue uninterruptedly from the
vermis into the hemisphere. Caudal to the simplex lobule the folial chain of the
hemisphere makes two loops, the ansiform lobule and the paraflocculus. The most
caudal lobule of the folial chain of the hemisphere, the flocculus, is reflected upon
the distal part of the paraflocculus. The cortex in the center of the ansiform lobule,
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Fig. 4.2 (a—c) Anterior, dorsal and posterior views of the human cerebellum. Red lines indicate
the direction of the folial chains of vermis and hemispheres. (d) Midsagittally sectioned human
cerebellum. (e) Bolk’s (1906) diagram of the folial chains of vermis and hemispheres. (e)
Dissection of the posterior cerebellum after removal of the tonsil. Abbreviations: /, /I folial loops
of the ansiform lobule and the paraflocculus, Ce central lobule, Cu culmen, De declive, Fol/Tu
folium and tuber vermis, N nodulus, PFLD dorsal paraflocculus, PFLV ventral paraflocculus, Py
pyramis, Uv uvula, Vma anterior medullary velum
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lateral to the folium/tuber (Larsell’s lobule VII) is interrupted The rostral and caudal
limbs of the folial loop of the ansiform lobule are known as the Crus I and II. The
cortex is absent between the caudal vermal lobules, the uvula and the nodulus (IX
and X), and the paraflocculus (HIX) and the flocculus (HX). The rostral and caudal
limbs of the paraflocculus are known as the dorsal and ventral paraflocculus. At the
level of the paramedian lobule, located between the ansiform lobule and the para-
flocculus, the folial chains of vermis and hemispheres are aligned and the parame-
dian sulcus is indistinct. Interlobular fissures, if present, continue uninterruptedly
from the pyramis (VIII) into the paramedian lobule.

Larsell (1952) emphasised the medio-lateral continuity of the lobules of vermis
and hemispheres. He distinguished ten lobules in the vermis, indicated with the
roman numerals [-X (Fig. 4.1, left panel). Their hemispheral counterparts are indi-
cated with the prefix H. From Larsell’s description it becomes clear that the parame-
dian lobule consists of rostral and caudal subdivisions. Its rostral portion (lobule
HVIIB, the gracile lobule) is continuous with vermal lobule VII, its caudal portion
(HVIII: the copula pyramidis) is continuous with lobule VIII (the pyramis).

Several MRI atlases of the human cerebellum have been published (Schmahmann
et al. 2000; Dietrichsen et al. 2009). They use a mixture of the classical and com-
parative anatomical nomenclatures, retaining the terms Crus I and II of the ansiform
lobule. In applying Larsell’s numeral system they discarded the prefix H for lobules
of the hemisphere, thus introducing some confusion because it is not always clear
whether lobules of vermis or hemispheres are meant.

For the homology of the paraflocculus and the flocculus with lobules in the
human cerebellum it is important to note that the cortex of the flocculus can be sub-
divided into five longitudinal Purkinje cell zones (Voogd and Barmack 2006;
Schonewille et al. 2006). Two zonal pairs connect through vestibulooculomotor
neurons with the external eye muscles. In most mammals these floccular zones
extend for some distance on the ventral paraflocculus. In monkeys they occupy the
entire ventral paraflocculus. A narrow cortical bridge connects the ventral with the
dorsal paraflocculus. In the human cerebellum this cortical bridge is broken. The
dorsal paraflocculus is represented by the tonsil and the ventral paraflocculus by the
accessory paraflocculus. In most mammals the folial loop of the paraflocculus is
directed laterally. The folial loop of the tonsil, however, is directed medially (Fig.
4.21).

The cerebellum of the mouse conforms to Bolk’s general pattern (Marani and
Voogd 1979). In the anterior lobe the lobules (H) I and IT and (H) IV and V are fused
(Fig. 4.3). A paramedian sulcus is absent in the anterior lobe and the simplex lob-
ule.! An area without cortex is present lateral to lobule VII in the center of the
ansiform lobule and lateral to the rostral paramedian lobule. White matter in the

'Because the vermis projects to the fastigial and vestibular nuclei, the lateral border of the vermis
is located latral to the Purkuinje cell zone B that projects to the lateral vestibular nucleus. The loca-
tion of the B zone in the anterior cerebellum and lobule VIII was established for the rat by Voogd
and Ruigrok (2004) the corresponding white matter comprtment was located for the mouse by
Marani (1986).
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Fig. 4.3 The cerebellum of the mouse. (a—d) Anterior, dorsal, posterior and ventral views of the
cerebellum of the Mouse. Interruptions of the cortex are indicated in red. (e) View of the midsagit-
taly sectioned molecular layer of the cerebellum of the mouse. Dotted line indicates the attachment
of the roof of the fourth ventricle. (f). Lateral view of a reconstruction of the molecular layer of the
cerebellum of the Mouse. Note continuity between the copula pyramidis and the paraflocculus.
Arrows point to regions where the cortex is interrupted (Modified from Marani and Voogd (1979)).
Drawings by Jan Tinkelenberg. Abbreviations: ANS ansiform lobule, COP copula pyramidis, Crl,
11, Crus I 11 of the ansiform lobule, FLO flocculus, PFL paraflocculus, PMD paramedian lobule,
SIM simplex. lobule

paramedian sulcus separates lobules IX and X from the paraflocculus and the floc-
culus. The cortexless areas extend from the paramedian sulcus into the superior part
of the lobules IX and X. The copula pyramidis (HVIII) lateral continues into the
dorsal paraflocculus. The folial loop of the paraflocculus remains separated from the
parmedian lobule by the white matter in the parafloccular sulcus, an extension of the



38 J. Voogd and E. Marani

white matter surrounding the cerebellum. The paraflocculus is incompletely divided
into dorsal and ventral limbs by the intraparafloccular sulcus on the medial side of
this lobule.
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Chapter 5
Vascular Supply and Territories
of the Cerebellum

Qiaoshu Wang and Louis R. Caplan

Abstract Within the posterior circulation, Caplan and colleagues characterized
brain and vascular structures as involving the proximal, middle, and distal posterior
circulation territories. The proximal intracranial posterior circulation territory
includes regions supplied by the intracranial vertebral arteries (ICVAs)-the medulla
oblongata and the posterior inferior cerebellar arteries (PICAs)-supplied region of
the cerebellum. The ICVAs join at the medullo-pontine junction to form the basilar
artery (BA). The middle intracranial posterior circulation territory includes the
portion of the brain supplied by the BA up to its superior cerebellar artery (SCA)
branches- the pons and the AICA-supplied portions of the cerebellum. The BA
divides to form the 2 posterior cerebral arteries (PCAs) at the junction between the
pons and the midbrain, just beyond the origins of the SCAs. The distal intracranial
posterior circulation territory includes all of the territory supplied by the rostral BA
and its SCA, PCA and their penetrating artery branches- midbrain, thalamus, SCA-
supplied cerebellum, and PCA territories.

Keywords Cerebellum ¢ Vertebral artery ¢ Brainstem ¢ Basilar artery ¢ Cerebellar
arteries

5.1 Overview

Within the posterior circulation, Caplan and colleagues characterized brain and vas-
cular structures as involving the proximal, middle, and distal posterior circulation
territories (Caplan 1996, 2000; Caplan et al. 2004, 2005; Chaves et al. 1994; Savitz
and Caplan 2005). The proximal intracranial posterior circulation territory includes
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Middle

Proximal

Fig. 5.1 Schema of the proximal, middle, and distal intracranial territories of the vertebro-basilar
arterial system (Drawn by Laurel Cook-Lowe, modeled after a figure in Duvernoy HM 1978)

regions supplied by the intracranial vertebral arteries (ICVAs)-the medulla oblon-
gata and the posterior inferior cerebellar arteries (PICAs)-supplied region of the
cerebellum. The ICVAs join at the medullo-pontine junction to form the basilar
artery (BA). The middle intracranial posterior circulation territory includes the
portion of the brain supplied by the BA up to its superior cerebellar artery (SCA)
branches- the pons and the AICA-supplied portions of the cerebellum. The BA
divides to form the two posterior cerebral arteries (PCAs) at the junction between
the pons and the midbrain, just beyond the origins of the superior SCAs. The distal
intracranial posterior circulation territory includes all of the territory supplied by
the rostral BA and its SCA, PCA and their penetrating artery branches- midbrain,
thalamus, SCA-supplied cerebellum, and PCA territories. This distribution is shown
diagrammatically in Fig. 5.1.
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Fig. 5.2 Schematic
diagram of the cerebellar
arteries. / Superior
cerebellar artery (SCA); 2
medial branch of the SCA;
3 lateral branch of the
SCA; 4 anterior inferior
cerebellar artery (AICA); 5
posterior inferior cerebellar
artery (PICA); 6 medial
branch of PICA; 7 lateral
branch of PICA; 8 basilar
artery; 9 vertebral artery
(From Amarenco 1991)

The three surfaces of the cerebellum are: tentorial (or superior) facing the tento-
rium cerebelli, petrosal facing towards the petrous bone, and suboccipital facing the
suboccipital bone located between the lateral and sigmoid dural sinuses (Lister et al.
1982). The PICAs encircle the medulla and supply the suboccipital cerebellar sur-
face; the AICAs course around the pons and supply the petrosal surface of the cer-
ebellum, and the SCAs encircle the midbrain and supply the tentorial, superior
surface of the cerebellum (Lister et al. 1982).

The arteries to the cerebellum are distributed rostrocaudally so that the PICAs
arises from the ICVAs, the anterior inferior cerebellar arteries (AICAs) arise from
the BA, and the most rostral arteries, the SCAs, arise near the BA bifurcation (Fig.
5.2). The PICAs and the SCAs, the two largest arterial pairs have medial branches
that supply mostly the vermian and paravermian portions of their respective regions
of the cerebellum, and lateral branches which supply the cerebellar hemispheres.
Infarcts in the cerebellum are often limited to the territory of one of these branches
e.g. medial PICA (mPICA), lateral SCA (ISCA) etc. These cerebellar branch terri-
tory infarcts correspond to functional regions such as the inferior vermis or supe-
rior lateral neocerebellum. The AICAs, in contrast, supply only a small part of the
anterior inferior cerebellum and the flocculus, but their major supply is to the lat-
eral pontine tegmentum and the brachium pontis. The AICAs do not divide into
medial and lateral major cerebellar branches but give off twigs to various
structures.

5.2 Posterior Inferior Cerebellar Arteries (PICAs)

The PICAs usually originate from the ICVAs about 2 cm below the origin of the
basilar artery, and, on average, about 8.6 mm above the foramen magnum
(Marinkovic et al. 1995). The site of origin, however, varies from 14 mm below the
foramen magnum to 26 mm above the foramen magnum (Marinkovic et al. 1995).
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About 10 % arise from the basilar artery (Amarenco and Hauw 1989). Size varies;
The diameters varied between 0.58 and 2.10 mm in one analysis (Amarenco and
Hauw 1989). Some ICVAs end in PICA, and PICA can be absent in which case
there usually is a large artery that arises from the proximal basilar artery that sup-
plies both the PICA and AICA territories. Occasionally PICA is duplicated.

After coursing laterally and downward to go around the lateral medulla (the lat-
eral medullary segment), the PICAs make a cranially directed loop and ascend
between the dorsal portion of the medulla and the caudal part of the cerebellar tonsil
on that side (the tonsillo-medullary segment) (Lister et al. 1982; Marinkovic et al.
1995). They then make a second loop above the cranial portion of the tonsil and
descend along the inferior vermis coursing between the inferior medullary velum
and the rostral portion of the tonsil (the telovelotonsillar segment). Finally the artery
becomes superficial and supplies branches to the tonsil, medulla, choroid plexus
and cerebellar cortex. Medial and lateral branches (mPICA, and IPICA) arise from
the main trunks (Fig. 5.3) at variable locations between the two PICA loops. mPICA
supplies the inferior vermis including the nodulus, pyramis, uvula, tuber, and some-
times the declive and the medial portions of the semilunar lobule, gracile lobule, and
the tonsil (Chaves et al. 1994; Amarenco and Hauw 1989; Amarenco et al. 1989,
1993; Amarenco 1991; Gilman et al. 1981; Duvernoy 1978). mPICA often sends a
supply to the dorsal medulla. IPICA supplies the inferior two thirds of the biventer,
most of the inferior portion of the semilunar and the gracile lobules, and the antero-
lateral portion of the tonsil (Chaves et al. 1994; Amarenco and Hauw 19809;
Amarenco et al. 1989, 1993; Amarenco 1991; Gilman et al. 1981; Duvernoy 1978).
Figures 5.4, 5.5, and 5.6 show diagrammatically the supply territories of PICA,
mPICA, and IPICA. The PICAs sometimes supply the deep cerebellar structures
including the fastigial nuclei but usually do not supply the dentate nuclei (Amarenco
and Hauw 1989).

Although many equate the Wallenberg syndrome with an occlusion of PICA
causing infarction in the lateral medulla, PICA does not supply the lateral medullary
tegmentum. This region is supplied by a group of parallel small arteries that origi-
nate directly from the intracranial vertebral artery and pass through the lateral med-

Fig. 5.3 Sketch showing
course and branching of
the Posterior inferior
cerebellar artery (PICA). 1
PICA; 2 lateral branch of
PICA; 3 medial branch of
PICA; 4 cerebellar
hemisphere; 5 cerebellar
vermis; 6 cerebellar tonsil
(Reproduced with
permission from Amarenco
et al. 1993)
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Fig. 5.4 The supply zone
of PICA (Reproduced with
permission from Amarenco
1991)

Fig. 5.5 The supply zone
of the medial branch of
PICA (Reproduced with
permission from Amarenco
1991)
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Fig. 5.6 The supply zone
of the lateral branch of
PICA (Reproduced with
permission from Amarenco
(1991)

Fig. 5.7 Right lateral
medullary fossa.

1 Vertebral artery;

2 Posterior inferior
cerebellar artery (PICA);
4 lateral medulalry fossa;
5 vagus nerve; 6 IV
ventricle choroids plexus;
7 glossopharyngeal nerve;
& vestibulo-cochlear nerve;
9 Facial nerve; 10 lateral
pontine vein; // pons;

12 abducens nerve;

13 Olive; (a) A’- rami
arising from PICA;

(b) rami arising from the
vertebral artery to supply
the lateral medulla;

(¢) rami arising from the
basilar artery; (¢, d) Rami
arising from AICA (From
Duvernoy 1978)
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ullary fossa to supply the lateral medulla (Fig. 5.7) (Duvernoy 1978). Sometimes
the medial branch of PICA supplies a small area in the dorsal medulla that includes
vestibular nuclei and the dorsal motor nucleus of the vagus. The medial branch of
PICA supplies a triangular area with a dorsal base and a ventral apex towards the
fourth ventricle on an axial mid-medullary and cerebellar section (Amarenco and
Hauw 1989). Figure 5.8 is a sagittal section MRI showing a PICA infarct. Figure 5.9
shows a brain specimen with a medial PICA territory infarct. Figure 5.10 is a axial

section MRI of a mPICA infarct.
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Fig. 5.8 MRI sagittal
T2-weighted scan showing
a PICA territory infarct
(From Caplan 1996)

Fig. 5.9 Necropsy
specimen showing an
infarct in the territory of
the medial branch of the
posterior inferior cerebellar
artery (From Amarenco

et al. (1989) with
permission)

Fig. 5.10 MRI sagittal
diffusion-weighted scan
showing (a) mPICA
territory infarct
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5.3 Anterior Inferior Cerebellar Arteries (AICAs)

The AICAs are nearly constant arteries but their origins, sizes, and supply zones
vary greatly. In 4% of people, there is no AICA branch (Lazorthes 1961). The
AICAs have the smallest territory of supply of any of the cerebellar arteries. The
AICAs usually arise about 1 cm above the vertebrobasilar artery junction (Fig. 5.11),
and sometimes from the middle third of the basilar artery. Occasionally, they can
arise directly from the ICVA, or from a common trunk with PICA. The internal
auditory arteries are usually branches of the AICAs but in some individuals they
arise directly from the basilar artery. In one study the diameters of AICA ranged
from 0.38 to 1.8 mm (mean 1.1 mm) (Marinkovic et al. 1995). After arising from
the basilar artery the AICAs travel towards the cerebellopontine angle, passing
below the Vth nerve, crossing the VIth nerve, and meeting the VIIth and VIIIth
nerves at the cerebellopontine angle (Marinkovic et al. 1995; Amarenco and Hauw
1989, 1990a; Amarenco et al. 1993; Amarenco 1991; Gilman et al. 1981; Duvernoy
1978; Perneczky et al. 1981). After crossing the VIIIth nerve, the AICAs give rise
to the internal auditory arteries and then divide into two branches. One branch
courses laterally and inferiorly to supply the anterior inferior portion of the cerebel-
lum on the petrosal surface. The other branch loops around the bundle made by the
VIIth and VIIIth nerves, and supplies the flocculus, brachium pontis, middle part of
the cerebellar hemisphere, and the lateral part of the pons (Marinkovic et al. 1995;
Amarenco and Hauw 1989, 1990a; Amarenco et al. 1993; Amarenco 1991;
Perneczky et al. 1981). The internal auditory arteries supply the facial and vestibu-
locochlear nerves as well as the structures of the inner ear.

Asymetry and reciprocal size relationship of AICA and PICA are common.
Studies show a balance between AICA and PICA. In some individuals AICA can
substitute for a hypoplastic PICA, taking over the supply of the inferior surface of
the cerebellum (Stopford 1915-1916; Foix and Hillemand 1925; Atkinson 1949;
Takahashi 1974). Usually the flocculus is always irrigated by AICAs, but for 3-5 %
of people the AICA is replaced by the PICA (Lazorthes 1961). According to
Lazorthes, in 40 % of individuals the AICA terminates on the flocculus; (Lazorthes

Fig. 5.11 Base of the
brain at necropsy showing
the origin of the Anterior
Inferior Cerebellar arteries
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Fig. 5.12 Blood supply of the caudolateral pons from the Anterior Inferior Cerebellar Artery
(AICA). The shaded area to the right is the supply of a lateral branch of AICA. (a) Basilar artery;
(b) medial pontine segment of AICA; (c) loop segment of AICA around flocculus; (d) paramedian
basilar artery branches; (e) brainstem branches of AICA; (f) flocculus; (h) IV ventricle; (i) bra-
chium pontis; (j) medial lemniscus; (k) lateral spinothalamic tract; (1) motor nucleus of V; (o) V11
and VIII cranial nerves; (p) internal acoustic meatus (From Perneczky et al. (1981) with
permission

1961) in others it passes through the sulcus separating the anterior lobes and the
semilunar lobules and the terminal branches supply the nearby lobules: anterior,
simplex, superior semilunar, inferior semilunar, gracilis, and biventer in 18-50 % of
individuals (Lazorthes 1961; Takahashi et al. 1968). Figure 5.12 is a schematic
drawing of the AICA and its supply (Perneczky et al. 1981). Figure 5.13 shows the
brainstem and cerebellar distribution of the AICA supply territory. Figure 5.14 is a
necropsy specimen showing an AICA territory infarct at the level of the pons.
Figure 5.15 is a saggital and axial section MRI of a AICA infarct.

5.4 Superior Cerebellar Arteries (SCAs)

The SCAs arise as the last pair of branches from the basilar artery just before the
basilar artery bifurcates into the paired PCAs (Fig. 5.16). The third cranial nerves
run between the SCAs and the PCAs near the posterior communicating arteries. In
about 15 % of patients there are bifid SCAs. In one series the diameters ranged from
0.7 to 1.93 mm (mean 1.1 mm) (Marinkovic et al. 1995). The SCA encircles the
brainstem close to or within the ponto-mesencephalic sulcus, just below the third
nerve and just above the trigeminal nerve. While coursing around the midbrain, the
SCAs give off branches that supply the brainstem including the superior portion of
the lateral pontine tegmentum and the pontine and mesencephalic tectum. The
SCAs have an early division within the cerebello-mesencephalic cistern where it
divides into the mSCA and ISCA branches. Figure 5.17 shows the usual branching



48 Q. Wang and L.R. Caplan

Fig. 5.13 Diagramatic depiction of the supply zones of the anterior inferior cerebellar arteries. (a)
Shows the pontine territory. / Flocculus, 2 brachium pontis, 3 restiform body, 4 brachium conjunc-
tivum, 5 dentate nucleus, 6 vestibular nuclei, 7 spinothalamic tract, § central tegmental tract, 9
medial lemniscus, /0 cerebellar nodulus. (b) Shows the cerebellar supply on a lateral view of the
cerebellum and (c¢) shows the supply on cut sections of the cerebellum and brainstem. The supply
zones are shaded (Reproduced with permission from Amarenco et al. 1993)

Fig. 5.14 Necropsy
specimen (H & E stained)
showing an anterior
inferior cerebellar artery
territory infarct
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Fig. 5.15 MRI sagital T1 (left) and axial diffusion-weighted scan showing an AICA territory infarct

Fig. 5.16 Brain at
necropsy showing the
superior cerebellar arteries
circling the midbrain and
giving off branches

Fig. 5.17 Schematic
diagram of the superior
cerebellar artery (SCA) and
its medial (mSCA) and
lateral (ISCA) branches.
The top branch is the
mSCA and the lower
branch is the ISCA (From
Amarenco et al. (1991)
with permission)
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Fig. 5.18 The SCA supply
territories are shaded
(From Amarenco and
Hauw 1989)

of the SCAs and the course of the lateral and medial branches. The mSCA branch
extends more laterally than the mPICA. Occasionally these branches arise directly
from the basilar artery and the SCAs.

Both the major branches of the SCAs course towards the pedunculo-cerebellar
sulcus and reach the superior and anterior aspects of the cerebellum above the hori-
zontal fissure. At the pedunculocerebellar sulcus, ISCA turns off at a right angle and
follows the anterosuperior margin of the cerebellum anteriorly and laterally. A ter-
minal deep branch of ISCA follows the superior cerebellar peduncle and reaches the
dentate nucleus (Duvernoy 1978). The mSCAs mostly supply the superior portions
of the vermis including the central, culmen, declive, and folium lobules; the ISCAs
supply mostly the lateral portions of the cerebellar hemispheres including the ante-
rior, simplex, and superior portion of the semilunar lobules. The SCAs also supply
the cerebellar nuclei (dentate, fastigial, emboliform, and globose) as well as the
bulk of the cerebellar white matter (Amarenco and Hauw 1989, 1990b; Amarenco
etal. 1991, 1993; Amarenco 1991). Figures 5.18 and 5.19 show the cerebellar and
brainstem supply territories of the SCA. Figure 5.20 is a necropsy specimen show-
ing a large SCA territory infarct. Figure 5.21 shows three MRI scans s that illustrate
the imaging distribution of various SCA territory infarcts. The distribution of the
supply territories of the cerebellar arteries as found on CT and MRI scanning has
been illustrated and reviewed (Savoiardo et al. 1987; Courchesne et al. 1989; Press
et al. 1989, 1990).

5.5 Cerebellar Veins

The venous drainage of the cerebellum is divided into superficial veins, deep veins
and draining groups. Superficial veins are divided according to the cortical surfaces
they drain: superior hemispheric and superior vermian veins (tentorial surface),



5 Vascular Supply and Territories of the Cerebellum 51

Fig. 5.19 Supply zones of the superior cerebellar arteries. (a) Shows the superior pontine supply.
4 Brachium conjunctivum, 7 lateral lemniscus, § cortico-tegmental tract, 9 medial lemniscus, 7/
spinothalamic tract, /2 decussation of IV, /3 mesencephalic tract of V, 14 locus coeruleus, /5
medial longitudinal fasciculus. (b) Shows an antero-posterior view and C a lateral view of the
cerebellum (From Amarenco and Hauw 1989)

Fig. 5.20 Necropsy
specimens showing SCA
territory infarct in the
rostral pons. The pontine
tectum and a small part of
the dorsolateral pontine
tegmentum are involved
(From Amarenco and
Hauw (1990), with
permission)

inferior hemispheric and inferior vermian veins (suboccipital surface), and anterior
hemispheric veins (petrosal surface) (Tschabitscher 1979; Kapp and Schmidek
1984; Matsushima et al. 1983). The major deep veins course in fissures between the
cerebellum and brain stem. These are designated as the veins of the cerebellomes-
encephalic, cerebellopontine and cerebellomedulary fissures. The veins that drain
the cerebellar peduncles are referred to as the veins of superior, middle and inferior
cerebellar peduncles (Matsushima et al. 1983). There are diffuse anastomosis
between veins before they are collected into draining groups. The groups are desig-
nated according to the dural sinuses into which they drain. The Galenic group drains
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Fig. 5.21 MRI T2-weighted scans (From Caplan 1996). (a) Sagittal view showing SCA territory
infarct. (b) Axial section showing small vermal cerebellar infarct in the territory of the medial
branch of the superior cerebellar artery (mSCA). (¢) Coronal section showing a bilateral SCA ter-
ritory infarct appearing like “icing on a cake”

via the vein of Galen and the straight sinus. The petrosal group drains via the petro-
sal sinuses. The tentorial group drains into the torcula and transverse sinuses.

The superior and inferior veins of the cerebellum usually collected and drain into
the midline draining groups: vein of Galen, straight sinus, or torcular. Many small
veins drain into superior or inferior vermian veins before their connection with the
vein of Galen or straight sinus. Some of the superior and inferior veins run laterally
to the transverse sigmoid sinuses, or to the superior or inferior petrosal sinuses. The
superior petrosal sinus collects anterior cerebellar veins, including branches from
the precentral fissure, the medial tonsillar veins, the veins of the lateral recess, and
some tributaries related to the cerebellar hemispheres (Huang and Wolf 1974;
Lasjaunias et al. 1990; Rhoton 2000).
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Chapter 6
The Olivocerebellar Tract

Yuanjun Luo and Izumi Sugihara

Abstract Neurons in the inferior olive nucleus, the sole origin of cerebellar
climbing fibers, project their axons to the cerebellum through the olivocerebellar
tract. A single olivocerebellar axon gives rise to multiple climbing fibers (about seven
in rat) which typically terminate into longitudinal compartments in the cerebellar
cortex. These compartments match with the longitudinal striped arrangement of
aldolase C-positive and -negative Purkinje cell subsets. As a result of this topo-
graphic arrangement, the olivocerebellar projection relays the synchronous activity
of the electrically coupled adjacent inferior olive neurons to complex spike firing of
Purkinje cells in a narrow longitudinal stripe. Olivocerebellar axons show a dynamic
morphogenetic process. An immature axon has abundant terminal branches that
innervate multiple Purkinje cells. Several terminal branches (climbing fibers) grows
to eventually establishing a powerful one-to-one synaptic connection between a
single climbing fiber terminal and a single target Purkinje cell. Furthermore, these
axons are capable of strong compensatory re-innervation after lesion even in adult.

Keywords Inferior olive * Climbing fibers ® Branching ¢ Collaterals ¢ Purkinje
cells » Reinnervation « Compartments

6.1 Introduction

The olivocerebellar tract is the axonal path of inferior olive neurons, which project
to the cerebellum. This projection system is peculiar in morphological, physiologi-
cal and developmental aspects, which contribute significantly to characterizing the
cerebellar system. In this short article, we summarize these aspects based on rele-
vant studies, including our own work.
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6.2 Gross Morphology of the Olivocerebellar Tract

The inferior olive nucleus, located in the caudoventral medulla, or between
rhombomeres 8-10, is a complex of multi-lamella structure packed with small-sized
neurons with round somata and curved dendrites. All neurons in the inferior olive
nucleus, except for a very small number of scattered GABAergic neurons, project to
the cerebellum terminating as climbing fibers. The inferior olive is the sole origin of
climbing fibers. Therefore, functionally, the inferior olive can be regarded as a part
of the cerebellum.

The olivocerebellar tract is the bundle of axons of the inferior olive neurons
projecting to the cerebellar cortex. The axons run medially crossing the midsagittal
plane, and continuing through or above the contralateral inferior olive, before enter-
ing the white matter under the lateral surface of the medulla that connects to the
inferior cerebellar peduncle (Sugihara et al. 1999). Prior to entering the cerebellum
through the inferior cerebellar peduncle, the axons that terminate in the vermis pass
through the rostral most part of the cerebellar peduncle dorsal to the superior cere-
bellar peduncle intermingled with the uncinate fasciculus and the ventral spinocer-
ebellar tract. Other olivocerebellar axons pass through the conventional inferior
cerebellar peduncle.

Upon entering the cerebellum, each axon gives rise to collaterals to the cerebellar
nuclei and branches into multiple (seven on average in rat) branches that terminate
on a single adult Purkinje cell as climbing fibers (Fig. 6.1). Thus, “climbing fibers”
which were discovered by Ramén y Cajal are terminations of the multiple branches
of the olivocerebellar axons. Besides giving rise to branches that terminate as climb-
ing fibers, olivocerebellar axons also give rise to several thin collaterals mainly
terminating in the granular layer with a small number of swellings. Synaptic contact
and functional significance of these collaterals are not well clarified (Sugihara
et al. 1999). The multiple climbing fibers originating from a single axon are usually
distributed in a narrow longitudinal band-shaped area (Sugihara et al. 2001).
The olivocerebellar axon’s longitudinal projection pattern is in contrast with the
transversely wide projection pattern of mossy fiber axons (Quy et al. 2011).

6.3 Topography in the Olivocerebellar Tract

The entire olivocerebellar pathway is topographically arranged. The topography has
been resolved in detail. The inferior olive is subdivided into many subareas, usually
a portion of a single lamella. Neurons in each subarea of the inferior olive project
topographically to a particular subarea in the cerebellar nuclei and a particular
striped area in the cerebellar cortex (Sugihara and Shinoda 2004, 2007). These spe-
cific subareas in the cortex and nuclei are also topographically connected by the
corticonuclear Purkinje cell projection (Sugihara et al. 2009). Specific subareas in
the cerebellar nuclei also topographically project to a precise subarea in the inferior
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Fig. 6.1 Lateral view Vla Vib
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olive (Ruigrok and Voogd 1990). As a whole, a triangular topographic loop of
neuronal connection is formed among subareas in the inferior olive, cerebellar
cortex and cerebellar nuclei. Each set of topographically connected subareas in the
cerebellar cortex, cerebellar nuclei and inferior olive is designated as a cerebellar
module (Ruigrok 2011). A standing question of how many modules the entire cer-
ebellum is divided into remains. Conventionally, modules A, B, C1, C2, C3 and D
have been recognized (Voogd and Bigare 1980). However, most of these modules
have been further subdivided into smaller modules (Ruigrok 2011; Sugihara et al.
2009). In addition, there are other modules that are not involved in these sets of
modules in the flocculus and nodulus (Sugihara et al. 2004). Most cerebellar modules
are consistent with the cortical compartments defined by the molecular expression
profile in Purkinje cells (Sugihara and Shinoda 2004, Sugihara et al. 2009). More
specifically, modules linked with aldolase C-positive and —negative compartments
are all located in the caudoventral and rostrodorsal parts of the cerebellar nuclei,
respectively (Sugihara and Shinoda 2007). Generally, modules are involved in
different aspects of motor control and other cerebellar functions presumably due
to different connections that each module has with other parts of the CNS (Horn
et al. 2010).
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6.4 Physiological Properties

The inferior olive neurons show oscillatory fluctuation of membrane potential at
about 10 Hz (Llinas and Yarom 1986). This activity is synchronized among nearby
neurons through dendro-dendritic gap junction (Llinas and Yarom 1986; Long et al.
2002). Excitatory input to the inferior olive, which originate from the somatosen-
sory and vestibular systems in the medulla and spinal cord and from midbrain nuclei
(see Sugihara and Shinoda 2004), may reset the oscillatory rhythm to evoke firing
(Leznik and Llinds 2005). Olivary cells may fire at the peak of the oscillation of one
action potential or a few action potentials in burst. The firing of an action potential
(or a brief burst of action potentials) occurs solitary or in sequence with about 100
ms interval (Marthy et al. 2009). On the average, the firing frequency of the olivary
neuron is one in a second (Eccles et al. 1966).

Firing of olivary neurons is conveyed all the way to the axon terminals, i.e.,
climbing fiber terminals, with a conduction time of approximately 4 ms (in rat,
Sugihara et al. 1993). An action potential (or a brief burst of action potentials) in the
climbing fiber produces a complex spike response in target Purkinje cells (Eccles
et al. 1966). Olivocerebellar axon collaterals elicit an excitatory effect in the cere-
bellar nuclei (Llinds and Miihlethaler 1988; Blenkinsop and Lang 2011). However,
its effect in the granular layer is yet unclear.

Since adjacent inferior olive neurons generally project to a narrow longitudinal
striped area in the cerebellar cortex, it often matches with a single aldolase C stripe
(Sugihara et al. 2007). Because of this property in the olivocerebellar projection,
Purkinje cells arranged in the longitudinal band (width = ~0.25 mm) tend to fire
complex spikes synchronously in awake and anaesthetized states (Sasaki et al.
1989; Lang et al. 1999). The band of complex spike synchrony generally matches
with a single aldolase C stripe (Sugihara et al. 2007). This synchronous complex
spike firing of Purkinje cells may be functionally important to form cerebellar
output in the cerebellar nuclei (Blenkinsop and Lang 2011).

6.5 Morphological Development of the Olivocerebellar Tract

The immature olivocerebellar axonal projection is formed in the late embryonic
stage when Purkinje cells are arranged in clusters before settling into striped com-
partments (Fujita et al. 2012). Basic topographic projection pattern is already estab-
lished in the olivocerebellar bundle at this stage (Chédotal and Sotelo 1992). Axonal
terminals form fine plexus with abundant branching known as the creeper terminal
(Sugihara 2005). In accordance with the development of Purkinje cells in the second
postnatal week, axonal branches are pruned to leave only those that begin to form a
dense arbor around a single Purkinje cell soma (nest terminal). The nest terminals
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grow to a full climbing fiber terminal in the following few weeks. Besides the above
local refinement of climbing fiber-Purkinje cell contact, the compartmental topo-
graphic projection pattern of axons may also be refined during development.

The above process of climbing fiber development leads to the establishment of a
one-to-one synaptic connection between a single climbing fiber terminal and a single
target Purkinje cell. A loss of granule cells and some genetic mutations prevent
normal development of climbing fibers (Sugihara et al. 2000). Together with abnormal
immature morphology of climbing fibers, impairment of one-to-one innervation can
occur in these situations. A Purkinje cell may be innervated by multiple climbing
fibers that originate from one olivocerebellar axon (pseudo-multiple innervation) of
different olivocerebellar axons (true multiple innervation, Sugihara et al. 2000).

6.6 Morphological Plasticity of the Olivocerebellar Tract

Since the normal olivocerebellar projection is nearly exclusively contralateral,
increase of ipsilateral projection can be used to measure plastic change in the pro-
jection. Such plastic change is seen after unilateral cut of the cerebellar peduncle in
neonatal stage (Sugihara et al. 2003). A similar transcommissural olivocerebellar
projection to the ipsilateral cerebellum is seen even in adult after administration of
substances that can facilitate axonal plasticity (Dixon and Sherrard 2006).

Semitotal lesion of the inferior olive by neurotoxin 3-aminopyridine (3-AP)
induce axonal sprouting of remaining olivary neurons to compensate the loss of
many olivocerebellar axonal terminals (Rossi et al. 1991). Axonal sprouting occurs
only in their terminal portions, mainly in the terminal arbor of climbing fibers and
possibly also at the terminal of thin collaterals in the granular layer and cerebellar
nuclei. However, no axonal sprouting from the stem axon in the cerebellar white
matter was evident at least in adult (Aoki and Sugihara 2012).

6.7 Conclusion

The above is a brief summary of our knowledge on the morphological, physiologi-
cal and developmental aspect of the olivocerebellar tract. The projection is highly
organized and comprises an important element of the cerebellar system. The activ-
ity of the olivocerebellar system produces significant modulatory changes in
Purkinje cell properties at the cellular and molecular levels, which were not the
focus of this article. The general mo