
Digital Image
Processing

Wilhelm Burger
Mark J. Burge

An Algorithmic Introduction Using Java

Second Edition

Texts in Computer Science

Texts in Computer Science

ditors

David Gries

Fred B. Schneider

Series E

http://www.springer.com/series/3191

More information about this series at http://www.springer.com/series/3191

Digital Image

An Algorithmic Introduction

Using Java

Wilhelm

Burger

•

Mark

J.

Burge

Second Edition

 Processing

ISSN 1868-0941 ISSN 1868-095X (electronic)

ISBN 978-1-4471-6683-2 ISBN 978-1-4471-6684-9 (eBook)
DOI 10.1007/978-1-4471-6684-9

Library of Congress Control Number: 2016933770

Texts in Computer Science

© Springer-Verlag London 2008, 2016

The author(s) has/have asserted their right(s) to be identified as the author(s) of this work in

accordance with the Copyright, Design and Patents Act 1988.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole

or part of the material is concerned, specifically the rights of translation, reprinting, reuse of

illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,

and transmission or information storage and retrieval, electronic adaptation, computer

software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this

publication does not imply, even in the absence of a specific statement, that such names are

exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in

this book are believed to be true and accurate at the date of publication. Neither the publisher

nor the authors or the editors give a warranty, express or implied, with respect to the material

contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature

The registered company is Springer-Verlag London Ltd.

Wilhelm Burger
School of Informatics/

Upper Austria University

Hagenberg, Austria

Series Editors

David Gries

Department of Computer Science

Cornell University

Ithaca, NY, USA

Fred B. Schneider

Department of Computer Science

Cornell University

Ithaca, NY, USA

of Applied Sciences

Communications/Media

Mark J. Burge
Noblis, Inc.
Washington, DC, USA

Preface

This book provides a modern, self-contained introduction to digital
image processing. We designed the book to be used both by learners
desiring a firm foundation on which to build as well as practitioners
in search of detailed analysis and transparent implementations of the
most important techniques. This is the second English edition of the
original German-language book, which has been widely used by:

• Scientists and engineers who use image processing as a tool and
wish to develop a deeper understanding and create custom solu-
tions to imaging problems in their field.

• IT professionals wanting a self-study course featuring easily
adaptable code and completely worked out examples, enabling
them to be productive right away.

• Faculty and students desiring an example-rich introductory text-
book suitable for an advanced undergraduate or graduate level
course that features exercises, projects, and examples that have
been honed during our years of experience teaching this material.

While we concentrate on practical applications and concrete imple-
mentations, we do so without glossing over the important formal
details and mathematics necessary for a deeper understanding of the
algorithms. In preparing this text, we started from the premise that
simply creating a recipe book of imaging solutions would not provide
the deeper understanding needed to apply these techniques to novel
problems, so instead our solutions are developed stepwise from three
different perspectives: in mathematical form, as abstract pseudocode
algorithms, and as complete Java programs. We use a common no-
tation to intertwine all three perspectives—providing multiple, but
linked, views of the problem and its solution.

Prerequisites

Instead of presenting digital image processing as a mathematical dis-
cipline, or strictly as signal processing, we present it from a practi-
tioner’s and programmer’s perspective and with a view toward re-
placing many of the formalisms commonly used in other texts with
constructs more readily understandable by our audience. To take full
advantage of the programming components of this book, a knowledge
of basic data structures and object-oriented programming, ideally in
Java, is required. We selected Java for a number of reasons: it is
the first programming language learned by students in a wide vari-
ety of engineering curricula, and professionals with knowledge of a
related language, especially C# or C++, will find the programming
examples easy to follow and extend.

V

Preface The software in this book is designed to work with ImageJ,
a widely used, programmer-extensible, imaging system developed,
maintained, and distributed by the National Institutes of Health
(NIH).1 ImageJ is implemented completely in Java, and therefore
runs on all major platforms, and is widely used because its “plugin”-
based architecture enables it to be easily extended. While all exam-
ples run in ImageJ, they have been specifically designed to be easily
ported to other environments and programming languages.

Use in research and development

This book has been especially designed for use as a textbook and as
such features exercises and carefully constructed examples that sup-
plement our detailed presentation of the fundamental concepts and
techniques. As both practitioners and developers, we know that the
details required to successfully understand, apply, and extend classi-
cal techniques are often difficult to find, and for this reason we have
been very careful to provide the missing details, many gleaned over
years of practical application. While this should make the text par-
ticularly valuable to those in research and development, it is not de-
signed as a comprehensive, fully-cited scientific research text. On the
contrary, we have carefully vetted our citations so that they can be
obtained from easily accessible sources. While we have only briefly
discussed the fundamentals of, or entirely omitted, topics such as
hierarchical methods, wavelets, or eigenimages because of space lim-
itations, other topics have been left out deliberately, including ad-
vanced issues such as object recognition, image understanding, and
three-dimensional (3D) computer vision. So, while most techniques
described in this book could be called “blind and dumb”, it is our
experience that straightforward, technically clean implementations
of these simpler methods are essential to the success of any further
domain-specific, or even “intelligent”, approaches.

If you are only in search of a programming handbook for Im-
ageJ or Java, there are certainly better sources. While the book
includes many code examples, programming in and of itself is not
our main focus. Instead Java serves as just one important element
for describing each technique in a precise and immediately testable
way.

Classroom use

Whether it is called signal processing, image processing, or media
computation, the manipulation of digital images has been an integral
part of most computer science and engineering curricula for many
years. Today, with the omnipresence of all-digital work flows, it has
become an integral part of the required skill set for professionals in
many diverse disciplines.

Today the topic has migrated into the early stages of many cur-
ricula, where it is often a key foundation course. This migration
uncovered a problem in that many of the texts relied on as standards

1 http://rsb.info.nih.gov/ij/.
VI

http://rsb.info.nih.gov/ij/

Prefacein the older graduate-level courses were not appropriate for begin-
ners. The texts were usually too formal for novices, and at the same
time did not provide detailed coverage of many of the most popular
methods used in actual practice. The result was that educators had
a difficult time selecting a single textbook or even finding a compact
collection of literature to recommend to their students. Faced with
this dilemma ourselves, we wrote this book in the sincere hope of
filling this gap.

The contents of the following chapters can be presented in either
a one- or two-semester sequence. Where feasible, we have added
supporting material in order to make each chapter as independent
as possible, providing the instructor with maximum flexibility when
designing the course. Chapters 18–20 offer a complete introduction to
the fundamental spectral techniques used in image processing and are
essentially independent of the other material in the text. Depending
on the goals of the instructor and the curriculum, they can be covered
in as much detail as required or completely omitted. The following
road map shows a possible partitioning of topics for a two-semester
syllabus.

Road Map for a 1/2-Semester Syllabus Sem. 1 2

1. Digital Images . � �

2. ImageJ . � �

3. Histograms and Image Statistics . � �

4. Point Operations . � �

5. Filters . � �

6. Edges and Contours . � �

7. Corner Detection . � �

8. The Hough Transform: Finding Simple Curves � �

9. Morphological Filters . � �

10. Regions in Binary Images . � �

11. Automatic Thresholding . � �

12. Color Images . � �

13. Color Quantization . � �

14. Colorimetric Color Spaces . � �

15. Filters for Color Images . � �

16. Edge Detection in Color Images . � �

17. Edge-Preserving Smoothing Filters . � �

18. Introduction to Spectral Techniques � �

19. The Discrete Fourier Transform in 2D � �

20. The Discrete Cosine Transform (DCT) � �

21. Geometric Operations . � �

22. Pixel Interpolation . � �

23. Image Matching and Registration . � �

24. Non-Rigid Image Matching . � �

25. Scale-Invariant Local Features (SIFT) � �

26. Fourier Shape Descriptors . � �

Addendum to the second edition

This second edition is based on our completely revised German third
edition and contains both additional material and several new chap-

VII

Preface ters including: automatic thresholding (Ch. 11), filters and edge de-
tection for color images (Chs. 15 and 16), edge-preserving smoothing
filters (Ch. 17), non-rigid image matching (Ch. 24), and Fourier shape
descriptors (Ch. 26). Much of this new material is presented for the
first time at the level of detail necessary to completely understand
and create a working implementation.

The two final chapters on SIFT and Fourier shape descriptors
are particularly detailed to demonstrate the actual level of granu-
larity and the special cases which must be considered when actually
implementing complex techniques. Some other chapters have been
rearranged or split into multiple parts for more clarity and easier use
in teaching. The mathematical notation and programming examples
were completely revised and almost all illustrations were adapted or
created anew for this full-color edition.

For this edition, the ImageJ Short Reference and ancillary source
code have been relocated from the Appendix and the most re-
cently versions are freely available in electronic form from the book’s
website. The complete source code, consisting of the common
imagingbook library, sample ImageJ plugins for each book chapter,
and extended documentation are available from the book’s Source-
Forge site.2

Online resources

Visit the website for this book

www.imagingbook.com

to download supplementary materials, including the complete Java
source code for all examples and the underlying software library, full-
size test images, useful references, and other supplements. Com-
ments, questions, and corrections are welcome and may be ad-
dressed to

imagingbook@gmail.com

Exercises and solutions

Each chapter of this book contains a set of sample exercises, mainly
for supporting instructors to prepare their own assignments. Most of
these tasks are easy to solve after studying the corresponding chapter,
while some others may require more elaborated reasoning or experi-
mental work. We assume that scholars know best how to select and
adapt individual assignments in order to fit the level and interest of
their students. This is the main reason why we have abstained from
publishing explicit solutions in the past. However, we are happy to
answer any personal request if an exercise is unclear or seems to elude
a simple solution.

Thank you!

This book would not have been possible without the understanding
and support of our families. Our thanks go to Wayne Rasband at
NIH for developing ImageJ and for his truly outstanding support of

2 http://sourceforge.net/projects/imagingbook/.
VIII

http://www.imagingbook.com
mailto:imagingbook@gmail.com
http://sourceforge.net/projects/imagingbook/

Prefacethe community and to all our readers of the previous editions who
provided valuable input, suggestions for improvement, and encour-
agement. The use of open source software for such a project always
carries an element of risk, since the long-term acceptance and conti-
nuity is difficult to assess. Retrospectively, choosing ImageJ as the
software basis for this work was a good decision, and we would con-
sider ourselves happy if our book has indirectly contributed to the
success of the ImageJ project itself. Finally, we owe a debt of grati-
tude to the professionals at Springer, particularly to Wayne Wheeler
and Simon Reeves who were responsible for the English edition.

Hagenberg / Washington D.C.
Fall 2015

IX

Contents

1 Digital Images . 1
1.1 Programming with Images . 2
1.2 Image Analysis and Computer Vision 2
1.3 Types of Digital Images . 4
1.4 Image Acquisition . 4

1.4.1 The Pinhole Camera Model 4
1.4.2 The “Thin” Lens . 6
1.4.3 Going Digital . 7
1.4.4 Image Size and Resolution 8
1.4.5 Image Coordinate System 9
1.4.6 Pixel Values . 9

1.5 Image File Formats . 11
1.5.1 Raster versus Vector Data 12
1.5.2 Tagged Image File Format (TIFF) 12
1.5.3 Graphics Interchange Format (GIF) 13
1.5.4 Portable Network Graphics (PNG) 14
1.5.5 JPEG . 14
1.5.6 Windows Bitmap (BMP) 18
1.5.7 Portable Bitmap Format (PBM) 18
1.5.8 Additional File Formats 18
1.5.9 Bits and Bytes . 19

1.6 Exercises . 21

2 ImageJ . 23
2.1 Software for Digital Imaging . 24
2.2 ImageJ Overview . 24

2.2.1 Key Features . 25
2.2.2 Interactive Tools . 26
2.2.3 ImageJ Plugins . 26
2.2.4 A First Example: Inverting an Image 28
2.2.5 Plugin My_Inverter_A (using PlugInFilter) 28
2.2.6 Plugin My_Inverter_B (using PlugIn) 29
2.2.7 When to use PlugIn or PlugInFilter? 30
2.2.8 Executing ImageJ “Commands” 32

2.3 Additional Information on ImageJ and Java 34
2.3.1 Resources for ImageJ . 34
2.3.2 Programming with Java 34

2.4 Exercises . 34
XI

Contents 3 Histograms and Image Statistics 37
3.1 What is a Histogram? . 38
3.2 Interpreting Histograms . 39

3.2.1 Image Acquisition. 39
3.2.2 Image Defects . 41

3.3 Calculating Histograms . 43
3.4 Histograms of Images with More than 8 Bits 45

3.4.1 Binning . 45
3.4.2 Example . 45
3.4.3 Implementation . 46

3.5 Histograms of Color Images . 46
3.5.1 Intensity Histograms . 47
3.5.2 Individual Color Channel Histograms 47
3.5.3 Combined Color Histograms 48

3.6 The Cumulative Histogram . 49
3.7 Statistical Information from the Histogram 49

3.7.1 Mean and Variance . 50
3.7.2 Median . 51

3.8 Block Statistics . 51
3.8.1 Integral Images . 51
3.8.2 Mean Intensity . 53
3.8.3 Variance . 53
3.8.4 Practical Calculation of Integral Images 53

3.9 Exercises . 54

4 Point Operations . 57
4.1 Modifying Image Intensity . 58

4.1.1 Contrast and Brightness 58
4.1.2 Limiting Values by Clamping 58
4.1.3 Inverting Images . 59
4.1.4 Threshold Operation . 59

4.2 Point Operations and Histograms 59
4.3 Automatic Contrast Adjustment 61
4.4 Modified Auto-Contrast Operation 62
4.5 Histogram Equalization . 63
4.6 Histogram Specification . 66

4.6.1 Frequencies and Probabilities 67
4.6.2 Principle of Histogram Specification 67
4.6.3 Adjusting to a Piecewise Linear Distribution 68
4.6.4 Adjusting to a Given Histogram (Histogram

Matching) . 70
4.6.5 Examples . 71

4.7 Gamma Correction . 74
4.7.1 Why Gamma? . 75
4.7.2 Mathematical Definition 77
4.7.3 Real Gamma Values . 77
4.7.4 Applications of Gamma Correction 78
4.7.5 Implementation . 79
4.7.6 Modified Gamma Correction 80

4.8 Point Operations in ImageJ . 82
4.8.1 Point Operations with Lookup Tables 82
4.8.2 Arithmetic Operations 83

XII

Contents4.8.3 Point Operations Involving Multiple Images . 83
4.8.4 Methods for Point Operations on Two Images 84
4.8.5 ImageJ Plugins Involving Multiple Images . . 85

4.9 Exercises . 86

5 Filters . 89
5.1 What is a Filter? . 89
5.2 Linear Filters . 91

5.2.1 The Filter Kernel . 91
5.2.2 Applying the Filter . 91
5.2.3 Implementing the Filter Operation 93
5.2.4 Filter Plugin Examples 93
5.2.5 Integer Coefficients . 95
5.2.6 Filters of Arbitrary Size 96
5.2.7 Types of Linear Filters 97

5.3 Formal Properties of Linear Filters 99
5.3.1 Linear Convolution . 100
5.3.2 Formal Properties of Linear Convolution 101
5.3.3 Separability of Linear Filters 102
5.3.4 Impulse Response of a Filter 104

5.4 Nonlinear Filters . 105
5.4.1 Minimum and Maximum Filters 105
5.4.2 Median Filter . 107
5.4.3 Weighted Median Filter 109
5.4.4 Other Nonlinear Filters 111

5.5 Implementing Filters . 112
5.5.1 Efficiency of Filter Programs 112
5.5.2 Handling Image Borders 113
5.5.3 Debugging Filter Programs 114

5.6 Filter Operations in ImageJ . 115
5.6.1 Linear Filters . 115
5.6.2 Gaussian Filters . 115
5.6.3 Nonlinear Filters . 116

5.7 Exercises . 116

6 Edges and Contours . 121
6.1 What Makes an Edge? . 121
6.2 Gradient-Based Edge Detection 122

6.2.1 Partial Derivatives and the Gradient 123
6.2.2 Derivative Filters . 123

6.3 Simple Edge Operators . 124
6.3.1 Prewitt and Sobel Operators 125
6.3.2 Roberts Operator . 127
6.3.3 Compass Operators . 128
6.3.4 Edge Operators in ImageJ 130

6.4 Other Edge Operators . 130
6.4.1 Edge Detection Based on Second Derivatives 130
6.4.2 Edges at Different Scales 130
6.4.3 From Edges to Contours 131

6.5 Canny Edge Operator . 132
6.5.1 Pre-processing . 134
6.5.2 Edge localization . 134

XIII

Contents 6.5.3 Edge tracing and hysteresis thresholding 135
6.5.4 Additional Information 137
6.5.5 Implementation . 138

6.6 Edge Sharpening . 139
6.6.1 Edge Sharpening with the Laplacian Filter . . 139
6.6.2 Unsharp Masking . 142

6.7 Exercises . 146

7 Corner Detection . 147
7.1 Points of Interest . 147
7.2 Harris Corner Detector . 148

7.2.1 Local Structure Matrix 148
7.2.2 Corner Response Function (CRF) 149
7.2.3 Determining Corner Points 149
7.2.4 Examples . 150

7.3 Implementation . 152
7.3.1 Step 1: Calculating the Corner Response

Function . 153
7.3.2 Step 2: Selecting “Good” Corner Points 155
7.3.3 Step 3: Cleaning up . 156
7.3.4 Summary . 157

7.4 Exercises . 158

8 Finding Simple Curves: The Hough Transform . . . 161
8.1 Salient Image Structures . 161
8.2 The Hough Transform . 162

8.2.1 Parameter Space . 163
8.2.2 Accumulator Map. 164
8.2.3 A Better Line Representation 165

8.3 Hough Algorithm . 167
8.3.1 Processing the Accumulator Array 168
8.3.2 Hough Transform Extensions 170

8.4 Java Implementation . 173
8.5 Hough Transform for Circles and Ellipses 176

8.5.1 Circles and Arcs . 176
8.5.2 Ellipses . 177

8.6 Exercises . 179

9 Morphological Filters . 181
9.1 Shrink and Let Grow . 182

9.1.1 Neighborhood of Pixels 183
9.2 Basic Morphological Operations 183

9.2.1 The Structuring Element 183
9.2.2 Point Sets . 184
9.2.3 Dilation . 185
9.2.4 Erosion . 186
9.2.5 Formal Properties of Dilation and Erosion . . 186
9.2.6 Designing Morphological Filters 188
9.2.7 Application Example: Outline 189

9.3 Composite Morphological Operations 192
9.3.1 Opening . 192
9.3.2 Closing . 192

XIV

Contents9.3.3 Properties of Opening and Closing 193
9.4 Thinning (Skeletonization) . 194

9.4.1 Thinning Algorithm by Zhang and Suen 194
9.4.2 Fast Thinning Algorithm 195
9.4.3 Java Implementation . 198
9.4.4 Built-in Morphological Operations in ImageJ 201

9.5 Grayscale Morphology . 202
9.5.1 Structuring Elements . 202
9.5.2 Dilation and Erosion . 203
9.5.3 Grayscale Opening and Closing 203

9.6 Exercises . 205

10 Regions in Binary Images . 209
10.1 Finding Connected Image Regions 210

10.1.1 Region Labeling by Flood Filling 210
10.1.2 Sequential Region Labeling 213
10.1.3 Region Labeling—Summary 219

10.2 Region Contours . 219
10.2.1 External and Internal Contours 219
10.2.2 Combining Region Labeling and Contour

Finding . 220
10.2.3 Java Implementation . 222

10.3 Representing Image Regions . 225
10.3.1 Matrix Representation . 225
10.3.2 Run Length Encoding . 225
10.3.3 Chain Codes . 226

10.4 Properties of Binary Regions . 229
10.4.1 Shape Features . 229
10.4.2 Geometric Features . 230

10.5 Statistical Shape Properties . 232
10.5.1 Centroid . 233
10.5.2 Moments . 233
10.5.3 Central Moments . 234
10.5.4 Normalized Central Moments 234
10.5.5 Java Implementation . 234

10.6 Moment-Based Geometric Properties 235
10.6.1 Orientation . 235
10.6.2 Eccentricity . 237
10.6.3 Bounding Box Aligned to the Major Axis . . . 239
10.6.4 Invariant Region Moments 241

10.7 Projections . 244
10.8 Topological Region Properties 244
10.9 Java Implementation . 246
10.10 Exercises . 246

11 Automatic Thresholding . 253
11.1 Global Histogram-Based Thresholding 253

11.1.1 Image Statistics from the Histogram 255
11.1.2 Simple Threshold Selection. 256
11.1.3 Iterative Threshold Selection (Isodata

Algorithm) . 258
11.1.4 Otsu’s Method . 260

XV

Contents 11.1.5 Maximum Entropy Thresholding 263
11.1.6 Minimum Error Thresholding 266

11.2 Local Adaptive Thresholding . 273
11.2.1 Bernsen’s Method. 274
11.2.2 Niblack’s Method . 275

11.3 Java Implementation . 284
11.3.1 Global Thresholding Methods 285
11.3.2 Adaptive Thresholding 287

11.4 Summary and Further Reading 288
11.5 Exercises . 289

12 Color Images . 291
12.1 RGB Color Images . 291

12.1.1 Structure of Color Images 292
12.1.2 Color Images in ImageJ 296

12.2 Color Spaces and Color Conversion 303
12.2.1 Conversion to Grayscale 304
12.2.2 Desaturating RGB Color Images 306
12.2.3 HSV/HSB and HLS Color Spaces 306
12.2.4 TV Component Color Spaces—YUV, YIQ,

and YCbCr . 317
12.2.5 Color Spaces for Printing—CMY and CMYK 320

12.3 Statistics of Color Images . 323
12.3.1 How Many Different Colors are in an Image? 323
12.3.2 Color Histograms . 324

12.4 Exercises . 325

13 Color Quantization . 329
13.1 Scalar Color Quantization . 329
13.2 Vector Quantization . 331

13.2.1 Populosity Algorithm . 331
13.2.2 Median-Cut Algorithm 332
13.2.3 Octree Algorithm . 333
13.2.4 Other Methods for Vector Quantization 336
13.2.5 Java Implementation . 337

13.3 Exercises . 337

14 Colorimetric Color Spaces . 341
14.1 CIE Color Spaces . 341

14.1.1 CIE XYZ Color Space . 342
14.1.2 CIE x, y Chromaticity . 342
14.1.3 Standard Illuminants . 344
14.1.4 Gamut . 345
14.1.5 Variants of the CIE Color Space 345

14.2 CIELAB . 346
14.2.1 CIEXYZ→CIELAB Conversion 346
14.2.2 CIELAB→CIEXYZ Conversion 347

14.3 CIELUV . 348
14.3.1 CIEXYZ→CIELUV Conversion 348
14.3.2 CIELUV→CIEXYZ Conversion 350
14.3.3 Measuring Color Differences 350

14.4 Standard RGB (sRGB) . 350
XVI

Contents14.4.1 Linear vs. Nonlinear Color Components 351
14.4.2 CIEXYZ→sRGB Conversion 352
14.4.3 sRGB→CIEXYZ Conversion 353
14.4.4 Calculations with Nonlinear sRGB Values . . . 353

14.5 Adobe RGB . 354
14.6 Chromatic Adaptation . 355

14.6.1 XYZ Scaling . 355
14.6.2 Bradford Adaptation . 356

14.7 Colorimetric Support in Java . 358
14.7.1 Profile Connection Space (PCS) 358
14.7.2 Color-Related Java Classes 360
14.7.3 Implementation of the CIELAB Color Space

(Example) . 361
14.7.4 ICC Profiles . 362

14.8 Exercises . 365

15 Filters for Color Images . 367
15.1 Linear Filters . 367

15.1.1 Monochromatic Application of Linear Filters 368
15.1.2 Color Space Considerations 370
15.1.3 Linear Filtering with Circular Values 374

15.2 Nonlinear Color Filters . 378
15.2.1 Scalar Median Filter . 378
15.2.2 Vector Median Filter . 378
15.2.3 Sharpening Vector Median Filter 382

15.3 Java Implementation . 385
15.4 Further Reading . 387
15.5 Exercises . 388

16 Edge Detection in Color Images 391
16.1 Monochromatic Techniques . 392
16.2 Edges in Vector-Valued Images 395

16.2.1 Multi-Dimensional Gradients 397
16.2.2 The Jacobian Matrix . 397
16.2.3 Squared Local Contrast 398
16.2.4 Color Edge Magnitude 399
16.2.5 Color Edge Orientation 401
16.2.6 Grayscale Gradients Revisited 401

16.3 Canny Edge Detector for Color Images 404
16.4 Other Color Edge Operators . 406
16.5 Java Implementation . 410

17 Edge-Preserving Smoothing Filters 413
17.1 Kuwahara-Type Filters . 414

17.1.1 Application to Color Images 416
17.2 Bilateral Filter . 420

17.2.1 Domain Filter . 420
17.2.2 Range Filter . 421
17.2.3 Bilateral Filter—General Idea 421
17.2.4 Bilateral Filter with Gaussian Kernels 423
17.2.5 Application to Color Images 424
17.2.6 Efficient Implementation by x/y Separation . 428

XVII

Contents 17.2.7 Further Reading . 432
17.3 Anisotropic Diffusion Filters . 433

17.3.1 Homogeneous Diffusion and the Heat
Equation . 434

17.3.2 Perona-Malik Filter . 436
17.3.3 Perona-Malik Filter for Color Images 438
17.3.4 Geometry Preserving Anisotropic Diffusion . . 441
17.3.5 Tschumperlé-Deriche Algorithm 444

17.4 Java Implementation . 448
17.5 Exercises . 450

18 Introduction to Spectral Techniques 453
18.1 The Fourier Transform . 454

18.1.1 Sine and Cosine Functions 454
18.1.2 Fourier Series Representation of Periodic

Functions . 457
18.1.3 Fourier Integral . 457
18.1.4 Fourier Spectrum and Transformation 458
18.1.5 Fourier Transform Pairs 459
18.1.6 Important Properties of the Fourier Transform 460

18.2 Working with Discrete Signals 464
18.2.1 Sampling . 464
18.2.2 Discrete and Periodic Functions 469

18.3 The Discrete Fourier Transform (DFT) 469
18.3.1 Definition of the DFT . 469
18.3.2 Discrete Basis Functions 472
18.3.3 Aliasing Again! . 472
18.3.4 Units in Signal and Frequency Space 475
18.3.5 Power Spectrum . 477

18.4 Implementing the DFT . 477
18.4.1 Direct Implementation 477
18.4.2 Fast Fourier Transform (FFT) 479

18.5 Exercises . 479

19 The Discrete Fourier Transform in 2D 481
19.1 Definition of the 2D DFT . 481

19.1.1 2D Basis Functions . 481
19.1.2 Implementing the 2D DFT 482

19.2 Visualizing the 2D Fourier Transform. 485
19.2.1 Range of Spectral Values 485
19.2.2 Centered Representation of the DFT

Spectrum . 485
19.3 Frequencies and Orientation in 2D 486

19.3.1 Effective Frequency . 486
19.3.2 Frequency Limits and Aliasing in 2D 487
19.3.3 Orientation . 488
19.3.4 Normalizing the Geometry of the 2D

Spectrum . 488
19.3.5 Effects of Periodicity . 489
19.3.6 Windowing . 490
19.3.7 Common Windowing Functions 491

19.4 2D Fourier Transform Examples 492
XVIII

Contents19.5 Applications of the DFT . 496
19.5.1 Linear Filter Operations in Frequency Space 496
19.5.2 Linear Convolution and Correlation 499
19.5.3 Inverse Filters . 499

19.6 Exercises . 500

20 The Discrete Cosine Transform (DCT) 503
20.1 1D DCT . 503

20.1.1 DCT Basis Functions . 504
20.1.2 Implementing the 1D DCT 504

20.2 2D DCT . 504
20.2.1 Examples . 506
20.2.2 Separability . 507

20.3 Java Implementation . 509
20.4 Other Spectral Transforms . 510
20.5 Exercises . 510

21 Geometric Operations . 513
21.1 2D Coordinate Transformations 514

21.1.1 Simple Geometric Mappings 514
21.1.2 Homogeneous Coordinates 515
21.1.3 Affine (Three-Point) Mapping 516
21.1.4 Projective (Four-Point) Mapping 519
21.1.5 Bilinear Mapping . 525
21.1.6 Other Nonlinear Image Transformations 526
21.1.7 Piecewise Image Transformations 528

21.2 Resampling the Image . 529
21.2.1 Source-to-Target Mapping 530
21.2.2 Target-to-Source Mapping 530

21.3 Java Implementation . 531
21.3.1 General Mappings (Class Mapping) 532
21.3.2 Linear Mappings . 532
21.3.3 Nonlinear Mappings . 533
21.3.4 Sample Applications . 533

21.4 Exercises . 534

22 Pixel Interpolation . 539
22.1 Simple Interpolation Methods 539

22.1.1 Ideal Low-Pass Filter . 540
22.2 Interpolation by Convolution . 543
22.3 Cubic Interpolation . 544
22.4 Spline Interpolation . 546

22.4.1 Catmull-Rom Interpolation 546
22.4.2 Cubic B-spline Approximation 547
22.4.3 Mitchell-Netravali Approximation 547
22.4.4 Lanczos Interpolation . 548

22.5 Interpolation in 2D . 549
22.5.1 Nearest-Neighbor Interpolation in 2D 550
22.5.2 Bilinear Interpolation . 551
22.5.3 Bicubic and Spline Interpolation in 2D 553
22.5.4 Lanczos Interpolation in 2D 554
22.5.5 Examples and Discussion 555

XIX

Contents 22.6 Aliasing . 556
22.6.1 Sampling the Interpolated Image 557
22.6.2 Low-Pass Filtering . 558

22.7 Java Implementation . 560
22.8 Exercises . 563

23 Image Matching and Registration 565
23.1 Template Matching in Intensity Images 566

23.1.1 Distance between Image Patterns 566
23.1.2 Matching Under Rotation and Scaling 574
23.1.3 Java Implementation . 574

23.2 Matching Binary Images . 574
23.2.1 Direct Comparison of Binary Images 576
23.2.2 The Distance Transform 576
23.2.3 Chamfer Matching . 580
23.2.4 Java Implementation . 582

23.3 Exercises . 583

24 Non-Rigid Image Matching . 587
24.1 The Lucas-Kanade Technique 587

24.1.1 Registration in 1D . 587
24.1.2 Extension to Multi-Dimensional Functions . . 589

24.2 The Lucas-Kanade Algorithm 590
24.2.1 Summary of the Algorithm 593

24.3 Inverse Compositional Algorithm 595
24.4 Parameter Setups for Various Linear Transformations 598

24.4.1 Pure Translation . 598
24.4.2 Affine Transformation . 599
24.4.3 Projective Transformation 601
24.4.4 Concatenating Linear Transformations 601

24.5 Example . 602
24.6 Java Implementation . 603

24.6.1 Application Example . 605
24.7 Exercises . 607

25 Scale-Invariant Feature Transform (SIFT) 609
25.1 Interest Points at Multiple Scales 610

25.1.1 The LoG Filter . 610
25.1.2 Gaussian Scale Space . 615
25.1.3 LoG/DoG Scale Space . 619
25.1.4 Hierarchical Scale Space 620
25.1.5 Scale Space Structure in SIFT 624

25.2 Key Point Selection and Refinement 630
25.2.1 Local Extrema Detection 630
25.2.2 Position Refinement . 632
25.2.3 Suppressing Responses to Edge-Like

Structures . 634
25.3 Creating Local Descriptors . 636

25.3.1 Finding Dominant Orientations 637
25.3.2 SIFT Descriptor Construction 640

25.4 SIFT Algorithm Summary . 647
25.5 Matching SIFT Features . 648

XX

Contents25.5.1 Feature Distance and Match Quality 648
25.5.2 Examples . 654

25.6 Efficient Feature Matching . 657
25.7 Java Implementation . 661

25.7.1 SIFT Feature Extraction 662
25.7.2 SIFT Feature Matching 663

25.8 Exercises . 663

26 Fourier Shape Descriptors . 665
26.1 Closed Curves in the Complex Plane 665

26.1.1 Discrete 2D Curves . 665
26.2 Discrete Fourier Transform (DFT) 667

26.2.1 Forward Fourier Transform 668
26.2.2 Inverse Fourier Transform (Reconstruction) . 668
26.2.3 Periodicity of the DFT Spectrum 670
26.2.4 Truncating the DFT Spectrum 672

26.3 Geometric Interpretation of Fourier Coefficients 673
26.3.1 Coefficient G0 Corresponds to the Contour’s

Centroid . 673
26.3.2 Coefficient G1 Corresponds to a Circle 674
26.3.3 Coefficient Gm Corresponds to a Circle with

Frequency m . 675
26.3.4 Negative Frequencies . 676
26.3.5 Fourier Descriptor Pairs Correspond to

Ellipses . 676
26.3.6 Shape Reconstruction from Truncated

Fourier Descriptors . 679
26.3.7 Fourier Descriptors from Unsampled Polygons 682

26.4 Effects of Geometric Transformations 687
26.4.1 Translation . 687
26.4.2 Scale Change . 688
26.4.3 Rotation . 688
26.4.4 Shifting the Sampling Start Position 689
26.4.5 Effects of Phase Removal 690
26.4.6 Direction of Contour Traversal 691
26.4.7 Reflection (Symmetry) 691

26.5 Transformation-Invariant Fourier Descriptors 692
26.5.1 Scale Invariance . 693
26.5.2 Start Point Invariance . 694
26.5.3 Rotation Invariance . 696
26.5.4 Other Approaches . 697

26.6 Shape Matching with Fourier Descriptors 700
26.6.1 Magnitude-Only Matching 700
26.6.2 Complex (Phase-Preserving) Matching 701

26.7 Java Implementation . 704
26.8 Discussion and Further Reading 708
26.9 Exercises . 709

A Mathematical Symbols and Notation 713
A.1 Symbols . 713
A.2 Set Operators . 717
A.3 Complex Numbers . 717

XXI

Contents B Linear Algebra . 719
B.1 Vectors and Matrices . 719

B.1.1 Column and Row Vectors 720
B.1.2 Length (Norm) of a Vector 720

B.2 Matrix Multiplication . 720
B.2.1 Scalar Multiplication . 720
B.2.2 Product of Two Matrices 721
B.2.3 Matrix-Vector Products 721

B.3 Vector Products . 722
B.3.1 Dot (Scalar) Product . 722
B.3.2 Outer Product . 723
B.3.3 Cross Product . 723

B.4 Eigenvectors and Eigenvalues . 723
B.4.1 Calculation of Eigenvalues 724

B.5 Homogeneous Coordinates . 726
B.6 Basic Matrix-Vector Operations with the Apache

Commons Math Library . 727
B.6.1 Vectors and Matrices . 727
B.6.2 Matrix-Vector Multiplication 728
B.6.3 Vector Products . 728
B.6.4 Inverse of a Square Matrix 728
B.6.5 Eigenvalues and Eigenvectors 728

B.7 Solving Systems of Linear Equations 729
B.7.1 Exact Solutions . 730
B.7.2 Over-Determined System (Least-Squares

Solutions) . 731

C Calculus . 733
C.1 Parabolic Fitting . 733

C.1.1 Fitting a Parabolic Function to Three
Sample Points . 733

C.1.2 Locating Extrema by Quadratic Interpolation 734
C.2 Scalar and Vector Fields . 735

C.2.1 The Jacobian Matrix . 736
C.2.2 Gradients . 736
C.2.3 Maximum Gradient Direction 737
C.2.4 Divergence of a Vector Field 737
C.2.5 Laplacian Operator . 738
C.2.6 The Hessian Matrix . 738

C.3 Operations on Multi-Variable, Scalar Functions
(Scalar Fields) . 739
C.3.1 Estimating the Derivatives of a Discrete

Function . 739
C.3.2 Taylor Series Expansion of Functions 740
C.3.3 Finding the Continuous Extremum of a

Multi-Variable Discrete Function 743

D Statistical Prerequisites . 749
D.1 Mean, Variance, and Covariance 749

D.1.1 Mean . 749
D.1.2 Variance and Covariance 749
D.1.3 Biased vs. Unbiased Variance 750

XXII

ContentsD.2 The Covariance Matrix . 750
D.2.1 Example . 751
D.2.2 Practical Calculation . 752

D.3 Mahalanobis Distance . 752
D.3.1 Definition . 752
D.3.2 Relation to the Euclidean Distance 753
D.3.3 Numerical Aspects . 753
D.3.4 Pre-Mapping Data for Efficient Mahalanobis

Matching . 754
D.4 The Gaussian Distribution . 756

D.4.1 Maximum Likelihood Estimation 756
D.4.2 Gaussian Mixtures . 758
D.4.3 Creating Gaussian Noise 758

E Gaussian Filters . 761
E.1 Cascading Gaussian Filters . 761
E.2 Gaussian Filters and Scale Space 761
E.3 Effects of Gaussian Filtering in the Frequency

Domain . 762
E.4 LoG-Approximation by the DoG 763

F Java Notes . 765
F.1 Arithmetic . 765

F.1.1 Integer Division . 765
F.1.2 Modulus Operator . 766
F.1.3 Unsigned Byte Data . 767
F.1.4 Mathematical Functions in Class Math 768
F.1.5 Numerical Rounding . 769
F.1.6 Inverse Tangent Function 769
F.1.7 Classes Float and Double 770
F.1.8 Testing Floating-Point Values Against Zero . 770

F.2 Arrays in Java . 771
F.2.1 Creating Arrays . 771
F.2.2 Array Size . 771
F.2.3 Accessing Array Elements 771
F.2.4 2D Arrays . 772
F.2.5 Arrays of Objects . 775
F.2.6 Searching for Minimum and Maximum Values 775
F.2.7 Sorting Arrays . 776

References . 777

Index . 791

XXIII

1

Digital Images

For a long time, using a computer to manipulate a digital image (i.e.,
digital image processing) was something performed by only a rela-
tively small group of specialists who had access to expensive equip-
ment. Usually this combination of specialists and equipment was
only to be found in research labs, and so the field of digital image
processing has its roots in the academic realm. Now, however, the
combination of a powerful computer on every desktop and the fact
that nearly everyone has some type of device for digital image ac-
quisition, be it their cell phone camera, digital camera, or scanner,
has resulted in a plethora of digital images and, with that, for many
digital image processing has become as common as word processing.
It was not that many years ago that digitizing a photo and saving it
to a file on a computer was a time-consuming task. This is perhaps
difficult to imagine given today’s powerful hardware and operating
system level support for all types of digital media, but it is always
sobering to remember that “personal” computers in the early 1990s
were not powerful enough to even load into main memory a single
image from a typical digital camera of today. Now powerful hard-
ware and software packages have made it possible for amateurs to
manipulate digital images and videos just as easily as professionals.

All of these developments have resulted in a large community
that works productively with digital images while having only a basic
understanding of the underlying mechanics. For the typical consumer
merely wanting to create a digital archive of vacation photos, a deeper
understanding is not required, just as a deep understanding of the
combustion engine is unnecessary to successfully drive a car.

Today, IT professionals must be more then simply familiar with
digital image processing. They are expected to be able to knowledge-
ably manipulate images and related digital media, which are an in-
creasingly important part of the workflow not only of those involved
in medicine and media but all industries. In the same way, soft-
ware engineers and computer scientists are increasingly confronted
with developing programs, databases, and related systems that must
correctly deal with digital images. The simple lack of practical ex-

1
© Springer-Verlag London 2016

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

DOI 10.1007/978-1-4471-6684-9_1

1 Digital Images perience with this type of material, combined with an often unclear
understanding of its basic foundations and a tendency to underes-
timate its difficulties, frequently leads to inefficient solutions, costly
errors, and personal frustration.

1.1 Programming with Images

Even though the term “image processing” is often used interchange-
ably with that of “image editing”, we introduce the following more
precise definitions. Digital image editing, or as it is sometimes re-
ferred to, digital imaging, is the manipulation of digital images using
an existing software application such as Adobe Photoshop� or Corel
Paint�. Digital image processing, on the other hand, is the con-
ception, design, development, and enhancement of digital imaging
programs.

Modern programming environments, with their extensive APIs
(application programming interfaces), make practically every aspect
of computing, be it networking, databases, graphics, sound, or imag-
ing, easily available to nonspecialists. The possibility of developing
a program that can reach into an image and manipulate the individ-
ual elements at its very core is fascinating and seductive. You will
discover that with the right knowledge, an image becomes ultimately
no more than a simple array of values, that with the right tools you
can manipulate in any way imaginable.

“Computer graphics”, in contrast to digital image processing,
concentrates on the synthesis of digital images from geometrical de-
scriptions such as three-dimensional (3D) object models [75,87,247].
While graphics professionals today tend to be interested in topics
such as realism and, especially in terms of computer games, render-
ing speed, the field does draw on a number of methods that originate
in image processing, such as image transformation (morphing), recon-
struction of 3D models from image data, and specialized techniques
such as image-based and nonphotorealistic rendering [180,248]. Sim-
ilarly, image processing makes use of a number of ideas that have
their origin in computational geometry and computer graphics, such
as volumetric (voxel) models in medical image processing. The two
fields perhaps work closest when it comes to digital postproduction
of film and video and the creation of special effects [256]. This book
provides a thorough grounding in the effective processing of not only
images but also sequences of images; that is, videos.

1.2 Image Analysis and Computer Vision

Often it appears at first glance that a given image-processing task will
have a simple solution, especially when it is something that is easily
accomplished by our own visual system. Yet in practice it turns out
that developing reliable, robust, and timely solutions is difficult or
simply impossible. This is especially true when the problem involves
image analysis; that is, where the ultimate goal is not to enhance
or otherwise alter the appearance of an image but instead to extract

2

1.2 Image Analysis and
Computer Vision

meaningful information about its contents—be it distinguishing an
object from its background, following a street on a map, or finding
the bar code on a milk carton, tasks such as these often turn out to
be much more difficult to accomplish than we would expect.

We expect technology to improve on what we can do by ourselves.
Be it as simple as a lever to lift more weight or binoculars to see
farther or as complex as an airplane to move us across continents—
science has created so much that improves on, sometimes by unbe-
lievable factors, what our biological systems are able to perform. So,
it is perhaps humbling to discover that today’s technology is nowhere
near as capable, when it comes to image analysis, as our own visual
system. While it is possible that this will always remain true, do not
let this discourage you. Instead consider it a challenge to develop cre-
ative solutions. Using the tools, techniques, and fundamental knowl-
edge available today, it is possible not only to solve many problems
but to create robust, reliable, and fast applications.

While image analysis is not the main subject of this book, it of-
ten naturally intersects with image processing and we will explore
this intersection in detail in these situations: finding simple curves
(Ch. 8), segmenting image regions (Ch. 10), and comparing images
(Ch. 23). In these cases, we present solutions that work directly
on the pixel data in a bottom-up way without recourse to domain-
specific knowledge (i.e., blind solutions). In this way, our solutions
essentially embody the distinction between image processing, pattern
recognition, and computer vision, respectively. While these two disci-
plines are firmly grounded in, and rely heavily on, image processing,
their ultimate goals are much more lofty.

Pattern recognition is primarily a mathematical discipline and has
been responsible for techniques such as clustering, hidden Markov
models (HMMs), decision trees, and principal component analysis
(PCA), which are used to discover patterns in data and signals.
Methods from pattern recognition have been applied extensively to
problems arising in computer vision and image analysis. A good ex-
ample of their successful application is optical character recognition
(OCR), where robust, highly accurate turnkey solutions are available
for recognizing scanned text. Pattern recognition methods are truly
universal and have been successfully applied not only to images but
also speech and audio signals, text documents, stock trades, and find-
ing trends in large databases, where it is often called data mining.
Dimensionality reduction, statistical, and syntactical methods play
important roles in pattern recognition (see, e.g., [64, 169, 228]).

Computer vision tackles the problem of engineering artificial visual
systems capable of somehow comprehending and interpreting our
real, 3D world. Popular topics in this field include scene under-
standing, object recognition, motion interpretation (tracking), au-
tonomous navigation, and the robotic manipulation of objects in a
scene. Since computer vision has its roots in artificial intelligence
(AI), many AI methods were originally developed to either tackle or
represent a problem in computer vision (see, e.g., [51, Ch. 13]). The
fields still have much in common today, especially in terms of adap-

3

1 Digital Images tive methods and machine learning. Further literature on computer
vision includes [15, 78, 110, 214, 222,232].

Ultimately you will find image processing to be both intellectually
challenging and professionally rewarding, as the field is ripe with
problems that were originally thought to be relatively simple to solve
but have to this day refused to give up their secrets. With the back-
ground and techniques presented in this text, you will not only be
able to develop complete image-processing solutions but will also have
the prerequisite knowledge to tackle unsolved problems and the real
possibility of expanding the horizons of science: for while image pro-
cessing by itself may not change the world, it is likely to be the
foundation that supports marvels of the future.

1.3 Types of Digital Images

Digital images are the central theme of this book, and unlike just
a few years ago, this term is now so commonly used that there is
really no reason to explain it further. Yet this book is not about all
types of digital images, instead it focuses on images that are made
up of picture elements, more commonly known as pixels, arranged in
a regular rectangular grid.

Every day, people work with a large variety of digital raster images
such as color photographs of people and landscapes, grayscale scans
of printed documents, building plans, faxed documents, screenshots,
medical images such as x-rays and ultrasounds, and a multitude of
others (see Fig. 1.1 for examples). Despite all the different sources
for these images, they are all, as a rule, ultimately represented as
rectangular ordered arrays of image elements.

1.4 Image Acquisition

The process by which a scene becomes a digital image is varied and
complicated, and, in most cases, the images you work with will al-
ready be in digital form, so we only outline here the essential stages in
the process. As most image acquisition methods are essentially vari-
ations on the classical optical camera, we will begin by examining it
in more detail.

1.4.1 The Pinhole Camera Model

The pinhole camera is one of the simplest camera models and has
been in use since the 13th century, when it was known as the “Camera
Obscura”. While pinhole cameras have no practical use today except
to hobbyists, they are a useful model for understanding the essential
optical components of a simple camera. The pinhole camera consists
of a closed box with a small opening on the front side through which
light enters, forming an image on the opposing wall. The light forms
a smaller, inverted image of the scene (Fig. 1.2).

4

1.4 Image Acquisition

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1.1
Examples of digital images.
Natural landscape (a), syn-
thetically generated scene (b),
poster graphic (c), computer
screenshot (d), black and white
illustration (e), barcode (f),
fingerprint (g), x-ray (h), mi-
croscope slide (i), satellite
image (j), radar image (k),
astronomical object (l).

Perspective projection

The geometric properties of the pinhole camera are very simple. The
optical axis runs through the pinhole perpendicular to the image
plane. We assume a visible object, in our illustration the cactus,
located at a horizontal distance Z from the pinhole and vertical dis-
tance Y from the optical axis. The height of the projection y is
determined by two parameters: the fixed depth of the camera box f
and the distance Z to the object from the origin of the coordinate
system. By comparison we see that

x = −f ·X
Z

and y = −f ·Y
Z

(1.1)
5

1 Digital Images

Fig. 1.2
Geometry of the pinhole cam-

era. The pinhole opening
serves as the origin (O) of the

3D coordinate system (X, Y, Z)
for the objects in the scene.

The optical axis, which runs
through the opening, is the Z

axis of this coordinate system.
A separate 2D coordinate sys-

tem (x, y) describes the projec-
tion points on the image plane.
The distance f (“focal length”)

between the opening and
the image plane determines
the scale of the projection.

Z
Y

X

f

x

y

O

optical

axis

image

plane

change with the scale of the resulting image in proportion to the
depth of the box (i.e., the distance f) in a way similar to how the
focal length does in an everyday camera. For a fixed image, a small f
(i.e., short focal length) results in a small image and a large viewing
angle, just as occurs when a wide-angle lens is used, while increasing
the “focal length” f results in a larger image and a smaller viewing
angle, just as occurs when a telephoto lens is used. The negative
sign in Eqn. (1.1) means that the projected image is flipped in the
horizontal and vertical directions and rotated by 180◦.

Equation (1.1) describes what is commonly known today as the
perspective transformation.1 Important properties of this theoretical
model are that straight lines in 3D space always appear straight in
2D projections and that circles appear as ellipses.

1.4.2 The “Thin” Lens

While the simple geometry of the pinhole camera makes it useful for
understanding its basic principles, it is never really used in practice.
One of the problems with the pinhole camera is that it requires a
very small opening to produce a sharp image. This in turn reduces
the amount of light passed through and thus leads to extremely long
exposure times. In reality, glass lenses or systems of optical lenses are
used whose optical properties are greatly superior in many aspects
but of course are also much more complex. Instead we can make our
model more realistic, without unduly increasing its complexity, by
replacing the pinhole with a “thin lens” as in Fig. 1.3.

In this model, the lens is assumed to be symmetric and infinitely
thin, such that all light rays passing through it cross through a virtual
plane in the middle of the lens. The resulting image geometry is the
same as that of the pinhole camera. This model is not sufficiently
complex to encompass the physical details of actual lens systems, such

1 It is hard to imagine today that the rules of perspective geometry, while
known to the ancient mathematicians, were only rediscovered in 1430
by the Renaissance painter Brunelleschi.

6

1.4 Image AcquisitionZ

Y

f

y

O

optical

axis

lens

image

plane

Fig. 1.3
Thin lens projection model.

as geometrical distortions and the distinct refraction properties of
different colors. So, while this simple model suffices for our purposes
(i.e., understanding the mechanics of image acquisition), much more
detailed models that incorporate these additional complexities can
be found in the literature (see, e.g., [126]).

1.4.3 Going Digital

What is projected on the image plane of our camera is essentially
a two-dimensional (2D), time-dependent, continuous distribution of
light energy. In order to convert this image into a digital image on
our computer, the following three main steps are necessary:

1. The continuous light distribution must be spatially sampled.
2. This resulting function must then be sampled in time to create a

single (still) image.
3. Finally, the resulting values must be quantized to a finite range

of integers (or floating-point values) such that they can be rep-
resented by digital numbers.

Step 1: Spatial sampling

The spatial sampling of an image (i.e., the conversion of the contin-
uous signal to its discrete representation) depends on the geometry
of the sensor elements of the acquisition device (e.g., a digital or
video camera). The individual sensor elements are arranged in or-
dered rows, almost always at right angles to each other, along the
sensor plane (Fig. 1.4). Other types of image sensors, which include
hexagonal elements and circular sensor structures, can be found in
specialized products.

Step 2: Temporal sampling

Temporal sampling is carried out by measuring at regular intervals
the amount of light incident on each individual sensor element. The
CCD2 in a digital camera does this by triggering the charging process
and then measuring the amount of electrical charge that has built up
during the specified amount of time that the CCD was illuminated.

2 Charge-coupled device.
7

1 Digital Images

Fig. 1.4
The geometry of the sensor

elements is directly responsi-
ble for the spatial sampling
of the continuous image. In

the simplest case, a plane of
sensor elements are arranged
in an evenly spaced grid, and

each element measures the
amount of light that falls on it.

incident light

image element I(u, v)

sensor plane

u

v

Step 3: Quantization of pixel values

In order to store and process the image values on the computer
they are commonly converted to an integer scale (e.g., 256 = 28 or
4096 = 212). Occasionally floating-point values are used in profes-
sional applications, such as medical imaging. Conversion is carried
out using an analog to digital converter, which is typically embedded
directly in the sensor electronics so that conversion occurs at image
capture or is performed by special interface hardware.

Images as discrete functions

The result of these three stages is a description of the image in the
form of a 2D, ordered matrix of integers (Fig. 1.5). Stated a bit
more formally, a digital image I is a 2D function that maps from
the domain of integer coordinates N× N to a range of possible pixel
values P such that

I(u, v) ∈ P and u, v ∈ N.

Now we are ready to transfer the image to our computer so that we
can save, compress, and otherwise manipulate it into the file format
of our choice. At this point, it is no longer important to us how the
image originated since it is now a simple 2D array of numerical data.
Before moving on, we need a few more important definitions.

1.4.4 Image Size and Resolution

In the following, we assume rectangular images, and while that is a
relatively safe assumption, exceptions do exist. The size of an image
is determined directly from the width M (number of columns) and
the height N (number of rows) of the image matrix I.

The resolution of an image specifies the spatial dimensions of
the image in the real world and is given as the number of image
elements per measurement; for example, dots per inch (dpi) or lines
per inch (lpi) for print production, or in pixels per kilometer for
satellite images. In most cases, the resolution of an image is the
same in the horizontal and vertical directions, which means that the

8

1.4 Image Acquisition

→

148 123 52 107 123 162 172 123 64 89 · · ·
147 130 92 95 98 130 171 155 169 163 · · ·
141 118 121 148 117 107 144 137 136 134 · · ·

82 106 93 172 149 131 138 114 113 129 · · ·
57 101 72 54 109 111 104 135 106 125 · · ·

138 135 114 82 121 110 34 76 101 111 · · ·
138 102 128 159 168 147 116 129 124 117 · · ·
113 89 89 109 106 126 114 150 164 145 · · ·
120 121 123 87 85 70 119 64 79 127 · · ·
145 141 143 134 111 124 117 113 64 112 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

F (x, y) I(u, v)

Fig. 1.5
The transformation of a
continuous grayscale image
F (x, y) to a discrete digital im-
age I(u, v) (left), image detail
(below).

image elements are square. Note that this is not always the case as,
for example, the image sensors of most current video cameras have
non-square pixels!

The spatial resolution of an image may not be relevant in many
basic image processing steps, such as point operations or filters. Pre-
cise resolution information is, however, important in cases where ge-
ometrical elements such as circles need to be drawn on an image
or when distances within an image need to be measured. For these
reasons, most image formats and software systems designed for pro-
fessional applications rely on precise information about image reso-
lution.

1.4.5 Image Coordinate System

In order to know which position on the image corresponds to which
image element, we need to impose a coordinate system. Contrary
to normal mathematical conventions, in image processing the coor-
dinate system is usually flipped in the vertical direction; that is, the
y-coordinate runs from top to bottom and the origin lies in the upper
left corner (Fig. 1.6). While this system has no practical or theoret-
ical advantage, and in fact may be a bit confusing in the context of
geometrical transformations, it is used almost without exception in
imaging software systems. The system supposedly has its roots in
the original design of television broadcast systems, where the picture
rows are numbered along the vertical deflection of the electron beam,
which moves from the top to the bottom of the screen. We start the
numbering of rows and columns at zero for practical reasons, since
in Java array indexing also begins at zero.

1.4.6 Pixel Values

The information within an image element depends on the data type
used to represent it. Pixel values are practically always binary words
of length k so that a pixel can represent any of 2k different values.
The value k is called the bit depth (or just “depth”) of the image. The
exact bit-level layout of an individual pixel depends on the kind of

9

1 Digital Images

Fig. 1.6
Image coordinates. In digital

image processing, it is com-
mon to use a coordinate sys-
tem where the origin (u = 0,
v = 0) lies in the upper left
corner. The coordinates u, v

represent the columns and the
rows of the image, respectively.

For an image with dimensions
M × N , the maximum col-

umn number is umax = M −1
and the maximum row num-

ber is vmax = N − 1.

M columns

N
ro

w
s

0

0 u

v

M−1

N−1

I(u, v)

Table 1.1
Bit depths of common
image types and typi-

cal application domains.

Grayscale (Intensity Images):

Chan. Bits/Pix. Range Use

1 1 [0, 1] Binary image: document, illustration, fax

1 8 [0, 255] Universal: photo, scan, print

1 12 [0, 4095] High quality: photo, scan, print

1 14 [0, 16383] Professional: photo, scan, print

1 16 [0, 65535] Highest quality: medicine, astronomy

Color Images:

Chan. Bits/Pix. Range Use

3 24 [0, 255]3 RGB, universal: photo, scan, print

3 36 [0, 4095]3 RGB, high quality: photo, scan, print

3 42 [0, 16383]3 RGB, professional: photo, scan, print

4 32 [0, 255]4 CMYK, digital prepress

Special Images:

Chan. Bits/Pix. Range Use

1 16 [−32768, 32767] Integer values pos./neg., increased range

1 32 ±3.4 · 1038 Floating-point values: medicine, astronomy

1 64 ±1.8 · 10308 Floating-point values: internal processing

image; for example, binary, grayscale, or RGB3 color. The properties
of some common image types are summarized below (also see Table
1.1).

Grayscale images (intensity images)

The image data in a grayscale image consist of a single channel that
represents the intensity, brightness, or density of the image. In most
cases, only positive values make sense, as the numbers represent the
intensity of light energy or density of film and thus cannot be neg-
ative, so typically whole integers in the range 0, . . . , 2k−1 are used.
For example, a typical grayscale image uses k = 8 bits (1 byte) per
pixel and intensity values in the range 0, . . . , 255, where the value
0 represents the minimum brightness (black) and 255 the maximum
brightness (white).

For many professional photography and print applications, as well
as in medicine and astronomy, 8 bits per pixel is not sufficient. Image
depths of 12, 14, and even 16 bits are often encountered in these

3 Red, green, and blue.
10

1.5 Image File Formatsdomains. Note that bit depth usually refers to the number of bits
used to represent one color component, not the number of bits needed
to represent an entire color pixel. For example, an RGB-encoded
color image with an 8-bit depth would require 8 bits for each channel
for a total of 24 bits, while the same image with a 12-bit depth would
require a total of 36 bits.

Binary images

Binary images are a special type of intensity image where pixels can
only take on one of two values, black or white. These values are
typically encoded using a single bit (0/1) per pixel. Binary images
are often used for representing line graphics, archiving documents,
encoding fax transmissions, and of course in electronic printing.

Color images

Most color images are based on the primary colors red, green, and
blue (RGB), typically making use of 8 bits for each color component.
In these color images, each pixel requires 3×8 = 24 bits to encode all
three components, and the range of each individual color component
is [0, 255]. As with intensity images, color images with 30, 36, and 42
bits per pixel are commonly used in professional applications. Finally,
while most color images contain three components, images with four
or more color components are common in most prepress applications,
typically based on the subtractive CMYK (Cyan-Magenta-Yellow-
Black) color model (see Ch. 12).

Indexed or palette images constitute a very special class of color
image. The difference between an indexed image and a true color
image is the number of different colors (fewer for an indexed image)
that can be used in a particular image. In an indexed image, the pixel
values are only indices (with a maximum of 8 bits) onto a specific
table of selected full-color values (see Sec. 12.1.1).

Special images

Special images are required if none of the above standard formats
is sufficient for representing the image values. Two common exam-
ples of special images are those with negative values and those with
floating-point values. Images with negative values arise during image-
processing steps, such as filtering for edge detection (see Sec. 6.2.2),
and images with floating-point values are often found in medical,
biological, or astronomical applications, where extended numerical
range and precision are required. These special formats are mostly
application specific and thus may be difficult to use with standard
image-processing tools.

1.5 Image File Formats

While in this book we almost always consider image data as be-
ing already in the form of a 2D array—ready to be accessed by a
program—, in practice image data must first be loaded into mem-
ory from a file. Files provide the essential mechanism for storing,

11

1 Digital Images archiving, and exchanging image data, and the choice of the correct
file format is an important decision. In the early days of digital im-
age processing (i.e., before around 1985), most software developers
created a new custom file format for almost every new application
they developed.4 Today there exist a wide range of standardized file
formats, and developers can almost always find at least one existing
format that is suitable for their application. Using standardized file
formats vastly increases the ease with which images can be exchanged
and the likelihood that the images will be readable by other software
in the long term. Yet for many projects the selection of the right file
format is not always simple, and compromises must be made. The
following sub-sections outline a few of the typical criteria that need
to be considered when selecting an appropriate file format.

1.5.1 Raster versus Vector Data

In the following, we will deal exclusively with file formats for storing
raster images; that is, images that contain pixel values arranged in a
regular matrix using discrete coordinates. In contrast, vector graphics
represent geometric objects using continuous coordinates, which are
only rasterized once they need to be displayed on a physical device
such as a monitor or printer.

A number of standardized file formats exist for vector images,
such as the ANSI/ISO standard format CGM (Computer Graph-
ics Metafile) and SVG (Scalable Vector Graphics),5 as well as pro-
prietary formats such as DXF (Drawing Exchange Format from
AutoDesk), AI (Adobe Illustrator), PICT (QuickDraw Graphics
Metafile from Apple), and WMF/EMF (Windows Metafile and En-
hanced Metafile from Microsoft). Most of these formats can con-
tain both vector data and raster images in the same file. The PS
(PostScript) and EPS (Encapsulated PostScript) formats from Adobe
as well as the PDF (Portable Document Format) also offer this possi-
bility, although they are typically used for printer output and archival
purposes.6

1.5.2 Tagged Image File Format (TIFF)

This is a widely used and flexible file format designed to meet the pro-
fessional needs of diverse fields. It was originally developed by Aldus
and later extended by Microsoft and currently Adobe. The format
supports a range of grayscale, indexed, and true color images, but
also special image types with large-depth integer and floating-point
elements. A TIFF file can contain a number of images with different
properties. The TIFF specification provides a range of different com-
pression methods (LZW, ZIP, CCITT, and JPEG) and color spaces,

4 The result was a chaotic jumble of incompatible file formats that for
a long time limited the practical sharing of images between research
groups.

5 www.w3.org/TR/SVG/.
6 Special variations of PS, EPS, and PDF files are also used as (editable)

exchange formats for raster and vector data; for example, both Adobe’s
Photoshop (Photoshop-EPS) and Illustrator (AI).

12

http://www.w3.org/TR/SVG/

1.5 Image File FormatsByte Order

Version No

1st IFD Offset

Tag Entry Ct

Tag 0

Tag 1

...

Tag N0

Next IFD Offset

IFD 0

Image

Data

0

Image

Data

1

Tag Entry Ct

Tag 0

Tag 1

...

Tag N1

Next IFD Offset

IFD 1

Image

Data

2

Tag Entry Ct

Tag 0

Tag 1

...

Tag N2

Next IFD Offset

IFD 2

IFH Image File Headers

IFD Image File Directories

Fig. 1.7
Structure of a typical TIFF
file. A TIFF file consists of
a header and a linked list of
image objects, three in this
example. Each image object
consists of a list of “tags” with
their corresponding entries
followed by a pointer to the
actual image data.

so that it is possible, for example, to store a number of variations
of an image in different sizes and representations together in a single
TIFF file. The flexibility of TIFF has made it an almost universal ex-
change format that is widely used in archiving documents, scientific
applications, digital photography, and digital video production.

The strength of this image format lies within its architecture (Fig.
1.7), which enables new image types and information blocks to be cre-
ated by defining new “tags”. In this flexibility also lies the weakness of
the format, namely that proprietary tags are not always supported
and so the “unsupported tag” error is sometimes still encountered
when loading TIFF files. ImageJ also reads only a few uncompressed
variations of TIFF formats,7 and bear in mind that most popular
Web browsers currently do not support TIFF either.

1.5.3 Graphics Interchange Format (GIF)

The Graphics Interchange Format (GIF) was originally designed by
CompuServe in 1986 to efficiently encode the rich line graphics used
in their dial-up Bulletin Board System (BBS). It has since grown
into one of the most widely used formats for representing images
on the Web. This popularity is largely due to its early support for
indexed color at multiple bit depths, LZW8 compression, interlaced
image loading, and ability to encode simple animations by storing
a number of images in a single file for later sequential display. GIF
is essentially an indexed image file format designed for color and
grayscale images with a maximum depth of 8 bits and consequently
it does not support true color images. It offers efficient support for
encoding palettes containing from 2 to 256 colors, one of which can
be marked for transparency. GIF supports color tables in the range

7 The ImageIO plugin offers support for a wider range of TIFF formats.
8 Lempel-Ziv-Welch

13

1 Digital Images of 2, . . . , 256, enabling pixels to be encoded using fewer bits. As an
example, the pixels of an image using 16 unique colors require only 4
bits to store the 16 possible color values 0, . . . , 15. This means that
instead of storing each pixel using 1 byte, as done in other bitmap
formats, GIF can encode two 4-bit pixels into each 8-bit byte. This
results in a 50% storage reduction over the standard 8-bit indexed
color bitmap format.

The GIF file format is designed to efficiently encode “flat” or
“iconic” images consisting of large areas of the same color. It uses
lossy color quantization (see Ch. 13) as well as lossless LZW compres-
sion to efficiently encode large areas of the same color. Despite the
popularity of the format, when developing new software, the PNG9

format, presented in the next sub-section, should be preferred, as it
outperforms GIF by almost every metric.

1.5.4 Portable Network Graphics (PNG)

PNG (pronounced “ping”) was originally developed as a replacement
for the GIF file format when licensing issues10 arose because of its use
of LZW compression. It was designed as a universal image format
especially for use on the Internet, and, as such, PNG supports three
different types of images:

• true color images (with up to 3× 16 bits/pixel),
• grayscale images (with up to 16 bits/pixel),
• indexed color images (with up to 256 colors).

Additionally, PNG includes an alpha channel for transparency with a
maximum depth of 16 bits. In comparison, the transparency channel
of a GIF image is only a single bit deep. While the format only sup-
ports a single image per file, it is exceptional in that it allows images
of up to 230 × 230 pixels. The format supports lossless compression
by means of a variation of PKZIP (Phil Katz’s ZIP). No lossy com-
pression is available, as PNG was not designed as a replacement for
JPEG. Ultimately, the PNG format meets or exceeds the capabilities
of the GIF format in every way except GIF’s ability to include mul-
tiple images in a single file to create simple animations. Currently,
PNG should be considered the format of choice for representing un-
compressed, lossless, true color images for use on the Web.

1.5.5 JPEG

The JPEG standard defines a compression method for continuous
grayscale and color images, such as those that would arise from nature
photography. The format was developed by the Joint Photographic
Experts Group (JPEG)11 with the goal of achieving an average data
reduction of a factor of 1:16 and was established in 1990 as ISO Stan-
dard IS-10918. Today it is the most widely used image file format. In
practice, JPEG achieves, depending on the application, compression
in the order of 1 bit per pixel (i.e., a compression factor of around

9 Portable network graphics
10 Unisys’s U.S. LZW Patent No. 4,558,302 expired on June 20, 2003.
11 www.jpeg.org.

14

http://www.jpeg.org

1.5 Image File Formats1:25) when compressing 24-bit color images to an acceptable quality
for viewing. The JPEG standard supports images with up to 256
color components, and what has become increasingly important is
its support for CMYK images (see Sec. 12.2.5).

The modular design of the JPEG compression algorithm [163]
allows for variations of the “baseline” algorithm; for example, there
exists an uncompressed version, though it is not often used. In the
case of RGB images, the core of the algorithm consists of three main
steps:

1. Color conversion and down sampling: A color transforma-
tion from RGB into the Y CbCr space (see Ch. 12, Sec. 12.2.4) is
used to separate the actual color components from the brightness
Y component. Since the human visual system is less sensitive to
rapid changes in color, it is possible to compress the color com-
ponents more, resulting in a significant data reduction, without
a subjective loss in image quality.

2. Cosine transform and quantization in frequency space:
The image is divided up into a regular grid of 8 blocks, and for
each independent block, the frequency spectrum is computed us-
ing the discrete cosine transformation (see Ch. 20). Next, the 64
spectral coefficients of each block are quantized into a quantiza-
tion table. The size of this table largely determines the eventual
compression ratio, and therefore the visual quality, of the image.
In general, the high frequency coefficients, which are essential
for the “sharpness” of the image, are reduced most during this
step. During decompression these high frequency values will be
approximated by computed values.

3. Lossless compression: Finally, the quantized spectral compo-
nents data stream is again compressed using a lossless method,
such as arithmetic or Huffman encoding, in order to remove the
last remaining redundancy in the data stream.

The JPEG compression method combines a number of different com-
pression methods and its should not be underestimated. Implement-
ing even the baseline version is nontrivial, so application support for
JPEG increased sharply once the Independent JPEG Group (IJG)12

made available a reference implementation of the JPEG algorithm
in 1991. Drawbacks of the JPEG compression algorithm include its
limitation to 8-bit images, its poor performance on non-photographic
images such as line art (for which it was not designed), its handling of
abrupt transitions within an image, and the striking artifacts caused
by the 8× 8 pixel blocks at high compression rates. Figure 1.9 shows
the results of compressing a section of a grayscale image using differ-
ent quality factors (Photoshop QJPG = 10, 5, 1).

JPEG File Interchange Format (JFIF)

Despite common usage, JPEG is not a file format; it is “only” a
method of compressing image data. The actual JPEG standard only
specifies the JPEG codec (compressor and decompressor) and by de-

12 www.ijg.org.
15

http://www.ijg.org

1 Digital Images

Fig. 1.8
JPEG compression of an RGB

image. Using a color space
transformation, the color com-
ponents Cb, Cr are separated

from the Y luminance com-
ponent and subjected to a

higher rate of compression.
Each of the three components

are then run independently
through the JPEG compression

pipeline and are merged into
a single JPEG data stream.

Decompression follows the
same stages in reverse order.

Color
Trans-

formation
RGB

Y
JPEG Compressor

JPEG Compressor

JPEG Compressor

Cb

Cr

JPEG Stream

JPEG Decompressor

JPEG Decompressor

JPEG Decompressor

Inverse
Color
Trans-

formation

RGB

Y

Cb

Cr

CrCbY

Y

Cb

Cr

Y

Cb

Cr

sign leaves the wrapping, or file format, undefined.13 What is nor-
mally referred to as a JPEG file is almost always an instance of a
“JPEG File Interchange Format” (JFIF) file, originally developed by
Eric Hamilton and the IJG. JFIF specifies a file format based on the
JPEG standard by defining the remaining necessary elements of a file
format. The JPEG standard leaves some parts of the codec unde-
fined for generality, and in these cases JFIF makes a specific choice.
As an example, in step 1 of the JPEG codec, the specific color space
used in the color transformation is not part of the JPEG standard,
so it is specified by the JFIF standard. As such, the use of different
compression ratios for color and luminance is a practical implementa-
tion decision specified by JFIF and is not a part of the actual JPEG
encoder.

Exchangeable Image File Format (EXIF)

The Exchangeable Image File Format (EXIF) is a variant of the
JPEG (JFIF) format designed for storing image data originating
on digital cameras, and to that end it supports storing metadata
such as the type of camera, date and time, photographic parameters
such as aperture and exposure time, as well as geographical (GPS)
data. EXIF was developed by the Japan Electronics and Information
Technology Industries Association (JEITA) as a part of the DCF14

guidelines and is used today by practically all manufacturers as the
standard format for storing digital images on memory cards. Inter-
nally, EXIF uses TIFF to store the metadata information and JPEG
to encode a thumbnail preview image. The file structure is designed
so that it can be processed by existing JPEG/JFIF readers without
a problem.

JPEG-2000

JPEG-2000, which is specified by an ISO-ITU standard (“Coding
of Still Pictures”),15 was designed to overcome some of the better-
known weaknesses of the traditional JPEG codec. Among the im-

13 To be exact, the JPEG standard only defines how to compress the in-
dividual components and the structure of the JPEG stream.

14 Design Rule for Camera File System.
15 www.jpeg.org/JPEG2000.htm.

16

http://www.jpeg.org/JPEG2000.htm

1.5 Image File Formats

(a) Original
(75.08 kB)

(b) QJPG = 10
(11.40 kB)

(c) QJPG = 5
(7.24 kB)

(d) QJPG = 1
(5.52 kB)

Fig. 1.9
Artifacts arising from JPEG
compression. A section of the
original image (a) and the re-
sults of JPEG compression
at different quality factors:
QJPG = 10 (b), QJPG = 5
(c), and QJPG = 1 (d). In
parentheses are the resulting
file sizes for the complete (di-
mensions 274 × 274) image.

provements made in JPEG-2000 are the use of larger, 64× 64 pixel
blocks and replacement of the discrete cosine transform by the wavelet
transform. These and other improvements enable it to achieve sig-
nificantly higher compression ratios than JPEG—up to 0.25 bits per
pixel on RGB color images. Despite these advantages, JPEG-2000
is supported by only a few image-processing applications and Web
browsers.16

16 At this time, ImageJ does not offer JPEG-2000 support.
17

1 Digital Images 1.5.6 Windows Bitmap (BMP)

The Windows Bitmap (BMP) format is a simple, and under Win-
dows widely used, file format supporting grayscale, indexed, and true
color images. It also supports binary images, but not in an efficient
manner, since each pixel is stored using an entire byte. Optionally,
the format supports simple lossless, run-length-based compression.
While BMP offers storage for a similar range of image types as TIFF,
it is a much less flexible format.

1.5.7 Portable Bitmap Format (PBM)

The Portable Bitmap Format (PBM) family17 consists of a series
of very simple file formats that are exceptional in that they can be
optionally saved in a human-readable text format that can be easily
read in a program or simply edited using a text editor. A simple
PGM image is shown in Fig. 1.10. The characters P2 in the first
line indicate that the image is a PGM (“plain”) file stored in human-
readable format. The next line shows how comments can be inserted
directly into the file by beginning the line with the # symbol. Line
three gives the image’s dimensions, in this case width 17 and height
7, and line four defines the maximum pixel value, in this case 255.
The remaining lines give the actual pixel values. This format makes
it easy to create and store image data without any explicit imaging
API, since it requires only basic text I/O that is available in any
programming environment. In addition, the format supports a much
more machine-optimized “raw” output mode in which pixel values
are stored as bytes. PBM is widely used under Unix and supports
the following formats: PBM (portable bitmap) for binary bitmaps,
PGM (portable graymap) for grayscale images, and PNM (portable
any map) for color images. PGM images can be opened by ImageJ.

Fig. 1.10
Example of a PGM file in

human-readable text format
(top) and the correspond-

ing grayscale image (below).

P2

oie.pgm

17 7

255

0 13 13 13 13 13 13 13 0 0 0 0 0 0 0 0 0

0 13 0 0 0 0 0 13 0 7 7 0 0 81 81 81 81

0 13 0 7 7 7 0 13 0 7 7 0 0 81 0 0 0

0 13 0 7 0 7 0 13 0 7 7 0 0 81 81 81 0

0 13 0 7 7 7 0 13 0 7 7 0 0 81 0 0 0

0 13 0 0 0 0 0 13 0 7 7 0 0 81 81 81 81

0 13 13 13 13 13 13 13 0 0 0 0 0 0 0 0 0

1.5.8 Additional File Formats

For most practical applications, one of the following file formats is
sufficient: TIFF as a universal format supporting a wide variety of
uncompressed images and JPEG/JFIF for digital color photos when
storage size is a concern, and there is either PNG or GIF for when
an image is destined for use on the Web. In addition, there exist

17 http://netpbm.sourceforge.net.
18

http://netpbm.sourceforge.net

1.5 Image File Formatscountless other file formats, such as those encountered in legacy ap-
plications or in special application areas where they are traditionally
used. A few of the more commonly encountered types are:

• RGB, a simple format from Silicon Graphics.
• RAS (Sun Raster Format), a simple format from Sun Micro-

systems.
• TGA (Truevision Targa File Format), the first 24-bit file format

for PCs. It supports numerous image types with 8- to 32-bit
depths and is still used in medicine and biology.

• XBM/XPM (X-Windows Bitmap/Pixmap), a group of ASCII-
encoded formats used in the X-Windows system and similar to
PBM/PGM.

1.5.9 Bits and Bytes

Today, opening, reading, and writing image files is mostly carried out
by means of existing software libraries. Yet sometimes you still need
to deal with the structure and contents of an image file at the byte
level, for instance when you need to read an unsupported file format
or when you receive a file where the format of the data is unknown.

Big endian and little endian

In the standard model of a computer, a file consists of a simple se-
quence of 8-bit bytes, and a byte is the smallest entry that can be
read or written to a file. In contrast, the image elements as they are
stored in memory are usually larger then a byte; for example, a 32-bit
int value (= 4 bytes) is used for an RGB color pixel. The problem is
that storing the four individual bytes that make up the image data
can be done in different ways. In order to correctly recreate the orig-
inal color pixel, we must naturally know the order in which bytes in
the file are arranged.

Consider, for example, a 32-bit int number z with the binary and
hexadecimal values18

z = 00010010
︸ ︷︷ ︸

12H

(MSB)

·00110100·01010110·01111000
︸ ︷︷ ︸

78H

(LSB)

B ≡ 12345678H , (1.2)

then 00010010B ≡ 12H is the value of the most significant byte (MSB)
and 01111000B ≡ 78H the least significant byte (LSB). When the
individual bytes in the file are arranged in order from MSB to LSB
when they are saved, we call the ordering “big endian”, and when in
the opposite direction, “little endian”. Thus the 32-bit value z from
Eqn. (1.2) could be stored in one of the following two modes:

Ordering Byte Sequence 1 2 3 4

big endian MSB → LSB 12H 34H 56H 78H

little endian LSB → MSB 78H 56H 34H 12H

Even though correctly ordering the bytes should essentially be the
responsibility of the operating and file systems, in practice it actually
18 The decimal value of z is 305419896.

19

1 Digital Images

Table 1.2
Signatures of various image

file formats. Most image file
formats can be identified by
inspecting the first bytes of

the file. These byte sequences,
or signatures, are listed in

hexadecimal (0x..) form and
as ASCII text (indicates
a nonprintable character).

Format Signature Format Signature

PNG 0x89504e47 PNG BMP 0x424d BM

JPEG/JFIF 0xffd8ffe0 GIF 0x4749463839 GIF89

TIFFlittle 0x49492a00 II* Photoshop 0x38425053 8BPS

TIFFbig 0x4d4d002a MM * PS/EPS 0x25215053 %!PS

depends on the architecture of the processor.19 Processors from the
Intel family (e.g., x86, Pentium) are traditionally little endian, and
processors from other manufacturers (e.g., IBM, MIPS, Motorola,
Sun) are big endian.20 Big endian is also called network byte ordering
since in the IP protocol the data bytes are arranged in MSB to LSB
order during transmission.

To correctly interpret image data with multi-byte pixel values,
it is necessary to know the byte ordering used when creating it. In
most cases, this is fixed and defined by the file format, but in some file
formats, for example TIFF, it is variable and depends on a parameter
given in the file header (see Table 1.2).

File headers and signatures

Practically all image file formats contain a data header consisting
of important information about the layout of the image data that
follows. Values such as the size of the image and the encoding of
the pixels are usually present in the file header to make it easier
for programmers to allocate the correct amount of memory for the
image. The size and structure of this header are usually fixed, but
in some formats, such as TIFF, the header can contain pointers to
additional subheaders.

In order to interpret the information in the header, it is necessary
to know the file type. In many cases, this can be determined by the
file name extension (e.g., .jpg or .tif), but since these extensions
are not standardized and can be changed at any time by the user, they
are not a reliable way of determining the file type. Instead, many file
types can be identified by their embedded “signature”, which is often
the first 2 bytes of the file. Signatures from a number of popular
image formats are given in Table 1.2. Most image formats can be
determined by inspecting the first few bytes of the file. These bytes,
or signatures, are listed in hexadecimal (0x..) form and as ASCII
text. A PNG file always begins with the 4-byte sequence 0x89, 0x50,
0x4e, 0x47, which is the “magic number” 0x89 followed by the ASCII
sequence “PNG”. Sometimes the signature not only identifies the type
of image file but also contains information about its encoding; for
instance, in TIFF the first two characters are either II for “Intel” or
MM for “Motorola” and indicate the byte ordering (little endian or big
endian, respectively) of the image data in the file.

19 At least the ordering of the bits within a byte is almost universally
uniform.

20 In Java, this problem does not arise since internally all implementations
of the Java Virtual Machine use big endian ordering.

20

1.6 Exercises1.6 Exercises

Exercise 1.1. Determine the actual physical measurement in mil-
limeters of an image with 1400 rectangular pixels and a resolution of
72 dpi.

Exercise 1.2. A camera with a focal length of f = 50 mm is used
to take a photo of a vertical column that is 12 m high and is 95 m
away from the camera. Determine its height in the image in mm (a)
and the number of pixels (b) assuming the camera has a resolution
of 4000 dpi.

Exercise 1.3. The image sensor of a particular digital camera con-
tains 2016× 3024 pixels. The geometry of this sensor is identical to
that of a traditional 35 mm camera (with an image size of 24 × 36
mm) except that it is 1.6 times smaller. Compute the resolution of
this digital sensor in dpi.

Exercise 1.4. Assume the camera geometry described in Exercise
1.3 combined with a lens with focal length f = 50 mm. What amount
of blurring (in pixels) would be caused by a uniform, 0.1◦ horizontal
turn of the camera during exposure? Recompute this for f = 300
mm. Consider if the extent of the blurring also depends on the dis-
tance of the object.

Exercise 1.5. Determine the number of bytes necessary to store an
uncompressed binary image of size 4000× 3000 pixels.

Exercise 1.6. Determine the number of bytes necessary to store an
uncompressed RGB color image of size 640× 480 pixels using 8, 10,
12, and 14 bits per color channel.

Exercise 1.7. Given a black and white television with a resolution
of 625 × 512 8-bit pixels and a frame rate of 25 images per second:
(a) How may different images can this device ultimately display, and
how long would you have to watch it (assuming no sleeping) in order
to see every possible image at least once? (b) Perform the same
calculation for a color television with 3× 8 bits per pixel.

Exercise 1.8. Show that the projection of a 3D straight line in a
pinhole camera (assuming perspective projection as defined in Eqn.
(1.1)) is again a straight line in the resulting 2D image.

Exercise 1.9. Using Fig. 1.10 as a model, use a text editor to create
a PGM file, disk.pgm, containing an image of a bright circle. Open
your image with ImageJ and then try to find other programs that
can open and display the image.

21

2

ImageJ

Until a few years ago, the image-processing community was a rel-
atively small group of people who either had access to expensive
commercial image-processing tools or, out of necessity, developed
their own software packages. Usually such home-brew environments
started out with small software components for loading and storing
images from and to disk files. This was not always easy because of-
ten one had to deal with poorly documented or even proprietary file
formats. An obvious (and frequent) solution was to simply design a
new image file format from scratch, usually optimized for a partic-
ular field, application, or even a single project, which naturally led
to a myriad of different file formats, many of which did not survive
and are forgotten today [163, 168]. Nevertheless, writing software
for converting between all these file formats in the 1980s and early
1990s was an important business that occupied many people. Dis-
playing images on computer screens was similarly difficult, because
there was only marginal support from operating systems, APIs, and
display hardware, and capturing images or videos into a computer
was close to impossible on common hardware. It thus may have
taken many weeks or even months before one could do just elemen-
tary things with images on a computer and finally do some serious
image processing.

Fortunately, the situation is much different today. Only a few
common image file formats have survived (see also Sec. 1.5), which are
readily handled by many existing tools and software libraries. Most
standard APIs for C/C++, Java, and other popular programming
languages already come with at least some basic support for working
with images and other types of media data. While there is still much
development work going on at this level, it makes our job a lot easier
and, in particular, allows us to focus on the more interesting aspects
of digital imaging.

23
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_2

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

2 ImageJ 2.1 Software for Digital Imaging

Traditionally, software for digital imaging has been targeted at ei-
ther manipulating or processing images, either for practitioners and
designers or software programmers, with quite different requirements.

Software packages for manipulating images, such as Adobe Photo-
shop, Corel Paint, and others, usually offer a convenient user interface
and a large number of readily available functions and tools for work-
ing with images interactively. Sometimes it is possible to extend the
standard functionality by writing scripts or adding self-programmed
components. For example, Adobe provides a special API1 for pro-
gramming Photoshop “plugins” in C++, though this is a nontrivial
task and certainly too complex for nonprogrammers.

In contrast to the aforementioned category of tools, digital im-
age processing software primarily aims at the requirements of al-
gorithm and software developers, scientists, and engineers working
with images, where interactivity and ease of use are not the main
concerns. Instead, these environments mostly offer comprehensive
and well-documented software libraries that facilitate the implemen-
tation of new image-processing algorithms, prototypes, and work-
ing applications. Popular examples are Khoros/Accusoft,2 MatLab,3

ImageMagick,4 among many others. In addition to the support for
conventional programming (typically with C/C++), many of these
systems provide dedicated scripting languages or visual programming
aides that can be used to construct even highly complex processes in
a convenient and safe fashion.

In practice, image manipulation and image processing are of
course closely related. Although Photoshop, for example, is aimed
at image manipulation by nonprogrammers, the software itself im-
plements many traditional image-processing algorithms. The same is
true for many Web applications using server-side image processing,
such as those based on ImageMagick. Thus image processing is really
at the base of any image manipulation software and certainly not an
entirely different category.

2.2 ImageJ Overview

ImageJ, the software that is used for this book, is a combination
of both worlds discussed in the previous section. It offers a set of
ready-made tools for viewing and interactive manipulation of images
but can also be extended easily by writing new software components
in a “real” programming language. ImageJ is implemented entirely
in Java and is thus largely platform-independent, running without
modification under Windows, MacOS, or Linux. Java’s dynamic ex-
ecution model allows new modules (“plugins”) to be written as in-
dependent pieces of Java code that can be compiled, loaded, and
executed “on the fly” in the running system without the need to

1 www.adobe.com/products/photoshop/.
2 www.accusoft.com.
3 www.mathworks.com.
4 www.imagemagick.org.

24

http://www.adobe.com/products/photoshop/
http://www.accusoft.com
http://www.mathworks.com
http://www.imagemagick.org

2.2 ImageJ Overvieweven restart ImageJ. This quick turnaround makes ImageJ an ideal
platform for developing and testing new image-processing techniques
and algorithms. Since Java has become extremely popular as a first
programming language in many engineering curricula, it is usually
quite easy for students to get started in ImageJ without having to
spend much time learning another programming language. Also, Im-
ageJ is freely available, so students, instructors, and practitioners
can install and use the software legally and without license charges
on any computer. ImageJ is thus an ideal platform for education and
self-training in digital image processing but is also in regular use for
serious research and application development at many laboratories
around the world, particularly in biological and medical imaging.

ImageJ was (and still is) developed by Wayne Rasband [193] at
the U.S. National Institutes of Health (NIH), originally as a sub-
stitute for its predecessor, NIH-Image, which was only available for
the Apple Macintosh platform. The current version of ImageJ, up-
dates, documentation, the complete source code, test images, and a
continuously growing collection of third-party plugins can be down-
loaded from the ImageJ website.5 Installation is simple, with detailed
instructions available online, in Werner Bailer’s programming tuto-
rial [12], and in the authors’ ImageJ Short Reference [40].

Wayne Rasband (right) at the
1st ImageJ Conference 2006
(picture courtesy of Marc Seil,
CRP Henri Tudor,
Luxembourg).

In addition to ImageJ itself there are several popular software
projects that build on or extend ImageJ. This includes in particular
Fiji6 (“Fiji Is Just ImageJ”) which offers a consistent collection of
numerous plugins, simple installation on various platforms and ex-
cellent documentation. All programming examples (plugins) shown
in this book should also execute in Fiji without any modifications.
Another important development is ImgLib2, which is a generic Java
API for representing and processing n-dimensional images in a con-
sistent fashion. ImgLib2 also provides the underlying data model for
ImageJ2,7 which is a complete reimplementation of ImageJ.

2.2.1 Key Features

As a pure Java application, ImageJ should run on any computer
for which a current Java runtime environment (JRE) exists. Im-
ageJ comes with its own Java runtime, so Java need not be installed
separately on the computer. Under the usual restrictions, ImageJ can
be run as a Java “applet” within a Web browser, though it is mostly
used as a stand-alone application. It is sometimes also used on the
server side in the context of Java-based Web applications (see [12]
for details). In summary, the key features of ImageJ are:

• A set of ready-to-use, interactive tools for creating, visualizing,
editing, processing, analyzing, loading, and storing images, with
support for several common file formats. ImageJ also provides
“deep” 16-bit integer images, 32-bit floating-point images, and
image sequences (“stacks”).

5 http://rsb.info.nih.gov/ij/.
6 http://fiji.sc.
7 http://imagej.net/ImageJ2. To avoid confusion, the “classic” ImageJ plat-

form is sometimes referred to as “ImageJ1” or simply “IJ1”.
25

http://rsb.info.nih.gov/ij/
http://fiji.sc
http://imagej.net/ImageJ2

2 ImageJ • A simple plugin mechanism for extending the core functionality
of ImageJ by writing (usually small) pieces of Java code. All
coding examples shown in this book are based on such plugins.

• A macro language and the corresponding interpreter, which make
it easy to implement larger processing blocks by combining ex-
isting functions without any knowledge of Java. Macros are not
discussed in this book, but details can be found in ImageJ’s online
documentation.8

2.2.2 Interactive Tools

When ImageJ starts up, it first opens its main window (Fig. 2.1),
which includes the following menu entries:

• File: for opening, saving, and creating new images.
• Edit: for editing and drawing in images.
• Image: for modifying and converting images, geometric opera-

tions.
• Process: for image processing, including point operations, filters,

and arithmetic operations between multiple images.
• Analyze: for statistical measurements on image data, histograms,

and special display formats.
• Plugin: for editing, compiling, executing, and managing user-

defined plugins.

The current version of ImageJ can open images in several common
formats, including TIFF (uncompressed only), JPEG, GIF, PNG,
and BMP, as well as the formats DICOM9 and FITS,10 which are
popular in medical and astronomical image processing, respectively.
As is common in most image-editing programs, all interactive oper-
ations are applied to the currently active image, i.e., the image most
recently selected by the user. ImageJ provides a simple (single-step)
“undo” mechanism for most operations, which can also revert modi-
fications effected by user-defined plugins.

2.2.3 ImageJ Plugins

Plugins are small Java modules for extending the functionality of
ImageJ by using a simple standardized interface (Fig. 2.2). Plugins
can be created, edited, compiled, invoked, and organized through
the Plugin menu in ImageJ’s main window (Fig. 2.1). Plugins can
be grouped to improve modularity, and plugin commands can be
arbitrarily placed inside the main menu structure. Also, many of Im-
ageJ’s built-in functions are actually implemented as plugins them-
selves.

Program structure

Technically speaking, plugins are Java classes that implement a par-
ticular interface specification defined by ImageJ. There are two main
types of plugins:

8 http://rsb.info.nih.gov/ij/developer/macro/macros.html.
9 Digital Imaging and Communications in Medicine.

10 Flexible Image Transport System.
26

http://rsb.info.nih.gov/ij/developer/macro/macros.html

2.2 ImageJ Overview�����
��	��
���
�
����
������

������
���
���	�
�
�������
������
��
���
������

�����������
�����
�������
������
����
��������

�������
�������
�
�����
���
������

�����
���
�
��������
���
�������
�����
�

��������
�������

Fig. 2.1
ImageJ main window (under
Windows).

������

������ ������ ������ ������ ������

��	�
��
�

 !"

Fig. 2.2
ImageJ software structure
(simplified). ImageJ is based
on the Java core system and
depends in particular upon
Java’s Advanced Windowing
Toolkit (AWT) for the imple-
mentation of the user interface
and the presentation of image
data. Plugins are small Java
classes that extend the func-
tionality of the basic ImageJ
system.

• PlugIn: requires no image to be open to start a plugin.

• PlugInFilter: the currently active image is passed to the plugin
when started.

Throughout the examples in this book, we almost exclusively use plu-
gins of the second type (i.e., PlugInFilter) for implementing image-
processing operations. The interface specification requires that any
plugin of type PlugInFilter must at least implement two methods,
setup() and run(), with the following signatures:

int setup (String args, ImagePlus im)

When the plugin is started, ImageJ calls this method first to
verify that the capabilities of this plugin match the target image.
setup() returns a vector of binary flags (packaged as a 32-bit
int value) that describes the plugin’s properties.

void run (ImageProcessor ip)

This method does the actual work for this plugin. It is passed
a single argument ip, an object of type ImageProcessor, which
contains the image to be processed and all relevant information

27

2 ImageJ about it. The run() method returns no result value (void) but
may modify the passed image and create new images.

2.2.4 A First Example: Inverting an Image

Let us look at a real example to quickly illustrate this mechanism.
The task of our first plugin is to invert any 8-bit grayscale image to
turn a positive image into a negative. As we shall see later, inverting
the intensity of an image is a typical point operation, which is dis-
cussed in detail in Chapter 4. In ImageJ, 8-bit grayscale images have
pixel values ranging from 0 (black) to 255 (white), and we assume
that the width and height of the image are M and N , respectively.
The operation is very simple: the value of each image pixel I(u, v) is
replaced by its inverted value,

I(u, v) ← 255− I(u, v),

for all image coordinates (u, v), with u = 0, . . . , M−1 and v = 0, . . . ,
N−1.

2.2.5 Plugin My_Inverter_A (using PlugInFilter)

We decide to name our first plugin “My_Inverter_A”, which is both
the name of the Java class and the name of the source file11 that
contains it (see Prog. 2.1). The underscore characters (“_”) in the
name cause ImageJ to recognize this class as a plugin and to insert it
automatically into the menu list at startup. The Java source code in
file My_Inverter.java contains a few import statements, followed
by the definition of the class My_Inverter, which implements the
PlugInFilter interface (because it will be applied to an existing
image).

The setup() method

When a plugin of type PlugInFilter is executed, ImageJ first in-
vokes its setup() method to obtain information about the plugin
itself. In this example, setup() only returns the value DOES_8G (a
static int constant specified by the PlugInFilter interface), indi-
cating that this plugin can handle 8-bit grayscale images. The pa-
rameters arg and im of the setup() method are not used in this
example (see also Exercise 2.7).

The run() method

As mentioned already, the run() method of a PlugInFilter plugin
receives an object (ip) of type ImageProcessor, which contains the
image to be processed and all relevant information about it. First,
we use the ImageProcessor methods getWidth() and getHeight()

to query the size of the image referenced by ip. Then we use two
nested for loops (with loop variables u, v for the horizontal and
vertical coordinates, respectively) to iterate over all image pixels. For
reading and writing the pixel values, we use two additional methods
of the class ImageProcessor:

11 File My_Inverter_A.java.
28

2.2 ImageJ Overview1 import ij.ImagePlus;

2 import ij.plugin.filter.PlugInFilter;

3 import ij.process.ImageProcessor;

4

5 public class My_Inverter_A implements PlugInFilter {

6

7 public int setup(String args, ImagePlus im) {

8 return DOES_8G; // this plugin accepts 8-bit grayscale images

9 }

10

11 public void run(ImageProcessor ip) {

12 int M = ip.getWidth();

13 int N = ip.getHeight();

14

15 // iterate over all image coordinates (u,v)

16 for (int u = 0; u < M; u++) {

17 for (int v = 0; v < N; v++) {

18 int p = ip.getPixel(u, v);

19 ip.putPixel(u, v, 255 - p);

20 }

21 }

22 }

23

24 }

Prog. 2.1
ImageJ plugin for inverting
8-bit grayscale images. This
plugin implements the inter-
face PlugInFilter and defines
the required methods setup()

and run(). The target im-
age is received by the run()

method as an instance of type
ImageProcessor. ImageJ as-
sumes that the plugin modifies
the supplied image and auto-
matically redisplays it after the
plugin is executed. Program
2.2 shows an alternative imple-
mentation that is based on the
PlugIn interface.

int getPixel (int u, int v)

Returns the pixel value at the given position or zero if (u, v) is
outside the image bounds.

void putPixel (int u, int v, int a)

Sets the pixel value at position (u, v) to the new value a. Does
nothing if (u, v) is outside the image bounds.

Both methods check the supplied image coordinates and pixel val-
ues to avoid unwanted errors. While this makes them more or less
fail-safe it also makes them slow. If we are sure that no coordinates
outside the image bounds are ever accessed (as in My_Inverter in
Prog. 2.1) and the inserted pixel values are guaranteed not to ex-
ceed the image processor’s range, we can use the significantly faster
methods get() and set() in place of getPixel() and putPixel(),
respectively. The most efficient way to process the image is to avoid
read/write methods altogether and directly access the elements of
the associated (1D) pixel array. Details on these and other methods
can be found in the ImageJ API documentation.12

2.2.6 Plugin My_Inverter_B (using PlugIn)

Program 2.2 shows an alternative implementation of the inverter
plugin based on ImageJ’s PlugIn interface, which requires a run()

method only. In this case the reference to the current image is not
supplied directly but is obtained by invoking the (static) method

12 http://rsbweb.nih.gov/ij/developer/api/index.html.
29

http://rsbweb.nih.gov/ij/developer/api/index.html

2 ImageJ

Prog. 2.2
Alternative implementation

of the inverter plugin, based
on ImageJ’s PlugIn interface.
In contrast to Prog. 2.1 this

plugin has no setUp() method
but defines a run() method

only. The current image (im)
is obtained as an instance of

class ImagePlus by invoking
the IJ.getImage() method. Af-

ter checking for the proper
image type the associated

ImageProcessor (ip) is retrieved
from im. The parameter string

(args) is not used in this ex-
ample. The remaining parts

of the plugin are identical to
Prog. 2.1, except that the

(slightly faster) pixel access
methods get() and set() are

used. Also note that the mod-
ified image is not re-displayed

automatically but by an ex-
plicit call to updateAndDraw().

1 import ij.IJ;

2 import ij.ImagePlus;

3 import ij.plugin.PlugIn;

4 import ij.process.ImageProcessor;

5

6 public class My_Inverter_B implements PlugIn {

7

8 public void run(String args) {

9 ImagePlus im = IJ.getImage();

10

11 if (im.getType() != ImagePlus.GRAY8) {

12 IJ.error("8-bit grayscale image required");

13 return;

14 }

15

16 ImageProcessor ip = im.getProcessor();

17 int M = ip.getWidth();

18 int N = ip.getHeight();

19

20 // iterate over all image coordinates (u,v)

21 for (int u = 0; u < M; u++) {

22 for (int v = 0; v < N; v++) {

23 int p = ip.get(u, v);

24 ip.set(u, v, 255 - p);

25 }

26 }

27

28 im.updateAndDraw(); // redraw the modified image

29 }

30 }

IJ.getImage(). If no image is currently open, getImage() auto-
matically displays an error message and aborts the plugin. However,
the subsequent test for the correct image type (GRAY8) and the cor-
responding error handling must be performed explicitly. The run()

method accepts a single string argument that can be used to pass
arbitrary information for controlling the plugin.

2.2.7 When to use PlugIn or PlugInFilter?

The choice of PlugIn or PlugInFilter is mostly a matter of taste,
since both versions have their advantages and disadvantages. As a
rule of thumb, we use the PlugIn type for tasks that do not require
any image to be open but for tasks that create, load, or record im-
ages or perform operations without any images. Otherwise, if one
or more open images should be processed, PlugInFilter is the pre-
ferred choice and thus almost all plugins in this book are of type
PlugInFilter.

Editing, compiling, and executing the plugin

The Java source file for our plugin should be stored in directory
<ij>/plugins/13 or an immediate subdirectory. New plugin files
13 <ij> denotes ImageJ’s installation directory.

30

2.2 ImageJ Overviewcan be created with ImageJ’s Plugins ⊲ New... menu. ImageJ even
provides a built-in Java editor for writing plugins, which is available
through the Plugins ⊲ Edit... menu but unfortunately is of little use for
serious programming. A better alternative is to use a modern editor
or a professional Java programming environment, such as Eclipse,14

NetBeans,15 or JBuilder,16 all of which are freely available.
For compiling plugins (to Java bytecode), ImageJ comes with its

own Java compiler as part of its runtime environment. To compile
and execute the new plugin, simply use the menu

Plugins ⊲ Compile and Run...

Compilation errors are displayed in a separate log window. Once the
plugin is compiled, the corresponding .class file is automatically
loaded and the plugin is applied to the currently active image. An
error message is displayed if no images are open or if the current
image cannot be handled by that plugin.

At startup, ImageJ automatically loads all correctly named plu-
gins found in the <ij>/plugins/ directory (or any immediate sub-
directory) and installs them in its Plugins menu. These plugins can
be executed immediately without any recompilation. References to
plugins can also be placed manually with the

Plugins ⊲ Shortcuts ⊲ Install Plugin...

command at any other position in the ImageJ menu tree. Sequences
of plugin calls and other ImageJ commands may be recorded as macro
programs with Plugins ⊲ Macros ⊲ Record.

Displaying and “undoing” results

Our first plugins in Prog. 2.1–2.2 did not create a new image but
“destructively” modified the target image. This is not always the
case, but plugins can also create additional images or compute only
statistics, without modifying the original image at all. It may be sur-
prising, though, that our plugin contains no commands for displaying
the modified image. This is done automatically by ImageJ whenever
it can be assumed that the image passed to a plugin was modified.17

In addition, ImageJ automatically makes a copy (“snapshot”) of the
image before passing it to the run() method of a PlugInFilter-type
plugin. This feature makes it possible to restore the original image
(with the Edit ⊲ Undo menu) after the plugin has finished without any
explicit precautions in the plugin code.

Logging and debugging

The usual console output from Java via System.out is not available
in ImageJ by default. Instead, a separate logging window can be
used which facilitates simple text output by the method

IJ.log(String s).

14 www.eclipse.org.
15 www.netbeans.org.
16 www.borland.com.
17 No automatic redisplay occurs if the NO_CHANGES flag is set in the return

value of the plugin’s setup() method.
31

http://www.eclipse.org
http://www.netbeans.org
http://www.borland.com

2 ImageJ

Fig. 2.3
Information displayed in Im-

ageJ’s main window is ex-
tremely helpful for debugging
image-processing operations.

The current cursor position is
displayed in pixel coordinates

unless the associated image
is spatially calibrated. The

way pixel values are displayed
depends on the image type;
in the case of a color image

(as shown here) integer RGB
component values are shown.

position value

cursor

Such calls may be placed at any position in the plugin code for quick
and simple debugging at runtime. However, because of the typically
large amounts of data involved, they should be used with caution in
real image-processing operations. Particularly, when placed in the
body of inner processing loops that could execute millions of times,
text output may produce an enormous overhead compared to the
time used for the actual calculations.

ImageJ itself does not offer much support for “real” debugging,
i.e., for setting breakpoints, inspecting local variables etc. However, it
is possible to launch ImageJ from within a programming environment
(IDE) such as Eclipse or Netbeans and then use all debugging options
that the given environment provides.18 According to experience, this
is only needed in rare and exceptionally difficult situations. In most
cases, inspection of pixel values displayed in ImageJ’s main window
(see Fig. 2.3) is much simpler and more effective. In general, many
errors (in particular those related to image coordinates) can be easily
avoided by careful planning in advance.

2.2.8 Executing ImageJ “Commands”

If possible, it is wise in most cases to re-use existing (and extensively
tested) functionality instead of re-implementing it oneself. In partic-
uar, the Java library that comes with ImageJ covers many standard
image-processing operations, many of which are used throughout this

18 For details see the “HowTo” section at http://imagejdocu.tudor.lu.
32

http://imagejdocu.tudor.lu

2.2 ImageJ Overview1 import ij.IJ;

2 import ij.ImagePlus;

3 import ij.plugin.PlugIn;

4

5 public class Run_Command_From_PlugIn implements PlugIn {

6

7 public void run(String args) {

8 ImagePlus im = IJ.getImage();

9 IJ.run(im, "Invert", ""); // run the “Invert” command on im

10 // ... continue with this plugin

11 }

12 }

Prog. 2.3
Executing the ImageJ com-
mand “Invert” within a Java
plugin of type PlugIn.

1 public class Run_Command_From_PlugInFilter implements

PlugInFilter {

2 ImagePlus im;

3

4 public int setup(String args, ImagePlus im) {

5 this.im = im;

6 return DOES_ALL;

7 }

8

9 public void run(ImageProcessor ip) {

10 im.unlock(); // unlock im to run other commands

11 IJ.run(im, "Invert", ""); // run “Invert” command on im

12 im.lock(); // lock im again (to be safe)

13 // ... continue with this plugin

14 }

15 }

Prog. 2.4
Executing the ImageJ com-
mand “Invert” within a Java
plugin of type PlugInFilter.
In this case the current image
is automatically locked during
plugin execution, such that no
other operation may be applied
to it. However, the image can
be temporarily unlocked by
calling unlock() and lock(), re-
spectively, to run the external
command.

book. Additional classes and methods for specific operations are con-
tained in the associated (imagingbook) library.

In the context of ImageJ, the term “command” refers to any com-
posite operation implemented as a (Java) plugin, a macro command
or as a script.19 ImageJ itself includes numerous commands which
can be listed with the menu Plugins ⊲ Utilities ⊲ Find Commands....
They are usually referenced “by name”, i.e., by a unique string. For
example, the standard operation for inverting an image (Edit ⊲ Invert)
is implemented by the Java class ij.plugin.filter.Filters (with
the argument "invert").

An existing command can also be executed from within a Java
plugin with the method IJ.run(), as demonstrated for the “Invert”
command in Prog. 2.3. Some caution is required with plugins of type
PlugInFilter, since these lock the current image during execution,
such that no other operation can be applied to it. The example in
Prog. 2.4 shows how this can be resolved by a pair of calls to unlock()

and lock(), respectively, to temporarily release the current image.
A convenient tool for putting together complex commands is

ImageJ’s built-in Macro Recorder. Started with Plugins ⊲ Macros ⊲

19 Scripting languages for ImageJ currently include JavaScript, BeanShell,
and Python.

33

2 ImageJ Record..., it logs all subsequent commands in a text file for later use.
It can be set up to record commands in various modes, including
Java, JavaScript, BeanShell, or ImageJ macro code. Of course it
does record the application of self-defined plugins as well.

2.3 Additional Information on ImageJ and Java

In the following chapters, we mostly use concrete plugins and Java
code to describe algorithms and data structures. This not only makes
these examples immediately applicable, but they should also help in
acquiring additional skills for using ImageJ in a step-by-step fashion.
To keep the text compact, we often describe only the run() method
of a particular plugin and additional class and method definitions if
they are relevant in the given context. The complete source code
for these examples can of course be downloaded from the book’s
supporting website.20

2.3.1 Resources for ImageJ

The complete and most current API reference, including source code,
tutorials, and many example plugins, can be found on the official Im-
ageJ website. Another great source for any serious plugin program-
ming is the tutorial by Werner Bailer [12].

2.3.2 Programming with Java

While this book does not require extensive Java skills from its readers,
some elementary knowledge is essential for understanding or extend-
ing the given examples. There is a huge and still-growing number
of introductory textbooks on Java, such as [8, 29, 66, 70, 208] and
many others. For readers with programming experience who have
not worked with Java before, we particularly recommend some of
the tutorials on Oracle’s Java website.21 Also, in Appendix F of this
book, readers will find a small compilation of specific Java topics that
cause frequent problems or programming errors.

2.4 Exercises

Exercise 2.1. Install the current version of ImageJ on your com-
puter and make yourself familiar with the built-in commands (open,
convert, edit, and save images).

Exercise 2.2. Write a new ImageJ plugin that reflects a grayscale
image horizontally (or vertically) using My_Inverter.java (Prog.
2.1) as a template. Test your new plugin with appropriate images
of different sizes (odd, even, extremely small) and inspect the results
carefully.

20 www.imagingbook.com.
21 http://docs.oracle.com/javase/.

34

http://www.imagingbook.com
http://docs.oracle.com/javase/

2.4 ExercisesExercise 2.3. The run() method of plugin Inverter_Plugin_A (see
Prog. 2.1) iterates over all pixels of the given image. Find out in which
order the pixels are visited: along the (horizontal) lines or along the
(vertical) columns? Make a drawing to illustrate this process.

Exercise 2.4. Create an ImageJ plugin for 8-bit grayscale images of
arbitrary size that paints a white frame (with pixel value 255) 10
pixels wide into the image (without increasing its size). Make sure
this plugin also works for very small images.

Exercise 2.5. Create a plugin for 8-bit grayscale images that calcu-
lates and prints the result (with IJ.log()). Use a variable of type
int or long for accumulating the pixel values. What is the maximum
image size for which we can be certain that the result of summing
with an int variable is correct?

Exercise 2.6. Create a plugin for 8-bit grayscale images that cal-
culates and prints the minimum and maximum pixel values in the
current image (with IJ.log()). Compare your output to the results
obtained with Analyze ⊲ Measure.

Exercise 2.7. Write a new ImageJ plugin that shifts an 8-bit gray-
scale image horizontally and circularly until the original state is
reached again. To display the modified image after each shift, a
reference to the corresponding ImagePlus object is required (Image-

Processor has no display methods). The ImagePlus object is only
accessible to the plugin’s setup() method, which is automatically
called before the run() method. Modify the definition in Prog. 2.1
to keep a reference and to redraw the ImagePlus object as follows:

public class XY_Plugin implements PlugInFilter {

ImagePlus im; // new variable!

public int setup(String args, ImagePlus im) {

this.im = im; // reference to the associated ImagePlus object

return DOES_8G;

}

public void run(ImageProcessor ip) {

// ... modify ip

im.updateAndDraw(); // redraw the associated ImagePlus object

// ...

}

}

35

3

Histograms and Image Statistics

Histograms are used to depict image statistics in an easily interpreted
visual format. With a histogram, it is easy to determine certain
types of problems in an image, for example, it is simple to conclude
if an image is properly exposed by visual inspection of its histogram.
In fact, histograms are so useful that modern digital cameras often
provide a real-time histogram overlay on the viewfinder (Fig. 3.1) to
help prevent taking poorly exposed pictures. It is important to catch
errors like this at the image capture stage because poor exposure
results in a permanent loss of information, which it is not possible to
recover later using image-processing techniques. In addition to their
usefulness during image capture, histograms are also used later to
improve the visual appearance of an image and as a “forensic” tool
for determining what type of processing has previously been applied
to an image. The final part of this chapter shows how to calculate
simple image statistics from the original image, its histogram, or the
so-called integral image.

Fig. 3.1
Digital camera back display
showing the associated RGB
histograms.

37
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_3

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

3 Histograms and
Image Statistics

3.1 What is a Histogram?

Histograms in general are frequency distributions, and histograms of
images describe the frequency of the intensity values that occur in
an image. This concept can be easily explained by considering an
old-fashioned grayscale image like the one shown in Fig. 3.2.

Fig. 3.2
An 8-bit grayscale image

and a histogram depicting
the frequency distribution
of its 256 intensity values.

The histogram h for a grayscale image I with intensity values in
the range I(u, v) ∈ [0, K−1] holds exactly K entries, where K = 28 =
256 for a typical 8-bit grayscale image. Each single histogram entry
is defined as

h(i) = the number of pixels in I with the intensity value i,

for all 0 ≤ i < K. More formally stated,1

h(i) = card
{

(u, v) | I(u, v) = i
}

. (3.1)

Therefore, h(0) is the number of pixels with the value 0, h(1) the
number of pixels with the value 1, and so forth. Finally, h(255) is
the number of all white pixels with the maximum intensity value
255 = K−1. The result of the histogram computation is a 1D vector
h of length K. Figure 3.3 gives an example for an image with K = 16
possible intensity values.

Fig. 3.3
Histogram vector for an image

with K = 16 possible inten-
sity values. The indices of the

vector element i = 0 . . . 15
represent intensity values. The

value of 10 at index 2 means
that the image contains 10
pixels of intensity value 2.

� � � � � � � 	
 � �� �� �� �� �� ��

� � � � � � 	 � � � � � � � �

� � � � � � � 	
 � �� �� �� �� �� ��

��

�

��

i

i

h(i)

h(i)

10 pixels with intensity value i = 2

Since the histogram encodes no information about where each of
its individual entries originated in the image, it contains no infor-
mation about the spatial arrangement of pixels in the image. This

1 card{. . .} denotes the number of elements (“cardinality”) in a set (see
also Sec. A.1 in the Appendix).

38

3.2 Interpreting
Histograms

Fig. 3.4
Three very different images
with identical histograms.

is intentional, since the main function of a histogram is to provide
statistical information, (e.g., the distribution of intensity values) in
a compact form. Is it possible to reconstruct an image using only its
histogram? That is, can a histogram be somehow “inverted”? Given
the loss of spatial information, in all but the most trivial cases, the
answer is no. As an example, consider the wide variety of images
you could construct using the same number of pixels of a specific
value. These images would appear different but have exactly the
same histogram (Fig. 3.4).

3.2 Interpreting Histograms

A histogram depicts problems that originate during image acquisi-
tion, such as those involving contrast and dynamic range, as well as
artifacts resulting from image-processing steps that were applied to
the image. Histograms are often used to determine if an image is
making effective use of its intensity range (Fig. 3.5) by examining
the size and uniformity of the histogram’s distribution.

alow ahigh

intensity range

linear logarithmic

Fig. 3.5
Effective intensity range. The
graph depicts the frequencies
of pixel values linearly (black
bars) and logarithmically (gray
bars). The logarithmic form
makes even relatively low oc-
currences, which can be very
important in the image, readily
apparent.

3.2.1 Image Acquisition

Histograms make typical exposure problems readily apparent. As an
example, a histogram where a large section of the intensity range
at one end is largely unused while the other end is crowded with

39

3 Histograms and
Image Statistics

Fig. 3.6
Exposure errors are read-

ily apparent in histograms.
Underexposed (a), prop-

erly exposed (b), and over-
exposed (c) photographs.

(a) (b) (c)

high-value peaks (Fig. 3.6) is representative of an improperly exposed
image.

Contrast

Contrast is understood as the range of intensity values effectively
used within a given image, that is the difference between the image’s
maximum and minimum pixel values. A full-contrast image makes
effective use of the entire range of available intensity values from
a = amin, . . . , amax with amin = 0, amax = K−1 (black to white).
Using this definition, image contrast can be easily read directly from
the histogram. Figure 3.7 illustrates how varying the contrast of an
image affects its histogram.

Dynamic range

The dynamic range of an image is, in principle, understood as the
number of distinct pixel values in an image. In the ideal case, the dy-
namic range encompasses all K usable pixel values, in which case the
value range is completely utilized. When an image has an available
range of contrast a = alow, . . . , ahigh, with

amin < alow and ahigh < amax ,

then the maximum possible dynamic range is achieved when all the
intensity values lying in this range are utilized (i.e., appear in the
image; Fig. 3.8).

While the contrast of an image can be increased by transforming
its existing values so that they utilize more of the underlying value
range available, the dynamic range of an image can only be increased
by introducing artificial (that is, not originating with the image sen-
sor) values using methods such as interpolation (see Ch. 22). An
image with a high dynamic range is desirable because it will suffer
less image-quality degradation during image processing and compres-
sion. Since it is not possible to increase dynamic range after image
acquisition in a practical way, professional cameras and scanners work
at depths of more than 8 bits, often 12–14 bits per channel, in order
to provide high dynamic range at the acquisition stage. While most
output devices, such as monitors and printers, are unable to actually
reproduce more than 256 different shades, a high dynamic range is
always beneficial for subsequent image processing or archiving.

40

3.2 Interpreting
Histograms

(a) (b) (c)

Fig. 3.7
How changes in contrast af-
fect the histogram: low con-
trast (a), normal contrast (b),
high contrast (c).

(a) (b) (c)

Fig. 3.8
How changes in dynamic range
affect the histogram: high dy-
namic range (a), low dynamic
range with 64 intensity val-
ues (b), extremely low dynamic
range with only 6 intensity
values (c).

3.2.2 Image Defects

Histograms can be used to detect a wide range of image defects that
originate either during image acquisition or as the result of later im-
age processing. Since histograms always depend on the visual char-
acteristics of the scene captured in the image, no single “ideal” his-
togram exists. While a given histogram may be optimal for a specific
scene, it may be entirely unacceptable for another. As an exam-
ple, the ideal histogram for an astronomical image would likely be
very different from that of a good landscape or portrait photo. Nev-
ertheless, there are some general rules; for example, when taking a
landscape image with a digital camera, you can expect the histogram
to have evenly distributed intensity values and no isolated spikes.

Saturation

Ideally the contrast range of a sensor, such as that used in a camera,
should be greater than the range of the intensity of the light that it
receives from a scene. In such a case, the resulting histogram will

41

3 Histograms and
Image Statistics

be smooth at both ends because the light received from the very
bright and the very dark parts of the scene will be less than the
light received from the other parts of the scene. Unfortunately, this
ideal is often not the case in reality, and illumination outside of the
sensor’s contrast range, arising for example from glossy highlights
and especially dark parts of the scene, cannot be captured and is lost.
The result is a histogram that is saturated at one or both ends of its
range. The illumination values lying outside of the sensor’s range
are mapped to its minimum or maximum values and appear on the
histogram as significant spikes at the tail ends. This typically occurs
in an under- or overexposed image and is generally not avoidable
when the inherent contrast range of the scene exceeds the range of
the system’s sensor (Fig. 3.9(a)).

Fig. 3.9
Effect of image capture errors

on histograms: saturation of
high intensities (a), histogram

gaps caused by a slight in-
crease in contrast (b), and

histogram spikes resulting from
a reduction in contrast (c).

(a) (b) (c)

Spikes and gaps

As discussed already, the intensity value distribution for an unpro-
cessed image is generally smooth; that is, it is unlikely that isolated
spikes (except for possible saturation effects at the tails) or gaps will
appear in its histogram. It is also unlikely that the count of any given
intensity value will differ greatly from that of its neighbors (i.e., it is
locally smooth). While artifacts like these are observed very rarely
in original images, they will often be present after an image has been
manipulated, for instance, by changing its contrast. Increasing the
contrast (see Ch. 4) causes the histogram lines to separate from each
other and, due to the discrete values, gaps are created in the his-
togram (Fig. 3.9(b)). Decreasing the contrast leads, again because
of the discrete values, to the merging of values that were previously
distinct. This results in increases in the corresponding histogram en-
tries and ultimately leads to highly visible spikes in the histogram
(Fig. 3.9(c)).2

Impacts of image compression

Image compression also changes an image in ways that are immedi-
ately evident in its histogram. As an example, during GIF compres-
sion, an image’s dynamic range is reduced to only a few intensities

2 Unfortunately, these types of errors are also caused by the internal con-
trast “optimization” routines of some image-capture devices, especially
consumer-type scanners.

42

3.3 Calculating
Histograms

(a)

(b)

(c)

Fig. 3.10
Color quantization effects re-
sulting from GIF conversion.
The original image converted
to a 256 color GIF image
(left). Original histogram (a)
and the histogram after GIF
conversion (b). When the RGB
image is scaled by 50%, some
of the lost colors are recreated
by interpolation, but the re-
sults of the GIF conversion
remain clearly visible in the
histogram (c).

or colors, resulting in an obvious line structure in the histogram that
cannot be removed by subsequent processing (Fig. 3.10). Generally,
a histogram can quickly reveal whether an image has ever been sub-
jected to color quantization, such as occurs during conversion to a
GIF image, even if the image has subsequently been converted to a
full-color format such as TIFF or JPEG.

Figure 3.11 illustrates what occurs when a simple line graphic
with only two gray values (128, 255) is subjected to a compression
method such as JPEG, that is not designed for line graphics but in-
stead for natural photographs. The histogram of the resulting image
clearly shows that it now contains a large number of gray values that
were not present in the original image, resulting in a poor-quality
image3 that appears dirty, fuzzy, and blurred.

3.3 Calculating Histograms

Computing the histogram of an 8-bit grayscale image containing in-
tensity values between 0 and 255 is a simple task. All we need is a
set of 256 counters, one for each possible intensity value. First, all
counters are initialized to zero. Then we iterate through the image I,
determining the pixel value p at each location (u, v), and increment-
ing the corresponding counter by one. At the end, each counter will
contain the number of pixels in the image that have the corresponding
intensity value.

An image with K possible intensity values requires exactly K
counter variables; for example, since an 8-bit grayscale image can
contain at most 256 different intensity values, we require 256 coun-
ters. While individual counters make sense conceptually, an actual

3 Using JPEG compression on images like this, for which it was not de-
signed, is one of the most egregious of imaging errors. JPEG is designed
for photographs of natural scenes with smooth color transitions, and us-
ing it to compress iconic images with large areas of the same color results
in strong visual artifacts (see, e.g., Fig. 1.9 on p. 17).

43

3 Histograms and
Image Statistics

Fig. 3.11
Effects of JPEG compres-

sion. The original image (a)
contained only two different
gray values, as its histogram
(b) makes readily apparent.
JPEG compression, a poor
choice for this type of im-

age, results in numerous addi-
tional gray values, which are
visible in both the resulting
image (c) and its histogram

(d). In both histograms,
the linear frequency (black

bars) and the logarithmic fre-
quency (gray bars) are shown.

(a) (b)

(c) (d)

Prog. 3.1
ImageJ plugin for comput-

ing the histogram of an 8-bit
grayscale image. The setup()

method returns DOES_8G +
NO_CHANGES, which indicates
that this plugin requires an

8-bit grayscale image and
will not alter it (line 4).

In Java, all elements of a
newly instantiated numeri-
cal array are automatically
initialized to zero (line 8).

1 public class Compute_Histogram implements PlugInFilter {

2

3 public int setup(String arg, ImagePlus img) {

4 return DOES_8G + NO_CHANGES;

5 }

6

7 public void run(ImageProcessor ip) {

8 int[] h = new int[256]; // histogram array

9 int w = ip.getWidth();

10 int h = ip.getHeight();

11

12 for (int v = 0; v < h; v++) {

13 for (int u = 0; u < w; u++) {

14 int i = ip.getPixel(u, v);

15 h[i] = h[i] + 1;

16 }

17 }

18 // ... histogram h can now be used

19 }

20 }

implementation would not use K individual variables to represent the
counters but instead would use an array with K entries (int[256]

in Java). In this example, the actual implementation as an array is
straightforward. Since the intensity values begin at zero (like arrays
in Java) and are all positive, they can be used directly as the indices
i ∈ [0, N−1] of the histogram array. Program 3.1 contains the com-
plete Java source code for computing a histogram within the run()

method of an ImageJ plugin.
At the start of Prog. 3.1, the array h of type int[] is created (line

8) and its elements are automatically initialized4 to 0. It makes no
difference, at least in terms of the final result, whether the array is

4 In Java, arrays of primitives such as int, double are initialized at cre-
ation to 0 in the case of integer types or 0.0 for floating-point types,
while arrays of objects are initialized to null.

44

3.4 Histograms of
Images with More than
8 Bits

traversed in row or column order, as long as all pixels in the image
are visited exactly once. In contrast to Prog. 2.1, in this example we
traverse the array in the standard row-first order such that the outer
for loop iterates over the vertical coordinates v and the inner loop
over the horizontal coordinates u.5 Once the histogram has been
calculated, it is available for further processing steps or for being
displayed.

Of course, histogram computation is already implemented in Im-
ageJ and is available via the method getHistogram() for objects of
the class ImageProcessor. If we use this built-in method, the run()

method of Prog. 3.1 can be simplified to

public void run(ImageProcessor ip) {

int[] h = ip.getHistogram(); // built-in ImageJ method

... // histogram h can now be used

}

3.4 Histograms of Images with More than 8 Bits

Normally histograms are computed in order to visualize the image’s
distribution on the screen. This presents no problem when dealing
with images having 28 = 256 entries, but when an image uses a larger
range of values, for instance 16- and 32-bit or floating-point images
(see Table 1.1), then the growing number of necessary histogram en-
tries makes this no longer practical.

3.4.1 Binning

Since it is not possible to represent each intensity value with its own
entry in the histogram, we will instead let a given entry in the his-
togram represent a range of intensity values. This technique is often
referred to as “binning” since you can visualize it as collecting a range
of pixel values in a container such as a bin or bucket. In a binned
histogram of size B, each bin h(j) contains the number of image
elements having values within the interval [aj , aj+1), and therefore
(analogous to Eqn. (3.1))

h(j) = card
{

(u, v) | aj ≤ I(u, v) < aj+1

}
, (3.2)

for 0 ≤ j < B. Typically the range of possible values in B is divided
into bins of equal size kB = K/B such that the starting value of the
interval j is

aj = j · K

B
= j · kB .

3.4.2 Example

In order to create a typical histogram containing B = 256 entries
from a 14-bit image, one would divide the original value range j =

5 In this way, image elements are traversed in exactly the same way that
they are laid out in computer memory, resulting in more efficient mem-
ory access and with it the possibility of increased performance, especially
when dealing with larger images (see also Appendix F).

45

3 Histograms and
Image Statistics

0, . . . , 214−1 into 256 equal intervals, each of length kB = 214/256 =
64, such that a0 = 0, a1 = 64, a2 = 128, . . . , a255 = 16320 and
a256 = aB = 214 = 16320 = K. This gives the following association
between pixel values and histogram bins h(0), . . . , h(255):

0, . . . , 63 → h(0),
64, . . . , 127 → h(1),

128, . . . , 191 → h(2),
...

...
...

16320, . . . , 16383 → h(255).

3.4.3 Implementation

If, as in the previous example, the value range 0, . . . , K−1 is divided
into equal length intervals kB = K/B, there is naturally no need to
use a mapping table to find aj since for a given pixel value a = I(u, v)
the correct histogram element j is easily computed. In this case, it is
enough to simply divide the pixel value I(u, v) by the interval length
kB; that is,

I(u, v)
kB

=
I(u, v)
K/B

=
I(u, v) · B

K
. (3.3)

As an index to the appropriate histogram bin h(j), we require an
integer value

j =
⌊I(u, v) · B

K

⌋

, (3.4)

where ⌊·⌋ denotes the floor operator.6 A Java method for computing
histograms by “linear binning” is given in Prog. 3.2. Note that all the
computations from Eqn. (3.4) are done with integer numbers without
using any floating-point operations. Also there is no need to explicitly
call the floor function because the expression

a * B / K

in line 11 uses integer division and in Java the fractional result of
such an operation is truncated, which is equivalent to applying the
floor function (assuming positive arguments).7 The binning method
can also be applied, in a similar way, to floating-point images.

3.5 Histograms of Color Images

When referring to histograms of color images, typically what is meant
is a histogram of the image intensity (luminance) or of the individual
color channels. Both of these variants are supported by practically
every image-processing application and are used to objectively ap-
praise the image quality, especially directly after image acquisition.

6 ⌊x⌋ rounds x down to the next whole number (see Appendix A).
7 For a more detailed discussion, see the section on integer division in

Java in Appendix F (p. 765).
46

3.5 Histograms of
Color Images

1 int[] binnedHistogram(ImageProcessor ip) {

2 int K = 256; // number of intensity values

3 int B = 32; // size of histogram, must be defined

4 int[] H = new int[B]; // histogram array

5 int w = ip.getWidth();

6 int h = ip.getHeight();

7

8 for (int v = 0; v < h; v++) {

9 for (int u = 0; u < w; u++) {

10 int a = ip.getPixel(u, v);

11 int i = a * B / K; // integer operations only!

12 H[i] = H[i] + 1;

13 }

14 }

15 // return binned histogram

16 return H;

17 }

Prog. 3.2
Histogram computation us-
ing “binning” (Java method).
Example of computing a histo-
gram with B = 32 bins for
an 8-bit grayscale image with
K = 256 intensity levels. The
method binnedHistogram()

returns the histogram of the
image object ip passed to it as
an int array of size B.

3.5.1 Intensity Histograms

The intensity or luminance histogram hLum of a color image is nothing
more than the histogram of the corresponding grayscale image, so
naturally all aspects of the preceding discussion also apply to this
type of histogram. The grayscale image is obtained by computing
the luminance of the individual channels of the color image. When
computing the luminance, it is not sufficient to simply average the
values of each color channel; instead, a weighted sum that takes into
account color perception theory should be computed. This process
is explained in detail in Chapter 12 (p. 304).

3.5.2 Individual Color Channel Histograms

Even though the luminance histogram takes into account all color
channels, image errors appearing in single channels can remain undis-
covered. For example, the luminance histogram may appear clean
even when one of the color channels is oversaturated. In RGB im-
ages, the blue channel contributes only a small amount to the total
brightness and so is especially sensitive to this problem.

Component histograms supply additional information about the
intensity distribution within the individual color channels. When
computing component histograms, each color channel is considered
a separate intensity image and each histogram is computed inde-
pendently of the other channels. Figure 3.12 shows the luminance
histogram hLum and the three component histograms hR, hG, and hB

of a typical RGB color image. Notice that saturation problems in
all three channels (red in the upper intensity region, green and blue
in the lower regions) are obvious in the component histograms but
not in the luminance histogram. In this case it is striking, and not
at all atypical, that the three component histograms appear com-
pletely different from the corresponding luminance histogram hLum

(Fig. 3.12(b)).

47

3 Histograms and
Image Statistics

Fig. 3.12
Histograms of an RGB color

image: original image (a), lu-
minance histogram hLum (b),
RGB color components as in-
tensity images (c–e), and the

associated component his-
tograms hR, hG, hB (f–h).

The fact that all three color
channels have saturation prob-

lems is only apparent in the
individual component his-
tograms. The spike in the

distribution resulting from
this is found in the middle of
the luminance histogram (b).

(a) (b) hLum

(c) R (d) G (e) B

(f) hR (g) hG (h) hB

3.5.3 Combined Color Histograms

Luminance histograms and component histograms both provide use-
ful information about the lighting, contrast, dynamic range, and sat-
uration effects relative to the individual color components. It is im-
portant to remember that they provide no information about the
distribution of the actual colors in the image because they are based
on the individual color channels and not the combination of the indi-
vidual channels that forms the color of an individual pixel. Consider,
for example, when hR, the component histogram for the red channel,
contains the entry

hR(200) = 24.

Then it is only known that the image has 24 pixels that have a red
intensity value of 200. The entry does not tell us anything about the
green and blue values of those pixels, which could be any valid value
(∗), that is,

(r, g, b) = (200, ∗, ∗).
Suppose further that the three component histograms included the
following entries:

hR(50) = 100, hG(50) = 100, hB(50) = 100.

Could we conclude from this that the image contains 100 pixels with
the color combination

(r, g, b) = (50, 50, 50)

or that this color occurs at all? In general, no, because there is no
way of ascertaining from these data if there exists a pixel in the image
in which all three components have the value 50. The only thing we
could really say is that the color value (50, 50, 50) can occur at most
100 times in this image.

48

3.7 Statistical
Information from the
Histogram

So, although conventional (intensity or component) histograms of
color images depict important properties, they do not really provide
any useful information about the composition of the actual colors in
an image. In fact, a collection of color images can have very similar
component histograms and still contain entirely different colors. This
leads to the interesting topic of the combined histogram, which uses
statistical information about the combined color components in an
attempt to determine if two images are roughly similar in their color
composition. Features computed from this type of histogram often
form the foundation of color-based image retrieval methods. We will
return to this topic in Chapter 12, where we will explore color images
in greater detail.

3.6 The Cumulative Histogram

The cumulative histogram, which is derived from the ordinary his-
togram, is useful when performing certain image operations involving
histograms; for instance, histogram equalization (see Sec. 4.5). The
cumulative histogram H is defined as

H(i) =
i∑

j=0

h(j) for 0 ≤ i < K. (3.5)

A particular value H(i) is thus the sum of all histogram values h(j),
with j ≤ i. Alternatively, we can define H recursively (as imple-
mented in Prog. 4.2 on p. 66):

H(i) =

{

h(0) for i = 0,
H(i−1) + h(i) for 0 < i < K.

(3.6)

The cumulative histogram H(i) is a monotonically increasing function
with the maximum value

H(K−1) =
K−1∑

j=0

h(j) = M ·N, (3.7)

that is, the total number of pixels in an image of width M and height
N . Figure 3.13 shows a concrete example of a cumulative histogram.

The cumulative histogram is useful not primarily for viewing but
as a simple and powerful tool for capturing statistical information
from an image. In particular, we will use it in the next chapter to
compute the parameters for several common point operations (see
Sec. 4.4–4.6).

3.7 Statistical Information from the Histogram

Some common statistical parameters of the image can be conveniently
calculated directly from its histogram. For example, the minimum
and maximum pixel value of an image I can be obtained by simply

49

3 Histograms and
Image Statistics

Fig. 3.13
The ordinary histogram

h(i) and its associated cu-
mulative histogram H(i).

i

i

h(i)

0

0

255

255

H(i)

finding the smallest and largest histogram index with nonzero value,
i.e.,

min(I) = min { i | h(i) > 0},
max(I) = max { i | h(i) > 0}. (3.8)

If we assume that the histogram is already available, the advantage
is that the calculation does not include the entire image but only the
relatively small set of histogram elements (typ. 256).

3.7.1 Mean and Variance

The mean value μ of an image I (of size M × N) can be calculated
as

μ =
1

MN
·
M−1∑

u=0

N−1∑

v=0

I(u, v) =
1

MN
·
K−1∑

i=0

h(i) · i, (3.9)

i.e., either directly from the pixel values I(u, v) or indirectly from the
histogram h (of size K), where MN =

∑

i h(i) is the total number of
pixels.

Analogously we can also calculate the variance of the pixel values
straight from the histogram as

σ2 =
1

MN
·
M−1∑

u=0

N−1∑

v=0

[
I(u, v)−μ

]2
=

1
MN

·
K−1∑

i=0

(i−μ)2 · h(i). (3.10)

As we see in the right parts of Eqns. (3.9) and (3.10), there is no need
to access the original pixel values.

The formulation of the variance in Eqn. (3.10) assumes that the
arithmetic mean μ has already been determined. This is not nec-
essary though, since the mean and the variance can be calculated
together in a single iteration over the image pixels or the associated
histogram in the form

μ =
1

MN
· A and (3.11)

σ2 =
1

MN
·
(

B − 1
MN

·A2
)

, (3.12)
50

3.8 Block Statisticswith the quantities

A =
M−1∑

u=0

N−1∑

v=0

I(u, v) =
K−1∑

i=0

i·h(i), (3.13)

B =
M−1∑

u=0

N−1∑

v=0

I2(u, v) =
K−1∑

i=0

i2 ·h(i). (3.14)

The above formulation has the additional numerical advantage that
all summations can be performed with integer values, in contrast to
Eqn. (3.10) which requires the summation of floating-point values.

3.7.2 Median

The median m of an image is defined as the smallest pixel value
that is greater or equal to one half of all pixel values, i.e., lies “in the
middle” of the pixel values.8 The median can also be easily calculated
from the image’s histogram.

To determine the median of an image I from the associated his-
togram it is sufficient to find the index i that separates the histogram
into two halves, such that the sum of the histogram entries to the left
and the right of i are approximately equal. In other words, i is the
smallest index where the sum of the histogram entries below (and
including) i corresponds to at least half of the image size, that is,

m = min
{

i |
i∑

j=0

h(j) ≥ MN

2

}

. (3.15)

Since
∑i

j=0 h(j) = H(i) (see Eqn. (3.5)), the median calculation can
be formulated even simpler as

m = min
{

i | H(i) ≥ MN

2

}

, (3.16)

given the cumulative histogram H.

3.8 Block Statistics

3.8.1 Integral Images

Integral images (also known as summed area tables [58]) provide a
simple way for quickly calculating elementary statistics of arbitrary
rectangular sub-images. They have found use in several interest-
ing applications, such as fast filtering, adaptive thresholding, image
matching, local feature extraction, face detection, and stereo recon-
struction [20, 142, 244].

Given a scalar-valued (grayscale) image I : M ×N �→ R the asso-
ciated first-order integral image is defined as

Σ1(u, v) =
u∑

i=0

v∑

j=0

I(i, j). (3.17)

8 See Sec. 5.4.2 for an alternative definition of the median.
51

3 Histograms and
Image Statistics

Fig. 3.14
Block-based calculations with

integral images. Only four
samples from the integral im-

age Σ1 are required to cal-
culate the sum of the pix-
els inside the (green) rect-
angle R = 〈a, b〉, defined
by the corner coordinates

a = (ua, va) and b = (ub, vb).
a b

A B

C R

ua ub

va

vb

Σ1(u, v)

Thus a value in Σ1 is the sum of all pixel values in the original image
I located to the left and above the given position (u, v), inclusively.
The integral image can be calculated efficiently with a single pass
over the image I by using the recurrence relation

Σ1(u, v) =

⎧

⎪⎨

⎪⎩

0 for u < 0 or v < 0,
Σ1(u−1, v) + Σ1(u, v−1)−

Σ1(u−1, v−1) + I(u, v) for u, v ≥ 0, (3.18)

for positions u = 0, . . . , M−1 and v = 0, . . . , N−1 (see Alg. 3.1).
Suppose now that we wanted to calculate the sum of the pixel

values in a given rectangular region R, defined by the corner positions
a = (ua, va), b = (ub, vb), that is, the first-order block sum

S1(R) =
ub∑

i=ua

vb∑

j=va

I(i, j), (3.19)

from the integral image Σ1. As shown in Fig. 3.14, the quantity
Σ1(ua−1, va−1) corresponds to the pixel sum within rectangle A,
and Σ1(ub, vb) is the pixel sum over all four rectangles A, B, C and
R, that is,

Σ1(ua−1, va−1) = S1(A),
Σ1(ub, va−1) = S1(A) + S1(B),
Σ1(ua−1, vb) = S1(A) + S1(C),
Σ1(ub, vb) = S1(A) + S1(B) + S1(C) + S1(R).

(3.20)

Thus S1(R) can be calculated as

S1(R) = S1(A)+S1(B)+S1(C)+S1(R)
︸ ︷︷ ︸

Σ1(ub,vb)

+ S1(A)
︸ ︷︷ ︸

Σ1(ua−1,va−1)

− [S1(A)+S1(B)
︸ ︷︷ ︸

Σ1(ub,va−1)

]− [S1(A)+S1(C)
︸ ︷︷ ︸

Σ1(ua−1,vb)

] (3.21)

= Σ1(ub, vb) + Σ1(ua−1, va−1)− Σ1(ub, va−1)− Σ1(ua−1, vb),

that is, by taking only four samples from the integral image Σ1.
52

3.8 Block Statistics3.8.2 Mean Intensity

Given the region size NR and the sum of the pixel values S1(R), the
average intensity value (mean) inside the rectangle R can now easily
be found as

μR =
1

NR

· S1(R), (3.22)

with S1(R) as defined in Eqn. (3.21) and the region size

NR = |R| = (ub − ua + 1) · (vb − va + 1). (3.23)

3.8.3 Variance

Calculating the variance inside a rectangular region R requires the
summation of squared intensity values, that is, tabulating

Σ2(u, v) =
u∑

i=0

v∑

j=0

I2(i, j), (3.24)

which can be performed analogously to Eqn. (3.18) in the form

Σ2(u, v) =

⎧

⎪⎨

⎪⎩

0 for u < 0 or v < 0,
Σ2(u−1, v) + Σ2(u, v−1)−

Σ2(u−1, v−1) + I2(u, v) for u, v ≥ 0. (3.25)

As in Eqns. (3.19)–(3.21), the sum of the squared values inside a given
rectangle R (i.e., the second-order block sum) can be obtained as

S2(R) =
u1∑

i=u0

v1∑

j=v0

I2(i, j) (3.26)

= Σ2(ub, vb) + Σ2(ua−1, va−1)− Σ2(ub, va−1)− Σ2(ua−1, vb).

From this, the variance inside the rectangular region R is finally
calculated as

σ2
R =

1
NR

[
S2(R)− 1

NR

· (S1(R))2
]
, (3.27)

with NR as defined in Eqn. (3.23). In addition, certain higher-order
statistics can be efficiently calculated with summation tables in a
similar fashion.

3.8.4 Practical Calculation of Integral Images

Algorithm 3.1 shows how Σ1 and Σ2 can be calculated in a single
iteration over the original image I. Note that the accumulated values
in the integral images Σ1, Σ2 tend to become quite large. Even with
pictures of medium size and 8-bit intensity values, the range of 32-bit
integers is quickly exhausted (particularly when calculating Σ2). The
use of 64-bit integers (type long in Java) or larger is recommended to
avoid arithmetic overflow. A basic implementation of integral images
is available as part of the imagingbook library.9

9 Class imagingbook.lib.image.IntegralImage.
53

3 Histograms and
Image Statistics

Alg. 3.1
Joint calculation of the in-

tegral images Σ1 and Σ2

for a scalar-valued image I.

1: IntegralImage(I)
Input: I , a scalar-valued input image with I(u, v) ∈ R.
Returns the first and second order integral images of I .

2: (M, N) ← Size(I)
3: Create maps Σ1,Σ2 : M × N �→ R

Process the first image line (v = 0):
4: Σ1(0, 0) ← I(0, 0)
5: Σ2(0, 0) ← I2(0, 0)
6: for u ← 1, . . . , M−1 do
7: Σ1(u, 0) ← Σ1(u−1, 0) + I(u, 0)
8: Σ2(u, 0) ← Σ2(u−1, 0) + I2(u, 0)

Process the remaining image lines (v > 0):
9: for v ← 1, . . . , N−1 do

10: Σ1(0, v) ← Σ1(0, v−1) + I(0, v)
11: Σ2(0, v) ← Σ2(0, v−1) + I2(0, v)
12: for u ← 1, . . . , M−1 do
13: Σ1(u, v) ← Σ1(u−1, v) + Σ1(u, v−1) −

Σ1(u−1, v−1) + I(u, v)
14: Σ2(u, v) ← Σ2(u−1, v) + Σ2(u, v−1) −

Σ2(u−1, v−1) + I2(u, v)
15: return (Σ1,Σ2)

3.9 Exercises

Exercise 3.1. In Prog. 3.2, B and K are constants. Consider if there
would be an advantage to computing the value of B/K outside of the
loop, and explain your reasoning.

Exercise 3.2. Develop an ImageJ plugin that computes the cumu-
lative histogram of an 8-bit grayscale image and displays it as a new
image, similar to H(i) in Fig. 3.13. Hint: Use the ImageProcessor

method int[] getHistogram() to retrieve the original image’s his-
togram values and then compute the cumulative histogram “in place”
according to Eqn. (3.6). Create a new (blank) image of appropriate
size (e.g., 256 × 150) and draw the scaled histogram data as black
vertical bars such that the maximum entry spans the full height of
the image. Program 3.3 shows how this plugin could be set up and
how a new image is created and displayed.

Exercise 3.3. Develop a technique for nonlinear binning that uses a
table of interval limits aj (Eqn. (3.2)).

Exercise 3.4. Develop an ImageJ plugin that uses the Java meth-
ods Math.random() or Random.nextInt(int n) to create an image
with random pixel values that are uniformly distributed in the range
[0, 255]. Analyze the image’s histogram to determine how equally
distributed the pixel values truly are.

Exercise 3.5. Develop an ImageJ plugin that creates a random im-
age with a Gaussian (normal) distribution with mean value μ = 128
and standard deviation σ = 50. Use the standard Java method
double Random.nextGaussian() to produce normally-distributed

54

3.9 Exercisesrandom numbers (with μ = 0 and σ = 1) and scale them appro-
priately to pixel values. Analyze the resulting image histogram to
see if it shows a Gaussian distribution too.

Exercise 3.6. Implement the calculation of the arithmetic mean μ
and the variance σ2 of a given grayscale image from its histogram h

(see Sec. 3.7.1). Compare your results to those returned by ImageJ’s
Analyze ⊲ Measure tool (they should match exactly).

Exercise 3.7. Implement the first-order integral image (Σ1) calcu-
lation described in Eqn. (3.18) and calculate the sum of pixel values
S1(R) inside a given rectangle R using Eqn. (3.21). Verify numeri-
cally that the results are the same as with the naive formulation in
Eqn. (3.19).

Exercise 3.8. Values of integral images tend to become quite large.
Assume that 32-bit signed integers (int) are used to calculate the
integral of the squared pixel values, that is, Σ2 (see Eqn. (3.24)), for
an 8-bit grayscale image. What is the maximum image size that is
guaranteed not to cause an arithmetic overflow? Perform the same
analysis for 64-bit signed integers (long).

Exercise 3.9. Calculate the integral image Σ1 for a given image I,
convert it to a floating-point iamge (FloatProcessor) and display
the result. You will realize that integral images are without any
apparent structure and they all look more or less the same. Come
up with an efficient method for reconstructing the original image I
from Σ1.

55

3 Histograms and
Image Statistics

Prog. 3.3
Creating and displaying a new
image (ImageJ plugin). First,
we create a ByteProcessor ob-

ject (histIp, line 20) that is
subsequently filled. At this
point, histIp has no screen

representation and is thus not
visible. Then, an associated
ImagePlus object is created
(line 33) and displayed by

applying the show() method
(line 34). Notice how the ti-
tle (String) is retrieved from
the original image inside the

setup() method (line 10) and
used to compose the new im-

age’s title (lines 30 and 33). If
histIp is changed after call-
ing show(), then the method

updateAndDraw() could be
used to redisplay the associ-

ated image again (line 34).

1 import ij.ImagePlus;

2 import ij.plugin.filter.PlugInFilter;

3 import ij.process.ByteProcessor;

4 import ij.process.ImageProcessor;

5

6 public class Create_New_Image implements PlugInFilter {

7 ImagePlus im;

8

9 public int setup(String arg, ImagePlus im) {

10 this.im = im;

11 return DOES_8G + NO_CHANGES;

12 }

13

14 public void run(ImageProcessor ip) {

15 // obtain the histogram of ip:

16 int[] hist = ip.getHistogram();

17 int K = hist.length;

18

19 // create the histogram image:

20 ImageProcessor hip = new ByteProcessor(K, 100);

21 hip.setValue(255); // white = 255

22 hip.fill();

23

24 // draw the histogram values as black bars in hip here,

25 // for example, using hip.putpixel(u, v, 0)

26 // ...

27

28 // compose a nice title:

29 String imTitle = im.getShortTitle();

30 String histTitle = "Histogram of " + imTitle;

31

32 // display the histogram image:

33 ImagePlus him = new ImagePlus(title, hip);

34 him.show();

35 }

36 }

56

4

Point Operations

Point operations perform a modification of the pixel values without
changing the size, geometry, or local structure of the image. Each
new pixel value b = I ′(u, v) depends exclusively on the previous value
a = I(u, v) at the same position and is thus independent from any
other pixel value, in particular from any of its neighboring pixels.1

The original pixel values a are mapped to the new values b by some
given function f , i.e.,

b = f
(
I(u, v)

)
or b = f(a). (4.1)

If, as in this case, the function f() is independent of the image coor-
dinates (i.e., the same throughout the image), the operation is called
“global” or “homogeneous”. Typical examples of homogeneous point
operations include, among others:

• modifying image brightness or contrast,
• applying arbitrary intensity transformations (“curves”),
• inverting images,
• quantizing (or “posterizing”) images,
• global thresholding,
• gamma correction,
• color transformations
• etc.

We will look at some of these techniques in more detail in the follow-
ing.

In contrast to Eqn. (4.1), the mapping function g() for a nonho-
mogeneous point operation would also take into account the current
image coordinate (u, v), that is,

b = g
(
I(u, v), u, v

)
or b = f(a, u, v). (4.2)

A typical nonhomogeneous operation is the local adjustment of con-
trast or brightness used, for example, to compensate for uneven light-
ing during image acquisition.

1 If the result depends on more than one pixel value, the operation is
called a “filter”, as described in Chapter 5.

57
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_4

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

4 Point Operations 4.1 Modifying Image Intensity

4.1.1 Contrast and Brightness

Let us start with a simple example. Increasing the image’s contrast
by 50% (i.e., by the factor 1.5) or raising the brightness by 10 units
can be expressed by the mapping functions

fcontr(a) = a · 1.5 or fbright(a) = a + 10 , (4.3)

respectively. The first operation is implemented as an ImageJ plugin
by the code shown in Prog. 4.1, which can easily be adapted to per-
form any other type of point operation. Rounding to the nearest inte-
ger values is accomplished by simply adding 0.5 before the truncation
effected by the (int) typecast in line 8 (this only works for positive
values). Also note the use of the more efficient image processor meth-
ods get() and set() (instead of getPixel() and putPixel()) in
this example.

Prog. 4.1
Point operation to increase

the contrast by 50% (ImageJ
plugin). Note that in line 8

the result of the multiplication
of the integer pixel value by

the constant 1.5 (implicitly of
type double) is of type double.

Thus an explicit type cast
(int) is required to assign the

value to the int variable a.
0.5 is added in line 8 to round

to the nearest integer values.

1 public void run(ImageProcessor ip) {

2 int w = ip.getWidth();

3 int h = ip.getHeight();

4

5 for (int v = 0; v < h; v++) {

6 for (int u = 0; u < w; u++) {

7 int a = ip.get(u, v);

8 int b = (int) (a * 1.5 + 0.5);

9 if (b > 255)

10 b = 255; // clamp to the maximum value (amax)

11 ip.set(u, v, b);

12 }

13 }

14 }

4.1.2 Limiting Values by Clamping

When implementing arithmetic operations on pixel values, we must
keep in mind that the calculated results must not exceed the admissi-
ble range of pixel values for the given image type (e.g., [0, 255] in the
case of 8-bit grayscale images). This is commonly called “clamping”
and can be expressed in the form

b = min(max(f(a), amin), amax) =

⎧

⎪⎨

⎪⎩

amin for f(a) < amin,
amax for f(a) > amax,
f(a) otherwise.

(4.4)

For this purpose, line 10 of Prog. 4.1 contains the statement

if (b > 255) b = 255;

which limits the result to the maximum value 255. Similarly, one
may also want to limit the results to the minimum value (0) to avoid
negative pixel values (which cannot be represented by this type of
8-bit image), for example, by the statement

58

4.2 Point Operations
and Histograms

if (b < 0) b = 0;

The above statement is not needed in Prog. 4.1 because the interme-
diate results can never be negative in this particular operation.

4.1.3 Inverting Images

Inverting an intensity image is a simple point operation that reverses
the ordering of pixel values (by multiplying by −1) and adds a con-
stant value to map the result to the admissible range again. Thus
for a pixel value a = I(u, v) in the range [0, amax], the corresponding
point operation is

finv(a) = −a + amax = amax − a. (4.5)

The inversion of an 8-bit grayscale image with amax = 255 was the
task of our first plugin example in Sec. 2.2.4 (Prog. 2.1). Note that
in this case no clamping is required at all because the function al-
ways maps to the original range of values. In ImageJ, this oper-
ation is performed by the method invert() (for objects of type
ImageProcessor) and is also available through the Edit ⊲ Invert menu.
Obviously, inverting an image mirrors its histogram, as shown in Fig.
4.5(c).

4.1.4 Threshold Operation

Thresholding an image is a special type of quantization that separates
the pixel values in two classes, depending upon a given threshold
value q that is usually constant. The threshold operation maps all
pixels to one of two fixed intensity values a0 or a1, that is,

fthreshold(a) =

{

a0 for a < q,
a1 for a ≥ q,

(4.6)

with 0 < q ≤ amax. A common application is binarizing an intensity
image with the values a0 = 0 and a1 = 1.

ImageJ does provide a special image type (BinaryProcessor)
for binary images, but these are actually implemented as 8-bit in-
tensity images (just like ordinary intensity images) using the val-
ues 0 and 255. ImageJ also provides the ImageProcessor method
threshold(int level), with level ≡ q, to perform this opera-
tion, which can also be invoked through the Image ⊲ Adjust ⊲ Thresh-

old menu (see Fig. 4.1 for an example). Thresholding affects the
histogram by separating the distribution into two entries at positions
a0 and a1, as illustrated in Fig. 4.2.

4.2 Point Operations and Histograms

We have already seen that the effects of a point operation on the
image’s histogram are quite easy to predict in some cases. For ex-
ample, increasing the brightness of an image by a constant value
shifts the entire histogram to the right, raising the contrast widens

59

4 Point Operations

Fig. 4.1
Threshold operation: orig-

inal image (a) and corre-
sponding histogram (c); re-
sult after thresholding with

ath = 128, a0 = 0, a1 = 255
(b) and corresponding his-

togram (d); ImageJ’s inter-
active Threshold menu (e).

(a) (b) (e)

(c) (d)

Fig. 4.2
Effects of thresholding upon
the histogram. The thresh-
old value is ath. The origi-
nal distribution (a) is split

and merged into two iso-
lated entries at a0 and a1 in
the resulting histogram (b).

i i

h(i) h′(i)

q a0 a1

(a) (b)

it, and inverting the image flips the histogram. Although this ap-
pears rather simple, it may be useful to look a bit more closely at
the relationship between point operations and the resulting changes
in the histogram.

As the illustration in Fig. 4.3 shows, every entry (bar) at some
position i in the histogram maps to a set (of size h(i)) containing all
image pixels whose values are exactly i.2

If a particular histogram line is shifted as a result of some point op-
eration, then of course all pixels in the corresponding set are equally
modified and vice versa. So what happens when a point operation
(e.g., reducing image contrast) causes two previously separated his-
togram lines to fall together at the same position i ? The answer is
that the corresponding pixel sets are merged and the new common
histogram entry is the sum of the two (or more) contributing entries
(i.e., the size of the combined set). At this point, the elements in
the merged set are no longer distinguishable (or separable), so this
operation may have (perhaps unintentionally) caused an irreversible
reduction of dynamic range and thus a permanent loss of information
in that image.

2 Of course this is only true for ordinary histograms with an entry for
every single intensity value. If binning is used (see Sec. 3.4.1), each
histogram entry maps to pixels within a certain range of values.

60

4.3 Automatic
Contrast Adjustment

i i

h(i) h′(i)

h(a1)

h(a2)

h′(a2) ← h(a1) + h(a2)

a1 a2 a2

(a) (b)

Fig. 4.3
Histogram entries represent
sets of pixels of the same
value. If a histogram line
is moved as a result of some
point operation, then all pixels
in the corresponding set are
equally modified (a). If, due to
this operation, two histogram
lines h(a1), h(a2) coincide on
the same index, the two corre-
sponding pixel sets merge and
the contained pixels become
undiscernable (b).

4.3 Automatic Contrast Adjustment

Automatic contrast adjustment (auto-contrast) is a point operation
whose task is to modify the pixels such that the available range of
values is fully covered. This is done by mapping the current darkest
and brightest pixels to the minimum and maximum intensity values,
respectively, and linearly distributing the intermediate values.

Let us assume that alo and ahi are the lowest and highest pixel
values found in the current image, whose full intensity range is
[amin, amax]. To stretch the image to the full intensity range (see
Fig. 4.4), we first map the smallest pixel value alo to zero, subse-
quently increase the contrast by the factor (amax−amin)/(ahi−alo),
and finally shift to the target range by adding amin. The mapping
function for the auto-contrast operation is thus defined as

fac(a) = amin +
(
a− alo

)
· amax − amin

ahi − alo

, (4.7)

provided that ahi �= alo; that is, the image contains at least two
different pixel values. For an 8-bit image with amin = 0 and amax =
255, the function in Eqn. (4.7) simplifies to

fac(a) = (a−alo) · 255
ahi−alo

. (4.8)

The target range [amin, amax] need not be the maximum available
range of values but can be any interval to which the image should
be mapped. Of course the method can also be used to reduce the
image contrast to a smaller range. Figure 4.5(b) shows the effects
of an auto-contrast operation on the corresponding histogram, where
the linear stretching of the intensity range results in regularly spaced
gaps in the new distribution.

61

4 Point Operations

Fig. 4.4
Auto-contrast operation
according to Eqn. (4.7).

Original pixel values a
in the range [alo, ahi] are

mapped linearly to the
target range [amin, amax].

alo ahi

amin amax

a

b

Fig. 4.5
Effects of auto-contrast and
inversion operations on the

resulting histograms. Origi-
nal image (a), result of auto-

contrast operation (b), and
inversion (c). The histogram

entries are shown both lin-
early (black bars) and log-

arithmically (gray bars).

(a) (b) (c)

4.4 Modified Auto-Contrast Operation

In practice, the mapping function in Eqn. (4.7) could be strongly
influenced by only a few extreme (low or high) pixel values, which
may not be representative of the main image content. This can be
avoided to a large extent by “saturating” a fixed percentage (plo, phi)
of pixels at the upper and lower ends of the target intensity range.
To accomplish this, we determine two limiting values a′

lo, a′
hi such

that a predefined quantile qlo of all pixel values in the image I are
smaller than a′

lo and another quantile qhi of the values are greater
than a′

hi (Fig. 4.6).

Fig. 4.6
Modified auto-contrast oper-

ation (Eqn. (4.11)). Prede-
fined quantiles (qlo, qhi) of

image pixels—shown as dark
areas at the left and right

ends of the histogram h(i)—
are “saturated” (i.e., mapped

to the extreme values of the
target range). The intermedi-
ate values (a = a′

lo, . . . , a′
hi)

are mapped linearly to the
interval amin, . . . , amax.

i

h(i)

alo ahi

a′
lo a′

hi

amin amax

plo phi

a

a′

62

4.5 Histogram
Equalization

The values a′
lo, a′

hi depend on the image content and can be easily
obtained from the image’s cumulative histogram3 H:

a′
lo = min

{
i | H(i) ≥ M ·N ·plo

}
, (4.9)

a′
hi = max

{
i | H(i) ≤ M ·N ·(1−phi)

}
, (4.10)

where 0 ≤ plo, phi ≤ 1, plo +phi ≤ 1, and M·N is the number of pixels
in the image. All pixel values outside (and including) a′

lo and a′
hi

are mapped to the extreme values amin and amax, respectively, and
intermediate values are mapped linearly to the interval [amin, amax].
Using this formulation, the mapping to minimum and maximum in-
tensities does not depend on singular extreme pixels only but can be
based on a representative set of pixels. The mapping function for the
modified auto-contrast operation can thus be defined as

fmac(a) =

⎧

⎪⎪⎨

⎪⎪⎩

amin for a ≤ a′
lo,

amin+
(
a−a′

lo

)
· amax−amin

a′
hi−a′

lo

for a′
lo <a<a′

hi,

amax for a ≥ a′
hi.

(4.11)

Usually the same value is taken for both upper and lower quantiles
(i.e., plo = phi = p), with p = 0.005, . . . , 0.015 (0.5, . . . , 1.5 %) being
common values. For example, the auto-contrast operation in Adobe
Photoshop saturates 0.5 % (p = 0.005) of all pixels at both ends of the
intensity range. Auto-contrast is a frequently used point operation
and thus available in practically any image-processing software. Im-
ageJ implements the modified auto-contrast operation as part of the
Brightness/Contrast and Image ⊲ Adjust menus (Auto button), shown in
Fig. 4.7.

Fig. 4.7
ImageJ’s Brightness/Contrast tool
(left) and Window/Level tool
(right) can be invoked through
the Image ⊲ Adjust menu. The
Auto button displays the result
of a modified auto-contrast
operation. Apply must be hit to
actually modify the image.

4.5 Histogram Equalization

A frequent task is to adjust two different images in such a way that
their resulting intensity distributions are similar, for example, to use

3 See Sec. 3.6.
63

4 Point Operations

Fig. 4.8
Histogram equalization.

The idea is to find and apply
a point operation to the im-
age (with original histogram

h) such that the histogram
heq of the modified image

approximates a uniform dis-
tribution (top). The cumu-
lative target histogram Heq

must thus be approximately
wedge-shaped (bottom).

�
������ modified

i

i

i

i

h(i)

H(i)

heq(i)

Heq(i)

them in a print publication or to make them easier to compare. The
goal of histogram equalization is to find and apply a point opera-
tion such that the histogram of the modified image approximates
a uniform distribution (see Fig. 4.8). Since the histogram is a dis-
crete distribution and homogeneous point operations can only shift
and merge (but never split) histogram entries, we can only obtain
an approximate solution in general. In particular, there is no way
to eliminate or decrease individual peaks in a histogram, and a truly
uniform distribution is thus impossible to reach. Based on point
operations, we can thus modify the image only to the extent that
the resulting histogram is approximately uniform. The question is
how good this approximation can be and exactly which point opera-
tion (which clearly depends on the image content) we must apply to
achieve this goal.

We may get a first idea by observing that the cumulative his-
togram (Sec. 3.6) of a uniformly distributed image is a linear ramp
(wedge), as shown in Fig. 4.8. So we can reformulate the goal as find-
ing a point operation that shifts the histogram lines such that the
resulting cumulative histogram is approximately linear, as illustrated
in Fig. 4.9.

Fig. 4.9
Histogram equalization on
the cumulative histogram.
A suitable point operation

b ← feq(a) shifts each his-
togram line from its origi-
nal position a to b (left or

right) such that the result-
ing cumulative histogram

Heq is approximately linear.

i

H(i) Heq(i)

ab

The desired point operation feq() is simply obtained from the
cumulative histogram H of the original image as4

feq(a) =
⌊

H(a) · K − 1
M ·N

⌋

, (4.12)

4 For a derivation, see, for example, [88, p. 173].
64

4.5 Histogram
Equalization

(a) (b)

h h′

(c) (d)

H H′

(e) (f)

Fig. 4.10
Linear histogram equalization
example. Original image I (a)
and modified image I′ (b), cor-
responding histograms h, h′ (c,
d), and cumulative histograms
H, H′ (e, f). The resulting
cumulative histogram H′ (f)
approximates a uniformly dis-
tributed image. Notice that
new peaks are created in the
resulting histogram h′ (d) by
merging original histogram
cells, particularly in the lower
and upper intensity ranges.

for an image of size M ×N with pixel values a in the range [0, K−1].
The resulting function feq(a) in Eqn. (4.12) is monotonically increas-
ing, because H(a) is monotonic and K, M , N are all positive con-
stants. In the (unusual) case where an image is already uniformly dis-
tributed, linear histogram equalization should not modify that image
any further. Also, repeated applications of linear histogram equaliza-
tion should not make any changes to the image after the first time.
Both requirements are fulfilled by the formulation in Eqn. (4.12).
Program 4.2 lists the Java code for a sample implementation of lin-
ear histogram equalization. An example demonstrating the effects
on the image and the histograms is shown in Fig. 4.10.

Notice that for “inactive” pixel values i (i.e., pixel values that do
not appear in the image, with h(i) = 0), the corresponding entries
in the cumulative histogram H(i) are either zero or identical to the
neighboring entry H(i− 1). Consequently a contiguous range of zero
values in the histogram h(i) corresponds to a constant (i.e., flat)
range in the cumulative histogram H(i), and the function feq(a) maps
all “inactive” intensity values within such a range to the next lower
“active” value. This effect is not relevant, however, since the image
contains no such pixels anyway. Nevertheless, a linear histogram
equalization may (and typically will) cause histogram lines to merge
and consequently lead to a loss of dynamic range (see also Sec. 4.2).

This or a similar form of linear histogram equalization is imple-
mented in almost any image-processing software. In ImageJ it can
be invoked interactively through the Process ⊲ Enhance Contrast menu
(option Equalize). To avoid extreme contrast effects, the histogram

65

4 Point Operations

Prog. 4.2
Linear histogram equaliza-
tion (ImageJ plugin). First

the histogram of the im-
age ip is obtained using the

standard ImageJ method
ip.getHistogram() in line 7.

In line 9, the cumulative his-
togram is computed “in place”

based on the recursive defi-
nition in Eqn. (3.6). The int

division in line 16 implicitly
performs the required floor

(⌊ ⌋) operation by truncation.

1 public void run(ImageProcessor ip) {

2 int M = ip.getWidth();

3 int N = ip.getHeight();

4 int K = 256; // number of intensity values

5

6 // compute the cumulative histogram:

7 int[] H = ip.getHistogram();

8 for (int j = 1; j < H.length; j++) {

9 H[j] = H[j - 1] + H[j];

10 }

11

12 // equalize the image:

13 for (int v = 0; v < N; v++) {

14 for (int u = 0; u < M; u++) {

15 int a = ip.get(u, v);

16 int b = H[a] * (K - 1) / (M * N); // s. Equation (4.12)

17 ip.set(u, v, b);

18 }

19 }

20 }

equalization in ImageJ by default5 cumulates the square root of the
histogram entries using a modified cumulative histogram of the form

H̃(i) =
i∑

j=0

√

h(j) . (4.13)

4.6 Histogram Specification

Although widely implemented, the goal of linear histogram equalization—
a uniform distribution of intensity values (as described in the previous
section)—appears rather ad hoc, since good images virtually never
show such a distribution. In most real images, the distribution of
the pixel values is not even remotely uniform but is usually more
similar, if at all, to perhaps a Gaussian distribution. The images
produced by linear equalization thus usually appear quite unnatural,
which renders the technique practically useless.

Histogram specification is a more general technique that modifies
the image to match an arbitrary intensity distribution, including the
histogram of a given image. This is particularly useful, for exam-
ple, for adjusting a set of images taken by different cameras or under
varying exposure or lighting conditions to give a similar impression in
print production or when displayed. Similar to histogram equaliza-
tion, this process relies on the alignment of the cumulative histograms
by applying a homogeneous point operation. To be independent of
the image size (i.e., the number of pixels), we first define normalized
distributions, which we use in place of the original histograms.

5 The “classic” linear approach (see Eqn. (3.5)) is used when simultane-
ously keeping the Alt key pressed.

66

4.6 Histogram
Specification

4.6.1 Frequencies and Probabilities

The value in each histogram cell describes the observed frequency
of the corresponding intensity value, i.e., the histogram is a discrete
frequency distribution. For a given image I of size M ×N , the sum
of all histogram entries h(i) equals the number of image pixels,

∑

i

h(i) = M ·N . (4.14)

The associated normalized histogram,

p(i) =
h(i)

M ·N , for 0 ≤ i < K, (4.15)

is usually interpreted as the probability distribution or probability den-
sity function (pdf) of a random process, where p(i) is the probability
for the occurrence of the pixel value i. The cumulative probability
of i being any possible value is 1, and the distribution p must thus
satisfy

K−1∑

i=0

p(i) = 1 . (4.16)

The statistical counterpart to the cumulative histogram H (Eqn.
(3.5)) is the discrete distribution function P() (also called the cu-
mulative distribution function or cdf),

P(i) =
H(i)

H(K−1)
=

H(i)
M ·N =

i∑

j=0

h(j)
M ·N =

i∑

j=0

p(j), (4.17)

for i = 0, . . . , K−1. The computation of the cdf from a given his-
togram h is outlined in Alg. 4.1. The resulting function P(i) is (as the
cumulative histogram) monotonically increasing and, in particular,

P(0) = p(0) and P(K−1) =
K−1∑

i=0

p(i) = 1 . (4.18)

This statistical formulation implicitly treats the generation of
images as a random process whose exact properties are mostly un-
known.6 However, the process is usually assumed to be homogeneous
(independent of the image position); that is, each pixel value is the
result of a “random experiment” on a single random variable i. The
observed frequency distribution given by the histogram h(i) serves as
a (coarse) estimate of the probability distribution p(i) of this random
variable.

4.6.2 Principle of Histogram Specification

The goal of histogram specification is to modify a given image IA by
some point operation such that its distribution function PA matches

6 Statistical modeling of the image generation process has a long tradition
(see, e.g., [128, Ch. 2]).

67

4 Point Operations

Alg. 4.1
Calculation of the cumula-

tive distribution function (cdf)
P(i) from a given histogram
h of length K. See Prog. 4.3

(p. 73) for the correspond-
ing Java implementation.

1: Cdf(h)
Returns the cumulative distribution function P(i) ∈ [0, 1] for a
given histogram h(i), with i = 0, . . . , K−1.

2: Let K ← Size(h)

3: Let n ←
∑K−1

i=0
h(i)

4: Create map P : [0, K−1] �→ R

5: Let c ← 0
6: for i ← 0, . . . , K−1 do
7: c ← c + h(i) ⊲ cumulate histogram values
8: P(i) ← c/n

9: return P.

Fig. 4.11
Principle of histogram specifi-
cation. Given is the reference
distribution PR (left) and the

distribution function for the
original image PA (right). The
result is the mapping function

fhs : a → a′ for a point op-
eration, which replaces each
pixel a in the original image

IA by a modified value a′. The
process has two main steps:

A© For each pixel value a, de-
termine b = PA(a) from the

right distribution function.
B© a′ is then found by in-

verting the left distribution
function as a′ = P

−1
R

(b).
In summary, the result is

fhs(a) = a′ = P
−1
R

(
PA(a)

)
.

��

OriginalReference

aa′
ii

b

PA(i)PR(i)

0
0

0
0

11

K −1K −1

a reference distribution PR as closely as possible. We thus look for a
mapping function

a′ = fhs(a) (4.19)

to convert the original image IA by a point operation to a new image
IA′ with pixel values a′, such that its distribution function P′

A matches
PR, that is,

P′
A(i) ≈ PR(i) , for 0 ≤ i < K. (4.20)

As illustrated in Fig. 4.11, the desired mapping fhs is found by com-
bining the two distribution functions PR and PA (see [88, p. 180] for
details). For a given pixel value a in the original image, we obtain
the new pixel value a′ as

a′ = P−1
R

(
PA(a)

)
= P−1

R (b) (4.21)

and thus the mapping fhs (Eqn. (4.19)) is defined as

fhs(a) = P−1
R

(
PA(a)

)
, for 0 ≤ a < K. (4.22)

This of course assumes that PR(i) is invertible, that is, that the func-
tion P−1

R (b) exists for b ∈ [0, 1].

4.6.3 Adjusting to a Piecewise Linear Distribution

If the reference distribution PR is given as a continuous, invertible
function, then the mapping function fhs can be obtained from Eqn.
(4.22) without any difficulty. In practice, it is convenient to specify
the (synthetic) reference distribution as a piecewise linear function
PL(i); that is, as a sequence of N +1 coordinate pairs

68

4.6 Histogram
Specification

i

PL(i)

0
0

1

K −1
a1 a2 a3 a4

P0
P1

P2

P3

P4 P5

a = P−1
L

(b)

b = PL(a)

Fig. 4.12
Piecewise linear reference
distribution. The func-
tion PL(i) is specified by
N = 5 control points (0, P0),
(a1, P1) , . . . , (a4, P4), with
ak < ak+1 and Pk < Pk+1.
The final point P5 is fixed at
(K −1, 1).

L =
(
(a0, P0) , (a1, P1) , . . . , (ak, Pk) , . . . , (aN , PN)

)
,

each consisting of an intensity value ak and the corresponding cumu-
lative probability Pk. We assert that 0 ≤ ak < K, ak < ak+1, and
0 ≤ Pk < 1. Also, the two endpoints (a0, P0) and (aN , PN) are fixed
at

(0, P0) and (K−1, 1) ,

respectively. To be invertible, the function must also be strictly mo-
notonic, that is, Pk < Pk+1 for 0 ≤ k < N . Figure 4.12 shows an
example of such a function, which is specified by N = 5 variable
points (P0, . . . , P4) and a fixed end point P5 and thus consists of
N = 5 linear segments. The reference distribution can of course
be specified at an arbitrary accuracy by inserting additional control
points.

The intermediate values of PL(i) are obtained by linear interpo-
lation between the control points as

PL(i) =

{

Pm + (i−am) · (Pm+1−Pm)

(am+1−am) for 0 ≤ i < K−1,

1 for i = K−1.
(4.23)

where m = max
{

j ∈ [0, N −1] | aj ≤ i
}

is the index of the line
segment (am, Pm) → (am+1, Pm+1), which overlaps the position i.
For instance, in the example in Fig. 4.12, the point a lies within the
segment that starts at point (a2, P2); i.e., m = 2.

For the histogram specification according to Eqn. (4.22), we also
need the inverse distribution function P−1

L (b) for b ∈ [0, 1]. As we see
from the example in Fig. 4.12, the function PL(i) is in general not
invertible for values b < PL(0). We can fix this problem by mapping
all values b < PL(0) to zero and thus obtain a “semi-inverse” of the
reference distribution in Eqn. (4.23) as

P−1
L (b) =

⎧

⎪⎨

⎪⎩

0 for 0 ≤ b < PL(0),

an + (b−Pn) · (an+1−an)

(Pn+1−Pn) for PL(0) ≤ b < 1,

K−1 for b ≥ 1.

(4.24)

Here n = max
{

j ∈ {0, . . . N−1} | Pj ≤ b
}

is the index of the line
segment (an, Pn) → (an+1, Pn+1), which overlaps the argument value
b. The required mapping function fhs for adapting a given image with
intensity distribution PA is finally specified, analogous to Eqn. (4.22),
as

69

4 Point Operations

Alg. 4.2
Histogram specification using

a piecewise linear reference
distribution. Given is the his-
togram h of the original image

and a piecewise linear reference
distribution function, speci-

fied as a sequence of N control
points L. The discrete map-

ping fhs for the corresponding
point operation is returned.

1: MatchPiecewiseLinearHistogram(h, L)
Input: h, histogram of the original image I ; L, reference distri-
bution function, given as a sequence of N + 1 control points L =
[(a0, P0) , (a1, P1) , . . . , (aN , PN)], with 0 ≤ ak < K, 0 ≤ Pk ≤ 1,
and Pk < Pk+1. Returns a discrete mapping fhs(a) to be applied
to the original image I .

2: N ← Size(L) + 1
3: Let K ← Size(h)
4: Let P ← Cdf(h) ⊲ cdf for h (see Alg. 4.1)

5: Create map fhs : [0, K−1] �→ R ⊲ function fhs

6: for a ← 0, . . . , K−1 do
7: b ← P(a)
8: if (b ≤ P0) then
9: a′ ← 0

10: else if (b ≥ 1) then
11: a′ ← K−1
12: else
13: n ← N−1
14: while (n ≥ 0) ∧ (Pn > b) do ⊲ find line segment in L
15: n ← n − 1

16: a′ ← an + (b−Pn)· (an+1 − an)

(Pn+1 − Pn)
⊲ see Eqn. 4.24

17: fhs[a] ← a′

18: return fhs.

fhs(a) = P−1
L

(
PA(a)

)
, for 0 ≤ a < K. (4.25)

The whole process of computing the pixel mapping function for a
given image (histogram) and a piecewise linear target distribution is
summarized in Alg. 4.2. A real example is shown in Fig. 4.14 (Sec.
4.6.5).

4.6.4 Adjusting to a Given Histogram (Histogram
Matching)

If we want to adjust one image to the histogram of another image,
the reference distribution function PR(i) is not continuous and thus,
in general, cannot be inverted (as required by Eqn. (4.22)). For ex-
ample, if the reference distribution contains zero entries (i.e., pixel
values k with probability p(k) = 0), the corresponding cumulative
distribution function P (just like the cumulative histogram) has in-
tervals of constant value on which no inverse function value can be
determined.

In the following, we describe a simple method for histogram
matching that works with discrete reference distributions. The prin-
cipal idea is graphically illustrated in Fig. 4.13. The mapping func-
tion fhs is not obtained by inverting but by “filling in” the reference
distribution function PR(i). For each possible pixel value a, starting
with a = 0, the corresponding probability pA(a) is stacked layer by
layer “under” the reference distribution PR. The thickness of each
horizontal bar for a equals the corresponding probability pA(a). The
bar for a particular intensity value a with thickness pA(a) runs from

70

4.6 Histogram
Specification

OriginalReference

aa′

ii

pA(a)

pA(i)PR(i)

00
0

1

K −1K −1

Fig. 4.13
Discrete histogram specifica-
tion. The reference distribu-
tion PR (left) is “filled” layer
by layer from bottom to top
and from right to left. For ev-
ery possible intensity value a
(starting from a = 0), the as-
sociated probability pA(a) is
added as a horizontal bar to a
stack accumulated ‘under” the
reference distribution PR. The
bar with thickness pA(a) is
drawn from right to left down
to the position a′, where the
reference distribution PR is
reached. The function fhs()
must map a to a′.

right to left, down to position a′, where it hits the reference distribu-
tion PR. This position a′ corresponds to the new pixel value to which
a should be mapped.

Since the sum of all probabilities pA and the maximum of the
distribution function PR are both 1 (i.e.,

∑

i pA(i) = maxi PR(i) =
1), all horizontal bars will exactly fit underneath the function PR.
One may also notice in Fig. 4.13 that the distribution value resulting
at a′ is identical to the cumulated probability PA(a). Given some
intensity value a, it is therefore sufficient to find the minimum value
a′, where the reference distribution PR(a′) is greater than or equal to
the cumulative probability PA(a), that is,

fhs(a) = min
{

j | (0 ≤ j < K) ∧
(
PA(a) ≤ PR(j)

)}
. (4.26)

This results in a very simple method, which is summarized in
Alg. 4.3. The corresponding Java implementation in Prog. 4.3, con-
sists of the method matchHistograms(), which accepts the original
histogram (hA) and the reference histogram (hR) and returns the
resulting mapping function (fhs) specifying the required point oper-
ation.

Due to the use of normalized distribution functions, the size of
the associated images is not relevant. The following code fragment
demonstrates the use of the matchHistograms() method from Prog.
4.3 in ImageJ:

ImageProcessor ipA = ... // target image IA (to be modified)

ImageProcessor ipR = ... // reference image IR

int[] hA = ipA.getHistogram(); // get histogram for IA

int[] hR = ipR.getHistogram(); // get histogram for IR

int[] fhs = matchHistograms(hA, hR); // mapping function fhs(a)

ipA.applyTable(fhs); // modify the target image IA

The original image ipA is modified in the last line by applying the
mapping function fhs (fhs) with the method applyTable() (see also
p. 83).

4.6.5 Examples

Adjusting to a piecewise linear reference distribution

The first example in Fig. 4.14 shows the results of histogram spec-
ification for a continuous, piecewise linear reference distribution, as

71

4 Point Operations

Alg. 4.3
Histogram matching.

Given are two histograms: the
histogram hA of the target

image IA and a reference his-
togram hR, both of size K.

The result is a discrete map-
ping function fhs() that, when

applied to the target image,
produces a new image with a
distribution function similar

to the reference histogram.

1: MatchHistograms(hA, hR)

Input: hA, histogram of the target image IA; hR, reference his-
togram (the same size as hA). Returns a discrete mapping fhs(a)
to be applied to the target image IA.

2: K ← Size(hA)
3: PA ← Cdf(hA) ⊲ c.d.f. for hA (Alg. 4.1)
4: PR ← Cdf(hR) ⊲ c.d.f. for hR (Alg. 4.1)

5: Create map fhs : [0, K−1] �→ R ⊲ pixel mapping function fhs

6: for a ← 0, . . . , K−1 do
7: j ← K−1
8: repeat
9: fhs[a] ← j

10: j ← j − 1
11: while (j ≥ 0) ∧ (PA(a) ≤ PR(j))

12: return fhs.

described in Sec. 4.6.3. Analogous to Fig. 4.12, the actual distribution
function PR (Fig. 4.14(f)) is specified as a polygonal line consisting
of five control points 〈ak, qk〉 with coordinates

k = 0 1 2 3 4 5

ak = 0 28 75 150 210 255
qk = 0.002 0.050 0.250 0.750 0.950 1.000

.

The resulting reference histogram (Fig. 4.14(c)) is a step function
with ranges of constant values corresponding to the linear segments
of the probability density function. As expected, the cumulative
probability function for the modified image (Fig. 4.14(h)) is quite
close to the reference function in Fig. 4.14(f), while the resulting
histogram (Fig. 4.14(e)) shows little similarity with the reference his-
togram (Fig. 4.14(c)). However, as discussed earlier, this is all we
can expect from a homogeneous point operation.

Adjusting to an arbitrary reference histogram

The example in Fig. 4.15 demonstrates this technique using synthetic
reference histograms whose shape is approximately Gaussian. In this
case, the reference distribution is not given as a continuous func-
tion but specified by a discrete histogram. We thus use the method
described in Sec. 4.6.4 to compute the required mapping functions.

The target image used here was chosen intentionally for its poor
quality, manifested by an extremely unbalanced histogram. The his-
tograms of the modified images thus naturally show little resemblance
to a Gaussian. However, the resulting cumulative histograms match
nicely with the integral of the corresponding Gaussians, apart from
the unavoidable irregularity at the center caused by the dominant
peak in the original histogram.

Adjusting to another image

The third example in Fig. 4.16 demonstrates the adjustment of two
images by matching their intensity histograms. One of the images
is selected as the reference image IR (Fig. 4.16(b)) and supplies the

72

4.6 Histogram
Specification

1 int[] matchHistograms (int[] hA, int[] hR) {

2 // hA . . . histogram hA of the target image IA (to be modified)

3 // hR . . . reference histogram hR

4 // returns the mapping fhs() to be applied to image IA

5

6 int K = hA.length;

7 double[] PA = Cdf(hA); // get CDF of histogram hA

8 double[] PR = Cdf(hR); // get CDF of histogram hR

9 int[] fhs = new int[K]; // mapping fhs()
10

11 // compute mapping function fhs():

12 for (int a = 0; a < K; a++) {

13 int j = K - 1;

14 do {

15 fhs[a] = j;

16 j--;

17 } while (j >= 0 && PA[a] <= PR[j]);

18 }

19 return fhs;

20 }

22 double[] Cdf (int[] h) {

23 // returns the cumul. distribution function for histogram h

24 int K = h.length;

25

26 int n = 0; // sum all histogram values

27 for (int i = 0; i < K; i++) {

28 n += h[i];

29 }

30

31 double[] P = new double[K]; // create CDF table P

32 int c = h[0]; // cumulate histogram values

33 P[0] = (double) c / n;

34 for (int i = 1; i < K; i++) {

35 c += h[i];

36 P[i] = (double) c / n;

37 }

38 return P;

39 }

Prog. 4.3
Histogram matching (Java
implementation of Alg. 4.3).
The method matchHistograms()
computes the mapping func-
tion fhs from the target his-
togram hA and the reference
histogram hR (see Eqn. (4.26)).
The method Cdf() computes
the cumulative distribution
function (cdf) for a given his-
togram (Eqn. (4.17)).

reference histogram hR (Fig. 4.16(e)). The second (target) image
IA (Fig. 4.16(a)) is modified such that the resulting cumulative his-
togram matches the cumulative histogram of the reference image IR.
It can be expected that the final image IA′ (Fig. 4.16(c)) and the
reference image give a similar visual impression with regard to tonal
range and distribution (assuming that both images show similar con-
tent).

Of course this method may be used to adjust multiple images
to the same reference image (e.g., to prepare a series of similar pho-
tographs for a print project). For this purpose, one could either select
a single representative image as a common reference or, alternatively,
compute an “average” reference histogram from a set of typical im-
ages (see also Exercise 4.7).

73

4 Point Operations

Fig. 4.14
Histogram specification with

a piecewise linear reference
distribution. The target image
IA (a), its histogram (d), and
distribution function PA (g);

the reference histogram hR (c)
and the corresponding distri-

bution PR (f); the modified
image IA′ (b), its histogram

hA′ (e), and the resulting dis-
tribution PA′ (h). Associ-

ated mapping function fhs (j).

Original image Modified image

Reference distribution
(piecewise linear) (a) IA (b) I′

A

(c) hR (d) hA (e) h′
A

(f) PR (g) PA (h) P′
A

0 50 100 150 200 255

50

100

150

200

255

a

fhs(a)

(j)

4.7 Gamma Correction

We have been using the terms “intensity” and “brightness” many
times without really bothering with how the numeric pixel values in
our images relate to these physical concepts, if at all. A pixel value
may represent the amount of light falling onto a sensor element in a
camera, the photographic density of film, the amount of light to be
emitted by a monitor, the number of toner particles to be deposited
by a printer, or any other relevant physical magnitude. In practice,
the relationship between a pixel value and the corresponding physical
quantity is usually complex and almost always nonlinear. In many
imaging applications, it is important to know this relationship, at
least approximately, to achieve consistent and reproducible results.

When applied to digital intensity images, the ideal is to have some
kind of “calibrated intensity space” that optimally matches the hu-
man perception of intensity and requires a minimum number of bits
to represent the required intensity range. Gamma correction denotes
a simple point operation to compensate for the transfer character-
istics of different input and output devices and to map them to a
unified intensity space.

74

4.7 Gamma Correction
Original image Gaussian (σ = 50) Gaussian (σ = 100)

(a) IA (b) IG50 (c) IG100

Reference histogram

pR(i)

Cumulative
reference histogram

PR(i)

(d) (e)

(f) hA (g) hG50 (h) hG100

(i) HA (j) HG50 (k) HG100

0 50 100 150 200 255

50

100

150

200

255

a

fhs(a)

(l)

Fig. 4.15
Histogram matching: adjust-
ing to a synthetic histogram.
Original image IA (a), corre-
sponding histogram (f), and
cumulative histogram (i).
Gaussian-shaped reference
histograms with center μ = 128
and σ = 50 (d) and σ = 100
(e), respectively. Resulting
images after histogram match-
ing, IG50 (b) and IG100 (c)
with the corresponding his-
tograms (g, h) and cumulative
histograms (j, k). Associated
mapping function fhs (l).

4.7.1 Why Gamma?

The term “gamma” originates from analog photography, where the
relationship between the light energy and the resulting film density
is approximately logarithmic. The “exposure function” (Fig. 4.17),
specifying the relationship between the logarithmic light intensity
and the resulting film density, is therefore approximately linear over
a wide range of light intensities. The slope of this function within
this linear range is traditionally referred to as the “gamma” of the
photographic material. The same term was adopted later in televi-

75

4 Point Operations

Fig. 4.16
Histogram matching: adjust-

ing to a reference image. The
target image IA (a) is modified

by matching its histogram to
the reference image IR (b),
resulting in the new image

IA′ (c). The corresponding
histograms hA, hR, hA′ (d–f)

and cumulative histograms
HA, HR, PA′ (g–i) are shown.

Notice the good agreement
between the cumulative his-

tograms of the reference and
adjusted images (h, i). Associ-
ated mapping function fhs (j).

Reference image Original image Modified image

(a) IR (b) IA (c) I′
A

(d) hR (e) hA (f) h′
A

(g) PR (h) PA (i) P′
A

0 50 100 150 200 255

50

100

150

200

255

a

fhs(a)

(j)

sion broadcasting to describe the nonlinearities of the cathode ray
tubes used in TV receivers, that is, to model the relationship be-
tween the amplitude (voltage) of the video signal and the emitted
light intensity. To compensate for the nonlinearities of the receivers,
a “gamma correction” was (and is) applied to the TV signal once
before broadcasting in order to avoid the need for costly correction
measures on the receiver side.

Fig. 4.17
Exposure function of photo-

graphic film. With respect
to the logarithmic light in-

tensity B, the resulting film
density D is approximately
linear over a wide intensity

range. The slope (ΔD/ΔB) of
this linear section of the func-

tion specifies the “gamma” (γ)
value for a particular type
of photographic material.

��� ��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

�

�

D

B

ΔD

ΔB

γ ≡ ΔD
ΔB

76

4.7 Gamma Correction4.7.2 Mathematical Definition

Gamma correction is based on the exponential function

fγ(a) = aγ , (4.27)

where the parameter γ ∈ R is called the gamma value. If a is con-
strained to the interval [0, 1], then—independent of γ—the value of
fγ(a) also stays within [0, 1], and the function always runs through
the points (0, 0) and (1, 1). In particular, fγ(a) is the identity func-
tion for γ = 1, as shown in Fig. 4.18. The function runs above the di-
agonal for gamma values γ < 1, and below it for γ > 1. Controlled by
a single continuous parameter (γ), the power function can thus “im-
itate” both logarithmic and exponential types of functions. Within
the interval [0, 1], the function is continuous and strictly monotonic,
and also very simple to invert as

a = f−1
γ (b) = b1/γ , (4.28)

since b1/γ = (aγ)1/γ = a1 = a. The inverse of the exponential
function f−1

γ (b) is thus again an exponential function,

f−1
γ (b) = fγ̄ (b) = f1/γ(b), (4.29)

with the parameter γ̄ = 1/γ.

1

0

0 1

a

b = aγ

γ = 1

γ = 2

γ = 5

γ = 20

γ = 1
20

γ = 1
5

γ = 1
2

Fig. 4.18
Gamma correction function
fγ (a) = aγ for a ∈ [0, 1] and
different gamma values.

4.7.3 Real Gamma Values

The actual gamma values of individual devices are usually specified
by the manufacturers based on real measurements. For example,
common gamma values for CRT monitors are in the range 1.8 to 2.8,
with 2.4 as a typical value. Most LCD monitors are internally ad-
justed to similar values. Digital video and still cameras also emulate
the transfer characteristics of analog film and photographic cameras
by making internal corrections to give the resulting images an accus-
tomed “look”.

77

4 Point Operations In TV receivers, gamma values are standardized with 2.2 for ana-
log NTSC and 2.8 for the PAL system (these values are theoretical;
results of actual measurements are around 2.35). A gamma value of
1/2.2 ≈ 0.45 is the norm for cameras in NTSC as well as the EBU7

standards. The current international standard ITU-R BT.7098 calls
for uniform gamma values of 2.5 in receivers and 1/1.956 ≈ 0.51
for cameras [76, 122]. The ITU 709 standard is based on a slightly
modified version of the gamma correction (see Sec. 4.7.6).

Computers usually allow adjustment of the gamma value applied
to the video output signals to adapt to a wide range of different
monitors. Note, however, that the power function fγ() is only a
coarse approximation to the actual transfer characteristics of any
device, which may also not be the same for different color channels.
Thus significant deviations may occur in practice, despite the careful
choice of gamma settings. Critical applications, such as prepress or
high-end photography, usually require additional calibration efforts
based on exactly measured device profiles (see Sec. 14.7.4).

4.7.4 Applications of Gamma Correction

Let us first look at the simple example illustrated in Fig. 4.19. As-
sume that we use a digital camera with a nominal gamma value γc,
meaning that its output signal s relates to the incident light intensity
L as

S = Lγc . (4.30)

Fig. 4.19
Principle of gamma correction.

To compensate the output
signal S produced by a camera
with nominal gamma value γc,
a gamma correction is applied

with γ̄c = 1/γc. The corrected
signal S′ is proportional to

the received light intensity L.

Light

Camera Gamma
correction

Corrected
signal

S = Lγc

L S′ ≈ L

γc

γ̄c = 1
γc

fγ̄c
(S)

To compensate the transfer characteristic of this camera (i.e., to
obtain a measurement S′ that is proportional to the original light
intensity L), the camera signal S is subject to a gamma correction
with the inverse of the camera’s gamma value γ̄c = 1/γc and thus

S′ = fγ̄c
(S) = S1/γc . (4.31)

The resulting signal

S′ = S1/γc =
(
Lγc

)1/γc = L
(γc

1
γc

) = L1

is obviously proportional (in theory even identical) to the original
light intensity L. Although this example is quite simplistic, it still
demonstrates the general rule, which holds for output devices as well:

7 European Broadcast Union (EBU).
8 International Telecommunications Union (ITU).

78

4.7 Gamma CorrectionThe transfer characteristic of an input or output device with
specified gamma value γ is compensated for by a gamma cor-
rection with γ̄ = 1/γ.

In the aforementioned, we have implicitly assumed that all values are
strictly in the range [0, 1], which usually is not the case in practice.
When working with digital images, we have to deal with discrete pixel
values, for example, in the range [0, 255] for 8-bit images. In general,
performing a gamma correction

b ← fgc(a, γ),

on a pixel value a ∈ [0, amax] and a gamma value γ > 0 requires the
following three steps:

1. Scale a linearly to â ∈ [0, 1].
2. Apply the gamma correction function to â: b̂ ← âγ .
3. Scale b̂ ∈ [0, 1] linearly back to b ∈ [0, amax].

Formulated in a more compact way, the corrected pixel value b is
obtained from the original value a as

b ←
(a

amax

)γ
· amax. (4.32)

Figure 4.20 illustrates the typical role of gamma correction in the
digital work flow with two input (camera, scanner) and two output
devices (monitor, printer), each with its individual gamma value.
The central idea is to correct all images to be processed and stored
in a device-independent, standardized intensity space.

�
��������

���
���
γc = 1.3

γ̄c = 1
1.3

γs = 1.9

γ̄s = 1
1.9

γm = 2.6

γ̄m = 1
2.6

γp = 3.0

γ̄p = 1
3.0

Fig. 4.20
Gamma correction in the digi-
tal imaging work flow. Images
are processed and stored in
a “linear” intensity space,
where gamma correction is
used to compensate for the
transfer characteristic of each
input and output device. (The
gamma values shown are exam-
ples only.)

4.7.5 Implementation

Program 4.4 shows the implementation of gamma correction as an
ImageJ plugin for 8-bit grayscale images. The mapping function
fgc(a, γ) is computed as a lookup table (Fgc), which is then applied
to the image using the method applyTable() to perform the actual
point operation (see also Sec. 4.8.1).

79

4 Point Operations

Prog. 4.4
Implementation of gamma cor-

rection in the run() method
of an ImageJ plugin. The

corrected intensity values b
are only computed once and

stored in the lookup table
Fgc (line 15). The gamma

value GAMMA is constant. The
actual point operation is per-
formed by calling the ImageJ

method applyTable(Fgc) on
the image object ip (line 18).

1 public void run(ImageProcessor ip) {

2 // works for 8-bit images only

3 int K = 256;

4 int aMax = K - 1;

5 double GAMMA = 2.8;

6

7 // create and fill the lookup table:

8 int[] Fgc = new int[K];

9

10 for (int a = 0; a < K; a++) {

11 double aa = (double) a / aMax; // scale to [0, 1]
12 double bb = Math.pow(aa, GAMMA); // power function

13 // scale back to [0, 255]:
14 int b = (int) Math.round(bb * aMax);

15 Fgc[a] = b;

16 }

17

18 ip.applyTable(Fgc); // modify the image

19 }

4.7.6 Modified Gamma Correction

A subtle problem with the simple power function fγ(a) = aγ (Eqn.
(4.27)) appears if we take a closer look at the slope of this function,
expressed by its first derivative,

f ′
γ(a) = γ · a(γ−1),

which for a = 0 has the values

f ′
γ(0) =

⎧

⎪⎨

⎪⎩

0 for γ > 1,
1 for γ = 1,
∞ for γ < 1.

(4.33)

The tangent to the function at the origin is thus horizontal (γ >
1), diagonal (γ = 1), or vertical (γ < 1), with no intermediate values.
For γ < 1, this causes extremely high amplification of small intensity
values and thus increased noise in dark image regions. Theoretically,
this also means that the power function is generally not invertible at
the origin.

A common solution to this problem is to replace the lower part
(0 ≤ a ≤ a0) of the power function by a linear segment with constant
slope and to continue with the ordinary power function for a > a0.
The resulting modified gamma correction function,

f̄γ,a0
(a) =

{

s · a for 0 ≤ a ≤ a0,

(1 + d) · aγ − d for a0 < a ≤ 1,
(4.34)

with s =
γ

a0(γ−1) + a
(1−γ)
0

and d =
1

aγ
0 (γ−1) + 1

− 1 (4.35)

thus consists of a linear section (for 0 ≤ a ≤ a0) and a nonlinear sec-
tion (for a0 < a ≤ 1) that connect smoothly at the transition point

80

4.7 Gamma Correction
f̄γ,a0

(a)

a

f̄γ,a0
(a)

a

(a) γ = 0.5, a0 = 0.2 (b) γ = 2.0, a0 = 0.2

Fig. 4.21
Modified gamma correction.
The mapping f̄γ,a0

(a) consists

of a linear segment with fixed
slope s between a = 0 and
a = a0, followed by a power
function with parameter γ
(Eqn. (4.34)). The dashed
lines show the ordinary power
functions for the same gamma
values.

a = a0. The linear slope s and the parameter d are determined by
the requirement that the two function segments must have identical
values as well as identical slopes (first derivatives) at a = a0 to pro-
duce a continuous function. The function in Eqn. (4.34) is thus fully
specified by the two parameters a0 and γ.

Figure 4.21 shows two examples of the modified gamma correction
f̄γ,a0

() with values γ = 0.5 and γ = 2.0, respectively. In both cases,
the transition point is at a0 = 0.2. For comparison, the figure also
shows the ordinary gamma correction fγ(a) for the same gamma
values (dashed lines), whose slope at the origin is ∞ (Fig. 4.21(a))
and zero (Fig. 4.21(b)), respectively.

Gamma correction in common standards

The modified gamma correction is part of several modern imaging
standards. In practice, however, the values of a0 are considerably
smaller than the ones used for the illustrative examples in Fig. 4.21,
and γ is chosen to obtain a good overall match to the desired cor-
rection function. For example, the ITU-BT.709 specification [122]
mentioned in Sec. 4.7.3 specifies the parameters

γ =
1

2.222
≈ 0.45 and a0 = 0.018 , (4.36)

with the corresponding slope and offset values s = 4.50681 and
d = 0.0991499, respectively (Eqn. (4.35)). The resulting correction
function f̄ITU(a) has a nominal gamma value of 0.45, which corre-
sponds to the effective gamma value γeff = 1/1.956 ≈ 0.511. The
gamma correction in the sRGB standard [224] is specified on the
same basis (with different parameters; see Sec. 14.4).

Figure 4.22 shows the actual correction functions for the ITU and
sRGB standards, respectively, each in comparison with the equiv-
alent ordinary gamma correction. The ITU function (Fig. 4.22(a))
with γ = 0.45 and a0 = 0.018 corresponds to an ordinary gamma cor-
rection with effective gamma value γeff = 0.511 (dashed line). The
curves for sRGB (Fig. 4.22(b)) differ only by the parameters γ and
a0, as summarized in Table 4.1.

81

4 Point Operations

Fig. 4.22
Gamma correction func-

tions specified by the ITU-R
BT.709 (a) and sRGB (b)

standards. The continu-
ous plot shows the mod-

ified gamma correction
with the nominal γ values

and transition points a0.

f̄ITU(a)

a

f̄sRGB(a)

a

(a) γ ≈ 0.450, a0 = 0.018 (b) γ ≈ 0.417, a0 = 0.0031308

Table 4.1
Gamma correction pa-

rameters for the ITU and
sRGB standards based on

the modified mapping in
Eqns. (4.34) and (4.35).

Standard

Nominal
gamma value

γ a0 s d

Effective
gamma value

γeff

ITU-R BT.709 1/2.222 ≈ 0.450 0.018 4.50 0.099 1/1.956 ≈ 0.511

sRGB 1/2.400 ≈ 0.417 0.0031308 12.92 0.055 1/2.200 ≈ 0.455

Inverting the modified gamma correction

To invert the modified gamma correction of the form b = f̄γ,a0
(a)

(Eqn. (4.34)), we need the inverse of the function f̄γ,a0
(), which is

again defined in two parts,

f̄−1
γ,a0

(b) =

{

b/s for 0 ≤ b ≤ s·a0,
(

b+d
1+d

)1/γ
for s·a0 < b ≤ 1.

(4.37)

s and d are the quantities defined in Eqn. (4.35) and thus

a = f̄−1
γ,a0

(
f̄γ,a0

(a)
)

for a ∈ [0, 1], (4.38)

with the same value γ being used in both functions. The inverse
gamma correction function is required in particular for transforming
between different color spaces if nonlinear (i.e., gamma-corrected)
component values are involved (see also Sec. 14.2).

4.8 Point Operations in ImageJ

Several important types of point operations are already implemented
in ImageJ, so there is no need to program every operation manually
(as shown in Prog. 4.4). In particular, it is possible in ImageJ to
apply point operations efficiently by using tabulated functions, to
use built-in standard functions for point operations on single images,
and to apply arithmetic operations on pairs of images. These issues
are described briefly in the remaining parts of this section.

4.8.1 Point Operations with Lookup Tables

Some point operations require complex computations for each pixel,
and the processing of large images may be quite time-consuming. If

82

4.8 Point Operations in
ImageJ

the point operation is homogeneous (i.e., independent of the pixel
coordinates), the value of the mapping function can be precomputed
for every possible pixel value and stored in a lookup table, which
may then be applied very efficiently to the image. A lookup table L
represents a discrete mapping (function f) from the original to the
new pixel values,

F : [0, K−1]
f�−→ [0, K−1] . (4.39)

For a point operation specified by a particular pixel mapping function
a′ = f(a), the table L is initialized with the values

F[a] ← f(a), for 0 ≤ a < K. (4.40)

Thus the K table elements of F need only be computed once, where
typically K = 256. Performing the actual point operation only re-
quires a simple (and quick) table lookup in F at each pixel, that
is,

I ′(u, v) ← F[I(u, v)] , (4.41)

which is much more efficient than any individual function call. Im-
ageJ provides the method

void applyTable(int[] F)

for objects of type ImageProcessor, which requires a lookup table
F as a 1D int array of size K (see Prog. 4.4 on page 80 for an
example). The advantage of this approach is obvious: for an 8-bit
image, for example, the mapping function is evaluated only 256 times
(independent of the image size) and not a million times or more as in
the case of a large image. The use of lookup tables for implementing
point operations thus always makes sense if the number of image
pixels (M × N) is greater than the number of possible pixel values
K (which is usually the case).

4.8.2 Arithmetic Operations

ImageJ implements a set of common arithmetic operations as meth-
ods for the class ImageProcessor, which are summarized in Table
4.2. In the following example, the image is multiplied by a scalar
constant (1.5) to increase its contrast:

ImageProcessor ip = ... //some image

ip.multiply(1.5);

The image ip is destructively modified by all of these methods, with
the results being limited (clamped) to the minimum and maximum
pixel values, respectively.

4.8.3 Point Operations Involving Multiple Images

Point operations may involve more than one image at once, with
arithmetic operations on the pixels of pairs of images being a special
but important case. For example, we can express the pointwise addi-
tion of two images I1 and I2 (of identical size) to create a new image
I ′ as

83

4 Point Operations

Table 4.2
ImageJ methods for arithmetic

operations applicable to ob-
jects of type ImageProcessor.

void abs() I(u, v) ← |I(u, v)|
void add(int p) I(u, v) ← I(u, v) + p

void gamma(double g) I(u, v) ←
(
I(u, v)/255

)g · 255

void invert(int p) I(u, v) ← 255 − I(u, v)

void log() I(u, v) ← log10

(
I(u, v)

)

void max(double s) I(u, v) ← max
(
I(u, v), s

)

void min(double s) I(u, v) ← min
(
I(u, v), s

)

void multiply(double s) I(u, v) ← round
(
I(u, v) · s

)

void sqr() I(u, v) ← I(u, v)2

void sqrt() I(u, v) ←
√

I(u, v)

I ′(u, v) ← I1(u, v) + I2(u, v) (4.42)

for all positions (u, v). In general, any function f(a1, a2, . . . , an) over
n pixel values ai may be defined to perform pointwise combinations
of n images, that is,

I ′(u, v) ← f
(
I1(u, v), I2(u, v), . . . , In(u, v)

)
. (4.43)

Of course, most arithmetic operations on multiple images can also
be implemented as successive binary operations on pairs of images.

4.8.4 Methods for Point Operations on Two Images

ImageJ supplies a single method for implementing arithmetic opera-
tions on pairs of images,

copyBits(ImageProcessor ip2, int u, int v, int mode),

which applies the binary operation specified by the transfer mode
parameter mode to all pixel pairs taken from the source image ip2

and the target image (the image on which this method is invoked)
and stores the result in the target image. u, v are the coordinates
where the source image is inserted into the target image (usually
u = v = 0). The following code segment demonstrates the addition
of two images:

ImageProcessor ip1 = ... // target image (I1)

ImageProcessor ip2 = ... // source image (I2)

...

ip1.copyBits(ip2, 0, 0, Blitter.ADD); // I1 ← I1 + I2

// ip1 holds the result, ip2 is unchanged

...

In this operation, the target image ip1 is destructively modified,
while the source image ip2 remains unchanged. The constant ADD

is one of several arithmetic transfer modes defined by the Blitter

interface (see Table 4.3). In addition, Blitter defines (bitwise) log-
ical operations, such as OR and AND. For arithmetic operations, the
copyBits() method limits the results to the admissible range of pixel
values (of the target image). Also note that (except for target images
of type FloatProcessor) the results are not rounded but truncated
to integer values.

84

4.8 Point Operations in
ImageJ

ADD I1(u, v) ← I1(u, v) + I2(u, v)

AVERAGE I1(u, v) ←
(
I1(u, v) + I2(u, v)

)
/ 2

COPY I1(u, v) ← I2(u, v)

DIFFERENCE I1(u, v) ← |I1(u, v) − I2(u, v)|
DIVIDE I1(u, v) ← I1(u, v) / I2(u, v)

MAX I1(u, v) ← max
(
I1(u, v), I2(u, v)

)

MIN I1(u, v) ← min
(
I1(u, v), I2(u, v)

)

MULTIPLY I1(u, v) ← I1(u, v) · I2(u, v)

SUBTRACT I1(u, v) ← I1(u, v) − I2(u, v)

Table 4.3
Arithmetic operations and
corresponding transfer mode
constants for ImageProcessor’s
copyBits() method. Example:
ip1.copyBits(ip2, 0, 0,

Blitter.ADD).

4.8.5 ImageJ Plugins Involving Multiple Images

ImageJ provides two types of plugin: a generic plugin (PlugIn),
which can be run without any open image, and plugins of type
PlugInFilter, which apply to a single image. In the latter case, the
currently active image is passed as an object of type ImageProcessor

(or any of its subclasses) to the plugin’s run() method (see also Sec.
2.2.3).

If two or more images I1, I2, . . . , Ik are to be combined by a plugin
program, only a single image I1 can be passed directly to the plugin’s
run() method, but not the additional images I2, . . . , Ik. The usual
solution is to make the plugin open a dialog window to let the user
select the remaining images interactively. This is demonstrated in
the following example plugin for transparently blending two images.

Example: Linear blending

Linear blending is a simple method for continuously mixing two im-
ages, IBG and IFG. The background image IBG is covered by the
foreground image IFG, whose transparency is controlled by the value
α in the form

I ′(u, v) = α · IBG(u, v) + (1−α) · IFG(u, v) , (4.44)

with 0 ≤ α ≤ 1. For α = 0, the foreground image IFG is nontrans-
parent (opaque) and thus entirely hides the background image IBG.
Conversely, the image IFG is fully transparent for α = 1 and only
IBG is visible. All α values between 0 and 1 result in a weighted
sum of the corresponding pixel values taken from IBG and IFG (Eqn.
(4.44)).

Figure 4.23 shows the results of linear blending for different α
values. The Java code for the corresponding implementation (as an
ImageJ plugin) is listed in Prog. 4.5. The background image (bgIp)
is passed directly to the plugin’s run() method. The second (fore-
ground) image and the α value are specified interactively by creating
an instance of the ImageJ class GenericDialog, which allows the
simple implementation of dialog windows with various types of input
fields.

85

4 Point Operations

Fig. 4.23
Linear blending example.

Foreground image IFG (a)
and background image (IBG)
(e); blended images for trans-
parency values α = 0.25, 0.50,

and 0.75 (b–d) and dialog
window (f) produced by

GenericDialog (see Prog. 4.5).

(a) IFG, α = 0.0 (b) α = 0.25

(c) α = 0.50 (d) α = 0.75

(f)

(e) IBG, α = 1.0

4.9 Exercises

Exercise 4.1. Implement the auto-contrast operation as defined in
Eqns. (4.9)–(4.11) as an ImageJ plugin for an 8-bit grayscale image.
Set the quantile p of pixels to be saturated at both ends of the in-
tensity range (0 and 255) to p = plo = phi = 1%.

Exercise 4.2. Modify the histogram equalization plugin in Prog. 4.2
to use a lookup table (Sec. 4.8.1) for computing the point operation.

86

4.9 ExercisesExercise 4.3. Implement the histogram equalization as defined in
Eqn. (4.12), but use the modified cumulative histogram defined in
Eqn. (4.13), cumulating the square root of the histogram entries.
Compare the results to the standard (linear) approach by plotting
the resulting histograms and cumulative histograms as shown in Fig.
4.10.

Exercise 4.4. Show formally that (a) a linear histogram equaliza-
tion (Eqn. (4.12)) does not change an image that already has a uni-
form intensity distribution and (b) that any repeated application of
histogram equalization to the same image causes no more changes.

Exercise 4.5. Show that the linear histogram equalization (Sec. 4.5)
is only a special case of histogram specification (Sec. 4.6).

Exercise 4.6. Implement the histogram specification using a piece-
wise linear reference distribution function, as described in Sec. 4.6.3.
Define a new object class with all necessary instance variables to rep-
resent the distribution function and implement the required functions
PL(i) (Eqn. (4.23)) and P−1

L (b) (Eqn. (4.24)) as methods of this class.

Exercise 4.7. Using a histogram specification for adjusting multiple
images (Sec. 4.6.4), one could either use one typical image as the
reference or compute an “average” reference histogram from a set
of images. Implement the second approach and discuss its possible
advantages (or disadvantages).

Exercise 4.8. Implement the modified gamma correction (see Eqn.
(4.34)) as an ImageJ plugin with variable values for γ and a0 using
a lookup table as shown in Prog. 4.4.

Exercise 4.9. Show that the modified gamma correction function
f̄γ,a0

(a), with the parameters defined in Eqns. (4.34)–(4.35), is C1-
continuous (i.e., both the function itself and its first derivative are
continuous).

87

4 Point Operations

Prog. 4.5
ImageJ-Plugin

(Linear_Blending). A back-
ground image is transparently

blended with a selected fore-
ground image. The plugin is
applied to the (currently ac-
tive) background image, and

the foreground image must
also be open when the plugin

is started. The background
image (bgIp), which is passed
to the plugin’s run() method,
is multiplied with α (line 22).

The foreground image (fgIP,
selected in part 2) is first du-

plicated (line 20) and then
multiplied with (1 − α) (line
21). Thus the original fore-

ground image is not modified.
The final result is obtained
by adding the two weighted

images (line 23). To select
the foreground image, a list

of currently open images and
image titles is obtained (lines
30–32). Then a dialog object

(of type GenericDialog) is cre-
ated and opened for specifying

the foreground image (fgIm)
and the α value (lines 36–46).

1 import ij.ImagePlus;

2 import ij.gui.GenericDialog;

3 import ij.plugin.filter.PlugInFilter;

4 import ij.process.Blitter;

5 import ij.process.ImageProcessor;

6 import imagingbook.lib.ij.IjUtils;

7

8 public class Linear_Blending implements PlugInFilter {

9 static double alpha = 0.5; // transparency of foreground image

10 ImagePlus fgIm; // foreground image (to be selected)

11

12 public int setup(String arg, ImagePlus im) {

13 return DOES_8G;

14 }

15

16 public void run(ImageProcessor ipBG) { // ipBG = IBG

17 if(runDialog()) {

18 ImageProcessor ipFG = // ipFG = IFG

19 fgIm.getProcessor().convertToByte(false);

20 ipFG = ipFG.duplicate();

21 ipFG.multiply(1 - alpha); // IFG ← IFG · (1 − α)
22 ipBG.multiply(alpha); // IBG ← IBG · α
23 ipBG.copyBits(ipFG,0,0,Blitter.ADD); // IBG ← IBG+IFG

24 }

25 }

26

27 boolean runDialog() {

28 // get list of open images and their titles:

29 ImagePlus[] openImages = IjUtils.getOpenImages(true);

30 String[] imageTitles = new String[openImages.length];

31 for (int i = 0; i < openImages.length; i++) {

32 imageTitles[i] = openImages[i].getShortTitle();

33 }

34 // create the dialog and show:

35 GenericDialog gd =

36 new GenericDialog("Linear Blending");

37 gd.addChoice("Foreground image:",

38 imageTitles, imageTitles[0]);

39 gd.addNumericField("Alpha value [0..1]:", alpha, 2);

40 gd.showDialog();

41

42 if (gd.wasCanceled())

43 return false;

44 else {

45 fgIm = openImages[gd.getNextChoiceIndex()];

46 alpha = gd.getNextNumber();

47 return true;

48 }

49 }

50 }

88

5

Filters

The essential property of point operations (discussed in the previous
chapter) is that each new pixel value only depends on the original
pixel at the same position. The capabilities of point operations are
limited, however. For example, they cannot accomplish the task of
sharpening or smoothing an image (Fig. 5.1). This is what filters
can do. They are similar to point operations in the sense that they
also produce a 1:1 mapping of the image coordinates, that is, the
geometry of the image does not change.

Fig. 5.1
No point operation can blur or
sharpen an image. This is an
example of what filters can do.
Like point operations, filters
do not modify the geometry of
an image.

5.1 What is a Filter?

The main difference between filters and point operations is that filters
generally use more than one pixel from the source image for comput-
ing each new pixel value. Let us first take a closer look at the task
of smoothing an image. Images look sharp primarily at places where
the local intensity rises or drops sharply (i.e., where the difference
between neighboring pixels is large). On the other hand, we perceive
an image as blurred or fuzzy where the local intensity function is
smooth.

A first idea for smoothing an image could thus be to simply re-
place every pixel by the average of its neighboring pixels. To deter-
mine the new pixel value in the smoothed image I ′(u, v), we use the

89
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_5

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

5 Filters original pixel I(u, v) = p0 at the same position plus its eight neigh-
boring pixels p1, p2, . . . , p8 to compute the arithmetic mean of these
nine values,

I ′(u, v) ← p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8

9
. (5.1)

Expressed in relative image coordinates this is

I ′(u, v) ← 1
9 · [I(u−1, v−1) + I(u, v−1) + I(u+1, v−1) +

I(u−1, v) + I(u, v) + I(u+1, v) +
I(u−1, v + 1) + I(u, v+1) + I(u+1, v+1)] ,

(5.2)
which we can write more compactly in the form

I ′(u, v) ← 1
9
·

1∑

j=−1

1∑

i=−1

I(u + i, v + j) . (5.3)

This simple local averaging already exhibits all the important
elements of a typical filter. In particular, it is a so-called linear filter,
which is a very important class of filters. But how are filters defined in
general? First they differ from point operations mainly by using not
a single source pixel but a set of them for computing each resulting
pixel. The coordinates of the source pixels are fixed relative to the
current image position (u, v) and usually form a contiguous region,
as illustrated in Fig. 5.2.

Fig. 5.2
Principal filter operation. Each

new pixel value I′(u, v) is cal-
culated as a function of the
pixel values within a speci-
fied region of source pixels

Ru,v in the original image I.

I I′

uu

vv

Ru,v I′(u, v)

The size of the filter region is an important parameter of the
filter because it specifies how many original pixels contribute to each
resulting pixel value and thus determines the spatial extent (support)
of the filter. For example, the smoothing filter in Eqn. (5.2) uses a
3 × 3 region of support that is centered at the current coordinate
(u, v). Similar filters with larger support, such as 5×5, 7×7, or even
21× 21 pixels, would obviously have stronger smoothing effects.

The shape of the filter region is not necessarily quadratic or even
rectangular. In fact, a circular (disk-shaped) region would be pre-
ferred to obtain an isotropic blur effect (i.e., one that is the same in
all image directions). Another option is to assign different weights to
the pixels in the support region, such as to give stronger emphasis to
pixels that are closer to the center of the region. Furthermore, the
support region of a filter does not need to be contiguous and may

90

5.2 Linear Filtersnot even contain the original pixel itself (imagine a ring-shaped filter
region, for example). Theoretically the filter region could even be of
infinite size.

It is probably confusing to have so many options—a more sys-
tematic method is needed for specifying and applying filters in a
targeted manner. The traditional and proven classification into lin-
ear and nonlinear filters is based on the mathematical properties of
the filter function; that is, whether the result is computed from the
source pixels by a linear or a nonlinear expression. In the following,
we discuss both classes of filters and show several practical examples.

5.2 Linear Filters

Linear filters are denoted that way because they combine the pixel
values in the support region in a linear fashion, that is, as a weighted
summation. The local averaging process discussed in the beginning
(Eqn. (5.3)) is a special example, where all nine pixels in the 3 ×
3 support region are added with identical weights (1/9). With the
same mechanism, a multitude of filters with different properties can
be defined by simply modifying the distribution of the individual
weights.

5.2.1 The Filter Kernel

For any linear filter, the size and shape of the support region, as well
as the individual pixel weights, are specified by the “filter kernel” or
“filter matrix” H(i, j). The size of the kernel H equals the size of
the filter region, and every element H(i, j) specifies the weight of the
corresponding pixel in the summation. For the 3× 3 smoothing filter
in Eqn. (5.3), the filter kernel is

H =

⎡

⎣

1/9 1/9 1/9
1/9 1/9 1/9

1/9 1/9 1/9

⎤

⎦ =
1
9
·

⎡

⎣

1 1 1
1 1 1
1 1 1

⎤

⎦ , (5.4)

because each of the nine pixels contributes one-ninth of its value to
the result.

In principle, the filter kernel H(i, j) is, just like the image itself, a
discrete, 2D, real-valued function, H : Z × Z �→ R. The filter has its
own coordinate system with the origin—often referred to as the “hot
spot”— mostly (but not necessarily) located at the center. Thus,
filter coordinates are generally positive and negative (Fig. 5.3). The
filter function is of infinite extent and considered zero outside the
region defined by the matrix H .

5.2.2 Applying the Filter

For a linear filter, the result is unambiguously and completely speci-
fied by the coefficients of the filter matrix. Applying the filter to an
image is a simple process that is illustrated in Fig. 5.4. The following
steps are performed at each image position (u, v):

91

5 Filters

Fig. 5.3
Filter matrix and its coor-

dinate system. i is the hor-
izontal (column) index, j

is the vertical (row) index.

H

(0, 0) = Hot Spot

i

j

Fig. 5.4
Linear filter operation. The

filter kernel H is placed with
its origin at position (u, v)
on the image I. Each filter
coefficient H(i, j) is multi-

plied with the corresponding
image pixel I(u + i, v + j),
the results are added, and

the final sum is inserted as
the new pixel value I′(u, v).

H

I

I′

u

u

v

v

1. The filter kernel H is moved over the original image I such that
its origin H(0, 0) coincides with the current image position (u, v).

2. All filter coefficients H(i, j) are multiplied with the corresponding
image element I(u+i, v+j), and the results are added up.

3. Finally, the resulting sum is stored at the current position in the
new image I ′(u, v).

Described formally, the pixel values of the new image I ′(u, v) are
computed by the operation

I ′(u, v) ←
∑

(i,j)∈RH

I(u + i, v + j) ·H(i, j), (5.5)

where RH denotes the set of coordinates covered by the filter H . For
a typical 3× 3 filter with centered origin, this is

I ′(u, v) ←
i=1∑

i=−1

j=1
∑

j=−1

I(u + i, v + j) ·H(i, j), (5.6)

for all image coordinates (u, v). Not quite for all coordinates, to
be exact. There is an obvious problem at the image borders where
the filter reaches outside the image and finds no corresponding pixel
values to use in computing a result. For the moment, we ignore this
border problem, but we will attend to it again in Sec. 5.5.2.

92

5.2 Linear Filters5.2.3 Implementing the Filter Operation

Now that we understand the principal operation of a filter (Fig. 5.4)
and know that the borders need special attention, we go ahead and
program a simple linear filter in ImageJ. But before we do this, we
may want to consider one more detail. In a point operation (e.g.,
in Progs. 4.1 and 4.2), each new pixel value depends only on the
corresponding pixel value in the original image, and it was thus no
problem simply to store the results back to the same image—the
computation is done “in place” without the need for any intermediate
storage. In-place computation is generally not possible for a filter
since any original pixel contributes to more than one resulting pixel
and thus may not be modified before all operations are complete.

We therefore require additional storage space for the resulting
image, which subsequently could be copied back to the source im-
age again (if desired). Thus the complete filter operation can be
implemented in two different ways (Fig. 5.5):

A. The result of the filter computation is initially stored in a new
image whose content is eventually copied back to the original
image.

B. The original image is first copied to an intermediate image that
serves as the source for the actual filter operation. The result
replaces the pixels in the original image.

The same amount of storage is required for both versions, and thus
none of them offers a particular advantage. In the following examples,
we generally use version B.

�
������
�����

����
#
�������
�����

�
������
�����

����
#
�������
�����

(a) Version A (b) Version B

Fig. 5.5
Practical implementation of
in-place filter operations.
Version A: The result of the
filter operation is first stored
in an intermediate image and
subsequently copied back to
the original image (a).
Version B: The original image
is first copied to an interme-
diate image that serves as the
source for the filter operation.
The results are placed in the
original image (b).

5.2.4 Filter Plugin Examples

The following examples demonstrate the implementation of two very
basic filters that are nevertheless often used in practice.

Simple 3 × 3 averaging filter (“box” filter)

Program 5.1 shows the ImageJ code for a simple 3 × 3 smoothing
filter based on local averaging (Eqn. (5.4)), which is often called a

93

5 Filters

Prog. 5.1
3 × 3 averaging “box” filter
(Filter_Box_3x3). First (in

line 10) a duplicate (copy) of
the original image (orig) is

created, which is used as the
source image in the subsequent

filter computation (line 18).
In line 23, the resulting value

is placed in the original image
(line 23). Notice that the bor-

der pixels remain unchanged
because they are not reached

by the iteration over (u, v).

1 import ij.ImagePlus;

2 import ij.plugin.filter.PlugInFilter;

3 import ij.process.ImageProcessor;

4

5 public class Filter_Box_3x3 implements PlugInFilter {

6 ...

7 public void run(ImageProcessor ip) {

8 int M = ip.getWidth();

9 int N = ip.getHeight();

10 ImageProcessor copy = ip.duplicate();

11

12 for (int u = 1; u <= M - 2; u++) {

13 for (int v = 1; v <= N - 2; v++) {

14 //compute filter result for position (u, v):

15 int sum = 0;

16 for (int i = -1; i <= 1; i++) {

17 for (int j = -1; j <= 1; j++) {

18 int p = copy.getPixel(u + i, v + j);

19 sum = sum + p;

20 }

21 }

22 int q = (int) (sum / 9.0);

23 ip.putPixel(u, v, q);

24 }

25 }

26 }

27 }

“box” filter because of its box-like shape. No explicit filter matrix
is required in this case, since all filter coefficients are identical (1/9).
Also, no clamping (see Sec. 4.1.2) of the results is needed because the
sum of the filter coefficients is 1 and thus no pixel values outside the
admissible range can be created.

Although this example implements an extremely simple filter, it
nevertheless demonstrates the general structure of a 2D filter pro-
gram. In particular, four nested loops are needed: two (outer) loops
for moving the filter over the image coordinates (u, v) and two (in-
ner) loops to iterate over the (i, j) coordinates within the rectangular
filter region. The required amount of computation thus depends not
only upon the size of the image but equally on the size of the filter.

Another 3 × 3 smoothing filter

Instead of the constant weights applied in the previous example, we
now use a real filter matrix with variable coefficients. For this pur-
pose, we apply a bell-shaped 3× 3 filter function H(i, j), which puts
more emphasis on the center pixel than the surrounding pixels:

H =

⎡

⎣

0.075 0.125 0.075
0.125 0.200 0.125
0.075 0.125 0.075

⎤

⎦ . (5.7)

Notice that all coefficients in H are positive and sum to 1 (i.e., the
matrix is normalized) such that all results remain within the origi-

94

5.2 Linear Filters1 ...

2 public void run(ImageProcessor ip) {

3 int M = ip.getWidth();

4 int N = ip.getHeight();

5

6 // 3x3 filter matrix:

7 double[][] H = {

8 {0.075, 0.125, 0.075},

9 {0.125, 0.200, 0.125},

10 {0.075, 0.125, 0.075}};

11

12 ImageProcessor copy = ip.duplicate();

13

14 for (int u = 1; u <= M - 2; u++) {

15 for (int v = 1; v <= N - 2; v++) {

16 // compute filter result for position (u,v):

17 double sum = 0;

18 for (int i = -1; i <= 1; i++) {

19 for (int j = -1; j <= 1; j++) {

20 int p = copy.getPixel(u + i, v + j);

21 // get the corresponding filter coefficient:

22 double c = H[j + 1][i + 1];

23 sum = sum + c * p;

24 }

25 }

26 int q = (int) Math.round(sum);

27 ip.putPixel(u, v, q);

28 }

29 }

30 }

Prog. 5.2
3 × 3 smoothing filter
(Filter_Smooth_3x3). The filter
matrix is defined as a 2D array
of type double (line 7). The
coordinate origin of the filter
is assumed to be at the cen-
ter of the matrix (i.e., at the
array position [1, 1]), which is
accounted for by an offset of 1
for the i, j coordinates in line
22. The results are rounded
(line 26) and stored in the
original image (line 27).

nal range of pixel values. Again no clamping is necessary and the
program structure in Prog. 5.2 is virtually identical to the previous
example. The filter matrix (filter) is represented by a 2D array1

of type double. Each pixel is multiplied by the corresponding coeffi-
cient of the filter matrix, the resulting sum being also of type double.
Accessing the filter coefficients, it must be considered that the coor-
dinate origin of the filter matrix is assumed to be at its center (i.e.,
at position (1, 1)) in the case of a 3 × 3 matrix. This explains the
offset of 1 for the i and j coordinates (see Prog. 5.2, line 22).

5.2.5 Integer Coefficients

Instead of using floating-point coefficients (as in the previous ex-
amples), it is often simpler and usually more efficient to work with
integer coefficients in combination with some common scale factor s,
that is,

H(i, j) = s ·H ′(i, j), (5.8)

with H ′(i, j) ∈ Z and s ∈ R. If all filter coefficients are positive
(which is the case for any smoothing filter), then s is usually taken

1 See the additional comments regarding 2D arrays in Java in Sec. F.2.4
in the Appendix.

95

5 Filters as the reciprocal of the sum of the coefficients,

s =
1

∑

i,j H ′(i, j)
, (5.9)

to obtain a normalized filter matrix. In this case, the results are
bounded to the original range of pixel values. For example, the filter
matrix in Eqn. (5.7) could be defined equivalently as

H =

⎡

⎣

0.075 0.125 0.075
0.125 0.200 0.125
0.075 0.125 0.075

⎤

⎦ =
1
40
·

⎡

⎣

3 5 3
5 8 5
3 5 3

⎤

⎦ (5.10)

with the common scale factor s = 1
40 = 0.025. A similar scaling is

used for the filter operation in Prog. 5.3.
In Adobe Photoshop, linear filters can be specified with the “Cus-

tom Filter” tool (Fig. 5.6) using integer coefficients and a common
scale factor Scale (which corresponds to the reciprocal of s). In ad-
dition, a constant Offset value can be specified; for example, to shift
negative results (caused by negative coefficients) into the visible range
of values. In summary, the operation performed by the 5× 5 Photo-
shop custom filter can be expressed as

I ′(u, v) ← Offset +
1

Scale
·

j=2
∑

j=−2

i=2∑

i=−2

I(u+i, v+j) ·H(i, j). (5.11)

Fig. 5.6
Adobe Photoshop’s “Custom
Filter” implements linear fil-

ters up to a size of 5 × 5.
The filter’s coordinate ori-

gin (“hot spot”) is assumed to
be at the center (value set to

3 in this example), and empty
cells correspond to zero co-

efficients. In addition to the
(integer) coefficients, common

Scale and Offset values can
be specified (see Eqn. (5.11)).

5.2.6 Filters of Arbitrary Size

Small filters of size 3×3 are frequently used in practice, but sometimes
much larger filters are required. Let us assume that the filter matrix
H is centered and has an odd number of (2K+1) columns and (2L+1)
rows, with K, L ≥ 0. If the image is of size M ×N , that is

I(u, v) with 0 ≤ u < M and 0 ≤ v < N, (5.12)

then the result of the filter can be calculated for all image coordinates
(u′, v′) with

K ≤ u′ ≤ (M−K−1) and L ≤ v′ ≤ (N−L−1), (5.13)

as illustrated in Fig. 5.7. Program 5.3 (which is adapted from Prog.
5.2) shows a 7 × 5 smoothing filter as an example for implementing

96

5.2 Linear Filters1 public void run(ImageProcessor ip) {

2 int M = ip.getWidth();

3 int N = ip.getHeight();

4

5 // filter matrix H of size (2K + 1) × (2L + 1)
6 int[][] H = {

7 {0,0,1,1,1,0,0},

8 {0,1,1,1,1,1,0},

9 {1,1,1,1,1,1,1},

10 {0,1,1,1,1,1,0},

11 {0,0,1,1,1,0,0}};

12

13 double s = 1.0 / 23; // sum of filter coefficients is 23

14

15 // H[L][K] is the center element of H:

16 int K = H[0].length / 2; // K = 3

17 int L = H.length / 2; // L = 2

18

19 ImageProcessor copy = ip.duplicate();

20

21 for (int u = K; u <= M - K - 1; u++) {

22 for (int v = L; v <= N - L - 1; v++) {

23 // compute filter result for position (u, v):

24 int sum = 0;

25 for (int i = -K; i <= K; i++) {

26 for (int j = -L; j <= L; j++) {

27 int p = copy.getPixel(u + i, v + j);

28 int c = H[j + L][i + K];

29 sum = sum + c * p;

30 }

31 }

32 int q = (int) Math.round(s * sum);

33 // clamp result:

34 if (q < 0) q = 0;

35 if (q > 255) q = 255;

36 ip.putPixel(u, v, q);

37 }

38 }

39 }

Prog. 5.3
Linear filter of arbitrary size
using integer coefficients
(Filter_Arbitrary). The fil-
ter matrix is an integer array
of size (2K +1) × (2L+1) with
the origin at the center ele-
ment. The summation variable
sum is also defined as an inte-
ger (int), which is scaled by a
constant factor s and rounded
in line 32. The border pixels
are not modified.

linear filters of arbitrary size. This example uses integer-valued filter
coefficients (line 6) in combination with a common scale factor s, as
described already. As usual, the “hot spot” of the filter is assumed
to be at the matrix center, and the range of all iterations depends
on the dimensions of the filter matrix. In this case, clamping of the
results is included (in lines 34–35) as a preventive measure.

5.2.7 Types of Linear Filters

Since the effects of a linear filter are solely specified by the filter
matrix (which can take on arbitrary values), an infinite number of
different linear filters exists, at least in principle. So how can these
filters be used and which filters are suited for a given task? In the
following, we briefly discuss two broad classes of linear filters that are

97

5 Filters

Fig. 5.7
Border geometry. The filter

can be applied only at lo-
cations where the kernel H
of size (2K + 1) × (2L + 1)

is fully contained in the
image (inner rectangle).

L

L

M

N

KK

H

I

u

v

No coverage

Full coverage

of key importance in practice: smoothing filters and difference filters
(Fig. 5.8).

Smoothing filters

Every filter we have discussed so far causes some kind of smoothing.
In fact, any linear filter with positive-only coefficients is a smoothing
filter in a sense, because such a filter computes merely a weighted
average of the image pixels within a certain image region.

Box filter

This simplest of all smoothing filters, whose 3D shape resembles a
box (Fig. 5.8(a)), is a well-known friend already. Unfortunately, the
box filter is far from an optimal smoothing filter due to its wild behav-
ior in frequency space, which is caused by the sharp cutoff around
its sides. Described in frequency terms, smoothing corresponds to
low-pass filtering, that is, effectively attenuating all signal compo-
nents above a given cutoff frequency (see also Chs. 18–19). The box
filter, however, produces strong “ringing” in frequency space and is
therefore not considered a high-quality smoothing filter. It may also
appear rather ad hoc to assign the same weight to all image pixels in
the filter region. Instead, one would probably expect to have stronger
emphasis given to pixels near the center of the filter than to the more
distant ones. Furthermore, smoothing filters should possibly operate
“isotropically” (i.e., uniformly in each direction), which is certainly
not the case for the rectangular box filter.

Gaussian filter

The filter matrix (Fig. 5.8(b)) of this smoothing filter corresponds to
a 2D Gaussian function,

HG,σ(x, y) = e
− x2+y2

2σ2 , (5.14)

where σ denotes the width (standard deviation) of the bell-shaped
function and r is the distance (radius) from the center. The pixel at
the center receives the maximum weight (1.0, which is scaled to the
integer value 9 in the matrix shown in Fig. 5.8(b)), and the remain-
ing coefficients drop off smoothly with increasing distance from the

98

5.3 Formal Properties
of Linear Filters

1
9
·

⎡

⎢
⎢
⎢
⎣

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎦

1
57
·

⎡

⎢
⎢
⎢
⎣

0 1 2 1 0
1 3 5 3 1
2 5 9 5 2
1 3 5 3 1
0 1 2 1 0

⎤

⎥
⎥
⎥
⎦

1
16
·

⎡

⎢
⎢
⎢
⎣

0 0 −1 0 0
0 −1 −2 −1 0

−1 −2 16 −2 −1
0 −1 −2 −1 0
0 0 −1 0 0

⎤

⎥
⎥
⎥
⎦

(a) (b) (c)

Fig. 5.8
Typical examples of linear fil-
ters, illustrated as 3D plots
(top), profiles (center), and
approximations by discrete
filter matrices (bottom). The
“box” filter (a) and the Gauss
filter (b) are both smoothing
filters with all-positive coef-
ficients. The “Laplacian” or
“Mexican hat” filter (c) is a
difference filter. It computes
the weighted difference be-
tween the center pixel and the
surrounding pixels and thus
reacts most strongly to local
intensity peaks.

center. The Gaussian filter is isotropic if the discrete filter matrix
is large enough for a sufficient approximation (at least 5 × 5). As
a low-pass filter, the Gaussian is “well-behaved” in frequency space
and thus clearly superior to the box filter. The 2D Gaussian filter
is separable into a pair of 1D filters (see Sec. 5.3.3), which facilitates
its efficient implementation.2

Difference filters

If some of the filter coefficients are negative, the filter calculation can
be interpreted as the difference of two sums: the weighted sum of all
pixels with associated positive coefficients minus the weighted sum
of pixels with negative coefficients in the filter region RH , that is,

I ′(u, v) =
∑

(i,j)∈R+

I(u+i, v+j) · |H(i, j)| −
∑

(i,j)∈R−

I(u+i, v+j) · |H(i, j)| ,
(5.15)

where R+
H and R−

H denote the partitions of the filter with positive
coefficients H(i, j) > 0 and negative coefficients H(i, j) < 0, respec-
tively. For example, the 5×5 Laplace filter in Fig. 5.8(c) computes the
difference between the center pixel (with weight 16) and the weighted
sum of 12 surrounding pixels (with weights −1 or −2). The remain-
ing 12 pixels have associated zero coefficients and are thus ignored in
the computation.

While local intensity variations are smoothed by averaging, we can
expect the exact contrary to happen when differences are taken: local
intensity changes are enhanced. Important applications of difference
filters thus include edge detection (Sec. 6.2) and image sharpening
(Sec. 6.6).

5.3 Formal Properties of Linear Filters

In the previous sections, we have approached the concept of filters
in a rather casual manner to quickly get a grasp of how filters are
defined and used. While such a level of treatment may be sufficient
for most practical purposes, the power of linear filters may not really

2 See also Sec. E in the Appendix.
99

5 Filters be apparent yet considering the limited range of (simple) applications
seen so far.

The real importance of linear filters (and perhaps their formal
elegance) only becomes visible when taking a closer look at some of
the underlying theoretical details. At this point, it may be surprising
to the experienced reader that we have not mentioned the term “con-
volution” in this context yet. We make up for this in the remaining
parts of this section.

5.3.1 Linear Convolution

The operation associated with a linear filter, as described in the pre-
vious section, is not an invention of digital image processing but has
been known in mathematics for a long time. It is called linear con-
volution3 and in general combines two functions of the same dimen-
sionality, either continuous or discrete. For discrete, 2D functions I
and H , the convolution operation is defined as

I ′(u, v) =
∞∑

i=−∞

∞∑

j=−∞
I(u−i, v−j) ·H(i, j) , (5.16)

or, expressed with the designated convolution operator (∗) in the
form

I ′ = I ∗H. (5.17)

This almost looks the same as Eqn. (5.5), with two differences: the
range of the variables i, j in the summation and the negative signs in
the coordinates of I(u − i, v − j). The first point is easy to explain:
because the coefficients outside the filter matrix H(i, j), also referred
to as a filter kernel, are assumed to be zero, the positions outside the
matrix are irrelevant in the summation. To resolve the coordinate
issue, we modify Eqn. (5.16) by replacing the summation variables
i, j to

I ′(u, v) =
∑

(i,j)∈RH

I(u−i, v−j) ·H(i, j) (5.18)

=
∑

(i,j)∈RH

I(u+i, v+j) ·H(−i,−j) (5.19)

=
∑

(i,j)∈RH

I(u+i, v+j) ·H∗(i, j). (5.20)

The result is identical to the linear filter in Eqn. (5.5), with the
H∗(i, j) = H(−i,−j) being the horizontally and vertically reflected
(i.e., rotated by 180◦) kernel H . To be precise, the operation in
Eqn. (5.5) actually defines the linear correlation, which is merely a
convolution with a reflected filter matrix.4

3 Oddly enough the simple concept of convolution is often (though un-
justly) feared as an intractable mystery.

4 Of course this is the same in the 1D case. Linear correlation is typically
used for comparing images or subpatterns (see Sec. 23.1 for details).

100

5.3 Formal Properties
of Linear Filters

I I′

H

Fig. 5.9
Convolution as a “black box”
operation. The original im-
age I is subjected to a linear
convolution (∗) with the convo-
lution kernel H, producing the
output image I′.

Thus the mathematical concept underlying all linear filters is the
convolution operation (∗) and its results are completely and suffi-
ciently specified by the convolution matrix (or kernel) H . To illus-
trate this relationship, the convolution is often pictured as a “black
box” operation, as shown in Fig. 5.9.

5.3.2 Formal Properties of Linear Convolution

The importance of linear convolution is based on its simple math-
ematical properties as well as its multitude of manifestations and
applications. Linear convolution is a suitable model for many types
of natural phenomena, including mechanical, acoustic, and optical
systems. In particular (as shown in Ch. 18), there are strong formal
links to the Fourier representation of signals in the frequency domain
that are extremely valuable for understanding complex phenomena,
such as sampling and aliasing. In the following, however, we first look
at some important properties of linear convolution in the accustomed
“signal” or image space.

Commutativity

Linear convolution is commutative; that is, for any image I and filter
kernel H ,

I ∗H = H ∗ I. (5.21)

Thus the result is the same if the image and filter kernel are inter-
changed, and it makes no difference if we convolve the image I with
the kernel H or the other way around. The two functions I and H
are interchangeable and may assume either role.

Linearity

Linear filters are so called because of the linearity properties of the
convolution operation, which manifests itself in various aspects. For
example, if an image is multiplied by a scalar constant s ∈ R, then
the result of the convolution multiplies by the same factor, that is,

(s · I) ∗H = I ∗ (s ·H) = s · (I ∗H) . (5.22)

Similarly, if we add two images I1, I2 pixel by pixel and convolve the
resulting image with some kernel H , the same outcome is obtained

101

5 Filters by convolving each image individually and adding the two results
afterward, that is,

(I1 + I2) ∗H = (I1 ∗H) + (I2 ∗H). (5.23)

It may be surprising, however, that simply adding a constant (scalar)
value b to the image does not add to the convolved result by the same
amount,

(b + I) ∗H �= b + (I ∗H), (5.24)

and is thus not part of the linearity property. While linearity is
an important theoretical property, one should note that in practice
“linear” filters are often only partially linear because of rounding
errors or a limited range of output values.

Associativity

Linear convolution is associative, meaning that the order of successive
filter operations is irrelevant, that is,

(I ∗H1) ∗H2 = I ∗ (H1 ∗H2). (5.25)

Thus multiple successive filters can be applied in any order, and
multiple filters can be arbitrarily combined into new filters.

5.3.3 Separability of Linear Filters

A direct consequence of associativity is the separability of linear fil-
ters. If a convolution kernel H can be expressed as the convolution
of multiple kernels Hi in the form

H = H1 ∗H2 ∗ . . . ∗Hn, (5.26)

then (as a consequence of Eqn. (5.25)) the filter operation I ∗H may
be performed as a sequence of convolutions with the constituting
kernels Hi,

I ∗H = I ∗ (H1 ∗H2 ∗ . . . ∗Hn)

= (. . . ((I ∗H1) ∗H2) ∗ . . . ∗Hn).
(5.27)

Depending upon the type of decomposition, this may result in signif-
icant computational savings.

x/y separability

The possibility of separating a 2D kernel H into a pair of 1D ker-
nels hx, hy is of particular relevance and is used in many practical
applications. Let us assume, as a simple example, that the filter is
composed of the 1D kernels hx and hy, with

hx =
[

1 1 1 1 1
]

and hy =

⎡

⎣

1
1
1

⎤

⎦ , (5.28)

respectively. If these filters are applied sequentially to the image I,

I ′ = (I ∗ hx) ∗ hy, (5.29)
102

5.3 Formal Properties
of Linear Filters

then (according to Eqn. (5.27)) this is equivalent to applying the
composite filter

H = hx ∗ hy =

⎡

⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤

⎦ . (5.30)

Thus the 2D 5 × 3 “box” filter H can be constructed from two 1D
filters of lengths 5 and 3, respectively (which is obviously true for
box filters of any size). But what is the advantage of this? In the
aforementioned case, the required amount of processing is 5 · 3 =
15 steps per image pixel for the 2D filter H as compared with 5 +
3 = 8 steps for the two separate 1D filters, a reduction of almost
50 %. In general, the number of operations for a 2D filter grows
quadratically with the filter size (side length) but only linearly if the
filter is x/y-separable. Clearly, separability is an eminent bonus for
the implementation of large linear filters (see also Sec. 5.5.1).

Separable Gaussian filters

In general, a 2D filter is x/y-separable if (as in the earlier example)
the filter function H(i, j) can be expressed as the outer product (⊗)
of two 1D functions,

H(i, j) = hx(i) · hy(j), (5.31)

because in this case the resulting function also corresponds to the
convolution product H = Hx ∗ Hy. A prominent example is the
widely employed 2D Gaussian function Gσ(x, y) (Eqn. (5.14)), which
can be expressed as the product

Gσ(x, y) = e− x2+y2

2σ2 (5.32)

= exp(− x2

2σ2) · exp(− y2

2σ2) = gσ(x) · gσ(y). (5.33)

Thus a 2D Gaussian filter HG
σ can be implemented by a pair of 1D

Gaussian filters hG
x,σ and hG

y,σ as

I ∗HG
σ = I ∗ hG

x,σ ∗ hG
y,σ. (5.34)

The ordering of the two 1D filters is not relevant in this case. With
different σ-values along the x and y axes, elliptical 2D Gaussians can
be realized as separable filters in the same fashion.

The Gaussian function decays relatively slowly with increasing
distance from the center. To avoid visible truncation errors, discrete
approximations of the Gaussian should have a sufficiently large extent
of about ±2.5 σ to ±3.5 σ samples. For example, a discrete 2D Gaus-
sian with “radius” σ = 10 requires a minimum filter size of 51× 51
pixels, in which case the x/y-separable version can be expected to
run about 50 times faster than the full 2D filter. The Java method
makeGaussKernel1d() in Prog. 5.4 shows how to dynamically create
a 1D Gaussian filter kernel with an extent of ±3 σ (i.e., a vector of
odd length 6 σ + 1). As an example, this method is used for imple-
menting “unsharp masking” filters where relatively large Gaussian
kernels may be required (see Prog. 6.1 in Sec. 6.6.2).

103

5 Filters

Prog. 5.4
Dynamic creation of 1D

Gaussian filter kernels. For
a given σ, the Java method

makeGaussKernel1d() returns a
discrete 1D Gaussian filter ker-
nel (float array) large enough

to avoid truncation effects.

1 float[] makeGaussKernel1d(double sigma) {

2 // create the 1D kernel h:

3 int center = (int) (3.0 * sigma);

4 float[] h = new float[2 * center + 1]; // odd size

5 // fill the 1D kernel h:

6 double sigma2 = sigma * sigma; // σ2

7 for (int i = 0; i < h.length; i++) {

8 double r = center - i;

9 h[i] = (float) Math.exp(-0.5 * (r * r) / sigma2);

10 }

11 return h;

12 }

5.3.4 Impulse Response of a Filter

Linear convolution is a binary operation involving two functions as
its operands; it also has a “neutral element”, which of course is a
function, too. The impulse or Dirac function δ() is neutral under
convolution, that is,

I ∗ δ = I. (5.35)

In the 2D, discrete case, the impulse function is defined as

δ(u, v) =
{

1 for u = v = 0,
0 otherwise.

(5.36)

Interpreted as an image, this function is merely a single bright pixel
(with value 1) at the coordinate origin contained in a dark (zero
value) plane of infinite extent (Fig. 5.10).

When the Dirac function is used as the filter kernel in a linear
convolution as in Eqn. (5.35), the result is identical to the original
image (Fig. 5.11). The reverse situation is more interesting, however,
where some filter H is applied to the impulse δ as the input function.
What happens? Since convolution is commutative (Eqn. (5.21)) it is
evident that

H ∗ δ = δ ∗H = H (5.37)

and thus the result of this filter operation is identical to the filter
H itself (Fig. 5.12)! While sending an impulse into a linear filter to
obtain its filter function may seem paradoxical at first, it makes sense
if the properties (coefficients) of the filter H are unknown. Assuming
that the filter is actually linear, complete information about this
filter is obtained by injecting only a single impulse and measuring the
result, which is called the “impulse response” of the filter. Among

Fig. 5.10
Discrete 2D impulse or
Dirac function δ(u, v).

u

v

u = 0

v = 0

δ(u, v)

104

5.4 Nonlinear Filters

I(u, v) I′(u, v) = I(u, v)
δ(i, j)

Fig. 5.11
Convolving the image I with
the impulse δ returns the origi-
nal (unmodified) image.

δ(u, v)

I′(u, v) = H(u, v)

H(i, j)

Fig. 5.12
The linear filter H with the
impulse δ as the input yields
the filter kernel H as the re-
sult.

Fig. 5.13
Any image structure is blurred
by a linear smoothing fil-
ter. Important image struc-
tures such as step edges (top)
or thin lines (bottom) are
widened, and local contrast
is reduced.

other applications, this technique is used for measuring the behavior
of optical systems (e.g., lenses), where a point light source serves as
the impulse and the result—a distribution of light energy—is called
the “point spread function” (PSF) of the system.

5.4 Nonlinear Filters

5.4.1 Minimum and Maximum Filters

Like all other filters, nonlinear filters calculate the result at a given
image position (u, v) from the pixels inside the moving region Ru,v

of the original image. The filters are called “nonlinear” because the
source pixel values are combined by some nonlinear function. The
simplest of all nonlinear filters are the minimum and maximum filters,
defined as

I ′(u, v) = min
(i,j)∈R

{I(u + i, v + j)} , (5.38)

I ′(u, v) = max
(i,j)∈R

{I(u + i, v + j)} , (5.39)

105

5 Filters

Fig. 5.14
3 × 3 linear box filter ap-
plied to a grayscale image

corrupted with salt-and-pepper
noise. Original (a), filtered
image (b), enlarged details
(c, d). Note that the indi-

vidual noise pixels are only
flattened but not removed.

Original Box filter

(a) (b)

(c) (d)

Fig. 5.15
Effects of a 1D minimum fil-

ter on different local signal
structures. Original signal

(top) and result after filtering
(bottom), where the colored

bars indicate the extent of the
filter. The step edge (a) and

the linear ramp (c) are shifted
to the right by half the filter
width, and the narrow pulse

(b) is completely removed.

Width of filter

(a) (b) (c)

where R denotes the filter region (set of filter coordinates, usually a
square of size 3× 3 pixels). Figure 5.15 illustrates the effects of a 1D
minimum filter on various local signal structures.

Figure 5.16 shows the results of applying 3 × 3 pixel minimum
and maximum filters to a grayscale image corrupted with “salt-and-
pepper” noise (i.e., randomly placed white and black dots), respec-
tively. Obviously the minimum filter removes the white (salt) dots,
because any single white pixel within the 3×3 filter region is replaced

106

5.4 Nonlinear Filters
Minimum filter Maximum filter

(a) (b)

(c) (d)

Fig. 5.16
Minimum and maximum fil-
ters applied to a grayscale
image corrupted with “salt-
and-pepper” noise (see original
in Fig. 5.14(a)). The 3 × 3
minimum filter eliminates the
bright dots and widens all dark
image structures (a, c). The
maximum filter shows the ex-
act opposite effects (b, d).

by one of its surrounding pixels with a smaller value. Notice, how-
ever, that the minimum filter at the same time widens all the dark
structures in the image.

The reverse effects can be expected from the maximum filter. Any
single bright pixel is a local maximum as soon as it is contained in the
filter region R. White dots (and all other bright image structures) are
thus widened to the size of the filter, while now the dark (“pepper”)
dots disappear.5

5.4.2 Median Filter

It is impossible of course to design a filter that removes any noise
but keeps all the important image structures intact, because no filter
can discriminate which image content is important to the viewer and
which is not. The popular median filter is at least a good step in this
direction.

5 The image shown in Figs. 5.14 and 5.16, called “Lena” (or “Lenna”), is
one of the most popular test images in digital image processing ever and
thus of historic interest. The picture of the Swedish “playmate” Lena
Sjööblom (Söderberg?), published in Playboy in 1972, was included in
a collection of test images at the University of Southern California and
was subsequently used by researches throughout the world (presumably
without knowledge of its delicate origin) [115].

107

5 Filters The median filter replaces every image pixel by the median of the
pixels in the current filter region R, that is,

I ′(u, v) = median
(i,j)∈R

{I(u + i, v + j)}. (5.40)

The median of a set of 2n+1 values A = {a0, . . . , a2n} can be defined
as the center value an after arranging (sorting) A to an ordered
sequence, that is,

median(a0, a1, . . . , an−1
︸ ︷︷ ︸

n values

, an, an+1, . . . , a2n
︸ ︷︷ ︸

n values

) = an, (5.41)

where ai ≤ ai+1. Figure 5.17 demonstrates the calculation of the
median filter of size 3× 3 (i.e., n = 4).

Fig. 5.17
Calculation of the median.
The nine pixel values col-
lected from the 3 × 3 im-

age region are arranged as a
vector that is subsequently

sorted (A). The center value
of A is taken as the median.

	

�
�

�

�

�

�
�
	
�
�

�
�
�

�

� 	 �
� � �
� �

�

a0

an−1

an+1

a2n

an =

median(A)

I A

Sort

Equation (5.41) defines the median of an odd-sized set of values,
and if the side length of the rectangular filters is odd (which is usually
the case), then the number of elements in the filter region is odd as
well. In this case, the median filter does not create any new pixel
values that did not exist in the original image. If, however, the
number of elements is even, then the median of the sorted sequence
A = (a0, . . . , a2n−1) is defined as the arithmetic mean of the two
adjacent center values an−1 and an,

median
(
a0, . . . , an−1
︸ ︷︷ ︸

n values
ai≤an

, an, . . . , a2n−1
︸ ︷︷ ︸

n values
ai≥an

)
=

an−1 + an

2
. (5.42)

By averaging an−1 and an, new pixel values are generally introduced
by the median filter if the region is of even size.

Figure 5.18 compares the results of median filtering with a linear-
smoothing filter. Finally, Fig. 5.19 illustrates the effects of a 3 × 3
pixel median filter on selected 2D image structures. In particular,
very small structures (smaller than half the filter size) are eliminated,
but all other structures remain largely unchanged. A sample Java
implementation of the median filter of arbitrary size is shown in Prog.
5.5. The constant K specifies the side length of the filter region R of
size (2r + 1)× (2r + 1). The number of elements in R (equal to the
length of the vector A) is

(2r + 1)2 = 4(r2 + r) + 1, (5.43)

and thus the index of the middle vector element is n = 2(r2 + r).
Setting r = 1 gives a 3× 3 median filter (n = 4), r = 2 gives a 5× 5

108

5.4 Nonlinear Filters
Box filter (linear) Median filter (nonlinear)

(a) (b)

(c) (d)

Fig. 5.18
Linear smoothing filter vs.
median filter applied to a
grayscale image corrupted
with salt-and-pepper noise (see
original in Fig. 5.14(a)). The
3 × 3 linear box filter (a, c)
reduces the bright and dark
peaks to some extent but is
unable to remove them com-
pletely. In addition, the entire
image is blurred. The median
filter (b, d) effectively elimi-
nates the noise dots and also
keeps the remaining structures
largely intact. However, it also
creates small spots of flat in-
tensity that noticeably affect
the sharpness.

(a) (b)

(c) (d)

Fig. 5.19
Effects of a 3 × 3 pixel median
filter on different 2D image
structures. Isolated dots are
eliminated (a), as are thin lines
(b). The step edge remains
unchanged (c), while a corner
is rounded off (d).

filter (n = 12), etc. The structure of this plugin is similar to the
arbitrary size linear filter in Prog. 5.3.

5.4.3 Weighted Median Filter

The median is a rank order statistic, and in a sense the “majority” of
the pixel values involved determine the result. A single exceptionally
high or low value (an “outlier”) cannot influence the result much but
only shift the result up or down to the next value. Thus the median
(in contrast to the linear average) is considered a “robust” measure.
In an ordinary median filter, each pixel in the filter region has the
same influence, regardless of its distance from the center.

109

5 Filters

Prog. 5.5
Median filter of arbitrary size

(Plugin Filter_Median). An
array A of type int is defined
(line 16) to hold the region’s

pixel values for each filter po-
sition (u, v). This array is

sorted by using the Java utility
method Arrays.sort() in line
32. The center element of the

sorted vector (A[n]) is taken as
the median value and stored in

the original image (line 33).

1 import ij.ImagePlus;

2 import ij.plugin.filter.PlugInFilter;

3 import ij.process.ImageProcessor;

4 import java.util.Arrays;

5

6 public class Filter_Median implements PlugInFilter {

7

8 final int r = 4; // specifies the size of the filter

9

10 public void run(ImageProcessor ip) {

11 int M = ip.getWidth();

12 int N = ip.getHeight();

13 ImageProcessor copy = ip.duplicate();

14

15 // vector to hold pixels from (2r+1)x(2r+1) neighborhood:

16 int[] A = new int[(2 * r + 1) * (2 * r + 1)];

17

18 // index of center vector element n = 2(r2 + r):

19 int n = 2 * (r * r + r);

20

21 for (int u = r; u <= M - r - 2; u++) {

22 for (int v = r; v <= N - r - 2; v++) {

23 // fill the pixel vector A for filter position (u,v):

24 int k = 0;

25 for (int i = -r; i <= r; i++) {

26 for (int j = -r; j <= r; j++) {

27 A[k] = copy.getPixel(u + i, v + j);

28 k++;

29 }

30 }

31 // sort vector A and take the center element A[n]:

32 Arrays.sort(A);

33 ip.putPixel(u, v, A[n]);

34 }

35 }

36 }

37 }

The weighted median filter assigns individual weights to the posi-
tions in the filter region, which can be interpreted as the “number of
votes” for the corresponding pixel values. Similar to the coefficient
matrix H of a linear filter, the distribution of weights is specified by
a weight matrix W , with W (i, j) ∈ N. To compute the result of the
modified filter, each pixel value I(u + i, v + j) involved is inserted
W (i, j) times into the extended pixel vector

A = (a0, . . . , aL−1) of length L =
∑

(i,j)∈R

W (i, j). (5.44)

This vector is again sorted, and the resulting center value is taken as
the median, as in the standard median filter. Figure 5.21 illustrates
the computation of the weighted median filter using the 3× 3 weight
matrix

110

5.4 Nonlinear Filters
Median Filter Weighted Median Filter

(a) (b)

(c) (d)

Fig. 5.20
Ordinary vs. weighted median
filter. Compared to the ordi-
nary median filter (a, c), the
weighted median (b, d) shows
superior preservation of struc-
tural details. Both filters are of
size 3 × 3; the weight matrix
in Eqn. (5.45) was used for the
weighted median filter.

W =

⎡

⎣

1 2 1
2 3 2
1 2 1

⎤

⎦ , (5.45)

which requires an extended pixel vector of length L = 15, equal
to the sum of the weights in W . If properly used, the weighted
median filter yields effective noise removal with good preservation of
structural details (see Fig. 5.20 for an example).

Of course this method may also be used to implement ordinary
median filters of nonrectangular shape; for example, a cross-shaped
median filter can be defined with the weight matrix

W + =

⎡

⎣

0 1 0
1 1 1
0 1 0

⎤

⎦ . (5.46)

Not every arrangement of weights is useful, however. In particular, if
the weight assigned to the center pixel is greater than the sum of all
other weights, then that pixel would always have the “majority vote”
and dictate the resulting value, thus inhibiting any filter effect.

5.4.4 Other Nonlinear Filters

Median and weighted median filters are two examples of nonlinear
filters that are easy to describe and frequently used. Since “nonlin-

111

5 Filters

Fig. 5.21
Weighted median example.
Each pixel value is inserted
into the extended pixel vec-
tor multiple times, as spec-

ified by the weight matrix
W . For example, the value

0 from the center pixel is
inserted three times (since

W (0, 0) = 3) and the pixel
value 7 twice. The pixel vector

is sorted and the center value
(2) is taken as the median.

�
	

�
�

�

�
�

�

� 	 �
� � �
� �

� � �
� � �
� � �

	

�
�

�

�

�

�

	

�

�

�

�

�

	

�
�

�

�

�
�

a0

an−1

an+1

a2n

an =

weighted
median

I(u, v)

W (i, j)

A

Sort

ear” refers to anything that is not linear, there are a multitude of
filters that fall into this category, including the morphological filters
for binary and grayscale images, which are discussed in Ch. 9. Other
types of nonlinear filters, such as the corner detector described in
Ch. 7, are often described algorithmically and thus defy a simple,
compact description.

In contrast to the linear case, there is usually no “strong theory”
for nonlinear filters that could, for example, describe the relationship
between the sum of two images and the results of a median filter,
as does Eqn. (5.23) for linear convolution. Similarly, not much (if
anything) can be stated in general about the effects of nonlinear
filters in frequency space.

5.5 Implementing Filters

5.5.1 Efficiency of Filter Programs

Computing the results of filters is computationally expensive in most
cases, especially with large images, large filter kernels, or both. Given
an image of size M ×N and a filter kernel of size (2K +1)× (2L+1),
a direct implementation requires

2K ·2L·M ·N = 4 KLMN (5.47)

operations, namely multiplications and additions (in the case of a
linear filter). Thus if both the image and the filter are simply assumed
to be of size N ×N , the time complexity of direct filtering is O(N4).
As described in Sec. 5.3.3, substantial savings are possible when large,
2D filters can be decomposed (separated) into smaller, possibly 1D
filters.

The programming examples in this chapter are deliberately de-
signed to be simple and easy to understand, and none of the solutions
shown is particularly efficient. Possibilities for tuning and code opti-
mization exist in many places. It is particularly important to move
all unnecessary instructions out of inner loops if possible because

112

5.5 Implementing
Filters

these are executed most often. This applies especially to “expensive”
instructions, such as method invocations, which may be relatively
time-consuming.

In the examples, we have intentionally used the ImageJ standard
methods getPixel() for reading and putPixel() for writing image
pixels, which is the simplest and safest approach to accessing image
data but also the slowest, of course. Substantial speed can be gained
by using the quicker read and write methods get() and set() defined
for class ImageProcessor and its subclasses. Note, however, that
these methods do not check if the passed image coordinates are valid.
Maximum performance can be obtained by accessing the pixel arrays
directly.

5.5.2 Handling Image Borders

As mentioned briefly in Sec. 5.2.2, the image borders require special
attention in most filter implementations. We have argued that the-
oretically no filter results can be computed at positions where the
filter matrix is not fully contained in the image array. Thus any filter
operation would reduce the size of the resulting image, which is not
acceptable in most applications. While no formally correct remedy
exists, there are several more or less practical methods for handling
the remaining border regions:

Method 1: Set the unprocessed pixels at the borders to some con-
stant value (e.g., “black”). This is certainly the simplest method,
but not acceptable in many situations because the image size is
incrementally reduced by every filter operation.

Method 2: Set the unprocessed pixels to the original (unfiltered)
image values. Usually the results are unacceptable, too, due to
the noticeable difference between filtered and unprocessed image
parts.

Method 3: Expand the image by “padding” additional pixels
around it and apply the filter to the border regions as well. Fig.
5.22 shows different options for padding images.
A. The pixels outside the image have a constant value (e.g.,

“black” or“gray”, see Fig. 5.22(a)). This may produce strong
artifacts at the image borders, particularly when large filters
are used.

B. The border pixels extend beyond the image boundaries (Fig.
5.22(b)). Only minor artifacts can be expected at the bor-
ders. The method is also simple to compute and is thus often
considered the method of choice.

C. The image is mirrored at each of its four boundaries (Fig.
5.22(c)). The results will be similar to those of the previous
method unless very large filters are used.

D. The image repeats periodically in the horizontal and vertical
directions (Fig. 5.22(d)). This may seem strange at first, and
the results are generally not satisfactory. However, in discrete
spectral analysis, the image is implicitly treated as a periodic
function, too (see Ch. 18). Thus, if the image is filtered in
the frequency domain, the results will be equal to filtering in
the space domain under this repetitive model.

113

5 Filters

Fig. 5.22
Methods for padding the im-

age to facilitate filtering along
the borders. The assump-
tion is that the (nonexist-

ing) pixels outside the orig-
inal image are either set to

some constant value (a), take
on the value of the closest
border pixel (b), are mir-

rored at the image bound-
aries (c), or repeat periodically
along the coordinate axes (d).

(a)

(b) (c)

(d) (e)

None of these methods is perfect and, as usual, the right choice de-
pends upon the type of image and the filter applied. Notice also that
the special treatment of the image borders may sometimes require
more programming effort (and computing time) than the processing
of the interior image.

5.5.3 Debugging Filter Programs

Experience shows that programming errors can hardly ever be avoided,
even by experienced practitioners. Unless errors occur during execu-
tion (usually caused by trying to access nonexistent array elements),
filter programs always “do something” to the image that may be sim-
ilar but not identical to the expected result. To assure that the code
operates correctly, it is not advisable to start with full, large images
but first to experiment with small test cases for which the outcome
can easily be predicted. Particularly when implementing linear fil-
ters, a first “litmus test” should always be to inspect the impulse
response of the filter (as described in Sec. 5.3.4) before processing
any real images.

114

5.6 Filter Operations
in ImageJ

5.6 Filter Operations in ImageJ

ImageJ offers a collection of readily available filter operations, many
of them contributed by other authors using different styles of imple-
mentation. Most of the available operations can also be invoked via
ImageJ’s Process menu.

5.6.1 Linear Filters

Filters based on linear convolution are implemented by the Im-
ageJ plugin class ij.plugin.filter.Convolver, which offers useful
“public” methods in addition to the standard run() method. Usage
of this class is illustrated by the following example that convolves an
8-bit grayscale image with the filter kernel from Eqn. (5.7):

H =

⎡

⎣

0.075 0.125 0.075
0.125 0.200 0.125
0.075 0.125 0.075

⎤

⎦ .

In the following run() method, we first define the filter matrix H as a
1D float array (notice the syntax for the float constants “0.075f”,
etc.) and then create a new instance (cv) of class Convolver in line 8:

import ij.plugin.filter.Convolver;

...

public void run(ImageProcessor I) {

float[] H = { // coefficient array H is one-dimensional!

0.075f, 0.125f, 0.075f,

0.125f, 0.200f, 0.125f,

0.075f, 0.125f, 0.075f };

Convolver cv = new Convolver();

cv.setNormalize(true); // turn on filter normalization

cv.convolve(I, H, 3, 3); // apply the filter H to I

}

The invocation of the method convolve() applies the filter H to the
image I. It requires two additional arguments for the dimensions of
the filter matrix since H is passed as a 1D array. The image I is
destructively modified by the convolve operation.

In this case, one could have also used the nonnormalized, integer-
valued filter matrix given in Eqn. (5.10) because convolve() normal-
izes the given filter automatically (after cv.setNormalize(true)).

5.6.2 Gaussian Filters

The ImageJ class ij.plugin.filter.GaussianBlur implements a
simple Gaussian blur filter with arbitrary radius (σ). The filter uses
separable 1D Gaussians as described in Sec. 5.3.3. Here is an example
showing its application with σ = 2.5:

import ij.plugin.filter.GaussianBlur;

...

public void run(ImageProcessor I) {

GaussianBlur gb = new GaussianBlur();
115

5 Filters double sigmaX = 2.5;

double sigmaY = sigmaX;

double accuracy = 0.01;

gb.blurGaussian(I, sigmaX, sigmaY, accuracy);

...

}

The accuracy value specifies the size of the discrete filter kernel.
Higher accuracy reduces truncation errors but requires larger kernels
and more processing time.

An alternative implementation of separable Gaussian filters can
be found in Prog. 6.1 (see p. 145), which uses the method make-

GaussKernel1d() defined in Prog. 5.4 (page 104) for dynamically
calculating the required 1D filter kernels.

5.6.3 Nonlinear Filters

A small set of nonlinear filters is implemented in the ImageJ class
ij.plugin.filter.RankFilters, including the minimum, maxi-
mum, and standard median filters. The filter region is (approxi-
mately) circular with variable radius. Here is an example that applies
three different filters with the same radius in sequence:

import ij.plugin.filter.RankFilters;

...

public void run(ImageProcessor I) {

RankFilters rf = new RankFilters();

double radius = 3.5;

rf.rank(I, radius, RankFilters.MIN); // minimum filter

rf.rank(I, radius, RankFilters.MAX); // maximum filter

rf.rank(I, radius, RankFilters.MEDIAN); // median filter

}

5.7 Exercises

Exercise 5.1. Explain why the “custom filter” in Adobe Photoshop
(Fig. 5.6) is not strictly a linear filter.

Exercise 5.2. Determine the possible maximum and minimum re-
sults (pixel values) for the following linear filter, when applied to an
8-bit grayscale image (with pixel values in the range [0, 255]):

H =

⎡

⎣

−1 −2 0
−2 0 2

0 2 1

⎤

⎦ .

Assume that no clamping of the results occurs.

Exercise 5.3. Modify the ImageJ plugin shown in Prog. 5.3 such
that the image borders are processed as well. Use one of the methods
for extending the image outside its boundaries as described in Sec.
5.5.2.

Exercise 5.4. Show that a standard box filter is not isotropic (i.e.,
does not smooth the image identically in all directions).

116

5.7 ExercisesExercise 5.5. Explain why the clamping of results to a limited range
of pixel values may violate the linearity property (Sec. 5.3.2) of linear
filters.

Exercise 5.6. Verify the properties of the impulse function with re-
spect to linear filters (see Eqn. (5.37)). Create a black image with
a white pixel at its center and use this image as the 2D impulse.
See if linear filters really deliver the filter matrix H as their impulse
response.

Exercise 5.7. Describe the effects of the linear filters with the fol-
lowing kernels:

H1 =

⎡

⎣

0 0 0
0 0 1
0 0 0

⎤

⎦ , H2 =

⎡

⎣

0 0 0
0 2 0
0 0 0

⎤

⎦ , H3 =
1
3
·

⎡

⎣

0 0 1
0 1 0
1 0 0

⎤

⎦ .

Exercise 5.8. Design a linear filter (kernel) that creates a horizontal
blur over a length of 7 pixels, thus simulating the effect of camera
movement during exposure.

Exercise 5.9. Compare the number of processing steps required for
non-separable linear filters and x/y-separable filters sized 5× 5, 11×
11, 25 × 25, and 51 × 51 pixels. Compute the speed gain resulting
from separability in each case.

Exercise 5.10. Program your own ImageJ plugin that implements a
Gaussian smoothing filter with variable filter width (radius σ). The
plugin should dynamically create the required filter kernels with a
size of at least 5σ in both directions. Make use of the fact that the
Gaussian function is x/y-separable (see Sec. 5.3.3).

Exercise 5.11. The Laplacian of Gaussian (LoG) filter (see Fig. 5.8)
is based on the sum of the second derivatives of the 2D Gaussian. It
is defined as

Lσ(x, y) = −
(x2 + y2 − 2 · σ2

σ4

)

· e− x2+y2

2·σ2 . (5.48)

Implement the LoG filter as an ImageJ plugin of variable width (σ),
analogous to Exercise 5.10. Find out if the LoG function is x/y-
separable.

Exercise 5.12. Implement a circular (i.e., disk-shaped) median filter
for grayscale images. Make the filter’s radius r adjustable in the range
from 1 to 10 pixels (e.g., using ImageJ’s GenericDialog class). Use a
binary (0/1) disk-shaped mask to represent the filter’s support region
R, with a minimum size of (2r+1)×(2r+1), as shown in Fig. 5.23(a).
Create this mask dynamically for the chosen filter radius r (see Fig.
5.23(c–h) for typical results).

Exercise 5.13. Implement a weighted median filter (see Sec. 5.4.3)
as an ImageJ plugin, specifying the weights as a constant, 2D int

array. Test the filter on suitable images and compare the results with
those from a standard median filter. Explain why, for example, the
following weight matrix does not make sense:

117

5 Filters

Fig. 5.23
Disk-shaped median filter.
Example of a binary mask

to represent the support re-
gion R with radius r = 8 (a).

The origin of the filter re-
gion is located at its center.

Synthetic test image (b).
Results of the median fil-

ter for r = 1, . . . , 6 (c–h).

(a) (b)

(c) r = 1 (d) r = 2 (e) r = 3

(f) r = 4 (g) r = 5 (h) r = 6

W =

⎡

⎣

0 1 0
1 5 1
0 1 0

⎤

⎦ .

Exercise 5.14. The “jitter” filter is a (quite exotic) example for a
nonhomogeneous filter. For each image position, it selects a space-
variant filter kernel (of size 2r + 1) containing a single, randomly
placed impulse (1); for example,

Hu,v =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

(5.49)

for r = 2. The position of the 1-value in the kernel Hu,v is uniformly
distributed in the range i, j ∈ [−r, r]; thus the filter effectively picks
a random pixel value from the surrounding (2r + 1)× (2r + 1) neigh-
borhood. Implement this filter for r = 3, 5, 10, as shown in Fig. 5.24.
Is this filter linear or nonlinear? Develop another version using a
Gaussian random distribution.

118

5.7 Exercises

Original r = 3

r = 5 r = 10

Fig. 5.24
Jitter filter example.

119

6

Edges and Contours

Prominent image “events” originating from local changes in inten-
sity or color, such as edges and contours, are of high importance for
the visual perception and interpretation of images. The perceived
amount of information in an image appears to be directly related to
the distinctiveness of the contained structures and discontinuities. In
fact, edge-like structures and contours seem to be so important for
our human visual system that a few lines in a caricature or illus-
tration are often sufficient to unambiguously describe an object or a
scene. It is thus no surprise that the enhancement and detection of
edges has been a traditional and important topic in image processing
as well. In this chapter, we first look at simple methods for localizing
edges and then attend to the related issue of image sharpening.

6.1 What Makes an Edge?

Edges and contours play a dominant role in human vision and prob-
ably in many other biological vision systems as well. Not only are
edges visually striking, but it is often possible to describe or recon-
struct a complete figure from a few key lines, as the example in Fig.
6.1 shows. But how do edges arise, and how can they be technically
localized in an image?

(a) (b)

Fig. 6.1
Edges play an important role
in human vision. Original im-
age (a) and edge image (b).

121
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_6

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

6 Edges and Contours Edges can roughly be described as image positions where the lo-
cal intensity changes distinctly along a particular orientation. The
stronger the local intensity change, the higher is the evidence for an
edge at that position. In mathematics, the amount of change with
respect to spatial distance is known as the first derivative of a func-
tion, and we thus start with this concept to develop our first simple
edge detector.

6.2 Gradient-Based Edge Detection

For simplicity, we first investigate the situation in only one dimen-
sion, assuming that the image contains a single bright region at the
center surrounded by a dark background (Fig. 6.2(a)). In this case,
the intensity profile along one image line would look like the 1D func-
tion f(x), as shown in Fig. 6.2(b). Taking the first derivative of the
function f ,

f ′(x) =
df

dx
(x), (6.1)

results in a positive swing at those positions where the intensity rises
and a negative swing where the value of the function drops (Fig.
6.2(c)).

Fig. 6.2
Sample image and first deriva-
tive in one dimension: original

image (a), horizontal inten-
sity profile f(x) along the
center image line (b), and

first derivative f ′(x) (c).

(a)

0

0 x

x

f(x)

f ′(x)

(b)

(c)

Unlike in the continuous case, however, the first derivative is un-
defined for a discrete function f(u) (such as the line profile of a real
image), and some method is needed to estimate it. Figure 6.3 shows
the basic idea, again for the 1D case: the first derivative of a con-
tinuous function at position x can be interpreted as the slope of its
tangent at this position. One simple method for roughly approximat-
ing the slope of the tangent for a discrete function f(u) at position u
is to fit a straight line through the neighboring function values f(u−1)
and f(u+1),

df

dx
(u) ≈ f(u+1)− f(u−1)

(u+1)− (u−1)
=

f(u+1)− f(u−1)
2

. (6.2)

Of course, the same method can be applied in the vertical direction
to estimate the first derivative along the y-axis, thats is, along the
image columns.

122

6.2 Gradient-Based
Edge Detection

uu−1 u+1

f(u)

uu−1 u+1

f(u)

(a) (b)

Fig. 6.3
Estimating the first derivative
of a discrete function.The slope
of the straight (dashed) line
between the neighboring func-
tion values f(u−1) and f(u+1)
is taken as the estimate for the
slope of the tangent (i.e., the
first derivative) at f(u).

6.2.1 Partial Derivatives and the Gradient

A derivative of a multi-dimensional function taken along one of its
coordinate axes is called a partial derivative; for example,

Ix =
∂I

∂x
(u, v) and Iy =

∂I

∂y
(u, v) (6.3)

are the partial derivatives of the 2D image function I(u, v) along the
u and v axes, respectively.1 The vector

∇I(u, v) =
(

Ix(u, v)
Iy(u, v)

)

=

(
∂I
∂x(u, v)
∂I
∂y (u, v)

)

(6.4)

is called the gradient of the function I at position (u, v). The mag-
nitude of the gradient,

|∇I| =
√

I2
x + I2

y , (6.5)

is invariant under image rotation and thus independent of the orien-
tation of the underlying image structures. This property is important
for isotropic localization of edges, and thus |∇I| is the basis of many
practical edge detection methods.

6.2.2 Derivative Filters

The components of the gradient function (Eqn. (6.4)) are simply the
first derivatives of the image lines (Eqn. (6.1)) and columns along the
horizontal and vertical axes, respectively. The approximation of the
first horizontal derivatives (Eqn. (6.2)) can be easily implemented by
a linear filter (see Sec. 5.2) with the 1D kernel

HD
x =

[
−0.5 0 0.5

]
= 0.5 ·

[
−1 0 1

]
, (6.6)

where the coefficients −0.5 and +0.5 apply to the image elements
I(u−1, v) and I(u+1, v), respectively. Notice that the center pixel
I(u, v) itself is weighted with the zero coefficient and is thus ignored.
Analogously, the vertical component of the gradient is obtained with
the linear filter

1 ∂ denotes the partial derivative or “del” operator.
123

6 Edges and Contours

Fig. 6.4
Partial derivatives of a 2D

function: synthetic image func-
tion I (a); approximate first

derivatives in the horizon-
tal direction ∂I/∂u (b) and
the vertical direction ∂I/∂v
(c); magnitude of the result-
ing gradient |∇I| (d). In (b)

and (c), the lowest (negative)
values are shown black, the

maximum (positive) values are
white, and zero values are gray.

(a) I (b) Ix

(c) Iy (d) |∇I|

HD
y =

⎡

⎣

−0.5
0
0.5

⎤

⎦ = 0.5 ·

⎡

⎣

−1
0
1

⎤

⎦ . (6.7)

Figure 6.4 shows the results of applying the gradient filters defined
in Eqn. (6.6) and Eqn. (6.7) to a synthetic test image.

The orientation dependence of the filter responses can be seen
clearly. The horizontal gradient filter HD

x reacts most strongly to
rapid changes along the horizontal direction, (i.e., to vertical edges);
analogously the vertical gradient filter HD

y reacts most strongly to
horizontal edges. The filter response is zero in flat image regions
(shown as gray in Fig. 6.4(b, c)).

6.3 Simple Edge Operators

The local gradient of the image function is the basis of many classical
edge-detection operators. Practically, they only differ in the type of
filter used for estimating the gradient components and the way these
components are combined. In many situations, one is not only in-
terested in the strength of edge points but also in the local direction
of the edge. Both types of information are contained in the gradient
function and can be easily computed from the directional compo-
nents. The following small collection describes some frequently used,
simple edge operators that have been around for many years and are
thus interesting from a historic perspective as well.

124

6.3 Simple Edge
Operators

6.3.1 Prewitt and Sobel Operators

The edge operators by Prewitt [191] and Sobel [61] are two classic
methods that differ only marginally in the derivative filters they use.

Gradient filters

Both operators use linear filters that extend over three adjacent
lines and columns, respectively, to counteract the noise sensitivity
of the simple (single line/column) gradient operators (Eqns. (6.6)
and (6.7)). The Prewitt operator uses the filter kernels

HP
x =

⎡

⎣

−1 0 1
−1 0 1
−1 0 1

⎤

⎦ and HP
y =

⎡

⎣

−1 −1 −1
0 0 0
1 1 1

⎤

⎦ , (6.8)

which compute the average gradient components across three neigh-
boring lines or columns, respectively. When the filters are written in
separated form,

HP
x =

⎡

⎣

1
1
1

⎤

⎦ ∗
[
−1 0 1

]
and HP

y =
[

1 1 1
]
∗

⎡

⎣

−1
0
1

⎤

⎦ , (6.9)

respectively, it becomes obvious that HP
x performs a simple (box)

smoothing over three lines before computing the x gradient (Eqn.
(6.6)), and analogously HP

y smooths over three columns before com-
puting the y gradient (Eqn. (6.7)).2 Because of the commutativity
property of linear convolution, this could equally be described the
other way around, with smoothing being applied after the computa-
tion of the gradients.

The filters for the Sobel operator are almost identical; however,
the smoothing part assigns higher weight to the current center line
and column, respectively:

HS
x =

⎡

⎣

−1 0 1
−2 0 2
−1 0 1

⎤

⎦ and HS
y =

⎡

⎣

−1−2−1
0 0 0
1 2 1

⎤

⎦ . (6.10)

The estimates for the local gradient components are obtained from
the filter results by appropriate scaling, that is,

∇I(u, v) ≈ 1
6
·
((

I ∗HP
x

)
(u, v)

(
I ∗HP

y

)
(u, v)

)

(6.11)

for the Prewitt operator and

∇I(u, v) ≈ 1
8
·
((

I ∗HS
x

)
(u, v)

(
I ∗HS

y

)
(u, v)

)

(6.12)

for the Sobel operator.

2 In Eqn. (6.9), ∗ is the linear convolution operator (see Sec. 5.3.1).
125

6 Edges and Contours

Fig. 6.5
Calculation of edge magnitude

and orientation (geometry).

Ix(u, v)

Iy(u, v)

E(u, v)

Φ(u, v)

(u, v)

Edge

Edge strength and orientation

In the following, we denote the scaled filter results (obtained with
either the Prewitt or Sobel operator) as

Ix = I ∗Hx and Iy = I ∗Hy.

In both cases, the local edge strength E(u, v) is defined as the gradi-
ent magnitude

E(u, v) =
√

I2
x(u, v) + I2

y (u, v) (6.13)

and the local edge orientation angle Φ(u, v) is3

Φ(u, v) = tan−1
(Iy(u, v)

Ix(u, v)

)

= ArcTan
(
Ix(u, v), Iy(u, v)

)
, (6.14)

as illustrated in Fig. 6.5.
The whole process of extracting the edge magnitude and orien-

tation is summarized in Fig. 6.6. First, the original image I is inde-
pendently convolved with the two gradient filters Hx and Hy, and
subsequently the edge strength E and orientation Φ are computed
from the filter results. Figure 6.7 shows the edge strength and ori-
entation for two test images, obtained with the Sobel filters in Eqn.
(6.10).

Fig. 6.6
Typical process of gradient-
based edge extraction. The
linear derivative filters HD

x

and HD
y produce two gradi-

ent images, Ix and Iy , re-
spectively. They are used to

compute the edge strength
E and orientation Φ for

each image position (u, v).

I

HD
x

HD
y

Ix

Iy

E

Φ

√
I2

x + I2
y

tan−1

(
Iy
Ix

)

The estimate of the edge orientation based on the original Prewitt
and Sobel filters is relatively inaccurate, and improved versions of the
Sobel filters were proposed in [126, p. 353] to minimize the orientation
errors:

3 See the hints in Sec. F.1.6 in the Appendix for computing the inverse
tangent tan−1(y/x) with the ArcTan(x, y) function.

126

6.3 Simple Edge
Operators

(a)

(b)

(c)

(d)

Fig. 6.7
Edge strength and orienta-
tion obtained with a Sobel
operator. Original images (a),
the edge strength E(u, v) (b),
and the local edge orientation
Φ(u, v) (c). The images in (d)
show the orientation angles
coded as color hues, with the
edge strength controlling the
color saturation (see Sec. 12.2.3
for the corresponding defini-
tions).

HS′

x =
1
32
·

⎡

⎣

−3 0 3
−10 0 10
−3 0 3

⎤

⎦ and HS′

y =
1
32
·

⎡

⎣

−3 −10 −3
0 0 0
3 10 3

⎤

⎦ . (6.15)

These edge operators are frequently used because of their good results
(see also Fig. 6.11) and simple implementation. The Sobel operator,
in particular, is available in many image-processing tools and software
packages (including ImageJ).

6.3.2 Roberts Operator

As one of the simplest and oldest edge finders, the Roberts operator
[199] today is mainly of historic interest. It employs two extremely
small filters of size 2× 2 for estimating the directional gradient along

127

6 Edges and Contours

Fig. 6.8
Diagonal gradient com-

ponents produced by
the two Roberts filters.

D1 = I ∗ HR
1 D2 = I ∗ HR

2

the image diagonals:

HR
1 =

[
0 1

−1 0

]

and HR
2 =

[
−1 0

0 1

]

. (6.16)

These filters naturally respond to diagonal edges but are not highly
selective to orientation; that is, both filters show strong results over
a relatively wide range of angles (Fig. 6.8). The local edge strength
is calculated by measuring the length of the resulting 2D vector,
similar to the gradient computation but with its components rotated
45◦ (Fig. 6.9).

Fig. 6.9
Definition of edge strength

for the Roberts operator. The
edge strength E(u, v) corre-
sponds to the length of the
vector obtained by adding
the two orthogonal gradi-
ent components (filter re-

sults) D1(u, v) and D2(u, v).

D1

D2

x

y

E =
√

D2
1 + D2

2

6.3.3 Compass Operators

The design of linear edge filters involves a trade-off: the stronger
a filter responds to edge-like structures, the more sensitive it is to
orientation. In other words, filters that are orientation insensitive
tend to respond to nonedge structures, while the most discriminating
edge filters only respond to edges in a narrow range of orientations.
One solution is to use not only a single pair of relatively “wide” filters
for two directions (such as the Prewitt and the simple Sobel operator
discussed in Sec. 6.3.1) but a larger set of filters with narrowly spaced
orientations.

Extended Sobel operator

Classic examples are the edge operator proposed by Kirsch [136] and
the “extended Sobel” or Robinson operator [200], which employs the
following eight filters with orientations spaced at 45◦:

128

6.3 Simple Edge
OperatorsHES

0 =

⎡

⎣

−1 0 1
−2 0 2
−1 0 1

⎤

⎦ , HES
1 =

⎡

⎣

−2 −1 0
−1 0 1

0 1 2

⎤

⎦ , (6.17)

HES
2 =

⎡

⎣

−1 −2 −1
0 0 0
1 2 1

⎤

⎦ , HES
3 =

⎡

⎣

0 −1 −2
1 0 −1
2 1 0

⎤

⎦ , (6.18)

HES
4 =

⎡

⎣

1 0 −1
2 0 −2
1 0 −1

⎤

⎦ , HES
5 =

⎡

⎣

2 1 0
1 0 −1
0 −1 −2

⎤

⎦ , (6.19)

HES
6 =

⎡

⎣

1 2 1
0 0 0

−1 −2 −1

⎤

⎦ , HES
7 =

⎡

⎣

0 1 2
−1 0 1
−2 −1 0

⎤

⎦ . (6.20)

Only the results of four of these eight filters (HES
0 , HES

1 , . . . , HES
7)

must actually be computed since the remaining four are identical
except for the reversed sign. For example, from the fact that HES

4 =
−HES

0 and the convolution being linear (Eqn. (5.22)), it follows that

I ∗HES
4 = I ∗ −HES

0 = −(I ∗HES
0) , (6.21)

that is, the result for filter HS
4 is simply the negative result for filter

HS
0 . The directional outputs D0, D1, . . . D7 for the eight Sobel filters

can thus be computed as follows:

D0 ← I ∗HES
0 , D1 ← I ∗HES

1 , D2 ← I ∗HES
2 , D3 ← I ∗HES

3 ,
D4 ← −D0, D5 ← −D1, D6 ← −D2, D7 ← −D3.

(6.22)
The edge strength ES at position (u, v) is defined as the maximum
of the eight filter outputs; that is,

EES(u, v) = max
(
D0(u, v), D1(u, v), . . . , D7(u, v)

)
(6.23)

= max
(
|D0(u, v)|, |D1(u, v)|, |D2(u, v)|, |D3(u, v)|

)
,

and the strongest-responding filter also determines the local edge
orientation as

ΦES(u, v) =
π

4
j , with j = argmax

0≤i≤7
Di(u, v). (6.24)

Kirsch operator

Another classic compass operator is the one proposed by Kirsch [136],
which also employs eight oriented filters with the following kernels:

HK
0 =

⎡

⎣

−5 3 3
−5 0 3
−5 3 3

⎤

⎦ , HK
4 =

⎡

⎣

3 3 −5
3 0 −5
3 3 −5

⎤

⎦ , (6.25)

HK
1 =

⎡

⎣

−5 −5 3
−5 0 3

3 3 3

⎤

⎦ , HK
5 =

⎡

⎣

3 3 3
3 0 −5
3 −5 −5

⎤

⎦ , (6.26)

HK
2 =

⎡

⎣

−5 −5 −5
3 0 3
3 3 3

⎤

⎦ , HK
6 =

⎡

⎣

3 3 3
3 0 3

−5 −5 −5

⎤

⎦ , (6.27)

HK
3 =

⎡

⎣

3 −5 −5
3 0 −5
3 3 3

⎤

⎦ , HK
7 =

⎡

⎣

3 3 3
−5 0 3
−5 −5 3

⎤

⎦ . (6.28)

129

6 Edges and Contours Again, because of the symmetries, only four of the eight filters need
to be applied and the results may be combined in the same way as
already described for the extended Sobel operator.

In practice, this and other “compass operators” show only minor
benefits over the simpler operators described earlier, including the
small advantage of not requiring the computation of square roots
(which is considered a relatively “expensive” operation).

6.3.4 Edge Operators in ImageJ

The current version of ImageJ implements the Sobel operator (as
described in Eqn. (6.10)) for practically any type of image. It can be
invoked via the

Process ⊲ Find Edges

menu and is also available through the method void findEdges()

for objects of type ImageProcessor.

6.4 Other Edge Operators

One problem with edge operators based on first derivatives (as de-
scribed in the previous section) is that each resulting edge is as wide
as the underlying intensity transition and thus edges may be difficult
to localize precisely. An alternative class of edge operators makes use
of the second derivatives of the image function, including some pop-
ular modern edge operators that also address the problem of edges
appearing at various levels of scale. These issues are briefly discussed
in the following.

6.4.1 Edge Detection Based on Second Derivatives

The second derivative of a function measures its local curvature. The
idea is that edges can be found at zero positions or—even better—at
the zero crossings of the second derivatives of the image function,
as illustrated in Fig. 6.10 for the 1D case. Since second derivatives
generally tend to amplify image noise, some sort of presmoothing is
usually applied with suitable low-pass filters.

A popular example is the “Laplacian-of-Gaussian” (LoG) oper-
ator [161], which combines gGussian smoothing and computing the
second derivatives (see the Laplace Filter in Sec. 6.6.1) into a single
linear filter. The example in Fig. 6.11 shows that the edges produced
by the LoG operator are more precisely localized than the ones deliv-
ered by the Prewitt and Sobel operators, and the amount of “clutter”
is comparably small. Details about the LoG operator and a compre-
hensive survey of common edge operators can be found in [203, Ch. 4]
and [165].

6.4.2 Edges at Different Scales

Unfortunately, the results of the simple edge operators we have dis-
cussed so far often deviate from what we as humans perceive as im-
portant edges. The two main reasons for this are:

130

6.4 Other Edge
Operators

0

0

0

x

x

x

f(x)

f ′(x)

f ′′(x)

Zero crossing

(a)

(b)

(c)

Fig. 6.10
Principle of edge detection
with the second derivative:
original function (a), first
derivative (b), and second
derivative (c). Edge points
are located where the second
derivative crosses through zero
and the first derivative has a
high magnitude.

• First, edge operators only respond to local intensity differences,
while our visual system is able to extend edges across areas of
minimal or vanishing contrast.

• Second, edges exist not at a single fixed resolution or at a certain
scale but over a whole range of different scales.

Typical small edge operators, such as the Sobel operator, can only
respond to intensity differences that occur within their 3 × 3 pixel
filter regions. To recognize edge-like events over a greater horizon, we
would either need larger edge operators (with correspondingly large
filters) or to use the original (small) operators on reduced (i.e., scaled)
images. This is the principal idea of “multiresolution” techniques
(also referred to as “hierarchical” or “pyramid” techniques), which
have traditionally been used in many image-processing applications
[41, 151]. In the context of edge detection, this typically amounts to
detecting edges at various scale levels first and then deciding which
edge (if any) at which scale level is dominant at each image position.

6.4.3 From Edges to Contours

Whatever method is used for edge detection, the result is usually a
continuous value for the edge strength for each image position and
possibly also the angle of local edge orientation. How can this in-
formation be used, for example, to find larger image structures and
contours of objects in particular?

Binary edge maps

In many situations, the next step after edge enhancement (by some
edge operator) is the selection of edge points, a binary decision about

131

6 Edges and Contours whether an image pixel is an edge point or not. The simplest method
is to apply a threshold operation to the edge strength delivered by
the edge operator using either a fixed or adaptive threshold value,
which results in a binary edge image or “edge map”.

In practice, edge maps hardly ever contain perfect contours but
instead many small, unconnected contour fragments, interrupted at
positions of insufficient edge strength. After thresholding, the empty
positions of course contain no edge information at all that could pos-
sibly be used in a subsequent step, such as for linking adjacent edge
segments. Despite this weakness, global thresholding is often used at
this point because of its simplicity, and some common postprocess-
ing methods, such as the Hough transform (see Ch. 8), can cope well
with incomplete edge maps.

Contour following

The idea of tracing contours sequentially along the discovered edge
points is not uncommon and appears quite simple in principle. Start-
ing from an image point with high edge strength, the edge is followed
iteratively in both directions until the two traces meet and a closed
contour is formed. Unfortunately, there are several obstacles that
make this task more difficult than it seems at first, including the
following:

• edges may end in regions of vanishing intensity gradient,
• crossing edges lead to ambiguities, and
• contours may branch into several directions.

Because of these problems, contour following usually is not applied
to original images or continuous-valued edge images except in very
simple situations, such as when there is a clear separation between
objects (foreground) and the background. Tracing contours in seg-
mented binary images is much simpler, of course (see Ch. 10).

6.5 Canny Edge Operator

The operator proposed by Canny [42] is widely used and still consid-
ered “state of the art” in edge detection. The method tries to reach
three main goals: (a) to minimize the number of false edge points, (b)
achieve good localization of edges, and (c) deliver only a single mark
on each edge. These properties are usually not achieved with sim-
ple edge operators (mostly based on first derivatives and subsequent
thresholding).

At its core, the Canny “filter” is a gradient method (based on
first derivatives; see Sec. 6.2), but it uses the zero crossings of second
derivatives for precise edge localization.4 In this regard, the method
is similar to edge detectors that are based on the second derivatives
of the image function [161].

Fully implemented, the Canny detector uses a set of relatively
large, oriented filters at multiple image resolutions and merges the

4 The zero crossings of a function’s second derivative are found where the
first derivates exhibit a local maximum or minimum.

132

6.5 Canny Edge
Operator

Original Roberts operator

Prewitt operator Sobel operator

Laplacian of Gaussian Canny operator (σ = 1.0)

Fig. 6.11
Comparison of various edge
operators. Important criteria
for the quality of edge results
are the amount of “clutter”
(irrelevant edge elements) and
the connectedness of dominant
edges. The Roberts operator
responds to very small edge
structures because of the small
size of its filters. The similar-
ity of the Prewitt and Sobel
operators is manifested in the
corresponding results. The
edge map produced by the
Canny operator is substan-
tially cleaner than those of the
simpler operators, even for a
fixed and relatively small scale
value σ.

individual results into a common edge map. It is quite common, how-
ever, to use only a single-scale implementation of the algorithm with
an adjustable filter radius (smoothing parameter σ), which is never-
theless superior to most of the simple edge operators (see Fig. 6.11).
In addition, the algorithm not only yields a binary edge map but
connected chains of edge pixels, which greatly simplifies the subse-
quent processing steps. Thus, even in its basic (single-scale) form, the
Canny operator is often preferred over other edge detection methods.

In its basic (single-scale) form, the Canny operator performs the
following steps (stated more precisely in Algs. 6.1–6.2):

1. Pre-processing: Smooth the image with a Gaussian filter of
width σ, which specifies the scale level of the edge detector. Cal-
culate the x/y gradient vector at each position of the filtered
image and determine the local gradient magnitude and orienta-
tion.

2. Edge localization: Isolate local maxima of gradient magnitude
by “non-maximum suppression” along the local gradient direc-
tion.

133

6 Edges and Contours 3. Edge tracing and hysteresis thresholding: Collect sets of
connected edge pixels from the local maxima by applying “hys-
teresis thresholding”.

6.5.1 Pre-processing

The original intensity image I is first smoothed with a Gaussian filter
kernel HG,σ; its width σ specifies the spatial scale at which edges are
to be detected (see Alg. 6.1, lines 2–10). Subsequently, first-order
difference filters are applied to the smoothed image Ī to calculate
the components Īx, Īy of the local gradient vectors (Alg. 6.1, line
3–3).5 Then the local magnitude Emag is calculated as the norm
of the corresponding gradient vector (Alg. 6.1, line 11). In view of
the subsequent thresholding it may be helpful to normalize the edge
magnitude values to a standard range (e.g., to [0, 100]).

6.5.2 Edge localization

Candidate edge pixels are isolated by local “non-maximum suppres-
sion” of the edge magnitude Emag. In this step, only those pixels are
preserved that represent a local maximum along the 1D profile in the
direction of the gradient, that is, perpendicular to the edge tangent
(see Fig. 6.12). While the gradient may point in any continuous di-
rection, only four discrete directions are typically used to facilitate
efficient processing. The pixel at position (u, v) is only retained as
an edge candidate if its gradient magnitude is greater than both its
immediate neighbors in the direction specified by the gradient vector
(dx, dy) at position (u, v). If a pixel is not a local maximum, its edge
magnitude value is set to zero (i.e., “suppressed”). In Alg. 6.1, the
non-maximum suppressed edge values are stored in the map Enms.

Fig. 6.12
Non-maximum suppression

of gradient magnitude. The
gradient direction at posi-

tion (u, v) is coarsely quan-
tized to four discrete orien-

tations sθ ∈ {0, 1, 2, 3} (a).
Only pixels where the gra-

dient magnitude Emag(u, v)
is a local maximum in the

gradient direction (i.e., per-
pendicular to the edge tan-

gent) are taken as candidate
edge points (b). The gradient
magnitude at all other points

is set (suppressed) to zero.

0

1

2

3

(u, v)

Emag

sθ

Emag

Enms

(a) (b)

The problem of finding the discrete orientation sθ = 0, ..., 3 for
a given gradient vector q = (dx, dy) is illustrated in Fig. 6.13. This
task is simple if the corresponding angle θ = tan−1(dy/dx) is known,
but at this point the use of the trigonometric functions is typically
avoided for efficiency reasons. The octant that corresponds to q can
be inferred directly from the signs and magnitude of the components
dx, dy, however, the necessary decision rules are quite complex. Much
simpler rules apply if the coordinate system and gradient vector q are

5 See also Sec. C.3.1 in the Appendix.
134

6.5 Canny Edge
Operator

$

%

&

'

q
x

y

$

%&

'
q′

π/8

x

y

(a) (b)

Fig. 6.13
Discrete gradient directions.
In (a), calculating the octant
for a given orientation vec-
tor q = (dx, dy) requires a
relatively complex decision.
Alternatively (b), if q is ro-
tated by π

8 to q′, the corre-
sponding octant can be found
directly from the components
of q′ = (d′

x, d′
y) without the

need to calculate the actual
angle. Orientation vectors in
the other octants are mirrored
to octants sθ = 0, 1, 2, 3.

1: CannyEdgeDetector(I, σ, thi, tlo)
Input: I , a grayscale image of size M ×N ; σ, scale (radius of
Gaussian filter HG,σ); thi, tlo, hysteresis thresholds (thi > tlo).
Returns a binary edge map of size M×N .

2: Ī ← I ∗ HG,σ ⊲ blur with Gaussian of width σ
3: Īx ← Ī ∗ [−0.5 0 0.5] ⊲ x-gradient
4: Īy ← Ī ∗ [−0.5 0 0.5]

⊺
⊲ y-gradient

5: (M, N) ← Size(I)
6: Create maps:
7: Emag : M×N �→ R ⊲ gradient magnitude
8: Enms : M×N �→ R ⊲ maximum magnitude
9: Ebin : M×N �→ {0, 1} ⊲ binary edge pixels

10: for all image coordinates (u, v) ∈ M×N do

11: Emag(u, v) ←
[
Ī2

x(u, v) + Ī2
y(u, v)

]1/2

12: Enms(u, v) ← 0
13: Ebin(u, v) ← 0

14: for u ← 1, . . . , M−2 do
15: for v ← 1, . . . , N−2 do
16: dx ← Īx(u, v), dy ← Īy(u, v)
17: sθ ← GetOrientationSector(dx, dy) ⊲ Alg. 6.2
18: if IsLocalMax(Emag, u, v, sθ, tlo) then ⊲ Alg. 6.2
19: Enms(u, v) ← Emag(u, v) ⊲ only keep local maxima

20: for u ← 1, . . . , M−2 do
21: for v ← 1, . . . , N−2 do
22: if (Enms(u, v) ≥ thi) ∧ (Ebin(u, v) = 0) then
23: TraceAndThreshold(Enms, Ebin, u, v, tlo)

⊲ Alg. 6.2

24: return Ebin.

Alg. 6.1
Canny edge detector for
grayscale images.

rotated by π
8 , as illustrated in Fig. 6.13(b). This step is implemented

by the function GetOrientationSector() in Alg. 6.2.6

6.5.3 Edge tracing and hysteresis thresholding

In the final step, sets of connected edge points are collected from the
magnitude values that remained unsuppressed in the previous oper-

6 Note that the elements of the rotation matrix in Alg. 6.2 (line 2) are con-
stants and thus no repeated use of trigonometric functions is required.

135

6 Edges and Contours

Alg. 6.2
Procedures used in Alg.

6.1 (Canny edge detector).

1: GetOrientationSector(dx, dy)
Returns the discrete octant sθ for the orientation vector (dx, dy)

⊺
.

See Fig. 6.13 for an illustration.

2:
(

d′
x

d′
y

)

←
(

cos(π/8) − sin(π/8)
sin(π/8) cos(π/8)

)

·
(

dx
dy

)

⊲ rotate
(

dx
dy

)

by π/8

3: if d′
y < 0 then

4: d′
x ← −d′

x, d′
y ← −d′

y ⊲ mirror to octants 0, . . . , 3

5: sθ ←

⎧

⎪⎪⎨

⎪⎪⎩

0 if (d′
x ≥ 0) ∧ (d′

x ≥ d′
y)

1 if (d′
x ≥ 0) ∧ (d′

x < d′
y)

2 if (d′
x < 0) ∧ (−d′

x < d′
y)

3 if (d′
x < 0) ∧ (−d′

x ≥ d′
y)

6: return sθ. ⊲ sector index sθ ∈ {0, 1, 2, 3}
7: IsLocalMax(Emag, u, v, sθ, tlo)

Determines if the gradient magnitude Emag is a local maximum
at position (u, v) in direction sθ ∈ {0, 1, 2, 3}.

8: mC ← Emag(u, v)
9: if mC < tlo then

10: return false
11: else

12: mL ←

⎧

⎪⎪⎨

⎪⎪⎩

Emag(u−1, v) if sθ = 0
Emag(u−1, v−1) if sθ = 1
Emag(u, v−1) if sθ = 2
Emag(u−1, v+1) if sθ = 3

13: mR ←

⎧

⎪⎪⎨

⎪⎪⎩

Emag(u+1, v) if sθ = 0
Emag(u+1, v+1) if sθ = 1
Emag(u, v+1) if sθ = 2
Emag(u+1, v−1) if sθ = 3

14: return (mL ≤ mC) ∧ (mC ≥ mR).

15: TraceAndThreshold(Enms, Ebin, u0, v0, tlo)
Recursively collects and marks all pixels of an edge that are 8-
connected to (u0, v0) and have a gradient magnitude above tlo.

16: Ebin(u0, v0) ← 1 ⊲ mark (u0, v0) as an edge pixel
17: uL ← max(u0−1, 0) ⊲ limit to image bounds
18: uR ← min(u0+1, M−1)
19: vT ← max(v0−1, 0)
20: vB ← min(v0 +1, N−1)
21: for u ← uL, . . . , uR do
22: for v ← vT, . . . , vB do
23: if (Enms(u, v) ≥ tlo) ∧ (Ebin(u, v) = 0) then
24: TraceAndThreshold(Enms, Ebin, u, v, tlo)
25: return

ation. This is done with a technique called “hysteresis thresholding”
using two different threshold values , tlo (with thi > tlo). The image is
scanned for pixels with edge magnitude Enms(u, v) ≥ thi. Whenever
such a (previously unvisited) location is found, a new edge trace is
started and all connected edge pixels (u′, v′) are added to it as long
as Enms(u′, v′) ≥ tlo. Only those edge traces remain that contain at
least one pixel with edge magnitude greater than thi and no pixels
with edge magnitude less than tlo. This process (which is similar to

136

6.5 Canny Edge
Operator

(a)

(b) (c)

(d) (e)

Fig. 6.14
Grayscale Canny edge opera-
tor details. Inverted gradient
magnitude (a), detected edge
points with connected edge
tracks shown in distinctive col-
ors (b). Details with gradient
magnitude and detected edge
points overlaid (c, d). Settings:
σ = 2.0, thi = 20%, tlo = 5%
(of the max. edge magnitude).

flood-fill region growing) is detailed in procedure GetOrientationSector

in Alg. 6.2. Typical threshold values for 8-bit grayscale images are
thi = 5.0 and tlo = 2.5.

Figure 6.14 illustrates the effectiveness of non-maximum suppres-
sion for localizing the edge centers and edge-linking with hysteresis
thresholding. Results from the single-scale Canny detector are shown
in Fig. 6.15 for different settings of σ and fixed upper/lower thresh-
old values thi = 20%, tlo = 5% (relative to the maximum gradient
magnitude).

6.5.4 Additional Information

Due to the long-lasting popularity of the Canny operator, additional
descriptions and some excellent illustrations can be found at various
places in the literature, including [89, p. 719], [232, pp. 71–80], and
[166, pp. 548–549]. An edge operator similar to the Canny detector,
but based on a set of recursive filters, is described in [62]. While the
Canny detector was originally designed for grayscale images, modified
versions for color images exist, including the one we describe in the
next section.

137

6 Edges and Contours

Fig. 6.15
Results from the single-scale
grayscale Canny edge opera-

tor (Algs. 6.1–6.2) for different
values of σ = 0.5, . . . , 5.0.

Inverted gradient magnitude
(left column) and detected

edge points (right column).
The detected edge points
(right column) are linked
to connected edge chains.

Gradient magnitude (Emag) Edge points

(a) σ =0.5 (b)

(c) σ =1.0 (d)

(e) σ =2.0 (f)

(g) σ =5.0 (h)

6.5.5 Implementation

A complete implementation of the Canny edge detector for both
grayscale and RGB color images can be found in the Java library
for this book.7 A basic usage example Prog. 16.1 is shown in Prog.
16.1 on p. 411.

7 Class CannyEdgeDetector in package imagingbook.pub.coloredge.
138

6.6 Edge Sharpening6.6 Edge Sharpening

Making images look sharper is a frequent task, such as to make up
for a lack of sharpness after scanning or scaling an image or to pre-
compensate for a subsequent loss of sharpness in the course of print-
ing or displaying an image. A common approach to image sharpening
is to amplify the high-frequency image components, which are mainly
responsible for the perceived sharpness of an image and for which the
strongest occur at rapid intensity transitions. In the following, we
describe two methods for artificial image sharpening that are based
on techniques similar to edge detection and thus fit well in this chap-
ter. In the following, we describe two methods for artificial image
sharpening that are based on techniques similar to edge detection
and thus fit well in this chapter.

6.6.1 Edge Sharpening with the Laplacian Filter

A common method for localizing rapid intensity changes are filters
based on the second derivatives of the image function. Figure 6.16
illustrates this idea on a 1D, continuous function f(x). The second
derivative f ′′(x) of the step function shows a positive pulse at the
lower end of the transition and a negative pulse at the upper end.
The edge is sharpened by subtracting a certain fraction w of the
second derivative f ′′(x) from the original function f(x),

f̂(x) = f(x)− w · f ′′(x) . (6.29)

Depending upon the weight factor w ≥ 0, the expression in Eqn.
(6.29) causes the intensity function to overshoot at both sides of an
edge, thus exaggerating edges and increasing the perceived sharpness.

Laplacian operator

Sharpening of a 2D function can be accomplished with the second
derivatives in the horizontal and vertical directions combined by the
so-called Laplacian operator. The Laplacian operator ∇2 of a 2D
function f(x, y) is defined as the sum of the second partial derivatives
along the x and y directions:

(∇2f)(x, y) =
∂2f

∂2x
(x, y) +

∂2f

∂2y
(x, y). (6.30)

Similar to the first derivatives (see Sec. 6.2.2), the second derivatives
of a discrete image function can also be estimated with a set of sim-
ple linear filters. Again, several versions, have been proposed. For
example, the two 1D filters

∂2f

∂2x
≈ HL

x =
[
1−2 1

]
and

∂2f

∂2y
≈ HL

y =

⎡

⎣

1
−2

1

⎤

⎦ , (6.31)

for estimating the second derivatives along the x and y directions,
respectively, combine to make the 2D Laplacian filter

139

6 Edges and Contours

Fig. 6.16
Edge sharpening with the sec-

ond derivative. The original
intensity function f(x), first

derivative f ′(x), second deriva-
tive f ′′(x), and sharpened

intensity function f̂(x) =
f(x) − w · f ′′(x) are shown

(w is a weighting factor).

0

0

0

0

x

x

x

x

f(x)

f ′(x)

f ′′(x)

f̌(x)

HL = HL
x + HL

y =

⎡

⎣

0 1 0
1−4 1
0 1 0

⎤

⎦ . (6.32)

Figure 6.17 shows an example of applying the Laplacian filter HL

to a grayscale image, where the pairs of positive-negative peaks at
both sides of each edge are clearly visible. The filter appears al-
most isotropic despite the coarse approximation with the small filter
kernels.

Notice that HL in Eqn. (6.32) is not separable in the usual sense
(as described in Sec. 5.3.3) but, because of the linearity property
of convolution (Eqns. (5.21) and (5.23)), it can be expressed (and
computed) as the sum of two 1D filters,

I ∗HL = I ∗ (HL
x + HL

y) = (I ∗HL
x) + (I ∗HL

y) = Ixx + Iyy. (6.33)

Analogous to the gradient filters (for estimating the first derivatives),
the sum of the coefficients is zero in any Laplace filter, such that its
response is zero in areas of constant (flat) intensity (Fig. 6.17). Other
common variants of 3× 3 pixel Laplace filters are

HL
8 =

⎡

⎣

1 1 1
1−8 1
1 1 1

⎤

⎦ oder HL
12 =

⎡

⎣

1 2 1
2−12 2
1 2 1

⎤

⎦ . (6.34)

140

6.6 Edge Sharpening

(a) I (b) Ixx

(c) Iyy (d) ∇2I

Fig. 6.17
Results of Laplace filter HL:
synthetic test image I (a),
second partial derivative Ixx =
∂2I/∂2x in the horizontal
direction (b), second partial
derivative Iyy = ∂2I/∂2y in
the vertical direction (c), and
Laplace filter ∇2I = Ixx +
Iyy (d). Intensities in (b–d)
are scaled such that maximally
negative and positive values
are shown as black and white,
respectively, and zero values
are gray.

Sharpening

To perform the actual sharpening, as described by Eqn. (6.29) for
the 1D case, we first apply a Laplacian filter HL to the image I and
then subtract a fraction of the result from the original image,

I ′ ← I − w · (HL ∗ I). (6.35)

The factor w specifies the proportion of the Laplacian component and
thus the sharpening strength. The proper choice of w also depends
on the specific Laplacian filter used in Eqn. (6.35) since none of the
aforementioned filters is normalized.

Figure 6.17 shows the result of applying a Laplacian filter (with
the kernel given in Eqn. (6.32)) to a synthetic test image where the
pairs of positive/negative peaks at both sides of each edge are clearly
visible. The filter appears almost isotropic despite the coarse ap-
proximation with the small filter kernels. The application to a real
grayscale image using the filter HL (Eqn. (6.32)) and w = 1.0 is
shown in Fig. 6.18.

As we can expect from second-order derivatives, the Laplacian
filter is fairly sensitive to image noise, which can be reduced (as is
commonly done in edge detection with first derivatives) by previous
smoothing, such as with a Gaussian filter (see also Sec. 6.4.1).

141

6 Edges and Contours

Fig. 6.18
Edge sharpening with the
Laplacian filter. Original

image with a horizontal pro-
file taken from the marked

line (a, b), result of Laplacian

filter HL (c, d), and sharp-
ened image with sharpen-
ing factor w = 1.0 (e, f).

(a) (b)

(c) (d)

(e) (f)

6.6.2 Unsharp Masking

“Unsharp masking” (USM) is a technique for edge sharpening that is
particularly popular in astronomy, digital printing, and many other
areas of image processing. The term originates from classical pho-
tography, where the sharpness of an image was optically enhanced
by combining it with a smoothed (“unsharp”) copy. This process is
in principle the same for digital images.

Process

The first step in the USM filter is to subtract a smoothed version of
the image from the original, which enhances the edges. The result
is called the “mask”. In analog photography, the required smoothing
was achieved by simply defocusing the lens. Subsequently, the mask
is again added to the original, such that the edges in the image are
sharpened. In summary, the steps involved in USM filtering are:

1. The mask image M is generated by subtracting (from the original
image I) a smoothed version of I, obtained by filtering with H̃ ,
that is,

M ← I − (I ∗ H̃) = I − Ĩ . (6.36)

The kernel H̃ of the smoothing filter is assumed to be normalized
(see Sec. 5.2.5).

142

6.6 Edge Sharpening2. To obtain the sharpened image Ǐ, the mask M is added to the
original image I, weighted by the factor a, which controls the
amount of sharpening,

Ǐ ← I + a ·M, (6.37)

and thus (by inserting from Eqn. (6.36))

Ǐ ← I + a · (I − Ĩ) = (1 + a) · I − a · Ĩ . (6.38)

Smoothing filter

In principle, any smoothing filter could be used for the kernel H̃ in
Eqn. (6.36), but Gaussian filters HG,σwith variable radius σ are most
common (see also Sec. 5.2.7). Typical parameter values are 1 to 20
for σ and 0.2 to 4.0 (equivalent to 20% to 400%) for the sharpening
factor a.

Figure 6.19 shows two examples of USM filters using Gaussian
smoothing filters with different radii σ.

Extensions

The advantages of the USM filter over the Laplace filter are reduced
noise sensitivity due to the involved smoothing and improved control-
lability through the parameters σ (spatial extent) and a (sharpening
strength).

Of course the USM filter responds not only to real edges but to
some extent to any intensity transition, and thus potentially increases
any visible noise in continuous image regions. Some implementations
(e.g., Adobe Photoshop) therefore provide an additional threshold pa-
rameter tc to specify the minimum local contrast required to perform
edge sharpening. Sharpening is only applied if the local contrast at
position (u, v), expressed, for example, by the gradient magnitude
|∇I| (Eqn. (6.5)), is greater than that threshold. Otherwise, that
pixel remains unmodified, that is,

Ǐ(u, v) ←
{

I(u, v) + a ·M(u, v) for |∇I|(u, v) ≥ tc,
I(u, v) otherwise.

(6.39)

Different to the original USM filter (Eqn. (6.37)), this extended ver-
sion is no longer a linear filter. On color images, the USM filter is
usually applied to all color channels with identical parameter set-
tings.

Implementation

The USM filter is available in virtually any image-processing software
and, due to its simplicity and flexibility, has become an indispens-
able tool for many professional users. In ImageJ, the USM filter is
implemented by the plugin class UnsharpMask8 and can be applied
through the menu

Process ⊲ Filter ⊲ Unsharp Mask...

8 In package ij.plugin.filter.
143

6 Edges and Contours

Fig. 6.19
Unsharp masking filters with

varying smoothing radii
σ = 2.5 and 10.0. The

sharpening strength a is set
to 1.0 (100%). The profiles
show the intensity function

for the image line marked in
the original image (top-left).

(a) Original

b) σ = 2.5

(c) σ = 10.0

144

6.6 Edge SharpeningThis filter can also be used from other plugin classes, for example, in
the following way:

import ij.plugin.filter.UnsharpMask;

...

public void run(ImageProcessor ip) {

UnsharpMask usm = new UnsharpMask();

double r = 2.0; // standard settings for radius

double a = 0.6; // standard settings for weight

usm.sharpen(ip, r, a);

...

}

ImageJ’s UnsharpMask implementation uses the class GaussianBlur

for the required smoothing operation. The alternative implementa-
tion shown in Prog. 6.1 follows the definition in Eqn. (6.38) and uses
Gaussian filter kernels that are created with the method makeGauss-

Kernel1d(), as defined in Prog. 5.4.

1 double radius = 1.0; // radius (sigma of Gaussian)

2 double amount = 1.0; // amount of sharpening (1 = 100%)

3 ...

4 public void run(ImageProcessor ip) {

5 ImageProcessor I = ip.convertToFloat(); // I
6

7 // create a blurred version of the image:

8 ImageProcessor J = I.duplicate(); // Ĩ
9 float[] H = GaussianFilter.makeGaussKernel1d(sigma);

10 Convolver cv = new Convolver();

11 cv.setNormalize(true);

12 cv.convolve(J, H, 1, H.length);

13 cv.convolve(J, H, H.length, 1);

14

15 I.multiply(1 + a); // I ← (1 + a) · I
16 J.multiply(a); // Ĩ ← a · Ĩ
17 I.copyBits(J,0,0,Blitter.SUBTRACT); //Ĩ ← (1+a) · I−a · Ĩ
18

19 // copy result back into original byte image

20 ip.insert(I.convertToByte(false), 0, 0);

21 }

Prog. 6.1
Unsharp masking (Java im-
plementation). First the orig-
inal image is converted to a
FloatProcessor object I (I)
in line 5, which is duplicated
to hold the blurred image J
(Ĩ) in line 8. The method
makeGaussKernel1d(), defined
in Prog. 5.4, is used to create
the 1D Gaussian filter ker-
nel applied in the horizontal
and vertical directions (lines
12–13). The remaining calcula-
tions follow Eqn. (6.38).

Laplace vs. USM filter

A closer look at these two methods reveals that sharpening with the
Laplace filter (Sec. 6.6.1) can be viewed as a special case of the USM
filter. If the Laplace filter in Eqn. (6.32) is decomposed as

HL =

⎡

⎣

0 1 0
1−4 1
0 1 0

⎤

⎦ =

⎡

⎣

0 1 0
1 1 1
0 1 0

⎤

⎦−5

⎡

⎣

0 0 0
0 1 0
0 0 0

⎤

⎦ = 5·
(
H̃L−δ

)
, (6.40)

one can see that HL consists of a simple 3 × 3 pixel smoothing fil-
ter H̃ minus the impulse function δ. Laplace sharpening with the
weight factor w as defined in Eqn. (6.35) can therefore (by a little
manipulation) be expressed as

145

6 Edges and Contours ǏL ← I − w · (HL ∗ I) = I − w ·
(
5(H̃L − δ) ∗ I

)

= I − 5w · (H̃L ∗ I − I) = I + 5w · (I − H̃L ∗ I) (6.41)

= I + 5w ·ML,

that is, in the form of a USM filter Ǐ ← I + a · M (Eqn. (6.37)).
Laplacian sharpening is thus a special case of a USM filter with the
mask M = ML = (I − H̃L ∗ I), the specific smoothing filter

H̃L =
1
5

⎡

⎣

0 1 0
1 1 1
0 1 0

⎤

⎦

and the sharpening factor a = 5w.

6.7 Exercises

Exercise 6.1. Calculate (manually) the gradient and the Laplacian
(using the discrete approximations in Eqn. (6.2) and Eqn. (6.32),
respectively) for the following “image”:

I =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

14 10 19 16 14 12
18 9 11 12 10 19
9 14 15 26 13 6

21 27 17 17 19 16
11 18 18 19 16 14
16 10 13 7 22 21

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Exercise 6.2. Implement the Sobel edge operator as defined in Eqn.
(6.10) (and illustrated in Fig. 6.6) as an ImageJ plugin. The plugin
should generate two new images for the edge magnitude E(u, v) and
the edge orientation Φ(u, v). Come up with a suitable way to display
local edge orientation.

Exercise 6.3. Express the Sobel operator (Eqn. (6.10)) in x/y-
separable form analogous to the decomposition of the Prewitt op-
erator in Eqn. (6.9).

Exercise 6.4. Implement the Kirsch operator (Eqns. (6.25)–(6.28))
analogous to the two-directional Sobel operator in Exercise 6.2 and
compare the results from both methods, particularly the edge orien-
tation estimates.

Exercise 6.5. Devise and implement a compass edge operator with
more than eight (16?) differently oriented filters.

Exercise 6.6. Compare the results of the unsharp masking filters
in ImageJ and Adobe Photoshop using a suitable test image. How
should the parameters for σ (radius) and a (weight) be defined in
both implementations to obtain similar results?

146

7

Corner Detection

Corners are prominent structural elements in an image and are there-
fore useful in a wide variety of applications, including following ob-
jects across related images (tracking), determining the correspon-
dence between stereo images, serving as reference points for precise
geometrical measurements, and calibrating camera systems for ma-
chine vision applications. Thus corner points are not only important
in human vision but they are also “robust” in the sense that they
do not arise accidentally in 3D scenes and, furthermore, can be lo-
cated quite reliably under a wide range of viewing angles and lighting
conditions.

7.1 Points of Interest

Despite being easily recognized by our visual system, accurately and
precisely detecting corners automatically is not a trivial task. A
good corner detector must satisfy a number of criteria, including
distinguishing between true and accidental corners, reliably detecting
corners in the presence of realistic image noise, and precisely and
accurately determining the locations of corners. Finally, it should
also be possible to implement the detector efficiently enough so that
it can be utilized in real-time applications such as video tracking.

Numerous methods for finding corners or similar interest points
have been proposed and most of them take advantage of the following
basic principle. While an edge is usually defined as a location in the
image at which the gradient is especially high in one direction and low
in the direction normal to it, a corner point is defined as a location
that exhibits a strong gradient value in multiple directions at the
same time.

Most methods take advantage of this observation by examining
the first or second derivative of the image in the x and y directions to
find corners (e.g., [77,102,137,154]). In the next section, we describe
in detail the Harris detector, also known as the “Plessey feature point
detector” [102], since it turns out that even though more efficient

147
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_7

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

7 Corner Detection detectors are known (see, e.g., [210, 220]), the Harris detector, and
other detectors based on it, are the most widely used in practice.

7.2 Harris Corner Detector

This operator, developed by Harris and Stephens [102], is one of a
group of related methods based on the same premise: a corner point
exists where the gradient of the image is especially strong in more
than one direction at the same time. In addition, locations along
edges, where the gradient is strong in only one direction, should not
be considered as corners, and the detector should be isotropic, that
is, independent of the orientation of the local gradients.

7.2.1 Local Structure Matrix

The Harris corner detector is based on the first partial derivatives
(gradient) of the image function I(u, v), that is,

Ix(u, v) =
∂I

∂x
(u, v) and Iy(u, v) =

∂I

∂y
(u, v). (7.1)

For each image position (u, v), we first calculate the three quantities

A(u, v) = I2
x(u, v), (7.2)

B(u, v) = I2
y (u, v), (7.3)

C(u, v) = Ix(u, v) · Iy(u, v) (7.4)

that constitute the elements of the local structure matrix M(u, v):1

M =
(

I2
x IxIy

IxIy I2
y

)

=
(

A C
C B

)

. (7.5)

Next, each of the three scalar fields A(u, v), B(u, v), C(u, v) is indi-
vidually smoothed by convolution with a linear Gaussian filter HG,σ

(see Sec. 5.2.7),

M̄ =
(

A ∗HG
σ C ∗HG

σ

C ∗HG
σ B ∗HG

σ

)

=
(

Ā C̄
C̄ B̄

)

. (7.6)

The eigenvalues2 of the matrix M̄, defined as3

λ1,2 =
trace(M̄)

2
±

√

(trace(M̄)
2

)2

− det(M̄)

=
1
2
·
(

Ā + B̄ ±
√

Ā2 − 2 · Ā · B̄ + B̄2 + 4 · C̄2
)

,

(7.7)

1 For improved legibility, we simplify the notation used in the following
by omitting the function coordinates (u, v); for example, the function
Ix(u, v) is abbreviated as Ix or A(u, v) is simply denoted A etc.

2 See also Sec. B.4 in the Appendix.
3 det(M̄) denotes the determinant and trace(M̄) denotes the trace of the

matrix M̄ (see, e.g., [35, pp. 252 and 259]).
148

7.2 Harris Corner
Detector

are (because the matrix is symmetric) positive and real. They contain
essential information about the local image structure. Within an
image region that is uniform (that is, appears flat), M̄ = 0 and
therefore λ1 = λ2 = 0. On an ideal ramp, however, the eigenvalues
are λ1 > 0 and λ2 = 0, independent of the orientation of the edge.
The eigenvalues thus encode an edge’s strength, and their associated
eigenvectors correspond to the local edge orientation.

A corner should have a strong edge in the main direction (cor-
responding to the larger of the two eigenvalues), another edge nor-
mal to the first (corresponding to the smaller eigenvalues), and both
eigenvalues must be significant. Since Ā, B̄ ≥ 0, we can assume that
trace(M̄) > 0 and thus |λ1| ≥ |λ2|. Therefore only the smaller of
the two eigenvalues, λ2 = trace(M̄)/2 −

√

. . . , is relevant when
determining a corner.

7.2.2 Corner Response Function (CRF)

From Eqn. (7.7) we see that the difference between the two eigenval-
ues of the local structure matrix is

λ1 − λ2 = 2 ·
√

0.25 ·
(
trace(M̄)

)2 − det(M̄), (7.8)

where the expression under the square root is always non-negative.
At a good corner position, the difference between the two eigenvalues
λ1, λ2 should be as small as possible and thus the expression under
the root in Eqn. (7.8) should be a minimum. To avoid the explicit cal-
culation of the eigenvalues (and the square root) the Harris detector
defines the function

Q(u, v) = det(M̄(u, v))− α ·
(
trace(M̄(u, v))

)2
(7.9)

= Ā(u, v) · B̄(u, v)− C̄2(u, v)− α · [Ā(u, v) + B̄(u, v)]2

as a measure of “corner strength”, where the parameter α determines
the sensitivity of the detector. Q(u, v) is called the “corner response
function” and returns maximum values at isolated corners. In prac-
tice, α is assigned a fixed value in the range of 0.04 to 0.06 (max.
0.25 = 1

4). The larger the value of α, the less sensitive the detector
is and the fewer corners detected.

7.2.3 Determining Corner Points

An image location (u, v) is selected as a potential candidate for a
corner point if

Q(u, v) > tH ,

where the threshold tH is selected based on image content and typi-
cally lies within the range of 10,000 to 1,000,000. Once selected, the
corners ci = 〈ui, vi, qi〉 are inserted into the sequence

C = (c1, c2, . . . , cN),

which is then sorted in descending order (i.e., qi ≥ qi+1) according to
corner strength qi = Q(ui, vi), as defined in Eqn. (7.9). To suppress

149

7 Corner Detection

Table 7.1
Harris corner detector—typical
parameter settings for Alg. 7.1.

Prefilter (Alg. 7.1, line 2–3): Smoothing with a small xy-separable
filter Hp = Hpx ∗ Hpy, where

Hpx =
1

9
·
[
2 5 2

]
and Hpy = H

⊺
px =

1

9
·
[

2
5
2

]

.

Gradient filter (Alg. 7.1, line 3): Computing the first partial
derivative in the x and y directions with

hdx =
[
−0.5 0 0.5

]
and hdy = h

⊺
dx =

[−0.5
0

0.5

]

.

Blur filter (Alg. 7.1, line 10): Smoothing the individual components
of the structure matrix M with separable Gaussian filters
Hb = Hbx ∗ Hby with

hbx =
1

64
·
[
1 6 15 20 15 6 1

]
and hby = h

⊺
bx =

1

64
·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
6
15
20
15
6
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Control parameter (Alg. 7.1, line 14): α = 0.04, . . . , 0.06 (default
0.05).

Response threshold (Alg. 7.1, line 19): tH = 10 000, . . . , 1 000 000
(default 20 000).

Neighborhood radius (Alg. 7.1, line 37): dmin = 10 Pixel.

the false corners that tend to arise in densely packed groups around
true corners, all except the strongest corner in a specified vicinity
are eliminated. To accomplish this, the list C is traversed from the
front to the back, and the weaker corners toward the end of the list,
which lie in the surrounding neighborhood of a stronger corner, are
deleted.

The complete algorithm for the Harris detector is summarized
again in Alg. 7.1; the associated parameters are listed in Table 7.1.

7.2.4 Examples

Figure 7.1 uses a simple synthetic image to illustrate the most impor-
tant steps in corner detection using the Harris detector. The figure
shows the result of the gradient computation, the three components
of the structure matrix M(u, v) =

(
A C
C B

)
, and the values of the cor-

ner response function Q(u, v) for each image position (u, v). This
example was calculated with the standard settings as given in Table
7.1.

The second example (Fig. 7.2) illustrates the detection of corner
points in a grayscale representation of a natural scene. It demon-
strates how weak corners are eliminated in favor of the strongest
corner in a region.

150

7.2 Harris Corner
Detector

1: HarrisCorners(I, α, tH , dmin)

Input: I , the source image; α, sensitivity parameter (typ. 0.05);
tH , response threshold (typ. 20 000); dmin, minimum distance
between final corners. Returns a sequence of the strongest corners
detected in I .

Step 1 – calculate the corner response function:

2: Ix ← (I ∗ hpx) ∗ hdx ⊲ horizontal prefilter and derivative
3: Iy ← (I ∗ hpy) ∗ hdy ⊲ vertical prefilter and derivative

4: (M, N) ← Size(I)
5: Create maps A, B, C, Q : M × N �→ R

6: for all image coordinates (u, v) do
Compute the local structure matrix M =

(
A C
C B

)
:

7: A(u, v) ← (Ix(u, v))2

8: B(u, v) ← (Iy(u, v))2

9: C(u, v) ← Ix(u, v) · Iy(u, v)

Blur the components of the local structure matrix (M̄):
10: Ā ← A ∗ Hb

11: B̄ ← B ∗ Hb

12: C̄ ← C ∗ Hb

13: for all image coordinates (u, v) do ⊲ calc. corner response:
14: Q(u, v) ← Ā(u, v)·B̄(u, v)−C̄2(u, v)−α·[Ā(u, v)+B̄(u, v)]2

Step 2 – collect the corner points:

15: C ← () ⊲ start with an empty corner sequence
16: for all image coordinates (u, v) do
17: if Q(u, v) > tH ∧ IsLocalMax(Q, u, v) then
18: c ← 〈u, v, Q(u, v)〉 ⊲ create a new corner c
19: C ← C � (c) ⊲ add c to corner sequence C
20: Cclean ← CleanUpCorners(C, dmin)

21: return Cclean

22: IsLocalMax(Q, u, v) ⊲ determine if Q(u, v) is a local maximum
23: N ← GetNeighbors(Q, u, v) ⊲ se below
24: return Q(u, v) > max(N) ⊲ true or false

25: GetNeighbors(Q, u, v)
Returns the 8 neighboring values around Q(u, v).

26: N ← (Q(u+1, v), Q(u+1, v−1), Q(u, v−1), Q(u − 1, v−1),
Q(u−1, v), Q(u−1, v+1), Q(u, v+1), Q(u+1, v+1))

27: return N
28: CleanUpCorners(C, dmin)
29: Sort(C) ⊲ sort C by desc. qi (strongest corners first)
30: Cclean ← () ⊲ empty “clean” corner sequence
31: while C is not empty do
32: c0 ← GetFirst(C) ⊲ get the strongest corner from C
33: C ← Delete(c0, C) ⊲ the 1st element is removed from C
34: Cclean ← Cclean � (c0) ⊲ add c0 to Cclean

35: for all cj in C do
36: if Dist(c0, cj) < dmin then
37: C ← Delete(cj , C) ⊲ remove element cj from C
38: return Cclean

Alg. 7.1
Harris corner detector. This al-
gorithm takes an intensity im-
age I and creates a sorted list
of detected corner points. ∗ is
the convolution operator used
for linear filter operations. De-
tails for the parameters Hp,
Hdx, Hdy, Hb, α, and tH can
be found in Table 7.1.

151

7 Corner Detection

Fig. 7.1
Harris corner detector—

Example 1. Starting with the
original image I(u, v), the first

derivative is computed, and
then from it the components of

the structure matrix M(u, v),
with A(u, v) = I2

x(u, v), B =
I2

y(u, v), C = Ix(u, v) · Iy(u, v).
A(u, v) and B(u, v) represent,

respectively, the strength of
the horizontal and vertical

edges. In C(u, v), the values
are strongly positive (white) or

strongly negative (black) only
where the edges are strong in

both directions (null values
are shown in gray). The cor-

ner response function, Q(u, v),
exhibits noticeable positive

peaks at the corner positions.

I(u, v) A = I2
x(u, v)

B = I2
y(u, v) C = IxIy(u, v)

Q(u, v) Corner points

7.3 Implementation

Since the Harris detector algorithm is more complex than the al-
gorithms we presented earlier, in the following sections we explain
its implementation in greater detail. While reading the following
you may wish to refer to the complete source code for the class
HarrisCornerDetector, which is available online as part of the
imagingbook library.4

4 Package imagingbook.pub.corners.
152

7.3 Implementation

(a)

(b) (c)

(d) (e)

Fig. 7.2
Harris corner detector—
Example 2. A complete result
with the final corner points
marked (a). After selecting the
strongest corner points within
a 10-pixel radius, only 335 of
the original 615 candidate cor-
ners remain. Details before
(b, c) and after selection (d, e).

7.3.1 Step 1: Calculating the Corner Response Function

To handle the range of the positive and negative values generated by
the filters used in this step, we will need to use floating-point images
to store the intermediate results, which also assures sufficient range
and precision for small values. The kernels of the required filters,
that is, the presmoothing filter Hp, the gradient filters Hdx, Hdy,
and the smoothing filter for the structure matrix Hb, are defined as
1D float arrays:

1 float[] hp = {2f/9, 5f/9, 2f/9};
153

7 Corner Detection 2 float[] hd = {0.5f, 0, -0.5f};

3 float[] hb =

4 {1f/64, 6f/64, 15f/64, 20f/64, 15f/64, 6f/64, 1f/64};

From the original 8-bit image (of type ByteProcessor), we first cre-
ate two copies, Ix and Iy, of type FloatProcessor:

5 FloatProcessor Ix = I.convertToFloatProcessor();

6 FloatProcessor Iy = I.convertToFloatProcessor();

The first processing step is to presmooth the image with the 1D
filter kernel hp (= hpx = h⊺

py, see Alg. 7.1, line 2). Subsequently
the 1D gradient filter hd (= hdx = h⊺

dy) is used to calculate the
horizontal and vertical derivatives (see Alg. 7.1, line 3). To perform
the convolution with the corresponding 1D kernels we use the (static)
methods convolveX() and convolveY() defined in class Filter:5

7 Filter.convolveX(Ix, hp); // Ix ← Ix ∗ hpx

8 Filter.convolveX(Ix, hd); // Ix ← Ix ∗ hdx

9 Filter.convolveY(Iy, hp); // Iy ← Iy ∗ hpy

10 Filter.convolveY(Iy, hd); // Iy ← Iy ∗ hdy

Now the components A(u, v), B(u, v), C(u, v) of the structure matrix
M are calculated for all image positions (u, v):

11 A = ImageMath.sqr(Ix); // A(u, v) ← I2
x(u, v)

12 B = ImageMath.sqr(Iy); // B(u, v) ← I2
y(u, v)

13 C = ImageMath.mult(Ix, Iy); // C(u, v) ← Ix(u, v) · Iy(u, v)
14

The components of the structure matrix are then smoothed with a
separable filter kernel Hb = hbx ∗ hby:

15 Filter.convolveXY(A, hb); // A ← (A ∗ hbx) ∗ hby

16 Filter.convolveXY(B, hb); // B ← (B ∗ hbx) ∗ hby

17 Filter.convolveXY(C, hb); // C ← (C ∗ hbx) ∗ hby

The variables A, B, C of type FloatProcessor are declared in the
class HarrisCornerDetector. sqr() and mult() are static methods
of class ImageMath for squaring an image and multiplying two images,
respectively. The method convolveXY(I, h) is used to apply a x/y-
separable 2D convolution with the 1D kernel h to the image I.

Finally, the corner response function (Alg. 7.1, line 14) is calcu-
lated by the method makeCrf() and a new image (of type Float-

Processor) is created:

18 private FloatProcessor makeCrf(float alpha) {

19 FloatProcessor Q = new FloatProcessor(M, N);

20 final float[] pA = (float[]) A.getPixels();

21 final float[] pB = (float[]) B.getPixels();

22 final float[] pC = (float[]) C.getPixels();

23 final float[] pQ = (float[]) Q.getPixels();

24 for (int i = 0; i < M * N; i++) {

25 float a = pA[i], b = pB[i], c = pC[i];

26 float det = a * b - c * c; // det(M̄)
27 float trace = a + b; // trace(M̄)
28 pQ[i] = det - alpha * (trace * trace);

5 Package imagingbook.lib.image.
154

7.3 Implementation29 }

30 return Q;

31 }

7.3.2 Step 2: Selecting “Good” Corner Points

The result of the first stage of Alg. 7.1 is the corner response func-
tion Q(u, v), which in our implementation is stored as a floating-point
image (FloatProcessor). In the second stage, the dominant corner
points are selected from Q. For this we need (a) an object type to
describe the corners and (b) a flexible container, in which to store
these objects. In this case, the container should be a dynamic data
structure since the number of objects to be stored is not known be-
forehand.

The Corner class

Next we define a new class Corner6 to represent individual corner
points c = 〈x, y, q〉 and a single constructor (in line 35) with float

parameters x , y for the position and corner strength q:

32 public class Corner implements Comparable<Corner> {

33 final float x, y, q;

34

35 public Corner (float x, float y, float q) {

36 this.x = x;

37 this.y = y;

38 this.q = q;

39 }

40

41 public int compareTo (Corner c2) {

42 if (this.q > c2.q) return -1;

43 if (this.q < c2.q) return 1;

44 else return 0;

45 }

46 ...

47 }

The class Corner implements Java’s Comparable interface, such that
objects of type Corner can be compared with each other and thereby
sorted into an ordered sequence. The compareTo() method required
by the Comparable interface is defined (in line 41) to sort corners by
descending q values.

Choosing a suitable container

In Alg. 7.1, we used the notion of a sequence or lists to organize
and manipulate the collections of potential corner points generated
at various stages. One solution would be to utilize arrays, but since
the size of arrays must be declared before they are used, we would
have to allocate memory for extremely large arrays in order to store
all the possible corner points that might be identified. Instead, we
make use of the ArrayList class, which is one of many dynamic data
structures conveniently provided by Java’s Collections Framework.7

6 Package imagingbook.pub.corners.
7 Package java.util.

155

7 Corner Detection The collectCorners() method

The method collectCorners() outlined here selects the dominant
corner points from the corner response function Q(u, v). The param-
eter border specifies the width of the image’s border, within which
corner points should be ignored.

48 List<Corner> collectCorners(FloatProcessor Q, float tH, int

border) {

49 List<Corner> C = new ArrayList<Corner>();

50 for (int v = border; v < N - border; v++) {

51 for (int u = border; u < M - border; u++) {

52 float q = Q.getf(u, v);

53 if (q > tH && isLocalMax(Q, u, v)) {

54 Corner c = new Corner(u, v, q);

55 C.add(c);

56 }

57 }

58 }

59 return C;

60 }

First (in line 49), a new instance of ArrayList8 is created and as-
signed to the variable C. Then the CRF image Q is traversed, and
when a potential corner point is located, a new Corner is instan-
tiated (line 54) and added to C (line 55). The Boolean method
isLocalMax() (defined in class HarrisCornerDetector) determines
if the 2D function Q is a local maximum at the given position u, v:

61 boolean isLocalMax (FloatProcessor Q, int u, int v) {

62 if (u <= 0 || u >= M - 1 || v <= 0 || v >= N - 1) {

63 return false;

64 }

65 else {

66 float[] q = (float[]) Q.getPixels();

67 int i0 = (v - 1) * M + u;

68 int i1 = v * M + u;

69 int i2 = (v + 1) * M + u;

70 float q0 = q[i1];

71 return // check 8 neighbors of q0:

72 q0 >= q[i0 - 1] && q0 >= q[i0] && q0 >= q[i0 + 1] &&

73 q0 >= q[i1 - 1] && q0 >= q[i1 + 1]

&&

74 q0 >= q[i2 - 1] && q0 >= q[i2] && q0 >= q[i2 + 1] ;

75 }

76 }

7.3.3 Step 3: Cleaning up

The final step is to remove the weakest corners in a limited area
where the size of this area is specified by the radius dmin (Alg. 7.1,
lines 29–38). This process is outlined in Fig. 7.3 and implemented by
the following method cleanupCorners().

8 The specification ArrayList<Corner> indicates that the list C may only
contain objects of type Corner.

156

7.3 Implementation

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

dmin

C

Cclean

c0

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

(a) (b)

Fig. 7.3
Selecting the strongest corners
within a given spatial distance.
(a) Sample corner positions in
the 2D plane. (b) The origi-
nal list of corners (C) is sorted
by “corner strength” (q) in
descending order; that is, c0

is the strongest corner. First,
corner c0 is added to a new
list Cclean, while the weaker
corners c4 and c8 (which are
both within distance dmin

from c0) are removed from the
original list C. The following
corners c1, c2, . . . are treated
similarly until no more ele-
ments remain in C. None of
the corners in the resulting
list Cclean is closer to another
corner than dmin.

77 List<Corner> cleanupCorners(List<Corner> C, double dmin) {

78 double dmin2 = dmin * dmin;

79 // sort corners by descending q-value:

80 Collections.sort(C);

81 // we use an array of corners for efficiency reasons:

82 Corner[] Ca = C.toArray(new Corner[C.size()]);

83 List<Corner> Cclean = new ArrayList<Corner>(C.size());

84 for (int i = 0; i < Ca.length; i++) {

85 Corner c0 = Ca[i]; // get next strongest corner

86 if (c0 != null) {

87 Cclean.add(c0);

88 // delete all remaining corners cj too close to c0:

89 for (int j = i + 1; j < Ca.length; j++) {

90 Corner cj = Ca[j];

91 if (cj != null && c0.dist2(cj) < dmin2)

92 Ca[j] = null; //delete corner cj from Ca

93 }

94 }

95 }

96 return Cclean;

97 }

Initially (in line 80) the corner list C is sorted by decreasing corner
strenth q by calling the static method sort().9 The sorted sequence
is then converted to an array (line 82) which is traversed from start
to end (line 84–95). For each selected corner (c0), all subsequent
corners (cj) with a distance dmin are deleted from the sequence (line
92). The “surviving” corners are then transferred to the final corner
sequence Cclean.

Note that the call c0.dist2(cj) in line 91 returns the squared
Euclidean distance between the corner points c0 and cj , that is, the
quantity d2 = (x0−xj)2 + (y0−yj)2. Since the square of the distance
suffices for the comparison, we do not need to compute the actual
distance, and consequently we avoid calling the expensive square root
function. This is a common trick when comparing distances.

7.3.4 Summary

Most of the implementation steps we have just described are initi-
ated through calls from the method findCorners() in class Harris-

CornerDetector:

98 public List<Corner> findCorners() {

9 Defined in class java.util.Collections.
157

7 Corner Detection 99 FloatProcessor Q = makeCrf((float)params.alpha);

100 List<Corner> corners =

101 collectCorners(Q, (float)params.tH, params.border);

102 if (params.doCleanUp) {

103 corners = cleanupCorners(corners, params.dmin);

104 }

105 return corners;

106 }

An example of how to use the class HarrisCornerDetector is shown
by the associated ImageJ plugin Find_Corners whose run() consists
of only a few lines of code. This method simply creates a new object of
the class HarrisCornerDetector, calls the findCorners() method,
and finally displays the results in a new image (R):

107 public class Find_Corners implements PlugInFilter {

108

109 public void run(ImageProcessor ip) {

110 HarrisCornerDetector cd = new HarrisCornerDetector(ip);

111 List<Corner> corners = cd.findCorners();

112 ColorProcessor R = ip.convertToColorProcessor();

113 drawCorners(R, corners);

114 (new ImagePlus("Result", R)).show();

115 }

116

117 void drawCorners(ImageProcessor ip,

118 List<Corner> corners) {

119 ip.setColor(cornerColor);

120 for (Corner c : corners) {

121 drawCorner(ip, c);

122 }

123 }

124

125 void drawCorner(ImageProcessor ip, Corner c) {

126 int size = cornerSize;

127 int x = Math.round(c.getX());

128 int y = Math.round(c.getY());

129 ip.drawLine(x - size, y, x + size, y);

130 ip.drawLine(x, y - size, x, y + size);

131 }

132 }

For completeness, the definition of the drawCorners() method has
been included here; the complete source code can be found online.
Again, when writing this code, the focus is on understandability and
not necessarily speed and memory usage. Many elements of the code
can be optimized with relatively little effort (perhaps as an exercise?)
if efficiency becomes important.

7.4 Exercises

Exercise 7.1. Adapt the draw() method in the class Corner (see
p. 155) so that the strength (q-value) of the corner points can also
be visualized. This could be done, for example, by manipulating

158

7.4 Exercisesthe size, color, or intensity of the markers drawn in relation to the
strength of the corner.

Exercise 7.2. Conduct a series of experiments to determine how im-
age contrast affects the performance of the Harris detector, and then
develop an idea for how you might automatically determine the pa-
rameter tH depending on image content.

Exercise 7.3. Explore how rotation and distortion of the image af-
fect the performance of the Harris corner detector. Based on your
experiments, is the operator truly isotropic?

Exercise 7.4. Determine how image noise affects the performance
of the Harris detector in terms of the positional accuracy of the de-
tected corners and the omission of actual corners. Remark: ImageJ’s
menu command Process ⊲ Noise ⊲ Add Specified Noise... can be used
to easily add certain types of random noise to a given image.

159

8

Finding Simple Curves: The Hough

Transform

In Chapter 6 we demonstrated how to use appropriately designed
filters to detect edges in images. These filters compute both the edge
strength and orientation at every position in the image. In the fol-
lowing sections, we explain how to decide (e.g., by using a threshold
operation on the edge strength) if a curve is actually present at a
given image location. The result of this process is generally repre-
sented as a binary edge map. Edge maps are considered preliminary
results, since with an edge filter’s limited (“myopic”) view it is not
possible to accurately ascertain if a point belongs to a true edge.
Edge maps created using simple threshold operations contain many
edge points that do not belong to true edges (false positives), and,
on the other hand, many edge points are not detected and hence are
missing from the map (false negatives).

8.1 Salient Image Structures

An intuitive approach to locating large image structures is to first
select an arbitrary edge point, systematically examine its neighbor-
ing pixels and add them if they belong to the object’s contour, and
repeat. In principle, such an approach could be applied to either a
continuous edge map consisting of edge strengths and orientations
or a simple binary edge map. Unfortunately, with either input, such
an approach is likely to fail due to image noise and ambiguities that
arise when trying to follow the contours. Additional constraints and
information about the type of object sought are needed in order to
handle pixel-level problems such as branching, as well as interrup-
tions. This type of local sequential contour tracing makes for an
interesting optimization problem [128] (see also Sec. 10.2).

A completely different approach is to search for globally appar-
ent structures that consist of certain simple shape features. As an
example, Fig. 8.1 shows that certain structures are readily apparent
to the human visual system, even when they overlap in noisy images.
The biological basis for why the human visual system spontaneously

161
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_8

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

8 Finding Simple
Curves: The Hough

Transform

Fig. 8.1
The human visual system is

capable of instantly recogniz-
ing prominent image structures
even under difficult conditions.

recognizes four lines or three ellipses in Fig. 8.1 instead of a larger
number of disjoint segments and arcs is not completely known. At
the cognitive level, theories such as “Gestalt” grouping have been
proposed to address this behavior. The next sections explore one
technique, the Hough transform, that provides an algorithmic solu-
tion to this problem.

8.2 The Hough Transform

The method from Paul Hough—originally published as a US Patent
[111] and often referred to as the “Hough transform” (HT)—is a
general approach to localizing any shape that can be defined para-
metrically within a distribution of points [64, 117]. For example,
many geometrical shapes, such as lines, circles, and ellipses, can be
readily described using simple equations with only a few parameters.
Since simple geometric forms often occur as part of man-made ob-
jects, they are especially useful features for analysis of these types of
images (Fig. 8.2).

The Hough transform is perhaps most often used for detecting
straight line segments in edge maps. A line segment in 2D can be
described with two real-valued parameters using the classic slope-
intercept form

y = k · x + d, (8.1)

Fig. 8.2
Simple geometrical forms

such as sections of lines, cir-
cles, and ellipses are often

found in man-made objects.

162

8.2 The Hough
Transform

x

y

d

p1 = (x1, y1)

p2 = (x2, y2)

y1 = k · x1 + d

y2 = k · x2 + d

Fig. 8.3
Two points, p1 and p2, lie
on the same line when y1 =
kx1 + d and y2 = kx2 + d for a
particular pair of parameters k
and d.

where k is the slope and d the intercept—that is, the height at which
the line would intercept the y axis (Fig. 8.3). A line segment that
passes through two given edge points p1 = (x1, y1) and p2 = (x2, y2)
must satisfy the conditions

y1 = k · x1 + d and y2 = k · x2 + d, (8.2)

for k, d ∈ R. The goal is to find values of k and d such that as many
edge points as possible lie on the line they describe; in other words,
the line that fits the most edge points. But how can you determine
the number of edge points that lie on a given line segment? One
possibility is to exhaustively “draw” every possible line segment into
the image while counting the number of points that lie exactly on
each of these. Even though the discrete nature of pixel images (with
only a finite number of different lines) makes this approach possible
in theory, generating such a large number of lines is infeasible in
practice.

8.2.1 Parameter Space

The Hough transform approaches the problem from another direc-
tion. It examines all the possible line segments that run through a
single given point in the image. Every line Lj = 〈kj , dj〉 that runs
through a point p0 = (x0, y0) must satisfy the condition

Lj : y0 = kjx0 + dj (8.3)

for suitable values kj , dj . Equation 8.3 is underdetermined and the
possible solutions for kj , dj correspond to an infinite set of lines pass-
ing through the given point p0 (Fig. 8.4). Note that for a given kj ,
the solution for dj in Eqn. (8.3) is

dj = −x0 · kj + y0, (8.4)

which is another equation for a line, where now kj , dj are the variables
and x0, y0 are the constant parameters of the equation. The solution
set {(kj , dj)} of Eqn. (8.4) describes the parameters of all possible
lines Lj passing through the image point p0 = (x0, y0).

For an arbitrary image point pi = (xi, yi), Eqn. (8.4) describes
the line

Mi : d = −xi · k + yi (8.5)

with the parameters −xi, yi in the so-called parameter or Hough
space, spanned by the coordinates k, d. The relationship between

163

8 Finding Simple
Curves: The Hough

Transform

Fig. 8.4
A set of lines passing through
an image point. For all possi-

ble lines Lj passing through
the point p0 = (x0, y0), the

equation y0 = kjx0 + dj

holds for appropriate val-
ues of the parameters kj , dj .

x

y

p0

L1

L2

L3L4

(x, y) image space and (k, d) parameter space can be summarized as
follows:

Image Space (x, y) Parameter Space (k, d)

Point pi = (xi, yi) ←→ Mi : d = −xi · k + yi Line

Line Lj : y = kj · x + dj ←→ qj = (kj , dj) Point

Each image point pi and its associated line bundle correspond to ex-
actly one line Mi in parameter space. Therefore we are interested
in those places in the parameter space where lines intersect. The
example in Fig. 8.5 illustrates how the lines M1 and M2 intersect at
the position q12 = (k12, d12) in the parameter space, which means
(k12, d12) are the parameters of the line in the image space that runs
through both image points p1 and p2. The more lines Mi that inter-
sect at a single point in the parameter space, the more image space
points lie on the corresponding line in the image! In general, we can
state:

If N lines intersect at position (k′, d′) in parameter space, then
N image points lie on the corresponding line y = k′x + d′ in
image space.

Fig. 8.5
Relationship between image
space and parameter space.

The parameter values for all
possible lines passing through
the image point pi = (xi, yi)

in image space (a) lie on a
single line Mi in parameter
space (b). This means that
each point qj = (kj , dj) in

parameter space corresponds
to a single line Lj in image

space. The intersection of the
two lines M1, M2 at the point
q12 = (k12, d12) in parameter

space indicates that a line L12

through the two points k12 and
d12 exists in the image space.

x

y

k

d

p1 = (x1, y1)

p2 = (x2, y2)

M1 : d = −x1 · k + y1

M2 : d = −x2 · k + y2

q12 = (k12, d12)

L12

(a) x/y Image space (b) k/d Parameter space

8.2.2 Accumulator Map

Finding the dominant lines in the image can now be reformulated as
finding all the locations in parameter space where a significant num-
ber of lines intersect. This is basically the goal of the HT. In order

164

8.2 The Hough
Transform

x

y d

k

(a) Image space (b) Accumulator map

Fig. 8.6
The accumulator map is a
discrete representation of the
parameter space (k, d). For
each image point found (a), a
discrete line in the parameter
space (b) is drawn. This oper-
ation is performed additively
so that the values of the array
through which the line passes
are incremented by 1. The
value at each cell of the accu-
mulator array is the number
of parameter space lines that
intersect it (in this case 2).

to compute the HT, we must first decide on a discrete representation
of the continuous parameter space by selecting an appropriate step
size for the k and d axes. Once we have selected step sizes for the
coordinates, we can represent the space naturally using a 2D array.
Since the array will be used to keep track of the number of times
parameter space lines intersect, it is called an “accumulator” array.
Each parameter space line is painted into the accumulator array and
the cells through which it passes are incremented, so that ultimately
each cell accumulates the total number of lines that intersect at that
cell (Fig. 8.6).

8.2.3 A Better Line Representation

The line representation in Eqn. (8.1) is not used in practice because
for vertical lines the slope is infinite, that is, k = ∞. A more practi-
cal representation is the so-called Hessian normal form (HNF)1 for
representing lines,

x · cos(θ) + y · sin(θ) = r, (8.6)

which does not exhibit such singularities and also provides a natural
linear quantization for its parameters, the angle θ and the radius r
(Fig. 8.7).

With the HNF representation, the parameter space is defined by
the coordinates θ, r, and a point p = (x, y) in image space corre-
sponds to the relation

r(θ) = x · cos(θ) + y · sin(θ), (8.7)

for angles in the range 0 ≤ θ < π (see Fig. 8.8). Thus, for a given
image point p, the associated radius r is simply a function of the
angle θ. If we use the center of the image (of size M ×N),

xr =
(

xr

yr

)

=
1
2
·
(

M
N

)

, (8.8)

1 The Hessian normal form is a normalized version of the general (“alge-
braic”) line equation Ax + By + C = 0, with A = cos(θ), B = sin(θ),
and C = −r (see, e.g., [35, p. 194]).

165

8 Finding Simple
Curves: The Hough

Transform

Fig. 8.7
Representation of lines in 2D.
In the common k, d represen-
tation (a), vertical lines pose

a problem because k = ∞.
The Hessian normal form (b)
avoids this problem by repre-

senting a line by its angle θ
and distance r from the origin.

xx

yy

d

(x, y)
(x, y)

k = ∞
d = ?

r

θ

y = kx + d x · cos(θ) + y · sin(θ) = r

(a) (b)

as the reference point for the x/y image coordinates, then it is possi-
ble to limit the range of the radius to half the diagonal of the image,
that is,

−rmax ≤ r(θ) ≤ rmax, with rmax = 1
2

√

M2 + N2. (8.9)

We can see that the function r(θ) in Eqn. (8.7) is the sum of a cosine
and a sine function on θ, each being weighted by the x and y coordi-
nates of the image point (assumed to be constant for the moment).
The result is again a sinusoidal function whose magnitude and phase
depend only on the weights (coefficients) x, y. Thus, with the Hes-
sian parameterization θ/r, an image point (x, y) does not create a
straight line in the accumulator map A(i, j) but a unique sinusoidal
curve, as shown in Fig. 8.8. Again, each image point adds a curve to
the accumulator and each resulting cluster point corresponds to to
a dominant line in the image with a proportional number of points
on it.2

Fig. 8.8
Image space and parameter

space using the HNF represen-
tation. The image (a) of size

M × N contains four straight
lines La, . . . , Ld. Each point

on an image line creates a
sinusoidal curve in the θ/r pa-
rameter space (b) and the cor-
responding line parameters are
indicated by the clearly visible
cluster points in the accumula-

tor map. The reference point
xr for the x/y coordinates lies

at the center of the image. The
line angles θi are in the range
[0, π) and the associated radii

ri are in [−rmax, rmax] (the
length rmax is half of the im-

age diagonal). For example,
the the angle θa of line La is
approximately π/3, with the

(positive) radius ra ≈ 0.4 rmax.
Note that, with this param-
eterization, line Lc has the

angle θc ≈ 2π/3 and the neg-
ative radius rc ≈ −0.4 rmax.

Image Space (x/y) Parameter Space (θ/r)

+x−x

+y

−y

x

y
i

j

m−1
n−1

xr

a

a

b
b

c

c

d

d

rmax

ra

θa

rb

rc

θc

M
2

M
2

N
2

N
2

+r

−r

rmax

−rmax

0

0 0

0π

π

π
2

π
2

θ

(a) (b)

2 Note that, in Fig. 8.8(a), the positive direction of the y-coordinate runs
upwards (unlike our usual convention for image coordinates) to stay
in line with the previous illustrations (and high school geometry). In
practice, the consequences are minor: only the rotation angle runs in
the opposite direction and thus the accumulator image in Fig. 8.8(b)
was mirrored horizontally for proper display.

166

8.3 Hough Algorithm8.3 Hough Algorithm

The fundamental Hough algorithm using the HNF line representation
(Eqn. (8.6)) is given in Alg. 8.1. Starting with a binary image I(u, v)
where the edge pixels have been assigned a value of 1, the first stage
creates a 2D accumulator array and then iterates over the image to
fill it. The resulting increments are

dθ = π/m and dr =
√

M2 + N2/n (8.10)

for the angle θ and the radius r, respectively. The discrete indices of
the accumulators cells are denoted i and j, with j0 = n ÷ 2 as the
center index (for r = 0).

For each relevant image point (u, v), a sinusoidal curve is added
to the accumulator map by stepping over the discrete angles θi =
θ0, . . . , θm−1, calculating the corresponding radius3

r(θi) = (u− xr) · cos(θi) + (v − yr) · sin(θi) (8.11)

(see Eqn. (8.7)) and its discrete index

j = j0 + round
(

r(θi)
dr

)

, (8.12)

and subsequently incrementing the accumulator cell A(i, j) by one
(see Alg. 8.1, lines 10–17). The line parameters θi and rj for a given
accumulator position (i, j) can be calculated as

θi = i · dθ and rj = (j − j0) · dr. (8.13)

In the second stage of Alg. 8.1, the accumulator array is searched
for local peaks above a given minimum Values amin. For each detected
peak, a line object is created of the form

Lk = 〈θk, rk, ak〉, (8.14)

consisting of the angle θk, the radius rk (relative to the reference
point xr), and the corresponding accumulator value ak. The resulting
sequence of lines L = (L1, L2, . . .) is then sorted by descending ak

and returned.
Figure 8.9 shows the result of applying the Hough transform to a

very noisy binary image, which obviously contains four straight lines.
They appear clearly as cluster points in the corresponding accumu-
lator map in Fig. 8.9 (b). Figure 8.9 (c) shows the reconstruction
of these lines from the extracted parameters. In this example, the
resolution of the discrete parameter space is set to 256× 256.4

3 The frequent (and expensive) calculation of cos(θi) and sin(θi) in Eqn.
(8.11) and Alg. 8.1 (line 15) can be easily avoided by initially tabulating
the function values for all m possible angles θi = θ0, . . . , θm−1, which
should yield a significant performance gain.

4 Note that drawing a straight line given in Hessian normal form is not
really a trivial task (see Excercises 8.1–8.2 for details).

167

8 Finding Simple
Curves: The Hough

Transform

Alg. 8.1
Hough algorithm for detect-
ing straight lines. The algo-

rithm returns a sorted list
of straight lines of the form

Lk = 〈θk, rk, ak〉 for the bi-
nary input image I of size

M × N . The resolution of the
discrete Hough accumulator

map (and thus the step size for
the angle and radius) is spec-
ified by parameters m and n,
respectively. amin defines the
minimum accumulator value,

that is, the minimum number
of image point on any detected
line. The function IsLocalMax()

used in line 20 is the same
as in Alg. 7.1 (see p. 151).

1: HoughTransformLines(I, m, n, amin)
Input: I , a binary image of size M ×N ; m, angular accumulator
steps; n, radial accumulator steps; amin, minimum accumulator
count per line. Returns a sorted sequence L = (L1, L2, . . .) of the
most dominant lines found.

2: (M, N) ← Size(I)

3: (xr, yr) ← 1
2
· (M, N) ⊲ reference point xr (image center)

4: dθ ← π/m ⊲ angular step size

5: dr ←
√

M2 + N2/n ⊲ radial step size

6: j0 ← n ÷ 2 ⊲ map index for r = 0

Step 1 – set up and fill the Hough accumulator:

7: Create map A : [0, m−1] × [0, n−1] �→ Z ⊲ accumulator

8: for all accumulator cells (i, j) do
9: A(i, j) ← 0 ⊲ initialize accumulator

10: for all (u, v) ∈ M×N do ⊲ scan the image
11: if I(u, v) > 0 then ⊲ I(u, v) is a foreground pixel
12: (x, y) ← (u−xr, v−yr) ⊲ shift to reference
13: for i ← 0, . . . , m−1 do ⊲ angular coordinate i
14: θ ← dθ · i ⊲ angle, 0 ≤ θ < π
15: r ← x · cos(θ) + y · sin(θ) ⊲ see Eqn. 8.7
16: j ← j0 + round(r/dr) ⊲ radial coordinate j
17: A(i, j) ← A(i, j) + 1 ⊲ increment A(i, j)

Step 2 – extract the most dominant lines:

18: L ← () ⊲ start with empty sequence of lines
19: for all accumulator cells (i, j) do ⊲ collect local maxima
20: if (A(i, j) ≥ amin) ∧ IsLocalMax(A, i, j) then
21: θ ← i · dθ ⊲ angle θ
22: r ← (j − j0) · dr ⊲ radius r
23: a ← A(i, j) ⊲ accumulated value a
24: L ← 〈θ, r, a〉 ⊲ create a new line L
25: L ← L� (L) ⊲ add line L to sequence L
26: Sort(L) ⊲ sort L by descending accumulator count a
27: return L

8.3.1 Processing the Accumulator Array

The reliable detection and precise localization of peaks in the accu-
mulator map A(i, j) is not a trivial problem. As can readily be seen
in Fig. 8.9(b), even in the case where the lines in the image are ge-
ometrically “straight”, the parameter space curves associated with
them do not intersect at exactly one point in the accumulator array
but rather their intersection points are distributed within a small
area. This is primarily caused by the rounding errors introduced by
the discrete coordinate grid used for the accumulator array. Since the
maximum points are really maximum areas in the accumulator array,
simply traversing the array and returning the positions of its largest
values is not sufficient. Since this is a critical step in the algorithm,
we examine two different approaches below (see Fig. 8.10).

168

8.3 Hough Algorithm

(a) (b)

(c) (d)

Fig. 8.9
Hough transform for straight
lines. The dimensions of the
original image (a) are 360 ×240
pixels, so the maximal radius
(measured from the image cen-
ter) is rmax ≈ 216. For the
parameter space (b), a step
size of 256 is used for both
the angle θ = 0, . . . , π (hor-
izontal axis) and the radius
r = −rmax, . . . , rmax (vertical
axis). The four (dark) clusters
in (b) surround the maximum
values in the accumulator ar-
ray, and their parameters cor-
respond to the four lines in the
original image. Intensities are
shown inverted in all images to
improve legibility.

Approach A: Thresholding

First the accumulator is thresholded to the value of ta by setting
all accumulator values A(i, j) < ta to 0. The resulting scattering of
points, or point clouds, are first coalesced into regions (Fig. 8.10(b))
using a technique such as a morphological closing operation (see Sec.
9.3.2). Next the remaining regions must be localized, for instance
using the region-finding technique from Sec. 10.1, and then each re-
gion’s centroid (see Sec. 10.5) can be utilized as the (noninteger)
coordinates for the potential image space line. Often the sum of
the accumulator’s values within a region is used as a measure of the
strength (number of image points) of the line it represents.

Approach B: Nonmaximum suppression

In this method, local maxima in the accumulator array are found by
suppressing nonmaximal values.5 This is carried out by determining
for every accumulator cell A(i, j) whether the value is higher than
the value of all of its neighboring cells. If this is the case, then
the value remains the same; otherwise it is set to 0 (Fig. 8.10(c)).
The (integer) coordinates of the remaining peaks are potential line
parameters, and their respective heights correlate with the strength
of the image space line they represent. This method can be used
in conjunction with a threshold operation to reduce the number of
candidate points that must be considered. The result for Fig. 8.9(a)
is shown in Fig. 8.10(d).

5 Nonmaximum suppression is also used in Sec. 7.2.3 for isolating corner
points.

169

8 Finding Simple
Curves: The Hough

Transform

Fig. 8.10
Finding local maximum val-

ues in the accumulator ar-
ray. Original distribution of
the values in the Hough ac-
cumulator (a). Variant A:

Threshold operation using 50%
of the maximum value (b).

The remaining regions repre-
sent the four dominant lines
in the image, and the coor-

dinates of their centroids are
a good approximation to the
line parameters. Variant B:

Using non-maximum sup-
pression results in a large

number of local maxima (c)
that must then be reduced us-
ing a threshold operation (d).

(a) (b)

(c) (d)

Mind the vertical lines!

Special consideration should be given to vertical lines (once more!)
when processing the contents of the accumulator map. The param-
eter pairs for these lines lie near θ = 0 and θ = π at the left and
right borders, respectively, of the accumulator map (see Fig. 8.8(b)).
Thus, to locate peak clusters in this part of the parameter space,
the horizontal coordinate along the θ axis must be treated circularly,
that is, modulo m. However, as can be seen clearly in Fig. 8.8(b), the
sinusoidal traces in the parameter space do not continue smoothly at
the transition θ = π → 0, but are vertically mirrored! Evaluating
such neighborhoods near the borders of the parameter space thus
requires special treatment of the vertical (r) accumulator coordinate.

8.3.2 Hough Transform Extensions

So far, we have presented the Hough transform only in its most basic
formulation. The following is a list of some of the more common
methods of improving and refining the method.

Modified accumulation

The purpose of the accumulator map is to locate the intersections of
multiple 2D curves. Due to the discrete nature of the image and ac-
cumulator coordinates, rounding errors usually cause the parameter
curves not to intersect in a single accumulator cell, even when the

170

8.3 Hough Algorithmassociated image lines are exactly straight. A common remedy is, for
a given angle θ = iθ ·Δθ (Alg. 8.1), to increment not only the main
accumulator cell A(i, j) but also the neighboring cells A(i, j−1) and
A(i, j +1), possibly with different weights. This makes the Hough
transform more tolerant against inaccurate point coordinates and
rounding errors.

Considering edge strength and orientation

Until now, the raw data for the Hough transform was typically an
edge map that was interpreted as a binary image with ones at poten-
tial edge points. Yet edge maps contain additional information, such
as the edge strength E(u, v) and local edge orientation Φ(u, v) (see
Sec. 6.3), which can be used to improve the results of the HT.

The edge strength E(u, v) is especially easy to take into consid-
eration. Instead of incrementing visited accumulator cells by 1, add
the strength of the respective edge, that is,

A(i, j) ← A(i, j) + E(u, v). (8.15)

In this way, strong edge points will contribute more to the accumu-
lated values than weak ones (see also Exercise 8.6).

The local edge orientation Φ(u, v) is also useful for limiting the
range of possible orientation angles for the line at (u, v). The angle
Φ(u, v) can be used to increase the efficiency of the algorithm by
reducing the number of accumulator cells to be considered along the
θ axis. Since this also reduces the number of irrelevant “votes” in
the accumulator, it increases the overall sensitivity of the Hough
transform (see, e.g., [125, p. 483]).

Bias compensation

Since the value of a cell in the Hough accumulator represents the
number of image points falling on a line, longer lines naturally have
higher values than shorter lines. This may seem like an obvious point
to make, but consider when the image only contains a small section
of a “long” line. For instance, if a line only passes through the corner
of an image then the cells representing it in the accumulator array
will naturally have lower values than a “shorter” line that lies entirely
within the image (Fig. 8.11). It follows then that if we only search
the accumulator array for maximal values, it is likely that we will
completely miss short line segments. One way to compensate for

x

y

a

b

ra

rb

Fig. 8.11
Hough transform bias problem.
When an image represents only
a finite section of an object,
then those lines nearer the
center (smaller r values) will
have higher values than those
farther away (larger r values).
As an example, the maximum
value of the accumulator for
line a will be higher than that
of line b.

171

8 Finding Simple
Curves: The Hough

Transform

this inherent bias is to compute for each accumulator entry A(i, j)
the maximum number of image points Amax(i, j) possible for a line
with the corresponding parameters and then normalize the result, for
example, in the form

A(i, j) ← A(i, j)
max(1, Amax(i, j))

. (8.16)

The normalization map Amax(i, j) can be determined analytically (by
calculating the intersecting length of each line) or by simulation; for
example, by computing the Hough transform of an image with the
same dimensions in which all pixels are edge pixels or by using a
random image in which the pixels are uniformly distributed.

Line endpoints

Our simple version of the Hough transform determines the parame-
ters of the line in the image but not their endpoints. These could be
found in a subsequent step by determining which image points belong
to any detected line (e.g., by applying a threshold to the perpendic-
ular distance between the ideal line—defined by its parameters—and
the actual image points). An alternative solution is to calculate the
extreme point of the line during the computation of the accumulator
array. For this, every cell of the accumulator array is supplemented
with four addition coordinates to

A(i, j) = (a, umin, vmin, umax, vmax), (8.17)

where component a denotes the original accumulator value and umin,
vmin, umax, vmax are the coordinates of the line’s bounding box. After
the additional coordinates are initialized, they are updated simulta-
neously with the positions along the parameter trace for every image
point (u, v). After completion of the process, the accumulator cell
(i, j) contains the bounding box for all image points that contributed
it. When finding the maximum values in the second stage, care should
be taken so that the merged cells contain the correct endpoints (see
also Exercise 8.4).

Hierarchical Hough transform

The accuracy of the results increases with the size of the parameter
space used; for example, a step size of 256 along the θ axis is equiv-
alent to searching for lines at every π

256 ≈ 0.7◦. While increasing the
number of accumulator cells provides a finer result, bear in mind that
it also increases the computation time and especially the amount of
memory required.

Instead of increasing the resolution of the entire parameter space,
the idea of the hierarchical HT is to gradually “zoom” in and refine
the parameter space. First, the regions containing the most impor-
tant lines are found using a relatively low-resolution parameter space,
and then the parameter spaces of those regions are recursively passed
to the HT and examined at a higher resolution. In this way, a rel-
atively exact determination of the parameters can be found using a
limited (in comparison) parameter space.

172

8.4 Java
Implementation

Line intersections

It may be useful in certain applications not to find the lines them-
selves but their intersections, for example, for precisely locating the
corner points of a polygon-shaped object. The Hough transform de-
livers the parameters of the recovered lines in Hessian normal form
(that is, as pairs Lk = 〈θk, rk〉). To compute the point of intersection
x12 = (x12, y12)⊺ for two lines L1 = 〈θ1, r1〉 and L2 = 〈θ2, r2〉 we
need to solve the system of linear equations

x12 · cos(θ1) + y12 · sin(θ1) = r1,

x12 · cos(θ2) + y12 · sin(θ2) = r2,
(8.18)

for the unknowns x12, y12. The solution is
(

x12

y12

)

=
1

cos(θ1) sin(θ2)−cos(θ2) sin(θ1)
·
(

r1 sin(θ2)−r2 sin(θ1)
r2 cos(θ1)−r1 cos(θ2)

)

=
1

sin(θ2−θ1)
·
(

r1 sin(θ2)−r2 sin(θ1)
r2 cos(θ1)−r1 cos(θ2)

)

, (8.19)

for sin(θ2−θ1) �= 0. Obviously x0 is undefined (no intersection point
exists) if the lines L1, L2 are parallel to each other (i.e., if θ1 ≡ θ2).

Figure 8.12 shows an illustrative example using ARToolkit6 mark-
ers. After automatic thresholding (see Ch. 11) the straight line seg-
ments along the outer boundary of the largest binary region are an-
alyzed with the Hough transform. Subsequently, the corners of the
marker are calculated precisely as the intersection points of the in-
volved line segments.

8.4 Java Implementation

The complete Java source code for the straight line Hough transform
is available online in class HoughTransformLines.7 Detailed usage of
this class is shown in the ImageJ plugin Find_Straight_Lines (see
also Prog. 8.1 for a minimal example).8

HoughTransformLines (class)

This class is a direct implementation of the Hough transform for
straight lines, as outlined in Alg. 8.1. The sin/cos function calls (see
Alg. 8.1, line 15) are substituted by precalculated tables for improved
efficiency. The class defines the following constructors:

HoughTransformLines (ImageProcessor I, Parameters

params)

I denotes the input image, where all pixel values > 0 are
assumed to be relevant (edge) points; params is an instance of
the (inner) class HoughTransformLines.Parameters, which
allows to specify the accumulator size (nAng, nRad) etc.

6 Used for augmented reality applications, see www.hitl.washington.edu/

artoolkit/.
7 Package imagingbook.pub.hough.
8 Note that the current implementation has no bias compensation (see

Sec. 8.3.2, Fig. 8.11).
173

http://www.hitl.washington.edu/

8 Finding Simple
Curves: The Hough

Transform

Fig. 8.12
Hough transform used for

precise calculation of corner
points. Original image showing

a typical ARToolkit marker
(a), result after automatic

thresholding (b). The outer
contour pixels of the largest

binary region (c) are used as
input points to the Hough

transform. Hough accumulator
map (d), detected lines and

marked intersection points (e).

(a) (b)

(c) (d)

(e)

HoughTransformLines (Point2D[] points, int M, int N,

Parameters params)

In this case the Hough transform is calculated for a sequence
of 2D points (points); M, N specify the associated coordinate
frame (for calculating the reference point xr), which is
typically the original image size; params is a parameter object
(as described before).

The most important public methods of the class ClassHoughTrans-
formLines are:

HoughLine[] getLines (int amin, int maxLines)

Returns a sorted sequence of line objects9 whose accumulator
value is amin or greater. The sequence is sorted by accumula-
tor values and contains up to maxLines elements

int[][] getAccumulator ()

Returns a reference to the accumulator map A (of size m× n
for angles and radii, respectively).

9 Of type HoughTransformLines.HoughLine.
174

8.4 Java
Implementation

1 import imagingbook... .HoughTransformLines;

2 import imagingbook... .HoughTransformLines.HoughLine;

3 import imagingbook... .HoughTransformLines.Parameters;

4 ...

5

6 public void run(ImageProcessor ip) {

7 Parameters params = new Parameters();

8 params.nAng = 256; // = m
9 params.nRad = 256; // = n

10

11 // compute the Hough Transform:

12 HoughTransformLines ht =

13 new HoughTransformLines(ip, params);

14

15 // retrieve the 5 strongest lines with min. 50 accumulator votes

16 HoughLine[] lines = ht.getLines(50, 5);

17

18 if (lines.length > 0) {

19 IJ.log("Lines found:");

20 for (HoughLine L : lines) {

21 IJ.log(L.toString()); // list the resulting lines

22 }

23 }

24 else

25 IJ.log("No lines found!");

26 }

Prog. 8.1
Minimal example for the usage
of class HoughTransformLines

(run() method for an ImageJ
plugin of type PlugInFilter).
First (in lines 7–9) a parameter
ob ect is created and config-
ured; nAng (= m) and nRad

(= n) specify the number of
discrete angular and radial
steps in the Hough accumula-
tor map. In lines 12-13 an in-
stance of HoughTransformLines

is created for the image ip.
The accumulator map is cal-
culated in this step. In line
16, getLines() is called to re-
trieve the sequence of the 5
strongest detected lines, with
at least 50 image points each.
Unless empty, this sequence is
subsequently listed.

int[][] getAccumulatorMax ()

Returns a copy of accumulator array in which all non-maxima
are replaced by zero values.

FloatProcessor getAccumulatorImage ()

Returns a floating-point image of the accumulator array, anal-
ogous to getAccumulator(). Angles θi run horizontally, radii
rj vertically.

FloatProcessor getAccumulatorMaxImage ()

Returns a floating-point image of the accumulator array with
suppressed non-maximum values, analogous to getAccumu-

latorMax().

double angleFromIndex (int i)

Returns the angle θi ∈ [0, π) for the given index i in the range
0, . . . , m−1.

double radiusFromIndex (int j)

Returns the radius rj ∈ [−rmax, rmax] for the given index j in
the range 0, . . . , n−1.

Point2D getReferencePoint ()

Returns the (fixed) reference point xr for this Hough transform
instance.

175

8 Finding Simple
Curves: The Hough

Transform

HoughLine (class)

HoughLine represents a straight line in Hessian normal form. It is
implemented as an inner class of HoughTransformLines. It offers no
public constructor but the following methods:

double getAngle ()

Returns the angle θ ∈ [0, π) of this line.
double getRadius ()

Returns the radius r ∈ [−rmax, rmax] of this line, relative to
the associated Hough transform’s reference point xr.

int getCount ()

Returns the Hough transform’s accumulator value (number of
registered image points) for this line.

Point2D getReferencePoint ()

Returns the (fixed) reference point xr for this line. Note that
all lines associated with a given Hough transform share the
same reference point.

double getDistance (Point2D p)

Returns the Euclidean distance of point p to this line. The
result may be positive or negative, depending on which side of
the line p is located.

8.5 Hough Transform for Circles and Ellipses

8.5.1 Circles and Arcs

Since lines in 2D have two degrees of freedom, they could be com-
pletely specified using two real-valued parameters. In a similar fash-
ion, representing a circle in 2D requires three parameters, for example

C = 〈x̄, ȳ, r〉,

where x̄, ȳ are the coordinates of the center and ρ is the radius of
the circle (Fig. 8.13).

Fig. 8.13
Representation of circles and

ellipses in 2D. A circle (a)
requires three parameters

(e.g., x̄, ȳ, r). An arbitrary
ellipse (b) takes five param-

eters (e.g., x̄, ȳ, ra, rb, α).

x̄x̄

ȳȳ

p = (x, y)
p = (x, y)

r

ra

rb α

(a) (b)

A point p = (x, y) lies exactly on the circle C if the condition

(x− x̄)2 + (x − ȳ)2 = r2 (8.20)

holds. Therefore the Hough transform for circles requires a 3D pa-
rameter space A(i, j, k) to find the position and radius of circles (and

176

8.5 Hough Transform
for Circles and
Ellipses

circular arcs) in an image. Unlike the HT for lines, there does not ex-
ist a simple functional dependency between the coordinates in param-
eter space; so how can we find every parameter combination (x̄, ȳ, r)
that satisfies Eqn. (8.20) for a given image point (x, y)? A “brute
force” is to a exhaustively test all cells of the parameter space to see
if the relation in Eqn. (8.20) holds, which is computationally quite
expensive, of course.

If we examine Fig. 8.14, we can see that a better idea might be
to make use of the fact that the coordinates of the center points also
form a circle in Hough space. It is not necessary therefore to search
the entire 3D parameter space for each image point. Instead we need
only increase the cell values along the edge of the appropriate circle
on each r plane of the accumulator array. To do this, we can adapt
any of the standard algorithms for generating circles. In this case,
the integer math version of the well-known Bresenham algorithm [33]
is particularly well-suited.

x1

y1

x̄i

ȳj rk

rk p1

p2

p3

C1

C2

C3

C

A(i, j, k)

Potential centers
for p3

True center
of C

Fig. 8.14
Hough transform for circles.
The illustration depicts a sin-
gle slice of the 3D accumula-
tor array A(i, j, k) at a given
circle radius rk. The center
points of all the circles running
through a given image point
p1 = (x1, y1) form a circle C1

with a radius of rk centered
around p1, just as the cen-
ter points of the circles that
pass through p2 and p3 lie on
the circles C2, C3. The cells
along the edges of the three
circles C1, C2, C3 of radius rk

are traversed and their val-
ues in the accumulator array
incremented. The cell in the
accumulator array contains
a value of 3 where the circles
intersect at the true center of
the image circle C.

Figure 8.15 shows the spatial structure of the 3D parameter space
for circles. For a given image point pm = (um, vm), at each plane
along the r axis (for rk = rmin, . . . , rmax), a circle centered at
(um, vm) with the radius rk is traversed, ultimately creating a 3D
cone-shaped surface in the parameter space. The coordinates of the
dominant circles can be found by searching the accumulator space
for the cells with the highest values; that is, the cells where the most
cones intersect. Just as in the linear HT, the bias problem (see Sec.
8.3.2) also occurs in the circle HT. Sections of circles (i.e., arcs) can
be found in a similar way, in which case the maximum value possible
for a given cell is proportional to the arc length.

8.5.2 Ellipses

In a perspective image, most circular objects originating in our real,
3D world will actually appear in 2D images as ellipses, except in the
case where the object lies on the optical axis and is observed from
the front. For this reason, perfectly circular structures seldom occur

177

8 Finding Simple
Curves: The Hough

Transform

Fig. 8.15
3D parameter space for cir-

cles. For each image point
p = (u, v), the cells lying
on a cone (with its axis at

(u, v) and varying radius
rk) in the 3D accumulator
A(i, j, k) are traversed and

incremented. The size of the
discrete accumulator is set to

100×100×30. Candidate center
points are found where many

of the 3D surfaces intersect.

0
20

40
60

80
100

10

15

20

25

30

0

20

40

60

80

100

0
20

40
60

80
x̄ix̄i

ȳj

rk

3D parameter space:
x̄i, ȳj = 0, . . . , 100
rk = 10, . . . , 30

Image points pm:
p1 = (30, 50)
p2 = (50, 50)
p3 = (40, 40)
p4 = (80, 20)

in photographs. While the Hough transform can still be used to find
ellipses, the larger parameter space required makes it substantially
more expensive.

A general ellipse in 2D has five degrees of freedom and therefore
requires five parameters to represent it, for example,

E = 〈x̄, ȳ, ra, rb, α〉, (8.21)

where (x̄, ȳ) are the coordinates of the center points, (ra, rb) are the
two radii, and α is the orientation of the principal axis (Fig. 8.13).10

In order to find ellipses of any size, position, and orientation using the
Hough transform, a 5D parameter space with a suitable resolution in
each dimension is required. A simple calculation illustrates the enor-
mous expense of representing this space: using a resolution of only
128 = 27 steps in every dimension results in 235 accumulator cells,
and implementing these using 4-byte int values thus requires 237

bytes (128 gigabytes) of memory. Moreover, the amount of process-
ing required for filling and evaluating such a huge parameter space
makes this method unattractive for real applications.

An interesting alternative in this case is the generalized Hough
transform, which in principle can be used for detecting any arbitrary
2D shape [15,117]. Using the generalized Hough transform, the shape
of the sought-after contour is first encoded point by point in a table
and then the associated parameter space is related to the position
(xc, yc), scale S, and orientation θ of the shape. This requires a 4D
space, which is smaller than that of the Hough method for ellipses
described earlier.

10 See Chapter 10, Eqn. (10.39) for a parametric equation of this ellipse.
178

8.6 Exercises8.6 Exercises

Exercise 8.1. Drawing a straight line given in Hessian normal (HNF)
form is not directly possible because typical graphics environments
can only draw lines between two specified end points.11 An HNF line
L = 〈θ, r〉, specified relative to a reference point xr = (xr , yr), can
be drawn into an image I in several ways (implement both versions):

Version 1: Iterate over all image points (u, v); if Eqn. (8.11), that is,

r = (u− xr) · cos(θ) + (v − yr) · sin(θ), (8.22)

is satisfied for position (u, v), then mark the pixel I(u, v). Of
course, this “brute force” method will only show those (few) line
pixels whose positions satisfy the line equation exactly. To ob-
tain a more “tolerant” drawing method, we first reformulate Eqn.
(8.22) to

(u− xr) · cos(θ) + (v − yr) · sin(θ) − r = d. (8.23)

Obviously, Eqn. (8.22) is only then exactly satisfied if d = 0
in Eqn. (8.23). If, however, Eqn. (8.22) is not satisfied, then the
magnitude of d �= 0 equals the distance of the point (u, v) from the
line. Note that d itself may be positive or negative, depending on
which side of the line (u, v) is located. This suggests the following
version.

Version 2: Define a constant w > 0. Iterate over all image positions
(u, v); whenever the inequality

|(u− xr) · cos(θ) + (v − yr) · sin(θ)− r| ≤ w (8.24)

is satisfied for position (u, v), mark the pixel I(u, v). For example,
all line points should show with w = 1. What is the geometric
meaning of w?

Exercise 8.2. Develop a less “brutal” method (compared to Exercise
8.1) for drawing a straight line L = 〈θ, r〉 in Hessian normal form
(HNF). First, set up the HNF equations for the four border lines
of the image, A, B, C, D. Now determine the intersection points of
the given line L with each border line A, . . . , D and use the built-
in drawLine() method or a similar routine to draw L by connecting
the intersection points. Consider which special situations may appear
and how they could be handled.

Exercise 8.3. Implement (or extend) the Hough transform for
straight lines by including measures against the bias problem, as
discussed in Sec. 8.3.2 (Eqn. (8.16)).

Exercise 8.4. Implement (or extend) the Hough transform for find-
ing lines that takes into account line endpoints, as described in Sec.
8.3.2 (Eqn. (8.17)).

Exercise 8.5. Calculate the pairwise intersection points of all de-
tected lines (see Eqns. (8.18)–(8.19)) and show the results graphi-
cally.
11 For example, with drawLine(x1, y1, x2, y2) in ImageJ.

179

8 Finding Simple
Curves: The Hough

Transform

Exercise 8.6. Extend the Hough transform for straight lines so that
updating the accumulator map takes into account the intensity (edge
magnitude) of the current pixel, as described in Eqn. (8.15).

Exercise 8.7. Implement a hierarchical Hough transform for straight
lines (see p. 172) capable of accurately determining line parameters.

Exercise 8.8. Implement the Hough transform for finding circles
and circular arcs with varying radii. Make use of a fast algorithm for
drawing circles in the accumulator array, such as described in Sec.
8.5.

180

9

Morphological Filters

In the discussion of the median filter in Chapter 5 (Sec. 5.4.2), we
noticed that this type of filter can somehow alter 2D image structures.
Figure 9.1 illustrates once more how corners are rounded off, holes of
a certain size are filled, and small structures, such as single dots or
thin lines, are removed. The median filter thus responds selectively to
the local shape of image structures, a property that might be useful
for other purposes if it can be applied not just randomly but in a
controlled fashion. Altering the local structure in a predictable way
is exactly what “morphological” filters can do, which we focus on in
this chapter.

(a) (b) (c)

Fig. 9.1
Median filter applied to a bi-
nary image: original image (a)
and results from a 3×3 pixel
median filter (b) and a 5 ×5
pixel median filter (c).

In their original form, morphological filters are aimed at binary
images, images with only two possible pixel values, 0 and 1 or black
and white, respectively. Binary images are found in many places,
in particular in digital printing, document transmission (FAX) and
storage, or as selection masks in image and video editing. Binary
images can be obtained from grayscale images by simple thresholding
(see Sec. 4.1.4) using either a global or a locally varying threshold
value. We denote binary pixels with values 1 and 0 as foreground and
background pixels, respectively. In most of the following examples,
the foreground pixels are shown in black and background pixels are
shown in white, as is common in printing.

At the end of this chapter, we will see that morphological filters
are applicable not only to binary images but also to grayscale and

181
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_9

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

9 Morphological
Filters

Fig. 9.2
Basic idea of size-dependent
removal of image structures.

Small structures may be elim-
inated by iterative shrink-
ing and subsequent grow-
ing. Ideally, the “surviv-

ing” structures should be re-
stored to their original shape.

1 2 3 4

8 7 6 5

Shrink

Grow

even color images, though these operations differ significantly from
their binary counterparts.

9.1 Shrink and Let Grow

Our starting point was the observation that a simple 3×3 pixel me-
dian filter can round off larger image structures and remove smaller
structures, such as points and thin lines, in a binary image. This
could be useful to eliminate structures that are below a certain size
(e.g., to clean an image from noise or dirt). But how can we control
the size and possibly the shape of the structures affected by such an
operation?

Although its structural effects may be interesting, we disregard
the median filter at this point and start with this task again from
the beginning. Let’s assume that we want to remove small struc-
tures from a binary image without significantly altering the remain-
ing larger structures. The key idea for accomplishing this could be
the following (Fig. 9.2):

1. First, all structures in the image are iteratively “shrunk” by peel-
ing off a layer of a certain thickness around the boundaries.

2. Shrinking removes the smaller structures step by step, and only
the larger structures remain.

3. The remaining structures are then grown back by the same
amount.

4. Eventually the larger regions should have returned to approxi-
mately their original shapes, while the smaller regions have dis-
appeared from the image.

All we need for this are two types of operations. “Shrinking” means
to remove a layer of pixels from a foreground region around all its
borders against the background (Fig. 9.3). The other way around,
“growing”, adds a layer of pixels around the border of a foreground
region (Fig. 9.4).

182

9.2 Basic
Morphological
Operations

(a) (b) (c)

Fig. 9.3
“Shrinking” a foreground re-
gion by removing a layer of
border pixels: original im-
age (a), identified foreground
pixels that are in direct con-
tact with the background (b),
and result after shrinking (c).

(a) (b) (c)

Fig. 9.4
“Growing” a foreground re-
gion by attaching a layer of
pixels: original image (a), iden-
tified background pixels that
are in direct contact with the
region (b), and result after
growing (c).

9.1.1 Neighborhood of Pixels

For both operations, we must define the meaning of two pixels being
adjacent (i.e., being “neighbors”). Two definitions of “neighborhood”
are commonly used for rectangular pixel grids (Fig. 9.5):

• 4-neighborhood (N4): the four pixels adjacent to a given pixel
in the horizontal and vertical directions;

• 8-neighborhood (N8): the pixels contained in N4 plus the four
adjacent pixels along the diagonals.

N4 N8

N1

N2 × N0

N3

N3 N2 N1

N4 × N0

N5 N6 N7

Fig. 9.5
Definitions of “neighbor-
hood” on a rectangular
pixel grid: 4-neighborhood
N4 = {N1, . . . , N4} and
8-neighborhood N8 =
N4 ∪ {N5, . . . , N8}.

9.2 Basic Morphological Operations

Shrinking and growing are indeed the two most basic morphological
operations, which are referred to as “erosion” and “dilation”, respec-
tively. These morphological operations, however, are much more gen-
eral than illustrated in the example in Sec. 9.1. They go well beyond
removing or attaching single pixel layers and—in combination—can
perform much more complex operations.

9.2.1 The Structuring Element

Similar to the coefficient matrix of a linear filter (see Sec. 5.2), the
properties of a morphological filter are specified by elements in a ma-
trix called a “structuring element”. In binary morphology, the struc-
turing element (just like the image itself) contains only the values 0

183

9 Morphological
Filters

and 1,
H(i, j) ∈ {0, 1},

and the hot spot marks the origin of the coordinate system of H (Fig.
9.6). Notice that the hot spot is not necessarily located at the center
of the structuring element, nor must its value be 1.

Fig. 9.6
Binary structuring ele-

ment (example). 1–elements
are marked with •; 0–cells

are empty. The hot spot
(boxed) is not necessar-

ily located at the center.

H =

•
• • •

•
origin (hot spot)

9.2.2 Point Sets

For the formal specification of morphological operations, it is some-
times helpful to describe binary images as sets of 2D coordinate
points.1

For a binary image I(u, v) ∈ {0, 1}, the corresponding point set
QI consists of the coordinate pairs p = (u, v) of all foreground pixels,

QI = {p | I(p) = 1}. (9.1)

Of course, as shown in Fig. 9.7, not only a binary image I but also a
structuring element H can be described as a point set.

Fig. 9.7
A binary image I or a struc-

turing element H can each
be described as a set of co-

ordinate pairs, QI and QH ,
respectively. The dark shaded

element in H marks the co-
ordinate origin (hot spot).

I H
0 1 2 3

0

1 • •
2 •
3

−1 0 1

−1

0 • •
1

I ≡ QI = {(1, 1), (2, 1), (2, 2)} H ≡ QH = {(0, 0), (1, 0)}

With the description as point sets, fundamental operations on
binary images can also be expressed as simple set operations. For
example, inverting a binary image I → Ī (i.e., exchanging foreground
and background) is equivalent to building the complementary set

QĪ = Q̄I = {p ∈ Z
2 | p /∈ QI}. (9.2)

Combining two binary images I1 and I2 by an OR operation between
corresponding pixels, the resulting point set is the union of the indi-
vidual point sets QI1

and QI2
; that is,

QI1∨I2
= QI1

∪QI2
. (9.3)

Since a point set QI is only an alternative representation of the bi-
nary image I (i.e., I ≡ QI), we will use both image and set notations
synonymously in the following. For example, we simply write Ī in-
stead of Q̄I for an inverted image as in Eqn. (9.2) or I1 ∪ I2 instead
of QI1

∪ QI2
in Eqn. (9.3). The meaning should always be clear in

the given context.

1 Morphology is a mathematical discipline dealing with the algebraic anal-
ysis of geometrical structures and shapes, with strong roots in set theory.

184

9.2 Basic
Morphological
Operations

Translating (shifting) a binary image I by some coordinate vector
d creates a new image with the content

Id(p + d) = I(p) oder Id(p) = I(p− d), (9.4)

which is equivalent to changing the coordinates of the original point
set in the form

Id ≡
{

(p + d) | p ∈ I
}

. (9.5)

In some cases, it is also necessary to reflect (mirror) a binary image
or point set about its origin, which we denote as

I∗ ≡ {−p | p ∈ I}. (9.6)

9.2.3 Dilation

A dilation is the morphological operation that corresponds to our in-
tuitive concept of “growing” as discussed already. As a set operation,
it is defined as

I ⊕H ≡
{

(p + q) | for all p ∈ I, q ∈ H
}

. (9.7)

Thus the point set produced by a dilation is the (vector) sum of all
possible pairs of coordinate points from the original sets I and H ,
as illustrated by a simple example in Fig. 9.8. Alternatively, one
could view the dilation as the structuring element H being replicated
at each foreground pixel of the image I or, conversely, the image I
being replicated at each foreground element of H . Expressed in set
notation,2 this is

I ⊕H ≡
⋃

p∈I

Hp =
⋃

q∈H

Iq, (9.8)

with Hp, Iq denoting the sets H, I shifted by p and q, respectively
(see Eqn. (9.5)).

I H I ⊕ H

0 1 2 3

0

1 • •
2 •
3

⊕

−1 0 1

−1

0 • •
1

=

0 1 2 3

0

1 • • •
2 • •
3

I ≡ {(1, 1), (2, 1), (2, 2)}, H ≡ {(0, 0), (1, 0)}

I ⊕ H ≡ { (1, 1) + (0, 0), (1, 1) + (1, 0),
(2, 1) + (0, 0), (2, 1) + (1, 0),
(2, 2) + (0, 0), (2, 2) + (1, 0) }

Fig. 9.8
Binary dilation example. The
binary image I is subject to
dilation with the structuring
element H. In the result I ⊕ H
the structuring element H is
replicated at every foreground
pixel of the original image I.

2 See also Sec. A.2 in the Appendix.
185

9 Morphological
Filters

9.2.4 Erosion

The quasi-inverse of dilation is the erosion operation, again defined
in set notation as

I ⊖H ≡
{

p ∈ Z
2 | (p + q) ∈ I, for all q ∈ H

}
. (9.9)

This operation can be interpreted as follows. A position p is con-
tained in the result I ⊖ H if (and only if) the structuring element
H—when placed at this position p—is fully contained in the fore-
ground pixels of the original image; that is, if Hp is a subset of I.
Equivalent to Eqn. (9.9), we could thus define binary erosion as

I ⊖H ≡ {p ∈ Z
2 | Hp ⊆ I}. (9.10)

Figure 9.9 shows a simple example for binary erosion.

Fig. 9.9
Binary erosion example. The
binary image I is subject to

erosion with H as the structur-
ing element. H is only covered

by I when placed at position
p = (1, 1), thus the result-
ing points set contains only
the single coordinate (1, 1).

I H I ⊖ H

0 1 2 3

0

1 • •
2 •
3

⊖

−1 0 1

−1

0 • •
1

=

0 1 2 3

0

1 •
2

3

I ≡ {(1, 1), (2, 1), (2, 2)}, H ≡ {(0, 0), (1, 0)}

I ⊖ H ≡ { (1, 1) } because

(1, 1) + (0, 0) = (1, 1) ∈ I and (1, 1) + (1, 0) = (2, 1) ∈ I

9.2.5 Formal Properties of Dilation and Erosion

The dilation operation is commutative,

I ⊕H = H ⊕ I, (9.11)

and therefore—just as in linear convolution—the image and the struc-
turing element (filter) can be exchanged to get the same result. Di-
lation is also associative, that is,

(I1 ⊕ I2)⊕ I3 = I1 ⊕ (I2 ⊕ I3), (9.12)

and therefore the ordering of multiple dilations is not relevant. This
also means—analogous to linear filters (cf. Eqn. (5.25))—that a dila-
tion with a large structuring element of the form Hbig = H1 ⊕H2 ⊕
. . . ⊕ HK can be efficiently implemented as a sequence of multiple
dilations with smaller structuring elements by

I ⊕Hbig = (. . . ((I ⊕H1)⊕H2)⊕ . . . ⊕HK) (9.13)

There is also a neutral element (δ) for the dilation operation, similar
to the Dirac function for the linear convolution (see Sec. 5.3.4),

I ⊕ δ = δ ⊕ I = I, with δ = {(0, 0)}. (9.14)
186

9.2 Basic
Morphological
Operations

The erosion operation is, in contrast to dilation (but similar to
arithmetic subtraction), not commutative, that is,

I ⊖H �= H ⊖ I, (9.15)

in general. However, if erosion and dilation are combined, then—
again in analogy with arithmetic subtraction and addition—the fol-
lowing chain rule holds:

(I1 ⊖ I2)⊖ I3 = I1 ⊖ (I2 ⊕ I3). (9.16)

Although dilation and erosion are not mutually inverse (in gen-
eral, the effects of dilation cannot be undone by a subsequent ero-
sion), there are still some strong formal relations between these two
operations. For one, dilation and erosion are dual in the sense that a
dilation of the foreground (I) can be accomplished by an erosion of
the background (Ī) and subsequent inversion of the result,

I ⊕H = (Ī ⊖H∗), (9.17)

where H∗ denotes the reflection of H (Eqn. (9.6)). This works simi-
larly the other way, too, namely

I ⊖H = (I ⊕H∗), (9.18)

effectively eroding the foreground by dilating the background with
the mirrored structuring element, as illustrated by the example in
Fig. 9.10 (see [88, pp. 521–524] for a formal proof).

I H I ⊖H

(a)

•
• • •
• •

⊖
•
• • = •

•

↓ ↓ ↑
invert reflect invert

↓ ↓ ↑

(b)

• • • • •
• • • •
• •
• • •
• • • • •

⊕ • •
•

=

• • • • •
• • • • •
• • • •
• • • •
• • • • •

Ī H∗ Ī ⊕H∗

Fig. 9.10
Implementing erosion via di-
lation. The binary erosion of
the foreground I ⊖ H (a) can
be implemented by dilating the
inverted (background) image Ī
with the reflected structuring
element H∗ and subsequently
inverting the result again (b).

Equation (9.18) is interesting because it shows that we only need
to implement either dilation or erosion for computing both, consider-
ing that the foreground–background inversion is a very simple task.
Algorithm 9.1 gives a simple algorithmic description of dilation and
erosion based on the aforementioned relationships.

187

9 Morphological
Filters

Alg. 9.1
Binary dilation and erosion.

Procedure Dilate() imple-
ments the binary dilation as

suggested by Eqn. (9.8). The
original image I is displaced

to each foreground coordinate
of H and then copied into the

resulting image I′. The hot
spot of the structuring ele-

ment H is assumed to be at
coordinate (0, 0). Procedure
Erode() implements the bi-
nary erosion by dilating the

inverted image Ī with the re-
flected structuring element H∗,

as described by Eqn. (9.18).

1: Dilate(I, H)
Input: I , a binary image of size M × N ;
H , a binary structuring element.
Returns the dilated image I ′ = I ⊕ H .

2: Create map I ′ : M × N �→ {0, 1} ⊲ new binary image I ′

3: for all (p) ∈ M × N do
4: I ′(p) ← 0 ⊲ I ′ ← { }
5: for all q ∈ H do
6: for all p ∈ I do
7: I ′(p + q) ← 1 ⊲ I ′ ← I ′ ∪ {(p+q)}
8: return I ′ ⊲ I ′ = I ⊕ H

9: Erode(I, H)
Input: I , a binary image of size M × N ;
H , a binary structuring element.
Returns the eroded image I ′ = I ⊖ H .

10: Ī ← Invert(I) ⊲ Ī ← ¬I
11: H∗ ← Reflect(H)

12: I ′ ← Invert(Dilate(Ī, H∗)) ⊲ I ′ = I ⊖ H = (Ī ⊕ H∗)
13: return I ′

Fig. 9.11
Typical binary structur-

ing elements of various
sizes. 4-neighborhood (a),

8-neighborhood (b),
“small disk” (c).

•
• • •

•

• • •
• • •
• • •

• • •
• • • • •
• • • • •
• • • • •

• • •
(a) (b) (c)

9.2.6 Designing Morphological Filters

A morphological filter is unambiguously specified by (a) the type of
operation and (b) the contents of the structuring element. The ap-
propriate size and shape of the structuring element depends upon the
application, image resolution, etc. In practice, structuring elements
of quasi-circular shape are frequently used, such as the examples
shown in Fig. 9.11.

A dilation with a circular (disk-shaped) structuring element with
radius r adds a layer of thickness r to any foreground structure in the
image. Conversely, an erosion with that structuring element peels off
layers of the same thickness. Figure 9.13 shows the results of dilation
and erosion with disk-shaped structuring elements of different diam-
eters applied to the original image in Fig. 9.12. Dilation and erosion
results for various other structuring elements are shown in Fig. 9.14.

Disk-shaped structuring elements are commonly used to imple-
ment isotropic filters, morphological operations that have the same
effect in every direction. Unlike linear filters (e.g., the 2D Gaussian
filter in Sec. 5.3.3), it is generally not possible to compose an isotropic
2D structuring element H◦ from 1D structuring elements Hx and Hy

since the dilation Hx ⊕Hy always results in a rectangular (i.e., non-
isotropic) structure. A remedy for approximating large disk-shaped
filters is to alternately apply smaller disk-shaped operators of differ-

188

9.2 Basic
Morphological
Operations

Fig. 9.12
Original binary image and the
section used in the following
examples (illustration by Al-
brecht Dürer, 1515).

Dilation Erosion

(a) r = 1.0

(b) r = 2.5

(c) r = 5.0

Fig. 9.13
Results of binary dilation and
erosion with disk-shaped struc-
turing elements. The radius of
the disk (r) is 1.0 (a), 2.5 (b),
and 5.0 (c).

ent shapes, as illustrated in Fig. 9.15. The resulting filter is generally
not fully isotropic but can be implemented efficiently as a sequence
of small filters.

9.2.7 Application Example: Outline

A typical application of morphological operations is to extract the
boundary pixels of the foreground structures. The process is very
simple. First, we apply an erosion on the original image I to remove
the boundary pixels of the foreground,

189

9 Morphological
Filters

Fig. 9.14
Examples of binary dilation

and erosion with various free-
form structuring elements.

The structuring elements H
are shown in the left column

(enlarged). Notice that the
dilation expands every iso-

lated foreground point to the
shape of the structuring ele-

ment, analogous to the impulse
response of a linear filter. Un-

der erosion, only those ele-
ments where the structuring
element is fully contained in

the original image survive.

H Dilation Erosion

(a)

(b)

(c)

(d)

I ′ = I ⊖Hn,

where Hn is a structuring element, for example, for a 4- or 8-
neighborhood (Fig. 9.11) as the structuring element Hn. The actual
boundary pixels B are those contained in the original image but not
in the eroded image, that is, the intersection of the original image I
and the inverted result Ī ′, or

B ← I ∩ I ′ = I ∩ (I ⊖Hn) . (9.19)

Figure 9.17 shows an example for the extraction of region boundaries.
Notice that using the 4-neighborhood as the structuring element Hn

produces “8-connected” contours and vice versa [125, p. 504].
The process of boundary extraction is illustrated on a simple ex-

ample in Fig. 9.16. As can be observed in this figure, the result B
190

9.2 Basic
Morphological
Operations(a)

HA HA ⊕HA HA ⊕HA ⊕HA HA ⊕HA ⊕HA ⊕HA

(b)

HB HB ⊕HB HB ⊕HB ⊕HB HB ⊕HB ⊕HB ⊕HB

(c)

HB HB ⊕HA HB ⊕HA ⊕HB HB ⊕HA ⊕HB ⊕HA

Fig. 9.15
Composition of large morpho-
logical filters by repeated ap-
plication of smaller filters: re-
peated application of the struc-
turing element HA (a) and
structuring element HB (b);
alternating application of HB

and HA (c).

contains exactly those pixels that are different in the original image
I and the eroded image I ′ = I ⊖Hn, which can also be obtained by
an exclusive-OR (XOR) operation between pairs of pixels; that is,
boundary extraction from a binary image can be implemented as

B(p) ← I(p) XOR (I ⊖Hn)(p), for all p. (9.20)

Figure 9.17 shows a more complex example for isolating the boundary
pixels in a real image.

I I ⊖ Hn

Hn =

•
• • •

•

• • •
• • • • •
• • • • •

• • • •
• • •

• •
• • •

• •

I ⊖ Hn B = I ∩ I ⊖ Hn

• • • • • • •
• • • • • • •
• • • • •
• • • •
• • • • •
• • • • • • •
• • • • • • •

• • •
• • •
• •

• •
• • •

Fig. 9.16
Outline example using a 4-
neighborhood structuring ele-
ment Hn. The image I is first
eroded (I ⊖ Hn) and subse-

quently inverted (I ⊖ Hn).
The boundary pixels are finally
obtained as the intersection
I ∩ I ⊖ Hn.

191

9 Morphological
Filters

Fig. 9.17
Extraction of boundary pixels

using morphological opera-
tions. The 4-neighborhood

structuring element used in
(a) produces 8-connected

contours. Conversely, using
the 8-neighborhood as the
structuring element gives
4-connected contours (b).

(a) (b)

9.3 Composite Morphological Operations

Due to their semiduality, dilation and erosion are often used together
in composite operations, two of which are so important that they even
carry their own names and symbols: “opening” and “closing”. They
are probably the most frequently used morphological operations in
practice.

9.3.1 Opening

A binary opening I ◦H denotes an erosion followed by a dilation with
the same structuring element H ,

I ◦H = (I ⊖H)⊕H. (9.21)

The main effect of an opening is that all foreground structures that
are smaller than the structuring element are eliminated in the first
step (erosion). The remaining structures are smoothed by the subse-
quent dilation and grown back to approximately their original size, as
demonstrated by the examples in Fig. 9.18. This process of shrinking
and subsequent growing corresponds to the idea for eliminating small
structures that we had initially sketched in Sec. 9.1.

9.3.2 Closing

When the sequence of erosion and dilation is reversed, the resulting
operation is called a closing and denoted I •H ,

I •H = (I ⊕H)⊖H. (9.22)
192

9.3 Composite
Morphological
Operations

Opening Closing

(a) r = 1.0

(b) r = 2.5

(c) r = 5.0

Fig. 9.18
Binary opening and closing
with disk-shaped structuring
elements. The radius r of the
structuring element H is 1.0
(top), 2.5 (center), or 5.0 (bot-
tom).

A closing removes (closes) holes and fissures in the foreground struc-
tures that are smaller than the structuring element H . Some exam-
ples with typical disk-shaped structuring elements are shown in Fig.
9.18.

9.3.3 Properties of Opening and Closing

Both operations, opening as well as closing, are idempotent, mean-
ing that their results are “final” in the sense that any subsequent
application of the same operation no longer changes the result, that
is,

I ◦H = (I ◦H) ◦H = ((I ◦H) ◦H) ◦H = . . . ,

I •H = (I •H) •H = ((I •H) •H) •H =
(9.23)

Also, opening and closing are “duals” in the sense that opening the
foreground is equivalent to closing the background and vice versa,
that is,

I ◦H = Ī •H and I •H = Ī ◦H. (9.24)
193

9 Morphological
Filters

9.4 Thinning (Skeletonization)

Thinning is a common morphological technique which aims at shrink-
ing binary structures down to a maximum thickness of one pixel
without splitting them into multiple parts. This is accomplished by
iterative “conditional” erosion. It is applied to a local neighborhood
only if a sufficiently thick structure remains and the operation does
not cause a separation to occur. This requires that, depending on
the local image structure, a decision must be made at every image
position whether another erosion step may be applied or not. The
operation continues until no more changes appear in the resulting
image. It follows that, compared to the ordinary (“homogeneous”)
morphological discussed earlier, thinning is computationally expen-
sive in general. A frequent application of thinning is to calculate the
“skeleton” of a binary region, for example, for structural matching of
2D shapes.

Thinning is also known by the terms center line detection and
medial axis transform. Many different implementations of varied
complexity and efficiency exist (see, e.g., [2, 7, 68, 108, 201]). In the
following, we describe the classic algorithm by Zhang and Suen [265]
and its implementation as a representative example.3

9.4.1 Thinning Algorithm by Zhang and Suen

The input to this algorithm is a binary image I, with foreground
pixels carrying the value 1 and background pixels with value 0. The
algorithm scans the image and at each position (u, v) examines a 3×3
neighborhood with the central element P and the surrounding values
N = (N0, N1, . . . , N7), as illustrated in Fig. 9.5(b). The complete
process is summarized in Alg. 9.2.

For classifying the contents of the local neighborhood N we first
define the function

B(N) = N0 + N1 + · · ·+ N7 =
7∑

i=0

Ni, (9.25)

which simply counts surrounding foreground pixels. We also define
the so-called “connectivity number” to express how many binary com-
ponents are connected via the current center pixel at position (u, v).
This quantity is equivalent to the number of 1 → 0 transitions in the
sequence (N0, . . . , N7, N0), or expressed in arithmetic terms,

C(N) =
7∑

i=0

Ni · [Ni −N(i+1) mod 8]. (9.26)

Figure 9.19 shows some selected examples for the neighborhood N and
the associated values for the functions B(N) and C(N). Based on the
above functions, we finally define two Boolean predicates R1, R2 on
the neighborhood N,

3 The built-in thinning operation in ImageJ is also based on this
algorithm.

194

9.4 Thinning
(Skeletonization)

R1(N) := [2 ≤ B(N) ≤ 6] ∧ [C(N) = 1] ∧
[N6 ·N0 ·N2 = 0] ∧ [N4 ·N6 ·N0 = 0] , (9.27)

R2(N) := [2 ≤ B(N) ≤ 6] ∧ [C(N) = 1] ∧
[N0 ·N2 ·N4 = 0] ∧ [N2 ·N4 ·N6 = 0] . (9.28)

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� background (0)
� foreground (1)
� center pixel (1)

B =0 B =7 B =6 B =3 B =4
C =0 C =1 C =2 C =3 C =4

Fig. 9.19
Selected binary neighborhood
patterns N and associated
function values B(N) and C(N)
(see Eqns. (9.25)–(9.26)).

Depending on the outcome of R1(N) and R2(N), the foreground
pixel at the center position of N is either deleted (i.e., eroded) or
marked as non-removable (see Alg. 9.2, lines 16 and 27).

Figure 9.20 illustrates the effect of layer-by-layer thinning per-
formed by procedure ThinOnce(). In every iteration, only one “layer”
of foreground pixels is selectively deleted. An example of thinning
applied to a larger binary image is shown in Fig. 9.21.

(a) Original (b) 1359 deletions (c) 881 deletions

(d) 305 deletions (e) 56 deletions (f) 0 deletions

Fig. 9.20
Iterative application of the
ThinOnce() procedure. The
“deletions” indicated in (b–f)
denote the number of pixels
that were removed from the
previous image. No deletions
occurred in the final iteration
(from (e) to (f)). Thus five
iterations were required to thin
this image.

9.4.2 Fast Thinning Algorithm

In a binary image, only 28 = 256 different combinations of zeros and
ones are possible inside any 8-neighborhood. Since the expressions
in Eqns. (9.27)–(9.27) are relatively costly to evaluate it makes sense
to pre-calculate and tabulate all 256 instances (see Fig. 9.22). This
is the basis of the fast version of Zhang and Suen’s algorithm, sum-
marized in Alg. 9.3. It uses a decision table Q, which is constant and
calculated only once by procedure MakeDeletionCodeTable() in Alg.
9.3 (lines 34–45). The table contains the binary codes

Q(i) ∈ {0, 1, 2, 3} = {00b, 01b, 10b, 11b}, (9.29)

for i = 0, . . . , 255, where the two bits correspond to the predicates
R1 and R2, respectively. The associated test is found in procedure
ThinOnceFast() in line 19. The two passes are in this case controlled
by a separate loop variable (p = 1, 2). In the concrete implemen-
tation, the map Q is not calculated at the start but defined as a
constant array (see Prog. 9.1 for the actual Java code).

195

9 Morphological
Filters

Alg. 9.2
Iterative thinning algorithm

by Zhang und Suen [265]. Pro-
cedure ThinOnce() performs

a single thinning step on the
supplied binary image Ib and
returns the number of deleted
foreground pixels. It is itera-
tively invoked by Thin() until

no more pixels are deleted.
The required pixel deletions

are only registered in the bi-
nary map D and executed

en-bloc at the end of every
iteration. Lines 40–42 define

the functions R1(), R2(), B()
and C() used to characterize

the local pixel neighborhoods.
Note that the order of process-

ing the image positions (u, v)
in the for all loops in Pass
1 and Pass 2 is completely

arbitrary. In particular, posi-
tions could be processed simul-

taneously, so the algorithm
may be easily parallelized
(and thereby accelerated).

1: Thin(Ib, imax)
Input: Ib, binary image with background = 0, foreground > 0;
imax, max. number of iterations. Returns the number of iterations
performed and modifies Ib.

2: (M, N) ← Size(Ib)
3: Create a binary map D : M × N �→ {0, 1}
4: i ← 0
5: do
6: nd ← ThinOnce(Ib, D)
7: i ← i + 1
8: while (nd > 0 ∧ i < imax) ⊲ do . . . while more deletions required
9: return i

10: ThinOnce(Ib, D)

Pass 1:
11: n1 ← 0 ⊲ deletion counter
12: for all image positions (u, v) ∈ M×N do
13: D(u, v) ← 0
14: if Ib(u, v) > 0 then
15: N ← GetNeighborhood(Ib, u, v)
16: if R1(N) then ⊲ see Eq. 9.27
17: D(u, v) ← 1 ⊲ mark pixel (u, v) for deletion
18: n1 ← n1 + 1
19: if n1 > 0 then ⊲ at least 1 deletion required
20: for all image positions (u, v) ∈ M×N do
21: Ib(u, v) ← Ib(u, v) − D(u, v) ⊲ delete all marked pixels

Pass 2:
22: n2 ← 0
23: for all image positions (u, v) ∈ M×N do
24: D(u, v) ← 0
25: if Ib(u, v) > 0 then
26: N ← GetNeighborhood(Ib, u, v)
27: if R2(N) then ⊲ see Eq. 9.28
28: D(u, v) ← 1 ⊲ mark pixel (u, v) for deletion
29: n2 ← n2 + 1
30: if n2 > 0 then ⊲ at least 1 deletion required
31: for all image positions (u, v) ∈ M×N do
32: Ib(u, v) ← Ib(u, v) − D(u, v) ⊲ delete all marked pixels
33: return n1 + n2

34: GetNeighborhood(Ib, u, v)
35: N0 ← Ib(u + 1, v), N1 ← Ib(u + 1, v − 1)
36: N2 ← Ib(u, v − 1), N3 ← Ib(u − 1, v − 1)
37: N4 ← Ib(u − 1, v), N5 ← Ib(u − 1, v + 1)
38: N6 ← Ib(u, v + 1), N7 ← Ib(u + 1, v + 1)
39: return (N0, N1, . . . , N7)

40: R1(N) := [2≤B(N)≤6]∧[C(N)=1]∧[N6 ·N0 ·N2 =0]∧[N4 ·N6 ·N0 =0]

41: R2(N) := [2≤B(N)≤6]∧[C(N)=1]∧[N0 ·N2 ·N4 =0]∧[N2 ·N4 ·N6 =0]

42: B(N) :=
7∑

i=0

Ni, C(N) :=
7∑

i=0

Ni · [Ni − N(i+1) mod 8]

196

9.4 Thinning
(Skeletonization)

1: ThinFast(Ib, imax)
Input: Ib, binary image with background = 0, foreground > 0;
imax, max. number of iterations. Returns the number of iterations
performed and modifies Ib.

2: (M, N) ← Size(Ib)
3: Q ← MakeDeletionCodeTable()
4: Create a binary map D : M × N �→ {0, 1}
5: i ← 0
6: do
7: nd ← ThinOnce(Ib, D)
8: while (nd > 0 ∧ i < imax) ⊲ do . . . while more deletions required
9: return i

10: ThinOnceFast(Ib, D) ⊲ performs a single thinning iteration
11: nd ← 0 ⊲ number of deletions in both passes
12: for p ← 1, 2 do ⊲ pass counter (2 passes)
13: n ← 0 ⊲ number of deletions in current pass
14: for all image positions (u, v) do
15: D(u, v) ← 0
16: if Ib(u, v) = 1 then ⊲ Ib(u, v) = P
17: c ← GetNeighborhoodIndex(Ib, u, v)
18: q ← Q(c) ⊲ q ∈ {0, 1, 2, 3} = {00b, 01b, 10b, 11b}
19: if (p and q) �= 0 then ⊲ bitwise ‘and’ operation
20: D(u, v) ← 1 ⊲ mark pixel (u, v) for deletion
21: n ← n + 1
22: if n > 0 then ⊲ at least 1 deletion is required
23: nd ← nd + n
24: for all image positions (u, v) do
25: Ib(u, v) ← Ib(u, v) − D(u, v) ⊲ delete all marked

pixels
26: return nd

27: GetNeighborhoodIndex(Ib, u, v)
28: N0 ← Ib(u + 1, v), N1 ← Ib(u + 1, v − 1)
29: N2 ← Ib(u, v − 1), N3 ← Ib(u − 1, v − 1)
30: N4 ← Ib(u − 1, v), N5 ← Ib(u − 1, v + 1)
31: N6 ← Ib(u, v + 1), N7 ← Ib(u + 1, v + 1)
32: c ← N0 + N1·2 + N2·4 + N3·8 + N4·16 + N5·32 + N6·64 + N7·128
33: return c ⊲ c ∈ [0, 255]

34: MakeDeletionCodeTable()
35: Create maps Q : [0, 255] �→ {0, 1, 2, 3}, N : [0, 7] �→ {0, 1}
36: for i ← 0, . . . , 255 do ⊲ list all possible neighborhoods
37: for k ← 0, . . . , 7 do ⊲ check neighbors 0, . . . , 7

38: N(k) ←
{

1 if (i and 2k) �= 0
0 otherwise

⊲ test the kth bit of i

39: q ← 0
40: if R1(N) then ⊲ see Alg. 9.2, line 40
41: q ← q + 1 ⊲ set bit 0 of q

42: if R2(N) then ⊲ see Alg. 9.2, line 41
43: q ← q + 2 ⊲ set bit 1 of q

44: Q(i) ← q ⊲ q ∈ {0, 1, 2, 3} = {00b, 01b, 10b, 11b}
45: return Q

Alg. 9.3
Thinning algorithm by Zhang
und Suen (accelerated version
of Alg. 9.2). This algorithm
employs a pre-calculated ta-
ble of “deletion codes” (Q).
Procedure GetNeighborhood()
has been replaced by
GetNeighborhoodIndex(), which
does not return the neighbor-
ing pixel values themselves
but the associated 8-bit in-
dex c with possible values in
0, . . . , 255 (see Fig. 9.22). For
completeness, the calculation
of table Q is included in proce-
dure MakeDeletionCodeTable(),
although this table is fixed and
may be simply defined as a
constant array (see Prog. 9.1).

197

9 Morphological
Filters

Fig. 9.21
Thinning a binary image (Alg.

9.2 or 9.3). Original image
with enlarged detail (a, c)

and results after thinning (b,
d). The original foreground

pixels are marked green, the
resulting pixels are black.

(a) (b)

(c) (d)

Prog. 9.1
Java definition for the

“deletion code” ta-
ble Q (see Fig. 9.22).

1 static final byte[] Q = {

2 0, 0, 0, 3, 0, 0, 3, 3, 0, 0, 0, 0, 3, 0, 3, 3,

3 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 3, 1,

4 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

5 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 3, 1,

6 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

7 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

8 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

9 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0,

10 0, 3, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3,

11 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

12 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

13 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

14 3, 3, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2,

15 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

16 3, 3, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0,

17 3, 2, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 1, 0, 0, 0

18 };

9.4.3 Java Implementation

The complete Java source code for the morphological operations on
binary images is available online as part of the imagingbook4 library.

4 Package imagingbook.pub.morphology.
198

9.4 Thinning
(Skeletonization)

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Codes Q(c) for c = 0, . . . , 255:

� 0 = 00b (never deleted) � 2 = 10b (deleted only in Pass 2)

� 1 = 01b (deleted only in Pass 1) � 3 = 11b (deleted in Pass 1 and 2)

Fig. 9.22
“Deletion codes” for the
256 possible binary 8-
neighborhoods tabulated in
map Q(c) of Alg. 9.3. � = 0
and � = 1 denote background
and foreground pixels, respec-
tively. The 2-bit codes are
color coded as indicated at the
bottom.

BinaryMorphologyFilter class

This class implements several morphological operators for binary im-
ages of type ByteProcessor. It defines the sub-classes Box and Disk

with different structuring elements. The class provides the following
constructors:

199

9 Morphological
Filters

BinaryMorphologyFilter ()

Creates a morphological filter with a (default) structuring el-
ement of size 3× 3 as depicted in Fig. 9.11(b).

BinaryMorphologyFilter (int[][] H)

Creates a morphological filter with a structuring element spec-
ified by the 2D array H, which may contain 0/1 values only (all
values > 0 are treated as 1).

BinaryMorphologyFilter.Box (int rad)

Creates a morphological filter with a square structuring ele-
ment of radius rad ≥ 1 and side length 2 · rad + 1 pixels.

BinaryMorphologyFilter.Disk (double rad)

Creates a morphological filter with a disk-shaped structuring
element with radius rad ≥ 1 and diameter 2 · round(rad) + 1
pixels.

The key methods5 of BinaryMorphologyFilter are:
void applyTo (ByteProcessor I, OpType op)

Destructively applies the morphological operator op to the im-
age I. Possible arguments for op are Dilate, Erode, Open,
Close, Outline, Thin.

void dilate (ByteProcessor I)

Performs (destructive) dilation on the binary image I with the
initial structuring element of this filter.

void erode (ByteProcessor I)

Performs (destructive) erosion on the binary image I.

void open (ByteProcessor I)

Performs (destructive) opening on the binary image I.

void close (ByteProcessor I)

Performs (destructive) closing on the binary image I.

void outline (ByteProcessor I)

Performs a (destructive) outline operation on the binary image
I using a 3× 3 structuring element (see Sec. 9.2.7).

void thin (ByteProcessor I)

Performs a (destructive) thinning operation on the binary
image I using a 3 × 3 structuring element (with at most
imax = 1500 iterations, see Alg. 9.3).

void thin (ByteProcessor I, int iMax)

Performs a thinning operation with at most iMax iterations
(see Alg. 9.3).

int thinOnce (ByteProcessor I)

Performs a single iteration of the thinning operation and re-
turns the number of pixel deletions (see Alg. 9.3).

The methods listed here always treat image pixels with value 0 as
background and values > 0 as foreground. Unlike ImageJ’s built-in
implementation of morphological operations (described in Sec. 9.4.4),
the display lookup table (LUT, typically only used for display pur-
poses) of the image is not taken into account at all.

5 See the online documentation for additional methods.
200

9.4 Thinning
(Skeletonization)

1 import ij.ImagePlus;

2 import ij.plugin.filter.PlugInFilter;

3 import ij.process.ByteProcessor;

4 import ij.process.ImageProcessor;

5 import imagingbook.pub.morphology.BinaryMorphologyFilter;

6 import imagingbook.pub.morphology.BinaryMorphologyFilter.

OpType;

7

8 public class Bin_Dilate_Disk_Demo implements PlugInFilter {

9 static double radius = 5.0;

10 static OpType op = OpType.Dilate; // Erode, Open, Close, ...

11

12 public int setup(String arg, ImagePlus imp) {

13 return DOES_8G;

14 }

15

16 public void run(ImageProcessor ip) {

17 BinaryMorphologyFilter bmf =

18 new BinaryMorphologyFilter.Disk(radius);

19 bmf.applyTo((ByteProcessor) ip, op);

20 }

21 }

Prog. 9.2
Example for using class
BinaryMorphologyFilter (see
Sec. 9.4.3) inside a ImageJ
plugin. The actual filter op-
erator is instantiated in line
18 and subsequently (in line
19) applied to the image ip

of type ByteProcessor. Avail-
able operations (OpType) are
Dilate, Erode, Open, Close,
Outline and Thin. Note that
the results depend strictly on
the pixel values of the input
image, with values 0 taken as
background and values > 0
taken as foreground. The dis-
play lookup-table (LUT) is
irrelevant.

The example in Prog. 9.2 shows the use of class BinaryMorpho-

logyFilter in a complete ImageJ plugin that performs dilation with
a disk-shaped structuring element of radius 5 (pixel units). Other
examples can be found in the online code repository.

9.4.4 Built-in Morphological Operations in ImageJ

Apart from the implementation described in the previous section,
the ImageJ API provides built-in methods for basic morphological
operations, such as dilate() and erode(). These methods use a 3×3
structuring element (analogous to Fig. 9.11(b)) and are only defined
for images of type ByteProcessor and ColorProcessor. In the case
of RGB color images (ColorProcessor) the morphological operation
is applied individually to the three color channels. All these and
other morphological operations can be applied interactively through
ImageJ’s Process ⊲ Binary menu (see Fig. 9.23(a)).

Note that ImageJ’s dilate() and erode() methods use the cur-
rent settings of display lookup table (LUT) to discriminate between
background and foreground pixels. Thus the results of morphological
operations depend not only on the stored pixel values but how they
are being displayed (in addition to the settings in Process ⊲ Binary

⊲ Options..., see Fig. 9.23(b)).6 It is therefore recommended to use
the methods (defined for ByteProcessor only)

dilate(int count, int background),
erode(int count, int background)

6 These dependencies may be quite confusing because the same program
will produce different results under different user setups.

201

9 Morphological
Filters

Fig. 9.23
Morphological operations in

ImageJ’s built-in standard
menu Process ⊲ Binary (a) and

optional settings with Process

⊲ Binary ⊲ Options... (b). The
choice “Black background”

specifies if background pixels
are bright or dark, which is

taken into account by ImageJ’s
morphological operations.

(a) (b)

instead, since they provide explicit control of the background pixel
value and are thus independent from other settings. ImageJ’s Byte-

Processor class defines additional methods for morphological opera-
tions on binary images, such as outline() and skeletonize(). The
method outline() implements the extraction of region boundaries
using an 8-neighborhood structuring element, as described in Sec.
9.2.7. The method skeletonize(), on the other hand, implements
a thinning process similar to Alg. 9.3.

9.5 Grayscale Morphology

Morphological operations are not confined to binary images but
are also for intensity (grayscale) images. In fact, the definition of
grayscale morphology is a generalization of binary morphology, with
the binary OR and AND operators replaced by the arithmetic MAX
and MIN operators, respectively. As a consequence, procedures de-
signed for grayscale morphology can also perform binary morphology
(but not the other way around).7 In the case of color images, the
grayscale operations are usually applied individually to each color
channel.

9.5.1 Structuring Elements

Unlike in the binary scheme, the structuring elements for grayscale
morphology are not defined as point sets but as real-valued 2D func-
tions, that is,

H(i, j) ∈ R , for (i, j) ∈ Z
2. (9.30)

The values in H may be negative or zero. Notice, however, that, in
contrast to linear convolution (Sec. 5.3.1), zero elements in grayscale

7 ImageJ provides a single implementation of morphological operations
that handles both binary and grayscale images (see Sec. 9.4.4).

202

9.5 Grayscale
Morphology

morphology generally do contribute to the result.8 The design of
structuring elements for grayscale morphology must therefore dis-
tinguish explicitly between cells containing the value 0 and empty
(“don’t care”) cells, for example,

0 1 0

1 2 1

0 1 0

�=
1

1 2 1

1

. (9.31)

9.5.2 Dilation and Erosion

The result of grayscale dilation I ⊕H is defined as the maximum of
the values in H added to the values of the current subimage of I,
that is,

(I ⊕H) (u, v) = max
(i,j)∈H

(I(u+i, v+j) + H(i, j)) . (9.32)

Similarly, the result of grayscale erosion is the minimum of the dif-
ferences,

(I ⊖H)(u, v) = min
(i,j)∈H

(I(u+i, v+j)−H(i, j)) . (9.33)

Figures 9.24 and 9.25 demonstrate the basic process of grayscale di-
lation and erosion, respectively, on a simple example.

6 7 3 4

5 6 6 8

6 4 5 2

6 4 2 3

1 1 1

1 1

1 1 1

8 9

7 9

7 8 4

6 7

7 5 6

max

I HHI

I +H

=2

8

Fig. 9.24
Grayscale dilation I ⊕ H.
The 3 × 3 pixel structuring ele-
ment H is placed on the image
I in the upper left position.
Each value of H is added to
the corresponding element of I;
the intermediate result (I + H)
for this particular position is
shown below. Its maximum
value 8 = 7 + 1 is inserted
into the result (I ⊕ H) at the
current position of the filter
origin. The results for three
other filter positions are also
shown.

In general, either operation may produce negative results that
must be considered if the range of pixel values is restricted, for ex-
ample, by clamping the results (see Ch. 4, Sec. 4.1.2). Some examples
of grayscale dilation and erosion on natural images using disk-shaped
structuring elements of various sizes are shown in Fig. 9.26. Figure
9.28 demonstrates the same operations with some freely designed
structuring elements.

9.5.3 Grayscale Opening and Closing

Opening and closing on grayscale images are defined, identical to
the binary case (Eqns. (9.21) and (9.22)), as operations composed

8 While a zero coefficient in a linear convolution matrix simply means
that the corresponding image pixel is ignored.

203

9 Morphological
Filters

Fig. 9.25
Grayscale erosion I ⊖ H.

The 3 × 3 pixel structuring
element H is placed on the

image I in the upper left posi-
tion. Each value of H is sub-

tracted from the corresponding
element of I; the intermedi-

ate result (I − H) for this
particular position is shown

below. Its minimum value
3−1 = 2 is inserted into the
result (I ⊖ H) at the current

position of the filter origin.
The results for three other

filter positions are also shown.

6 7 3 4

5 6 6 8

6 4 5 2

6 4 2 3

1 1 1

1 1

1 1 1

2 1

1 1

5 6 2

4 5

5 3 4

HI

I —H

min

=

I H

2

4

Fig. 9.26
Grayscale dilation and erosion

with disk-shaped structur-
ing elements. The radius r

of the structuring element is
2.5 (a), 5.0 (b), and 10.0 (c).

Original

Dilation Erosion

(a) r = 2.5

(b) r = 5.0

(c) r = 10.0

204

9.6 Exercises
Opening Closing

(a) r = 2.5

(b) r = 5.0

(c) r = 10.0

Fig. 9.27
Grayscale opening and closing
with disk-shaped structuring
elements. The radius r of the
structuring element is 2.5 (a),
5.0 (b), and 10.0 (c).

of dilation and erosion with the same structuring element. Some
examples are shown in Fig. 9.27 for disk-shaped structuring elements
and in Fig. 9.29 for various nonstandard structuring elements. Notice
that interesting effects can be obtained, particularly from structuring
elements resembling the shape of brush or other stroke patterns.

As mentioned in Sec. 9.4.4, the morphological operations ava-
iable in ImageJ can be applied to binary images as well as grayscale
images. In addition, several additional plugins and complete mor-
phological packages are available online,9 including the morphology
operators by Gabriel Landini and the Grayscale Morphology package
by Dimiter Prodanov, which allows structuring elements to be inter-
actively specified (a modified version was used for some examples in
this chapter).

9.6 Exercises

Exercise 9.1. Manually calculate the results of dilation and erosion
for the following image I and the structuring elements H1 and H2:

9 See http://rsb.info.nih.gov/ij/plugins/.
205

http://rsb.info.nih.gov/ij/plugins/

9 Morphological
Filters

Fig. 9.28
Grayscale dilation and

erosion with various free-
form structuring elements.

H Dilation Erosion

(a)

(b)

(c)

(d)

I =

•
• • • • •

• • • • •
• • • •

• •
•

H1 =
•
•
•

H2 =
•

• • •
•

Exercise 9.2. Assume that a binary image I contains unwanted fore-
ground spots with a maximum diameter of 5 pixels that should be
removed without damaging the remaining structures. Design a suit-
able morphological procedure, and evaluate its performance on ap-
propriate test images.

Exercise 9.3. Investigate if the results of the thinning operation de-
scribed in Alg. 9.2 (and implemented by the thin() method of class
BinaryMorphologyFilter) are invariant against rotating the image

206

9.6 Exercises
H Opening Closing

(a)

(b)

(c)

(d)

Fig. 9.29
Grayscale opening and closing
with various free-form struc-
turing elements.

by 90◦ and horizontal or vertical mirroring. Use appropriate test
images to see if the results are identical.

Exercise 9.4. Show that, in the special case of the structuring ele-
ments with the contents

• • •
• • •
• • •

for binary and
0 0 0

0 0 0

0 0 0

for grayscale images,

dilation is equivalent to a 3× 3 pixel maximum filter and erosion is
equivalent to a 3× 3 pixel minimum filter (see Ch. 5, Sec. 5.4.1).

Exercise 9.5. Thinning can be applied to extract the “skeleton”
of a binary region, which in turn can be used to characterize the
shape of the region. A common approach is to partition the skele-
ton into a graph, consisting of nodes and connecting segments, as a

207

9 Morphological
Filters

Fig. 9.30
Segmentation of a region skele-
ton. Original binary image (a)

and the skeleton obtained by
thinning (b). Terminal nodes
are marked green, connecting
(inner) nodes are marked red.

(a) (b)

shape representation (see Fig. 9.30 for an example). Use ImageJ’s
skeletonize() method or the thin() methode of class Binary-

MorphologyFilter (see Sec. 9.4.3) to generate the skeleton, then
locate and mark the connecting and terminal nodes of this struc-
ture. Define precisely the properties of each type of node and use
this definition in your implementation. Test your implementation on
different examples. How would you generally judge the robustness of
this approach as a 2D shape representation?

208

10

Regions in Binary Images

In a binary image, pixels can take on exactly one of two values.
These values are often thought of as representing the “foreground”
and “background” in the image, even though these concepts often
are not applicable to natural scenes. In this chapter we focus on
connected regions in images and how to isolate and describe such
structures.

Let us assume that our task is to devise a procedure for finding
the number and type of objects contained in an image as shown in
Fig. 10.1. As long as we continue to consider each pixel in isolation,
we will not be able to determine how many objects there are overall in
the image, where they are located, and which pixels belong to which
objects. Therefore our first step is to find each object by grouping
together all the pixels that belong to it. In the simplest case, an
object is a group of touching foreground pixels, that is, a connected
binary region or “component”.

Fig. 10.1
Binary image with nine com-
ponents. Each component cor-
responds to a connected region
of (black) foreground pixels.

209
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_10

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

10 Regions in Binary
Images

10.1 Finding Connected Image Regions

In the search for binary regions, the most important tasks are to find
out which pixels belong to which regions, how many regions are in
the image, and where these regions are located. These steps usually
take place as part of a process called region labeling or region color-
ing. During this process, neighboring pixels are pieced together in
a stepwise manner to build regions in which all pixels within that
region are assigned a unique number (“label”) for identification. In
the following sections, we describe two variations on this idea. In the
first method, region marking through flood filling, a region is filled in
all directions starting from a single point or “seed” within the region.
In the second method, sequential region marking, the image is tra-
versed from top to bottom, marking regions as they are encountered.
In Sec. 10.2.2, we describe a third method that combines two useful
processes, region labeling and contour finding, in a single algorithm.

Independent of which of these methods we use, we must first set-
tle on either the 4- or 8-connected definition of neighboring (see Ch.
9, Fig. 9.5) for determining when two pixels are “connected” to each
other, since under each definition we can end up with different results.
In the following region-marking algorithms, we use the following con-
vention: the original binary image I(u, v) contains the values 0 and 1
to mark the background and foreground, respectively; any other value
is used for numbering (labeling) the regions, that is, the pixel values
are

I(u, v) =

⎧

⎨

⎩

0 background,
1 foreground,
2, 3, . . . region label.

(10.1)

10.1.1 Region Labeling by Flood Filling

The underlying algorithm for region marking by flood filling is simple:
search for an unmarked foreground pixel and then fill (visit and mark)
all the rest of the neighboring pixels in its region. This operation is
called a “flood fill” because it is as if a flood of water erupts at
the start pixel and flows out across a flat region. There are various
methods for carrying out the fill operation that ultimately differ in
how to select the coordinates of the next pixel to be visited during
the fill. We present three different ways of performing the FloodFill()
procedure: a recursive version, an iterative depth-first version, and
an iterative breadth-first version (see Alg. 10.1):

A. Recursive Flood Filling: The recursive version (Alg. 10.1, line
8) does not make use of explicit data structures to keep track
of the image coordinates but uses the local variables that are
implicitly allocated by recursive procedure calls.1 Within each
region, a tree structure, rooted at the starting point, is defined
by the neighborhood relation between pixels. The recursive step
corresponds to a depth-first traversal [54] of this tree and results

1 In Java, and similar imperative programming languages such as C and
C++, local variables are automatically stored on the call stack at each
procedure call and restored from the stack when the procedure returns.

210

10.1 Finding Connected
Image Regions

1: RegionLabeling(I)
Input: I , an integer-valued image with initial values 0 = back-

ground, 1 = foreground. Returns nothing but modifies the im-
age I .

2: label ← 2 ⊲ value of the next label to be assigned
3: for all image coordinates u, v do
4: if I(u, v) = 1 then ⊲ a foreground pixel
5: FloodFill(I, u, v, label) ⊲ any of the 3 versions below
6: label ← label + 1.
7: return

8: FloodFill(I, u, v, label) ⊲ Recursive Version

9: if u, v is within the image boundaries and I(u, v) = 1 then
10: I(u, v) ← label

11: FloodFill(I, u+1, v, label) ⊲ recursive call to FloodFill()
12: FloodFill(I, u, v+1, label)
13: FloodFill(I, u, v−1, label)
14: FloodFill(I, u−1, v, label)
15: return

16: FloodFill(I, u, v, label) ⊲ Depth-First Version

17: S ← () ⊲ create an empty stack S
18: S ← (u, v) � S ⊲ push seed coordinate (u, v) onto S

19: while S �= () do ⊲ while S is not empty
20: (x, y) ← GetFirst(S)
21: S ← Delete((x, y) , S) ⊲ pop first coordinate off the stack
22: if x, y is within the image boundaries and I(x, y) = 1 then
23: I(x, y) ← label

24: S ← (x+1, y) � S ⊲ push (x+1, y) onto S
25: S ← (x, y+1) � S ⊲ push (x, y+1) onto S
26: S ← (x, y−1) � S ⊲ push (x, y−1) onto S
27: S ← (x−1, y) � S ⊲ push (x−1, y) onto S
28: return

29: FloodFill(I, u, v, label) ⊲ Breadth-First Version

30: Q ← () ⊲ create an empty queue Q
31: Q ← Q � (u, v) ⊲ append seed coordinate (u, v) to Q

32: while Q �= () do ⊲ while Q is not empty
33: (x, y) ← GetFirst(Q)
34: Q ← Delete((x, y) , Q) ⊲ dequeue first coordinate
35: if x, y is within the image boundaries and I(x, y) = 1 then
36: I(x, y) ← label

37: Q ← Q � (x+1, y) ⊲ append (x+1, y) to Q
38: Q ← Q � (x, y+1) ⊲ append (x, y+1) to Q
39: Q ← Q � (x, y−1) ⊲ append (x, y−1) to Q
40: Q ← Q � (x−1, y) ⊲ append (x−1, y) to Q
41: return

Alg. 10.1
Region marking by flood fill-
ing. The binary input image
I uses the value 0 for back-
ground pixels and 1 for fore-
ground pixels. Unmarked fore-
ground pixels are searched for,
and then the region to which
they belong is filled. Procedure
FloodFill() is defined in three
different versions: recursive,
emphdepth-first and breadth-
first.

in very short and elegant program code. Unfortunately, since
the maximum depth of the recursion—and thus the size of the
required stack memory—is proportional to the size of the region,
stack memory is quickly exhausted. Therefore this method is
risky and really only practical for very small images.

211

10 Regions in Binary
Images

B. Iterative Flood Filling (depth-first): Every recursive algo-
rithm can also be reformulated as an iterative algorithm (Alg.
10.1, line 16) by implementing and managing its own stacks. In
this case, the stack records the “open” (that is, the adjacent but
not yet visited) elements. As in the recursive version (A), the
corresponding tree of pixels is traversed in depth-first order. By
making use of its own dedicated stack (which is created in the
much larger heap memory), the depth of the tree is no longer
limited to the size of the call stack.

C. Iterative Flood Filling (breadth-first): In this version, pixels
are traversed in a way that resembles an expanding wave front
propagating out from the starting point (Alg. 10.1, line 29). The
data structure used to hold the as yet unvisited pixel coordinates
is in this case a queue instead of a stack, but otherwise it is
identical to version B.

Java implementation

The recursive version (A) of the algorithm is an exact blueprint of
the Java implementation. However, a normal Java runtime environ-
ment does not support more than about 10,000 recursive calls of the
FloodFill() procedure (Alg. 10.1, line 8) before the memory allocated
for the call stack is exhausted. This is only sufficient for relatively
small images with fewer than approximately 200× 200 pixels.

Program 10.1 (line 1–17) gives the complete Java implementation
for both variants of the iterative FloodFill() procedure. The stack (S)
in the depth-first Version (B) and the queue (Q) in the breadth-first
variant (C) are both implemented as instances of type LinkedList.2

<Point> is specified as a type parameter for both generic container
classes so they can only contain objects of type Point.3

Figure 10.2 illustrates the progress of the region marking in both
variants within an example region, where the start point (i.e., seed
point), which would normally lie on a contour edge, has been placed
arbitrarily within the region in order to better illustrate the process.
It is clearly visible that the depth-first method first explores one
direction (in this case horizontally to the left) completely (that is,
until it reaches the edge of the region) and only then examines the
remaining directions. In contrast the breadth-first method markings
proceed outward, layer by layer, equally in all directions.

Due to the way exploration takes place, the memory requirement
of the breadth-first variant of the flood-fill version is generally much
lower than that of the depth-first variant. For example, when flood
filling the region in Fig. 10.2 (using the implementation given Prog.
10.1), the stack in the depth-first variant grows to a maximum of
28,822 elements, while the queue used by the breadth-first variant
never exceeds a maximum of 438 nodes.

2 The class LinkedList is part of Java’s collections framework.
3 Note that the depth-first and breadth-first implementations in Prog.

10.1 typically run slower than the recursive version described in Alg.
10.1, since they allocate (and immediately discard) large numbers of
Point objects. A better solution is to use a queue or stack with elements
of a primitive type (e.g., int) instead. See also Exercise 10.3.

212

10.1 Finding Connected
Image Regions

Depth-first version (using a stack):

1 void floodFill(int u, int v, int label) {

2 Deque<Point> S = new LinkedList<Point>(); // stack S
3 S.push(new Point(u, v));

4 while (!S.isEmpty()) {

5 Point p = S.pop();

6 int x = p.x;

7 int y = p.y;

8 if ((x >= 0) && (x < width) && (y >= 0) && (y < height)

9 && ip.getPixel(x, y) == 1) {

10 ip.putPixel(x, y, label);

11 S.push(new Point(x + 1, y));

12 S.push(new Point(x, y + 1));

13 S.push(new Point(x, y - 1));

14 S.push(new Point(x - 1, y));

15 }

16 }

17 }

Breadth-first version (using a queue):

18 void floodFill(int u, int v, int label) {

19 Queue<Point> Q = new LinkedList<Point>(); // queue Q
20 Q.add(new Point(u, v));

21 while (!Q.isEmpty()) {

22 Point p = Q.remove(); // get the next point to process

23 int x = p.x;

24 int y = p.y;

25 if ((x >= 0) && (x < width) && (y >= 0) && (y < height)

26 && ip.getPixel(x, y) == 1) {

27 ip.putPixel(x, y, label);

28 Q.add(new Point(x + 1, y));

29 Q.add(new Point(x, y + 1));

30 Q.add(new Point(x, y - 1));

31 Q.add(new Point(x - 1, y));

32 }

33 }

34 }

Prog. 10.1
Java implementation of iter-
ative flood filling (depth-first
and breadth-first variants).

10.1.2 Sequential Region Labeling

Sequential region marking is a classical, nonrecursive technique that
is known in the literature as “region labeling”. The algorithm consists
of two steps: (1) preliminary labeling of the image regions and (2) re-
solving cases where more than one label occurs (i.e., has been assigned
in the previous step) in the same connected region. Even though
this algorithm is relatively complex, especially its second stage, its
moderate memory requirements make it a good choice under limited
memory conditions. However, this is not a major issue on modern
computers and thus, in terms of overall efficiency, sequential labeling
offers no clear advantage over the simpler methods described ear-
lier. The sequential technique is nevertheless interesting (not only
from a historic perspective) and inspiring. The complete process is
summarized in Alg. 10.2, with the following main steps:

213

10 Regions in Binary
Images

Fig. 10.2
Iterative flood filling—

comparison between the
depth-first and breadth-first

approach. The starting point,
marked + in the top two im-

age (a), was arbitrarily chosen.
Intermediate results of the

flood fill process after 1000
(a), 5000 (b), and 10,000 (c)

marked pixels are shown. The
image size is 250 × 242 pixels.

(a)

Original

Depth-first Breadth-first

(a)

K = 1.000

(b)

K = 5.000

(c)

K = 10.000

Step 1: Initial labeling

In the first stage of region labeling, the image is traversed from top
left to bottom right sequentially to assign a preliminary label to ev-
ery foreground pixel. Depending on the definition of neighborhood
(either 4- or 8-connected) used, the following neighbors in the direct
vicinity of each pixel must be examined (× marks the current pixel
at the position (u, v)):

214

10.1 Finding Connected
Image Regions

1: SequentialLabeling(I)
Input: I , an integer-valued image with initial values 0 = back-

ground, 1 = foreground. Returns nothing but modifies the im-
age I .

Step 1 – Assign initial labels:

2: (M, N) ← Size(I)
3: label ← 2 ⊲ value of the next label to be assigned
4: C ← () ⊲ empty list of label collisions

5: for v ← 0, . . . , N − 1 do
6: for u ← 0, . . . , M − 1 do
7: if I(u, v) = 1 then ⊲ I(u, v) is a foreground pixel
8: N ← GetNeighbors(I, u, v) ⊲ see Eqn. 10.2
9: if Ni = 0 for all Ni ∈ N then

10: I(u, v) ← label.
11: label ← label + 1.
12: else if exactly one Nj ∈ N has a value > 1 then
13: set I(u, v) ← Nj

14: else if more than one Nk ∈ N have values > 1 then
15: I(u, v) ← Nk ⊲ select one Nk > 1 as the new

label
16: for all Nl ∈ N , with l �= k and Nl > 1 do
17: C ← C � (Nk, Nl) ⊲ register collision (Nk, Nl)

Remark: The image I now contains labels 0, 2, . . . , label−1.

Step 2 – Resolve label collisions:

Create a partitioning of the label set (sequence of 1-element sets):
18: R ← ({2}, {3}, {4}, . . . , {label−1})

19: for all collisions (A, B) in C do
Find the sets R(a), R(b) holding labels A, B:

20: a ← index of the set R(a) that contains label A
21: b ← index of the set R(b) that contains label B
22: if a �= b then ⊲ A and B are contained in different sets
23: R(a) ← R(a) ∪ R(b) ⊲ merge elements of R(b) into R(a)
24: R(b) ← {}

Remark: All equivalent labels (i.e., all labels of pixels in the same
connected component) are now contained in the same subset of R.

25: Step 3: Relabel the image:

26: for all (u, v) ∈ M × N do
27: if I(u, v) > 1 then ⊲ this is a labeled foreground pixel
28: j ← index of the set R(j) that contains label I(u, v)

Choose a representative element k from the set R(j):
29: k ← min(R(j)) ⊲ e.g., pick the minimum value
30: I(u, v) ← k ⊲ replace the image label

31: return

Alg. 10.2
Sequential region labeling. The
binary input image I uses the
value I(u, v) = 0 for back-
ground pixels and I(u, v) = 1
for foreground (region) pixels.
The resulting labels have the
values 2, . . . , label − 1.

N4 =
N1

N2 × N0

N3

or N8 =
N3 N2 N1

N4 × N0

N5 N6 N7

. (10.2)

215

10 Regions in Binary
Images

When using the 4-connected neighborhood N4, only the two neigh-
bors N1 = I(u−1, v) and N2 = I(u, v−1) need to be considered,
but when using the 8-connected neighborhood N8, all four neighbors
N1 . . . N4 must be examined. In the following examples (Figs. 10.3–
10.5), we use an 8-connected neighborhood and a very simple test
image (Fig. 10.3(a)) to demonstrate the sequential region labeling
process.

Propagating region labels

Again we assume that, in the image, the value I(u, v) = 0 represents
background pixels and the value I(u, v) = 1 represents foreground
pixels. We will also consider neighboring pixels that lie outside of
the image matrix (e.g., on the array borders) to be part of the back-
ground. The neighborhood region N (u, v) is slid over the image
horizontally and then vertically, starting from the top left corner.
When the current image element I(u, v) is a foreground pixel, it is
either assigned a new region number or, in the case where one of its
previously examined neighbors in N (u, v) was a foreground pixel, it
takes on the region number of the neighbor. In this way, existing
region numbers propagate in the image from the left to the right and
from the top to the bottom, as shown in (Fig. 10.3(b–c)).

Label collisions

In the case where two or more neighbors have labels belonging to
different regions, then a label collision has occurred; that is, pixels
within a single connected region have different labels. For example,
in a U-shaped region, the pixels in the left and right arms are at
first assigned different labels since it is not immediately apparent
that they are actually part of a single region. The two labels will
propagate down independently from each other until they eventually
collide in the lower part of the “U” (Fig. 10.3(d)).

When two labels a, b collide, then we know that they are actually
“equivalent”; that is, they are contained in the same image region.
These collisions are registered but otherwise not dealt with during
the first step. Once all collisions have been registered, they are then
resolved in the second step of the algorithm. The number of collisions
depends on the content of the image. There can be only a few or very
many collisions, and the exact number is only known at the end of the
first step, once the whole image has been traversed. For this reason,
collision management must make use of dynamic data structures such
as lists or hash tables.

Upon the completion of the first steps, all the original foreground
pixels have been provisionally marked, and all the collisions between
labels within the same regions have been registered for subsequent
processing. The example in Fig. 10.4 illustrates the state upon com-
pletion of step 1: all foreground pixels have been assigned preliminary
labels (Fig. 10.4(a)), and the following collisions (depicted by circles)
between the labels (2, 4), (2, 5), and (2, 6) have been registered. The
labels L = {2, 3, 4, 5, 6, 7} and collisions C = {(2, 4) , (2, 5) , (2, 6)}
correspond to the nodes and edges of an undirected graph (Fig.
10.4(b)).

216

10.1 Finding Connected
Image Regions(a)

�

�

� � � � � � � � � � � � � �
� � � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

� �
� � � � � �

� �
�

� � � � � �
� �

� � � � � �

�
�
�

� � � � � � � � �
��� �

Background

Foreground

� � � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

� �
� � � � � �

� �
�

� � � � � �
� �

� � � � � �

�
�
�

� � � � � � � � �
��� �

� � �
�

(b) Background neighbors only

� � � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

�
� � � � � �

� �
�

� � � � � �
� �

� � � � � �

�
�
�

� � � � � � � � �
��� �

� � �
� �

New label (2)

� � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

�
� � � � � �

� �
�

� � � � � �
� �

� � � � � �

�
�
�

� � � � � � � � �
��� �

�
� �

� � �

(c) Exactly one neighbor label

� � � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � �
� �
�

� � � � � �
� �

� � � � � �

�
�
�

� � � � � � � � �
��� �

� � �
� � �

Neighbor label is propagated

� � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

� � � �

� � � � � �
� �

� � � � � �

�
�

� � � � � � � � �
��� �

�
� �

� � �
� � � �

� � �

(d) Two different neighbor labels

� � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

� � �

� � � � � �
� �

� � � � � �

�
�

� � � � � � � � �
��� �

�
�

� � �
� � � � �

� � � �

One of the labels (2) is propagated

Fig. 10.3
Sequential region labeling—
label propagation. Original
image (a). The first foreground
pixel (marked 1) is found in
(b): all neighbors are back-
ground pixels (marked 0), and
the pixel is assigned the first
label (2). In the next step (c),
there is exactly one neighbor
pixel marked with the label 2,
so this value is propagated. In
(d) there are two neighboring
pixels, and they have differing
labels (2 and 5); one of these
values is propagated, and the
collision (2, 5) is registered.

� � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

�
�

� � �

� �

	

� �
� �

� � � � � � � � � �
� � � � � � � � �

�
�
�

�
�

�

� � �
� �
�

�
�
�

	

� �
�

�
�

	

(a) (b)

Fig. 10.4
Sequential region labeling—
intermediate result after
step 1. Label collisions indi-
cated by circles (a); the nodes
of the undirected graph (b)
correspond to the labels, and
its edges correspond to the
collisions.

Step 2: Resolving label collisions

The task in the second step is to resolve the label collisions that arose
in the first step in order to merge the corresponding “partial” regions.
This process is nontrivial since it is possible for two regions with dif-

217

10 Regions in Binary
Images

ferent labels to be connected transitively (e.g., (a, b)∩(b, c) ⇒ (a, c))
through a third region or, more generally, through a series of regions.
In fact, this problem is identical to the problem of finding the con-
nected components of a graph [54], where the labels L determined in
step 1 constitute the “nodes” of the graph and the registered colli-
sions C make up its “edges” (Fig. 10.4(b)).

Once all the distinct labels within a single region have been col-
lected, the labels of all the pixels in the region are updated so they
carry the same label (e.g., choosing the smallest label number in the
region), as depicted in Fig. 10.5. Figure 10.6 shows the complete seg-
mentation with some region statistics that can be easily calculated
from the labeling data.

Fig. 10.5
Sequential region labeling—
final result after step 2. All
equivalent labels have been

replaced by the smallest
label within that region.

� � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

�
�

� � �
� �
� �

� � � � � � � � �
� � � � � � � �

�
�
�

�
�

�

� � �

� �

�
�
�

�

� �
�

	 	

Fig. 10.6
Example of a complete region

labeling. The pixels within
each region have been col-

ored according to the consec-
utive label values 2, 3, . . . , 10
they were assigned. The cor-

responding region statistics
are shown in the table (total

image size is 1212 × 836).

Area Bounding Box Centroid
Label (pixels) (left, top, right, bottom) (xc, yc)

2 14978 (887, 21, 1144, 399) (1049.7, 242.8)

3 36156 (40, 37, 438, 419) (261.9, 209.5)

4 25904 (464, 126, 841, 382) (680.6, 240.6)

5 2024 (387, 281, 442, 341) (414.2, 310.6)

6 2293 (244, 367, 342, 506) (294.4, 439.0)

7 4394 (406, 400, 507, 512) (454.1, 457.3)

8 29777 (510, 416, 883, 765) (704.9, 583.9)

9 20724 (833, 497, 1168, 759) (1016.0, 624.1)

10 16566 (82, 558, 411, 821) (208.7, 661.6)

218

10.2 Region Contours10.1.3 Region Labeling—Summary

In this section, we have described a selection of algorithms for finding
and labeling connected regions in images. We discovered that the
elegant idea of labeling individual regions using a simple recursive
flood-filling method (Sec. 10.1.1) was not useful because of practical
limitations on the depth of recursion and the high memory costs as-
sociated with it. We also saw that classical sequential region labeling
(Sec. 10.1.2) is relatively complex and offers no real advantage over
iterative implementations of the depth-first and breadth-first meth-
ods. In practice, the iterative breadth-first method is generally the
best choice for large and complex images. In the following section
we present a modern and efficient algorithm that performs region
labeling and also delineates the regions’ contours. Since contours
are required in many applications, this combined approach is highly
practical.

10.2 Region Contours

Once the regions in a binary image have been found, the next step is
often to find the contours (that is, the outlines) of the regions. Like
so many other tasks in image processing, at first glance this appears
to be an easy one: simply follow along the edge of the region. We will
see that, in actuality, describing this apparently simple process algo-
rithmically requires careful thought, which has made contour finding
one of the classic problems in image analysis.

10.2.1 External and Internal Contours

As we discussed in Chapter 9, Sec. 9.2.7, the pixels along the edge
of a binary region (i.e., its border) can be identified using simple
morphological operations and difference images. It must be stressed,
however, that this process only marks the pixels along the contour,
which is useful, for instance, for display purposes. In this section, we
will go one step further and develop an algorithm for obtaining an
ordered sequence of border pixel coordinates for describing a region’s
contour. Note that connected image regions contain exactly one outer
contour, yet, due to holes, they can contain arbitrarily many inner
contours. Within such holes, smaller regions may be found, which
will again have their own outer contours, and in turn these regions
may themselves contain further holes with even smaller regions, and
so on in a recursive manner (Fig. 10.7). An additional complication
arises when regions are connected by parts that taper down to the
width of a single pixel. In such cases, the contour can run through the
same pixel more than once and from different directions (Fig. 10.8).
Therefore, when tracing a contour from a start point xs, returning
to the start point is not a sufficient condition for terminating the
contour-tracing process. Other factors, such as the current direction
along which contour points are being traversed, must be taken into
account.

One apparently simple way of determining a contour is to proceed
in analogy to the two-stage process presented in Sec. 10.1; that is,

219

10 Regions in Binary
Images

Fig. 10.7
Binary image with outer and

inner contours. The outer con-
tour lies along the outside of
the foreground region (dark).
The inner contour surrounds
the space within the region,

which may contain further
regions (holes), and so on.

Outer contour

Inner contour

(a) (b)

Fig. 10.8
The path along a contour as
an ordered sequence of pixel

coordinates with a given start
point xs. Individual pixels

may occur (be visited) more
than once within the path,

and a region consisting of a
single isolated pixel will also

have a contour (bottom right).

xs

to first identify the connected regions in the image and second, for
each region, proceed around it, starting from a pixel selected from its
border. In the same way, an internal contour can be found by starting
at a border pixel of a region’s hole. A wide range of algorithms based
on first finding the regions and then following along their contours
have been published, including [202], [180, pp. 142–148], and [214, p.
296].

As a modern alternative, we present the following combined al-
gorithm that, in contrast to the aforementioned classical methods,
combines contour finding and region labeling in a single process.

10.2.2 Combining Region Labeling and Contour Finding

This method, based on [47], combines the concepts of sequential re-
gion labeling (Sec. 10.1) and traditional contour tracing into a single
algorithm able to perform both tasks simultaneously during a single
pass through the image. It identifies and labels regions and at the
same time traces both their inner and outer contours. The algorithm
does not require any complicated data structures and is relatively
efficient when compared to other methods with similar capabilities.
The key steps of this method are described here and illustrated in
Fig. 10.9:

1. As in the sequential region labeling (Alg. 10.2), the binary image
I is traversed from the top left to the bottom right. Such a traver-
sal ensures that all pixels in the image are eventually examined
and assigned an appropriate label.

220

10.2 Region Contours

A

A

BB

C

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10.9
Combined region labeling and
contour following (after [47]).
The image in (a) is traversed
from the top left to the lower
right, one row at a time. In
(b), the first foreground pixel
A on the outer edge of the re-
gion is found. Starting from
point A, the pixels on the edge
along the outer contour are
visited and labeled until A
is reached again (c). Labels
picked up at the outer contour
are propagated along the im-
age line inside the region (d).
In (e), B was found as the first
point on the inner contour.
Now the inner contour is tra-
versed in clock-wise direction,
marking the contour pixels
until point B is reached again
(f). The same tracing process
is used as in step (c), with
the inside of the region always
lying to the right of the con-
tour path. In (g) a previously
marked point C on an inner
contour is detected. Its label is
again propagated along the im-
age line inside the region. The
final result is shown in (h).

221

10 Regions in Binary
Images

2. At a given position in the image, the following cases may occur:

Case A: The transition from a background pixel to a previously
unmarked foreground pixel means that this pixel lies on the outer
edge of a new region. A new label is assigned and the associated
outer contour is traversed and marked by calling the method
TraceContour (see Alg. 10.3 and Fig. 10.9(a)). Furthermore, all
background pixels directly bordering the region are marked with
the special label −1.

Case B: The transition from a foreground pixel B to an un-
marked background pixel means that this pixel lies on an inner
contour (Fig. 10.9(b)). Starting from B, the inner contour is tra-
versed and its pixels are marked with labels from the surrounding
region (Fig. 10.9(c)). Also, all bordering background pixels are
again assigned the special label value −1.

Case C: When a foreground pixel does not lie on a contour, then
the neighboring pixel to the left has already been labeled (Fig.
10.9(d)) and this label is propagated to the current pixel.

In Algs. 10.3–10.4, the entire procedure is presented again and ex-
plained precisely. Procedure RegionContourLabeling traverses the im-
age line-by-line and calls procedure TraceContour whenever a new
inner or outer contour must be traced. The labels of the image ele-
ments along the contour, as well as the neighboring foreground pixels,
are stored in the “label map” L (a rectangular array of the same size
as the image) by procedure FindNextContourPoint in Alg. 10.4.

10.2.3 Java Implementation

The Java implementation of the combined region labeling and con-
tour tracing algorithm can be found online in class RegionContour-

Labeling4 (for details see Sec. 10.9). It almost exactly follows Algs.
10.3–10.4, only the image I and the associated label map L are ini-
tially padded (i.e., enlarged) by a surrounding layer of background
pixels. This simplifies the process of tracing the outer region con-
tours, since no special treatment is needed at the image borders.
Program 10.2 shows a minimal example of its usage within the run()

method of an ImageJ plugin (class Trace_Contours).

Examples

This combined algorithm for region marking and contour following
is particularly well suited for processing large binary images since it
is efficient and has only modest memory requirements. Figure 10.10
shows a synthetic test image that illustrates a number of special situ-
ations, such as isolated pixels and thin sections, which the algorithm
must deal with correctly when following the contours. In the re-
sulting plot, outer contours are shown as black polygon lines running
trough the centers of the contour pixels, and inner contours are drawn
white. Contours of single-pixel regions are marked by small circles
filled with the corresponding color. Figure 10.11 shows the results
for a larger section taken from a real image (Fig. 9.12).

4 Package imagingbook.pub.regions.
222

10.2 Region Contours1: RegionContourLabeling(I)
Input: I , a binary image with 0 = background, 1 = foreground.
Returns sequences of outer and inner contours and a map of
region labels.

2: (M, N) ← Size(I)
3: Cout ← () ⊲ empty list of outer contours
4: Cin ← () ⊲ empty list of inner contours
5: Create map L : M × N �→ Z ⊲ create the label map L

6: for all (u, v) do
7: L(u, v) ← 0 ⊲ initialize L to zero

8: r ← 0 ⊲ region counter

9: for v ← 0, . . . , N−1 do ⊲ scan the image top to bottom
10: label ← 0
11: for u ← 0, . . . , M−1 do ⊲ scan the image left to right

12: if I(u, v) > 0 then ⊲ I(u, v) is a foreground pixel
13: if (label �= 0) then ⊲ continue existing region
14: L(u, v) ← label

15: else
16: label ← L(u, v)
17: if (label = 0) then ⊲ hit a new outer contour
18: r ← r + 1
19: label ← r

20: xs ← (u, v)
21: C ← TraceContour(xs, 0, label , I, L) ⊲ outer c.
22: Cout ← Cout � (C) ⊲ collect outer contour
23: L(u, v) ← label

24: else ⊲ I(u, v) is a background pixel
25: if (label �= 0) then
26: if (L(u, v) = 0) then ⊲ hit new inner contour
27: xs ← (u−1, v)
28: C ← TraceContour(xs, 1, label , I, L) ⊲ inner

cntr.
29: Cin ← Cin � (C) ⊲ collect inner contour
30: label ← 0
31: return (Cout, Cin, L)

continued in Alg. 10.4 ⊲⊲

Alg. 10.3
Combined contour tracing and
region labeling (part 1). Given
a binary image I, the applica-
tion of RegionContourLabeling(I)
returns a set of contours and
an array containing region la-
bels for all pixels in the image.
When a new point on either
an outer or inner contour is
found, then an ordered list of
the contour’s points is con-
structed by calling procedure
TraceContour (line 21 and line
28). TraceContour itself is de-
scribed in Alg. 10.4.

(a) (b)

Fig. 10.10
Combined contour and region
marking. Original image, with
foreground pixels marked green
(a); located contours with
black lines for outer and white
lines for inner contours (b).
Contour polygons pass through
the pixel centers. Outer con-
tours of single-pixel regions
(e.g., in the upper-right of (b))
are marked by a single dot.

223

10 Regions in Binary
Images

Alg. 10.4
Combined contour finding

and region labeling (part 2,
continued from Alg. 10.3).

Starting from xs, the proce-
dure TraceContour traces along

the contour in the direction
dS = 0 for outer contours or

dS = 1 for inner contours.
During this process, all con-
tour points as well as neigh-

boring background points are
marked in the label array L.

Given a point xc, TraceContour
uses FindNextContourPoint()

to determine the next point
along the contour (line 9).

The function Delta() returns
the next coordinate in the

sequence, taking into ac-
count the search direction d.

1: TraceContour(xs, ds, label , I, L)
Input: xs, start position; ds, initial search direction; label, the
label assigned to this contour; I , the binary input image; L, label
map. Returns a new outer or inner contour (sequence of points)
starting at xs.

2: (x, d) ← FindNextContourPoint(xs, ds, I, L)
3: c ← (x) ⊲ new contour with the single point x
4: xp ← xs ⊲ previous position xp = (up, vp)
5: xc ← x ⊲ current position xc = (uc, vc)
6: done ← (xs ≡ x) ⊲ isolated pixel?
7: while (¬done) do
8: L(uc, vc) ← label

9: (xn, d) ← FindNextContourPoint(xc, (d + 6) mod 8, I, L)
10: xp ← xc

11: xc ← xn

12: done ← (xp ≡ xs ∧ xc ≡ x) ⊲ back at starting position?
13: if (¬done) then
14: c ← c � (xn) ⊲ add point xn to contour c

15: return c ⊲ return this contour

16: FindNextContourPoint(x, d, I, L)
Input: x, initial position; d ∈ [0, 7], search direction, I , binary
input image; L, the label map.
Returns the next point on the contour and the modified search
direction.

17: for i ← 0, . . . , 6 do ⊲ search in 7 directions
18: xn ← x + Delta(d)
19: if I(xn) = 0 then ⊲ I(un, vn) is a background pixel
20: L(xn) ← −1 ⊲ mark background as visited (−1)
21: d ← (d + 1) mod 8
22: else ⊲ found a non-background pixel at xn

23: return (xn, d)
24: return (x, d) ⊲ found no next node, return start position

25: Delta(d) :=

(
Δx
Δy

)

, with

d 0 1 2 3 4 5 6 7

Δx 1 1 0 −1 −1 −1 0 1
Δy 0 1 1 1 0 −1 −1 −1

Prog. 10.2
Example of using the class

ContourTracer. (plugin
Trace_Contours). First (in

line 9) a new instance of
RegionContourLabeling is cre-

ated for the input image I.
The segmentation into re-

gions and contours is done
by the constructor. In lines

11–12 the outer and inner con-
tours are retrieved as (possibly

empty) lists of type Contour.
Finally, the list of connected

regions is obtained in line 14.

1 import imagingbook.pub.regions.BinaryRegion;

2 import imagingbook.pub.regions.Contour;

3 import imagingbook.pub.regions.RegionContourLabeling;

4 import java.util.List;

5 ...

6 public void run(ImageProcessor ip) {

7 // Make sure we have a proper byte image:

8 ByteProcessor I = ip.convertToByteProcessor();

9 // Create the region labeler / contour tracer:

10 RegionContourLabeling seg = new RegionContourLabeling(I);

11 // Get all outer/inner contours and connected regions:

12 List<Contour> outerContours = seg.getOuterContours();

13 List<Contour> innerContours = seg.getInnerContours();

14 List<BinaryRegion> regions = seg.getRegions();

15 ...

16 }

224

10.3 Representing
Image Regions

Fig. 10.11
Example of a complex con-
tour (original image in Ch.
9, Fig. 9.12). Outer contours
are marked in black and inner
contours in white.

10.3 Representing Image Regions

10.3.1 Matrix Representation

A natural representation for images is a matrix (i.e., a two-dimensional
array) in which elements represent the intensity or the color at a cor-
responding position in the image. This representation lends itself, in
most programming languages, to a simple and elegant mapping onto
two-dimensional arrays, which makes possible a very natural way to
work with raster images. One possible disadvantage with this rep-
resentation is that it does not depend on the content of the image.
In other words, it makes no difference whether the image contains
only a pair of lines or is of a complex scene because the amount of
memory required is constant and depends only on the dimensions of
the image.

Regions in an image can be represented using a logical mask in
which the area within the region is assigned the value true and the
area without the value false (Fig. 10.12). Since these values can be
represented by a single bit, such a matrix is often referred to as a
“bitmap”.5

10.3.2 Run Length Encoding

In run length encoding (RLE), sequences of adjacent foreground pix-
els can be represented compactly as “runs”. A run, or contiguous

5 Java does not provide a genuine 1-bit data type. Even variables of
type boolean are represented internally (i.e., within the Java virtual
machine) as 32-bit ints.

225

10 Regions in Binary
Images

Fig. 10.12
Use of a binary mask to

specify a region of an im-
age: original image (a),

logical (bit) mask (b),
and masked image (c).

(a) (b) (c)

block, is a maximal length sequence of adjacent pixels of the same
type within either a row or a column. Runs of arbitrary length can
be encoded compactly using three integers,

Runi = 〈rowi, columni, lengthi〉,

as illustrated in Fig. 10.13. When representing a sequence of runs
within the same row, the number of the row is redundant and can be
left out. Also, in some applications, it is more useful to record the
coordinate of the end column instead of the length of the run.

Fig. 10.13
Run length encoding in row

direction. A run of pixels can
be represented by its starting

point (1, 2) and its length (6).

Bitmap RLE

0 1 2 3 4 5 6 7 8

0

1 • • • • • •
2

3 • • • •
4 • • • • • •
5 • • • • • • • • •
6

→
〈row, column, length〉

〈1, 2, 6〉
〈3, 4, 4〉
〈4, 1, 3〉
〈4, 5, 3〉
〈5, 0, 9〉

Since the RLE representation can be easily implemented and ef-
ficiently computed, it has long been used as a simple lossless com-
pression method. It forms the foundation for fax transmission and
can be found in a number of other important codecs, including TIFF,
GIF, and JPEG. In addition, RLE provides precomputed information
about the image that can be used directly when computing certain
properties of the image (for example, statistical moments; see Sec.
10.5.2).

10.3.3 Chain Codes

Regions can be represented not only using their interiors but also by
their contours. Chain codes, which are often referred to as Freeman
codes [79], are a classical method of contour encoding. In this encod-
ing, the contour beginning at a given start point xs is represented by
the sequence of directional changes it describes on the discrete image
grid (Fig. 10.14).

Absolute chain code

For a closed contour of a region R, described by the sequence of
points cR = (x0, x1, . . . xM−1) with xi = 〈ui, vi〉, we create the
elements of its chain code sequence c′

R = (c′
0, c′

1, . . . c′
M−1) with

226

10.3 Representing
Image Regions

'
& &

'

& &&
'

&&
'
$
'

'
$
' $

%

&

'

xs

%

$

&'

(

) *+

)
(

)
((

)
(

+

*

+

*

xs

(a) 4-Chain Code (b) 8-Chain Code
3223222322303303...111 54544546767...222

length = 28 length = 16 + 6
√

2 ≈ 24.5

Fig. 10.14
Chain codes with 4- and 8-
connected neighborhoods. To
compute a chain code, be-
gin traversing the contour
from a given starting point
xs. Encode the relative posi-
tion between adjacent contour
points using the directional
code for either 4-connected
(left) or 8-connected (right)
neighborhoods. The length of
the resulting path, calculated
as the sum of the individual
segments, can be used to ap-
proximate the true length of
the contour.

c′
i = Code(u′, v′), (10.3)

where

(u′, v′) =

{

(ui+1−ui, vi+1−vi) for 0 ≤ i < M−1,
(u0−ui, v0−vi) for i = M−1,

(10.4)

and Code(u′, v′) being defined (assuming an 8-connected neighbor-
hood) by the following table:

u′ 1 1 0 −1 −1 −1 0 1
v′ 0 1 1 1 0 −1 −1 −1

Code(u′, v′) 0 1 2 3 4 5 6 7

Chain codes are compact since instead of storing the absolute coor-
dinates for every point on the contour, only that of the starting point
is recorded. The remaining points are encoded relative to the start-
ing point by indicating in which of the eight possible directions the
next point lies. Since only 3 bits are required to encode these eight
directions the values can be stored using a smaller numeric type.

Differential chain code

Directly comparing two regions represented using chain codes is dif-
ficult since the description depends on the starting point selected xs,
and for instance simply rotating the region by 90◦ results in a com-
pletely different chain code. When using a differential chain code,
the situation improves slightly. Instead of encoding the difference in
the position of the next contour point, the change in the direction
along the discrete contour is encoded. A given absolute chain code
c′

R = (c′
0, c′

1, . . . c′
M−1) can be converted element by element to a

differential chain code c′′
R = (c′′

0 , c′′
1 , . . . c′′

M−1), with6

c′′
i =

{

(c′
i+1 − c′

i) mod 8 for 0 ≤ i < M−1,
(c′

0 − c′
i) mod 8 for i = M−1,

(10.5)

6 For the implementation of the mod operator see Sec. F.1.2 in the
Appendix.

227

10 Regions in Binary
Images

again under the assumption of an 8-connected neighborhood. The
element c′′

i thus describes the change in direction (curvature) of the
contour between two successive segments c′

i and c′
i+1 of the original

chain code c′
R. For the contour in Fig. 10.14(b), for example, the

result is

c′
R = (5, 4, 5, 4, 4, 5, 4, 6, 7, 6, 7, . . . , 2, 2, 2),

c′′
R = (7, 1, 7, 0, 1, 7, 2, 1, 7, 1, 1, . . . , 0, 0, 3).

Given the start position xs and the (absolute) initial direction c0,
the original contour can be unambiguously reconstructed from the
differential chain code.

Shape numbers

While the differential chain code remains the same when a region is
rotated by 90◦, the encoding is still dependent on the selected starting
point. If we want to determine the similarity of two contours of the
same length M using their differential chain codes c′′

1 , c′′
2 , we must

first ensure that the same start point was used when computing the
codes. A method that is often used [15,88] is to interpret the elements
c′′

i in the differential chain code as the digits of a number to the base b
(b = 8 for an 8-connected contour or b = 4 for a 4-connected contour)
and the numeric value

Val(c′′
R) = c′′

0 ·b0 + c′′
1 ·b1 + . . . + c′′

M−1 ·bM−1 =
M−1∑

i=0

c′′
i ·bi. (10.6)

Then the sequence c′′
R is shifted circularly until the numeric value of

the corresponding number reaches a maximum. We use the expres-
sion c′′

R ⊲ k to denote the sequence c′′
R being circularly shifted by k

positions to the right.7 For example, for k = 2 this is

c′′
R = (0, 1, 3, 2, . . . , 5, 3, 7, 4),

c′′
R⊲2 = (7, 4, 0, 1, 3, 2, . . . , 5, 3),

and

kmax = argmax
0≤k<M

Val(c′′
R⊲k), (10.7)

denotes the shift required to maximize the corresponding arithmetic
value. The resulting code sequence or shape number,

sR = c′′
R⊲kmax, (10.8)

is normalized with respect to the starting point and can thus be
directly compared element by element with other normalized code
sequences. Since the function Val() in Eqn. (10.6) produces values
that are in general too large to be actually computed, in practice the
relation

Val(c′′
1) > Val(c′′

2)

7 That is, (c′′
R ⊲k)(i) = c′′

R((i − k) mod M).
228

10.4 Properties of
Binary Regions

is determined by comparing the lexicographic ordering between the
sequences c′′

1 and c′′
2 so that the arithmetic values need not be com-

puted at all.
Unfortunately, comparisons based on chain codes are generally

not very useful for determining the similarity between regions simply
because rotations at arbitrary angles (�= 90◦) have too great of an
impact (change) on a region’s code. In addition, chain codes are
not capable of handling changes in size (scaling) or other distortions.
Section 10.4 presents a number of tools that are more appropriate in
these types of cases.

Fourier shape descriptors

An elegant approach to describing contours are so-called Fourier
shape descriptors, which interpret the two-dimensional contour C =
(x0, x1, . . . , xM−1) with xi = (ui, vi) as a sequence of values in the
complex plane, where

zi = (ui + i · vi) ∈ C. (10.9)

From this sequence, one obtains (using a suitable method of interpo-
lation in case of an 8-connected contour), a discrete, one-dimensional
periodic function f(s) ∈ C with a constant sampling interval over
s, the path length around the contour. The coefficients of the
1D Fourier spectrum (see Sec. 18.3) of this function f(s) provide
a shape description of the contour in frequency space, where the
lower spectral coefficients deliver a gross description of the shape.
The details of this classical method can be found, for example,
in [88, 97, 126, 128, 222]. This technique is described in considerable
detail in Chapter 26.

10.4 Properties of Binary Regions

Imagine that you have to describe the contents of a digital image
to another person over the telephone. One possibility would be to
call out the value of each pixel in some agreed upon order. A much
simpler way of course would be to describe the image on the basis of
its properties—for example, “a red rectangle on a blue background”,
or at an even higher level such as “a sunset at the beach with two
dogs playing in the sand”. While using such a description is simple
and natural for us, it is not (yet) possible for a computer to generate
these types of descriptions without human intervention. For comput-
ers, it is of course simpler to calculate the mathematical properties
of an image or region and to use these as the basis for further clas-
sification. Using features to classify, be they images or other items,
is a fundamental part of the field of pattern recognition, a research
area with many applications in image processing and computer vi-
sion [64, 169, 228].

10.4.1 Shape Features

The comparison and classification of binary regions is widely used, for
example, in optical character recognition (OCR) and for automating

229

10 Regions in Binary
Images

processes ranging from blood cell counting to quality control inspec-
tion of manufactured products on assembly lines. The analysis of
binary regions turns out to be one of the simpler tasks for which
many efficient algorithms have been developed and used to imple-
ment reliable applications that are in use every day.

By a feature of a region, we mean a specific numerical or quali-
tative measure that is computable from the values and coordinates
of the pixels that make up the region. As an example, one of the
simplest features is its size or area; that is the number of pixels that
make up a region. In order to describe a region in a compact form,
different features are often combined into a feature vector. This vec-
tor is then used as a sort of “signature” for the region that can be used
for classification or comparison with other regions. The best features
are those that are simple to calculate and are not easily influenced
(robust) by irrelevant changes, particularly translation, rotation, and
scaling.

10.4.2 Geometric Features

A regionR of a binary image can be interpreted as a two-dimensional
distribution of foreground points pi = (ui, vi) on the discrete plane
Z2, that is, as a set

R = {x0, . . . , xN−1} = {(u0, v0), (u1, v1), . . . , (uN−1, vN−1)}.
Most geometric properties are defined in such a way that a region is
considered to be a set of pixels that, in contrast to the definition in
Sec. 10.1, does not necessarily have to be connected.

Perimeter

The perimeter (or circumference) of a region R is defined as the
length of its outer contour, where R must be connected. As illus-
trated in Fig. 10.14, the type of neighborhood relation must be taken
into account for this calculation. When using a 4-neighborhood, the
measured length of the contour (except when that length is 1) will
be larger than its actual length.

In the case of 8-neighborhoods, a good approximation is reached
by weighing the horizontal and vertical segments with 1 and diag-
onal segments with

√
2. Given an 8-connected chain code c′

R =
(c′

0, c′
1, . . . c′

M−1), the perimeter of the region is arrived at by

Perimeter(R) =
M−1∑

i=0

length(c′
i), (10.10)

with

length(c) =

{

1 for c = 0, 2, 4, 6,√
2 for c = 1, 3, 5, 7.

(10.11)

However, with this conventional method of calculation, the real
perimeter P (R) is systematically overestimated. As a simple rem-
edy, an empirical correction factor of 0.95 works satisfactorily even
for relatively small regions, that is,

P (R) ≈ 0.95 · Perimeter(R). (10.12)
230

10.4 Properties of
Binary Regions

Area

The area of a binary region R can be found by simply counting the
image pixels that make up the region, that is,

A(R) = N = |R|. (10.13)

The area of a connected region without holes can also be approx-
imated from its closed contour, defined by M coordinate points
(x0, x1, . . . xM−1), where xi = (ui, vi), using the Gaussian area for-
mula for polygons:

A(R) ≈ 1
2
·
∣
∣
∣

M−1∑

i=0

(
ui · v(i+1) mod M − u(i+1) mod M · vi

)
∣
∣
∣. (10.14)

When the contour is already encoded as a chain code c′
R = (c′

0, c′
1, . . .

c′
M−1), then the region’s area can be computed (trivially) with Eqn.

(10.14) by expanding Cabs into a sequence of contour points from
an arbitrary starting point (e.g., (0, 0)). However, the area can also
be calculated directly from the chain code representation without
expanding the contour [263] (see also Exercise 10.12).

While simple region properties such as area and perimeter are not
influenced (except for quantization errors) by translation and rota-
tion of the region, they are definitely affected by changes in size; for
example, when the object to which the region corresponds is imaged
from different distances. However, as will be described, it is possi-
ble to specify combined features that are invariant to translation,
rotation, and scaling as well.

Compactness and roundness

Compactness is understood as the relation between a region’s area
and its perimeter. We can use the fact that a region’s perimeter
P increases linearly with the enlargement factor while the area A
increases quadratically to see that, for a particular shape, the ratio
A/P 2 should be the same at any scale. This ratio can thus be used
as a feature that is invariant under translation, rotation, and scaling.
When applied to a circular region of any diameter, this ratio has a
value of 1

4π , so by normalizing it against a filled circle, we create a
feature that is sensitive to the roundness or circularity of a region,

Circularity(R) = 4π · A(R)
P 2(R)

, (10.15)

which results in a maximum value of 1 for a perfectly round region
R and a value in the range [0, 1] for all other shapes (Fig. 10.15). If
an absolute value for a region’s roundness is required, the corrected
perimeter estimate (Eqn. (10.12)) should be employed. Figure 10.15
shows the circularity values of different regions as computed with the
formulation in Eqn. (10.15).

Bounding box

The bounding box of a regionR is the minimal axis-parallel rectangle
that encloses all points of R,

231

10 Regions in Binary
Images

Fig. 10.15
Circularity values for differ-

ent shapes. Shown are the
corresponding estimates for

Circularity(R) as defined in
Eqn. (10.15). Corrected values

calculated with Eqn. (10.12)
are shown in parentheses.

(a) 0.904 (b) 0.607 (c) 0.078
(1.001) (0.672) (0.086)

Fig. 10.16
Example bounding box
(a) and convex hull (b)

of a binary image region.

(a) (b)

BoundingBox(R) = 〈umin, umax, vmin, vmax〉, (10.16)

where umin, umax and vmin, vmax are the minimal and maximal co-
ordinate values of all points (ui, vi) ∈ R in the x and y directions,
respectively (Fig. 10.16(a)).

Convex hull

The convex hull is the smallest convex polygon that contains all
points of the region R. A physical analogy is a board in which nails
stick out in correspondence to each of the points in the region. If
you were to place an elastic band around all the nails, then, when
you release it, it will contract into a convex hull around the nails (see
Figs. 10.16(b) and 10.21(c)). Given N contour points, the convex
hull can be computed in time O(N log V), where V is the number
vertices in the polygon of the resulting convex hull [17].

The convex hull is useful, for example, for determining the con-
vexity or the density of a region. The convexity is defined as the
relationship between the length of the convex hull and the original
perimeter of the region. Density is then defined as the ratio between
the area of the region and the area of its convex hull. The diameter,
on the other hand, is the maximal distance between any two nodes
on the convex hull.

10.5 Statistical Shape Properties

When computing statistical shape properties, we consider a region
R to be a collection of coordinate points distributed within a two-
dimensional space. Since statistical properties can be computed for
point distributions that do not form a connected region, they can

232

10.5 Statistical Shape
Properties

be applied before segmentation. An important concept in this con-
text are the central moments of the region’s point distribution, which
measure characteristic properties with respect to its midpoint or cen-
troid.

10.5.1 Centroid

The centroid or center of gravity of a connected region can be easily
visualized. Imagine drawing the region on a piece of cardboard or
tin and then cutting it out and attempting to balance it on the tip of
your finger. The location on the region where you must place your
finger in order for the region to balance is the centroid of the region.8

The centroid x̄ = (x̄, ȳ)⊺ of a binary (not necessarily connected)
region is the arithmetic mean of the pont coordinates xi = (ui, vi),
that is,

x̄ =
1
|R| ·

∑

xi∈R
xi (10.17)

or
x̄ =

1
|R| ·

∑

(ui,vi)

ui and ȳ =
1
|R| ·

∑

(ui,vi)

vi . (10.18)

10.5.2 Moments

The formulation of the region’s centroid in Eqn. (10.18) is only a
special case of the more general statistical concept of a moment.
Specifically, the expression

mpq(R) =
∑

(u,v)∈R
I(u, v) · up · vq (10.19)

describes the (ordinary) moment of order p, q for a discrete (image)
function I(u, v) ∈ R; for example, a grayscale image. All the follow-
ing definitions are also generally applicable to regions in grayscale
images. The moments of connected binary regions can also be calcu-
lated directly from the coordinates of the contour points [212, p. 148].

In the special case of a binary image I(u, v) ∈ {0, 1}, only the
foreground pixels with I(u, v) = 1 in the region R need to be consid-
ered, and therefore Eqn. (10.19) can be simplified to

mpq(R) =
∑

(u,v)∈R
up ·vq . (10.20)

In this way, the area of a binary region can be expressed as its zero-
order moment,

A(R) = |R| =
∑

(u,v)

1 =
∑

(u,v)

u0 ·v0 = m00(R) (10.21)

and similarly the centroid x̄ Eqn. (10.18) can be written as

8 Assuming you did not imagine a region where the centroid lies outside
of the region or within a hole in the region, which is of course possible.

233

10 Regions in Binary
Images

x̄ =
1
|R| ·

∑

(u,v)

u1 ·v0 =
m10(R)
m00(R)

,

ȳ =
1
|R| ·

∑

(u,v)

u0 ·v1 =
m01(R)
m00(R)

.

(10.22)

These moments thus represent concrete physical properties of a re-
gion. Specifically, the area m00 is in practice an important basis for
characterizing regions, and the centroid (x̄, ȳ) permits the reliable
and (within a fraction of a pixel) exact specification of a region’s
position.

10.5.3 Central Moments

To compute position-independent (translation-invariant) region fea-
tures, the region’s centroid, which can be determined precisely in
any situation, can be used as a reference point. In other words, we
can shift the origin of the coordinate system to the region’s centroid
x̄ = (x̄, ȳ) to obtain the central moments of order p, q:

μpq(R) =
∑

(u,v)∈R
I(u, v) · (u− x̄)p · (v − ȳ)q. (10.23)

For a binary image (with I(u, v) = 1 within the region R), Eqn.
(10.23) can be simplified to

μpq(R) =
∑

(u,v)∈R
(u− x̄)p · (v − ȳ)q. (10.24)

10.5.4 Normalized Central Moments

Central moment values of course depend on the absolute size of the
region since the value depends directly on the distance of all region
points to its centroid. So, if a 2D shape is scaled uniformly by some
factor s ∈ R, its central moments multiply by the factor

s(p+q+2). (10.25)

Thus size-invariant “normalized” moments are obtained by scaling
with the reciprocal of the area A = μ00 = m00 raised to the required
power in the form

μ̄pq(R) = μpq ·
(1

μ00(R)

)(p+q+2)/2

, (10.26)

for (p + q) ≥ 2 [126, p. 529].

10.5.5 Java Implementation

Program 10.3 gives a direct (brute force) Java implementation for
computing the ordinary, central, and normalized central moments
for binary images (BACKGROUND = 0). This implementation is only
meant to clarify the computation, and naturally much more efficient
implementations are possible (see, e.g., [131]).

234

10.6 Moment-Based
Geometric Properties

1 // Ordinary moment:

2

3 double moment(ImageProcessor I, int p, int q) {

4 double Mpq = 0.0;

5 for (int v = 0; v < I.getHeight(); v++) {

6 for (int u = 0; u < I.getWidth(); u++) {

7 if (I.getPixel(u, v) > 0) {

8 Mpq+= Math.pow(u, p) * Math.pow(v, q);

9 }

10 }

11 }

12 return Mpq;

13 }

14

15 // Central moments:

16

17 double centralMoment(ImageProcessor I, int p, int q) {

18 double m00 = moment(I, 0, 0); // region area

19 double xCtr = moment(I, 1, 0) / m00;

20 double yCtr = moment(I, 0, 1) / m00;

21 double cMpq = 0.0;

22 for (int v = 0; v < I.getHeight(); v++) {

23 for (int u = 0; u < I.getWidth(); u++) {

24 if (I.getPixel(u, v) > 0) {

25 cMpq+= Math.pow(u-xCtr, p) * Math.pow(v-yCtr, q);

26 }

27 }

28 }

29 return cMpq;

30 }

31

32 // Normalized central moments:

33

34 double nCentralMoment(ImageProcessor I, int p, int q) {

35 double m00 = moment(I, 0, 0);

36 double norm = Math.pow(m00, 0.5 * (p + q + 2));

37 return centralMoment(I, p, q) / norm;

38 }

Prog. 10.3
Example of directly computing
moments in Java. The meth-
ods moment(), centralMoment(),
and nCentralMoment() com-
pute for a binary image the
moments mpq, μpq, and μ̄pq

(Eqns. (10.20), (10.24), and
(10.26)).

10.6 Moment-Based Geometric Properties

While normalized moments can be directly applied for classifying
regions, further interesting and geometrically relevant features can
be elegantly derived from statistical region moments.

10.6.1 Orientation

Orientation describes the direction of the major axis, that is, the
axis that runs through the centroid and along the widest part of the
region (Fig. 10.18(a)). Since rotating the region around the major
axis requires less effort (smaller moment of inertia) than spinning it
around any other axis, it is sometimes referred to as the major axis
of rotation. As an example, when you hold a pencil between your
hands and twist it around its major axis (that is, around the lead),

235

10 Regions in Binary
Images

Fig. 10.17
Major axis of a region. Ro-
tating an elongated region

R, interpreted as a physical
body, around its major axis

requires less effort (least mo-
ment of inertia) than rotat-

ing it around any other axis.

R

the pencil exhibits the least mass inertia (Fig. 10.17). As long as a
region exhibits an orientation at all (μ20(R) �= μ02(R)), the direction
θR of the major axis can be found directly from the central moments
μpq as

tan(2 θR) =
2 · μ11(R)

μ20(R)− μ02(R)
(10.27)

and thus the corresponding angle is

θR =
1
2
· tan−1

(2·μ11(R)
μ20(R) − μ02(R)

)

(10.28)

=
1
2
· ArcTan

(
μ20(R) − μ02(R), 2·μ11(R)

)
. (10.29)

The resulting angle θR is in the range [−π
2 , π

2].9 Orientation mea-
surements based on region moments are very accurate in general.

Calculating orientation vectors

When visualizing region properties, a frequent task is to plot the
region’s orientation as a line or arrow, usually anchored at the center
of gravity x̄ = (x̄, ȳ)⊺; for example, by a parametric line of the form

x = x̄ + λ · xd =
(

x̄
ȳ

)

+ λ ·
(

cos(θR)
sin(θR)

)

, (10.30)

with the normalized orientation vector xd and the length variable
λ > 0. To find the unit orientation vector xd = (cos θ, sin θ)⊺, we
could first compute the inverse tangent to get 2θ (Eqn. (10.28)) and
then compute the cosine and sine of θ. However, the vector xd can
also be obtained without using trigonometric functions as follows.
Rewriting Eqn. (10.27) as

tan(2θR) =
2 · μ11(R)

μ20(R)− μ02(R)
=

a

b
=

sin(2θR)
cos(2θR)

, (10.31)

we get (by Pythagora’s theorem)

9 See Sec. A.1 in the Appendix for the computation of angles with the
ArcTan() (inverse tangent) function and Sec. F.1.6 for the corresponding
Java method Math.atan2().

236

10.6 Moment-Based
Geometric Properties

θ

x̄

ra

rb
+x−x

+y

−y

+ π
2

− π
2

Fig. 10.18
Region orientation and ec-
centricity. The major axis of
the region extends through its
center of gravity x̄ at the ori-
entation θ. Note that angles
are in the range [− π

2 , + π
2] and

increment in the clockwise di-
rection because the y axis of
the image coordinate system
points downward (in this ex-
ample, θ ≈ −0.759 ≈ −43.5◦).
The eccentricity of the region
is defined as the ratio between
the lengths of the major axis
(ra) and the minor axis (rb) of
the “equivalent” ellipse.

sin(2θR) =
a√

a2 +b2
and cos(2θR) =

b√
a2 +b2

,

where A = 2μ11(R) and B = μ20(R) − μ02(R). Using the relations
cos2α = 1

2 [1 + cos(2α)] and sin2α = 1
2 [1 − cos(2α)], we can compute

the normalized orientation vector xd = (xd, yd)⊺ as

xd = cos(θR) =

⎧

⎨

⎩

0 for a = b = 0,
[

1
2 ·
(
1+ b√

a2+b2

)]
1
2

otherwise,
(10.32)

yd = sin(θR) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

0 for a = b = 0,
[

1
2 ·
(
1− b√

a2+b2

)]
1
2

for a ≥ 0,

−
[

1
2 ·
(
1− b√

a2+b2

)]
1
2

for a < 0,

(10.33)

straight from the central region moments μ11(R), μ20(R), and μ02(R),
as defined in Eqn. (10.31). The horizontal component (xd) in Eqn.
(10.32) is always positive, while the case switch in Eqn. (10.33) cor-
rects the sign of the vertical component (yd) to map to the same
angular range [−π

2 , + π
2] as Eqn. (10.28). The resulting vector xd is

normalized (i.e., ‖(xd, yd)‖ = 1) and could be scaled arbitrarily for
display purposes by a suitable length λ, for example, using the re-
gion’s eccentricity value described in Sec. 10.6.2 (see also Fig. 10.19).

10.6.2 Eccentricity

Similar to the region orientation, moments can also be used to de-
termine the “elongatedness” or eccentricity of a region. A naive ap-
proach for computing the eccentricity could be to rotate the region
until we can fit a bounding box (or enclosing ellipse) with a maximum
aspect ratio. Of course this process would be computationally inten-
sive simply because of the many rotations required. If we know the
orientation of the region (Eqn. (10.28)), then we may fit a bounding
box that is parallel to the region’s major axis. In general, the propor-
tions of the region’s bounding box is not a good eccentricity measure

237

10 Regions in Binary
Images

anyway because it does not consider the distribution of pixels inside
the box.

Based on region moments, highly accurate and stable measures
can be obtained without any iterative search or optimization. Also,
moment-based methods do not require knowledge of the boundary
length (as required for computing the circularity feature in Sec.
10.4.2), and they can also handle nonconnected regions or point
clouds. Several different formulations of region eccentricity can be
found in the literature [15, 126, 128] (see also Exercise 10.17). We
adopt the following definition because of its simple geometrical inter-
pretation:

Ecc(R) =
a1

a2

=
μ20 + μ02 +

√

(μ20 − μ02)2 + 4 · μ2
11

μ20 + μ02 −
√

(μ20 − μ02)2 + 4 · μ2
11

, (10.34)

where a1 = 2λ1, a2 = 2λ2 are proportional to the eigenvalues λ1, λ2

(with λ1 ≥ λ2) of the symmetric 2× 2 matrix

A =
(

μ20 μ11

μ11 μ02

)

, (10.35)

with the region’s central moments μ11, μ20, μ02 (see Eqn. (10.23)).10

The values of Ecc are in the range [1,∞), where Ecc = 1 corresponds
to a circular disk and elongated regions have values > 1.

The value returned by Ecc(R) is invariant to the region’s orien-
tation and size, that is, this quantity has the important property of
being rotation and scale invariant. However, the values a1, a2 contain
relevant information about the spatial structure of the region. Geo-
metrically, the eigenvalues λ1, λ2 (and thus a1, a2) directly relate to
the proportions of the “equivalent” ellipse, positioned at the region’s
center of gravity (x̄, ȳ) and oriented at θ = θR Eqn. (10.28). The
lengths of the major and minor axes, ra and rb, are

ra = 2 ·
(λ1

|R|
)1

2

=
(2 a1

|R|
)1

2

, (10.36)

rb = 2 ·
(λ2

|R|
)1

2

=
(2 a2

|R|
)1

2

, (10.37)

respectively, with a1, a2 as defined in Eqn. (10.34) and |R| being the
number of pixels in the region. Given the axes’ lengths ra, rb and the
centroid (x̄, ȳ), the parametric equation of this ellipse is

x(t) =
(

x̄
ȳ

)

+
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

·
(

ra · cos(t)
rb · sin(t)

)

(10.38)

=
(

x̄ + cos(θ) · ra · cos(t) − sin(θ) · rb · sin(t)
ȳ + sin(θ) · ra · cos(t) + cos(θ) · rb · sin(t)

)

, (10.39)

for 0 ≤ t < 2π. If entirely filled, the region described by this el-
lipse would have the same central moments as the original region
R. Figure 10.19 shows a set of regions with overlaid orientation and
eccentricity results.
10 A is actually the covariance matrix for the distribution of pixel positions

inside the region (see Sec. D.2 in the Appendix).
238

10.6 Moment-Based
Geometric Properties

Fig. 10.19
Orientation and eccentricity
examples. The orientation θ
(Eqn. (10.28)) is displayed
for each connected region as
a vector with the length pro-
portional to the region’s ec-
centricity value Ecc(R) (Eqn.
(10.34)). Also shown are the
ellipses (Eqns. (10.36) and
(10.37)) corresponding to the
orientation and eccentricity
parameters.

10.6.3 Bounding Box Aligned to the Major Axis

While the ordinary, x/y axis-aligned bounding box (see Sec. 10.4.2)
is of little practical use (because it is sensitive to rotation), it may
be interesting to see how to find a region’s bounding box that is
aligned with its major axis, as defined in Sec. 10.6.1. Given a region’s
orientation angle θR,

ea =
(

xa

ya

)

=
(

cos(θR)
sin(θR)

)

(10.40)

is the unit vector parallel to its major axis; thus

eb = e⊥
a =

(
ya

−xa

)

(10.41)

is the unit vector orthogonal to ea.11 The bounding box can now be
determined as follows (see Fig. 10.20):

1. Project each region point12 ui = (ui, vi) onto the vector ea (par-
allel to the region’s major axis) by calculating the dot product13

ai = ui · ea (10.42)

and keeping the minimum and maximum values

amin = min
ui∈R

ai, amax = max
ui∈R

ai. (10.43)

2. Analogously, project each region point ui onto the orthogonal
axis (specified by the vector eb) by

11 x⊥ = perp(x) =
(

0 1
−1 0

)
· x.

12 Of course, if the region’s contour is available, it is sufficient to iterate
over the contour points only.

13 See Sec. B.3.1, Eqn. (B.19) in the Appendix.
239

10 Regions in Binary
Images

Fig. 10.20
Calculation of a region’s ma-

jor axis-aligned bounding box.
The unit vector ea is paral-

lel to the region’s major axis
(oriented at angle θ); eb is

perpendicular to ea. The pro-
jection of a region point ui

onto the lines defined by ea

and eb yields the lengths ai

and bi, respectively (measured
from the coordinate origin).

The resulting quantities amin,
amax, bmin, bmax define the

corner points (A, B, C, D) of
the axis-aligned bounding box.

Note that the position of the
region’s centroid (x̄) is not

required in this calculation.

R

x

y

ea

eb

θ

θ

ui

x̄

amin

amax

aibmin

bmax

bi

A

B

C

D

bi = ui · eb (10.44)

and keeping the minimum and maximum values, that is,

bmin = min
ui∈R

bi, bmax = max
ui∈R

bi. (10.45)

Note that steps 1 and 2 can be performed in a single iteration
over all region points.

3. Finally, from the resulting quantities amin, amax, bmin, bmax, cal-
culate the four corner points A, B, C, D of the bounding box as

A = amin ·ea + bmin ·eb, B = amin ·ea + bmax ·eb,

C = amax ·ea + bmax ·eb, D = amax ·ea + bmin ·eb.
(10.46)

The complete calculation is summarized in Alg. 10.20; a typical ex-
ample is shown in Fig. 10.21(d).

Alg. 10.5
Calculation of the major

axis-aligned bounding box
for a binary region R. If

the region’s contour is avail-
able, it is sufficient to use

the contour points only.

1: MajorAxisAlignedBoundingBox(R)
Input: R = {ui}, a binary region containing points ui ∈ R

2.
Returns the four corner points of the region’s bounding box.

2: θ ← 0.5 · ArcTan(μ20(R)−μ02(R), 2 · μ11(R)) ⊲ see Eq. 10.28

3: ea ← (cos(θ), sin(θ))
⊺

⊲ unit vector parall. to region’s major axis
4: eb ← (sin(θ),− cos(θ))

⊺
⊲ unit vector perpendic. to major axis

5: amin ← ∞, amax ← −∞
6: bmin ← ∞, bmax ← −∞
7: for all u ∈ R do
8: a ← u · ea ⊲ project u onto ea (Eq. 10.42)
9: amin ← min(amin, a)

10: amax ← max(amax, a)

11: b ← u · eb ⊲ project u onto eb (Eq. 10.44)
12: bmin ← min(bmin, b)
13: bmax ← max(bmax, b)

14: A ← amin · ea + bmin · eb

15: B ← amin · ea + bmax · eb

16: C ← amax · ea + bmax · eb

17: D ← amax · ea + bmin · eb

18: return (A, B, C, D) ⊲ corners of the bounding box

240

10.6 Moment-Based
Geometric Properties

(a) (b)

(c) (d)

Fig. 10.21
Geometric region properties.
Original binary image (a),
centroid and orientation vec-
tor (length determined by the
region’s eccentricity) of the
major axis (b), convex hull (c),
and major axis-aligned bound-
ing box (d).

10.6.4 Invariant Region Moments

Normalized central moments are not affected by the translation or
uniform scaling of a region (i.e., the values are invariant), but in
general rotating the image will change these values.

Hu’s invariant moments

A classical solution to this problem is a clever combination of simpler
features known as “Hu’s Moments” [112]:14

φ1 = μ̄20 + μ̄02, (10.47)

φ2 = (μ̄20 − μ̄02)2 + 4 μ̄2
11,

φ3 = (μ̄30 − 3 μ̄12)2 + (3 μ̄21 − μ̄03)2,

φ4 = (μ̄30 + μ̄12)2 + (μ̄21 + μ̄03)2,

φ5 = (μ̄30 − 3 μ̄12) · (μ̄30 + μ̄12) · [(μ̄30 + μ̄12)2 − 3(μ̄21 + μ̄03)2] +

(3 μ̄21 − μ̄03) · (μ̄21 + μ̄03) · [3 (μ̄30 + μ̄12)2 − (μ̄21 + μ̄03)2],

φ6 = (μ̄20 − μ̄02) · [(μ̄30 + μ̄12)2 − (μ̄21 + μ̄03)2] +

4 μ̄11 · (μ̄30 + μ̄12) · (μ̄21 + μ̄03),

φ7 = (3 μ̄21 − μ̄03) · (μ̄30 + μ̄12) · [(μ̄30 + μ̄12)2 − 3 (μ̄21 + μ̄03)2] +

(3 μ̄12 − μ̄30) · (μ̄21 + μ̄03) · [3 (μ̄30 + μ̄12)2 − (μ̄21 + μ̄03)2].

14 In order to improve the legibility of Eqn. (10.47) the argument for the
region (R) has been dropped; as an example, with the region argument,
the first line would read H1(R) = μ̄20(R) + μ̄02(R), and so on.

241

10 Regions in Binary
Images

In practice, the logarithm of these quantities (that is, log(φk)) is
used since the raw values may have a very large range. These fea-
tures are also known as moment invariants since they are invariant
under translation, rotation, and scaling. While defined here for bi-
nary images, they are also applicable to parts of grayscale images;
examples can be found in [88, p. 517].

Flusser’s invariant moments

It was shown in [72,73] that Hu’s moments, as listed in Eqn. (10.47),
are partially redundant and incomplete. Based on so-called complex
moments cpq ∈ C, Flusser designed an improved set of 11 rotation
and scale-invariant features ψ1, . . . , ψ11 (see Eqn. (10.51)) for char-
acterizing 2D shapes. For grayscale images (with I(u, v) ∈ R), the
complex moments of order p, q are defined as

cpq(R) =
∑

(u,v)∈R
I(u, v) · (x + i·y)p · (x− i·y)q, (10.48)

with centered positions x = u− x̄ and y = v− ȳ, and (x̄, ȳ) being the
centroid of R (i denotes the imaginary unit). In the case of binary
images (with I(u, v) ∈ [0, 1]) Eqn. (10.48) simplifies to

cpq(R) =
∑

(u,v)∈R
(x + i·y)p · (x− i·y)q. (10.49)

Analogous to Eqn. (10.26), the complex moments can be scale-
normalized to

ĉp,q(R) =
1

A(p+q+2)/2
· cp,q, (10.50)

with A being the area of R [74, p. 29]. Finally, the derived rotation
and scale invariant region moments of 2nd to 4th order are15

ψ1 = Re(ĉ1,1), ψ2 = Re(ĉ2,1 · ĉ1,2), ψ3 = Re(ĉ2,0 · ĉ2
1,2),

ψ4 = Im(ĉ2,0 · ĉ2
1,2), ψ5 = Re(ĉ3,0 · ĉ3

1,2), ψ6 = Im(ĉ3,0 · ĉ3
1,2),

ψ7 = Re(ĉ2,2), ψ8 = Re(ĉ3,1 · ĉ2
1,2), ψ9 = Im(ĉ3,1 · ĉ2

1,2),

ψ10 = Re(ĉ4,0 · ĉ4
1,2), ψ11 = Im(ĉ4,0 · ĉ4

1,2). (10.51)

Table 10.1 lists the normalized Flusser moments for five binary shapes
taken from the Kimia dataset [134].

Shape matching with region moments

One obvious use of invariant region moments is shape matching and
classification. Given two binary shapes A and B, with associated
moment (“feature”) vectors

fA = (ψ1(A), . . . , ψ11(A)) and fB = (ψ1(B), . . . , ψ11(B)) ,

respectively, one approach could be to simply measure the difference
between shapes by the Euclidean distance of these vectors in the form
15 In Eqn. (10.51), the use of Re() for the quantities ψ1, ψ2, ψ7 (which are

real-valued per se) is redundant.
242

10.6 Moment-Based
Geometric Properties

ψ1 0.3730017575 0.2545476083 0.2154034257 0.2124041195 0.3600613700
ψ2 0.0012699373 0.0004247053 0.0002068089 0.0001089652 0.0017187073
ψ3 0.0004041515 0.0000644829 0.0000274491 0.0000014248 -0.0003853999
ψ4 0.0000097827 -0.0000076547 0.0000071688 -0.0000022103 -0.0001944121
ψ5 0.0000012672 0.0000002327 0.0000000637 0.0000000083 -0.0000078073
ψ6 0.0000001090 -0.0000000483 0.0000000041 0.0000000153 -0.0000061997
ψ7 0.2687922057 0.1289708408 0.0814034374 0.0712567626 0.2340886626
ψ8 0.0003192443 0.0000414818 0.0000134036 0.0000003020 -0.0002878997
ψ9 0.0000053208 -0.0000032541 0.0000030880 -0.0000008365 -0.0001628669
ψ10 0.0000103461 0.0000000091 0.0000000019 -0.0000000003 0.0000001922
ψ11 0.0000000120 -0.0000000020 0.0000000008 -0.0000000000 0.0000003015

Table 10.1
Binary shapes and associated
normalized Flusser moments
ψ1, . . . , ψ11. Notice the magni-
tude of the moments varies by
a large factor.

0.000 0.183 0.245 0.255 0.037

0.183 0.000 0.062 0.071 0.149

0.245 0.062 0.000 0.011 0.210

0.255 0.071 0.011 0.000 0.220

0.037 0.149 0.210 0.220 0.000

Table 10.2
Inter-class (Euclidean) dis-
tances dE(A, B) between nor-
malized shape feature vectors
for the five reference shapes
(see Eqn. (10.52)). Off-diagonal
values should be consistently
large to allow good shape dis-
crimination.

dE(A, B) = ‖fA − fB‖ =
[

11∑

i=1

|ψi(A)− ψi(B)|2
]1/2

. (10.52)

Concrete distances between the five sample shapes are listed in Table
10.2. Since the moment vectors are rotation and scale invariant,16

shape comparisons should remain unaffected by such transforma-
tions. Note, however, that the magnitude of the individual moments
varies over a very large range. Thus, if the Euclidean distance is
used as we have just suggested, the comparison (matching) of shapes
is typically dominated by a few moments (or even a single moment)
of relatively large magnitude, while the small-valued moments play
virtually no role in the distance calculation. This is because the Eu-
clidean distance treats the multi-dimensional feature space uniformly
along all dimensions.

As a consequence, moment-based shape discrimination with the
ordinary Euclidean distance is typically not very selective. A simple
solution is to replace Eqn. (10.52) by a weighted distance measure of
the form

d′
E(A, B) =

[
11∑

i=1

wi · |ψi(A) − ψi(B)|2
]1/2

, (10.53)

with fixed weights w1, . . . , w11 ≥ 0 assigned to each each moment
feature to compensate for the differences in magnitude.

A more elegant approach is to use of the Mahalanobis distance
[24, 157] for comparing the moment vectors, which accounts for the
statistical distribution of each vector component and avoids large-
magnitude components dominating the smaller ones. In this case,

16 Although the invariance property holds perfectly for continuous shapes,
rotating and scaling discrete binary images may significantly affect the
associated region moments.

243

10 Regions in Binary
Images

the distance calculation becomes

dM(A, B) =
[
(fA − fB)⊺ ·Σ−1 ·(fA − fB)

]1/2
, (10.54)

where Σ is the 11× 11 covariance matrix for the moment vectors f .
Note that the expression under the root in Eqn. (10.54) is the dot
product of a row vector and a column vector, that is, the result is a
non-negative scalar value. The Mahalanobis distance can be viewed
as a special form of the weighted Euclidean distance (Eqn. (10.53)),
where the weights are determined by the variability of the individual
vector components. See Sec. D.3 in the Appendix and Exercise 10.16
for additional details.

10.7 Projections

Image projections are 1D representations of the image contents, usu-
ally calculated parallel to the coordinate axis. In this case, the hori-
zontal and vertical projections of a scalar-valued image I(u, v) of size
M×N are defined as

Phor(v) =
M−1∑

u=0

I(u, v) for 0 < v < N , (10.55)

Pver(u) =
N−1∑

v=0

I(u, v) for 0 < u < M . (10.56)

The horizontal projection Phor(v0) (Eqn. (10.55)) is the sum of the
pixel values in the image row v0 and has length N corresponding to
the height of the image. On the other hand, a vertical projection Pver

of length M is the sum of all the values in the image column u0 (Eqn.
(10.56)). In the case of a binary image with I(u, v) ∈ 0, 1, the projec-
tion contains the count of the foreground pixels in the corresponding
image row or column.

Program 10.4 gives a direct implementation of the projection cal-
culations as the run() method for an ImageJ plugin, where projec-
tions in both directions are computed during a single traversal of the
image.

Projections in the direction of the coordinate axis are often uti-
lized to quickly analyze the structure of an image and isolate its com-
ponent parts; for example, in document images it is used to separate
graphic elements from text blocks as well as to isolate individual lines
(see the example in Fig. 10.22). In practice, especially to account for
document skew, projections are often computed along the major axis
of an image region Eqn. (10.28). When the projection vectors of a
region are computed in reference to the centroid of the region along
the major axis, the result is a rotation-invariant vector description
(often referred to as a “signature”) of the region.

10.8 Topological Region Properties

Topological features do not describe the shape of a region in continu-
ous terms; instead, they capture its structural properties. Topological

244

10.8 Topological
Region Properties

1 public void run(ImageProcessor I) {

2 int M = I.getWidth();

3 int N = I.getHeight();

4 int[] pHor = new int[N]; // = Phor(v)
5 int[] pVer = new int[M]; // = Pver(u)
6 for (int v = 0; v < N; v++) {

7 for (int u = 0; u < M; u++) {

8 int p = I.getPixel(u, v);

9 pHor[v] += p;

10 pVer[u] += p;

11 }

12 } // use projections pHor, pVer now

13 // ...

14 }

Prog. 10.4
Calculation of horizontal and
vertical projections. The run()

method for an ImageJ plugin
(ip is of type ByteProcessor
or ShortProcessor) computes
the projections in x and y di-
rections simultaneously in a a
single traversal of the image.
The projections are repre-
sented by the one-dimensional
arrays horProj and verProj
with elements of type int.

Phor(v)

Pver(u)

Fig. 10.22
Horizontal and vertical projec-
tions of a binary image.

properties are typically invariant even under strong image transfor-
mations. The convexity of a region, which can be calculated from
the convex hull (Sec. 10.4.2), is also a topological property.

A simple and robust topological feature is the number of holes
NL(R) in a region. This feature is easily determined while finding
the inner contours of a region, as described in Sec. 10.2.2.

A useful topological feature that can be derived directly from the
number of holes is the so-called Euler number NE, which is the dif-
ference between the number of connected regions NR and the number
of their holes NL, that is,

NE(R) = NR(R)−NL(R). (10.57)

In the case of a single connected region this is simply 1−NL. For a
picture of the number “8”, for example, NE = 1 − 2 = −1 and for
the letter “D” we get NE = 1− 1 = 0.

Topological features are often used in combination with numeri-
cal features for classification. A classic example of this combination
is OCR (optical character recognition) [38]. Figure 10.23 shows an

245

10 Regions in Binary
Images

Fig. 10.23
Visual identification mark-

ers composed of recur-
sively nested regions [22].

interesting use of topological structures for coding optical markers
used in augmented reality applications [22].17 The recursive nesting
of outer and inner regions is equivalent to a tree structure that allows
fast and unique identification of a larger number of known patterns
(see also Exercise 10.21).

10.9 Java Implementation

Most algorithms described in this chapter are implemented as part of
the imagingbook library.18 The key classes are BinaryRegion and
Contour, the abstract class RegionLabeling and its concrete sub-
classes RecursiveLabeling, BreadthFirstLabeling, DepthFirst-

Labeling (Alg. 10.1) and SequentialLabeling (Alg. 10.2). The
combined region labeling and contour tracing method (Algs. 10.3 and
10.4) is implemented by class RegionContourLabeling. Additional
details can be found in the online documentation.

Example

A complete example for the use of this API is shown in Prog. 10.5.
Particularly useful is the facility for visiting all positions of a specific
region using the iterator returned by method getRegionPoints(),
as demonstrated by this code segment:

RegionLabeling segmenter =

// Get the largest region:

BinaryRegion r = segmenter.getRegions(true).get(0);

// Loop over all points of region r:

for (Point p : r.getRegionPoints()) {

int u = p.x;

int v = p.y;

// do something with position u, v

}

10.10 Exercises

Exercise 10.1. Manually simulate the execution of both variations
(depth-first and breadth-first) of the flood-fill algorithm using the
image in Fig. 10.24 and starting at position (5, 1).

17 http://reactivision.sourceforge.net/.
18 Package imagingbook.pub.regions.

246

http://reactivision.sourceforge.net/

10.10 Exercises1 ...

2 import imagingbook.pub.regions.BinaryRegion;

3 import imagingbook.pub.regions.Contour;

4 import imagingbook.pub.regions.ContourOverlay;

5 import imagingbook.pub.regions.RegionContourLabeling;

6 import java.awt.geom.Point2D;

7 import java.util.List;

8

9 public class Region_Contours_Demo implements PlugInFilter {

10

11 public int setup(String arg, ImagePlus im) {

12 return DOES_8G + NO_CHANGES;

13 }

14

15 public void run(ImageProcessor ip) {

16 // Make sure we have a proper byte image:

17 ByteProcessor bp = ip.convertToByteProcessor();

18

19 // Create the region labeler / contour tracer:

20 RegionContourLabeling segmenter =

21 new RegionContourLabeling(bp);

22

23 // Get the list of detected regions (sort by size):

24 List<BinaryRegion> regions =

25 segmenter.getRegions(true);

26 if (regions.isEmpty()) {

27 IJ.error("No regions detected!");

28 return;

29 }

30

31 // List all regions:

32 IJ.log("Detected regions: " + regions.size());

33 for (BinaryRegion r: regions) {

34 IJ.log(r.toString());

35 }

36

37 // Get the outer contour of the largest region:

38 BinaryRegion largestRegion = regions.get(0);

39 Contour oc = largestRegion.getOuterContour();

40 IJ.log("Points on outer contour of largest region:");

41 Point2D[] points = oc.getPointArray();

42 for (int i = 0; i < points.length; i++) {

43 Point2D p = points[i];

44 IJ.log("Point " + i + ": " + p.toString());

45 }

46

47 // Get all inner contours of the largest region:

48 List<Contour> ics = largestRegion.getInnerContours();

49 IJ.log("Inner regions (holes): " + ics.size());

50 }

51 }

Prog. 10.5
Complete example for
the use of the regions
API. The ImageJ plugin
Region_Contours_Demo seg-
ments the binary (8-bit
grayscale) image ip into con-
nected components. This is
done with an instance of class
RegionContourLabeling (see
line 21), which also extracts
the regions’ contours. In line
25, a list of regions (sorted by
size) is produced which is sub-
sequently traversed (line 33).
The treatment of outer and
inner contours as well as the
iteration over individual con-
tour points is shown in lines
38–49.

247

10 Regions in Binary
Images

Fig. 10.24
Binary image for Exercise 10.1.

�

�

� � � � � � � � � � � � � �
� � � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

�
� � � � � �

� �
�

� � � � � �
� �

� � � � � �

�
�
�

� � � � � � � � �
��� �

� � � � � � � 	
 � �� �� �� ��

�

�

�

�

�

�

�

	

�
Background

Foreground

Exercise 10.2. The implementation of the flood-fill algorithm in
Prog. 10.1 places all the neighboring pixels of each visited pixel into
either the stack or the queue without ensuring they are foreground
pixels and that they lie within the image boundaries. The number
of items in the stack or the queue can be reduced by ignoring (not
inserting) those neighboring pixels that do not meet the two condi-
tions given. Modify the depth-first and breadth-first variants given in
Prog. 10.1 accordingly and compare the new running times.

Exercise 10.3. The implementations of depth-first and breadth-first
labeling shown in Prog. 10.1 will run significantly slower than the
recursive version because the frequent creation of new Point objects
is quite time consuming. Modify the depth-first version of Prog. 10.1
to use a stack with elements of a primitive type (e.g., int) instead.
Note that (at least in Java)19 it is not possible to specify a built-in
list structure (such as Deque or LinkedList) for a primitive element
type. Implement you own stack class that internally uses an int-
array to store the (u, v) coordinates. What is the maximum number
of stack entries needed for a given image of size M×N? Compare the
performance of your solution to the original version in Prog. 10.1.

Exercise 10.4. Implement an ImageJ plugin that encodes a given
binary image by run length encoding (Sec. 10.3.2) and stores it in a
file. Develop a second plugin that reads the file and reconstructs the
image.

Exercise 10.5. Calculate the amount of memory required to rep-
resent a contour with 1000 points in the following ways: (a) as a
sequence of coordinate points stored as pairs of int values; (b) as an
8-chain code using Java byte elements, and (c) as an 8-chain code
using only 3 bits per element.

Exercise 10.6. Implement a Java class for describing a binary image
region using chain codes. It is up to you, whether you want to use
an absolute or differential chain code. The implementation should be
able to encode closed contours as chain codes and also reconstruct
the contours given a chain code.

Exercise 10.7. The Graham Scan method [91] is an efficient algo-
rithm for calculating the convex hull of a 2D point set (of size n),
with time complexity O(n · log(n)).20 Implement this algorithm and
show that it is sufficient to consider only the outer contour points of
a region to calculate its convex hull.
19 Other languages like C# allow this.
20 See also http://en.wikipedia.org/wiki/Graham_scan.

248

10.10 ExercisesExercise 10.8. While computing the convex hull of a region, the
maximal diameter (maximum distance between two arbitrary points)
can also be simply found. Devise an alternative method for comput-
ing this feature without using the convex hull. Determine the running
time of your algorithm in terms of the number of points in the region.

Exercise 10.9. Implement an algorithm for comparing contours us-
ing their shape numbers Eqn. (10.6). For this purpose, develop a met-
ric for measuring the distance between two normalized chain codes.
Describe if, and under which conditions, the results will be reliable.

Exercise 10.10. Sketch the contour equivalent to the absolute chain
code sequence c′

R = (6, 7, 7, 1, 2, 0, 2, 3, 5, 4, 4). (a) Choose an arbi-
trary starting point and determine if the resulting contour is closed.
(b) Find the associated differential chain code c′′

R (Eqn. (10.5)).

Exercise 10.11. Calculate (under assumed 8-neighborhood) the sha-
pe number of base b = 8 (see Eqn. (10.6)) for the differential chain
code c′′

R = (1, 0, 2, 1, 6, 2, 1, 2, 7, 0, 2) and all possible circular shifts of
this code. Which shift yields the maximum arithmetic value?

Exercise 10.12. Using Eqn. (10.14) as the basis, develop and im-
plement an algorithm that computes the area of a region from its
8-chain-encoded contour (see also [263], [127, Sec. 19.5]).

Exercise 10.13. Modify Alg. 10.3 such that the outer and inner con-
tours are not returned as individual lists (Cout, Cin) but as a compos-
ite tree structure. An outer contour thus represents a region that
may contain zero, one, or more inner contours (i.e., holes). Each
inner contour may again contain other regions (i.e., outer contours),
and so on.

Exercise 10.14. Sketch an example binary region where the cen-
troid does not lie inside the region itself.

Exercise 10.15. Implement the binary region moment features pro-
posed by Hu (Eqn. (10.47)) and/or Flusser (Eqn. (10.51)) and verify
that they are invariant under image scaling and rotation. Use the
test image in Fig. 10.2521 (or create your own), which contains ro-
tated and mirrored instances of the reference shapes, in addition to
other (unknown) shapes.

Exercise 10.16. Implement the Mahalanobis distance calculation,
as defined in Eqn. (10.54), for measuring the similarity between shape
moment vectors.

A. Compute the covariance matrix Σ (see Sec. D.3 in the Appendix)
for the m = 11 Flusser shape features ψ1, . . . , ψ11 of the refer-
ence images in Table 10.1. Calculate and tabulate the inter-class
Mahalanobis distances for the reference shapes, analogous to the
example in Table 10.2.

21 Images are available on the book’s website.
249

10 Regions in Binary
Images

Fig. 10.25
Test image for moment-based

shape matching. Reference
shapes (top) and test image

(bottom) composed of rotated
and/or scaled shapes from

the Kimia database and ad-
ditional (unclassified) shapes.

B. Extend your analysis to a larger set of 500–1000 shapes (e.g.,
from the Kimia dataset [134], which contains more than 20 000
binary shape images). Calculate the normalized moment features
and the covariance matrix Σ for the entire image set. Calculate
the inter-class distance matrices for (a) the Euclidean and (b) the
Mahalanobis distance. Display the distance matrices as grayscale
images (FloatProcessor) and interpret them.

Exercise 10.17. There are alternative definitions for the eccentricity
of a region Eqn. (10.34); for example [128, p. 394],

Ecc2(R) =
[μ20(R)− μ02(R)]2 + 4·μ2

11(R)

[μ20(R) + μ02(R)]2
. (10.58)

Implement this version as well as the one in Eqn. (10.34) and contrast
the results using suitably designed regions. Determine the numeric
range of these quantities and test if they are really rotation and scale-
invariant.

Exercise 10.18. Write an ImageJ plugin that (a) finds (labels) all
regions in a binary image, (b) computes the orientation and eccen-
tricity for each region, and (c) shows the results as a direction vector
and the equivalent ellipse on top of each region (as exemplified in
Fig. 10.19). Hint: Use Eqn. (10.39) to develop a method for drawing
ellipses at arbitrary orientations (not available in ImageJ).

Exercise 10.19. The Java method in Prog. 10.4 computes an im-
age’s horizontal and vertical projections. The scheme described in
Sec. 10.6.3 and illustrated in Fig. 10.20 can be used to calculate pro-
jections along arbitrary directions θ. Develop and implement such a
process and display the resulting projections.

250

10.10 ExercisesExercise 10.20. Text recognition (OCR) methods are likely to fail
if the document image is not perfectly axis-aligned. One method for
estimating the skew angle of a text document is to perform binary
segmentation and connected components analysis (see Fig. 10.26):

• Smear the original binary image by applying a disk-shaped
morphological dilation with a specified radius (see Chapter 9,
Sec. 9.2.3). The aim is to close the gaps between neighboring
glyphs without closing the space between adjacent text lines (Fig.
10.26(b))

• Apply region segmentation to the resulting image and calculate
the orientation θ(R) and the eccentricity E(R) of each region R
(see Secs. 10.6.1 and 10.6.2). Ignore all regions that are either
too small or not sufficiently elongated.

• Estimate the global skew angle by averaging the regions’ orien-
tations θi. Note that, since angles are circular, they cannot be
averaged in the usual way (see Chapter 15, Eqn. (15.14) for how
to calculate the mean of a circular quantity). Consider using
the eccentricity as a weight for the contribution of the associated
region to the global average.

• Obviously, this scheme is sensitive to outliers, that is, against
angles that deviate strongly from the average orientation. Try to
improve this estimate (i.e., make it more robust and accurate) by
iteratively removing angles that are “too far” from the average
orientation and then recalculating the result.

Exercise 10.21. Draw the tree structure, defined by the recursive
nesting of outer and inner regions, for each of the markers shown in
Fig. 10.23. Based on this graph structure, suggest an algorithm for
matching pairs of markers or, alternatively, for retrieving the best-
matching marker from a database of markers.

251

10 Regions in Binary
Images

Fig. 10.26
Document skew estimation

example (see Exercise 10.20).
Original binary image (a); re-
sult of applying a disk-shaped

morphological dilation with
radius 3.0 (b); region orien-

tation vectors (c); histogram
of the orientation angle θ (d).

The real skew angle in this
scan is approximately 1.1◦.

(a) (b)

(c) (d)

252

11

Automatic Thresholding

Although techniques based on binary image regions have been used
for a very long time, they still play a major role in many practical
image processing applications today because of their simplicity and
efficiency. To obtain a binary image, the first and perhaps most
critical step is to convert the initial grayscale (or color) image to a
binary image, in most cases by performing some form of thresholding
operation, as described in Chapter 4, Sec. 4.1.4.

Anyone who has ever tried to convert a scanned document image
to a readable binary image has experienced how sensitively the result
depends on the proper choice of the threshold value. This chapter
deals with finding the best threshold automatically only from the in-
formation contained in the image, i.e., in an “unsupervised” fashion.
This may be a single, “global” threshold that is applied to the whole
image or different thresholds for different parts of the image. In the
latter case we talk about “adaptive” thresholding, which is partic-
ularly useful when the image exhibits a varying background due to
uneven lighting, exposure, or viewing conditions.

Automatic thresholding is a traditional and still very active area
of research that had its peak in the 1980s and 1990s. Numerous
techniques have been developed for this task, ranging from sim-
ple ad-hoc solutions to complex algorithms with firm theoretical
foundations, as documented in several reviews and evaluation stud-
ies [86,178,204,213,231]. Binarization of images is also considered a
“segmentation” technique and thus often categorized under this term.
In the following, we describe some representative and popular tech-
niques in greater detail, starting in Sec. 11.1 with global thresholding
methods and continuing with adaptive methods in Sec. 11.2.

11.1 Global Histogram-Based Thresholding

Given a grayscale image I, the task is to find a single “optimal”
threshold value for binarizing this image. Applying a particular
threshold q is equivalent to classifying each pixel as being either part

253
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_11

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

11 Automatic
Thresholding

Fig. 11.1
Test images used for sub-
sequent thresholding ex-
periments. Detail from a
manuscript by Johannes

Kepler (a), document with
fingerprint (b), ARToolkit
marker (c), synthetic two-

level Gaussian mixture im-
age (d). Results of threshold-

ing with the fixed threshold
value q = 128 (e–h). His-
tograms of the original im-

ages (i–l) with intensity values
from 0 (left) to 255 (right).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

of the background or the foreground. Thus the set of all image pix-
els is partitioned into two disjoint sets C0 and C1, where C0 contains
all elements with values in [0, 1, . . . , q] and C1 collects the remaining
elements with values in [q+1, . . . , K−1], that is,

(u, v) ∈
{

C0 if I(u, v) ≤ q (background),
C1 if I(u, v) > q (foreground).

(11.1)

Of course, the meaning of background and foreground may differ from
one application to another. For example, the aforementioned scheme
is quite natural for astronomical or thermal images, where the rele-
vant “foreground” pixels are bright and the background is dark. Con-
versely, in document analysis, for example, the objects of interest are
usually the dark letters or artwork printed on a bright background.
This should not be confusing and of course one can always invert the
image to adapt to this scheme, so there is no loss of generality here.

Figure 11.1 shows several test images used in this chapter and
the result of thresholding with a fixed threshold value. The synthetic
image in Fig. 11.1(d) is the mixture of two Gaussian random distri-
butions N0,N1for the background and foreground, respectively, with
μ0 = 80, μ1 = 170, σ0 = σ1 = 20. The corresponding histograms of
the test images are shown in Fig. 11.1(i–l). Note that all histograms
are normalized to constant area (not to maximum values, as usual),
with intensity values ranging from 0 (left) to 255 (right).

The key question is how to find a suitable (or even “optimal”)
threshold value for binarizing the image. As the name implies,
histogram-based methods calculate the threshold primarily from the
information contained in the image’s histogram, without inspecting
the actual image pixels. Other methods process individual pixels
for finding the threshold and there are also hybrid methods that rely
both on the histogram and the local image content. Histogram-based

254

11.1 Global
Histogram-Based
Thresholding

techniques are usually simple and efficient, because they operate on
a small set of data (256 values in case of an 8-bit histogram); they
can be grouped into two main categories: shape-based and statistical
methods.

Shape-based methods analyze the structure of the histogram’s dis-
tribution, for example by trying to locate peaks, valleys and other
“shape” features. Usually the histogram is first smoothed to elimi-
nate narrow peaks and gaps. While shape-based methods were quite
popular early on, they are usually not as robust as their statistical
counterparts or at least do not seem to offer any distinct advantages.
A classic representative of this category is the “triangle” (or “chord”)
algorithm described in [261]. References to numerous other shape-
based methods can be found in [213].

Statistical methods, as their name suggests, rely on statistical in-
formation derived from the image’s histogram (which of course is a
statistic itself), such as the mean, variance, or entropy. In the next
section, we discuss a few elementary parameters that can be obtained
from the histogram, followed by a description of concrete algorithms
that use this information. Again there are a vast number of similar
methods and we have selected four representative algorithms to be de-
scribed in more detail: (a) iterative threshold selection by Ridler and
Calvard [198], (b) Otsu’s clustering method [177], (c) the minimum
error method by Kittler and Illingworth [116], and (d) the maximum
entropy thresholding method by Kapur, Sahoo, and Wong [133].

11.1.1 Image Statistics from the Histogram

As described in Chapter 3, Sec. 3.7, several statistical quantities,
such as the arithmetic mean, variance and median, can be calculated
directly from the histogram, without reverting to the original image
data. If we threshold the image at level q (0 ≤ q < K), the set of
pixels is partitioned into the disjoint subsets C0, C1, corresponding to
the background and the foreground. The number of pixels assigned
to each subset is

n0(q) = |C0| =
q
∑

g=0

h(g) and n1(q) = |C1| =
K−1∑

g=q+1

h(g), (11.2)

respectively. Also, because all pixels are assigned to either the back-
ground set C0 or the foreground set C1,

n0(q) + n1(q) = |C0|+ |C1| = |C0 ∪ C1| = MN. (11.3)

For any threshold q, the mean values of the associated partitions
C0, C1 can be calculated from the image histogram as

μ0(q) =
1

n0(q)
·

q
∑

g=0

g · h(g), (11.4)

μ1(q) =
1

n1(q)
·

K−1∑

g=q+1

g · h(g) (11.5)

255

11 Automatic
Thresholding

and these quantities relate to the image’s overall mean μI (Eqn. (3.9))
by1

μI =
1

MN
·
[
n0(q) · μ0(q) + n1(q) · μ1(q)

]
= μ0(K−1). (11.6)

Analogously, the variances of the background and foreground parti-
tions can be extracted from the histogram as2

σ2
0(q) =

1
n0(q)

·
q
∑

g=0

(g − μ0(q))2 · h(g)

σ2
1(q) =

1
n1(q)

·
K−1∑

g=q+1

(g − μ1(q))2 · h(g).

(11.7)

(Of course, as in Eqn. (3.12), this calculation can also be performed in
a single iteration and without knowing μ0(q), μ1(q) in advance.) The
overall variance σ2

I for the whole image is identical to the variance of
the background for q = K−1,

σ2
I =

1
MN

·
K−1∑

g=0

(g − μI)2 · h(g) = σ2
0(K−1), (11.8)

that is, for all pixels being assigned to the background partition. Note
that, unlike the simple relation of the means given in Eqn. (11.6),

σ2
I �=

1
MN

[
n0(q) · σ2

0(q) + n1(q) · σ2
1(q)

]
(11.9)

in general (see also Eqn. (11.20)).
We will use these basic relations in the discussion of histogram-

based threshold selection algorithms in the following and add more
specific ones as we go along.

11.1.2 Simple Threshold Selection

Clearly, the choice of the threshold value should not be fixed but
somehow based on the content of the image. In the simplest case, we
could use the mean of all image pixels,

q ← mean(I) = μI , (11.10)

as the threshold value q, or the median, (see Sec. 3.7.2),

q ← median(I) = mI , (11.11)

or, alternatively, the average of the minimum and the maximum
(mid-range value), that is,

q ← max(I) + min(I)
2

. (11.12)

1 Note that μ0(q), μ1(q) are meant to be functions over q and thus μ0(K−1)
in Eqn. (11.6) denotes the mean of partition C0 for the threshold K−1.

2 σ2
0(q) and σ2

1(q) in Eqn. (11.7) are also functions over q.
256

11.1 Global
Histogram-Based
Thresholding

1: QuantileThreshold(h, p)
Input: h : [0, K−1] �→ N, a grayscale histogram. p, the proportion
of expected background pixels (0 < p < 1). Returns the optimal
threshold value or −1 if no threshold is found.

2: K ← Size(h) ⊲ number of intensity levels

3: MN ←
K−1∑

i=0

h(i) ⊲ number of image pixels

4: i ← 0
5: c ← h(0)
6: while (i < K) ∧ (c < MN · p) do ⊲ quantile calc. (Eq. 11.13)
7: i ← i + 1
8: c ← c + h(j)
9: if c < MN then ⊲ foreground is non-empty

10: q ← i
11: else ⊲ foreground is empty, all pixels are background
12: q ← −1

13: return q

Alg. 11.1
Quantile thresholding. The
optimal threshold value q ∈
[0, K −2] is returned, or −1 if
no valid threshold was found.
Note the test in line 9 to check
if the foreground is empty or
not (the background is always
non-empty by definition).

Like the image mean μI (see Eqn. (3.9)), all these quantities can be
obtained directly from the histogram h.

Thresholding at the median segments the image into approxi-
mately equal-sized background and foreground sets, that is, |C0| ≈
|C1|, which assumes that the “interesting” (foreground) pixels cover
about half of the image. This may be appropriate for certain images,
but completely wrong for others. For example, a scanned text image
will typically contain a lot more white than black pixels, so using the
median threshold would probably be unsatisfactory in this case. If
the approximate fraction p (0 < p < 1) of expected background pix-
els is known in advance, the threshold could be set to that quantile
instead. In this case, q is simply chosen as

q ← min
{

i |
i∑

j=0

h(i) ≥ M ·N ·p
}
, (11.13)

where N is the total number of pixels. We see that the median is
only a special case of a quantile measure, with p = 0.5. This simple
thresholding method is summarized in Alg. 11.1.

For the mid-range technique (Eqn. (11.12)), the limiting intensity
values min(I) and max(I) can be found by searching for the smallest
and largest non-zero entries, respectively, in the histogram h. The
mid-range threshold segments the image at 50 % (or any other per-
centile) of the contrast range. In this case, nothing can be said in
general about the relative sizes of the resulting background and fore-
ground partitions. Because a single extreme pixel value (outlier) may
change the contrast range dramatically, this approach is not very ro-
bust. Here too it is advantageous to define the contrast range by
specifying pixel quantiles, analogous to the calculation of the quan-
tities a′

low and a′
high in the modified auto-contrast function (see Ch.

4, Sec. 4.4).
In the pathological (but nevertheless possible) case that all pixels

in the image have the same intensity g, all the aforementioned meth-
257

11 Automatic
Thresholding

Fig. 11.2
Results from various simple
thresholding schemes. Mean

(a–d), median (e–h), and mid-
range (i–l) threshold, as spec-
ified in Eqns. (11.10)–(11.12).

(a) Arithmetic mean

q = 158 q = 144 q = 158 q = 84

(b) Median

q = 179 q = 161 q = 165 q = 81

(c) Mid-range

q = 115 q = 128 q = 128 q = 120

ods will return the threshold q = g, which assigns all pixels to the
background partition and leaves the foreground empty. Algorithms
should try to detect this situation, because thresholding a uniform
image obviously makes no sense. Results obtained with these simple
thresholding techniques are shown in Fig. 11.2. Despite the obvi-
ous limitations, even a simple automatic threshold selection (such as
the quantile technique in Alg. 11.1) will typically yield more reliable
results than the use of a fixed threshold.

11.1.3 Iterative Threshold Selection (Isodata Algorithm)

This classic iterative algorithm for finding an optimal threshold is
attributed to Ridler and Calvard [198] and was related to Isodata
clustering by Velasco [242]. It is thus sometimes referred to as the
“isodata” or “intermeans” algorithm. Like in many other global
thresholding schemes it is assumed that the image’s histogram is
a mixture of two separate distributions, one for the intensities of the
background pixels and the other for the foreground pixels. In this
case, the two distributions are assumed to be Gaussian with approx-
imately identical spreads (variances).

The algorithm starts by making an initial guess for the threshold,
for example, by taking the mean or the median of the whole image.
This splits the set of pixels into a background and a foreground set,
both of which should be non-empty. Next, the means of both sets are
calculated and the threshold is repositioned to their average, that is,
centered between the two means. The means are then re-calculated
for the resulting background and foreground sets, and so on, until

258

11.1 Global
Histogram-Based
Thresholding

1: IsodataThreshold(h)
Input: h : [0, K−1] �→ N, a grayscale histogram.
Returns the optimal threshold value or −1 if no threshold is
found.

2: K ← Size(h) ⊲ number of intensity levels
3: q ← Mean(h, 0, K−1) ⊲ set initial threshold to overall mean

4: repeat
5: n0 ← Count(h, 0, q) ⊲ background population
6: n1 ← Count(h, q+1, K−1) ⊲ foreground population

7: if (n0 = 0) ∨ (n1 = 0) then ⊲ backgrd. or foregrd. is empty
8: return −1

9: μ0 ← Mean(h, 0, q) ⊲ background mean
10: μ1 ← Mean(h, q+1, K−1) ⊲ foreground mean
11: q′ ← q ⊲ keep previous threshold

12: q ←
⌊

μ0 + μ1

2

⌋

⊲ calculate the new threshold

13: until q = q′ ⊲ terminate if no change

14: return q

15: Count(h, a, b) :=
b∑

g=a

h(g)

16: Mean(h, a, b) :=
[b∑

g=a

g · h(g)
]

/
[b∑

g=a

h(g)
]

Alg. 11.2
“Isodata” threshold selection
based on the iterative method
by Ridler and Calvard [198].

the threshold does not change any longer. In practice, it takes only
a few iterations for the threshold to converge.

This procedure is summarized in Alg. 11.2. The initial threshold
is set to the overall mean (line 3). For each threshold q, separate
mean values μ0, μ1 are computed for the corresponding foreground
and background partitions. The threshold is repeatedly set to the
average of the two means until no more change occurs. The clause
in line 7 tests if either the background or the foreground partition is
empty, which will happen, for example, if the image contains only a
single intensity value. In this case, no valid threshold exists and the
procedure returns −1. The functions Count(h, a, b) and Mean(h, a, b)
in lines 15–16 return the number of pixels and the mean, respectively,
of the image pixels with intensity values in the range [a, b]. Both can
be computed directly from the histogram h without inspecting the
image itself.

The performance of this algorithm can be easily improved by us-
ing tables μ0(q), μ1(q) for the background and foreground means, re-
spectively. The modified, table-based version of the iterative thresh-
old selection procedure is shown in Alg. 11.3. It requires two passes
over the histogram to initialize the tables μ0, μ1 and only a small,
constant number of computations for each iteration in its main loop.
Note that the image’s overall mean μI , used as the initial guess for
the threshold q (Alg. 11.3, line 4), need not be calculated separately
but can be obtained as μI = μ0(K−1), given that threshold q = K−1
assigns all image pixels to the background. The time complexity of
this algorithm is thus O(K), that is, linear w.r.t. the size of the

259

11 Automatic
Thresholding

Alg. 11.3
Fast version of “isodata”
threshold selection. Pre-

calculated tables are used for
the foreground and background
means µ0 and µ1, respectively.

1: FastIsodataThreshold(h)
Input: h : [0, K−1] �→ N, a grayscale histogram.
Returns the optimal threshold value or −1 if no threshold is
found.

2: K ← Size(h) ⊲ number of intensity levels
3: 〈μ0, μ1, N〉 ← MakeMeanTables(h)
4: q ← ⌊μ0(K−1)⌋ ⊲ take the overall mean μI as initial threshold

5: repeat
6: if (μ0(q) < 0) ∨ (μ1(q) < 0) then
7: return −1 ⊲ background or foreground is empty
8: q′ ← q ⊲ keep previous threshold

9: q ←
⌊

μ0(q) + μ1(q)

2

⌋

⊲ calculate the new threshold

10: until q = q′ ⊲ terminate if no change
11: return q

12: MakeMeanTables(h)
13: K ← Size(h)
14: Create maps μ0, μ1 : [0, K−1] �→ R

15: n0 ← 0, s0 ← 0
16: for q ← 0, . . . , K−1 do ⊲ tabulate background means μ0(q)
17: n0 ← n0 + h(q)
18: s0 ← s0 + q · h(q)

19: μ0(q) ←
{

s0/n0 if n0 > 0
−1 otherwise

20: N ← n0

21: n1 ← 0, s1 ← 0
22: μ1(K−1) ← 0
23: for q ← K−2, . . . , 0 do ⊲ tabulate foreground means μ1(q)
24: n1 ← n1 + h(q+1)
25: s1 ← s1 + (q+1) · h(q+1)

26: μ1(q) ←
{

s1/n1 if n1 > 0
−1 otherwise

27: return 〈μ0, μ1, N〉

Fig. 11.3
Thresholding with the iso-
data algorithm. Binarized

images and the corresponding
optimal threshold values (q).

(a) q = 128 (b) q = 125 (c) q = 94 (d) q = 90

histogram. Figure 11.3 shows the results of thresholding with the
isodata algorithm applied to the test images in Fig. 11.1.

11.1.4 Otsu’s Method

The method proposed by Otsu [147,177] also assumes that the orig-
inal image contains pixels from two classes, whose intensity distri-
butions are unknown. The goal is to find a threshold q such that
the resulting background and foreground distributions are maximally
separated, which means that they are (a) each as narrow as possi-

260

11.1 Global
Histogram-Based
Thresholding

ble (have minimal variances) and (b) their centers (means) are most
distant from each other.

For a given threshold q, the variances of the corresponding back-
ground and foreground partitions can be calculated straight from the
image’s histogram (see Eqn. (11.7)). The combined width of the two
distributions is measured by the within-class variance

σ2
w(q) = P0(q) · σ2

0(q) + P1(q) · σ2
1(q) (11.14)

=
1

MN
·
[
n0(q) · σ2

0(q) + n1(q) · σ2
1(q)

]
, (11.15)

where

P0(q) =
q
∑

i=0

p(i) =
1

MN
·

q
∑

i=0

h(i) =
n0(q)
MN

, (11.16)

P1(q) =
K−1∑

i=q+1

p(i) =
1

MN
·

K−1∑

i=q+1

h(i) =
n1(q)
MN

(11.17)

are the class probabilities for C0, C1, respectively. Thus the within-
class variance in Eqn. (11.15) is simply the sum of the individual
variances weighted by the corresponding class probabilities or “pop-
ulations”. Analogously, the between-class variance,

σ2
b(q) = P0(q) ·

(
μ0(q)− μI

)2
+ P1(q) ·

(
μ1(q)− μI

)2
(11.18)

=
1

MN

[
n0(q)·

(
μ0(q)−μI

)2
+ n1(q)·

(
μ1(q)−μI

)2]
(11.19)

measures the distances between the cluster means μ0, μ1 and the
overall mean μI . The total image variance σ2

I is the sum of the
within-class variance and the between-class variance, that is,

σ2
I = σ2

w(q) + σ2
b(q), (11.20)

for q = 0, . . . , K−1. Since σ2
I is constant for a given image, the

threshold q can be found by either minimizing the within-variance
σ2

w or maximizing the between-variance σ2
b. The natural choice is

to maximize σ2
b, because it only relies on first-order statistics (i.e.,

the within-class means μ0, μ1). Since the overall mean μI can be
expressed as the weighted sum of the partition means μ0 and μ1

(Eqn. (11.6)), we can simplify Eqn. (11.19) to

σ2
b(q) = P0(q) · P1(q) ·

[
μ0(q)− μ1(q)

]2
(11.21)

=
1

(MN)2
· n0(q) · n1(q) ·

[
μ0(q)− μ1(q)

]2
. (11.22)

The optimal threshold is finally found by maximizing the expres-
sion for the between-class variance in Eqn. (11.22) with respect to q,
thereby minimizing the within-class variance in Eqn. (11.15).

Noting that σ2
b(q) only depends on the means (and not on the

variances) of the two partitions for a given threshold q allows for a
very efficient implementation, as outlined in Alg. 11.4. The algorithm
assumes a grayscale image with a total of N pixels and K intensity

261

11 Automatic
Thresholding

Alg. 11.4
Finding the optimal threshold

using Otsu’s method [177]. Ini-
tially (outside the for-loop),

the threshold q is assumed to
be −1, which corresponds to

the background class being
empty (n0 = 0) and all pixels
are assigned to the foreground
class (n1 = N). The for-loop

(lines 7–14) examines each pos-
sible threshold q = 0, . . . , K−2.

The factor 1/(MN)2 in line
11 is constant and thus not

relevant for the optimiza-
tion. The optimal threshold

value is returned, or −1 if no
valid threshold was found. The

function MakeMeanTables()
is defined in Alg. 11.3.

1: OtsuThreshold(h)
Input: h : [0, K−1] �→ N, a grayscale histogram. Returns the
optimal threshold value or −1 if no threshold is found.

2: K ← Size(h) ⊲ number of intensity levels
3: (μ0, μ1, MN) ← MakeMeanTables(h) ⊲ see Alg. 11.3

4: σ2
bmax ← 0

5: qmax ← −1
6: n0 ← 0

7: for q ← 0, . . . , K−2 do ⊲ examine all possible threshold values q
8: n0 ← n0 + h(q)
9: n1 ← MN − n0

10: if (n0 > 0) ∧ (n1 > 0) then

11: σ2
b ← 1

(MN)2 · n0 · n1 · [μ0(q) − μ1(q)]2 ⊲ see Eq. 11.22

12: if σ2
b > σ2

bmax then ⊲ maximize σ2
b

13: σ2
bmax ← σ2

b

14: qmax ← q

15: return qmax

levels. As in Alg. 11.3, precalculated tables μ0(q), μ1(q) are used
for the background and foreground means for all possible threshold
values q = 0, . . . , K−1.

Possible threshold values are q = 0, . . . , K−2 (with q = K−1, all
pixels are assigned to the background). Initially (before entering the
main for-loop in line 7) q = −1; at this point, the set of background
pixels (≤ q) is empty and all pixels are classified as foreground (n0 =
0 and n1 = N). Each possible threshold value is examined inside the
body of the for-loop.

As long as any of the two classes is empty (n0(q) = 0 or n1(q) =
0),3 the resulting between-class variance σ2

b(q) is zero. The threshold
that yields the maximum between-class variance (σ2

bmax) is returned,
or −1 if no valid threshold could be found. This occurs when all
image pixels have the same intensity, that all pixels are in either the
background or the foreground class.

Note that in line 11 of Alg. 11.4, the factor 1
N2 is constant (inde-

pendent of q) and can thus be ignored in the optimization. However,
care must be taken at this point because the computation of σ2

b may
produce intermediate values that exceed the range of typical (32-bit)
integer variables, even for medium-size images. Variables of type
long should be used or the computation be performed with floating-
point values.

The absolute “goodness” of the final thresholding by qmax could
be measured as the ratio

η =
σ2

b(qmax)
σ2

I

∈ [0, 1] (11.23)

3 This is the case if the image contains no pixels with values I(u, v) ≤ q
or I(u, v) > q, that is, the histogram h is empty either below or above
the index q.

262

11.1 Global
Histogram-Based
Thresholding

(a) qmax = 128 (b) qmax = 124 (c) qmax = 94 (d) qmax = 92

0 255 0 255 0 255 0 255
(e) η = 0.84 (f) η = 0.77 (g) η = 0.62 (h) η = 0.53

Fig. 11.4
Results of thresholding with
Otsu’s method. Calculated
threshold values q and re-
sulting binary images (a–d).
Graphs in (e–h) show the cor-
responding within-background
variance σ2

0 (green), the
within-foreground variance
σ2

1 (blue), and the between-
class variance σ2

b (red), for
varying threshold values
q = 0, . . . , 255. The optimal
threshold qmax (dashed verti-
cal line) is positioned at the
maximum of σ2

b. The value η
denotes the “goodness” esti-
mate for the thresholding, as
defined in Eqn. (11.23).

(see Eqn. (11.8)), which is invariant under linear changes of contrast
and brightness [177]. Greater values of η indicate better threshold-
ing.

Results of automatic threshold selection with Otsu’s method are
shown in Fig. 11.4, where qmax denotes the optimal threshold and η
is the corresponding “goodness” estimate, as defined in Eqn. (11.23).
The graph underneath each image shows the original histogram
(gray) overlaid with the variance within the background σ2

0 (green),
the variance within the foreground σ2

1 (blue), and the between-class
variance σ2

b (red) for varying threshold values q. The dashed vertical
line marks the position of the optimal threshold qmax.

Due to the pre-calculation of the mean values, Otsu’s method re-
quires only three passes over the histogram and is thus very fast
(O(K)), in contrast to opposite accounts in the literature. The
method is frequently quoted and performs well in comparison to other
approaches [213], despite its long history and its simplicity. In gen-
eral, the results are very similar to the ones produced by the iterative
threshold selection (“isodata”) algorithm described in Sec. 11.1.3.

11.1.5 Maximum Entropy Thresholding

Entropy is an important concept in information theory and particu-
larly in data compression. It is a statistical measure that quantifies
the average amount of information contained in the “messages” gen-
erated by a stochastic data source [99, 101]. For example, the MN
pixels in an image I can be interpreted as a message of MN sym-
bols, each taken independently from a finite alphabet of K (e.g.,
256) different intensity values. Every pixel is assumed to be stati-
cally independent. Knowing the probability of each intensity value
g to occur, entropy measures how likely it is to observe a particular
image, or, in other words, how much we should be surprised to see
such an image. Before going into further details, we briefly review
the notion of probabilities in the context of images and histograms
(see also Ch. 4, Sec. 4.6.1).

For modeling the image generation as a random process, we first
need to define an “alphabet”, that is, a set of symbols

263

11 Automatic
Thresholding

Z = {0, 1, . . . , K−1} , (11.24)

which in this case is simply the set of possible intensity values
g = 0, . . . , K−1, together with the probability p(g) that a partic-
ular intensity value g occurs. These probabilities are supposed to be
known in advance, which is why they are called a priori (or prior)
probabilities. The vector of probabilities,

(
p(0), p(1), . . . , p(K−1)

)
,

is a probability distribution or probability density function (pdf). In
practice, the a priori probabilities are usually unknown, but they can
be estimated by observing how often the intensity values actually oc-
cur in one or more images, assuming that these are representative
instances of the images typically produced by that source. An esti-
mate p(g) of the image’s probability density function p(g) is obtained
by normalizing its histogram h in the form

p(g) ≈ p(g) =
h(g)
MN

, (11.25)

for 0 ≤ g < K, such that 0 ≤ p(g) ≤ 1 and
∑K−1

g=0 p(g) = 1. The
associated cumulative distribution function (cdf) is

P(g) =
g
∑

i=0

h(g)
MN

=
g
∑

i=0

p(i), (11.26)

where P(0) = p(0) and P(K−1) = 1. This is simply the normalized
cumulative histogram.4

Entropy of images

Given an estimate of its intensity probability distribution p(g), the
entropy of an image is defined as5

H(Z) =
∑

g∈Z

p(g) · logb

(1
p(g)

)

= −
∑

g∈Z

p(g) · logb (p(g)) , (11.27)

where g = I(u, v) and logb(x) denotes the logarithm of x to the base
b. If b = 2, the entropy (or “information content”) is measured in
bits, but proportional results are obtained with any other logarithm
(such as ln or log10). Note that the value of H() is always positive,
because the probabilities p() are in [0, 1] and thus the terms logb [p()]
are negative or zero for any b.

Some other properties of the entropy are also quite intuitive. For
example, if all probabilities p(g) are zero except for one intensity g′,
then the entropy H(I) is zero, indicating that there is no uncertainty
(or “surprise”) in the messages produced by the corresponding data
source. The (rather boring) images generated by this source will
contain nothing but pixels of intensity g′, since all other intensities are

4 See also Chapter 3, Sec. 3.6.
5 Note the subtle difference in notation for the cumulative histogram H

and the entropy H .
264

11.1 Global
Histogram-Based
Thresholding

impossible. Conversely, the entropy is a maximum if all K intensities
have the same probability (uniform distribution),

p(g) =
1
K

, for 0 ≤ g < K, (11.28)

and therefore (from Eqn. (11.27)) the entropy in this case is

H(Z) = −
K−1∑

i=0

1
K
· logb

(1
K

)
=

1
K
·

K−1∑

i=0

logb(K)

︸ ︷︷ ︸
K·logb(K)

(11.29)

=
1
K
·
(
K · logb(K)

)
= logb(K). (11.30)

This is the maximum possible entropy of a stochastic source with an
alphabet Z of size K. Thus the entropy H(Z) is always in the range
[0, log(K)].

Using image entropy for threshold selection

The use of image entropy as a criterion for threshold selection has a
long tradition and numerous methods have been proposed. In the fol-
lowing, we describe the early (but still popular) technique by Kapur
et al. [100, 133] as a representative example.

Given a particular threshold q (with 0 ≤ q < K−1), the estimated
probability distributions for the resulting partitions C0 and C1 are

C0 :
(

p(0)
P0(q)

p(1)
P0(q) . . . p(q)

P0(q) 0 0 . . . 0
)
,

C1 :
(

0 0 . . . 0 p(q+1)
P1(q)

p(q+2)
P1(q) . . . p(K−1)

P1(q)

)
,

(11.31)

with the associated cumulated probabilities (see Eqn. (11.26))

P0(q) =
q
∑

i=0

p(i) = P(q) and P1(q) =
K−1∑

i=q+1

p(i) = 1− P(q).

(11.32)

Note that P0(q) + P1(q) = 1, since the background and foreground
partitions are disjoint. The entropies within each partition are de-
fined as

H0(q) = −
q
∑

i=0

p(i)
P0(q)

· log
(p(i)

P0(q)

)

, (11.33)

H1(q) = −
K−1∑

i=q+1

p(i)
P1(q)

· log
(p(i)

P1(q)

)

, (11.34)

and the overall entropy for the threshold q is

H01(q) = H0(q) + H1(q). (11.35)

This expression is to be maximized over q, also called the “infor-
mation between the classes” C0 and C1. To allow for an efficient
computation, the expression for H0(q) in Eqn. (11.33) can be rear-
ranged to

265

11 Automatic
Thresholding

H0(q) = −
q
∑

i=0

p(i)
P0(q)

·
[
log
(
p(i)

)
− log

(
P0(q)

)]
(11.36)

= − 1
P0(q)

·
q
∑

i=0

p(i) ·
[
log
(
p(i)

)
− log

(
P0(q)

)]
(11.37)

= − 1
P0(q)

·
q
∑

i=0

p(i) · log
(
p(i)

)

︸ ︷︷ ︸

S0(q)

+
1

P0(q)
·

q
∑

i=0

p(i)

︸ ︷︷ ︸

= P0(q)

· log
(
P0(q)

)

= − 1
P0(q)

· S0(q) + log
(
P0(q)

)
. (11.38)

Similarly H1(q) in Eqn. (11.34) becomes

H1(q) = −
K−1∑

i=q+1

p(i)
P1(q)

·
[
log
(
p(i)

)
− log

(
P1(q)

)]
(11.39)

= − 1
1−P0(q)

· S1(q) + log
(
1−P0(q)

)
. (11.40)

Given the estimated probability distribution p(i), the cumulative
probability P0 and the summation terms S0, S1 (see Eqns. (11.38)–
(11.40)) can be calculated from the recurrence relations

P0(q) =

{

p(0) for q = 0,
P0(q−1) + p(q) for 0 < q < K,

S0(q) =

{

p(0) · log
(
p(0)

)
for q = 0,

S0(q−1) + p(q) · log
(
p(q)

)
for 0 < q < K,

S1(q) =

{

0 for q = K−1,
S1(q+1) + p(q+1) · log

(
p(q+1)

)
for 0 ≤ q < K−1.

(11.41)

The complete procedure is summarized in Alg. 11.5, where the val-
ues S0(q), S1(q) are obtained from precalculated tables S0, S1. The
algorithm performs three passes over the histogram of length K (two
for filling the tables S0, S1 and one in the main loop), so its time
complexity is O(K), like the algorithms described before.

Results obtained with this technique are shown in Fig. 11.5. The
technique described in this section is simple and efficient, because
it again relies entirely on the image’s histogram. More advanced
entropy-based thresholding techniques exist that, among other im-
provements, take into account the spatial structure of the original
image. An extensive review of entropy-based methods can be found
in [46].

11.1.6 Minimum Error Thresholding

The goal of minimum error thresholding is to optimally fit a combi-
nation (mixture) of Gaussian distributions to the image’s histogram.
Before we proceed, we briefly look at some additional concepts from
statistics. Note, however, that the following material is only intended

266

11.1 Global
Histogram-Based
Thresholding

1: MaximumEntropyThreshold(h)
Input: h : [0, K −1] �→ N, a grayscale histogram. Returns the
optimal threshold value or −1 if no threshold is found.

2: K ← Size(h) ⊲ number of intensity levels
3: p ← Normalize(h) ⊲ normalize histogram

4: (S0, S1) ← MakeTables(p, K) ⊲ tables for S0(q), S1(q)

5: P0 ← 0 ⊲ P0 ∈ [0, 1]
6: qmax ← −1
7: Hmax ← −∞ ⊲ maximum joint entropy

8: for q ← 0, . . . , K−2 do ⊲ check all possible threshold values q
9: P0 ← P0 + p(q)

10: P1 ← 1 − P0 ⊲ P1 ∈ [0, 1]

11: H0 ←
{
− 1

P0
· S0(q) + log(P0) if P0 > 0

0 otherwise
⊲ BG entropy

12: H1 ←
{
− 1

P1
· S1(q) + log(P1) if P1 > 0

0 otherwise
⊲ FG entropy

13: H01 = H0 + H1 ⊲ overall entropy for q

14: if H01 > Hmax then ⊲ maximize H01(q)
15: Hmax ← H01

16: qmax ← q

17: return qmax

18: MakeTables(p, K)
19: Create maps S0, S1 : [0, K−1] �→ R

20: s0 ← 0
21: for i ← 0, . . . , K−1 do ⊲ initialize table S0

22: if p(i) > 0 then
23: s0 ← s0 + p(i) · log

(
p(i)

)

24: S0(i) ← s0

25: s1 ← 0
26: for i ← K−1, . . . , 0 do ⊲ initialize table S1

27: S1(i) ← s1

28: if p(i) > 0 then
29: s1 ← s1 + p(i) · log

(
p(i)

)

30: return (S0, S1)

Alg. 11.5
Maximum entropy thresh-
old selection after Kapur et
al. [133]. Initially (outside the
for-loop), the threshold q is
assumed to be −1, which cor-
responds to the background
class being empty (n0 = 0)
and all pixels assigned to the
foreground class (n1 = N).
The for-loop (lines 8–16) ex-
amines each possible threshold
q = 0, . . . , K −2. The optimal
threshold value (0, . . . , K −2)
is returned, or −1 if no valid
threshold was found.

(a) q = 133 (b) q = 139 (c) q = 118 (d) q = 126

0 255 0 255 0 255 0 255

(e) (f) (g) (h)

Fig. 11.5
Thresholding with the
Maximum-entropy method.
Calculated threshold values q
and resulting binary images
(a–d). Graphs in (e–h) show
the background entropy H0(q)
(green), foreground entropy
H1(q) (blue) and overall en-
tropy H01(q) = H0(q) + H1(q)
(red), for varying threshold
values q. The optimal thresh-
old qmax is found at the max-
imum of H01 (dashed vertical
line).

267

11 Automatic
Thresholding

as a superficial outline to explain the elementary concepts. For a
solid grounding of these and related topics readers are referred to
the excellent texts available on statistical pattern recognition, such
as [24, 64].

Bayesian decision making

The assumption is again that the image pixels originate from one of
two classes, C0 and C1, or background and foreground, respectively.
Both classes generate random intensity values following unknown sta-
tistical distributions. Typically, these are modeled as Gaussian dis-
tributions with unknown parameters μ and σ2, as will be described.
The task is to decide for each pixel value x to which of the two classes
it most likely belongs. Bayesian reasoning is a classic technique for
making such decisions in a probabilistic context.

The probability, that a certain intensity value x originates from a
background pixel is denoted

p(x | C0).

This is called a “conditional probability”.6 It tells us how likely it is to
observe the gray value x when a pixel is a member of the background
class C0. Analogously, p(x | C1) is the conditional probability of
observing the value x when a pixel is known to be of the foreground
class C1.

For the moment, let us assume that the conditional probability
functions p(x | C0) and p(x | C1) are known. Our problem is reversed
though, namely to decide which class a pixel most likely belongs
to, given that its intensity is x. This means that we are actually
interested in the conditional probabilities

p(C0 | x) and p(C1 | x), (11.42)

also called a posteriori (or posterior) probabilities. If we knew these,
we could simply select the class with the higher probability in the
form

C =

{

C0 if p(C0 | x) > p(C1 | x),
C1 otherwise.

(11.43)

Bayes’ theorem provides a method for estimating these posterior
probabilities, that is,

p(Cj | x) =
p(x | Cj) · p(Cj)

p(x)
, (11.44)

where p(Cj) is the prior probability of class Cj . While, in theory, the
prior probabilities are also unknown, they can be easily estimated
from the image histogram (see also Sec. 11.1.5). Finally, p(x) in Eqn.
(11.44) is the overall probability of observing the intensity value x,

6 In general, p(A | B) denotes the (conditional) probability of observing
the event A in a given situation B. It is usually read as “the probability
of A, given B”.

268

11.1 Global
Histogram-Based
Thresholding

which is typically estimated from its relative frequency in one or more
images.7

Note that for a particular intensity x, the corresponding evidence
p(x) only scales the posterior probabilities and is thus not relevant for
the classification itself. Consequently, we can reformulate the binary
decision rule in Eqn. (11.43) to

C =

{

C0 if p(x | C0) · p(C0) > p(x | C1) · p(C1),
C1 otherwise.

(11.45)

This is called Bayes’ decision rule. It minimizes the probability of
making a classification error if the involved probabilities are known
and is also called the “minimum error” criterion.

Gaussian probability distributions

If the probability distributions p(x | Cj) are modeled as Gaussian8

distributions N (x | μj , σ2
j), where μj , σ2

j denote the mean and vari-
ance of class Cj , we can rewrite the scaled posterior probabilities in
Eqn. (11.45) as

p(x | Cj) · p(Cj) =
1

√

2πσ2
j

· exp
(

− (x− μj)2

2σ2
j

)

· p(Cj). (11.46)

As long as the ordering between the resulting class scores remains un-
changed, these quantities can be scaled or transformed arbitrarily. In
particular, it is common to use the logarithm of the above expression
to avoid repeated multiplications of small numbers. For example,
applying the natural logarithm9 to both sides of Eqn. (11.46) yields

ln
(
p(x | Cj) · p(Cj)

)
= ln

(
p(x | Cj)

)
+ ln

(
p(Cj)

)
(11.47)

= ln
(1
√

2πσ2
j

)

+ ln
(

exp
(

− (x− μj)2

2σ2
j

))

+ ln
(
p(Cj)

)
(11.48)

= −1
2
· ln(2π)− 1

2
· ln(σ2

j)− (x− μj)2

2σ2
j

+ ln
(
p(Cj)

)
(11.49)

= −1
2
·
[

ln(2π) +
(x − μj)2

σ2
j

+ ln(σ2
j)− 2·ln

(
p(Cj)

)]

. (11.50)

Since ln(2π) in Eqn. (11.50) is constant, it can be ignored for the
classification decision, as well as the factor 1

2 at the front. Thus, to
find the class Cj that maximizes p(x | Cj) · p(Cj) for a given intensity
value x, it is sufficient to maximize the quantity

−
[(x− μj)2

σ2
j

+ 2·
[
ln(σj)− ln

(
p(Cj)

)]]

(11.51)

or, alternatively, to minimize

7 p(x) is also called the “evidence” for the event x.
8 See also Sec. D.4 in the Appendix.
9 Any logarithm could be used but the natural logarithm complements

the exponential function of the Gaussian.
269

11 Automatic
Thresholding

εj(x) =
(x− μj)2

σ2
j

+ 2·
[
ln(σj)− ln

(
p(Cj)

)]
. (11.52)

The quantity εj(x) can be viewed as a measure of the potential error
involved in classifying the observed value x as being of class Cj. To
obtain the decision associated with the minimum risk, we can modify
the binary decision rule in Eqn. (11.45) to

C =

{

C0 if ε0(x) ≤ ε1(x),
C1 otherwise.

(11.53)

Remember that this rule tells us how to correctly classify the observed
intensity value x as being either of the background class C0 or the
foreground class C1, assuming that the underlying distributions are
really Gaussian and their parameters are well estimated.

Goodness of classification

If we apply a threshold q, all pixel values g ≤ q are implicitly classified
as C0 (background) and all g > q as C1 (foreground). The goodness of
this classification by q over all N image pixels I(u, v) can be measured
with the criterion function

e(q) =
1

MN
·
∑

u,v

{

ε0(I(u, v)) for I(u, v) ≤ q

ε1(I(u, v)) for I(u, v) > q
(11.54)

=
1

MN
·

q
∑

g=0

h(g) · ε0(g) +
1

MN
·
K−1∑

g=q+1

h(g) · ε1(g) (11.55)

=
q
∑

g=0

p(g) · ε0(g) +
K−1∑

g=q+1

p(g) · ε1(g), (11.56)

with the normalized frequencies p(g) = h(g)/N and the function εj(g)
as defined in Eqn. (11.52). By substituting εj(g) from Eqn. (11.52)
and some mathematical gymnastics, e(q) can be written as

e(q) = 1 + P0(q) · ln
(
σ2

0(q)
)

+ P1(q) · ln
(
σ2

1(q)
)

− 2 · P0(q) · ln
(
P0(q)

)
− 2 · P1(q) · ln

(
P1(q)

)
. (11.57)

The remaining task is to find the threshold q that minimizes e(q)
(where the constant 1 in Eqn. (11.57) can be omitted, of course).
For each possible threshold q, we only need to estimate (from the
image’s histogram, as in Eqn. (11.31)) the “prior” probabilities P0(q),
P1(q) and the corresponding within-class variances σ0(q), σ1(q). The
prior probabilities for the background and foreground classes are
estimated as

P0(q) ≈
q
∑

g=0

p(g) =
1

MN
·

q
∑

g=0

h(g) =
n0(q)
MN

, (11.58)

P1(q) ≈
K−1∑

g=q+1

p(g) =
1

MN
·
K−1∑

g=q+1

h(g) =
n1(q)
MN

, (11.59)

270

11.1 Global
Histogram-Based
Thresholding

where n0(q) =
∑q

i=0 h(i), n1(q) =
∑K−1

i=q+1 h(i), and MN = n0(q) +
n1(q) is the total number of image pixels. Estimates for background
and foreground variances ()σ2

0(q) and σ2
1(q), respectively) defined in

Eqn. (11.7), can be calculated efficiently by expressing them in the
form

σ2
0(q) ≈ 1

n0(q)
·
[q
∑

g=0

h(g) · g2

︸ ︷︷ ︸

B0(q)

− 1
n0(q)

·
(

q
∑

g=0

h(g) · g
︸ ︷︷ ︸

A0(q)

)2
]

=
1

n0(q)
·
[
B0(q)− 1

n0(q)
·A2

0(q)
]
, (11.60)

σ2
1(q) ≈ 1

n1(q)
·
[K−1∑

g=q+1

h(g) · g2

︸ ︷︷ ︸

B1(q)

− 1
n1(q)

·
(

K−1∑

g=q+1

h(g) · g
︸ ︷︷ ︸

A1(q)

)2
]

=
1

n1(q)
·
[
B1(q)− 1

n1(q)
·A2

1(q)
]
, (11.61)

with the quantities

A0(q) =
q
∑

g=0

h(g) · g, B0(q) =
q
∑

g=0

h(g) · g2,

A1(q) =
K−1∑

g=q+1

h(g) · g, B1(q) =
K−1∑

g=q+1

h(g) · g2.

(11.62)

Furthermore, the values σ2
0(q), σ2

1(q) can be tabulated for every pos-
sible q in only two passes over the histogram, using the recurrence
relations

A0(q) =

{

0 for q = 0,
A0(q−1) + h(q) · q for 1 ≤ q ≤ K−1,

(11.63)

B0(q) =

{

0 for q = 0,
B0(q−1) + h(q) · q2 for 1 ≤ q ≤ K−1,

(11.64)

A1(q) =

{

0 for q = K−1,
A1(q+1) + h(q+1) · (q+1) for 0 ≤ q ≤ K−2,

(11.65)

B1(q) =

{

0 for q = K−1,
B1(q+1) + h(q+1) · (q+1)2 for 0 ≤ q ≤ K−2.

(11.66)

The complete minimum-error threshold calculation is summarized
in Alg. 11.6. First, the tables S0, S1 are set up and initialized with
the values of σ2

0(q), σ2
1(q), respectively, for 0 ≤ q < K, following

the recursive scheme in Eqns. (11.63–11.66). Subsequently, the error
value e(q) is calculated for every possible threshold value q to find
the global minimum. Again e(q) can only be calculated for those
values of q, for which both resulting partitions are non-empty (i.e.,
with n0(q), n1(q) > 0). Note that, in lines 27 and 37 of Alg. 11.6,
a small constant (1

12) is added to the variance to avoid zero values
when the corresponding class population is homogeneous (i.e., only

271

11 Automatic
Thresholding

contains a single intensity value).10 This ensures that the algorithm
works properly on images with only two distinct gray values. The
algorithm computes the optimal threshold by performing three passes
over the histogram (two for initializing the tables and one for finding
the minimum); it thus has the same time complexity of O(K) as the
algorithms described before.

Figure 11.6 shows the results of minimum-error thresholding on
our set of test images. It also shows the fitted pair of Gaussian distri-
butions for the background and the foreground pixels, respectively,
for the optimal threshold as well as the graphs of the error function
e(q), which is minimized over all threshold values q. Obviously the
error function is quite flat in certain cases, indicating that similar
scores are obtained for a wide range of threshold values and the opti-
mal threshold is not very distinct. We can also see that the estimate
is quite accurate in case of the synthetic test image in Fig. 11.6(d),
which is actually generated as a mixture of two Gaussians (with pa-
rameters μ0 = 80, μ1 = 170 and σ0 = σ1 = 20). Note that the
histograms in Fig. 11.6 have been properly normalized (to constant
area) to illustrate the curves of the Gaussians, that is, properly scaled
by their prior probabilities (P0, P1), while the original histograms are
scaled with respect to their maximum values.

Fig. 11.6
Results from minimum-error

thresholding. Calculated
threshold values q and re-

sulting binary images (a–d).
The green and blue graphs in

(e–h) show the fitted Gaussian
background and foreground

distributions N0 = (μ0, σ0)
and N1 = (μ1, σ1), respec-

tively. The red graph cor-
responds to the error quan-
tity e(q) for varying thresh-

old values q = 0, . . . , 255
(see Eqn. (11.57)). The op-

timal threshold qmin is lo-
cated at the minimum of e(q)

(dashed vertical line). The
estimated parameters of the

background/foreground Gaus-
sians are listed at the bottom.

(a) q = 161 (b) q = 50 (c) q = 43 (d) q = 140

0 255 0 255 0 255 0 255
(e) (f) (g) (h)

μ0 = 97.18
σ0 = 39.48
μ1 = 181.74
σ1 = 7.09

μ0 = 33.16
σ0 = 7.28
μ1 = 164.94
σ1 = 51.04

μ0 = 12.96
σ0 = 8.74
μ1 = 168.44
σ1 = 32.22

μ0 = 80.12
σ0 = 19.98
μ1 = 171.93
σ1 = 17.80

A minor theoretical problem with the minimum error technique
is that the parameters of the Gaussian distributions are always esti-
mated from truncated samples. This means that, for any threshold
q, only the intensity values smaller than q are used to estimate the
parameters of the background distribution, and only the intensities
greater than q contribute to the foreground parameters. In prac-
tice, this problem is of minor importance, since the distributions are
typically not strictly Gaussian either.

10 This is explained by the fact that each histogram bin h(i) represents
intensities in the continuous range [i±0.5] and the variance of uniformly
distributed values in the unit interval is 1

12
.

272

11.2 Local Adaptive
Thresholding

1: MinimumErrorThreshold(h)
Input: h : [0, K −1] �→ N, a grayscale histogram. Returns the
optimal threshold value or −1 if no threshold is found.

2: K ← Size(h)
3: (S0, S1, N) ← MakeSigmaTables(h, K)

4: n0 ← 0
5: qmin ← −1
6: emin ← ∞
7: for q ← 0, . . . , K−2 do ⊲ evaluate all possible thresholds q
8: n0 ← n0 + h(q) ⊲ background population
9: n1 ← N − n0 ⊲ foreground population

10: if (n0 > 0) ∧ (n1 > 0) then
11: P0 ← n0/N ⊲ prior probability of C0

12: P1 ← n1/N ⊲ prior probability of C1

13: e ← P0 · ln(S0(q)) + P1 · ln(S1(q))
− 2 · (P0 · ln(P0) + P1 · ln(P1)) ⊲ Eq. 11.57

14: if e < emin then ⊲ minimize error for q
15: emin ← e

16: qmin ← q

17: return qmin

18: MakeSigmaTables(h, K)
19: Create maps S0, S1 : [0, K−1] �→ R

20: n0 ← 0
21: A0 ← 0
22: B0 ← 0
23: for q ← 0, . . . , K−1 do ⊲ tabulate σ2

0(q)
24: n0 ← n0 + h(q)
25: A0 ← A0 + h(q) · q ⊲ Eq. 11.63
26: B0 ← B0 + h(q) · q2 ⊲ Eq. 11.64

27: S0(q) ←
{

1
12

+ (B0 − A2
0/n0)/n0 for n0 > 0

0 otherwise
⊲ Eq. 11.60

28: N ← n0

29: n1 ← 0
30: A1 ← 0
31: B1 ← 0
32: S1(K−1) ← 0

33: for q ← K−2, . . . , 0 do ⊲ tabulate σ2
1(q)

34: n1 ← n1 + h(q+1)
35: A1 ← A1 + h(q+1) · (q+1) ⊲ Eq. 11.65
36: B1 ← B1 + h(q+1) · (q+1)2 ⊲ Eq. 11.66

37: S1(q) ←
{

1
12

+ (B1 − A2
1/n1)/n1 for n1 > 0

0 otherwise
⊲ Eq. 11.61

38: return (S0, S1, N)

Alg. 11.6
Minimum error threshold
selection based on a Gaus-
sian mixture model (af-
ter [116]). Tables S0, S1 are
intialized with values σ2

0(q)
and σ2

1(q), respectively (see
Eqns. (11.60)–(11.61)), for
all possible threshold values
q = 0, . . . , K−1. N is the num-
ber of image pixels. Initially
(outside the for-loop), the
threshold q is assumed to be
−1, which corresponds to the
background class being empty
(n0 = 0) and all pixels as-
signed to the foreground class
(n1 = N). The for-loop (lines
8–16) examines each possible
threshold q = 0, . . . , K −2. The
optimal threshold is returned,
or −1 if no valid threshold was
found.

11.2 Local Adaptive Thresholding

In many situations, a fixed threshold is not appropriate to classify
the pixels in the entire image, for example, when confronted with
stained backgrounds or uneven lighting or exposure. Figure 11.7
shows a typical, unevenly exposed document image and the results
obtained with some global thresholding methods described in the
previous sections.

273

11 Automatic
Thresholding

Fig. 11.7
Global thresholding methods
fail under uneven lighting or

exposure. Original image (a),
results from global thresh-
olding with various meth-

ods described above (b–d).

(a) Original (b) Otsu (c) Max. entropy (d) Min. error

Instead of using a single threshold value for the whole image,
adaptive thresholding specifies a varying threshold value Q(u, v) for
each image position that is used to classify the corresponding pixel
I(u, v) in the same way as described in Eqn. (11.1) for a global thresh-
old. The following approaches differ only with regard to how the
threshold “surface” Q is derived from the input image.

11.2.1 Bernsen’s Method

The method proposed by Bernsen [23] specifies a dynamic threshold
for each image position (u, v), based on the minimum and maximum
intensity found in a local neighborhood R(u, v). If

Imin(u, v) = min
(i,j)∈
R(u,v)

I(i, j), (11.67)

Imax(u, v) = max
(i,j)∈
R(u,v)

I(i, j) (11.68)

are the minimum and maximum intensity values within a fixed-size
neighborhood region R centered at position (u, v), the space-varying
threshold is simply calculated as the mid-range value

Q(u, v) =
Imin(u, v) + Imax(u, v)

2
. (11.69)

This is done as long as the local contrast c(u, v) = Imax(u, v) −
Imin(u, v) is above some predefined limit cmin. If c(u, v) < cmin,
the pixels in the corresponding image region are assumed to belong
to a single class and are (by default) assigned to the background.

The whole process is summarized in Alg. 11.7. Note that the
meaning of “background” in terms of intensity levels depends on the
application. For example, in astronomy, the image background is usu-
ally darker than the objects of interest. In typical OCR applications,
however, the background (paper) is brighter than the foreground ob-
jects (print). The main function provides a control parameter bg to
select the proper default threshold q̄, which is set to K in case of
a dark background (bg = dark) and to 0 for a bright background
(bg = bright). The support region R may be square or circular, typi-
cally with a radius r = 15. The choice of the minimum contrast limit
cmin depends on the type of imagery and the noise level (cmin = 15
is a suitable value to start with).

Figure 11.8 shows the results of Bernsen’s method on the uneven
test image used in Fig. 11.7 for different settings of the region’s ra-
dius r. Due to the nonlinear min- and max-operation, the resulting

274

11.2 Local Adaptive
Thresholding

1: BernsenThreshold(I, r, cmin, bg)
Input: I , intensity image of size M × N ; r, radius of support
region; cmin, minimum contrast; bg, background type (dark or
bright). Returns a map with an individual threshold value for
each image position.

2: (M, N) ← Size(I)
3: Create map Q : M × N �→ R

4: q̄ ←
{

K if bg = dark

0 if bg = bright

5: for all image coordinates (u, v) ∈ M × N do
6: R ← MakeCircularRegion(u, v, r)
7: Imin ← min

(i,j)∈R
I(i, j)

8: Imax ← max
(i,j)∈R

I(i, j)

9: c ← Imax − Imin

10: Q(u, v) ←
{

(Imin + Imax)/2 if c ≥ cmin

q̄ otherwise

11: return Q

12: MakeCircularRegion(u, v, r)
Returns the set of pixel coordinates within the circle of radius r,
centered at (u, v)

13: return
{

(i, j) ∈ Z
2 | (u − i)2 + (v − j)2 ≤ r2

}

Alg. 11.7
Adaptive thresholding using
local contrast (after Bernsen
[23]). The argument to bg
should be set to dark if the
image background is darker
than the structures of interest,
and to bright if the background
is brighter than the objects.

threshold surface is not smooth. The minimum contrast is set to
cmin = 15, which is too low to avoid thresholding low-contrast noise
visible along the left image margin. By increasing the minimum
contrast cmin, more neighborhoods are considered “flat” and thus ig-
nored, that is, classified as background. This is demonstrated in Fig.
11.9. While larger values of cmin effectively eliminate low-contrast
noise, relevant structures are also lost, which illustrates the difficulty
of finding a suitable global value for cmin. Additional examples, using
the test images previously used for global thresholding, are shown in
Fig. 11.10.

What Alg. 11.7 describes formally can be implemented quite effi-
ciently, noting that the calculation of local minima and maxima over
a sliding window (lines 6–8) corresponds to a simple nonlinear filter
operation (see Ch. 5, Sec. 5.4). To perform these calculations, we
can use a minimum and maximum filter with radius r, as provided
by virtually every image processing environment. For example, the
Java implementation of the Bernsen thresholder in Prog. 11.1 uses
ImageJ’s built-in RankFilters class for this purpose. The complete
implementation can be found on the book’s website (see Sec. 11.3 for
additional details on the corresponding API).

11.2.2 Niblack’s Method

In this approach, originally presented in [172, Sec. 5.1], the threshold
Q(u, v) is varied across the image as a function of the local intensity
average μR(u, v) and standard deviation11 σR(u, v) in the form

11 The standard deviation σ is the square root of the variance σ2.
275

11 Automatic
Thresholding

Prog. 11.1
Bernsen’s thresholder (Im-

ageJ plugin implementation
of Alg. 11.7). Note the use

of ImageJ’s RankFilters class
(lines 30–32) for calculating

the local minimum (Imin) and
maximum (Imax) maps inside

the getThreshold() method.
The resulting threshold surface
Q(u, v) is returned as an 8-bit

image of type ByteProcessor.

1 package imagingbook.pub.threshold.adaptive;

2 import ij.plugin.filter.RankFilters;

3 import ij.process.ByteProcessor;

4 import imagingbook.pub.threshold.BackgroundMode;

5

6 public class BernsenThresholder extends AdaptiveThresholder

{

7

8 public static class Parameters {

9 public int radius = 15;

10 public int cmin = 15;

11 public BackgroundMode bgMode = BackgroundMode.DARK;

12 }

13

14 private final Parameters params;

15

16 public BernsenThresholder() {

17 this.params = new Parameters();

18 }

19

20 public BernsenThresholder(Parameters params) {

21 this.params = params;

22 }

23

24 public ByteProcessor getThreshold(ByteProcessor I) {

25 int M = I.getWidth();

26 int N = I.getHeight();

27 ByteProcessor Imin = (ByteProcessor) I.duplicate();

28 ByteProcessor Imax = (ByteProcessor) I.duplicate();

29

30 RankFilters rf = new RankFilters();

31 rf.rank(Imin,params.radius,RankFilters.MIN); // Imin(u, v)
32 rf.rank(Imax,params.radius,RankFilters.MAX); // Imax(u, v)
33

34 int q = (params.bgMode == BackgroundMode.DARK) ?

35 256 : 0;

36 ByteProcessor Q = new ByteProcessor(M, N); // Q(u, v)
37

38 for (int v = 0; v < N; v++) {

39 for (int u = 0; u < M; u++) {

40 int gMin = Imin.get(u, v);

41 int gMax = Imax.get(u, v);

42 int c = gMax - gMin;

43 if (c >= params.cmin)

44 Q.set(u, v, (gMin + gMax) / 2);

45 else

46 Q.set(u, v, q);

47 }

48 }

49 return Q;

50 }

51 }

276

11.2 Local Adaptive
Thresholding

(a) I(u, v) (b) Imin(u, v) (c) Imax(u, v)

(d) r = 7 (e) r = 15 (f) r = 30

(g) r = 7 (h) r = 15 (i) r = 30

Fig. 11.8
Adaptive thresholding using
Bernsen’s method. Original
image (a), local minimum (b),
and maximum (c). The cen-
ter row shows the binarized
images for different settings
of r (d–f). The correspond-
ing curves in (g–i) show the
original intensity (gray), local
minimum (green), maximum
(red), and the actual thresh-
old (blue) along the horizontal
line marked in (a–c). The re-
gion radius r is 15 pixels, the
minimum contrast cmin is 15
intensity units.

(a) cmin = 15 (b) cmin = 30 (c) cmin = 60

Fig. 11.9
Adaptive thresholding using
Bernsen’s method with differ-
ent settings of cmin. Binarized
images (top row) and threshold
surface Q(u, v) (bottom row).
Black areas in the threshold
functions indicate that the lo-
cal contrast is below cmin; the
corresponding pixels are clas-
sified as background (white in
this case).

Q(u, v) := μR(u, v) + κ · σR(u, v). (11.70)

Thus the local threshold Q(u, v) is determined by adding a constant
portion (κ ≥ 0) of the local standard deviation σR to the local mean
μR. μR and σR are calculated over a square support region R centered
at (u, v). The size (radius) of the averaging region R should be as
large as possible, at least larger than the size of the structures to be
detected, but small enough to capture the variations (unevenness)

277

11 Automatic
Thresholding

Fig. 11.10
Additional examples for

Bernsen’s method. Original
images (a–d), local minimum

Imin (e–h), maximum Imax

(i–l), and threshold map Q
(m–p); results after thresh-

olding the images (q–t). Set-
tings are r = 15, cmin = 15.

A bright background is as-
sumed for all images (bg =

bright), except for image (d).

Original image

(a) (b) (c) (d)

Local minimum

(e) (f) (g) (h)

Local maximum

(i) (j) (k) (l)

Local threshold Q(u, v)

(m) (n) (o) (p)

Binary image

(q) (r) (s) (t)

of the background. A size of 31 × 31 pixels (or radius r = 15) is
suggested in [172] and κ = 0.18, though the latter does not seem to
be critical.

One problem is that, for small values of σR (as obtained in “flat”
image regions of approximately constant intensity), the threshold will
be close to the local average, which makes the segmentation quite
sensitive to low-amplitude noise (“ghosting”). A simple improvement
is to secure a minimum distance from the mean by adding a constant
offset d, that is, replacing Eqn. (11.70) by

Q(u, v) := μR(u, v) + κ · σR(u, v) + d, (11.71)
278

11.2 Local Adaptive
Thresholding

with d ≥ 0, in the range 2, . . . , 20 for typical 8-bit images.
The original formulation (Eqn. (11.70)) is aimed at situations

where the foreground structures are brighter than the background
(Fig. 11.11(a)) but does not work if the images are set up the other
way round (Fig. 11.11(b)). In the case that the structures of interest
are darker than the background (as, e.g., in typical OCR applica-
tions), one could either work with inverted images or modify the
calculation of the threshold to

Q(u, v) :=

{

μR(u, v) + (κ · σR(u, v) + d) for dark BG,
μR(u, v)− (κ · σR(u, v) + d) for bright BG.

(11.72)

Dark background Bright background

Q
μ Q

μ

(a) (b)

Fig. 11.11
Adaptive thresholding based
on average local intensity. The
illustration shows a line profile
as typically found in document
imaging. The space-variant
threshold Q (dotted blue line)
is chosen as the local average
μR (dashed green line) offset
by a multiple of the local in-
tensity variation σR. The offset
is chosen to be positive for im-
ages with a dark background
and bright structures (a) and
negative if the background is
brighter than the contained
structures of interest (b).

The modified procedure is detailed in Alg. 11.8. The example
in Fig. 11.12 shows results obtained with this method on an image
with a bright background containing dark structures, for κ = 0.3
and varying settings of d. Note that setting d = 0 (Fig. 11.12(d,
g)) corresponds to Niblack’s original method. For these examples,
a circular window of radius r = 15 was used to compute the local
mean μR(u, v) and variance σR(u, v). Additional examples are shown
in Fig. 11.13. Note that the selected radius r is obviously too small
for the structures in the images in Fig. 11.13(c, d), which are thus
not segmented cleanly. Better results can be expected with a larger
radius.

With the intent to improve upon Niblack’s method, particularly
for thresholding deteriorated text images, Sauvola and Pietikäinen
[207] proposed setting the threshold to

Q(u, v) :=

⎧

⎨

⎩

μR(u, v)·
[
1− κ·

(σR(u,v)
σmax

−1
)]

for dark BG,

μR(u, v)·
[
1 + κ·

(σR(u,v)
σmax

−1
)]

for bright BG,
(11.73)

with κ = 0.5 and σmax = 128 (the “dynamic range of the standard
deviation” for 8-bit images) as suggested parameter values. In this
approach, the offset between the threshold and the local average not
only depends on the local variation σR (as in Eqn. (11.70)), but also
on the magnitude of the local mean μR! Thus, changes in absolute
brightness lead to modified relative threshold values, even when the
image contrast remains constant. Though this technique is frequently
referenced in the literature, it appears questionable if this behavior
is generally desirable.

Calculating local mean and variance

Algorithm 11.8 shows the principle operation of Niblack’s method
and also illustrates how to efficiently calculate the local average and

279

11 Automatic
Thresholding

Fig. 11.12
Adaptive thresholding using

Niblack’s method (with r = 15,
κ = 0.3). Original image (a),
local mean μR (b), and stan-

dard deviation σR (c). The
result for d = 0 in (d) corre-

sponds to Niblack’s original
formulation. Increasing the

value of d reduces the amount
of clutter in regions with low
variance (e, f). The curves in
(g–i) show the local intensity

(gray), mean (green), vari-
ance (red), and the actual

threshold (blue) along the hor-
izontal line marked in (a–c).

(a) I(u, v) (b) μR(u, v) (c) σR(u, v)

(d) d = 0 (e) d = 5 (f) d = 10

(g) d = 0 (h) d = 5 (i) d = 10

variance. Given the image I and the averaging region R, we can use
the shortcut suggested in Eqn. (3.12) to obtain these quantities as

μR =
1
n
· A and σ2

R =
1
n
·
(
B − 1

n
·A2

)
, (11.74)

with

A =
∑

(i,j)∈R

I(i, j), B =
∑

(i,j)∈R

I2(i, j), n = |R|. (11.75)

Procedure GetLocalMeanAndVariance() in Alg. 11.8 shows this calcu-
lation in full detail.

When computing the local average and variance, attention must
be paid to the situation at the image borders, as illustrated in Fig.
11.14. Two approaches are frequently used. In the first approach
(following the common practice for implementing filter operations),
all outside pixel values are replaced by the closest inside pixel, which
is always a border pixel. Thus the border pixel values are effectively
replicated outside the image boundaries and thus these pixels have
a strong influence on the local results. The second approach is to
perform the calculation of the average and variance on only those
image pixels that are actually covered by the support region. In this
case, the number of pixels (N) is reduced at the image borders to
about 1/4 of the full region size.

Although the calculation of the local mean and variance outlined
by function GetLocalMeanAndVariance() in Alg. 11.8 is definitely more

280

11.2 Local Adaptive
Thresholding

1: NiblackThreshold(I, r, κ, d, bg)
Input: I , intensity image of size M × N ; r, radius of sup-
port region; κ, variance control parameter; d, minimum offset;
bg ∈ {dark, bright}, background type. Returns a map with an
individual threshold value for each image position.

2: (M, N) ← Size(I)
3: Create map Q : M × N �→ R

4: for all image coordinates (u, v) ∈ M × N do
Define a support region of radius r, centered at (u, v):

5: (μ, σ2) ← GetLocalMeanAndVariance(I, u, v, r)

6: σ ←
√

σ2 ⊲ local std. deviation σR

7: Q(u, v) ←
{

μ + (κ · σ + d) if bg = dark

μ − (κ · σ + d) if bg = bright
⊲ Eq. 11.72

8: return Q

9: GetLocalMeanAndVariance(I, u, v, r)
Returns the local mean and variance of the image pixels I(i, j)
within the disk-shaped region with radius r around position
(u, v).

10: R ← MakeCircularRegion(u, v, r) ⊲ see Alg. 11.7
11: n ← 0
12: A ← 0
13: B ← 0
14: for all (i, j) ∈ R do
15: n ← n + 1
16: A ← A + I(i, j)
17: B ← B + I2(i, j)

18: μ ← 1
n
· A

19: σ2 ← 1
n
· (B − 1

n
· A2)

20: return (μ, σ2)

Alg. 11.8
Adaptive thresholding us-
ing local mean and variance
(modified version of Niblack’s
method [172]). The argument
to bg should be dark if the im-
age background is darker than
the structures of interest, bright

if the background is brighter
than the objects. The function
MakeCircularRegion() is defined
in Alg. 11.7.

efficient than a brute-force approach, additional optimizations are
possible. Most image processing environments have suitable routines
already built in. With ImageJ, for example, we can again use the
RankFilters class (as with the min- and max-filters in the Bernsen
approach, see Sec. 11.2.1). Instead of performing the computation for
each pixel individually, the following ImageJ code segment uses pre-
defined filters to compute two separate images Imean (μR) and Ivar

(σ2
R) containing the local mean and variance values, respectively, with

a disk-shaped support region of radius 15:

ByteProcessor I; // original image I(u, v)
int radius = 15;

FloatProcessor Imean = I.convertToFloatProcessor();

FloatProcessor Ivar = Imean.duplicate();

RankFilters rf = new RankFilters();

rf.rank(Imean, radius, RankFilters.MEAN); // μR(u, v)
rf.rank(Ivar, radius, RankFilters.VARIANCE); // σ2

R(u, v)
...

281

11 Automatic
Thresholding

Fig. 11.13
Additional examples for

thresholding with Niblack’s
method using a disk-shaped

support region of radius
r = 15. Original images (a–d),

local mean μR (e–h), std. de-
viation σR (i–l), and threshold
Q (m–p); results after thresh-
olding the images (q–t). The
background is assumed to be

brighter than the structures of
interest, except for image (d),
which has a dark background.

Settings are κ = 0.3, d = 5.

Original image

(a) (b) (c) (d)

Local average μR(u, v)

(e) (f) (g) (h)

Local standard deviation σR(u, v)

(i) (j) (k) (l)

Local threshold Q(u, v)

(m) (n) (o) (p)

Binary image

(q) (r) (s) (t)

See Sec. 11.3 and the online code for additional implementation de-
tails. Note that the filter methods implemented in RankFilters

perform replication of border pixels as the border handling strategy,
as discussed earlier.

Local average and variance with Gaussian kernels

The purpose of taking the local average is to smooth the image to
obtain an estimate of the varying background intensity. In case of
a square or circular region, this is equivalent to convolving the im-
age with a box- or disk-shaped kernel, respectively. Kernels of this

282

11.2 Local Adaptive
Thresholding

�

$ % & ' �

$

%

&

'

�

Fig. 11.14
Calculating local statistics at
image boundaries. The illus-
tration shows a disk-shaped
support region with radius r,
placed at the image border.
Pixel values outside the image
can be replaced (“filled-in”)
by the closest border pixel,
as is common in many filter
operations. Alternatively, the
calculation of the local statis-
tics can be confined to include
only those pixels inside the im-
age that are actually covered
by the support region. At any
border pixel, the number of
covered elements (N) is still
more than ≈ 1/4 of the full
region size. In this particular
case, the circular region covers
a maximum of N = 69 pix-
els when fully embedded and
N = 22 when positioned at an
image corner.

type, however, are not well suited for image smoothing, because they
create strong ringing and truncating effects, as demonstrated in Fig.
11.15. Moreover, convolution with a box-shaped (rectangular) ker-
nel is a non-isotropic operation, that is, the results are orientation-
dependent. From this perspective alone it seems appropriate to con-
sider other smoothing kernels, Gaussian kernels in particular.

Box Disk Gaussian

μR

(a) (b) (c)

σR

(d) (e) (f)

Fig. 11.15
Local average (a–c) and vari-
ance (d–f) obtained with differ-
ent smoothing kernels. 31 × 31
box filter (a, d), disk filter with
radius r = 15 (b, e), Gaussian
kernel with σ = 0.6 · 15 = 9.0
(c, f). Both the box and disk
filter show strong truncation
effects (ringing), the box filter
is also highly non-isotropic. All
images are contrast-enhanced
for better visibility.

Using a Gaussian kernel HG for smoothing is equivalent to cal-
culating a weighted average of the corresponding image pixels, with
the weights being the coefficients of the kernel. Thus calculating this
weighted local average can be expressed by

μG(u, v) =
1

ΣHG
·
(
I ∗HG

)
(u, v), (11.76)

where ΣHG is the sum of the coefficients in the kernel HG and ∗
denotes the linear convolution operator.12 Analogously, there is also

12 See Chapter 5, Sec. 5.3.1.
283

11 Automatic
Thresholding

a weighted variance σ2
G which can be calculated jointly with the local

average μG (as in Eqn. (11.74)) in the form

μG(u, v) =
1

ΣHG
·AG(u, v), (11.77)

σ2
G(u, v) =

1
ΣHG

·
(
BG(u, v)− 1

ΣHG
·A2

G(u, v)
)
, (11.78)

with AG = I ∗HG and BG = I2 ∗HG.
Thus all we need is two filter operations, one applied to the

original image (I ∗ HG) and another applied to the squared image
(I2 ∗ HG), using the same 2D Gaussian kernel HG (or any other
suitable smoothing kernel). If the kernel HG is normalized (i.e.,
ΣHG = 1), Eqns. (11.77)–(11.78) reduce to

μG(u, v) = AG(u, v), (11.79)

σ2
G(u, v) = BG(u, v)−A2

G(u, v), (11.80)

with AG, BG as defined already.
This suggests a very simple process for computing the local aver-

age and variance by Gaussian filtering, as summarized in Alg. 11.9.
The width (standard deviation σ) of the Gaussian kernel is set to 0.6
times the radius r of the corresponding disk filter to produce a sim-
ilar effect as Alg. 11.8. The Gaussian approach has two advantages:
First, the Gaussian makes a much superior low-pass filter, compared
to the box or disk kernels. Second, the 2D Gaussian is (unlike the
circular disk kernel) separable in the x- and y-direction, which per-
mits a very efficient implementation of the 2D filter using only a pair
of 1D convolutions (see Ch. 5, Sec. 5.2).

For practical calculation, AG, BG can be represented as (floating-
point) images, and most modern image-processing environments
provide efficient (multi-scale) implementations of Gaussian filters
with large-size kernels. In ImageJ, fast Gaussian filtering is imple-
mented by the class GaussianBlur with the public methods blur(),
blurGaussian(), and blurFloat(), which all use normalized filter
kernels by default. Programs 11.2–11.3 show the complete ImageJ
implementation of Niblack’s thresholder using Gaussian smoothing
kernels.

11.3 Java Implementation

All thresholding methods described in this chapter have been imple-
mented as part of the imagingbook library that is available with
full source code at the book’s website. The top class in this li-
brary13 is Thresholder with the sub-classes GlobalThresholder and
AdaptiveThresholder for the methods described in Secs. 11.1 and
11.2, respectively. Class Thresholder itself is abstract and only de-
fines a set of (non-public) utility methods for histogram analysis.

13 Package imagingbook.pub.threshold.
284

11.3 Java
Implementation

1: AdaptiveThresholdGauss(I, r, κ, d, bg)
Input: I , intensity image of size M × N ; r, support region ra-
dius; κ, variance control parameter; d, minimum offset; bg ∈
{dark, bright}, background type.
Returns a map Q of local thresholds for the grayscale image I .

2: (M, N) ← Size(I)
3: Create maps A, B, Q : M × N �→ R

4: for all image coordinates (u, v) ∈ M × N do
5: A(u, v) ← I(u, v)
6: B(u, v) ← (I(u, v))2

7: HG ← MakeGaussianKernel2D(0.6 · r)
8: A ← A ∗ HG ⊲ filter the original image with HG

9: B ← B ∗ HG ⊲ filter the squared image with HG

10: for all image coordinates (u, v) ∈ M × N do
11: μG ← A(u, v) ⊲ Eq. 11.79

12: σG ←
√

B(u, v) − A2(u, v) ⊲ Eq. 11.80

13: Q(u, v) ←
{

μG +
(
κ · σG + d

)
if bg = dark

μG −
(
κ · σG + d

)
if bg = bright

⊲ Eq. 11.72

14: return Q

15: MakeGaussianKernel2D(σ)
Returns a discrete 2D Gaussian kernel H with std. deviation σ,
sized sufficiently large to avoid truncation effects.

16: r ← max(1, ⌈3.5 · σ⌉) ⊲ size the kernel sufficiently large
17: Create map H : [−r, r]2 �→ R

18: s ← 0
19: for x ← −r, . . . , r do
20: for y ← −r, . . . , r do

21: H(x, y) ← e
− x2+y2

2·σ2
⊲ unnormalized 2D Gaussian

22: s ← s + H(x, y)
23: for x ← −r, . . . , r do
24: for y ← −r, . . . , r do
25: H(x, y) ← 1

s
· H(x, y) ⊲ normalize H

26: return H

Alg. 11.9
Adaptive thresholding using
Gaussian averaging (extended
from Alg. 11.8). Parame-
ters are the original image
I, the radius r of the Gaus-
sian kernel, variance control
k, and minimum offset d.
The argument to bg should
be dark if the image back-
ground is darker than the
structures of interest, bright
if the background is brighter
than the objects. The proce-
dure MakeGaussianKernel2D(σ)
creates a discrete, normalized
2D Gaussian kernel with stan-
dard deviation σ.

11.3.1 Global Thresholding Methods

The thresholding methods covered in Sec. 11.1 are implemented by
the following classes:

• MeanThresholder, MedianThresholder (Sec. 11.1.2),
• QuantileThresholder (Alg. 11.1),
• IsodataThresholder (Alg. 11.2–11.3),
• OtsuThresholder (Alg. 11.4),
• MaxEntropyThresholder (Alg. 11.5), and
• MinErrorThresholder (Alg. 11.6).

These are sub-classes of the (abstract) class GlobalThresholder.
The following example demonstrates the typical use of this method
for a given ByteProcessor object I:

...

GlobalThresholder thr = new IsodataThresholder();

int q = thr.getThreshold(I);
285

11 Automatic
Thresholding

Prog. 11.2
Niblack’s thresholder using

Gaussian smoothing ker-
nels (ImageJ implementa-
tion of Alg. 11.9, part 1).

1 package threshold;

2

3 import ij.plugin.filter.GaussianBlur;

4 import ij.plugin.filter.RankFilters;

5 import ij.process.ByteProcessor;

6 import ij.process.FloatProcessor;

7 import imagingbook.pub.threshold.BackgroundMode;

8

9 public abstract class NiblackThresholder extends

AdaptiveThresholder {

10

11 // parameters for this thresholder

12 public static class Parameters {

13 public int radius = 15;

14 public double kappa = 0.30;

15 public int dMin = 5;

16 public BackgroundMode bgMode = BackgroundMode.DARK;

17 }

18

19 private final Parameters params; // parameter object

20

21 protected FloatProcessor Imean; // = μG(u, v)
22 protected FloatProcessor Isigma; // = σG(u, v)
23

24 public ByteProcessor getThreshold(ByteProcessor I) {

25 int w = I.getWidth();

26 int h = I.getHeight();

27

28 makeMeanAndVariance(I, params);

29 ByteProcessor Q = new ByteProcessor(w, h);

30

31 final double kappa = params.kappa;

32 final int dMin = params.dMin;

33 final boolean darkBg =

34 (params.bgMode == BackgroundMode.DARK);

35

36 for (int v = 0; v < h; v++) {

37 for (int u = 0; u < w; u++) {

38 double sigma = Isigma.getf(u, v);

39 double mu = Imean.getf(u, v);

40 double diff = kappa * sigma + dMin;

41 int q = (int)

42 Math.rint((darkBg) ? mu + diff : mu - diff);

43 if (q < 0) q = 0;

44 if (q > 255) q = 255;

45 Q.set(u, v, q);

46 }

47 }

48 return Q;

49 }

50

51 // continues in Prog. 11.3

286

11.3 Java
Implementation

52 // continued from Prog. 11.2

53

54 public static class Gauss extends NiblackThresholder {

55

56 protected void makeMeanAndVariance(ByteProcessor I,

Parameters params) {

57 int width = I.getWidth();

58 int height = I.getHeight();

59

60 Imean = new FloatProcessor(width,height);

61 Isigma = new FloatProcessor(width,height);

62

63 FloatProcessor A = I.convertToFloatProcessor(); // = I
64 FloatProcessor B = I.convertToFloatProcessor(); // = I
65 B.sqr(); // = I2

66

67 GaussianBlur gb = new GaussianBlur();

68 double sigma = params.radius * 0.6;

69 gb.blurFloat(A, sigma, sigma, 0.002); // = A

70 gb.blurFloat(B, sigma, sigma, 0.002); // = B

71

72 for (int v = 0; v < height; v++) {

73 for (int u = 0; u < width; u++) {

74 float a = A.getf(u, v);

75 float b = B.getf(u, v);

76 float sigmaG =

77 (float) Math.sqrt(b - a*a); // Eq. 11.80

78 Imean.setf(u, v, a); // = μG(u, v)
79 Isigma.setf(u, v, sigmaG); // = σG(u, v)
80 }

81 }

82 }

83 } // end of inner class NiblackThresholder.Gauss

84 } // end of class NiblackThresholder

Prog. 11.3
Niblack’s thresholder using
Gaussian smoothing kernels
(part 2). The floating-point
images AG and BG correspond
to the maps AG (filtered orig-
inal image) and BG (filtered
squared image) in Alg. 11.9.
An instance of the ImageJ
class GaussianBlur is created in
line 67 and subsequently used
to filter both images in lines
69–70. The last argument to
the ImageJ method blurFloat
(0.002) specifies the accuracy
of the Gaussian kernel.

if (q > 0) I.threshold(q);

else ...

Here threshold() is the built-in ImageJ’s method defined by class
ImageProcessor.

11.3.2 Adaptive Thresholding

The techniques described in Sec. 11.2 are implemented by the follow-
ing classes:

• BernsenThresholder (Alg. 11.7),
• NiblackThresholder (Alg. 11.8, multiple versions), and
• SauvolaThresholder (Eqn. (11.73)).

These are sub-classes of the (abstract) class AdaptiveThresholder.
The following example demonstrates the typical use of these methods
for a given ByteProcessor object I:

...

AdaptiveThresholder thr = new BernsenThresholder();
287

11 Automatic
Thresholding

ByteProcessor Q = thr.getThreshold(I);

thr.threshold(I, Q);

...

The 2D threshold surface is represented by the image Q; the method
threshold(I, Q) is defined by class AdaptiveThresholder. Alter-
natively, the same operation can be performed without making Q

explicit, as demonstrated by the following code segment:

...

// Create and set up a parameter object:

Parameters params = new BernsenThresholder.Parameters();

params.radius = 15;

params.cmin = 15;

params.bgMode = BackgroundMode.DARK;

// Create the thresholder:

AdaptiveThresholder thr = new BernsenThresholder(params);

// Perform the threshold operation:

thr.threshold(I);

...

This example also shows how to specify a parameter object (params)
for the instantiation of the thresholder.

11.4 Summary and Further Reading

The intention of this chapter was to give an overview of established
methods for automatic image thresholding. A vast body of relevant
literature exists, and thus only a fraction of the proposed techniques
could be discussed here. For additional approaches and references,
several excellent surveys are available, including [86, 178, 204, 231]
and [213].

Given the obvious limitations of global techniques, adaptive thresh-
olding methods have received continued interest and are still a focus
of ongoing research. Another popular approach is to calculate an
adaptive threshold through image decomposition. In this case, the
image is partitioned into (possibly overlapping) tiles, an “optimal”
threshold is calculated for each tile and the adaptive threshold is
obtained by interpolation between adjacent tiles. Another inter-
esting idea, proposed in [260], is to specify a “threshold surface” by
sampling the image at specific points that exhibit a high gradient,
with the assumption that these points are at transitions between the
background and the foreground. From these irregularly spaced point
samples, a smooth surface is interpolated that passes through the
sample points. Interpolation between these irregularly spaced point
samples is done by solving a Laplacian difference equation to obtain
a continuous “potential surface”. This is accomplished with the so-
called “successive over-relaxation” method, which requires about N
scans over an image of size N×N to converge, so its time complex-
ity is an expensive O(N3). A more efficient approach was proposed
in [26], which uses a hierarchical, multi-scale algorithm for interpo-
lating the threshold surface. Similarly, a quad-tree representation

288

11.5 Exerciseswas used for this purpose in [49]. Another interesting concept is
“kriging” [175], which was originally developed for interpolating 2D
geological data [190, Ch. 3, Sec. 3.7.4].

In the case of color images, simple thresholding is often applied
individually to each color channel and the results are subsequently
merged using a suitable logical operation. Transformation to a non-
RGB color space (such as HSV or CIELAB) might be helpful for
this purpose. For a binarization method aimed specifically at vector-
valued images, see [159], for example. Since thresholding can be
viewed as a specific form of segmentation, color segmentation meth-
ods [50, 53, 85, 216] are also relevant for binarizing color images.

11.5 Exercises

Exercise 11.1. Define a procedure for estimating the minimum and
maximum pixel value of an image from its histogram. Threshold
the image at the resulting mid-range value (see Eqn. (11.12)). Can
anything be said about the size of the resulting partitions?

Exercise 11.2. Define a procedure for estimating the median of an
image from its histogram. Threshold the image at the resulting me-
dian value (see Eqn. (11.11)) and verify that the foreground and back-
ground partitions are of approximately equal size.

Exercise 11.3. The algorithms described in this chapter assume 8-
bit grayscale input images (of type ByteProcessor in ImageJ). Adopt
the current implementations to work with 16-bit integer image (of
type ShortProcessor). Images of this type may contain pixel values
in the range [0, 216−1] and the getHistogram() method returns the
histogram as an integer array of length 65536.

Exercise 11.4. Implement simple thresholding for RGB color im-
ages by thresholding each (scalar-valued) color channel individually
and then merging the results by performing a pixel-wise AND op-
eration. Compare the results to those obtained by thresholding the
corresponding grayscale (luminance) images.

Exercise 11.5. Re-implement the Bernsen and/or Niblack thres-
holder (classes BernsenThresholder and NiblackThresholder) us-
ing integral images (see Ch. 3, Sec. 3.8) for efficiently calculating the
required local mean and variance of the input image over a rectan-
gular support region R.

289

12

Color Images

Color images are involved in every aspect of our lives, where they play
an important role in everyday activities such as television, photogra-
phy, and printing. Color perception is a fascinating and complicated
phenomenon that has occupied the interests of scientists, psycholo-
gists, philosophers, and artists for hundreds of years [211, 217]. In
this chapter, we focus on those technical aspects of color that are
most important for working with digital color images. Our empha-
sis will be on understanding the various representations of color and
correctly utilizing them when programming. Additional color-related
issues, such as colorimetric color spaces, color quantization, and color
filters, are covered in subsequent chapters.

12.1 RGB Color Images

The RGB color schema encodes colors as combinations of the three
primary colors: red, green, and blue (R, G, B). This scheme is widely
used for transmission, representation, and storage of color images on
both analog devices such as television sets and digital devices such
as computers, digital cameras, and scanners. For this reason, many
image-processing and graphics programs use the RGB schema as their
internal representation for color images, and most language libraries,
including Java’s imaging APIs, use it as their standard image repre-
sentation.

RGB is an additive color system, which means that all colors start
with black and are created by adding the primary colors. You can
think of color formation in this system as occurring in a dark room
where you can overlay three beams of light—one red, one green, and
one blue—on a sheet of white paper. To create different colors, you
would modify the intensity of each of these beams independently.
The distinct intensity of each primary color beam controls the shade
and brightness of the resulting color. The colors gray and white are
created by mixing the three primary color beams at the same inten-
sity. A similar operation occurs on the screen of a color television or

291
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_12

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

12 Color Images

Fig. 12.1
Representation of the RGB

color space as a 3D unit cube.
The primary colors red (R),

green (G), and blue (B) form
the coordinate system. The
“pure” red color (R), green

(G), blue (B), cyan (C), ma-
genta (M), and yellow (Y)

lie on the vertices of the
color cube. All the shades

of gray, of which K is an ex-
ample, lie on the diagonal

between black S and white W. ���

���

R

G

B

YG

C

B M

W

S

R
R75

R50
R25

PK

RGB values

Pt. Color R G B

S Black 0.00 0.00 0.00

R Red 1.00 0.00 0.00

Y Yellow 1.00 1.00 0.00

G Green 0.00 1.00 0.00

C Cyan 0.00 1.00 1.00

B Blue 0.00 0.00 1.00

M Magenta 1.00 0.00 1.00

W White 1.00 1.00 1.00

K 50% Gray 0.50 0.50 0.50

R75 75% Red 0.75 0.00 0.00

R50 50% Red 0.50 0.00 0.00

R25 25% Red 0.25 0.00 0.00

P Pink 1.00 0.50 0.50

CRT1-based computer monitor, where tiny, close-lying dots of red,
green, and blue phosphorous are simultaneously excited by a stream
of electrons to distinct energy levels (intensities), creating a seemingly
continuous color image.

The RGB color space can be visualized as a 3D unit cube in which
the three primary colors form the coordinate axis. The RGB values
are positive and lie in the range [0, Cmax]; for most digital images,
Cmax = 255. Every possible color Ci corresponds to a point within
the RGB color cube of the form

Ci = (Ri, Gi, Bi),

where 0 ≤ Ri, Gi, Bi ≤ Cmax. RGB values are often normalized to
the interval [0, 1] so that the resulting color space forms a unit cube
(Fig. 12.1). The point S = (0, 0, 0) corresponds to the color black,
W = (1, 1, 1) corresponds to the color white, and all the points lying
on the diagonal between S and W are shades of gray created from
equal color components R = G = B.

Figure 12.2 shows a color test image and its corresponding RGB
color components, displayed here as intensity images. We will refer
to this image in a number of examples that follow in this chapter.

RGB is a very simple color system, and as demonstrated in Sec.
12.2, a basic knowledge of it is often sufficient for processing color
images or transforming them into other color spaces. At this point,
we will not be able to determine what color a particular RGB pixel
corresponds to in the real world, or even what the primary colors red,
green, and blue truly mean in a physical (i.e., colorimetric) sense. For
now we rely on our intuitive understanding of color and will address
colorimetry and color spaces later in the context of the CIE color
system (see Ch. 14).

12.1.1 Structure of Color Images

Color images are represented in the same way as grayscale images, by
using an array of pixels in which different models are used to order the

1 Cathode ray tube.
292

12.1 RGB Color Images

RGB

R G B

Fig. 12.2
A color image and its corre-
sponding RGB channels. The
fruits depicted are mainly yel-
low and red and therefore have
high values in the R and G
channels. In these regions, the
B content is correspondingly
lower (represented here by
darker gray values) except for
the bright highlights on the
apple, where the color changes
gradually to white. The table-
top in the foreground is purple
and therefore displays corre-
spondingly higher values in its
B channel.

individual color components. In the next sections we will examine the
difference between true color images, which utilize colors uniformly
selected from the entire color space, and so-called palleted or indexed
images, in which only a select set of distinct colors are used. Deciding
which type of image to use depends on the requirements of the appli-
cation. Farbbilder werden üblicherweise, genau wie Grauwertbilder,
als Arrays von Pixeln dargestellt, wobei unterschiedliche Modelle für
die Anordnung der einzelnen Farbkomponenten verwendet werden.
Zunächst ist zu unterscheiden zwischen Vollfarbenbildern, die den
gesamten Farbraum gleichförmig abdecken können, und so genan-
nten Paletten- oder Indexbildern, die nur eine beschränkte Zahl un-
terschiedlicher Farben verwenden. Beide Bildtypen werden in der
Praxis häufig eingesetzt.

True color images

A pixel in a true color image can represent any color in its color
space, as long as it falls within the (discrete) range of its individual
color components. True color images are appropriate when the im-
age contains many colors with subtle differences, as occurs in digital
photography and photo-realistic computer graphics. Next we look at
two methods of ordering the color components in true color images:
component ordering and packed ordering.

293

12 Color Images

Fig. 12.3
RGB color image in com-

ponent ordering. The three
color components are laid
out in separate arrays IR,

IG, IB of the same size.

3 component arrays

IR

IG

IB

u

v
IR(u, v)

IG(u, v)

IB(u, v)

Component ordering

In component ordering (also referred to as planar ordering) the color
components are laid out in separate arrays of identical dimensions.
In this case, the color image

Icomp = (IR, IG, IB) (12.1)

can be thought of as a vector of related intensity images IR, IG, and
IB (Fig. 12.3), and the RGB values of the color image I at position
(u, v) are obtained by accessing the three component images in the
form

⎛

⎝

R(u, v)
G(u, v)
B(u, v)

⎞

⎠ =

⎛

⎝

IR(u, v)
IG(u, v)
IB(u, v)

⎞

⎠ . (12.2)

Packed ordering

In packed ordering, the component values that represent the color of
a particular pixel are packed together into a single element of the
image array (Fig. 12.4) such that

Ipack(u, v) = (R, G, B). (12.3)

The RGB value of a packed image I at the location (u, v) is obtained
by accessing the individual components of the color pixel as

⎛

⎝

R(u, v)
G(u, v)
B(u, v)

⎞

⎠ =

⎛

⎝

Red(Ipack(u, v))
Green(Ipack(u, v))
Blue(Ipack(u, v))

⎞

⎠ . (12.4)

The access functions Red(), Green(), Blue(), will depend on the spe-
cific implementation used for encoding the color pixels.

Indexed images

Indexed images permit only a limited number of distinct colors and
therefore are used mostly for illustrations and graphics that contain
large regions of the same color. Often these types of images are stored
in indexed GIF or PNG files for use on the Web. In these indexed

294

12.1 RGB Color ImagesIpack

R G B

u

v

I(u, v)

Fig. 12.4
RGB-color image using packed
ordering. The three color com-
ponents R, G, and B are
placed together in a single
array element.

images, the pixel array does not contain color or brightness data but
instead consists of integer numbers k that are used to index into a
color table or “palette”

P = (Pr, Pg, Pg) : [0, Q−1]3 �→ [0, K−1]. (12.5)

Here Q denotes the size of the color table, equal to the maximum
number of distinct image colors (typically Q = 2, . . . , 256). K is the
number of distinct component values (typ. K = 256). This table
contains a specific color vector P(q) = (Rq, Gq, Bq) for every color
index q = 0, . . . , Q−1 (see Fig. 12.5). The RGB component values of
an indexed image Iidx at position (u, v) are obtained as

⎛

⎝

R(u, v)
G(u, v)
B(u, v)

⎞

⎠ =

⎛

⎝

Rq

Gq

Bq

⎞

⎠ =

⎛

⎝

Pr(q)
Pg(q)
Pb(q)

⎞

⎠ , (12.6)

with the index q = Iidx(u, v). To allow proper reconstruction, the
color table P must of course be stored and/or transmitted along with
the indexed image.

Iidx

Color table P

Index Pr Pg Pb

u

v

R0 G0 B0

R1 G1 B1

R2 G2 B2

Rq Gq Bq

RQ−1 GQ−1 BQ−1

0

1

2

q q

Q−1

Fig. 12.5
RGB indexed image. The im-
age array Iidx itself does not
contain any color component
values. Instead, each cell con-
tains an index q ∈ [0, Q−1].
into the associated color table
(“palette”) P. The actual color
value is specified by the table
entry Pq = (Rq, Gq, Bq).

During the transformation from a true color image to an indexed
image (e.g., from a JPEG image to a GIF image), the problem of
optimal color reduction, or color quantization, arises. Color quanti-
zation is the process of determining an optimal color table and then
mapping it to the original colors. This process is described in detail
in Chapter 13.

295

12 Color Images 12.1.2 Color Images in ImageJ

ImageJ provides two simple types of color images:

• RGB full-color images (24-bit “RGB color”).
• Indexed images (“8-bit color”).

RGB true color images

RGB color images in ImageJ use a packed order (see Sec. 12.1.1),
where each color pixel is represented by a 32-bit int value. As Fig.
12.6 illustrates, 8 bits are used to represent each of the RGB compo-
nents, which limits the range of the individual components to 0–255.
The remaining 8 bits are reserved for the transparency,2 or alpha (α),
component. This is also the usual ordering in Java3 for RGB color
images.

Fig. 12.6
Structure of a packed RGB

color pixel in Java. Within a
32-bit int, 8 bits are allocated,
in the following order, for each

of the color components R,
G, B, and the transparency
value α (unused in ImageJ).

�� �� �� 	�� ��
 �

Bits

α R G B

Accessing RGB pixel values

RGB color images are represented by an array of pixels, the elements
of which are standard Java ints. To disassemble the packed int

value into the three color components, you apply the appropriate
bitwise shifting and masking operations. In the following example,
we assume that the image processor ip (of type ColorProcessor)
contains an RGB color image:

int c = ip.getPixel(u,v); // a packed RGB color pixel

int r = (c & 0xff0000) >> 16; // red component

int g = (c & 0x00ff00) >> 8; // green component

int b = (c & 0x0000ff); // blue component

In this example, each of the RGB components of the packed pixel
c are isolated using a bitwise AND operation (&) with an appropriate
bit mask (following convention, bit masks are given in hexadecimal4

notation), and afterwards the extracted bits are shifted right by 16
(for R) or 8 (for G) bit positions (see Fig. 12.7).

The “assembly” of an RGB pixel from separate R, G, and B
values works in the opposite direction using the bitwise OR operator
(|) and shifting the bits left (<<):

int r = 169; // red component

int g = 212; // green component

int b = 17; // blue component

int c = ((r & 0xff) << 16) | ((g & 0xff) << 8) | b & 0xff;

ip.putPixel(u, v, c);

2 The transparency value α (alpha) represents the ability to see through
a color pixel onto the background. At this time, the α channel is unused
in ImageJ.

3 Java Advanced Window Toolkit (AWT).
4 The mask 0xff0000 is of type int and represents the 32-bit binary

pattern 00000000111111110000000000000000.
296

12.1 RGB Color Images

� �

� �

� �

�� �� �� 	�� ��
 �

�

�

��

α

R

R

R G B C

M

C&M

(C&M)»16

000000 ff

Fig. 12.7
Decomposition of a 32-bit
RGB color pixel using bit op-
erations. The R component
(bits 16–23) of the RGB pix-
els C (above) is isolated using
a bitwise AND operation (&)
together with a bit mask M =

0xff0000. All bits except the R
component are set to the value
0, while the bit pattern within
the R component remains un-
changed. This bit pattern is
subsequently shifted 16 posi-
tions to the right (>>), so that
the R component is moved into
the lowest 8 bits and its value
lies in the range of 0, . . . , 255.
During the shift operation,
zeros are filled in from the left.

1 // File Brighten_RGB_1.java

2 import ij.ImagePlus;

3 import ij.plugin.filter.PlugInFilter;

4 import ij.process.ImageProcessor;

5

6 public class Brighten_RGB_1 implements PlugInFilter {

7

8 public int setup(String arg, ImagePlus imp) {

9 return DOES_RGB; // this plugin works on RGB images

10 }

11

12 public void run(ImageProcessor ip) {

13 int[] pixels = (int[]) ip.getPixels();

14

15 for (int i = 0; i < pixels.length; i++) {

16 int c = pixels[i];

17 // split color pixel into rgb-components:

18 int r = (c & 0xff0000) >> 16;

19 int g = (c & 0x00ff00) >> 8;

20 int b = (c & 0x0000ff);

21 // modify colors:

22 r = r + 10; if (r > 255) r = 255;

23 g = g + 10; if (g > 255) g = 255;

24 b = b + 10; if (b > 255) b = 255;

25 // reassemble color pixel and insert into pixel array:

26 pixels[i]

27 = ((r & 0xff)<<16) | ((g & 0xff)<<8) | b & 0xff;

28 }

29 }

30 }

Prog. 12.1
Processing RGB color data
with the use of bit operations
(ImageJ plugin, version 1).
This plugin increases the val-
ues of all three color compo-
nents by 10 units. It demon-
strates the use of direct access
to the pixel array (line 16),
the separation of color com-
ponents using bit operations
(lines 18–20), and the reassem-
bly of color pixels after mod-
ification (line 27). The value
DOES_RGB (defined in the inter-
face PlugInFilter) returned by
the setup() method indicates
that this plugin is designed to
work on RGB formatted true
color images (line 9).

Masking the component values with 0xff works in this case because,
except for the bits in positions 0, . . . , 7 (values in the range 0–255),
all the other bits are already set to zero. A complete example of
manipulating an RGB color image using bit operations is presented
in Prog. 12.1. Instead of accessing color pixels using ImageJ’s access
functions, these programs directly access the pixel array for increased
efficiency

The ImageJ class ColorProcessor provides an easy to use alter-
native which returns the separated RGB components (as an int array

297

12 Color Images

Prog. 12.2
Working with RGB color im-

ages without bit operations
(ImageJ plugin, version 2).

This plugin increases the val-
ues of all three color compo-

nents by 10 units using the
access methods getPixel(int,

int, int[]) and putPixel(int,
int, int[]) from the class

ColorProcessor (lines 21 and
25, respectively). Exection
time is approximately four

times higher than that of ver-
sion 1 (Prog. 12.1) because of

the additional method calls.

1 // File Brighten_RGB_2.java

2 import ij.ImagePlus;

3 import ij.plugin.filter.PlugInFilter;

4 import ij.process.ColorProcessor;

5 import ij.process.ImageProcessor;

6

7 public class Brighten_RGB_2 implements PlugInFilter {

8 static final int R = 0, G = 1, B = 2; // component indices

9

10 public int setup(String arg, ImagePlus imp) {

11 return DOES_RGB; // this plugin works on RGB images

12 }

13

14 public void run(ImageProcessor ip) {

15 // typecast the image to ColorProcessor (no duplication):

16 ColorProcessor cp = (ColorProcessor) ip;

17 int[] RGB = new int[3];

18

19 for (int v = 0; v < cp.getHeight(); v++) {

20 for (int u = 0; u < cp.getWidth(); u++) {

21 cp.getPixel(u, v, RGB);

22 RGB[R] = Math.min(RGB[R] + 10, 255); // add 10 and

23 RGB[G] = Math.min(RGB[G] + 10, 255); // limit to 255

24 RGB[B] = Math.min(RGB[B] + 10, 255);

25 cp.putPixel(u, v, RGB);

26 }

27 }

28 }

29 }

with three elements). In the following example, which demonstrates
its use, ip is of type ColorProcessor:

int[] RGB = new int[3];

...

ip.getPixel(u, v, RGB); // modifies RGB

int r = RGB[0];

int g = RGB[1];

int b = RGB[2];

...

ip.putPixel(u, v, RGB);

A more detailed and complete example is shown by the simple plugin
in Prog. 12.2, which increases the value of all three color components
of an RGB image by 10 units. Notice that the plugin limits the
resulting component values to 255, because the putPixel() method
only uses the lowest 8 bits of each component and does not test if
the value passed in is out of the permitted 0–255 range. Without
this test, arithmetic overflow errors can occur. The price for using
this access method, instead of direct array access, is a noticeably
longer running time (approximately a factor of 4 when compared to
the version in Prog. 12.1).

298

12.1 RGB Color ImagesOpening and saving RGB images

ImageJ supports the following types of image formats for RGB true
color images:

• TIFF (uncompressed only): 3 × 8-bit RGB. TIFF color images
with 16-bit depth are opened as an image stack consisting of three
16-bit intensity images.

• BMP, JPEG: 3× 8-bit RGB.
• PNG: 3× 8-bit RGB.
• RAW: using the ImageJ menu File ⊲ Import ⊲ Raw, RGB images

can be opened whose format is not directly supported by Im-
ageJ. It is then possible to select different arrangements of the
color components.

Creating RGB color images

The simplest way to create a new RGB image using ImageJ is to use
an instance of the class ColorProcessor, as the following example
demonstrates:

int w = 640, h = 480;

ColorProcessor cp = new ColorProcessor(w, h);

(new ImagePlus("My New Color Image", cp)).show();

When needed, the color image can be displayed by creating an in-
stance of the class ImagePlus and calling its show() method. Since
cip is of type ColorProcessor, the resulting ImagePlus object cimg

is also a color image.

Indexed color images

The structure of an indexed image in ImageJ is given in Fig. 12.5,
where each element of the index array is 8 bits and therefore can
represent a maximum of 256 different colors. When programming,
indexed images are similar to grayscale images, as both make use
of a color table to determine the actual color of the pixel. Indexed
images differ from grayscale images only in that the contents of the
color table are not intensity values but RGB values.

Opening and saving indexed images

ImageJ supports the indexed images in GIF, PNG, BMP, and TIFF
format with index values of 1–8 bits (i.e., 2–256 distinct colors) and
3× 8-bit color values.

Processing indexed images

The indexed format is mostly used as a space-saving means of image
storage and is not directly useful as a processing format since an
index value in the pixel array is arbitrarily related to the actual
color, found in the color table, that it represents. When working
with indexed images it usually makes no sense to base any numerical
interpretations on the pixel values or to apply any filter operations
designed for 8-bit intensity images. Figure 12.8 illustrates an example
of applying a Gaussian filter and a median filter to the pixels of an
indexed image. Since there is no meaningful quantitative relation
between the actual colors and the index values, the results are erratic.

299

12 Color Images

Fig. 12.8
Improper application of

smoothing filters to an in-
dexed color image. Indexed

image with 16 colors (a) and
results of applying a linear
smoothing filter (b) and a

3 × 3 median filter (c) to the
pixel array (that is, the index
values). The application of a

linear filter makes no sense, of
course, since no meaningful re-
lation exists between the index

values in the pixel array and
the actual image intensities.

While the median filter (c)
delivers seemingly plausible re-
sults in this case, its use is also
inadmissible because no mean-

ingful ordering relation ex-
ists between the index values.

(a) (b) (c)

Note that even the use of the median filter is inadmissible because
no ordering relation exists between the index values. Thus, with few
exceptions, ImageJ functions do not permit the application of such
operations to indexed images. Generally, when processing an indexed
image, you first convert it into a true color RGB image and then after
processing convert it back into an indexed image.

When an ImageJ plugin is supposed to process indexed images,
its setup() method should return the DOES_8C (“8-bit color”) flag.
The plugin in Prog. 12.3 shows how to increase the intensity of the
three color components of an indexed image by 10 units (analogously
to Progs. 12.1 and 12.2 for RGB images). Notice how in indexed
images only the palette is modified and the original pixel data, the
index values, remain the same. The color table of ImageProcessor

is accessible through a ColorModel5 object, which can be read using
the method getColorModel() and modified using setColorModel().

The ColorModel object for indexed images (as well as 8-bit
grayscale images) is a subtype of IndexColorModel, which contains
three color tables (maps) representing the red, green, and blue com-
ponents as separate byte arrays. The size of these tables (2, . . . , 256)
can be determined by calling the method getMapSize(). Note that
the elements of the palette should be interpreted as unsigned bytes
with values ranging from 0, . . . , 255. Just as with grayscale pixel
values, during the conversion to int values, these color component
values must also be bitwise masked with 0xff as shown in Prog. 12.3
(lines 30–32).

As a further example, Prog. 12.4 shows how to convert an indexed
image to a true color RGB image of type ColorProcessor. Conver-
sion in this direction poses no problems because the RGB component
values for a particular pixel are simply taken from the corresponding
color table entry, as described by Eqn. (12.6). On the other hand,

5 Defined in the standard Java class java.awt.image.ColorModel.
300

12.1 RGB Color Images1 // File Brighten_Index_Image.java

2

3 import ij.ImagePlus;

4 import ij.plugin.filter.PlugInFilter;

5 import ij.process.ImageProcessor;

6 import java.awt.image.IndexColorModel;

7

8 public class Brighten_Index_Image implements PlugInFilter {

9

10 public int setup(String arg, ImagePlus imp) {

11 return DOES_8C; // this plugin works on indexed color images

12 }

13

14 public void run(ImageProcessor ip) {

15 IndexColorModel icm =

16 (IndexColorModel) ip.getColorModel();

17 int pixBits = icm.getPixelSize();

18 int nColors = icm.getMapSize();

19

20 // retrieve the current lookup tables (maps) for R, G, B:

21 byte[] pRed = new byte[nColors];

22 byte[] pGrn = new byte[nColors];

23 byte[] pBlu = new byte[nColors];

24 icm.getReds(pRed);

25 icm.getGreens(pGrn);

26 icm.getBlues(pBlu);

27

28 //modify the lookup tables:

29 for (int idx = 0; idx < nColors; idx++){

30 int r = 0xff & pRed[idx]; // mask to treat as unsigned byte

31 int g = 0xff & pGrn[idx];

32 int b = 0xff & pBlu[idx];

33 pRed[idx] = (byte) Math.min(r + 10, 255);

34 pGrn[idx] = (byte) Math.min(g + 10, 255);

35 pBlu[idx] = (byte) Math.min(b + 10, 255);

36 }

37 // create a new color model and apply to the image:

38 IndexColorModel icm2 =

39 new IndexColorModel(pixBits,nColors,pRed,pGrn,pBlu);

40 ip.setColorModel(icm2);

41 }

42 }

Prog. 12.3
Working with indexed images
(ImageJ plugin). This plugin
increases the brightness of an
image by 10 units by modi-
fying the image’s color table
(palette). The actual values
in the pixel array, which are
indices into the palette, are not
changed.

conversion in the other direction requires quantization of the RGB
color space and is as a rule more difficult and involved (see Ch. 13
for details). In practice, most applications make use of existing con-
version methods such as those provided by the ImageJ API.

Creating indexed images

In ImageJ, no special method is provided for the creation of indexed
images, so in almost all cases they are generated by converting an
existing image. The following method demonstrates how to directly
create an indexed image if required:

ByteProcessor makeIndexColorImage(int w, int h, int nColors) {
301

12 Color Images

Prog. 12.4
Converting an indexed im-

age to a true color RGB
image (ImageJ plugin).

1 // File Index_To_Rgb.java

2

3 import ij.ImagePlus;

4 import ij.plugin.filter.PlugInFilter;

5 import ij.process.ColorProcessor;

6 import ij.process.ImageProcessor;

7 import java.awt.image.IndexColorModel;

8

9 public class Index_To_Rgb implements PlugInFilter {

10 static final int R = 0, G = 1, B = 2;

11 ImagePlus imp;

12

13 public int setup(String arg, ImagePlus imp) {

14 this.imp = imp;

15 return DOES_8C + NO_CHANGES; // does not alter original image

16 }

17

18 public void run(ImageProcessor ip) {

19 int w = ip.getWidth();

20 int h = ip.getHeight();

21

22 // retrieve the lookup tables (maps) for R, G, B:

23 IndexColorModel icm =

24 (IndexColorModel) ip.getColorModel();

25 int nColors = icm.getMapSize();

26 byte[] pRed = new byte[nColors];

27 byte[] pGrn = new byte[nColors];

28 byte[] pBlu = new byte[nColors];

29 icm.getReds(pRed);

30 icm.getGreens(pGrn);

31 icm.getBlues(pBlu);

32

33 // create a new 24-bit RGB image:

34 ColorProcessor cp = new ColorProcessor(w, h);

35 int[] RGB = new int[3];

36 for (int v = 0; v < h; v++) {

37 for (int u = 0; u < w; u++) {

38 int idx = ip.getPixel(u, v);

39 RGB[R] = 0xFF & pRed[idx];

40 RGB[G] = 0xFF & pGrn[idx];

41 RGB[B] = 0xFF & pBlu[idx];

42 cp.putPixel(u, v, RGB);

43 }

44 }

45 ImagePlus cwin =

46 new ImagePlus(imp.getShortTitle() + " (RGB)", cp);

47 cwin.show();

48 }

49 }

byte[] rMap = new byte[nColors]; // red, green, blue color maps

byte[] gMap = new byte[nColors];

byte[] bMap = new byte[nColors];

// color maps need to be filled here

byte[] pixels = new byte[w * h];
302

12.2 Color Spaces and
Color Conversion

IndexColorModel cm

= new IndexColorModel(8, nColors, rMap, gMap, bMap);

return new ByteProcessor(w, h, pixels, cm);

}

The parameter nColors defines the number of colors (and thus the
size of the palette) and must be a value in the range of 2, . . . , 256. To
use the above template, you would complete it with code that filled
the three byte arrays for the RGB components (rMap, gMap, bMap)
and the index array (pixels) with the appropriate values.

Transparency

Transparency is one of the reasons indexed images are often used
for Web graphics. In an indexed image, it is possible to define one
of the index values so that it is displayed in a transparent manner
and at selected image locations the background beneath the image
shows through. In Java this can be controlled when creating the
image’s color model (IndexColorModel). As an example, to make
color index 2 in Prog. 12.3 transparent, line 39 would need to be
modified as follows:

int tidx = 2; // index of transparent color

IndexColorModel icm2 =

new IndexColorModel(pixBits,nColors,pRed,pGrn,pBlu,tidx);

ip.setColorModel(icm2);

At this time, however, ImageJ does not support the transparency
property; it is not considered during display, and it is lost when the
image is saved.

12.2 Color Spaces and Color Conversion

The RGB color system is well-suited for use in programming, as it is
simple to manipulate and maps directly to the typical display hard-
ware. When modifying colors within the RGB space, it is important
to remember that the metric, or measured distance within this color
space, does not proportionally correspond to our perception of color
(e.g., doubling the value of the red component does not necessarily
result in a color which appears to be twice as red). In general, in
this space, modifying different color points by the same amount can
cause very different changes in color. In addition, brightness changes
in the RGB color space are also perceived as nonlinear.

Since changing any component modifies color tone, saturation,
and brightness all at once, color selection in RGB space is difficult and
quite non-intuitive. Color selection is more intuitive in other color
spaces, such as the HSV space (see Sec. 12.2.3), since perceptual color
features, such as saturation, are represented individually and can be
modified independently. Alternatives to the RGB color space are also
used in applications such as the automatic separation of objects from
a colored background (the blue box technique in television), encoding
television signals for transmission, or in printing, and are thus also
relevant in digital image processing.

303

12 Color Images

Fig. 12.9
Examples of the color dis-

tribution of natural images.
Original images: landscape
photograph with dominant
green and blue components

and sun-spot image with rich
red and yellow components
(a). Distribution of image

colors in RGB-space (b).

(a)

(b)

RGB

Figure 12.9 shows the distribution of the colors from natural im-
ages in the RGB color space. The first half of this section introduces
alternative color spaces and the methods of converting between them,
and later discusses the choices that need to be made to correctly
convert a color image to grayscale. In addition to the classical color
systems most widely used in programming, precise reference systems,
such as the CIEXYZ color space, gain increasing importance in prac-
tical color processing.

12.2.1 Conversion to Grayscale

The conversion of an RGB color image to a grayscale image proceeds
by computing the equivalent gray or luminance value Y for each RGB
pixel. In its simplest form, Y could be computed as the average

Y = Avg(R, G, B) =
R + G + B

3
(12.7)

of the three color components R, G, and B. Since we perceive both
red and green as being substantially brighter than blue, the resulting
image will appear to be too dark in the red and green areas and
too bright in the blue ones. Therefore, a weighted sum of the color
components is typically used for calculating the equivalent brightness
or luminance in the form

Y = Lum(R, G, B) = wR ·R + wG ·G + wB ·B (12.8)

The weights most often used were originally developed for encoding
analog color television signals (see Sec. 12.2.4) are

wR = 0.299, wG = 0.587, wB = 0.114, (12.9)
304

12.2 Color Spaces and
Color Conversion

and the weights recommended in ITU-BT.709 [122] for digital color
encoding are

wR = 0.2126, wG = 0.7152, wB = 0.0722. (12.10)

If each color component is assigned the same weight, as in Eqn. (12.7),
this is of course just a special case of Eqn. (12.8).

Note that, although these weights were developed for use with TV
signals, they are optimized for linear RGB component values, that
is, signals with no gamma correction. In many practical situations,
however, the RGB components are actually nonlinear, particularly
when we work with sRGB images (see Ch. 14, Sec. 14.4). In this
case, the RGB components must first be linearized to obtain the
correct luminance values with the aforementioned weights.

In some color systems, instead of a weighted sum of the RGB
color components, a nonlinear brightness function, for example the
value V in HSV (Eqn. (12.14) in Sec. 12.2.3) or the luminance L in
HLS (Eqn. (12.25)), is used as the intensity value Y .

Hueless (gray) color images

An RGB image is hueless or gray when the RGB components of each
pixel I(u, v) = (R, G, B) are the same; that is, if

R = G = B.

Therefore, to completely remove the color from an RGB image, sim-
ply replace the R, G, and B component of each pixel with the equiv-
alent gray value Y ,

⎛

⎝

Rgray

Ggray

Bgray

⎞

⎠ =

⎛

⎝

Y
Y
Y

⎞

⎠ , (12.11)

by using Y = Lum(R, G, B) from Eqns. (12.8) and (12.9), for exam-
ple. The resulting grayscale image should have the same subjective
brightness as the original color image.

Grayscale conversion in ImageJ

In ImageJ, the simplest way to convert an RGB color image (of
type ColorProcessor) into an 8-bit grayscale image is to use the
ImageProcessor-method

convertToByteProcessor(),

which returns a new image of type ByteProcessor. ImageJ uses the
default weights wR = wG = wB = 1

3 (as in Eqn. (12.7)) for the RGB
components, or alternatively wR = 0.299, wG = 0.587, wB = 0.114
(as in Eqn. (12.9)) if the “Weighted RGB Conversions” option is
selected in the Edit ⊲ Options ⊲ Conversions dialog. Arbitrary com-
ponent weights can be specified for subsequent conversion operations
through the static ColorProcessor method

setRGBWeights(double wR, double wG, double wB).

Similarly, the static method getWeightingFactors() of class Color-

Processor can be used to retrieve the current component weights as
a 3-element double-array. Note that no linearization is performed
on the color components, which should be considered when working
with (nonlinear) sRGB colors (see Ch. 14, Sec. 14.4 for details).

305

12 Color Images 12.2.2 Desaturating RGB Color Images

Desaturation is the uniform reduction of the amount of color in an
RGB image in a continuous manner. It is done by replacing each
RGB pixel by a desaturated color obtained by linear interpolation
between the pixel’s original color and the corresponding (Y, Y, Y)
gray point in the RGB space, that is,

⎛

⎝

Rdesat

Gdesat

Bdesat

⎞

⎠ =

⎛

⎝

Y
Y
Y

⎞

⎠+ s ·

⎛

⎝

R− Y
G− Y
B − Y

⎞

⎠ , (12.12)

again with Y = Lum(R, G, B) from Eqns. (12.8) and (12.9), where
the factor s ∈ [0, 1] controls the remaining amount of color satura-
tion (Fig. 12.10). A value of s = 0 completely eliminates all color,
resulting in a true grayscale image, and with s = 1 the color values
will be unchanged. In Prog. 12.5, continuous desaturation as defined
in Eqn. (12.12) is implemented as an ImageJ plugin.

In color spaces where color saturation is represented by an explicit
component (such as HSV and HLS, for example), desaturation is of
course much easier to accomplish (by simply reducing the saturation
value to zero).

Fig. 12.10
Desaturation in RGB space:

original color point C =
(R, G, B), its corresponding

gray point G = (Y, Y, Y),
and the desaturated color

point D. Saturation is con-
trolled by the factor s.

R

G

B W

S

s
0

1

C

D
G

12.2.3 HSV/HSB and HLS Color Spaces

In the HSV color space, colors are specified by the components hue,
saturation, and value. Often, such as in Adobe products and the
Java API, the HSV space is called HSB. While the acronym is
different (in this case B = brightness),6 it denotes the same color
space. The HSV color space is traditionally shown as an upside-down,
six-sided pyramid (Fig. 12.11(a)), where the vertical axis represents
the V (brightness) value, the horizontal distance from the axis the S
(saturation) value, and the angle the H (hue) value. The black point
is at the tip of the pyramid and the white point lies in the center of the
base. The three primary colors red, green, and blue and the pairwise
mixed colors yellow, cyan, and magenta are the corner points of the

6 Sometimes the HSV space is also referred to as the “HSI” space, where
“I” stands for intensity.

306

12.2 Color Spaces and
Color Conversion

1 // File Desaturate_Rgb.java

2

3 import ij.ImagePlus;

4 import ij.plugin.filter.PlugInFilter;

5 import ij.process.ImageProcessor;

6

7 public class Desaturate_Rgb implements PlugInFilter {

8 double s = 0.3; // color saturation value

9

10 public int setup(String arg, ImagePlus imp) {

11 return DOES_RGB;

12 }

13

14 public void run(ImageProcessor ip) {

15 // iterate over all pixels:

16 for (int v = 0; v < ip.getHeight(); v++) {

17 for (int u = 0; u < ip.getWidth(); u++) {

18

19 // get int-packed color pixel:

20 int c = ip.get(u, v);

21

22 //extract RGB components from color pixel

23 int r = (c & 0xff0000) >> 16;

24 int g = (c & 0x00ff00) >> 8;

25 int b = (c & 0x0000ff);

26

27 // compute equiv. gray value:

28 double y = 0.299 * r + 0.587 * g + 0.114 * b;

29

30 // linear interpolate (yyy) ↔ (rgb):

31 r = (int) (y + s * (r - y));

32 g = (int) (y + s * (g - y));

33 b = (int) (y + s * (b - y));

34

35 // reassemble the color pixel:

36 c = ((r & 0xff)<<16) | ((g & 0xff)<<8) | b & 0xff;

37 ip.set(u, v, c);

38 }

39 }

40 }

41

42 }

Prog. 12.5
Continuous desaturation of
an RGB color image (ImageJ
plugin). The amount of color
saturation is controlled by the
variable s defined in line 8 (see
Eqn. (12.12)).

base. While this space is often represented as a pyramid, according
to its mathematical definition, the space is actually a cylinder, as
shown in Fig. 12.12.

The HLS color space7 (hue, luminance, saturation) is very sim-
ilar to the HSV space, and the hue component is in fact completely
identical in both spaces. The luminance and saturation values also
correspond to the vertical axis and the radius, respectively, but are
defined differently than in HSV space. The common representation
of the HLS space is as a double pyramid (Fig. 12.11(b)), with black

7 The acronyms HLS and HSL are used interchangeably.
307

12 Color Images

Fig. 12.11
HSV and HLS color space are

traditionally visualized as a
single or double hexagonal

pyramid. The brightness V
(or L) is represented by the

vertical dimension, the color
saturation S by the radius

from the pyramid’s axis, and
the hue h by the angle. In

both cases, the primary col-
ors red (R), green (G), and
blue (B) and the mixed col-

ors yellow (Y), cyan (C), and
magenta (M) lie on a com-

mon plane with black (S) at
the tip. The essential differ-

ence between the HSV and
HLS color spaces is the loca-
tion of the white point (W).

H

S

V YG

C

B M

W

S

R

H

S

L

YG

C

B M

W

S

R

(a) HSV (b) HLS

on the bottom tip and white on the top. The primary colors lie on the
corner points of the hexagonal base between the two pyramids. Even
though it is often portrayed in this intuitive way, mathematically the
HLS space is again a cylinder (see Fig. 12.15).

RGB→HSV conversion

To convert from RGB to the HSV color space, we first find the satu-
ration of the RGB color components R, G, B ∈ [0, Cmax], with Cmax

being the maximum component value (typically 255), as

SHSV =

{
Crng

Chigh
for Chigh > 0,

0 otherwise
(12.13)

and the brightness (value)

VHSV =
Chigh

Cmax

, (12.14)

with

Clow = min(R, G, B) , Chigh = max(R, G, B) ,

Crng = Chigh − Clow.
(12.15)

Finally, we need to specify the hue value HHSV. When all three
RGB color components have the same value (R = G = B), then
we are dealing with an achromatic (gray) pixel. In this particular
case Crng = 0 and thus the saturation value SHSV = 0, consequently
the hue is undefined. To calculate HHSV when Crng > 0, we first
normalize each component using

R′ =
Chigh−R

Crng

, G′ =
Chigh−G

Crng

, B′ =
Chigh−B

Crng

. (12.16)

Then, depending on which of the three original color components had
the maximal value, we compute a preliminary hue H ′ as

H ′ =

⎧

⎪⎨

⎪⎩

B′ −G′ for R = Chigh,
R′ −B′ + 2 for G = Chigh,
G′ −R′ + 4 for B = Chigh.

(12.17)

308

12.2 Color Spaces and
Color Conversion

Since the resulting value for H ′ lies on the interval [−1, 5], we obtain
the final hue value by normalizing to the interval [0, 1] as

HHSV =
1
6
·
{

(H ′ + 6) for H ′ < 0,
H ′ otherwise.

(12.18)

Hence all three components HHSV, SHSV, and VHSV will lie within the
interval [0, 1]. The hue value HHSV can naturally also be computed
in another angle interval, for example, in the 0 to 360◦ interval using

H◦
HSV = HHSV · 360. (12.19)

Under this definition, the RGB space unit cube is mapped to a
cylinder with height and radius of length 1 (Fig. 12.12). In con-
trast to the traditional representation (Fig. 12.11), all HSB points
within the entire cylinder correspond to valid color coordinates in
RGB space. The mapping from RGB to the HSV space is nonlinear,
as can be noted by examining how the black point stretches com-
pletely across the cylinder’s base. Figure 12.12 plots the location of
some notable color points and compares them with their locations in
RGB space (see also Fig. 12.1). Figure 12.13 shows the individual
HSV components (in grayscale) of the test image in Fig. 12.2.

H
S

V

YG

C

B M

W

S

R

R75

R50

R25

P

RGB/HSV values

Pt. Color R G B H S V

S Black 0.00 0.00 0.00 — 0.00 0.00

R Red 1.00 0.00 0.00 0 1.00 1.00

Y Yellow 1.00 1.00 0.00 1/6 1.00 1.00

G Green 0.00 1.00 0.00 2/6 1.00 1.00

C Cyan 0.00 1.00 1.00 3/6 1.00 1.00

B Blue 0.00 0.00 1.00 4/6 1.00 1.00

M Magenta 1.00 0.00 1.00 5/6 1.00 1.00

W White 1.00 1.00 1.00 — 0.00 1.00

R75 75% Red 0.75 0.00 0.00 0 1.00 0.75

R50 50% Red 0.50 0.00 0.00 0 1.00 0.50

R25 25% Red 0.25 0.00 0.00 0 1.00 0.25

P Pink 1.00 0.50 0.50 0 0.5 1.00

Fig. 12.12
HSV color space. The illus-
tration shows the HSV color
space as a cylinder with the
coordinates H (hue) as the
angle, S (saturation) as the
radius, and V (brightness
value) as the distance along
the vertical axis, which runs
between the black point S
and the white point W. The
table lists the (R, G, B) and
(H, S, V) values of the color
points marked on the graphic.
Pure colors (composed of only
one or two components) lie on
the outer wall of the cylinder
(S = 1), as exemplified by the
gradually saturated reds (R25,
R50, R75, R).

HHSV SHSV VHSV

Fig. 12.13
HSV components for the test
image in Fig. 12.2. The darker
areas in the hHSV component
correspond to the red and
yellow colors, where the hue
angle is near zero.

Java implementation

In Java, the RGB→HSV conversion is implemented in the standard
AWT Color class by the static method

309

12 Color Images float[] RGBtoHSB (int r, int g, int b, float[] hsv)

(HSV and HSB denote the same color space). The method takes
three int arguments r, g, b (within the range [0, 255]) and returns
a float array with the resulting H, S, V values in the interval [0, 1].
When an existing float array is passed as the argument hsv , then
the result is placed in it; otherwise (when hsv = null) a new array
is created. Here is a simple example:

import java.awt.Color;

...

float[] hsv = new float[3];

int red = 128, green = 255, blue = 0;

hsv = Color.RGBtoHSB (red, green, blue, hsv);

float h = hsv[0];

float s = hsv[1];

float v = hsv[2];

...

A possible implementation of the Java method RGBtoHSB() using the
definition in Eqns. (12.14)–(12.18) is given in Prog. 12.6.

HSV→RGB conversion

To convert an HSV tuple (HHSV, SHSV, VHSV), where HHSV, SHSV,
and VHSV ∈ [0, 1], into the corresponding (R, G, B) color values, the
appropriate color sector

H ′ = (6 ·HHSV) mod 6 (12.20)

(with 0 ≤ H ′ < 6) is determined first, followed by computing the
intermediate values

c1 = ⌊H ′⌋, x = (1 − SHSV) · VHSV,

c2 = H ′ − c1, y = (1− (SHSV · c2)) · VHSV,

z = (1− (SHSV · (1 − c2))) · VHSV.

(12.21)

Depending on the value of c1, the normalized RGB values R′, G′, B′ ∈
[0, 1] are then calculated from v = VHSV, x, y, and z as follows:8

(R′, G′, B′) ←

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(v, z, x) for c1 = 0,
(y, v, x) for c1 = 1,
(x, v, z) for c1 = 2,
(x, y, v) for c1 = 3,
(z, x, v) for c1 = 4,
(v, x, y) for c1 = 5.

(12.22)

Scaling the RGB components back to integer values in the range
[0, 255] is carried out as follows:

R ← min
(
round(K ·R′), 255

)
,

G ← min
(
round(K ·G′), 255

)
,

B ← min
(
round(K ·B′), 255

)
.

(12.23)

8 The variables x, y, z used here are not related to the CIEXYZ color
space (see Ch. 14, Sec. 14.1).

310

12.2 Color Spaces and
Color Conversion

1 float[] RGBtoHSV (int[] RGB) {

2 int R = RGB[0], G = RGB[1], B = RGB[2]; // R, G, B ∈ [0, 255]
3 int cHi = Math.max(R,Math.max(G,B)); // max. comp. value

4 int cLo = Math.min(R,Math.min(G,B)); // min. comp. value

5 int cRng = cHi - cLo; // component range

6 float H = 0, S = 0, V = 0;

7 float cMax = 255.0f;

8

9 // compute value V

10 V = cHi / cMax;

11

12 // compute saturation S

13 if (cHi > 0)

14 S = (float) cRng / cHi;

15

16 // compute hue H

17 if (cRng > 0) { // hue is defined only for color pixels

18 float rr = (float)(cHi - R) / cRng;

19 float gg = (float)(cHi - G) / cRng;

20 float bb = (float)(cHi - B) / cRng;

21 float hh;

22 if (R == cHi) // R is largest component value

23 hh = bb - gg;

24 else if (G == cHi) // G is largest component value

25 hh = rr - bb + 2.0f;

26 else // B is largest component value

27 hh = gg - rr + 4.0f;

28 if (hh < 0)

29 hh = hh + 6;

30 H = hh / 6;

31 }

32 return new float[] {H, S, V};

33 }

Prog. 12.6
RGB→HSV conversion (Java
implementation). This Java
method for RGB→HSV con-
version follows the process
given in the text to compute a
single color tuple. It takes the
same arguments and returns
results identical to the stan-
dard Color.RGBtoHSB() method.

Java implementation

HSV→RGB conversion is implemented in Java’s standard AWT
Color class by the static method

int HSBtoRGB (float h, float s, float v),

which takes three float arguments h , s , v ∈ [0, 1] and returns the
corresponding RGB color as an int value with 3× 8 bits arranged in
the standard Java RGB format (see Fig. 12.6). One possible imple-
mentation of this method is shown in Prog. 12.7.

RGB→HLS conversion

In the HLS model, the hue value HHLS is computed in the same way
as in the HSV model (Eqns. (12.16)–(12.18)), that is,

HHLS = HHSV. (12.24)

The other values, LHLS and SHLS, are calculated as follows (for Chigh,
Clow, and Crng, see Eqn. (12.15)):

311

12 Color Images

Prog. 12.7
HSV→RGB conversion
(Java implementation).

1 int HSVtoRGB (float[] HSV) {

2 float H = HSV[0], S = HSV[1], V = HSV[2]; // H, S, V ∈ [0, 1]
3 float r = 0, g = 0, b = 0;

4 float hh = (6 * H) % 6; // h′ ← (6 · h) mod 6
5 int c1 = (int) hh; // c1 ← ⌊h′⌋
6 float c2 = hh - c1;

7 float x = (1 - S) * V;

8 float y = (1 - (S * c2)) * V;

9 float z = (1 - (S * (1 - c2))) * V;

10 switch (c1) {

11 case 0: r = V; g = z; b = x; break;

12 case 1: r = y; g = V; b = x; break;

13 case 2: r = x; g = V; b = z; break;

14 case 3: r = x; g = y; b = V; break;

15 case 4: r = z; g = x; b = V; break;

16 case 5: r = V; g = x; b = y; break;

17 }

18 int R = Math.min((int)(r * 255), 255);

19 int G = Math.min((int)(g * 255), 255);

20 int B = Math.min((int)(b * 255), 255);

21 return new int[] {R, G, B};

22 }

LHLS =
(Chigh + Clow)/255

2
, (12.25)

SHLS =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for LHLS = 0,

0.5 · Crng/255

LHLS
for 0 < LHLS ≤ 0.5,

0.5 · Crng/255

1−LHLS
for 0.5 < LHLS < 1,

0 for LHLS = 1.

(12.26)

Using the aforementioned definitions, the RGB color cube is again
mapped to a cylinder with height and radius 1 (see Fig. 12.15). In
contrast to the HSV space (Fig. 12.12), the primary colors lie together
in the horizontal plane at LHLS = 0.5 and the white point lies outside
of this plane at LHLS = 1.0. Using these nonlinear transformations,
the black and the white points are mapped to the top and the bottom
planes of the cylinder, respectively. All points inside HLS cylinder
correspond to valid colors in RGB space. Figure 12.14 shows the
individual HLS components of the test image as grayscale images.

Fig. 12.14
HLS color components HHLS

(hue), SHLS (saturation),
and LHLS (luminance).

HHLS LHLS SHLS

312

12.2 Color Spaces and
Color Conversion

H S

L

YG

C

B M

W

S

R
R75
R50

R25

0.5

P

RGB/HLS values

Pt. Color R G B H S L

S Black 0.00 0.00 0.00 — 0.00 0.00

R Red 1.00 0.00 0.00 0 1.00 0.50

Y Yellow 1.00 1.00 0.00 1/6 1.00 0.50

G Green 0.00 1.00 0.00 2/6 1.00 0.50

C Cyan 0.00 1.00 1.00 3/6 1.00 0.50

B Blue 0.00 0.00 1.00 4/6 1.00 0.50

M Magenta 1.00 0.00 1.00 5/6 1.00 0.50

W White 1.00 1.00 1.00 — 0.00 1.00

R75 75% Red 0.75 0.00 0.00 0 1.00 0.375

R50 50% Red 0.50 0.00 0.00 0 1.00 0.250

R25 25% Red 0.25 0.00 0.00 0 1.00 0.125

P Pink 1.00 0.50 0.50 0/6 1.00 0.75

Fig. 12.15
HLS color space. The illustra-
tion shows the HLS color space
visualized as a cylinder with
the coordinates H (hue) as the
angle, S (saturation) as the
radius, and L (lightness) as
the distance along the vertical
axis, which runs between the
black point S and the white
point W. The table lists the
(R, G, B) and (H, S, L) values
where “pure” colors (created
using only one or two color
components) lie on the lower
half of the outer cylinder wall
(S = 1), as illustrated by the
gradually saturated reds (R25,
R50, R75, R). Mixtures of all
three primary colors, where at
least one of the components is
completely saturated, lie along
the upper half of the outer
cylinder wall; for example, the
point P (pink).

HLS→RGB conversion

When converting from HLS to the RGB space, we assume that HHLS,
SHLS, LHLS ∈ [0, 1]. In the case where LHLS = 0 or LHLS = 1, the
result is

(R′, G′, B′) =

{

(0, 0, 0) for LHLS = 0,
(1, 1, 1) for LHLS = 1.

(12.27)

Otherwise, we again determine the appropriate color sector

H ′ = (6 ·HHLS) mod 6, (12.28)

such that 0 ≤ H ′ < 6, and from this

c1 = ⌊H ′⌋, c2 = H ′ − c1, (12.29)

d =

{

SHLS · LHLS for LHLS ≤ 0.5,
SHLS · (1 − LHLS) for LHLS > 0.5,

(12.30)

and the quantities

w = LHLS + d, x = LHLS − d, (12.31)

y = w − (w − x) · c2, z = x + (w − x) · c2. (12.32)

The final mapping to the RGB values is (similar to Eqn. (12.22))

(R′, G′, B′) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(w, z, x) for c1 = 0,
(y, w, x) for c1 = 1,
(x, w, z) for c1 = 2,
(x, y, w) for c1 = 3,
(z, x, w) for c1 = 4,
(w, x, y) for c1 = 5.

(12.33)

Finally, scaling the normalized R′, G′, B′ (∈ [0, 1]) color components
back to the [0, 255] range is done as in Eqn. (12.23).

313

12 Color Images

Prog. 12.8
RGB→HLS conversion
(Java implementation).

1 float[] RGBtoHLS (int[] RGB) {

2 int R = RGB[0], G = RGB[1], B = RGB[2]; // R,G,B in [0, 255]
3 float cHi = Math.max(R, Math.max(G, B));

4 float cLo = Math.min(R, Math.min(G, B));

5 float cRng = cHi - cLo; // component range

6

7 // compute lightness L

8 float L = ((cHi + cLo) / 255f) / 2;

9

10 // compute saturation S

11 float S = 0;

12 if (0 < L && L < 1) {

13 float d = (L <= 0.5f) ? L : (1 - L);

14 S = 0.5f * (cRng / 255f) / d;

15 }

16

17 // compute hue H (same as in HSV)

18 float H = 0;

19 if (cHi > 0 && cRng > 0) { // this is a color pixel!

20 float r = (float)(cHi - R) / cRng;

21 float g = (float)(cHi - G) / cRng;

22 float b = (float)(cHi - B) / cRng;

23 float h;

24 if (R == cHi) // R is largest component

25 h = b - g;

26 else if (G == cHi) // G is largest component

27 h = r - b + 2.0f;

28 else // B is largest component

29 h = g - r + 4.0f;

30 if (h < 0)

31 h = h + 6;

32 H = h / 6;

33 }

34 return new float[] {H, L, S};

35 }

Java implementation

Currently there is no method in either the standard Java API or
ImageJ for converting color values between RGB and HLS. Program
12.8 gives one possible implementation of the RGB→HLS conversion
that follows the definitions in Eqns. (12.24)–(12.26). The HLS→RGB
conversion is shown in Prog. 12.9.

HSV and HLS compared

Despite the obvious similarity between the two color spaces, as Fig.
12.16 illustrates, substantial differences in the V /L and S compo-
nents do exist. The essential difference between the HSV and HLS
spaces is the ordering of the colors that lie between the white point W
and the “pure” colors (R, G, B, Y, C, M), which consist of at most
two primary colors, at least one of which is completely saturated.

The difference in how colors are distributed in RGB, HSV, and
HLS space is readily apparent in Fig. 12.17. The starting point was a
distribution of 1331 (11×11×11) color tuples obtained by uniformly

314

12.2 Color Spaces and
Color Conversion

1 float[] HLStoRGB (float[] HLS) {

2 float H = HLS[0], L = HLS[1], S = HLS[2]; // H,L,S in [0, 1]
3 float r = 0, g = 0, b = 0;

4 if (L <= 0) // black

5 r = g = b = 0;

6 else if (L >= 1) // white

7 r = g = b = 1;

8 else {

9 float hh = (6 * H) % 6; // = H ′

10 int c1 = (int) hh;

11 float c2 = hh - c1;

12 float d = (L <= 0.5f) ? (S * L) : (S * (1 - L));

13 float w = L + d;

14 float x = L - d;

15 float y = w - (w - x) * c2;

16 float z = x + (w - x) * c2;

17 switch (c1) {

18 case 0: r = w; g = z; b = x; break;

19 case 1: r = y; g = w; b = x; break;

20 case 2: r = x; g = w; b = z; break;

21 case 3: r = x; g = y; b = w; break;

22 case 4: r = z; g = x; b = w; break;

23 case 5: r = w; g = x; b = y; break;

24 }

25 } // r, g, b in [0, 1]
26 int R = Math.min(Math.round(r * 255), 255);

27 int G = Math.min(Math.round(g * 255), 255);

28 int B = Math.min(Math.round(b * 255), 255);

29 return new int[] {R, G, B};

30 }

Prog. 12.9
HLS→RGB conversion (Java
implementation).

HSV HLS Difference

SHSV SHLS SHSV − SHLS

VHSV LHLS VHSV − LHLS

Fig. 12.16
HSV and HLS components
compared. Saturation (top
row) and intensity (bottom
row). In the color saturation
difference image SHSV − SHLS

(top), light areas correspond to
positive values and dark areas
to negative values. Saturation
in the HLS representation,
especially in the brightest sec-
tions of the image, is notably
higher, resulting in negative
values in the difference im-
age. For the intensity (value
and luminance, respectively)
in general, VHSV ≥ LHLS

and therefore the difference
VHSV − LHLS (bottom) is al-
ways positive. The hue compo-
nent H (not shown) is identical
in both representations.

315

12 Color Images

Fig. 12.17
Distribution of colors in the

RGB, HSV, and HLS spaces.
The starting point is the uni-
form distribution of colors in
RGB space (top). The corre-
sponding colors in the cylin-
drical spaces are distributed

nonsymmetrically in HSV
and symmetrically in HLS.

0

1

1

0

1

0

RR

GG

B RGB

-1

0

1

-1

0

1

0

1

-1

0

1

0

VHSV

-1

0

1

-1

0

1

0

0.5

1

-1

0

1

0

LHLS

HSV HLS

sampling the RGB space at an interval of 0.1 in each dimension. We
can see clearly that in HSV space the maximally saturated colors
(s = 1) form circular rings with increasing density toward the upper
plane of the cylinder. In HLS space, however, the color samples are
spread out symmetrically around the center plane and the density
is significantly lower, particularly in the region near white. A given
coordinate shift in this part of the color space leads to relatively small
color changes, which allows the specification of very fine color grades
in HLS space, especially for colors located in the upper half of the
HLS cylinder.

Both the HSV and HLS color spaces are widely used in practice;
for instance, for selecting colors in image editing and graphics design
applications. In digital image processing, they are also used for color
keying (i.e., isolating objects according to their hue) on a homoge-
neously colored background where the brightness is not necessarily
constant.

Desaturation in HSV/HLS color space

Desaturation of color images (cf. Sec. 12.2.2) represented in HSV
or HLS color space is trivial since color saturation is available as a
separate component. In particular, pixels with zero saturation are
uncolored or gray. For example, HSV colors can be gradually or
fully desaturated by simply multiplying the component S by a fixed
saturation factor s ∈ [0, 1] and keeping H, V unchanged, that is,

316

12.2 Color Spaces and
Color Conversion

⎛

⎝

Hdesat

Sdesat

Vdesat

⎞

⎠ =

⎛

⎝

H
s·S
V

⎞

⎠ , (12.34)

which works analogously with HLS colors. While Eqn. (12.34) applies
equally to all colors, it might be interesting to selectively modify only
colors with certain hues. This is easily accomplished by replacing the
fixed saturation factor s by a hue-dependent function f(H) (see also
Exercise 12.6).

12.2.4 TV Component Color Spaces—YUV, YIQ, and
YCbCr

These color spaces are an integral part of the standards surrounding
the recording, storage, transmission, and display of television sig-
nals. YUV and YIQ are the fundamental color-encoding methods
for the analog NTSC and PAL systems, and YCbCr is a part of the
international standards governing digital television [114]. All of these
color spaces have in common the idea of separating the luminance
component Y from two chroma components and, instead of directly
encoding colors, encoding color differences. In this way, compatibil-
ity with legacy black and white systems is maintained while at the
same time the bandwidth of the signal can be optimized by using
different transmission bandwidths for the brightness and the color
components. Since the human visual system is not able to perceive
detail in the color components as well as it does in the intensity part
of a video signal, the amount of information, and consequently band-
width, used in the color channel can be reduced to approximately
1/4 of that used for the intensity component. This fact is also used
when compressing digital still images and is why, for example, the
JPEG codec converts RGB images to YCbCr. That is why these
color spaces are important in digital image processing, even though
raw YIQ or YUV images are rarely encountered in practice.

YUV

YUV is the basis for the color encoding used in analog television in
both the North American NTSC and the European PAL systems.
The luminance component Y is computed, just as in Eqn. (12.9),
from the RGB components as

Y = 0.299·R + 0.587·G + 0.114·B (12.35)

under the assumption that the RGB values have already been gamma
corrected according to the TV encoding standard (γNTSC = 2.2 and
γPAL = 2.8, see Ch. 4, Sec. 4.7) for playback. The UV components
are computed from a weighted difference between the luminance and
the blue or red components as

U = 0.492 · (B − Y) und V = 0.877 · (R− Y), (12.36)

and the entire transformation from RGB to YUV is
⎛

⎝

Y
U
V

⎞

⎠ =

⎛

⎝

0.299 0.587 0.114
−0.147 −0.289 0.436

0.615 −0.515 −0.100

⎞

⎠ ·

⎛

⎝

R
G
B

⎞

⎠ . (12.37)

317

12 Color Images

Fig. 12.18
Examples of the color distri-

bution of natural images in
different color spaces. Orig-

inal images (a); color dis-
tribution in HSV- (b), and

YUV-space (c). See Fig. 12.9
for the corresponding distri-
butions in RGB color space.

(a)

(b)

HSV

(c)

YUV

The transformation from YUV back to RGB is found by inverting
the matrix in Eqn. (12.37):

⎛

⎝

R
G
B

⎞

⎠ =

⎛

⎝

1.000 0.000 1.140
1.000 −0.395 −0.581
1.000 2.032 0.000

⎞

⎠ ·

⎛

⎝

Y
U
V

⎞

⎠ . (12.38)

The color distributions in YUV-space for a set of natural images are
shown in Fig. 12.18.

YIQ

The original NTSC system used a variant of YUV called YIQ (I
for “in-phase”, Q for “quadrature”), where both the U and V color
vectors were rotated and mirrored such that

(
I
Q

)

=
(

0 1
1 0

)

·
(

cos β sin β
− sin β cos β

)

·
(

U
V

)

, (12.39)
318

12.2 Color Spaces and
Color Conversion

where β = 0.576 (33◦). The Y component is the same as in YUV.
Although the YIQ has certain advantages with respect to bandwidth
requirements it has been completely replaced by YUV [124, p. 240].

YCbCr

The YCbCr color space is an internationally standardized variant
of YUV that is used for both digital television and image compres-
sion (e.g., in JPEG). The chroma components Cb, Cr are (similar
to U, V) difference values between the luminance and the blue and
red components, respectively. In contrast to YUV, the weights of
the RGB components for the luminance Y depend explicitly on the
coefficients used for the chroma values Cb and Cr [197, p. 16]. For
arbitrary weights wB , wR, the transformation is defined as

Y = wR ·R + (1 − wB − wR) ·G + wB · B, (12.40)

Cb =
0.5

1− wB

· (B − Y), (12.41)

Cr =
0.5

1− wR

· (R− Y), (12.42)

with wR = 0.299 and wB = 0.114 (wG = 0.587)9 according to ITU10

recommendation BT.601 [123]. Analogously, the reverse mapping
from YCbCr to RGB is

R = Y +
(1− wR) · Cr

0.5
, (12.43)

G = Y − wB · (1− wB) · Cb + wR · (1− wR) · Cr

0.5 · (1− wB − wR)
, (12.44)

B = Y +
(1− wB) · Cb

0.5
. (12.45)

In matrix-vector notation this gives the linear transformation
⎛

⎝

Y
Cb

Cr

⎞

⎠ =

⎛

⎝

0.299 0.587 0.114
−0.169 −0.331 0.500

0.500 −0.419 −0.081

⎞

⎠ ·

⎛

⎝

R
G
B

⎞

⎠ , (12.46)

⎛

⎝

R
G
B

⎞

⎠ =

⎛

⎝

1.000 0.000 1.403
1.000 −0.344 −0.714
1.000 1.773 0.000

⎞

⎠ ·

⎛

⎝

Y
Cb

Cr

⎞

⎠ . (12.47)

Different weights are recommended based on how the color space is
used; for example, ITU-BT.709 [122] recommends wR = 0.2125 and
wB = 0.0721 to be used in digital HDTV production. The values of
U, V , I, Q, and Cb, Cr may be both positive or negative. To encode
Cb, Cr values to digital numbers, a suitable offset is typically added
to obtain positive-only values, for example, 128 = 27 in case of 8-bit
components.

Figure 12.19 shows the three color spaces YUV, YIQ, and YCbCr

together for comparison. The U, V , I, Q, and Cb, Cr values in the

9 wR + wG + wB = 1.
10 International Telecommunication Union (www.itu.int).

319

http://www.itu.int

12 Color Images

Fig. 12.19
Comparing YUV-, YIQ-,
and YCbCr values. The

Y values are identical
in all three color spaces.

YUV

Y U V

YIQ

Y I Q

YCbCr

Y Cb Cr

right two frames have been offset by 128 so that the negative values
are visible. Thus a value of zero is represented as medium gray in
these images. The YCbCr encoding is practically indistinguishable
from YUV in these images since they both use very similar weights
for the color components.

12.2.5 Color Spaces for Printing—CMY and CMYK

In contrast to the additive RGB color scheme (and its various color
models), color printing makes use of a subtractive color scheme, where
each printed color reduces the intensity of the reflected light at that
location. Color printing requires a minimum of three primary colors;
traditionally cyan (C), magenta (M), and yellow (Y)11 have been
used.

Using subtractive color mixing on a white background, C = M =
Y = 0 (no ink) results in the color white and C = M = Y = 1
(complete saturation of all three inks) in the color black. A cyan-
colored ink will absorb red (R) most strongly, magenta absorbs green

11 Note that in this case Y stands for yellow and is unrelated to the Y
luma or luminance component in YUV or YCbCr.320

12.2 Color Spaces and
Color Conversion

(G), and yellow absorbs blue (B). The simplest form of the CMY
model is defined as

C = 1−R, M = 1−G, Y = 1−B. (12.48)

In practice, the color produced by fully saturating all three inks is not
physically a true black. Therefore, the three primary colors C, M, Y
are usually supplemented with a black ink (K) to increase the color
range and coverage (gamut). In the simplest case, the amount of
black is

K = min(C, M, Y) . (12.49)

With rising levels of black, however, the intensity of the C, M, Y
components can be gradually reduced. Many methods for reducing
the primary dyes have been proposed and we look at three of them
in the following.

CMY→CMYK conversion (version 1)

In this simple variant the C, M, Y values are reduced linearly with
increasing K (Eqn. (12.49)), which yields the modified components
as

⎛

⎜
⎜
⎝

C1

M1

Y1

K1

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

C −K
M −K
Y −K

K

⎞

⎟
⎟
⎠

. (12.50)

CMY→CMYK conversion (version 2)

The second variant corrects the color by reducing the C, M, Y com-
ponents by s = 1

1−K , resulting in stronger colors in the dark areas of
the image:

⎛

⎜
⎜
⎝

C2

M2

Y2

K2

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

(C−K) ·s
(M−K)·s
(Y −K) ·s

K

⎞

⎟
⎟
⎠

, with s =

{
1

1−K for K < 1,
1 otherwise.

(12.51)

In both versions, the K component (as defined in Eqn. (12.49)) is
used directly without modification, and all gray tones (that is, when
R = G = B) are printed using black ink K, without any contribution
from C, M , or Y .

While both of these simple definitions are widely used, neither
one produces high quality results. Figure 12.20(a) compares the re-
sult from version 2 with that produced with Adobe Photoshop (Fig.
12.20(c)). The difference in the cyan component C is particularly no-
ticeable and also the exceeding amount of black (K) in the brighter
areas of the image.

In practice, the required amounts of black K and C, M, Y depend
so strongly on the printing process and the type of paper used that
print jobs are routinely calibrated individually.

321

12 Color Images

Fig. 12.20
RGB→CMYK conversion com-

parison. Simple conversion
using Eqn. (12.51) (a), apply-

ing the undercolor-removal
and black-generation func-

tions of Eqn. (12.52) (b), and
results obtained with Adobe
Photoshop (c). The color in-
tensities are shown inverted,

that is, darker areas represent
higher CMYK color values.

The simple conversion (a), in
comparison with Photoshop’s

result (c), shows strong devia-
tions in all color components,

C and K in particular. The
results in (b) are close to Pho-

toshop’s and could be further
improved by tuning the corre-
sponding function parameters.

Version 2 (Eqn. (12.51)) Version 3 (Eqn. (12.52)) Adobe Photoshop

C

M

Y

K

(a) (b) (c)

CMY→CMYK conversion (version 3)

In print production, special transfer functions are applied to tune
the results. For example, the Adobe PostScript interpreter [135, p.
345] specifies an undercolor-removal function fUCR(K) for gradually
reducing the CMY components and a separate black-generation func-
tion fBG(K) for controlling the amount of black. These functions are
used in the form

⎛

⎜
⎜
⎝

C3

M3

Y3

K3

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

C − fUCR(K)
M − fUCR(K)
Y − fUCR(K)

fBG(K)

⎞

⎟
⎟
⎠

, (12.52)

where K = min(C, M, Y), as defined in Eqn. (12.49). The func-
tions fUCR and fBG are usually nonlinear, and the resulting values

322

12.3 Statistics of
Color Images

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

K

f(K)

fBG(K)

fUCR(K)

Fig. 12.21
Examples of undercolor-
removal function fUCR (Eqn.
(12.53)) and black generation
function fBG (Eqn. (12.54)).
The parameter settings are
sK = 0.1, K0 = 0.3, and
Kmax = 0.9.

C3, M3, Y3, K3 are scaled (typically by means of clamping) to the in-
terval [0, 1]. The example shown in Fig. 12.20(b) was produced to
approximate the results of Adobe Photoshop using the definitions

fUCR(K) = sK ·K, (12.53)

fBG(K) =

{

0 for K < K0,
Kmax · K−K0

1−K0
for K ≥ K0,

(12.54)

where sK = 0.1, K0 = 0.3, and Kmax = 0.9 (see Fig. 12.21). With
this definition, fUCR reduces the CMY components by 10% of the
K value (by Eqn. (12.52)), which mostly affects the dark areas of
the image with high K values. The effect of the function fBG (Eqn.
(12.54)) is that for values of K < K0 (i.e., in the light areas of the
image) no black ink is added at all. In the interval K = K0, . . . , 1.0,
the black component is increased linearly up to the maximum value
Kmax. The result in Fig. 12.20(b) is relatively close to the CMYK
component values produced by Photoshop12 in Fig. 12.20(c). It could
be further improved by adjusting the function parameters sK , K0,
and Kmax (Eqn. (12.52)).

Even though the results of this last variant (3) for converting
RGB to CMYK are better, it is only a gross approximation and still
too imprecise for professional work. As we discuss in Chapter 14,
technically correct color conversions need to be based on precise,
“colorimetric” grounds.

12.3 Statistics of Color Images

12.3.1 How Many Different Colors are in an Image?

A minor but frequent task in the context of color images is to de-
termine how many different colors are contained in a given image.

12 Actually Adobe Photoshop does not convert directly from RGB to
CMYK. Instead, it first converts to, and then from, the CIELAB color
space (see Ch. 14, Sec. 14.1).

323

12 Color Images One way of doing this would be to create and fill a histogram array
with one integer element for each color and subsequently count all
histogram cells with values greater than zero. But since a 24-bit RGB
color image potentially contains 224 = 16, 777, 216 colors, the result-
ing histogram array (with a size of 64 megabytes) would be larger
than the image itself in most cases!

A simple solution to this problem is to sort the pixel values in
the (1D) pixel array such that all identical colors are placed next
to each other. The sorting order is of course completely irrelevant,
and the number of contiguous color blocks in the sorted pixel vector
corresponds to the number of different colors in the image. This
number can be obtained by simply counting the transitions between
neighboring color blocks, as shown in Prog. 12.10. Of course, we do
not want to sort the original pixel array (which would destroy the
image) but a copy of it, which can be obtained with Java’s clone()

method.13 Sorting of the 1D array in Prog. 12.10 is accomplished
(in line 4) with the generic Java method Arrays.sort(), which is
implemented very efficiently.

Prog. 12.10
Counting the colors con-
tained in an RGB image.

The method countColors()
first creates a copy of the
1D RGB (int) pixel array

(line 3), then sorts that ar-
ray, and finally counts the

transitions between contigu-
ous blocks of identical colors.

1 int countColors (ColorProcessor cp) {

2 // duplicate the pixel array and sort it

3 int[] pixels = ((int[]) cp.getPixels()).clone();

4 Arrays.sort(pixels); // requires java.util.Arrays

5

6 int k = 1; // color count (image contains at least 1 color)

7 for (int i = 0; i < pixels.length-1; i++) {

8 if (pixels[i] != pixels[i + 1])

9 k = k + 1;

10 }

11 return k;

12 }

12.3.2 Color Histograms

We briefly touched on histograms of color images in Chapter 3, Sec.
3.5, where we only considered the 1D distributions of the image in-
tensity and the individual color channels. For instance, the built-in
ImageJ method getHistogram(), when applied to an object of type
ColorProcessor, simply computes the intensity histogram of the
corresponding gray values:

ColorProcessor cp;

int[] H = cp.getHistogram();

As an alternative, one could compute the individual intensity his-
tograms of the three color channels, although (as discussed in Chap-
ter 3, Sec. 3.5.2) these do not provide any information about the ac-
tual colors in this image. Similarly, of course, one could compute the
distributions of the individual components of any other color space,
such as HSV or CIELAB.

13 Java arrays implement the Cloneable interface.
324

12.4 ExercisesA full histogram of an RGB image is 3D and, as noted earlier,
consists of 256 × 256 × 256 = 224 cells of type int (for 8-bit color
components). Such a histogram is not only very large14 but also
difficult to visualize.

2D color histograms

A useful alternative to the full 3D RGB histogram are 2D histogram
projections (Fig. 12.22). Depending on the axis of projection, we ob-
tain 2D histograms with coordinates red-green (hRG), red-blue (hRB),
or green-blue (hGB), respectively, with the values

hRG(r, g) := number of pixels with I(u, v) = (r, g, ∗),
hRB(r, b) := number of pixels with I(u, v) = (r, ∗, b), (12.55)

hGB(g, b) := number of pixels with I(u, v) = (∗, g, b),

where ∗ denotes an arbitrary component value. The result is, in-
dependent of the original image size, a set of 2D histograms of size
256×256 (for 8-bit RGB components), which can easily be visualized
as images. Note that it is not necessary to obtain the full RGB his-
togram in order to compute the combined 2D histograms (see Prog.
12.11).

W

B

R

G

S

W

B

R

S

hRG

hRB

hGB

(a) (b)

Fig. 12.22
2D RGB histogram projec-
tions. 3D RGB cube illustrat-
ing an image’s color distri-
bution (a). The color points
indicate the corresponding
pixel colors and not the color
frequency. The combined his-
tograms for red-green (hRG),
red-blue (hRB), and green-blue
(hGB) are 2D projections of
the 3D histogram. The cor-
responding image is shown in
Fig. 12.9(a).

As the examples in Fig. 12.23 show, the combined color his-
tograms do, to a certain extent, express the color characteristics of an
image. They are therefore useful, for example, to identify the coarse
type of the depicted scene or to estimate the similarity between im-
ages (see also Exercise 12.8).

12.4 Exercises

Exercise 12.1. Create an ImageJ plugin that rotates the individual
components of an RGB color image; that is, R → G → B → R.

Exercise 12.2. Pseudocolors are sometimes used for displaying gray-
scale images (i.e., for viewing medical images with high dynamic

14 It may seem a paradox that, although the RGB histogram is usually
much larger than the image itself, the histogram is not sufficient in
general to reconstruct the original image.

325

12 Color Images

Fig. 12.23
Combined color histogram

examples. For better view-
ing, the images are inverted

(dark regions indicate high fre-
quencies) and the gray value
corresponds to the logarithm

of the histogram entries (scaled
to the maximum entries).

(a) Original images

(b) Red-green histogram (R →, G ↑)

(c) Red-blue histogram (R →, B ↑)

(d) Green-blue histogram (G →, B ↑)

range). Create an ImageJ plugin for converting 8-bit grayscale im-
ages to an indexed image with 256 colors, simulating the hues of
glowing iron (from dark red to yellow and white).

Exercise 12.3. Create an ImageJ plugin that shows the color table
of an 8-bit indexed image as a new image with 16 × 16 rectangular
color fields. Mark all unused color table entries in a suitable way.
Look at Prog. 12.3 as a starting point.

Exercise 12.4. Show that a “desaturated” RGB pixel produced in
the form (r, g, b) → (y, y, y), where y is the equivalent luminance
value (see Eqn. (12.11)), has the luminance y as well.

326

12.4 Exercises1 int[][] get2dHistogram

2 (ColorProcessor cp, int c1, int c2) {

3 // c1, c2: component index R = 0, G = 1, B = 2

4

5 int[] RGB = new int[3];

6 int[][] h = new int[256][256]; // 2D histogram h[c1][c2]

7

8 for (int v = 0; v < cp.getHeight(); v++) {

9 for (int u = 0; u < cp.getWidth(); u++) {

10 cp.getPixel(u, v, RGB);

11 int i1 = RGB[c1];

12 int i2 = RGB[c2];

13 // increment the associated histogram cell

14 h[i1][i2]++;

15 }

16 }

17 return h;

18 }

Prog. 12.11
Java method get2dHistogram()
for computing a combined 2D
color histogram. The color
components (histogram axes)
are specified by the parameters
c1 and c2. The color distribu-
tion H is returned as a 2D int

array. The method is defined
in class ColorStatistics (Prog.
12.10).

Exercise 12.5. Extend the ImageJ plugin for desaturating color im-
ages in Prog. 12.5 such that the image is only modified inside the
user-selected region of interest (ROI).

Exercise 12.6. Write an ImageJ plugin that selectively desaturates
an RGB image, preserving colors with a hue close to a given reference
color cref = (Rref , Gref , Bref), with (HSV) hue Href (see the example
in Fig. 12.24). Transform the image to HSV and modify the colors
(cf. Eqn. (12.34)) in the form

⎛

⎝

Hdesat

Sdesat

Vdesat

⎞

⎠ =

⎛

⎝

H
f(H)·S

V

⎞

⎠ , (12.56)

(a) (b)

(c)

Fig. 12.24
Selective desaturation ex-
ample. Original image with
selected reference color
cref = (250, 92, 150) (a), de-
saturated image (b). Gaus-
sian saturation function f(H)
(see Eqn. (12.58)) with refer-
ence hue Href = 0.9388 and
σ = 0.1 (c).

327

12 Color Images where f(H) is a smooth saturation function, for example, a Gaussian
function of the form

f(H) = e− (H−Href)2

2·σ2 = gσ(H−Href), (12.57)

with center Href and variance σ2 (see Fig. 12.24(c)). Recall that
the H component is circular in [0, 1). To obtain a continuous and
periodic saturation function we note that H ′ = H−Href is in the
range [−1, 1] and reformulate f(H) as

f(H) =

⎧

⎪⎨

⎪⎩

gσ(H ′) for −0.5 ≤ H ′ ≤ 0.5,
gσ(H ′+1) for H ′ < −0.5,
gσ(H ′−1) for H ′ > 0.5.

(12.58)

Verify the values of the function f(H), check in particular that it is
1 for the reference color! What would be a good (synthetic) color
image for validating the saturation function? Use ImageJ’s color
picker (pipette) tool to specify the reference color cref interactively.15

Exercise 12.7. Calculate (analogous to Eqns. (12.46)–(12.47)) the
complete transformation matrices for converting from (linear) RGB
colors to YCbCr for the ITU-BT.709 (HDTV) standard with the
coefficients wR = 0.2126, wB = 0.0722 and wG = 0.7152.

Exercise 12.8. Determining the similarity between images of differ-
ent sizes is a frequent problem (e.g., in the context of image data
bases). Color statistics are commonly used for this purpose because
they facilitate a coarse classification of images, such as landscape im-
ages, portraits, etc. However, 2D color histograms (as described in
Sec. 12.3.2) are usually too large and thus cumbersome to use for
this purpose. A simple idea could be to split the 2D histograms or
even the full RGB histogram into K regions (bins) and to combine
the corresponding entries into a K-dimensional feature vector, which
could be used for a coarse comparison. Develop a concept for such a
procedure, and also discuss the possible problems.

Exercise 12.9. Write a program (plugin) that generates a sequence
of colors with constant hue and saturation but different brightness
(value) in HSV space. Transform these colors to RGB and draw them
into a new image. Verify (visually) if the hue really remains constant.

Exercise 12.10. When applying any type of filter in HSV or HLS
color space one must keep in mind that the hue component H is
circular in [0, 1) and thus shows a discontinuity at the 1 → 0 (360 →
0◦) transition. For example, a linear filter would not take into account
that H = 0.0 and H = 1.0 refer to the same hue (red) and thus
cannot be applied directly to the H component. One solution is to
filter the cosine and sine values of the H component (which really
is an angle) instead, and composing the filtered hue array from the
filtered cos / sin values (see Ch. 15, Sec. 15.1.3 for details). Based on
this idea, implement a variable-sized linear Gaussian filter (see Ch.
5, Sec. 5.2.7) for the HSV color space.

15 The current color pick is returned by the ImageJ method Toolbar.

getForegroundColor().
328

13

Color Quantization

The task of color quantization is to select and assign a limited set
of colors for representing a given color image with maximum fidelity.
Assume, for example, that a graphic artist has created an illustra-
tion with beautiful shades of color, for which he applied 150 dif-
ferent crayons. His editor likes the result but, for some technical
reason, instructs the artist to draw the picture again, this time using
only 10 different crayons. The artist now faces the problem of color
quantization—his task is to select a “palette” of the 10 best suited
from his 150 crayons and then choose the most similar color to redraw
each stroke of his original picture.

In the general case, the original image I contains a set of m dif-
ferent colors C = {C1, C2, . . . , Cm}, where m could be only a few or
several thousand, but at most 224 for a 3 × 8-bit color image. The
goal is to replace the original colors by a (usually much smaller) set
of colors C′ = {C′

1, C′
2, . . . , C′

n}, with n < m. The difficulty lies in
the proper choice of the reduced color palette C′ such that damage
to the resulting image is minimized.

In practice, this problem is encountered, for example, when con-
verting from full-color images to images with lower pixel depth or to
index (“palette”) images, such as the conversion from 24-bit TIFF
to 8-bit GIF images with only 256 (or fewer) colors. Until a few
years ago, a similar problem had to be solved for displaying full-color
images on computer screens because the available display memory
was often limited to only 8 bits. Today, even the cheapest display
hardware has at least 24-bit depth and therefore this particular need
for (fast) color quantization no longer exists.

13.1 Scalar Color Quantization

Scalar (or uniform) quantization is a simple and fast process that is
independent of the image content. Each of the original color compo-
nents ci (e.g., Ri, Gi, Bi) in the range [0, . . . , m−1] is independently
converted to the new range [0, . . . , n−1], in the simplest case by a

329
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_13

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

13 Color Quantization

Fig. 13.1
Scalar quantization of color

components by truncating
lower bits. Quantization

of 3 × 12-bit to 3 × 8-bit
colors (a). Quantization of

3 × 8-bit to 3:3:2-packed
8-bit colors (b). The Java

code segment in Prog. 13.1
shows the corresponding se-

quence of bit operations.

�� �� 	��
 �

�� ���

�� ���

�� ���

R12

G12

B12

RGB888

R8 G8 B8

	 �

	 �

	 �

	 �������

R8

G8

B8

RGB332

R3 G3 B2

(a) (b)

linear quantization in the form

c′
i ←

⌊

ci ·
n

m

⌋

(13.1)

for all color components ci. A typical example would be the conver-
sion of a color image with 3 × 12-bit components (m = 4096) to an
RGB image with 3× 8-bit components (n = 256). In this case, each
original component value is multiplied by n/m = 256/4096 = 1/16 =
2−4 and subsequently truncated, which is equivalent to an integer di-
vision by 16 or simply ignoring the lower 4 bits of the corresponding
binary values (see Fig. 13.1(a)). m and n are usually the same for all
color components but not always.

An extreme (today rarely used) approach is to quantize 3 × 8
color vectors to single-byte (8-bit) colors, where 3 bits are used for
red and green and only 2 bits for blue, as shown in Prog. 13.1(b). In
this case, m = 256 for all color components, nred = ngreen = 8, and
mblue = 4.

Prog. 13.1
Quantization of a 3 × 8-

bit RGB color pixel to
8 bits by 3:3:2 packing.

1 ColorProcessor cp = (ColorProcessor) ip;

2 int C = cp.getPixel(u, v);

3 int R = (C & 0x00ff0000) >> 16;

4 int G = (C & 0x0000ff00) >> 8;

5 int B = (C & 0x000000ff);

6 // 3:3:2 uniform color quantization

7 byte RGB =

8 (byte) ((R & 0xE0) | (G & 0xE0)>>3 | ((B & 0xC0)>>6));

Unlike the techniques described in the following, scalar quanti-
zation does not take into account the distribution of colors in the
original image. Scalar quantization is an optimal solution only if the
image colors are uniformly distributed within the RGB cube. How-
ever, the typical color distribution in natural images is anything but
uniform, with some regions of the color space being densely populated
and many colors entirely missing. In this case, scalar quantization is
not optimal because the interesting colors may not be sampled with
sufficient density while at the same time colors are represented that
do not appear in the image at all.

330

13.2 Vector
Quantization

(a)

W

B

R

G

S

W

B

R

G

S

(b) (c)

Fig. 13.2
Color distribution after a
scalar 3:3:2 quantization. Orig-
inal color image (a). Distri-
bution of the original 226,321
colors (b) and the remaining
8 × 8 × 4 = 256 colors after
3:3:2 quantization (c) in the
RGB color cube.

13.2 Vector Quantization

Vector quantization does not treat the individual color components
separately as does scalar quantization, but each color vector Ci =
(ri, gi, bi) or pixel in the image is treated as a single entity. Starting
from a set of original color tuples C = {c1, c2, . . . , cm}, the task of
vector quantization is

a) to find a set of n representative color vectors C′ = {c′
1, c′

2, . . . , c′
n}

and
b) to replace each original color Ci by one of the new color vectors

C′
j ∈ C′,

where n is usually predetermined (n < m) and the resulting deviation
from the original image shall be minimal. This is a combinatorial
optimization problem in a rather large search space, which usually
makes it impossible to determine a global optimum in adequate time.
Thus all of the following methods only compute a “local” optimum
at best.

13.2.1 Populosity Algorithm

The populosity algorithm1 [104] selects the n most frequent colors in
the image as the representative set of color vectors C′. Being very
easy to implement, this procedure is quite popular. The method
described in Sec. 12.3.1, based on sorting the image pixels, can be
used to determine the n most frequent image colors. Each original

1 Sometimes also called the “popularity” algorithm.
331

13 Color Quantization pixel Ci is then replaced by the closest representative color vector in
C′; that is, the quantized color vector with the smallest distance in
the 3D color space.

The algorithm performs sufficiently only as long as the original
image colors are not widely scattered through the color space. Some
improvement is possible by grouping similar colors into larger cells
first (by scalar quantization). However, a less frequent (but possibly
important) color may get lost whenever it is not sufficiently similar
to any of the n most frequent colors.

13.2.2 Median-Cut Algorithm

The median-cut algorithm [104] is considered a classical method for
color quantization that is implemented in many applications (includ-
ing ImageJ). As in the populosity method, a color histogram is first
computed for the original image, traditionally with a reduced number
of histogram cells (such as 32× 32× 32) for efficiency reasons.2 The
initial histogram volume is then recursively split into smaller boxes
until the desired number of representative colors is reached. In each
recursive step, the color box representing the largest number of pixels
is selected for splitting. A box is always split across the longest of its
three axes at the median point, such that half of the contained pixels
remain in each of the resulting subboxes (Fig. 13.3).

Fig. 13.3
Median-cut algorithm. The

RGB color space is recur-
sively split into smaller cubes

along one of the color axes.

1st cut 2nd cut 3rd cut

The result of this recursive splitting process is a partitioning of
the color space into a set of disjoint boxes, with each box ideally
containing the same number of image pixels. In the last step, a
representative color vector (e.g., the mean vector of the contained
colors) is computed for each color cube, and all the image pixels it
contains are replaced by that color.

The advantage of this method is that color regions of high pixel
density are split into many smaller cells, thus reducing the overall
quantization error. In color regions of low density, however, relatively
large cubes and thus large color deviations may occur for individual
pixels.

The median-cut method is described in detail in Algorithms 13.1–
13.3 and a corresponding Java implementation can be found in the
source code section of this book’s website (see Sec. 13.2.5).

2 This corresponds to a scalar prequantization on the color components,
which leads to additional quantization errors and thus produces subop-
timal results. This step seems unnecessary on modern computers and
should be avoided.

332

13.2 Vector
Quantization

1: MedianCut(I, Kmax)
I: color image, Kmax: max. number of quantized colors
Returns a new quantized image with at most Kmax colors.

2: Cq ← FindRepresentativeColors(I, Kmax)
3: return QuantizeImage(I, Cq) ⊲ see Alg. 13.3

4: FindRepresentativeColors(I, Kmax)
Returns a set of up to Kmax representative colors for the image
I.

5: Let C = {c1, c2, . . . , cK} be the set of distinct colors in I. Each of
the K color elements in C is a tuple ci = 〈redi, grni, blui, cnti〉
consisting of the RGB color components (red, grn, blu) and
the number of pixels (cnt) in I with that particular color.

6: if |C| ≤ Kmax then
7: return C
8: else

Create a color box b0 at level 0 that contains all image colors
C and make it the initial element in the set of color boxes B:

9: b0 ← CreateColorBox(C , 0) ⊲ see Alg. 13.2
10: B ← {b0} ⊲ initial set of color boxes
11: k ← 1
12: done ← false

13: while k < Nmax and ¬done do
14: b ← FindBoxToSplit(B) ⊲ see Alg. 13.2
15: if b �= nil then
16: (b1, b2) ← SplitBox(b) ⊲ see Alg. 13.2
17: B ← B − {b} ⊲ remove b from B
18: B ← B ∪ {b1, b2} ⊲ insert b1, b2 into B
19: k ← k + 1
20: else ⊲ no more boxes to split
21: done ← true

Collect the average colors of all color boxes in B:
22: Cq ← {AverageColor(bj) | bj ∈ B} ⊲ see Alg. 13.3
23: return Cq

Alg. 13.1
Median-cut color quantiza-
tion (part 1). The input im-
age I is quantized to up to
Kmax representative colors
and a new, quantized im-
age is returned. The main
work is done in procedure
FindRepresentativeColors(), which
iteratively partitions the color
space into increasingly smaller
boxes. It returns a set of rep-
resentative colors (Cq) that are
subsequently used by proce-
dure QuantizeImage() to quan-
tize the original image I. Note
that (unlike in most common
implementations) no prequanti-
zation is applied to the original
image colors.

13.2.3 Octree Algorithm

Similar to the median-cut algorithm, this method is also based on
partitioning the 3D color space into cells of varying size. The octree
algorithm [82] utilizes a hierarchical structure, where each cube in
color space may contain eight subcubes. This partitioning is repre-
sented by a tree structure (octree) with a cube at each node that may
again link to up to eight further nodes. Thus each node corresponds
to a subrange of the color space that reduces to a single color point at
a certain tree depth d (e.g., d = 8 for a 3× 8-bit RGB color image).

When an image is processed, the corresponding quantization tree,
which is initially empty, is created dynamically by evaluating all pix-
els in a sequence. Each pixel’s color tuple is inserted into the quanti-
zation tree, while at the same time the number of nodes is limited to
a predefined value K (typically 256). When a new color tuple Ci is
inserted and the tree does not contain this color, one of the following
situations can occur:

333

13 Color Quantization

Alg. 13.2
Median-cut color quan-

tization (part 2).

1: CreateColorBox(C, m)
Creates and returns a new color box containing the colors C and
level m. A color box b is a tuple 〈colors, level, rmin, rmax, gmin,
gmax, bmin, bmax〉, where colors is the set of image colors repre-
sented by the box, level denotes the split-level, and rmin, . . . , bmax

describe the color boundaries of the box in RGB space.

Find the RGB extrema of all colors in C:
2: rmin, gmin, bmin ← +∞
3: rmax, gmax, bmax ← −∞
4: for all c ∈ C do

5:

rmin ← min (rmin, red(c))
rmax ← max (rmax, red(c))
gmin ← min (gmin, grn(c))
gmax ← max (gmax, grn(c))
bmin ← min (bmin, blu(c))
bmax ← max (bmax, blu(c))

6: b ← 〈C, m, rmin, rmax, gmin, gmax, bmin, bmax〉
7: return b

8: FindBoxToSplit(B)
Searches the set of boxes B for a box to split and returns this
box, or nil if no splittable box can be found.

Find the set of color boxes that can be split (i.e., contain at least
2 different colors):

9: Bs ← { b | b ∈ B ∧ |colors(b)| ≥ 2}
10: if Bs = {} then ⊲ no splittable box was found
11: return nil

12: else
Select a box bx from Bs, such that level(bx) is a minimum:

13: bx ← argmin
b∈Bs

(level(b))

14: return bx

15: SplitBox(b)
Splits the color box b at the median plane perpendicular to its
longest dimension and returns a pair of new color boxes.

16: m ← level(b)
17: d ← FindMaxBoxDimension(b) ⊲ see Alg. 13.3
18: C ← colors(b) ⊲ the set of colors in box b

From all colors in C determine the median of the color dis-
tribution along dimension d and split C into C1, C2:

19: C1 ←

⎧

⎪⎪⎨

⎪⎪⎩

{c ∈ C | red(c) ≤ median
c∈C

(red(c))} for d = Red

{c ∈ C | grn(c) ≤ median
c∈C

(grn(c))} for d = Green

{c ∈ C | blu(c) ≤ median
c∈C

(blu(c))} for d = Blue

20: C2 ← C \ C1

21: b1 ← CreateColorBox(C1, m + 1)
22: b2 ← CreateColorBox(C2, m + 1)
23: return (b1, b2)

1. If the number of nodes is less than K and no suitable node for
the color ci exists already, then a new node is created for Ci.

2. Otherwise (i.e., if the number of nodes is K), the existing nodes
at the maximum tree depth (which represent similar colors) are
merged into a common node.

334

13.2 Vector
Quantization

1: AverageColor(b)
Returns the average color cavg for the pixels represented by the
color box b.

2: C ← colors(b) ⊲ the set of colors in box b
3: n ← 0
4: Σr ← 0, Σg ← 0, Σb ← 0

5: for all c ∈ C do
6: k ← cnt(c)
7: n ← n + k
8: Σr ← Σr + k · red(c)
9: Σg ← Σg + k · grn(c)

10: Σb ← Σb + k · blu(c)

11: c̄ ← (Σr/n, Σg/n, Σb/n)

12: return c̄

13: FindMaxBoxDimension(b)
Returns the largest dimension of the color box b (Red, Green, or
Blue).

14: dr = rmax(b) − rmin(b)
15: dg = gmax(b) − gmin(b)
16: db = bmax(b) − bmin(b)
17: dmax = max(dr, dg, db)

18: if dmax = dr then
19: return Red.
20: else if dmax = dg then
21: return Green

22: else
23: return Blue

24: QuantizeImage(I , Cq)
Returns a new image with color pixels from I replaced by their
closest representative colors in Cq.

25: I ′ ← duplicate(I) ⊲ create a new image
26: for all image coordinates (u, v) do

Find the quantization color in Cq that is “closest” to the cur-
rent pixel color (e.g., using the Euclidean distance in RGB
space):

27: I ′(u, v) ← argmin
c∈Cq

‖I(u, v) − c‖

28: return I ′

Alg. 13.3
Median-cut color quantization
(part 3).

A key advantage of the iterative octree method is that the number
of color nodes remains limited to K in any step and thus the amount
of required storage is small. The final replacement of the image
pixels by the quantized color vectors can also be performed easily
and efficiently with the octree structure because only up to eight
comparisons (one at each tree layer) are necessary to locate the best-
matching color for each pixel.

Figure 13.4 shows the resulting color distributions in RGB space
after applying the median-cut and octree algorithms. In both cases,
the original image (Fig. 13.2(a)) is quantized to 256 colors. Notice in
particular the dense placement of quantized colors in certain regions
of the green hues. For both algorithms and the (scalar) 3:3:2 quan-

335

13 Color Quantization

Fig. 13.4
Color distribution after appli-

cation of the median-cut (a)
and octree (b) algorithms. In
both cases, the set of 226,321

colors in the original image
(Fig. 13.2(a)) was reduced

to 256 representative colors.

0

R

G

B

W

0

R

G

B

W

(a) (b)

tization, the resulting distances between the original pixels and the
quantized colors are shown in Fig. 13.5. The greatest error naturally
results from 3:3:2 quantization, because this method does not con-
sider the contents of the image at all. Compared with the median-cut
method, the overall error for the octree algorithm is smaller, although
the latter creates several large deviations, particularly inside the col-
ored foreground regions and the forest region in the background. In
general, however, the octree algorithm does not offer significant ad-
vantages in terms of the resulting image quality over the simpler
median-cut algorithm.

Fig. 13.5
Quantization errors. Original

image (a), distance between
original and quantized color
pixels for scalar 3:3:2 quan-

tization (b), median-cut (c),
and octree (d) algorithms.

(a) Detail (b) 3:3:2

(c) Median-cut (d) Octree

13.2.4 Other Methods for Vector Quantization

A suitable set of representative color vectors can usually be deter-
mined without inspecting all pixels in the original image. It is often

336

13.3 Exercisessufficient to use only 10% of randomly selected pixels to obtain a high
probability that none of the important colors is lost.

In addition to the color quantization methods described already,
several other procedures and refined algorithms have been proposed.
This includes statistical and clustering methods, such as the classical
k-means algorithm, but also the use of neural networks and genetic
algorithms. A good overview can be found in [219].

13.2.5 Java Implementation

The Java implementation3 of the algorithms described in this chapter
consists of a common interface ColorQuantizer and the concrete
classes

• MedianCutQuantizer,
• OctreeQuantizer.

Program 13.2 shows a complete ImageJ plugin that employs the class
MedianCutQuantizer for quantizing an RGB full-color image to an
indexed image. The choice of data structures for the representation
of color sets and the implementation of the associated set operations
are essential to achieve good performance. The data structures used
in this implementation are illustrated in Fig. 13.6.

Initially, the set of all colors contained in the original image (ip of
type ColorProcessor) is computed by new ColorHistogram(). The
result is an array imageColors of size K Each cell of imageColors

refers to a colorNode object (ci) that holds the associated color (red,
green, blue) and its frequency (cnt) in the image. Each colorBox

object (corresponding to a color box b in Alg. 13.1) selects a con-
tiguous range of image colors, bounded by the indices lower and
upper. The ranges of elements in imageColors, indexed by differ-
ent colorBox objects, never overlap. Each element in imageColors

is contained in exactly one colorBox; that is, the color boxes held
in colorSet (B in Alg. 13.1) form a partitioning of imageColors

(colorSet is implemented as a list of ColorBox objects). To split a
particular colorBox along a color dimension d = Red, Green, or Blue,
the corresponding subrange of elements in imageColors is sorted
with the property red, green, or blue, respectively, as the sorting
key. In Java, this is quite easy to implement using the standard
Arrays.sort() method and a dedicated Comparator object for each
color dimension. Finally, the method quantize() replaces each pixel
in ip by the closest color in colorSet.

13.3 Exercises

Exercise 13.1. Simplify the 3:3:2 quantization given in Prog. 13.1
such that only a single bit mask/shift step is performed for each color
component.

3 Package imagingbook.pub.color.quantize.
337

13 Color Quantization

Fig. 13.6
Data structures used in the

implementation of the median-
cut quantization algortihm
(class MedianCutQuantizer).

�
��
�����
���
���

�����

���

����
�����

�
�

�
�
�
�
�

�
�

�
�
�
�
�
�

�����

���

����
�����

�
�

�
�
�
�
�

��
�����

� !����
��"

��

���#��
��$�"����! %&

�
�

�
�
'
�
�
�
�
"
"
�
�

(�!���)�%&

Original image

Quantized image

0 K −1

Exercise 13.2. The median-cut algorithm for color quantization
(Sec. 13.2.2) is implemented in the Independent JPEG Group’s4

libjpeg open source software with the following modification: the
choice of the cube to be split next depends alternately on (a) the
number of contained image pixels and (b) the cube’s geometric vol-
ume. Consider the possible motives and discuss examples where this
approach may offer an improvement over the original algorithm.

Exercise 13.3. The signal-to-noise ratio (SNR) is a common mea-
sure for quantifying the loss of image quality introduced by color
quantization. It is defined as the ratio between the average signal
energy Psignal and the average noise energy Pnoise. For example,
given an original color image I and the associated quantized image
I ′, this ratio could be calculated as

SNR(I, I′) =
Psignal

Pnoise

=

M−1∑

u=0

N−1∑

v=0
‖I(u, v)‖2

M−1∑

u=0

N−1∑

v=0

∥
∥I(u, v)− I ′(u, v)

∥
∥

2
. (13.2)

Thus all deviations between the original and the quantized image are
considered “noise”. The signal-to-noise ratio is usually specified on a
logarithmic scale with the unit decibel (dB), that is,

SNRlog(I, I ′) = 10 · log10(SNR(I, I ′)) [dB]. (13.3)

Implement the calculation of the SNR, as defined in Eqns. (13.2)–
(13.3), for color images and compare the results for the median-cut
and the octree algorithms for the same number of target colors.

4 www.ijg.org.
338

http://www.ijg.org

13.3 Exercises1 import ij.ImagePlus;

2 import ij.plugin.filter.PlugInFilter;

3 import ij.process.ByteProcessor;

4 import ij.process.ColorProcessor;

5 import ij.process.ImageProcessor;

6 import imagingbook.pub.color.quantize.ColorQuantizer;

7 import imagingbook.pub.color.quantize.MedianCutQuantizer;

8

9 public class Median_Cut_Quantization implements

PlugInFilter {

10 static int NCOLORS = 32;

11

12 public int setup(String arg, ImagePlus imp) {

13 return DOES_RGB + NO_CHANGES;

14 }

15

16 public void run(ImageProcessor ip) {

17 ColorProcessor cp = ip.convertToColorProcessor();

18 int w = ip.getWidth();

19 int h = ip.getHeight();

20

21 // create a quantizer:

22 ColorQuantizer q =

23 new MedianCutQuantizer(cp, NCOLORS);

24

25 // quantize cp to an indexed image:

26 ByteProcessor idxIp = q.quantize(cp);

27 (new ImagePlus("Quantized Index Image", idxIp)).show();

28

29 // quantize cp to an RGB image:

30 int[] rgbPix = q.quantize((int[]) cp.getPixels());

31 ImageProcessor rgbIp =

32 new ColorProcessor(w, h, rgbPix);

33 (new ImagePlus("Quantized RGB Image", rgbIp)).show();

34 }

35 }

Prog. 13.2
Color quantization by the
median-cut method (ImageJ
plugin). This example uses
the class MedianCutQuantizer
to quantize the original full-
color RGB image into (a) an
indexed color image (of type
ByteProcessor) and (b) an-
other RGB image (of type
ColorProcessor). Both images
are finally displayed.

339

14

Colorimetric Color Spaces

In any application that requires precise, reproducible, and device-
independent presentation of colors, the use of calibrated color sys-
tems is an absolute necessity. For example, color calibration is rou-
tinely used throughout the digital print work flow but also in digi-
tal film production, professional photography, image databases, etc.
One may have experienced how difficult it is, for example, to render
a good photograph on a color laser printer, and even the color repro-
duction on monitors largely depends on the particular manufacturer
and computer system.

All the color spaces described in Chapter 12, Sec. 12.2, somehow
relate to the physical properties of some media device, such as the
specific colors of the phosphor coatings inside a CRT tube or the
colors of the inks used for printing. To make colors appear similar
or even identical on different media modalities, we need a repre-
sentation that is independent of how a particular device reproduces
these colors. Color systems that describe colors in a measurable,
device-independent fashion are called colorimetric or calibrated, and
the field of color science is traditionally concerned with the proper-
ties and application of these color systems (see, e.g., [258] or [215] for
an overview). While several colorimetric standards exist, we focus
on the most widely used CIE systems in the remaining part of this
section.

14.1 CIE Color Spaces

The XYZ color system, developed by the CIE (Commission Interna-
tionale d’Èclairage)1 in the 1920s and standardized in 1931, is the
foundation of most colorimetric color systems that are in use to-
day [195, p. 22].

1 International Commission on Illumination (www.cie.co.at).
341

© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_14

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

http://www.cie.co.at

14 Colorimetric Color
Spaces

14.1.1 CIE XYZ Color Space

The CIE XYZ color scheme was developed after extensive measure-
ments of human visual perception under controlled conditions. It is
based on three imaginary primary colors X , Y , Z, which are cho-
sen such that all visible colors can be described as a summation of
positive-only components, where the Y component corresponds to
the perceived lightness or luminosity of a color. All visible colors
lie inside a 3D cone-shaped region (Fig. 14.1(a)), which interestingly
enough does not include the primary colors themselves.

Fig. 14.1
The XYZ color space is de-

fined by the three imaginary
primary colors X, Y , Z, where

the Y dimension corresponds
to the perceived luminance.

All visible colors are contained
inside an open, cone-shaped

volume that originates at the
black point S (a), where E
denotes the axis of neutral

(gray) colors. The RGB color
space maps to the XYZ space

as a linearly distorted cube
(b). See also Fig. 14.5(a).

X

Y

Z

0

1

1

E
R

G

B

C

M

Y

S

W

X

Y

Z

0

1

1

1

(a) (b)

Some common color spaces, and the RGB color space in partic-
ular, conveniently relate to XYZ space by a linear coordinate trans-
formation, as described in Sec. 14.4. Thus, as shown in Fig. 14.1(b),
the RGB color space is embedded in the XYZ space as a distorted
cube, and therefore straight lines in RGB space map to straight lines
in XYZ again. The CIE XYZ scheme is (similar to the RGB color
space) nonlinear with respect to human visual perception, that is, a
particular fixed distance in XYZ is not perceived as a uniform color
change throughout the entire color space. The XYZ coordinates of
the RGB color cube (based on the primary colors defined by ITU-R
BT.709) are listed in Table 14.1.

14.1.2 CIE x, y Chromaticity

As mentioned, the luminance in XYZ color space increases along the
Y axis, starting at the black point S located at the coordinate origin
(X = Y = Z = 0). The color hue is independent of the luminance
and thus independent of the Y value. To describe the corresponding
“pure” color hues and saturation in a convenient manner, the CIE
system also defines the three chromaticity values

x =
X

X + Y + Z
, y =

Y

X + Y + Z
, z =

Z

X + Y + Z
, (14.1)

where (obviously) x+y +z = 1 and thus one of the three values (e.g.,
z) is redundant. Equation (14.1) describes a central projection from

342

14.1 CIE Color SpacesPt. Color R G B X Y Z x y

S Black 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.3127 0.3290

R Red 1.00 0.00 0.00 0.4125 0.2127 0.0193 0.6400 0.3300

Y Yellow 1.00 1.00 0.00 0.7700 0.9278 0.1385 0.4193 0.5052

G Green 0.00 1.00 0.00 0.3576 0.7152 0.1192 0.3000 0.6000

C Cyan 0.00 1.00 1.00 0.5380 0.7873 1.0694 0.2247 0.3288

B Blue 0.00 0.00 1.00 0.1804 0.0722 0.9502 0.1500 0.0600

M Magenta 1.00 0.00 1.00 0.5929 0.2848 0.9696 0.3209 0.1542

W White 1.00 1.00 1.00 0.9505 1.0000 1.0888 0.3127 0.3290

Table 14.1
Coordinates of the RGB color
cube in CIE XYZ space. The
X, Y, Z values refer to stan-
dard (ITU-R BT. 709) pri-
maries and white point D65
(see Table 14.2), x, y denote
the corresponding CIE chro-
maticity coordinates.

X, Y, Z coordinates onto the 3D plane

X + Y + Z = 1, (14.2)

with the origin S as the projection center (Fig. 14.2). Thus, for
an arbitrary XYZ color point A = (Xa, Ya, Za), the corresponding
chromaticity coordinates a = (xa, ya, za) are found by intersecting
the line SA with the X + Y + Z = 1 plane (Fig. 14.2(a)). The
final x, y coordinates are the result of projecting these intersection
points onto the X/Y -plane (Fig. 14.2(b)) by simply dropping the Z
component za.

The result is the well-known horseshoe-shaped CIE x, y chro-
maticity diagram, which is shown in Fig. 14.2(c). Any x, y point
in this diagram defines the hue and saturation of a particular color,
but only the colors inside the horseshoe curve are potentially visible.
Obviously an infinite number of X, Y, Z colors (with different lumi-
nance values) project to the same x, y, z chromaticity values, and the
XYZ color coordinates thus cannot be uniquely reconstructed from
given chromaticity values. Additional information is required. For
example, it is common to specify the visible colors of the CIE system
in the form Yxy, where Y is the original luminance component of
the XYZ color. Given a pair of chromaticity values x, y (with y > 0)
and an arbitrary Y value, the missing X, Z coordinates are obtained
(using the definitions in Eqn. (14.1)) as

X = x · Y

y
, Z = z · Y

y
= (1− x− y) · Y

y
. (14.3)

The CIE diagram not only yields an intuitive layout of color hues
but exhibits some remarkable formal properties. The xy values along
the outer horseshoe boundary correspond to monochromatic (“spec-
trally pure”), maximally saturated colors with wavelengths ranging
from below 400 nm (purple) up to 780 nm (red). Thus the position
of any color inside the xy diagram can be specified with respect to
any of the primary colors at the boundary, except for the points on
the connecting line (“purple line”) between 380 and 780 nm, whose
purple hues do not correspond to primary colors but can only be
generated by mixing other colors.

The saturation of colors falls off continuously toward the “neutral
point” (E) at the center of the horseshoe, with x = y = 1

3 (or X =
Y = Z = 1, respectively) and zero saturation. All other colorless (i.e.,
gray) values also map to the neutral point, just as any set of colors

343

14 Colorimetric Color
Spaces

Fig. 14.2
CIE x, y chromaticity diagram.

For an arbitrary XYZ color
point A = (Xa, Ya, Za),

the chromaticity values
a = (xa, ya, za) are obtained

by a central projection onto
the 3D plane X + Y + Z = 1
(a). The corner points of the
RGB cube map to a triangle,
and its white point W maps

to the (colorless) neutral point
E. The intersection points are
then projected onto the X/Y
plane (b) by simply dropping
the Z component, which pro-
duces the familiar CIE chro-

maticity diagram shown in (c).
The CIE diagram contains all

visible color tones (hues and
saturations) but no luminance
information, with wavelengths
in the range 380–780 nanome-
ters. A particular color space

is specified by at least three
primary colors (tristimulus val-

ues; e.g., R, G, B), which de-
fine a triangle (linear hull) con-
taining all representable colors.

X

Y

Z

0

1

1

1

G

B

C

M

Y

S

W

N

A = (Xa, Ya, Za)

a

X

Y

Z

0

1

1

1

x

y

(a) (b)

)($ ��

)+$ ��

),$ ��

+$$ ��

+,$---*,$ ��

',$ ��

(,$ ��

)$$ ��

$-)

%-$

$-$

$-$ $-) %-$

)&$ ��

R

G

B

C

M

Y

N

x

y

(c)

with the same hue but different brightness corresponds to a single
x, y point. All possible composite colors lie inside the convex hull
specified by the coordinates of the primary colors of the CIE diagram
and, in particular, complementary colors are located on straight lines
that run diagonally through the white point.

14.1.3 Standard Illuminants

A central goal of colorimetry is the quantitative measurement of col-
ors in physical reality, which strongly depends on the color properties
of the illumination. The CIE system specifies a number of standard
illuminants for a variety of real and hypothetical light sources, each
specified by a spectral radiant power distribution and the “correlated
color temperature” (expressed in degrees Kelvin) [258, Sec. 3.3.3].
The following daylight (D) illuminants are particularly important for
the design of digital color spaces (Table 14.2):

344

14.1 CIE Color SpacesD50 emulates the spectrum of natural (direct) sunlight with an
equivalent color temperature of approximately 5000◦ K. D50 is
the recommended illuminant for viewing reflective images, such
as paper prints. In practice, D50 lighting is commonly imple-
mented with fluorescent lamps using multiple phosphors to ap-
proximate the specified color spectrum.

D65 has a correlated color temperature of approximately 6500◦ K
and is designed to emulate the average (indirect) daylight ob-
served under an overcast sky on the northern hemisphere. D65
is also used as the reference white for emittive devices, such as
display screens.

The standard illuminants serve to specify the ambient viewing light
but also to define the reference white points in various color spaces
in the CIE color system. For example, the sRGB standard (see Sec.
14.4) refers to D65 as the media white point and D50 as the ambient
viewing illuminant. In addition, the CIE system also specifies the
range of admissible viewing angles (commonly at ±2◦).

◦K X Y Z x y

D50 5000 0.96429 1.00000 0.82510 0.3457 0.3585

D65 6500 0.95045 1.00000 1.08905 0.3127 0.3290

N — 1.00000 1.00000 1.00000 0.3333̇ 0.3333̇

Table 14.2
CIE color parameters for the
standard illuminants D50 and
D65. E denotes the absolute
neutral point in CIE XYZ
space.

14.1.4 Gamut

The set of all colors that can be handled by a certain media device
or can be represented by a particular color space is called “gamut”.
This is usually a contiguous region in the 3D CIE XYZ color space or,
reduced to the representable color hues and ignoring the luminance
component, a convex region in the 2D CIE chromaticity diagram.

Figure 14.3 illustrates some typical gamut regions inside the CIE
diagram. The gamut of an output device mainly depends on the
technology employed. For example, ordinary color monitors are typ-
ically not capable of displaying all colors of the gamut covered by
the corresponding color space (usually sRGB). Conversely, it is also
possible that devices would reproduce certain colors that cannot be
represented in the utilized color space. Significant deviations exist,
for example, between the RGB color space and the gamuts asso-
ciated with CMYK-based printers. Also, media devices with very
large gamuts exist, as demonstrated by the laser display system in
Fig. 14.3. Representing such large gamuts and, in particular, trans-
forming between different color representations requires adequately
sized color spaces, such as the Adobe-RGB color space or CIELAB
(described in Sec. 14.2), which covers the entire visible portion of the
CIE diagram.

14.1.5 Variants of the CIE Color Space

The original CIEXYZ color space and the derived xy chromaticity
diagram have the disadvantage that color differences are not per-
ceived equally in different regions of the color space. For example,

345

14 Colorimetric Color
Spaces

Fig. 14.3
Gamut regions for different
color spaces and output de-

vices inside the CIE diagram.

$-)

%-$

$-$

$-$ $-) %-$

CIELAB

Laser display

Adobe RGB

CMYK

sRGB

x

y

D65

large color changes are perceived in the magenta region for a given
shift in XYZ while the change is relatively small in the green region
for the same coordinate distance. Several variants of the CIE color
space have been developed for different purposes, primarily with the
goal of creating perceptually uniform color representations without
sacrificing the formal qualities of the CIE reference system. Popular
CIE-derived color spaces include CIE YUV, YU′V′, YCbCr, and par-
ticularly CIELAB and CIELUV, which are described in the follow-
ing sections. In addition, CIE-compliant specifications exist for most
common color spaces (see Ch. 12, Sec. 12.2), which allow more or less
dependable conversions between almost any pair of color spaces.

14.2 CIELAB

The CIELAB color model (specified by CIE in 1976) was developed
with the goal of linearizing the representation with respect to human
color perception and at the same time creating a more intuitive color
system. Since then, CIELAB2 has become a popular and widely used
color model, particularly for high-quality photographic applications.
It is used, for example, inside Adobe Photoshop as the standard
model for converting between different color spaces. The dimensions
in this color space are the luminosity L∗ and the two color components
a∗, b∗, which specify the color hue and saturation along the green-
red and blue-yellow axes, respectively. All three components are
relative values and refer to the specified reference white point Cref =
(Xref , Yref , Zref). In addition, a nonlinear correction function (similar
to the modified gamma correction described in Ch. 4, Sec. 4.7.6) is
applied to all three components, as will be detailed further.

14.2.1 CIEXYZ→CIELAB Conversion

Several specifications for converting to and from CIELAB space exist
that, however, differ marginally and for very small L values only. The

2 Often CIELAB is simply referred to as the “Lab” color space.
346

14.2 CIELAB

L∗ a∗ b∗

Fig. 14.4
CIELAB components shown as
grayscale images. The contrast
of the a∗ and b∗ images has
been increased by 40% for
better viewing.

current specification for converting between CIEXYZ and CIELAB
colors is defined by ISO Standard 13655 [120] as follows:

L∗ = 116 · Y ′ − 16, (14.4)

a∗ = 500 · (X ′ − Y ′), (14.5)

b∗ = 200 · (Y ′ − Z ′), (14.6)

with

X ′ = f1

(
X

Xref

)
, Y ′ = f1

(
Y

Yref

)
, Z ′ = f1

(
Z

Zref

)
, (14.7)

f1(c) =

{

c1/3 for c > ǫ,
κ · c + 16

116 for c ≤ ǫ,
(14.8)

and

ǫ =
(

6
29

)3
= 216

24389 ≈ 0.008856, (14.9)

κ = 1
116

(
29
3

)3
= 841

108 ≈ 7.787. (14.10)

For the conversion in Eqn. (14.7), D65 is usually specified as the
reference white point Cref = (Xref , Yref , Zref), that is, Xref = 0.95047,
Yref = 1.0 and Zref = 1.08883 (see Table 14.2). The L∗ values are
positive and typically in the range [0, 100] (often scaled to [0, 255]),
but may theoretically be greater. Values for a∗ and b∗ are in the range
[−127, +127]. Figure 14.4 shows the separation of a color image into
the corresponding CIELAB components. Table 14.3 lists the relation
between CIELAB and XYZ coordinates for selected RGB colors. The
given R′G′B′ values are (nonlinear) sRGB coordinates with D65 as
the reference white point.3 Figure 14.5(c) shows the transformation
of the RGB color cube into the CIELAB color space.

14.2.2 CIELAB→CIEXYZ Conversion

The reverse transformation from CIELAB space to CIEXYZ coordi-
nates is defined as follows:

X = Xref · f2

(
L′ + a∗

500

)
, (14.11)

Y = Yref · f2

(
L′), (14.12)

Z = Zref · f2

(
L′ − b∗

200

)
, (14.13)

3 Note that sRGB colors in Java are specified with respect to white point
D50, which explains certain numerical deviations (see Sec. 14.7).

347

14 Colorimetric Color
Spaces

Table 14.3
CIELAB coordinates for se-
lected color points in sRGB.

The sRGB components
R′, G′, B′ are nonlinear (i.e.,

gamma-corrected), white
point is D65 (see Table 14.2).

sRGB CIEXYZ (D65) CIELAB

Pt. Color R′ G′ B′ X65 Y65 Z65 L∗ a∗ b∗

S Black 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00 0.00 0.00

R Red 1.00 0.00 0.00 0.4125 0.2127 0.0193 53.24 80.09 67.20

Y Yellow 1.00 1.00 0.00 0.7700 0.9278 0.1385 97.14 −21.55 94.48

G Green 0.00 1.00 0.00 0.3576 0.7152 0.1192 87.74 −86.18 83.18

C Cyan 0.00 1.00 1.00 0.5380 0.7873 1.0694 91.11 −48.09 −14.13

B Blue 0.00 0.00 1.00 0.1804 0.0722 0.9502 32.30 79.19 −107.86

M Magenta 1.00 0.00 1.00 0.5929 0.2848 0.9696 60.32 98.24 −60.83

W White 1.00 1.00 1.00 0.9505 1.0000 1.0888 100.00 0.00 0.00

K 50% Gray 0.50 0.50 0.50 0.2034 0.2140 0.2330 53.39 0.00 0.00

R75 75% Red 0.75 0.00 0.00 0.2155 0.1111 0.0101 39.77 64.51 54.13

R50 50% Red 0.50 0.00 0.00 0.0883 0.0455 0.0041 25.42 47.91 37.91

R25 25% Red 0.25 0.00 0.00 0.0210 0.0108 0.0010 9.66 29.68 15.24

P Pink 1.00 0.50 0.50 0.5276 0.3812 0.2482 68.11 48.39 22.83

with

L′ = L∗+16
116 and (14.14)

f2(c) =

{

c3 for c3 > ǫ,
c−16/116

κ for c3 ≤ ǫ,
(14.15)

and ǫ, κ as defined in Eqns. (14.9–14.10). The complete Java code
for the CIELAB→XYZ conversion and the implementation of the
associated ColorSpace class can be found in Progs. 14.1 and 14.2
(pp. 363–364).

14.3 CIELUV

14.3.1 CIEXYZ→CIELUV Conversion

The CIELUV component values L∗, u∗, v∗ are calculated from given
X , Y , Z color coordinates as follows:

L∗ = 116 · Y ′ − 16, (14.16)

u∗ = 13 · L∗ · (u′ − u′
ref), (14.17)

v∗ = 13 · L∗ · (v′ − v′
ref), (14.18)

with Y ′ as defined in Eqn. (14.7) (identical to CIELAB) and

u′ = fu(X, Y, Z), u′
ref = fu(Xref , Yref , Zref),

v′ = fv(X, Y, Z), v′
ref = fv(Xref , Yref , Zref),

(14.19)

with the correction functions

fu(X, Y, Z) =

{

0 for X = 0,
4X

X+15Y +3Z for X > 0,
(14.20)

fv(X, Y, Z) =

{

0 for Y = 0,
9Y

X+15Y +3Z for Y > 0.
(14.21)

348

14.3 CIELUV
Linear RGB sRGB

(a) XYZ (b)

(c) CIELAB (d)

(e) CIELUV (f)

Fig. 14.5
Transformation of the RGB
color cube to the XYZ,
CIELAB, and CIELUV color
space. The left column shows
the color cube in linear RGB
space, the right column in
nonlinear sRGB space. Both
RGB volumes were uniformly
subdivided into 10 × 10 × 10
cubes of equal size. In both
cases, the transformation to
XYZ space (a, b) yields a dis-
torted cube with straight edges
and planar faces. Due to the
linear transformation from
RGB to XYZ, the subdivi-
sion of the RGB cube remains
uniform (a). However, the non-
linear transformation (due to
gamma correction) from sRGB
to XYZ makes the tessela-
tion strongly nonuniform in
XYZ space (b). Since CIELAB
uses gamma correction as well,
the transformation of the lin-
ear RGB cube in (c) appears
much less uniform than the
nonlinear sRGB cube in (d),
although this appears to be the
other way round in CIELUV
(e, f). Note that the RGB/s-
RGB color cube maps to a
non-convex volume in both the
CIELAB and the CLIELUV
space.

Note that the checks for zero X, Y in Eqns. (14.20)–(14.21) are not
part of the original definitions but are essential in any real implemen-
tation to avoid divisions by zero.4

4 Remember though that floating-point values (double, float) should
never be strictly tested against zero but compared to a sufficiently small
(epsilon) quantity (see Sec. F.1.8 in the Appendix).

349

14 Colorimetric Color
Spaces

Table 14.4
CIELUV coordinates for se-
lected color points in sRGB.

Reference white point is D65.
The L∗ values are identical

to CIELAB (see Table 14.3).

sRGB CIEXYZ (D65) CIELUV

Pt. Color R′ G′ B′ X65 Y65 Z65 L∗ u∗ v∗

S Black 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00 0.00 0.00

R Red 1.00 0.00 0.00 0.4125 0.2127 0.0193 53.24 175.01 37.75

Y Yellow 1.00 1.00 0.00 0.7700 0.9278 0.1385 97.14 7.70 106.78

G Green 0.00 1.00 0.00 0.3576 0.7152 0.1192 87.74 −83.08 107.39

C Cyan 0.00 1.00 1.00 0.5380 0.7873 1.0694 91.11 −70.48 −15.20

B Blue 0.00 0.00 1.00 0.1804 0.0722 0.9502 32.30 −9.40 −130.34

M Magenta 1.00 0.00 1.00 0.5929 0.2848 0.9696 60.32 84.07 −108.68

W White 1.00 1.00 1.00 0.9505 1.0000 1.0888 100.00 0.00 0.00

K 50% Gray 0.50 0.50 0.50 0.2034 0.2140 0.2330 53.39 0.00 0.00

R75 75% Red 0.75 0.00 0.00 0.2155 0.1111 0.0101 39.77 130.73 28.20

R50 50% Red 0.50 0.00 0.00 0.0883 0.0455 0.0041 25.42 83.56 18.02

R25 25% Red 0.25 0.00 0.00 0.0210 0.0108 0.0010 9.66 31.74 6.85

P Pink 1.00 0.50 0.50 0.5276 0.3812 0.2482 68.11 92.15 19.88

14.3.2 CIELUV→CIEXYZ Conversion

The reverse mapping from L∗, u∗, v∗ components to X, Y, Z coordi-
nates is defined as follows:

Y = Yref · f2

(
L∗+16

116

)
, (14.22)

with f2() as defined in Eqn. (14.15), and

X = Y · 9u′

4v′ , Z = Y · 12− 3u′ − 20v′

4v′ , (14.23)

with

(u′, v′) =

{

(u′
ref , v′

ref) for L∗ = 0,
(u′

ref , v′
ref) + 1

13·L∗ · (u∗, v∗) for L∗ > 0,
(14.24)

and u′
ref , v′

ref as in Eqn. (14.19).5

14.3.3 Measuring Color Differences

Due to its high uniformity with respect to human color perception,
the CIELAB color space is a particularly good choice for determining
the difference between colors (the same holds for the CIELUV space)
[94, p. 57]. The difference between two color points c1 = (L∗

1, a∗
1, b∗1)

and c2 = (L∗
2, a∗

2, b∗2) can be found by simply measuring the Euclidean
distance in CIELAB or CIELUV space, for example,

ColorDist(c1, c2) = ‖c1 − c2‖ (14.25)

=
√

(L∗
1 − L∗

2)2 + (a∗
1 − a∗

2)2 + (b∗1 − b∗2)2. (14.26)

14.4 Standard RGB (sRGB)

CIE-based color spaces such as CIELAB (and CIELUV) are device-
independent and have a gamut sufficiently large to represent virtually

5 No explicit check for zero denominators is required in Eqn. (14.23) since
v′ can be assumed to be greater than zero.

350

14.4 Standard RGB
(sRGB)

all visible colors in the CIEXYZ system. However, in many computer-
based, display-oriented applications, such as computer graphics or
multimedia, the direct use of CIE-based color spaces may be too
cumbersome or inefficient.

sRGB (“standard RGB” [119]) was developed (jointly by Hewlett-
Packard and Microsoft) with the goal of creating a precisely specified
color space for these applications, based on standardized mappings
with respect to the colorimetric CIEXYZ color space. This includes
precise specifications of the three primary colors, the white reference
point, ambient lighting conditions, and gamma values. Interestingly,
the sRGB color specification is the same as the one specified many
years before for the European PAL/SECAM television standards.
Compared to CIELAB, sRGB exhibits a relatively small gamut (see
Fig. 14.3), which, however, includes most colors that can be repro-
duced by current computer and video monitors. Although sRGB was
not designed as a universal color space, its CIE-based specification at
least permits more or less exact conversions to and from other color
spaces.

Several standard image formats, including EXIF (JPEG) and
PNG are based on sRGB color data, which makes sRGB the de facto
standard for digital still cameras, color printers, and other imaging
devices at the consumer level [107]. sRGB is used as a relatively
dependable archive format for digital images, particularly in less de-
manding applications that do not require (or allow) explicit color
management [225]. Thus, in practice, working with any RGB color
data almost always means dealing with sRGB. It is thus no coinci-
dence that sRGB is also the common color scheme in Java and is
extensively supported by the Java standard API (see Sec. 14.7 for
details).

Table 14.5 lists the key parameters of the sRGB color space (i.e.,
the XYZ coordinates for the primary colors R, G, B and the white
point W (D65)), which are defined according to ITU-R BT.709 [122]
(see Tables 14.1 and 14.2). Together, these values permit the unam-
biguous mapping of all other colors in the CIE diagram.

Pt. R G B X65 Y65 Z65 x65 y65

R 1.0 0.0 0.0 0.412453 0.212671 0.019334 0.6400 0.3300

G 0.0 1.0 0.0 0.357580 0.715160 0.119193 0.3000 0.6000

B 0.0 0.0 1.0 0.180423 0.072169 0.950227 0.1500 0.0600

W 1.0 1.0 1.0 0.950456 1.000000 1.088754 0.3127 0.3290

Table 14.5
sRGB tristimulus values R, G,
B with reference to the white
point D65 (W).

14.4.1 Linear vs. Nonlinear Color Components

sRGB is a nonlinear color space with respect to the XYZ coordi-
nate system, and it is important to carefully distinguish between the
linear and nonlinear RGB component values. The nonlinear values
(denoted R′, G′, B′) represent the actual color tuples, the data val-
ues read from an image file or received from a digital camera. These
values are pre-corrected with a fixed Gamma (≈ 2.2) such that they
can be easily viewed on a common color monitor without any ad-
ditional conversion. The corresponding linear components (denoted

351

14 Colorimetric Color
Spaces

R, G, B) relate to the CIEXYZ color space by a linear mapping and
can thus be computed from X, Y, Z coordinates and vice versa by
simple matrix multiplication, that is,
⎛

⎝

R
G
B

⎞

⎠ = MRGB ·

⎛

⎝

X
Y
Z

⎞

⎠ and

⎛

⎝

X
Y
Z

⎞

⎠ = M −1
RGB ·

⎛

⎝

R
G
B

⎞

⎠ , (14.27)

with

MRGB =

⎛

⎝

3.240479 −1.537150 −0.498535
−0.969256 1.875992 0.041556

0.055648 −0.204043 1.057311

⎞

⎠, (14.28)

M −1
RGB =

⎛

⎝

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

⎞

⎠. (14.29)

Notice that the three column vectors of M−1
RGB (Eqn. (14.29)) are

the coordinates of the primary colors R, G, B (tristimulus values)
in XYZ space (cf. Table 14.5) and thus

R = M −1
RGB ·

⎛

⎝

1
0
0

⎞

⎠, G = M−1
RGB ·

⎛

⎝

0
1
0

⎞

⎠, B = M−1
RGB ·

⎛

⎝

0
0
1

⎞

⎠. (14.30)

14.4.2 CIEXYZ→sRGB Conversion

To transform a given XYZ color to sRGB (Fig. 14.6), we first com-
pute the linear R, G, B values by multiplying the (X, Y, Z) coordinate
vector with the matrix MRGB (Eqn. (14.28)),

⎛

⎝

R
G
B

⎞

⎠ = MRGB ·

⎛

⎝

X
Y
Z

⎞

⎠ . (14.31)

Subsequently, a modified gamma correction (see Ch. 4, Sec. 4.7.6)
with γ = 2.4 (which corresponds to an effective gamma value of ca.
2.2) is applied to the linear R, G, B values,

R′ = f1(R), G′ = f1(G), B′ = f1(B), (14.32)

with

f1(c) =

{

12.92 · c for c ≤ 0.0031308,
1.055 · c1/2.4 − 0.055 for c > 0.0031308.

(14.33)

Fig. 14.6
Color transformation

from CIEXYZ to sRGB.

(
X
Y
Z

)

−→
linear

mapping
MRGB

−→
(

R
G
B

)

−→
gamma

correction
fγ ()

−→
(

R′

G′

B′

)

The resulting sRGB components R′, G′, B′ are limited to the interval
[0, 1] (see Table 14.6). To obtain discrete numbers, the R′, G′, B′

values are finally scaled linearly to the 8-bit integer range [0, 255].
352

14.4 Standard RGB
(sRGB)

sRGB RGB
(nonlinear) (linear) CIEXYZ

Pt. Color R′ G′ B′ R G B X65 Y65 Z65

S Black 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

R Red 1.00 0.00 0.00 1.0000 0.0000 0.0000 0.4125 0.2127 0.0193

Y Yellow 1.00 1.00 0.00 1.0000 1.0000 0.0000 0.7700 0.9278 0.1385

G Green 0.00 1.00 0.00 0.0000 1.0000 0.0000 0.3576 0.7152 0.1192

C Cyan 0.00 1.00 1.00 0.0000 1.0000 1.0000 0.5380 0.7873 1.0694

B Blue 0.00 0.00 1.00 0.0000 0.0000 1.0000 0.1804 0.0722 0.9502

M Magenta 1.00 0.00 1.00 1.0000 0.0000 1.0000 0.5929 0.2848 0.9696

W White 1.00 1.00 1.00 1.0000 1.0000 1.0000 0.9505 1.0000 1.0888

K 50% Gray 0.50 0.50 0.50 0.2140 0.2140 0.2140 0.2034 0.2140 0.2330

R75 75% Red 0.75 0.00 0.00 0.5225 0.0000 0.0000 0.2155 0.1111 0.0101

R50 50% Red 0.50 0.00 0.00 0.2140 0.0000 0.0000 0.0883 0.0455 0.0041

R25 25% Red 0.25 0.00 0.00 0.0509 0.0000 0.0000 0.0210 0.0108 0.0010

P Pink 1.00 0.50 0.50 1.0000 0.2140 0.2140 0.5276 0.3812 0.2482

Table 14.6
CIEXYZ coordinates for se-
lected sRGB colors. The table
lists the nonlinear R′, G′, and
B′ components, the linearized
R, G, and B values, and the
corresponding X, Y , and Z
coordinates (for white point
D65). The linear and nonlin-
ear RGB values are identical
for the extremal points of the
RGB color cube S, . . . , W (top
rows) because the gamma cor-
rection does not affect 0 and
1 component values. However,
intermediate colors (K, . . . , P,
shaded rows) may exhibit large
differences between the non-
linear and linear components
(e.g., compare the R′ and R
values for R25).

14.4.3 sRGB→CIEXYZ Conversion

To calculate the reverse transformation from sRGB to XYZ, the given
(nonlinear) R′G′B′ values (in the range [0, 1]) are first linearized by
inverting the gamma correction (Eqn. (14.33)), that is,

R = f2(R′), G = f2(G′), B = f2(B′), (14.34)

with

f2(c′) =

{
c′

12.92 for c′ ≤ 0.04045,
(

c′+0.055
1.055

)2.4
for c′ > 0.04045.

(14.35)

Subsequently, the linearized (R, G, B) vector is transformed to XYZ
coordinates by multiplication with the inverse of the matrix M RGB

(Eqn. (14.29)),
⎛

⎝

X
Y
Z

⎞

⎠ = M −1
RGB ·

⎛

⎝

R
G
B

⎞

⎠ . (14.36)

14.4.4 Calculations with Nonlinear sRGB Values

Due to the wide use of sRGB in digital photography, graphics, mul-
timedia, Internet imaging, etc., there is a probability that a given
image is encoded in sRGB colors. If, for example, a JPEG image is
opened with ImageJ or Java, the pixel values in the resulting data
array are media-oriented (i.e., nonlinear R′, G′, B′ components of the
sRGB color space). Unfortunately, this fact is often overlooked by
programmers, with the consequence that colors are incorrectly ma-
nipulated and reproduced.

As a general rule, any arithmetic operation on color values should
always be performed on the linearized R, G, B components, which
are obtained from the nonlinear R′, G′, B′ values through the inverse
gamma function f−1

γ (Eqn. (14.35)) and converted back again with
fγ (Eqn. (14.33)).

Example: color to grayscale conversion

The principle of converting RGB colors to grayscale values by com-
puting a weighted sum of the color components was described already

353

14 Colorimetric Color
Spaces

in Chapter 12, Sec. 12.2.1, where we had simply ignored the issue of
possible nonlinearities. As one may have guessed, however, the vari-
ables R, G, B, and Y in Eqn. (12.10) on p. 305,

Y = 0.2125 ·R + 0.7154 ·G + 0.072 · B (14.37)

implicitly refer to linear color and gray values, respectively, and not
the raw sRGB values! Based on Eqn. (14.37), the correct grayscale
conversion from raw (nonlinear) sRGB components R′, G′, B′ is

Y ′ = f1

(
0.2125 · f2(R′) + 0.7154 · f2(G′) + 0.0721 · f2(B′)

)
, (14.38)

with fγ() and f−1
γ () as defined in Eqns. (14.33) and (14.35). The

result (Y ′) is again a nonlinear, sRGB-compatible gray value; that
is, the sRGB color tuple (Y ′, Y ′, Y ′) should have the same perceived
luminance as the original color (R′, G′, B′).

Note that setting the components of an sRGB color pixel to three
arbitrary but identical values Y ′,

(R′, G′, B′) ← (Y ′, Y ′, Y ′)

always creates a gray (colorless) pixel, despite the nonlinearities of the
sRGB space. This is due to the fact that the gamma correction (Eqns.
(14.33) and (14.35)) applies evenly to all three color components and
thus any three identical values map to a (linearized) color on the
straight gray line between the black point S and the white point W
in XYZ space (cf. Fig. 14.1(b)).

For many applications, however, the following approximation to
the exact grayscale conversion in Eqn. (14.38) is sufficient. It works
without converting the sRGB values (i.e., directly on the nonlinear
R′, G′, B′ components) by computing a linear combination

Y ′ ≈ w′
R ·R′ + w′

G ·G′ + w′
B ·B′, (14.39)

with a slightly different set of weights; for example, w′
R = 0.309,

w′
G = 0.609, w′

B = 0.082, as proposed in [188]. The resulting quantity
from Eqn. (14.39) is sometimes called luma (compared to luminance
in Eqn. (14.37)).

14.5 Adobe RGB

A distinct weakness of sRGB is its relatively small gamut, which is
limited to the range of colors reproducible by ordinary color mon-
itors. This causes problems, for example, in printing, where larger
gamuts are needed, particularly in the green regions. The “Adobe
RGB (1998)” [1] color space, developed by Adobe as their own stan-
dard, is based on the same general concept as sRGB but exhibits a
significantly larger gamut (Fig. 14.3), which extends its use partic-
ularly to print applications. Figure 14.7 shows the noted difference
between the sRGB and Adobe RGB gamuts in 3D CIEXYZ color
space.

The neutral point of Adobe RGB corresponds to the D65 stan-
dard (with x = 0.3127, y = 0.3290), and the gamma value is 2.199

354

14.6 Chromatic
Adaptation

sRGB Adobe RGB

(a) (b)

Fig. 14.7
Gamuts of sRGB and Adobe
RGB shown in CIELAB color
space. The volume of the
sRGB gamut (a) is signifi-
cantly smaller than the Adobe
RGB gamut (b), particularly
in the green color region. The
tesselation corresponds to a
uniform subdivision of the
original RGB cubes (in the
respective color spaces).

(compared with 2.4 for sRGB) for the forward correction and 1
2.199

for the inverse correction, respectively. The associated file specifica-
tion provides for a number of different codings (8- to 16-bit integer
and 32-bit floating point) for the color components. Adobe RGB is
frequently used in professional photography as an alternative to the
CIELAB color space and for picture archive applications.

14.6 Chromatic Adaptation

The human eye has the capability to interpret colors as being con-
stant under varying viewing conditions and illumination in particu-
lar. A white sheet of paper appears white to us in bright daylight
as well as under fluorescent lighting, although the spectral composi-
tion of the light that enters the eye is completely different in both
situations. The CIE color system takes into account the color tem-
perature of the ambient lighting because the exact interpretation of
XYZ color values also requires knowledge of the corresponding refer-
ence white point. For example, a color value (X, Y, Z) specified with
respect to the D50 reference white point is generally perceived differ-
ently when reproduced by a D65-based media device, although the
absolute (i.e., measured) color is the same. Thus the actual meaning
of XYZ values cannot be known without knowing the corresponding
white point. This is known as relative colorimetry.

If colors are specified with respect to different white points, for
example W1 = (XW1, YW1, ZW1) and W2 = (XW2, YW2, ZW2), they
can be related by first applying a so-called chromatic adaptation
transformation (CAT) [114, Ch. 34] in XYZ color space. This trans-
formation determines, for given color coordinates (X1, Y1, Z1) and
the associated white point W1, the new color coordinates (X2, Y2,
Z2) relative to another white point W2.

14.6.1 XYZ Scaling

The simplest chromatic adaptation method is XYZ scaling, where
the individual color coordinates are individually multiplied by the
ratios of the corresponding white point coordinates, that is,

355

14 Colorimetric Color
Spaces

X2 = X1 ·
X̂2

X̂1

, Y2 = Y1 ·
Ŷ2

Ŷ1

, Z2 = Z1 ·
Ẑ2

Ẑ1

. (14.40)

For example, for converting colors (X65, Y65, Z65) related to the
white point D65 = (X̂65, Ŷ65, Ẑ65) to the corresponding colors for
white point D50 = (X̂50, Ŷ50, Ẑ50),6 the concrete scaling is

X50 = X65 · X̂50

X̂65

= X65 · 0.964296
0.950456 = X65 · 1.01456,

Y50 = Y65 · Ŷ50

Ŷ65

= Y65 · 1.000000
1.000000 = Y65, (14.41)

Z50 = Z65 · Ẑ50

Ẑ65

= Z65 · 0.825105
1.088754 = Z65 · 0.757843 .

This form of scaling the color coordinates in XYZ space is usually not
considered a good color adaptation model and is not recommended
for high-quality applications.

14.6.2 Bradford Adaptation

The most common chromatic adaptation models are based on scaling
the color coordinates not directly in XYZ but in a “virtual” R∗G∗B∗

color space obtained from the XYZ values by a linear transformation
⎛

⎝

R∗

G∗

B∗

⎞

⎠ = MCAT ·

⎛

⎝

X
Y
Z

⎞

⎠ , (14.42)

where M CAT is a 3× 3 transformation matrix (defined in Eqn.
(14.45)). After appropriate scaling, the R∗G∗B∗ coordinates are
transformed back to XYZ, so the complete adaptation transform from
color coordinates X1, Y1, Z1 (w.r.t. white point W1 = (XW1, YW1,
ZW1)) to the new color coordinates X2, Y2, Z2 (w.r.t. white point
W2 = (XW2, YW2, ZW2)) takes the form

⎛

⎝

X2

Y2

Z2

⎞

⎠ = M−1
CAT ·

⎛

⎜
⎜
⎝

R∗
W2

R∗
W1

0 0

0 G∗
W2

G∗
W1

0

0 0 B∗
W2

B∗
W1

⎞

⎟
⎟
⎠
·MCAT ·

⎛

⎝

X1

Y1

Z1

⎞

⎠ , (14.43)

where the diagonal elements R∗
W2

R∗
W1

, G∗
W2

G∗
W1

, B∗
W2

B∗
W1

are the (constant) ratios
of the R∗G∗B∗ values of the white points W2, W1, respectively; that
is,
⎛

⎝

R∗
W1

G∗
W1

B∗
W1

⎞

⎠ = M CAT ·

⎛

⎝

XW1

YW1

ZW1

⎞

⎠ ,

⎛

⎝

R∗
W2

G∗
W2

B∗
W2

⎞

⎠ = M CAT ·

⎛

⎝

XW2

YW2

ZW2

⎞

⎠ .

(14.44)
The “Bradford” model [114, p. 590] specifies for Eqn. (14.43) the
particular transformation matrix

M CAT =

⎛

⎝

0.8951 0.2664 −0.1614
−0.7502 1.7135 0.0367

0.0389 −0.0685 1.0296

⎞

⎠ . (14.45)

6 See Table 14.2.
356

14.6 Chromatic
Adaptation%-$

$-$

$-$ $-) %-$
x

y

R

G

B

D50

D65

Fig. 14.8
Bradford chromatic adaptation
from white point D65 to D50.
The solid triangle represents
the original RGB gamut for
white point D65, with the pri-
maries (R, G, B) located at
the corner points. The dashed
triangle is the corresponding
gamut after chromatic adapta-
tion to white point D50.

Inserting MCAT matrix in Eqn. (14.43) gives the complete chromatic
adaptation. For example, the resulting transformation for converting
from D65-based to D50-based colors (i.e., W1 = D65, W2 = D50,
as listed in Table 14.2) is

⎛

⎝

X50

Y50

Z50

⎞

⎠ = M50|65 ·

⎛

⎝

X65

Y65

Z65

⎞

⎠

=

⎛

⎝

1.047884 0.022928 −0.050149
0.029603 0.990437 −0.017059
−0.009235 0.015042 0.752085

⎞

⎠·

⎛

⎝

X65

Y65

Z65

⎞

⎠ , (14.46)

and conversely from D50-based to D65-based colors (i.e., W1 = D50,
W2 = D65),

⎛

⎝

X65

Y65

Z65

⎞

⎠ = M 65|50 ·

⎛

⎝

X50

Y50

Z50

⎞

⎠ = M−1
50|65 ·

⎛

⎝

X50

Y50

Z50

⎞

⎠

=

⎛

⎝

0.955513 −0.023079 0.063190
−0.028348 1.009992 0.021019

0.012300 −0.020484 1.329993

⎞

⎠·

⎛

⎝

X50

Y50

Z50

⎞

⎠ . (14.47)

Figure 14.8 illustrates the effects of adaptation from the D65 white
point to D50 in the CIE x, y chromaticity diagram. A short list of
corresponding color coordinates is given in Table 14.7.

The Bradford model is a widely used chromatic adaptation scheme
but several similar procedures have been proposed (see also Exercise
14.1). Generally speaking, chromatic adaptation and related prob-
lems have a long history in color engineering and are still active fields
of scientific research [258, Ch. 5, Sec. 5.12].

357

14 Colorimetric Color
Spaces

Table 14.7
Bradford chromatic adaptation

from white point D65 to D50
for selected sRGB colors. The

XYZ coordinates X65, Y65,
Z65 relate to the original white

point D65 (W1). X50, Y50,
Z50 are the corresponding

coordinates for the new white
point D50 (W2), obtained

with the Bradford adaptation
according to Eqn. (14.46).

sRGB XYZ (D65) XYZ (D50)

Pt. Color R′ G′ B′ X65 Y65 Z65 X50 Y50 Z50

S Black 0.00 0.0 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

R Red 1.00 0.0 0.0 0.4125 0.2127 0.0193 0.4361 0.2225 0.0139

Y Yellow 1.00 1.0 0.0 0.7700 0.9278 0.1385 0.8212 0.9394 0.1110

G Green 0.00 1.0 0.0 0.3576 0.7152 0.1192 0.3851 0.7169 0.0971

C Cyan 0.00 1.0 1.0 0.5380 0.7873 1.0694 0.5282 0.7775 0.8112

B Blue 0.00 0.0 1.0 0.1804 0.0722 0.9502 0.1431 0.0606 0.7141

M Magenta 1.00 0.0 1.0 0.5929 0.2848 0.9696 0.5792 0.2831 0.7280

W White 1.00 1.0 1.0 0.9505 1.0000 1.0888 0.9643 1.0000 0.8251

K 50% Gray 0.50 0.5 0.5 0.2034 0.2140 0.2330 0.2064 0.2140 0.1766

R75 75% Red 0.75 0.0 0.0 0.2155 0.1111 0.0101 0.2279 0.1163 0.0073

R50 50% Red 0.50 0.0 0.0 0.0883 0.0455 0.0041 0.0933 0.0476 0.0030

R25 25% Red 0.25 0.0 0.0 0.0210 0.0108 0.0010 0.0222 0.0113 0.0007

P Pink 1.00 0.5 0.5 0.5276 0.3812 0.2482 0.5492 0.3889 0.1876

14.7 Colorimetric Support in Java

sRGB is the standard color space in Java; that is, the components of
color objects and RGB color images are gamma-corrected, nonlinear
R′, G′, B′ values (see Fig. 14.6). The nonlinear R′, G′, B′ values are
related to the linear R, G, B values by a modified gamma correction,
as specified by the sRGB standard (Eqns. (14.33) and (14.35)).

14.7.1 Profile Connection Space (PCS)

The Java API (AWT) provides classes for representing color objects
and color spaces, together with a rich set of corresponding methods.
Java’s color system is designed after the ICC7 “color management
architecture”, which uses a CIEXYZ-based device-independent color
space called the “profile connection space” (PCS) [118, 121]. The
PCS color space is used as the intermediate reference for converting
colors between different color spaces. The ICC standard defines de-
vice profiles (see Sec. 14.7.4) that specify the transforms to convert
between a device’s color space and the PCS. The advantage of this
approach is that for any given device only a single color transfor-
mation (profile) must be specified to convert between device-specific
colors and the unified, colorimetric profile connection space. Every
ColorSpace class (or subclass) provides the methods fromCIEXYZ()

and toCIEXYZ() to convert device color values to XYZ coordinates
in the standardized PCS. Figure 14.9 illustrates the principal appli-
cation of ColorSpace objects for converting colors between different
color spaces in Java using the XYZ space as a common “hub”.

Different to the sRGB specification, the ICC specifies D50 (and
not D65) as the illuminant white point for its default PCS color
space (see Table 14.2). The reason is that the ICC standard was
developed primarily for color management in photography, graphics,
and printing, where D50 is normally used as the reflective media
white point. The Java methods fromCIEXYZ() and toCIEXYZ() thus
take and return X, Y, Z color coordinates that are relative to the D50
white point. The resulting coordinates for the primary colors (listed
in Table 14.8) are different from the ones given for white point D65
(see Table 14.5)! This is a frequent cause of confusion since the sRGB

7 International Color Consortium (ICC, www.color.org).
358

http://www.color.org

14.7 Colorimetric
Support in Java

��*"+,�

��-./%&

0�� -./%&

��
����!��

���

./)$0

�	
	�	

./+)0

��*12�34+*+,�

��-./%&

0�� -./%&

�
�

./+)0

1!�*��
����!��

��-./%&

0�� -./%&

�
�
�

./+)0

�123
.���#���-0

123
.�����
0

45�565

�����	

����

����

���

Fig. 14.9
XYZ-based color conver-
sion in Java. ColorSpace ob-
jects implement the methods
fromCIEXYZ() and toCIEXYZ() to
convert color vectors from and
to the CIEXYZ color space,
respectively. Colorimetric
transformations between color
spaces can be accomplished as
a two-step process via the XYZ
space. For example, to convert
from sRGB to CIELAB, the
sRGB color is first converted
to XYZ and subsequently from
XYZ to CIELAB. Notice that
Java’s standard XYZ color
space is based on the D50
white point, while most com-
mon color spaces refer to D65.

Pt. R G B X50 Y50 Z50 x50 y50

R 1.0 0.0 0.0 0.436108 0.222517 0.013931 0.6484 0.3309

G 0.0 1.0 0.0 0.385120 0.716873 0.097099 0.3212 0.5978

B 0.0 0.0 1.0 0.143064 0.060610 0.714075 0.1559 0.0660

W 1.0 1.0 1.0 0.964296 1.000000 0.825106 0.3457 0.3585

Table 14.8
Color coordinates for sRGB
primaries and the white point
in Java’s default XYZ color
space. Color coordinates for
sRGB primaries and the white
point in Java’s default XYZ
color space. The white point
W is equal to D50.

component values are D65-based (as specified by the sRGB standard)
but Java’s XYZ values are relative to the D50.

Chromatic adaptation (see Sec. 14.6) is used to convert between
XYZ color coordinates that are measured with respect to different
white points. The ICC specification [118] recommends a linear chro-
matic adaptation based on the Bradford model to convert between
the D65-related XYZ coordinates (X65, Y65, Z65) and D50-related val-
ues (X50, Y50, Z50). This is also implemented by the Java API.

The complete mapping between the linearized sRGB color val-
ues (R, G, B) and the D50-based (X50, Y50, Z50) coordinates can be
expressed as a linear transformation composed of the RGB→XYZ65

transformation by matrix M RGB (Eqns. (14.28) and (14.29)) and the
chromatic adaptation transformation XYZ65→XYZ50 defined by the
matrix M50|65 (Eqn. (14.46)),

⎛

⎝

X50

Y50

Z50

⎞

⎠ = M 50|65 ·M−1
RGB ·

⎛

⎝

R
G
B

⎞

⎠ =
(

MRGB ·M 65|50

)−1

·

⎛

⎝

R
G
B

⎞

⎠

=

⎛

⎝

0.436131 0.385147 0.143033
0.222527 0.716878 0.060600
0.013926 0.097080 0.713871

⎞

⎠·

⎛

⎝

R
G
B

⎞

⎠ , (14.48)

and, in the reverse direction,
359

14 Colorimetric Color
Spaces

⎛

⎝

R
G
B

⎞

⎠ = MRGB ·M65|50 ·

⎛

⎝

X50

Y50

Z50

⎞

⎠

=

⎛

⎝

3.133660−1.617140−0.490588
−0.978808 1.916280 0.033444

0.071979−0.229051 1.405840

⎞

⎠·

⎛

⎝

X50

Y50

Z50

⎞

⎠ . (14.49)

Equations (14.48) and (14.49) are the transformations implemented
by the methods toCIEXYZ() and fromCIEXYZ(), respectively, for
Java’s default sRGB ColorSpace class. Of course, these methods
must also perform the necessary gamma correction between the lin-
ear R, G, B components and the actual (nonlinear) sRGB values
R′, G′, B′. Figure 14.10 illustrates the complete transformation from
D50-based PCS coordinates to nonlinear sRGB values.

Fig. 14.10
Transformation from D50-
based CIEXYZ coordinates

(X50, Y50, Z50) in Java’s Pro-
file Connection Space (PCS)

to nonlinear sRGB values
(R′, G′, B′). The first step

ist chromatic adaptation from
D50 to D65 (by M65|50),

followed by mapping the CIE-
XYZ coordinates to linear

RGB values (by MRGB).
Finally, gamma correction

is applied individually to
all three color components.

��
������
����������

789
��
�����

123

PCS sRGB

fγ

fγ

fγ

X50

Y50

Z50

X65

Y65

Z65

M65|50 MRGB

R

G

B

R′

G′

B′

14.7.2 Color-Related Java Classes

The Java standard API offers extensive support for working with
colors and color images. The most important classes contained in
the Java AWT package are:

• Color: defines individual color objects.
• ColorSpace: specifies entire color spaces.
• ColorModel: describes the structure of color images; e.g., full-

color images or indexed-color images (see Prog. 12.3 on p. 301).

Class Color (java.awt.Color)

An object of class Color describes a particular color in the associated
color space, which defines the number and type of the color compo-
nents. Color objects are primarily used for graphic operations, such
as to specify the color for drawing or filling graphic objects. Un-
less the color space is not explicitly specified, new Color objects are
created as sRGB colors. The arguments passed to the Color con-
structor methods may be either float components in the range [0, 1]
or integers in the range [0, 255], as demonstrated by the following
example:

Color pink = new Color(1.0f, 0.5f, 0.5f);

Color blue = new Color(0, 0, 255);

Note that in both cases the arguments are interpreted as nonlinear
sRGB values (R′, G′, B′). Other constructor methods exist for class

360

14.7 Colorimetric
Support in Java

Color that also accept alpha (transparency) values. In addition,
the Color class offers two useful static methods, RGBtoHSB() and
HSBtoRGB(), for converting between sRGB and HSV8 colors (see Ch.
12, Sec. 12.2.3).

Class ColorSpace (java.awt.color.ColorSpace)

An object of type ColorSpace represents an entire color space, such
as sRGB or CMYK. Every subclass of ColorSpace (which itself is an
abstract class) provides methods for converting its native colors to
the CIEXYZ and sRGB color space and vice versa, such that conver-
sions between arbitrary color spaces can easily be performed (through
Java’s XYZ-based profile connection space). In the following exam-
ple, we first create an instance of the default sRGB color space by
invoking the static method ColorSpace.getInstance() and subse-
quently convert an sRGB color object (R′, B′, G′) to the correspond-
ing (X, Y, Z) coordinates in Java’s (D50-based) profile connection
space:

// create an sRGB color space object:

ColorSpace sRGBcsp

= ColorSpace.getInstance(ColorSpace.CS_sRGB);

float[] pink_RGB = new float[] {1.0f, 0.5f, 0.5f};

// convert from sRGB to XYZ:

float[] pink_XYZ = sRGBcsp.toCIEXYZ(pink_RGB);

Notice that color vectors are represented as float[] arrays for
color conversions with ColorSpace objects. If required, the method
getComponents() can be used to convert Color objects to float[]

arrays. In summary, the types of color spaces that can be created
with the ColorSpace.getInstance() method include:

• CS_sRGB: the standard (D65-based) RGB color space with non-
linear R′, G′, B′ components, as specified in [119].

• CS_LINEAR_RGB: color space with linear R, G, B components (i.e.,
no gamma correction applied).

• CS_GRAY: single-component color space with linear grayscale val-
ues.

• CS_PYCC: Kodak’s Photo YCC color space.
• CS_CIEXYZ: the default XYZ profile connection space (based on

the D50 white point).

Other color spaces can be implemented by creating additional im-
plementations (subclasses) of ColorSpace, as demonstrated for CIE-
LAB in the example in Sec. 14.7.3.

14.7.3 Implementation of the CIELAB Color Space
(Example)

In the following, we show a complete implementation of the CIELAB
color space, which is not available in the current Java API, based
on the specification given in Sec. 14.2. For this purpose, we define a

8 The HSV color space is referred to as “HSB” (hue, saturation, bright-

ness) in the Java API.
361

14 Colorimetric Color
Spaces

subclass of ColorSpace (defined in the package java.awt.color)
named Lab_ColorSpace, which implements the required methods
toCIEXYZ(), fromCIEXYZ() for converting to and from Java’s de-
fault profile connection space, respectively, and toRGB(), fromRGB()

for converting between CIELAB and sRGB (Progs. 14.1 and 14.2).
These conversions are performed in two steps via XYZ coordinates,
where care must be taken regarding the right choice of the associ-
ated white point (CIELAB is based on D65 and Java XYZ on D50).
The following examples demonstrate the principal use of the new
Lab_ColorSpace class:9

ColorSpace labCs = new LabColorSpace();

float[] cyan_sRGB = {0.0f, 1.0f, 1.0f};

float[] cyan_LAB = labCs.fromRGB(cyan_sRGB) // sRGB→LAB

float[] cyan_XYZ = labCs.toXYZ(cyan_LAB); // LAB→XYZ (D50)

14.7.4 ICC Profiles

Even with the most precise specification, a standard color space may
not be sufficient to accurately describe the transfer characteristics
of some input or output device. ICC10 profiles are standardized de-
scriptions of individual device transfer properties that warrant that
an image or graphics can be reproduced accurately on different me-
dia. The contents and the format of ICC profile files is specified
in [118], which is identical to ISO standard 15076 [121]. Profiles are
thus a key element in the process of digital color management [246].

The Java graphics API supports the use of ICC profiles mainly
through the classes ICC_ColorSpace and ICC_Profile, which allow
application designers to create various standard profiles and read ICC
profiles from data files.

Assume, for example, that an image was recorded with a cali-
brated scanner and shall be displayed accurately on a monitor. For
this purpose, we need the ICC profiles for the scanner and the mon-
itor, which are often supplied by the manufacturers as .icc data
files.11 For standard color spaces, the associated ICC profiles are of-
ten available as part of the computer installation, such as CIERGB.icc

or NTSC1953.icc. With these profiles, a color space object can be
specified that converts the image data produced by the scanner into
corresponding CIEXYZ or sRGB values, as illustrated by the follow-
ing example:

// load the scanner’s ICC profile and create a corresponding color space:

ICC_ColorSpace scannerCs = new

ICC_ColorSpace(ICC_ProfileRGB.getInstance("scanner.icc"));

// specify a device-specific color:

float[] deviceColor = {0.77f, 0.13f, 0.89f};

9 Classes LabColorSpace, LuvColorSpace (analogous implementation of
the CIELUV color space) and associated auxiliary classes are found in
package imagingbook.pub.colorimage.

10 International Color Consortium ICC (www.color.org).
11 ICC profile files may also come with extensions .icm or .pf (as in the

Java distribution).
362

http://www.color.org

14.7 Colorimetric
Support in Java

1 package imagingbook.pub.color.image;

2

3 import static imagingbook.pub.color.image.Illuminant.D50;

4 import static imagingbook.pub.color.image.Illuminant.D65;

5

6 import java.awt.color.ColorSpace;

7

8 public class LabColorSpace extends ColorSpace {

9

10 // D65 reference white point and chromatic adaptation objects:

11 static final double Xref = D65.X; // 0.950456

12 static final double Yref = D65.Y; // 1.000000

13 static final double Zref = D65.Z; // 1.088754

14

15 static final ChromaticAdaptation catD65toD50 =

16 new BradfordAdaptation(D65, D50);

17 static final ChromaticAdaptation catD50toD65 =

18 new BradfordAdaptation(D50, D65);

19

20 // the only constructor:

21 public LabColorSpace() {

22 super(TYPE_Lab,3);

23 }

24

25 // XYZ (Profile Connection Space, D50) → CIELab conversion:

26 public float[] fromCIEXYZ(float[] XYZ50) {

27 float[] XYZ65 = catD50toD65.apply(XYZ50);

28 return fromCIEXYZ65(XYZ65);

29 }

30

31 // XYZ (D65) → CIELab conversion (Eqn. (14.6)–14.10):

32 public float[] fromCIEXYZ65(float[] XYZ65) {

33 double xx = f1(XYZ65[0] / Xref);

34 double yy = f1(XYZ65[1] / Yref);

35 double zz = f1(XYZ65[2] / Zref);

36 float L = (float)(116.0 * yy - 16.0);

37 float a = (float)(500.0 * (xx - yy));

38 float b = (float)(200.0 * (yy - zz));

39 return new float[] {L, a, b};

40 }

41 // CIELab→XYZ (Profile Connection Space, D50) conversion:

42 public float[] toCIEXYZ(float[] Lab) {

43 float[] XYZ65 = toCIEXYZ65(Lab);

44 return catD65toD50.apply(XYZ65);

45 }

46

47 // CIELab→XYZ (D65) conversion (Eqn. (14.13)–14.15):

48 public float[] toCIEXYZ65(float[] Lab) {

49 double ll = (Lab[0] + 16.0) / 116.0;

50 float Y65 = (float) (Yref * f2(ll));

51 float X65 = (float) (Xref * f2(ll + Lab[1] / 500.0));

52 float Z65 = (float) (Zref * f2(ll - Lab[2] / 200.0));

53 return new float[] {X65, Y65, Z65};

54 }

Prog. 14.1
Java implementation of the
CIELAB color space as a
sub-class of ColorSpace (part
1). The conversion from
D50-based profile connec-
tion space XYZ coordinates
to CIELAB (Eqn. (14.6))
and back is implemented
by the required methods
fromCIEXYZ() and toCIEXYZ(),
respectively. The auxiliary
methods fromCIEXYZ65() and
toCIEXYZ65() are used for con-
verting D65-based XYZ co-
ordinates (see Eqn. (14.6)).
Chromatic adaptation from
D50 to D65 is performed
by the objects catD65toD50
and catD50toD65 of type
ChromaticAdaptation. The
gamma correction functions
f1 (Eqn. (14.8)) and f2 (Eqn.
(14.15)) are implemented by
the methods f1() and f2(),
respectively (see Prog. 14.2).

363

14 Colorimetric Color
Spaces

Prog. 14.2
Java implementation of the

CIELAB color space as a sub-
class of ColorSpace (part 2).
The methods fromRGB() and
toRGB() perform direct con-

version between CIELAB and
sRGB via D65-based XYZ

coordinates, i.e., without
conversion to Java’s Profile
Connection Space. Gamma
correction (for mapping be-

tween linear RGB and sRGB
component values) is im-

plemented by the methods
gammaFwd() and gammaInv() in

class sRgbUtil (not shown).
The methods f1() and f2()

implement the forward and
inverse gamma correction of

CIELAB components (see
Eqns. (14.6) and (14.13)).

55 // sRGB→CIELab conversion:

56 public float[] fromRGB(float[] srgb) {

57 // get linear rgb components:

58 double r = sRgbUtil.gammaInv(srgb[0]);

59 double g = sRgbUtil.gammaInv(srgb[1]);

60 double b = sRgbUtil.gammaInv(srgb[2]);

61 // convert to XYZ (D65-based, Eqn. (14.29)):

62 float X =

63 (float) (0.412453 * r + 0.357580 * g + 0.180423 * b);

64 float Y =

65 (float) (0.212671 * r + 0.715160 * g + 0.072169 * b);

66 float Z =

67 (float) (0.019334 * r + 0.119193 * g + 0.950227 * b);

68 float[] XYZ65 = new float[] {X, Y, Z};

69 return fromCIEXYZ65(XYZ65);

70 }

71

72 // CIELab→sRGB conversion:

73 public float[] toRGB(float[] Lab) {

74 float[] XYZ65 = toCIEXYZ65(Lab);

75 double X = XYZ65[0];

76 double Y = XYZ65[1];

77 double Z = XYZ65[2];

78 // XYZ→RGB (linear components, Eqn. (14.28)):

79 double r = (3.240479*X + -1.537150*Y + -0.498535*Z);

80 double g = (-0.969256*X + 1.875992*Y + 0.041556*Z);

81 double b = (0.055648*X + -0.204043*Y + 1.057311*Z);

82 // RGB→sRGB (nonlinear components):

83 float rr = (float) sRgbUtil.gammaFwd(r);

84 float gg = (float) sRgbUtil.gammaFwd(g);

85 float bb = (float) sRgbUtil.gammaFwd(b);

86 return new float[] {rr, gg, bb};

87 }

88

89 static final double epsilon = 216.0 / 24389; // Eqn. (14.9)

90 static final double kappa = 841.0 / 108; // Eqn. (14.10)

91

92 // Gamma correction for L* (forward, Eqn. (14.8)):

93 double f1 (double c) {

94 if (c > epsilon) // 0.008856

95 return Math.cbrt(c);

96 elses

97 return (kappa * c) + (16.0 / 116);

98 }

99

100 // Gamma correction for L* (inverse, Eqn. (14.15)):

101 double f2 (double c) {

102 double c3 = c * c * c;

103 if (c3 > epsilon)

104 return c3;

105 else

106 return (c - 16.0 / 116) / kappa;

107 }

108

109 } // end of class LabColorSpace

364

14.8 Exercises
// convert to sRGB:

float[] RGBColor = scannerCs.toRGB(deviceColor);

// convert to (D50-based) XYZ:

float[] XYZColor = scannerCs.toCIEXYZ(deviceColor);

Similarly, we can calculate the accurate color values to be sent to the
monitor by creating a suitable color space object from this device’s
ICC profile.

14.8 Exercises

Exercise 14.1. For chromatic adaptation (defined in Eqn. (14.43)),
transformation matrices other than the Bradford model (Eqn. (14.45))
have been proposed; for example, [225],

M
(2)
CAT =

(
1.2694 −0.0988 −0.1706

−0.8364 1.8006 0.0357

0.0297 −0.0315 1.0018

)

or (14.50)

M
(3)
CAT =

(
0.7982 0.3389 −0.1371

−0.5918 1.5512 0.0406

0.0008 −0.0239 0.9753

)

. (14.51)

Derive the complete chromatic adaptation transformations M50|65

and M65|50 for converting between D65 and D50 colors, analogous
to Eqns. (14.46) and (14.47), for each of the above transformation
matrices.

Exercise 14.2. Implement the conversion of an sRGB color image to
a colorless (grayscale) sRGB image using the three methods in Eqn.
(14.37) (incorrectly applying standard weights to nonlinear R′G′B′

components), Eqn. (14.38) (exact computation), and Eqn. (14.39)
(approximation using nonlinear components and modified weights).
Compare the results by computing difference images, and also deter-
mine the total errors.

Exercise 14.3. Write a program to evaluate the errors that are in-
troduced by using nonlinear instead of linear color components for
grayscale conversion. To do this, compute the diffence between the Y
values obtained with the linear variant (Eqn. (14.38)) and the nonlin-
ear variant (Eqn. (14.39) with w′

R = 0.309, w′
G = 0.609, w′

B = 0.082)
for all possible 224 RGB colors. Let your program return the max-
imum gray value difference and the sum of the absolute differences
for all colors.

Exercise 14.4. Determine the virtual primaries R∗, G∗, B∗ obtained
by Bradford adaptation (Eqn. (14.42)), with MCAT as defined in Eqn.
(14.45). What are the resulting coordinates in the xy chromaticity
diagram? Are the primaries inside the visible color range?

365

15

Filters for Color Images

Color images are everywhere and filtering them is such a common
task that it does not seem to require much attention at all. In this
chapter, we describe how classical linear and nonlinear filters, which
we covered before in the context of grayscale images (see Ch. 5), can
be either used directly or adapted for the processing of color images.
Often color images are treated as stacks of intensity images and ex-
isting monochromatic filters are simply applied independently to the
individual color channels. While this is straightforward and performs
satisfactorily in many situations, it does not take into account the
vector-valued nature of color pixels as samples taken in a specific,
multi-dimensional color space. As we show in this chapter, the out-
come of filter operations depends strongly on the working color space
and the variations between different color spaces may be substantial.
Although this may not be apparent in many situations, it should be
of concern if high-quality color imaging is an issue.

15.1 Linear Filters

Linear filters are important in many applications, such as smoothing,
noise removal, interpolation for geometric transformations, decima-
tion in scale-space transformations, image compression, reconstruc-
tion and edge enhancement. The general properties of linear filters
and their use on scalar-valued grayscale images are detailed in Chap-
ter 5, Sec. 5.2. For color images, it is common practice to apply these
monochromatic filters separately to each color channel, thereby treat-
ing the image as a stack of scalar-valued images. As we describe in
the following section, this approach is simple as well as efficient, since
existing implementations for grayscale images can be reused without
any modification. However, the outcome depends strongly on the
choice of the color space in which the filter operation is performed.
For example, it makes a great difference if the channels of an RGB
image contain linear or nonlinear component values. This issue is
discussed in more detail in Sec. 15.1.2.

367
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_15

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

15 Filters for Color
Images

15.1.1 Monochromatic Application of Linear Filters

Given a discrete scalar (grayscale) image with elements I(u, v) ∈ R,
the application of a linear filter can be expressed as a linear 2D
convolution1

Ī(u, v) = (I ∗H)(u, v) =
∑

(i,j)∈RH

I(u−i, v−j) ·H(i, j), (15.1)

where H denotes a discrete filter kernel defined over the (usually
rectangular) region RH , with H(i, j) ∈ R. For a vector-valued image
I with K components, the individual picture elements are vectors,
that is,

I(u, v) =

⎛

⎜
⎜
⎜
⎝

I1(u, v)
I2(u, v)

...
IK(u, v)

⎞

⎟
⎟
⎟
⎠

, (15.2)

with I(u, v) ∈ RK or Ik(u, v) ∈ R, respectively. In this case, the
linear filter operation can be generalized to

Ī(u, v) = (I ∗H)(u, v) =
∑

(i,j)∈RH

I(u− i, v − j) ·H(i, j), (15.3)

with the same scalar-valued filter kernel H as in Eqn. (15.1). Thus
the kth element of the resulting pixels,

Īk(u, v) =
∑

(i,j)∈RH

Ik(u − i, v − j) ·H(i, j) = (Ik ∗H) (u, v), (15.4)

is simply the result of scalar convolution (Eqn. (15.1)) applied to the
corresponding component plane Ik. In the case of an RGB color
image (with K = 3 components), the filter kernel H is applied sepa-
rately to the scalar-valued R, G, and B planes (IR, IG, IB), that is,

Ī(u, v) =

⎛

⎝

ĪR(u, v)
ĪG(u, v)
ĪB(u, v)

⎞

⎠ =

⎛

⎝

(IR ∗H) (u, v)
(IG ∗H) (u, v)
(IB ∗H) (u, v)

⎞

⎠ . (15.5)

Figure 15.1 illustrates how linear filters for color images are typically
implemented by individually filtering the three scalar-valued color
components.

Linear smoothing filters

Smoothing filters are a particular class of linear filters that are found
in many applications and characterized by positive-only filter coef-
ficients. Let Cu,v = (c1, . . . , cn) denote the vector of color pixels
cm ∈ RK contained in the spatial support region of the kernel H ,
placed at position (u, v) in the original image I, where n is the size
of H . With arbitrary kernel coefficients H(i, j) ∈ R, the resulting

1 See also Chapter 5, Sec. 5.3.1.
368

15.1 Linear Filters

I

IR

IG

IB

ĪR

ĪG

ĪB

Ī

H

H

H

Fig. 15.1
Monochromatic application
of a linear filter. The filter,
specified by the kernel H, is
applied separately to each of
the scalar-valued color chan-
nels IR, IG, IB. Combining
the filtered component chan-
nels ĪR, ĪG, ĪB produces the
filtered color image Ī.

color pixel Ī(u, v) = c̄ in the filtered image is a linear combination
of the original colors in Cu,v , that is,

c̄ = w1 · c1 + w2 · c2 + · · ·+ wn · cn =
n∑

i=1

wi · ci, (15.6)

where wm is the coefficient in H that corresponds to pixel cm. If
the kernel is normalized (i.e.,

∑
H(i, j) =

∑
αm = 1), the result

is an affine combination of the original colors. In case of a typical
smoothing filter, with H normalized and all coefficients H(i, j) being
positive, any resulting color c̄ is a convex combination of the original
color vectors c1, . . . , cn.

Geometrically this means that the mixed color c̄ is contained
within the convex hull of the contributing colors c1, . . . , cn, as illus-
trated in Fig. 15.2. In the special case that only two original colors
c1, c2 are involved, the result c̄ is located on the straight line segment
connecting c1 and c2 (Fig. 15.2(b)).2

R

G

B

R

G

B

c1

c2

c̄

(a) (b)

Fig. 15.2
Convex linear color mixtures.
The result of the convex com-
bination (mixture) of n color
vectors C = {c1, . . . , cn} is
confined to the convex hull
of C (a). In the special case
of only two initial colors c1

and c2, any mixed color c̄ is
located on the straight line
segment connecting c1 and
c2 (b).

2 The convex hull of two points c1, c2 consists of the straight line segment
between them.

369

15 Filters for Color
Images

Fig. 15.3
Linear smoothing filter at a

color edge. Discrete filter ker-
nel with positive-only elements
and support region R (a). Fil-

ter kernel positioned over a
region of constant color c1 and

over a color step edge c1/c2,
respectively (b). If the (nor-

malized) filter kernel of extent
R is completely embedded

in a region of constant color
(c1), the result of filtering is

exactly that same color. At a
step edge between two colors
c1, c2, one part of the kernel

(R1) covers pixels of color c1

and the remaining part (R2)
covers pixels of color c2. In

this case, the result is a linear
mixture of the colors c1, c2,

as illustrated in Fig. 15.2(b).

c1 c2

R

R1 R2

(a) (b)

Response to a color step edge

Assume, as a special case, that the original RGB image I contains
a step edge separating two regions of constant colors c1 and c2, re-
spectively, as illustrated in Fig. 15.3(b). If the normalized smoothing
kernel H is placed at some position (u, v), where it is fully supported
by pixels of identical color c1, the (trivial) response of the filter is

Ī(u, v) =
∑

(i,j)∈RH

c1 ·H(i, j) = c1 ·
∑

(i,j)∈RH

H(i, j) = c1 · 1 = c1. (15.7)

Thus the result at this position is the original color c1. Alternatively,
if the filter kernel is placed at some position on a color edge (between
two colors c1, c2, see again Fig. 15.3(b)), a subset of its coefficients
(R1) is supported by pixels of color c1, while the other coefficients
(R2) overlap with pixels of color c2. Since R1 ∪ R2 = R and the
kernel is normalized, the resulting color is

c̄ =
∑

(i,j)∈R1

c1 ·H(i, j) +
∑

(i,j)∈R2

c2 ·H(i, j) (15.8)

= c1 ·
∑

(i,j)∈R1

H(i, j)

︸ ︷︷ ︸

1− s

+ c2 ·
∑

(i,j)∈R2

H(i, j)

︸ ︷︷ ︸

s

(15.9)

= c1 · (1− s) + c2 · s = c1 + s · (c2 − c1), (15.10)

for some s ∈ [0, 1]. As we see, the resulting color coordinate c̄ lies on
the straight line segment connecting the original colors c1 and c2 in
the respective color space. Thus, at a step edge between two colors
c1, c2, the intermediate colors produced by a (normalized) smoothing
filter are located on the straight line between the two original color
coordinates. Note that this relationship between linear filtering and
linear color mixtures is independent of the particular color space in
which the operation is performed.

15.1.2 Color Space Considerations

Since a linear filter always yields a convex linear mixture of the in-
volved colors it should make a difference in which color space the

370

15.1 Linear Filters

0

255

255
0

255

R

G

B

sRGB

lin. RGB

CIELUV

CIELAB

Fig. 15.4
Intermediate colors produced
by linear interpolation between
yellow and blue, performed in
different color spaces. The 3D
plot shows the resulting colors
in linear RGB space.

filter operation is performed. For example, Fig. 15.4 shows the inter-
mediate colors produced by a smoothing filter being applied to the
same blue/yellow step edge but in different color spaces: sRGB, lin-
ear RGB, CIELUV, and CIELAB. As we see, the differences between
the various color spaces are substantial. To obtain dependable and
standardized results it might be reasonable to first transform the in-
put image to a particular operating color space, perform the required
filter operation, and finally transform the result back to the original
color space, as illustrated in Fig. 15.5.

IRGB
ĪRGB

ILAB ĪLAB

T T −1

L∗ L̄∗

a∗ ā∗

b∗ b̄∗H

H

H

Fig. 15.5
Linear filter operation per-
formed in a “foreign” color
space. The original RGB image
IRGB is first transformed to
CIELAB (by T), where the lin-
ear filter is applied separately
to the three channels L∗, a∗,
b∗. The filtered RGB image
ĪRGB is obtained by trans-
forming back from CIELAB to
RGB (by T −1).

Obviously, a linear filter implies certain “metric” properties of the
underlying color space. If we assume that a certain color space SA

has this property, then this is also true for any color space SB that is
related to SA by a linear transformation, such as CIEXYZ and linear
RGB space (see Ch. 14, Sec. 14.4.1). However, many color spaces used
in practice (sRGB in particular) are related to these reference color
spaces by highly nonlinear mappings, and thus significant deviations
can be expected.

Preservation of brightness (luminance)

Apart from the intermediate colors produced by interpolation, an-
other important (and easily measurable) aspect is the resulting
change of brightness or luminance across the filter region. In par-

371

15 Filters for Color
Images

ticular it should generally hold that the luminance of the filtered
color image is identical to the result of filtering only the (scalar)
luminance channel of the original image with the same kernel H .
Thus, if Lum(I) denotes the luminance of the original color image
and Lum(I ∗H) is the luminance of the filtered image, it should hold
that

Lum(I ∗H) = Lum(I) ∗H. (15.11)

This is only possible if Lum(·) is linearly related to the components of
the associated color space, which is mostly not the case. From Eqn.
(15.11) we also see that, when filtering a step edge with colors c1 and
c2, the resulting brightness should also change monotonically from
Lum(c1) to Lum(c2) and, in particular, none of the intermediate
brightness values should fall outside this range.

Figure 15.6 shows the results of filtering a synthetic test image
with a normalized Gaussian kernel (of radius σ = 3) in different
color spaces. Differences are most notable at the red–blue and green–
magenta transitions, with particularly large deviations in the sRGB
space. The corresponding luminance values Y (calculated from lin-
ear RGB components as in Eqn. (12.35)) are shown in Fig. 15.6(g–j).
Again conspicuous is the result for sRGB (Fig. 15.6(c, g)), which ex-
hibits transitions at the red–blue, magenta–blue, and magenta–green
edges, where the resulting brightness drops below the original bright-
ness of both contributing colors. Thus Eqn. (15.11) is not satisfied
in this case. On the other hand, filtering in linear RGB space has
the tendency to produce too high brightness values, as can be seen
at the black–white markers in Fig. 15.6(d, h).

Out-of-gamut colors

If we apply a linear filter in RGB or sRGB space, the resulting inter-
mediate colors are always valid RGB colors again and contained in
the original RGB gamut volume. However, transformed to CIELUV
or CIELAB, the set of possible RGB or sRGB colors forms a non-
convex shape (see Ch. 14, Fig. 14.5), such that linearly interpolated
colors may fall outside the RGB gamut volume. Particularly critical
(in both CIELUV and CIELAB) are the red–white, red–yellow, and
red–magenta transitions, as well as yellow–green in CIELAB, where
the resulting distances from the gamut surface can be quite large (see
Fig. 15.7). During back-transformation to the original color space,
such “out-of-gamut” colors must receive special treatment, since sim-
ple clipping of the affected components may cause unacceptable color
distortions [167].

Implications and further reading

Applying a linear filter to the individual component channels of a
color image presumes a certain “linearity” of the underlying color
space. Smoothing filters implicitly perform additive linear mixing
and interpolation. Despite common practice (and demonstrated by
the results), there is no justification for performing a linear filter
operation directly on gamma-mapped sRGB components. However,
contrary to expectation, filtering in linear RGB does not yield better

372

15.1 Linear Filters
Original Luminance

(a) (b)

sRGB lin. RGB CIELUV CIELAB

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 15.6
Gaussian smoothing performed
in different color spaces. Syn-
thetic color image (a) and
corresponding luminance im-
age (b). The test image con-
tains a horizontal bar with
reduced color saturation but
the same luminance as its sur-
round, i.e., it is invisible in
the luminance image. Gaus-
sian filter applied in different
color spaces: sRGB (c), linear
RGB (d), CIELUV (e), and
CIELAB (f). The bottom row
(g–j) shows the corresponding
luminance (Y) images. Note
the dark bands in the sRGB
result (b), particularly along
the color boundaries between
regions B–E, C–D, and D–E,
which stand out clearly in the
corresponding luminance im-
age (g). Filtering in linear
RGB space (d, h) gives good
results between highly satu-
rated colors, but subjectively
too high luminance in unsatu-
rated regions, which is appar-
ent around the gray markers.
Results with CIELUV (e, i)
and CIELAB color spaces (f, j)
appear most consistent as far
as the preservation of lumi-
nance is concerned.

0.25 0.5 0.75 1

63

127

191

255

λ

Y
R, G, B

Red

(255, 0, 0) −−−−−−−−−→
Rellow

(255, 255, 0)

sRGB

RGB

CIELUV

CIELAB

CIELAB

(a) (b)

Fig. 15.7
Out-of-gamut colors produced
by linear interpolation between
red and yellow in “foreign”
color spaces. The graphs in
(a) show the (linear) R, G, B
component values and the
luminance Y (gray curves)
resulting from a linear fil-
ter between red and yellow
performed in different color
spaces. The graphs show that
the red component runs sig-
nificantly outside the RGB
gamut for both CIELUV and
CIELAB. In (b) all pixels with
any component outside the
RGB gamut by more than 1%
are marked white (for filtering
in CIELAB).

overall results either. In summary, both nonlinear sRGB and linear
RGB color spaces are unsuitable for linear filtering if perceptually ac-
curate results are desired. Perceptually uniform color spaces, such as
CIELUV and CIELAB, are good choices for linear filtering because
of their metric properties, with CIELUV being perhaps slightly supe-
rior when it comes to interpolation over large color distances. When
using CIELUV or CIELAB as intermediate color spaces for filtering
RGB images, one must consider that out-of-gamut colors may be
produced that must be handled properly. Thus none of the exist-
ing standard color spaces is universally suited or even “ideal” with
respect to linear filtering.

The proper choice of the working color space is relevant not only
to smoothing filters, but also to other types of filters, such as linear
interpolation filters for geometric image transformations, decimation
filters used in multi-scale techniques, and also nonlinear filters that

373

15 Filters for Color
Images

involve averaging colors or calculation of color distances, such as the
vector median filter (see Sec. 15.2.2). While complex color space
transformations in the context of filtering (e.g., sRGB ↔ CIELUV)
are usually avoided for performance reasons, they should certainly
be considered when high-quality results are important.

Although the issues related to color mixtures and interpolation
have been investigated for some time (see, e.g., [149,258]), their rele-
vance to image filtering has not received much attention in the liter-
ature. Most image processing tools (including commercial software)
apply linear filters directly to color images, without proper lineariza-
tion or color space conversion. Lindbloom [149] was among the first
to describe the problem of accurate color reproduction, particularly
in the context of computer graphics and photo-realistic imagery. He
also emphasized the relevance of perceptual uniformity for color pro-
cessing and recommended the use of CIELUV as a suitable (albeit not
perfect) processing space. Tomasi and Manduchi [229] suggested the
use of the Euclidean distance in CIELAB space as “most natural” for
bilateral filtering applied to color images (see also Ch. 17, Sec. 17.2)
and similar arguments are put forth in [109]. De Weijer [239] notes
that the additional chromaticities introduced by linear smoothing are
“visually unacceptable” and argues for the use of nonlinear operators
as an alternative. Lukac et al. [156] mention “certain inaccuracies”
and color artifacts related to the application of scalar filters and dis-
cuss the issue of choosing a proper distance metric for vector-based
filters. The practical use of alternative color spaces for image filtering
is described in [141, Ch. 5].

15.1.3 Linear Filtering with Circular Values

If any of the color components is a circular quantity, such as the
hue component in the HSV and HLS color spaces (see Ch. 12, Sec.
12.2.3), linear filters cannot be applied directly without additional
provisions. As described in the previous section, a linear filter effec-
tively calculates a weighted average over the values inside the filter
region. Since the hue component represents a revolving angle and ex-
hibits a discontinuity at the 1→ 0 (i.e., 360◦→ 0◦) transition, simply
averaging this quantity is not admissible (see Fig. 15.8).

However, correct interpolation of angular data is possible by uti-
lizing the corresponding cosine and sine values, without any special
treatment of discontinuities [69]. Given two angles α1, α2, the average
angle α12 can be calculated as3

α12 = tan−1
(sin(α1) + sin(α2)

cos(α1) + cos(α2)

)

(15.12)

= ArcTan
(
cos(α1) + cos(α2), sin(α1) + sin(α2)

)
(15.13)

and, in general, multiple angular values α1, . . . , αn can be correctly
averaged in the form

ᾱ = ArcTan
(n∑

i=1

cos(αi),
n∑

i=1

sin(αi)
)

. (15.14)

3 See Sec. A.1 in the Appendix for the definition of the ArcTan() function.
374

15.1 Linear Filters

I Ih

(a) (b)

Ih ∗ H Ĩ

(c) (d)

Fig. 15.8
Naive linear filtering in HSV
color space. Original RGB
color image (a) and the asso-
ciated HSV hue component
Ih (b), with values in the
range [0, 1). Hue component
after direct application of a
Gaussian blur filter H with
σ = 3.0 (c). Reconstructed

RGB image Ĩ after filtering all
components in HSV space (d).
Note the false colors intro-
duced around the 0 → 1 dis-
continuity (near red) of the
hue component.

Also, the calculation of a weighted average is possible in the same
way, that is,

ᾱ = ArcTan
(

n∑

i=1

wi · cos(αi),
n∑

i=1

wi · sin(αi)
)
, (15.15)

without any additional provisions, even the weights wi need not be
normalized. This approach can be used for linearly filtering circular
data in general.

Filtering the hue component in HSV color space

To apply a linear filter H to the circular hue component Ih (with
original values in [0, 1)) of a HSV or HLS image (see Ch. 12, Sec.
12.2.3), we first calculate the corresponding cosine and sine parts
Isin

h and Icos
h by

Isin
h (u, v) = sin(2π · Ih(u, v)),

Icos
h (u, v) = cos(2π · Ih(u, v)),

(15.16)

with resulting values in the range [−1, 1]. These are then filtered
individually, that is,

Īsin
h = Isin

h ∗H,

Īcos
h = Icos

h ∗H.
(15.17)

Finally, the filtered hue component Īh is obtained in the form

Īh(u, v) =
1

2π
·
[
ArcTan

(
Īcos

h (u, v), Īsin
h (u, v)

)
mod 2π

]
, (15.18)

with values again in the range [0, 1].
Fig. 15.9 demonstrates the correct application of a Gaussian

smoothing filter to the hue component of an HSV color image by
375

15 Filters for Color
Images

Fig. 15.9
Correct filtering of the HSV

hue component by separation
into cosine and sine parts (see

Fig. 15.8(a) for the original
image). Cosine and sine parts

Isin
h , Icos

h of the hue compo-
nent before (a, b) and after
the application of a Gaus-

sian blur filter with σ = 3.0
(c, d). Smoothed hue com-

ponent Īh after merging the
filtered cosine and sine parts
Īsin

h , Īcos
h (e). Reconstructed

RGB image Ī after filtering
all HSV components (f). It

is apparent that the hard
0/1 hue transitions in (e)

are in fact only gradual color
changes around the red hues.

The other HSV components
(S, V , which are non-circular)
were filtered in the usual way.

The reconstructed RGB im-
age (f) shows no false colors

and all hues correctly filtered.

Icos
h Isin

h

(a) (b)

Īcos
h Īsin

h

(c) (d)

Īh Ī

(e) (f)

separation into cosine and sine parts. The other two HSV compo-
nents (S, V) are non-circular and were filtered as usual. In contrast
to the result in Fig. 15.8(d), no false colors are produced at the 0→ 1
boundary. In this context it is helpful to look at the distribution of
the hue values, which are clustered around 0/1 in the sample image
(see Fig. 15.10(a)). In Fig. 15.10(b) we can clearly see how naive fil-
tering of the hue component produces new (false) colors in the middle
of the histogram. This does not occur when the hue component is
filtered correctly (see Fig. 15.10(c)).

Saturation-weighted filtering

The method just described does not take into account that in HSV
(and HLS) the hue and saturation components are closely related. In
particular, the hue angle may be very inaccurate (or even indetermi-
nate) if the associated saturation value goes to zero. For example,
the test image in Fig. 15.8(a) contains a bright patch in the lower
right-hand corner, where the saturation is low and the hue value is
quite unstable, as seen in Fig. 15.9(a, b). However, the circular filter
defined in Eqns. (15.16)–(15.18) takes all color samples as equally
significant.

A simple solution is to use the saturation value Is(u, v) as a weight
factor for the associated pixel [98], by modifying Eqn. (15.16) to

376

15.1 Linear Filters1: HsvLinearFilter(Ihsv, H)
Input: Ihsv = (Ih, Is, Iv), a HSV color image of size M ×N , with
all components in [0, 1]; H , a 2D filter kernel. Returns a new
(filtered) HSV color image of size M × N .

2: (M, N) ← Size(Ihsv)
3: Create 2D maps Isin

h , Icos
h , Īh : M × N �→ R

Split the hue channel into sine/cosine parts:
4: for all (u, v) ∈ M × N do
5: θ ← 2π · Ih(u, v) ⊲ hue angle θ ∈ [0, 2π]
6: s ← Is(u, v) ⊲ saturation s ∈ [0, 1]

7: Isin
h (u, v) ← s · sin(θ) ⊲ Isin

h (u, v) ∈ [−1, 1]

8: Icos
h (u, v) ← s · cos(θ) ⊲ Icos

h (u, v) ∈ [−1, 1]

Filter all components with the same kernel:
9: Īsin

h ← Isin
h ∗ H

10: Īcos
h ← Icos

h ∗ H
11: Īs ← Is ∗ H
12: Īv ← Iv ∗ H

Reassemble the filtered hue channel:
13: for all (u, v) ∈ M × N do
14: θ ← ArcTan

(
Īcos

h (u, v), Īsin
h (u, v)

)
⊲ θ ∈ [−π, π]

15: Īh(u, v) ← 1
2π

· (θ mod 2π) ⊲ Īh(u, v) ∈ [0, 1]

16: Īhsv ← (Īh, Īs, Īv)

17: return Īhsv

Alg. 15.1
Linear filtering in HSV color
space. All component values of
the original HSV image are in
the range [0, 1]. The algorithm
considers the circular nature
of the hue component and uses
the saturation component (in
line 6) as a weight factor, as
defined in Eqn. (15.19). The
same filter kernel H is applied
to all three color components
(lines 9–12).

Original image Naive filter Circular filter Saturation-weighted

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

(a) (b) (c) (d)

Fig. 15.10
Histogram of the HSV hue
component before and after
linear filtering. Original dis-
tribution of hue values Ih (a),
showing that colors are clus-
tered around the 0/1 discon-
tinuity (red). Result after
naive filtering the hue compo-
nent (b), after filtering sepa-
rated cosine and sine parts (c),
and after addition weighting
with saturation values (d).
The bottom row shows the
isolated hue component (color
angle) by the corresponding
colors (saturation and value set
to 100 %). Note the noisy spot
in the lower right-hand corner
of (a), where color saturation
is low and hue angles are very
unstable.Isin

h (u, v) = Is(u, v) · sin(2π · Ih(u, v)),

Icos
h (u, v) = Is(u, v) · cos(2π · Ih(u, v)).

(15.19)

All other steps in Eqns. (15.17)–(15.18) remain unchanged. The com-
plete process is summarized in Alg. 15.1. The result in Fig. 15.10(d)
shows that, particularly in regions of low color saturation, more sta-
ble hue values can be expected. Note that no normalization of the
weights is required because the calculation of the hue angles (with
the ArcTan() function in Eqn. (15.18)) only considers the ratio of the
resulting sine and cosine parts.

377

15 Filters for Color
Images

15.2 Nonlinear Color Filters

In many practical image processing applications, linear filters are of
limited use and nonlinear filters, such as the median filter, are applied
instead.4 In particular, for effective noise removal, nonlinear filters
are usually the better choice. However, as with linear filters, the
techniques originally developed for scalar (grayscale) images do not
transfer seamlessly to vector-based color data. One reason is that,
unlike in scalar data, no natural ordering relation exists for multi-
dimensional data. As a consequence, nonlinear filters of the scalar
type are often applied separately to the individual color channels,
and again one must be cautious about the intermediate colors being
introduced by these types of filters.

In the remainder of this section we describe the application of the
classic (scalar) median filter to color images, a vector-based version
of the median filter, and edge-preserving smoothing filters designed
for color images. Additional filters for color images are presented in
Chapter 17.

15.2.1 Scalar Median Filter

Applying a median filter with support region R (e.g., a disk-shaped
region) at some image position (u, v) means to select one pixel value
that is the most representative of the pixels in R to replace the cur-
rent center pixel (hot spot). In case of a median filter, the statistical
median of the pixels in R is taken as that representative. Since we
always select the value of one of the existing image pixels, the median
filter does not introduce any new pixel values that were not contained
in the original image.

If a median filter is applied independently to the components of
a color image, each channel is treated as a scalar image, like a single
grayscale image. In this case, with the support region R centered
at some point (u, v), the median for each color channel will typically
originate from a different spatial position in R, as illustrated in Fig.
15.11. Thus the components of the resulting color vector are generally
collected from more than one pixel in R, therefore the color placed
in the filtered image may not match any of the original colors and
new colors may be generated that were not contained in the original
image. Despite its obvious deficiencies, the scalar (monochromatic)
median filter is used in many popular image processing environments
(including Photoshop and ImageJ) as the standard median filter for
color images.

15.2.2 Vector Median Filter

The scalar median filter is based on the concept of rank ordering, that
is, it assumes that the underlying data can be ordered and sorted.
However, no such natural ordering exists for data elements that are
vectors. Although vectors can be sorted in many different ways, for
example by length or lexicographically along their dimensions, it is

4 See also Chapter 5, Sec. 5.4.
378

15.2 Nonlinear Color
Filters

RGB

R G B

u

uuu

v

v
Fig. 15.11
Scalar median filter applied
separately to color channels.
With the filter region R cen-
tered at some point (u, v), the
median pixel value is generally
found at different locations in
the R, G, B channels of the
original image. The compo-
nents of the resulting RGB
color vector are collected from
spatially separated pixels. It
thus may not match any of the
colors in the original image.

usually impossible to define a useful greater-than relation between
any pair of vectors.

One can show, however, that the median of a sequence of n scalar
values P = (p1, . . . , pn) can also be defined as the value pm selected
from P , such that

n∑

i=1

|pm − pi| ≤
n∑

i=1

∣
∣pj − pi

∣
∣ , (15.20)

holds for any pj ∈ P . In other words, the median value pm =
median(P) is the one for which the sum of the differences to all
other elements in the sequence P is the smallest.

With this definition, the concept of the median can be easily
extended from the scalar situation to the case of multi-dimensional
data. Given a sequence of vector-valued samples P = (p1, . . . , pn),
with pi ∈ R

K , we define the median element pm to satisfy

n∑

i=1

‖pm − pi‖ ≤
n∑

i=1

∥
∥pj − pi

∥
∥ , (15.21)

for every possible pj ∈ P . This is analogous to Eqn. (15.20), with
the exception that the scalar difference |·| has been replaced by the
vector norm ‖·‖ for measuring the distance between two points in the
K-dimensional space.5 We call

DL(p, P) =
∑

pi∈P

‖p− pi‖L (15.22)

the “aggregate distance” of the sample vector p with respect to all
samples pi in P under the distance norm L. Common choices for the
distance norm are the L1, L2 and L∞ norms, that is,

5 K denotes the dimensionality of the samples in pi, for example, K = 3
for RGB color samples.

379

15 Filters for Color
Images

Fig. 15.12
Noisy test image (a) with

enlarged details (b, c), used
in the following examples.

L1: ‖p− q‖1 =
K∑

k=1

|pk − qk| , (15.23)

L2: ‖p− q‖2 =
[K∑

k=1

|pk − qk|2
]1/2

, (15.24)

L∞: ‖p− q‖∞ = max
1≤k≤K

|pk − qk| . (15.25)

The vector median of the sequence P can thus be defined as

median(P) = argmin
p∈P

DL(p, P), (15.26)

that is, the sample p with the smallest aggregate distance to all other
elements in P .

A straight forward implementation of the vector median filter for
RGB images is given in Alg. 15.2. The calculation of the aggregate
distance DL(p, P) is performed by the function AggregateDistance

(p, P). At any position (u, v), the center pixel is replaced by the
neighborhood pixel with the smallest aggregate distance Dmin, but
only if it is smaller than the center pixel’s aggregate distance Dctr

(line 15). Otherwise, the center pixel is left unchanged (line 17). This
is to prevent that the center pixel is unnecessarily changed to another
color, which incidentally has the same aggregate distance.

The optimal choice of the norm L for calculating the distances
between color vectors in Eqn. (15.22) depends on the assumed noise
distribution of the underlying signal [10]. The effects of using dif-
ferent norms (L1, L2, L∞) are shown in Fig. 15.13 (see Fig. 15.12
for the original images). Although the results for these norms show
numerical differences, they are hardly noticeable in real images (par-
ticularly in print). Unless otherwise noted, the L1 norm is used in
all subsequent examples.

Results of the scalar median filter and the vector median filter
are compared in Fig. 15.14. Note how new colors are introduced by
the scalar filter at certain locations (Fig. 15.14(a, c)), as illustrated in
Fig. 15.11. In contrast, the vector median filter (Fig. 15.14(b, d)) can
only produce colors that already exist in the original image. Figure

380

15.2 Nonlinear Color
Filters

1: VectorMedianFilter(I, r)
Input: I = (IR, IG, IB), a color image of size M × N ;
r, filter radius (r ≥ 1).
Returns a new (filtered) color image of size M × N .

2: (M, N) ← Size(I)
3: I ′ ← Duplicate(I)
4: for all image coordinates (u, v) ∈ M × N do
5: pctr ← I(u, v) ⊲ center pixel of support region
6: P ← GetSupportRegion(I, u, v, r)
7: dctr ← AggregateDistance(pctr, P)
8: dmin ← ∞
9: for all p ∈ P do

10: d ← AggregateDistance(p, P)
11: if d < dmin then
12: pmin ← p
13: dmin ← d
14: if dmin < dctr then
15: I ′(u, v) ← pmin ⊲ modify this pixel
16: else
17: I ′(u, v) ← I(u, v) ⊲ keep the original pixel value
18: return I ′

19: GetSupportRegion(I, u, v, r)
Returns a vector of n pixel values P = (p1, p2, . . . , pn) from
image I that are inside a disk of radius r, centered at position
(u, v).

20: P ← ()
21: for i ← ⌊u−r⌋, . . . , ⌈u+r⌉ do
22: for j ← ⌊v−r⌋, . . . , ⌈v+r⌉ do
23: if (u − i)2 + (v − j)2 ≤ r2 then
24: p ← I(i, j)
25: P ← P � (p)
26: return P ⊲ P = (p1, p2, . . . , pn)

27: AggregateDistance(p, P)
Returns the aggregate distance DL(p, P) of the sample vector p
over all elements pi ∈ P (see Eq. 15.22).

28: d ← 0
29: for all q ∈ P do
30: d ← d + ‖p − q‖L ⊲ choose any distance norm L
31: return d

Alg. 15.2
Vector median filter for color
images.

15.15 shows the results of applying the vector median filter to real
color images while varying the filter radius.

Since the vector median filter relies on measuring the distance
between pairs of colors, the considerations in Sec. 15.1.2 regarding
the metric properties of the color space do apply here as well. It is
thus not uncommon to perform this filter operation in a perceptual
uniform color space, such as CIELUV or CIELAB, rather than in
RGB [132,240,254].

The vector median filter is computationally expensive. Calculat-
ing the aggregate distance for all sample vectors pi in P requires
O(n2) steps, for a support region of size n. Finding the candidate
neighborhood pixel with the minimum aggregate distance in P can

381

15 Filters for Color
Images

Fig. 15.13
Results of vector median fil-

tering using different color
distance norms: L1 norm

(a), L2 norm (b), L∞ norm
(c). Filter radius r = 2.0.

L1 L2 L∞

(a) (b) (c)

Fig. 15.14
Scalar median vs. vector me-
dian filter applied to a color
test image, with filter radius

r = 2.0 (a, b) and r = 5.0
(c, d). Note how the scalar

median filter (a, c) introduces
new colors that are not con-
tained in the original image.

Scalar median filter Vector median filter

(a) r = 2.0 (b)

(c) r = 5.0 (d)

be done in O(n). Since n is proportional to the square of the filter
radius r, the number of steps required for calculating a single im-
age pixel is roughly O(r4). While faster implementations have been
proposed [10, 18, 221], calculating the vector median filter remains
computationally demanding.

15.2.3 Sharpening Vector Median Filter

Although the vector median filter is a good solution for suppressing
impulse noise and additive Gaussian noise in color images, it does
tend to blur or even eliminate relevant structures, such as lines and
edges. The sharpening vector median filter, proposed in [155], aims
at improving the edge preservation properties of the standard vec-
tor median filter described earlier. The key idea is not to calculate
the aggregate distances against all other samples in the neighbor-
hood but only against the most similar ones. The rationale is that

382

15.2 Nonlinear Color
Filters

(a) r = 1.0

(b) r = 2.0

(c) r = 3.0

(d) r = 5.0

Fig. 15.15
Vector median filter with vary-
ing radii applied to a real color
image (L1 norm).

the samples deviating strongly from their neighbors tend to be out-
liers (e.g., caused by nearby edges) and should be excluded from the
median calculation to avoid blurring of structural details.

The operation of the sharpening vector median filter is summa-
rized in Alg. 15.3. For calculating the aggregate distance DL(p, P)
of a given sample vector p (see Eqn. (15.22)), not all samples in P
are considered, but only those a samples that are closest to p in
the 3D color space (a being a fixed fraction of the support region
size). The subsequent minimization is performed over what is called
the “trimmed aggregate distance”. Thus, only a fixed number (a) of
neighborhood pixels is included in the calculation of the aggregate
distances. As a consequence, the sharpening vector median filter
provides good noise removal while at the same time leaving edge
structures intact.

383

15 Filters for Color
Images

Alg. 15.3
Sharpening vector median

filter for RGB color images
(extension of Alg. 15.2).

The sharpening parameter
s ∈ [0, 1] controls the number
of most-similar neighborhood
pixels included in the median

calculation. For s = 0, all pix-
els in the given support region

are included and no sharpening
occurs; setting s = 1 leads

to maximum sharpening. The
threshold parameter t controls

how much smaller the aggre-
gate distance of any neigh-

borhood pixel must be to re-
place the current center pixel.

1: SharpeningVectorMedianFilter(I, r, s, t)
Input: I, a color image of size M ×N , I(u, v) ∈ R

3; r, filter
radius (r ≥ 1); s, sharpening parameter (0 ≤ s ≤ 1); t, threshold
(t ≥ 0). Returns a new (filtered) color image of size M×N .

2: (M, N) ← Size(I)
3: I ′ ← Duplicate(I)
4: for all image coordinates (u, v) ∈ M×N do
5: P ← GetSupportRegion(I, u, v, r) ⊲ see Alg. 15.2
6: n ← |P | ⊲ size of P
7: a ← round (n − s · (n − 2)) ⊲ a = 2, . . . , n
8: dctr ← TrimmedAggregateDistance(I(u, v), P , a)
9: dmin ← ∞

10: for all p ∈ P do
11: d ← TrimmedAggregateDistance(p, P , a)
12: if d < dmin then
13: pmin ← p
14: dmin ← d
15: if (dctr − dmin) > t · a then
16: I ′(u, v) ← pmin ⊲ replace the center pixel
17: else
18: I ′(u, v) ← I(u, v) ⊲ keep the original center pixel

19: return I ′

20: TrimmedAggregateDistance(p, P , a)
Returns the aggregate distance from p to the a most similar ele-
ments in P = (p1, p2, . . . , pn).

21: n ← |P | ⊲ size of P
22: Create map D : [1, n] �→ R

23: for i ← 1, . . . , n do
24: D(i) ← ‖p − P (i)‖L ⊲ choose any distance norm L
25: D′ ← Sort(D) ⊲ D′(1) ≤ D′(2) ≤ . . . ≤ D′(n)
26: d ← 0
27: for i ← 2, . . . , a do ⊲ D′(1) = 0, thus skipped
28: d ← d + D′(i)
29: return d

Typically, the aggregate distance of p to the a closest neighbor-
hood samples is found by first calculating the distances between p
and all other samples in P , then sorting the result, and finally adding
up only the a initial elements of the sorted distances (see procedure
TrimmedAggregateDistance(p, P , a) in Alg. 15.3). Thus the sharp-
ening median filter requires an additional sorting step over n ∝ r2

elements at each pixel, which again adds to its time complexity.

The parameter s in Alg. 15.3 specifies the fraction of region pix-
els included in the calculation of the median and thus controls the
amount of sharpening. The number of incorporated pixels a is de-
termined as a = round(n− s · (n− 2)) (see Alg. 15.3, line 7), so that
a = n, . . . , 2 for s ∈ [0, 1]. With s = 0, all a = |P | = n pixels in
the filter region are included in the median calculation and the filter
behaves like the ordinary vector-median filter described in Alg. 15.2.
At maximum sharpening (i.e., with s = 1) the calculation of the ag-
gregate distance includes only the single most similar color pixel in
the neighborhood P .

384

15.3 Java
Implementation

The calculation of the “trimmed aggregate distance” is shown
in Alg. 15.3 (lines 20–29). The function TrimmedAggregateDistance

(p, P , a) calculates the aggregate distance for a given vector (color
sample) p over the a closest samples in the support region P . Initially
(in line 24), the n distances D(i) between p and all elements in P
are calculated, with D(i) = ‖p− P (i)‖L (see Eqns. (15.23)–(15.25)).
These are subsequently sorted by increasing value (line 25) and the
sum of the a smallest values D′(1), . . . , D′(a) (line 28) is returned.6

The effects of varying the sharpen parameter s are shown in Fig.
15.16, with a fixed filter radius r = 2.0 and threshold t = 0. For
s = 0.0 (Fig. 15.16(a)), the result is the same as that of the ordinary
vector median filter (see Fig. 15.15(b)).

The value of the current center pixel is only replaced by a neigh-
boring pixel value if the corresponding minimal (trimmed) aggregate
distance dmin is significantly smaller than the center pixel’s aggregate
distance dctr. In Alg. 15.3, this is controlled by the threshold t. The
center pixel is replaced only if the condition

(dctr − dmin) > t · a (15.27)

holds; otherwise it remains unmodified. Note that the distance limit
is proportional to a and thus t really specifies the minimum “aver-
age” pixel distance; it is independent of the filter radius r and the
sharpening parameter s.

Results for typical values of t (in the range 0, . . . , 10) are shown
in Figs. 15.17–15.18. To illustrate the effect, the images in Fig. 15.18
only display those pixels that were not replaced by the filter, while
all modified pixels are set to black. As one would expect, increasing
the threshold t leads to fewer pixels being modified. Of course, the
same thresholding scheme may also be used with the ordinary vector
median filter (see Exercise 15.2).

15.3 Java Implementation

Implementations of the scalar and vector median filter as well as the
sharpening vector median filter are available with full Java source
code at the book’s website.7 The corresponding classes

• ScalarMedianFilter,
• VectorMedianFilter, and
• VectorMedianFilterSharpen

are based on the common super-class GenericFilter, which provides
the abstract methods

void applyTo (ImageProcessor ip),
which greatly simplifies the use of these filters. The code segment
in Prog. 15.1 demonstrates the use of the class VectorMedianFilter

(with radius 3.0 and L1-norm) for RGB color images in an ImageJ
plugin. For the specific filters described in this chapter, the following
constructors are provided:

6 D′(1) is zero because it is the distance between p and itself.
7 Package imagingbook.pub.color.filters.

385

15 Filters for Color
Images

Fig. 15.16
Sharpening vector median fil-

ter with different sharpness
values s. The filter radius is

r = 2.0 and the corresponding
filter mask contains n = 21

pixels. At each pixel, only the
a = 21, 17, 12, 6 closest color

samples (for sharpness s =
0.0, 0.2, 0.5, 0.8, respectively)
are considered when calculat-

ing the local vector median.

(a) s = 0.0

(b) s = 0.2

(c) s = 0.5

(d) s = 0.8

ScalarMedianFilter (Parameters params)

Creates a scalar median filter, as described in Sec. 15.2.1, with
parameter radius = 3.0 (default).

VectorMedianFilter (Parameters params)

Creates a vector median filter, as described in Sec. 15.2.2,
with parameters radius = 3.0 (default), distanceNorm =
NormType.L1 (default), L2, Lmax.

VectorMedianFilterSharpen (Parameters params)

Creates a sharpening vector median filter (see Sec. 15.2.3)
with parameters radius = 3.0 (default), distanceNorm =
NormType.L1 (default), L2, Lmax, sharpening factor sharpen

= 0.5 (default), threshold = 0.0 (default).

The listed default values pertain to the parameterless constructors
that are also available. See the online API documentation or the

386

15.4 Further Reading

(a) t = 0

(b) t = 2

(c) t = 5

(d) t = 10

Fig. 15.17
Sharpening vector median
filter with different threshold
values t = 0, 2, 5, 10. The
filter radius and sharpening
factor are fixed at r = 2.0 and
s = 0.0, respectively.

source code for additional details. Note that the created filter objects
are generic and can be applied to both grayscale and color images
without any modification.

15.4 Further Reading

A good overview of different linear and nonlinear filtering techniques
for color images can be found in [141]. In [186, Ch. 2], the authors
give a concise treatment of color image filtering, including statistical
noise models, vector ordering schemes, and different color similarity
measures. Several variants of weighted median filters for color images
and multi-channel data in general are described in [6, Ch. 2, Sec. 2.4].
A very readable and up-to-date survey of important color issues in
computer vision, such as color constancy, photometric invariance, and

387

15 Filters for Color
Images

Fig. 15.18
Sharpening vector median fil-

ter with different threshold
values t = 0, 2, 5, 10 (also

see Fig. 15.17). Only the
unmodified pixels are shown

in color, while all modified
pixels are set to black. The
filter radius and sharpening
factor are fixed at r = 2.0
and s = 0.0, respectively.

(a) t = 0

(b) t = 2

(c) t = 5

(d) t = 10

color feature extraction, can be found in [83]. A vector median filter
operating in HSV color space is proposed in [240]. In addition to the
techniques discussed in this chapter, most of the filters described in
Chapter 17 can either be applied directly to color images or easily
modified for this purpose.

15.5 Exercises

Exercise 15.1. Verify Eqn. (15.20) by showing (formally or experi-
mentally) that the usual calculation of the scalar median (by sorting
a sequence and selecting the center value) indeed gives the value with
the smallest sum of differences from all other values in the same se-
quence. Is the result independent of the type of distance norm used?

388

15.5 Exercises1 import ij.ImagePlus;

2 import ij.plugin.filter.PlugInFilter;

3 import ij.process.ImageProcessor;

4 import imagingbook.lib.math.VectorNorm.NormType;

5 import imagingbook.lib.util.Enums;

6 import imagingbook.pub.colorfilters.VectorMedianFilter;

7 import imagingbook.pub.colorfilters.VectorMedianFilter.*;

8

9 public class MedianFilter_Color_Vector implements

PlugInFilter

10 {

11 public int setup(String arg, ImagePlus imp) {

12 return DOES_RGB;

13 }

14

15 public void run(ImageProcessor ip) {

16 Parameters params =

17 new VectorMedianFilter.Parameters();

18 params.distanceNorm = NormType.L1;

19 params.radius = 3.0;

20

21 VectorMedianFilter filter =

22 new VectorMedianFilter(params);

23

24 filter.applyTo(ip);

25 }

26 }

Prog. 15.1
Color median filter using class
VectorMedianFilter. In line 17,
a suitable parameter object
(with default values) is cre-
ated, then modified and passed
to the constructor of the filter
(in line 22). The filter itself
is applied to the input image,
which is destructively modified
(in line 24).

Exercise 15.2. Modify the ordinary vector median filter described in
Alg. 15.2 to incorporate a threshold t for deciding whether to modify
the current center pixel or not, analogous to the approach taken in
the sharpening vector median filter in Alg. 15.3.

Exercise 15.3. Implement a dedicated median filter (analogous to
Alg. 15.1) for the HSV color space. The filter should process the
color components independently but consider the circular nature of
the hue component, as discussed in Sec. 15.1.3. Compare the results
to the vector-median filter in Sec. 15.2.2.

389

16

Edge Detection in Color Images

Edge information is essential in many image analysis and computer
vision applications and thus the ability to locate and characterize
edges robustly and accurately is an important task. Basic techniques
for edge detection in grayscale images are discussed in Chapter 6.
Color images contain richer information than grayscale images and
it appears natural to assume that edge detection methods based on
color should outperform their monochromatic counterparts. For ex-
ample, locating an edge between two image regions of different hue
but similar brightness is difficult with an edge detector that only
looks for changes in image intensity. In this chapter, we first look at
the use of “ordinary” (i.e., monochromatic) edge detectors for color
images and then discuss dedicated detectors that are specifically de-
signed for color images.

Although the problem of color edge detection has been pursued for
a long time (see [140,266] for a good overview), most image processing
texts do not treat this subject in much detail. One reason could be
that, in practice, edge detection in color images is often accomplished
by using “monochromatic” techniques on the intensity channel or
the individual color components. We discuss these simple methods—
which nevertheless give satisfactory results in many situations—in
Sec. 16.1.

Unfortunately, monochromatic techniques do not extend natu-
rally to color images and other “multi-channel” data, since edge in-
formation in the different color channels may be ambiguous or even
contradictory. For example, multiple edges running in different di-
rections may coincide at a given image location, edge gradients may
cancel out, or edges in different channels may be slightly displaced.
In Sec. 16.2, we describe how local gradients can be calculated for
edge detection by treating the color image as a 2D vector field. In
Sec. 16.3, we show how the popular Canny edge detector, originally
designed for monochromatic images, can be adapted for color images,
and Sec. 16.4 goes on to look at other color edge operators. Imple-
mentations of the discussed algorithms are described in Sec. 16.5,
with complete source code available on the book’s website.

391
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_16

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

16 Edge Detection in
Color Images

16.1 Monochromatic Techniques

Linear filters are the basis of most edge enhancement and edge de-
tection operators for scalar-valued grayscale images, particularly the
gradient filters described in Chapter 15, Sec. 6.3. Again, it is quite
common to apply these scalar filters separately to the individual color
channels of RGB images. A popular example is the Sobel operator
with the filter kernels

HS
x =

1
8
·

⎡

⎣

−1 0 1
−2 0 2
−1 0 1

⎤

⎦ and HS
y =

1
8
·

⎡

⎣

−1−2−1
0 0 0
1 2 1

⎤

⎦ (16.1)

for the x- and y-direction, respectively. Applied to a grayscale image
I, with Ix = I ∗HS

x and Iy = I ∗HS
y , these filters give a reasonably

good estimate of the local gradient vector,

∇I(u) =
(

Ix(u)
Iy(u)

)

, (16.2)

at position u = (u, v). The local edge strength of the grayscale image
is then taken as

Egray(u) = ‖∇I(u)‖ =
√

I2
x(u) + I2

y (u), (16.3)

and the corresponding edge orientation is calculated as

Φ(u) = ∠∇I(u) = tan−1
(Iy(u)

Ix(u)

)

. (16.4)

The angle Φ(u) gives the direction of maximum intensity change on
the 2D image surface at position (u), which is the normal to the edge
tangent.

Analogously, to apply this technique to a color image I = (IR,
IG, IB), each color plane is first filtered individually with the two
gradient kernels given in Eqn. (16.1), resulting in

∇IR =
(

IR,x

IR,y

)

=
(

IR ∗HS
x

IR ∗HS
y

)

,

∇IG =
(

IG,x

IG,y

)

=
(

IG ∗HS
x

IG ∗HS
y

)

,

∇IB =
(

IB,x

IB,y

)

=
(

IB ∗HS
x

IB ∗HS
y

)

.

(16.5)

The local edge strength is calculated separately for each color channel
which yields a vector

E(u) =

⎛

⎝

ER(u)
EG(u)
EB(u)

⎞

⎠ =

⎛

⎝

‖∇IR(u)‖
‖∇IG(u)‖
‖∇IB(u)‖

⎞

⎠ (16.6)

=

⎛

⎜
⎝

[I2
R,x(u) + I2

R,y(u)]1/2

[I2
G,x(u) + I2

G,y(u)]1/2

[I2
B,x(u) + I2

B,y(u)]1/2

⎞

⎟
⎠ (16.7)

392

16.1 Monochromatic
Techniques

for each image position u. These vectors could be combined into
a new color image E = (ER, EG, EB), although such a “color edge
image” has no particularly useful interpretation.1 Finally, a scalar
quantity of combined edge strength (C) over all color planes can be
obtained, for example, by calculating the Euclidean (L2) norm of
E as

C2(u) = ‖E(u)‖2 =
[
E2

R(u) + E2
G(u) + E2

B(u)
]1/2

=
[
I2

R,x + I2
R,y + I2

G,x + I2
G,y + I2

B,x + I2
B,y

]1/2
(16.8)

(coordinates (u) are omitted in the second line) or, using the L1

norm,

C1(u) = ‖E(u)‖1 = |ER(u)|+ |EG(u)|+ |EB(u)| . (16.9)

Another alternative for calculating a combined edge strength is to
take the maximum magnitude of the RGB gradients (i.e., the L∞
norm),

C∞(u) = ‖E(u)‖∞ = max (|ER(u)| , |EG(u)| , |EB(u)|) . (16.10)

An example using the test image from Chapter 15 is given in Fig.
16.1. It shows the edge magnitude of the corresponding grayscale
image and the combined color edge magnitude calculated with the
different norms defined in Eqns. (16.8)–(16.10).2

As far as edge orientation is concerned, there is no simple ex-
tension of the grayscale case. While edge orientation can easily be
calculated for each individual color component (using Eqn. (16.4)),
the gradients, three color channels are generally different (or even
contradictory) and there is no obvious way of combining them.

A simple ad hoc approach is to choose, at each image position
u, the gradient direction from the color channel of maximum edge
strength, that is,

Φcol(u) = tan−1
(Im,y(u)

Im,x(u)

)

, (16.11)

with m = argmax
k=R,G,B

Ek(u).

This simple (monochromatic) method for calculating edge strength
and orientation in color images is summarized in Alg. 16.1 (see Sec.
16.5 for the corresponding Java implementation). Two sample results
are shown in Fig. 16.2. For comparison, these figures also show the
edge maps obtained by first converting the color image to a grayscale

1 Such images are nevertheless produced by the “Find Edges” command in
ImageJ and the filter of the same name in Photoshop (showing inverted
components).

2 In this case, the grayscale image in (c) was calculated with the direct

conversion method (see Chapter 14, Eqn. (14.39)) from nonlinear sRGB
components. With linear grayscale conversion (Ch. 14, Eqn. (14.37)),
the desaturated bar at the center would exhibit no grayscale edges along
its borders, since the luminance is the same inside and outside.

393

16 Edge Detection in
Color Images

Fig. 16.1
Color edge enhancement

with monochromatic meth-
ods. Original color image (a)
and corresponding grayscale

image (b); edge magnitude
from the grayscale image (c).
Color edge magnitude calcu-

lated with different norms:
L1 (d), L2 (e), and L∞ (f).
The images in (c–f) are in-

verted for better viewing.

(a) (b)

sRGB Y ′

(c) (d)

Egray C1

(e) (f)

C2 C∞

image and then applying the Sobel operator3 (Fig. 16.2(b)). The
edge magnitude in all examples is normalized; it is shown inverted
and contrast-enhanced to increase the visibility of low-contrast edges.
As expected and apparent from the examples, even simple monochro-
matic techniques applied to color images perform better than edge
detection on the corresponding grayscale images. In particular, edges
between color regions of similar brightness are not detectable in this
way, so using color information for edge detection is generally more
powerful than relying on intensity alone. Among the simple color
techniques, the maximum channel edge strength C∞ (Eqn. (16.10))
seems to give the most consistent results with the fewest edges getting
lost.

However, none of the monochromatic detection techniques can
be expected to work reliably under these circumstances. While the
threshold for binarizing the edge magnitude could be tuned manu-
ally to give more pleasing results on specific images, it is difficult
in practice to achieve consistently good results over a wide range of
images. Methods for determining the optimal edge threshold dynam-

3 See Chapter 6, Sec. 6.3.1.
394

16.2 Edges in
Vector-Valued Images

1: MonochromaticColorEdge(I)
Input: I = (IR, IG, IB), an RGB color image of size M×N . Re-
turns a pair of maps (E2, Φ) for edge magnitude and orientation.

2: HS
x ← 1

8
·
[−1 0 1

−2 0 2
−1 0 1

]

3: HS
y ← 1

8
·
[−1 −2 −1

0 0 0
1 2 1

]

⊲ x/y gradient kernels

4: (M, N) ← Size(I)
5: Create maps E, Φ : M×N → R ⊲ edge magnitude/orientation

6: IR,x ← IR∗HS
x , IR,y ← IR∗HS

y ⊲ apply gradient filters
7: IG,x ← IG∗HS

x , IG,y ← IG∗HS
y

8: IB,x ← IB∗HS
x , IB,y ← IB∗HS

y

9: for all image coordinates u ∈ M×N do
10: (rx, gx, bx) ← (IR,x(u), IG,x(u), IB,x(u))
11: (ry , gy , by) ← (IR,y(u), IG,y(u), IB,y(u))

12: e2
R ← r2

x + r2
y

13: e2
G ← g2

x + g2
y

14: e2
B ← b2

x + b2
y

15: e2
max ← e2

R ⊲ find maximum gradient channel
16: cx ← rx, cy ← ry

17: if e2
G > e2

max then
18: e2

max ← e2
G, cx ← gx, cy ← gy

19: if e2
B > e2

max then
20: e2

max ← e2
B, cx ← bx, cy ← by

21: E(u) ←
√

e2
R + e2

G + e2
B ⊲ edge magnitude (L2 norm)

22: Φ(u) ← ArcTan(cx, cy) ⊲ edge orientation

23: return (E, Φ).

Alg. 16.1
Monochromatic color edge
operator. A pair of Sobel-
type filter kernels (HS

x , HS
y)

is used to estimate the local
x/y gradients of each compo-
nent of the RGB input image
I. Color edge magnitude is
calculated as the L2 norm of
the color gradient vector (see
Eqn. (16.8)). The procedure
returns a pair of maps, hold-
ing the edge magnitude E2

and the edge orientation Φ,
respectively.

ically, that is, depending on the image content, have been proposed,
typically based on the statistical variability of the color gradients.
Additional details can be found in [84, 171, 192].

16.2 Edges in Vector-Valued Images

In the “monochromatic” scheme described in Sec. 16.1, the edge mag-
nitude in each color channel is calculated separately and thus no use
is made of the potential coupling between color channels. Only in a
subsequent step are the individual edge responses in the color chan-
nels combined, albeit in an ad hoc fashion. In other words, the color
data are not treated as vectors, but merely as separate and unrelated
scalar values.

To obtain better insight into this problem it is helpful to treat the
color image as a vector field, a standard construct in vector calculus
[32, 223].4 A three-channel RGB color image I(u) = (IR(u), IG(u),
IB(u)) can be modeled as a discrete 2D vector field, that is, a function
whose coordinates u = (u, v) are 2D and whose values are 3D vectors.

4 See Sec. C.2 in the Appendix for some general properties of vector fields.
395

16 Edge Detection in
Color Images

Fig. 16.2
Example of color edge en-

hancement with monochro-
matic techniques (balloons im-
age). Original color image and
corresponding grayscale image
(a), edge magnitude obtained
from the grayscale image (b),

color edge magnitude calcu-
lated with the L2 norm (c),

and the L∞ norm (d). Differ-
ences between the grayscale

edge detector (b) and the
color-based detector (c–e) are
particularly visible inside the

right balloon and at the lower
borders of the tangerines.

(a)

Original image I

(b)

Gray edge (Egray)

(c)

Color edge (E1)

(d)

Color edge (E2)

(e)

Color edge (C∞)

Similarly, a grayscale image can be described as a discrete scalar field,
since its pixel values are only 1D.

396

16.2 Edges in
Vector-Valued Images

16.2.1 Multi-Dimensional Gradients

As noted in the previous section, the gradient of a scalar image I at
a specific position u is defined as

∇I(u) =

(
∂I
∂x(u)
∂I
∂y (u)

)

, (16.12)

that is, the vector of the partial derivatives of the function I in the
x- and y-direction, respectively.5 Obviously, the gradient of a scalar
image is a 2D vector field.

In the case of a color image I = (IR, IG, IB), we can treat the three
color channels as separate scalar images and obtain their gradients
analogously as

∇IR(u)=

(
∂IR

∂x (u)
∂IR

∂y (u)

)

, ∇IG(u)=

(
∂IG

∂x (u)
∂IG

∂y (u)

)

, ∇IB(u)=

(
∂IB

∂x (u)
∂IB

∂y (u)

)

,

(16.13)

which is equivalent to what we did in Eqn. (16.5). Before we can take
the next steps, we need to introduce a standard tool for the analysis
of vector fields.

16.2.2 The Jacobian Matrix

The Jacobian matrix6 JI(u) combines all first partial derivatives of a
vector field I at a given position u, its row vectors being the gradients
of the scalar component functions. In particular, for an RGB color
image I, the Jacobian matrix is defined as

JI(u)=

⎛

⎜
⎜
⎝

(∇IR)⊺(u)

(∇IG)⊺(u)

(∇IB)⊺(u)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

∂IR

∂x (u) ∂IR

∂y (u)
∂IG

∂x (u) ∂IG

∂y (u)
∂IB

∂x (u) ∂IB

∂y (u)

⎞

⎟
⎟
⎠

=
(
Ix(u) Iy(u)

)
,

(16.14)

with ∇IR,∇IG,∇IB as defined in Eqn. (16.13). We see that the 2D
gradient vectors (∇IR)⊺, (∇IG)⊺, (∇IB)⊺ constitute the rows of the
resulting 3×2 matrix JI . The two 3D column vectors of this matrix,

Ix(u) =
∂I

∂x
(u) =

⎛

⎜
⎜
⎝

∂IR

∂x (u)
∂IG

∂x (u)
∂IB

∂x (u)

⎞

⎟
⎟
⎠

, Iy(u) =
∂I

∂y
(u) =

⎛

⎜
⎜
⎝

∂IR

∂y (u)
∂IG

∂y (u)
∂IB

∂y (u)

⎞

⎟
⎟
⎠

,

(16.15)

are the partial derivatives of the color components along the x- and y-
axes, respectively. At a given position u, the total amount of change
over all three color channels in the horizontal direction can be quanti-
fied by the norm of the corresponding column vector ‖Ix(u)‖. Anal-
ogously, ‖Iy(u)‖ gives the total amount of change over all three color
channels along the vertical axis.

5 Of course, images are discrete functions and the partial derivatives are
estimated from finite differences (see Sec. C.3.1 in the Appendix).

6 See also Sec. C.2.1 in the Appendix.
397

16 Edge Detection in
Color Images

16.2.3 Squared Local Contrast

Now that we can quantify the change along the horizontal and vertical
axes at any position u, the next task is to find out the direction of
the maximum change to find the angle of the edge normal, which
we then use to derive the local edge strength. How can we calculate
the gradient in some direction θ other than horizontal and vertical?
For this purpose, we use the product of the unit vector oriented at
angle θ,

eθ =
(

cos(θ)
sin(θ)

)

, (16.16)

and the Jacobian matrix JI (Eqn. (16.14)) in the form

(gradθ I)(u) = JI(u) · eθ =
(

Ix(u) Iy(u)
)

·
(

cos(θ)
sin(θ)

)

= Ix(u) · cos(θ) + Iy(u) · sin(θ).
(16.17)

The resulting 3D vector (gradθ I)(u) is called the directional gradi-
ent7 of the color image I in the direction θ at position u. By taking
the squared norm of this vector,

Sθ(I, u) = ‖(gradθ I)(u)‖2
2 (16.18)

=
∥
∥Ix(u)·cos(θ) + Iy(u)·sin(θ)

∥
∥

2

2

= I2
x(u) · cos2(θ) + 2·Ix(u)·Iy(u)·cos(θ)·sin(θ) + I2

y(u)·sin2(θ),

we obtain what is called the squared local contrast of the vector-
valued image I at position u in direction θ.8 For an RGB image I =
(IR, IG, IB), the squared local contrast in Eqn. (16.18) is, explicitly
written,

Sθ(I , u) =
∥
∥

⎛

⎝

IR,x(u)
IG,x(u)
IB,x(u)

⎞

⎠· cos(θ) +

⎛

⎝

IR,y(u)
IG,y(u)
IB,y(u)

⎞

⎠· sin(θ)
∥
∥

2

2
(16.19)

=
[
I2

R,x(u) + I2
G,x(u) + I2

B,x(u)
]
· cos2(θ)

+
[
I2

R,y(u) + I2
G,y(u) + I2

B,y(u)
]
· sin2(θ) (16.20)

+ 2 · cos(θ) · sin(θ) ·
[
IR,x(u)·IR,y(u)+IG,x(u)·IG,y(u)+IB,x(u)·IB,y(u)

]
.

Note that, in the case that I is a scalar image, the squared local
contrast reduces to

Sθ(I, u) =
∥
∥(gradθ I)(u)

∥
∥

2
=
∥
∥

(
Ix(u)
Iy(u)

)⊺

·
(

cos(θ)
sin(θ)

)
∥
∥

2

2
(16.21)

=
[
Ix(u) · cos(θ) + Iy(u) · sin(θ)

]2
. (16.22)

We will return to this result again later in Sec. 16.2.6. In the follow-
ing, we use the root of the squared local contrast, that is,

√

Sθ(I, u),
under the term local contrast.

7 See also Sec. C.2.2 in the Appendix (Eqn. (C.18)).
8 Note that I2

x = Ix ·Ix, I2
y = Iy ·Iy and Ix ·Iy in Eqn. (16.18) are dot

products and thus the results are scalar values.
398

16.2 Edges in
Vector-Valued Images

Grayscale image I RGB color image I = (IR, IG, IB)

∇I

∇IR

∇IG

∇IB

(a) (b)

√
Sθ(u)

√
Sθ(u)

(c) (d)

Fig. 16.3
Local image gradients and lo-
cal contrast. In case of a scalar
(grayscale) image I (a), the lo-
cal gradient ∇I defines a single
plane that is tangential to the
image function I at position
u = (u, v). In case of an RGB
color image I = (IR, IG, IB)
(b), the local gradients ∇IR ,
∇IG, ∇IB for each color
channel define three tangent
planes. The vertical axes in
graphs (c, d) show the corre-
sponding local contrast values√

Sθ(I, u) (see Eqns. (16.18)

and (16.19)) for all possible
directions θ = 0, . . . , 2π.

Figure 16.3 illustrates the meaning of the squared local contrast
in relation to the local image gradients. At a given image position u,
the local gradient ∇I(u) in a grayscale image (Fig. 16.3(a)) defines a
single plane that is tangential to the image function I at position u.
In case of a color image (Fig. 16.3(b)), each color channel defines an
individual tangent plane. In Fig. 16.3(c, d) the local contrast values
are shown as the height of cylindrical surfaces for all directions θ. For
a grayscale image (Fig. 16.3(c)), the local contrast changes linearly
with the orientation θ, while the relation is quadratic for a color image
(Fig. 16.3(d)). To calculate the strength and orientation of edges we
need to determine the direction of the maximum local contrast, which
is described in the following.

16.2.4 Color Edge Magnitude

The directions that maximize Sθ(I, u) in Eqn. (16.18) can be found
analytically as the roots of the first partial derivative of S with respect
to the angle θ, as originally suggested by Di Zenzo [63], and the
resulting quantity is called maximum local contrast. As shown in [59],
the maximum local contrast can also be found from the Jacobian
matrix JI (Eqn. (16.14)) as the largest eigenvalue of the (symmetric)
2× 2 matrix

M(u) = J
⊺
I (u)· JI(u) =

(

I
⊺
x(u)

I
⊺
y(u)

)

·
(

Ix(u) Iy(u)
)

(16.23)

=
(

I2
x(u) Ix(u)·Iy(u)

Iy(u)·Ix(u) I2
y(u)

)

=
(

A(u) C(u)
C(u) B(u)

)

, (16.24)

399

16 Edge Detection in
Color Images

with the elements

A(u) = I2
x(u) = Ix(u)·Ix(u),

B(u) = I2
y(u) = Iy(u)·Iy(u),

C(u) = Ix(u)·Iy(u) = Iy(u)·Ix(u).

(16.25)

The matrix M(u) could be considered as the color equivalent to the
local structure matrix used for corner detection on grayscale images
in Chapter 7, Sec. 7.2.1. The two eigenvalues λ1, λ2 of M can be
found in closed form as9

λ1(u) =
(
A + B +

√

(A−B)2 + 4 · C2
)
/2,

λ2(u) =
(
A + B −

√

(A−B)2 + 4 · C2
)
/2.

(16.26)

Since M is symmetric, the expression under the square root in Eqn.
(16.26) is positive and thus all eigenvalues are real. In addition, A, B
are both positive and therefore λ1 is always the larger of the two
eigenvalues. It is equivalent to the maximum squared local contrast
(Eqn. (16.18)), that is,

λ1(u) ≡ max
0≤θ<2π

Sθ(I, u), (16.27)

and thus
√

λ1 can be used directly to quantify the local edge strength.
The eigenvector associated with λ1(u) is

q1(u) =
(

A−B +
√

(A−B)2 + 4 · C2

2 · C

)

, (16.28)

or, equivalently, any multiple of q1.10 Thus the rate of change along
the vector q1 is the same as in the opposite direction −q1, and it
follows that the local contrast Sθ(I , u) at orientation θ is the same
at orientation θ + kπ (for any k ∈ Z).11 As usual, the unit vec-
tor corresponding to q1 is obtained by scaling q1 by its magnitude,
that is,

q̂1 =
1
‖q1‖

· q1. (16.29)

An alternative method, proposed in [60], is to calculate the unit
eigenvector q̂1 = (x̂1, ŷ1)⊺ in the form

q̂1 =
(√

1+α
2 , sgn(C)·

√
1−α

2

)⊺

, (16.30)

with α = (A − B)/
√

(A−B)2 + 4 C2, directly from the matrix ele-
ments A, B, C defined in Eqn. (16.25).

While q1 (the eigenvector associated with the greater eigenvalue
of M) points in the direction of maximum change, the second eigen-
vector q2 (associated with λ2) is orthogonal to q1, that is, has the
same direction as the local edge tangent.

9 See Sec. B.4 in the Appendix for details.
10 The eigenvalues of a matrix are unique, but the corresponding eigenvec-

tors are not.
11 Thus the orientation of maximum change is inherently ambiguous [60].

400

16.2 Edges in
Vector-Valued Images

16.2.5 Color Edge Orientation

The local orientation of the edge (i.e., the normal to the edge tangent)
at a given position u can be obtained directly from the associated
eigenvector q1(u) = (qx(u), qy(u))⊺ using the relation

tan(θ1(u)) =
qx(u)
qy(u)

=
2 · C

A−B +
√

(A−B)2 + 4 · C2
, (16.31)

which can be simplified12 to

tan(2 · θ1(u)) =
2 · C

A−B
. (16.32)

Unless both A = B and C = 0 (in which case the edge orientation
is undetermined) the angle of maximum local contrast or color edge
orientation can be calculated as

θ1(u) =
1
2
· tan−1

(2 · C
A−B

)

=
1
2
·ArcTan(A−B, 2 · C). (16.33)

The above steps are summarized in Alg. 16.2, which is a color edge
operator based on the first derivatives of the image function (see Sec.
16.5 for the corresponding Java implementation). It is similar to the
algorithm proposed by Di Zenzo [63] but uses the eigenvalues of the
local structure matrix for calculating edge magnitude and orientation,
as suggested in [59] (see Eqn. (16.24)).

Results of the monochromatic edge operator in Alg. 16.1 and the
Di Zenzo-Cumani multi-gradient operator in Alg. 16.2 are compared
in Fig. 16.4. The synthetic test image in Fig. 16.4(a) has constant
luminance (brightness) and thus no gray-value operator should be
able to detect edges in this image. The local edge strength E(u)
produced by the two operators is very similar (Fig. 16.4(b)). The
vectors in Fig. 16.4(c–f) show the orientation of the edge tangents
that are normals to the direction of maximum color contrast, Φ(u).
The length of each tangent vector is proportional to the local edge
strength E(u).

Figure 16.5 shows two examples of applying the Di Zenzo-Cumani-
style color edge operator (Alg. 16.2) to real images. Note that the
multi-gradient edge magnitude (calculated from the eigenvalue λ1 in
Eqn. (16.27)) in Fig. 16.5(b) is virtually identical to the monochro-
matic edge magnitude Emag under the L2 norm in Fig. 16.2(d). The
larger difference to the result for the L∞ norm in Fig. 16.2(e) is shown
in Fig. 16.5(c).

Thus, considering only edge magnitude, the Di Zenzo-Cumani op-
erator has no significant advantage over the simpler, monochromatic
operator in Sec. 16.1. However, if edge orientation is important (as
in the color version of the Canny operator described in Sec. 16.3), the
Di Zenzo-Cumani technique is certainly more reliable and consistent.

16.2.6 Grayscale Gradients Revisited

As one might have guessed, the usual gradient-based calculation of
the edge orientation (see Ch. 6, Sec. 6.2) is only a special case of the
12 Using the relation tan(2θ) = [2 · tan(θ)] / [1 − tan2(θ)].

401

16 Edge Detection in
Color Images

Alg. 16.2
Di Zenzo/Cumani-style multi-
gradient color edge operator.

A pair of Sobel-type filters
(HS

x , HS
y) is used for esti-

mating the local x/y gradi-
ents in each component of

the RGB input image I. The
procedure returns a pair of

maps, holding the edge mag-
nitude E(u) and the edge

orientation Φ(u), respectively.

1: MultiGradientColorEdge(I)
Input: I = (IR, IG, IB), an RGB color image of size M ×N .
Returns a pair of maps (E, Φ) for edge magnitude and orientation.

2: HS
x := 1

8
·
[−1 0 1

−2 0 2
−1 0 1

]

3: HS
y := 1

8
·
[−1 −2 −1

0 0 0
1 2 1

]

⊲ x/y gradient kernels

4: (M, N) ← Size(I)

5: Create maps E, Φ : M×N �→ R ⊲ edge magnitude/orientation

6: IR,x ← IR∗HS
x , IR,y ← IR∗HS

y ⊲ apply gradient filters
7: IG,x ← IG∗HS

x , IG,y ← IG∗HS
y

8: IB,x ← IB∗HS
x , IB,y ← IB∗HS

y

9: for all u ∈ M×N do
10: (rx, gx, bx) ← (IR,x(u), IG,x(u), IB,x(u))
11: (ry , gy , by) ← (IR,y(u), IG,y(u), IB,y(u))

12: A ← r2
x + g2

x + b2
x ⊲ A = Ix ·Ix

13: B ← r2
y + g2

y + b2
y ⊲ B = Iy ·Iy

14: C ← rx ·ry + gx ·gy + bx ·by ⊲ C = Ix ·Iy

15: λ1 ←
(
A+B +

√
(A−B)2 + 4 · C2

)
/ 2 ⊲ Eq. 16.26

16: E(u) ← √
λ1 ⊲ Eq. 16.27

17: Φ(u) ← 1
2
· ArcTan(A−B, 2 · C) ⊲ Eq. 16.33

18: return (E, Φ).

multi-dimensional gradient calculation described already. Given a
scalar image I, the intensity gradient vector (∇I)(u) = (Ix(u), Iy(u))⊺

defines a single plane that is tangential to the image function at po-
sition u, as illustrated in Fig. 16.3(a). With

A = I2
x(u), B = I2

y (u), C = Ix(u)·Iy(u) (16.34)

(analogous to Eqn. (16.25)) the squared local contrast at position u
in direction θ (as defined in Eqn. (16.18)) is

Sθ(I, u) =
(
Ix(u)·cos(θ) + Iy(u)·sin(θ)

)2
. (16.35)

From Eqn. (16.26), the eigenvalues of the local structure matrix M =
(A C

C B) at position u are (see Eqn. (16.26))

λ1,2(u) =
(
A + B ±

√

(A−B)2 + 4C2
)

/ 2, (16.36)

but here, with Ix, Iy not being vectors but scalar values, we get C2 =
(Ix ·Iy)2 = I2

x ·I2
y , such that (A−B)2 +4C2 = (A+B)2, and therefore

λ1,2(u) =
(
A + B ± (A + B)

)
/ 2 . (16.37)

We see that, for a scalar-valued image, the dominant eigenvalue,

λ1(u) = A + B = I2
x(u) + I2

y (u) = ‖∇I(u)‖2
2 , (16.38)

is simply the squared L2 norm of the local gradient vector, while the
smaller eigenvalue λ2 is always zero. Thus, for a grayscale image, the

402

16.2 Edges in
Vector-Valued Images

Original image Color edge strength

(a) (b)

Monochromatic operator Di Zenzo-Cumani operator

(c) (d)

(e) (f)

Fig. 16.4
Results from the monochro-
matic (Alg. 16.1) and the
Di Zenzo-Cumani color edge
operators (Alg. 16.2). The
original color image (a) has
constant luminance, that is,
the intensity gradient is zero
and thus a simple grayscale
operator would not detect
any edges at all. The local
edge strength E(u) is almost
identical for both color edge
operators (b). Edge tangent
orientation vectors (normal to
Φ(u)) for the monochromatic
and multi-gradient operators
(c, d); enlarged details in (e, f).

maximum edge strength
√

λ1(u) = ‖∇I(u)‖2 is equivalent to the
magnitude of the local intensity gradient.13 The fact that λ2 = 0
indicates that the local contrast in the orthogonal direction (i.e.,
along the edge tangent) is zero (see Fig. 16.3(c)).

To calculate the local edge orientation, at position u we use Eqn.
(16.31) to get

13 See Eqns. (6.5) and (6.13) in Chapter 6, Sec. 6.2.
403

16 Edge Detection in
Color Images

Fig. 16.5
Results of Di Zenzo-Cumani

color edge operator (Alg.
16.2) on real images. Orig-
inal image (a) and inverted

color edge magnitude (b).
The images in (c) show

the differences to the edge
magnitude returned by the

monochromatic operator (Alg.
16.1, using the L∞ norm).

(a)

(b)

(c)

tan(θ1(u)) =
2C

A−B + (A + B)
=

2C

2A
=

Ix(u) · Iy(u)
I2

x(u)
=

Iy(u)
Ix(u)
(16.39)

and the direction of maximum contrast14 is then found as

θ1(u) = tan−1
(Iy(u)

Ix(u)

)

= ArcTan(Ix(u), Iy(u)). (16.40)

Thus, for scalar-valued images, the general (multi-dimensional) tech-
nique based on the eigenvalues of the structure matrix leads to ex-
actly the same result as the conventional grayscale edge detection
approach described in Chapter 6, Sec. 6.3.

16.3 Canny Edge Detector for Color Images

Like most other edge operators, the Canny detector was originally
designed for grayscale (i.e., scalar-valued) images. To use it on color
images, a trivial approach is to apply the monochromatic operator
separately to each of the color channels and subsequently merge the
results into a single edge map. However, since edges within the dif-
ferent color channels rarely occur in the same places, the result will
14 See Eqn. (6.14) in Chapter 6.

404

16.3 Canny Edge
Detector for Color
Images

usually contain multiple edge marks and undesirable clutter (see Fig.
16.8 for an example).

Fortunately, the original grayscale version of the Canny edge de-
tector can be easily adapted to color imagery using the multi-gradient
concept described in Sec. 16.2.1. The only changes required in Alg.
6.1 are the calculation of the local gradients and the edge magnitude
Emag. The modified procedure is shown in Alg. 16.3 (see Sec. 16.5
for the corresponding Java implementation).

1: ColorCannyEdgeDetector(I, σ, thi, tlo)
Input: I = (IR, IG, IB), an RGB color image of size M ×N ;
σ, radius of Gaussian filter HG,σ; thi, tlo, hysteresis thresholds
(thi > tlo). Returns a binary edge image of size M×N .

2: ĪR ← IR ∗ HG,σ ⊲ blur components with Gaussian of width σ
3: ĪG ← IG ∗ HG,σ

4: ĪB ← IB ∗ HG,σ

5: H∇
x ← [−0.5 0 0.5] ⊲ x gradient filter

6: H∇
y ← [−0.5 0 0.5]

⊺
⊲ y gradient filter

7: ĪR,x ← ĪR ∗ H∇
x , ĪR,y ← ĪR ∗ H∇

y

8: ĪG,x ← ĪG ∗ H∇
x , ĪG,y ← ĪG ∗ H∇

y

9: ĪB,x ← ĪB ∗ H∇
x , ĪB,y ← ĪB ∗ H∇

y

10: (M, N) ← Size(I)

11: Create maps:
12: Emag, Enms, Ex, Ey : M×N → R

13: Ebin : M×N → {0, 1}
14: for all image coordinates u ∈ M×N do
15: (rx, gx, bx) ← (IR,x(u), IG,x(u), IB,x(u))
16: (ry , gy , by) ← (IR,y(u), IG,y(u), IB,y(u))

17: A ← r2
x + g2

x + b2
x,

18: B ← r2
y + g2

y + b2
y

19: C ← rx ·ry + gx ·gy + bx ·by

20: D ←
[
(A−B)2 + 4C2

]1/2

21: Emag(u) ←
[
0.5 ·

(
A + B + D

)]1/2
⊲
√

λ1, Eq. 16.27

22: Ex(u) ← A − B + D ⊲ q1, Eq. 16.28
23: Ey(u) ← 2C

24: Enms(u) ← 0
25: Ebin(u) ← 0

26: for u ← 1, . . . , M−2 do
27: for v ← 1, . . . , N−2 do
28: u ← (u, v)
29: dx ← Ex(u)
30: dy ← Ey(u)
31: s ← GetOrientationSector(dx, dy) ⊲ Alg. 6.2
32: if IsLocalMax(Emag, u, s, tlo) then ⊲ Alg. 6.2
33: Enms(u) ← Emag(u)

34: for u ← 1, . . . , M−2 do
35: for v ← 1, . . . , N−2 do
36: u ← (u, v)
37: if (Enms(u) ≥ thi ∧ Ebin(u) = 0) then
38: TraceAndThreshold(Enms, Ebin, u, v, tlo) ⊲ Alg. 6.2
39: return Ebin.

Alg. 16.3
Canny edge detector for color
images. Structure and pa-
rameters are identical to the
grayscale version in Alg. 6.1
(p. 135). In the algorithm be-
low, edge magnitude (Emag)
and orientation (Ex, Ey) are
obtained from the gradients of
the individual color channels
(as described in Sec. 16.2.1).

405

16 Edge Detection in
Color Images

In the pre-processing step, each of the three color channels is
individually smoothed by a Gaussian filter of width σ, before cal-
culating the gradient vectors (Alg. 16.3, lines 2–9). As in Alg. 16.2,
the color edge magnitude is calculated as the squared local contrast,
obtained from the dominant eigenvalue of the structure matrix M
(Eqns. (16.24)–(16.27)). The local gradient vector (Ex, Ey) is cal-
culated from the elements A, B, C, of the matrix M, as given in
Eqn. (16.28). The corresponding steps are found in Alg. 16.3, lines
14–22. The remaining steps, including non-maximum suppression,
edge tracing and thresholding, are exactly the same as in Alg. 6.1.

Results from the grayscale and color version of the Canny edge
detector are compared in Figs. 16.6 and 16.7 for varying values of
σ and thi, respectively. In all cases, the gradient magnitude was
normalized and the threshold values thi, tlo are given as a percent-
age of the maximum edge magnitude. Evidently, the color detector
gives the more consistent results, particularly at color edges with low
intensity difference.

For comparison, Fig. 16.8 shows the results of applying the
monochromatic Canny operator separately to each color channel and
subsequently merging the edge pixels into a combined edge map, as
mentioned at the beginning of this section. We see that this leads
to multiple responses and cluttered edges, since maximum gradient
positions in the different color channels are generally not collocated.

In summary, the Canny edge detector is superior to simpler
schemes based on first-order gradients and global thresholding, in
terms of extracting clean and well-located edges that are immedi-
ately useful for subsequent processing. The results in Figs. 16.6 and
16.7 demonstrate that the use of color gives additional improvements
over the grayscale approach, since edges with insufficient brightness
gradients can still be detected from local color differences. Essential
for the good performance of the color Canny edge detector, how-
ever, is the reliable calculation of the gradient direction, based on
the multi-dimensional local contrast formulation given in Sec. 16.2.3.
Quite a few variations of Canny detectors for color images have been
proposed in the literature, including the one attributed to Kanade
(in [140]), which is similar to the algorithm described here.

16.4 Other Color Edge Operators

The idea of using a vector field model in the context of color edge
detection was first presented by Di Zenzo [63], who suggested finding
the orientation of maximum change by maximizing S(u, θ) in Eqn.
(16.18) over the angle θ. Later Cumani [59, 60] proposed directly
using the eigenvalues and eigenvectors of the local structure matrix
M (Eqn. (16.24)) for calculating edge strength and orientation. He
also proposed using the zero-crossings of the second-order gradients
along the direction of maximum contrast to precisely locate edges,
which is a general problem with first-order techniques. Both Di Zenzo
and Cumani used only the dominant eigenvalue, indicating the edge
strength perpendicular to the edge (if an edge existed at all), and then
discarded the smaller eigenvalue proportional to the edge strength in

406

16.4 Other Color Edge
Operators

Canny (grayscale) Canny (color)

(a) (b)

(c) σ =0.5 (d)

(e) σ =1.0 (f)

(g) σ =2.0 (h)

(i) σ =5.0 (i)

Fig. 16.6
Canny grayscale vs. color
version. Results from the
grayscale (left) and the color
version (right) of the Canny
operator for different values of
σ (thi = 20%, tlo = 5% of max.
edge magnitude).

407

16 Edge Detection in
Color Images

Fig. 16.7
Canny grayscale vs. color
version. Results from the

grayscale (left) and the
color version (right) of the

Canny operator for different
threshold values thi, given
in % of max. edge magni-

tude (tlo = 5%, σ = 2.0).

Canny (grayscale) Canny (color)

(a) (b)

(c) thi =10% (d)

(e) thi =30% (f)

(g) thi =50% (h)

(i) thi =70% (i)

408

16.4 Other Color Edge
Operators

σ =2.0 σ =5.0

(a) (b)

(c) (d)

(e) (f)

Fig. 16.8
Scalar vs. vector-based color
Canny operator. Results from
the scalar Canny operator ap-
plied separately to each color
channel (a, b). Channel edges
are shown in corresponding
colors, with mixed colors indi-
cating that edge points were
detected in multiple channels
(e.g., yellow marks overlapping
points from the red and the
green channel). A black pixel
indicates that an edge point
was detected in all three color
channels. Channel edges com-
bined into a joint edge map
(c, d). For comparison, the re-
sult of the vector-based color
Canny operator (e, f). Com-
mon parameter settings are
σ = 2.0 and 5.0, thi = 20%,
tlo = 5% of max. edge magni-
tude.

the perpendicular (i.e., tangential) direction. Real edges only exist
where the larger eigenvalue is considerably greater than the smaller
one. If both eigenvalues have similar values, this indicates that the
local image surface exhibits change in all directions, which is not
typically true at an edge but quite characteristic of flat, noisy regions
and corners. One solution therefore is to use the difference between
the eigenvalues, λ1−λ2, to quantify edge strength [206].

Several color versions of the Canny edge detector can be found in
the literature, such as the one proposed by Kanade (in [140]) which
is very similar to the algorithm presented here. Other approaches of
adapting the Canny detector for color images can be found in [85].
In addition to Canny’s scheme, other types of color edge detectors
have been used successfully, including techniques based on vector
order statistics and color difference vectors. Excellent surveys of
the various color edge detection approaches can be found in [266]
and [141, Ch. 6].

409

16 Edge Detection in
Color Images

16.5 Java Implementation

The following Java implementations of the algorithms described in
this chapter can be found in the source code section15 of the book’s
website. The common (abstract) super-class for all color edge de-
tectors is ColorEdgeDetector, which mainly provides the following
methods:

FloatProcessor getEdgeMagnitude ()

Returns the resulting edge magnitude map E(u) as a Float-

Processor object.
FloatProcessor getEdgeOrientation ()

Returns the resulting edge orientation map Φ(u) as a Float-

Processor object, with values in the range [−π, π].

The following edge detectors are defined as concrete sub-classes of
ColorEdgeDetector:

GrayscaleEdgeDetector: Implements an edge detector that uses
only the intensity (brightness) of the supplied color image.

MonochromaticEdgeDetector: Implements the monochromatic color
edge detector described in Alg. 16.1.

DiZenzoCumaniEdgeDetector: Implements the Di Zenzo-Cumani ty-
pe color edge detector described in Alg. 16.2.

CannyEdgeDetector: Implements the canny edge detector for gray-
scale and color images described in Alg. 16.3. This class defines
the additional methods

ByteProcessor getEdgeBinary(),
List<List<java.awt.Point>> getEdgeTraces().

Program 16.1 shows a complete example for the use of the class
CannyEdgeDetector in the context of an ImageJ plugin.

15 Package imagingbook.pub.color.edge.
410

16.5 Java
Implementation

1 import ij.ImagePlus;

2 import ij.plugin.filter.PlugInFilter;

3 import ij.process.ByteProcessor;

4 import ij.process.FloatProcessor;

5 import ij.process.ImageProcessor;

6 import imagingbook.pub.coloredge.CannyEdgeDetector;

7

8 import java.awt.Point;

9 import java.util.List;

10

11 public class Canny_Edge_Demo implements PlugInFilter {

12

13 public int setup(String arg0, ImagePlus imp) {

14 return DOES_ALL + NO_CHANGES;

15 }

16

17 public void run(ImageProcessor ip) {

18

19 CannyEdgeDetector.Parameters params =

20 new CannyEdgeDetector.Parameters();

21

22 params.gSigma = 3.0f; // σ of Gaussian

23 params.hiThr = 20.0f; // 20% of max. edge magnitude

24 params.loThr = 5.0f; // 5% of max. edge magnitude

25

26 CannyEdgeDetector detector =

27 new CannyEdgeDetector(ip, params);

28

29 FloatProcessor eMag = detector.getEdgeMagnitude();

30 FloatProcessor eOrt = detector.getEdgeOrientation();

31 ByteProcessor eBin = detector.getEdgeBinary();

32 List<List<Point>> edgeTraces =

33 detector.getEdgeTraces();

34

35 (new ImagePlus("Canny Edges", eBin)).show();

36

37 // process edge detection results ...

38 }

39 }

Prog. 16.1
Use of the CannyEdgeDetector
class in an ImageJ plugin. A
parameter object (params) is
created in line 20, subsequently
configured (in lines 22–24)
and finally used to construct
a CannyEdgeDetector object in
line 27. Note that edge detec-
tion is performed within the
constructor method. Lines 29–
33 demonstrate how different
types of edge detection results
can be retrieved. The binary
edge map eBin is displayed in
line 35. As indicated in the
setup() method (by returning
DOES_ALL), this plugin works
with any type of image.

411

17

Edge-Preserving Smoothing Filters

Noise reduction in images is a common objective in image processing,
not only for producing pleasing results for human viewing but also to
facilitate easier extraction of meaningful information in subsequent
steps, for example, in segmentation or feature detection. Simple
smoothing filters, such as the Gaussian filter1 and the filters discussed
in Chapter 15 effectively perform low-pass filtering and thus remove
high-frequency noise. However, they also tend to suppress high-rate
intensity variations that are part of the original signal, thereby de-
stroying image structures that are visually important. The filters
described in this chapter are “edge preserving” in the sense that they
change their smoothing behavior adaptively depending upon the local
image structure. In general, maximum smoothing is performed over
“flat” (uniform) image regions, while smoothing is reduced near or
across edge-like structures, typically characterized by high intensity
gradients.

In the following, three classical types of edge preserving filters
are presented, which are largely based on different strategies. The
Kuwahara-type filters described in Sec. 17.1 partition the filter ker-
nel into smaller sub-kernels and select the most “homogeneous” of
the underlying image regions for calculating the filter’s result. In
contrast, the bilateral filter in Sec. 17.2 uses the differences between
pixel values to control how much each individual pixel in the filter
region contributes to the local average. Pixels which are similar to
the current center pixel contribute strongly, while highly different
pixels add little to the result. Thus, in a sense, the bilateral filter is a
non-homogeneous linear filter with a convolution kernel that is adap-
tively controlled by the local image content. Finally, the anisotropic
diffusion filters in Sec. 17.3 iteratively smooth the image similar to
the process of thermal diffusion, using the image gradient to block
the local diffusion at edges and similar structures. It should be noted
that all filters described in this chapter are nonlinear and can be
applied to either grayscale or color images.

1 See Chapter 5, Sec. 5.2.
413

© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_17

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

17 Edge-Preserving
Smoothing Filters

17.1 Kuwahara-Type Filters

The filters described in this section are all based on a similar concept
that has its early roots in the work of Kuwahara et al. [144]. Although
many variations have been proposed by other authors, we summarize
them here under the term “Kuwahara-type” to indicate their origin
and algorithmic similarities.

In principle, these filters work by calculating the mean and vari-
ance within neighboring image regions and selecting the mean value
of the most “homogeneous” region, that is, the one with the small-
est variance, to replace the original (center) pixel. For this purpose,
the filter region R is divided into K partially overlapping subregions
R1, R2, . . . , RK . At every image position (u, v), the mean μk and the
variance σ2

k of each subregion Rk are calculated from the correspond-
ing pixel values in I as

μk(I, u, v) =
1
|Rk|

·
∑

(i,j)∈Rk

I(u+i, v+j) =
1

nk

· S1,k(I, u, v), (17.1)

σ2
k(I, u, v) =

1
|Rk|

·
∑

(i,j)∈Rk

(
I(u+i, v+j)− μk(I, u, v)

)2
(17.2)

=
1
|Rk|

·
(

S2,k(I, u, v)−
S2

1,k(I, u, v)

|Rk|
)

, (17.3)

for k = 1, . . . , K, with2

S1,k(I, u, v) =
∑

(i,j)∈Rk

I(u+i, v+j), (17.4)

S2,k(I, u, v) =
∑

(i,j)∈Rk

I2(u+i, v+j). (17.5)

The mean (μ) of the subregion with the smallest variance (σ2) is
selected as the update value, that is,

I ′(u, v) ← μk′ (u, v), with k′ = argmin
k=1,...,K

σ2
k(I, u, v). (17.6)

The subregion structure originally proposed by Kuwahara et al.
[144] is shown in Fig. 17.1(a) for a 3 × 3 filter (r = 1). It uses four
square subregions of size (r + 1)× (r + 1) that overlap at the center.
In general, the size of the whole filter is (2r + 1) × (2r + 1). This
particular filter process is summarized in Alg. 17.1.

Note that this filter does not have a centered subregion, which
means that the center pixel is always replaced by the mean of one
of the neighboring regions, even if it had perfectly fit the surround-
ing values. Thus the filter always performs a spatial shift, which
introduces jitter and banding artifacts in regions of smooth intensity
change. This effect is reduced with the filter proposed by Tomita and
Tsuji [230], which is similar but includes a fifth subregion at its center
(Fig. 17.1(b)). Filters of arbitrary size can be built by simply scaling
the corresponding structure. In case of the Tomita-Tsuji filter, the
side length of the subregions should be odd.

2 |Rk| denotes the size (number of pixels) of the subregion Rk.
414

17.1 Kuwahara-Type
Filters

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

R1 R2 R3 R4

(a)

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

R1 R2 R3 R4 R5

(b)

Fig. 17.1
Subregion structures for
Kuwahara-type filters. The
orginal Kuwahara-Hachimura
filter (a) considers four square,
overlapping subregions [144].
Tomita-Tsuji filter (b) with
five subregions (r = 2). The
current center pixel (red) is
contained in all subregions.
Das aktuelle Zentralpixel (rot)
ist in allen Subregionen enthal-
ten.

Note that replacing a pixel value by the mean of a square neigh-
borhood is equivalent to linear filtering with a simple box kernel,
which is not an optimal smoothing operator. To reduce the arti-
facts caused by the square subregions, alternative filter structures
have been proposed, such as the 5× 5 Nagao-Matsuyama filter [170]
shown in Fig. 17.2.

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

R1 R2 R3 R4 R5

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

R9 R8 R7 R6

Fig. 17.2
Subregions for the 5 × 5 (r = 2)
Nagao-Matsuyama filter [170].
Note that the centered subre-
gion (R1) has a different size
than the remaining subregions
(R2, . . . , R9).

If all subregions are of identical size |Rk| = n, the quantities

σ2
k(I, u, v) · n = S2,k(I, u, v)− S2

1,k(I, u, v)/n or (17.7)

σ2
k(I, u, v) · n2 = S2,k(I, u, v) · n− S2

1,k(I, u, v) (17.8)

can be used to measure the amount of variation within the corre-
sponding subregion. Both expressions require calculating one mul-
tiplication less for each pixel than the “real” variance σ2

k in Eqn.
(17.3). Moreover, if all subregions have the same shape (such as the
filters in Fig. 17.1), additional optimizations are possible that sub-
stantially improve the performance. In this case, the local mean and
variance need to be calculated only once over a fixed neighborhood
for each image position. This type of filter can be efficiently imple-
mented by using a set of pre-calculated maps for the local variance
and mean values, as described in Alg. 17.2. As before, the parameter
r specifies the radius of the composite filter, with subregions of size
(r + 1)× (r + 1) and overall size (2r + 1)× (2r + 1). The individual
subregions are of size (r + 1) × (r + 1); for example, r = 2 for the
5× 5 filter shown in Fig. 17.1(b).

All these filters tend to generate banding artifacts in smooth im-
age regions due to erratic spatial displacements, which become worse

415

17 Edge-Preserving
Smoothing Filters

Alg. 17.1
Simple Kuwahara-
Hachimura filter.

1: KuwaharaFilter(I)
Input: I , a grayscale image of size M×N .
Returns a new (filtered) image of size M×N .

2: R1 ← {(−1,−1), (0,−1), (−1, 0), (0, 0)}
3: R2 ← {(0,−1), (1,−1), (0, 0), (1, 0)}
4: R3 ← {(0, 0), (1, 0), (1, 0), (1, 1)}
5: R4 ← {(−1, 0), (0, 0), (−1, 1), (1, 0)}
6: I ′ ← Duplicate(I)
7: (M, N) ← Size(I)

8: for all image coordinates (u, v) ∈ M×N do
9: σ2

min ← ∞
10: for R ← R1, . . . , R4 do
11: (σ2, μ) ← EvalSubregion(I, R, u, v)
12: if σ2 < σ2

min then
13: σ2

min ← σ2

14: μmin ← μ
15: I ′(u, v) ← μmin

16: return I ′

17: EvalSubregion(I, R, u, v)
Returns the variance and mean of the grayscale image I for the
subregion R positioned at (u, v).

18: n ← Size(R)
19: S1 ← 0, S2 ← 0
20: for all (i, j) ∈ R do
21: a ← I(u + i, v + j)
22: S1 ← S1 + a ⊲ Eq. 17.4
23: S2 ← S2 + a2 ⊲ Eq. 17.5
24: σ2 ← (S2 − S2

1/n)/n ⊲ variance of subregion R, see Eq. 17.1
25: μ ← S1/n ⊲ mean of subregion R, see Eq. 17.3
26: return (σ2, μ)

with increasing filter size. If a centered subregion is used (such as
R5 in Fig. 17.1 or R1 in Fig. 17.2), one could reduce this effect by
applying a threshold (tσ) to select any off-center subregion Rk only
if its variance is significantly smaller than the variance of the center
region R1 (see Alg. 17.2, line 13).

17.1.1 Application to Color Images

While all of the aforementioned filters were originally designed for
grayscale images, they are easily modified to work with color images.
We only need to specify how to calculate the variance and mean for
any subregion; the decision and replacement mechanisms then remain
the same.

Given an RGB color image I = (IR, IG, IB) with a subregion Rk,
we can calculate the local mean and variance for each color channel
as

μk(I, u, v)=

⎛

⎝

μk(IR, u, v)
μk(IG, u, v)
μk(IB, u, v)

⎞

⎠, σ2
k(I, u, v)=

⎛

⎝

σ2
k(IR, u, v)

σ2
k(IG, u, v)

σ2
k(IB, u, v)

⎞

⎠, (17.9)

416

17.1 Kuwahara-Type
Filters

1: FastKuwaharaFilter(I, r, tσ)
Input: I , a grayscale image of size M×N ; r, filter radius (r ≥ 1);
tσ, variance threshold.
Returns a new (filtered) image of size M × N .

2: (M, N) ← Size(I)
3: Create maps:

S : M×N → R ⊲ local variance S(u, v) ≡ n · σ2(I, u, v)
A : M×N → R ⊲ local mean A(u, v) ≡ μ(I, u, v)

4: dmin ← (r ÷ 2) − r ⊲ subregions’ left/top position
5: dmax ← dmin + r ⊲ subregions’ right/bottom position

6: for all image coordinates (u, v) ∈ M×N do
7: (s, μ) ← EvalSquareSubregion(I, u, v, dmin, dmax)
8: S(u, v) ← s
9: A(u, v) ← μ

10: n ← (r + 1)2 ⊲ fixed subregion size
11: I ′ ← Duplicate(I)

12: for all image coordinates (u, v) ∈ M×N do
13: smin ← S(u, v) − tσ · n ⊲ variance of center region
14: μmin ← A(u, v) ⊲ mean of center region
15: for p ← dmin, . . . , dmax do
16: for q ← dmin, . . . , dmax do
17: if S(u + p, v + q) < smin then
18: smin ← S(u + p, v + q)
19: μmin ← A(u + p, v + q)
20: I ′(u, v) ← μmin

21: return I ′

22: EvalSquareSubregion(I, u, v, dmin, dmax)
Returns the variance and mean of the grayscale image I for a
square subregion positioned at (u, v).

23: S1 ← 0, S2 ← 0
24: for i ← dmin, . . . , dmax do
25: for j ← dmin, . . . , dmax do
26: a ← I(u + i, v + j)
27: S1 ← S1 + a ⊲ Eq. 17.4
28: S2 ← S2 + a2 ⊲ Eq. 17.5
29: s ← S2 − S2

1/n ⊲ subregion variance (s ≡ n · σ2)
30: μ ← S1/n ⊲ subregion mean (μ)
31: return (s, μ)

Alg. 17.2
Fast Kuwahara-type (Tomita-
Tsuji) filter with variable size
and fixed subregion structure.
The filter uses five square sub-
regions of size (r +1)×(r +1),
with a composite filter of
(2r + 1) × (2r + 1), as shown
in Fig. 17.1(b). The purpose
of the variance threshold tσ

is to reduce banding effects in
smooth image regions (typi-
cally tσ = 5, . . . , 50 for 8-bit
images).

with μk(), σ2
k() as defined in Eqns. (17.1) and (17.3), respectively.

Analogous to the grayscale case, each pixel is then replaced by the
average color in the subregion with the smallest variance, that is,

I ′(u, v) ← μk′ (I , u, v), with k′ = argmin
k=1,...,K

σ2
k,RGB(I, u, v). (17.10)

The overall variance σ2
k,RGB, used to determine k′ in Eqn. (17.10), can

be defined in different ways, for example, as the sum of the variances
in the individual color channels, that is,

σ2
k,RGB(I , u, v) = σ2

k(IR, u, v) + σ2
k(IG, u, v) + σ2

k(IB, u, v). (17.11)
417

17 Edge-Preserving
Smoothing Filters

Alg. 17.3
Color version of the

Kuwahara-type filter (adapted
from Alg. 17.1). The algo-

rithm uses the definition in
Eqn. (17.11) for the total vari-

ance σ2 in the subregion R
(see line 25). The vector µ

(calculated in line 26) is the
average color of the subregion.

1: KuwaharaFilterColor(I)
Input: I, an RGB image of size M×N .
Returns a new (filtered) color image of size M×N .

2: R1 ← {(−1,−1), (0,−1), (−1, 0), (0, 0)}
3: R2 ← {(0,−1), (1,−1), (0, 0), (1, 0)}
4: R3 ← {(0, 0), (1, 0), (1, 0), (1, 1)}
5: R4 ← {(−1, 0), (0, 0), (−1, 1), (1, 0)}
6: I ′ ← Duplicate(I)
7: (M, N) ← Size(I)

8: for all image coordinates (u, v) ∈ M×N do
9: σ2

min ← ∞
10: for R ← R1, . . . , R4 do
11: (σ2, μ) ← EvalSubregion(I, Rk, u, v)
12: if σ2 < σ2

min then
13: σ2

min ← σ2

14: μmin ← μ
15: I ′(u, v) ← μmin

16: return I ′

17: EvalSubregion(I, R, u, v)
Returns the total variance and the mean vector of the color image
I for the subregion R positioned at (u, v).

18: n ← Size(R)
19: S1 ← 0, S2 ← 0 ⊲ S1, S2 ∈ R

3

20: for all (i, j) ∈ R do
21: a ← I(u+i, v+j) ⊲ a ∈ R

3

22: S1 ← S1 + a
23: S2 ← S2 + a2 ⊲ a2 = a · a (dot product)
24: S ←

(
S2 − S2

1 · 1
n

)
· 1

n
⊲ S = (σ2

R, σ2
G, σ2

B)

25: σ2
RGB ← ΣS ⊲ σ2

RGB = σ2
R +σ2

G+σ2
B, total variance in R

26: μ ← 1
n
· S1 ⊲ μ ∈ R

3, avg. color vector for subregion R

27: return (σ2
RGB, μ)

This is sometimes called the “total variance”. The resulting filter
process is summarized in Alg. 17.3 and color examples produced with
this algorithm are shown in Figs. 17.3 and 17.4.

Alternatively [109], one could define the combined color variance
as the norm of the color covariance matrix3 for the subregion Rk,

Σk(I, u, v) =

⎛

⎝

σk,RR σk,RG σk,RB

σk,GR σk,GG σk,GB

σk,BR σk,BG σk,BB

⎞

⎠ , (17.12)

with σk,pq =
1
|Rk|

·
∑

(i,j)∈Rk

[
Ip(u+i, v+j)−μk(Ip, u, v)

]
· (17.13)

[
Iq(u+i, v+j)−μk(Iq, u, v)

]
,

for all possible color pairs (p, q) ∈ {R, G, B}2. Note that σk,pp = σ2
k,p

and σk,pq = σk,qp, and thus the matrix Σk is symmetric and only 6
of its 9 entries need to be calculated. The (Frobenius) norm of the
3× 3 color covariance matrix is defined as

3 See Sec. D.2 in the Appendix for details.
418

17.1 Kuwahara-Type
Filters

(a) RGB test image with selected details

(b) r = 1 (3 × 3 filter)

(c) r = 2 (5 × 5 filter)

(d) r = 3 (7 × 7 filter)

(e) r = 4 (9 × 9 filter)

Fig. 17.3
Kuwahara-type (Tomita-Tsuji)
filter—color example using
the variance definition in Eqn.
(17.11). The filter radius is
varied from r = 1 (b) to r =
4 (e).

σ2
k,RGB = ‖Σk(I, u, v)‖2

2 =
∑

p,q ∈
{R,G,B}

(σk,pq)2. (17.14)

Note that the total variance in Eqn. (17.11)—which is simpler to
calculate than this norm—is equivalent to the trace of the covariance
matrix Σk.

419

17 Edge-Preserving
Smoothing Filters

Fig. 17.4
Color versions of the Tomita-

Tsuji (Fig. 17.1(b)) and
Nagao-Matsuyama filter (Fig.

17.2). Both filters are of size
5 × 5 and use the variance defi-
nition in Eqn. (17.11). Results

are visually similar, but in gen-
eral the Nagao-Matsuyama

filter is slightly less destruc-
tive on diagonal structures.

Original image in Fig. 17.3(a).

(a) 5 × 5 Tomita-Tsuji filter (r = 2)

(b) 5 × 5 Nagao-Matsuyama filter

Since each pixel of the filtered image is calculated as the mean
(i.e., a linear combination) of a set of original color pixels, the results
depend on the color space used, as discussed in Chapter 15, Sec.
15.1.2.

17.2 Bilateral Filter

Traditional linear smoothing filters operate by convolving the image
with a kernel, whose coefficients act as weights for the corresponding
image pixels and only depend on the spatial distance from the center
coordinate. Pixels close to the filter center are typically given larger
weights while pixels at a greater distance carry smaller weights. Thus
the convolution kernel effectively encodes the closeness of the under-
lying pixels in space. In the following, a filter whose weights depend
only on the distance in the spatial domain is called a domain filter.

To make smoothing filters less destructive on edges, a typical
strategy is to exclude individual pixels from the filter operation or
to reduce the weight of their contribution if they are very dissimilar
in value to the pixel found at the center position. This operation
too can be formulated as a filter, but this time the kernel coefficients
depend only upon the differences in pixel values or range. Therefore
this is called a range filter, as explained in more detail Sec. 17.2.2.
The idea of the bilateral filter, proposed by Tomasi and Manduchi
in [229], is to combine both domain and range filtering into a common,
edge-preserving smoothing filter.

17.2.1 Domain Filter

In an ordinary 2D linear filter (or “convolution”) operation,4

4 See also Chapter 5, Eqn. (5.5) on page 92.
420

17.2 Bilateral FilterI ′(u, v) ←
∞∑

m =
−∞

∞∑

n =
−∞

I(u + m, v + n) ·H(m, n) (17.15)

=
∞∑

i =
−∞

∞∑

j =
−∞

I(i, j) ·H(i− u, j − v), (17.16)

every new pixel value I ′(u, v) is the weighted average of the original
image pixels I in a certain neighborhood, with the weights speci-
fied by the elements of the filter kernel H .5 The weight assigned to
each pixel only depends on its spatial position relative to the current
center coordinate (u, v). In particular, H(0, 0) specifies the weight
of the center pixel I(u, v), and H(m, n) is the weight assigned to a
pixel displaced by (m, n) from the center. Since only the spatial im-
age coordinates are relevant, such a filter is called a domain filter.
Obviously, ordinary filters as we know them are all domain filters.

17.2.2 Range Filter

Although the idea may appear strange at first, one could also apply
a linear filter to the pixel values or range of an image in the form

I ′
r(u, v) ←

∞∑

i =
−∞

∞∑

j =
−∞

I(i, j) ·Hr

(
I(i, j)− I(u, v)

)
. (17.17)

The contribution of each pixel is specified by the function Hr and
depends on the difference between its own value I(i, j) and the value
at the current center pixel I(u, v). The operation in Eqn. (17.17)
is called a range filter, where the spatial position of a contributing
pixel is irrelevant and only the difference in values is considered. For
a given position (u, v), all surrounding image pixels I(i, j) with the
same value contribute equally to the result I ′

r(u, v). Consequently,
the application of a range filter has no spatial effect upon the image—
in contrast to a domain filter, no blurring or sharpening will occur.
Instead, a range filter effectively performs a global point operation by
remapping the intensity or color values. However, a global range filter
by itself is of little use, since it combines pixels from the entire image
and only changes the intensity or color map of the image, equivalent
to a nonlinear, image-dependent point operation.

17.2.3 Bilateral Filter—General Idea

The key idea behind the bilateral filter is to combine domain filtering
(Eqn. (17.16)) and range filtering (Eqn. (17.17)) in the form

I ′(u, v) =
1

Wu,v

·
∞∑

i =
−∞

∞∑

j =
−∞

I(i, j) ·Hd(i−u, j−v) ·Hr

(
I(i, j)−I(u, v)

)

︸ ︷︷ ︸
wi,j

,

(17.18)

5 In Eqn. (17.16), functions I and H are assumed to be zero outside their
domains of definition.

421

17 Edge-Preserving
Smoothing Filters

where Hd, Hr are the domain and range kernels, respectively, wi,j

are the composite weights, and

Wu,v =
∞∑

i =
−∞

∞∑

j =
−∞

wi,j =
∞∑

i =
−∞

∞∑

j =
−∞

Hd(i−u, j−v) ·Hr

(
I(i, j)−I(u, v)

)

(17.19)

is the (position-dependent) sum of the weights wi,j used to normalize
the combined filter kernel.

In this form, the scope of range filtering is constrained to the spa-
tial neighborhood defined by the domain kernel Hd. At a given filter
position (u, v), the weight wi,j assigned to each contributing pixel
depends upon (1) its spatial position relative to (u, v), and (2) the
similarity of its pixel value to the value at the center position (u, v).
In other words, the resulting pixel is the weighted average of pixels
that are nearby and similar to the original pixel. In a flat image re-
gion, where most surrounding pixels have values similar to the center
pixel, the bilateral filter acts as a conventional smoothing filter, con-
trolled only by the domain kernel Hd. However, when placed near a
step edge or on an intensity ridge, only those pixels are included in
the smoothing process that are similar in value to the center pixel,
thus avoiding blurring the edges.

If the domain kernel Hd has a limited radius D, or size (2D+1)×
(2D+1), the bilateral filter defined in Eqn. (17.18) can be written as

I ′(u, v) =

u+D∑

i =
u−D

v+D∑

j =
v−D

I(i, j) ·Hd(i−u, j−v) ·Hr (I(i, j)−I(u, v))

u+D∑

i =
u−D

v+D∑

j =
v−D

Hd(i−u, j−v) ·Hr (I(i, j)−I(u, v))
(17.20)

=

D∑

m=
−D

D∑

n=
−D

I(u + m, v + n) ·Hd(m, n) ·Hr (I(u+m, v+n)−I(u, v))

D∑

m=
−D

D∑

n=
−D

Hd(m, n) ·Hr (I(u+m, v+n)−I(u, v))

(17.21)

(by substituting (i−u) → m and (j−v) → n). The effective, space
variant filter kernel for the image I at position (u, v) then is

H̄I,u,v(i, j) =
Hd(i, j) ·Hr

(
I(u+i, v+j)−I(u, v)

)

D∑

m=
−D

D∑

n=
−D

Hd(m, n) ·Hr (I(u+m, v+n)−I(u, v))
,

(17.22)

for −D ≤ i, j ≤ D, whereas H̄I,u,v(i, j) = 0 otherwise. This quantity
specifies the contribution of the original image pixels I(u+i, v+j) to
the resulting new pixel value I ′(u, v).

422

17.2 Bilateral Filter17.2.4 Bilateral Filter with Gaussian Kernels

A special (but common) case is the use of Gaussian kernels for both
the domain and the range parts of the bilateral filter. The discrete
2D Gaussian domain kernel of width σd is defined as

H
G,σd

d (m, n) =
1

2πσ2
d

· e
− ρ2

2σ2
d =

1
2πσ2

d

· e
− m2+n2

2σ2
d (17.23)

=
1√

2π σd

· exp
(

−m2

2σ2
d

)

· 1√
2π σd

· exp
(

− n2

2σ2
d

)

, (17.24)

for m, n ∈ Z. It has its maximum at the center (m = n = 0)
and declines smoothly and isotropically with increasing radius ρ =√

m2 + n2; for ρ > 3.5σd, H
G,σd

d (m, n) is practically zero. The fac-
torization in Eqn. (17.24) indicates that the Gaussian 2D kernel can
be separated into 1D Gaussians, allowing for a more efficient im-
plementation.6 The constant factors 1/(

√
2π σd) can be omitted in

practice, since the bilateral filter requires individual normalization at
each image position (Eqn. (17.19)).

Similarly, the corresponding range filter kernel is defined as a
(continuous) 1D Gaussian of width σr,

H
G,σr
r (x) =

1√
2π σr

· e
− x2

2σ2
r =

1√
2π σr

· exp
(

− x2

2σ2
r

)

, (17.25)

for x ∈ R. The constant factor 1/(
√

2π σr) may again be omitted and
the resulting composite filter (Eqn. (17.18)) can thus be written as

I ′(u, v) =
1

Wu,v

·
u+D∑

i =
u−D

v+D∑

j =
v−D

[

I(i, j) ·HG,σd

d (i− u, j − v) (17.26)

·HG,σr
r (I(i, j)− I(u, v))

]

=
1

Wu,v

·
D∑

m =
−D

D∑

n =
−D

[

I(u + m, v + n) ·HG,σd

d (m, n) (17.27)

·HG,σr
r (I(u + m, v + n)− I(u, v))

]

=
1

Wu,v

·
D∑

m =
−D

D∑

n =
−D

[

I(u + m, v + n) · exp
(
−m2+n2

2σ2
d

)
(17.28)

· exp
(
− (I(u+m,v+n)−I(u,v))2

2σ2
r

)]

,

with D = ⌈3.5 · σd⌉ and

Wu,v =
D∑

m =
−D

D∑

n =
−D

exp
(
−m2+n2

2σ2
d

)
· exp

(
− (I(u+m,v+n)−I(u,v))2

2σ2
r

)
. (17.29)

For 8-bit grayscale images, with pixel values in the range [0, 255], the
width of the range kernel is typically set to σr = 10, . . . , 50. The width
of the domain kernel (σd) depends on the desired amount of spatial
smoothing. Algorithm 17.4 gives a summary of the steps involved in
bilateral filtering for grayscale images.

6 See also Chapter 5, Sec. 5.3.3.
423

17 Edge-Preserving
Smoothing Filters

Alg. 17.4
Bilateral filter with Gaussian

kernels (grayscale version).

1: BilateralFilterGray(I, σd, σr)
Input: I , a grayscale image of size M×N ; σd, width of the 2D
Gaussian domain kernel; σr, width of the 1D Gaussian range

kernel. Returns a new filtered image of size M×N .

2: (M, N) ← Size(I)
3: D ← ⌈3.5 · σd⌉ ⊲ width of domain filter kernel
4: I ′ ← Duplicate(I)

5: for all image coordinates (u, v) ∈ M×N do
6: S ← 0 ⊲ sum of weighted pixel values
7: W ← 0 ⊲ sum of weights
8: a ← I(u, v) ⊲ center pixel value
9: for m ← −D, . . . , D do

10: for n ← −D, . . . , D do
11: b ← I(u + m, v + n) ⊲ off-center pixel value

12: wd ← exp
(
−m2+n2

2σ2
d

)
⊲ domain coefficient

13: wr ← exp
(
− (a−b)2

2σ2
r

)
⊲ range coefficient

14: w ← wd · wr ⊲ composite coefficient
15: S ← S + w · b
16: W ← W + w
17: I ′(u, v) ← S/W

18: return I ′

Figures 17.5–17.9 show the effective, space-variant filter kernels
(see Eqn. (17.22)) and the results of applying a bilateral filter with
Gaussian domain and range kernels in different situations. Uniform
noise was applied to the original images to demonstrate the filtering
effect. One can see clearly how the range part makes the combined
filter kernel adapt to the local image structure. Only those surround-
ing parts that have brightness values similar to the center pixel are
included in the filter operation. The filter parameters were set to
σd = 2.0 and σr = 50; the domain kernel is of size 15× 15.

17.2.5 Application to Color Images

Linear smoothing filters are typically used on color images by sepa-
rately applying the same filter to the individual color channels. As
discussed in Chapter 15, Sec. 15.1, this is legitimate if a suitable work-
ing color space is used to avoid the introduction of unnatural intensity
and chromaticity values. Thus, for the domain-part of the bilateral
filter, the same considerations apply as for any linear smoothing fil-
ter. However, as will be described, the bilateral filter as a whole
cannot be implemented by filtering the color channels separately.

In the range part of the filter, the weight assigned to each con-
tributing pixel depends on its difference to the value of the center
pixel. Given a suitable distance measure dist(a, b) between two color
vectors a, b, the bilateral filter in Eqn. (17.18) can be easily modified
for a color image I to

I′(u, v) =
1

Wu,v

·
∞∑

i=
−∞

∞∑

j=
−∞

I(i, j) ·Hd(i−u, j−v) (17.30)

·Hr

(
dist(I(i, j), I(u, v))

)
,

424

17.2 Bilateral Filter

(a)

(b)

(c)

Fig. 17.5
Bilateral filter response when
positioned in a flat, noisy im-
age region. Original image
function (b), filtered image (c),
combined impulse response (a)
of the filter at the given posi-
tion.

(a)

(b)

(c)

Fig. 17.6
Bilateral filter response when
positioned on a linear ramp.
Original image function (b),
filtered image (c), combined
impulse response (a) of the
filter at the given position.

with

Wu,v =
∑

i,j

Hd(i−u, j−v) ·Hr

(
dist(I(i, j), I(u, v))

)
. (17.31)

It is common to use one of the popular norms for measuring color
distances, such as the L1, L2 (Euclidean), or the L∞ (maximum)
norms, for example,

425

17 Edge-Preserving
Smoothing Filters

Fig. 17.7
Bilateral filter response when

positioned left to a verti-
cal step edge. Original im-

age function (b), filtered
image (c), combined im-
pulse response (a) of the

filter at the given position.

(a)

(b)

(c)

Fig. 17.8
Bilateral filter response when

positioned right to a verti-
cal step edge. Original im-

age function (b), filtered
image (c), combined im-
pulse response (a) of the

filter at the given position.

(a)

(b)

(c)

dist1(a, b) := 1
3 · ‖a− b‖1 = 1

3 ·
∑K

k=1 |ak − bk| , (17.32)

dist2(a, b) := 1√
3
· ‖a− b‖2 = 1√

3
·
(∑K

k=1 (ak − bk)2)1/2
, (17.33)

dist∞(a, b) := ‖a− b‖∞ = max
k
|ak − bk| . (17.34)

The normalizing factors 1/3 and 1/
√

3 in Eqns. (17.32)–(17.33) are
necessary to obtain results comparable in magnitude to those of

426

17.2 Bilateral Filter

(a)

(b)

(c)

Fig. 17.9
Bilateral filter response when
positioned at a corner. Origi-
nal image function (b), filtered
image (c), combined impulse
response (a) of the filter at the
given position.

(a)

(b)

(c)

Fig. 17.10
Bilateral filter response when
positioned on a vertical ridge.
Original image function (b),
filtered image (c), combined
impulse response (a) of the
filter at the given position.

grayscale images when using the same range kernel Hr.7 Of course
in most color spaces, none of these norms measures perceived color
difference.8 However, the distance function itself is not really critical
since it only affects the relative weights assigned to the contributing

7 For example, with 8-bit RGB color images, dist(a, b) is always in the
range [0, 255].

8 The CIELAB and CIELUV color spaces are designed to use the Eu-
clidean distance (L2 norm) as a valid metric for color difference.

427

17 Edge-Preserving
Smoothing Filters

Alg. 17.5
Bilateral filter with Gaus-

sian kernels (color version).
The function dist(a, b) mea-

sures the distance between
two colors a and b, for ex-
ample, using the L2 norm
(line 5, see Eqns. (17.32)–
(17.34) for other options).

1: BilateralFilterColor(I, σd, σr)
Input: I, a color image of size M ×N ; σd, width of the 2D
Gaussian domain kernel; σr, width of the 1D Gaussian range

kernel. Returns a new filtered color image of size M×N .

2: (M, N) ← Size(I)
3: D ← ⌈3.5 · σd⌉ ⊲ width of domain filter kernel
4: I ′ ← Duplicate(I)

5: dist(a, b) := 1√
3
· ‖a − b‖2 ⊲ color distance (e.g., Euclidean)

6: for all image coordinates (u, v) ∈ (M×N) do
7: S ← 0 ⊲ S ∈ R

3, sum of weighted pixel vectors
8: W ← 0 ⊲ sum of pixel weights (scalar)
9: a ← I(u, v) ⊲ a ∈ R

3, center pixel vector

10: for m ← −D, . . . , D do
11: for n ← −D, . . . , D do
12: b ← I(u + m, v + n) ⊲ b ∈ R

3, off-center pixel vector

13: wd ← exp
(
−m2+n2

2σ2
d

)
⊲ domain coefficient

14: wr ← exp
(
− (dist(a,b))2

2σ2
r

)
⊲ range coefficient

15: w ← wd · wr ⊲ composite coefficient
16: S ← S + w · b
17: W ← W + w
18: I ′(u, v) ← 1

W
· S

19: return I ′

color pixels. Regardless of the distance function used, the resulting
chromaticities are linear, convex combinations of the original colors
in the filter region, and thus the choice of the working color space is
more important (see Chapter 15, Sec. 15.1).

The process of bilateral filtering for color images (again using
Gaussian kernels for the domain and the range filters) is summarized
in Alg. 17.5. The Euclidean distance (L2 norm) is used to measure
the difference between color vectors. The examples in Fig. 17.11 were
produced using sRGB as the color working space.

17.2.6 Efficient Implementation by x/y Separation

The bilateral filter, if implemented in the way described in Algs.
17.4–17.5, is computationally expensive, with a time complexity of
O(K2) for each pixel, where K denotes the radius of the filter. Some
mild speedup is possible by tabulating the domain and range kernels,
but the performance of the brute-force implementation is usually not
acceptable for practical applications. In [185] a separable approxima-
tion of the bilateral filter is proposed that brings about a significant
performance increase. In this implementation, a 1D bilateral filter
is first applied in the horizontal direction only, which uses 1D do-
main and range kernels hd and hr, respectively, and produces the
intermediate image I⊲, that is,

428

17.2 Bilateral Filter

(a) σr = 10

(b) σr = 20

(c) σr = 50

(d) σr = 100

Fig. 17.11
Bilateral filter—color example.
A Gaussian kernel with σd =
2.0 (kernel size 15 × 15) is
used for the domain part of the
filter; working color space is
sRGB. The width of the range
filter is varied from σr = 10 to
100. The filter was applied in
sRGB color space.

I⊲(u, v) =

D∑

m=−D

I(u+m, v) · hd(m) · hr

(
I(u+m, v)−I(u, v)

)

D∑

m=−D

hd(m) · hr

(
I(u+m, v)−I(u, v)

)
.

(17.35)

In the second pass, the same filter is applied to the intermediate
result I⊲ in the vertical direction to obtain the final result I ′ as

I ′(u, v) =

D∑

n=−D

I⊲(u, v+n) · hd(n) · hr (I⊲(u, v+n)−I⊲(u, v))

D∑

n=−D

hd(n) · hr (I⊲(u, v+n)−I⊲(u, v))
,

(17.36)

for all (u, v), using the same 1D domain and range kernels hd and hr,
respectively, as in Eqn. (17.35).

429

17 Edge-Preserving
Smoothing Filters

For the horizontal part of the filter, the effective space-variant
kernel at image position (u, v) is

h̄⊲
I,u,v(i) =

hd(i) · hr (I(u+i, v)− I(u, v))
D∑

m=−D

hd(i) · hr (I(u+m, v)− I(u, v))
, (17.37)

for −D ≤ i ≤ D (zero otherwise). Analogously, the effective kernel
for the vertical part of the filter is

h̄▽
I,u,v(j) =

hd(i) · hr (I(u, v+j)− I(u, v))
D∑

n=−D

hd(j) · hr (I(u, v+j)− I(u, v))
, (17.38)

again for −D ≤ j ≤ D. For the combined filter, the effective 2D
kernel at position (u, v) then is

H̄I,u,v(i, j) =

{

h̄⊲
I,u,v(i) · h̄▽

I⊲,u,v(j) for −D ≤ i, j ≤ D,
0 otherwise,

(17.39)

where I is the original image and I⊲ denotes the intermediate image,
as defined in Eqn. (17.35).

Alternatively, the vertical filter could be applied first, followed by
the horizontal filter. Algorithm 17.6 shows a direct implementation
of the separable bilateral filter for grayscale images, using Gaussian
kernels for both the domain and the range parts of the filter. Again,
the extension to color images is straightforward (see Eqn. (17.31) and
Exercise 17.3).

As intended, the advantage of the separable filter is performance.
For a given kernel radius D, the original (non-separable) requires
O(D2) calculations for each pixel, while the separable version takes
onlyO(D) steps. This means a substantial saving and speed increase,
particularly for large filters.

Figure 17.12 shows the response of the 1D separable bilateral fil-
ter in various situations. The results produced by the separable filter
are very similar to those obtained with the original filter in Figs.
17.5–17.9, partly because the local structures in these images are
parallel to the coordinate axes. In general, the results are different,
as demonstrated for a diagonal step edge in Fig. 17.13. The effective
filter kernels are shown in Fig. 17.13(g, h) for an anchor point posi-
tioned on the bright side of the edge. It can be seen that, while the
kernel of the full filter Fig. 17.13(g) is orientation-insensitive, the up-
per part of the separable kernel is clearly truncated in Fig. 17.13(h).
But although the separable bilateral filter is sensitive to local struc-
ture orientation, it performs well and is usually a sufficient substitute
for the non-separable version [185]. The color examples shown in Fig.
17.14 demonstrate the effects of 1D bilateral filtering in the x- and y-
directions. Note that the results are not exactly the same if the filter
is first applied in the x- or in y-direction, but usually the differences
are negligible.

430

17.2 Bilateral Filter

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 17.12
Response of a separable bilat-
eral filter in various situations.
Effective kernel H̄I,u,v (Eqn.
(17.39)) at the center pixel (a–
e), original image data (f–j),
filtered image data (k–o). Set-
tings are the same as in Figs.
17.5–17.9.

Original image Full bilateral filter Separable version

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 17.13
Bilateral filter—full vs. sepa-
rable version. Original image
(a) and enlarged detail (d).
Results of the full bilateral
filter (b, e) and the separable
version (c, f). The correspond-
ing local filter kernels for the
center pixel (positioned on the
bright side of the step edge)
for the full filter (g) and the
separable version (h). Note
how the upper part of the ker-
nel in (h) is truncated along
the horizontal axis, which
shows that the separable fil-
ter is orientation-sensitive. In
both cases, σd = 2.0, σr = 25.

431

17 Edge-Preserving
Smoothing Filters

Alg. 17.6
Separable bilateral filter with

Gaussian kernels (adapted
from Alg. 17.4). The input im-
age is processed in two passes.

In each pass, a 1D kernel is
applied in horizontal or ver-
tical direction, respectively

(see Eqns. (17.35)–(17.36)).
Note that results of the sep-
arable filter are similar (but

not identical) to the full (2D)
bilateral filter in Alg. 17.4.

1: BilateralFilterGraySeparable(I, σd, σr)
Input: I , a grayscale image of size M ×N ; σd, width of the 2D
Gaussian domain kernel; σr, width of the 1D Gaussian range

kernel. Returns a new filtered image of size M×N .

2: (M, N) ← Size(I)
3: D ← ⌈3.5 · σd⌉ ⊲ width of domain filter kernel

4: I⊲ ← Duplicate(I)

Pass 1 (horizontal):
5: for all coordinates (u, v) ∈ M×N do
6: a ← I(u, v)
7: S ← 0, W ← 0
8: for m ← −D, . . . , D do
9: b ← I(u + m, v)

10: wd ← exp
(
− m2

2σ2
d

)
⊲ domain kernel coeff. hd(m)

11: wr ← exp
(
− (a−b)2

2σ2
r

)
⊲ range kernel coeff. hr(b)

12: w ← wd · wr ⊲ composite filter coeff.
13: S ← S + w · b
14: W ← W + w
15: I⊲(u, v) ← S/W ⊲ see Eq. 17.35

16: I ′ ← Duplicate(I)

Pass 2 (vertical):
17: for all coordinates (u, v) ∈ M×N do
18: a ← I⊲(u, v)
19: S ← 0, W ← 0
20: for n ← −D, . . . , D do
21: b ← I⊲(u, v + n)

22: wd ← exp
(
− n2

2σ2
d

)
⊲ domain kernel coeff. Hd(n)

23: wr ← exp
(
− (a−b)2

2σ2
r

)
⊲ range kernel coeff. Hr(b)

24: w ← wd · wr ⊲ composite filter coeff.
25: S ← S + w · b
26: W ← W + w
27: I ′(u, v) ← S/W ⊲ see Eq. 17.36

28: return I ′

17.2.7 Further Reading

A thorough analysis of the bilateral filter as well as its relationship
to adaptive smoothing and nonlinear diffusion can be found in [16]
and [67]. In addition to the simple separable implementation de-
scribed, several other fast versions of the bilateral filter have been
proposed. For example, the method described in [65] approximates
the bilateral filter by filtering sub-sampled copies of the image with
discrete intensity kernels and recombining the results using linear
interpolation. An improved and theoretically well-grounded version
of this method was presented in [179]. The fast technique proposed
in [253] eliminates the redundant calculations performed in partly
overlapping image regions, albeit being restricted to the use of box-
shaped domain kernels. As demonstrated in [187,259], real-time per-
formance using arbitrary-shaped kernels can be obtained by decom-
posing the filter into a set of smaller spatial filters.

432

17.3 Anisotropic
Diffusion Filters

(a) (b) (c)

(d) (e) (f)

Fig. 17.14
Separable bilateral filter (color
example). Original image (a),
bilateral filter applied only in
the x-direction (b) and only in
the y-direction (c). Result of
applying the full bilateral filter
(d) and the separable bilateral
filter applied in x/y order (e)
and y/x order (f). Settings:
σd = 2.0, σr = 50, L2 color
distance.

17.3 Anisotropic Diffusion Filters

Diffusion is a concept adopted from physics that models the spatial
propagation of particles or state properties within substances. In the
real world, certain physical properties (such as temperature) tend to
diffuse homogeneously through a physical body, that is, equally in all
directions. The idea viewing image smoothing as a diffusion process
has a long history in image processing (see, e.g., [11,139]). To smooth
an image and, at the same time, preserve edges or other “interesting”
image structures, the diffusion process must somehow be made locally
non-homogeneous; otherwise the entire image would come out equally
blurred. Typically, the dominant smoothing direction is chosen to be
parallel to nearby image contours, while smoothing is inhibited in
the perpendicular direction, that is, across the contours.

Since the pioneering work by Perona and Malik [182], anisotropic
diffusion has seen continued interest in the image processing com-
munity and research in this area is still strong today. The main
elements of their approach are outlined in Sec. 17.3.2. While various
other formulations have been proposed since, a key contribution by
Weickert [250, 251] and Tschumperlé [233, 236] unified them into a
common framework and demonstrated their extension to color im-
ages. They also proposed to separate the actual smoothing process
from the smoothing geometry in order to obtain better control of the
local smoothing behavior. In Sec. 17.3.4 we give a brief introduction
to the approach proposed by Tschumperlé and Deriche, as initially
described in [233]. Beyond these selected examples, a vast literature
exists on this topic, including excellent reviews [95, 250], textbook
material [125, 205], and journal articles (see [3, 45, 52, 173, 206, 226],
for example).

433

17 Edge-Preserving
Smoothing Filters

17.3.1 Homogeneous Diffusion and the Heat Equation

Assume that in a homogeneous, 3D volume some physical property
(e.g., temperature) is specified by a continuous function f(x, t) at
position x = (x, y, z) and time t. With the system left to itself,
the local differences in the property f will equalize over time until
a global equilibrium is reached. This diffusion process in 3D space
(x, y, z) and time (t) can be expressed using a partial differential
equation (PDE),

∂f

∂t
= c · (∇2f) = c ·

(∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

)

. (17.40)

This is the so-called heat equation, where ∇2f denotes the Laplace
operator9 applied to the scalar-valued function f , and c is a constant
which describes the (thermal) conductivity or conductivity coefficient
of the material. Since the conductivity is independent of position and
orientation (c is constant), the resulting process is isotropic, that is,
the heat spreads evenly in all directions.

For simplicity, we assume c = 1. Since f is a multi-dimensional
function in space and time, we make this fact a bit more transparent
by attaching explicit space and time coordinates x and τ to Eqn.
(17.40), that is,

∂f

∂t
(x, τ) =

∂2f

∂x2
(x, τ) +

∂2f

∂y2
(x, τ) +

∂2f

∂z2
(x, τ), (17.41)

or, written more compactly,

ft(x, τ) = fxx(x, τ) + fyy(x, τ) + fzz(x, τ). (17.42)

Diffusion in images

A continuous, time-varying image I may be treated analogously to
the function f(x, τ), with the local intensities taking on the role of
the temperature values in Eqn. (17.42). In this 2D case, the isotropic
diffusion equation can be written as10

∂I

∂t
= ∇2I =

∂2I

∂x2
+

∂2I

∂y2
or (17.43)

It(x, τ) = Ixx(x, τ) + Iyy(x, τ), (17.44)

with the derivatives It = ∂I/∂t, Ixx = ∂2I/∂x2, and Iyy = ∂2I/∂y2.
An approximate, numerical solution of such a PDE can be obtained
by replacing the derivatives with finite differences.

Starting with the initial (typically noisy) image I(0) = I, the
solution to the differential equation in Eqn. (17.44) can be calculated
iteratively in the form

9 Remember that ∇f denotes the gradient of the function f , which is a
vector for any multi-dimensional function. The Laplace operator (or
Laplacian) ∇2f corresponds to the divergence of the gradient of f , de-
noted div∇f , which is a scalar value (see Secs. C.2.5 and C.2.4 in the
Appendix). Other notations for the Laplacian are ∇·(∇f), (∇·∇)f ,
∇·∇f , ∇2f , or ∆f .

10 Function arguments (ξ, τ) are omitted here for better readability.
434

17.3 Anisotropic
Diffusion Filters

n = 0 n = 5 n = 10 n = 20 n = 40 n = 80

σn ≈1.411 σn ≈1.996 σn ≈2.823 σn ≈3.992 σn ≈5.646

(a) (b) (c) (d) (e) (f)

Fig. 17.15
Discrete isotropic diffusion.
Blurred images and impulse
response obtained after n it-
erations, with α = 0.20 (see
Eqn. (17.45)). The size of the
images is 50 × 50. The width
of the equivalent Gaussian ker-
nel (σn) grows with the square
root of n (the number of itera-
tions). Impulse response plots
are normalized to identical
peak values.

I(n)(u) ←
{

I(u) for n = 0,
I(n−1)(u) + α ·

[
∇2I(n−1)(u)

]
for n > 0,

(17.45)

for each image position u = (u, v), with n denoting the iteration
number. This is called the “direct” solution method (there are other
methods but this is the simplest). The constant α in Eqn. (17.45) is
the time increment, which controls the speed of the diffusion process.
Its value should be in the range (0, 0.25] for the numerical scheme
to be stable. At each iteration n, the variations in the image func-
tion are reduced and (depending on the boundary conditions) the
image function should eventually flatten out to a constant plane as
n approaches infinity.

For a discrete image I, the Laplacian ∇2I in Eqn. (17.45) can be
approximated by a linear 2D filter,

∇2I ≈ I ∗HL, with HL =

⎡

⎣

0 1 0
1 −4 1
0 1 0

⎤

⎦ , (17.46)

as described earlier.11 An essential property of isotropic diffusion is
that it has the same effect as a Gaussian filter whose width grows
with the elapsed time. For a discrete 2D image, in particular, the
result obtained after n diffusion steps (Eqn. (17.45)), is the same as
applying a linear filter to the original image I,

I(n) ≡ I ∗HG,σn , (17.47)

with the normalized Gaussian kernel

HG,σn(x, y) =
1

2πσ2
n

· e
− x2+y2

2σ2
n (17.48)

of width σn =
√

2t =
√

2n/α. The example in Fig. 17.15 illustrates
this Gaussian smoothing behavior obtained with discrete isotropic
diffusion.
11 See also Chapter 6, Sec. 6.6.1 and Sec. C.3.1 in the Appendix.

435

17 Edge-Preserving
Smoothing Filters

17.3.2 Perona-Malik Filter

Isotropic diffusion, as we have described, is a homogeneous opera-
tion that is independent of the underlying image content. Like any
Gaussian filter, it effectively suppresses image noise but also tends
to blur away sharp boundaries and detailed structures, a property
that is often undesirable. The idea proposed in [182] is to make the
conductivity coefficient variable and dependent on the local image
structure. This is done by replacing the conductivity constant c in
Eqn. (17.40), which can be written as

∂I

∂t
(x, τ) = c · [∇2I](x, τ), (17.49)

by a function c(x, t) that varies over space x and time t, that is,

∂I

∂t
(x, τ) = c(x, τ) · [∇2I](x, τ). (17.50)

If the conductivity function c() is constant, then the equation reduces
to the isotropic diffusion model in Eqn. (17.44).

Different behaviors can be implemented by selecting a particular
function c(). To achieve edge-preserving smoothing, the conductivity
c() is chosen as a function of the magnitude of the local gradient
vector ∇I, that is,

c(x, τ) := g(d) = g
(
‖[∇I(τ)](x)‖

)
. (17.51)

To preserve edges, the function g(d) : R → [0, 1] should return high
values in areas of low image gradient, enabling smoothing of homo-
geneous regions, but return low values (and thus inhibit smoothing)
where the local brightness changes rapidly. Commonly used conduc-
tivity functions g(d) are, for example [48, 182],

g1(d) = e
−(d/κ)2

, g2(d) =
1

1+(d/κ)2
, (17.52)

g3(d) =
1

√

1+(d/κ)2
, g4(d) =

{

(1−(d/2κ)2)2 for d ≤ 2κ,
0 otherwise,

where κ > 0 is a constant that is either set manually (typically in
the range [5, 50] for 8-bit images) or adjusted to the amount of image
noise. Graphs of the four functions in Eqn. (17.52) are shown in Fig.
17.16 for selected values of κ. The Gaussian conductivity function
g1 tends to promote high-contrast edges, whereas g2 and even more
g3 prefer wide, flat regions over smaller ones. Function g4, which
corresponds to Tuckey’s biweight function known from robust statis-
tics [205, p. 230], is strictly zero for any argument d > 2κ. The exact
shape of the function g() does not appear to be critical; other func-
tions with similar properties (e.g., with a linear cutoff) are sometimes
used instead.

As an approximate discretization of Eqn. (17.50), Perona and Ma-
lik [182] proposed the simple iterative scheme

I(n)(u) ← I(n−1)(u) + α ·
3∑

i=0

g
(
|δi(I

(n−1), u)|
)
· δi(I

(n−1), u),

(17.53)
436

17.3 Anisotropic
Diffusion Filters

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

d

g1(d)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

d

g2(d) κ = 40
κ = 30
κ = 20
κ = 10
κ = 4

(a) (b)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

d

g3(d)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

d

g4(d)

(c) (d)

Fig. 17.16
Typical conductivity func-
tions g1(), . . . , g4() for
κ = 4, 10, 20, 30, 40 (see
Eqn. (17.52)). If the magni-
tude of the local gradient d is
small (near zero), smoothing
amounts to a maximum (1.0),
whereas diffusion is reduced
where the gradient is high,
for example, at or near edges.
Smaller values of κ result in
narrower curves, thereby re-
stricting the smoothing opera-
tion to image areas with only
small variations.

u−1 u u+1

v−1

v

v+1

δ0

δ1

δ2

δ3

I(u, v)

Fig. 17.17
Discrete lattice used for im-
plementing diffusion filters in
the Perona-Malik algorithm.
The green element represents
the current image pixel at
position u = (u, v) and the
yellow elements are its direct
4-neighbors.

where I(0) = I is the original image and

δi(I, u) = I(u + di)− I(u) (17.54)

denotes the difference between the pixel value I(u) and its direct
neighbor i = 0, . . . , 3 (see Fig. 17.17), with

d0 = (1
0) , d1 = (0

1) , d2 = − (1
0) , d3 = − (0

1) . (17.55)

The procedure for computing the Perona-Malik filter for scalar-valued
images is summarized in Alg. 17.7. The examples in Fig. 17.18
demonstrate how this filter performs along a step edge in a noisy
grayscale image compared to isotropic (i.e., Gaussian) filtering.

In summary, the principle operation of this filter is to inhibit
smoothing in the direction of strong local gradient vectors. Wher-
ever the local contrast (and thus the gradient) is small, diffusion oc-
curs uniformly in all directions, effectively implementing a Gaussian
smoothing filter. However, in locations of high gradients, smooth-
ing is inhibited along the gradient direction and allowed only in the
direction perpendicular to it. If viewed as a heat diffusion process,
a high-gradient brightness edge in an image acts like an insulating
layer between areas of different temperatures. While temperatures

437

17 Edge-Preserving
Smoothing Filters

Alg. 17.7
Perona-Malik anisotropic diffu-
sion filter for scalar (grayscale)

images. The input image I
is assumed to be real-valued
(floating-point). Temporary
real-valued maps Dx, Dy are
used to hold the directional

gradient values, which are then
re-calculated in every iteration.

The conductivity function
g(d) can be one of the func-

tions defined in Eqn. (17.52),
or any similar function.

1: PeronaMalikGray(I, α, κ, T)
Input: I , a grayscale image of size M ×N ; α, update rate; κ,
smoothness parameter; T , number of iterations. Returns the
modified image I .

Specify the conductivity function:

2: g(d) := e
−(d/κ)2

⊲ for example, see alternatives in Eq. 17.52

3: (M, N) ← Size(I)
4: Create maps Dx, Dy: M×N → R

5: for n ← 1, . . . , T do ⊲ perform T iterations

6: for all coordinates (u, v) ∈ M×N do ⊲ re-calculate
gradients

7: Dx(u, v) ←
{

I(u+1, v) − I(u, v) if u < M−1

0 otherwise

8: Dy(u, v) ←
{

I(u, v+1) − I(u, v) if v < N−1

0 otherwise

9: for all coordinates (u, v) ∈ M×N do ⊲ update the image
10: δ0 ← Dx(u, v)
11: δ1 ← Dy(u, v)

12: δ2 ←
{
−Dx(u−1, v) if u > 0

0 otherwise

13: δ3 ←
{

−Dy(u, v−1) if v > 0
0 otherwise

14: I(u, v) ← I(u, v) + α ·
3∑

k=0

g(|δk|) · δk

15: return I

continuously level out in the homogeneous regions on either side of
an edge, thermal energy does not diffuse across the edge itself.

Note that the Perona-Malik filter (as defined in Eqn. (17.50)) is
formally considered a nonlinear filter but not an anisotropic diffu-
sion filter because the conductivity function g() is only a scalar and
not a (directed) vector-valued function [250]. However, the (inex-
act) discretization used in Eqn. (17.53), where each lattice direction
is attenuated individually, makes the filter appear to perform in an
anisotropic fashion.

17.3.3 Perona-Malik Filter for Color Images

The original Perona-Malik filter is not explicitly designed for color
images or vector-valued images in general. The simplest way to apply
this filter to a color image is (as usual) to treat the color channels as
a set of independent scalar images and filter them separately. Edges
should be preserved, since they occur only where at least one of the
color channels exhibits a strong variation. However, different filters
are applied to the color channels and thus new chromaticities may be
produced that were not contained in the original image. Neverthe-
less, the results obtained (see the examples in Fig. 17.19(b–d)) are
often satisfactory and the approach is frequently used because of its
simplicity.

438

17.3 Anisotropic
Diffusion Filters

n = 0 n = 2 n = 5 n = 10

(a) (b) (c) (d)

(e) (f) (g)

Fig. 17.18
Isotropic vs. anisotropic dif-
fusion applied to a noisy step
edge. Original image, enlarged
detail, and horizontal pro-
file (a), results of isotropic
diffusion (b–d), results of
anisotropic diffusion (e–g)
after n = 2, 5, 10 iterations, re-
spectively (α = 0.20, κ = 40).

Color diffusion based on the brightness gradient

As an alternative to filtering each color channel separately, it has been
proposed to use only the brightness (intensity) component to control
the diffusion process of all color channels. Given an RGB color image
I = (IR, IG, IB) and a brightness function β(I), the iterative scheme
in Eqn. (17.53) could be modified to

I(n)(u) ← I(n−1)(u) + α ·
3∑

i=0

g
(
|βi(I

(n−1), u)|
)
· δi(I

(n−1), u) ,

(17.56)

where βi(I, u) = β(I(u + di))− β(I(u)), (17.57)

di is the local brightness difference (as defined in Eqn. (17.55)) and

δi(I, u) =

⎛

⎝

IR(u + di)− IR(u)
IG(u + di)− IG(u)
IB(u + di)− IB(u)

⎞

⎠ =

⎛

⎝

δi(IR, u)
δi(IG, u)
δi(IB, u)

⎞

⎠ (17.58)

439

17 Edge-Preserving
Smoothing Filters

Fig. 17.19
Anisotropic diffusion filter

(color). Noisy test image (a).
Anisotropic diffusion filter ap-
plied separately to individual

color channels (b–d), diffusion
controlled by brightness gradi-

ent (e–g), diffusion controlled
by color gradient (h–j), after

2, 5, and 10 iterations, respec-
tively (α = 0.20, κ = 40).

With diffusion controlled by
the brightness gradient, strong

blurring occurs between re-
gions of different color but

similar brightness (e–g). The
most consistent results are
obtained by diffusion con-

trolled by the color gradient
(h–j). Filtering was performed

in linear RGB color space.

n = 0 n = 2 n = 5 n = 10

In
d

iv
id

u
a

l
ch

a
n

n
e
ls

(a) (b) (c) (d)

B
ri

g
h

tn
e
ss

g
ra

d
ie

n
t

(e) (f) (g)

C
o

lo
r

g
ra

d
ie

n
t

(h) (i) (j)

is the local color difference vector for the neighboring pixels in direc-
tions i = 0, . . . , 3 (see Fig. 17.17). Typical choices for the brightness
function β() are the luminance Y (calculated as a weighted sum of the
linear R, G, B components), luma Y ′ (from nonlinear R′, G′, B′ com-
ponents), or the lightness component L of the CIELAB and CIELUV
color spaces (see Chapter 15, Sec. 15.1 for a detailed discussion).

Algorithm 17.7 can be easily adapted to implement this type of
color filter. An obvious disadvantage of this method is that it natu-
rally blurs across color edges if the neighboring colors are of similar
brightness, as the examples in Fig. 17.19(e–g)) demonstrate. This
limits its usefulness for practical applications.

Using the color gradient

A better option for controlling the diffusion process in all three color
channels is to use the color gradient (see Ch. 16, Sec. 16.2.1). As
defined in Eqn. (16.17), the color gradient

(gradθ I)(u) = Ix(u) · cos(θ) + Iy(u) · sin(θ) (17.59)

is a 3D vector, representing the combined variations of the color
image I at position u in a given direction θ. The squared norm
of this vector, Sθ(I, u) = ‖(gradθ I)(u)‖2, called the squared local
contrast, is a scalar quantity useful for color edge detection. Along
the horizontal and vertical directions of the discrete diffusion lattice
(see Fig. 17.17), the angle θ is a multiple of π/2, and thus one of the
cosine/sine terms in Eqn. (17.59) vanishes, that is,

440

17.3 Anisotropic
Diffusion Filters

‖(gradθ I)(u)‖ = ‖(gradiπ/2 I)(u)‖

=

{

‖Ix(u)‖ for i = 0, 2,
‖Iy(u)‖ for i = 1, 3.

(17.60)

Taking δi (Eqn. (17.58)) as an estimate for the horizontal and vertical
derivatives Ix, Iy, the diffusion iteration (adapted from Eqn. (17.53))
thus becomes

I(n)(u) ← I(n−1)(u) + α ·
3∑

i=0

g
(
‖δi(I

(n−1), u)‖
)
· δi(I

(n−1), u) ,

(17.61)

with g() chosen from one of the conductivity functions in Eqn.
(17.52). Note that this is almost identical to the formulation in Eqn.
(17.53), except for the use of vector-valued images and the absolute
values | · | being replaced by the vector norm ‖ · ‖. The diffusion
process is coupled between color channels, because the local diffusion
strength depends on the combined color difference vectors. Thus,
unlike in the brightness-governed diffusion scheme in Eqn. (17.56),
opposing variations in different color do not cancel out and edges
between colors of similar brightness are preserved (see the examples
in Fig. 17.19(h–j)).

The resulting process is summarized in Alg. 17.8. The algorithm
assumes that the components of the color image I are real-valued. In
practice, integer-valued images must be converted to floating point
before this procedure can be applied and integer results should be
recovered by appropriate rounding.

Examples

Figure 17.20 shows the results of applying the Perona-Malik filter
to a color image, using different modalities to control the diffusion
process. In Fig. 17.20(a) the scalar (grayscale) diffusion filter (de-
scribed in Alg. 17.7) is applied separately to each color channel. In
Fig. 17.20(b) the diffusion process is coupled over all three color chan-
nels and controlled by the brightness gradient, as specified in Eqn.
(17.56). Finally, in Fig. 17.20(c) the color gradient is used to control
the common diffusion process, as defined in Eqn. (17.61) and Alg.
17.8. In each case, T = 10 diffusion iterations were applied, with
update rate α = 0.20, smoothness κ = 25, and conductivity function
g1(d). The example demonstrates that, under otherwise equal condi-
tions, edges and line structures are best preserved by the filter if the
diffusion process is controlled by the color gradient.

17.3.4 Geometry Preserving Anisotropic Diffusion

Historically, the seminal publication by Perona and Malik [182] was
followed by increased interest in the use of diffusion filters based
on partial differential equations. Numerous different schemes were
proposed, mainly with the aim to better adapt the diffusion process
to the underlying image geometry.

441

17 Edge-Preserving
Smoothing Filters

Alg. 17.8
Anistropic diffusion filter for

color images based on the
color gradient (see Ch. 16,
Sec. 16.2.1). The conduc-

tivity function g(d) may be
chosen from the functions

defined in Eqn. (17.52), or
any similar function. Note

that (unlike in Alg. 17.7) the
maps Dx, Dy are vector-valued.

1: PeronaMalikColor(I, α, κ, T)
Input: I, an RGB color image of size M ×N ; α, update rate;
κ, smoothness parameter; T , number of iterations. Returns the
modified image I.

Specify the conductivity function:

2: g(d) := e
−(d/κ)2

⊲ for example, see alternatives in Eq. 17.52

3: (M, N) ← Size(I)
4: Create maps Dx, Dy: M×N → R

3; Sx, Sy : M×N → R

5: for n ← 1, . . . , T do ⊲ perform T iterations

6: for all (u, v) ∈ M×N do ⊲ re-calculate gradients

7: Dx(u, v) ←
{

I(u+1, v) − I(u, v) if u < M−1
0 otherwise

8: Dy(u, v) ←
{

I(u, v+1) − I(u, v) if v < N−1
0 otherwise

9: Sx(u, v) ← (Dx(u, v))2 ⊲ = I2
R,x + I2

G,x + I2
B,x

10: Sy(u, v) ← (Dy(u, v))2 ⊲ = I2
R,y + I2

G,y + I2
B,y

11: for all (u, v) ∈ M×N do ⊲ update the image
12: s0 ← Sx(u, v), Δ0 ← Dx(u, v)
13: s1 ← Sy(u, v), Δ1 ← Dy(u, v)
14: s2 ← 0, Δ2 ← 0
15: s3 ← 0, Δ3 ← 0
16: if u > 0 then
17: s2 ← Sx(u−1, v)
18: Δ2 ← −Dx(u−1, v)
19: if v > 0 then
20: s3 ← Sy(u, v−1)
21: Δ3 ← −Dy(u, v−1)

22: I(u, v) ← I(u, v) + α ·
3∑

k=0

g(|sk|) · Δk

23: return I

Generalized divergence-based formulation

Weickert [249, 250] generalized the divergence-based formulation of
the Perona-Malik approach (see Eqn. (17.49)), that is,

∂I

∂t
= div

(
c · ∇I

)
,

by replacing the time-varying, scalar diffusivity field c(x, τ) ∈ R by
a diffusion tensor field D(x, τ) ∈ R2×2 in the form

∂I

∂t
= div

(
D · ∇I

)
. (17.62)

The time-varying tensor field D(x, τ) specifies a symmetric, positive-
definite 2×2 matrix for each 2D image position x and time τ (i.e., D :
R3 → R2×2 in the continuous case). Geometrically, D specifies an
oriented, stretched ellipse which controls the local diffusion process.
D may be independent of the image I but is typically derived from
it. For example, the original Perona-Malik diffusion equation could
be (trivially) written in the form12

12 I2 denotes the 2 × 2 identity matrix.
442

17.3 Anisotropic
Diffusion Filters

(a) Color channels filtered separately

(b) Diffusion controlled by the local brightness gradient

(c) Diffusion controlled by the local color gradient

Fig. 17.20
Perona-Malik color example.
Scalar diffusion filter applied
separately to each color chan-
nel (a); diffusion controlled by
the brightness gradient (b);
diffusion controlled by color
gradient (c). Common set-
tings are T = 10, α = 0.20,
g(d) = g1(d), κ = 25; original
image in Fig. 17.3(a).

∂I

∂t
= div

[

(c · I2)
︸ ︷︷ ︸

D

·∇I
]

= div
[(

c 0
0 c

)

· ∇I
]

, (17.63)

where c = g (‖∇I(x, t)‖) (see Eqn. (17.51)), and thus D is coupled
to the image content. In Weickert’s approach, D is constructed from
the eigenvalues of the local “image structure tensor” [251], which
we have encountered under different names in several places. This
approach was also adapted to work with color images [252].

Trace-based formulation

Similar to the work of Weickert, the approach proposed by Tschumperlé
and Deriche [233, 235] also pursues a geometry-oriented generaliza-
tion of anisotropic diffusion. The approach is directly aimed at
vector-valued (color) images, but can also be applied to single-channel
(scalar-valued) images. For a vector-valued image I = (I1, . . . , In),
the smoothing process is specified as

∂Ik

∂t
= trace (A ·Hk) , (17.64)

for each channel k, where Hk denotes the Hessian matrix of the
scalar-valued image function of channel Ik, and A is a square (2× 2
for 2D images) matrix that depends on the complete image I and

443

17 Edge-Preserving
Smoothing Filters

adapts the smoothing process to the local image geometry. Note
that A is the same for all image channels. Since the trace of the
Hessian matrix13 is the Laplacian of the corresponding function (i.e.,
trace(HI) = ∇2I) the diffusion equation for the Perona-Malik filter
(Eqn. (17.49)) can be written as

∂I

∂t
= c·(∇2I) = div(c·∇I)

= trace ((c · I2) ·HI) = trace (c·HI) .
(17.65)

In this case, A = c·I2, which merely applies the constant scalar factor
c to the Hessian matrix HI (and thus to the resulting Laplacian) that
is derived from the local image (since c = g (‖∇I(x, t)‖)) and does
not represent any geometric information.

17.3.5 Tschumperlé-Deriche Algorithm

This is different in the trace-based approach proposed by Tschumperlé
and Deriche [233, 235], where the matrix A in Eqn. (17.64) is com-
posed by the expression

A = f1(λ1, λ2) · (q̂2 · q̂
⊺
2) + f2(λ1, λ2) · (q̂1 · q̂

⊺
1), (17.66)

where λ1, λ2 and q̂1, q̂2 are the eigenvalues and normalized eigenvec-
tors, respectively, of the (smoothed) 2× 2 structure matrix

G =
K∑

k=1

(∇Ik) · (∇Ik)⊺, (17.67)

with ∇Ik denoting the local gradient vector in image channel Ik.
The functions f1(), f2(), which are defined in Eqn. (17.79), use the
two eigenvalues to control the diffusion strength along the dominant
direction of the contours (f1) and perpendicular to it (f2). Since
the resulting algorithm is more involved than most previous ones, we
describe it in more detail than usual.

Given a vector-valued image I : M×N → Rn, the following steps
are performed in each iteration of the algorithm:

Step 1:

Calculate the gradient at each image position u = (u, v),

∇Ik(u) =

(
∂Ik

∂x (u)
∂Ik

∂y (u)

)

=

(

Ik,x(u)

Ik,y(u)

)

=

(

(Ik∗H∇
x)(u)

(Ik∗H∇
y)(u)

)

, (17.68)

for each color channel k = 1, . . . , K.14 The first derivatives of the
gradient vector ∇Ik are estimated by convolving the image with the
kernels
13 See Sec. C.2.6 in the Appendix for details.
14 Note that ∇Ik(u) in Eqn. (17.68) is a 2D, vector-valued function, that is,

a dedicated vector is calculated for every image position u = (u, v). For
better readability, we omit the spatial coordinate (u) in the following
and simply write ∇Ik instead of ∇Ik(u). Analogously, all related vectors
and matrices defined below (including the vectors e1, e2 and the matrices
G, Ḡ, A, and Hk) are also calculated for each image point u, without
the spatial coordinate being explicitly given.

444

17.3 Anisotropic
Diffusion FiltersH∇

x =

⎡

⎣

−a 0 a
−b 0 b
−a 0 a

⎤

⎦ and H∇
y =

⎡

⎣

−a −b −a
0 0 0
a b a

⎤

⎦ , (17.69)

with a = (2−
√

2)/4 and b = (
√

2− 1)/2 (such that 2a + b = 1/2).15

Step 2:

Smooth the channel gradients Ik,x, Ik,y with an isotropic 2D Gaussian
filter kernel HG,σd of radius σd,

∇Ik =

(

Īk,x

Īk,y

)

=

(

Ik,x ∗HG,σd

Ik,y ∗HG,σd

)

, (17.70)

for each image channel k = 1, . . . , K. In practice, this step is usually
skipped by setting σd = 0.

Step 3:

Calculate the Hessian matrix (see Sec. C.2.6 in the Appendix) for
each image channel Ik, k = 1, . . . , K, that is,

Hk =

⎛

⎝

∂2Ik

∂x2

∂2Ik

∂x∂y

∂2Ik

∂y∂x
∂2Ik

∂y2

⎞

⎠=

(
Ik,xx Ik,xy

Ik,xy Ik,yy

)

=

(

Ik∗H∇
xx Ik∗H∇

xy

Ik∗H∇
xy Ik∗H∇

yy

)

, (17.71)

using the filter kernels

H∇
xx =

[
1 −2 1

]
, H∇

yy =

⎡

⎣

1
−2
1

⎤

⎦ , H∇
xy =

1
4

⎡

⎣

1 0 −1
0 0 0

−1 0 1

⎤

⎦.

(17.72)

Step 4:

Calculate the local variation (structure) matrix as

G =
(

G0 G1

G1 G2

)

=
K∑

k=1

(∇Ik) · (∇Ik)⊺ (17.73)

=
K∑

k=1

(
Ī2

k,x Īk,x ·Īk,y

Īk,x ·Īk,y Ī2
k,y

)

=

⎛

⎜
⎜
⎝

K∑

k=1

Ī2
k,x

K∑

k=1

Īk,x ·Īk,y

K∑

k=1

Īk,x ·Īk,y

K∑

k=1

Ī2
k,y

⎞

⎟
⎟
⎠

,

for each image position u. Note that the matrix G is symmetric (and
positive semidefinite). In particular, for a RGB color image this is
(coordinates u again omitted)

G =

(

Ī2
R,x ĪR,xĪR,y

ĪR,xĪR,y Ī2
R,y

)

+

(

Ī2
G,x ĪG,xĪG,y

ĪG,xĪG,y Ī2
G,y

)

+

(

Ī2
B,x ĪB,xĪB,y

ĪB,xĪB,y Ī2
B,x

)

=

(

Ī2
R,x+Ī2

G,x+Ī2
B,x ĪR,xĪR,y +ĪG,xĪG,y +ĪB,xĪB,y

ĪR,xĪR,y +ĪG,xĪG,y +ĪB,xĪB,y Ī2
R,y +Ī2

G,y +Ī2
B,y

)

.

(17.74)
15 Any other common set of x/y gradient kernels (e.g., Sobel masks) could

be used instead, but these filters have better rotation invariance than
their traditional counterparts. Similar kernels (with a = 3/32, b =
10/32) were proposed by Jähne in [126, p. 353].

445

17 Edge-Preserving
Smoothing Filters

Step 5:

Smooth the elements of the structure matrix G using an isotropic
Gaussian filter kernel HG,σg of radius σg, that is,

Ḡ =
(

Ḡ0 Ḡ1

Ḡ1 Ḡ2

)

=
(

G0∗HG,σg G1∗HG,σg

G1∗HG,σg G2∗HG,σg

)

. (17.75)

Step 6:

For each image position u, calculate the eigenvalues λ1, λ2 for the
smoothed 2× 2 matrix Ḡ, such that λ1 ≥ λ2, and the corresponding
normalized eigenvectors16

q̂1 =
(

x̂1

ŷ1

)

, q̂2 =
(

x̂2

ŷ2

)

,

such that ‖q̂1‖ = ‖q̂2‖ = 1. Note that q̂1 points in the direction of
maximum change and q̂2 points in the perpendicular direction, that
is, along the edge tangent. Thus, smoothing should occur predomi-
nantly along q̂2. Since q̂1 and q̂2 are normal to each other, we can
express q̂2 in terms of q̂1, for example,

q̂2 ≡
(

0 −1
1 0

)

· q̂1 =
(
−ŷ1

x̂1

)

. (17.76)

Step 7:

From the eigenvalues (λ1, λ2) and the normalized eigenvectors (q̂1, q̂2)
of Ḡ, compose the symmetric matrix A in the form

A =
(

A0 A1

A1 A2

)

= f1(λ1, λ2)
︸ ︷︷ ︸

c1

·(q̂2 · q̂
⊺
2) + f2(λ1, λ2)

︸ ︷︷ ︸
c2

·(q̂1 · q̂
⊺
1)

= c1 ·
(

ŷ2
1 −x̂1 · ŷ1

−x̂1 · ŷ1 x̂2
1

)

+ c2 ·
(

x̂2
1 x̂1 · ŷ1

x̂1 · ŷ1 ŷ2
1

)

(17.77)

=
(

c1 · ŷ2
1 + c2 · x̂2

1 (c2−c1) · x̂1 · ŷ1

(c2−c1) · x̂1 · ŷ1 c1 · x̂2
1 + c2 · ŷ2

1

)

, (17.78)

using the conductivity coefficients

c1 = f1(λ1, λ2) =
1

(1 + λ1 + λ2)a1
,

c2 = f2(λ1, λ2) =
1

(1 + λ1 + λ2)a2
,

(17.79)

with fixed parameters a1, a2 > 0 to control the non-isotropy of the
filter: a1 specifies the amount of smoothing along contours, a2 in
perpendicular direction (along the gradient). Small values of a1, a2

facilitate diffusion in the corresponding direction, while larger values
inhibit smoothing. With a1 close to zero, diffusion is practically
unconstrained along the tangent direction. Typical default values
are a1 = 0.5 and a2 = 0.9; results from other settings are shown in
the examples.
16 See Sec. B.4.1 in the Appendix for details on calculating the eigensystem

of a 2 × 2 matrix.
446

17.3 Anisotropic
Diffusion Filters

Step 8:

Finally, each image channel Ik is updated using the recurrence rela-
tion

Ik ← Ik + α · trace (A·Hk) = Ik + α · βk (17.80)

= Ik + α ·
(
A0 ·Ik,xx + A1 ·Ik,xy + A1 ·Ik,yx + A2 ·Ik,yy

)
(17.81)

= Ik + α ·
(
A0 ·Ik,xx + 2 · A1 ·Ik,xy + A2 ·Ik,yy

)

︸ ︷︷ ︸

βk

(17.82)

(since Ik,xy = Ik,yx). The term βk = trace (A·Hk) represents the lo-
cal image velocity in channel k. Note that, although a separate Hes-
sian matrix Hk is calculated for each channel, the structure matrix A
is the same for all image channels. The image is thus smoothed along
a common image geometry which considers the correlation between
color channels, since A is derived from the joint structure matrix G
(Eqn. (17.74)) and therefore combines all K color channels.

In each iteration, the factor α in Eqn. (17.82) is adjusted dynam-
ically to the maximum current velocity βk in all channels in the form

α =
dt

max βk

=
dt

max
k,u

|trace(A·Hk)| , (17.83)

where dt is the (constant) “time increment” parameter. Thus the
time step α is kept small as long as the image gradients (vector
field velocities) are large. As smoothing proceeds, image gradients
are reduced and thus α typically increases over time. In the actual
implementation, the values of Ik (in Eqn. (17.82)) are hard-limited
to the initial minimum and maximum.

The steps (1–8) we have just outlined are repeated for the speci-
fied number of iterations. The complete procedure is summarized in
Alg. 17.9 and a corresponding Java implementation can be found on
the book’s website (see Sec. 17.4).

Beyond this baseline algorithm, several variations and extensions
of this filter exist, including the use of spatially-adaptive, oriented
smoothing filters.17 This type of filter has also been used with good
results for image inpainting [234], where diffusion is applied to fill
out only selected (masked) parts of the image where the content is
unknown or should be removed.

Examples

The example in Fig. 17.21 demonstrates the influence of image ge-
ometry and how the non-isotropy of the Tschumperlé-Deriche filter
can be controlled by varying the diffusion parameters a1, a2 (see Eqn.
(17.79)). Parameter a1, which specifies the diffusion in the direction
of contours, is changed while a2 (controlling the diffusion in the gra-
dient direction) is held constant. In Fig. 17.21(a), smoothing along
contours is modest and very small across edges with the default set-
tings a1 = 0.5 and a2 = 0.9. With lower values of a1, increased
17 A recent version was released by the original authors as part of the

“GREYC’s Magic Image Converter” open-source framework, which is
also available as a GIMP plugin (http://gmic.sourceforge.net).

447

http://gmic.sourceforge.net

17 Edge-Preserving
Smoothing Filters

Alg. 17.9
Tschumperlé-Deriche

anisotropic diffusion filter
for vector-valued (color) im-

ages. Typical settings are
T = 5, . . . , 20, dt = 20,

σg = 0, σs = 0.5, a1 = 0.5,
a2 = 0.9. See Sec. B.4.1

for a description of the pro-
cedure RealEigenValues2x2

(used in line 12).

1: TschumperleDericheFilter(I , T, dt, σg, σs, a1, a2)
Input: I = (I1, . . . , IK), color image of size M×N with K
channels; T , number of iterations; dt, time increment; σg, width
of the Gaussian kernel for smoothing the gradient; σs, width of
the Gaussian kernel for smoothing the structure matrix; a1, a2,
diffusion parameters for directions of min./max. variation,
respectively. Returns the modified image I.

2: Create maps:
D : K×M×N → R

2 ⊲ D(k, u, v) ≡ ∇Ik(u, v), grad. vector
H : K×M×N → R

2×2 ⊲ H(k, u, v) ≡ Hk(u, v), Hess. matrix
G : M×N → R

2×2 ⊲ G(u, v) ≡ G(u, v), structure matrix
A : M×N → R

2×2 ⊲ A(u, v) ≡ A(u, v), geometry matrix
B : K×M×N → R ⊲ B(k, u, v) ≡ βk(u, v), velocity

3: for t ← 1, . . . , T do ⊲ perform T iterations
4: for k ← 1, . . . , K and all coordinates (u, v) ∈ M×N do

5: D(k, u, v) ←
(

(Ik∗H∇
x)(u,v)

(Ik∗H∇
y)(u,v)

)

⊲ Eq. 17.68–17.69

6: H(k, u, v) ←
(

(Ik∗H∇
xx)(u,v) (Ik∗H∇

xy)(u,v)

(Ik∗H∇
xy)(u,v) (Ik∗H∇

yy)(u,v)

)

⊲ Eq. 17.71
–17.72

7: D ← D ∗ H
σd
G ⊲ smooth elements of D over (u, v)

8: for all coordinates (u, v) ∈ M×N do

9: G(u, v) ←
K∑

k=1

(
(Dx(k,u,v))2 Dx(k,u,v)·Dy(k,u,v)

Dx(k,u,v)·Dy(k,u,v) (Dy(k,u,v))2

)

10: G ← G ∗ H
σg

G ⊲ smooth elements of G over (u, v)
11: for all coordinates (u, v) ∈ M×N do
12: (λ1, λ2, q1, q2) ← RealEigenValues2x2(G(u, v)) ⊲ p. 724

13: q̂1 ←
(

x̂1
ŷ1

)

=
q1

‖q1‖ ⊲ normalize 1st eigenvector (λ1 ≥ λ2)

14: c1 ← 1
(1+λ1+λ2)a1

, c2 ← 1
(1+λ1+λ2)a2

⊲ Eq. 17.79

15: A(u, v) ←
(

c1·ŷ2
1+c2·x̂2

1 (c2−c1)·x̂1·ŷ1

(c2−c1)·x̂1·ŷ1 c1·x̂2
1+c2·ŷ2

1

)

⊲ Eq. 17.78

16: βmax ← −∞
17: for k ← 1, . . . , K and all (u, v) ∈ M×N do
18: B(k, u, v) ← trace(A(u, v)·H(k, u, v)) ⊲ βk, Eq. 17.82
19: βmax ← max(βmax, |B(k, u, v)|)
20: α ← dt/βmax ⊲ Eq. 17.83

21: for k ← 1, . . . , K and all (u, v) ∈ M×N do
22: Ik(u, v) ← Ik(u, v) + α · B(k, u, v) ⊲ update the image

23: return I

blurring occurs in the direction of the contours, as shown in Figs.
17.21(b, c).

17.4 Java Implementation

Implementations of the filters described in this chapter are avail-
able as part of the imagingbook18 library at the book’s website.
The associated classes KuwaharaFilter, NagaoMatsuyamaFilter,
PeronaMalikFilter and TschumperleDericheFilter are based on

18 Package imagingbook.pub.edgepreservingfilters.
448

17.4 Java
Implementation

(a) a1 = 0.50

(b) a1 = 0.25

(c) a1 = 0.00

Fig. 17.21
Tschumperlé-Deriche filter ex-
ample. The non-isotropy of
the filter can be adjusted by
changing parameter a1, which
controls the diffusion along
contours (see Eqn. (17.79)):
a1 = 0.50, 0.25, 0.00 (a–c).
Parameter a2 = 0.90 (con-
stant) controls the diffusion in
the direction of the gradient
(perpendicular to contours).
Remaining settings are T = 20,
dt = 20, σg = 0.5, σs = 0.5 (see
the description of Alg. 17.9);
original image in Fig. 17.3(a).

the common super-class GenericFilter19 and define the following
constructors:

KuwaharaFilter (Parameters p)

Creates a Kuwahara-type filter for grayscale and color images,
as described in Sec. 17.1 (Alg. 17.2), with radius r (default 2)
and variance threshold tsigma (denoted tσ in Alg. 17.2, default
0.0). The size of the resulting filter is (2r + 1)×(2r + 1).

BilateralFilter (Parameters p)

Creates a bilateral filter for grayscale and color images us-
ing Gaussian kernels, as described in Sec. 17.2 (seeAlgs. 17.4
and 17.5). Parameters sigmaD (σd, default 2.0) and sigmaR

(σr, default 50.0) specify the widths of the domain and the
range kernels, respectively. The type of norm for measur-
ing color distances is specified by colorNormType (default is
NormType.L2).

BilateralFilterSeparable (Parameters p)

Creates a x/y-separable bilateral filter for grayscale and color
images, (see Alg. 17.6). Constructor parameters are the same
as for the class BilateralFilter above.

19 Package imagingbook.lib.filters. Filters of this type can be applied
to images using the method applyTo(ImageProcessor ip), as described
in Chapter 15, Sec. 15.3.

449

17 Edge-Preserving
Smoothing Filters

PeronaMalikFilter (Parameters p)

Creates an anisotropic diffusion filter for grayscale and color
images (see Algs. 17.7 and 17.8). The key parameters and
their default values are iterations (T = 10), alpha (α =
0.2), kappa (κ = 25), smoothRegions (true), colorMode

(SeparateChannels). With smoothRegions = true, function
g

(2)
κ is used to control conductivity, otherwise g

(1)
κ (see Eqn.

(17.52)). For filtering color images, three different color modes
can be specified for diffusion control: SeparateChannels,
BrightnessGradient, or ColorGradient. See Prog. 17.1 for
an example of using this class in a simple ImageJ plugin.

TschumperleDericheFilter (Parameters p)

Creates an anisotropic diffusion filter for color images, as de-
scribed in Sec. 17.3.4 (Alg. 17.9). Parameters and default val-
ues are iterations (T = 20), dt (dt = 20), sigmaG (σg = 0.0),
sigmaS (σs = 0.5), a1 (a1 = 0.25), a2 (a2 = 0.90). Otherwise
the usage of this class is analogous to the example in Prog.
17.1.

All default values pertain to the parameterless constructors that are
also available. Note that these filters are generic and can be applied
to grayscale and color images without any modification.

17.5 Exercises

Exercise 17.1. Implement a pure range filter (Eqn. (17.17)) for
grayscale images, using a 1D Gaussian kernel

Hr(x) =
1√

2π · σ
· exp(− x2

2σ2
).

Investigate the effects of this filter upon the image and its histogram
for σ = 10, 20, and 25.

Exercise 17.2. Modify the Kuwahara-type filter for color images in
Alg. 17.3 to use the norm of the color covariance matrix (as de-
fined in Eqn. (17.12)) for quantifying the amount of variation in each
subregion. Estimate the number of additional calculations required
for processing each image pixel. Implement the modified algorithm,
compare the results and execution times.

Exercise 17.3. Modify the separable bilateral filter algorithm (given
in Alg. 17.6) to handle color images, using Alg. 17.5 as a starting
point. Implement and test your algorithm, compare the results (see
also Fig. 17.14) and execution times.

Exercise 17.4. Verify (experimentally) that n iterations of the dif-
fusion process defined in Eqn. (17.45) have the same effect as a Gaus-
sian filter of width σn, as stated in Eqn. (17.48). To determine the
impulse response of the resulting diffusion filter, use an “impulse”
test image, that is, a black (zero-valued) image with a single bright
pixel at the center.

450

17.5 Exercises1 import ij.ImagePlus;

2 import ij.plugin.filter.PlugInFilter;

3 import ij.process.ImageProcessor;

4 import imagingbook...PeronaMalikFilter;

5 import imagingbook...PeronaMalikFilter.ColorMode;

6 import imagingbook...PeronaMalikFilter.Parameters;

7

8 public class Perona_Malik_Demo implements PlugInFilter {

9

10 public int setup(String arg0, ImagePlus imp) {

11 return DOES_ALL + DOES_STACKS;

12 }

13

14 public void run(ImageProcessor ip) {

15 // create a parameter object:

16 Parameters params = new Parameters();

17

18 // modify filter settings if needed:

19 params.iterations = 20;

20 params.alpha = 0.15f;

21 params.kappa = 20.0f;

22 params.smoothRegions = true;

23 params.colorMode = ColorMode.ColorGradient;

24

25 // instantiate the filter object:

26 PeronaMalikFilter filter =

27 new PeronaMalikFilter(params);

28

29 // apply the filter:

30 filter.applyTo(ip);

31 }

32

33 }

Prog. 17.1
Perona-Malik filter (complete
ImageJ plugin). Inside the
run() method, a parame-
ter object (instance of class
PeronaMalikFilter.Parameters)
is created in line 16. Individual
parameters may then be mod-
ified, as shown in lines 19–23.
This would typically be done
be querying the user (e.g.,
with ImageJ’s GenericDialog
class). In line 27, a new in-
stance of PeronaMalikFilter is
created, the parameter object
(params) being passed to the
constructor as the only argu-
ment. Finally, in line 30, the
filter is (destructively) applied
to the input image, that is,
ip is modified. ColorMode (in
line 23) is implemented as an
enumeration type within class
PeronaMalikFilter, providing
the options SeparateChannels

(default), BrightnessGradient
and ColorGradient. Note that,
as specified in the setup()
method, this plugin works for
any type of image and image
stacks.

Exercise 17.5. Use the signal-to-noise ratio (SNR) to measure the
effectiveness of noise suppression by edge-preserving smoothing filters
on grayscale images. Add synthetic Gaussian noise (see Sec. D.4.3 in
the Appendix) to the original image I to create a corrupted image Ĩ.
Then apply the filter to Ĩ to obtain Ī. Finally, calculate SNR(I, Ĩ)
as defined in Eqn. (13.2). Compare the SNR values obtained with
various types of filters and different parameter settings, for example,
for the Kuwahara filter (Alg. 17.2), the bilateral filter (Alg. 17.4), and
the Perona-Malik anisotropic diffusion filter (Alg. 17.7). Analyze if
and how the SNR values relate to the perceived image quality.

451

18

Introduction to Spectral Techniques

The following three chapters deal with the representation and anal-
ysis of images in the frequency domain, based on the decomposi-
tion of image signals into sine and cosine functions using the well-
known Fourier transform. Students often consider this a difficult
topic, mainly because of its mathematical flavor and that its practi-
cal applications are not immediately obvious. Indeed, most common
operations and methods in digital image processing can be sufficiently
described in the original signal or image space without even mention-
ing spectral techniques. This is the reason why we pick up this topic
relatively late in this text.

While spectral techniques were often used to improve the effi-
ciency of image-processing operations, this has become increasingly
less important due to the high power of modern computers. There
exist, however, some important effects, concepts, and techniques in
digital image processing that are considerably easier to describe in
the frequency domain or cannot otherwise be understood at all. The
topic should therefore not be avoided all together. Fourier analysis
not only owns a very elegant (perhaps not always sufficiently ap-
preciated) mathematical theory but interestingly enough also com-
plements some important concepts we have seen earlier, in particular
linear filters and linear convolution (see Chapter 5, Sec. 5.2). Equally
important are applications of spectral techniques in many popular
methods for image and video compression, and they provide valuable
insight into the mechanisms of sampling (discretization) of continu-
ous signals as well as the reconstruction and interpolation of discrete
signals.

In the following, we first give a basic introduction to the concepts
of frequency and spectral decomposition that tries to be minimally
formal and thus should be easily “digestible” even for readers without
previous exposure to this topic. We start with the representation of
1D signals and will then extend the discussion to 2D signals (images)
in the next chapter. Subsequently, Chapter 20 briefly explains the
discrete cosine transform, a popular variant of the discrete Fourier
transform that is frequently used in image compression.

453
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_18

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

18 Introduction to
Spectral Techniques

18.1 The Fourier Transform

The concept of frequency and the decomposition of waveforms into
elementary “harmonic” functions first arose in the context of music
and sound. The idea of describing acoustic events in terms of “pure”
sinusoidal functions does not seem unreasonable, considering that
sine waves appear naturally in every form of oscillation (e.g., on a
free-swinging pendulum).

18.1.1 Sine and Cosine Functions

The well-known cosine function,

f(x) = cos(x), (18.1)

has the value 1 at the origin (cos(0) = 1) and performs exactly one
full cycle between the origin and the point x = 2π (Fig. 18.1(a)). We
say that the function is periodic with a cycle length (period) T = 2π;
that is,

cos(x) = cos(x + 2π) = cos(x + 4π) = · · · = cos(x + k2π), (18.2)

for any k ∈ Z. The same is true for the corresponding sine function,
except that its value is zero at the origin (since sin(0) = 0).

Fig. 18.1
Cosine and sine functions of
different frequency. The ex-
pression cos(ωx) describes a
cosine function with angular

frequency ω at position x. The
angular frequency ω of this pe-

riodic function corresponds
to a cycle length (period)

T = 2π/ω. For ω = 1, the
period is T1 = 2π (a), and

for ω = 3 it is T3 = 2π/3 ≈
2.0944 (b). The same holds

for the sine function sin(ωx).

�� �� � � �

��

�

���

����

x

cos(x)sin(x)
ππ

2

�� �� � � �

��

�

���

����

x

cos(3x)sin(3x)

(a) (b)

Frequency and amplitude

The number of oscillations of cos(x) over the distance T = 2π is one
and thus the value of the angular frequency

ω =
2π

T
= 1 . (18.3)

If we modify the cosine function in Eqn. (18.1) to

f(x) = cos(3x) , (18.4)

we obtain a compressed cosine wave that oscillates three times faster
than the original function cos(x) (see Fig. 18.1(b)). The function
cos(3x) performs three full cycles over a distance of 2π and thus has
the angular frequency ω = 3 and a period T = 2π

3 . In general, the
period T relates to the angular frequency ω as

T = 2π
ω , (18.5)

for ω > 0. A sine or cosine function oscillates between peak values
+1 and −1, and its amplitude is 1. Multiplying by a constant a ∈ R

454

18.1 The Fourier
Transform

changes the peak values of the function to ±a and its amplitude to
a. In general, the expressions

a · cos(ωx) and a · sin(ωx)

denote a cosine or sine function, respectively, with amplitude a and
angular frequency ω, evaluated at position (or point in time) x. The
relation between the angular frequency ω and the “common” fre-
quency f is given by

f =
1
T

=
ω

2π
or ω = 2πf, (18.6)

respectively, where f is measured in cycles per length or time unit.1

In the following, we use either ω or f as appropriate, and the meaning
should always be clear from the symbol used.

Phase

Shifting a cosine function along the x axis by a distance ϕ,

cos(x) → cos(x − ϕ),

changes the phase of the cosine wave, and ϕ denotes the phase angle
of the resulting function. Thus a sine function is really just a cosine
function shifted to the right2 by a quarter period (ϕ = 2π

4 = π
2), so

sin(ωx) = cos
(
ωx− π

2

)
. (18.7)

If we take the cosine function as the reference with phase ϕcos = 0,
then the phase angle of the corresponding sine function is ϕsin = π

2 =
90◦.

Cosine and sine functions are “orthogonal” in a sense and we can
use this fact to create new “sinusoidal” functions with arbitrary fre-
quency, phase, and amplitude. In particular, adding a cosine and a
sine function with the identical frequencies ω and arbitrary ampli-
tudes A and B, respectively, creates another sinusoid:

A · cos(ωx) + B · sin(ωx) = C · cos(ωx− ϕ). (18.8)

The resulting amplitude C and the phase angle ϕ are defined only
by the two original amplitudes A and B as

C =
√

A2 + B2 and ϕ = tan−1
(

B
A

)
. (18.9)

Figure 18.2(a) shows an example with amplitudes A = B = 0.5 and
a resulting phase angle ϕ = 45◦.

1 For example, a temporal oscillation with frequency f = 1000 cycles/s
(Hertz) has the period T = 1/1000 s and therefore the angular frequency
ω = 2000π. The latter is a unitless quantity.

2 In general, the function f(x−d) is the original function f(x) shifted to
the right by a distance d.

455

18 Introduction to
Spectral Techniques

Fig. 18.2
Adding cosine and sine func-
tions with identical frequen-

cies, A · cos(ωx) + B · sin(ωx),
with ω = 3 and A = B =

0.5. The result is a phase-
shifted cosine function (dot-

ted curve) with amplitude

C =
√

0.52 + 0.52 ≈ 0.707
and phase angle ϕ = 45◦

(a). If the cosine and sine
components are treated as

orthogonal vectors (A, B) in
2-space, the amplitude and

phase of the resulting sinusoid
(C) can be easily determined

by vector summation (b).

(a)

�3 �2 �1 1 2 3

�1

�0.75

�0.5

�0.25

0.25

0.5

0.75

1

x

A · cos(ωx) + B · sin(ωx)

(b)

A

B
C

ϕ

0.5

0.5

cos(ωx)

sin(ωx)

A · cos(ωx) + B · sin(ωx)

Complex-valued sine functions—Euler’s notation

Figure 18.2(b) depicts the contributing cosine and sine components
of the new function as a pair of orthogonal vectors in 2-space whose
lengths correspond to the amplitudes A and B. Not coincidentally,
this reminds us of the representation of real and imaginary compo-
nents of complex numbers,

z = a + i b,

in the 2D plane C, where i is the imaginary unit (i2 = −1). This as-
sociation becomes even stronger if we look at Euler’s famous notation
of complex numbers along the unit circle,

z = eiθ = cos(θ) + i · sin(θ), (18.10)

where e ≈ 2.71828 is the Euler number. If we take the expression
eiθ as a function of the angle θ rotating around the unit circle, we
obtain a “complex-valued sinusoid” whose real and imaginary parts
correspond to a cosine and a sine function, respectively,

Re(eiθ) = cos(θ),

Im(eiθ) = sin(θ).
(18.11)

Since z = eiθ is placed on the unit circle, the amplitude of the
complex-valued sinusoid is |z| = r = 1. We can easily modify the
amplitude of this function by multiplying it by some real value a ≥ 0,
that is,

|a · eiθ| = a · |eiθ| = a . (18.12)

Similarly, we can alter the phase of a complex-valued sinusoid by
adding a phase angle ϕ in the function’s exponent or, equivalently,
by multiplying it by a complex-valued constant c = eiϕ,

ei(θ+ϕ) = eiθ · eiϕ. (18.13)
456

18.1 The Fourier
Transform

In summary, multiplying by some real value affects only the ampli-
tude of a sinusoid, while multiplying by some complex value c (with
unit amplitude |c| = 1) modifies only the function’s phase (without
changing its amplitude). In general, of course, multiplying by some
arbitrary complex value changes both the amplitude and the phase
of the function (also see Sec. A.3 in the Appendix).

The complex notation makes it easy to combine orthogonal pairs
of sine functions cos(ωx) and sin(ωx) with identical frequencies ω
into a single expression,

eiθ = eiωx = cos(ωx) + i · sin(ωx). (18.14)

We will make more use of this notation later (in Sec. 18.1.4) to explain
the Fourier transform.

18.1.2 Fourier Series Representation of Periodic Functions

As we demonstrated in Eqn. (18.8), sinusoidal functions of arbitrary
frequency, amplitude, and phase can be described as the sum of suit-
ably weighted cosine and sine functions. One may wonder if non-
sinusoidal functions can also be decomposed into a sum of cosine and
sine functions. The answer is yes, of course. It was Fourier3 who
first extended this idea to arbitrary functions and showed that (al-
most) any periodic function g(x) with a fundamental frequency ω0

can be described as a—possibly infinite—sum of “harmonic” sinu-
soids, that is,

g(x) =
∞∑

k=0

Ak · cos(kω0x) + Bk · sin(kω0x). (18.15)

This is called a Fourier series, and the constant factors Ak, Bk are
the Fourier coefficients of the function g(x). Notice that in Eqn.
(18.15) the frequencies of the sine and cosine functions contributing
to the Fourier series are integral multiples (“harmonics”) of the fun-
damental frequency ω0, including the zero frequency for k = 0. The
corresponding coefficients Ak and Bk, which are initially unknown,
can be uniquely derived from the original function g(x). This process
is commonly referred to as Fourier analysis.

18.1.3 Fourier Integral

Fourier did not want to limit this concept to periodic functions and
postulated that nonperiodic functions, too, could be described as
sums of sine and cosine functions. While this proved to be true in
principle, it generally requires—beyond multiples of the fundamental
frequency (kω0)—infinitely many, densely spaced frequencies! The
resulting decomposition,

g(x) =
∫ ∞

0

Aω · cos(ωx) + Bω · sin(ωx) dω, (18.16)

is called a Fourier integral and the coefficients Aω, Bω are again
the weights for the corresponding cosine and sine functions with the

3 Jean-Baptiste Joseph de Fourier (1768–1830).
457

18 Introduction to
Spectral Techniques

(continuous) frequency ω. The Fourier integral is the basis of the
Fourier spectrum and the Fourier transform, as will be described (for
details, see, e.g., [35, Ch. 15, Sec. 15.3]).

In Eqn. (18.16), every coefficient Aω and Bω specifies the ampli-
tude of the corresponding cosine or sine function, respectively. The
coefficients thus define “how much of each frequency” contributes
to a given function or signal g(x). But what are the proper values
of these coefficients for a given function g(x), and can they be de-
termined uniquely? The answer is yes again, and the “recipe” for
computing the coefficients is amazingly simple:

Aω = A(ω) =
1
π
·
∫ ∞

−∞
g(x) · cos(ωx) dx,

Bω = B(ω) =
1
π
·
∫ ∞

−∞
g(x) · sin(ωx) dx.

(18.17)

Since this representation of the function g(x) involves infinitely many
densely spaced frequency values ω, the corresponding coefficients
A(ω) and B(ω) are indeed continuous functions as well. They hold
the continuous distribution of frequency components contained in the
original signal, which is called a “spectrum”.

Thus the Fourier integral in Eqn. (18.16) describes the original
function g(x) as a sum of infinitely many cosine and sine functions,
with the corresponding Fourier coefficients contained in the functions
A(ω) and B(ω). In addition, a signal g(x) is uniquely and fully rep-
resented by the corresponding coefficient functions A(ω) and B(ω).
We know from Eqn. (18.17) how to compute the spectrum for a given
function g(x), and Eqn. (18.16) explains how to reconstruct the orig-
inal function from its spectrum if it is ever needed.

18.1.4 Fourier Spectrum and Transformation

There is now only a small remaining step from the decomposition
of a function g(x), as shown in Eqn. (18.17), to the “real” Fourier
transform. In contrast to the Fourier integral, the Fourier transform
treats both the original signal and the corresponding spectrum as
complex-valued functions, which considerably simplifies the resulting
notation.

Based on the functions A(ω) and B(ω) defined in the Fourier
integral (Eqn. (18.17)), the Fourier spectrum G(ω) of a function g(x)
is given as

G(ω) =
√

π
2 ·
[
A(ω)− i · B(ω)

]

=
√

π
2 ·
[1

π

∫ ∞

−∞
g(x) · cos(ωx) dx − i · 1

π

∫ ∞

−∞
g(x) · sin(ωx) dx

]

=
1√
2π
·
∫ ∞

−∞
g(x) ·

[
cos(ωx)− i · sin(ωx)

]
dx , (18.18)

with g(x), G(ω) ∈ C. Using Euler’s notation of complex values (see
Eqn. (18.14)) yields the continuous Fourier spectrum in Eqn. (18.18)
in its common form:

458

18.1 The Fourier
Transform

G(ω) =
1√
2π

∫ ∞

−∞
g(x) ·

[
cos(ωx)− i · sin(ωx)

]
dx

=
1√
2π

∫ ∞

−∞
g(x) · e−iωx dx .

(18.19)

The transition from the function g(x) to its Fourier spectrum G(ω) is
called the Fourier transform4 (F). Conversely, the original function
g(x) can be reconstructed completely from its Fourier spectrum G(ω)
using the inverse Fourier transform5 (F−1), defined as

g(x) =
1√
2π

∫ ∞

−∞
G(ω) ·

[
cos(ωx) + i · sin(ωx)

]
dω

=
1√
2π

∫ ∞

−∞
G(ω) · eiωx dω .

(18.20)

In general, even if one of the involved functions (g(x) or G(ω))
is real-valued (which is usually the case for physical signals g(x)),
the other function is complex-valued. One may also note that the
forward transformation F (Eqn. (18.19)) and the inverse transfor-
mation F−1 (Eqn. (18.20)) are almost completely symmetrical, the
sign of the exponent being the only difference.6 The spectrum pro-
duced by the Fourier transform is a new representation of the signal
in a space of frequencies. Apparently, this “frequency space” and the
original “signal space” are dual and interchangeable mathematical
representations.

18.1.5 Fourier Transform Pairs

The relationship between a function g(x) and its Fourier spectrum
G(ω) is unique in both directions: the Fourier spectrum is uniquely
defined for a given function, and for any Fourier spectrum there is
only one matching signal—the two functions g(x) and

g(x)� G(ω).

Table 18.1 lists the transform pairs for some selected analytical func-
tions, which are also shown graphically in Figs. 18.3 and 18.4.

The Fourier spectrum of a cosine function cos(ω0x), for exam-
ple, consists of two separate thin pulses arranged symmetrically at a
distance ω0 from the origin (Fig. 18.3(a, c)). Intuitively, this corre-
sponds to our physical understanding of a spectrum (e.g., if we think
of a pure monophonic sound in acoustics or the thin line produced by
some extremely pure color in the optical spectrum). Increasing the
frequency ω0 would move the corresponding pulses in the spectrum

4 Also called the “direct” or “forward” transformation.
5 Also called “backward” transformation.
6 Various definitions of the Fourier transform are in common use. They

are contrasted mainly by the constant factors outside the integral and
the signs of the exponents in the forward and inverse transforms, but all
versions are equivalent in principle. The symmetric variant shown here
uses the same factor (1/

√
2π) in the forward and inverse transforms.

459

18 Introduction to
Spectral Techniques

Table 18.1
Fourier transforms of selected

analytical functions; δ() de-
notes the “impulse” or Dirac

function (see Sec. 18.2.1).

Function Transform pair g(x)�G(ω) Figure

Cosine function
with frequency ω0

g(x) = cos(ω0x)

G(ω) =
√

π
2
·
(
δ(ω + ω0) + δ(ω−ω0)

)
18.3(a,c)

Sine function with
frequency ω0

g(x) = sin(ω0x)

G(ω) = i
√

π
2
·
(
δ(ω +ω0)−δ(ω−ω0)

)
18.3(b,d)

Gaussian function
of width σ

g(x) = 1
σ
· e

− x2

2σ2

G(ω) = e− σ2ω2

2

18.4(a,b)

Rectangular
pulse of width 2b

g(x) = Πb(x) =

{
1 |x| ≤ b

0 sonst

G(ω) = 2b sin(bω)√
2πω

18.4(c,d)

away from the origin. Notice that the spectrum of the cosine function
is real-valued, the imaginary part being zero. Of course, the same
relation holds for the sine function (Fig. 18.3(b, d)), with the only
difference being that the pulses have different polarities and appear
in the imaginary part of the spectrum. In this case, the real part of
the spectrum G(ω) is zero.

The Gaussian function is particularly interesting because its
Fourier spectrum is also a Gaussian function (Fig. 18.4(a, b))! It is
one of the few examples where the function type in frequency space
is the same as in signal space. With the Gaussian function, it is also
clear to see that stretching a function in signal space corresponds to
shortening its spectrum and vice versa.

The Fourier transform of a rectangular pulse (Fig. 18.4(c, d)) is the
“Sinc” function of type sin(x)/x. With increasing frequencies, this
function drops off quite slowly, which shows that the components
contained in the original rectangular signal are spread out over a
large frequency range. Thus a rectangular pulse function exhibits a
very wide spectrum in general.

18.1.6 Important Properties of the Fourier Transform

Symmetry

The Fourier spectrum extends over positive and negative frequen-
cies and could, in principle, be an arbitrary complex-valued function.
However, in many situations, the spectrum is symmetric about its
origin (see, e.g., [43, p. 178]). In particular, the Fourier transform of
a real-valued signal g(x) ∈ R is a so-called Hermite function with the
property

G(ω) = G∗(−ω), (18.21)

where G∗ denotes the complex conjugate of G (see also Sec. A.3 in
the Appendix).

460

18.1 The Fourier
Transform

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

x

g(x)

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

ω

GRe(ω)

(a) Cosine (ω0 =3): g(x) = cos(3x)� G(ω) =
√

π
2
·
(
δ(ω+3)+δ(ω−3)

)

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

x

g(x)

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

ω

GIm(ω)

(b) Sine (ω0 =3): g(x) = sin(3x) � G(ω) = i
√

π
2
·
(
δ(ω+3)−δ(ω−3)

)

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

x

g(x)

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

ω

GRe(ω)

(c) Cosine (ω0 =5): g(x) = cos(5x)� G(ω) =
√

π
2
·
(
δ(ω+5)+δ(ω−5)

)

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

x

g(x)

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

ω

GIm(ω)

(d) Sine (ω0 =5): g(x) = sin(5x) � G(ω) = i
√

π
2
·
(
δ(ω+5)−δ(ω−5)

)

Fig. 18.3
Fourier transform pairs—cosine
and sine functions.

461

18 Introduction to
Spectral Techniques

Fig. 18.4
Fourier transform

pairs—Gaussian func-
tions and square pulses. �9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

x

g(x)

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

ω

GRe(ω)

(a) Gauss. (σ =1): g(x) = e− x2

2 � G(ω) = e− ω2

2

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

x

g(x)

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

ω

GRe(ω)

(b) Gauss. (σ =3): g(x) = 1
3
·e− x2

2·9 � G(ω) = e− 9ω2

2

�9 �7 �5 �3 �1 1 3 5 7 9

�0.5

0.5

1

1.5

x

g(x)

�9 �7 �5 �3 �1 1 3 5 7 9

�0.5

0.5

1

1.5

ω

GRe(ω)

(c) Pulse (b=1): g(x) = Π1(x) � G(ω) = 2 sin(ω)√
2πω

�9 �7 �5 �3 �1 1 3 5 7 9

�0.5

0.5

1

1.5

x

g(x)

�9 �7 �5 �3 �1 1 3 5 7 9

�0.5

0.5

1

1.5

ω

GRe(ω)

(d) Pulse (b=2): g(x) = Π2(x) � G(ω) = 4 sin(2ω)√
2πω

462

18.1 The Fourier
Transform

Linearity

The Fourier transform is also a linear operation such that multiply-
ing the signal by a constant value c ∈ C scales the corresponding
spectrum by the same amount,

a · g(x)� a ·G(ω). (18.22)

Linearity also means that the transform of the sum of two signals
g(x) = g1(x) + g2(x) is identical to the sum of their individual trans-
forms G1(ω) and G2(ω) and thus

g1(x) + g2(x)� G1(ω) + G2(ω). (18.23)

Similarity

If the original function g(x) is scaled in space or time, the opposite
effect appears in the corresponding Fourier spectrum. In particular,
as observed on the Gaussian function in Fig. 18.4, stretching a signal
by a factor s (i.e., g(x) → g(sx)) leads to a shortening of the Fourier
spectrum:

g(sx)� 1
|s| ·G

(
ω
s

)
. (18.24)

Similarly, the signal is shortened if the corresponding spectrum is
stretched.

Shift property

If the original function g(x) is shifted by a distance d along its coordi-
nate axis (i.e., g(x) → g(x−d)), then the Fourier spectrum multiplies
by the complex value e−iωd dependent on ω:

g(x−d)� e−iωd ·G(ω). (18.25)

Since e−iωd lies on the unit circle, the multiplication causes a phase
shift on the spectral values (i.e., a redistribution between the real
and imaginary components) without altering the magnitude |G(ω)|.
Obviously, the amount (angle) of phase shift (ωd) is proportional to
the angular frequency ω.

Convolution property

From the image-processing point of view, the most interesting prop-
erty of the Fourier transform is its relation to linear convolution (see
Ch. 5, Sec. 5.3.1). Let us assume that we have two functions g(x)
and h(x) and their corresponding Fourier spectra G(ω) and H(ω), re-
spectively. If the original functions are subject to linear convolution
(i.e., g(x) ∗ h(x)), then the Fourier transform of the result equals the
(pointwise) product of the individual Fourier transforms G(ω) and
H(ω):

g(x) ∗ h(x)� G(ω) ·H(ω). (18.26)

Due to the duality of signal space and frequency space, the same also
holds in the opposite direction; i.e., a pointwise multiplication of two
signals is equivalent to convolving the corresponding spectra:

g(x) · h(x)� G(ω) ∗H(ω). (18.27)

A multiplication of the functions in one space (signal or frequency
space) thus corresponds to a linear convolution of the Fourier spectra
in the opposite space.

463

18 Introduction to
Spectral Techniques

18.2 Working with Discrete Signals

The definition of the continuous Fourier transform in Sec. 18.1 is of
little use for numerical computation on a computer. Neither can ar-
bitrary continuous (and possibly infinite) functions be represented in
practice. Nor can the required integrals be computed. In reality, we
must always deal with discrete signals, and we therefore need a new
version of the Fourier transform that treats signals and spectra as
finite data vectors—the “discrete” Fourier transform. Before contin-
uing with this issue we want to use our existing wisdom to take a
closer look at the process of discretizing signals in general.

18.2.1 Sampling

We first consider the question of how a continuous function can be
converted to a discrete signal in the first place. This process is usually
called “sampling” (i.e., taking samples of the continuous function
at certain points in time (or in space), usually spaced at regular
distances). To describe this step in a simple but formal way, we
require an inconspicuous but nevertheless important piece from the
mathematician’s toolbox.

The impulse function δ(x)

We casually encountered the impulse function (also called the delta
or Dirac function) earlier when we looked at the impulse response
of linear filters (see Ch. 5, Sec. 5.3.4) and in the Fourier transforms
of the cosine and sine functions (Fig. 18.3). This function, which
models a continuous “ideal” impulse, is unusual in several respects:
its value is zero everywhere except at the origin, where it is nonzero
(though undefined), but its integral is one, that is,

δ(x) = 0 for x �= 0 and
∫ ∞

−∞
δ(x) dx = 1 . (18.28)

One could imagine δ(x) as a single pulse at position x = 0 that
is infinitesimally narrow but still contains finite energy (1). Also
remarkable is the impulse function’s behavior under scaling along
the time (or space) axis (i.e., δ(x) → δ(sx)), with

δ(sx) =
1
|s| · δ(x), (18.29)

for s �= 0. Despite the fact that δ(x) does not exist in physical
reality and cannot be plotted (the corresponding plots in Fig. 18.3
are for illustration only), this function is a useful mathematical tool
for describing the sampling process, as will be shown.

Sampling with the impulse function

Using the concept of the ideal impulse, the sampling process can be
described in a straightforward and intuitive way.7 If a continuous

7 The following description is intentionally a bit superficial (in a mathe-
matical sense). See, for example, [43, 128] for more precise coverage of
these topics.

464

18.2 Working with
Discrete Signals

function g(x) is multiplied with the impulse function δ(x), we obtain
a new function

ḡ(x) = g(x) · δ(x) =

{

g(0) for x = 0,
0 otherwise.

(18.30)

The resulting function ḡ(x) consists of a single pulse at position 0
whose height corresponds to the original function value g(0) (at po-
sition 0). Thus, by multiplying the function g(x) by the impulse
function, we obtain a single discrete sample value of g(x) at position
x = 0. If the impulse function δ(x) is shifted by a distance x0, we
can sample g(x) at an arbitrary position x = x0,

ḡ(x) = g(x) · δ(x−x0) =

{

g(x0) for x = x0,
0 otherwise.

(18.31)

Here δ(x−x0) is the impulse function shifted by x0, and the resulting
function ḡ(x) is zero except at position x0, where it contains the
original function value g(x0). This relationship is illustrated in Fig.
18.5 for the sampling position x0 = 3.

� ��� � ���� ���
x xx

g(x) δ(x−3) ḡ(x)
Fig. 18.5
Sampling with the impulse
function. The continuous sig-
nal g(x) is sampled at position
x0 = 3 by multiplying g(x)
by a shifted impulse function
δ(x−3).

To sample the function g(x) at more than one position simulta-
neously (e.g., at positions x1 and x2), we use two separately shifted
versions of the impulse function, multiply g(x) by both of them, and
simply add the resulting function values. In this particular case, we
get

ḡ(x) = g(x) · δ(x−x1) + g(x) · δ(x−x2) (18.32)

= g(x) ·
[
δ(x−x1) + δ(x−x2)

]
(18.33)

=

⎧

⎪⎨

⎪⎩

g(x1) for x = x1,
g(x2) for x = x2,
0 otherwise.

(18.34)

From Eqn. (18.33), sampling a continuous function g(x) at N posi-
tions xi = 1, 2, . . . , N can thus be described as the sum of the N
individual samples, that is,

ḡ(x) = g(x) ·
[
δ(x−1) + δ(x−2) + . . . + δ(x−N)

]

= g(x) ·
N∑

i=1

δ(x−i) . (18.35)

The comb function

The sum of shifted impulses
∑N

i=1 δ(x−i) in Eqn. (18.35) is called a
pulse sequence or pulse train. Extending this sequence to infinity in
both directions, we obtain the “comb” or “Shah” function

465

18 Introduction to
Spectral Techniques

III(x) =
∞∑

i=−∞
δ(x − i) . (18.36)

The process of discretizing a continuous function by taking samples
at regular integral intervals can thus be written simply as

ḡ(x) = g(x) · III(x), (18.37)

that is, as a pointwise multiplication of the original signal g(x) with
the comb function III(x). As Fig. 18.6 illustrates, the function values
of g(x) at integral positions xi ∈ Z are transferred to the discrete
function ḡ(xi) and ignored at all non-integer positions.

Of course, the sampling interval (i.e., the distance between adja-
cent samples) is not restricted to 1. To take samples at regular but
arbitrary intervals τ , the sampling function III(x) is simply scaled
along the time or space axis; that is,

ḡ(x) = g(x) · III
(

x
τ

)
, for τ > 0. (18.38)

Effects of sampling in frequency space

Despite the elegant formulation made possible by the use of the comb
function, one may still wonder why all this math is necessary to de-
scribe a process that appears intuitively to be so simple anyway. The
Fourier spectrum gives one answer to this question. Sampling a con-
tinuous function has massive—though predictable—effects upon the
frequency spectrum of the resulting (discrete) signal. Using the comb
function as a formal model for the sampling process makes it rela-
tively easy to estimate and interpret those spectral effects. Similar to
the Gaussian (see Sec. 18.1.5), the comb function features the special
property that its Fourier transform

III(x)� III(1
2π ω) (18.39)

Fig. 18.6
Sampling with the comb func-
tion. The original continuous

signal g(x) is multiplied by
the comb function III(x). The

function value g(x) is trans-
ferred to the resulting function
ḡ(x) only at integral positions

x = xi ∈ Z and ignored
at all non-integer positions.

� � � 	 ��� �	 �� �� ��

� � � 	 ��� �	 �� �� ��
x

x

x

g(x)

III(x)

ḡ(x)

466

18.2 Working with
Discrete Signals

is again a comb function (i.e., the same type of function). In gen-
eral, the Fourier transform of a comb function scaled to an arbitrary
sampling interval τ is

III(x
τ)� τIII

(
τ

2π ω
)

, (18.40)

due to the similarity property of the Fourier transform (Eqn. (18.24)).
Figure 18.7 shows two examples of the comb function IIIτ (x) with
sampling intervals τ = 1 and τ = 3 and the corresponding Fourier
transforms.

Now, what happens to the Fourier spectrum during discretiza-
tion, that is, when we multiply a function in signal space by the
comb function III(x

τ)? We get the answer by recalling the convolu-
tion property of the Fourier transform (Eqn. (18.26)): the product of
two functions in one space (signal or frequency space) corresponds to
the linear convolution of the transformed functions in the opposite
space, and thus

g(x) · III(x
τ)� G(ω) ∗ τ · III

(
τ

2π ω
)

. (18.41)

We already know that the Fourier spectrum of the sampling func-
tion is a comb function again and therefore consists of a sequence
of regularly spaced pulses (Fig. 18.7). In addition, we know that
convolving an arbitrary function with the impulse δ(x) returns the
original function; that is, f(x) ∗ δ(x) = f(x) (see Ch. 5, Sec. 5.3.4).
Convolving with a shifted pulse δ(x−d) also reproduces the original
function f(x), though shifted by the same distance d:

f(x) ∗ δ(x−d) = f(x−d). (18.42)

τ = 1

(a)

� � � 	 ��� �	 �� �� �������� �� ��
x

τ = 1

Comb function: III1(x) = III(x)

(b)

� � � 	 ��� �	 �� �� �������� �� ��
ω

ω0 = 2π

Fourier transform: III(1
2π ω)

τ = 3

(c)

� � � 	 ��� �	 �� �� �������� �� ��
x

Comb function: III3(x) = III(1
3 x)

τ = 3

(d)

� � � 	 ��� �	 �� �� �������� �� ��
ω

Fourier transform: 3III(3
2π ω)

ω0 = 2π
3

Fig. 18.7
Comb function and its Fourier
transform. Comb function
IIIτ (x) for the sampling inter-
val τ = 1 (a) and its Fourier
transform. Comb function
for τ = 3 (c) and its Fourier
transform (d). Note that the
actual height of the δ-pulses is
undefined and shown only for
illustration.

467

18 Introduction to
Spectral Techniques

Fig. 18.8
Spectral effects of sampling.

The spectrum G(ω) of the
original continuous signal is
assumed to be band-limited

within the range ±ωmax (a).
Sampling the signal at a rate

(sampling frequency) ωs = ω1

causes the signal’s spectrum
G(ω) to be replicated at multi-
ples of ω1 along the frequency

(ω) axis (b). Obviously, the
replicas in the spectrum do not
overlap as long as ωs > 2ωmax.
In (c), the sampling frequency

ωs = ω2 is less than 2ωmax,
so there is overlap between

the replicas in the spectrum,
and frequency components are
mirrored at 2ωmax and super-
impose the original spectrum.
This effect is called “aliasing”
because the original spectrum
(and thus the original signal)

cannot be reproduced from
such a corrupted spectrum.

(a)

ω

G(ω)

ωmax

(b)

ω

Ḡ1(ω)

ωmax
ω1

(c)

ω

Ḡ2(ω)

ω2

Aliasing

As a consequence, the spectrum G(ω) of the original continuous signal
becomes replicated in the Fourier spectrum Ḡ(ω) of a sampled signal
at every pulse of the sampling function’s spectrum; that is, infinitely
many times (see Fig. 18.8(a, b))! Thus the resulting Fourier spectrum
is repetitive with a period 2π

τ , which corresponds to the sampling
frequency ωs.

Aliasing and the sampling theorem

As long as the spectral replicas in Ḡ(ω) created by the sampling pro-
cess do not overlap, the original spectrum G(ω)—and thus the origi-
nal continuous function—can be reconstructed without loss from any
isolated replica of G(ω) in the periodic spectrum Ḡ(ω). As we can
see in Fig. 18.8, this requires that the frequencies contained in the
original signal g(x) be within some upper limit ωmax; that is, the sig-
nal contains no components with frequencies greater than ωmax. The
maximum allowed signal frequency ωmax depends upon the sampling
frequency ωs used to discretize the signal, with the requirement

ωmax ≤ 1
2 · ωs or ωs ≥ 2 · ωmax. (18.43)

Discretizing a continuous signal g(x) with frequency components in
the range 0 ≤ ω ≤ ωmax thus requires a sampling frequency ωs of at
least twice the maximum signal frequency ωmax. If this condition is
not met, the replicas in the spectrum of the sampled signal overlap
(Fig. 18.8(c)) and the spectrum becomes corrupted. Consequently,
the original signal cannot be recovered flawlessly from the sampled
signal’s spectrum. This effect is commonly called “aliasing”.

What we just said in simple terms is nothing but the essence of
the famous “sampling theorem” formulated by Shannon and Nyquist
(see, e.g., [43, p. 256]). It actually states that the sampling frequency
must be at least twice the bandwidth8 of the continuous signal to avoid
aliasing effects. However, if we assume that a signal’s frequency range

8 This may be surprising at first because it allows a signal with high
frequency—but low bandwidth—to be sampled (and correctly recon-

468

18.3 The Discrete
Fourier Transform
(DFT)

starts at zero, then bandwidth and maximum frequency are the same
anyway.

18.2.2 Discrete and Periodic Functions

Assume that we are given a continuous signal g(x) that is periodic
with a period of length T . In this case, the corresponding Fourier
spectrum G(ω) is a sequence of thin spectral lines equally spaced at
a distance ω0 = 2π/T . As discussed in Sec. 18.1.2, the Fourier spec-
trum of a periodic function can be represented as a Fourier series and
is therefore discrete. Conversely, if a continuous signal g(x) is sam-
pled at regular intervals τ , then the corresponding Fourier spectrum
becomes periodic with a period of length ωs = 2π/τ .

Sampling in signal space thus leads to periodicity in frequency
space and vice versa. Figure 18.9 illustrates this relationship and the
transition from a continuous nonperiodic signal to a discrete periodic
function, which can be represented as a finite vector of numbers and
thus easily processed on a computer.

Thus, in general, the Fourier spectrum of a continuous, nonperi-
odic signal g(x) is also continuous and nonperiodic (Fig. 18.9(a, b)).
However, if the signal g(x) is periodic, then the corresponding spec-
trum is discrete (Fig. 18.9(c,d)). Conversely, a discrete—but not nec-
essarily periodic—signal leads to a periodic spectrum (Fig. 18.9(e, f)).
Finally, if a signal is discrete and periodic with M samples per pe-
riod, then its spectrum is also discrete and periodic with M values
(Fig. 18.9(g, h)). Note that the particular signals and spectra in Fig.
18.9 were chosen for illustration only and do not really correspond
with each other.

18.3 The Discrete Fourier Transform (DFT)

In the case of a discrete periodic signal, only a finite sequence of M
sample values is required to completely represent either the signal
g(u) itself or its Fourier spectrum G(m).9 This representation as
finite vectors makes it straightforward to store and process signals
and spectra on a computer. What we still need is a version of the
Fourier transform applicable to discrete signals.

18.3.1 Definition of the DFT

The discrete Fourier transform is, just like its continuous counterpart,
identical in both directions. For a discrete signal g(u) of length M
(u = 0 . . . M−1), the forward transform (DFT) is defined as

structed) at a relatively low sampling frequency, even well below the
maximum signal frequency. This is possible because one can also use a
filter with suitably low bandwidth for reconstructing the original signal.
For example, it may be sufficient to strike (i.e., “sample”) a church bell
(a low-bandwidth oscillatory system with small internal damping) to
uniquely generate a sound wave of relatively high frequency.

9 Notation: We use g(x), G(ω) for a continuous signal or spectrum, re-
spectively, and g(u), G(m) for the discrete versions.

469

18 Introduction to
Spectral Techniques

Fig. 18.9
Transition from continuous

to discrete periodic func-
tions (illustration only).

Signal g(x) Spectrum G(ω)

x

g(x)

ω

G(ω)

(a) Continuous nonperiodic signal (b) Continuous nonperiodic spectrum

x

g(x)

t0

ω

G(ω)

ω0

(c) Continuous periodic signal with
period t0

(d) Discrete nonperiodic spectrum with
values spaced at ω0 =2π/t0

x

g(x)

ts

ω

G(ω)

ωs

(e) Discrete nonperiodic signal with
samples spaced at ts

(f) Continuous periodic spectrum with
period ωs =2π/ts

x

g(x) ts

t0

ω

G(ω) ωs

ω0

(g) Discrete periodic signal with sam-
ples spaced at t0 = tsM

(h) Discrete periodic spectrum with
values spaced at ω0 = 2π/t0 and
period ωs =2π/ts =ω0M

G(m) =
1√
M

M−1∑

u=0

g(u) ·
[

cos
(

2π
mu

M

)

− i · sin
(

2π
mu

M

)]

(18.44)

=
1√
M

M−1∑

u=0

g(u) · e−i2π mu
M , (18.45)

470

18.3 The Discrete
Fourier Transform
(DFT)

for 0 ≤ m < M , and the inverse transform (DFT−1) is10

g(u) =
1√
M

M−1∑

m=0

G(m) ·
[

cos
(

2π
mu

M

)

+ i · sin
(

2π
mu

M

)]

(18.46)

=
1√
M

M−1∑

m=0

G(m) · ei2π mu
M , (18.47)

for 0 ≤ u < M . Note that both the signal g(u) and the discrete
spectrum G(m) are complex-valued vectors of length M , that is,

g(u) = gRe(u) + i·gIm(u),

G(m) = GRe(m) + i·GIm(m),
(18.48)

for u, m = 0, . . . , M−1. A numerical example for a DFT with M = 10
is shown in Fig. 18.10. Converting Eqn. (18.44) from Euler’s exponen-
tial notation (Eqn. (18.10)) we obtain the discrete Fourier spectrum
in component notation as

G(m) =
1√
M
·
M−1∑

u=0

[

gRe(u) + i·gIm(u)
︸ ︷︷ ︸

g(u)

]

·
[

cos
(
2π mu

M

)

︸ ︷︷ ︸

CM
m (u)

− i·sin
(
2π mu

M

)

︸ ︷︷ ︸

SM
m (u)

]

,

(18.49)

where we denote as CM
m and SM

m the discrete (cosine and sine) basis
functions, as described in the next section. Applying the usual com-
plex multiplication,11 we obtain the real and imaginary parts of the
discrete Fourier spectrum as

GRe(m) =
1√
M
·
M−1∑

u=0

gRe(u) ·CM
m (u) + gIm(u) · SM

m (u), (18.50)

GIm(m) =
1√
M
·
M−1∑

u=0

gIm(u) ·CM
m (u)− gRe(u) · SM

m (u), (18.51)

for m = 0, . . . , M−1. Analogously, the inverse DFT in Eqn. (18.46)
expands to

gRe(u) =
1√
M
·
M−1∑

m=0

GRe(m) ·CM
u (m)−GIm(m) · SM

u (m), (18.52)

gIm(u) =
1√
M
·
M−1∑

m=0

GIm(m) ·CM
u (m) + GRe(m) · SM

u (m), (18.53)

for u = 0, . . . , M−1.

10 Compare these definitions with the corresponding expressions for the
continuous forward and inverse Fourier transforms in Eqns. (18.19) and
(18.20), respectively.

11 See also Sec. A.3 in the Appendix.
471

18 Introduction to
Spectral Techniques

Fig. 18.10
Complex-valued result of the

DFT for a signal of length
M = 10 (example). In the
discrete Fourier transform

(DFT), both the original signal
g(u) and its spectrum G(m)

are complex-valued vectors
of length M ; ∗ indicates val-

ues with |G(m)| < 10−15.

u g(u) G(m) m

0 1.0000 0.0000 14.2302 0.0000 0

1 3.0000 0.0000 DFT −5.6745 −2.9198 1

2 5.0000 0.0000 −→ ∗0.0000 ∗0.0000 2

3 7.0000 0.0000 −0.0176 −0.6893 3

4 9.0000 0.0000 ∗0.0000 ∗0.0000 4

5 8.0000 0.0000 0.3162 0.0000 5

6 6.0000 0.0000 ∗0.0000 ∗0.0000 6

7 4.0000 0.0000 DFT−1 −0.0176 0.6893 7

8 2.0000 0.0000 ←− ∗0.0000 ∗0.0000 8

9 0.0000 0.0000 −5.6745 2.9198 9

Re Im Re Im

18.3.2 Discrete Basis Functions

The inverse DFT (Eqn. (18.46)) performs the decomposition of the
discrete function g(u) into a finite sum of M discrete cosine and sine
functions (CM

m , SM
m) whose weights (or “amplitudes”) are determined

by the DFT coefficients in G(m). Each of these 1D basis functions
(first used in Eqn. (18.49)),

CM
m (u) = CM

u (m) = cos
(
2π mu

M

)
, (18.54)

SM
m (u) = SM

u (m) = sin
(
2π mu

M

)
, (18.55)

is periodic with M and has a discrete frequency (wave number) m,
which corresponds to the angular frequency

ωm = 2 π · m

M
. (18.56)

For example, Figs. 18.11 and 18.12 show the discrete basis functions
(with integer ordinate values u ∈ Z) for the DFT of length M = 8 as
well as their continuous counterparts (with ordinate values x ∈ R).

For wave number m = 0, the cosine function CM
0 (u) (Eqn.

(18.54)) has the constant value 1. The corresponding DFT coeffi-
cient GRe(0)—the real part of G(0)—thus specifies the constant part
of the signal or the average value of the signal g(u) in Eqn. (18.52).
In contrast, the zero-frequency sine function SM

0 (u) is zero for any
value of u and thus cannot contribute anything to the signal. The
corresponding DFT coefficients GIm(0) in Eqn. (18.52) and GRe(0)
in Eqn. (18.53) are therefore of no relevance. For a real-valued signal
(i.e., gIm(u) = 0 for all u), the coefficient GIm(0) in the corresponding
Fourier spectrum must also be zero.

As seen in Fig. 18.11, the wave number m = 1 relates to a cosine
or sine function that performs exactly one full cycle over the signal
length M = 8. Similarly, the wave numbers m = 2, . . . , 7 correspond
to 2, . . . , 7 complete cycles over the signal length M (see Figs. 18.11
and 18.12).

18.3.3 Aliasing Again!

A closer look at Figs. 18.11 and 18.12 reveals an interesting fact: the
sampled (discrete) cosine and sine functions for m = 3 and m = 5 are
identical, although their continuous counterparts are different! The
same is true for the frequency pairs m = 2, 6 and m = 1, 7. What we

472

18.3 The Discrete
Fourier Transform
(DFT)

C8
m(u) = cos

(
2πm

8 u
)

S8
m(u) = sin

(
2πm

8 u
)

m = 0

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

C8
0(u)

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

S8
0(u)

m = 1

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

C8
1(u)

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

S8
1(u)

m = 2

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

C8
2(u)

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

S8
2(u)

m = 3

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

C8
3(u)

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

S8
3(u)

Fig. 18.11
Discrete basis functions
CM

m (u) and SM
m (u) for the

signal length M = 8 and wave
numbers m = 0, . . . , 3. Each
plot shows both the discrete
function (round dots) and the
corresponding continuous func-
tion.

see here is another manifestation of the sampling theorem—which we
had originally encountered (Sec. 18.2.1) in frequency space—in signal
space. Obviously, m = 4 is the maximum frequency component that
can be represented by a discrete signal of length M = 8. Any discrete
function with a higher frequency (m = 5, . . . , 7 in this case) has an
identical counterpart with a lower wave number and thus cannot be
reconstructed from the sampled signal (see also Fig. 18.13)!

If a continuous signal is sampled at a regular distance τ , the cor-
responding Fourier spectrum is repeated at multiples of ωs = 2π/τ ,

473

18 Introduction to
Spectral Techniques

Fig. 18.12
Discrete basis functions

(continued). Signal length
M = 8 and wave numbers
m = 4, . . . , 7. Notice that,

for example, the discrete func-
tions for m = 5 and m = 3
(Fig. 18.11) are identical be-

cause m = 4 is the maxi-
mum wave number that can
be represented in a discrete
spectrum of length M = 8.

C8
m(u) = cos

(
2πm

8 u
)

S8
m(u) = sin

(
2πm

8 u
)

m = 4

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

C8
4(u)

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

S8
4(u)

m = 5

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

C8
5(u)

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

S8
5(u)

m = 6

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

C8
6(u)

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

S8
6(u)

m = 7

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

C8
7(u)

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

S8
7(u)

as we have shown earlier (Fig. 18.8). In the discrete case, the spec-
trum is periodic with length M . Since the Fourier spectrum of a
real-valued signal is symmetric about the origin (Eqn. (18.21)), there
is for every coefficient with wave number m an equal-sized dupli-
cate with wave number −m. Thus the spectral components appear
pairwise and mirrored at multiples of M ; that is,

474

18.3 The Discrete
Fourier Transform
(DFT)

C8
m(u) = cos

(
2πm

8 u
)

S8
m(u) = sin

(
2πm

8 u
)

m = 1

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

C8
1

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

S8
1(u)

m = 9

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

C8
9

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

S8
9(u)

m = 17

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

C8
17

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

S8
17(u)

Fig. 18.13
Aliasing in signal space. For
the signal length M = 8, the
discrete cosine and sine basis
functions for the wave numbers
m = 1, 9, 17, . . . (round dots)
are all identical. The sampling
frequency itself corresponds to
the wave number m = 8.

|G(m)| = |G(M−m)| = |G(M +m)| (18.57)

= |G(2M−m)| = |G(2M +m)|
. . .

= |G(kM−m)| = |G(kM +m)|,
for all k ∈ Z. If the original continuous signal contains “energy” at
the frequencies

ωm > ωM/2

(i.e., signal components with wave numbers m > M/2), then, accord-
ing to the sampling theorem, the overlapping parts of the spectra are
superimposed in the resulting periodic spectrum of the discrete sig-
nal.

18.3.4 Units in Signal and Frequency Space

The relation between the units in signal and frequency space and the
interpretation of wave numbers m is a common cause of confusion.
While the discrete signal and its spectrum are simple numerical vec-
tors and units of measurement are irrelevant for computing the DFT

475

18 Introduction to
Spectral Techniques

itself, it is nevertheless important to understand how the coordinates
in the spectrum relate to physical dimensions in the real world.

Clearly, every complex-valued spectral coefficient G(m) corre-
sponds to one pair of cosine and sine functions with a particular
frequency in signal space. Assume a continuous signal is sampled at
M consecutive positions spaced at τ (an interval in time or distance
in space). The wave number m = 1 then corresponds to the fun-
damental period of the discrete signal (which is now assumed to be
periodic) with a period of length Mτ ; that is, to the frequency

f1 =
1

Mτ
. (18.58)

In general, the wave number m of a discrete spectrum relates to the
physical frequency as

fm = m
1

Mτ
= m · f1 (18.59)

for 0 ≤ m < M , which is equivalent to the angular frequency

ωm = 2πfm = m
2π

Mτ
= m · ω1. (18.60)

Obviously then, the sampling frequency fs = 1/τ = M · f1 corre-
sponds to the wave number ms = M . As expected, the maximum
nonaliased wave number in the spectrum is

mmax =
M

2
=

ms

2
, (18.61)

that is, half the sampling frequency index ms.

Example 1: time-domain signal

We assume for this example that g(u) is a signal in the time domain
(e.g., a discrete sound signal) that contains M = 500 sample values
taken at regular intervals τ = 1 ms = 10−3 s. Thus the sampling
frequency is fs = 1/τ = 1000 Hertz (cycles per second) and the total
duration (fundamental period) of the signal is Mτ = 0.5 s.

The signal is implicitly periodic, and from Eqn. (18.58) we obtain
its fundamental frequency as f1 = 1

500·10−3 = 1
0.5 = 2 Hertz. The

wave number m = 2 in this case corresponds to a real frequency
f2 = 2f1 = 4 Hertz, f3 = 6 Hertz, etc. The maximum frequency that
can be represented by this discrete signal without aliasing is fmax =
M
2 f1 = 1

2τ = 500 Hertz, exactly half the sampling frequency fs.

Example 2: space-domain signal

Assume we have a 1D print pattern with a resolution (i.e., spatial
sampling frequency) of 120 dots per cm, which equals approximately
300 dots per inch (dpi) and a total signal length of M = 1800 samples.
This corresponds to a spatial sampling interval of τ = 1/120 cm ≈
83 μm and a physical signal length of (1800/120) cm = 15 cm.

The fundamental frequency of this signal (again implicitly as-
sumed to be periodic) is f1 = 1

15 , expressed in cycles per cm. The
sampling frequency is fs = 120 cycles per cm and thus the maximum
signal frequency is fmax = fs

2 = 60 cycles per cm. The maximum
signal frequency specifies the finest structure (1

60 cm) that can be
reproduced by this print raster.

476

18.4 Implementing the
DFT

18.3.5 Power Spectrum

The magnitude of the complex-valued Fourier spectrum,

|G(m)| =
√

G2
Re(m) + G2

Im(m), (18.62)

is commonly called the “power spectrum” of a signal. It specifies
the energy that individual frequency components in the spectrum
contribute to the signal. The power spectrum is real-valued and
positive and thus often used for graphically displaying the results of
Fourier transforms (see also Ch. 19, Sec. 19.2).

Since all phase information is lost in the power spectrum, the orig-
inal signal cannot be reconstructed from the power spectrum alone.
However, because of the missing phase information, the power spec-
trum is insensitive to shifts of the original signal and can thus be
efficiently used for comparing signals. To be more precise, the power
spectrum of a circularly shifted signal is identical to the power spec-
trum of the original signal. Thus, given a discrete periodic signal
g1(u) of length M and a second signal g2(u) shifted by some offset d,
such that

g2(u) = g1(u−d) (18.63)

the corresponding power spectra are the same, that is,

|G2(m)| = |G1(m)|, (18.64)

although in general the complex-valued spectra G1(m) and G2(m) are
different. Furthermore, from the symmetry property of the Fourier
spectrum, it follows that

|G(m)| = |G(−m)|, (18.65)

for real-valued signals g(u) ∈ R.

18.4 Implementing the DFT

18.4.1 Direct Implementation

Based on the definitions in Eqns. (18.50) and (18.51) the DFT can
be directly implemented, as shown in Prog. 18.1. The main method
DFT() transforms a signal vector of arbitrary length M (not necessar-
ily a power of 2). It requires roughly M2 operations (multiplications
and additions); that is, the time complexity of this DFT algorithm
is O(M2).

One way to improve the efficiency of the DFT algorithm is to
use lookup tables for the sin and cos functions (which are relatively
“expensive” to compute) since only function values for a set of M
different angles ϕm are ever needed. The angles ϕm = 2π m

M corre-
sponding to m = 0, . . . , M − 1 are evenly distributed over the full
360◦ circle. Any integral multiple ϕm · u (for u ∈ Z) can only fall
onto one of these angles again because

477

18 Introduction to
Spectral Techniques

Prog. 18.1
Direct implementation of

the DFT based on the defi-
nition in Eqns. (18.50) and
(18.51). The method DFT()

returns a complex-valued vec-
tor with the same length as

the complex-valued input (sig-
nal) vector g. This method

implements both the forward
and the inverse transforms,

controlled by the Boolean pa-
rameter forward. The class

Complex (bottom) defines the
structure of the complex-

valued vector elements.

1 class Complex {

2 double re, im;

3 Complex(double re, double im) { //constructor method

4 this.re = re;

5 this.im = im;

6 }

7 }

8 Complex[] DFT(Complex[] g, boolean forward) {

9 int M = g.length;

10 double s = 1 / Math.sqrt(M); //common scale factor

11 Complex[] G = new Complex[M];

12 for (int m = 0; m < M; m++) {

13 double sumRe = 0;

14 double sumIm = 0;

15 double phim = 2 * Math.PI * m / M;

16 for (int u = 0; u < M; u++) {

17 double gRe = g[u].re;

18 double gIm = g[u].im;

19 double cosw = Math.cos(phim * u);

20 double sinw = Math.sin(phim * u);

21 if (!forward) // inverse transform

22 sinw = -sinw;

23 // complex multiplication: [gRe +i · gIm]·[cos(ω)+i·sin(ω)]
24 sumRe += gRe * cosw + gIm * sinw;

25 sumIm += gIm * cosw - gRe * sinw;

26 }

27 G[m] = new Complex(s * sumRe, s * sumIm);

28 }

29 return G;

30 }

ϕm · u = 2π mu
M ≡ 2π

M · (mu mod M
︸ ︷︷ ︸

0≤k<M

) = 2π k
M = ϕk, (18.66)

where mod denotes the “modulus” operator.12 Thus we can set up
two constant tables (floating-point arrays) WC and WS of size M
with the values

WC(k) ← cos(ωk) = cos
(
2π k

M

)
, (18.67)

WS(k) ← sin(ωk) = sin
(
2π k

M

)
, (18.68)

for 0 ≤ k < M . For computing the DFT, the necessary cosine and
sine values (Eqn. (18.49)) can be read from these tables as

CM
k (u) = cos

(
2π mu

M

)
≡ WC(mu mod M), (18.69)

SM
k (u) = sin

(
2π mu

M

)
≡ WS(mu mod M), (18.70)

for arbitrary values of m, u ∈ Z, without any additional computation.
The necessary modification of the DFT() method in Prog. 18.1 is left
as an exercise (Exercise 18.5).

Despite this significant improvement, the direct implementation
of the DFT remains computationally intensive. As a matter of fact,
12 See also Sec. F.1.2 in the Appendix.

478

18.5 Exercisesit has been impossible for a long time to compute this form of DFT
in sufficiently short time on off-the-shelf computers, and this is still
true today for many real applications.

18.4.2 Fast Fourier Transform (FFT)

Fortunately, for computing the DFT in practice, fast algorithms ex-
ist that lay out the sequence of computations in such a way that
intermediate results are only computed once and optimally reused
many times. This “fast Fourier transform”, which exists in many
variations, generally reduces the time complexity of the computa-
tion from O(M2) to O(M log2 M). The benefits are substantial, in
particular for longer signals. For example, with a signal of length
M = 103, the FFT leads to a speedup by a factor of 100 over the
direct DFT implementation and an impressive gain of 10,000 times
for a signal of length M = 106. Since its invention, the FFT has
therefore become an indispensable tool in almost any application of
spectral signal analysis [34].

Most FFT algorithms, including the one described in the famous
publication by Cooley and Tukey in 1965 (see [88, p. 156] for a historic
overview), are designed for signals of length M = 2k (i.e., powers of
2). However, FFT algorithms have also been developed for other
lengths, including several small prime numbers [25]. Efficient Java
implementations are available, for example, as part of the JTransform
library13 by Piotr Wendykier [255] or the Apache Commons Math
libary.14

It is important to remember, though, that the DFT and FFT com-
pute exactly the same result and the FFT is only a special—though
ingenious—method for implementing the discrete Fourier transform
(Eqn. (18.44)).

18.5 Exercises

Exercise 18.1. Calculate the values of the cosine function f(x) =
cos(ωx) with angular frequency ω = 5 for the positions x = −3,−2,
. . . , 2, 3. What is the length of this function’s period?

Exercise 18.2. Determine the phase angle ϕ of the function f(x) =
A · cos(ωx) + B · sin(ωx) for A = −1 and B = 2.

Exercise 18.3. Calculate the real part, the imaginary part, and the
magnitude of the complex value z = 1.5 · e−i 2.5.

Exercise 18.4. A 1D optical scanner for sampling film transparen-
cies is supposed to resolve image structures with a precision of 4,000
dpi. What spatial distance (in mm) between samples is required such
that no aliasing occurs?

Exercise 18.5. Modify the direct implementation of the 1D DFT
given in Prog. 18.1 by using lookup tables for the cos and sin functions
as described in Eqns. (18.69)–(18.70).

13 http://sites.google.com/site/piotrwendykier/software/jtransforms.
14 http://commons.apache.org/math/ (class FastFourierTransformer).

479

http://sites.google.com/site/piotrwendykier/software/jtransforms
http://commons.apache.org/math/

19

The Discrete Fourier Transform in 2D

The Fourier transform is defined not only for 1D signals but for func-
tions of arbitrary dimension. Thus, 2D images are nothing special
from a mathematical point of view.

19.1 Definition of the 2D DFT

For a 2D, periodic function (e.g., an intensity image) g(u, v) of size
M ×N , the discrete Fourier transform (2D DFT) is defined as

G(m, n) =
1√

MN
·

M−1∑

u=0

N−1∑

v=0

g(u, v) · e−i2π mu
M · e−i2π nv

N (19.1)

=
1√

MN
·

M−1∑

u=0

N−1∑

v=0

g(u, v) · e−i2π(mu
M + nv

N), (19.2)

for the spectral coordinates m = 0, . . . , M−1 and n = 0, . . . , N−1.
As we see, the resulting Fourier transform is again a 2D function of
the same size (M ×N) as the original signal. Similarly, the inverse
2D DFT is defined as

g(u, v) =
1√

MN
·

M−1∑

m=0

N−1∑

n=0

G(m, n) · ei2π mu
M · ei2π nv

N (19.3)

=
1√

MN
·

M−1∑

m=0

N−1∑

n=0

G(m, n) · ei2π(mu
M + nv

N), (19.4)

for the image coordinates u = 0, . . . , M−1 and v = 0, . . . , N−1.

19.1.1 2D Basis Functions

Equation (19.4) shows that a discrete 2D, periodic function g(u, v)
can be represented as a linear combination (i.e., as a weighted sum)
of 2D sinusoids of the form

481
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_19

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

19 The Discrete
Fourier Transform

in 2D

ei·2π(mu
M + nv

N) = ei·(ωmu+ωnv) (19.5)

= cos
[

2π
(mu

M
+

nv

N

)]

︸ ︷︷ ︸

CM,N
m,n (u, v)

+ i·sin
[

2π
(mu

M
+

nv

N

)]

︸ ︷︷ ︸

SM,N
m,n (u, v)

. (19.6)

CM,N
m,n (u, v) and SM,N

m,n (u, v) are discrete, 2D cosine and sine functions
with horizontal and vertical wave numbers n and m, respectively, and
the corresponding angular frequencies ωm, ωn, that is,

CM,N
m,n (u, v) = cos

[

2π
(mu

M
+

nv

N

)]

= cos(ωmu + ωnv), (19.7)

SM,N
m,n (u, v) = sin

[

2π
(mu

M
+

nv

N

)]

= sin(ωmu + ωnv). (19.8)

Each of these basis functions is periodic with M units in the hori-
zontal direction and N units in the vertical direction.

Examples

Figures 19.1 and 19.2 show a set of 2D cosine functions CM,N
m,n of

size M × N = 16 × 16 for various combinations of wave numbers
m, n = 0, . . . , 3. As we can clearly see, these functions correspond to
a directed, cosine-shaped waveform whose orientation is determined
by the wave numbers m and n. For example, the wave numbers
m = n = 2 specify a cosine function CM,N

2,2 (u, v) that performs two
full cycles in both the horizontal and vertical directions, thus creating
a diagonally oriented, 2D wave. Of course, the same holds for the
corresponding sine functions.

19.1.2 Implementing the 2D DFT

As in the 1D case, we could directly use the definition in Eqn. (19.2) to
write a program or procedure that implements the 2D DFT. However,
this is not even necessary. A minor rearrangement of Eqn. (19.2) into

G(m, n) =
1√
N
·
N−1∑

v=0

[
1√
M
·
M−1∑

u=0

g(u, v) · e−i2π um
M

︸ ︷︷ ︸

1-dim. DFT of row g(·,v)

]

· e−i2π vn
N (19.9)

shows that its core contains a 1D DFT (see Eqn. (18.44)) of the vth
row vector g(·, v) that is independent of the “vertical” position v and
size N (noting the fact that v and N are placed outside the square
brackets in Eqn. (19.9)). If, in a first step, we replace each row vector
g(·, v) of the original image by its 1D Fourier transform,

gx(·, v) ← DFT
(
g(·, v)

)
for 0 ≤ v < N , (19.10)

then we only need to replace each resulting column vector by its 1D
DFT in a second step:

gxy(u, ·) ← DFT
(
gx(u, ·)

)
for 0 ≤ u < M . (19.11)

The resulting function g′′(u, v) is precisely the 2D Fourier transform
G(m, n). Thus the 2D DFT can be separated into a sequence of 1D

482

19.1 Definition of the
2D DFT

m=0 m=1

n=0

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

n=1

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

n=2

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

n=3

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

Fig. 19.1
2D cosine functions.
C

M,N
m,n (u, v) =

cos
[

2π
(

mu
M + nv

N

)]
for

M = N = 16, n = 0, . . . ,
3, m = 0, 1.

DFTs over the row and column vectors, respectively, as summarized
in Alg. 19.1. The advantage of this is twofold: first, the 2D-DFT can
be implemented more efficiently, and second, only a 1D implementa-
tion of the DFT (or the 1D FFT, as described in Ch. 18, Sec. 18.4.2)
is needed to implement any multidimensional DFT.

As we can see from Eqn. (19.9), the 2D DFT could equally be
performed in the opposite way, that is, by first doing a 1D DFT on
all rows and subsequently on all columns. One should also note that
all operations in Alg. 19.1 are done “in place”, which means that

483

19 The Discrete
Fourier Transform

in 2D

Fig. 19.2
2D cosine functions (con-

tinued). C
M,N
m,n (u, v) =

cos
[

2π
(

um
M + vn

N

)]
for M =

N = 16, n = 0, . . . , 3, m = 2, 3.

m=2 m=3

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

n=0

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

n=1

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

n=2

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

0

Π

2 Π

0

Π

2 Π

�1

0

1

0

Π

0

Π

uu

vv

n=3

the original signal g(u, v) is destructively modified and successively
replaced by its Fourier transform G(m, n) of the same size, without
allocating any additional storage space. This feature is certainly
desirable and also quite common, based on the fact that most 1D
FFT algorithms (which should be used for implementing the DFT in
practice) work “in place”.

484

19.2 Visualizing the 2D
Fourier Transform

1: Separable2dDft(g) ⊲ g(u, v) ∈ C

Input: g, a 2D, discrete signal of size M × N , with g(u, v) ∈
C. Returns the DFT for the 2D function g(u, v). The resulting
spectrum G(m, n) has the same dimensions as g. The algorithm
works “in place”, i.e., g is modified.

2: (M, N) ← Size(g)

3: for v ← 0, . . . , N − 1 do
4: r ← g(·, v) ⊲ extract the vth row vector of g
5: g(·, v) ← DFT(r) ⊲ replace the vth row vector of g

6: for u ← 0, . . . , M − 1 do
7: c ← g(u, ·) ⊲ extract the uth column vector of g
8: g(u, ·) ← DFT(c) ⊲ replace the uth column vector of g

Remark: g(u, v) ≡ G(m, n) now contains the discrete 2D Fourier
spectrum.

9: return g

Alg. 19.1
In-place computation of the
2D DFT as a sequence of 1D
DFTs on row and column vec-
tors.

19.2 Visualizing the 2D Fourier Transform

Unfortunately, there is no simple method for visualizing 2D complex-
valued functions, such as the result of a 2D DFT. One alternative is
to display the real and imaginary parts individually as 2D surfaces.
Mostly, however, the absolute value of the complex functions is dis-
played, which in the case of the Fourier transform is |G(m, n)|, the
power spectrum (see Ch. 18, Sec. 18.3.5).

19.2.1 Range of Spectral Values

For most natural images, the “spectral energy” concentrates at the
lower frequencies with a clear maximum at wave numbers (0, 0); that
is, at the co-ordinate center (see also Sec. 19.4). The values of the
power spectrum usually cover a wide range, and displaying them
linearly often makes the smaller values invisible. To show the full
range of spectral values, in particular the smaller values for the high
frequencies, it is common to display the square root or the logarithm
of the power spectrum,

√

|G(m, n)| or log |G(m, n)|, respectively.

19.2.2 Centered Representation of the DFT Spectrum

Analogous to the 1D case, the 2D spectrum is a periodic function in
both dimensions,

G(m, n) = G(m + pM, n + qN), (19.12)

for arbitrary p, q ∈ Z. In the case of a real-valued 2D signal g(u, v) ∈
R (see Eqn. (18.57)), the power spectrum is also symmetric about
the origin, that is,

|G(m, n)| = |G(−m,−n)|. (19.13)

It is thus common to use a centered representation of the spectrum
with coordinates m, n in the ranges

−
⌊

M
2

⌋
≤ m ≤

⌊
M−1

2

⌋
and −

⌊
N
2

⌋
≤ n ≤

⌊
N−1

2

⌋
,

485

19 The Discrete
Fourier Transform

in 2D

Fig. 19.3
Centering the 2D Fourier spec-
trum. In the original (noncen-

tered) spectrum, the coordi-
nate center (i.e., the region of
low frequencies) is located in

the upper left corner and, due
to the periodicity of the spec-
trum, also at all other corners

(a). In this case, the coeffi-
cients for the highest wave

numbers (frequencies) lie at
the center. Swapping the quad-
rants pairwise, as shown in (b),

moves all low-frequency coef-
ficients to the center and high

frequencies to the periphery.
A real 2D power spectrum is
shown in its original form in

(c) and in centered form in (d).

A

B C

D

A

BC

D

(a) (b)

10
20

30
40

50

10

20

30

40

50

0

250

500

750

1000

10
20

30
40

10

20

30

40

10
20

30
40

50

10

20

30

40

50

0

250

500

750

1000

10
20

30
40

10

20

30

40

(c) (d)

Fig. 19.4
Intensity plot of a 2D power

spectrum: original image (a),
noncentered spectrum (b),
and centered spectrum (c).

(a) (b) (c)

respectively. This can be easily accomplished by swapping the four
quadrants of the Fourier transform, as illustrated in Fig. 19.3. In the
resulting representation, the low-frequency coefficients are found at
the center and the high-frequency entries along the outer boundaries.
Figure 19.4 shows the plot of a 2D power spectrum as an intensity im-
age in its original and centered form, with the intensity proportional
to the logarithm of the spectral values (log10 |G(m, n)|).

19.3 Frequencies and Orientation in 2D

19.3.1 Effective Frequency

As we could see in Figs. 19.1 and 19.2, each 2D basis function is
an oriented cosine or sine function whose orientation and frequency
are determined by its wave numbers m and n for the horizontal and
vertical directions, respectively. If we moved along the main direction
of such a basis function (i.e., perpendicular to the crest of the waves),
we would follow a 1D cosine or sine function of some frequency f̂ ,

486

19.3 Frequencies and
Orientation in 2D

M

N

g(u, v)

τ̂

ψ

M

N

m

n

G(m, n)

ψ
θ

(a) Image (b) Spectrum

Fig. 19.5
Frequency and orientation in
2D. The image (a) contains
a periodic pattern with effec-

tive frequency f̂ = 1/τ̂ and
orientation ψ. The frequency
coefficient corresponding to
this pattern is found at posi-

tion (m, n) = ±f̂ · (M cos ψ,
N sin ψ) (see Eqn. (19.14)) in
the 2D Fourier spectrum (b).
Thus, if M �= N , the spectral
coefficients (m, n) are located
at a direction (θ) different to
the orientation of the image
pattern (ψ).

which we call the directional or effective frequency of the waveform
(see Fig. 19.5).

Recall that the wave numbers m, n specify how many full cycles
the associated 2D basis function performs over a distance of M units
in the horizontal direction or N units in the vertical direction. Thus,
if an image of size M ×N contains a periodic pattern with effec-
tive frequency f̂ = 1/τ̂ and orientation ψ, the associated frequency
coefficients are found at positions

(
m
n

)

= ±f̂ ·
(

M ·cos(ψ)
N ·sin(ψ)

)

(19.14)

in the corresponding 2D Fourier spectrum (see Fig. 19.5). Given the
spectral position (m, n), the effective frequency along the main direc-
tion of the wave can be derived (from the 1D case in Eqn. (18.58)) as

f̂(m,n) = 1
τ ·
√
(

m
M

)2
+
(

n
N

)2
, (19.15)

where we assume the same spatial sampling interval along the x and
y axes (i.e., τ = τx = τy). Thus the maximum signal frequency in
the directions of the coordinate axes is

f̂(± M
2 ,0) = f̂(0,± N

2) = 1
τ ·
√
(

1
2

)2
= 1

2τ = 1
2 fs, (19.16)

where fs = 1
τ denotes the sampling frequency. Notice that the effec-

tive signal frequency at the corners of the spectrum is

f̂(± M
2 ,± N

2) = 1
τ ·
√
(

1
2

)2
+
(

1
2

)2
= 1√

2·τ = 1√
2
fs, (19.17)

which is a factor
√

2 higher than along the coordinate axes (Eqn.
(19.16)).

19.3.2 Frequency Limits and Aliasing in 2D

Figure 19.6 illustrates the relationship described in Eqns. (19.16) and
(19.17). The highest permissible signal frequencies in any direction
lie along the boundary of the centered 2D spectrum of size M ×
N . Any signal with all frequency components within this region
complies with the sampling theorem (Nyquist rule) and can thus be
reconstructed without aliasing. In contrast, any spectral component

487

19 The Discrete
Fourier Transform

in 2D

Fig. 19.6
Maximum signal frequencies

and aliasing in 2D. The bound-
ary of the M × N 2D spectrum

(inner rectangle) marks the
region of permissible signal fre-

quencies along any direction.
The outer rectangle corre-

sponds to the effective sam-
pling frequency, which is twice
the maximum signal frequency
in the same direction. The sig-
nal component at spectral po-
sition a lies inside the permis-
sible frequency range and thus
causes no alasing. In contrast,

component b is outside the
permissible range. Due to the

periodicity of the spectrum, all
components repeat (as in the

1D case) at all multiples of the
sampling frequency along the

m and n axis. This causes the
component B to be “aliased”
to a lower-frequency position
B′ (and B̄ to B̄′) in the vis-

ible part of the spectrum.
Note that this also changes

the direction of the corre-
sponding wave in signal space.

A

Ā
B

B̄ B̄′

B′

m

n M

N

−M

−N

M
2

N
2

− M
2

− N
2

0

0

Maximum
signal

frequency

Effective
sampling

frequency

outside these limits is reflected across the boundary of this box toward
the coordinate center onto lower frequencies, which would appear as
visual aliasing in the reconstructed image.

Apparently the lowest effective sampling frequency (Eqn. (19.15))
occurs in the directions of the coordinate axes of the sampling grid.
To ensure that a certain image pattern can be reconstructed without
aliasing at any orientation, the effective signal frequency f̂ of that
pattern must be limited to fs

2 = 1
2τ in every direction, again assuming

that the sampling interval τ is the same along both coordinate axes.

19.3.3 Orientation

The spatial orientation of a 2D cosine or sine wave with spectral
coordinates m, n (wave numbers 0 ≤ m < M , 0 ≤ n < N) is

ψ(m,n) = ArcTan
(

m
M , n

N ,
)

= ArcTan
(
mN, nM

)
, (19.18)

where ψ(m,n) for m = n = 0 is of course undefined.1 Conversely, a
2D sinusoid with effective frequency f̂ and spatial orientation ψ is
represented by the spectral coordinates

(m, n) = ±f̂ · (M cos ψ, N sin ψ) , (19.19)

as already shown in Fig. 19.5.

19.3.4 Normalizing the Geometry of the 2D Spectrum

From Eqn. (19.19) we can derive that in the special case of a si-
nusoid with spatial orientation ψ = 45◦ the corresponding spectral
coefficients are found at the frequency coordinates

1 ArcTan(x, y) in Eqn. (19.18) denotes the inverse tangent function
tan−1(y/x) (also see Sec. F.1.6 in the Appendix).

488

19.3 Frequencies and
Orientation in 2D

(a)

(b) (c)

Fig. 19.7
Normalizing the 2D spectrum.
Original image (a) with dom-
inant oriented patterns that
show up as clear peaks in
the corresponding spectrum
(b). Because the image and
the spectrum are not square
(M �= N), orientations in the
image are not the same as in
the actual spectrum (b). After
the spectrum is normalized to
square proportions (c), we can
clearly observe that the cylin-
ders of this (Harley-Davidson
V-Rod) engine are really ar-
ranged at a 60◦ angle.

(m, n) = ±(λM, λN) for − 1
2 ≤ λ ≤ + 1

2 , (19.20)

that is, at the diagonals of the spectrum (see also Eqn. (19.17)).
Unless the image (and thus the spectrum) is quadratic (M = N),
the angle of orientation in the image and in the spectrum are not the
same, though they coincide along the directions of the coordinate
axes. This means that rotating an image by some angle α does turn
the spectrum in the same direction but in general not by the same
angle α!

To obtain identical orientations and turning angles in both the
image and the spectrum, it is sufficient to scale the spectrum to
square size such that the spectral resolution is the same along both
frequency axes (as shown in Fig. 19.7).

19.3.5 Effects of Periodicity

When interpreting the 2D DFT of images, one must always be aware
of the fact that with any discrete Fourier transform, the signal func-
tion is implicitly assumed to be periodic in every dimension. Thus
the transitions at the borders between the replicas of the image are
also part of the signal, just like the interior of the image itself. If there
is a large intensity difference between opposing borders of an image
(e.g., between the upper and lower parts of a landscape image), then
this causes strong transitions in the resulting periodic signal. Such
steep discontinuities are of high bandwidth (i.e., the corresponding
signal energy is spread over a wide range along the coordinate axes
of the sampling grid; see Fig. 19.8). This broadband energy distribu-
tion along the main axes, which is often observed with real images,
may lead to a suppression of other relevant signal components in the
spectrum.

489

19 The Discrete
Fourier Transform

in 2D

Fig. 19.8
Effects of periodicity in the
2D spectrum. The discrete

Fourier transform is computed
under the implicit assump-

tion that the image signal is
periodic along both dimen-

sions (top). Large differences
in intensity at opposite image

borders—here most notably
in the vertical direction—lead

to broad-band signal compo-
nents that in this case appear

as a bright line along the spec-
trum’s vertical axis (bottom).

19.3.6 Windowing

One solution to this problem is to multiply the image function
g(u, v) = I(u, v) by a suitable windowing function w(u, v), that is,

g̃(u, v) = g(u, v) · w(u, v), (19.21)

for 0 ≤ u < M , 0 ≤ v < N , prior to computing the DFT. The
windowing function w(u, v) should drop off continuously toward the
image borders such that the transitions between image replicas are
effectively eliminated. But multiplying the image with w(u, v) has
additional effects upon the spectrum. As we already know (from Eqn.
(18.26)), a multiplication of two functions in signal space corresponds
to a convolution of the corresponding spectra in frequency space,
that is,

G̃(m, n) = G(m, n) ∗W (m, n). (19.22)

To cause the least possible damage to the Fourier transform of the
image, the ideal spectrum of w(u, v) would be the impulse function
δ(m, n). Unfortunately, this again corresponds to the constant win-
dowing function w(u, v) = 1 with no windowing effect at all. In gen-
eral, we can say that a broader spectrum of the windowing function

490

19.3 Frequencies and
Orientation in 2D

w(u, v) smoothes the resulting spectrum more strongly and individ-
ual frequency components are harder to isolate.

Taking a picture is equivalent to cutting out a finite (usually
rectangular) region from an infinite image plane, which can be sim-
ply modeled as a multiplication with a rectangular pulse function of
width M and height N . So, in this case, the spectrum of the original
intensity function is convolved with the spectrum of the rectangular
pulse (box). The problem is that the spectrum of the rectangular
box (see Fig. 19.9(a)) is of extremely high bandwidth and thus far
off the ideal narrow impulse function.

These two examples demonstrate a dilemma: windowing func-
tions should for one be as wide as possible to include a maximum
part of the original image, and they should also drop off to zero to-
ward the image borders but then again not too steeply to maintain
a narrow windowing spectrum.

19.3.7 Common Windowing Functions

Suitable windowing functions should therefore exhibit soft transi-
tions, and many variants have been proposed and analyzed both the-
oretically and for practical use (see, e.g., [34, Ch. 9, Sec. 9.3], [194,
Ch. 10]). Table 19.1 lists the definitions of several popular window-
ing functions; the corresponding 2D (logarithmic) power spectra are
displayed in Figs. 19.9 and 19.10.

The spectrum of the rectangular pulse function (Fig. 19.9(a)),
which assigns identical weights to all image elements, exhibits a rela-
tively narrow peak at the center, which promises little smoothing in
the resulting windowed spectrum. Nevertheless, the spectral energy
drops off quite slowly toward the higher frequencies, thus creating a
rather wide spectrum. Not surprisingly, the behavior of the ellipti-
cal windowing function in Fig. 19.9(b) is quite similar. The Gaus-
sian window in Fig. 19.9(c) demonstrates how the off-center spectral
energy can be significantly suppressed by narrowing the windowing
function, however, at the cost of a much wider peak at the center.
In fact, none of the functions in Fig. 19.9 makes a good windowing
function.

Obviously, the choice of a suitable windowing function is a deli-
cate compromise since even apparently similar functions may exhibit
largely different behaviors in the frequency spectrum. For example,
good overall results can be obtained with the Hanning window (Fig.
19.10(c)) or the Parzen window (Fig. 19.10(d)), which are both easy
to compute and frequently used in practice.

Figure 19.11 illustrates the effects of selected windowing functions
upon the spectrum of an intensity image. As can be seen clearly, nar-
rowing the windowing function leads to a suppression of the artifacts
caused by the signal’s implicit periodicity. At the same time, how-
ever, it also reduces the resolution of the spectrum; the spectrum
becomes blurred, and individual peaks are widened.

491

19 The Discrete
Fourier Transform

in 2D

Table 19.1
2D windowing function defini-

tions. The functions w(u, v)
have their maximum val-
ues at the image center,

w(M/2, N/2) = 1. The val-
ues ru, rv, and ru,v used

in the definitions are speci-
fied at the top of the table.

Definitions:

ru = u−M/2
M/2

= 2u
M

−1, rv = v−N/2
N/2

= 2v
N
−1, ru,v =

√

r2
u + r2

v

Elliptical
window:

w(u, v) =

{

1 for 0 ≤ ru,v ≤ 1

0 otherwise

Gaussian
window:

w(u, v) = e

(−r2
u,v

2σ2

)

, σ = 0.3, . . . , 0.4

Super-
Gaussian
window:

w(u, v) = e

(
−rn

u,v
κ

)

, n = 6, κ = 0.3, . . . , 0.4

Cosine2

window:
w(u, v) =

{

cos
(

π
2

ru

)
· cos

(
π
2

rv

)
for 0 ≤ ru, rv ≤ 1

0 otherwise

Bartlett
window:

w(u, v) =

{

1−ru,v for 0 ≤ ru,v ≤ 1

0 otherwise

Hanning
window:

w(u, v) =

{

0.5 ·
[
cos(πru,v) + 1

]
for 0 ≤ ru,v ≤ 1

0 otherwise

Parzen
window:

w(u, v) =

⎧

⎪⎨

⎪⎩

1 − 6r2
u,v + 6r3

u,v for 0 ≤ ru,v < 0.5

2 · (1 − ru,v)3 for 0.5 ≤ ru,v < 1

0 otherwise

19.4 2D Fourier Transform Examples

The following examples demonstrate some basic properties of the 2D
DFT on real intensity images. All examples in Figs. 19.12–19.18
show a centered and squared spectrum with logarithmic intensity
values (see Sec. 19.2).

Scaling

Figure 19.12 shows that scaling the image in signal space has the
opposite effect in frequency space, analogous to the 1D case (see Ch.
18, Fig. 18.4).

Periodic Image Patterns

The images in Fig. 19.13 contain repetitive periodic patterns at var-
ious orientations and scales. They appear as distinct peaks at the
corresponding positions (see Eqn. (19.19)) in the spectrum.

492

19.4 2D Fourier
Transform Examples

(a)

uu

v

w(u,v)

0

1

mm

n

log |W (m,n)|

(b)

uu

v

w(u,v)

0

1

mm

n

log |W (m,n)|

(c)

uu

v

w(u,v)

0

1

mm

n

log |W (m,n)|

(d)

uu

v

w(u,v)

0

1

mm

n

log |W (m,n)|

Fig. 19.9
Windowing functions and their
logarithmic power spectra.
Rectangular pulse (a), ellip-
tical window (b), Gaussian
window with σ = 0.3 (c), and
super-Gaussian window of or-
der n = 6 and κ = 0.3 (d).
The windowing functions are
deliberately of nonsquare size
(M : N = 1 : 2).

Rotation

Figure 19.14 shows that rotating the image by some angle α rotates
the spectrum in the same direction and—if the image is square—by
the same angle.

Oriented, elongated structures

Pictures of artificial objects often exhibit regular patterns or elon-
gated structures that appear dominantly in the spectrum. The im-

493

19 The Discrete
Fourier Transform

in 2D
Fig. 19.10

Windowing functions and
their logarithmic power spec-

tra (continued). Cosine2

window (a), Bartlett win-
dow (b), Hanning window

(c), and Parzen window (d).

(a)

uu

v

w(u,v)

0

1

mm

n

log |W (m,n)|

(b)

uu

v

w(u,v)

0

1

mm

n

log |W (m,n)|

(c)

uu

v

w(u,v)

0

1

mm

n

log |W (m,n)|

(d)

uu

v

w(u,v)

0

1

mm

n

log |W (m,n)|

ages in Fig. 19.15 show several elongated structures that show up in
the spectrum as bright streaks oriented perpendicularly to the main
direction of the image patterns.

Natural images

Straight and regular structures are usually less dominant in images of
natural objects and scenes, and thus the visual effects in the spectrum
are not as obvious as with artificial objects. Some examples of this
class of images are shown in Figs. 19.16 and 19.17.

494

19.4 2D Fourier
Transform Examples

Window function
(linear)

Window spectrum

(logarithmic)
Windowed

image

Windowed image

spectrum (log.)

w(u,v) log |W (m,n)| g(u,v)·w(u,v) log |G(m,n)∗W (m,n)|

(a) Square window

(b) Cosine2 window

(c) Bartlett window

(d) Hanning window

(e) Parzen window

(f) Gaussian window

Fig. 19.11
Application of windowing func-
tions on images. The plots
show the windowing func-
tion w(u,v), the logarithmic
power spectrum of the window-
ing function log |W (m,n)|, the
windowed image g(u,v)·w(u,v),
and the power spectrum
of the windowed image
log |G(m,n) ∗ W (m,n)|.

Print patterns

The regular patterns generated by the common raster print tech-
niques (Fig. 19.18) are typical examples for periodic multidirectional
structures, which stand out clearly in the corresponding Fourier spec-
trum.

495

19 The Discrete
Fourier Transform

in 2D

Fig. 19.12
DFT under image scaling.

The rectangular pulse in the
image function (a–c) cre-
ates a strongly oscillating

power spectrum (d–f), as in
the 1D case. Stretching the
image causes the spectrum
to contract and vice versa.

(a) (b) (c)

(d) (e) (f)

Fig. 19.13
DFT of oriented, repetitive
patterns. The image func-

tion (a–c) contains patterns
with three dominant orienta-
tions, which appear as pairs

of corresponding frequency
spots in the spectrum (c–f).
Enlarging the image causes

the spectrum to contract.

(a) (b) (c)

(d) (e) (f)

19.5 Applications of the DFT

The Fourier transform and the DFT in particular are important tools
in many engineering disciplines. In digital signal and image process-
ing, the DFT (and the FFT) is an indispensable “workhorse” with
many applications in image analysis, filtering, and image reconstruc-
tion, just to name a few.

19.5.1 Linear Filter Operations in Frequency Space

Performing linear filter operations in frequency space is an interesting
option because it provides an efficient way to apply filters of large spa-
tial extent. The approach is based on the convolution property of the
Fourier transform (see Ch. 18, Sec. 18.1.6), which states that a linear
convolution in image space corresponds to a pointwise multiplication
in frequency space. Thus the linear convolution g ∗ h → g′ between

496

19.5 Applications of
the DFT

(a) (b) (c)

(d) (e) (f)

Fig. 19.14
DFT—image rotation. The
original image (a) is rotated by
15◦ (b) and 30◦ (c). The cor-
responding (squared) spectrum
turns in the same direction and
by exactly the same amount
(d–f).

(a) (b) (c)

(d) (e) (f)

Fig. 19.15
DFT—superposition of image
patterns. Strong, oriented
subpatterns (a–c) are easy to
identify in the corresponding
spectrum (d–f). Notice the
broadband effects caused by
straight structures, such as
the dark beam on the wall in
(b, e).

an image g(u, v) and a filter matrix h(u, v) can be accomplished by
the following steps:

image space: g(u, v) ∗ h(u, v) = g′(u, v)
↓ ↓ ↑

DFT DFT DFT−1

↓ ↓ ↑
frequency space: G(m, n) · H(m, n) −→ G′(m, n).

(19.23)

First, the image g and the filter kernel2 h are transformed to fre-
quency space using the 2D DFT. The corresponding spectra G and
H are then multiplied (pointwise), and the result G′ is subsequently

2 Note that the symbol h is used here for any 1D or 2D filter kernel and H
for the corresponding Fourier spectrum. This should not to be confused
with the use of h, H for 1D and 2D filter kernels, respectively, in Ch. 5.

497

19 The Discrete
Fourier Transform

in 2D

Fig. 19.16
DFT—natural image patterns.

Examples of repetitive struc-
tures in natural images (a–c)

that are also visible in the
corresponding spectrum (d–f). (a) (b) (c)

(d) (e) (f)

Fig. 19.17
DFT—natural image patterns
with no dominant orientation.

The repetitive patterns con-
tained in these images (a–c)

have no common orientation or
sufficiently regular spacing to
stand out locally in the corre-

sponding Fourier spectra (d–f).

(a) (b) (c)

(d) (e) (f)

transformed back to image space using the inverse DFT, thus gener-
ating the filtered image g′.

The main advantage of this “detour” lies in its possible efficiency.
A direct convolution for an image of size M ×M and a filter matrix
of size N ×N requires O(M2N2) operations. Thus, time complexity
increases quadratically with filter size, which is usually no problem
for small filters but may render some larger filters too costly to imple-
ment. For example, a filter of size 50×50 already requires about 2500
multiplications and additions for every image pixel. In comparison,
the transformation from image to frequency space and back can be
performed in O(M log2 M) using the FFT, and the pointwise multi-
plication in frequency space requires M2 operations, independent of
the filter size.

In addition, certain types of filters are easier to specify in fre-
quency space than in image space; for example, an ideal low-pass

498

19.5 Applications of
the DFT

(a)

(b) (c)

Fig. 19.18
DFT of a print pattern. The
regular diagonally oriented
raster pattern (a, b) is clearly
visible in the corresponding
power spectrum (c). It is pos-
sible (at least in principle) to
remove such patterns by eras-
ing these peaks in the Fourier
spectrum and reconstructing
the smoothed image from the
modified spectrum using the
inverse DFT.

filter, which can be described very compactly in frequency space.
Further details on filter operations in frequency space can be found,
for example, in [88, Sec. 4.4].

19.5.2 Linear Convolution and Correlation

As discussed in Chapter 5, Sec. 5.3, a linear correlation is the same
as a linear convolution with a mirrored filter function. Therefore, the
correlation can be computed just like the convolution operation in the
frequency domain by following the steps described in Eqn. (19.23).
This could be advantageous for comparing images using correlation
methods (see Ch. 23, Sec. 23.1.1) because in this case the image and
the “filter” matrix (i.e., the second image) are of similar size and thus
usually too large to be processed in image space.

Some operations in ImageJ, such as correlate, convolve, or decon-
volve, are also implemented in the “Fourier domain” (FD) using the
2D DFT. They can be invoked through the menu Process ⊲ FFT ⊲ FD

Math.

19.5.3 Inverse Filters

Filtering in the frequency domain opens another interesting perspec-
tive: reversing the effects of a filter, at least under restricted condi-
tions. In the following, we describe the basic idea only.

Assume we are given an image gblur that has been generated from
an original image gorig by some linear filter, for example, motion blur
induced by a moving camera. Under the assumption that this image
modification can be modeled sufficiently by a linear filter function

499

19 The Discrete
Fourier Transform

in 2D

hblur, we can state that

gblur(u, v) = (gorig ∗ hblur)(u, v). (19.24)

Recalling that in frequency space this corresponds to a multiplication
of the corresponding spectra, that is,

Gblur(m, n) = Gorig(m, n) ·Hblur(m, n) (19.25)

it should be possible to reconstruct the original (non-blurred) image
by computing the inverse Fourier transform of the expression

Gorig(m, n) =
Gblur(m, n)
Hblur(m, n)

. (19.26)

Unfortunately, this “inverse filter” only works if the spectral coeffi-
cients Hblur are nonzero, because otherwise the resulting values are
infinite. But even small values of Hblur, which are typical at high
frequencies, lead to large coefficients in the reconstructed spectrum
and, as a consequence, large amounts of image noise.

It is also important that the real filter function be accurately ap-
proximated, because otherwise the reconstructed image may strongly
deviate from the original. The example in Fig. 19.19 shows an im-
age that has been blurred by smooth horizontal motion, whose effect
can easily be modeled as a linear convolution. If the filter function
that caused the blurring is known exactly, then the reconstruction of
the original image can be accomplished without any problems (Fig.
19.19(c)). However, as shown in Fig. 19.19(d), large errors occur if
the inverse filter deviates only marginally from the real filter, which
quickly renders the method useless.

Fig. 19.19
Removing motion blur by in-

verse filtering. Original image
(a); image blurred by horizon-
tal motion (b); reconstruction

using the exact (known) fil-
ter function (c); result of the

inverse filter when the filter
function deviates marginally

from the real filter (d).

(a) (b) (c)

Beyond this simple idea (which is often referred to as “decon-
volution”), better methods for inverse filtering exist, such as the
Wiener filter and related techniques (see, e.g., [88, Sec. 5.4], [128, Sec.
8.3], [126, Sec. 17.8], [43, Ch. 16]).

19.6 Exercises

Exercise 19.1. Implement the 2D DFT using the 1D DFT, as de-
scribed in Sec. 19.1.2. Apply the 2D DFT to real intensity images
of arbitrary size and display the results (by converting to ImageJ
FloatProcessor images). Implement the inverse transform and ver-
ify that the back-transformed result is identical to the original image.

500

19.6 ExercisesExercise 19.2. Assume that the 2D Fourier spectrum of an image
with size 640×480 and a spatial resolution of 72 dpi shows a dominant
peak at position ±(100, 100). Determine the orientation and effective
frequency (in cycles per cm) of the corresponding image pattern.

Exercise 19.3. An image with size 800×600 contains a wavy inten-
sity pattern with an effective period of 12 pixels, oriented at 30◦. At
which frequency coordinates will this pattern manifest itself in the
discrete Fourier spectrum?

Exercise 19.4. Generalize Eqn. (19.15) and Eqns. (19.17)–(19.19)
for the case where the sampling intervals are not identical along the
x and y axes (i.e., for τx �= τy).

Exercise 19.5. Implement the elliptical and the super-Gauss win-
dowing functions (Table 19.1) as ImageJ plugins, and investigate the
effects of these windows upon the resulting spectra. Also compare
the results to the case where no windowing function is used.

501

20

The Discrete Cosine Transform (DCT)

The Fourier transform and the DFT are designed for processing
complex-valued signals, and they always produce a complex-valued
spectrum even in the case where the original signal was strictly real-
valued. The reason is that neither the real nor the imaginary part of
the Fourier spectrum alone is sufficient to represent (i.e., reconstruct)
the signal completely. In other words, the corresponding cosine (for
the real part) or sine functions (for the imaginary part) alone do not
constitute a complete set of basis functions.

On the other hand, we know (see Ch. 18, Eqn. (18.21)) that a
real-valued signal has a symmetric Fourier spectrum, so only one
half of the spectral coefficients need to be computed without losing
any signal information.

There are several spectral transformations that have properties
similar to the DFT but do not work with complex function values.
The discrete cosine transform (DCT) is a well known example that is
particularly interesting in our context because it is frequently used for
image and video compression. The DCT uses only cosine functions of
various wave numbers as basis functions and operates on real-valued
signals and spectral coefficients. Similarly, there is also a discrete
sine transform (DST) based on a system of sine functions [128].

20.1 1D DCT

The discrete cosine transform is not, as one may falsely assume, only
a “one-half” variant of the discrete Fourier transform. In the 1D case,
the forward cosine transform for a signal g(u) of length M is defined
as

G(m) =
√

2
M ·

M−1∑

u=0

g(u) · cm · cos
(

π m(2u+1)
2M

)

, (20.1)

for 0 ≤ m < M , and the inverse transform is
503

© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_20

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

20 The Discrete Cosine
Transform (DCT)

g(u) =
√

2
M ·

M−1∑

m=0

G(m) · cm · cos
(

π m(2u+1)
2M

)

, (20.2)

for 0 ≤ u < M , with

cm =

{
1√
2

for m = 0,

1 otherwise.
(20.3)

Note that the index variables (u, m) are used differently in the for-
ward and inverse transforms (Eqns. (20.2)–(20.1)), so the two trans-
forms are—unlike the DFT—not symmetric.

20.1.1 DCT Basis Functions

One may ask how it is possible that the DCT can work without
any sine functions, while they are essential in the DFT. The trick
is to divide all frequencies in half such that they are spaced more
densely and thus the frequency resolution in the spectrum is doubled.
Comparing the cosine parts of the DFT basis functions (Eqn. (18.49))
and those of the DCT (Eqn. (20.1)),

DFT: CM
m (u) = cos

(
2π mu

M

)
, (20.4)

DCT: DM
m (u) = cos

(
π m(2u+1)

2M

)
= cos

(
2π m(u+0.5)

2M

)
, (20.5)

one can see that, for a given wave number m, the period (τm = 2 M
m)

of the corresponding DCT basis function is double the period of the
DFT basis functions (τm = M

m). Notice that the DCT basis functions
are also phase-shifted by 0.5 units.

Figure 20.1 shows the DCT basis functions DM
m (u) for the signal

length M = 8 and wave numbers m = 0, . . . , 7. For example, the
basis function D8

7(u) for wave number m = 7 performs seven full
cycles over a length of 2M = 16 units and therefore has the radial
frequency ω = m/2 = 3.5.

20.1.2 Implementing the 1D DCT

Since the DCT does not create any complex values and the forward
and inverse transforms (Eqns. (20.1) and (20.2)) are almost identical,
the whole procedure is fairly easy to implement in Java, as shown in
Prog. 20.1. The only notable detail is that the factor cm in Eqn.
(20.1) is independent of the iteration variable u and can thus be
calculated outside the inner summation loop (see Prog. 20.1, line 8).

Of course, much more efficient (“fast”) DCT algorithms exist.
Moreover, the DCT can also be computed inO(M log2 M) time using
the FFT [128, p. 152].

20.2 2D DCT

The 2D form of the DCT follows immediately from the the 1D defini-
tion (Eqns. (20.1) and (20.2)), resulting in the 2D forward transform

504

20.2 2D DCT

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

D8
0(u) m = 0

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

D8
4(u) m = 4

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

D8
1(u) m = 1

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

D8
5(u) m = 5

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

D8
2(u) m = 2

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

D8
6(u) m = 6

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

D8
3(u) m = 3

1 2 3 4 5 6 7 8

�1

�0.5

0.5

1

u

D8
7(u) m = 7

Fig. 20.1
DCT basis functions DM

0 (u),

. . . , DM
7 (u) for M = 8. Each

plot shows both the discrete
function (round dots) and
the corresponding continuous
function. Compared with the
basis functions of the DFT
(Figs. 18.11 and 18.12), all
frequencies are divided in half
and the DCT basis functions
are phase-shifted by 0.5 units.
All DCT basis functions are
thus periodic over the length
2M = 16 (as compared with M
for the DFT).

G(m, n) =
2√

MN
·
M−1∑

u=0

N−1∑

v=0

[
g(u, v) · cm cos

(π(2u+1)m
2M

)

· cn cos
(π(2v+1)n

2N

)]
(20.6)

=
2·cm ·cn√

MN
·
M−1∑

u=0

N−1∑

v=0

·
[
g(u, v) · DM

m (u) ·DN
n (v)

]
, (20.7)

for 0 ≤ m < M , 0 ≤ n < N , and the inverse transform

g(u, v) =
2√

MN
·
M−1∑

m=0

N−1∑

n=0

[
G(m, n) · cm cos

(π(2u+1)m
2M

)

· cn cos
(π(2v+1)n

2N

)]
(20.8)

=
2√

MN
·
M−1∑

m=0

N−1∑

n=0

[
G(m, n) · cm ·DM

m (u) · cn · DN
n (v)

]
, (20.9)

for 0 ≤ u < M , 0 ≤ v < N . The coefficients cm and cn in Eqns.
(20.7) and (20.9) are the same as in the 1D case (Eqn. (20.3)). Notice

505

20 The Discrete Cosine
Transform (DCT)

Prog. 20.1
1D DCT (Java implementa-

tion). The method DCT() com-
putes the forward transform

for a real-valued signal vector
g of arbitrary length accord-
ing to the definition in Eqn.

(20.1). The method returns the
DCT spectrum as a real-valued

vector of the same length as
the input vector g. The in-

verse transform iDCT() com-
putes the inverse DCT for the
real-valued cosine spectrum G.

1 double[] DCT (double[] g) { // forward DCT on signal g
2 int M = g.length;

3 double s = Math.sqrt(2.0 / M); // common scale factor

4 double[] G = new double[M];

5 for (int m = 0; m < M; m++) {

6 double cm = 1.0;

7 if (m == 0)

8 cm = 1.0 / Math.sqrt(2);

9 double sum = 0;

10 for (int u = 0; u < M; u++) {

11 double Phi = Math.PI * m * (2 * u + 1) / (2 * M);

12 sum += g[u] * cm * Math.cos(Phi);

13 }

14 G[m] = s * sum;

15 }

16 return G;

17 }

18

19

20 double[] iDCT (double[] G) { // inverse DCT on spectrum G
21 int M = G.length;

22 double s = Math.sqrt(2.0 / M); //common scale factor

23 double[] g = new double[M];

24 for (int u = 0; u < M; u++) {

25 double sum = 0;

26 for (int m = 0; m < M; m++) {

27 double cm = 1.0;

28 if (m == 0)

29 cm = 1.0 / Math.sqrt(2);

30 double Phi = Math.PI * m * (2 * u + 1) / (2 * M);

31 sum += G[m] * cm * Math.cos(Phi);

32 }

33 g[u] = s * sum;

34 }

35 return g;

36 }

that in the forward transform (and only there!) the factors cm, cn

are independent of the iteration variables u, v and can thus be placed
outside the summation (as shown in Eqn. (20.7)).

20.2.1 Examples

Figure 20.2 shows several examples of the DCT in comparison with
the results of the DFT. Since the DCT spectrum is (in contrast to
the DFT spectrum) not symmetric, it does not get centered but is
displayed in its original form with its origin at the upper left corner.
The intensity corresponds to the logarithm of the absolute value in
the case of the (real-valued) DCT spectrum. Similarly, the usual
logarithmic power spectrum is shown for the DFT. Notice that the
DCT is not simply a section of the DFT but obviously combines
structures from adjacent quadrants of the Fourier spectrum.

506

20.2 2D DCT
Original DFT DCT

(a)

(b)

(c)

(d)

Fig. 20.2
2D DFT versus DCT. Both
transforms show the frequency
effects of image structures in
a similar fashion. In the real-
valued DCT spectrum (right),
all coefficients are contained
in a single quadrant and the
frequency resolution is doubled
compared with the DFT power
spectrum (center). The DFT
spectrum is centered as usual,
while the origin of the DCT
spectrum is located at the up-
per left corner. Both spectral
plots display logarithmic inten-
sity values.

20.2.2 Separability

Similar to the DFT (see Ch. 19, Eqn. (19.9)), the 2D DCT can also
be separated into two successive 1D transforms. To make this fact
clear, the forward DCT (Eqn. (20.7)) can be expressed in the form

507

20 The Discrete Cosine
Transform (DCT)

G(m, n) =
√

2
N ·

N−1∑

v=0

[√
2

M ·
M−1∑

u=0

g(u, v)·cm ·DM
m (u)

︸ ︷︷ ︸

1D DCT of g(·, v)

· cn ·DN
n (v)

]

.

(20.10)

The inner expression in Eqn. (20.10) corresponds to a 1D DCT of
the vth line g(·, v) of the 2D signal function. Thus, as with the 2D
DFT, one can first apply a 1D DCT to every line of an image and
subsequently a DCT to each column. Of course, one could equally
follow the reverse order by doing a DCT on the columns first and
then on the rows.

The DCT is often used for image compression, in particular for
JPEG where the size of the transformed sub-images is fixed at 8× 8
and the processing can be highly optimized. Applying the DCT to
square images (or sub-images) of size M ×M is indeed an important
special case. Here the DCT is commonly expressed in matrix form,

G = A · g ·A⊺
, (20.11)

where the matrices g and G (both of size M × M) represent the
2D signal and the resulting DCT spectrum, respectively. A is a
quadratic, real-valued transformation matrix with the elements (cf.
Eqn. (20.1))

Ai,j =
√

2
N · ci · cos

(

π · i · (2j + 1)
2M

)

, (20.12)

with 0 ≤ i, j < M and ci as defined in Eqn. (20.3). The x/y sep-
arability of the DCT is easy to see in this notation. The matrix A
is real-valued and orthonormal, i.e., A · A⊺ = A⊺ · A = I and so
its transpose A

⊺ is identical to the inverse matrix A−1. Thus the
associated inverse transformation from the DCT spectrum G back
to the signal g can be carried out in the form

g = A
⊺ ·G ·A, (20.13)

with the same matrices A and A⊺ as used in the forward transform.
For example, for M = 4 the DCT transformation matrix is

A =

⎛

⎜
⎜
⎝

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

⎞

⎟
⎟
⎠

(20.14)

=

⎛

⎜
⎜
⎜
⎜
⎝

1
2 cos(0) 1

2 cos(0) 1
2 cos(0) 1

2 cos(0)
1√
2

cos(π
8) 1√

2
cos(3π

8) 1√
2

cos(5π
8) 1√

2
cos(7π

8)
1√
2

cos(2π
8) 1√

2
cos(6π

8) 1√
2

cos(8π
8) 1√

2
cos(10π

8)
1√
2

cos(3π
8) 1√

2
cos(9π

8) 1√
2

cos(15π
8) 1√

2
cos(21π

8)

⎞

⎟
⎟
⎟
⎟
⎠

(20.15)

≈

⎛

⎜
⎜
⎝

0.50000 0.50000 0.50000 0.50000
0.65328 0.27060 −0.27060 −0.65328
0.50000 −0.50000 −0.50000 0.50000
0.27060 −0.65328 0.65328 −0.27060

⎞

⎟
⎟
⎠

. (20.16)

For the arbitrarily chosen 2D signal (i.e., “image”)
508

20.3 Java
Implementationg =

⎛

⎜
⎜
⎝

1 2 3 4
7 2 0 9
6 5 2 5
0 9 8 1

⎞

⎟
⎟
⎠

, (20.17)

for example, the DCT spectrum obtained with Eqn. (20.11) is

G = A·g·A⊺≈

⎛

⎜
⎜
⎝

16.00000 −0.95671 0.50000 −2.30970
−2.61313 −1.81066 6.57924 0.45711
−2.00000 −1.65642 −8.50000 1.22731
−1.08239 0.95711 −1.10162 0.31066

⎞

⎟
⎟
⎠

, (20.18)

which is the same as the result from Eqn. (20.7) or, alternatively,
Eqn. (20.10).

The matrix notation of the DCT, as shown in Eqn. (20.11) and
Eqn. (20.13), is particularly useful for describing the transformation
of small, fixed-size sub-images. This is an important component com-
mon in most image and video compression methods (including JPEG
and MPEG) that calls for efficient implementations.

20.3 Java Implementation

A straightforward Java implementation of the one- and two-dimensio-
nal DCT is available online as part of the imagingbook library.1 For
efficiency reasons, the following methods generally work “in place”,
i.e., the supplied data array is destructively modified by the trans-
formation.

Dct1d (class)

This class implements the 1D DCT (see also Prog. 20.1):
Dct1d (int M)

Constructor; M denotes the length of the expected signal.

void DCT (double[] g)

Calculates the DCT spectrum of the one-dimensional signal
g. The array g is modified, it’s content being replaced by the
resulting spectrum.

void iDCT (double[] G)

Reconstructs the original signal from the one-dimensional DCT
spectrum G. The array G is modified, it’s content being replaced
by the reconstructed signal.

Pre-calculated cosine tables are used in both the forward and inverse
transformation for efficient processing.

Dct2d (class)

This class implements the 2D DCT (by using class Dct1d):
Dct2d ()

Constructor; in this case no dimension argumens are required.

1 Package imagingbook.pub.dct.
509

20 The Discrete Cosine
Transform (DCT)

void DCT (float[][] g)

Calculates the DCT spectrum of the 2D signal g. The array g

is modified.
void iDCT (float[][] G)

Reconstructs the original signal from the two-dimensional
DCT spectrum G. The array G is modified.

FloatProcessor DCT (FloatProcessor g)

Calculates the DCT spectrum of the image g and returns a
new image with the resulting spectrum (g is not modified).

FloatProcessor iDCT (FloatProcessor G)

Calculates the inverse DCT from the 2D spectrum G and re-
turns the reconstructed image (G is not modified).

20.4 Other Spectral Transforms

Apparently, the Fourier transform is not the only way to represent a
given signal in frequency space; in fact, numerous similar transforms
exist. Some of these, such as the discrete cosine transform, also
use sinusoidal basis functions, while others, such as the Hadamard
transform (also known as the Walsh transform), build on binary 0/1-
functions [43, 126].

All of these transforms are of global nature; i.e., the value of any
spectral coefficient is equally influenced by all signal values, inde-
pendent of the spatial position in the signal. Thus a peak in the
spectrum could be caused by a high-amplitude event of local extent
as well as by a widespread, continuous wave of low amplitude. Global
transforms are therefore of limited use for the purpose of detecting
or analyzing local events because they are incapable of capturing the
spatial position and extent of events in a signal.

A solution to this problem is to use a set of local, spatially limited
basis functions (“wavelets”) in place of the global, spatially fixed basis
functions. The corresponding wavelet transform, of which several
versions have been proposed, allows the simultaneous localization
of repetitive signal components in both signal space and frequency
space [158].

20.5 Exercises

Exercise 20.1. Implement an efficient (“hard-coded”) Java method
for computing the 1D DCT of length M = 8 that operates without
iterations (loops) and contains all necessary coefficients as precom-
puted constants.

Exercise 20.2. Consider how the implementation of the one-dimen-
sional DCT in Prog. 20.1 could be accelerated by using a pre-
calculated table of the cosine values (for a given signal length M).
Hint: A table of length 4M is required.

Exercise 20.3. Verify by numerical computation that the DCT ba-
sis functions DM

m (u) for 0 ≤ m, u < M (Eqn. (20.5)) are pairwise
510

20.5 Exercisesorthogonal; i.e., the inner product of the vectors DM
m ·DM

n is zero for
any pair m �= n.

Exercise 20.4. Implement the 2D DCT (Sec. 20.2) as an ImageJ
plugin for images of arbitrary size. Make use of the fact that the
2D DCT can be performed as a sequence of 1D transforms (see Eqn.
(20.10)).

Exercise 20.5. Verify for the 4×4 DCT example in Eqn. (20.18)
that the result of the inverse transformation in Eqn. (20.13) is really
identical to the original signal g in Eqn. (20.17).

Exercise 20.6. Show that the M×M matrix A (with elements as
defined in Eqn. (20.12)) is really orthonormal, i.e., A ·A⊺ = I.

511

21

Geometric Operations

Common to all the filters and point operations described so far is
the fact that they may change the intensity function of an image
but the position of each pixel, and thus the geometry of the image,
remains the same. The purpose of geometric operations, which are
discussed in this chapter, is to deform an image by altering its ge-
ometry. Typical examples are shifting, rotating, or scaling images,
as shown in Fig. 21.1. Geometric operations are frequently needed in
practical applications, for example, in virtually any modern graphi-
cal computer interface. Today we take for granted that windows and
images in graphic or video applications can be zoomed continuously
to arbitrary size. Geometric image operations are also important in
computer graphics where textures, which are usually raster images,
are deformed to be mapped onto the corresponding 3D surfaces, pos-
sibly in real time. Of course, geometric operations are not as simple
as their commonality may suggest. While it is obvious, for example,
that an image could be enlarged by some integer factor n simply by
replicating each pixel n × n times, the results would probably not
be appealing, and it also gives us no immediate idea how to handle
continuous scaling, rotating images, or other image deformations. In
general, geometric operations that achieve high-quality results are
not trivial to implement and are also computationally demanding,
even on today’s fast computers.

In principle, a geometric operation transforms a given image I to
a new image I ′ by modifying the coordinates of image pixels,

I ′(x′, y′) ← I(x, y), (21.1)

that is, the value of the image function I at the original location (x, y)
moves to the new position (x′, y′) in the transformed image I ′. Thus
(at least in the continuous case) the values of the image elements do
not change but only their positions.

To model this process, we first need a 2D transformation function
or geometric mapping T , for example, in the form

T : R2 → R
2, (21.2)

513
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_21

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

21 Geometric
Operations

Fig. 21.1
Typical examples for geomet-
ric operations: original image

(a), translation (b), scaling
(contracting or stretching)

in x and y directions (c), ro-
tation about the center (d),

projective transformation (e),
and nonlinear distortion (f).

(a) (b) (c)

(d) (e) (f)

that specifies for each original 2D coordinate point x = (x, y) the
corresponding target point x′ = (x′, y′) in the new image I ′,

(x′, y′) = T (x, y). (21.3)

Notice that the coordinates (x, y) and (x′, y′) specify points in the
continuous image plane R × R. The main problem in transforming
digital images is that the pixels I(u, v) are defined not on a continu-
ous plane but on a discrete raster Z × Z. Obviously, a transformed
coordinate (u′, v′) = T (u, v) produced by the mapping function T ()
will, in general, no longer fall onto a discrete raster point. The so-
lution to this problem is to compute intermediate pixel values for
the transformed image by a process called interpolation (see Ch. 22),
which is the second essential element in any geometric operation.

21.1 2D Coordinate Transformations

The mapping function T () in Eqn. (21.3) is an arbitrary continu-
ous function that for reasons of simplicity is often specified as two
separate functions,

x′ = Tx(x, y) and y′ = Ty(x, y) (21.4)

for the x and y components, respectively.

21.1.1 Simple Geometric Mappings

The simple mapping functions include translation, scaling, shearing,
and rotation, defined as follows:

514

21.1 2D Coordinate
Transformations

Translation (shift) by a vector (dx, dy):

Tx : x′ = x + dx

Ty : y′ = y + dy
or

(
x′

y′

)

=
(

x
y

)

+
(

dx

dy

)

. (21.5)

Scaling (contracting or stretching) along the x or y axis by the factor
sx or sy, respectively:

Tx : x′ = sx · x
Ty : y′ = sy · y

or
(

x′

y′

)

=
(

sx 0
0 sy

)

·
(

x
y

)

. (21.6)

Shearing along the x and y axis by the factor bx and by, respectively
(for shearing in only one direction, the other factor is set to zero):

Tx : x′ = x + bx · y
Ty : y′ = y + by · x

or
(

x′

y′

)

=
(

1 bx

by 1

)

·
(

x
y

)

. (21.7)

Rotation by an angle α, with the coordinate origin being the center
of rotation:

Tx : x′ = x · cos α − y · sin α
Ty : y′ = x · sin α + y · cos α

or (21.8)
(

x′

y′

)

=
(

cos α − sin α
sin α cos α

)

·
(

x
y

)

. (21.9)

Rotating the image by an angle α around an arbitrary center point
xc = (xc, yc) is accomplished by first translating the image by
(−xc,−yc), such that xc coincides with the origin, then rotating the
image about the origin (as in Eqn. (21.9)), and finally shifting the
image back by (xc, yc). The resulting composite transformation is

Tx : x′ = xc + (x−xc) · cos α − (y−yc) · sin α
Ty : y′ = yc + (x−xc) · sin α + (y−yc) · cos α

(21.10)

or
(

x′

y′

)

=
(

xc

yc

)

+
(

cos α − sin α
sin α cos α

)

·
(

x−xc

y−yc

)

. (21.11)

The combination of the operations listed in Eqns. (21.5)–(21.9) con-
stitute the important class of “affine” transformations or affine map-
pings (see also Sec. 21.1.3).

21.1.2 Homogeneous Coordinates

To simplify the concatenation of linear mappings, it is advantageous
to specify all operations in the form of vector-matrix multiplications,
as in Eqns. (21.6)–(21.9). Note that pure translation Eqn. (21.5),
which corresponds to a vector addition, cannot be formulated as a
vector-matrix multiplication. Fortunately, this difficulty can be ele-
gantly resolved with so-called homogeneous coordinates (see, e.g., [75,
p. 204]).1

1 See also Sec. B.5 in the Appendix.
515

21 Geometric
Operations

To turn an “ordinary” (i.e., Cartesian) coordinate into a homo-
geneous coordinate, the original vector is simply extended by an ad-
ditional element with constant value 1. For example, a 2D Cartesian
point x = (x, y)⊺ converts to a 3D vector,

hom(x) = hom
(

x
y

)

=

⎛

⎝

x
y
1

⎞

⎠ = x. (21.12)

Note that the homogeneous representation is not unique, but any
scaled vector s ·x is an equivalent homogeneous representation of the
Cartesian coordinate x, that is

x = hom−1(x) = hom−1(s · x), (21.13)

for any nonzero s ∈ R. For example, the homogeneous coordi-
nates x1 = (3, 2, 1)⊺, x2 = (−6,−4,−2)⊺, and x3 = (30, 20, 10)⊺

are all equivalent representations of the same Cartesian coordinate
x = (3, 2)⊺.

The reverse mapping from a 3D homogeneous coordinate x = (x,
y, z)⊺ to the corresponding 2D Cartesian coordinate is denoted

hom−1(x) = hom−1

⎛

⎝

x
y
z

⎞

⎠ =
1
z
·
(

x
y

)

= x (21.14)

With the help of homogeneous coordinates, we can now define a 2D
translation (Eqn. (21.5)) as a vector-matrix product in the form

(
x′

y′

)

= hom−1
[

⎛

⎝

1 0 dx

0 1 dy

0 0 1

⎞

⎠ · hom
(

x
y

)]

(21.15)

=
(

1 0 dx

0 1 dy

)

·

⎛

⎝

x
y
1

⎞

⎠ =
(

x+dx

y+dy

)

, (21.16)

which had been our motive for introducing homogeneous coordinates
in the first place. As we shall see in the following sections, homo-
geneous coordinates allow us to write many common 2D coordinate
transformations in the form

x′ = A · x , (21.17)

where A is a 3 × 3 matrix. Note that (due to the relation in Eqn.
(21.13)) multiplying the matrix A by some scalar factor s yields the
same transformation in terms of Cartesian coordinates, that is,

x′ = hom−1[A·x] = hom−1[s·(A·x)] = hom−1[(s·A)·x], (21.18)

for any nonzero s ∈ R.

21.1.3 Affine (Three-Point) Mapping

In general, and analogous to Eqn. (21.16), we can express any com-
bination of 2D translation, scaling, and rotation as vector-matrix
multiplication in homogeneous coordinates in the form

516

21.1 2D Coordinate
Transformations

x′ = Aaffine · x (21.19)

or x′ = hom−1[Aaffine ·hom(x)] in Cartesian coordinates, that is,

(
x′

y′

)

= hom−1
[

⎛

⎝

a00 a01 a02

a10 a11 a12

0 0 1

⎞

⎠·

⎛

⎝

x
y
1

⎞

⎠

]

=
(

a00 a01 a02

a10 a11 a12

)

·

⎛

⎝

x
y
1

⎞

⎠.

(21.20)

This 2D coordinate transformation is called an “affine mapping” with
the six parameters a00, . . . , a12, where a02, a12 specify the trans-
lation (equivalent to dx, dy in Eqn. (21.5)) and a00, a01, a10, a11

aggregate the scaling, shearing, and rotation coefficients (see Eqns.
(21.6)–(21.9)). For example, the affine transformation matrix for a
rotation about the origin by an angle α is specified by the matrix

Arot =

⎛

⎝

a00 a01 a02

a10 a11 a12

0 0 1

⎞

⎠ =

⎛

⎝

cos α − sin α 0
sin α cos α 0

0 0 1

⎞

⎠ . (21.21)

In this way, compound transformations can be constructed easily
by consecutive matrix multiplications (from right to left). For ex-
ample, the transformation matrix for a rotation by α about a given
center point xc = (xc, yc)⊺ (see Eqn. (21.11)), composed by a trans-
lation to the origin followed by a rotation and another translation, is

A =

⎛

⎝

1 0 xc

0 1 yc

0 0 1

⎞

⎠

︸ ︷︷ ︸

translation by
(xc, yc)

⊺

·

⎛

⎝

cos α − sin α 0
sin α cos α 0

0 0 1

⎞

⎠

︸ ︷︷ ︸

rotation by α
(about the origin)

·

⎛

⎝

1 0 −xc

0 1 −yc

0 0 1

⎞

⎠

︸ ︷︷ ︸

translation by
(−xc, −yc)

⊺

(21.22)

=

⎛

⎝

1 0 xc

0 1 yc

0 0 1

⎞

⎠·

⎛

⎝

cos α − sin α 0
sin α cos α 0

0 0 1

⎞

⎠·

⎛

⎝

1 0 xc

0 1 yc

0 0 1

⎞

⎠

−1

(21.23)

=

⎛

⎝

cos α − sin α xc · (1−cos α)+yc · sin α
sin α cos α yc · (1−cosα)−xc · sin α

0 0 1

⎞

⎠ . (21.24)

Of course, the result is the same as in Eqn. (21.10).
Note that multiplying two affine transformation matrices always

yields another affine transformation. Also, an affine transformation
maps straight lines to straight lines, triangles to triangles, and rect-
angles to parallelograms, as illustrated in Fig. 21.2. The distance
ratio between points on a straight line remains unchanged by this
type of mapping function.

Affine transformation parameters from three point pairs

The six parameters of the 2D affine mapping (Eqn. (21.20)) are
uniquely determined by three pairs of corresponding points (x0, x′

1),
(x1, x′

1), (x2, x′
2), with the first point xi = (xi, yi) of each pair lo-

cated in the original image and the corresponding point x′
i = (x′

i, y′
i)

located in the target image. From these six coordinate values, the
517

21 Geometric
Operations

Fig. 21.2
Affine mapping. An affine 2D

transformation is uniquely
specified by three pairs

of corresponding points;
for example, (x0, x′

1),
(x1, x′

1), and (x2, x′
2).

I I′

x0

x1

x2

x′
1

x′
1

x′
2

six transformation parameters a00, . . . , a12 are derived by solving the
system of linear equations

x′
0 = a00 ·x0 + a01 ·y0 + a02, y′

0 = a10 ·x0 + a11 ·y0 + a12,

x′
1 = a00 ·x1 + a01 ·y1 + a02, y′

1 = a10 ·x1 + a11 ·y1 + a12, (21.25)

x′
2 = a00 ·x2 + a01 ·y2 + a02, y′

2 = a10 ·x2 + a11 ·y2 + a12,

provided that the points (vectors) x0, x1, x2 are linearly independent
(i.e., that they do not lie on a common straight line). Since Eqn.
(21.25) consists of two independent sets of linear 3× 3 equations for
x′

i and y′
i, the solution can be written in closed form as

a00 = 1
d ·[y0(x′

1−x′
2) + y1(x′

2−x′
0) + y2(x′

0−x′
1)],

a01 = 1
d ·[x0(x′

2−x′
1) + x1(x′

0−x′
2) + x2(x′

1−x′
0)],

a10 = 1
d ·[y0(y′

1−y′
2) + y1(y′

2−y′
0) + y2(y′

0−y′
1)],

a11 = 1
d ·[x0(y′

2−y′
1) + x1(y′

0−y′
2) + x2(y′

1−y′
0)],

a02 = 1
d ·[x0(y2x′

1−y1x′
2) + x1(y0x′

2−y2x′
0) + x2(y1x′

0−y0x′
1)],

a12 = 1
d ·[x0(y2y′

1−y1y′
2) + x1(y0y′

2−y2y′
0) + x2(y1y′

0−y0y′
1)],

(21.26)

with d = x0(y2−y1) + x1(y0−y2) + x2(y1−y0).

Inverse affine mapping

The inverse of the affine transformation, which is often required in
practice (see Sec. 21.2.2), can be calculated by simply applying the
inverse of the transformation matrix Aaffine (Eqn. (21.20)) in homo-
geneous coordinate space, that is,

x = A−1
affine · x′ (21.27)

or x = hom−1
[
A−1

affine · hom(x′)
]

in Cartesian coordinates, that is,
518

21.1 2D Coordinate
Transformations

(
x
y

)

= hom−1
[

⎛

⎝

a00 a01 a02

a10 a11 a12

0 0 1

⎞

⎠

−1

·

⎛

⎝

x′

y′

1

⎞

⎠

]

(21.28)

= hom−1
[1

a00a11−a01a10

·

⎛

⎝

a11 −a01 a01a12−a02a11

−a10 a00 a02a10−a00a12

0 0 a00a11−a01a10

⎞

⎠

︸ ︷︷ ︸

A−1
affine

·

⎛

⎝

x′

y′

1

⎞

⎠

]

(21.29)

=
1

a00a11−a01a10

·
(

a11 −a01 a01a12−a02a11

−a10 a00 a02a10−a00a12

)

·
(

x′

y′

)

. (21.30)

Since the bottom row of A−1
affine in Eqn. (21.29) consists of the el-

ements (0, 0, 1), the inverse mapping is again an affine transforma-
tion. Of course, the inverse of the affine mapping can also be found
directly (i.e., without inverting the transformation matrix) from the
given point coordinates (xi, x′

i) by using Eqns. (21.25) and (21.26)
with interchanged source and target coordinates.

21.1.4 Projective (Four-Point) Mapping

In contrast to the affine transformation, which provides a mapping
between arbitrary triangles, the projective transformation is a linear
mapping between arbitrary quadrilaterals (Fig. 21.3). This is partic-
ularly useful for deforming images controlled by mesh partitioning,
as described in Sec. 21.1.7. To map from an arbitrary sequence of
four 2D points (x0, x1, x2, x3) to a set of corresponding points (x′

0,
x′

1, x′
2, x′

3), the transformation requires eight degrees of freedom,
two more than needed for the affine transformation. Analogous to
the affine transformation (Eqn. (21.20)), a projective transformation
can be expressed as a linear mapping in homogeneous coordinates,

x′ = Aproj · x (21.31)

or x′ = hom−1
[
Aproj · hom(x)

]
in Cartesian coordinates, that is,

(
x′

y′

)

= hom−1
[

⎛

⎝

a00 a01 a02

a10 a11 a12

a20 a21 1

⎞

⎠·

⎛

⎝

x
y
1

⎞

⎠

]

(21.32)

=
1

a20 ·x + a21 ·y + 1
·
(

a00 a01 a02

a10 a11 a12

)

·

⎛

⎝

x
y
1

⎞

⎠, (21.33)

with the two additional elements (parameters) a20 and a21 in the
transformation matrix Aproj. Because x, y appear in the denomina-
tor of the fraction in Eqn. (21.33), the projective mapping is gen-
erally nonlinear in Cartesian coordinates. Despite this nonlinearity,
straight lines are preserved under this transformation. In fact, this is
the most general transformation that maps straight lines to straight
lines in 2D, and it actually maps any Nth-order algebraic curve onto
another Nth-order algebraic curve. In particular, circles and ellipses
always transform into other second-order curves (i.e., conic sections).
Unlike the affine transformation, however, parallel lines do not gener-
ally map to parallel lines under a projective transformation (cf. Fig.

519

21 Geometric
Operations

Fig. 21.3
Projective mapping. Four
pairs of corresponding 2D
points, (x0, x′

0), (x1, x′
1),

(x2, x′
2), (x3, x′

3) uniquely
specify a projective trans-

formation. Straight lines are
again mapped to straight lines,

and a rectangle is mapped to
some quadrilateral. In gen-
eral, neither parallelism be-
tween straight lines nor the
distance ratio is preserved.

I I′

x0

x1

x2

x3 x′
0

x′
1

x′
2

x′
3

21.3) and the distance ratios between points on a line are not pre-
served. The projective mapping is therefore sometimes referred to as
“perspective” or “pseudo-perspective”.

Projective transformation parameters from four point pairs

Given four pairs of corresponding 2D points, (x0, x′
0), . . . , (x3, x′

3),
with one point xi = (xi, yi)

⊺ in the source image and the second point
x′

i = (x′
i, y′

i)
⊺ in the target image, the eight unknown transformation

parameters a00, . . . , a21 can be found by solving a system of linear
equations. Multiplying Eqn. (21.33) by the common denominator on
the right hand side gives

x′ ·(a20 ·x + a21 ·y + 1) = a00 ·x + a01 ·y + a02,

y′ ·(a20 ·x + a21 ·y + 1) = a10 ·x + a11 ·y + a12,
(21.34)

and thus

a20 ·x·x′ + a21 ·y ·x′ + x′ = a00 ·x + a01 ·y + a02,

a20 ·x·y′ + a21 ·y ·y′ + y′ = a10 ·x + a11 ·y + a12,
(21.35)

for any pair of corresponding points x = (x, y)⊺ and x′ = (x′, y′)⊺.
By slightly rearranging Eqn. (21.35) and inserting the (known) source
and target point coordinates (xi, yi) and (x′

i, y′
i), respectively, we

obtain one such pair of linear equations

x′
i = a00 ·xi + a01 ·yi + a02 − a20 ·xi ·x′

i − a21 ·yi ·x′
i,

y′
i = a10 ·xi + a11 ·yi + a12 − a20 ·xi ·y′

i − a21 ·yi ·y′
i,

(21.36)

for each point pair i = 0, . . . , 3 and the eight unknowns a00, . . . , a21.
Combining the resulting eight equations in the usual matrix notation
yields
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x′
0

y′
0

x′
1

y′
1

x′
2

y′
2

x′
3

y′
3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x0 y0 1 0 0 0 −x0x′
0 −y0x′

0

0 0 0 x0 y0 1 −x0y′
0 −y0y′

0

x1 y1 1 0 0 0 −x1x′
1 −y1x′

1

0 0 0 x1 y1 1 −x1y′
1 −y1y′

1

x2 y2 1 0 0 0 −x2x′
2 −y2x′

2

0 0 0 x2 y2 1 −x2y′
2 −y2y′

2

x3 y3 1 0 0 0 −x3x′
3 −y3x′

3

0 0 0 x3 y3 1 −x3y′
3 −y3y′

3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a00

a01

a02

a10

a11

a12

a20

a21

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (21.37)

520

21.1 2D Coordinate
Transformations

or
b = M · a . (21.38)

Note that all elements of the vector b = (x′
0, . . . , y′

3)⊺ and the matrix
M are obtained from the specified point coordinates and are thus con-
stants. The unknown parameters a = (a00, . . . , a21)⊺ can be found by
solving the system of linear equations in Eqn. (21.38) with standard
numerical methods, for example, the Gauss algorithm [35, p. 276]. It
is recommended to use proven numerical software for this purpose.2

If we want to use more than four corresponding point pairs to re-
cover the eight parameters of a projective transformation, the system
of linear equations in Eqn. (21.37) becomes overdetermined, that is,
the system has more equations than unknowns. In general, n pairs of
corresponding points yield a stack of 2n equations, so the vector b in
Eqn. (21.37) has the length 2n and the matrix M is of size 2n×8 (vec-
tor a remains the same). Overdetermined systems like this can be
solved in a least-squares sense (minimizing ‖M ·a−b‖), for example,
using the singular-value (SVD) or QR decomposition of M [96,145].3

Other solutions for the multi-point case are discussed later in this
section (see p. 524).

Inverse projective mapping

In general, any linear transformation of the form x′ = A ·x (in
homogeneous coordinates x, x′) can be inverted by applying the
inverse of the matrix A, that is,

x = A−1 · x′ (21.39)

provided that A is nonsingular (det(A) �= 0). The inverse of a 3 ×
3 matrix A is comparatively easy to find in closed form using the
relation

A−1 =
1

det(A)
· adj(A), (21.40)

with the determinant det(A) and the adjugate matrix adj(A) (see,
e.g., [35, pp. 251, 260], [145, p. 219]). In particular, for a real-valued
3× 3 matrix

A =

⎛

⎝

a00 a01 a02

a10 a11 a12

a20 a21 a22

⎞

⎠, (21.41)

the determinant can be calculated as

det(A) = a00 a11 a22 + a01 a12 a20 + a02 a10 a21

− a00 a12 a21 − a01 a10 a22 − a02 a11 a20,
(21.42)

and the 3× 3 adjugate matrix is

adj(A) =

⎛

⎝

a11a22−a12a21 a02a21−a01a22 a01a12−a02a11

a12a20−a10a22 a00a22−a02a20 a02a10−a00a12

a10a21−a11a20 a01a20−a00a21 a00a11−a01a10

⎞

⎠. (21.43)

2 See Sec. B.7.1 in the Appendix.
3 See Sec. B.7.2 in the Appendix.

521

21 Geometric
Operations

In the special case of a projective mapping, the coefficient a22 = 1
(Eqn. (21.32)), which slightly simplifies the calculation.

Since scalar multiples of homogeneous vectors are all equivalent in
Cartesian space (see Eqn. (21.18)), the multiplication by the constant
factor 1/ det(A) in Eqn. (21.40) can be omitted. Thus, to invert a
linear 2D transformation specified by a 3×3 matrix A, we only need
to multiply the homogeneous coordinate vector with the adjugate
matrix adj(A), that is,

x = A−1 · x′ ≡ adj(A) · x′. (21.44)

Returning to Cartesian coordinates, the inverse transformation can
be written as

x = hom−1[adj(A) · hom(x′)] . (21.45)

This method can be used to invert any linear transformation in 2D,
including the affine and projective mapping functions described al-
ready. Consequently, the inversion of the affine transformation shown
earlier (see Eqn. (21.29)) is only a special case of this general method.

Of course, matrix inversion may also be implemented with stan-
dard linear algebra software, which is not only less error-prone but
also offers better numerical stability (see also Sec. B.1 in the Ap-
pendix).

Projective mapping via the unit square

An alternative method for finding the projective mapping parame-
ters for a given set of image points is to use a two-stage mapping
through the unit square S1, which avoids iteratively solving a system
of equations [256, p. 55] [105]. The projective mapping, shown in Fig.
21.4, from the four corner points of the unit square S1 to an arbitrary
quadrilateral Q = (x′

0, . . . , x′
3) with

(0, 0) �→ x′
0, (1, 1) �→ x′

2,

(1, 0) �→ x′
1, (0, 1) �→ x′

3,
(21.46)

reduces the system of equations in Eqn. (21.37) to

Fig. 21.4
Projective mapping from the

unit square S1 to an arbitrary
quadrilateral Q = (x′

0, . . . , x′
3).

��
�

� Q

x

y

S1

x′
0 x′

1

x′
2

x′
3

522

21.1 2D Coordinate
Transformations

x′
0 = a02,

y′
0 = a12,

x′
1 = a00 + a02 − a20 · x′

1,

y′
1 = a10 + a12 − a20 · y′

1, (21.47)

x′
2 = a00 + a01 + a02 − a20 · x′

2 − a21 · x′
2,

y′
2 = a10 + a11 + a12 − a20 · y′

2 − a21 · y′
2,

x′
3 = a01 + a02 − a21 · x′

3,

y′
3 = a11 + a12 − a21 · y′

3.

This set of equations has the following closed-form solution for the
eight unknown transformation parameters a00, a01, . . . , a21:

a20 =
(x′

0−x′
1+x′

2−x′
3)·(y′

3−y′
2)− (y′

0−y′
1+y′

2−y′
3)·(x′

3−x′
2)

(x′
1−x′

2) · (y′
3−y′

2) − (x′
3−x′

2) · (y′
1−y′

2)
,

(21.48)

a21 =
(y′

0−y′
1+y′

2−y′
3)·(x′

1−x′
2)− (x′

0−x′
1+x′

2−x′
3)·(y′

1−y′
2)

(x′
1−x′

2) · (y′
3−y′

2) − (x′
3−x′

2) · (y′
1−y′

2)
(21.49)

and

a00 = x′
1−x′

0+a20 x′
1, a01 = x′

3−x′
0+a21 x′

3, a02 = x′
0, (21.50)

a10 = y′
1−y′

0+a20 y′
1, a11 = y′

3−y′
0+a21 y′

3, a12 = y′
0. (21.51)

By calculating the inverse of the corresponding 3× 3 transformation
matrix (Eqn. (21.40)), the mapping may be reversed to transform an
arbitrary quadrilateral to the unit square. A mapping T between two
arbitrary quadrilaterals,

Q T−→ Q′,

can thus be implemented by combining a reversed mapping and a
forward mapping via the unit square. As illustrated in Fig. 21.5, the
transformation of an arbitrary quadrilateral Q = (x0, x1, x2, x3) to
a second quadrilateral Q′ = (x′

0, x′
1, x′

2, x′
3) is accomplished in two

steps involving the linear transformations T1 and T2 between the two
quadrilaterals and the unit square S1, that is,

Q T1←− S1
T2−→ Q′. (21.52)

The parameters for the projective transformations T1 and T2 are ob-
tained by inserting the corresponding point coordinates of Q and Q′

(xi and x′
i, respectively) into Eqns. (21.48)–(21.51). The complete

transformation T is then the concatenation of the two transforma-
tions T −1

1 and T2, that is,

x′ = T (x) = T2

(
T −1

1 (x)
)
, (21.53)

or, expressed in matrix notation (using homogeneous coordinates),

x′ = A · x = A2 ·A−1
1 · x . (21.54)

Of course, the matrix A = A2 ·A−1
1 needs to be calculated only once

for a particular transformation and can then be used repeatedly for
mapping any other image points xi. 523

21 Geometric
Operations

Fig. 21.5
Two-step projective trans-

formation between arbitrary
quadrilaterals. In the first

step, quadrilateral Q is trans-
formed to the unit square S1

by the inverse mapping func-
tion T −1

1 . In the second step,
T2 transforms the square S1

to the target quadrilateral Q′.
The complete mapping T re-
sults from the concatenation

of the mappings T −1
1 and T2.

10

0

1

1

2

T

Q

Q′

S1

T1

T −1
1

T2

x

y x′
0

x′
1

x′
2

x′
3

x0

x1

x2x3

Example

The source and the target quadrilaterals Q and Q′, respectively, are
specified by the following coordinate points:

Q : x0 = (2, 5), x1 = (4, 6), x2 = (7, 9), x3 = (5, 9);

Q′ : x′
0 = (4, 3), x′

1 = (5, 2), x′
2 = (9, 3), x′

3 = (7, 5).

Using Eqns. (21.48)–(21.51), the transformation parameters (matri-
ces) for the projective mappings from the unit S1 square to the
quadrilaterals A1 : S1 �→ Q and A2 : S1 �→ Q′ are obtained as

A1 =

⎛

⎝

3.33̇ 0.50 2.00
3.00 −0.50 5.00
0.33̇ −0.50 1.00

⎞

⎠ and A2 =

⎛

⎝

1.00 −0.50 4.00
−1.00 −0.50 3.00

0.00 −0.50 1.00

⎞

⎠.

Concatenating the inverse mapping A−1
1 with A2 (by matrix multi-

plication), we get the complete mapping A = A2 ·A−1
1 with

A−1
1 =

⎛

⎝

0.60 −0.45 1.05
−0.40 0.80 −3.20
−0.40 0.55 −0.95

⎞

⎠ and A=

⎛

⎝

−0.80 1.35 −1.15
−1.60 1.70 −2.30
−0.20 0.15 0.65

⎞

⎠.

The library method makeMapping() in class ProjectiveMapping (see
Sec. 21.3) is an implementation of this two-step technique.

Projective transformation parameters from more than four

point pairs

The projective transformation in Eqn. (21.32) describes a mapping
between pairs of arbitrary quadrilaterals in the 2D plane. This geo-
metric relation is also known under the terms projective isomorphism
or homography. The concept is frequently encountered in computer
vision, because the transformations between two views of a planar 3D
point set can be modeled as a homography (with only 8 degrees of
freedom) in the 2D image plane, which is important, for example, for
camera calibration, and 3D surface reconstruction. In this context,
it is often necessary to estimate the homography parameters from
a larger set of 2D point matches, for example, from multiple points

524

21.1 2D Coordinate
Transformations

assumed to be located on a planar 3D surface. This is the same
problem as finding the projective mapping between sets of n > 4
corresponding point pairs in 2D.

Several approaches to “homography estimation” exist, including
linear and (iterative) nonlinear methods. The simplest and most
common is the direct linear transform (DLT) method [56,103], which
requires solving a system of 2n homogenous linear equations, typi-
cally done by singular value decomposition (SVD).

21.1.5 Bilinear Mapping

Similar to the projective transformation (Eqn. (21.32)), the bilinear
mapping function

Tx : x′ = a0 · x + a1 · y + a2 · x · y + a3,
Ty : y′ = b0 · x + b1 · y + b2 · x · y + b3,

(21.55)

is specified with four pairs of corresponding points and has eight
parameters (a0, . . . , a3, b0, . . . , b3). The transformation is nonlinear
because of the mixed term x·y and cannot be described by a linear
transformation, even with homogeneous coordinates. In contrast to
the projective transformation, the straight lines are not preserved
in general but map onto quadratic curves. Similarly, circles are not
mapped to ellipses by a bilinear transform.

A bilinear mapping is uniquely specified by four corresponding
pairs of 2D points (x0, x′

0), . . . , (x3, x′
3). In the general case, for a

bilinear mapping between arbitrary quadrilaterals, the coefficients
a0, . . . , a3, b0, . . . , b3 (Eqn. (21.55)) are found as the solution of two
separate systems of equations, each with four unknowns:
⎛

⎜
⎜
⎝

x′
0

x′
1

x′
2

x′
3

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

x0 y0 x0 ·y0 1
x1 y1 x1 ·y1 1
x2 y2 x2 ·y2 1
x3 y3 x3 ·y3 1

⎞

⎟
⎟
⎠
·

⎛

⎜
⎜
⎝

a0

a1

a2

a3

⎞

⎟
⎟
⎠

or x = M · a, (21.56)

⎛

⎜
⎜
⎝

y′
0

y′
1

y′
2

y′
3

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

x0 y0 x0 ·y0 1
x1 y1 x1 ·y1 1
x2 y2 x2 ·y2 1
x3 y3 x3 ·y3 1

⎞

⎟
⎟
⎠
·

⎛

⎜
⎜
⎝

b0

b1

b2

b3

⎞

⎟
⎟
⎠

or y = M · b. (21.57)

These equations can again be solved using standard numerical meth-
ods. In the special case of bilinearly mapping the unit square S1 to an
arbitrary quadrilateral Q = (x′

0, . . . , x′
3), the parameters a0, . . . , a3

and b0, . . . , b3 are found as

a0 = x′
1 − x′

0, b0 = y′
1 − y′

0, (21.58)

a1 = x′
3 − x′

0, b1 = y′
3 − y′

0, (21.59)

a2 = x′
0 − x′

1 + x′
2 − x′

3, b2 = y′
0 − y′

1 + y′
2 − y′

3, (21.60)

a3 = x′
0, b3 = y′

0. (21.61)

Figure 21.6 shows results of the affine, projective, and bilinear
transformations applied to a simple test pattern. The affine transfor-
mation (Fig. 21.6(b)) is specified by mapping to the triangle 1-2-3,
while the four points of the quadrilateral 1-2-3-4 define the projective
and the bilinear transforms (Fig. 21.6(c, d)).

525

21 Geometric
Operations

Fig. 21.6
Geometric transformations

compared: original im-
age (a), affine transforma-

tion with respect to the tri-
angle 1-2-3 (b), projective

transformation (c), and bi-
linear transformation (d).

(a) (b)

(c) (d)

21.1.6 Other Nonlinear Image Transformations

The bilinear transformation discussed in the previous section is only
one example of a nonlinear mapping in 2D that cannot be expressed
as a simple matrix-vector multiplication in homogeneous coordinates.
Many other types of nonlinear deformations exist; for example, to
implement various artistic effects for creative imaging. This type of
image deformation is often called “image warping”. Depending on
the type of transformation used, the derivation of the inverse trans-
formation function—which is required for the practical computation
of the mapping using target-to-source mapping (see Sec. 21.2.2)—is
not always easy or may even be impossible. In the following three
examples, we therefore look straight at the inverse maps

x = T −1(x′) (21.62)

without really bothering about the corresponding forward transfor-
mations.

“Twirl” transformation

The twirl mapping causes the image to be rotated around a given
anchor point xc = (xc, yc) with a space-variant rotation angle, which
has a fixed value α at the center xc and decreases linearly with the
radial distance from the center. The image remains unchanged out-
side the limiting radius rmax. The associated (inverse) mapping is
defined as

526

21.1 2D Coordinate
Transformations

(a) (b) (c)

(d) (e) (f)

Fig. 21.7
Various nonlinear image de-
formations: twirl (a, d), ripple
(b, e), and sphere (c, f) trans-
formations. The size of the
original images is 400 × 400
pixels.

T −1
x : x =

{

xc + r · cos(β) for r ≤ rmax,
x′ for r > rmax,

(21.63)

T −1
y : y =

{

yc + r · sin(β) for r ≤ rmax,
y′ for r > rmax,

(21.64)

with

r =
√

d2
x + d2

y, dx = x′ − xc, (21.65)

β = ArcTan(dx, dy) + α ·
(rmax−r

rmax

)
, dy = y′ − yc. (21.66)

Figure 21.7(a, d) shows a twirl mapping with the anchor point xc

placed at the image center. The limiting radius rmax is half the
length of the image diagonal, and the rotation angle is α = 43◦ at
the center.

“Ripple” transformation

The ripple transformation causes a local wavelike displacement of
the image along both the x and y directions. The parameters of this
mapping function are the period lengths τx, τy �= 0 (in pixels) and
the corresponding amplitude values ax, ay for the displacement in
both directions:

T −1
x : x = x′ + ax · sin

(
2π·y′

τx

)
, (21.67)

T −1
y : y = y′ + ay · sin

(
2π·x′

τy

)
. (21.68)

An example for the ripple mapping with τx = 120, τy = 250, ax = 10,
and ay = 15 is shown in Fig. 21.7(b, e).

Spherical transformation

The spherical deformation imitates the effect of viewing the image
through a transparent hemisphere or lens placed on top of the image.

527

21 Geometric
Operations

The parameters of this transformation are the position xc = (xc, yc)
of the lens center, the radius of the lens rmax and its refraction index
ρ. The corresponding mapping functions are defined as

T −1
x : x = x′ −

{

z · tan(βx) for r ≤ rmax,
0 for r > rmax,

(21.69)

T −1
y : y = y′ −

{

z · tan(βy) for r ≤ rmax,
0 for r > rmax,

(21.70)

with

r =
√

d2
x + d2

y , βx =
(
1− 1

ρ

)
· sin−1

(dx√
(d2

x+z2)

)
, dx = x′−xc,

z =
√

r2
max − r2 , βy =

(
1− 1

ρ

)
· sin−1

(dy√
(d2

y+z2)

)
, dy = y′−yc.

(21.71)

Figure 21.7(c, f) shows a spherical transformation with the lens posi-
tioned at the image center. The lens radius rmax is set to half of the
image width, and the refraction index is ρ = 1.8.

See Exercise 21.4 for additional examples of nonlinear geometric
tarnsformations.

21.1.7 Piecewise Image Transformations

All the geometric transformations discussed so far are global (i.e., the
same mapping function is applied to all pixels in the given image). It
is often necessary to deform an image such that a larger number of
n original image points x0, . . . , xn are precisely mapped onto a given
set of target points x′

0, . . . , x′
n. For n = 3, this problem can be solved

with an affine mapping (see Sec. 21.1.3), and for n = 4 we could use a
projective or bilinear mapping (see Secs. 21.1.4 and 21.1.5). A precise
global mapping of n > 4 points requires a more complicated function
T (x) (e.g., a 2D nth-order polynomial or a spline function).

An alternative is to use local or piecewise transformations, where
the image is partitioned into disjoint patches that are transformed
separately, applying an individual mapping function to each patch. In
practice, it is common to partition the image into a mesh of triangles
or quadrilaterals, as illustrated in Fig. 21.8.

For a triangular mesh partitioning (Fig. 21.8(a)), the transforma-
tion between each pair of triangles Di → D′

i could be accomplished
with an affine mapping, whose parameters must be computed in-
dividually for every patch. Similarly, the projective transformation
would be suitable for mapping each patch in a mesh partitioning com-
posed of quadrilaterals Qi (Fig. 21.8(b)). Since both the affine and
the projective transformations preserve the straightness of lines, we
can be certain that no holes or overlaps will arise and the deformation
will appear continuous between adjacent mesh patches.

Local transformations of this type are frequently used; for exam-
ple, to register aerial and satellite images or to undistort images for
panoramic stitching. In computer graphics, similar techniques are
used to map texture images onto polygonal 3D surfaces in the ren-
dered 2D image. Another popular application of this technique is

528

21.2 Resampling the
Image

(a)

Di D′
i

(b)

Qi Q′
i

Fig. 21.8
Mesh partitioning examples.
Almost arbitrary image defor-
mations can be implemented
by partitioning the image
plane into nonoverlapping tri-
angles Di, D′

i (a) or quadrilat-
erals Qi, Q′

i (b) and applying
simple local transformations.
Every patch in the resulting
mesh is transformed separately
with the required transforma-
tion parameters derived from
the corresponding three or four
corner points, respectively.

“morphing” [256], which performs a stepwise geometric transforma-
tion from one image to another while simultaneously blending their
intensity (or color) values.4

21.2 Resampling the Image

In the discussion of geometric transformations, we have so far consid-
ered the 2D image coordinates as being continuous (i.e., real-valued).
In reality, the picture elements in digital images reside at discrete
(i.e., integer-valued) coordinates, and thus transferring a discrete im-
age into another discrete image without introducing significant losses
in quality is a nontrivial subproblem in the implementation of geo-
metric transformations.

Based on the original image I(u, v) and some (continuous) geo-
metric transformations T (x, y), the aim is to create a transformed
image I ′(u′, v′) where all coordinates are discrete (i.e., u, v ∈ Z and

4 Image morphing has also been implemented in ImageJ as a plugin
(iMorph) by Hajime Hirase (http://rsb.info.nih.gov/ij/plugins/morph.html).

529

http://rsb.info.nih.gov/ij/plugins/morph.html

21 Geometric
Operations

u′, v′ ∈ Z).5 This can be accomplished in one of two ways, which
differ by the mapping direction and are commonly referred to as
source-to-target or target-to-source mapping, respectively.

21.2.1 Source-to-Target Mapping

In this approach, which appears quite natural at first sight, we com-
pute for every pixel (u, v) of the original (source) image I the corre-
sponding transformed position

(x′, y′) = T (u, v) (21.72)

in the target image I ′. In general, the result will not coincide with
any of the raster points, as illustrated in Fig. 21.9. Subsequently,
we would have to decide in which pixel in the target image I ′ the
original intensity or color value from I(u, v) should be stored. We
could perhaps even think of somehow distributing this value onto all
adjacent pixels.

Fig. 21.9
Source-to-target mapping. For

each discrete pixel position
(u, v) in the source image I,

the corresponding (continuous)
target position (x′, y′) is found

by applying the geometric
transformation T (u, v). In

general, the target position
(x′, y′) does not coincide with
any discrete raster point. The

source pixel value I(u, v) is
subsequently transferred to one

of the adjacent target pixels.

Target image I′Source image I

T

u

v

x′

y′

The problem with the source-to-target method is that, depend-
ing on the geometric transformation T , some elements in the target
image I ′ may never be “hit” at all (i.e., never receive a source pixel
value)! This happens, for example, when the image is enlarged (even
slightly) by the geometric transformation. The resulting holes in the
target image would be difficult to close in a subsequent processing
step. Conversely, one would have to consider (e.g., when the image
is shrunk) that a single element in the target image I ′ may be hit
by multiple source pixels and thus image content may get lost. In
the light of all these complications, source-to-target mapping is not
really the method of choice.

21.2.2 Target-to-Source Mapping

This method avoids most difficulties encountered in the source-to-
target mapping by simply reversing the image generation process. For
every discrete pixel position (u′, v′) in the target image, we determine
the corresponding (continuous) point

5 Remark on notation: We mostly use (u, v) or (u′, v′) to denote discrete

(integer) coordinates and (x, y) or (x′, y′) for continuous (real-valued)
coordinates.

530

21.3 Java
Implementation

Target image I′Source image I

T −1

x

y

u′

v′

Fig. 21.10
Target-to-source mapping. For
each discrete pixel position
(u′, v′) in the target image I′,
the corresponding continuous
source position (x, y) is found
by applying the inverse map-
ping function T −1(u′, v′). The
new pixel value I′(u′, v′) is de-
termined by interpolating the
pixel values in the source im-
age within some neighborhood
of (x, y).

(x, y) = T −1(u′, v′) (21.73)

in the source image plane using the inverse geometric transformation
T −1. Of course, the coordinate (x, y) again does not fall onto a
raster point in general (Fig. 21.10) and thus we have to decide from
which of the neighboring source pixels to extract the resulting target
pixel value. This problem of interpolating among intensity values is
discussed in detail in Chapter 22.

The major advantage of the target-to-source method is that all
pixels in the target image I ′ (and only these) are computed and filled
exactly once such that no holes or multiple hits can occur. This,
however, requires the inverse geometric transformation T −1 to be
available, which is no disadvantage in most cases since the forward
transformation T itself is never really needed. Due to its simplicity,
which is also demonstrated in Alg. 21.1, target-to-source mapping is
the common method for geometrically transforming 2D images.

1: TransformImage (I, T)
Input: I , source image; T , continuous mapping R

2 �→ R
2.

Returns the transformed image.

2: (M, N) ← Size(I)
3: I ′ ← duplicate(I) ⊲ create the target image

4: for all (u, v) ∈ M × N do ⊲ loop over all target pixels
5: (x, y) ← T −1(u, v)
6: I ′(u, v) ← GetInterpolatedValue(I, x, y)
7: return I ′

Alg. 21.1
Geometric image trans-
formation using target-to-
source mapping. Given are
the original (source) image
I and the continuous coor-
dinate transformation T .
GetInterpolatedValue(I, x, y)
returns the interpolated value
of the source image I at the
continuous position (x, y).

21.3 Java Implementation

In plain ImageJ, only a few simple geometric operations are provided
as methods for the ImageProcessor class, such as rotation and flip-
ping.6 This section describes the implementation of the transforma-
tions described in this chapter, which is openly available as part of
the imagingbook library.7

6 Additional operations, including affine transformations, are available as
plugin classes as part of the optional TransformJ package [162].

7 Package imagingbook.pub.geometry.mappings.
531

21 Geometric
Operations

21.3.1 General Mappings (Class Mapping)

The abstract class Mapping is the superclass for all subsequent trans-
formations. All subclasses of Mapping are required to implement
the method applyTo(double[] pnt), which applies the associated
transformation to a given coordinate point and returns the trans-
formed point. The actual transformations are implemented by its
concrete sub-classes. The applyTo() method is defined in multiple
versions with different signatures:

double[] applyTo (double[] pnt)

Applies this transformation to the 2D point (of type double[])
and returns the transformed coordinate.

Point2D applyTo (Point2D pnt)

Applies this transformation to the 2D point (of type Point2D)
and returns the transformed coordinate.

Point2D[] applyTo (Point2D[] pnts)

Applies this transformation to a sequence of the 2D points (of
type Point2D) and returns a sequence of transformed coordi-
nates.

In addition, the Mapping class can also be used to transform entire
images:

double[] applyTo (ImageProcessor source, ImageProcessor

target, PixelInterpolator.Method im)

Transforms the input image source onto the output im-
age target by target-to-source mapping, using the pixel
interpolation method im.

double[] applyTo (ImageProcessor ip,

PixelInterpolator.Method im)

Transforms the input image ip destructively, using the pixel
interpolation method im.

double[] applyTo (ImageInterpolator source,

ImageProcessor target)

Transforms the input image (specified by the interpolator
source) onto the output image target by target-to-source
mapping.

Other methods defined by class Mapping:
Mapping duplicate ()

Returns a copy of this mapping.
Mapping getInverse ()

Returns the inverse of this mapping if available. Otherwise an
UnsupportedOperationException is thrown.

21.3.2 Linear Mappings

Linear transformations are implemented by class LinearMapping,8

with sub-classes including

AffineMapping, Scaling,
ProjectiveMapping, Shear,
Rotation, Translation.

8 Package imagingbook.pub.geometry.mappings.linear.
532

21.3 Java
Implementation

21.3.3 Nonlinear Mappings

Selected nonlinear transformations are implemented by the following
subclasses of Mapping:9

BilinearMapping, ShereMapping,
RippleMapping, TwirlMapping.

21.3.4 Sample Applications

The following two ImageJ plugins show two simple examples of the
use of the classes in Secs. 21.3.2 and 21.3.3 for implementing geomet-
ric operations and pixel interpolation (see Ch. 22 for details). Note
that these plugins can be applied to any type of image.

Example 1: image rotation

The example in Prog. 21.1 shows a plugin (Transform_Rotate) to
rotate an image by 15◦. First (in line 16) the geometric mapping
object (map) is created as an instance of class Rotation, with the
supplied angle being converted from degrees to radians. The actual
transformation of the image is performed by invoking the method
applyTo() in line 17.

1 import ij.ImagePlus;

2 import ij.plugin.filter.PlugInFilter;

3 import ij.process.ImageProcessor;

4 import imagingbook.pub.geometry.interpolators.pixel.

PixelInterpolator;

5 import imagingbook.pub.geometry.mappings.Mapping;

6 import imagingbook.pub.geometry.mappings.linear.Rotation;

7

8 public class Transform_Rotate implements PlugInFilter {

9 static double angle = 15; // rotation angle (in degrees)

10

11 public int setup(String arg, ImagePlus imp) {

12 return DOES_ALL;

13 }

14

15 public void run(ImageProcessor ip) {

16 Mapping map = new Rotation((2*Math.PI*angle)/360);

17 map.applyTo(ip, PixelInterpolator.Method.Bicubic);

18 }

19 }

Prog. 21.1
Image rotation example using
the Rotation class (ImageJ
plugin).

Example 2: projective transformation

The second example in Prog. 21.2 illustrates the implementation of
a projective transformation. The geometric mapping T is defined by
two corresponding quadrilaterals P = p0, . . . , p3 and Q = q0, . . . , q3,
respectively. In a real application, these points would probably be
specified interactively or given as the result of a mesh partitioning.

9 Package imagingbook.pub.geometry.mappings.nonlinear.
533

21 Geometric
Operations

Prog. 21.2
Projective image trans-
formation example us-

ing the ProjectiveMapping
class (ImageJ plugin).

1 import ij.ImagePlus;

2 import ij.plugin.filter.PlugInFilter;

3 import ij.process.ImageProcessor;

4 import imagingbook.pub.geometry.interpolators.pixel.

PixelInterpolator;

5 import imagingbook.pub.geometry.mappings.Mapping;

6 import imagingbook.pub.geometry.mappings.linear.

ProjectiveMapping;

7 import java.awt.Point;

8 import java.awt.geom.Point2D;

9

10 public class Transform_Projective implements PlugInFilter {

11

12 public int setup(String arg, ImagePlus imp) {

13 return DOES_ALL;

14 }

15

16 public void run(ImageProcessor ip) {

17 Point2D p0 = new Point(0, 0);

18 Point2D p1 = new Point(400, 0);

19 Point2D p2 = new Point(400, 400);

20 Point2D p3 = new Point(0, 400);

21

22 Point2D q0 = new Point(0, 60);

23 Point2D q1 = new Point(400, 20);

24 Point2D q2 = new Point(300, 400);

25 Point2D q3 = new Point(30, 200);

26

27 Mapping map = new

28 ProjectiveMapping(p0, p1, p2, p3, q0, q1, q2, q3);

29

30 map.applyTo(ip, PixelInterpolator.Method.Bilinear);

31 }

32 }

The transformation object map (representing the forward trans-
formation T) is created by calling the associated constructor Pro-

jectiveMapping() in line 28. The mapping is applied to the input
image (line 30), as in the previous example, except for the use of
bilinear pixel interpolation.

21.4 Exercises

Exercise 21.1. Show that a straight line y = kx+d in 2D is mapped
to another straight line under a projective transformation, as defined
in Eqn. (21.32).

Exercise 21.2. Show that parallel lines remain parallel under affine
transformation (Eqn. (21.20)).

Exercise 21.3. Design a nonlinear geometric transformation simi-
lar to the ripple transformation (Eqn. (21.67)) that uses a sawtooth
function instead of a sinusoid for the distortions in the horizontal

534

21.4 Exercises

(a) Original image (b) Radial wave (a = 10.0, τ = 38)

(c) Clover (a = 0.2, N = 8) (d) Spiral (a = 0.01)

(e) Angular wave (a = 0.1, τ = 38) (f) Tapestry (a = 5.0, τx = τy = 30)

Fig. 21.11
Examples of the nonlinear
geometric transformations
defined in Exercise 21.4. The
reference point xc is always
taken at the image center.

and vertical directions. Use the class TwirlMapping as a template
for your implementation.

Exercise 21.4. Implement one or more of the following nonlinear
geometric transformations (see Fig. 21.11):

A. Radial wave transformation: This transformation simulates an
omni-directional wave which originates from a fixed center point
xc (see Fig. 21.11(b)). The inverse transformation (applied to a
target image point x′ = (x′, y′)) is

T −1 : x =

{

xc for r = 0,
xc + r+δ

r · (x′ − xc) for r > 0,
(21.74)

with r = ‖x′−xc‖ and δ = a · sin (2πr/τ). Parameter a specifies
the amplitude (strength) of the distortion and τ is the period
(width) of the radial wave (in pixel units).

B. Clover transformation: This transformation distorts the image
in the form of a N -leafed clover shape (see Fig. 21.11(c)). The
associated inverse transformation is the same as in Eqn. (21.74)
but uses

535

21 Geometric
Operations

δ = a · r · cos(N · α), with α = ∠(x′ − xc) (21.75)

instead. Again r = ‖x′ − xc‖ is the radius of the target image
point x′ from the designated center point xc. Parameter a speci-
fies the amplitude of the distortion and N is the number of radial
“leaves”.

C. Spiral transformation: This transformation (see Fig. 21.11(d))
is similar to the twirl transformation in Eqns. (21.63)–(21.64),
defined by the inverse transformation

T −1 : x = xc + r ·
(

cos(β)
sin(β)

)

, (21.76)

with β = ∠(x′−xc)+a·r and r = ‖x′−xc‖ denoting the distance
from the target point x′ and the center point xc. The angle β
increases linearly with r; parameter a specifies the “velocity” of
the spiral.

D. Angular wave transformation: This is another variant of the
twirl transformation in Eqns. (21.63)–(21.64). Its inverse trans-
formation is the same as for the spiral mapping in Eqn. (21.76),
but in this case

β = ∠(x′ − xc) + a · sin
(

2πr
τ

)
. (21.77)

Thus the angle β is modified by a sine function with amplitude
a (see Fig. 21.11(e)).

E. Tapestry transformation: In this case the inverse transformation
of a target point x′ = (x′, y′) is

T −1 : x = x′ + a ·
(

sin
(

2π
τx
· (x′ − xc)

)

sin
(

2π
τy
· (y′ − yc)

)

)

, (21.78)

again with the center point xc = (xc, yc). Parameter a specifies
the distortion’s amplitude and τx, τy are the wavelengths (mea-
sured in pixel units) along the x and y axis, respectively (see Fig.
21.11(f)).

Exercise 21.5. Implement an interactive program (plugin) that per-
forms projective rectification (see Sec. 21.1.4) of a selected quadrilat-
eral, as shown in Fig. 21.12. Make your program perform the follow-
ing steps:

1. Let the user mark the source quad in the source image I as a
polygon-shaped region of interest (ROI) with at least four points
x0, . . . , x3. In ImageJ this is easily done with the built-in polygon
selection tool (see Prog. 21.3 for handling ROI points).

2. Create an output image I ′ of fixed size (i.e., proportional to A4
or Letter paper size).

3. The target rectangle is defined by the four corners x′
0, . . . , x′

3 of
the output image. The source and target points are associated
1:1, that is, the four corresponding point pairs are 〈x0, x′

0〉, . . . ,
〈x3, x′

3〉.536

21.4 Exercises4. From the four point pairs, create an instance of Projective-

Mapping, as demonstrated in Prog. 21.2.
5. Test the obtained mapping by applying A to the specified source

points x0, . . . , x3. Make sure they project exactly to the specified
target points x′

0, . . . , x′
3.

6. Apply the obtained mapping from the source to the target image
using the method10

void applyTo(ImageProcessor source,

ImageProcessor target, InterpolationMethod im).
7. Show the resulting output image.

(a) (b)

Fig. 21.12
Projective rectification exam-
ple (see Exercise 21.5). Source
image and user-defined selec-
tion (a); transformed output
image (b).

10 Defined in class imagingbook.pub.geometry.mappings.Mapping.
537

21 Geometric
Operations

Prog. 21.3
ImageJ plugin demonstrat-
ing the extraction of vertex
points from a user-selected

polygon-ROI (region of inter-
est). Notice that (in line 21)
the region of interest (ROI)
is obtained from the associ-
ated ImagePlus instance (to
which a reference is kept in

line 16) and not from the sup-
plied ImageProcessor object.

ImageJ’s ROI coordinates are
integer positions in general.

1 import java.awt.Point;

2 import java.awt.Polygon;

3 import java.awt.geom.Point2D;

4

5 import ij.ImagePlus;

6 import ij.gui.PolygonRoi;

7 import ij.gui.Roi;

8 import ij.plugin.filter.PlugInFilter;

9 import ij.process.ImageProcessor;

10

11 public class Get_Roi_Points implements PlugInFilter {

12

13 ImagePlus im = null;

14

15 public int setup(String args, ImagePlus im) {

16 this.im = im; // keep a reference to im

17 return DOES_ALL + ROI_REQUIRED;

18 }

19

20 public void run(ImageProcessor source) {

21 Roi roi = im.getRoi();

22 if (!(roi instanceof PolygonRoi)) {

23 IJ.error("Polygon selection required!");

24 return;

25 }

26

27 Polygon poly = roi.getPolygon();

28

29 // copy polygon vertices to a point array:

30 Point2D[] pts = new Point2D[poly.npoints];

31 for (int i = 0; i < poly.npoints; i++) {

32 pts[i] = new Point(poly.xpoints[i], poly.ypoints[i]);

33 }

34

35 ... // use the ROI points in pts

36

37 }

38

39 }

538

22

Pixel Interpolation

Interpolation is the process of estimating the intermediate values of
a sampled function or signal at continuous positions or the attempt
to reconstruct the original continuous function from a set of discrete
samples. In the context of geometric operations this task arises from
the fact that discrete pixel positions in one image are generally not
mapped to discrete raster positions in the other image under some
continuous geometric transformation T (or T −1, respectively). The
concrete goal is to obtain an optimal estimate for the value of the
2D image function I(x, y) at any continuous position (x, y) ∈ R

2 to
implement the function

GetInterpolatedValue(I, x, y),

which we defined in Chapter 21 (see Alg. 21.1). Ideally the inter-
polated image should preserve as much detail (i.e., sharpness) as
possible without causing visible artifacts such as ringing or moiré
patterns.

22.1 Simple Interpolation Methods

To illustrate the problem, we first attend to the 1D case (see Fig.
22.1). Several simple, ad-hoc methods exist for interpolating the
values of a discrete function g(u), with u ∈ Z, at arbitrary continuous
positions x ∈ R. The simplest of all interpolation methods is to
round the continuous coordinate x to the closest integer ux and use
the associated sample g(ux) as the interpolated value, that is,

g̃(x) ← g(ux), (22.1)

with ux = round(x) = ⌊x + 0.5⌋. A typical result of this so-called
nearest-neighbor interpolation is shown in Fig. 22.2(a).

Another simple method is linear interpolation. Here the estimated
value is the sum of the two closest samples g(u0) and g(u0 + 1), with
u0 = ⌊x⌋. The weight of each sample is proportional to its closeness
to the continuous position x, that is,

539
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_22

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

22 Pixel Interpolation

Fig. 22.1
Interpolating a discrete func-

tion in 1D. Given the discrete
function values g(u) (a), the
goal is to estimate the origi-

nal function f(x) at arbitrary
continuous positions x ∈ R (b).

1 2 3 4 5 6 7 8 9 10

u

g(u)

1 2 3 4 5 6 7 8 9 10

x

f(x)

(a) (b)

Fig. 22.2
Simple interpolation meth-
ods. The nearest-neighbor

interpolation (a) simply se-
lects the discrete sample g(u)

closest to the given contin-
uous coordinate x as the in-

terpolating value ĝ(x). Under
linear interpolation (b), the

result is a piecewise linear
function connecting adjacent

samples g(u) and g(u + 1). 1 2 3 4 5 6 7 8 9 10

x

g̃(x)

1 2 3 4 5 6 7 8 9 10

x

g̃(x)

(a) (b)

g̃(x) = g(ux) + (x− ux) ·
(
g(ux + 1)− g(ux)

)

= g(ux) ·
(
1− (x− ux)

)
+ g(ux + 1) · (x− ux).

(22.2)

As shown in Fig. 22.2(b), the result is a piecewise linear function
made up of straight line segments between consecutive sample values.

22.1.1 Ideal Low-Pass Filter

Obviously the results of these simple interpolation methods do not
well approximate the original continuous function (Fig. 22.1). But
how can we obtain a better approximation from the discrete sam-
ples only when the original function is unknown? This may appear
hopeless at first, because the discrete samples g(u) could possibly
originate from any continuous function f(x) with identical values at
the discrete sample positions.

We find an intuitive answer to this question (once again) by look-
ing at the functions in the spectral domain. If the original function
f(x) was discretized in accordance with the sampling theorem (see
Ch. 18, Sec. 18.2.1), then f(x) must have been “band limited”—
it could not contain any signal components with frequencies higher
than half the sampling frequency ωs. This means that the recon-
structed signal can only contain a limited set of frequencies and thus
its trajectory between the discrete sample values is not arbitrary but
naturally constrained.

In this context, absolute units of measure are of no concern since
in a digital signal all frequencies relate to the sampling frequency. In
particular, if we take τs = 1 as the (unitless) sampling interval, the
resulting sampling frequency is

ωs = 2·π ·fs = 2·π · 1
τs

= 2·π (22.3)

and thus the maximum signal frequency is ωmax = ωs

2 = π. To isolate
the frequency range −ωmax . . . ωmax in the corresponding (periodic)

540

22.1 Simple
Interpolation Methods

Fourier spectrum, we multiply the spectrum G(ω) by a square win-
dowing function Ππ(ω) of width ±ωmax = ±π,

G̃(ω) = G(ω) ·Ππ(ω) = G(ω) ·
{

1 for −π ≤ ω ≤ π,
0 otherwise.

(22.4)

This is called an ideal low-pass filter, which cuts off all signal compo-
nents with frequencies greater than π and keeps all lower-frequency
components unchanged. In the signal domain, the operation in Eqn.
(22.4) corresponds (see Eqn. (18.27)) to a linear convolution with the
inverse Fourier transform of the windowing function Ππ(ω), which is
the Sinc function, defined as

Sinc(x) =
sin(πx)

πx
, (22.5)

and shown in Fig. 22.3 (see also Ch. 18, Table 18.1). This corre-
spondence, which was already discussed in Chapter 18, Sec. 18.1.6,
between convolution in the signal domain and simple multiplication
in the frequency domain is summarized in Fig. 22.4.

6 4 2 2 4 6

0.5

1

x

Sinc(x) Fig. 22.3
Sinc function in 1D. The func-
tion Sinc(x) has the value 1
at the origin and zero values
at all integer positions. The
dashed line plots the amplitude
| 1

πx | of the underlying sine
function.

So theoretically Sinc(x) is the ideal interpolation function for re-
constructing a frequency-limited continuous signal. To compute the
interpolated value for the discrete function g(u) at an arbitrary po-
sition x0, the Sinc function is shifted to x0 (such that its origin lies
at x0), multiplied with all sample values g(u), with u ∈ Z, and the
results are summed—that is, g(u) and Sinc(x) are convolved. The
reconstructed value of the continuous function at position x0 is thus

g̃(x0) = [Sinc ∗ g] (x0) =
∞∑

u=−∞
Sinc(x0 − u) · g(u), (22.6)

where ∗ is the linear convolution operator (see Ch. 5, Sec. 5.3.1). If
the discrete signal g(u) is finite with length N (as is usually the case),
it is assumed to be periodic (i.e., g(u) = g(u + kN) for all k ∈ Z).1

In this case, Eqn. (22.6) modifies to

g̃(x0) =
∞∑

u=−∞
Sinc(x0 − u) · g(u mod N) . (22.7)

1 This assumption is explained by the fact that a discrete Fourier spec-
trum implicitly corresponds to a periodic signal (also see Ch. 18, Sec.
18.2.2).

541

22 Pixel Interpolation

Fig. 22.4
Interpolation of a discrete

signal—relation between sig-
nal and frequency space. The

discrete signal g(u) in sig-
nal space (left) corresponds

to the periodic Fourier spec-
trum G(ω) in frequency space

(right). The spectrum Ĝ(ω)
of the continuous signal is iso-
lated from G(ω) by point-wise

multiplication (×) with the
square function Ππ(ω), which

constitutes an ideal low-pass
filter (right). In signal space

(left), this operation corre-
sponds to a linear convolution
(∗) with the function Sinc(x).

Signal Spectrum

g(u)

Sinc(x)

g̃(x) = [Sinc∗g] (x)

G(ω)

Ππ(ω)

G̃(ω) = G(ω)·Ππ(ω)

Fig. 22.5
Interpolation by convolving
with the Sinc function. The

Sinc function is shifted by
aligning its origin with the in-

terpolation points x0 = 4.4 (a)
and x0 = 5 (b). The values
of the shifted Sinc function
(dashed curve) at the inte-

gral positions are the weights
(coefficients) for the corre-

sponding sample values g(u).
When the function is interpo-

lated at some integral position,
such as x0 = 5 (b), only the
sample value g(x0) = g(5) is

considered and weighted with
1, while all other samples co-
incide with the zero positions
of the Sinc function and thus

do not contribute to the result.

2 4 6 8 10

0.4

0.2

0.2

0.4

0.6

0.8

1

x

Sinc(x−4.4)

x0 = 4.4

2 4 6 8 10

0.4

0.2

0.2

0.4

0.6

0.8

1

x

Sinc(x−5)

x0 = 5

(a) (b)

It may be surprising that the ideal interpolation of a discrete function
g(u) at a position x0 apparently involves not only a few neighboring
sample points but, in general, infinitely many values of g(u) whose
weights decrease continuously with their distance from the given in-
terpolation point x0 (at the rate | 1

π(x0−u) |). Figure 22.5 shows two
examples for interpolating the function g(u) at positions x0 = 4.4
and x0 = 5. If the function is interpolated at some integral position,
such as x0 = 5, the sample g(u) at u = x0 receives the weight 1,
while all other samples coincide with the zero positions of the Sinc
function and are thus ignored. Consequently, the resulting interpo-
lation values are identical to the sample values g(u) at all discrete
positions x = u.

If a continuous signal is properly frequency limited (by half the
sampling frequency ωs

2), it can be exactly reconstructed from the dis-
crete signal by interpolation with the Sinc function, as Fig. 22.6(a)
demonstrates. Problems occur, however, around local high-frequency
signal events, such as rapid transitions or pulses, as shown in Fig.
22.6(b, c). In those situations, the Sinc interpolation causes strong
overshooting or “ringing” artifacts, which are perceived as visually
disturbing. For practical applications, the Sinc function is therefore
not suitable as an interpolation kernel—not only because of its infi-
nite extent (and the resulting noncomputability).

A good interpolation function implements a low-pass filter that,
on the one hand, introduces minimal blurring by maintaining the

542

22.2 Interpolation by
Convolution

1 2 3 4 5 6 7 8 9 10

x

g̃1(x)

1 2 3 4 5 6 7 8 9 10

x

g̃2(x)

1 2 3 4 5 6 7 8 9 10

x

g̃3(x)

(a) (b) (c)

Fig. 22.6
Sinc interpolation applied to
various signal types. The re-
constructed function in (a) is
identical to the continuous,
band-limited original. The re-
sults for the step function (b)
and the pulse function (c)
show the strong ringing caused
by Sinc (ideal low-pass) inter-
polation.

maximum signal bandwidth but, on the other hand, also delivers a
good reconstruction at rapid signal transitions. In this regard, the
Sinc function is an extreme choice—it implements an ideal low-pass
filter and thus preserves a maximum bandwidth and signal continu-
ity but gives inferior results at signal transitions. At the opposite
extreme, nearest-neighbor interpolation (see Fig. 22.2) can perfectly
handle steps and pulses but generally fails to produce a continuous
signal reconstruction between sample points. The design of an inter-
polation function thus always involves a trade-off, and the quality of
the results often depends on the particular application and subjective
judgment. In the following, we discuss some common interpolation
functions that come close to this goal and are therefore frequently
used in practice.

22.2 Interpolation by Convolution

As we saw earlier in the context of Sinc interpolation (Eqn. (22.5)),
the reconstruction of a continuous signal can be described as a linear
convolution operation. In general, we can express interpolation as a
convolution of the given discrete function g(u) with some continuous
interpolation kernel w(x) as

g̃(x0) = [w ∗ g] (x0) =
∞∑

u=−∞
w(x0 − u) · g(u). (22.8)

The Sinc interpolation in Eqn. (22.6) is obviously only a special case
with w(x) = Sinc(x). Similarly, the 1D nearest-neighbor interpola-
tion (Eqn. (22.1), Fig. 22.2(a)) can be expressed as a linear convolu-
tion with the kernel

wnn(x) =

{

1 for −0.5 ≤ x < 0.5,
0 otherwise,

(22.9)

and the linear interpolation (see Eqn. (22.2), Fig. 22.2(b)) with the
kernel

wlin(x) =

{

1− x for |x| < 1,
0 for |x| ≥ 1.

(22.10)

Both interpolation kernels wnn(x) and wlin(x) are shown in Fig. 22.7,
and results for various function types are plotted in Fig. 22.8.

543

22 Pixel Interpolation

Fig. 22.7
Convolution kernels for the

nearest-neighbor interpo-
lation wnn(x) and the lin-
ear interpolation wlin(x).

3 2 1 1 2 3

1

x

wnn(x)

3 2 1 1 2 3

1

x

wlin(x)

(a) (b)

Fig. 22.8
Interpolation examples
(1D): nearest-neighbor

interpolation (a–c), lin-
ear interpolation (d–f).

1 2 3 4 5 6 7 8 9 10

x

g̃1(x)

1 2 3 4 5 6 7 8 9 10

x

g̃2(x)

1 2 3 4 5 6 7 8 9 10

x

g̃3(x)

(a) (b) (c)

1 2 3 4 5 6 7 8 9 10

x

g̃1(x)

1 2 3 4 5 6 7 8 9 10

x

g̃2(x)

1 2 3 4 5 6 7 8 9 10

x

g̃3(x)

(d) (e) (f)

22.3 Cubic Interpolation

The Sinc function is not a useful interpolation kernel in practice,
because of its infinite extent and the ringing artifacts caused by its
slowly decaying oscillations. Therefore several interpolation methods
employ a truncated version of the Sinc function or an approximation
of it, thereby making the convolution kernel more compact and re-
ducing the ringing. A frequently used approximation of a truncated
Sinc function is the so-called cubic interpolation, whose convolution
kernel is defined as the piecewise cubic polynomial

wcub(x, a) =

⎧

⎪⎨

⎪⎩

(−a + 2) · |x|3 + (a− 3) · |x|2 + 1 for 0 ≤ |x| < 1,
−a · |x|3 + 5a · |x|2 − 8a · |x|+ 4a for 1 ≤ |x| < 2,
0 for |x| ≥ 2.

(22.11)

Parameter a can be used to adjust the steepness of the spline func-
tion and thus the perceived “sharpness” of the interpolation (see Fig.
22.9(a)). For the standard value a = 1, Eqn. (22.11) simplifies to

wcub(x) =

⎧

⎪⎨

⎪⎩

|x|3 − 2 · |x|2 + 1 for 0 ≤ |x| < 1,
−|x|3 + 5 · |x|2 − 8 · |x|+ 4 for 1 ≤ |x| < 2,

0 for |x| ≥ 2.

(22.12)

The comparison of the Sinc function and the cubic interpolation
kernel wcub(x) = wcub(x,−1) in Fig. 22.9(b) shows that many high-
value coefficients outside x = ±2 are truncated and thus relatively
large errors can be expected. However, because of the compactness
of the cubic function, this type of interpolation can be calculated

544

22.3 Cubic
Interpolation

2 1 1 2

0.5

1

x

wcub(x, a)

6 4 2 2 4 6

0.5

1

x

wcub(x), Sinc(x)

(a) (b)

Fig. 22.9
Cubic interpolation kernel.
Function wcub(x, a) with
control parameter a set to
a = 0.25 (dashed curve),
a = 1 (continuous curve), and
a = 1.75 (dotted curve) (a).
Cubic function wcub(x) and
Sinc function compared (b).

1 2 3 4 5 6 7 8 9 10

x

g̃1(x)

1 2 3 4 5 6 7 8 9 10

x

g̃2(x)

1 2 3 4 5 6 7 8 9 10

x

g̃3(x)

(a) (b) (c)

1 2 3 4 5 6 7 8 9 10

x

g̃1(x)

1 2 3 4 5 6 7 8 9 10

x

g̃2(x)

1 2 3 4 5 6 7 8 9 10

x

g̃3(x)

(d) (e) (f)

1 2 3 4 5 6 7 8 9 10

x

g̃1(x)

1 2 3 4 5 6 7 8 9 10

x

g̃2(x)

1 2 3 4 5 6 7 8 9 10

x

g̃3(x)

(g) (h) (i)

Fig. 22.10
Cubic interpolation examples.
Parameter a in Eqn. (22.11)
controls the amount of signal
overshoot or perceived sharp-
ness: a = 0.25 (a–c), standard
setting a = 1 (d–f), a = 1.75
(g–i). Notice in (d) the ripple
effects incurred by interpolat-
ing with the standard settings
in smooth signal regions.

very efficiently. Since wcub(x) = 0 for |x| ≥ 2, only four discrete
values g(u) need to be accounted for in the convolution operation
(Eqn. (22.8)) at any continuous position x ∈ R, that is,

g(u0−1), g(u0), g(u0+1), g(u0+2), with u0 = ⌊x0⌋.

This reduces the 1D cubic interpolation to the expression

g̃(x0) =
⌊x0⌋+2
∑

u=⌊x0⌋−1

wcub(x0−u) · g(u) . (22.13)

Figure 22.10 shows the results of cubic interpolation with differ-
ent settings of the control parameter a. Notice that the cubic recon-
struction obtained with the popular standard setting (a = 1) exhibits
substantial overshooting at edges as well as strong ripple effects in
the continuous parts of the signal (Fig. 22.10(d)). With a = 0.5, the
expression in Eqn. (22.11) corresponds to a Catmull-Rom spline [44]
(see also Sec. 22.4), which produces significantly better results than
the standard setup (with a = 1), particularly in smooth signal regions
(see Fig. 22.12(a–c)).

545

22 Pixel Interpolation 22.4 Spline Interpolation

The cubic interpolation kernel (Eqn. (22.11)) described in the previ-
ous section is a piecewise cubic polynomial function, also known as a
cubic spline in computer graphics. In its general form, this function
takes not only one but two control parameters (a, b) [164],2

wcs(x, a, b) = (22.14)

1
6
·

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−6a− 9b + 12) · |x|3
+ (6a + 12b− 18) · |x|2 − 2b + 6 for 0 ≤ |x| < 1,

(−6a− b) · |x|3 + (30a + 6b) · |x|2
+ (−48a− 12b) · |x|+ 24a + 8b for 1 ≤ |x| < 2,

0 for |x| ≥ 2.

Equation (22.14) describes a family of smooth, C1-continuous func-
tions (i.e., with continuous first derivatives) with no visible disconti-
nuities or sharp corners. For b = 0, the function wcs(x, a, b) specifies
a one-parameter family of so-called cardinal splines equivalent to the
cubic interpolation function wcub(x, a) in Eqn. (22.11),

wcs(x, a, 0) = wcub(x, a), (22.15)

and for the standard setting a = 1 (Eqn. (22.12)) in particular

wcs(x, 1, 0) = wcub(x, 1) = wcub(x). (22.16)

Figure 22.11 shows three additional examples of this function type
that are important in the context of interpolation: Catmull-Rom
splines, cubic B-splines, and the Mitchell-Netravali function. All
three functions are briefly described in the following sections. The
actual calculation of the interpolated signal follows exactly the same
scheme as used for the cubic interpolation described in Eqn. (22.13).

Fig. 22.11
Examples of cubic spline

functions as defined in
Eqn. (22.14): Catmull-Rom

spline wcs(x, 0.5, 0) (dot-
ted line), cubic B-spline

wcs(x, 0, 1) (dashed line),
and Mitchell-Netravali func-
tion wcs(x, 1

3 , 1
3) (solid line).

�2 �1 1 2

0.5

1

x

wcs(x, a, b)

22.4.1 Catmull-Rom Interpolation

With the control parameters set to a = 0.5 and b = 0, the function
in Eqn. (22.14) is a Catmull-Rom spline [44], as already mentioned
in Sec. 22.3:

2 In [164], the parameters a and b were originally named C and B, re-
spectively, with B ≡ b and C ≡ a.

546

22.4 Spline
Interpolation

wcrm(x) = wcs(x, 0.5, 0) (22.17)

=
1
2
·

⎧

⎪⎨

⎪⎩

3 · |x|3 − 5 · |x|2 + 2 for 0 ≤ |x| < 1,
−|x|3 + 5 · |x|2 − 8 · |x|+ 4 for 1 ≤ |x| < 2,

0 for |x| ≥ 2.

Examples of signals interpolated with this kernel are shown in Fig.
22.12(a–c). The results are similar to ones produced by cubic inter-
polation (with a = 1, see Fig. 22.10) with regard to sharpness, but
the Catmull-Rom reconstruction is clearly superior in smooth signal
regions (compare, e.g., Fig. 22.10(d) vs. Fig. 22.12(a)).

22.4.2 Cubic B-spline Approximation

With parameters set to a = 0 and b = 1, Eqn. (22.14) corresponds to
a cubic B-spline function of the form

wcbs(x) = wcs(x, 0, 1) (22.18)

=
1
6
·

⎧

⎪⎨

⎪⎩

3 · |x|3 − 6 · |x|2 + 4 for 0 ≤ |x| < 1,
−|x|3 + 6 · |x|2 − 12 · |x|+ 8 for 1 ≤ |x| < 2,

0 for |x| ≥ 2.

This function is positive everywhere and, when used as an interpo-
lation kernel, causes a pure smoothing effect similar to a Gaussian
smoothing filter (see Fig. 22.12(d–f)). The B-spline function in Eqn.
(22.18) is C2-continuous, that is, its first and second derivatives are
continuous. Notice that—in contrast to all previously described inter-
polation methods—the reconstructed function does not pass through
all discrete sample points. Thus, to be precise, the reconstruction
with cubic B-splines is not called an interpolation but an approxima-
tion of the signal.

22.4.3 Mitchell-Netravali Approximation

The design of an optimal interpolation kernel is always a trade-off be-
tween high bandwidth (sharpness) and good transient response (low
ringing). Catmull-Rom interpolation, for example, emphasizes high
sharpness, whereas cubic B-spline interpolation blurs but creates no
ringing. Based on empirical tests, Mitchell and Netravali [164] pro-
posed a cubic interpolation kernel as described in Eqn. (22.14) with
parameter settings a = 1

3 and b = 1
3 , and the resulting interpolation

function

wmn(x) = wcs

(
x, 1

3 , 1
3

)
(22.19)

=
1
18
·

⎧

⎪⎨

⎪⎩

21 · |x|3 − 36 · |x|2 + 16 for 0 ≤ |x| < 1,
−7 · |x|3 + 36 · |x|2 − 60 · |x|+ 32 for 1 ≤ |x| < 2,

0 for |x| ≥ 2.

This function is the weighted sum of a Catmull-Rom spline in Eqn.
(22.17) and a cubic B-spline in Eqn. (22.18).3 The examples in Fig.

3 See also Exercise 22.1.
547

22 Pixel Interpolation

Fig. 22.12
Cardinal spline reconstruc-

tion examples: Catmull-
Rom interpolation (a–c),

cubic B-spline approxima-
tion (d–f), and Mitchell-

Netravali approximation (g–i).

1 2 3 4 5 6 7 8 9 10

x

g̃1(x)

1 2 3 4 5 6 7 8 9 10

x

g̃2(x)

1 2 3 4 5 6 7 8 9 10

x

g̃3(x)

(a) (b) (c)

1 2 3 4 5 6 7 8 9 10

x

g̃1(x)

1 2 3 4 5 6 7 8 9 10

x

g̃2(x)

1 2 3 4 5 6 7 8 9 10

x

g̃3(x)

(d) (e) (f)

1 2 3 4 5 6 7 8 9 10

x

g̃1(x)

1 2 3 4 5 6 7 8 9 10

x

g̃2(x)

1 2 3 4 5 6 7 8 9 10

x

g̃3(x)

(g) (h) (i)

22.12(g–i) show that this method is a good compromise, creating
little overshoot, high edge sharpness, and good signal continuity in
smooth regions. Since the resulting function does not pass through
the original sample points, the Mitchell-Netravali method is again an
approximation and not an interpolation.

22.4.4 Lanczos Interpolation

The Lanczos4 interpolation belongs to the family of “windowed Sinc”
methods. In contrast to the methods described in the previous sec-
tions, these do not use a polynomial (or other) approximation of the
Sinc function but the Sinc function itself combined with a suitable
window function ψ(x); that is, an interpolation kernel of the form

w(x) = ψ(x) · Sinc(x) . (22.20)

The particular window functions for the Lanczos interpolation are
defined as

ψLn(x) =

⎧

⎪⎨

⎪⎩

1 for |x| = 0,
sin(πx/n)

πx/n for 0 < |x| < n,

0 for |x| ≥ n,

(22.21)

where n ∈ N denotes the order of the filter [176,237]. Notice that the
window function is again a truncated Sinc function! For the Lanczos
filters of order n = 2, 3, which are the most commonly used in image
processing, the corresponding window functions are

4 Cornelius Lanczos (1893–1974).
548

22.5 Interpolation in
2DψL2(x) =

⎧

⎪⎨

⎪⎩

1 for |x| = 0,
sin(πx/2)

πx/2 for 0 < |x| < 2,

0 for |x| ≥ 2,

(22.22)

ψL3(x) =

⎧

⎪⎨

⎪⎩

1 for |x| = 0,
sin(πx/3)

πx/3 for 0 < |x| < 3,

0 for |x| ≥ 3.

(22.23)

Both window functions are shown in Fig. 22.13(a, b). The 1D in-
terpolation kernels wL2 and wL3 are obtained as the product of the
Sinc function (Eqn. (22.5)) and the associated window function (Eqn.
(22.21)), that is,

wL2(x) =

⎧

⎪⎨

⎪⎩

1 for |x| = 0,
2 · sin(πx/2)·sin(πx)

π2x2 for 0 < |x| < 2,
0 for |x| ≥ 2,

(22.24)

and

wL3(x) =

⎧

⎪⎨

⎪⎩

1 for |x| = 0,
3 · sin(πx/3)·sin(πx)

π2x2 for 0 < |x| < 3,
0 for |x| ≥ 3,

(22.25)

respectively. In general, for Lanczos interpolation of order n, we get

wLn(x) =

⎧

⎪⎨

⎪⎩

1 for |x| = 0,
n · sin(πx/n)·sin(πx)

π2x2 for 0 < |x| < n,
0 for |x| ≥ n.

(22.26)

Figure 22.13(c, d) shows the resulting interpolation kernels together
with the original Sinc function. The function wL2(x) is quite sim-
ilar to the Catmull-Rom kernel wcrm(x) (Eqn. (22.17), Fig. 22.11),
so the results can be expected to be similar as well, as shown in
Fig. 22.14(a–c) (cf. Fig. 22.12(a–c)). Notice, however, the relatively
poor reconstruction in the smooth signal regions (Fig. 22.14(a)) and
the strong ringing introduced in the constant high-amplitude regions
(Fig. 22.14(b)). The “3-tap” kernel wL3(x) reduces these artifacts
and produces steeper edges, at the cost of increased overshoot (Fig.
22.12(d–f)).

In summary, although Lanczos interpolators have seen revived
interest and popularity in recent years, they do not seem to offer
much (if any) advantage over other established methods, particu-
larly the cubic, Catmull-Rom, or Mitchell-Netravali interpolations.
While these are based on efficiently computable polynomial func-
tions, Lanczos interpolation requires trigonometric functions which
are relatively costly to compute, unless some form of tabulation is
used.

22.5 Interpolation in 2D

So far we have only looked at interpolating (or reconstructing) 1D
signals from discrete samples. Images are 2D signals but, as we

549

22 Pixel Interpolation

Fig. 22.13
1D Lanczos interpolation
kernels. Lanczos window

functions ψL2 (a), ψL3 (b),
and the corresponding in-

terpolation kernels wL2 (c),
wL3 (d). The original Sinc

function (dotted curve)
is shown for comparison.

�3 �2 �1 1 2 3

0.5

1

x

ψL2(x)

�3 �2 �1 1 2 3

0.5

1

x

ψL3(x)

(a) (b)

�3 �2 �1 1 2 3

0.5

1

x

wL2(x), Sinc(x)

�3 �2 �1 1 2 3

0.5

1

x

wL3(x), Sinc(x)

(c) (d)

Fig. 22.14
Lanczos interpolation exam-

ples: Lanczos-2 (a–c), Lanczos-
3 (d–f). Note the ringing in

the flat (constant) regions
caused by Lanczos-2 interpo-
lation in the left part of (b).

The Lanczos-3 interpolator
shows less ringing (e) but pro-
duces steeper edges at the cost

of increased overshoot (e, f).

1 2 3 4 5 6 7 8 9 10

x

g̃1(x)

1 2 3 4 5 6 7 8 9 10

x

g̃2(x)

1 2 3 4 5 6 7 8 9 10

x

g̃3(x)

(a) (b) (c)

1 2 3 4 5 6 7 8 9 10

x

g̃1(x)

1 2 3 4 5 6 7 8 9 10

x

g̃2(x)

1 2 3 4 5 6 7 8 9 10

x

g̃3(x)

(d) (e) (f)

shall see in this section, the techniques for interpolating images are
very similar and can be derived from the 1D approach. In particu-
lar, “ideal” (low-pass filter) interpolation requires a 2D Sinc function
defined as

Sinc(x, y) = Sinc(x) · Sinc(y) =
sin(πx)

πx
· sin(πy)

πy
, (22.27)

which is shown in Fig. 22.15(a). Just as in 1D, the 2D Sinc function
is not a practical interpolation function for various reasons. In the
following, we look at some common interpolation methods for im-
ages, particularly the nearest-neighbor, bilinear, bicubic, and Lanc-
zos interpolations, whose 1D versions were described in the previous
sections.

22.5.1 Nearest-Neighbor Interpolation in 2D

The position (ux, vy) of the pixel closest to a given continuous point
(x, y) is found by independently rounding the x and y coordinates to
discrete values, that is,

550

22.5 Interpolation in
2D

0

1

0

1

(a) (b)

Fig. 22.15
Interpolation kernels in
2D. Sinc kernel Sinc(x, y)
(a) and nearest-neighbor
kernel Wnn(x, y) (b) for
−3 ≤ x, y ≤ 3.

Ĩ(x, y) = I(ux, vy), (22.28)

with ux = round(x) = ⌊x + 0.5⌋ und vy = round(y) = ⌊y + 0.5⌋.
As in the 1D case, the interpolation in 2D can be described as

a linear convolution (linear filter). The 2D kernel for the nearest-
neighbor interpolation is, analogous to Eqn. (22.9), defined as

Wnn(x, y) =

{

1 for −0.5 ≤ x, y < 0.5,
0 otherwise.

(22.29)

This function is shown in Fig. 22.15(b). Nearest-neighbor interpola-
tion is known for its strong blocking effects (Fig. 22.16(b)) and thus
is rarely used for geometric image operations. However, in some sit-
uations, this effect may be intended; for example, if an image is to
be enlarged by replicating each pixel without any smoothing.

(a) (b) (c)

Fig. 22.16
Image enlargement example.
Original (a); 8× enlargement
using nearest-neighbor in-
terpolation (b) and bicubic
interpolation (c).

22.5.2 Bilinear Interpolation

The 2D counterpart to the linear interpolation in 1D (see Sec. 22.1)
is the so-called bilinear interpolation,5 whose operation is illustrated
in Fig. 22.17. For the given interpolation point (x, y), we first find
the four closest (surrounding) pixel vcalues,

A = I(ux, vy), B = I(ux + 1, vy), (22.30)

C = I(ux, vy + 1), D = I(ux + 1, vy + 1),

5 Not to be confused with the bilinear mapping (transformation) described
in Chapter 21, Sec. 21.1.5.

551

22 Pixel Interpolation

Fig. 22.17
Bilinear interpolation. For a

given position (x, y), the inter-
polated value is computed from

the values A, B, C, D of the
four closest pixels in two steps

(a). First the intermediate
values E and F are computed
by linear interpolation in the
horizontal direction between
A, B and C, D, respectively,

where a = x − ux is the dis-
tance to the nearest pixel to

the left of x. Subsequently, the
intermediate values E, F are

interpolated in the vertical di-
rection, where b = y − vy is the

distance to the nearest pixel
below y. An example for the

resulting surface between four
adjacent pixels is shown in (b).

A
B

C

D

E

F
G

a

1−a

b

1−b

ux

ux +1

vy

vy +1

x

y

(a) (b)

where ux = ⌊x⌋ and vx = ⌊y⌋. Then the pixel values A, B, C, D are
interpolated in horizontal and subsequently in vertical direction. The
intermediate values E, F are calculated from the distance a = (x−ux)
of the specified interpolation position (x, y) from the discrete raster
coordinate ux as

E = A + (x − ux) · (B−A) = A + a · (B−A), (22.31)

F = C + (x − ux) · (D−C) = C + a · (D−C), (22.32)

and the final interpolation value G is computed from the vertical
distance b = y0 − vy as

Ĩ(x, y) = G = E + (y − vy) · (F−E) = E + b · (F−E)

= (a−1)(b−1) A + a(1−b) B + (1−a) b C + a b D . (22.33)

Expressed as a linear convolution filter, the corresponding 2D
kernel Wbil(x, y) is the product of the two 1D kernels wlin(x) and
wlin(y) (Eqn. (22.10)), that is,

Wbilin(x, y) = wlin(x) · wlin(y)

=

{

1− x− y + x · y for 0 ≤ |x|, |y| < 1,
0 otherwise.

(22.34)

In this function (plotted in Fig. 22.18), we can recognize the bilinear
term that gives this method its name.

Fig. 22.18
2D interpolation kernels. bi-

linear kernel Wbil(x, y) (a)
and bicubic kernel Wbic(x, y)

(b) for −3 ≤ x, y ≤ 3.

0

0

0
1

1

1

1
1

0

1

(a) Wbil (b) Wbic

552

22.5 Interpolation in
2D

xx

yy

u1u1

v1v1

p0

p1

p2

p3

I(u1, v1)

Ĩ(x, y)

Fig. 22.19
Bicubic interpolation in two
steps. The discrete image I
(pixel positons correspond to
raster lines) is to be interpo-
lated at some continuous posi-
tion (x, y). In step 1 (left), a
1D interpolation is performed
in the horizontal direction
with wcub(x) over four pixels
I(ui, vj) in four lines. One in-
termediate result pj (marked
�) is computed for each line
j. In step 2 (right), the result

Î(x0, y0) is computed by a sin-
gle cubic interpolation in the
vertical direction over the in-
termediate results p0, . . . , p3.
In total, 16 + 4 = 20 interpola-
tion steps are required.

22.5.3 Bicubic and Spline Interpolation in 2D

The convolution kernel for the 2D cubic interpolation is also defined
as the product of the corresponding 1D kernels (Eqn. (22.12)),

Wbic(x, y) = wcub(x) · wcub(y). (22.35)

The resulting kernel is plotted in Fig. 22.18(b). Due to the decompo-
sition into 1D kernels (Eqn. (22.13)), the computation of the bicubic
interpolation is separable in x, y and can thus be expressed as

Ĩ(x, y) =
⌊y⌋+2
∑

v =
⌊y⌋−1

[⌊x⌋+2
∑

u =
⌊x⌋−1

I(u, v) ·Wbic(x− u, y − v)
]

(22.36)

=
3∑

j=0

[

wcub(y−vj) ·
3∑

i=0

I(ui, vj) · wcub(x−ui)

︸ ︷︷ ︸
pj

]

, (22.37)

with ui = ⌊x0⌋ − 1 + i and vj = ⌊y0⌋ − 1 + j. The quantity pj is
the intermediate result of the cubic interpolation in the x direction in
line j, as illustrated in Fig. 22.19. Equation (22.37) describes a simple
and efficient procedure for computing the bicubic interpolation using
only a 1D kernel wcub(x). The interpolation is based on a 4 × 4
neighborhood of pixels and requires a total of 16 + 4 = 20 additions
and multiplications.

This method, which is summarized in Alg. 22.1, can be used to
implement any x/y-separable 2D interpolation kernel of size 4 × 4,
such as the 2D Catmull-Rom interpolation (Eqn. (22.17)) with

Wcrm(x, y) = wcrm(x) · wcrm(y) (22.38)

or the Mitchell-Netravali interpolation (Eqn. (22.19)) with

Wmn(x, y) = wmn(x) · wmn(y). (22.39)

The corresponding 2D kernels are shown in Fig. 22.20. For interpo-
lation with separable kernels of larger size see the general procedure
in Alg. 22.2.

553

22 Pixel Interpolation

Fig. 22.20
2D spline interpolation ker-

nels: Catmull-Rom kernel
Wcrm(x, y) (a), Mitchell-

Netravali kernel Wmn(x, y)
(b), for −3 ≤ x, y ≤ 3. 0

1

0

1

(a) Wcrm (b) Wmn

Alg. 22.1
Bicubic interpolation of image

I at position (x, y). The 1D
cubic function wcub(·) (Eqn.
(22.11)) is used for the sepa-

rate interpolation in the x and
y directions based on a neigh-

borhood of 4 × 4 pixels. See
Prog. 22.1 for a straightfor-

ward implementation in Java.

1: BicubicInterpolation(I, x, y, a)
Input: I , original image; x, y ∈ R, continuous position; a, con-
trol parameter. Returns the interpolated image value at position
(x, y).

2: q ← 0
3: for j ← 0, . . . , 3 do ⊲ iterate over 4 lines
4: v ← ⌊y⌋ − 1 + j
5: p ← 0

6: for i ← 0, . . . , 3 do ⊲ iterate over 4 columns
7: u ← ⌊x⌋ − 1 + i
8: p ← p + I(u, v) · wcub(x−u, a) ⊲ see Eq. 22.11

9: q ← q + p · wcub(y−v, a)
10: return q

22.5.4 Lanczos Interpolation in 2D

The kernels for the 2D Lanczos interpolation are also x/y-separable
into 1D kernels (see Eqns. (22.24) and (22.25), respectively), that is,

WLn(x, y) = wLn(x) · wLn(y) . (22.40)

The resulting kernels for orders n = 2 and n = 3 are shown in Fig.
22.21. Because of the separability the 2D Lanczos interpolation can
be computed, similar to the bicubic interpolation, separately in the
x and y directions. Like the bicubic kernel, the 2-tap Lanczos kernel
WL2 (Eqn. (22.24)) is zero outside the interval −2 ≤ x, y ≤ 2, and
thus the procedure described in Eqn. (22.37) and Alg. 22.1 can be
used with only a small modification (replace wcub by wL2).

Fig. 22.21
2D Lanczos kernels for
n = 2 and n = 3:
kernels WL2(x, y) (a)

and WL3(x, y) (b), with
−3 ≤ x, y ≤ 3.

0

1

0

1

(a) WL2 (b) WL3

554

22.5 Interpolation in
2D

1: SeparableInterpolation(I, x, y, w, n)
Input: I , original image; x, y ∈ R, continuous position; w, a 1D
interpolation kernel of extent ±n (n ≥ 1).
Returns the interpolated image value at position (x, y) using the
composite interpolation kernel W (x, y) = w(x) · w(y).

2: q ← 0
3: for j ← 0, . . . , 2n−1 do ⊲ iterate over 2n lines
4: v ← ⌊y⌋ − n + 1 + j ⊲ = vj

5: p ← 0

6: for i ← 0, . . . , 2n−1 do ⊲ iterate over 2n columns
7: u ← ⌊x⌋ − n + 1 + i ⊲ = ui

8: p ← p + I(u, v) · w(x − u)

9: q ← q + p · w(y − v)

10: return q

Alg. 22.2
General interpolation with a
separable interpolation kernel
W (x, y) = wn(x) · wn(y) of
extent ±n (i.e., the 1D kernel
wn(x) is zero for x < −n and
x > n, with n ∈ N). Note that
procedure BicubicInterpolation in
Alg. 22.1 is a special instance
of this algorithm (with n = 2).

Compared to Eqn. (22.37), the larger Lanczos kernel WL3 (Eqn.
(22.25)) requires two additional pixel rows and columns. The calcu-
lation of the interpolated pixel value at position (x, y) thus has the
form

Ĩ(x, y) =
⌊y⌋+3
∑

v =
⌊y⌋−2

[⌊x⌋+3
∑

u =
⌊x⌋−2

I(u, v) ·WL3(x− u, y − v)
]

(22.41)

=
5∑

j=0

[

wL3(y − vj) ·
5∑

i=0

I(ui, vj) · wL3(x − ui)
]

, (22.42)

with ui = ⌊x⌋ − 2 + i and vj = ⌊y⌋ − 2 + j. Thus the L3 Lanczos
interpolation in 2D uses a support region of 6× 6 = 36 pixels from
the original image, 20 pixels more than the bicubic interpolation.

In general, the expression for a 2D Lanczos interpolator Ln of
arbitrary order n ≥ 1 is

Ĩ(x, y) =
⌊y⌋+n
∑

v=
⌊y⌋−n+1

[⌊x⌋+n
∑

u=
⌊x⌋−n+1

[
I(u, v) ·WLn(x− u, y − v)

]]

(22.43)

=
2n−1∑

j=0

[

wLn(y − vj) ·
2n−1∑

i=0

[
I(ui, vj) · wLn(x− ui)

]]

, (22.44)

with ui = ⌊x⌋ − n + 1 + i and vj = ⌊y⌋ − n + 1 + j. The size of this
interpolator’s support region is 2n×2n pixels. How the expression in
Eqn. (22.44) could be computed is shown in Alg. 22.2, which actually
describes a general interpolation procedure that can be used with any
separable interpolation kernel W (x, y) = wn(x)·wn(y) of extent ±n.

22.5.5 Examples and Discussion

Figures 22.22 and 22.23 compare the interpolation methods described
in this section: nearest-neighbor, bilinear, bicubic Catmull-Rom, cu-
bic B-spline, Mitchell-Netravali, and Lanczos interpolation. In both
figures, the original images are rotated counter-clockwise by 15◦. A

555

22 Pixel Interpolation gray background is used to visualize the edge overshoot produced by
some of the interpolators.

Nearest-neighbor interpolation (Fig. 22.22(b)) creates no new pixel
values but forms, as expected, coarse blocks of pixels with the same
intensity.

The effect of the bilinear interpolation (Fig. 22.22(c)) is local
smoothing over four neighboring pixels. The weights for these four
pixels are positive, and thus no result can be smaller than the small-
est neighboring pixel value or greater than the greatest neighboring
pixel value. In other words, bilinear interpolation cannot create any
over- or undershoot at edges.

This is not the case for the bicubic interpolation (Fig. 22.22(d)):
some of the coefficients in the bicubic interpolation kernel are nega-
tive, which makes pixels near edges clearly brighter or darker, respec-
tively, thus increasing the perceived sharpness. In general, bicubic
interpolation produces clearly better results than the bilinear method
at comparable computing cost, and it is thus widely accepted as the
standard technique and used in most image manipulation programs.
By adjusting the control parameter a (Eqn. (22.11)), the bicubic ker-
nel can be easily tuned to fit the need of particular applications.
For example, the Catmull-Rom method (Fig. 22.22(e)) can be im-
plemented with the bicubic interpolation by setting a = 0.5 (Eqns.
(22.17) and (22.38)).

Results from the 2D Lanczos interpolation (Fig. 22.22(h)) using
the 2-tap kernel WL2 cannot be much better than from the bicubic
interpolation, which can be adjusted to give similar results without
causing any ringing in flat regions, as seen in Fig. 22.14. The 3-tap
Lanczos kernel WL3 (Fig. 22.22(i)) on the other hand should produce
slightly sharper edges at the cost of increased overshoot (see also
Exercise 22.3).

In summary, for high-quality applications one should consider the
Catmull-Rom (Eqns. (22.17) and (22.38)) or the Mitchell-Netravali
(Eqns. (22.19) and (22.39)) methods, which offer good reconstruction
at the same computational cost as the bicubic interpolation.

22.6 Aliasing

As we described in the main part of this chapter, the usual approach
for implementing geometric image transformations can be summa-
rized by the following three steps (Fig. 22.24):

1. Each discrete image point (u′, v′) of the target image is projected
by the inverse geometric transformation T −1 to the continuous
coordinate (x, y) in the source image.

2. The continuous image function Ĩ(x, y) is reconstructed from the
discrete source image I(u, v) by interpolation (using one of the
methods described earlier).

3. The interpolated function is sampled at position (x, y), and the
sample value Ĩ(x, y) is transferred to the target pixel I ′(u′, v′).

556

22.6 Aliasing

(a) Original (b) Nearest-neighbor (c) Bilinear

(d) Bicubic (e) Catmull-Rom (f) Cubic B-spline

(g) Mitchell-Netravali (h) Lanczos-2 (i) Lanczos-3

Fig. 22.22
Image interpolation methods
compared (line art).

22.6.1 Sampling the Interpolated Image

One problem not considered so far concerns the process of sampling
the reconstructed, continuous image function in the aforementioned
step 3. The problem occurs when the geometric transformation T
causes parts of the image to be contracted. In this case, the dis-
tance between adjacent sample points on the source image is locally
increased by the corresponding inverse transformation T −1. Now,
widening the sampling distance reduces the spatial sampling rate
and thus the maximum permissible frequencies in the reconstructed
image function Ĩ(x, y). Eventually this leads to a violation of the
sampling criterion and causes visible aliasing in the transformed im-
age. The problem does not occur when the image is enlarged by the
geometric transformation because in this case the sampling interval
on the source image is shortened (corresponding to a higher sampling
frequency) and no aliasing can occur.

Note that this effect is largely unrelated to the interpolation
method, as demonstrated by the examples in Fig. 22.25. The ef-
fect is most noticeable under nearest-neighbor interpolation in Fig.
22.25(b), where the thin lines are simply not “hit” by the widened
sampling raster and thus disappear in some places. Important image
information is thereby lost. The bilinear and bicubic interpolation
methods in Fig. 22.25(c, d) have wider interpolation kernels but still

557

22 Pixel Interpolation

Fig. 22.23
Image interpolation meth-

ods compared (text image).

(a) Original (b) Nearest-neighbor (c) Bilinear

(d) Bicubic (e) Catmull-Rom (f) Cubic B-spline

(g) Mitchell-Netravali (h) Lanczos-2 (i) Lanczos-3

Fig. 22.24
Sampling errors in geometric
operations. If the geometric
transformation T leads to a

local contraction of the image
(which corresponds to a local

enlargement by T −1), the dis-
tance between adjacent sample

points in I is increased. This
reduces the local sampling

frequency and thus the maxi-
mum signal frequency allowed

in the source image, which
eventually leads to aliasing.

I I′

T −1

(x, y) (u′, v′)

cannot avoid the aliasing effect. The problem of course gets worse
with increasing reduction factors.

22.6.2 Low-Pass Filtering

One solution to the aliasing problem is to make sure that the inter-
polated image function is properly frequency-limited before it gets

558

22.6 Aliasing

(a) (b)

(c) (d)

Fig. 22.25
Aliasing caused by local image
contraction. Aliasing is caused
by a violation of the sampling
criterion and is largely un-
affected by the interpolation
method used: complete trans-
formed image (a), detail using
nearest-neighbor interpolation
(b), bilinear interpolation (c),
and bicubic interpolation (d).

:����
����
#
�������� ��������

% & '

I I′
Fig. 22.26
Low-pass filtering to avoid
aliasing in geometric opera-
tions. After interpolation (step
1), the reconstructed image
function is subjected to low-
pass filtering (step 2) before
being resampled (step 3).

resampled. This can be accomplished with a suitable low-pass filter,
as illustrated in Fig. 22.26.

The cutoff frequency of the low-pass filter is determined by the
amount of local scale change, which may—depending upon the type
of transformation—be different in various parts of the image. In the
simplest, case the amount of scale change is the same throughout
the image (e.g., under global scaling or affine transformations, where
the same filter can be used everywhere in the image). In general,
however, the low-pass filter is space-variant or nonhomogeneous, and
the local filter parameters are determined by the transformation T
and the current image position. If convolution filters are used for
both interpolation and low-pass filtering, they could be combined
into a common, space-variant reconstruction filter.

Unfortunately, space-variant filtering is computationally expen-
sive and thus is often avoided, even in professional applications (e.g.,
Adobe Photoshop). The technique is nevertheless used in certain ap-

559

22 Pixel Interpolation plications, such as high-quality texture mapping in computer graph-
ics [75,105,256]. Integral images, as described in Chapter 3, Sec. 3.8,
can be used to implement efficient space-variant smoothing filters.

22.7 Java Implementation

Implementations of most interpolation methods described in this
chapter are openly available as part of the imagingbook library.6

The following interpolators are available as subclasses of the abstract
class PixelInterpolator:

BicubicInterpolator,
BilinearInterpolator,
LanczosInterpolator,
NearestNeighborInterpolator,
SplineInterpolator.

For illustration, the complete implementation of the class Bicubic-

Interpolator is shown in Prog. 22.1.

PixelInterpolator (class)

This class provides the functionality for interpolating images with
scalar pixel values. It defines the following methods:

static PixelInterpolator create (InterpolationMethod

im)

Factory method which creates and returns a new interpolator.
Admissible values for the parameter im and associated inter-
polator types (subclasses of ScalarInterpolator) are listed
in Table 22.1.

float getInterpolatedValue (ImageAccessor.Scalar ia,

double x, double y)

Returns the interpolated pixel value at the continuous posi-
tion x, y of the scalar-valued image (referenced by the image
accessor ia).

Table 22.1
Admissible values for

InterpolationMethod and as-
sociated interpolator types re-

turned by the static create(im)

method of PixelInterpolator.

InterpolationMethod im Interpolator Type

NearestNeighbor NearestNeighborInterpolator()

Bilinear BilinearInterpolator()

Bicubic BicubicInterpolator(1.00)

BicubicSmooth BicubicInterpolator(0.25)

BicubicSharp BicubicInterpolator(1.75)

CatmullRom SplineInterpolator(0.5, 0.0)

CubicBSpline SplineInterpolator(0.0, 1.0)

MitchellNetravali SplineInterpolator(1.0/3, 1.0/3)

Lanzcos2 LanczosInterpolator(2)

Lanzcos3 LanczosInterpolator(3)

Lanzcos4 LanczosInterpolator(4)

6 Package imagingbook.lib.interpolation.
560

22.7 Java
Implementation

1 package imagingbook.lib.interpolation;

2

3 import imagingbook.lib.image.ImageAccessor;

4 import java.awt.geom.Point2D;

5

6 public class BicubicInterpolator

7 extends PixelInterpolator {

8

9 private final double a; // sharpness value

10

11 public BicubicInterpolator() {

12 this(0.5);

13 }

14 public BicubicInterpolator(double a) {

15 this.a = a;

16 }

17

18 public float getInterpolatedValue(

19 ImageAccessor.Scalar ia, double x, double y) {

20 final int u0 = (int) Math.floor(x);

21 final int v0 = (int) Math.floor(y);

22 double q = 0;

23 for (int j = 0; j <= 3; j++) {

24 int v = v0 - 1 + j;

25 double p = 0;

26 for (int i = 0; i <= 3; i++) {

27 int u = u0 - 1 + i;

28 float pixval = ia.getVal(u, v);

29 p = p + pixval * w_cub(x - u, a);

30 }

31 q = q + p * w_cub(y - v, a);

32 }

33 return (float) q;

34 }

35

36 private final double w_cub(double x, double a) {

37 if (x < 0)

38 x = -x;

39 double z = 0;

40 if (x < 1)

41 z = (-a + 2) * x * x * x + (a - 3) * x * x + 1;

42 else if (x < 2)

43 z = -a * x * x * x + 5 * a * x * x

44 - 8 * a * x + 4 * a;

45 return z;

46 }

47 }

Prog. 22.1
Java implementation of
bicubic interpolation (class
BicubicInterpolator), as de-
fined in Alg. 22.1. The class
provides two constructors:
a default constructor (line
11) with sharpness value
a = 0.5 and a general con-
structor for arbitrary a (line
14). The actual pixel interpo-
lation is performed by method
getInterpolatedValue() in line
18, which implements Alg.
22.1. w_cub() in line 36 is the
1D cubic interpolation function
(see Eqn. (22.11)).

The class PixelInterpolator is primarily used by the methods in
class ImageAccessor.7 See Prog. 22.2 for a basic usage example.

7 The ImageAccessor class (in package imagingbook.lib.image) pro-
vides unified access to all types of images available in ImageJ and also
supports pixel interpolation.

561

22 Pixel Interpolation

Prog. 22.2
Image interpolation example

using class ImageAccessor. This
ImageJ plugin translates the

input image by some (non-
integer) distance dx, dy. It

uses target-to-source mapping
and pixel interpolation of type
BicubicSharp (see Table 22.1).

The required ImageAccessor
(interpolator) object for the

source image is created in line
31, another for the target im-

age in line 34. This is followed
by an iteration over all pix-
els of the target image. The
source image is interpolated

(line 41) at the calculated
positions (x, y) and the result-

ing float[] value is inserted
into the target image with

setPix() in line 42. Note that
this plugin is generic, that is,

it works for all image types.

1 import ij.ImagePlus;

2 import ij.plugin.filter.PlugInFilter;

3 import ij.process.ImageProcessor;

4 import imagingbook.lib.image.ImageAccessor;

5 import imagingbook.lib.image.OutOfBoundsStrategy;

6 import static imagingbook.lib.image.OutOfBoundsStrategy.*;

7 import imagingbook.lib.interpolation.InterpolationMethod;

8 import static imagingbook.lib.interpolation.

InterpolationMethod.*;

9

10 public class Interpolator_Demo implements PlugInFilter {

11

12 static double dx = 0.5; // translation

13 static double dy = -3.5;

14

15 static OutOfBoundsStrategy OBS = NearestBorder;

16 static InterpolationMethod IPM = BicubicSharp;

17

18 public int setup(String arg, ImagePlus imp) {

19 return DOES_ALL + NO_CHANGES;

20 }

21

22 public void run(ImageProcessor source) {

23 final int w = source.getWidth();

24 final int h = source.getHeight();

25

26 // create the target image (same type as source):

27 ImageProcessor target = source.createProcessor(w, h);

28

29 // create an ImageAccessor for the source image:

30 ImageAccessor sA =

31 ImageAccessor.create(source, OBS, IPM);

32

33 // create an ImageAccessor for the target image:

34 ImageAccessor tA = ImageAccessor.create(target);

35

36 // iterate over all pixels of the target image:

37 for (int u = 0; u < w; u++) {

38 for (int v = 0; v < h; v++) {

39 double x = u + dx; // continuous source position (x,y)

40 double y = v + dy;

41 float[] val = sA.getPix(x, y);

42 tA.setPix(u, v, val); // update the target pixel

43 }

44 }

45

46 // display the target image:

47 (new ImagePlus("Target", target)).show();

48 }

49 }

562

22.8 Exercises22.8 Exercises

Exercise 22.1. The 1D interpolation function by Mitchell and Na-
travali wmn(x) is defined as a general spline function wcs(x, a, b) (Eqn.
(22.19)). Show that this function can be expressed as the weighted
sum of a Catmull-Rom function wcrm(x) (Eqn. (22.17)) and a cubic
B-spline wcbs(x) (Eqn. (22.18)) in the form

wmn(x) = wcs

(
x, 1

3 , 1
3

)

= 1
3 ·
[
2 · wcs(x, 0.5, 0) + wcs(x, 0, 1)

]
(22.45)

= 1
3 ·
[
2 · wcrm(x) + wcbs(x)

]
.

Exercise 22.2. Implement an “ideal” (low-pass) pixel interpolator
based on the Sinc function (see Eqn. (22.5)). Assume that the image
function is periodic along both coordinate axes. Determine (by trun-
cating the Sinc function at ±N) the minimum number of samples to
include and if the result improves by including additional samples.
Use the class BicubicInterpolator (Prog. 22.1) as a template for
your implementation.

Exercise 22.3. Implement the 2D Lanczos interpolation with a WL3

kernel, as defined in Eqn. (22.42), as a Java class analogous to the
class BicubicInterpolator (Prog. 22.1). Compare the results to the
bicubic interpolation.

Exercise 22.4. The 1D Lanczos interpolation kernel of order n = 4
is (analogous to Eqn. (22.25)) defined as

wL4 =

{

4 · sin(π x
4)·sin(πx)

π2x2 for 0 ≤ |x| < 4,
0 for |x| ≥ 4.

(22.46)

Extend the 2D kernel in Eqn. (22.42) to wL4 and implement this in-
terpolator as a Java class analogous to BicubicInterpolator (Prog.
22.1). How many image pixels does the calculation include at each
position? See if there is any noticeable improvement over the bicubic
and the Lanczos-3 interpolation (Exercise 22.3).

563

23

Image Matching and Registration

When we compare two images, we are faced with the following basic
question: when are two images the same or similar, and how can
this similarity be measured? Of course one could trivially define two
images I1, I2 as being identical when all pixel values are the same
(i.e., the difference I1 − I2 is zero). Although this kind of definition
may be useful in specific applications, such as for detecting changes
in successive images under constant lighting and camera conditions,
simple pixel differencing is usually too inflexible to be of much prac-
tical use. Noise, quantization errors, small changes in lighting, and
minute shifts or rotations can all create large numerical pixel differ-
ences for pairs of images that would still be perceived as perfectly
identical by a human viewer. Obviously, human perception incor-
porates a much wider concept of similarity and uses cues such as
structure and content to recognize similarity between images, even
when a direct comparison between individual pixels would not indi-
cate any match. The problem of comparing images at a structural or
semantic level is a difficult problem and an interesting research field,
for example, in the context of image-based searches on the Internet
or database retrieval.

This chapter deals with the much simpler problem of comparing
images at the pixel level; in particular, localizing a given subimage—
often called a “template”—within some larger image. This task is
frequently required, for example, to find matching patches in stereo
images, to localize a particular pattern in a scene, or to track a cer-
tain pattern through an image sequence. The principal idea behind
“template matching” is simple: move the given pattern (template)
over the search image, measure the difference against the correspond-
ing subimage at each position, and record those positions where the
highest similarity is obtained. But this is not as simple as it may
initially sound. After all, what is a suitable distance measure, what
total difference is acceptable for a match, and what happens when
brightness or contrast changes?

We already touched on this problem of invariance under geomet-
ric transformations when we discussed the shape properties of seg-

565
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_23

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

23 Image Matching and
Registration

Fig. 23.1
Geometry of template match-

ing. The reference image R
is shifted across the search
image I by an offset (r, s)

using the origins of the two
images as the reference points.

The dimensions of the search
image (MI × NI) and the

reference image (MR × NR)
determine the maximal search

region for this comparison.

(0, 0)
u

v

MI

NI
MR

NR

dx

dy

R0,0

Rr,s

p Search image I

Reference image R shifted by (r, s)

Search range

mented regions in Chapter 10, Sec. 10.4.2. However, geometric in-
variance is not our main concern in the remaining part of this chap-
ter, where we describe only the most basic template-matching tech-
niques: correlation-based methods for intensity images and “chamfer-
matching” for binary images.

23.1 Template Matching in Intensity Images

First we look at the problem of localizing a given reference image
(template) R within a larger intensity (grayscale) image I, which we
call the search image. The task is to find those positions where the
contents of the reference image R and the corresponding subimage
of I are either the same or most similar. If we denote by

Rr,s(u, v) = R(u−r, v−s) (23.1)

the reference image R shifted by the distance (r, s) in the horizon-
tal and vertical directions, respectively, then the matching problem
(illustrated in Fig. 23.1) can be summarized as follows:

• Given are the search image I and the reference image R. Find
the offset (r, s) ∈ Z2 such that the similarity between the shifted
reference image Rr,s and the corresponding subimage of I is a
maximum.

To successfully solve this task, several issues need to be addressed,
such as determining a minimum similarity value for accepting a match
and developing a good search strategy for finding the optimal dis-
placement. First, and most important, a suitable measure of simi-
larity between subimages must be found that is reasonably tolerant
against intensity and contrast variations.

23.1.1 Distance between Image Patterns

To quantify the amount of agreement, we compute a “distance” d(r, s)
between the shifted reference image R and the corresponding subim-
age of I for each offset position (r, s) (Fig. 23.2). Several distance

566

23.1 Template
Matching in Intensity
Images

Search image I

Reference image R

Distance for position (r, s)

Fig. 23.2
Measuring the distance be-
tween 2D image functions. The
reference image R is positioned
at offset (r, s) on top of the
search image I.

measures have been proposed for 2D intensity images, including the
following three basic definitions:1

Sum of absolute differences:

dA(r, s) =
∑

(i,j)∈R

|I(r + i, s + j)−R(i, j)| . (23.2)

Maximum difference:

dM (r, s) = max
(i,j)∈R

|I(r + i, s + j)−R(i, j)| . (23.3)

Sum of squared differences:

dE(r, s) =
[∑

(i,j)∈R

(
I(r + i, s + j)−R(i, j)

)2]1/2
. (23.4)

Note that the expression in Eqn. (23.4) is nothing else but the Eu-
clidean distance between two N -dimensional vectors of pixels values.
Similarly, the sum of differences in Eqn. (23.2) is equivalent to the
L1 distance, and the maximum difference in Eqn. (23.3) equals the
L∞ distance norm.2

Distance and correlation

Because of its formal properties, the N -dimensional distance dE

(Eqn. (23.4)) is of special importance and well-known in statistics
and optimization. To find the best-matching position between the
reference image R and the search image I, it is sufficient to minimize
the square of dE (which is always positive), which can be expanded to

d2
E(r, s) =

∑

(i,j)∈R

(
I(r+i, s+j)−R(i, j)

)2
(23.5)

=
∑

(i,j)∈R

I2(r+i, s+j)

︸ ︷︷ ︸

A(r, s)

+
∑

(i,j)∈R

R2(i, j)

︸ ︷︷ ︸

B

− 2 ·
∑

(i,j)∈R

I(r+i, s+j) ·R(i, j)

︸ ︷︷ ︸

C(r, s)

.

1 We use the short notation (i, j) ∈ R to specify the set of all possible
template coordinates, that is, {(i, j) | 0 ≤ i < MR, 0 ≤ j < NR}.

2 See also Sec. B.1.2 in the Appendix.
567

23 Image Matching and
Registration

Notice that the term B in Eqn. (23.5) is the sum of the squared pixel
values in the reference image R, a constant value (independent of
r, s) that can thus be ignored. The term A(r, s) is the sum of the
squared values within the subimage of I at the current offset (r, s).
C(r, s) is the so-called linear cross correlation (⊛) between I and R,
which is defined in the general case as

(I ⊛ R)(r, s) =
∞∑

i=−∞

∞∑

j=−∞
I(r+i, s+j) ·R(i, j), (23.6)

which—since R and I are assumed to have zero values outside their
boundaries—is, furthermore, equivalent to

MR−1
∑

i=0

NR−1
∑

j=0

I(r+i, s+j) ·R(i, j) =
∑

(i,j)∈R

I(r+i, s+j) · R(i, j) (23.7)

and thus the same as C(r, s) in Eqn. (23.5). As we can see in Eqn.
(23.6), correlation is in principle the same operation as linear convo-
lution (see Ch. 5, Eqn. (5.16)), with the only difference being that
the convolution kernel (R(i, j) in this case) is implicitly mirrored.

If we assume for a minute that A(r, s)—the “signal energy”— in
Eqn. (23.5) is constant throughout the image I, then A(r, s) can also
be ignored and the position of maximum cross correlation C(r, s)
coincides with the best match between R and I. In this case, the
minimum of d2

E(r, s) (Eqn. (23.5)) can be found by computing the
maximum value of the correlation I ⊛ R only. This could be inter-
esting for practical reasons if we consider that the linear convolution
(and thus the correlation) with large kernels can be computed very
efficiently in the frequency domain (see also Ch. 19, Sec. 19.5).

Normalized cross correlation

Unfortunately, the assumption made earlier that A(r, s) is constant
does not hold for most images, and thus the result of the cross cor-
relation strongly varies with intensity changes in the image I. The
normalized cross correlation CN (r, s) compensates for this depen-
dency by taking into account the energy in the reference image and
the current subimage:

CN (r, s) =
C(r, s)

√

A(r, s) ·B
=

C(r, s)
√

A(r, s) ·
√

B
(23.8)

=

∑

(i,j)∈R

I(r+i, s+j) ·R(i, j)

[∑

(i,j)∈R

I2(r+i, s+j)
]1/2·

[∑

(i,j)∈R

R2(i, j)
]1/2

. (23.9)

If the values in the search and reference images are all positive (which
is usually the case), then the result of CN (r, s) is always in the range
[0, 1], independent of the remaining contents in I and R. In this
case, the result CN (r, s) = 1 indicates a maximum match between R
and the current subimage of I at the offset (r, s), while CN (r, s) =

568

23.1 Template
Matching in Intensity
Images

0 signals no agreement. Thus the normalized correlation has the
additional advantage of delivering a standardized match value that
can be used directly (using a suitable threshold between 0 and 1) to
decide about the acceptance or rejection of a match position.

In contrast to the “global” cross correlation in Eqn. (23.6), the
expression in Eqn. (23.8) is a “local” distance measure. However, it,
too, has the problem of measuring the absolute distance between the
template and the subimage. If, for example, the overall intensity of
the image I is altered, then even the result of the normalized cross
correlation CN (r, s) may also change dramatically.

Correlation coefficient

One solution to this problem is to compare not the original function
values but the differences with respect to the average value of R and
the average of the current subimage of I. This modification turns
Eqn. (23.8) into

CL(r, s) =

∑

(i,j)∈R

(
I(r+i, s+j)− Īr,s

)
·
(
R(i, j)− R̄

)

[∑

(i,j)∈R

(
I(r+i, s+j)− Īr,s

)2]1/2 ·
[∑

(i,j)∈R

(
R(i, j)− R̄

)2

︸ ︷︷ ︸

S2
R = K · σ2

R

]1/2
,

(23.10)

with the average values Īr,s and R̄ defined as

Īr,s =
1
K
·
∑

(i,j)∈R

I(r+i, s+j) and R̄ =
1
K
·
∑

(i,j)∈R

R(i, j), (23.11)

respectively, (K = |R| being the size of the reference image R). In
statistics, the expression in Eqn. (23.10) is known as the correlation
coefficient. However, different from the usual application as a global
measure in statistics, CL(r, s) describes a local, piecewise correlation
between the template R and the current subimage (at offset r, s) of I.
The resulting values of CL(r, s) are in the range [−1, 1] regardless of
the contents in R and I. Again a value of 1 indicates maximum agree-
ment between the compared image patterns, while −1 corresponds
to a maximum mismatch. The term

S2
R = K · σ2

R =
∑

(i,j)∈R

(
R(i, j)− R̄

)2
(23.12)

in the denominator of Eqn. (23.10) is K times the variance (σ2
R) of

the values in the template R, which is constant and thus needs to be
computed only once. Due to the fact that σ2

R = 1
K

∑
R2(i, j)− R̄2,

the expression in Eqn. (23.12) can be reformulated as

S2
R =

∑

(i,j)∈R

R2(i, j) − K · R̄2 (23.13)

=
∑

(i,j)∈R

R2(i, j) − 1
K
·
[∑

(i,j)∈R

R(i, j)
]2

. (23.14)

569

23 Image Matching and
Registration

By inserting the results from Eqns. (23.11) and (23.14) we can rewrite
Eqn. (23.10) as

CL(r, s) =

∑

(i,j)∈R

(
I(r+i, s+j) · R(i, j)

)
− K ·Īr,s ·R̄

[∑

(i,j)∈R

I2(r+i, s+j) − K · Ī2
r,s

]1/2 · SR

, (23.15)

and thereby obtain an efficient way to compute the local correlation
coefficient. Since R̄ and SR = (S2

R)1/2 must be calculated only once
and the local average of the current subimage Īr,s is not immediately
required for summing up the differences, the whole expression in Eqn.
(23.15) can be computed in one common iteration, as shown in Alg.
23.1.

Note that in the calculation of CL(r, s) in Eqn. (23.15), the de-
nominator becomes zero if any of the two factors is zero. This may
happen, for example, if the search image I is locally “flat” and thus
has zero variance or if the reference image R is constant. The quan-
tity 1 is added to the denominator in Alg. 23.1 (line 23) to avoid
divisions by zero in such cases, which otherwise has no significant
effect on the result.

A direct Java implementation of this procedure is shown in Progs.
23.1 and 23.2 in Sec. 23.1.3 (class CorrCoeffMatcher).

Examples and discussion

Figure 23.3 compares the performance of the described distance func-
tions in a typical example. The original image (Fig. 23.3(a)) shows a
repetitive flower pattern produced under uneven lighting and differ-
ences in local brightness. One instance of the repetitive pattern was
extracted as the reference image (Fig. 23.3(b)).

• The sum of absolute differences (Eqn. (23.2)) in Fig. 23.3(c) shows
a distinct peak value at the original template position, as does
the Euclidean distance (Eqn. (23.4)) in Fig. 23.3(e). Both mea-
sures work satisfactorily in this regard but are strongly affected
by global intensity changes, as demonstrated in Figs. 23.4 and
23.5.

• The maximum difference (Eqn. (23.3)) in Fig. 23.3(d) proves com-
pletely useless as a distance measure since it responds more strongly
to the lighting changes than to pattern similarity. As expected,
the behavior of the global cross correlation in Fig. 23.3(f) is also
unsatisfactory. Although the result exhibits a local maximum at
the true template position (hardly visible in the printed image),
it is completely dominated by the high-intensity responses in the
brighter parts of the image.

• The result from the normalized cross correlation in Fig. 23.3(g)
appears naturally very similar to the Euclidean distance (Fig.
23.3(e)), because in principle it is the same measure. As ex-
pected, the correlation coefficient (Eqn. (23.10)) in Fig. 23.3(h)
yields the best results. Distinct peaks of similar intensity are pro-
duced for all six instances of the template pattern, and the result
is unaffected by changing lighting conditions. In this case, the

570

23.1 Template
Matching in Intensity
Images

1: CorrelationCoefficient (I, R)

Input: I(u, v), search image; R(i, j), reference image.
Returns a map C(r, s) containing the values of the correlation
coefficient between I and R positioned at (r, s).

Step 1–initialize:
2: (MI , NI) ← Size(I)
3: (MR, NR) ← Size(R)
4: K ← MR · NR

5: ΣR ← 0, ΣR2 ← 0
6: for i ← 0, . . . , (MR−1) do
7: for j ← 0, . . . , (NR−1) do
8: ΣR ← ΣR + R(i, j)
9: ΣR2 ← ΣR2 + R2(i, j)

10: R̄ ← ΣR/K ⊲ Eq. 23.11

11: SR ← (ΣR2 − K ·R̄2)1/2 ⊲ Eq. 23.14

Step 2—compute the correlation map:
12: Create map C : (MI−MR +1) × (NI−NR +1) �→ R

13: for r ← 0, . . . , MI−MR do ⊲ place R at position (r, s)
14: for s ← 0, . . . , NI−NR do

Compute the correlation coefficient for position (r, s):
15: ΣI ← 0, ΣI2 ← 0, ΣIR ← 0
16: for i ← 0, . . . , MR−1 do
17: for j ← 0, . . . , NR−1 do
18: aI ← I(r + i, s + j)
19: aR ← R(i, j)
20: ΣI ← ΣI + aI

21: ΣI2 ← ΣI2 + a2
I

22: ΣIR ← ΣIR + aI · aR

23: C(r, s) ← ΣIR − ΣI ·R̄
1+
√

ΣI2−Σ2
I /K ·SR

24: return C ⊲ C(r, s) ∈ [−1, 1]

Alg. 23.1
Calculation of the correla-
tion coefficient. Given is the
search image I and the refer-
ence image (template) R. In
Step 1, the template’s average
R̄ and variance term SR are
computed once. In Step 2, the
match function is computed for
every template position (r, s)
as prescribed by Eqn. (23.15).
The result is a map of corre-
lation values C(r, s) ∈ [−1, 1]
that is returned. In line 23 (cf.
Eqn. (23.15)) the quantity 1 is
added to the denominator to
avoid division by zero in the
case of zero variance.

values range from −1.0 (black) to +1.0 (white), and zero values
are shown as gray.

Figure 23.4 compares the results of the Euclidean distance against
the correlation coefficient under globally changing intensity. For this
purpose, the intensity of the reference image R is raised by 50 units
such that the template is different from any subpattern in the original
image. As can be seen clearly, the initially distinct peaks disappear
under the Euclidean distance (Fig. 23.4(c)), while the correlation co-
efficient (Fig. 23.4(d)) naturally remains unaffected by this change.

In summary, the correlation coefficient can be recommended as
a reliable measure for template matching in intensity images under
realistic lighting conditions. This method proves relatively robust
against global changes of brightness or contrast and tolerates small
deviations from the reference pattern. Since the resulting values are
in the fixed range of [−1, 1], a simple threshold operation can be used
to localize the best match points (Fig. 23.6).

571

23 Image Matching and
Registration

Fig. 23.3
Comparison of various distance

functions. From the original
image I (a), the marked sec-
tion is used as the reference
image R, shown enlarged in
(b). In the resulting differ-

ence images (c–h), brightness
corresponds to the amount
of agreement (white equals

minimum distance). The po-
sition of the true reference

point is marked by a red circle.
(a) Original image I (b) Reference image R

❡ ❡

(c) Sum of absolute differences (d) Maximum difference

❡ ❡

(e) Sum of squared distances (f) Global cross correlation

❡ ❡

(g) Normalized cross correlation (h) Correlation coefficient

Shape of the template

The shape of the reference image does not need to be rectangular as
in the previous examples, although it is convenient for the processing.
In some applications, circular, elliptical, or custom-shaped templates
may be more applicable than a rectangle. In such a case, the template

572

23.1 Template
Matching in Intensity
Images

Original reference image R

❞ ❞

(a) Euclidean distance dE(r, s) (b) Correlation coefficient CL(r, s)

Modified reference image R′ = R + 50

❞ ❞

(c) Euclidean distance dE(r, s) (d) Correlation coefficient CL(r, s)

Fig. 23.4
Effects of changing global
brightness. Original refer-
ence image R: the results from
both the Euclidean distance
(a) and the correlation coeffi-
cient (b) show distinct peaks
at the positions of maximum
agreement. Modified refer-
ence image R′ = R + 50: the
peak values disappear in the
Euclidean distance (c), while
the correlation coefficient (d)
remains unaffected.

❝

❝ ❝

R R + 25 R + 50

Fig. 23.5
Euclidean distance under
global intensity changes. Dis-
tance function for the original
template R (left), with the
template intensity increased
by 25 units (center) and 50
units (right). Notice that the
local peaks disappear as the
template intensity (and thus
the total distance between the
image and the template) is
increased.

❝
❝ ❝

(a) (b) (c)

Fig. 23.6
Detection of match points by
simple thresholding: correla-
tion coefficient (a), positive
values only (b), and values
greater than 0.5 (c). The re-
maining peaks indicate the
positions of the six similar
(but not identical) tulip pat-
terns in the original image
(Fig. 23.3(a)).

may still be stored in a rectangular array, but the relevant pixels must
somehow be marked (e.g., using a binary mask).

Even more general is the option to assign individual continuous
weights to the template elements such that, for example, the center
of a template can be given higher significance in the match than the
peripheral regions. Implementing such a “windowed matching” tech-
nique should be straightforward and require only minor modifications
to the standard approach.

573

23 Image Matching and
Registration

23.1.2 Matching Under Rotation and Scaling

Correlation-based matching methods applied in the way described
in this section cannot handle significant rotation or scale differences
between the search image and the template. One obvious way to
overcome rotation is to match using multiple rotated versions of the
template, of course at the price of additional computation time. Sim-
ilarly, one could try to match using several scaled versions of the
template to achieve scale independence to some extent. Although
this could be combined by using a set of rotated and scaled template
patterns, the combinatorially growing number of required matching
steps could soon become prohibitive for a practical implementation.

An interesting technique is matching in logarithmic-polar space,
where rotation and scaling map to translations and can thus be han-
dled with correlation-type methods [267]. However, this requires an
initial “anchor point”, which again needs to be detected in a rotation
and scale invariant way [152, 209, 238]. Another alternative is the
popular Lucas-Kanade technique for elastic local matching, which is
described at detail in Chapter 24. In principle, given an approxi-
mate starting solution, this method cannot only handle rotation and
scaling, but arbitrary image transformations or distortions.

23.1.3 Java Implementation

Implementations of most methods described in this chapter are openly
available as part of the imagingbook library.3 As an example, the
code listed in Progs. 23.1 and 23.2 demonstrates the use of the Corr-

CoeffMatcher class for template matching based on the local corre-
lation coefficient (Eqn. (23.10)). The application assumes that the
search image (I) and the reference image (R) are already available
as objects of type FloatProcessor. They are used to create a new
instance of class CorrCoeffMatcher, as shown in the following code
segment:

FloatProcessor I = ... // search image

FloatProcessor R = ... // reference image

CorrCoeffMatcher matcher = new CorrCoeffMatcher(I);

float[][] C = matcher.getMatch(R);

The correlation coefficient is computed by the method getMatch()

and returned as a 2D float-array (C).

23.2 Matching Binary Images

As became evident in the previous section, the comparison of inten-
sity images based on correlation may not be an optimal solution but
is sufficiently reliable and efficient under certain restrictions. If we
compare binary images in the same way, by counting the number of
identical pixels in the search image and the template, the total dif-
ference will only be small when most pixels are in exact agreement.

3 Package imagingbook.pub.matching.
574

23.2 Matching Binary
Images

1 package imagingbook.pub.matching;

2

3 import ij.process.FloatProcessor;

4

5 class CorrCoeffMatcher {

6

7 private final FloatProcessor I; // search image

8 private final int MI, NI; // width/height of search image

9

10 private FloatProcessor R; // reference image

11 private int MR, NR; // width/height of reference image

12 private int K;

13 private double meanR; // mean value of reference (R̄)

14 private double varR; // square root of reference variance
(σR)

15

16 public CorrCoeffMatcher(FloatProcessor I) { // constructor

17 this.I = I;

18 this.MI = this.I.getWidth();

19 this.NI = this.I.getHeight();

20 }

21

22 public float[][] getMatch(FloatProcessor R) {

23 this.R = R;

24 this.MR = R.getWidth();

25 this.NR = R.getHeight();

26 this.K = MR * NR;

27

28 // calculate the mean (R̄) and variance term (SR) of the template:

29 double sumR = 0; // ΣR =
∑

R(i, j)
30 double sumR2 = 0; // ΣR2 =

∑
R2(i, j)

31 for (int j = 0; j < NR; j++) {

32 for (int i = 0; i < MR; i++) {

33 float aR = R.getf(i,j);

34 sumR += aR;

35 sumR2 += aR * aR;

36 }

37 }

38

39 this.meanR = sumR / K; // R̄ = [
∑

R(i, j)]/K
40 this.varR = // SR = [

∑
R2(i, j) − K ·R̄2]1/2

41 Math.sqrt(sumR2 - K * meanR * meanR);

42

43 float[][] C = new float[MI - MR + 1][NI - NR + 1];

44 for (int r = 0; r <= MI - MR; r++) {

45 for (int s = 0; s <= NI - NR; s++) {

46 float d = (float) getMatchValue(r, s);

47 C[r][s] = d;

48 }

49 }

50 return C;

51 }

52

53 // continued...

Prog. 23.1
Implementation of class
CorrCoeffMatcher (part 1/2).
The constructor method (lines
16–20) calculates the mean
R̄ = meanR (Eqn. (23.11)) and
the variance SR = varR (Eqn.
(23.14)) of the reference image
R. The method getMatch(R)
(lines 22–51) determines the
match values between the
search image I and the refer-
ence image R f for all positions
(r, s).

575

23 Image Matching and
Registration

Prog. 23.2
Implementation of class
CorrCoeffMatcher (part

2/2). The local match value
C(r, s) (see Eqn. (23.15))

at the individual posi-
tion (r, s) is calculated by

method getMatchValue(r,s)

(lines 54–72).

54 private double getMatchValue(int r, int s) {

55 double sumI = 0; // ΣI =
∑

I(r+i, s+j)
56 double sumI2 = 0; // ΣI2 =

∑
(I(r+i, s+j))2

57 double sumIR = 0; // ΣIR =
∑

I(r+i, s+j) · R(i, j)
58

59 for (int j = 0; j < NR; j++) {

60 for (int i = 0; i < MR; i++) {

61 float aI = I.getf(r + i, s + j);

62 float aR = R.getf(i, j);

63 sumI += aI;

64 sumI2 += aI * aI;

65 sumIR += aI * aR;

66 }

67 }

68

69 double meanI = sumI / K; // Īr,s = ΣI/K
70 return (sumIR - K * meanI * meanR) /

71 (1 + Math.sqrt(sumI2 - K * meanI * meanI) * varR);

72 }

73

74 } // end of class CorrCoeffMatcher

Since there is no continuous transition between pixel values, the dis-
tribution produced by a simple distance function will generally be
ill-behaved (i.e., highly discontinuous with many local extrema; see
Fig. 23.7).

23.2.1 Direct Comparison of Binary Images

The problem with directly comparing binary images is that even the
smallest deviations between image patterns, such as those caused by
a small shift, rotation, or distortion, can create very high distance
values. Shifting a thin line drawing by only a single pixel, for exam-
ple, may be sufficient to switch from full agreement to no agreement
at all (i.e., from zero difference to maximum difference). Thus a sim-
ple distance function gives no indication how far away and in which
direction to search for a better match position.

An interesting question is how matching of binary images can be
made more tolerant against small differences of the compared pat-
terns. Thus the goal is not only to detect the single image position,
where most foreground pixels in the two images match up, but also
(if possible) to obtain a measure indicating how far (in terms of ge-
ometry) we are away from this position.

23.2.2 The Distance Transform

A first step in this direction is to record the distance to the closest
foreground pixel for every position (u, v) in the search image I. This
gives us the minimum distance (though not the direction) for shifting
a particular pixel onto a foreground pixel. Starting from a binary
image I(u, v) = I(u), we denote

576

23.2 Matching Binary
Images

(a) (b) (c)

Fig. 23.7
Direct comparison of binary
images. Given are a binary
search image (a) and a binary
reference image (b). The local
similarity value for any tem-
plate position corresponds to
the relative number of match-
ing (black) foreground pix-
els. High similarity values are
shown as bright spots in the
result (c). While the maximum
similarity is naturally found
at the correct position (at the
center of the glyph B) the
match function behaves wildly,
with many local maxima.

FG(I) = {u | I(u) = 1}, (23.16)

BG(I) = {u | I(u) = 0}, (23.17)

as the set of coordinates of the foreground and background pixels,
respectively. The so-called distance transform of I, D(u) ∈ R, is
defined as

D(u) := min
u′∈FG(I)

dist(u, u′), (23.18)

for all u = (u, v), where u = 0, . . . , M−1, v = 0, . . . , N−1 (for image
size M × N). The value D at a given position u thus equals the
distance between u and the nearest foreground pixel in I. If I(u) is
a foreground pixel itself (i.e., x ∈ FG), then the distance D(u) = 0
since no shift is necessary for moving this pixel onto a foreground
pixel.

The function dist(u, u′) in Eqn. (23.18) measures the geometric
distance between the two coordinate points u = (u, v) and u′ =
(u′, v′). Examples of suitable distance functions are the Euclidean
distance (L2 norm)

dE(u, u′) = ‖u− u′‖ =
√

(u − u′)2 + (v − v′)2 ∈ R
+ (23.19)

and the Manhattan distance4 (L1 norm)

dM (u, u′) = |u− u′|+ |v − v′| ∈ N0. (23.20)

Figure 23.8 shows a simple example of a distance transform using the
Manhattan distance dM ().

The direct calculation of the distance transform (following the
definition in Eqn. (23.18)) is computationally expensive, because the
closest foreground pixel must be found for each pixel position p (un-
less I(p) is a foreground pixel itself).5

Chamfer algorithm

The so-called chamfer algorithm [30] is an efficient method for com-
puting the distance transform. Similar to the sequential region label-
ing algorithm (see Ch. 10, Alg. 10.2), the chamfer algorithm traverses

4 Also called “city block distance”.
5 A simple (brute force) algorithm for the distance transform would per-

form a full scan over the entire image for each processed pixel, resulting
in O(N2 · N2) = O(N4) steps for an image of size N × N .

577

23 Image Matching and
Registration

Fig. 23.8
Example of a distance trans-

form of a binary image us-
ing the Manhattan distance

dM (). Foreground pixels
in the binary image have
value 1 (shown inverted).

Binary image Distance transform

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

→

5 4 3 3 2 3 4 5 6 7 8 9
4 3 2 2 1 2 3 4 5 6 7 8
3 2 1 1 0 1 2 3 4 5 6 7
2 1 0 1 1 2 3 3 3 4 5 6
3 2 1 2 2 3 3 2 2 3 4 5
4 3 2 3 3 3 2 1 1 2 3 4
5 4 3 4 3 2 1 0 0 1 2 3
6 5 4 4 3 2 1 0 1 2 3 4
7 6 5 5 4 3 2 1 2 3 4 5
8 7 6 6 5 4 3 2 3 4 5 6

→

the image twice by propagating the computed values across the image
like a wave. The first traversal starts at the upper left corner of the
image and propagates the distance values downward in a diagonal
direction. The second traversal proceeds in the opposite direction
from the bottom to the top. For each traversal, a “distance mask” is
used for the propagation of the distance values; that is,

ML =

⎡

⎣

m2 m1 m2

m1 × ·
· · ·

⎤

⎦ and MR =

⎡

⎣

· · ·
· × m1

m2 m1 m2

⎤

⎦ (23.21)

for the first and second traversals, respectively. The values in ML

and MR describe the geometric distance between the current pixel
(marked ×) and the relevant neighboring pixels. They depend upon
the distance function dist(x, x′) used. Algorithm 23.2 outlines the
chamfer method for computing the distance transform D(u, v) for a
binary image I(u, v) using the above distance masks.

For the Manhattan distance, the chamfer algorithm computes the
distance transform (Eqn. (23.20)) exactly using the masks

ML
M =

⎡

⎣

2 1 2
1 × ·
· · ·

⎤

⎦ and MR
M =

⎡

⎣

· · ·
· × 1
2 1 2

⎤

⎦ . (23.22)

Similarly for the Euclidean distance (Eqn. (23.19)) can be calculated
with the masks

ML
E =

⎡

⎣

√
2 1

√
2

1 × ·
· · ·

⎤

⎦ and MR
E =

⎡

⎣

· · ·
· × 1√
2 1

√
2

⎤

⎦ . (23.23)

Note that the result obtained with these masks is only an approxima-
tion of the Euclidean distance to the nearest foreground pixel, which
is nevertheless more accurate than the estimate produced by the
Manhattan distance. As demonstrated by the examples in Fig. 23.9,
the distances obtained with the Euclidean masks are exact along the
coordinate axes and the diagonals but are overestimated (i.e., too

578

23.2 Matching Binary
Images

1: DistanceTransform(I, norm)
Input: I , a, binary image; norm ∈ {L1, L2}, distance function.
Returns the distance transform of I .

Step 1: initialize

2: (m1, m2) ←
{

(1, 2) for norm = L1

(1,
√

2) for norm = L2

3: (M, N) ← Size(I)
4: Create map D : M × N �→ R

5: for all (u, v) ∈ M × N do

6: D(u, v) ←
{

0 for I(u, v) > 0

∞ otherwise

Step 2: L→R pass
7: for v ← 0, . . . , N−1 do ⊲ top → bottom
8: for u ← 0, . . . , M−1 do ⊲ left → right
9: if D(u, v) > 0 then

10: d1, d2, d3, d4 ← ∞
11: if u > 0 then
12: d1 ← m1 + D(u − 1, v)
13: if v > 0 then
14: d2 ← m2 + D(u − 1, v − 1)
15: if v > 0 then
16: d3 ← m1 + D(u, v − 1)
17: if u < M − 1 then
18: d4 ← m2 + D(u + 1, v − 1)
19: D(u, v) ← min(D(u, v), d1, d2, d3, d4)

Step 3: R→L pass
20: for v ← N−1, . . . , 0 do ⊲ bottom → top
21: for u ← M−1, . . . , 0 do ⊲ right → left
22: if D(u, v) > 0 then
23: d1, d2, d3, d4 ← ∞
24: if u < M−1 then
25: d1 ← m1 + D(u + 1, v)
26: if v < N−1 then
27: d2 ← m2 + D(u + 1, v + 1)
28: if v < N−1 then
29: d3 ← m1 + D(u, v + 1)
30: if u > 0 then
31: d4 ← m2 + D(u − 1, v + 1)
32: D(u, v) ← min(D(u, v), d1, d2, d3, d4)

33: return D

Alg. 23.2
Chamfer algorithm for com-
puting the distance transform.
From the binary image I, the
distance transform D (Eqn.
(23.18)) is computed using a
pair of distance masks (Eqn.
(23.21)) for the first and sec-
ond passes. Notice that the
image borders require special
treatment.

high) for all other directions. A more precise approximation can be
obtained with distance masks of greater size (e.g., 5 × 5 pixels; see
Exercise 23.3), which include the exact distances to pixels in a larger
neighborhood [30]. Furthermore, floating point-operations can be
avoided by using distance masks with scaled integer values, such as
the masks

ML
E′ =

⎡

⎣

4 3 4
3 × ·
· · ·

⎤

⎦ and MR
E′ =

⎡

⎣

· · ·
· × 3
4 3 4

⎤

⎦ (23.24)

579

23 Image Matching and
Registration

Fig. 23.9
Distance transform with the
chamfer algorithm: original

image with black foreground
pixels (a), and results of dis-

tance transforms using the
Manhattan distance (b) and

the Euclidean distance (c).
The brightness (scaled to max-

imum contrast) corresponds
to the estimated distance to

the nearest foreground pixel.

Original image Manhattan distance Euclid. distance (approx.)

(a) (b) (c)

for the Euclidean distance. Compared with the original masks (Eqn.
(23.23)), the resulting distance values are scaled by about the fac-
tor 3.

23.2.3 Chamfer Matching

The chamfer algorithm offers an efficient way to approximate the dis-
tance transform for a binary image of arbitrary size. The next step
is to use the distance transform for matching binary images. Cham-
fer matching (first described in [19]) uses the distance transform to
localize the points of maximum agreement between a binary search
image I and a binary reference image (template) R. Instead of count-
ing the overlapping foreground pixels as in the direct approach (see
Sec. 23.2.1), chamfer matching uses the accumulated values of the
distance transform as the match score Q. At each position (r, s) of
the template R, the distance values corresponding to all foreground
pixels in R are accumulated, that is,

Q(r, s) =
1

|FG(R)| ·
∑

(i,j)∈
FG(R)

D(r + i, s + j) , (23.25)

where K = |FG(R)| denotes the number of foreground pixels in the
template R.

The complete procedure for computing the match score Q is sum-
marized in Alg. 23.3. If at some position each foreground pixel in the

580

23.2 Matching Binary
Images

1: ChamferMatch (I, R)

Input: I , binary search image; R, binary reference image.
Returns a 2D map of match scores.

Step 1 – initialize:
2: (MI , NI) ← Size(I)
3: (MR, NR) ← Size(R)
4: D ← DistanceTransform(I) ⊲ Alg. 23.2
5: Create map Q : (MI−MR+1) × (NI−NR +1) �→ R

Step 2 – compute match function:
6: for r ← 0, . . . , MI−MR do ⊲ place R at (r, s)
7: for s ← 0, . . . , NI−NR do

Get match score for R placed at (r, s)
8: q ← 0
9: n ← 0 ⊲ number of foreground pixels in R

10: for i ← 0, . . . , MR−1 do
11: for j ← 0, . . . , NR−1 do
12: if R(i, j) > 0 then ⊲ foreground pixel in R
13: q ← q + D(r + i, s + j)
14: n ← n + 1
15: Q(r, s) ← q/n

16: return Q

Alg. 23.3
Chamfer matching (calcula-
tion of the match function).
Given is a binary search im-
age I and a binary reference
image (template) R. In step
1, the distance transform D
is computed for the image I
using the chamfer algorithm
(Alg. 23.2). In step 2, the
sum of distance values is ac-
cumulated for all foreground
pixels in template R for each
template position (r, s). The
resulting scores are stored in
the 2D match map Q, which is
returned.

template R coincides with a foreground pixel in the image I, the
sum of the distance values is zero, which indicates a perfect match.
The more foreground pixels of the template fall onto distance values
greater than zero, the larger is the resulting score value Q (sum of
distances). The best match is found at the global minimum of Q,
that is,

xopt = (ropt, sopt) = argmin
(r,s)

(Q(r, s)). (23.26)

The example in Fig. 23.10 demonstrates the difference between
direct pixel comparison and chamfer matching using the binary im-
age shown in Fig. 23.7. Obviously the match score produced by the
chamfer method is considerably smoother and exhibits only a few dis-
tinct local maxima. This is of great advantage because it facilitates
the detection of optimal match points using simple local search meth-
ods. Figure 23.11 shows another example with circles and squares.
The circles have different diameters and the medium-sized circle is
used as the template. As this example illustrates, chamfer matching
is tolerant against small-scale changes between the search image and
the template and even in this case yields a smooth score function
with distinct peaks.

While chamfer matching is not a “silver bullet”, it is efficient and
works sufficiently well if the applications and conditions are suitable.
It is most suited for matching line or edge images where the percent-
age of foreground pixels is small, such as for registering aerial images
or aligning wide-baseline stereo images. The method tolerates devi-
ations between the image and the template to a small extent but is
of course not generally invariant under scaling, rotation, and defor-
mation. The quality of the results deteriorates quickly when images
contain random noise (“clutter”) or large foreground regions, because

581

23 Image Matching and
Registration

Fig. 23.10
Direct pixel comparison vs.

chamfer matching (see original
images in Fig. 23.7). Unlike

the results of the direct pixel
comparison (a), the chamfer

match score Q (b) is much
smoother. It shows distinct

peak values in places of high
agreement that are easy to

track down with local search
methods. The match score Q

(Eqn. (23.25)) in (b) is shown
inverted for easy comparison.

Direct comparison Chamfer matching

(a) (b)

the method is based on minimizing the distances to foreground pix-
els. One way to reduce the probability of false matches is not to
use a linear summation (as in Eqn. (23.25)) but add up the squared
distances, that is,

Qrms(r, s) =
[1
K
·
∑

(i,j)∈
FG(R)

(
D(r + i, s + i)

)2]1/2
(23.27)

(“root mean square” of the distances) as the match score between
the template R and the current subimage, as suggested in [30]. Also,
hierarchical variants of the chamfer method have been proposed to
reduce the search effort as well as to increase robustness [31].

23.2.4 Java Implementation

The calculation of the distance transform, as described in Alg. 23.2, is
implemented by the class DistanceTransform.6 Program 23.3 shows
the complete code for the class ChamferMatcher for comparing binary
images with the distance transform, which is a direct implementation
of Alg. 23.3. Additional examples (ImageJ plugins) can be found in
the on-line code repository.

6 Package imagingbook.pub.matching.
582

23.3 Exercises

(a) (b)

(c) (d)

(e) (f)

Fig. 23.11
Chamfer matching under vary-
ing scales. Binary search image
with three circles of different
diameters and three identical
squares (a). The medium-sized
circle at the top is used as
the template (b). The result
from a direct pixel compari-
son (c, e) and the result from
chamfer matching (d, f). Again
the chamfer match produces a
much smoother score, which is
most notable in the 3D plots
shown in the bottom row (e,
f). Notice that the three cir-
cles and the squares produce
high match scores with similar
absolute values (f).

23.3 Exercises

Exercise 23.1. Implement the chamfer-matching method (Alg. 23.2)
for binary images using the Euclidean distance and the Manhattan
distance.

Exercise 23.2. Implement the exact Euclidean distance transform
using a “brute-force” search for each closest foreground pixel (this
may take a while to compute). Compare your results with the ap-
proximation obtained with the chamfer method (Alg. 23.2), and com-
pute the maximum deviation (as percentage of the real distance).

Exercise 23.3. Modify the chamfer algorithm for computing the dis-
tance transform (Alg. 23.2) by replacing the 3 × 3 pixel Euclidean
distance masks (Eqn. (23.23)) with the following masks of size 5×5:

583

23 Image Matching and
Registration

ML =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

· 2.236 · 2.236 ·
2.236 1.414 1.000 1.414 2.236

· 1.000 × · ·
· · · · ·
· · · · ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (23.28)

MR =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

· · · · ·
· · · · ·
· · × 1.000 ·

2.236 1.414 1.000 1.414 2.236

· 2.236 · 2.236 ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (23.29)

Compare the results with those obtained with the standard masks.
Why are no additional mask elements required along the coordinate
axes and the diagonals?

Exercise 23.4. Implement the chamfer-matching technique using (a)
the linear summation of distances (Eqn. (23.25)) and (b) the sum-
mation of squared distances (Eqn. (23.27)) for computing the match
score. Select suitable test images to find out if version (b) is really
more robust in terms of reducing the number of false matches.

Exercise 23.5. Adapt the template-matching method described in
Sec. 23.1 for the comparison of RGB color images.

584

23.3 Exercises1 package imagingbook.pub.matching;

2 import ij.process.ByteProcessor;

3 import imagingbook.pub.matching.DistanceTransform.Norm;

4

5 public class ChamferMatcher {

6 private final ByteProcessor I;

7 private final int MI, NI;

8 private final float[][] D; // distance transform of I

9

10 public ChamferMatcher(ByteProcessor I) {

11 this(I, Norm.L2);

12 }

13

14 public ChamferMatcher(ByteProcessor I, Norm norm) {

15 this.I = I;

16 this.MI = this.I.getWidth();

17 this.NI = this.I.getHeight();

18 this.D = (new DistanceTransform(I, norm)).

getDistanceMap();

19 }

20

21 public float[][] getMatch(ByteProcessor R) {

22 final int MR = R.getWidth();

23 final int NR = R.getHeight();

24 final int[][] Ra = R.getIntArray();

25 float[][] Q = new float[MI - MR + 1][NI - NR + 1];

26 for (int r = 0; r <= MI - MR; r++) {

27 for (int s = 0; s <= NI - NR; s++) {

28 float q = getMatchValue(Ra, r, s);

29 Q[r][s] = q;

30 }

31 }

32 return Q;

33 }

34

35 private float getMatchValue(int[][] R, int r, int s) {

36 float q = 0.0f;

37 for (int i = 0; i < R.length; i++) {

38 for (int j = 0; j < R[i].length; j++) {

39 if (R[i][j] > 0) { // foreground pixel in reference image

40 q = q + D[r + i][s + j];

41 }

42 }

43 }

44 return q;

45 }

46 }

Prog. 23.3
Java implementation of Alg.
23.3 (class ChamferMatcher).
The distance transform of
the binary search image I is
calculated in the constructor
method by an instance of class
DistanceTransform and stored
as a 2D float array (line 18).
The method getMatch(R) in
lines 21–45 computes the 2D
match function Q (again as a
float array) for the reference
image R.

585

24

Non-Rigid Image Matching

The correlation-based registration methods described in Chapter 23
are rigid in the sense that they provide for translation as the only
form of geometric transformation and positioning is limited to whole
pixel units. In this chapter we look at methods that are capable
of registering a reference image under (almost) arbitrary geometric
transformations, such as changes in rotation, scale, and affine distor-
tion, and also to sub-pixel accuracy.

At the core of this chapter is a detailed description of the clas-
sic Lucas-Kanade algorithm [154] and its efficient implementation.
Unlike the methods presented earlier, the algorithms described here
typically do not perform a global search over the entire image to find
the best match, but start from an initial estimate of the geometric
transformation to home in on the optimum position and distortion
in an iterative fashion. This is not difficult, for example, in tracking
applications, where the approximate location of a particular image
patch can be predicted from the observed motion in previous frames.
Of course, the global matching methods described in Chapter 23 can
be used to find a coarse starting solution.

24.1 The Lucas-Kanade Technique

The basic idea of the Lucas-Kanade technique is best illustrated in
the 1D case (see Fig. 24.1(a)).

24.1.1 Registration in 1D

Given two 1D, real-valued functions f(x), g(x), the registration prob-
lem is to find the disparity t in the (horizontal) x-direction under the
assumption that g is a shifted version of f , that is,

g(x) = f(x− t). (24.1)

If the function f is linear in a (sufficiently large) neighborhood of
some point x with slope f ′(x), then

587
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_24

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

24 Non-Rigid Image
Matching

Fig. 24.1
Registering two 1D functions

(figure adapted from [154]).
The 1D function g(x) is as-

sumed to be a shifted version
of f(x). In (a), f is approx-
imately linear at position ẋ,

with slope f ′(ẋ) = dy/dx.
Under this condition, the
horizontal displacement t

can be estimated from the
difference of the local func-

tion values f(ẋ) and g(ẋ) as
t ≈ (f(ẋ) − g(ẋ))/f ′(ẋ). In

(b), the overall displacement t̄
is calculated by averaging the
individual displacement esti-
mates from multiple samples

in the region R = [xa, xb].

(a)

f(x)

g(x) = f(x−t)

ẋ ẋ+t
x

f(ẋ)

g(ẋ)

t

d(ẋ) = g(ẋ) − f(ẋ)

dx

dy

(b)

f(x)

g(x)

x

t̄

R
xa xb

f(x− t) ≈ f(x)− t · f ′(x) (24.2)

and therefore

g(x) ≈ f(x)− t · f ′(x). (24.3)

Thus, given the function values f(x), g(x) and the first derivative
f ′(x) at some point x, the displacement t can be estimated (from
Eqn. (24.2)) as

t ≈ f(x)− g(x)
f ′(x)

. (24.4)

Note that this can be viewed as a first-order Taylor expansion1 of
the function f . Obviously, the estimate of the shift t in Eqn. (24.4)
depends only on a single pair of function samples at position x and
fails at points where f is either not linear or flat, that is, where the
first derivative f ′ vanishes. To obtain a more robust displacement
estimate it appears natural to extend the calculation over a range
R of sample values, thereby aligning a complete section of the two
functions f and g (see Fig. 24.1(b)). This problem can be formulated
as finding the displacement t that minimizes the L2 distance between
the two functions f and g over a range R, that is, finding t such that

E(t) =
∑

x∈R

[f(x−t)− g(x)]2 =
∑

x∈R

[f(x)− t · f ′(x) − g(x)]2 (24.5)

1 See also Sec. C.3.2 in the Appendix.
588

24.1 The Lucas-Kanade
Technique

is a minimum. This can be accomplished by calculating the first
derivative of the aforementioned expression (with respect to t) and
setting it equal to zero, which gives

∂E
∂t

= 2 ·
∑

x∈R

f ′(x) ·
[
f(x)− f ′(x) · t− g(x)

]
= 0 . (24.6)

By solving this equation the optimal shift is found as

topt =
[∑

x∈R

[f ′(x)]2
]−1 ·

∑

x∈R

f ′(x)·[f(x)−g(x)] . (24.7)

Note that this local estimation works even if the function f is flat
at some positions in R, unless f ′(x) is zero everywhere R. However,
since the estimate is based only on linear (i.e., first-order) prediction,
the estimate is generally not accurate. For this purpose, the following
iterative optimization scheme is proposed in [154], which is really the
basis of the Lucas-Kanade algorithm. With t(0) = tstart as the initial
estimate of the displacement (which may be zero), t is successively
updated as

t(k) = t(k−1) +
[∑

x∈R

[f ′(x)]2
]−1·

∑

x∈R

f ′(x) · [f(x)− g(x)] , (24.8)

for k = 1, 2, . . . , until either t(k) converges or a maximum number of
steps is reached.

24.1.2 Extension to Multi-Dimensional Functions

As shown in [154], the formulation given in Sec. 24.1.1 can be easily
generalized to align multi-dimensional, scalar-valued functions, in-
cluding 2D images. In general, the involved functions F (x) and G(x)
are now defined over Rm, and thus all coordinates x = (x1, . . . , xm)
and spatial shifts t = (t1, . . . , tm) are m-dimensional column vec-
tors. The task is, analogous to Eqn. (24.5), to find the vector t that
minimizes the error quantity

E(t) =
∑

x∈R

[F (x− t)−G(x)]2, (24.9)

where R denotes an m-dimensional region. The linear approximation
in Eqn. (24.2) becomes

F (x− t) ≈ F (x)−∇F (x) · t, (24.10)

where the row vector∇F (x) =
(

∂F
∂x1

(x), . . . , ∂F
∂xm

(x)
)

is the m-dimen-
sional gradient of the function F , evaluated at position x. Minimizing
E(t) over t is again accomplished by solving ∂E

∂t
= 0, that is (analo-

gous to Eqn. (24.6)),

2 ·
∑

x∈R

∇F (x) ·
[
F (x)−∇F (x) · t−G(x)

]
= 0 . (24.11)

The solution to Eqn. (24.11) is
589

24 Non-Rigid Image
Matching

topt =
[∑

x∈R

∇⊺
F (x) · ∇F (x)

]−1·
[∑

x∈R

∇⊺
F (x)·

[
F (x)−G(x)

]]
(24.12)

= H−1
F ·

[∑

x∈R

∇⊺
F (x) · [F (x)−G(x)]

]
, (24.13)

where HF is an estimate of the m×m Hessian matrix2 for the function
F over the region R. Note the similarity of Eqn. (24.13) to the 1D
version in Eqn. (24.7).

24.2 The Lucas-Kanade Algorithm

Based on the ideas outlined in Sec. 24.1, the Lucas-Kanade algo-
rithm [154] is not only capable of registering 2D images by finding
the optimal translation, but works for a range of geometric trans-
formations Tp that can be parameterized by a n-dimensional vector
p. Among others, this includes affine and projective transformations
(see Ch. 21) as the most important cases.

The same mathematical notation is used as in Chapter 23, that
is, I denotes the search image and R is the (typically smaller) refer-
ence image. The placement and possible distortion of the matching
image patch is described by a geometric transformation Tp (cf. Ch.
21), where p denotes a vector of transformation parameters. The
goal of the Lucas-Kanade registration algorithm is to minimize the
expression

E(p) =
∑

x∈R

[
I(Tp(x))−R(x)

]2
(24.14)

with respect to the geometric transformation parameters p, where I is
the (search) image, R is the reference image (template), and Tp(x) is
a geometric transformation or warp function with parameters p. For
example, simple 2D translation is described by the transformation

Tp(x) = x + p =
(

x + tx

y + ty

)

, (24.15)

where x = (x, y)⊺ and p=(tx, ty)⊺. The task of the alignment process
is to find the parameters that describe how to warp the search image
I, such that the match between I and R is optimal over the support
region R. Figure 24.2 illustrates the corresponding geometry.

In each iteration, the Lucas-Kanade algorithm starts with an es-
timate of the transformation parameters p and attempts to find the
parameter increment q that locally minimizes the expression

E(q) =
∑

x∈R

[
I(Tp+q(x))−R(x)

]2
. (24.16)

After calculating the optimal parameter change qopt, the parameter
vector p is updated in the form

p ← p + qopt (24.17)

2 See Sec. C.2.6 in the Appendix for details.
590

24.2 The Lucas-Kanade
Algorithm

I

R

R′

T
p+q

T
p

Fig. 24.2
Geometric relations in the
(forward) Lucas-Kanade reg-
istration algorithm. I denotes
the search image and R is the
reference image. The map-
ping T

p
warps the reference

image R from the original po-
sition (centered at the origin)
to R′, with p being the initial
parameter estimate. Match-
ing is performed between the
search image I and the warped
reference image R′. T

p+q
is

the improved warp; the op-
timal parameter change q is
estimated in each iteration.

until the process converges. Typically, the update loop is terminated
when the magnitude of the change vector qopt drops below a prede-
fined threshold.

The expression to be minimized in Eqn. (24.16) depends on the
image content and is generally nonlinear with respect to q. A locally
linear approximation of this function is obtained by the first-order
Taylor expansion on I, that is,3

I(Tp+q(x)) ≈ I(Tp(x)) + ∇I(Tp(x))
︸ ︷︷ ︸

1×2

· JT
p
(x)

︸ ︷︷ ︸

2×n

· q
︸︷︷︸

n×1

︸ ︷︷ ︸

∈R

, (24.18)

where the 2D (column) vector

∇I(x) =
(
Ix(x), Iy(x)

)
(24.19)

is the gradient of the image I at some position x and JT
p
(x) de-

notes the Jacobian matrix4 of the warp function Tp, also evaluated
at position x. In general, the Jacobian of a 2D warp function

Tp(x) =
(

Tx,p(x)
Ty,p(x)

)

(24.20)

with n parameters p = (p0, p1, . . . , pn−1)⊺ is a 2× n matrix function

JT
p
(x) =

⎛

⎝

∂Tx,p

∂p0
(x) ∂Tx,p

∂p1
(x) . . .

∂Tx,p

∂pn−1
(x)

∂Ty,p

∂p0
(x) ∂Ty,p

∂p1
(x) . . .

∂Ty,p

∂pn−1
(x)

⎞

⎠. (24.21)

With the linear approximation in Eqn. (24.18), the original minimiza-
tion problem in Eqn. (24.14) can now be written as

3 In some of the following equations, we distinguish carefully between
row and column vectors and the dimensions of vectors and matrices are
explicitly displayed (in underbraces) to avoid possible confusion.

4 The Jacobian J of a function f is a matrix containing the first partial
derivatives of f , that is, it is a matrix of functions (see also Sec. C.2.1
in the Appendix).

591

24 Non-Rigid Image
Matching

E(q) ≈
∑

u∈R

[
I(Tp(u)) +∇I(Tp(u)) · JT

p
(u) · q −R(u)

]2
(24.22)

=
∑

u∈R

[
I(ú) +∇I(ú) · JT

p
(u) · q −R(u)

]2
, (24.23)

with x́ = Tp(x). Finding the parameters q that give the smallest
difference E(q) is a linear least-squares minimization problem, which
can be solved by taking the first partial derivative with respect to q,
that is,

∂d

∂q
︸︷︷︸
n×1

≈
∑

u∈R

[
∇I(ú)
︸ ︷︷ ︸

1×2

·JT
p
(u)

︸ ︷︷ ︸
2×n

]⊺

︸ ︷︷ ︸
n×1

·
[
I(ú) +∇I(ú)

︸ ︷︷ ︸
1×2

·JT
p
(u)

︸ ︷︷ ︸
2×n

· q
︸︷︷︸
n×1

−R(u)

︸ ︷︷ ︸

∈R

]2
,

(24.24)

and setting it equal to zero.5 Solving the resulting equation for the
unknown q yields the parameter change minimizing Eqn. (24.24) as

qopt = H̄−1 · δp , (24.25)

where H̄ is an estimate of the Hessian matrix (see Eqns. (24.29)–
(24.30)),

δp =
∑

u∈R

[
∇I(ú) · JT

p
(u)

︸ ︷︷ ︸

s(u) ∈ R
n

]⊺·
[
R(u)− I(ú)
︸ ︷︷ ︸

D(u) ∈ R

]
=
∑

u∈R

s
⊺(u) ·D(u)

(24.26)

is a n-dimensional column vector, and

D(u) = R(u)− I(ú) (24.27)

is the resulting (scalar-valued) error image. s(u) = (s0(u), . . . ,
sn−1(u)) is a n-dimensional row vector, with each element corre-
sponding to one of the parameters in p. The 2D scalar fields formed
by the individual components of the vector field s(u),

s0, . . . , sn−1 : MR ×NR �→ R, (24.28)

are called steepest descent images for the current transformation pa-
rameters p.6 These images are of the same size as the reference image
R. Finally, the n× n matrix

H̄ =
∑

u∈R

[
∇I(ú)
︸ ︷︷ ︸

1×2

·JT
p
(u)

︸ ︷︷ ︸
2×n

]⊺

︸ ︷︷ ︸
n×1

·
[
∇I(ú)
︸ ︷︷ ︸

1×2

·JT
p
(u)

︸ ︷︷ ︸
2×n

]

︸ ︷︷ ︸
1×n

(24.29)

=
∑

u∈R

s
⊺(u) · s(u) ≈

⎛

⎜
⎜
⎜
⎜
⎝

∂2D
∂p2

0
(p) · · · ∂2D

∂p0 ∂pn−1
(p)

...
. . .

...

∂2D
∂pn−1 ∂p0

(p) · · · ∂2D
∂p2

n−1
(p)

⎞

⎟
⎟
⎟
⎟
⎠

(24.30)

5 Note that in Eqn. (24.24) the left factor inside the summation is a n-
dimensional column vector, while the right factor is a scalar.

6 The value sk(u) indicates the optimal change of parameter pk for the
individual pixel position u to achieve a steepest-descent optimization of
Eqn. (24.23) (see [13, Sec. 4.3]).

592

24.2 The Lucas-Kanade
Algorithm

in Eqn. (24.25) is an estimate of the Hessian matrix7 for the given
transformation parameters p, calculated over all coordinates x of the
reference image R (Eqn. (24.29)).

The inverse of this matrix is used to calculate the optimal pa-
rameter change qopt in Eqn. (24.25). A better alternative to this
formulation is to solve

H̄ · qopt = δp, (24.31)

for qopt as the unknown, without explicitly calculating H−1
p . This is

a system of linear equations in the standard form A · x = b, which
is numerically more stable and efficient to solve than Eqn. (24.25).8

24.2.1 Summary of the Algorithm

In order not to get lost after this (quite mathematical) presentation,
let us recap the key steps of the Lucas-Kanade method in a more
compact form. In summary, given a search image I, a reference image
R, a geometric transformation Tp, an initial parameter estimate pinit,
and the convergence limit ǫ, the Lucas-Kanade algorithm performs
the following steps:

A. Initialize:
1. Calculate the gradient ∇I(u) of the search image I for all

image positions u ∈ I.
2. Initialize the transformation parameters: p ← pinit.

B. Repeat:
3. Calculate the warped gradient image ∇′

I(u) = ∇I(Tp(u)), for
each position u ∈ R (by interpolation of ∇I).

4. Calculate the (2 × n) Jacobian matrix JT
p
(u) = ∂T

p

∂p
(u) of

the warp function Tp(x), for each position u ∈ R and the
current parameter vector p (see Eqn. (24.21)).

5. Compute the n-dim. row vectors su = ∇′
I(u) · JT

p
(u), for

each position u ∈ R (see Eqn. (24.26)).
6. Compute the cumulative n×n Hessian matrix as H̄ =

∑

u∈R

s⊺
u ·

su (see Eqn. (24.29)).
7. Calculate the error image D(x) = R(u)− I(Tp(u)), for each

position u ∈ R (by interpolation of I, see Eqn. (24.26)).
8. Compute the column vector δp =

∑

u∈R

s⊺
u · D(u) (see Eqn.

(24.26)).
9. Calculate the optimal parameter change qopt = H̄−1 ·δp (see

Eqn. (24.25)).
10. Update the transformation parameter: p ← p + qopt (see

Eqn. (24.17)).
Until

∥
∥qopt

∥
∥ < ǫ.

7 The Hessian matrix of a n-variable, real-valued function f is composed of
f ’s second-order partial derivatives (see also Sec. C.2.6 in the Appendix).
The Hessian matrix H is always symmetric.

8 Moreover, Eqn. (24.31) may be solvable even if the matrix H̄ is almost
singular and thus numerically not invertible [160, p. 164].

593

24 Non-Rigid Image
Matching

Alg. 24.1
Lucas-Kanade (“forward-

additive”) registration algo-
rithm. The origin of the ref-
erence image R is placed at

its center. The gradient of the
image is calculated only once

(line 6), but interpolated in
every iteration (line 15). Also,

the n × n Hessian matrix H̄
is calculated and inverted in

every iteration. The Jacobian
of the warp function T is also

evaluated repeatedly (line 16),
though this is not an expensive

calculation, at least for affine
warps (lines 32–33). Procedure

Interpolate(I, x′) returns the
interpolated value of the image

I at the continuous position
x′ ∈ R

2 (see Ch. 22 for details
and possible implementations).

1: LucasKanadeForward(I, R, T, pinit, ǫ, imax)
Input: I , the search image; R, the reference image; T , a 2D warp
function that maps any point x ∈ R

2 to some point x′ = Tp(x),
with transformation parameters p = (p0, . . . , pn−1); pinit, initial
estimate of the warp parameters; ǫ, the error limit; imax, the
maximum number of iterations.
Returns the modified warp parameter vector p for the best fit
between I and R, or nil if no match could be found.

2: (MR, NR) ← Size(R) ⊲ size of the reference image R
3: xc ← 0.5 · (MR−1, NR−1) ⊲ center of R
4: p ← pinit ⊲ initial transformation parameters
5: n ← Length(p) ⊲ parameter count
6: (Ix, Iy) ← Gradient(I) ⊲ calculate the gradient ∇I
7: i ← 0 ⊲ iteration counter

8: do ⊲ main loop
9: i ← i + 1

10: H̄ ← 0n,n ⊲ H̄ ∈ R
n×n, initialized to zero

11: δp ← 0n ⊲ sp ∈ R
n, initialized to zero

12: for all positions u ∈ (MR×NR) do
13: x ← u − xc ⊲ position w.r.t. the center of R
14: x′ ← Tp(x) ⊲ warp x to x′ by transf. Tp

Estimate the gradient of I at the warped position x′:
15: ∇ ←

(
Interpolate(Ix, x′), Interpolate(Iy, x′)

)
⊲ 2D row

vector
16: J ← Jacobian(Tp, x) ⊲ Jacobian of Tp at pos. x
17: s ← (∇ · J)

⊺
⊲ s is a column vector of length n

18: H ← s · s
⊺

⊲ outer product, H is of size n×n
19: H̄ ← H̄ + H ⊲ cumulate the Hessian (Eq. 24.30)
20: d ← R(u) − Interpolate(I, x′) ⊲ pixel difference d ∈ R

21: δp ← δp + s · d

22: qopt ← H̄−1 · δp ⊲ Eq. 24.17, or solve H̄·qopt=δp (Eq. 24.31)
23: p ← p + qopt

24: while (
∥
∥qopt

∥
∥ > ǫ) ∧ (i < imax) ⊲ repeat until convergence

25: if i < imax then
26: return p
27: else
28: return nil

29: Gradient(I)
Returns the gradient of I as a pair of maps.

30: Hx = 1
8
·
[−1 0 1

−2 0 2
−1 0 1

]

, Hy = 1
8
·
[−1 −2 −1

0 0 0
1 2 1

]

31: return (I ∗ Hx, I ∗ Hy)

32: Jacobian(Tp, x)
Returns the 2 × n Jacobian matrix of the 2D warp function
Tp(x) = (Tx,p(x), Ty,p(x)) with parameters p = (p0, . . . , pn−1)
for the spatial position x ∈ R

2.

33: return

⎛

⎝

∂Tx,p

∂p0
(x)

∂Tx,p

∂p1
(x) . . .

∂Tx,p

∂pn−1
(x)

∂Ty,p

∂p0
(x)

∂Ty,p

∂p1
(x) . . .

∂Ty,p

∂pn−1
(x)

⎞

⎠ ⊲ see Eq. 24.21

594

24.3 Inverse
Compositional
Algorithm

The complete specification of the Lucas-Kanade algorithm (re-
ferred to as the “forward-additive” algorithm in [13]) is given in Alg.
24.1. In addition to the two images I and R, the procedure requires
the assumed type of the geometric transformation T , the estimated
initial transformation parameters pinit, a convergence limit ǫ and the
maximum number of iterations imax. The optimal parameter vector
p is returned or nil if the optimization did not converge. For better
numerical stability, the origin of the reference image R is placed at its
center xc (see line 3), as is also illustrated in Fig. 24.2. The algorithm
shows (unlike the just given summary) that it is sufficient to calculate
the Jacobian J (see line 16) and the Hessian matrix H̄ (see line 18)
only for the current position (u) in the reference image, which im-
plies relatively modest storage requirements. Additional instructions
for calculating the Jacobian and Hessian matrices for specific linear
transformations T are described in Sec. 24.4. In the case that H̄
cannot be inverted (because it is singular) in line 22, the algorithm
could either stop (and return nil) or continue with a small random
perturbation of the transformation parameters p.

This so-called forward-additive algorithm performs reliably if the
assumed type of geometric transformation is correct and the ini-
tial parameter estimate is sufficiently close to the actual parameters.
However, it is computationally demanding since it requires repeated
warping of the gradient image and the Jacobian JT

p
as well as the

Hessian matrix H must be re-calculated in each iteration. Very sim-
ilar results at greatly improved performance are obtained with the
“inverse compositional algorithm” described in Sec. 24.3.

24.3 Inverse Compositional Algorithm

This algorithm, described in [14], exchanges the roles of the search
image I and the reference image R. As illustrated in Fig. 24.3, the
reference image R remains anchored at the original position, while the
geometric transformations are applied to (parts of) the search image
I. In particular, the transformation Tp now describes the mapping
from the warped image I ′ back to the original image I. The advan-
tage of this algorithm is that it avoids re-evaluating the Jacobian
and Hessian matrices in every iteration while exhibiting convergence
properties similar to the Lucas-Kanade (forward-additive) algorithm
described in Sec. 24.2.

In this algorithm, the expression to be minimized in each iteration
is (cf. Eqn. (24.16))

E(q) =
∑

u∈R

[
R(Tq(u))− I(Tp(u))

]2
, (24.32)

with respect to the parameter change q, producing an optimal change
vector qopt. Subsequently, the geometric transformation is updated
not by simply adding qopt to the current parameter estimate p (as in
Eqn. (24.17)), but by concatenating the corresponding warps in the
form

Tp′(x) = (T −1
qopt

◦ Tp)(x) = Tp(T −1
qopt

(x)) (24.33)
595

24 Non-Rigid Image
Matching

Fig. 24.3
Geometry of the inverse com-

positional registration algo-
rithm. I denotes the search

image and R is the reference
image. The geometric trans-

formation T
p

warps the image
I

p
back to the original search
image I, with p being the

initial parameter estimate.
Matching is performed between

the (unwarped) reference im-
age R and the warped search
image I

p
. Note that the ref-

erence image R always remains
anchored at the origin. In

each iteration, the incremen-
tal warp T

q
(with parameter

vector q) is estimated, map-
ping the image I

p
to image

I
p

′ . The resulting composite
warp T

p
′ (mapping I

p
′ back

to I) with parameters p′ is
obtained by concatenating the
transformations T −1

q
and T

p
.

I

I
p

I
p

′

R

T
p

′ = T −1
q

◦ T
p

T
p

T
q

where ◦ denotes the concatenation (successive application) of trans-
formations. In the special (but frequent) case of linear geometric
transformations, the concatenation is simply accomplished by multi-
plying the corresponding transformation matrices Mp, Mqopt

, that is,

Mp′ = Mp ·M−1
qopt

(24.34)

(see also Sec. 24.4.4). Also note that the “incremental” transforma-
tion Tqopt

is inverted before it is concatenated with the current warp
Tp, to calculate the parameters of the resulting composite warp Tp′ .
Thus the geometric transformation T must be invertible, but this is
again no problem with linear (affine or projective) warps.

In summary, given a search image I, a reference image R, a geo-
metric transformation Tp, an initial parameter estimate pinit and the
convergence limit ǫ, the “inverse compositional algorithm” performs
the following steps:

A. Initialize:
1. Calculate the gradient ∇R(x) of the reference image R for all

x ∈ R.
2. Calculate the Jacobian J(x) = ∂T

p

∂p
(x) of the warp function

Tp(x) for all x ∈ R, with p = 0.
3. Compute sx = ∇R(x) · J(x) for all x ∈ R.
4. Calculate the Hessian matrix as H =

∑

R s⊺
x · sx and pre-

calculate its inverse H−1.
5. Initialize the transformation parameters: p ← pinit.

B. Repeat:
6. Warp the search image I to I ′, such that I ′(x) = I(Tp(x)),

for all x ∈ R.
7. Compute the (column) vector δp =

∑

R sx · [I ′(x)−R(x)].
8. Estimate the optimal parameter change qopt = H−1 · δp.
9. Find the warp parameters p′, such that Tp′ = T −1

qopt
◦ Tp.

10. Update the warp parameter p ← p′.
Until

∥
∥qopt

∥
∥ < ǫ.

596

24.3 Inverse
Compositional
Algorithm

1: LucasKanadeInverse(I, R, T, pinit, ǫ, imax)
Input: I , the search image; R, the reference image; T , a 2D
warp function that maps any point x ∈ R

2 to x′ = Tp(x) using
parameters p = (p0, . . . , pn−1); pinit, initial estimate of the warp
parameters; ǫ, the error limit (typ. ǫ = 10−3); imax, the maximum
number of iterations.
Returns the updated warp parameter vector p for the best fit
between I and R, or nil if no match could be found.

2: (MR, NR) ← Size(R) ⊲ size of the reference image R
3: xc ← 0.5 · (MR−1, NR−1) ⊲ center of R

Initialize:
4: n ← Length(p) ⊲ parameter count n

5: Create map S : (MR × NR) �→ R
n ⊲ n “steepest-descent images”

6: (Rx, Ry) ← Gradient(R) ⊲ (Rx(u), Ry(u))
⊺

= ∇R(u)

7: H̄ ← 0n,n ⊲ initialize n × n Hessian matrix to zero

8: for all positions u ∈ (MR × NR) do
9: x ← u − xc ⊲ centered position

10: ∇R ← (Rx(u), Ry(u)) ⊲ 2-dimensional row vector
11: J ← Jacobian(T0(x)) ⊲ Jacob. of T at pos. x with p = 0
12: s ← (∇R · J)

⊺
⊲ s is a column vector of length n

13: S(u) ← s ⊲ keep s for later use
14: H ← s · s

⊺
⊲ outer product, H is of size n×n

15: H̄ ← H̄ + H ⊲ cumulate the Hessian (Eq. 24.30)

16: H̄−1 ← Inverse(H̄)

17: if H̄−1 = nil then ⊲ H̄ could not be inverted
18: return nil ⊲ stop

19: p ← pinit ⊲ initial parameter estimate
20: i ← 0 ⊲ iteration counter

Main loop:
21: do
22: i ← i + 1
23: δp ← 0n ⊲ δp ∈ R

n, initialized to zero

24: for all positions u ∈ (MR × NR) do
25: x ← u − xc ⊲ centered position
26: x′ ← Tp(x) ⊲ warp I to I ′

27: d ← Interpolate(I, x′) − R(u) ⊲ pixel difference d ∈ R

28: s ← S(u) ⊲ get pre-calculated s
29: δp ← δp + s · d

30: qopt ← H−1 · δp ⊲ H−1 is pre-calculated in line 16

31: p′ ← determine, such that Tp′ (x) = Tp(T −1
qopt

(x))

32: p ← p′

33: while (
∥
∥qopt

∥
∥ > ǫ) ∧ (i < imax) ⊲ repeat until convergence

34: return

{
p for i < imax

nil otherwise

Alg. 24.2
Inverse compositional registra-
tion algorithm. The gradient
vectors ∇R(u, v) of the refer-
ence image R are calculated
only once (line 6) using proce-
dure Gradient(), as defined in
Alg. 24.1. The Jacobian matrix
J of the warp function T

p
is

also evaluated only once (line
11) for p = 0 (i.e., the identity
mapping) over all positions of
the reference image R. Sim-
ilarly, the Hessian matrix H
and its inverse H−1 are calcu-
lated only once (lines 15, 16).

H−1 is used to calculate the
optimal parameter change vec-
tor qopt in line 30 of the main

loop. Procedure Interpolate()
in line 27 is the same as in
Alg. 24.1. This algorithm is
typically about 5–10 times
faster than the original Lucas-
Kanade (forward) algorithm
(see Alg. 24.1), with similar
convergence properties.

One can see clearly that in this variant several steps are performed
only once at initialization and do not appear inside the main loop. A
detailed and concise listing of the inverse compositional algorithm is
given in Alg. 24.2 and concrete setups for various linear transforma-

597

24 Non-Rigid Image
Matching

tions are described in Sec. 24.4. Since the Jacobian matrix (for the
null parameter vector p = 0) and the Hessian matrix are calculated
only once during initialization, this algorithm executes significantly
faster than the original Lucas-Kanade (forward-additive) algorithm,
while offering similar convergence properties.

24.4 Parameter Setups for Various Linear

Transformations

The use of linear transformatons for the geometric mapping T is very
common. In the following, we describe detailed setups required for
the Lucas-Kanade algorithm for various geometric transformations,
such as pure translation as well as affine and projective transfor-
mations. This should help to reduce the chance of confusion about
the content and structure of the involved vectors and matrices. For
additional details and concrete implementations of these transforma-
tions readers should consult the associated Java source code in the
imagingbook9 library.

24.4.1 Pure Translation

In the case of pure 2D translation, we have n = 2 parameters tx, ty

and the geometric transformation is (see Eqn. (24.15))

x́ = Tp(x) = x +
(

tx

ty

)

, (24.35)

with the parameter vector p = (p0, p1)⊺ = (tx, ty)⊺ and x = (x, y)⊺.
Thus the two component functions of the transformation (cf. Eqn.
(24.18)) are

Tx,p(x) = x + tx,

Ty,p(x) = y + ty,
(24.36)

with the 2× 2 Jacobian matrix

JT
p
(x) =

⎛

⎝

∂Tx,p

∂tx
(x) ∂Tx,p

∂ty
(x)

∂Ty,p

∂tx
(x) ∂Ty,p

∂ty
(x)

⎞

⎠ =
(

1 0
0 1

)

. (24.37)

Note that in this case JT
p
(x) is constant,10 that is, independent of

the position x and the parameters p. The 2D column vector δp (Eqn.
(24.26)) is calculated as

δp =
∑

u∈R

[
∇I(Tp(u)

︸ ︷︷ ︸

ú∈R
2

) · JT
p
(u)
]⊺·
[
R(u)− I(Tp(u))
︸ ︷︷ ︸

D(u)∈R

]
(24.38)

=
∑

u∈R

[(
Ix(ú), Iy(ú)

)
·
(

1 0
0 1

)

︸ ︷︷ ︸

s(u)=(s0(u),s1(u))

]⊺·D(u) =
∑

u∈R

(
Ix(ú)
Iy(ú)

)

·D(u)

(24.39)

=
(∑

u Ix(ú) ·D(u)
∑

u Iy(ú) ·D(u)

)

=
(∑

u s0(u) ·D(u)
∑

u s1(u) ·D(u)

)

=
(

δ0

δ1

)

, (24.40)

9 Package imagingbook.pub.geometry.mappings.
10 I2 denotes the 2 × 2 identity matrix.

598

24.4 Parameter Setups
for Various Linear
Transformations

where Ix, Iy denote the (estimated) first derivatives of the search
image I in x and y-direction, respectively.11 Thus in this case the
steepest descent images (Eqn. (24.28)) s0(x) = Ix(x́) and s1(x) =
Iy(x́) are simply the components of the interpolated gradient of I
in the region of the shifted reference image. The associated Hessian
matrix (Eqn. (24.29)) is calculated as

H̄ =
∑

u∈R

[
∇I(Tp(u)) · JT

p
(u)
]⊺ ·

[
∇I(Tp(u)) · JT

p
(u)
]

(24.41)

=
∑

u∈R

[
∇I(ú) ·

(
1 0
0 1

)

︸ ︷︷ ︸

s(u)

]⊺·
[
∇I(ú) ·

(
1 0
0 1

)

︸ ︷︷ ︸

s(u)

]
=
∑

u∈R

s
⊺(u) · s(u) (24.42)

=
∑

u∈R

∇⊺
I (ú) · ∇I(ú) =

∑

u∈R

(
Ix(ú)
Iy(ú)

)

·
(
Ix(ú), Iy(ú)

)
(24.43)

=
∑

u∈R

(
I2

x(ú) Ix(ú)·Iy(ú)
Ix(ú)·Iy(ú) I2

y(ú)

)

(24.44)

=
(

Σ I2
x(ú) Σ Ix(ú)·Iy(ú)

Σ Ix(ú)·Iy(ú) Σ I2
y(ú)

)

=
(

H00 H01

H10 H11

)

, (24.45)

again with ú = Tp(u). Since H̄ is symmetric (H01 = H10) and only
of size 2× 2, its inverse can be easily obtained in closed form:

H̄−1 =
1

H00 ·H11 −H01 ·H10

·
(

H11 −H01

−H10 H00

)

(24.46)

=
1

H00 ·H11 −H2
01

·
(

H11 −H01

−H01 H00

)

. (24.47)

The resulting optimal parameter increment (see Eqn. (24.25)) is

qopt =
(

t′
x

t′
y

)

= H̄−1 · δp = H̄−1 ·
(

δ0

δ1

)

(24.48)

=
1

H11 ·H22 −H2
12

·
(

H11 · δ0 −H01 · δ1

H00 · δ1 −H01 · δ0

)

, (24.49)

with δ0, δ1 as defined in Eqn. (24.40). Alternatively the same result
could be obtained by solving Eqn. (24.31) for qopt.

24.4.2 Affine Transformation

An affine transformation in 2D can be expressed (for example) with
homogeneous coordinates12 in the form

Tp(x) =
(

1 + a b tx

c 1 + d ty

)

·

⎛

⎝

x
y
1

⎞

⎠ , (24.50)

with n = 6 parameters p = (p0, . . . , p5)⊺ = (a, b, c, d, tx, ty)⊺. This
parameterization of the affine transformation implies that the null

11 See Sec. C.3.1 in the Appendix for how to estimate gradients of discrete
images.

12 See also Chapter 21, Secs. 21.1.2 and 21.1.3.
599

24 Non-Rigid Image
Matching

parameter vector (p = 0) corresponds to the identity transformation.
The component functions of this transformation thus are

Tx,p(x) = (1 + a) · x + b · y + tx,

Ty,p(x) = c · x + (1 + d) · y + ty,
(24.51)

and the associated Jacobian matrix at some position x = (x, y) is

JT
p
(x) =

⎛

⎝

∂Tx,p

∂a

∂Tx,p

∂b

∂Tx,p

∂c

∂Tx,p

∂d

∂Tx,p

∂tx

∂Tx,p

∂ty

∂Ty,p

∂a

∂Ty,p

∂b

∂Ty,p

∂c

∂Ty,p

∂d

∂Ty,p

∂tx

∂Ty,p

∂ty

⎞

⎠(x) (24.52)

=
(

x y 0 0 1 0
0 0 x y 0 1

)

. (24.53)

Note that in this case the Jacobian only depends on the position
x = (x, y), not on the transformation parameters p. It can thus be
pre-calculated once for all positions x of the reference image R. The
6-dimensional column vector δp (Eqn. (24.26)) is obtained as

δp =
∑

u∈R

[
∇I(Tp(u)) · JT

p
(u)

︸ ︷︷ ︸

s(u)

]⊺·
[
R(u)− I(Tp(u))
︸ ︷︷ ︸

D(u)

]
(24.54)

=
∑

u∈R

[

(Ix(ú), Iy(ú)) ·
(

x y 0 0 1 0
0 0 x y 0 1

)]⊺

·D(u) (24.55)

=
∑

u∈R

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ix(ú)·x
Ix(ú)·y
Iy(ú)·x
Iy(ú)·y
Ix(ú)
Iy(ú)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

·D(u) =
∑

u∈R

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

s0(u)
s1(u)
s2(u)
s3(u)
s4(u)
s5(u)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

·D(u) (24.56)

=
∑

u∈R

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

s0(u)·D(u)
s1(u)·D(u)
s2(u)·D(u)
s3(u)·D(u)
s4(u)·D(u)
s5(u)·D(u)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Σ s0(u)·D(u)
Σ s1(u)·D(u)
Σ s2(u)·D(u)
Σ s3(u)·D(u)
Σ s4(u)·D(u)
Σ s5(u)·D(u)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (24.57)

again with ú = Tp(u). The corresponding Hessian matrix (of size
6×6) is found as

H̄ =
∑

u∈R

[
∇I(Tp(u)) · JT

p
(u)
]⊺ ·

[
∇I(Tp(u)) · JT

p
(u)
]

(24.58)

=
∑

x∈R

s
⊺(u) · s(u) =

∑

x∈R

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ix(ú)·x
Ix(ú)·y
Iy(ú)·x
Iy(ú)·y
Ix(ú)
Iy(ú)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊺

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ix(ú)·x
Ix(ú)·y
Iy(ú)·x
Iy(ú)·y
Ix(ú)
Iy(ú)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (24.59)

⎛

⎜
⎜
⎜
⎜
⎝

ΣI2
x (ú)x2

ΣI2
x (ú)xy ΣIx(ú)Iy(ú)x2

ΣIx(ú)Iy(ú)xy ΣI2
x (ú)x ΣIx(ú)Iy(ú)x

ΣI2
x (ú)xy ΣI2

x (ú)y2
ΣIx(ú)Iy(ú)xy ΣIx(ú)Iy(ú)y2

ΣI2
x (ú)y ΣIx(ú)Iy(ú)y

ΣIx(ú)Iy(ú)x2
ΣIx(ú)Iy(ú)xy ΣI2

y (ú)x2
ΣI2

y (ú)xy ΣIx(ú)Iy(ú)x ΣI2
y (ú)x

ΣIx(ú)Iy(ú)xy ΣIx(ú)Iy(ú)y2
ΣI2

y (ú)xy ΣI2
y (ú)y2(ú) ΣIx(ú)Iy(ú)y ΣI2

y (ú)y

ΣI2
x (ú)x ΣI2

x (ú)y ΣIx(ú)Iy(ú)x ΣIx(ú)Iy(ú)y ΣI2
x (ú) ΣIx(ú)Iy(ú)

ΣIx(ú)Iy(ú)x ΣIx(ú)Iy(ú)y ΣI2
y (ú)x ΣI2

y (ú)y ΣIx(ú)Iy(ú) ΣI2
y (ú)

⎞

⎟
⎟
⎟
⎟
⎠

.

(24.60)
600

24.4 Parameter Setups
for Various Linear
Transformations

Finally, the optimal parameter increment (see Eqn. (24.25)) is calcu-
lated as

qopt =
(
a′, b′, c′, d′, t′

x, t′
y

)⊺
= H̄−1 · δp (24.61)

or, equivalently, by solving H · qopt = δp (see Eqn. (24.31)). For
both approaches, no closed-form solution is possible but numerical
methods must be used.

24.4.3 Projective Transformation

A projective transformation13 can be expressed (for example) with
homogeneous coordinates in the form

Tp(x) = Mp · x =

⎛

⎝

1 + a b tx

c 1 + d ty

e f 1

⎞

⎠ ·

⎛

⎝

x
y
1

⎞

⎠ , (24.62)

with n = 8 parameters p = (p0, . . . , p7) = (a, b, c, d, e, f, tx, ty). Again
the null parameter vector corresponds to the identity transforma-
tion. In this case, the results need to be converted back to non-
homogeneous coordinates (see Ch. 21, Sec. 21.1.2), which yields the
transformation’s effective (nonlinear) component functions

Tx,p(x) =
(1 + a) · x + b · y + tx

e · x + f · y + 1
=

α

γ
, (24.63)

Ty,p(x) =
c · x + (1 + d) · y + ty

e · x + f · y + 1
=

β

γ
, (24.64)

with x = (x, y) and

α = (1 + a) · x + b · y + tx, (24.65)

β = c · x + (1 + d) · y + ty, (24.66)

γ = e · x + f · y + 1. (24.67)

In this case, the associated Jacobian matrix for position x = (x, y),

JT
p
(x) =

⎛

⎝

∂Tx,p

∂a

∂Tx,p

∂b

∂Tx,p

∂c

∂Tx,p

∂d

∂Tx,p

∂e

∂Tx,p

∂f

∂Tx,p

∂tx

∂Tx,p

∂ty

∂Ty,p

∂a

∂Ty,p

∂b

∂Ty,p

∂c

∂Ty,p

∂d

∂Ty,p

∂e

∂Ty,p

∂f

∂Ty,p

∂tx

∂Ty,p

∂ty

⎞

⎠(x)

=
1
γ
·

⎛

⎝
x y 0 0 −x·α

γ − y·α
γ 1 0

0 0 x y −x·β
γ − y·β

γ 0 1

⎞

⎠, (24.68)

depends on both the position x as well as the transformation param-
eters p. The setup for the resulting Hessian matrix H is analogous
to Eqns. (24.58)–(24.61).

24.4.4 Concatenating Linear Transformations

The “inverse compositional” algorithm described in Sec. 24.3 requires
the concatenation of geometric transformations (see Eqn. (24.33)). In

13 See also Chapter 21, Sec. 21.1.4.
601

24 Non-Rigid Image
Matching

particular, if Tp, Tq are linear transformations (in homogeneous co-
ordinates, see Eqn. (24.62)), with associated transformation matrices
Mp and Mq (such that Tp(x) = Mp ·x and Tq(x) = Mq ·x, respec-
tively), the matrix for the concatenated transformation,

Tp′ (x) = (Tp ◦ Tq)(x) = Tq(Tp(x)) (24.69)

is simply the product of the original matrices, that is,

Mp′ · x = Mq ·Mp · x. (24.70)

The resulting parameter vector p′ for the composite transformation
Tp′ can be simply extracted from the corresponding elements of the
matrix Mp′ (see Eqn. (24.50) and Eqn. (24.62)), respectively.

24.5 Example

Figure 24.4 shows an example for using the classic Lucas-Kanade
(forward-additive) matcher. Initially, a rectangular region Q is se-
lected in the search image I, marked by the green rectangle in Fig.
24.4(a,b), which specifies the approximate position of the reference
image. To create the (synthetic) reference image R, all four corners
of the rectangle Q were perturbed randomly in x- and y-direction by
Gaussian noise (with σ = 2.5) in x- and y-direction. The resulting
quadrilateral Q′ (red outline in Fig. 24.4(a,b)) specifies the region in
image I where the reference image R was extracted by transforma-
tion and interpolation (see Fig. 24.4(d)). The matching process starts
from the rectangle Q, which specifies the initial warp transformation
Tinit, given by the green rectangle (Q), while the real (but unknown)
transformation corresponds to the red quadrilateral (Q′). Each iter-
ation of the matcher updates the warp transformation T . The blue
circles in Fig. 24.4(b) mark the corners of the back-projected refer-
ence frame under the changing transformation T ; the radius of the
circles corresponds to the remaining registration error between the
reference image R and the current subimage of I.

Figure 24.4(e) shows the steepest-descent images s0, . . . , s7 (see
Eqn. (24.28)) for the first iteration. Each of these images is of
the same size as R and corresponds to one of the 8 parameters
a, b, c, d, e, f, tx, ty of the projective warp transformation (see Eqn.
(24.62)). The value sk(u, v) in a particular image sk corresponds to
the optimal change of the transformation parameter k with respect to
the associated image position (u, v). The actual change of parameter
k is calculated by averaging over all positions (u, v) of the reference
image R.

The example demonstrates the robustness and fast convergence
of the classic Lucas-Kanade matcher, which typically requires only
5–20 iterations. In this case, the matcher performed 7 iterations
to converge (with convergence limit ǫ = 0.00001). In comparison,
the inverse-compositional matcher typically requires more iterations
and is less tolerant to deviations of the initial warp transformation,

602

24.6 Java
Implementation

(a) (b)

Q Q′

(c) (d)

s0 (param. a) s1 (param. b) s2 (param. c) s3 (param. d)

s4 (param. e) s5 (param. f) s6 (param. tx) s7 (param. ty)

(e) Steepest descent images s0, . . . , s7 (for parameters a, b, . . . , tx, ty)

Fig. 24.4
Lucas-Kanade (forward-
additive) matcher with pro-
jective warp transformation.
Original image I (a b); the ini-
tial warp transformation Tinit

is visualized by the green rect-
angle Q, which corresponds
to the subimage shown in (c).
The actual reference image
R (d) has been extracted
from the red quadrilateral
Q′ (by transformation and
interpolation). The blue cir-
cles mark the corners of the
back-projected reference image
under the changing trans-
formation T

p
. The radius

of each circle corresponds
to the registration error be-
tween the transformed ref-
erence image R and the cur-
rently overlapping part of the
search image I. The steepest-
descent images s0, . . . , s7 (one
for each of the 8 parameters
a, b, c, d, e, f, tx, ty of the pro-
jective transformation) for the
first iteration are shown in (e).
These images are of the same
size as the reference image R.

that is, has a smaller convergence range than the additive-forward
algorithm.14

24.6 Java Implementation

The algorithms described in this chapter have been implemented in
Java, with the source code available as part of the imagingbook15

library on the book’s accompanying website. As usual, most Java
variables and methods in the online code have been named similarly
to the identifiers used in the text for easier understanding.

14 In fact, the inverse-compositional algorithm does not converge with this
particular example.

15 Package imagingbook.pub.lucaskanade.
603

24 Non-Rigid Image
Matching

LucasKanadeMatcher (class)

This is the (abstract) super-class of the concrete matchers (For-

wardAdditiveMatcher, InverseCompositionalMatcher) described
further. It defines a static inner class Parameters16 with public pa-
rameter fields such as

tolerance (= ǫ, default 0.00001),
maxIterations (= imax, default 100).

In addition, class LucasKanadeMatcher itself provides the following
public methods:

LinearMapping getMatch (ProjectiveMapping T)

Performs a complete match on the given image pair I, R (re-
quired by the sub-class constructors), with T used as the ini-
tial geometric transformation. The transformation object T

may be of any subtype of ProjectiveMapping,17 including
Translation and AffineMapping. The method returns a
new transformation object for the optimal match, or null if
the matcher did not converge.

ProjectiveMapping iterateOnce (ProjectiveMapping T)

This method performs a single matching iteration with the
current warp transformation T. It is typically invoked repeat-
edly after an initial call to initializeMatch(). The updated
warp transformation is returned, or null if the iteration was
unsuccessful (e.g., if the Hessian matrix could not be inverted).

boolean hasConverged ()

Returns true if (and only if) the minimization criteria (spec-
ified by the tolerance parameter) have been reached. This
method is typically used to terminate the optimization loop
after calling iterateOnce().

Point2D[] getReferencePoints ()

Returns the four corner points of the bounding rectangle of the
reference image R, centered at the origin. All warp transfor-
mations (including Tinit and Tp) refer to these coordinates.
Note that the returned point coordinates are generally non-
integer values; for example, for a reference image size 11 × 8,
the reference corner points are A = (−5,−3.5), B = (5,−3.5),
C = (5, 3.5), and D = (−5, 3.5) (see Fig. 24.5).

ProjectiveMapping getReferenceMappingTo (Point2D[] Q)

Calculates the (linear) geometric transformation between the
reference image R (centered at the origin) and the quadrilateral
specified by the point sequence Q. The type of the returned
mapping depends on the number of points in Q (max. 4).

double getRmsError ()

Returns the RMS error between images I and R for the most
recent iteration (usually called after iterateOnce()).

16 See the usage example in Prog. 24.1.
17 Class ProjectiveMapping is described in Chapter 21, Sec. 21.1.4.

604

24.6 Java
Implementation

I

R

wR = 11

hR = 8

xc

xc =
wR−1

2 = 5.0

yc

yc =
hR−1

2 = 3.5

A B

CD

x

y

Absolute coordinate origin

Fig. 24.5
Reference coordinates. The
center of the reference image
R is aligned with the origin
of the search image I (red
square), which is taken as the
absolute origin. Image samples
(indicated by round dots) are
assumed to be located at inte-
ger positions. In this example,
the reference image R is of size
wR = 11 and hR = 8, thus the
center coordinates are xc = 5.0
and yc = 3.5. In the x/y coor-
dinate frame of I (i.e., absolute
coordinates), the four corners
of R’s bounding rectangle are
A = (−5, −3.5), B = (5, −3.5),
C = (5, 3.5) and D = (−5, 3.5).
All warp transformations refer
to these reference points (cf.
Figs. 24.2 and 24.3).

LucasKanadeForwardMatcher (class)

This sub-class of LucasKanadeMatcher implements the Lucas-Kanade
(“forward-additive”) algorithm, as outlined in Alg. 24.1. It provides
the aforementioned methods for LucasKanadeMatcher and two con-
structors:

LucasKanadeForwardMatcher (FloatProcessor I,

FloatProcessor R)

Here I is the search image, R is the (smaller) reference image.
It creates a new instance of LucasKanadeForwardMatcher us-
ing default parameter values.

LucasKanadeForwardMatcher (FloatProcessor I,

FloatProcessor R, Parameters params)

Creates a new instance of type LucasKanadeForwardMatcher

using the specific settings in params.

LucasKanadeInverseMatcher (class)

This sub-class of LucasKanadeMatcher implements the “inverse com-
positional” algorithm, as described in Alg. 24.2. It provides the same
methods and constructors as class LucasKanadeForwardMatcher:

LucasKanadeInverseMatcher (FloatProcessor I,

FloatProcessor R).
LucasKanadeInverseMatcher (FloatProcessor I,

FloatProcessor R, Parameters params).

24.6.1 Application Example

The code example in Prog. 24.1 demonstrates the use of the Lucas-
Kanade API. The ImageJ plugin is applied to the search image I
(the current image) and requires a rectangular ROI to be selected,
which is taken as the initial guess for the match region. The refer-
ence image is created synthetically by extracting a warped sub-image

605

24 Non-Rigid Image
Matching

Prog. 24.1
Lucas-Kanade code example

(ImageJ plugin). This plugin
is applied to the search image

(I) and assumes that a rect-
angular ROI is selected whose

bounding rectangle and cor-
ner points (Q) are obtained in
lines 22–27. The search image

I is copied from the current
image (as a FloatProcessor

object) in line 19. The size of
the reference image R (created

in line 24) is defined by the
ROI rectangle, whose corner

points Q also determine the
initial parameters of the geo-
metric transformation Tinit

(line 27 and 37, respectively).
The synthetic reference image

R (with the same size as the
ROI) is extracted from the

search image by warping from
a quadrilateral (QQ), which is

obtained by randomly per-
turbing the corner points of
the selected ROI (lines 28–
29). A new matcher object
is created in lines 32–33, in

this case of type LucasKanade-

ForwardMatcher (alternatively,
LucasKanadeInverseMatcher

could have been used). The
actual match operation is per-
formed in lines 40–44. It con-

sists of a simple do-while loop
which is terminated if either,

the transformation T becomes
invalid (null), the matcher
has converged or the maxi-

mum number of iterations has
been reached. Alternatively,
lines 40–44 could have been
replaced by the statement T

= matcher.getMatch(Tinit).
If the matcher has con-

verged, the final transfor-
mation Tp maps to the best-

matching sub-image of I.

1 import ...

2

3 public class LucasKanade_Demo implements PlugInFilter {

4

5 static int maxIterations = 100;

6

7 public int setup(String args, ImagePlus img) {

8 return DOES_8G + ROI_REQUIRED;

9 }

10

11 public void run(ImageProcessor ip) {

12 Roi roi = img.getRoi();

13 if (roi != null && roi.getType() != Roi.RECTANGLE) {

14 IJ.error("Rectangular selection required!)");

15 return;

16 }

17

18 // Step 1: create the search image I :

19 FloatProcessor I = ip.convertToFloatProcessor();

20

21 // Step 2: create the (empty) reference image R:

22 Rectangle roiR = roi.getBounds();

23 FloatProcessor R =

24 new FloatProcessor(roiR.width, roiR.height);

25

26 // Step 3: perturb the rectangle Q to Q′ to extract reference image R:

27 Point2D[] Q = getCornerPoints(roiR); // = Q
28 Point2D[] QQ = perturbGaussian(Q); // = Q′

29 (new ImageExtractor(I)).extractImage(R, QQ);

30

31 // Step 4: create the Lucas-Kanade matcher (forward or inverse):

32 LucasKanadeMatcher matcher =

33 new LucasKanadeForwardMatcher(I, R);

34

35 // Step 5: calculate the initial mapping Tinit:

36 ProjectiveMapping Tinit =

37 matcher.getReferenceMappingTo(Q);

38

39 // Step 6: initialize and run the matching loop:

40 ProjectiveMapping T = Tinit;

41 do {

42 T = matcher.iterateOnce(T);

43 } while (T != null && !matcher.hasConverged() &&

44 matcher.getIteration() < maxIterations);

45

46 // Step 7: evaluate the result:

47 if (T == null || !matcher.hasConverged()) {

48 IJ.log("no match found!");

49 return;

50 }

51 else {

52 ProjectiveMapping Tfinal = T;

53 ...

54 }

55

56 }

606

24.7 Exercisesof I from a random quadrilateral around the selected ROI.18 The
required geometric transformations (such as ProjectiveMapping,
AffineMapping, Translation etc.) are described in Chapter 21,
Sec. 21.1.

The example demonstrates how the Lucas-Kanade matcher is ini-
tialized and called repeatedly inside the optimization loop using a
projective transformation. This usage mode is specifically intended
for testing purposes, since it allows to retrieve the state of the matcher
after every iteration. The same result could be obtained by replacing
the whole loop (lines 40–44 in Prog. 24.1) with the single instruction

ProjectiveMapping T = matcher.getMatch(Tinit);

Moreover, in line 33, the LucasKanadeForwardMatcher could be re-
placed by an instance of LucasKanadeInverseMatcher without any
additional changes. For further details, see the complete source code
on the book’s website.

24.7 Exercises

Exercise 24.1. Determine the general structure of the Hessian ma-
trix for the projective transformation (see Sec. 24.4.3), analogous to
the affine transformation in Eqns. (24.58)–(24.60).

Exercise 24.2. Create comparative statistics of the convergence prop-
erties of the classes ForwardAdditiveMatcher and InverseCompo-

sitionalMatcher by evaluating the number of iterations required
including the percentage of failures. Use a test scenario with ran-
domly perturbed reference regions as shown in Prog. 24.1.

Exercise 24.3. It is sometimes suggested to refine the warp transfor-
mation step-by-step instead of using the full transformation for the
whole matching process. For example, one could first match with
a pure translation model, then—starting from the result of the first
match—switch to an affine transformation model, and eventually ap-
ply a full projective transformation. Explore this idea and find out
whether this can yield a more robust matching process.

Exercise 24.4. Adapt the 2D Lucas-Kanade method described in
Sec. 24.2 for the registration of discrete 1D signals under shifting
and scaling. Given is a search signal I(u), for u = 0, . . . , MI − 1,
and a reference signal R(u), for u = 0, . . . , MR − 1. It is assumed
that I contains a transformed version of R, which is specified by the
mapping Tp(x) = s · x + t, with the two unknown parameters p =
(s, t). A practical application could be the registration of neighboring
image lines under perspective distortion.

Exercise 24.5. Use the Lucas-Kanade matcher to design a tracker
that follows a given reference patch through a sequence of N images.
Hint: In ImageJ, an image sequence (AVI-video or multi-frame TIFF)

18 The class ImageExtractor, used to extract the warped sub-image, is
part of the imagingbook library (package imagingbook.lib.image).

607

24 Non-Rigid Image
Matching

can be imported as an ImageStack and simply processed frame-by-
frame. Select the original reference patch in the first frame of the
image sequence and use its position to calculate the initial warp trans-
formation to find a match in the second image. Subsequently, take
the match obtained in the second image as the initial transformation
for the third image, etc. Consider two approaches: (a) use the initial
patch as the reference image for all frames of the sequence or (b)
extract a new reference image for each pair of frames.

608

25

Scale-Invariant Feature Transform

(SIFT)

Many real applications require the localization of reference positions
in one or more images, for example, for image alignment, removing
distortions, object tracking, 3D reconstruction, etc. We have seen
that corner points1 can be located quite reliably and independent
of orientation. However, typical corner detectors only provide the
position and strength of each candidate point, they do not provide
any information about its characteristic or “identity” that could be
used for matching. Another limitation is that most corner detectors
only operate at a particular scale or resolution, since they are based
on a rigid set of filters.

This chapter describes the Scale-Invariant Feature Transform (SIFT)
technique for local feature detection, which was originally proposed
by D. Lowe [152] and has since become a “workhorse” method in
the imaging industry. Its goal is to locate image features that can
be identified robustly to facilitate matching in multiple images and
image sequences as well as object recognition under different view-
ing conditions. SIFT employs the concept of “scale space” [151] to
capture features at multiple scale levels or image resolutions, which
not only increases the number of available features but also makes
the method highly tolerant to scale changes. This makes it possible,
for example, to track features on objects that move towards the cam-
era and thereby change their scale continuously or to stitch together
images taken with widely different zoom settings.

Accelerated variants of the SIFT algorithm have been implemented
by streamlining the scale space calculation and feature detection or
the use of GPU hardware [20, 90, 218].

In principle, SIFT works like a multi-scale corner detector with
sub-pixel positioning accuracy and a rotation-invariant feature de-
scriptor attached to each candidate point. This (typically 128-dimen-
sional) feature descriptor summarizes the distribution of the gradient
directions in a spatial neighborhood around the corresponding fea-
ture point and can thus be used like a “fingerprint”. The main steps
involved in the calculation of SIFT features are as follows:

1 See Chapter 7.
609

© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_25

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

25 Scale-Invariant
Feature Transform

(SIFT)

1. Extrema detection in a Laplacian-of-Gaussian (LoG) scale space
to locate potential interest points.

2. Key point refinement by fitting a continuous model to determine
precise location and scale.

3. Orientation assignment by the dominant orientation of the fea-
ture point from the directions of the surrounding image gradients.

4. Formation of the feature descriptor by normalizing the local gra-
dient histogram.

These steps are all described in the remaining parts of this chapter.
There are several reasons why we explain the SIFT technique here
at such great detail. For one, it is by far the most complex algo-
rithm that we have looked at so far, its individual steps are carefully
designed and delicately interdependent, with numerous parameters
that need to be considered. A good understanding of the inner work-
ings and limitations is thus important for successful use as well as for
analyzing problems if the results are not as expected.

25.1 Interest Points at Multiple Scales

The first step in detecting interest points is to find locations with
stable features that can be localized under a wide range of viewing
conditions and different scales. In the SIFT approach, interest point
detection is based on Laplacian-of-Gaussian (LoG) filters, which re-
spond primarily to distinct bright blobs surrounded by darker regions,
or vice versa. Unlike the filters used in popular corner detectors,2

LoG filters are isotropic, i.e., insensitive to orientation. To locate
interest points over multiple scales, a scale space representation of
the input image is constructed by recursively smoothing the image
with a sequence of small Gaussian filters. The difference between the
images in adjacent scale layers is used to approximate the LoG filter
at each scale. Interest points are finally selected by finding the local
maxima in the 3D LoG scale space.

25.1.1 The LoG Filter

In this section, we first outline LoG filters and the basic construc-
tion of a Gaussian scale space, followed by a detailed description
of the actual implementation and the parameters used in the SIFT
approach.

The LoG is a so-called center-surround operator, which most
strongly responds to isolated local intensity peaks, edge, and corner-
like image structures. The corresponding filter kernel is based on the
second derivative of the Gaussian function, as illustrated in Fig. 25.1
for the 1D case. The 1D Gaussian function of width σ is defined as

Gσ(x) =
1√

2π · σ
· e− x2

2σ2 (25.1)

and its first derivative is

2 See Chapter 7.
610

25.1 Interest Points at
Multiple Scales

�4 �2 2 4

�0.5

�0.2

0.2

0.5

x

Gσ(x)

G′
σ(x)

G′′
σ(x) Fig. 25.1

1D Gaussian function Gσ(x)
with σ = 1 (black), its first
derivative G′

σ(x) (green) and
second derivative G′′

σ (x) (blue).

G′
σ(x) =

dGσ

d x
(x) = − x√

2π · σ3
· e− x2

2σ2 . (25.2)

Analogously, the second derivative of the 1D Gaussian is

G′′
σ(x) =

d2Gσ

d x2
(x) =

x2 − σ2

√
2π · σ5

· e− x2

2σ2 . (25.3)

The Laplacian (denoted ∇2) of a continuous, 2D function f(x, y)
is defined as the sum of the second partial derivatives for the x- and
y-directions, traditionally written as

(
∇2f

)
(x, y) =

∂2f

∂x2
(x, y) +

∂2f

∂y2
(x, y) . (25.4)

Note that, unlike the gradient3 of a 2D function, the result of the
Laplacian is not a vector but a scalar quantity. Its value is invariant
against rotations of the coordinate system, that is, the Laplacian
operator has the important property of being isotropic.

By applying the Laplacian operator to a rotationally symmetric
2D Gaussian,

Gσ(x, y) =
1

2π · σ2
· e− x2+y2

2σ2 (25.5)

with identical widths σ = σx = σy in the x/y directions (see Fig.
25.2(a)), we obtain the LoG function

Lσ(x, y) =
(
∇2Gσ

)
(x, y) =

∂2Gσ

∂x2
(x, y) +

∂2Gσ

∂y2
(x, y)

=
(x2−σ2)
2π · σ6

· e− x2+y2

2·σ2 +
(y2−σ2)
2π · σ6

· e− x2+y2

2·σ2

=
1

π · σ4
·
(x2 + y2 − 2σ2

2 · σ2

)

· e− x2+y2

2·σ2 ,

(25.6)

as shown in Fig. 25.2(b). The continuous LoG function in Eqn. (25.6)
has the absolute value integral

∫ ∞

−∞

∫ ∞

−∞
|Lσ(x, y)| dx dy =

4
σ2e

, (25.7)

3 See Chapter 6, Sec. 6.2.1.
611

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.2
2D Gaussian and LoG. Gaus-

sian function Gσ(x, y) with
σ = 1 (a); the correspond-

ing LoG function Lσ(x, y) in
(b), and the inverted function

(“Mexican hat” or “Sombrero”
kernel) −Lσ(x, y) in (c). For

illustration, all three functions
are normalized to an abso-

lute value of 1 at the origin.

�4
�2

0
2

4

0

1

4
�2

0

(a) Gσ(x, y)

�4
�2

0
2

4

�1

0

1

4
�2

0

�4
�2

0
2

4

0

1

4
�2

0

(b) Lσ(x, y) (c) −Lσ(x, y)

and zero average, that is,
∫ ∞

−∞

∫ ∞

−∞
Lσ(x, y) dx dy = 0 . (25.8)

When used as the kernel of a linear filter,4 the LoG responds max-
imally to circular spots that are darker than the surrounding back-
ground and have a radius of approximately σ.5 Blobs that are brighter
than the surrounding background are enhanced by filtering with the
negative LoG kernel, that is, −Lσ, which is often referred to as the
“Mexican hat” or “Sombrero” filter (see Fig. 25.2). Both types of
blobs can be detected simultaneously by simply taking the absolute
value of the filter response (see Fig. 25.3).

Since the LoG function is based on derivatives, its magnitude
strongly depends on the steepness of the Gaussian slope, which is
controlled by σ. To obtain responses of comparable magnitude over
multiple scales, a scale normalized LoG kernel can be defined in the
form [151]

L̂σ(x, y) = σ2 ·
(
∇2Gσ

)
(x, y) = σ2 · Lσ(x, y) (25.9)

=
1

πσ2
·
(x2 + y2 − 2σ2

2σ2

)

· e− x2+y2

2σ2 . (25.10)

4 To produce a sufficiently accurate discrete LoG filter kernel, the support
radius should be set to at least 4σ (kernel diameter ≥ 8σ).

5 The LoG is often used as a model for early processes in biological vision
systems [161], particularly to describe the center-surround response of
receptive fields. In this model, an “on-center” cell is stimulated when
the center of its receptive field is exposed to light, and is inhibited when
light falls on its surround. Conversely, an “off-center” cell is stimulated
by light falling on its surround. Thus filtering with the original LoG Lσ

(Eqn. (25.6)) corresponds to the behavior of off-center cells, while the
response to the negative LoG kernel −Lσ is that of an on-center cell.

612

25.1 Interest Points at
Multiple Scales

(a)

(b)

(c)

(d)

Fig. 25.3
Filtering with the LoG kernel
(with σ = 3). Original im-
ages (a). A linear filter with
the LoG kernel Lσ(x, y) re-
sponds strongest to dark spots
in a bright surround (b), while
the inverted kernel −Lσ(x, y)
responds strongest to bright
spots in a dark surround (c).
In (b, c), zero values are shown
as medium gray, negative val-
ues are dark, positive values
are bright. The absolute value
of (b) or (c) combines the re-
sponses from both dark and
bright spots (d).

Note that the integral of this function,
∫ ∞

−∞

∫ ∞

−∞

∣
∣L̂σ(x, y)

∣
∣ dx dy =

4
e

, (25.11)

is constant and thus (unlike Eqn. (25.7)) independent of the scale
parameter σ (see Fig. 25.4).

Approximating the LoG by the difference of two Gaussians
(DoG)

Although the LoG is “quasi-separable” [113, 243] and can thus be
calculated efficiently, the most common method for implementing
the LoG filter is to approximate it by the difference of two Gaussians
(DoG) of widths σ and κσ, respectively, that is,

Lσ(x, y) ≈ λ ·
[

Gκσ(x, y)−Gσ(x, y)
︸ ︷︷ ︸

= Dσ,κ(x, y)

]
(25.12)

613

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.4
Normalization of the LoG
function. Cross section of
LoG function Lσ(x, y) as

defined in Eqn. (25.6) (a);
scale-normalized LoG (b)

as defined in Eqn. (25.10).

σ = 1.0 (black), σ =
√

2
(green), σ = 2.0 (blue). All

three functions in (b) have
the same absolute value in-

tegral that is independent
of σ (see Eqn. (25.11)).

�6 �4 �2 2 4 6

�0.3

�0.2

�0.1

0.05

x

Lσ(x, 0)

σ = 1.0

σ =
√

2

σ = 2.0

�6 �4 �2 2 4 6

�0.3

�0.2

�0.1

0.05

x

L̂σ(x, 0)

σ = 1.0

σ =
√

2

σ = 2.0

(a) (b)

with the parameter κ > 1 specifying the relative width of the two
Gaussians (defined in Eqn. (25.5)). Properly scaled (by some factor
λ, see Eqn. (25.13)), the DOG function Dσ,κ(x, y) approximates the
LoG function Lσ(x, y) in Eqn. (25.6) with arbitrary precision, as κ
approaches 1 (κ = 1 being excluded, of course). In practice, values
of κ in the range 1.1, . . . , 1.3 yield sufficiently accurate results. As an
example, Fig. 25.5 shows the cross-section of the 2D DoG function
for κ = 21/3 ≈ 1.25992.6

Fig. 25.5
Approximating the LoG by

the DoG. The two origi-
nal Gaussians, Ga(x) with
σa = 1.0 and Gb(x) with

σb = σa · κ = κ = 21/3,
shown by the green and blue
curves, respectively (a). The

red curve in (a) shows the
DoG function Dσ,κ(x, y) =

Gb(x, y) − Ga(x, y) for
y = 0. In (b), the dashed

line shows the reference LoG
function in comparison to

the DoG (red). The DoG is
scaled to match the magni-

tude of the LoG function.

�4 �2 2 4

�0.1

0.1

0.2

x

Ga

Gb

Gb −Ga

�3 �2 �1 1 2 3

�0.2

x

LoG

DoG

(a) (b)

The factor λ ∈ R in Eqn. (25.12) controls the magnitude of the
DoG function; it depends on both the ratio κ and the scale parameter
σ. To match the magnitude of the original LoG (Eqn. (25.6)) at the
origin, it must be set to

λ =
2κ2

σ2 · (κ2 − 1)
. (25.13)

Similarly, the scale-normalized LoG L̂σ (Eqn. (25.10)) can be approx-
imated by the DoG function Dσ,κ (Eqn. (25.12)) as

L̂σ(x, y) = σ2Lσ(x, y)

≈ σ2 ·λ
︸ ︷︷ ︸

λ̂

·Dσ,κ(x, y) =
2κ2

κ2 − 1
·Dσ,κ(x, y), (25.14)

6 The factor κ = 21/3 originates from splitting the scale interval 2 (i.e.,
one scale octave) into 3 equal intervals, as described later on. Another
factor mentioned frequently in the literature is 1.6, which, however, does
not yield a satisfactory approximation. Possibly that value refers to the
ratio of the variances σ2

2/σ2
1 and not the ratio of the standard deviations

σ2/σ1.
614

25.1 Interest Points at
Multiple Scales

G(x, y, σ) continuous Gaussian scale space

G = (G0, . . . , GK−1) discrete Gaussian scale space with K levels

Gk single level in a discrete Gaussian scale space

L = (L0, . . . , LK−1) discrete LoG scale space with K levels

Lk single level in a LoG scale space

D = (D0, . . . , DK−1) discrete DoG scale space with K levels

Dk single level in a DoG scale space

G = (G0, . . . , GP−1) hierarchical Gaussian scale space with P octaves

Gp = (Gp,0, . . . , Gp,Q−1) octave in a hier. Gaussian scale space with Q levels

Gp,q single level in a hierarchical Gaussian scale space

D = (D0, . . . , DP−1) hierarchical DoG scale space with P octaves

Dp = (Dp,0, . . . , Dp,Q−1) octave in a hierarchical DoG scale space with Q levels

Dp,q single level in a hierarchical DoG scale space

N
c

(i, j, k) 3×3×3 neigborhood in DoG scale space

k = (p, q, u, v) discrete key point position in hierarchical scale space
(p, q, u, v ∈ Z)

k′ = (p, q, x, y) continuous (refined) key point position (x, y ∈ R)

Table 25.1
Scale space-related symbols
used in this chapter.

with the factor λ̂ = σ2 ·λ = 2κ2/(κ2 − 1) being constant and there-
fore independent of the scale σ. Thus, as pointed out in [153], with
a fixed scale increment κ, the DoG already approximates the scale-
normalized LoG up to a constant factor, and thus no additional scal-
ing is required to compare the magnitudes of the DoG responses
obtained at different scales.7

In the SIFT approach, the DoG is used as an approximation of the
(scale-normalized) LoG filter at multiple scales, based on a Gaussian
scale space representation of the input image that is described next.8

25.1.2 Gaussian Scale Space

The concept of scale space [150] is motivated by the observation that
real-world scenes exhibit relevant image features over a large range of
sizes and, depending on the particular viewing situation, at various
different scales. To relate image structures at different and unknown
sizes, it is useful to represent the images simultaneously at different
scale levels. The scale space representation of an image adds scale as
a third coordinate (in addition to the two image coordinates). Thus
the scale space is a 3D structure, which can be navigated not only
along the x/y positions but also across different scale levels.

Continuous Gaussian scale space

The scale-space representation of an image at a particular scale level
is obtained by filtering the image with a kernel that is parameterized
to the desired scale. Because of its unique properties [11, 71], the
most common type of scale space is based on successive filtering with
Gaussian kernels. Conceptually, given a continuous, 2D function
F (x, y), its Gaussian scale space representation is a 3D function

7 See Sec. E.4 in the Appendix for additional details.
8 See Table 25.1 for a summary of the most important scale space-related

symbols used in this chapter.
615

25 Scale-Invariant
Feature Transform

(SIFT)

G(x, y, σ) = (F ∗HG,σ)(x, y), (25.15)

where HG,σ ≡ Gσ(x, y) is a 2D Gaussian kernel (see Eqn. (25.5))
with unit integral, and ∗ denotes the linear convolution over x, y.
Note that σ ≥ 0 serves as both the continuous scale parameter and
the width of the corresponding Gaussian filter kernel.

A fully continuous Gaussian scale space G(x, y, σ) covers a 3D
volume and represents the original function F (x, y) at varying scales
σ. For σ = 0, the Gaussian kernel HG,0 has zero width, which makes
it equivalent to an impulse or Dirac function δ(x, y).9 This is the
neutral element of linear convolution, that is,

G(x, y, 0) = (F ∗HG,0)(x, y) = (F ∗ δ)(x, y) = F (x, y). (25.16)

Thus the base level G(x, y, 0) of the Gaussian scale space is identical
to the input function F (x, y). In general (with σ > 0), the Gaussian
kernel HG,σ acts as a low-pass filter with a cutoff frequency propor-
tional to 1/σ (see Sec. E.3 in the Appendix), the maximum frequency
(or bandwidth) of the original “signal” F (x, y) being potentially un-
limited.

Discrete Gaussian scale space

This is different for a discrete input function I(u, v), whose band-
width is implicitly limited to half the sampling frequency, as man-
dated by the sampling theorem to avoid aliasing.10 Thus, in the
discrete case, the lowest level G(x, y, 0) of the Gaussian scale space
is not accessible! To model the implicit bandwidth limitations of the
sampling process, the discrete input image I(u, v) is assumed to be
pre-filtered (with respect to the underlying continuous signal) with a
Gaussian kernel of width σs ≥ 0.5 [153], that is,

G(u, v, σs) ≡ I(u, v). (25.17)

Thus the discrete input image I(u, v) is implicitly placed at some
initial level σs of the Gaussian scale space, and the lower levels with
σ < σs are not available.

Any higher level σh > σs of the Gaussian scale space can be
derived from the original image I(u, v) by filtering with Gaussian
kernel HG,σ̄, that is,

G(u, v, σh) = (I ∗HG,σ̄)(u, v), with σ̄ =
√

σ2
h − σ2

s . (25.18)

This is due to the fact that applying two Gaussian filters of widths
σ1 and σ2, one after the other, is equivalent to a single convolution
with a Gaussian kernel of width σ1,2, that is,11

(
I ∗HG,σ1

)
∗HG,σ2 ≡ I ∗HG,σ1,2 , (25.19)

9 See Chapter 5, Sec. 5.3.4.
10 See Chapter 18, Sec. 18.2.1.
11 See Sec. E.1 in the Appendix for additional details on combining Gaus-

sian filters.
616

25.1 Interest Points at
Multiple Scales

with σ1,2 = (σ2
1 +σ2

2)1/2. We define the discrete Gaussian scale space
representation of an image I as a vector of M images, one for each
scale level m:

G = (G0, G1, . . . , GM−1). (25.20)

Associated with each level Gm is its absolute scale σm > 0, and each
level Gm represents a blurred version of the original image, that is,
Gm(u, v) ≡ G(u, v, σm) in the notation introduced in Eqn. (25.15).
The scale ratio between adjacent scale levels,

Δσ =
σm+1

σm

, (25.21)

is pre-defined and constant. Usually, Δσ is specified such that the
absolute scale σm doubles with a given number of levels Q, called an
octave. In this case, the resulting scale increment is Δσ = 21/Q with
(typically) Q = 3, . . . , 6.

In addition, a base scale σ0 > σs is specified for the initial level
G0, with σs denoting the smoothing of the discrete image implied
by the sampling process, as discussed already. Based on empirical
results, a base scale of σ0 = 1.6 is recommended in [153] to achieve
reliable interest point detection. Given Q and the base scale σ0, the
absolute scale at an arbitrary scale space level Gm is

σm = σ0 ·Δm
σ = σ0 · 2m/Q, (25.22)

for m = 0, . . . , M − 1.
As follows from Eqn. (25.18), each scale level Gm can be obtained

directly from the discrete input image I by a filter operation

Gm = I ∗HG,σ̄m , (25.23)

with a Gaussian kernel HG,σ̄m of width

σ̄m =
√

σ2
m − σ2

s =
√

σ2
0 · 22m/Q − σ2

s . (25.24)

In particular, the initial scale space level G0, (with the specified base
scale σ0) is obtained from the discrete input image I by linear filtering
using a Gaussian kernel of width

σ̄0 =
√

σ2
0 − σ2

s . (25.25)

Alternatively, using the relation σm = σm−1 · Δσ (from Eqn.
(25.21)), the scale levels G1, . . . , GM−1 could be calculated recursively
from the base level G0 in the form

Gm = Gm−1 ∗HG,σ′
m , (25.26)

for m > 0, with a sequence of Gaussian kernels HG,σ′
m of width

σ′
m =

√

σ2
m − σ2

m−1 = σ0 · 2m/Q ·
√

1− 1/Δ2
σ . (25.27)

Table 25.2 lists the resulting kernel widths for Q = 3 levels per
octave and base scale σ0 = 1.6 over a scale range of 6 octaves. The

617

25 Scale-Invariant
Feature Transform

(SIFT)

value σ̄m denotes the size of the Gaussian kernel required to compute
the image at scale m from the discrete input image I (assumed to be
sampled with σs = 0.5). σ′

m is the width of the Gaussian kernel to
compute level m recursively from the previous level m−1. Apparently
(though perhaps unexpectedly), the kernel size required for recursive
filtering (σ′

m) grows at the same (exponential) rate as the absolute
kernel size σ̄m.12

Table 25.2
Filter sizes required for calcu-

lating Gaussian scale levels Gm

for the first 6 octaves. Each
octave consists of Q = 3 lev-

els, placed at increments of
Δσ along the scale coordinate.

The discrete input image I
is assumed to be pre-filtered

with σs. Column σm denotes
the absolute scale at level m,

starting with the specified
base offset scale σ0. σ̄m is the

width of the Gaussian filter
required to calculate level Gm

directly from the input image
I. Values σ′

m are the widths of
the Gaussian kernels required

to calculate level Gm from the
previous level Gm−1. Note

that the width of the Gaussian
kernels needed for recursive
filtering (σ′

m) grows at the
same exponential rate as the
size of the direct filter (σ̄m).

m σm σ̄m σ′
m

18 102.4000 102.3988 62.2908
17 81.2749 81.2734 49.4402
16 64.5080 64.5060 39.2408
15 51.2000 51.1976 31.1454
14 40.6375 40.6344 24.7201
13 32.2540 32.2501 19.6204
12 25.6000 25.5951 15.5727
11 20.3187 20.3126 12.3601
10 16.1270 16.1192 9.8102
9 12.8000 12.7902 7.7864
8 10.1594 10.1471 6.1800
7 8.0635 8.0480 4.9051
6 6.4000 6.3804 3.8932
5 5.0797 5.0550 3.0900
4 4.0317 4.0006 2.4525
3 3.2000 3.1607 1.9466
2 2.5398 2.4901 1.5450
1 2.0159 1.9529 1.2263
0 1.6000 1.5199 —

m . . . linear scale index

σm . . . absolute scale at level m
(Eqn. (25.22))

σ̄m . . . relative scale at level m
w.r.t. the original image
(Eqn. (25.24))

σ′
m . . . relative scale at level m

w.r.t. the previous level
m−1 (Eqn. (25.27))

σs = 0.5 (sampling scale)

σ0 = 1.6 (base scale)

Q = 3 (levels per octave)

Δσ = 21/Q ≈ 1.256

At scale level m = 16 and absolute scale σ16 = 1.6 · 216/3 ≈ 64.5,
for example, the Gaussian filters required to compute G16 directly
from the input image I has the width σ̄16 = (σ2

16−σ2
s)1/2 = (64.50802

−0.52)1/2 ≈ 64.5, while the filter to blur incrementally from the pre-
vious scale level has the width σ′

16 = (σ2
16 − σ2

15)1/2 = (64.50802

− 51.19762)1/2 ≈ 39.2. Since recursive filtering also tends to accrue
numerical inaccuracies, this approach does not offer a significant ad-
vantage in general. Fortunately, the growth of the Gaussian kernels
can be kept small by spatially sub-sampling after each octave, as will
be described in Sec. 25.1.4.

The process of constructing a discrete Gaussian scale space using
the same parameters as in Table 25.2 is illustrated in Fig. 25.6. Again
the input image I is assumed to be pre-filtered at σs = 0.5 due to
sampling and the absolute scale of the first level G0 is set to σ0 = 1.6.
The scale ratio between successive levels is fixed at Δσ = 21/3 ≈
1.25992, that is, each octave spans three discrete scale levels. As
shown in this figure, each scale level Gm can be calculated either
directly from the input image I by filtering with a Gaussian of width
σ̄m, or recursively from the previous level by filtering with σ′

m.

12 The ratio of the kernel sizes σ̄m/σ′
m converges to

√
1 − 1/Δ2

σ (≈ 1.64

for Q = 3) and is thus practically constant for larger values of m.
618

25.1 Interest Points at
Multiple Scales

Δσ

Δσ

Δσ

I

G0

G1

G2

G3

σs = 0.5000

σ0 = 1.6000

σ1 = 2.0159

σ2 = 2.5398

σ3 = 3.2000

σ′
1 = 1.2263

σ′
2 = 1.5450

σ′
3 = 1.9466

σ̄0 = 1.5199

σ̄1 = 1.9529

σ̄2 = 2.4901

σ̄3 = 3.1607

Fig. 25.6
Gaussian scale space construc-
tion (first four levels). Pa-
rameters are the same as in
Table 25.2. The discrete in-
put image I is assumed to be
pre-filtered with a Gaussian of
width σs = 0.5; the scale of the
initial level (base scale offset)
is set to σ0 = 1.6. The discrete
scale space levels G0, G1, . . . (at
absolute scales σ0, σ1, . . .) are
slices through the continuous
scale space. Scale levels can
either be calculated by filtering
directly from the discrete im-
age I with Gaussian kernels of
width σ̄0, σ̄1, . . . (blue arrows)
or, alternatively, by recursively
filtering with σ′

1, σ′
2, . . . (green

arrows).

25.1.3 LoG/DoG Scale Space

Interest point detection in the SIFT approach is based on finding local
maxima in the output of LoG filters over multiple scales. Analogous
to the discrete Gaussian scale space described in Sec. 25.1.2, a LoG
scale space representation of an image I can be defined as

L = (L0, L1, . . . , LM−1), (25.28)

with levels Lm = I ∗ HL,σm , where HL,σm(x, y) ≡ L̂σm
(x, y) is a

scale-normalized LoG kernel of width σm (see Eqn. (25.10)).
As demonstrated in Eqn. (25.12), the LoG kernel can be approx-

imated by the the difference of two Gaussians whose widths differ by
a certain ratio κ. Since pairs of adjacent scale layers in the Gaussian
scale space are also separated by a fixed scale ratio, it is straightfor-
ward to construct a multi-scale DoG representation,

D = (D0, D1, . . . , DM−2) (25.29)

from an existing Gaussian scale space G = (G0, G1, . . . , GM−1). The
individual levels in the DoG scale space are defined as

Dm = λ̂ · (Gm+1 − Gm) ≈ Lm, (25.30)

for m = 0, . . . , M−2. The constant factor λ̂ (defined in Eqn. (25.14))
can be omitted in the aforementioned expression, as the relative
width of the involved Gaussians,

619

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.7
DoG scale-space construc-

tion. The differences of suc-
cessive levels G0, G1, . . . of

the Gaussian scale space (see
Fig. 25.6) are used to approxi-
mate a LoG scale space. Each

DoG-level Dm is calculated
as the point-wise difference
Gm+1 − Gm between Gaus-

sian levels Gm+1 and Gm. The
values in D0, . . . , D3 are scale-
normalized (see Eqn. (25.14))

and mapped to a uniform
intensity range for viewing.

Δσ

Δσ

Δσ

I

G0

G1

G2

G3

σs = 0.5000

σ0 = 1.6000

σ1 = 2.0159

σ2 = 2.5398

σ3 = 3.2000

D0

D1

D2

D3

κ = Δσ =
σm+1

σm

= 21/Q, (25.31)

is simply the fixed scale ratio Δσ between successive scale space levels.
Note that the DoG approximation does not require any additional
normalization to approximate a scale-normalized LoG representation
(see Eqns. 25.10 and 25.14). The process of calculating a DoG scale
space from a discrete Gaussian scale space is illustrated in Fig. 25.7,
using the same parameters as in Table 25.2 and Fig. 25.6.

25.1.4 Hierarchical Scale Space

Despite the fact that 2D Gaussian filter kernels are separable into 1D
kernels,13 the size of the required filter grows quickly with increasing
scale, regardless if a direct or recursive approach is used (as shown
in Table 25.2). However, each Gaussian filter operation reduces the
bandwidth of the signal inversely proportional to the width of the
kernel (see Sec. E.3 in the Appendix). If the image size is kept con-
stant over all scales, the images become increasingly oversampled at
higher scale levels. In other words, the sampling rate in a Gaus-
sian scale space can be reduced with increasing scale without losing
relevant signal information.

13 See also Chapter 5, Sec. 5.3.3.
620

25.1 Interest Points at
Multiple Scales

Octaves and sub-sampling (decimation)

In particular, doubling the scale cuts the bandwidth by half, that is,
the signal at scale level 2σ has only half the bandwidth of the signal
at level σ. An image signal at scale level 2σ of a Gaussian scale space
thus shows only half the bandwidth of the same image at scale level
σ. In a Gaussian scale space representation it is thus safe to down-
sample the image to half the sample rate after each octave without
any loss of information. This suggests a very efficient, “pyramid-like”
approach for constructing a DoG scale space, as illustrated in Fig.
25.8.14

At the start (bottom) of each octave, the image is down-sampled
to half the resolution, that is, each pixel in the new octave covers
twice the distance of the pixels in the previous octave in every spa-
tial direction. Within each octave, the same small Gaussian kernels
can be used for successive filtering, since their relative widths (with
respect to the original sampling lattice) also implicitly double at each
octave. To describe these relations formally, we use

G = (G0, G1, . . . , GP −1) (25.32)

to denote a hierarchical Gaussian scale space consisting of P octaves.
Each octave

Gp =
(
Gp,0, Gp,1, . . . , Gp,Q

)
, (25.33)

consists of Q+1 scale levels Gp,q, where p ∈ [0, P −1] is the octave
index and q ∈ [0, Q] is the level index within the containing octave
Gp. With respect to absolute scale, a level Gp,q = Gp(q) in the
hierarchical Gaussian scale space corresponds to the level Gm in the
non-hierarchical Gaussian scale space (see Eqn. (25.20)) with index

m = Q · p + q. (25.34)

As follows from Eqn. (25.22), the absolute scale at level Gp,q then is

σp,q = σm = σ0 ·Δm
σ = σ0 · 2m/Q

= σ0 · 2(Qp+q)/Q = σ0 · 2p+q/Q,
(25.35)

where σ0 = σ0,0 denotes the predefined base scale offset (e.g., σ0 =
1.6 in Table 25.2). In particular, the absolute scale of the base level
Gp,0 of any octave Gp is

σp,0 = σ0 · 2p. (25.36)

The decimated scale σ̇p,q is the absolute scale σp,q (Eqn. (25.35))
expressed in the coordinate units of octave Gp, that is,

σ̇p,q = σ̇q = σp,q · 2−p = σ0 · 2p+q/Q · 2−p = σ0 · 2q/Q. (25.37)

Note that the decimated scale σ̇p,q is independent of the octave index
p and therefore σ̇p,q ≡ σ̇q, for any level index q.

14 Successive reduction of image resolution by sub-sampling is the core
concept of “image pyramid” methods [41].

621

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.8
Hierarchical Gaussian scale
space. Each octave extends

over Q = 3 scale steps. The
base level Gp,0 of each oc-
tave p > 0 is obtained by

2:1 sub-sampling of the top
level Gp−1,3 of the next-lower
octave. At the transition be-
tween octaves, the resolution
(image size) is cut in half in
the x- and y-direction. The

absolute scale at octave level
Gp,q is σm, with m = Qp + q.
Within each octave, the same

set of Gaussian kernels (σ̃1,
σ̃2, σ̃3) is used to calculate

the following levels from
the octave’s base level Gp,0.

I (with σs)

Octave
G0

Octave
G1

Octave
G2

Octave
G3

G0,0 [σ0]

G0,1 [σ1]

G0,2 [σ2]

G0,3 [σ3]

G1,0 [σ3]

G1,1 [σ4]

G1,2 [σ5]

G1,3 [σ6]

G2,0 [σ6]

G2,1 [σ7]

G2,2 [σ8]

G2,3 [σ9]

G3,0 [σ9]

G3,1 [σ10]

G3,2 [σ11]

G3,3 [σ12]

σ̃1

σ̃1

σ̃1

σ̃1

σ̃2

σ̃2

σ̃2

σ̃2

σ̃3

σ̃3

σ̃3

σ̃3

2:1 subsampling

From the octave’s base level Gp,0, the subsequent levels in the
same octave can be calculated by filtering with relatively small Gaus-
sian kernels. The size of the kernel needed to calculate scale-level Gp,q

from the octave’s base level Gp,0 is obtained from the corresponding
decimated scales (Eqn. (25.37)) as

σ̃p,q =
√

σ̇2
p,q − σ̇2

p,0 =
√

(σ0 · 2q/Q)2 − σ2
0 = σ0 ·

√

22q/Q − 1 ,

(25.38)

for q ≥ 0. Note that σ̃q is independent of the octave index p and
thus the same filter kernels can be used at each octave. For example,
with Q = 3 and σ0 = 1.6 (as used in Table 25.2) the resulting kernel
widths are

σ̃1 = 1.2263, σ̃2 = 1.9725, σ̃3 = 2.7713. (25.39)

Also note that, instead of filtering all scale levels Gp,q in an oc-
tave from the corresponding base level Gp,0, we could calculate them
recursively from the next-lower level Gp,q−1. While this approach
requires even smaller Gaussian kernels (and is thus more efficient),
recursive filtering tends to accrue numerical inaccuracies. Neverthe-
less, the method is used frequently in scale-space implementations.

Decimation between successive octaves

With M×N being the size of the original image I, every sub-sampling
step between octaves cuts the size of the image by half, that is,

Mp+1 ×Np+1 =
⌊Mp

2

⌋

×
⌊Np

2

⌋

, (25.40)
622

25.1 Interest Points at
Multiple Scales

for octaves with index p ≥ 0. The resulting image size at octave Gp

is thus

Mp ×Np =
⌊M0

2p

⌋

×
⌊N0

2p

⌋

. (25.41)

The base level Gp,0 of each octave Gp (with p > 0) is obtained by
sub-sampling the top level Gp−1,Q of the next-lower octave Gp−1 as

Gp,0 = Decimate(Gp−1,Q), (25.42)

where Decimate(G) denotes the 2:1 sub-sampling operation, that is,

Gp,0(u, v) ← Gp−1,Q(2u, 2v), (25.43)

for each sample position (u, v) ∈ [0, Mp− 1]× [0, Np− 1]. Additional
low-pass filtering is not required prior to sub-sampling since the Gaus-
sian smoothing performed in each octave also cuts the bandwidth by
half.

The main steps involved in constructing a hierarchical Gaussian
scale space are summarized in Alg. 25.1. In summary, the input im-
age I is first blurred to scale σ0 by filtering with a Gaussian kernel of
width σ̄0. Within each octave Gp, the scale levels Gp,q are calculated
from the base level Gp,0 by filtering with a set of Gaussian filters of
width σ̃q (q = 1, . . . , Q). Note that the values σ̃q and the correspond-
ing Gaussian kernels HG,σ̃q can be pre-calculated once since they are
independent of the octave index p (Alg. 25.1, lines 13–14). The base
level Gp,0 of each higher octave Gp is obtained by decimating the top
level Gp−1,Q of the previous octave Gp−1. Typical parameter values
are σs = 0.5, σ0 = 1.6, Q = 3, P = 4.

Spatial positions in the hierarchical scale space

To properly associate the spatial positions of features detected in
different octaves of the hierarchical scale space we define the function

x0 ← AbsPos(xp, p),

that maps the continuous position xp = (xp, yp) in the local coordi-
nate system of octave p to the corresponding position x = (x, y) in
the coordinate system of the original full-resolution image I (octave
p = 0). The function AbsPos can be defined recursively by relating
the positions in successive octaves as

AbsPos(xp, p) =

{

xp for p = 0,
AbsPos(2·xp, p−1) for p > 0,

(25.44)

which gives x0 = AbsPos(2p ·xp, 0) and thus

AbsPos(xp, p) = 2p ·xp. (25.45)

Hierarchical LoG/DoG scale space

Analogous to the scheme shown in Fig. 25.7, a hierarchical DoG scale
space representation is obtained by calculating the difference of adja-
cent scale levels within each octave of the hierarchical Gaussian scale
space, that is,

623

25 Scale-Invariant
Feature Transform

(SIFT)

Alg. 25.1
Building a hierarchical Gaus-

sian scale space. The input
image I is first blurred to

scale σ0 by filtering with a
Gaussian kernel of width σ̄0

(line 3). In each octave Gp,
the scale levels Gp,q are cal-
culated from the base level
Gp,0 by filtering with a set
of Gaussian filters of width

σ̃1, . . . , σ̃Q (line 13–14). The
base level Gp,0 of each higher

octave is obtained by sub-
sampling the top level Gp−1,Q

of the previous octave (line 6).

1: BuildGaussianScaleSpace(I, σs, σ0, P, Q)
Input: I , source image; σs, sampling scale; σ0, reference scale
of the first octave; P , number of octaves. Q, number of scale
steps per octave. Returns a hierarchical Gaussian scale space
representation G of the image I .

2: σ̄0 ← (σ2
0 − σ2

s)1/2 ⊲ scale to base of 1st octave, Eq. 25.25
3: Ginit ← I ∗ HG,σ̄0 ⊲ apply 2D Gaussian filter of width σ̄0

4: G0 ← MakeGaussianOctave(Ginit, 0, Q, σ0) ⊲ create octave G0

5: for p ← 1, . . . , P −1 do ⊲ octave index p
6: Gnext ← Decimate(Gp−1,Q) ⊲ dec. top level of octave p−1
7: Gp ← MakeGaussianOctave(Gnext, p, Q, σ0) ⊲ create octave

Gp

8: G ← (G0, . . . , GP −1)
9: return G ⊲ hierarchical Gaussian scale space G

10: MakeGaussianOctave(Gbase , p, Q, σ0)
Input: Gbase, octave base level; p, octave index; Q, number of
levels per octave; σ0, reference scale.

11: Gp,0 ← Gbase

12: for q ← 1, . . . , Q do ⊲ level index q
13: σ̃q ← σ0 ·

√
22q/Q − 1 ⊲ see Eq. 25.38

14: Gp,q ← Gbase ∗ HG,σ̃q ⊲ apply 2D Gaussian filter of width σ̃q

15: Gp ← (Gp,0, . . . , Gp,Q)
16: return Gp ⊲ scale space octave Gp

17: Decimate(Gin)
Input: Gin, Gaussian scale space level.

18: (M, N) ← Size(Gin)
19: M ′ ← ⌊M

2
⌋, N ′ ← ⌊N

2
⌋ ⊲ decimated size

20: Create map Gout : M ′×N ′ �→ R

21: for all (u, v) ∈ M ′×N ′ do
22: Gout(u, v) ← Gin(2u, 2v) ⊲ 2:1 subsampling
23: return Gout ⊲ decimated scale level Gout

Dp,q = Gp,q+1 − Gp,q (25.46)

for level numbers q ∈ [0, Q−1]. Figure 25.9 shows the corresponding
Gaussian and DoG scale levels for the previous example over a range
of three octaves. To demonstrate the effects of sub-sampling, the
same information is shown in Fig. 25.10 and 25.11, with all level
images scaled to the same size. Figure 25.11 also shows the absolute
values of the DoG response, which are effectively used for detecting
interest points at different scale levels. Note how blob-like features
stand out and disappear again as the scale varies from fine to coarse.
Analogous results obtained from a different image are shown in Figs.
25.12 and 25.13.

25.1.5 Scale Space Structure in SIFT

In the SIFT approach, the absolute value of the DoG response is used
to localize interest points at different scales. For this purpose, local
maxima are detected in the 3D space spanned by the spatial x/y-
positions and the scale coordinate. To determine local maxima along
the scale dimension over a full octave, two additional DoG levels,

624

25.1 Interest Points at
Multiple Scales

Gaussian scale space DoG scale space

G2,3

G2,2 D2,2

G2,1 D2,1

Octave G2

(100 × 75)
G2,0 D2,0

G1,3

G1,2 D1,2

G1,1 D1,1

Octave G1

(200 × 150)

G1,0 D1,0

G0,3

G0,2 D0,2

G0,1 D0,1

Octave G0

(400 × 300)

G0,0 D0,0

Fig. 25.9
Hierarchical Gaussian and
DoG scale space example, with
P = Q = 3. Gaussian scale
space levels Gp,q are shown in
the left column, DoG levels
Dp,q in the right column. All
images are shown at their real
scale.

Dp,−1 and Dp,Q, and two additional Gaussian scale levels, Gp,−1 and
Gp,Q+1, are required in each octave.

In total, each octave Gp then consists of Q+3 Gaussian scale levels
Gp,q (q = −1, . . . , Q + 1) and Q + 2 DoG levels Dp,q (q = −1, . . . , Q),
as shown in Fig. 25.14. For the base level G0,−1, the scale index is
m = −1 and its absolute scale (see Eqns. (25.22) and (25.35)) is

625

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.10
Hierarchical Gaussian scale
space example (castle im-
age). All images are scaled
to the same size. Note that

G1,0 is merely a sub-sampled
copy of G0,3; analogously, G2,0

is sub-sampled from G1,3.

Octave G0 Octave G1 Octave G2

(400 × 300) (200 × 150) (100 × 75)

G0,3 G1,3 G2,3

G0,2 G1,2 G2,2

G0,1 G1,1 G2,1

G0,0 G1,0 G2,0

σ0,−1 = σ0 · 2−1/Q = σ0 ·
1

Δσ

. (25.47)

Thus, with the usual settings (σ0 = 1.6 and Q = 3), the absolute
scale values for the six levels of the first octave are

σ0,−1 = 1.2699, σ0,0 = 1.6000, σ0,1 = 2.0159,
σ0,2 = 2.5398, σ0,3 = 3.2000, σ0,4 = 4.0317.

(25.48)

The complete set of scale values for a SIFT scale space with four
octaves (p = 0, . . . , 3) is listed in Table 25.3.

To construct the Gaussian part of the first scale space octave G0,
the initial level G0,−1 is obtained by filtering the input image I with
a Gaussian kernel of width

σ̄0,−1 =
√

σ2
0,−1 − σ2

s =
√

1.26992 − 0.52 ≈ 1.1673 (25.49)

For the higher octaves (p > 0), the initial level (q = −1) is obtained
by sub-sampling (decimating) level Q−1 of the next-lower octave
Gp−1, that is,

Gp,−1 ← Decimate(Gp−1,Q−1), (25.50)
626

25.1 Interest Points at
Multiple Scales

Octave D0 Octave D1 Octave D2

(400 × 300) (200 × 150) (100 × 75)

D0,2 D1,2 D2,2

D0,1 D1,1 D2,1

D0,0 D1,0 D2,0

|D0,2| |D1,2| |D2,2|

|D0,1| |D1,1| |D2,1|

|D0,0| |D1,0| |D2,0|

Fig. 25.11
Hierarchical DoG scale space
example (castle image). The
three top rows show the posi-
tive and negative DoG values
(zero is mapped to intermedi-
ate gray). The three bottom
rows show the absolute val-
ues of the DoG results (zero
is mapped to black, maximum
values to white). All images
are scaled to the size of the
original image.

analogous to Eqn. (25.42). The remaining levels Gp,0, . . . , Gp,Q+1 of
the octave are either calculated by incremental filtering (as described
in Fig. 25.6) or by filtering from the octave’s initial level Gp,−1 with
a Gaussian of width σ̃p,q (see Eqn. (25.38)). The advantage of the
direct approach is that numerical errors do not accrue across the
scale space; the disadvantage is that the kernels are up to 50 % larger
than those needed for the incremental approach (σ̃0,4 = 3.8265 vs.

627

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.12
Hierarchical Gaussian scale

space example (stars image).

Octave G0 Octave G1 Octave G2

(400 × 300) (200 × 150) (100 × 75)

G0,3 G1,3 G2,3

G0,2 G1,2 G2,2

G0,1 G1,1 G2,1

G0,0 G1,0 G2,0

Table 25.3
Absolute and relative scale val-
ues for a SIFT scale space with
four octaves. Each octave with

index p = 0, . . . , 3 consists of
6 Gaussian scale layers Gp,q ,

with q = −1, . . . , 4. For each
scale layer, m is the scale in-

dex and σp,q is the correspond-
ing absolute scale. Within

each octave p, σ̃p,q denotes the
relative scale with respect to

the octave’s base layer Gp,−1.
Each base layer Gp,−1 is ob-

tained by sub-sampling (deci-
mating) layer q = Q − 1 = 2

in the previous octave, i.e.,
Gp,−1 = Decimate(Gp−1,Q−1),

for p > 0. The base layer
G0,−1 in the bottom octave is
derived by Gaussian smooth-

ing of the original image. Note
that the relative scale values

σ̃p,q = σ̃q are the same inside
every octave (independent of
p) and thus the same Gaus-

sian filter kernels can be used
for calculating all octaves.

p q m d σp,q σ̇q σ̃q

3 4 13 8 32.2540 4.0317 3.8265

3 3 12 8 25.6000 3.2000 2.9372

3 2 11 8 20.3187 2.5398 2.1996

3 1 10 8 16.1270 2.0159 1.5656

3 0 9 8 12.8000 1.6000 0.9733

3 −1 8 8 10.1594 1.2699 0.0000

2 4 10 4 16.1270 4.0317 3.8265

2 3 9 4 12.8000 3.2000 2.9372

2 2 8 4 10.1594 2.5398 2.1996

2 1 7 4 8.0635 2.0159 1.5656

2 0 6 4 6.4000 1.6000 0.9733

2 −1 5 4 5.0797 1.2699 0.0000

1 4 7 2 8.0635 4.0317 3.8265

1 3 6 2 6.4000 3.2000 2.9372

1 2 5 2 5.0797 2.5398 2.1996

1 1 4 2 4.0317 2.0159 1.5656

1 0 3 2 3.2000 1.6000 0.9733

1 −1 2 2 2.5398 1.2699 0.0000

0 4 4 1 4.0317 4.0317 3.8265

0 3 3 1 3.2000 3.2000 2.9372

0 2 2 1 2.5398 2.5398 2.1996

0 1 1 1 2.0159 2.0159 1.5656

0 0 0 1 1.6000 1.6000 0.9733

0 −1 −1 1 1.2699 1.2699 0.0000

p . . . octave index

q . . . level index

m . . . linear scale index (m = Qp + q)

d . . . decimation factor (d = 2p)

σp,q . . . absolute scale (Eqn. (25.35))

σ̇q . . . decimated scale (Eqn. (25.37))

σ̃q . . . relative decimated scale w.r.t.
octave’s base level Gp,−1 (Eqn.
(25.38))

P = 3 (number of octaves)

Q = 3 (levels per octave)

σ0 = 1.6 (base scale)

628

25.1 Interest Points at
Multiple Scales

Octave D0 Octave D1 Octave D2

(400 × 300) (200 × 150) (100 × 75)

D0,2 D1,2 D2,2

D0,1 D1,1 D2,1

D0,0 D1,0 D2,0

|D0,2| |D1,2| |D2,2|

|D0,1| |D1,1| |D2,1|

|D0,0| |D1,0| |D2,0|

Fig. 25.13
Hierarchical DoG scale space
example (stars image). The
three top rows show the posi-
tive and negative DoG values
(zero is mapped to intermedi-
ate gray). The three bottom
rows show the absolute val-
ues of the DoG results (zero
is mapped to black, maximum
values to white). All images
are scaled to the size of the
original image.

σ′
0,4 = 2.4525). Note that the inner levels Gp,q of all higher octaves

(i.e., p > 0, q ≥ 0) are calculated from the base level Gp,−1, using
the same set of kernels as for the first octave, as listed in Table 25.3.
The complete process of building a SIFT scale space is summarized
in Alg. 25.2.

629

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.14
Scale space structure for SIFT
with P = 3 octaves and Q = 3

levels per octave. To per-
form local maximum detection

(“max”) over the full octave,
Q+2 DoG scale space levels

(Dp,−1, . . . , Dp,Q) are required.
The blue arrows indicate the

decimation steps between suc-
cessive Gaussian octaves. Since

the DoG levels are obtained
by subtracting pairs of Gaus-
sian scale space levels, Q+3

such levels (Gp,−1, . . . , Gp,Q+1)
are needed in each octave Gp.
The two vertical axes on the

left show the absolute scale
(σ) and the discrete scale in-

dex (m), respectively. Note
that the values along the scale
axis are logarithmic with con-

stant multiplicative scale in-

crements Δσ = 21/Q. The
absolute scale of the input im-

age (I) is assumed as σs = 0.5.

%-+

'-&

$-,

$-)

+-(

%&-,

&)-+

$

%

&

'

(

)

+

*

,

;

%$

%%

%&

<%

σ m

σs

Δσ

I

Octave 0

Octave 1

Octave 2

G0,−1

G0,0

G0,1

G0,2

G0,3

G0,4

D0,−1

D0,0

D0,1

D0,2

D0,3

G1,−1

G1,0

G1,1

G1,2

G1,3

G1,4

D1,−1

D1,0

D1,1

D1,2

D1,3

G2,−1

G2,0

G2,1

G2,2

G2,3

G2,4

D2,−1

D2,0

D2,1

D2,2

D2,3

Input image

Decimate(G0,2) → G1,−1

Decimate(G1,2)

25.2 Key Point Selection and Refinement

Key points are identified in three steps: (1) detection of extremal
points in the DOG scale space, (2) position refinement by local in-
terpolation, and (3) elimination of edge responses. These steps are
detailed in the following and summarized in Algs. 25.3–25.6.

25.2.1 Local Extrema Detection

In the first step, candidate interest points are detected as local ex-
trema in the 3D DoG scale space that we described in the previous
section. Extrema detection is performed independently within each
octave p. For the sake of convenience we define the 3D scale space
coordinate c = (u, v, q), composed of the spatial position (u, v) and
the level index q, as well as the function

D(c) := Dp,q+k(u, v) (25.51)

as a short notation for selecting DoG values from a given octave p.
Also, for collecting the DoG values in the 3D neighborhood around
a scale space position c, we define the map

Nc(i, j, k) := D
(
c + i · ei + j · ej + k · ek

)
, (25.52)

with i, j, k ∈ {−1, 0, 1} and the 3D unit vectors

ei = (1, 0, 0)⊺, ej = (0, 1, 0)⊺, ek = (0, 0, 1)⊺. (25.53)

The neighborhood Nc includes the center value D(c) and the 26 val-
ues of its immediate neighbors (see Fig. 25.15(a)). These values are
used to estimate the 3D gradient vector and the Hessian matrix for
the 3D scale space position c, as will be described.

A DoG scale space position c is accepted as a local extremum
(minimum or maximum) if the associated value D(c) = Nc(0, 0, 0)

630

25.2 Key Point
Selection and
Refinement

1: BuildSiftScaleSpace(I, σs, σ0, P, Q)
Input: I , source image; σs, sampling scale; σ0, reference scale of
the first octave; P , number of octaves; Q, number of scale steps
per octave. Returns a SIFT scale space representation 〈G, D〉 of
the image I .

2: σinit ← σ0 · 2−1/Q ⊲ abs. scale at level (0,−1), Eq. 25.47

3: σ̄init ←
√

σ2
init − σ2

s ⊲ relative scale w.r.t. σs, Eq. 25.49

4: Ginit ← I ∗ HG,σ̄init ⊲ 2D Gaussian filter with σ̄init

5: G0 ← MakeGaussianOctave(Ginit, 0, Q, σ0) ⊲ Gauss. octave 0
6: for p ← 1, . . . , P −1 do ⊲ for octaves 1, . . . , P −1
7: Gnext ← Decimate(Gp−1,Q−1) ⊲ see Alg. 25.1
8: Gp ← MakeGaussianOctave(Gnext, p, Q, σ0) ⊲ octave p

9: G ← (G0, . . . , GP −1) ⊲ assemble the Gaussian scale space G

10: for p ← 0, . . . , P −1 do
11: Dp ← MakeDogOctave(Gp, p, Q)

12: D ← (D0, . . . , DP −1) ⊲ assemble the DoG scale space D

13: return 〈G, D〉

14: MakeGaussianOctave(Gbase , p, Q, σ0)
Input: Gbase, Gaussian base level; p, octave index; Q, scale steps
per octave, σ0, reference scale. Returns a new Gaussian octave
Gp with Q+3 levels levels.

15: Gp,−1 ← Gbase ⊲ level q = −1
16: for q ← 0, . . . , Q+1 do ⊲ levels q = −1, . . . , Q + 1
17: σ̃q ← σ0 ·

√
22q/Q − 2−2/Q ⊲ rel. scale w.r.t base level Gbase

18: Gp,q ← Gbase ∗ HG,σ̃q ⊲ 2D Gaussian filter with σ̃q

19: Gp ← (Gp,−1, . . . , Gp,Q+1)

20: return Gp

21: MakeDogOctave(Gp, p, Q)
Input: Gp, Gaussian octave; p, octave index; Q, scale steps per
octave. Returns a new DoG octave Dp with Q+2 levels.

22: for q ← −1, . . . , Q do
23: Dp,q ← Gp,q+1 − Gp,q ⊲ diff. of Gaussians, Eq. 25.30

24: Dp ← (Dp,−1, Dp,0, . . . , Dp,Q) ⊲ levels q = −1, . . . , Q
25: return Dp

Alg. 25.2
Building a SIFT scale space.
This procedure is an extension
of Alg. 25.1 and takes the
same parameters. The SIFT
scale space (see Fig. 25.14)
consists of two components:
a hierarchical Gaussian scale
space G = (G0, . . . , GP −1)
with P octaves and a (derived)
hierarchical DoG scale space
D = (D0, . . . , DP −1). Each
Gaussian octave Gp holds Q+3
levels (Gp,−1, . . . , Gp,Q+1).
At each Gaussian octave, the
lowest level Gp,−1 is obtained
by decimating level Q−1 of the
previous octave Gp−1 (line 7).
Every DoG octave Dp contains
Q + 2 levels (Dp,−1, . . . , Dp,Q).
A DoG level Dp,q is calculated
as the pointwise difference of
two adjacent Gaussian levels
Gp,q+1 and Gp,q (line 23).
Typical parameter settings are
σs = 0.5, σ0 = 1.6, Q = 3,
P = 4.

is either negative and also smaller or positive and greater than all
neighboring values. In addition, a minimum difference textrm ≥ 0
can be specified, indicating how much the center value must at least
deviate from the surrounding values. The decision whether a given
neighborhood Nc contains a local minimum or maximum can thus be
expressed as

IsLocalMin(Nc) := Nc(0, 0, 0) < 0 ∧
Nc(0, 0, 0) + textrm < min

(i,j,k) �=
(0,0,0)

Nc(i, j, k), (25.54)

IsLocalMax(Nc) := Nc(0, 0, 0) > 0 ∧
Nc(0, 0, 0)− textrm < max

(i,j,k) �=
(0,0,0)

Nc(i, j, k) (25.55)

631

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.15
Different 3D neighborhoods
for detecting local extrema

in the DoG scale space. The
red cube represents the DoG

value at the reference coor-
dinate c = (u, v, q) at the

spatial position (u, v) at scale
level q (within some octave
p). Full 3 × 3 × 3 neighbor-
hood with 26 elements (a);

other types of neighborhoods
with 18 (b) or 10 (c) elements,

respectively, are also com-
monly used. A local maxi-

mum/minimum is detected if
the DoG value at the center is
greater/smaller than all neigh-

boring values (green cubes).

(a) 26-neighborhood (b) 18-neighborhood (c) 10-neighborhood

(see procedure IsExtremum(Nc) in Alg. 25.5). As illustrated in Fig.
25.15(b–c), alternative 3D neighborhoods with 18 or 10 cells may be
specified for extrema detection.

25.2.2 Position Refinement

Once a local extremum is detected in the DoG scale space, only its
discrete 3D coordinates c = (u, v, q) are known, consisting of the
spatial grid position (u, v) and the index (q) of the associated scale
level. In the second step, a more accurate, continuous position for
each candidate key point is estimated by fitting a quadratic function
to the local neighborhood, as proposed in [37]. This is particularly
important at the higher octaves of the scale space, where the spatial
resolution becomes increasingly coarse due to successive decimation.
Position refinement is based on a local second-order Taylor expansion
of the discrete DoG function, which yields a continuous approxima-
tion function whose maximum or minimum can be found analytically.
Additional details and illustrative examples are provided in Sec. C.3.2
of the Appendix.

At any extremal position c = (u, v, q) in octave p of the hierarchi-
cal DoG scale space D, the corresponding 3×3×3 neighborhoodND(c)
is used to estimate the elements of the continuous 3D gradient, that
is,

∇D(c) =

⎛

⎝

dx

dy

dσ

⎞

⎠ ≈ 1
2
·

⎛

⎝

D(c + ei) − D(c − ei)
D(c + ej) − D(c− ej)
D(c + ek) − D(c − ek)

⎞

⎠ , (25.56)

with D() as defined in Eqn. (25.51). Similarly, the 3 × 3 Hessian
matrix for position c is obtained as

HD(c) =

⎛

⎝

dxx dxy dxσ

dxy dyy dyσ

dxσ dyσ dσσ

⎞

⎠ , (25.57)

with the required second order derivatives estimated as

dxx = D(c−ei)− 2 ·D(c) + D(c+ei),

dyy = D(c−ej)− 2 ·D(c) + D(c+ej),

dσσ = D(c−ek)− 2 ·D(c) + D(c+ek),

dxy = D(c+ei+ej)−D(c−ei+ej)−D(c+ei−ej)+D(c−ei−ej)

4 ,

dxσ = D(c+ei+ek)−D(c−ei+ek)−D(c+ei−ek)+D(c−ei−ek)
4 ,

dyσ = D(c+ej+ek)−D(c−ej+ek)−D(c+ej−ek)+D(c−ej−ek)

4 .

(25.58)

632

25.2 Key Point
Selection and
Refinement

See the procedures Gradient(Nc) and Hessian(Nc) in Alg. 25.5 (p. 651)
for additional details. From the gradient vector ∇D(c) and the Hes-
sian matrix HD(c), the second order Taylor expansion around point
c is

D̃c(x) = D(c) +∇⊺
D(c)·(x−c) + 1

2 (x−c)⊺ ·HD(c)·(x−c), (25.59)

for the continuous position x = (x, y, σ)⊺. The scalar-valued func-
tion D̃c(x) ∈ R, with c = (u, v, q)⊺ and x = (x, y, σ)⊺, is a local,
continuous approximation of the discrete DoG function Dp,q(u, v) at
octave p, scale level q, and spatial position u, v. This is a quadratic
function with an extremum (maximum or minimum) at position

x̆ =

⎛

⎝

x̆
y̆
σ̆

⎞

⎠ = c + d = c −H−1
D (c) · ∇D(c)

︸ ︷︷ ︸

d=x̆−c

(25.60)

with d = (x′, y′, σ′)⊺ = x̆− c, under the assumption that the inverse
of the Hessian matrix HD exists. By inserting the extremal position
x̆ into Eqn. (25.59), the peak (minimum or maximum) value of the
continuous approximation function D̃ is found as15

Dpeak(c) = D̃c(x̆) = D(c) + 1
2 · ∇

⊺
D(c) · (x̆− c)

= D(c) + 1
2 · ∇

⊺
D(c) · d,

(25.61)

where d = x̆ − c (cf. Eqn. (25.60)) denotes the 3D vector between
the neighborhood’s discrete center position c and the continuous ex-
tremal position x̆.

A scale space location c is only retained as a candidate interest
point if the estimated magnitude of the DoG exceeds a given thresh-
old tpeak, that is, if

|Dpeak(c)| > tpeak. (25.62)

If the distance d = (x′, y′, σ′)⊺ from c to the estimated (continu-
ous) peak position x̆ in Eqn. (25.60) is greater than a predefined limit
(typically 0.5) in any spatial direction, the center point c = (u, v, q)⊺

is moved to one of the neighboring DoG cells by maximally ±1 unit
steps along the u, v axes, that is,

c ← c +

⎛

⎝

min(1, max(−1, round(x′)))
min(1, max(−1, round(y′)))

0

⎞

⎠ . (25.63)

The q component of c is not modified in this version, that is, the
search continues at the original scale level.16 Based on the surround-
ing 3D neighborhood of this new point, a Taylor expansion (Eqn.
(25.60)) is again performed to estimate a new peak location. This
is repeated until either the peak location is inside the current DoG
cell or the allowed number of repositioning steps nrefine is reached

15 See Eqn. (C.64) in Sec. C.3.3 in the Appendix for details.
16 This is handled differently in other SIFT implementations.

633

25 Scale-Invariant
Feature Transform

(SIFT)

(typically nrefine is set to 4 or 5). If successful, the result of this step
is a candidate feature point

c̆ = (x̆, y̆, q̆)⊺ = c + (x′, y′, 0)⊺. (25.64)

Notice that (in this implementation) the scale level q remains un-
changed even if the 3D Taylor expansion indicates that the estimated
peak is located at another scale level. See procedure RefineKeyPosition()
in Alg. 25.4 (p. 650) for a concise summary of these steps.

It should be mentioned that the original publication [153] is not
particularly explicit about the aforementioned position refinement
process and thus slightly different approaches are used in various
open-source SIFT implementations. For example, the implementa-
tion in VLFeat17 [241] moves to one of the direct neighbors at the
same scale level as described earlier, as long as |x′| or |y′| is greater
than 0.6. AutoPano-SIFT18 by S. Nowozin calculates the length of
the spatial displacement d = ‖(x′, y′)‖ and discards the current point
if d > 2. Otherwise it moves by Δu = round(x′), Δv = round(y′)
without limiting the displacement to ±1. The Open-Source SIFT
Library19 [106] used in OpenCV also makes full moves in the spatial
directions and, in addition, potentially also changes the scale level by
Δq = round(σ′) in each iteration.

25.2.3 Suppressing Responses to Edge-Like Structures

In the previous step, candidate interest points were selected as those
locations in the DoG scale space where the Taylor approximation had
a local maximum and the extrapolated DoG value was above a given
threshold (tpeak). However, the DoG filter also responds strongly
to edge-like structures. At such positions, interest points cannot be
located with sufficient stability and repeatability. To eliminate the
responses near edges, Lowe suggests the use of the principal curva-
tures of the 2D DoG result along the spatial x, y axes, using the fact
that the principal curvatures of a function are proportional to the
eigenvalues of the function’s Hessian matrix at a given point.

For a particular lattice point c = (u, v, q) in DoG scale space,
with neighborhood ND (see Eqn. (25.52)), the 2×2 Hessian matrix
for the spatial coordinates is

Hxy(c) =
(

dxx dxy

dxy dyy

)

, (25.65)

with dxx, dxy, dyy as defined in Eqn. (25.58), that is, these values
can be extracted from the corresponding 3×3 Hessian matrix HD(c)
(see Eqn. (25.57)).

The matrix Hxy(c) has two eigenvalues λ1, λ2, which we define as
being ordered, such that λ1 has the greater magnitude (|λ1| ≥ |λ2|).
If both eigenvalues for a point c are of similar magnitude, the function
exhibits a high curvature along two orthogonal directions and in this

17 http://www.vlfeat.org/overview/sift.html.
18 http://sourceforge.net/projects/hugin/files/autopano-sift-C/.
19 http://robwhess.github.io/opensift/.

634

http://www.vlfeat.org/overview/sift.html
http://sourceforge.net/projects/hugin/files/autopano-sift-C/
http://robwhess.github.io/opensift/

25.2 Key Point
Selection and
Refinement

� �

0 1 2 3 4 5 6 7

2

4

6

8

10

ρ1,2 =
λ1
λ2

a

amax

←ρmax

↑ reject

↓ accept
Fig. 25.16
Limiting the ratio of princi-
pal curvatures (edge ratio)
ρ1,2 by specifying amax. The
quantity a (blue line) has a
minimum when the eigenvalue

ratio ρ1,2 =
λ1
λ2

is one, that

is, when the two eigenvalues
λ1, λ2 are equal, indicating a
corner-like event. Typically
only one of the eigenvalues is
dominant in the vicinity of im-
age lines, such that ρ1,2 and
a values are significantly in-
creased. In this example, the
principal curvature ratio ρ1,2

is limited to ρmax = 5.0 by
setting amax = (5 + 1)2/5 = 7.2
(red line).

case c is likely to be a good reference point that can be located
reliably. In the optimal situation (e.g., near a corner), the ratio of
the eigenvalues ρ = λ1/λ2 is close to 1. Alternatively, if the ratio
ρ is high it can be concluded that a single orientation dominates at
this position, as is typically the case in the neighborhood of edges.

To estimate the ratio ρ it is not necessary to calculate the eigen-
values themselves. Following the description in [153], the sum and
product of the eigenvalues λ1, λ2 can be found as

λ1 + λ2 = trace(Hxy(c)) = dxx + dyy, (25.66)

λ1 · λ2 = det(Hxy(c)) = dxx · dyy − d2
xy. (25.67)

If the determinant det(Hxy) is negative, the principal curvatures of
the underlying 2D function have opposite signs and thus point c can
be discarded as not being an extremum. Otherwise, if the signs of
both eigenvalues λ1, λ2 are the same, then the ratio

ρ1,2 =
λ1

λ2

(25.68)

is positive (with λ1 = ρ1,2 · λ2), and thus the expession

a =
[trace(Hxy(c))]2

det(Hxy(c))
=

(λ1 + λ2)2

λ1 · λ2

(25.69)

=
(ρ1,2 · λ2 + λ2)2

ρ1,2 · λ2
2

=
λ2

2 · (ρ1,2 + 1)2

ρ1,2 · λ2
2

=
(ρ1,2 + 1)2

ρ1,2

(25.70)

depends only on the ratio ρ1,2. If the determinant of Hxy is positive,
the quantity a has a minimum (4.0) at ρ1,2 = 1, if the two eigenvalues
are equal (see Fig. 25.16). Note that the ratio a is the same for
ρ1,2 = λ1/λ2 or ρ1,2 = λ2/λ1, since

a =
(ρ1,2 + 1)2

ρ1,2

=
(1

ρ1,2
+ 1)2

1
ρ1,2

. (25.71)

To verify that the eigenvalue ratio ρ1,2 at a given position c is
below a specified limit ρmax (making c a good candidate), it is thus
sufficient to check the condition

a ≤ amax, with amax =
(ρmax + 1)2

ρmax

, (25.72)

635

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.17
Rejection of edge-like features

by controlling the max. cur-
vature ratio ρmax. The size

of the circles is proportional
to the scale level at which

the corresponding key point
was detected, the color in-
dicating the containing oc-

tave (0 = red, 1 = green,
2 = blue, 3 = magenta).

ρmax

= 3

ρmax

= 10

ρmax

= 20

ρmax

= 40

without the need to actually calculate the individual eigenvalues λ1

and λ2.20 ρmax should be greater than 1 and is typically chosen to
be in the range 3, . . . , 10 (ρmax = 10 is suggested in [153]). The
resulting value of amax in Eqn. (25.72) is constant and needs only be
calculated once (see Alg. 25.3, line 2). Detection examples for varying
values of ρmax are shown in Fig. 25.17. Note that considerably more
candidates appear near edges as ρmax is raised from 3 to 40.

25.3 Creating Local Descriptors

For each local maximum detected in the hierarchical DoG scale space,
a candidate key point is created, which is subsequently refined to

20 A similar trick is used in the Harris corner detection algorithm (see
Chapter 7).

636

25.3 Creating Local
Descriptors

a continuous position following the steps we have just described
(see Eqns. (25.56)–(25.64)). Then, for each refined key point k′ =
(p, q, x, y), one or more (up to four) local descriptors are calculated.
Multiple (up to four) descriptors may be created for a position if the
local orientation is not unique. This process involves the following
steps:

1. Find the dominant orientation(s) of the key point k′ from the
distribution of the gradients at the corresponding Gaussian scale
space level.

2. For each dominant orientation, create a separate SIFT descriptor
at the key point k′.

25.3.1 Finding Dominant Orientations

Local orientation from Gaussian scale space

Orientation vectors are obtained by sampling the gradient values of
the hierarchical Gaussian scale space Gp,q(u, v) (see Eqn. (25.32)).
For any lattice position (u, v) at octave p and scale level q, the local
gradient is calculated as

∇p,q(u, v) =
(

dx

dy

)

= 0.5·
(

Gp,q(u+1, v)− Gp,q(u−1, v)
Gp,q(u, v+1)− Gp,q(u, v−1)

)

. (25.73)

From these gradient vectors, the gradient magnitude and orientation
(i.e., polar coordinates) are found as21

Ep,q(u, v) =
∥
∥∇p,q(u, v)

∥
∥ =

√

d2
x + d2

y , (25.74)

φp,q(u, v) = ∠∇p,q(u, v) = tan−1(dy/dx). (25.75)

These scalar fields Ep,q and φp,q are typically pre-calculated for all
relevant octaves/levels p, q of the Gaussian scale space G.

Orientation histograms

To find the dominant orientations for a given key point, a histogram
hφ of the orientation angles is calculated for the gradient vectors col-
lected from a square window around the key point center. Typically
the histogram has norient = 36 bins, that is, the angular resolution
is 10◦. The orientation histogram is collected from a square region
using an isotropic Gaussian weighting function whose width σw is
proportional to the decimated scale σ̇q (see Eqn. (25.37)) of the key
point’s scale level q. Typically a Gaussian weighting function “with
a σ that is 1.5 times that of the scale of the key point” [153] is used,
that is,

σw = 1.5 · σ̇q = 1.5 · σ0 · 2q/Q. (25.76)

Note that σw is independent of the octave index p and thus the
same weighting functions are used in each octave. To calculate the
orientation histogram, the Gaussian gradients around the given key
point are collected from a square region of size 2rw × 2rw, with

21 See also Chapter 16, Sec. 16.1.
637

25 Scale-Invariant
Feature Transform

(SIFT)

rw = ⌈2.5 · σw⌉ (25.77)

amply dimensioned to avoid numerical truncation effects. For the
parameters listed in Table 25.3 (σ0 = 1.6, Q = 3), the values for σw

(expressed in the octave’s coordinate units) are

q 0 1 2 3
σw 1.6000 2.0159 2.5398 3.2000
rw 4 5 6 7

(25.78)

In Alg. 25.7, σw and rw of the Gaussian weighting function are cal-
culated in lines 7 and 8, respectively. At each lattice point (u, v),
the gradient vector ∇p,q(u, v) is calculated in octave p and level q
of the Gaussian scale space G (Alg. 25.7, line 16). From this, the
gradient magnitude Ep,q(u, v) and orientation φp,q(u, v) are obtained
(lines 29–30). The corresponding Gaussian weight is calculated (in
line 18) from the spatial distance between the grid point (u, v) and
the interest point (x, y) as

wG(u, v) = exp
(
− (u−x)2+(v−y)2

2·σ2
w

)
. (25.79)

For the grid point (u, v), the quantity to be accumulated into the
orientation histogram is

z = Ep,q(u, v) · wG(u, v), (25.80)

that is, the local gradient magnitude weighted by the Gaussian win-
dow function (Alg. 25.7, line 19).

The orientation histogram hφ consists of norient bins and thus the
continuous bin number for the angle φ(u, v) is

κφ =
norient

2π
· φ(u, v) (25.81)

(see Alg. 25.7, line 20). To collect the continuous orientations into a
histogram with discrete bins, quantization must be performed. The
simplest approach is to select the “nearest” bin (by rounding) and to
add the associated quantity (denoted z) entirely to the selected bin.
Alternatively, to reduce quantization effects, a common technique is
to split the quantity z onto the two closest bins. Given the continuous
bin value κφ, the indexes of the two closest discrete bins are

k0 = ⌊κφ⌋ mod norient and k1 = (⌊κφ⌋+1) mod norient, (25.82)

respectively. The quantity z (Eqn. (25.80)) is then partitioned and
accumulated into the neighboring bins k0, k1 of the orientation his-
togram hφ in the form

hφ(k0) ← hφ(k0) + (1− α) · z,

hφ(k1) ← hφ(k1) + α · z,
(25.83)

with α = κφ − ⌊κφ⌋. This process is illustrated by the example in
Fig. 25.18 (see also Alg. 25.7, lines 21–25).

638

25.3 Creating Local
Descriptors

k

h(k)

z · (1−α)
z · αz

k0 k1

κ
1

α
Fig. 25.18
Accumulating into multiple
histogram bins by linear in-
terpolation. Assume that
some quantity z (blue bar)
is to be added to the discrete
histogram hφ at the contin-
uous position κφ. The his-
togram bins adjacent to κφ are
k0 = ⌊κφ⌋ and k1 = ⌊κφ⌋ + 1.
The fraction of z accumulated
into bin k1 is z1 = z · α (red
bar), with α = κφ − k0. Anal-
ogously, the quantity added to
bin k0 is z0 = z · (1−α) (green
bar).

x

y

hφ(k)

φk

Fig. 25.19
Orientation histogram exam-
ple. Each of the 36 radial bars
corresponds to one entry in
the orientation histogram hφ.
The length (radius) of each
radial bar with index k is pro-
portional to the accumulated
value in the corresponding bin
hφ(k) and its orientation is φk.

n = 0 n = 1 n = 2 n = 3

Fig. 25.20
Smoothing the orientation
histogram (from Fig. 25.19) by
repeatedly applying a circular
low-pass filter with the 1D
kernel H = 1

4 · (1, 2, 1).

Orientation histogram smoothing

Figure 25.19 shows a geometric rendering of the orientation histogram
that explains the relevance of the cell indexes (discrete angles φk) and
the accumulated quantities (z). Before calculating the dominant ori-
entations, the raw orientation histogram hφ is usually smoothed by
applying a (circular) low-pass filter, typically a simple 3-tap Gaus-
sian or box-type filter (see procedure SmoothCircular() in Alg. 25.7,
lines 6–16).22 Stronger smoothing is achieved by applying the filter
multiple times, as illustrated in Fig. 25.20. In practice, two to three
smoothing iterations appear to be sufficient.

Locating and interpolating orientation peaks

After smoothing the orientation histogram, the next step is to detect
the peak entries in hφ. A bin k is considered a significant orientation
peak if hφ(k) is a local maximum and its value is not less than a
certain fraction of the maximum histogram entry, that is, only if

22 Histogram smoothing is not mentioned in the original SIFT publication
[153] but used in most implementations.

639

25 Scale-Invariant
Feature Transform

(SIFT)

hφ(k) > hφ((k − 1) mod norient) ∧
hφ(k) > hφ((k + 1) mod norient) ∧ (25.84)

hφ(k) > tdomor ·max
i

hφ(i) ,

with tdomor = 0.8 as a typical limit.
To achieve a finer angular resolution than provided by the orien-

tation histogram bins (typically spaced at 10◦ steps) alone, a con-
tinuous peak orientation is calculated by quadratic interpolation of
the neighboring histogram values. Given a discrete peak index k,
the interpolated (continuous) peak position k̆ is obtained by fitting a
quadratic function to the three successive histogram values hφ(k−1),
hφ(k), hφ(k+1) as23

k̆ = k +
hφ(k−1)− hφ(k+1)

2 ·
[

hφ(k−1)− 2 hφ(k) + hφ(k+1)
] , (25.85)

with all indexes taken modulo norient. From Eqn. (25.81), the (con-
tinuous) dominant orientation angle θ ∈ [0, 2π) is then obtained as

θ = (k̆ mod norient) ·
2π

norient

, (25.86)

mit θ ∈ [0, 2π). In this way, the dominant orientation can be esti-
mated with accuracy much beyond the coarse resolution of the orien-
tation histogram. Note that, in some cases, multiple histogram peaks
are obtained for a given key point (see procedure FindPeakOrientations()
in Alg. 25.6, lines 18–31). In this event, individual SIFT descriptors
are created for each dominant orientation at the same key point po-
sition (see Alg. 25.3, line 8).

Figure 25.21 shows the orientation histograms for a set of detected
key points in two different images after applying a varying number
of smoothing steps. It also shows the interpolated dominant orienta-
tions θ calculated from the orientation histograms (Eqn. (25.86)) by
the corresponding vectors.

25.3.2 SIFT Descriptor Construction

For each key point k′ = (p, q, x, y) and each dominant orientation θ, a
corresponding SIFT descriptor is obtained by sampling the surround-
ing gradients at octave p and level q of the Gaussian scale space G.

Descriptor geometry

The geometry underlying the calculation of SIFT descriptors is illus-
trated in Fig. 25.22. The descriptor combines the gradient orienta-
tion and magnitude from a square region of size wd × wd, which is
centered at the (continuous) position (x, y) of the associated feature
point and aligned with its dominant orientation θ. The side length of
the descriptor is set to wd = 10 · σ̇q, where σ̇q denotes the key point’s
decimated scale (radius of the inner circle). It depends on the key
point’s scale level q (see Table 25.4).

23 See Sec. C.1.2 in the Appendix for details.
640

25.3 Creating Local
Descriptors

(a) n = 0

(b) n = 1

(c) n = 2

(d) n = 3

Fig. 25.21
Orientation histograms and
dominant orientations (exam-
ples). n = 0, . . . , 3 smoothing
iterations were applied to the
orientation histograms. The
(interpolated) dominant ori-
entations are shown as radial
lines that emanate from each
feature’s center point. The
size of the histogram graphs
is proportional to the absolute
scale (σp,q , see Table 25.3) at
which the corresponding key
point was detected. The col-
ors indicate the index of the
containing scale space octave p
(red = 0, green = 1, blue = 2,
magenta = 3).

The region is partitioned into nspat × nspat sub-squares of iden-
tical size; typically nspat = 4 (see Table 25.5). The contribution of
each gradient sample is attenuated by a circular Gaussian function of
width σd = 0.25 · wd (blue circle). The weights drop off radially and
are practically zero at rd = 2.5 · σd (green circle in Fig. 25.22). Thus
only samples outside this zone need to be included for calculating the
descriptor statistics.

641

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.22
Geometry of a SIFT descrip-
tor. The descriptor is calcu-

lated from a square support re-
gion that is centered at the key

point’s position (x, y), aligned
to the key point’s dominant

orientation θ, and partitioned
into nspat × nspat (4 × 4) sub-
squares. The radius of the in-

ner (gray) circle corresponds to
the feature point’s decimated

scale value (σ̇q). The blue cir-
cle displays the width (σd) of
the Gaussian weighting func-
tion applied to the gradients;

its value is practically zero
outside the green circle (rd).

x

y

wd

wd

θ

σ̇q

σd

rd

To achieve rotation invariance, the descriptor region is aligned to
the key point’s dominant orientation, as determined in the previous
steps. To make the descriptor invariant to scale changes, its size wd

(expressed in the grid coordinate units of octave p) is set proportional
to the key point’s decimated scale σ̇q (see Eqn. (25.37)), that is,

wd = sd · σ̇q = sd · σ0 · 2q/Q, (25.87)

where sd is a constant size factor. For sd = 10 (see Table 25.5), the
descriptor size wd ranges from 16.0 (at level 0) to 25.4 (at level 2), as
listed in Table 25.4. Note that the descriptor size wd only depends
on the scale level index q and is independent of the octave index p.
Thus the same descriptor geometry applies to all octaves of the scale
space.

Table 25.4
SIFT descriptor dimensions

for different scale levels q (for
size factor sd = 10 and Q = 3

levels per octave). σ̇q is the
key point’s decimated scale,
wd is the descriptor size, σd

is the width of the Gaussian
weighting function, and rd is
the radius of the descriptor’s
support region. For Q = 3,
only scale levels q = 0, 1, 2

are relevant. All lengths are
expressed in the octave’s (i.e.,

decimated) coordinate units.

q σ̇q wd = sd · σ̇q σd = 0.25 · wd rd = 2.5 · σd

3 3.2000 32.000 8.0000 20.0000

2 2.5398 25.398 6.3495 15.8738

1 2.0159 20.159 5.0398 12.5994

0 1.6000 16.000 4.0000 10.0000

−1 1.2699 12.699 3.1748 7.9369

The descriptor’s spatial resolution is specified by the parameter
nspat. Typically nspat = 4 (as shown in Fig. 25.22) and thus the
total number of spatial bins is nspat× nspat = 16 (in this case). Each
spatial descriptor bin relates to an area of size (wd/nspat)×(wd/nspat).
For example, at scale level q = 0 of any octave, σ̇0 = 1.6 and the
corresponding descriptor size is wd = sd · σ̇0 = 10 · 1.6 = 16.0 (see
Table 25.4). In this case (illustrated in Fig. 25.23), the descriptor
covers 16× 16 gradient samples, as suggested in [153]. Figure 25.24
shows an example with M-shaped feature point markers aligned to
the dominant orientation and scaled to the descriptor region width
wd of the associated scale level.

642

25.3 Creating Local
Descriptors

x

y

Fig. 25.23
Geometry of the SIFT descrip-
tor in relation to the discrete
sample grid of the associated
octave (level q = 0, parameter
sd = 10). In this case, the dec-
imated scale is σ̇0 = 1.6 and
the width of the descriptor is
wd = sd · σ̇0 = 10 · 1.6 = 16.0.

Fig. 25.24
Marked key points aligned to
their dominant orientation.
Note that multiple feature
instances are inserted at key
point positions with more than
one dominant orientation. The
size of the markers is propor-
tional to the absolute scale
(σp,q , see Table 25.3) at which
the corresponding key point
was detected. The colors in-
dicate the index of the scale
space containing octave p (red
= 0, green = 1, blue = 2, ma-
genta = 3).

Gradient features

The actual SIFT descriptor is a feature vector obtained by histogram-
ming the gradient orientations of the Gaussian scale level within the
descriptors spatial support region. This requires a 3D histogram
h∇(i, j, k), with two spatial dimensions (i, j) for the nspat × nspat

sub-regions and one additional dimension (k) for nangl gradient ori-
entations. This histogram thus contains nspat×nspat×nangl bins.

Figure 25.25 illustrates this structure for the typical setup, with
nspat = 4 and nangl = 8 (see Table 25.5). In this arrangement, eight
orientation bins k = 0, . . . , 7 are attached to each of the 16 spatial
position bins (A1, . . . , D4), which makes a total of 128 histogram
bins.

For a given key point k′ = (p, q, x, y), the histogram h∇ accu-
mulates the orientations (angles) of the gradients at the Gaussian
scale space level Gp,q within the support region around the (conti-
nous) center coordinate (x, y). At each grid point (u, v) inside this
region, the gradient vector ∇G is estimated (as described in Eqn.
(25.73)), from which the gradient magnitude E(u, v) and orientation
φ(u, v) are calculated (see Eqns. (25.74)–(25.75) and lines 27–31 in
Alg. 25.7). For efficiency reasons, E(u, v) and φ(u, v) are typically
pre-calculated for all relevant scale levels.

Each gradient sample contributes to the gradient histogram h∇ a
particular quantity z that depends on the gradient magnitude E and
the distance of the sample point (u, v) from the key point’s center
(x, y). Again a Gaussian weighting function (of width σd) is used to
attenuate samples with increasing spatial distance; thus the resulting
accumulated quantity is

643

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.25
SIFT descriptor structure for

nspat = 4 and nangl = 8. Eight
orientation bins k = 0, . . . , 7

are provided for each of the 16
spatial bins ij = A1, . . . , D4.
Thus the gradient histogram

h∇ holds 128 cells that are
arranged to a 1D feature vec-
tor (A10, A12 . . . , D46, D47)

as shown in (b).

(a)

1

2

3

4

A B C D

θ

(b)

B

2

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4

k =
k

z(u, v) = R(u, v) · wG = R(u, v) · exp
(
− (u−x)2+(v−y)2

2σ2
d

)
. (25.88)

The width σd of the Gaussian function wG() is proportional to the
side length of the descriptor region, with

σd = 0.25 · wd = 0.25 · sd · σ̇q. (25.89)

The weighting function drops off radially from the center and is prac-
tically zero at distance rd = 2.5·σd. Therefore, only gradient samples
that are closer to the key point’s center than rd (green circle in Fig.
25.22) need to be considered in the gradient histogram calculation
(see Alg. 25.8, lines 7 and 17). For a given key point k′ = (p, q, x, y),
sampling of the Gaussian gradients can thus be confined to the grid
points (u, v) inside the square region bounded by x ± rd and y ± rd

(see Alg. 25.8, lines 8–10 and 15–16). Each sample point (u, v) is
then subjected to the affine transformation

(
u′

v′

)

=
1

wd

·
(

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)

·
(

u−x
v−y

)

, (25.90)

which performs a rotation by the dominant orientation θ and maps
the original (rotated) square of size wd ×wd to the unit square with
coordinates u′, v′ ∈ [−0.5, +0.5] (see Fig. 25.23).

To make feature vectors rotation invariant, the individual gradient
orientations φ(u, v) are rotated by the dominant orientation, that is,

φ′(u, v) = (φ(u, v)− θ) mod 2π, (25.91)

with φ′(u, v) ∈ [0, 2π), such that the relative orientation is preserved.
644

25.3 Creating Local
Descriptors

For each gradient sample, with the continuous coordinates (u′, v′,
φ′), the corresponding quantity z(u, v) (Eqn. (25.88)) is accumulated
into the 3D gradient histogram h∇. For a complete description of this
step see procedure UpdateGradientHistogram() in Alg. 25.9. It first
maps the coordinates (u′, v′, φ′) (see Eqn. (25.90)) to the continuous
histogram position (i′, j′, k′) by

i′ = nspat · u′ + 0.5 · (nspat−1),

j′ = nspat · v′ + 0.5 · (nspat−1),

k′ = φ′ · nangl

2π
,

(25.92)

such that i′, j′ ∈ [−0.5, nspat−0.5] and k′ ∈ [0, nangl).
Analogous to inserting into a continuous position of a 1D his-

togram by linear interpolation over two bins (see Fig. 25.18), the
quantity z is distributed over eight neighboring histogram bins by
tri-linear interpolation. The quantiles of z contributing to the in-
dividual histogram bins are determined by the distances of the co-
ordinates (i′, j′, k′) from the discrete indexes (i, j, k) of the affected
histogram bins. The indexes (i, j, k) are found as the set of possible
combinations {i0, i1} × {j0, j1} × {k0, k1}, with

i0 = ⌊ i′⌋, i1 = (i0 + 1),

j0 = ⌊j′⌋, j1 = (j0 + 1), (25.93)

k0 = ⌊k′⌋ mod nangl, k1 = (k0 + 1) mod nangl,

and the corresponding quantiles (weights) are

α0 = ⌊ i′⌋+ 1− i′ = i1 − i′, α1 = 1− α0,

β0 = ⌊j′⌋+ 1− j′ = j1 − j′, β1 = 1− β0, (25.94)

γ0 = ⌊k′⌋+ 1− k′, γ1 = 1− γ0,

and the (eight) affected bins of the gradient histogram are finally
updated as

h∇(i0, j0, k0) +← z · α0 · β0 · γ0,

h∇(i1, j0, k0) +← z · α1 · β0 · γ0,

h∇(i0, j1, k0) +← z · α0 · β1 · γ0,
...

...
h∇(i1, j1, k1) +← z · α1 · β1 · γ1.

(25.95)

Attention must be paid to the fact that the coordinate k represents
an orientation and must therefore be treated in a circular manner,
as illustrated in Fig. 25.26 (also see Alg. 25.9, lines 11–12).

For each histogram bin, the range of contributing gradient sam-
ples covers half of each neighboring bin, that is, the support regions
of neighboring bins overlap, as illustrated in Fig. 25.27.

Normalizing SIFT descriptors

The elements of the gradient histogram h∇ are the raw material for
the SIFT feature vectors f sift. The process of calculating the fea-
ture vectors from the gradient histogram is described in Alg. 25.10.

645

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.26
3D structure of the gradient

histogram, with nspat × nspat =
4 × 4 bins for the spatial di-

mensions (i, j) and nangl = 8
bins along the orientation axis

(k). For the histogram to accu-
mulate a quantity z into some
continuous position (i′, j′, k′),

eight adjacent bins receive
different quantiles of z that
are determined by tri-linear
interpolation (a). Note that

the bins along the orientation
axis φ are treated circularly;

for example, bins at k = 0
are also considered adjacent

to the bins at k = 7 (b).

0 1 2 3

0

1

2

3 0
1

2
3

4
5

6
7

i′

j′

k′

i

j k

0 1 2 3

0

1

2

3 0
1

2
3

4
5

6
7

i′

j′

k′

i

j k

(a) (b)

Fig. 25.27
Overlapping support regions
in the gradient field. Due to

the tri-linear interpolation
used in the histogram cal-

culation, the spatial regions
associated with the cells of

the orientation histogram h∇
overlap. The shading of the
circles indicates the weight

wG assigned to each sample
by the Gaussian weighting

function, whose value de-
pends on the distance of each

sample from the key point’s
center (see Eqn. (25.88)).

x

y

Initially, the 3D gradient histogram h∇ (which contains continuous
values) of size nspat × nspat × nangl is flattened to a 1D vector f of
length n2

spat · nangl (typ. 128), with

f
(
(i · nspat + j) · nangl + k

)
← h∇(i, j, k), (25.96)

for i, j = 0, . . . , nspat−1 and k = 0, . . . , nangl−1. The elements in f
are thus arranged in the same order as shown in Fig. 25.25, with the
orientation index k being the fastest moving and the spatial index i
being the slowest (see Alg. 25.10, lines 3–8).24

Changes in image contrast have a linear impact upon the gradient
magnitude and thus also upon the values of the feature vector f . To
eliminate these effects, the vector f is subsequently normalized to

f(m) ← 1
‖f‖ · f (m), (25.97)

for all m, such that f has unit norm (see Alg. 25.10, line 9). Since the
gradient is calculated from local pixel differences, changes in absolute
24 Note that different ordering schemes for arranging the elements of the

feature vector are used in various SIFT implementations. For successful
matching, the ordering of the elements must be identical, of course.

646

25.4 SIFT Algorithm
Summary

brightness do not affect the gradient magnitude, unless saturation
occurs. Such nonlinear illumination changes tend to produce peak
gradient values, which are compensated for by clipping the values of
f to a predefined maximum tfclip, that is,

f (m) ← min(f (m), tfclip), (25.98)

with typically tfclip = 0.2, as suggested in [153] (see Alg. 25.10, line
10). After this step, f is normalized once again, as in Eqn. (25.97).
Finally, the real-valued feature vector f is converted to an integer
vector by

fsift(m) ← min
(
round(sfscale · f (m)), 255)

)
, (25.99)

with sfscale being a predefined constant (typ. sfscale = 512). The
elements of fsift are in the range [0, 255] to be conveniently encoded
and stored as a byte sequence (see Alg. 25.10, line 12).

The final SIFT descriptor for a given key point k′ = (p, q, x, y) is
a tuple

s = 〈x′, y′, σ, θ, fsift〉 , (25.100)

which contains the key point’s interpolated position x′, y′ (in original
image coordinates), the absolute scale σ, its dominant orientation
θ, and the corresponding integer-valued gradient feature vector fsift

(see Alg. 25.8, line 27). Remember that multiple SIFT descriptors
may be produced for different dominant orientations located at the
same key point position. These will have the same position and scale
values but different θ and fsift data.

25.4 SIFT Algorithm Summary

This section contains a collection of algorithms that summarizes the
SIFT feature extraction process described in the previous sections of
this chapter.

Algorithm 25.3 shows the top-level procedure GetSiftFeatures(I),
which returns a sequence of SIFT feature descriptors for the given
image I. The remaining parts of Alg. 25.3 describe the key point
detection as extrema of the DOG scale space. The refinement of
key point positions is covered in Alg. 25.4. Algorithm 25.5 contains
the procedures used for neighborhood operations, detecting local ex-
trema, and the calculation of the gradient and Hessian matrix in 3D.
Algorithm 25.6 covers the operations related to finding the dominant
orientations at a given key point location, based on the orientation
histogram that is calculated in Alg. 25.7. The final formation of the
SIFT descriptors is described in Alg. 25.8, which is based on the pro-
cedures defined in Algs. 25.9 and 25.10. The global constants used
throughout these algorithms are listed in Table 25.5, together with
the corresponding Java identifiers in the associated source code (see
Sec. 25.7).

647

25 Scale-Invariant
Feature Transform

(SIFT)

Table 25.5
Predefined constants

used in the SIFT algo-
rithms (Algs. 25.3–25.11).

Scale space parameters

Symbol Java id. Value Description

Q Q 3 scale steps (levels) per octave

P P 4 number of scale space octaves

σs sigma_s 0.5 sampling scale (nominal smoothing of the input image)

σ0 sigma_0 1.6 base scale of level 0 (base smoothing)

Key-point detection

Symbol Java id. Value Description

norient n_Orient 36 number of orientation bins (angular resolution) used for
calculating the dominant key point orientation

nrefine n_Refine 5 max. number of iterations for repositioning a key point

nsmooth n_Smooth 2 number of smoothing iterations applied to the orientation
histogram

ρmax rho_Max 10.0 max. ratio of principal curvatures (3, . . . , 10)

tdomor t_DomOr 0.8 min. value in orientation histogram for selecting dominant
orientations (rel. to max. entry)

textrm t_Extrm 0.0 min. difference w.r.t. any neighbor for extrema detection

tmag t_Mag 0.01 min. DoG magnitude for initial key point candidates

tpeak t_Peak 0.01 min. DoG magnitude at interpolated peaks

Feature descriptor

Symbol Java id. Value Description

nspat n_Spat 4 number of spatial descriptor bins along each x/y axis

nangl n_Angl 16 number of angular descriptor bins

sd s_Desc 10.0 spatial size factor of descriptor (relative to feature scale)

sfscale s_Fscale 512.0 scale factor for converting normalized feature values to
byte values in [0, 255]

tfclip t_Fclip 0.2 max. value for clipping elements of normalized feature
vectors

Feature matching

Symbol Java id. Value Description

ρmax rho_ax 0.8 max. ratio of best and second-best matching feature dis-
tance

25.5 Matching SIFT Features

Most applications of SIFT features aim at locating corresponding
interest points in two or more images of the same scene, for example,
for matching stereo pairs, panorama stitching, or feature tracking.
Other applications like self-localization or object recognition might
use a large database of model descriptors and the task is to match
these to the SIFT features detected in a new image or video sequence.
All these applications require possibly large numbers of pairs of SIFT
features to be compared reliably and efficiently.

25.5.1 Feature Distance and Match Quality

In a typical situation, two sequences of SIFT features S (a) and S (b)

are extracted independently from a pair of input images Ia, Ib, that
is,

S (a) = (s(a)
1 , s

(a)
2 , . . . , s

(a)
Na

) and S (b) = (s(b)
1 , s

(b)
2 , . . . , s

(b)
Nb

).

The goal is to find matching descriptors in the two feature sets. The
similarity between a given pair of descriptors, si = 〈xi, yi, σi, θi, fi〉
and sj = 〈xj , yj , σj , θj , fj〉, is measured by the distance between the
corresponding feature vectors fi, fj , that is,

648

25.5 Matching SIFT
Features

1: GetSiftFeatures(I)
Input: I , the source image (scalar-valued).
Returns a sequence of SIFT feature descriptors detected in I .

2: 〈G, D〉 ← BuildSiftScaleSpace(I, σs, σ0, P, Q) ⊲ Alg. 25.2
3: C ← GetKeyPoints(D)
4: S ← () ⊲ empty list of SIFT descriptors
5: for all k′ ∈ C do ⊲ k′ = (p, q, x, y)
6: A ← GetDominantOrientations(G, k′) ⊲ Alg. 25.6
7: for all θ ∈ A do
8: s ← MakeSiftDescriptor(G, k′, θ) ⊲ Alg. 25.8
9: S ← S � (s)

10: return S

11: GetKeypoints(D)
D: DoG scale space (with P octaves, each containing Q levels).
Returns a set of key points located in D.

12: C ← () ⊲ empty list of key points
13: for p ← 0, . . . , P −1 do ⊲ for all octaves p
14: for q ← 0, . . . , Q−1 do ⊲ for all scale levels q
15: E ← FindExtrema(D, p, q)
16: for all k ∈ E do ⊲ k = (p, q, u, v)
17: k′ ← RefineKeyPosition(D, k) ⊲ Alg. 25.4
18: if k′ �= nil then ⊲ k′ = (p, q, x, y)
19: C ← C � (k′) ⊲ add refined key point k′

20: return C

21: FindExtrema(D, p, q)
22: Dp,q ← GetScaleLevel(D, p, q)
23: (M, N) ← Size(Dp,q)
24: E ← () ⊲ empty list of extrema
25: for u ← 1, . . . , M−2 do
26: for v ← 1, . . . , N−2 do
27: if

∣
∣Dp,q(u, v)

∣
∣ > tmag then

28: k ← (p, q, u, v)
29: Nc ← GetNeighborhood(D, k) ⊲ Alg. 25.5
30: if IsExtremum(Nc) then ⊲ Alg. 25.5
31: E ← E � (k) ⊲ add k to E

32: return E

Alg. 25.3
SIFT feature extraction
(part 1). Top-level SIFT pro-
cedure. Global parameters:
σs, σ0, tmag, Q, P (see Table
25.5).

dist(si, sj) :=
∥
∥fi − fj

∥
∥ , (25.101)

where ‖ · · · ‖ denotes an appropriate norm (typically Euclidean, al-
ternatives will be discussed further).25

Note that this distance is measured between individual points
distributed in a high-dimensional (typically 128-dimensional) vector
space that is only sparsely populated. Since there is always a best-
matching counterpart for a given descriptor, matches may occur be-
tween unrelated features even if the correct feature is not contained
in the target set. This is particularly critical if feature matching is
used to determine whether two images show any correspondence at
all.

Obviously, significant matches should exhibit small feature dis-
tances but setting a fixed limit on the acceptable feature distance

25 See also Sec. B.1.2 in the Appendix.
649

25 Scale-Invariant
Feature Transform

(SIFT)

Alg. 25.4
SIFT feature extraction

(part 2). Position refinement.
Global parameters: nrefine,

tpeak, ρmax (see Table 25.5).

1: RefineKeyPosition(D, k)
Input: D, hierarchical DoG scale space; k = (p, q, u, v), candidate
(extremal) position.
Returns a refined key point k′ or nil if no proper key point could
be localized at or near the extremal position k.

2: amax ← (ρmax+1)2

ρmax
⊲ see Eq. 25.72

3: k′ ← nil ⊲ refined key point
4: done ← false
5: n ← 1 ⊲ number of repositioning steps

6: while ¬done ∧ n ≤ nrefine ∧ IsInside(D, k) do
7: Nc ← GetNeighborhood(D, k) ⊲ Alg. 25.5

8: ∇ =

(
dx

dx

dσ

)

← Gradient(Nc) ⊲ Alg. 25.5

9: HD =

(
dxx dxy dxσ

dxy dyy dyσ

dxσ dyσ dσσ

)

← Hessian(Nc) ⊲ Alg. 25.5

10: if det(HD) = 0 then ⊲ HD is not invertible
11: done ← true ⊲ ignore this point and finish
12: else

13: d =

(
x′

y′

σ′

)

← −H−1
D · ∇ ⊲ Eq. 25.60

14: if |x′|<0.5 ∧ |y′|<0.5 then ⊲ stay in the same DoG cell
15: done ← true
16: Dpeak ← Nc(0, 0, 0) + 1

2
· ∇⊺·d ⊲ Eq. 25.61

17: Hxy ←
(

dxx dxy

dxy dyy

)

⊲ extract 2D Hessian from HD

18: if |Dpeak| > tpeak ∧ det(Hxy) > 0 then

19: a ← [trace(Hxy)]2

det(Hxy)
⊲ Eq. 25.69

20: if a < amax then ⊲ suppress edges, Eq. 25.72
21: k′ ← k + (0, 0, x′, y′)

⊺
⊲ refined key point

22: else
Move to a neighboring DoG position at same level p, q:

23: u′ ← min(1, max(−1, round(x′))) ⊲ move by max. ±1
24: v′ ← min(1, max(−1, round(y′))) ⊲ move by max. ±1
25: k ← k + (0, 0, u′, v′)

⊺

26: n ← n + 1

27: return k′ ⊲ k′ is either a refined key point position or nil

turns out to be inappropriate in practice, since some descriptors are
more discriminative than others. The solution proposed in [153] is
to compare the distance obtained for the best feature match to that
of the second-best match. For a given reference descriptor sr ∈ S (a),
the best match is defined as the descriptor s1 ∈ S (b) which has the
smallest distance from sr in the multi-dimensional feature space, that
is,

s1 = argmin
sj∈S(b)

dist(sr, sj), (25.102)

650

25.5 Matching SIFT
Features

1: IsInside(D, k)
Checks if coordinate k = (p, q, u, v) is inside the DoG scale space
D.

2: (p, q, u, v) ← k
3: (M, N) ← Size(GetScaleLevel(D, p, q))
4: return (0 < u < M−1) ∧ (0 < v < N−1) ∧ (0 ≤ q < Q)

5: GetNeighborhood(D, k) ⊲ k = (p, q, u, v)
Collects and returns the 3×3×3 neighborhood values around
position k in the hierarchical DoG scale space D.

6: Create map Nc : {−1, 0, 1}3 �→ R

7: for all (i, j, k) ∈ {−1, 0, 1}3 do ⊲ collect 3×3×3 neighborhood
8: Nc(i, j, k) ← Dp,q+k(u+i, v+j)
9: return Nc

10: IsExtremum(Nc) ⊲ Nc is a 3×3×3 map
Determines if the center of the 3D neighborhood Nc is either a
local minimum or maximum by the threshold textrm ≥ 0. Returns
a boolean value (i.e., true or false).

11: c ← Nc(0, 0, 0) ⊲ center DoG value

12: isMin ← c < 0 ∧ (c + textrm) < min
(i,j,k)
=
(0,0,0)

Nc(i, j, k) ⊲ s. Eq. 25.54

13: isMax ← c > 0 ∧ (c − textrm) > max
(i,j,k)
=
(0,0,0)

Nc(i, j, k) ⊲ s. Eq. 25.55

14: return isMin ∨ isMax

15: Gradient(Nc) ⊲ Nc is a 3×3×3 map
Returns the estim. gradient vector (∇) for the 3D neighborhood
Nc.

16: dx ← 0.5 · (Nc(1, 2, 1) − Nc(1, 0, 1))
17: dy ← 0.5 · (Nc(1, 1, 2) − Nc(1, 1, 0)) ⊲ see Eq. 25.56
18: dσ ← 0.5 · (Nc(2, 1, 1) − Nc(0, 1, 1))
19: ∇ ← (dx, dy, dσ)

⊺

20: return ∇
21: Hessian(Nc) ⊲ Nc is a 3×3×3 map

Returns the estim. Hessian matrix (H) for the neighborhood Nc.
22: dxx ← Nc(−1, 0, 0) − 2·Nc(0, 0, 0) + Nc(1, 0, 0) ⊲ see Eq. 25.58
23: dyy ← Nc(0,−1, 0) − 2·Nc(0, 0, 0) + Nc(0, 1, 0)
24: dσσ ← Nc(0, 0,−1) − 2·Nc(0, 0, 0) + Nc(0, 0, 1)
25: dxy ← [Nc(1, 1, 0)−Nc(−1, 1, 0)−Nc(1,−1, 0)+Nc(−1,−1, 0)] /4
26: dxσ ← [Nc(1, 0, 1)−Nc(−1, 0, 1)−Nc(1, 0,−1)+Nc(−1, 0,−1)] /4
27: dyσ ← [Nc(0, 1, 1)−Nc(0,−1, 1)−Nc(0, 1,−1)+Nc(0,−1,−1)] /4

28: H ←
(

dxx dxy dxσ

dxy dyy dyσ

dxσ dyσ dσσ

)

29: return H

Alg. 25.5
SIFT feature extraction
(part 3): Neighborhood op-
erations. Global parameters:
Q, textrm (see Table 25.5).

and the primary distance is dr,1 = dist(sr, s1). Analogously, the
second-best matching descriptor is

s2 = argmin
sj∈S(b),
sj �=s1

dist(sr, sj), (25.103)

and the corresponding distance is dr,2 = dist(sr, s2), with dr,1 ≤ dr,2.
Reliable matches are expected to have a distance to the primary

651

25 Scale-Invariant
Feature Transform

(SIFT)

Alg. 25.6
SIFT feature extraction

(part 4): Key point orien-
tation assignment. Global

parameters: nsmooth,
tdomor (see Table 25.5).

1: GetDominantOrientations(G, k′)
Input: G, hierarchical Gaussian scale space; k′ = (p, q, x, y), re-
fined key point at octave p, scale level q and spatial position x, y
(in octave’s coordinates).
Returns a list of dominant orientations for the key point k′.

2: hφ ← GetOrientationHistogram(G, k′) ⊲ Alg. 25.7
3: SmoothCircular(hφ, nsmooth)
4: A ← FindPeakOrientations(hφ)
5: return A

6: SmoothCircular(x, niter)
Smooths the real-valued vector x = (x0, . . . , xn−1) circularly us-
ing the 3-element kernel H = (h0, h1, h2), with h1 as the hot-spot.
The filter operation is applied niter times and “in place”, i.e., the
vector x is modified.

7: (h0, h1, h2) ← 1
4
· (1, 2, 1) ⊲ 1D filter kernel

8: n ← Size(x)
9: for i ← 1, . . . , niter do

10: s ← x(0)
11: p ← x(n−1)
12: for j ← 0, . . . , n−2 do
13: c ← x(j)
14: x(j) ← h0 ·p + h1 ·x(j) + h2 ·x(j+1)
15: p ← c
16: x(n−1) ← h0 ·p + h1 ·x(n−1) + h2 ·s
17: return

18: FindPeakOrientations(hφ)
Returns a (possibly empty) sequence of dominant directions (an-
gles) obtained from the orientation histogram hφ.

19: n ← Size(hφ)
20: A ← ()
21: hmax ← max

0≤i<n
hφ(i)

22: for k ← 0, . . . , n−1 do
23: hc ← h(k)
24: if hc > tdomor · hmax then ⊲ only accept dominant peaks
25: hp ← hφ((k−1) mod n)
26: hn ← hφ((k+1) mod n)
27: if (hc > hp) ∧ (hc > hn) then ⊲ local max. at index k

28: k̆ ← k +
hp−hn

2·(hp−2·hc+hn)
⊲ quadr. interpol., Eq. 25.85

29: θ ←
(
k̆ · 2π

n

)
mod 2π ⊲ domin. orientation, Eq. 25.86

30: A ← A � (θ)
31: return A

feature s1 that is considerably smaller than the distance to any other
feature in the target set. In the case of a weak or ambiguous match,
on the other hand, it is likely that other matches exist at a distance
similar to dr,1, including the second-best match s2. Comparing the
best and the second-best distances thus provides information about
the likelihood of a false match. For this purpose, we define the feature
distance ratio

ρmatch(sr, s1, s2) :=
dr,1

dr,2

=
dist(sr, s1)
dist(sr, s2)

, (25.104)

652

25.5 Matching SIFT
Features

1: GetOrientationHistogram(G, k′)
Input: G, hierarchical Gaussian scale space; k′ = (p, q, x, y), re-
fined key point at octave p, scale level q and relative position
x, y.
Returns the gradient orientation histogram for key point k′.

2: Gp,q ← GetScaleLevel(G, p, q)
3: (M, N) ← Size(Gp,q)
4: Create a new map hφ : [0, norient−1] �→ R. ⊲ new histogram hφ

5: for i ← 0, . . . , norient−1 do ⊲ initialize hφ to zero
6: hφ(i) ← 0

7: σw ← 1.5 · σ0 · 2q/Q ⊲ σ of Gaussian weight fun., see Eq. 25.76
8: rw ← max(1, 2.5 · σw) ⊲ rad. of weight fun., see Eq. 25.77

9: umin ← max(⌊x − rw⌋, 1)
10: umax ← min(⌈x + rw⌉, M−2)
11: vmin ← max(⌊y − rw⌋, 1)
12: vmax ← min(⌈y + rw⌉, N−2)

13: for u ← umin, . . . , umax do
14: for v ← vmin, . . . , vmax do
15: r2 ← (u−x)2 + (v−y)2

16: if r2 < r2
w then

17: (E, φ) ← GetGradientPolar(Gp,q, u, v) ⊲ see below

18: wG ← exp
(
− (u−x)2+(v−y)2

2σ2
w

)
⊲ Gaussian weight

19: z ← E · wG ⊲ quantity to accumulate
20: κφ ← norient

2π
· φ ⊲ κφ ∈ [− norient

2
, +

norient
2

]
21: α ← κφ − ⌊κφ⌋ ⊲ α ∈ [0, 1]
22: k0 ← ⌊κφ⌋ mod norient ⊲ lower bin index
23: k1 ← (k0 + 1) mod norient ⊲ upper bin index
24: hφ(k0)

+← (1−α) · z ⊲ update bin k0

25: hφ(k1)
+← α · z ⊲ update bin k1

26: return hφ

27: GetGradientPolar(Gp,q, u, v)
Returns the gradient magnitude (E) and orientation (φ) at posi-
tion (u, v) of the Gaussian scale level Gp,q.

28:

(
dx

dy

)

← 0.5 ·
(

Gp,q(u+1, v) − Gp,q(u−1, v)
Gp,q(u, v+1) − Gp,q(u, v−1)

)

⊲ gradient at u, v

29: E ←
(
d2

x + d2
y

)1/2
⊲ gradient magnitude

30: φ ← ArcTan(dx, dy) ⊲ gradient orientation (−π ≤ φ ≤ π)
31: return (E, φ)

Alg. 25.7
SIFT feature extraction
(part 5): Calculation of the
orientation histogram and gra-
dients from Gaussian scale
levels. Global parameters:
norient (see Table 25.5).

such that ρmatch ∈ [0, 1]. If the distance dr,1 between sr and the
primary feature s1 is small compared to the secondary distance dr,2,
then the value of ρmatch is small as well. Thus, large values of ρmatch

indicate that the corresponding match (between sr and s1) is likely
to be weak or ambiguous. Matches are only accepted if they are
sufficiently distinctive, for example, by enforcing the condition

ρmatch(sr, s1, s2) ≤ ρmax , (25.105)

where ρmax ∈ [0, 1] is a predefined constant (see Table 25.5). The
complete matching process, using the Euclidean distance norm and
sequential search, is summarized in Alg. 25.11. Other common op-
tions for distance measurement are the L1 and L∞ norms.

653

25 Scale-Invariant
Feature Transform

(SIFT)

Alg. 25.8
SIFT feature extraction
(part 6): Calculation of

SIFT descriptors. Global pa-
rameters: Q, σ0, sd, nspat,

nangl (see Table 25.5).

1: MakeSiftDescriptor(G, k′, θ)
Input: G, hierarchical Gaussian scale space; k′ = (p, q, x, y), re-
fined key point; θ, dominant orientation.
Returns a new SIFT descriptor for the key point k′.

2: Gp,q ← GetScaleLevel(G, p, q)
3: (M, N) ← Size(Gp,q)

4: σ̇q ← σ0 · 2q/Q ⊲ decimated scale at level q
5: wd ← sd · σ̇q ⊲ descriptor size is prop. to key point scale
6: σd ← 0.25 · wd ⊲ width of Gaussian weighting function
7: rd ← 2.5 · σd ⊲ cutoff radius of weighting function

8: umin ← max(⌊x−rd⌋, 1)
9: umax ← min(⌈x+rd⌉, M−2)

10: vmin ← max(⌊y−rd⌋, 1)
11: vmax ← min(⌈y+rd⌉, N−2)

12: Create map h∇ : nspat×nspat×nangl �→ R ⊲ gradient histogram
h∇

13: for all (i, j, k) ∈ nspat×nspat×nangl do
14: h∇(i, j, k) ← 0 ⊲ initialize h∇ to zero

15: for u ← umin, . . . , umax do
16: for v ← vmin, . . . , vmax do

17: r2 ← (u−x)2 + (v−y)2

18: if r2 < r2
d then

Map to canonical coord. frame, with u′, v′∈ [− 1
2
, + 1

2
]:

19:

(
u′

v′

)

← 1

wd

·
(

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)

·
(

u−x
v−y

)

20: (E, φ) ← GetGradientPolar(Gp,q, u, v) ⊲ Alg. 25.7
21: φ′ ← (φ − θ) mod 2π ⊲ normalize gradient angle

22: wG ← exp
(
− r2

2σ2
d

)
⊲ Gaussian weight

23: z ← E · wG ⊲ quantity to accumulate
24: UpdateGradientHistogram(h∇, u′, v′, φ′, z) ⊲ Alg. 25.9

25: fsift ← MakeFeatureVector(h∇) ⊲ see Alg. 25.10

26: σ ← σ0 · 2p+q/Q ⊲ absolute scale, Eq. 25.35

27:

(
x′

y′

)

← 2p ·
(

x
y

)

⊲ real position, Eq. 25.45

28: s ← 〈x′, y′, σ, θ, fsift〉 ⊲ create a new SIFT descriptor

29: return s

25.5.2 Examples

The following examples were calculated on pairs of stereographic im-
ages taken at the beginning of the 20th century.26 From each of the
two frames of a stereo picture, a sequence of (ca. 1000) SIFT de-
scriptors (marked by blue rectangles) was extracted with identical
parameter settings. Matching was done by enumerating all possi-
ble descriptor pairs from the left and the right image, calculating
their (Euclidean) distance, and showing the 25 closest matches ob-
tained from ca. 1000 detected key points in each frame. Only the

26 The images used in Figs. 25.28–25.31 are historic stereographs made
publicly available by the Library of Congress (www.loc.gov).

654

http://www.loc.gov

25.5 Matching SIFT
Features

1: UpdateGradientHistogram(h∇, u′, v′, φ′, z)
Input: h∇, gradient histogram of size nspat ×nspat×nangl, with
h∇(i, j, k) ∈ R; u′, v′ ∈ [−0.5, 0.5], normalized spatial position;
φ′ ∈ [0, 2π), normalized gradient orientation; z ∈ R, quantity to
be accumulated into h∇.
Returns nothing but modifies the histogram h∇.

2: i′ ← nspat · u′ + 0.5 · (nspat−1) ⊲ see Eq. 25.92
3: j′ ← nspat · v′ + 0.5 · (nspat−1) ⊲ −0.5 ≤ i′, j′ ≤ nspat−0.5

4: k′ ← nangl · φ′

2π
⊲ − nangl

2
≤ k′ ≤ nangl

2

5: i0 ← ⌊i′⌋
6: i1 ← i0 +1
7: i ← (i0, i1) ⊲ see Eq. 25.93; i(0) = i0, i(1) = i1

8: j0 ← ⌊j′⌋
9: j1 ← j0+1

10: j ← (j0, j1) ⊲ j(0) = j0, j(1) = j1

11: k0 ← ⌊k′⌋ mod nangl

12: k1 ← (k0+1) mod nangl

13: k ← (k0, k1) ⊲ k(0) = k0, k(1) = k1

14: α0 ← i1 − i′ ⊲ see Eq. 25.94
15: α1 ← 1 − α0

16: A ← (α0, α1) ⊲ A(0) = α0, A(1) = α1

17: β0 ← j1 − j′

18: β1 ← 1 − β0

19: B ← (β0, β1) ⊲ B(0) = β0, B(1) = β1

20: γ0 ← 1 − (k′ − ⌊k′⌋)
21: γ1 ← 1 − γ0

22: C ← (γ0, γ1) ⊲ C (0) = γ0, C (1) = γ1

Distribute quantity z among (up to) 8 adjacent histogram bins:

23: for all a ∈ {0, 1} do
24: i ← i(a)
25: if (0 ≤ i < nspat) then
26: wa ← A(a)
27: for all b ∈ {0, 1} do
28: j ← j(b)
29: if (0 ≤ j < nspat) then
30: wb ← B(b)
31: for all c ∈ {0, 1} do
32: k ← k(c)
33: wc ← C (c)
34: h∇(i, j, k)

+← z ·wa ·wb ·wc ⊲ see Eq. 25.95

35: return

Alg. 25.9
SIFT feature extraction
(part 7): Updating the gradi-
ent descriptor histogram. The
quantity z pertaining to the
continuous position (u′, v′, φ′)
is to be accumulated into the
3D histogram h∇ (u′, v′ are
normalized spatial coordinates,
φ′ is the orientation). The
quantity z is distributed over
up to eight neighboring his-
togram bins (see Fig. 25.26) by
tri-linear interpolation. Note
that the orientation coordinate
φ′ receives special treatment
because it is circular. Global
parameters: nspat, nangl (see
Table 25.5).

best 25 matches are shown in the examples. Feature matches are
numbered according to their goodness, that is, label “1” denotes the
best-matching descriptor pair (with the smallest feature distance).
Selected details from these results are shown in Fig. 25.29. Unless
otherwise noted, all SIFT parameters are set to their default values
(see Table 25.5).

Although the use of the Euclidean (L2) norm for measuring the
distances between feature vectors in Eqn. (25.101) is suggested in
[153], other norms have been considered [130, 181, 227] to improve

655

25 Scale-Invariant
Feature Transform

(SIFT)

Alg. 25.10
SIFT feature extraction

(part 8): Converting the
orientation histogram to a

SIFT feature vector. Global
parameters: nspat, nangl,

tfclip, sfscale (see Table 25.5).

1: MakeSiftFeatureVector(h∇)
Input: h∇, gradient histogram of size nspat × nspat × nangl.
Returns a 1D integer (unsigned byte) vector obtained from h∇.

2: Create map f :
[
0, n2

spat · nangl − 1
]
�→ R ⊲ new 1D vector f

3: m ← 0
4: for i ← 0, . . . , nspat−1 do ⊲ flatten h∇ into f
5: for j ← 0, . . . , nspat−1 do
6: for k ← 0, . . . , nangl−1 do
7: f(m) ← h∇(i, j, k)
8: m ← m + 1
9: Normalize(f)

10: ClipPeaks(f , tfclip)
11: Normalize(f)
12: fsift ← MapToBytes(f , sfscale)
13: return fsift

14: Normalize(x)
Scales vector x to unit norm. Returns nothing, but x is modified.

15: n ← Size(x)

16: s ←
n−1∑

i=0

x(i)

17: for i ← 0, . . . , n−1 do
18: x(i) ← 1

s
· x(i)

19: return

20: ClipPeaks(x, xmax)
Limits the elements of x to xmax. Returns nothing, but x is
modified.

21: n ← Size(x)
22: for i ← 0, . . . , n−1 do
23: x(i) ← min

(
x(i), xmax

)

24: return

25: MapToBytes(x, s)
Converts the real-valued vector x to an integer (unsigned byte)
valued vector with elements in [0, 255], using the scale factor
s > 0.

26: n ← Size(x)
27: Create a new map xint : [0, n−1] �→ [0, 255] ⊲ new byte vector
28: for i ← 0, . . . , n−1 do
29: a ← round (s · x(i)) ⊲ a ∈ N0

30: xint(i) ← min
(
a, 255

)
⊲ xint(i) ∈ [0, 255]

31: return xint

the statistical robustness and noise resistance. In Fig. 25.30, match-
ing results are shown using the L1, L2, and L∞ norms, respectively.
Note that the resulting sets of top-ranking matches are almost the
same with different distance norms, but the ordering of the strongest
matches does change.

Figure 25.31 demonstrates the effectiveness of selecting feature
matches based on the ratio between the distances to the best and the
second-best match (see Eqns. (25.102)–(25.103)). Again the figure
shows the 25 top-ranking matches based on the minimum (L2) feature
distance. With the maximum distance ratio ρmax set to 1.0, rejection
is practically turned off with the result that several false or ambiguous
matches are among the top-ranking feature matches (Fig. 25.31(a)).

656

25.6 Efficient Feature
Matching

1: MatchDescriptors(S(a), S(b), ρmax)
Input: S(a), S(b), two sets of SIFT descriptors; ρmax, max. ratio
of best and second-best matching distance (s. Eq. 25.105).
Returns a sorted list of matches mij = 〈sa, sb, dij〉, with sa ∈
S(a), sb ∈ S(b) and dij being the distance between sa, sb in feature
space.

2: M ← () ⊲ empty sequence of matches
3: for all sa ∈ S(a) do
4: s1 ← nil, dr,1 ← ∞ ⊲ best nearest neighbor
5: s2 ← nil, dr,2 ← ∞ ⊲ second-best nearest neighbor

6: for all sb ∈ S(b) do
7: d ← Dist(sa, sb)
8: if d < dr,1 then ⊲ d is a new ‘best’ distance
9: s2 ← s1, dr,2 ← dr,1

10: s1 ← sb, dr,1 ← d
11: else
12: if d < dr,2 then ⊲ d is a new ‘second-best’ distance
13: s2 ← sb, dr,2 ← d

14: if (s2 �= nil) ∧ (
dr,1

dr,2
≤ ρmax) then ⊲ Eqns. (25.104–25.105)

15: m ← 〈sa, s1, dr,1〉 ⊲ add a new match
16: M � (m)
17: Sort(M) ⊲ sort M to ascending distance dr,1

18: return M

19: Dist(sa, sb)
Input: descriptors sa = 〈xa, ya, σa, θa, fa〉, sb = 〈xb, yb, σb, θb,
fb〉. Returns the Euclidean distance between feature vectors fa

and f b.

20: d ← ‖fa − fb‖
21: return d

Alg. 25.11
SIFT feature matching using
Euclidean feature distance and
linear search. The returned
sequence of SIFT matches is
sorted to ascending distance
between corresponding feature
pairs. Function Dist(sa, sb)
demonstrates the calculation
of the Euclidean (L2) feature
distance, other options are the
L1 and L∞ norms.

With ρmax set to 0.8 and finally 0.5, the number of false matches is
effectively reduced (Fig. 25.31(b, c)).27

25.6 Efficient Feature Matching

The task of finding the best match based on the minimum distance
in feature space is called “nearest-neighbor” search. If performed
exhaustively, evaluating all possible matches between two descriptor
sets S (a) and S (b) of size Na and Nb, respectively, requires Na ·Nb

feature distance calculations and comparisons. While this may be
acceptable for small feature sets (with maybe up to 1000 descrip-
tors each), this linear (brute-force) approach becomes prohibitively
expensive for large feature sets with possibly millions of candidates,
as required, for example, in the context of image database index-
ing or robot self-localization. Although efficient methods for exact
nearest-neighbor search based on tree structures exist, such as the
k-d tree method [80], it has been shown that these methods lose
their effectiveness with increasing dimensionality of the search space.

27 ρmax = 0.8 is recommended in [153].
657

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.28
SIFT feature matching exam-
ples on pairs of stereo images.

Shown are the 25 best matches
obtained with the L2 feature

distance and ρmax = 0.8.

(a)

(b)

(c)

In fact, no algorithms are known that significantly outperform ex-
haustive (linear) nearest neighbor search in feature spaces that are
more than about 10-dimensional [153]. SIFT feature vectors are 128-
dimensional and therefore exact nearest-neighbor search is not a vi-
able option for efficient matching between large descriptor sets.

The approach taken in [21,153] abandons exact nearest-neighbor
search in favor of finding an approximate solution with substan-
tially reduced effort, based on ideas described in [9]. This so-called

658

25.6 Efficient Feature
Matching

Left frame Right frame

(a)

(b)

(c)

Fig. 25.29
Stereo matching examples
(enlarged details from Fig.
25.28).

“best-bin-first” method uses a modified k-d algorithm, which searches
neighboring feature space partitions in the order of their closest dis-
tance from the given feature vector. To limit the exploration to a
small fraction of the feature space, the search is cut off after check-
ing the first 200 candidates, which results in a substantial speedup
without compromising the search results, particularly when combined
with feature selection based on the ratio of primary and secondary
distances (see Eqns. (25.104)–(25.105)). Additional details can be
found in [21].

659

25 Scale-Invariant
Feature Transform

(SIFT)

Fig. 25.30
Using different distance

norms for feature match-
ing. L1 (a), L2 (b), and L∞
norm (c). All other param-

eters are set to their de-
fault values (see Table 25.5).

(a) L1-norm

(b) L2-norm

(c) L∞-norm

Approximate nearest-neighbor search in high-dimensional spaces
is not only essential for practical SIFT matching in real time, but is
a general problem with numerous applications in various disciplines
and continued research. Open-source implementations of several dif-
ferent methods are available as software libraries.

660

25.7 Java
Implementation

(a) ρmax = 1.0

(b) ρmax = 0.8

(c) ρmax = 0.5

Fig. 25.31
Rejection of weak or ambigu-
ous matches by limiting the
ratio of primary and sec-
ondary match distance ρmax

(see Eqns. (25.104)–(25.105)).

25.7 Java Implementation

A new and complete Java implementation of the SIFT method has
been written from ground up to complement the algorithms described
in this chapter. Space limitations do not permit a full listing here,
but the entire implementation and additional examples can be found
in the source code section of this book’s website. Most Java methods
are named and structured identically to the procedures listed in the
algorithms for easy identification. Note, however, that this imple-

661

25 Scale-Invariant
Feature Transform

(SIFT)

mentation is again written for instructional clarity and readability.
The code is neither tuned for efficiency nor is it intended to be used
in a production environment.

25.7.1 SIFT Feature Extraction

The key class in this Java library is SiftDetector, which implements
a SIFT detector for a given floating-point image. The following ex-
ample illustrates its basic use for a given ImageProcessor object
ip:

...

FloatProcessor I = ip.convertToFloatProcessor();

SiftDetector sd = new SiftDetector(I);

List<SiftDescriptor> S = sd.getSiftFeatures();

... // process descriptor set S

The initial work of setting up the required Gaussian and DoG scale
space structures for the given image I is accomplished by the con-
structor in new SiftDetector(I).

The method getSiftFeatures() then performs the actual fea-
ture detection process and returns a sequence of SiftDescriptor

objects (S) for the image I. Each extracted SiftDescriptor in S

holds information about its image position (x, y), its absolute scale
σ (scale) and its dominant orientation θ (orientation). It also
contains an invariant, 128-element, int-type feature vector fsift (see
Alg. 25.8).

The SIFT detector uses a large set of parameters that are set
to their default values (see Table 25.5) if the simple constructor new

SiftDetector(I) is used, as in the previous example. All parameters
can be adjusted individually by passing a parameter object (of type
SiftDetector.Parameters) to its constructor, as in the following
example, which shows feature extraction from two images A, B using
identical parameters:

...

FloatProcessor Ia = A.convertToFloatProcessor();

FloatProcessor Ib = B.convertToFloatProcessor();

...

SiftDetector.Parameters params =

new SiftDetector.Parameters();

params.sigma_s = 0.5; // modify individual parameters

params.sigma_0 = 1.6;

...

SiftDetector sdA = new SiftDetector(Ia, params);

SiftDetector sdB = new SiftDetector(Ib, params);

List<SiftDescriptor> SA = sda.getSiftFeatures();

List<SiftDescriptor> SB = sdb.getSiftFeatures();

...

// process descriptor sets SA and SB

662

25.8 Exercises25.7.2 SIFT Feature Matching

Finding matching descriptors from a pair of SIFT descriptor sets
Sa, Sb is accomplished by the class SiftMatcher.28 One descrip-
tor set (Sa) is considered the “reference” or “model” set and used to
initialize a new SiftMatcher object, as shown in the following exam-
ple. The actual matches are then calculated by invoking the method
matchDescriptors(), which implements the procedure MatchDescriptors()
outlined in Alg. 25.11. It takes the second descriptor set (Sb) as the
only argument. The following code segment continues from the pre-
vious example:

...

SiftMatcher.Parameters params =

new SiftMatcher.Parameters();

// set matcher parameters here (see below)

SiftMatcher matcher = new SiftMatcher(SA, params);

List<SiftMatch> matches = matcher.matchDescriptors(SB);

...

// process matches

As noted, certain parameters of class SiftMatcher can be set indi-
vidually, for example,

params.norm = FeatureDistanceNorm.L1; // L1, L2, or Linf

params.rmMax = 0.8; // ρmax, max. ratio of best and second-best match

params.sort = true; // set to true if sorting of matches is desired

The method matchDescriptors() in this prototypical implemen-
tation performs an exhaustive search over all possible descriptor pairs
in the two sets Sa and Sb. To implement efficient approximate
nearest-neighbor search (see Sec. 25.6), one would pre-calculate the
required search tree structures for the model descriptor set (Sa) once
inside SiftMatcher’s constructor method. The same matcher ob-
ject could then be reused to match against multiple descriptor sets
without the need to recalculate the search tree structure over and
over again. This is particularly effective when the given model set is
large.

25.8 Exercises

Exercise 25.1. As claimed in Eqn. (25.12), the 2D LoG function
Lσ(x, y) can be approximated by the DoG in the form Lσ(x, y) ≈
λ · (Gκσ(x, y)−Gσ(x, y)). Create a combined plot, similar to the one
in Fig. 25.5(b), showing the 1D cross sections of the LoG and DoG
functions (with σ = 1.0 and y = 0). Compare both functions by
varying the values of κ = 2.00, 1.25, 1.10, 1.05, and 1.01. How does
the approximation change as κ approaches 1, and what happens if κ
becomes exactly 1?

Exercise 25.2. Test the performance of the SIFT feature detection
and matching on pairs of related images under (a) changes of im-
age brightness and contrast, (b) image rotation, (c) scale changes,

28 File imagingbook.sift.SiftMatcher.java.
663

25 Scale-Invariant
Feature Transform

(SIFT)

(d) adding (synthetic) noise. Choose (or shoot) your own test im-
ages, show the results in a suitable way and document the parameters
used.

Exercise 25.3. Evaluate the SIFT mechanism for tracking features
in video sequences. Search for a suitable video sequence with good
features to track and process the images frame-by-frame.29 Then
match the SIFT features detected in pairs of successive frames by
connecting the best-matching features, as long as the “match qual-
ity” is above a predefined threshold. Visualize the resulting feature
trajectories. Could other properties of the SIFT descriptors (such as
position, scale, and dominant orientation) be used to improve track-
ing stability?

29 In ImageJ, choose an AVI video short enough to fit into main memory
and open it as an image stack.

664

26

Fourier Shape Descriptors

Fourier descriptors are an interesting method for modeling 2D shapes
that are described as closed contours. Unlike polylines or splines,
which are explicit and local descriptions of the contour, Fourier de-
scriptors are global shape representations, that is, each component
stands for a particular characteristic of the entire shape. If one com-
ponent is changed, the whole shape will change. The advantage is
that it is possible to capture coarse shape properties with only a few
numeric values, and the level of detail can be increased (or decreased)
by adding (or removing) descriptor elements. In the following, we de-
scribe what is called “cartesian” (or “elliptical”) Fourier descriptors,
how they can be used to model the shape of closed 2D contours and
how they can be adapted to compare shapes in a translation-, scale-,
and rotation-invariant fashion.

26.1 Closed Curves in the Complex Plane

Any continuous curve C in the 2D plane can be expressed as a func-
tion f : R→ R2, with

f(t) =
(

xt

yt

)

=
(

fx(t)
fy(t)

)

, (26.1)

with the continuous parameter t being varied over the range [0, tmax].
If the curve is closed, then f(0) = f(tmax) and f(t) = f(t + tmax).
Note that fx(t), fy(t) are independent, real-valued functions, and t
is the path length along the curve.

26.1.1 Discrete 2D Curves

Sampling a closed curve C at M regularly spaced positions t0, t1, . . . ,
tM−1, with ti − ti−1 = Δt = Length(C)/M , results in a sequence
(vector) of discrete 2D coordinates V = (v0, v1, . . . , vM−1), with

vk = (xk, yk) = f(tk). (26.2)
665

© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9_26

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

26 Fourier Shape
Descriptors

Fig. 26.1
A closed, continuous 2D curve

C, represented as a sequence
of M uniformly placed sam-
ples g = (g0, g1, . . . , gM−1)

in the complex plane.

Re

Im

C

g0

g1

g2

g3

gM−2

gM−1

gk = (xk + i · yk) ∈ C

Since the curve C is closed, the vector V represents a discrete function
that is infinite and periodic, that is,

vk = vk+pM , (26.3)

for 0 ≤ k < M and any p ∈ Z.

Contour points in the complex plane

Any 2D contour sample vk = (xk, yk) can be interpreted as a point
gk in the complex plane,

gk = xk + i · yk, (26.4)

with xk and yk taken as the real and imaginary components, respec-
tively.1 The result is a sequence (vector) of complex values

g = (g0, g1, . . . , gM−1) , (26.5)

representing the discrete 2D contour (see Fig. 26.1).

Regular position sampling

The assumption of input data being obtained by regular sampling is
quite fundamental in traditional discrete Fourier analysis. In prac-
tice, contours of objects are typically not available as regularly sam-
pled point sequences. For example, if an object has been segmented as
a binary region, the coordinates of its boundary pixels could be used
as the original contour sequence. However, the number of bound-
ary pixels is usually too large to be used directly and their positions
are not strictly uniformly spaced (at least under 8-connectivity). To
produce a useful contour sequence from a region boundary, one could
choose an arbitrary contour point as the start position x0 and then
sample the x/y positions along the contour at regular (equidistant)
steps, treating the centers of the boundary pixels as the vertices of a
closed polygon. Algorithm 26.1 shows how to calculate a predefined
number of contour points on an arbitrary polygon, such that the path

1 Instead of g ← x + i · y, we sometimes use the short notation g ← (x, y)
or g ← v for assigning the components of a 2D vector v = (x, y) ∈ R

2

to a complex variable g ∈ C.
666

26.2 Discrete Fourier
Transform (DFT)

1: SamplePolygonUniformly(V, M)
Input: V = (v0, . . . , vN−1), a sequence of N points representing
the vertices of a 2D polygon; M , number of desired sample points.
Returns a sequence g = (g0, . . . , gM−1) of complex values rep-
resenting points sampled uniformly along the path of the input
polygon V .

2: N ← |V |
3: Δ ← 1

M
· PathLength(V) ⊲ const. segment length Δ

4: Create map g : [0, M−1] → C ⊲ complex point sequence g
5: g(0) ← Complex(V (0))
6: i ← 0 ⊲ index of polygon segment 〈vi, vi+1〉
7: k ← 1 ⊲ index of next point to be added to g
8: α ← 0 ⊲ path position of polygon vertex vi

9: β ← Δ ⊲ path position of next point to be added to g

10: while (i < N) ∧ (k < M) do
11: vA ← V (i)
12: vB ← V ((i + 1) mod N)
13: δ ← ‖vB − vA‖ ⊲ length of segment 〈vA, vB〉
14: while (β ≤ α + δ) ∧ (k < M) do
15: x ← vA + β−α

δ
· (vB − vA) ⊲ linear path interpolation

16: g(k) ← Complex(x)
17: k ← k + 1
18: β ← β + Δ
19: α ← α + δ
20: i ← i + 1
21: return g.

22: PathLength(V) ⊲ returns the path length of the closed polygon V
23: N ← |V |
24: L ← 0
25: for i ← 0, . . . , N−1 do
26: vA ← V (i)
27: vB ← V ((i + 1) mod N)
28: L ← L + ‖vB − vA‖
29: return L.

Alg. 26.1
Regular sampling of a poly-
gon path. Given a sequence V
of 2D points representing the
vertices of a closed polygon,
SamplePolygonUniformly(V, M)
returns a sequence of M com-
plex values g on the polygon
V , such that g(0) ≡ V (0) and
all remaining points g(k) are
uniformly positioned along the
polygon path. See Alg. 26.9 for
an alternate solution.

length between the sample points is uniform. This algorithm is used
in all examples involving contours obtained from binary regions.

Note that if the shape is given as an arbitrary polygon, the cor-
responding Fourier descriptor can also be calculated directly (and
exactly) from the vertices of the polygon, without sub-sampling the
polygon contour path at all. This “trigonometric” variant of the
Fourier descriptor calculation is described in Sec. 26.3.7.

26.2 Discrete Fourier Transform (DFT)

Fourier descriptors are obtained by applying the 1D Discrete Fourier
Transform (DFT)2 to the complex-valued vector g of 2D contour
points (Eqn. (26.5)). The DFT is a transformation of a finite, complex-
valued signal vector g = (g0, g1, . . . , gM−1) to a complex-valued spec-

2 See Chapter 18, Sec. 18.3.
667

26 Fourier Shape
Descriptors

trum G = (G0, G1, . . . , GM−1).3 Both the signal and the spectrum
are of the same length (M) and periodic. In the following, we typi-
cally use k to denote the index in the time or space domain,4 and m
for a frequency index in the spectral domain.

26.2.1 Forward Fourier Transform

The discrete Fourier spectrum G = (G0, G1, . . . , GM−1) is calculated
from the discrete, complex-valued signal g = (g0, g1, . . . , gM−1) using
the forward DFT, defined as5

Gm =
1

M
·
M−1∑

k=0

gk · e−i·2πm· k
M =

1
M
·
M−1∑

k=0

gk · e−i·ωm· k
M (26.6)

=
1

M
·
M−1∑

k=0

[
xk + i·yk

]

︸ ︷︷ ︸
gk

·
[
cos
(
2πm
︸︷︷︸

ωm

k
M

)
− i·sin

(
2πm
︸︷︷︸

ωm

k
M

)]
(26.7)

=
1

M
·
M−1∑

k=0

[
xk + i·yk

]
·
[
cos
(
ωm

k
M

)
− i·sin

(
ωm

k
M

)]
, (26.8)

for 0 ≤ m < M .6 Note that ωm = 2πm denotes the angular frequency
for the frequency index m. By applying the usual rules of complex
multiplication, we obtain the real (Re) and imaginary (Im) parts of
the spectral coefficients Gm = (Am + i · Bm) explicitly as

Am = Re(Gm) =
1

M

M−1∑

k=0

[
xk ·cos

(
ωm

k
M

)
+ yk ·sin

(
ωm

k
M

)]
, (26.9)

Bm = Im(Gm) =
1

M

M−1∑

k=0

[
yk ·cos

(
ωm

k
M

)
− xk ·sin

(
ωm

k
M

)]
. (26.10)

The DFT is defined for any signal length M ≥ 1. If the signal
length M is a power of two (that is, M = 2n for some n ∈ N), the
Fast Fourier Transform (FFT)7 can be used in place of the DFT for
improved performance.

26.2.2 Inverse Fourier Transform (Reconstruction)

The inverse DFT reconstructs the original signal g from a given spec-
trum G. The formulation is almost symmetrical (except for the scale

3 In most traditional applications of the DFT (e.g. in acoustic processing),
the signals are real-valued, that is, the imaginary components of the
samples are zero. The Fourier spectrum is generally complex-valued,
but it is symmetric for real-valued signals.

4 We use k instead of the usual i as the running index to avoid confusion
with the imaginary constant “i” (despite the deliberate use of different
glyphs).

5 This definition deviates slightly from the one used in Chapter 18, Sec.
18.3 but is otherwise equivalent.

6 Recall that z = x + iy = |z| · (cos ψ + i · sin ψ) = |z| · eiψ, with ψ =
tan−1(y/x).

7 See Chapter 18, Sec. 18.4.2.
668

26.2 Discrete Fourier
Transform (DFT)

1: FourierDescriptorUniform(g)
Input: g = (g0, . . . , gM−1), a sequence of M complex values,
representing regularly sampled 2D points along a contour path.
Returns a Fourier descriptor G of length M .

2: M ← |g|
3: Create map G : [0, M−1] → C

4: for m ← 0, . . . , M−1 do
5: A ← 0, B ← 0 ⊲ real/imag. part of coefficient Gm

6: for k ← 0, . . . , M−1 do
7: g ← g(k)
8: x ← Re(g), y ← Im(g)
9: φ ← 2 · π · m · k

M

10: A ← A + x · cos(φ) + y · sin(φ) ⊲ Eq. 26.10
11: B ← B − x · sin(φ) + y · cos(φ)
12: G(m) ← 1

M
· (A + i · B)

13: return G.

Alg. 26.2
Calculating the Fourier de-
scriptor for a sequence of uni-
formly sampled contour points.
The complex-valued contour
points in C represent 2D posi-
tions sampled uniformly along
the contour path. Applying
the DFT to g yields the raw
Fourier descriptor G.

factor and the different signs in the exponent) to the forward trans-
formation in Eqns. (26.6)–(26.8); its full expansion is

gk =
M−1∑

m=0

Gm · ei·2πm· k
M =

M−1∑

m=0

Gm · ei·ωm· k
M (26.11)

=
M−1∑

m=0

[
Re(Gm) + i·Im(Gm)

]

︸ ︷︷ ︸

Gm

·
[
cos
(
2πm
︸︷︷︸

ωm

k
M

)
+ i·sin

(
2πm
︸︷︷︸

ωm

k
M

)]

(26.12)

=
M−1∑

m=0

[
Am + i·Bm

]
·
[
cos
(
ωm

k
M

)
+ i·sin

(
ωm

k
M

)]
. (26.13)

Again we can expand Eqn. (26.13) to obtain the real and imaginary
parts of the reconstructed signal, that is, the x/y-components of the
corresponding curve points gk = (xk, yk) as

xk = Re(gk) =
M−1∑

m=0

[
Re(Gm)·cos

(
2πm k

M

)
− Im(Gm)·sin

(
2πm k

M

)]
,

(26.14)

yk = Im(gk) =
M−1∑

m=0

[
Im(Gm)·cos

(
2πm k

M

)
+ Re(Gm)·sin

(
2πm k

M

)]
,

(26.15)

for 0 ≤ k < M . If all coefficients of the spectrum are used, this
reconstruction is exact, that is, the resulting discrete points gk are
identical to the original contour points.8

With the aforementioned formulation we can not only reconstruct
the discrete contour points gk from the DFT spectrum, but also a
smooth, interpolating curve as the sum of continuous sine and cosine
components. To calculate arbitrary points on this curve, we replace
the discrete quantity k

M in Eqn. (26.15) by the continuous parameter t
in the range [0, 1). We must be careful about the frequencies, though.
To achieve the desired smooth interpolation, the set of lowest possible

8 Apart from inaccuracies caused by finite floating-point precision.
669

26 Fourier Shape
Descriptors

frequencies ωm must be used,9 that is,

x(t) =
M−1∑

m=0

[
Re(Gm) · cos(ωm · t)− Im(Gm) · sin(ωm · t)

]
, (26.16)

y(t) =
M−1∑

m=0

[
Im(Gm) · cos(ωm · t) + Re(Gm) · sin(ωm · t)

]
, (26.17)

with ωm =

{

2πm for m ≤ (M÷2),
2π(m−M) for m > (M÷2),

(26.18)

where ÷ denotes the quotient (i.e., integer division). Alternatively,
we could write Eqn. (26.17) in the form

x(t) =
M÷2∑

m=
−(M−1)÷2

[Re(Gm mod M)·cos(2πmt)− Im(Gm mod M)·sin(2πmt)],

(26.19)

y(t) =
M÷2∑

m=
−(M−1)÷2

[Im(Gm mod M)·cos(2πmt) + Re(Gm mod M)·sin(2πmt)].

(26.20)

This formulation is used for the purpose of shape reconstruction from
Fourier descriptors in Alg. 26.4.

Figure (26.2) shows the reconstruction of the discrete contour
points as well as the calculation of a continuous outline from the
DFT spectrum obtained from a sequence of discrete contour posi-
tions. The original sample points were taken at M = 25 uniformly
spaced positions along the region’s contour. The discrete points in
Fig. 26.2(b) are exactly reconstructed from the complete DFT spec-
trum, as specified in Eqn. (26.15). The interpolated (green) outline
in Fig. 26.2(c) was calculated with Eqn. (26.15) for continuous posi-
tions, based on the frequencies m = 0, . . . , M−1. The oscillations of
the resulting curve are explained by the high-frequency components.
Note that the curve still passes exactly through each of the original
sample points, in fact, these can be perfectly reconstructed from any
contiguous range of M coefficients and the corresponding harmonic
frequencies. The smooth interpolation in Fig. 26.2(d), based on the
symmetric low-frequency coefficients m = −(M −1)÷2, . . . , M÷2
(see Eqn. (26.20)) shows no such oscillations, since no high-frequency
components are included.

26.2.3 Periodicity of the DFT Spectrum

When we apply the DFT, we implicitly assume that both the signal
vector g = (g0, g1, . . . , gM−1) and the spectral vector G = (G0, G1,
. . . , GM−1) represent discrete, periodic functions of infinite extent

9 Due to the periodicity of the discrete spectrum, any summation over M
successive frequencies ωm can be used to reconstruct the original discrete
x/y samples. However, a smooth interpolation between the discrete x/y
samples can only be obtained from the set of lowest frequencies in the
range [−M

2
, + M

2
] centered around the zero frequency, as in Eqns. (26.17)

and (26.20).
670

26.2 Discrete Fourier
Transform (DFT)

(a) (b)

(c) (d)

Fig. 26.2
Contour reconstruction by
inverse DFT. Original im-
age (a), M = 25 uniformly
spaced sample points on the
region’s contour (b). Con-
tinuous contour (green line)
reconstructed by using frequen-
cies ωm with m = 0, . . . , 24
(c). Note that despite the os-
cillations introduced by the
high frequencies, the contin-
uous contour passes exactly
through the original sample
points. Smooth interpolation
reconstructed with Eqn. (26.17)
from the lowest-frequency coef-
ficients in the symmetric range
m = −12, . . . , +12 (d).

g ∈ C
M

G ∈ C
M

G centered

DFT

DFT−1

g0 g1 g2 gM−1gM−2

G0

G0

G1

G1

G2

G2 GM−1GM−2

G−2 G−1

Gm GM−m

G−m Gm

→ ω0 1 2 3−3 −2 −1.

Fig. 26.3
Applying the DFT to a
complex-valued vector g of
length M yields the complex-
valued spectrum G that is also
of length M . The DFT spec-
trum is infinite and periodic
with M , thus G−m = GM−m,
as illustrated by the centered
representation of the DFT
spectrum (bottom). ω at the
bottom denotes the harmonic
number (multiple of the funda-
mental frequency) associated
with each coefficient.

(see [39, Ch. 13] for details). Due to this periodicity, G(0) = G(M),
G(1) = G(M + 1), etc. In general,

G(q ·M + m) = G(m) and G(m) = G(m mod M), (26.21)

for arbitrary integers q, m ∈ Z. Also, since (−m mod M) = (M−m)
mod M , we can state that

G(−m) = G(M−m), (26.22)

for any m ∈ Z, such that G(−1) = G(M−1), G(−2) = G(M−2),
etc., as illustrated in Fig. 26.3.

671

26 Fourier Shape
Descriptors

Fig. 26.4
Truncating a DFT spectrum

from M = 11 to M ′ = 7
coefficients, as specified in
Eqns. (26.23) and (26.24).

Coefficients G4, . . . , G7 are
discarded (M ′ ÷ 2 = 3).
Note that the associated

harmonic number ω remains
the same for each coefficient.

G ∈ C
M

G′ ∈ C
M′

→ ω

→ ω

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0 1 2 3 −3 −2 −1

G′
0 G′

1 G′
2 G′

3 G′
4 G′

5 G′
6

0 1 2 3 −3 −2 −1

26.2.4 Truncating the DFT Spectrum

In the original formulation in Eqns. (26.6)–(26.8), the DFT is applied
to a signal g of length M and yields a discrete Fourier spectrum G
with M coefficients. Thus the signal and the spectrum have the same
length. For shape representation, it is often useful to work with
a truncated spectrum, that is, a reduced number of low-frequency
Fourier coefficients.

By truncating a spectrum we mean the removal of coefficients
above a certain harmonic number, which are (considering positive
and negative frequencies) located around the center of the coefficient
vector. Truncating a given spectrum G of length |G| = M to a
shorter spectrum G′ of length M ′ ≤ M is done as

G′(m) ←
{

G(m) for 0 ≤ m ≤ M ′ ÷ 2,
G(M−M ′+m) for M ′ ÷ 2 < m < M ′,

(26.23)

or simply

G′(m mod M ′) ← G(m mod M), (26.24)

for (M ′÷2−M ′+1) ≤ m ≤ (M ′÷2). This works for M and M ′ being
even or odd. The example in Fig. 26.4 illustrates how an original
DFT spectrum G of length M = 11 is truncated to G′ with only
M ′ = 7 coefficients.

Of course it is also possible to calculate the truncated spectrum
directly from the contour samples, without going through the full
DFT spectrum. With M being the length of the signal vector g and
M ′ ≤ M the desired length of the (truncated) spectrum G′, Eqn.
(26.6) modifies to

G′(m mod M ′) =
1

M
·

M−1∑

k=0

gk · e−i2πm k
M , (26.25)

for m in the same range as in Eqn. (26.24). This approach is more
efficient than truncating the complete spectrum, since unneeded co-
efficients are never calculated. Algorithm 26.3, which is a modified
version of Alg. 26.2, summarizes the steps we have described.

Since some of the coefficients are missing, it is not possible to re-
construct the original signal vector g from the truncated DFT spec-
trum G′. However, the calculation of a partial reconstruction is pos-
sible, for example, using the formulation in Eqn. (26.20). In this

672

26.3 Geometric
Interpretation of
Fourier Coefficients

1: FourierDescriptorUniform(g, M ′)
Input: g = (g0, . . . , gM−1), a sequence of M complex values,
representing regularly sampled 2D points along a contour path.
M ′, the number of Fourier coefficients (M ′ ≤ M).
Returns a truncated Fourier descriptor G of length M ′.

2: M ← |g|
3: Create map G : [0, M ′−1] → C

4: for m ← (M ′÷2−M ′ +1), . . . , (M ′÷2) do
5: A ← 0, B ← 0 ⊲ real/imag. part of coefficient Gm

6: for k ← 0, . . . , M−1 do
7: g ← g(k)
8: x ← Re(g), y ← Im(g)
9: φ ← 2 · π · m · k

M

10: A ← A + x · cos(φ) + y · sin(φ) ⊲ Eq. 26.10
11: B ← B − x · sin(φ) + y · cos(φ)
12: G(m mod M ′) ← 1

M
· (A + i · B)

13: return G.

Alg. 26.3
Calculating a truncated
Fourier descriptor for a se-
quence of uniformly sampled
contour points (adapted from
Alg. 26.2). The M complex-
valued contour points in g

represent 2D positions sampled
uniformly along the contour
path. The resulting Fourier
descriptor G contains only M ′

coefficients for the M ′ lowest
harmonic frequencies.

case, the discarded (high-frequency) coefficients are simply assumed
to have zero values (see Sec. 26.3.6 for more details).

26.3 Geometric Interpretation of Fourier

Coefficients

The contour reconstructed by the inverse transformation (Eqn. (26.15))
is the sum of M terms, one for each Fourier coefficient Gm = (Am, Bm).
Each of these M terms represents a particular 2D shape in the spa-
tial domain and the original contour can be obtained by point-wise
addition of the individual shapes. So what are the spatial shapes
that correspond to the individual Fourier coefficients?

26.3.1 Coefficient G0 Corresponds to the Contour’s
Centroid

We first look only at the specific Fourier coefficient G0 with frequency
index m = 0. Substituting m = 0 and ω0 = 0 in Eqn. (26.10), we get

A0 =
1

M

M−1∑

k=0

[

xk · cos(0) + yk · sin(0)
]

(26.26)

=
1

M

M−1∑

k=0

[

xk · 1 + yk · 0
]

=
1

M

M−1∑

k=0

xk = x̄, (26.27)

B0 =
1

M

M−1∑

k=0

[

yk · cos(0)− xk · sin(0)
]

(26.28)

=
1

M

M−1∑

k=0

[

yk · 1− xk · 0
]

=
1

M

M−1∑

k=0

yk = ȳ. (26.29)

Thus G0 = (A0, B0) = (x̄, ȳ) is simply the average of the x/y-
coordinates, that is, the centroid of the original contour points gk (see

673

26 Fourier Shape
Descriptors

Fig. 26.5
DFT coefficient G0 cor-
responds to the centroid

of the contour points.

Re

Im

G

G0 = x̄ + i · ȳ

S

(x̄, ȳ)

G0 G1 G2G−2 G−1G−j Gj

Fig. 26.5).10 If we apply the inverse Fourier transform (Eqn. (26.15))
by ignoring (i.e., zeroing) all coefficients except G0, we get the partial

reconstruction11 of the 2D contour coordinates g
(0)
k =

(
x

(0)
k , y

(0)
k

)
as

x
(0)
k =

[
A0 · cos

(
ω0

k
M

)
−B0 · sin

(
ω0

k
M

)]
(26.30)

= x̄ · cos(0)− ȳ · sin(0) = x̄ · 1− ȳ · 0 = x̄, (26.31)

y
(0)
k =

[
B0 · cos

(
ω0

k
M

)
+ A0 · sin

(
ω0

k
M

)]
(26.32)

= ȳ · cos(0) + x̄ · sin(0) = ȳ · 1 + x̄ · 0 = ȳ. (26.33)

Thus the contribution of the spectral value G0 is the centroid of the
reconstructed shape (see Fig. 26.5). If we perform a partial recon-
struction of the contour using only the spectral coefficient G0, then
all contour points

g
(0)
0 = g

(0)
1 = . . . = g

(0)
k = . . . = g

(0)
M−1 = (x̄, ȳ) (26.34)

would have the same (centroid) coordinate. This is because G0 is
the coefficient for the zero frequency and thus the sine and cosine
terms in Eqns. (26.27) and (26.29) are constant. Alternatively, if we
reconstruct the signal by omitting G0 (i.e., g(1,...,M−1)), the resulting
contour is identical to the original shape, except that it is centered
at the coordinate origin.

26.3.2 Coefficient G1 Corresponds to a Circle

Next, we look at the geometric interpretation of G1 = (A1, B1), that
is, the coefficient with frequency index m = 1, which corresponds to
the angular frequency ω1 = 2π. Assuming that all coefficients Gm in
the DFT spectrum are set to zero, except the single coefficient G1,

10 Note that the centroid of a boundary is generally not the same as the
centroid of the enclosed region.

11 We use the notation g(m) = (g
(m)
0 , g

(m)
1 , . . . , g

(m)
M−1) for the partial recon-

struction of the contour g from only a single Fourier coefficient Gm. For
example, g(0) is the reconstruction from the zero-frequency coefficient
G0 only. Analogously, we use g(a,b,c) to denote a partial reconstruction
based on selected Fourier coefficients Ga, Gb, Gc.

674

26.3 Geometric
Interpretation of
Fourier Coefficients

we get the partially reconstructed contour points g(1) by Eqn. (26.11)
as

g
(1)
k = G1 · ei·2π· k

M (26.35)

= [A1 + i · B1] · [cos(2π k
M) + i · sin(2π k

M)], (26.36)

for 0 ≤ k < M . Remember that the complex values of eiϕ describe
a unit circle in the complex plane that performs one full (counter-
clockwise) revolution, as the angle ϕ runs from 0, . . . , 2π. Analo-
gously, ei2πt also describes a complete unit circle as t goes from 0
to 1. Since the term k

M (for 0 ≤ k < M) also varies from 0 to 1
in Eqn. (26.36), the M reconstructed contour points are placed on a
circle at equal angular steps. Multiplying ei·2πt by a complex factor
z stretches the radius of the circle by |z|, and also changes the phase
(starting angle) of the circle by an angle θ, that is,

z · ei·ϕ = |z| · ei·(ϕ+θ), (26.37)

with θ = �z = arg(z) = tan−1 (Im(z)/Re(z)).
We now see that the points g

(1)
k = G1 ·ei 2πk/M , generated by Eqn.

(26.36), are positioned uniformly on a circle with radius r1 = |G1|
and starting angle (phase)

θ1 = �G1 = tan−1
(Im(G1)

Re(G1)

)

= tan−1
(B1

A1

)

. (26.38)

This point sequence is traversed in counter-clockwise direction for
k = 0, . . . ,M−1 at frequency m = 1, that is, the circle performs
one full revolution while the contour is traversed once. The circle
is centered at the coordinate origin (0, 0), its radius is |G1|, and its
starting point (Eqn. (26.36) for k = 0) is

g
(1)
0 = G1 · ei·2πm· k

M = G1 · ei·2π1· 0
M = G1 · e0 = G1, (26.39)

as illustrated in Fig. 26.6.

26.3.3 Coefficient Gm Corresponds to a Circle with
Frequency m

Based on the aforementioned result for the frequency index m = 1,
we can easily generalize the geometric interpretation of Fourier coef-
ficients with arbitrary index m > 0. Using Eqn. (26.11), the partial
reconstruction for the single Fourier coefficient Gm = (Am, Bm) is
the contour g(m), with coordinates

g
(m)
k = Gm · ei·2πm· k

M (26.40)

= [Am + i · Bm] · [cos(2πm k
M) + i · sin(2πm k

M)], (26.41)

which again describe a circle with radius rm = |Gm|, phase θm =
arg(Gm) = tan−1 (Bm/Am), and starting point g

(m)
0 = Gm. In this

case, however, the angular velocity is scaled by m, that is, the re-
sulting circle revolves m times faster than the circle for G1. In other

675

26 Fourier Shape
Descriptors

Fig. 26.6
A single DFT coefficient cor-

responds to a circle. The par-
tial reconstruction from the

single DFT coefficient Gm

yields a sequence of M points

g
(m)
0 , . . . , g

(m)

M−1
on a circle

centered at the coordinate
origin, with radius rm and
starting angle (phase) θm.

Re

Im

(0, 0)

GG0 G1 G2G−2 G−1G−j Gj

g
(1)
0 =G1

g
(1)
1

g
(1)
2

g
(1)

M−1

r1

θ1

r1 = |G1|

θ1 = tan−1
(

Im(G1)

Re(G1)

)

words, while the contour is traversed once, this circle performs m full
revolutions.

Note that G0 (see Sec. 26.3.1) does not really constitute a special
case at all. Formally, it also describes a circle but one that oscil-
lates with zero frequency, that is, all points have the same (constant)
position

g
(0)
k = G0 · ei·2πm· k

M = G0 · ei·2π0· k
M = G0 · e0 = G0, (26.42)

for k = 0, . . . , M−1, which is equivalent to the curve’s centroid G0 =
(x̄, ȳ), as shown in Eqns. (26.27)–(26.29). Since the corresponding
frequency is zero, the point never moves away from G0.

26.3.4 Negative Frequencies

The DFT spectrum is periodic and defined for all frequencies m ∈ Z,
including negative frequencies. From Eqn. (26.21) we know that for
any DFT coefficient with negative index G−m there is an equivalent
coefficient Gn whose index n is in the range 0, . . . , M−1. The partial
reconstruction of the spectrum with the single coefficient G−m is

g
(−m)
k = G−m · e−i·2πm· k

M = Gn · e−i·2πm· k
M , (26.43)

with n = −m mod M , which is again a sequence of points on the
circle with radius r−m = rn = |Gn| and phase θ−m = θn = arg(Gn).
The absolute rotation frequency is m, but this circle spins in the op-
posite, that is, clockwise direction, since angles become increasingly
negative with growing k.

26.3.5 Fourier Descriptor Pairs Correspond to Ellipses

It follows therefore that the space-domain circles for the Fourier co-
efficients Gm and G−m rotate with the same absolute frequency m
but with different phase angles θm, θ−m and in opposite directions.
We denote the tuple

676

26.3 Geometric
Interpretation of
Fourier Coefficients

FPm = (G−m, G+m)

the “Fourier descriptor pair” (or “FD pair”) for the frequency index
m. If we perform a partial reconstruction from only the two Fourier
coefficients G−m, G+m of this FD pair, we obtain the spatial points

g
(±m)
k = g

(−m)
k + g

(+m)
k

= G−m · e−i·2πm· k
M + Gm · ei·2πm· k

M

= G−m · e−i·ωm· k
M + Gm · ei·ωm· k

M .

(26.44)

By Eqn. (26.15) we can expand the result from Eqn. (26.44) to carte-
sian x/y coordinates as12

x
(±m)
k = A−m · cos

(
−ωm · k

M

)
−B−m · sin

(
−ωm · k

M

)
+

Am · cos(ωm · k
M)−Bm · sin(ωm · k

M) (26.45)

= (A−m+Am) · cos(ωm · k
M) + (B−m−Bm) · sin(ωm · k

M),

y
(±m)
k = B−m · cos

(
−ωm · k

M

)
+ A−m · sin

(
−ωm · k

M

)
+

Bm · cos
(
ωm · k

M

)
+ Am · sin

(
ωm · k

M

)
(26.46)

= (B−m+Bm) · cos(ωm · k
M)− (A−m−Am) · sin(ωm · k

M),

for k = 0, . . . , M−1. The 2D point sequence g(±m) = (g(±m)
0 , . . . ,

g(±m)
M−1), obtained with Eqns. (26.45) and (26.46), describes an ori-

ented ellipse that is centered at the origin (see Fig. 26.7). The para-
metric equation for this ellipse is

x
(±m)
t = (A−m+Am) · cos(ωm ·t) + (B−m−Bm) · sin(ωm ·t),

= (A−m +Am) · cos(2πmt) + (B−m−Bm) · sin(2πmt), (26.47)

y
(±m)
t = (B−m+Bm) · cos(ωm ·t)− (A−m−Am) · sin(ωm ·t)

= (B−m+Bm) · cos(2πmt)− (A−m−Am) · sin(2πmt), (26.48)

for t = 0, . . . , 1.

Ellipse parameters

In general, the parametric equation of an ellipse with radii a, b, cen-
tered at (xc, yc) and oriented at an angle α is

x(ψ) = xc + a · cos(ψ) · cos(α) − b · sin(ψ) · sin(α),

y(ψ) = yc + a · cos(ψ) · sin(α) + b · sin(ψ) · cos(α),
(26.49)

with ψ = 0, . . . , 2π. From Eqns. (26.45) and (26.46) we see that the
parameters am, bm, αm of the ellipse for a single Fourier descriptor
pair FPm = (G−m, G+m) are

am = r−m + r+m = |G−m|+ |G+m|, (26.50)

bm = |r−m − r+m| =
∣
∣ |G−m| − |G+m|

∣
∣, (26.51)

αm =
1
2
·
(
�G−m
︸ ︷︷ ︸

θ−m

+ �G+m
︸ ︷︷ ︸

θ+m

)

=
1
2
·
[

tan−1
(B−m

A−m

)

+ tan−1
(B+m

A+m

)]

. (26.52)

12 Using the relations sin(−a) = − sin(a) and cos(−a) = cos(a).
677

26 Fourier Shape
Descriptors

Fig. 26.7
DFT coefficients G−m, G+m

form a Fourier descriptor
pair FPm. Each of the two
descriptors corresponds to
M points on a circle of ra-
dius r−m, r+m and phase

θ−m, θ+m, respectively, revolv-
ing with the same frequency

m but in opposite directions.
The sum of each point pair

is located on an ellipse with
radii am, bm and orientation

αm. The orientation αm of
the ellipse’s major axis is cen-

tered between the starting
angles of the circles defined by

G−m and G+m; its radii are
am = r−m + r+m for the major

axis and bm = |r−m − r+m|
for the minor axis. The figure

shows the situation for m = 1.

G

FP1

G0 G1 G2G−2 G−1

r−1

r+1

θ−1 θ+1

a1

b1

α1

Like its constituting circles, this ellipse is centered at (xc, yc) = (0, 0)
and performs m revolutions for one traversal of the contour. G−m

specifies the circle

z−m(ϕ) = G−m · ei·(−ϕ) = r−m · ei·(θ−m−ϕ), (26.53)

for ϕ ∈ [0, 2π], with starting angle θ−m and radius r−m, rotating in
a clockwise direction. Similarly, G+m specifies the circle

z+m(ϕ) = G+m · ei·(ϕ) = r+m · ei·(θ+m+ϕ), (26.54)

with starting angle θ+m and radius r+m, rotating in a counter-clockwise
direction. Both circles thus rotate at the same angular velocity
but in opposite directions, as mentioned before. The corresponding
(complex-valued) ellipse points are

zm(ϕ) = z−m(ϕ) + z+m(ϕ). (26.55)

The ellipse radius |zm(ϕ)| is a maximum at position ϕ = ϕmax, where
the angles on both circles are identical (i.e., the corresponding vectors
have the same direction). This occurs when

θ−m − ϕmax = θ+m + ϕmax or ϕmax =
1
2
· (θ−m − θ+m) ,

that is, at mid-angle between the two starting angles θ−m and θ+m.
Therefore, the orientation of the ellipse’s major axis is

αm = θ+m +
θ−m − θ+m

2
=

1
2
· (θ−m + θ+m) , (26.56)

678

26.3 Geometric
Interpretation of
Fourier Coefficients

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3

Re

Im

G−m

G+m

G−m+G+m
Fig. 26.8
Ellipse created by partial
reconstruction from a sin-
gle Fourier descriptor pair

FPm =
(

G−m, G+m

)
. The

two complex-valued Fourier co-
efficients G−m = (−2, 0.5) and
Gm = (0.4, 1.6) represent cir-
cles with starting points G−m

and G+m, respectively. The
circle for G−m (red) rotates
in clockwise direction, the cir-
cle for G+m (blue) rotates in
counter-clockwise direction.
The ellipse (green) is the result
of point-wise addition of the
two circles, as shown for four
successive points, starting with
point G−m +G+m.

as already stated in Eqn. (26.52). At ϕ = ϕmax the two radial vectors
align, and thus the radius of the ellipse’s major axis am is the sum
of the two circle radii, that is,

am = r−m + r+m (26.57)

(cf. Eqn. (26.50)). Analogously, the ellipse radius is minimized at po-
sition ϕ = ϕmin, where the z−m(ϕmin) and z+m(ϕmin) lie on opposite
sides of the circle. This occurs at angle

ϕmin = ϕmax +
π

2
=

π + θ−m − θ+m

2
(26.58)

and the corresponding radius for the ellipse’s minor axis is (cf. Eqn.
(26.51))

bm = r+m − r−m. (26.59)

Figure 26.8 illustrates this situation for a specific Fourier descriptor
pair FPm = (G−m, G+m) = (−2 + i · 0.5, 0.4 + i · 1.6). Note that the
ellipse parameters am, bm, αm (see Eqns. (26.50)–(26.52)) are not ex-
plicitly required for reconstructing (drawing) the contour, since the
ellipse can also be generated by simply adding the x/y-coordinates
of the two counter-revolving circles for the participating Fourier de-
scriptors, as given in Eqn. (26.55). Another example is shown in Fig.
26.9.

26.3.6 Shape Reconstruction from Truncated Fourier
Descriptors

Due to the periodicity of the DFT spectrum, the complete recon-
struction of the contour points gk from the Fourier coefficients Gm

(see Eqn. (26.11)) could also be written with a different summation
range, as long as all spectral coefficients are included, that is,

679

26 Fourier Shape
Descriptors

Fig. 26.9
Partial reconstruction from

single coefficients and an FD
descriptor pair. The two cir-
cles reconstructed from DFT
coefficient G−1 (a) and coef-

ficient G+1 (b) are positioned
at the centroid of the contour

(G0). The combined recon-

struction for
(

G−1, G+1

)
pro-

duces the ellipse in (c). The
dots on the green curves show

the path position for t = 0.

(a) (b) (c)

gk =
M−1∑

m=0

Gm · ei·2πm· k
M =

m0+M−1
∑

m=m0

Gm · ei·2πm· k
M , (26.60)

for any start index m0 ∈ Z. As a special (though important) case
we can perform the summation symmetrically around the zero index
and write

gk =
M−1∑

m=0

Gm · ei·2πm· k
M =

M÷2∑

m=
−(M−1)÷2

Gm · ei·2πm· k
M . (26.61)

To understand the reconstruction in terms of Fourier descriptor pairs,
it is helpful to distinguish if M (the number of contour points and
Fourier coefficients) is even or odd.

Odd number of contour points

If M is odd, then the spectrum consists of G0 (representing the con-
tour’s centroid) plus exactly M ÷ 2 Fourier descriptor pairs FPm,
with m = 1, . . . , M ÷ 2.13 We can thus rewrite Eqn. (26.60) as

gk =
M−1∑

m=0

Gm ·ei·2πm· k
M = G0

︸︷︷︸

g
(0)

k

+
M÷2∑

m=1

[
G−m ·e−i·2πm· k

M + Gm ·ei·2πm· k
M

︸ ︷︷ ︸

g
(±m)

k
=g

(−m)

k
+g

(m)

k

]

= g
(0)
k +

M÷2∑

m=1

g
(±m)
k = g

(0)
k + g

(±1)
k + g

(±2)
k + . . . + g

(±M÷2)
k , (26.62)

where g
(±m)
k denotes the partial reconstruction from the single Fourier

descriptor pair FPm (see Eqn. (26.44)).
As we already know, the partial reconstruction g

(±m)
k of an in-

dividual Fourier descriptor pair FPm is a set of points on an ellipse
that is centered at the origin (0, 0). The partial reconstruction of
the three DFT coefficients G0, G−m, G+m (i.e., FPm plus the single
coefficient G0) is the point sequence

g
(−m,0,m)
k = g

(0)
k + g

(±m)
k , (26.63)

which is the ellipse for g
(±m)
k shifted to g

(0)
k = (x̄, ȳ), the centroid of

the original contour. For example, the partial reconstruction from
the coefficients G−1, G0, G+1,

13 If M is odd, then M = 2 · (M ÷ 2) + 1.
680

26.3 Geometric
Interpretation of
Fourier Coefficients

g
(−1,0,1)
k = g

(−1,...,1)
k = g

(0)
k + g

(±1)
k , (26.64)

yields an ellipse with frequency m = 1 that revolves around the
(fixed) centroid of the original contour. If we add another Fourier
descriptor pair FP2, the resulting reconstruction is

g
(−2,...,2)
k = g

(0)
k + g

(±1)
k

︸ ︷︷ ︸

ellipse 1

+ g
(±2)
k
︸ ︷︷ ︸

ellipse 2

. (26.65)

The resulting ellipse g
(±2)
k has the frequency m = 2, but note that it

is centered at a moving point on the “slower” ellipse (with frequency
m = 1), that is, ellipse 2 effectively “rides” on ellipse 1. If we add FP3,
its ellipse is again centered at a point on ellipse 2, and so on. For an
illustration, see the examples in Figs. 26.11 and 26.12. In general, the
ellipse for descriptor pair FPj revolves around the (moving) center
obtained as the superposition of j−1 “slower” ellipses,

g
(0)
k +

j−1
∑

m=1

g
(±m)
k . (26.66)

Consequently, the curve obtained by the partial reconstruction from
descriptor pairs FP1, . . . , FPj (for j ≤ M ÷ 2) is the point sequence

g
(−j,...,j)
k = g

(0)
k +

j
∑

m=1

g
(±m)
k , (26.67)

for k = 0, . . . , M−1. The fully reconstructed shape is the sum of
the centroid (defined by G0) and M÷2 ellipses, one for each Fourier
descriptor pair FP1, . . . , FPM÷2.

Even number of contour points

If M is even,14 then the reconstructed shape is a superposition of
the centroid (defined by G0), (M−1) ÷ 2 ellipses from the Fourier
descriptor pairs FP1, . . . , FP(M−1)÷2, plus one additional circle spec-
ified by the single (highest frequency) Fourier coefficient GM÷2. The
complete reconstruction from an even-length Fourier descriptor can
thus be written as

gk =
M−1∑

m=0

Gm ·ei·2πm· k
M = g

(0)
k
︸︷︷︸
center

+
(M−1)÷2
∑

m=1

g
(±m)
k

︸ ︷︷ ︸

(M−1)÷2 ellipses

+ g
(M÷2)
k
︸ ︷︷ ︸

1 circle

. (26.68)

The single high-frequency circle associated with g
(M÷2)
k has its (mov-

ing) center at the sum of all lower-frequency ellipses that correspond
to the Fourier coefficients G−m, . . . , G+m, with m < (M ÷ 2).

Reconstruction algorithm

Algorithm 26.4 describes the reconstruction of shapes from a Fourier
descriptor using only a specified number (Mp) of Fourier descriptor
pairs. The number of points on the reconstructed contour (N) can
be freely chosen.
14 In this case, M = 2 · (M ÷ 2) = (M−1) ÷ 2 + 1 + M ÷ 2 .

681

26 Fourier Shape
Descriptors

Fig. 26.10
Partial shape reconstruction
from a limited set of Fourier
descriptor pairs. The full de-

scriptor contains 125 coeffi-
cients (G0 plus 62 FD pairs).

(a) 1 pair (b) 2 pairs (c) 3 pairs

(d) 4 pairs (e) 5 pairs (f) 6 pairs

(g) 7 pairs (h) 8 pairs (i) 9 pairs

(j) 10 pairs (k) 15 pairs (l) 40 pairs

26.3.7 Fourier Descriptors from Unsampled Polygons

The requirement to distribute sample points uniformly along the con-
tour path stems from classical signal processing and Fourier the-
ory, where uniform sampling is a common assumption. However,
as shown in [143] (see also [183, 262]), the Fourier descriptors for a
polygonal shape can be calculated directly from the original polygon
vertices without sub-sampling the contour. This “trigonometric” ap-
proach, described in the following, works for arbitrary (convex and
non-convex) polygons.

We assume that the shape is specified as a sequence of P points
V = (v0, . . . , vP −1), with V (i) = vi = (xi, yi) representing the 2D
vertices of a closed polygon. We define the quantities

d(i) = v(i+1) mod P − vi and λ(i) = ‖d(i)‖ , (26.69)

for i = 0, . . . , P−1, where d(i) is the vector representing the polygon
segment between the vertices vi, vi+1, and λ(i) is the length of that

682

26.3 Geometric
Interpretation of
Fourier Coefficients

(a) 1 pair, t = 0.1 (b) 2 pairs, t = 0.2 (c) 3 pairs, t = 0.3

(d) 4 pairs, t = 0.4 (e) 5 pairs, t = 0.5 (f) 6 pairs, t = 0.6

(g) 7 pairs, t = 0.7 (h) 8 pairs, t = 0.8 (i) 9 pairs, t = 0.9

Fig. 26.11
Partial reconstruction by el-
lipse superposition (details).
The green curve shows the
partial reconstruction from
1, . . . , 9 FD pairs. This curve
performs one full revolution
as the path parameter t runs
from 0 to 1. Subfigures (a–i)
depict the situation for 1, . . . , 9
FD pairs and different path
positions t = 0.1, 0.2, . . . , 0.9.
Each Fourier descriptor pair
corresponds to an ellipse that
is centered at the current posi-
tion t on the previous ellipse.
The individual Fourier descrip-
tor pair FP1 in (a) corresponds
to a single ellipse. In (b), the
point for t = 0.2 on the blue
ellipse (for FP1) is the center
of the red ellipse (for FP2). In
(c), the green ellipse (for FP3)
is centered at the point marked
on the previous ellipse, and so
on. The reconstructed shape
is obtained by superposition of
all ellipses. See Fig. 26.12 for a
detailed view.

(a) t = 0.0 (b) t = 0.1 (c) t = 0.2

Fig. 26.12
Partial reconstruction by el-
lipse superposition (details).
The green curve shows the par-
tial reconstruction from 5 FD
pairs FP1, . . . , FP5. This curve
performs one full revolution
as the path parameter t runs
from 0 to 1. Subfigures (a–c)
show the composition of the
contour by superposition of the
5 ellipses, each corresponding
to one FD pair, at selected
positions t = 0.0, 0.1, 0.2.
The blue ellipse corresponds
to FP1 and revolves once for
t = 0, . . . , 1. The blue dot
on this ellipse marks the po-
sition t, which serves as the
center of the next (red) ellipse
corresponding to FP2. This
ellipse makes 2 revolutions for
t = 0, . . . , 1 and the red dot for
position t is again the center
of green ellipse (for FP3), and
so on. Position t on the orange
ellipse (for FP1) coincides with
the final reconstruction (green
curve). The original contour
was sampled at 125 equidistant
points.

segment. We also define

L(i) =
i−1∑

j=0

λ(j), (26.70)

for i = 0, . . . , P , which is the cumulative length of the polygon path
from the start vertex v0 to vertex vi, such that L(0) is zero and L(P)
is the closed path length of the polygon V .

683

26 Fourier Shape
Descriptors

Alg. 26.4
Partial shape reconstruction
from a truncated Fourier de-
scriptor G. The shape is re-

constructed by considering
up to Mp Fourier descriptor

pairs. The resulting sequence
of contour points may be of

arbitrary length (N). See Figs.
26.10–26.12 for examples.

1: GetPartialReconstruction(G, Mp, N)
Input: G = (G0, . . . , GM−1), Fourier descriptor with M coeffi-
cients; Mp, number of Fourier descriptor pairs to consider; N ,
number of points on the reconstructed shape. Returns the recon-
structed contour as a sequence of N complex values.

2: Create map g : [0, N−1] → C

3: M ← |G| ⊲ total number of Fourier coefficients
4: Mp ← min(Mp, (M−1) ÷ 2) ⊲ available Fourier coefficient pairs
5: for k ← 0, . . . , N−1 do
6: t ← k/N ⊲ continuous path position t ∈ [0, 1]
7: g(k) ← GetSinglePoint(G,−Mp, Mp, t) ⊲ see below
8: return g.

9: GetSinglePoint(G, m−, m+, t)
Returns a single point (as a complex value) on the reconstructed
shape for the continuous path position t ∈ [0, 1], based on the
Fourier coefficients G(m−), . . . , G(m+).

10: M ← |G|
11: x ← 0, y ← 0
12: for m ← m−, . . . , m+ do
13: φ ← 2 · π · m · t
14: G ← G(m mod M)
15: A ← Re(G), B ← Im(G)
16: x ← x + A · cos(φ) − B · sin(φ)
17: y ← y + A · sin(φ) + B · cos(φ)

18: return (x + i y).

For a (freely chosen) number of Fourier descriptor pairs (Mp), the
corresponding Fourier descriptor G = (G−Mp

, . . . , G0, . . . , G+Mp
),

has 2Mp + 1 complex-valued coefficients Gm, where

G0 = a0 + i · c0 (26.71)

and the remaining coefficients are calculated as

G+m = (am+dm) + i · (cm−bm), (26.72)

G−m = (am−dm) + i · (cm+bm), (26.73)

from the “trigonometric coefficients” am, bm, cm, dm. As described
in [143], these coefficients are obtained directly from the P polygon
vertices vi as

(
a0
c0

)

= v0 +

P −1∑

i=0

[L2(i+1)−L2(i)
2 λ(i) ·d(i) + λ(i)·

i−1∑

j=0

d(j)− d(i)·
i−1∑

j=0

λ(j)
]

L(P)
(26.74)

(representing the shape’s center), with d, λ, L as defined in Eqns.
(26.69) and (26.70). This can be simplified to

(
a0
c0

)

= v0 +

P −1∑

i=0

[(L2(i+1)−L2(i)
2 λ(i) − L(i)

)
· d(i) + λ(i) · (vi − v0)

]

L(P)
.

(26.75)
684

26.3 Geometric
Interpretation of
Fourier Coefficients

1: FourierDescriptorFromPolygon(V, Mp)
Input: V = (v0, . . . , vP −1), a sequence of P points representing
the vertices of a closed 2D polygon; Mp, the desired number of
FD pairs. Returns a new Fourier descriptor of length 2Mp +1.

2: P ← |V | ⊲ number of polygon vertices in V
3: M ← 2 · Mp +1 ⊲ number of Fourier coefficients in G
4: Create maps d : [0, P −1] → R

2, λ : [0, P −1] → R,
5: L : [0, P] → R, G : [0, M−1] → C

6: L(0) ← 0
7: for i ← 0, . . . , P −1 do
8: d(i) ← V ((i + 1) mod P) − V (i) ⊲ Eq. 26.69
9: λ(i) ← ‖d(i)‖

10: L(i + 1) ← L(i) + λ(i)

11:
(

a
c

)

←
(

0
0

)

⊲ a = a0, c = c0

12: for i ← 0, . . . , P −1 do

13: s ← L2(i+1)−L2(i)
2·λ(i)

− L(i)

14:
(

a
c

)

←
(

a
c

)

+ s · d(i) + λ(i) · (V (i) − V (0)) ⊲ Eq. 26.75

15: G(0) ← v0 + 1
L(P)

·
(

a
c

)

⊲ Eq. 26.71

16: for m ← 1, . . . , Mp do ⊲ for FD-pairs G±1, . . . , G±Mp

17:
(

a
c

)

←
(

0
0

)

,
(

b
d

)

←
(

0
0

)

⊲ am, bm, cm, dm

18: for i ← 0, . . . , P −1 do
19: ω0 ← 2πm · L(i)

L(P)

20: ω1 ← 2πm · L((i+1) mod P)
L(P)

21:
(

a
c

)

←
(

a
c

)

+
cos(ω1)−cos(ω0)

λ(i)
· d(i) ⊲ Eq. 26.76

22:
(

b
d

)

←
(

b
d

)

+
sin(ω1)−sin(ω0)

λ(i)
· d(i) ⊲ Eq. 26.77

23: G(m) ← L(P)

(2πm)2
·
(

a + d
c − b

)

⊲ Eq. 26.72

24: G(−m mod M) ← L(P)

(2πm)2
·
(

a − d
c + b

)

⊲ Eq. 26.73

25: return G.

Alg. 26.5
Fourier descriptor from
trigonometric data (arbi-
trary polygons). Parameter
Mp specifies the number of
Fourier coefficient pairs.

The remaining coefficients am, bm, cm, dm (m = 1, . . . , Mp) are cal-
culated as

(
am
cm

)

=
L(P)

(2πm)2
·

P−1∑

i=0

[cos
(
2πm L(i+1)

L(P)

)
− cos

(
2πm L(i)

L(P)

)

λ(i)
· d(i)

]
,

(26.76)

(
bm
dm

)

=
L(P)

(2πm)2
·

P−1∑

i=0

[sin
(
2πm L(i+1)

L(P)

)
− sin

(
2πm L(i)

L(P)

)

λ(i)
· d(i)

]
,

(26.77)

respectively. The complete calculation of a Fourier descriptor from
trigonometric coordinates (i.e., from arbitrary polygons) is summa-
rized in Alg. 26.5.

An approximate reconstruction of the original shape can be ob-
tained directly from the trigonometric coefficients am, bm, cm, dm de-

685

26 Fourier Shape
Descriptors

Fig. 26.13
Fourier descriptors cal-

culated from trigonomet-
ric data (arbitrary poly-

gons). Shape reconstructions
with different numbers of

Fourier descriptor pairs (Mp).

(a) Mp = 1 (b) Mp = 2 (c) Mp = 5

(d) Mp = 10 (e) Mp = 20 (f) Mp = 50

fined in Eqns. (26.75) and (26.76) as15

x(t) =
(

a0
c0

)

+
Mp∑

m=1

[(am
cm

)

·cos(2πmt) +
(

bm
dm

)

·sin(2πmt)
]
, (26.78)

for t = 0, . . . , 1. Of course, this reconstruction can also be calculated
from the actual DFT coefficients G, as described in Eqn. (26.20).
Again the reconstruction error is reduced by increasing the number
of Fourier descriptor pairs (Mp), as demonstrated in Fig. 26.13.16

The reconstruction is theoretically perfect as Mp goes to infinity.
Working with the trigonometric technique is an advantage, in par-

ticular, if the boundary curvature along the outline varies strongly.
For example, the silhouette of a human hand typically exhibits high
curvature along the fingertips while other contour sections are almost
straight. Capturing the high-curvature parts requires a significantly
higher density of samples than in the smooth sections, as illustrated
in Fig. 26.14. This figure compares the partial shape reconstruc-
tions obtained from Fourier descriptors calculated with uniform and
non-uniform contour sampling, using identical numbers of Fourier
descriptor pairs (Mp). Note that the coefficients (and thus the re-
constructions) are very similar, although considerably fewer samples
were used for the trigonometric approach.

15 Note the analogy to the elliptical reconstruction in Eqns. (26.47) and
(26.48).

16 Most test images used in this chapter were taken from the Kimia dataset
[134]. A selected subset of modified images taken from this dataset is
available on the book’s website.

686

26.4 Effects of
Geometric
Transformations

(a) Mp = 1 (b) Mp = 2 (c) Mp = 5

(d) Mp = 10 (e) Mp = 20 (f) Mp = 50

Fig. 26.14
Fourier descriptors from
uniformly sampled vs. non-
uniformly sampled (trigono-
metric) contours. Partial
constructions from Fourier
descriptors obtained from uni-
formly sampled contours (rows
1, 3) and non-uniformly sam-
pled contours (rows 2, 4), for
different numbers of Fourier
descriptor pairs (Mp).

26.4 Effects of Geometric Transformations

To be useful for comparing shapes, a representation should be invari-
ant against a certain set of geometric transformations. Typically, a
minimal requirement for robust 2D shape matching is invariance to
translation, scale changes, and rotation. Fourier shape descriptors
in their basic form are not invariant under any of these transforma-
tions but they can be modified to satisfy these requirements. In this
section, we discuss the effects of such transformations upon the corre-
sponding Fourier descriptors. The steps involved for making Fourier
descriptors invariant are discussed subsequently in Sec. 26.5.

26.4.1 Translation

As described in Sec. 26.3.1, the coefficient G0 of a Fourier descriptor
G corresponds to the centroid of the encoded contour. Moving the

687

26 Fourier Shape
Descriptors

points gk of a shape g in the complex plane by some constant z ∈ C,

g′
k = gk + z, (26.79)

for k = 0, . . . , M−1, only affects Fourier coefficient G0, that is,

G′
m =

{

Gm+z for m = 0,
Gm for m �= 0.

(26.80)

To make an FD invariant against translation, it is thus sufficient to
zero its G0 coefficient, thereby shifting the shape’s center to the origin
of the coordinate system. Alternatively, translation invariant match-
ing of Fourier descriptors is achieved by simply ignoring coefficient
G0.

26.4.2 Scale Change

Since the Fourier transform is a linear operation, scaling a 2D shape
g uniformly by a real-valued factor s,

g′
k = s · gk, (26.81)

also scales the corresponding Fourier spectrum by the same factor,
that is,

G′
m = s ·Gm, (26.82)

for m = 1, . . . , M−1. Note that scaling by s = −1 (or any other
negative factor) corresponds to reversing the ordering of the samples
along the contour (see also Sec. 26.4.6). Given the fact that the
DFT coefficient G1 represents a circle whose radius r1 = |G1| is
proportional to the size of the original shape (see Sec. 26.3.2), the
Fourier descriptor G could be normalized for scale by setting

GS
m =

1
|G1|

·Gm, (26.83)

for m = 1, . . . , M−1, such that
∣
∣GS

1

∣
∣ = 1. Although it is common to

use only G1 for scale normalization, this coefficient may be relatively
small (and thus unreliable) for certain shapes. We therefore prefer
to normalize the complete Fourier coefficient vector to achieve scale
invariance (see Sec. 26.5.1).

26.4.3 Rotation

If a given shape is rotated about the origin by some angle β, then
each contour point vk = (xk, yk) moves to a new position

v′
k =

(
x′

k

y′
k

)

=
(

cos(β) − sin(β)
sin(β) cos(β)

)

·
(

xk

yk

)

. (26.84)

If the 2D contour samples are represented as complex values gk =
xk + i · yk, this rotation can be expressed as a multiplication

g′
k = eiβ · gk, (26.85)

688

26.4 Effects of
Geometric
Transformations

with the complex factor eiβ = cos(β) + i · sin(β). As in Eqn. (26.82),
we can use the linearity of the DFT to predict the effects of rotating
the shape g by angle β as

G′
m = eiβ ·Gm, (26.86)

for m = 0, . . . , M −1. Thus, the spatial rotation in Eqn. (26.85)
multiplies each DFT coefficient Gm by the same complex factor eiβ,
which has unit magnitude. Since

eiβ ·Gm = ei(θm+β) · |Gm| , (26.87)

this only rotates the phase θm = �Gm of each coefficient by the same
angle β, without changing its magnitude |Gm|.

26.4.4 Shifting the Sampling Start Position

Despite the implicit periodicity of the boundary sequence and the
corresponding DFT spectrum, Fourier descriptors are generally not
the same if sampling starts at different positions along the con-
tour. Given a periodic sequence of M discrete contour samples
g = (g0, g1, . . . , gM−1), we select another sequence g′ = (g′

0, g′
1, . . .) =

(gks
, gks+1, . . .), again of length M , from the same set of samples but

starting at point ks, that is,

g′
k = g(k+ks) mod M . (26.88)

This is equivalent to shifting the original signal g circularly by −ks

positions. The well-known “shift property” of the Fourier transform17

states that such a change to the “signal” g modifies the corresponding
DFT coefficients Gm (for the original contour sequence) to

G′
m = ei·m· 2πks

M ·Gm = ei·m·ϕs ·Gm, (26.89)

where ϕs = 2πks

M is a constant phase angle that is obviously propor-
tional to the chosen start position ks. Note that, in Eqn. (26.89),
each DFT coefficient Gm is multiplied by a different complex quan-
tity ei·m·ϕs , which is of unit magnitude and varies with the frequency
index m. In other words, the magnitude of any DFT coefficient Gm is
again preserved but its phase changes individually. The coefficients
of any Fourier descriptor pair FPm = (G−m, G+m) thus become

G′
−m = e−i·mϕs ·G−m and G′

+m = ei·mϕs ·G+m, (26.90)

that is, coefficient G−m is rotated by the angle −m · ϕs and G+m is
rotated by m ·ϕs. In other words, a circular shift of the signal by −ks

samples rotates the coefficients G−m, G+m by the same angle m · ϕs

but in opposite directions. Therefore, the sum of both angles stays
the same, that is,

�G′
−m + �G′

+m ≡ �G−m + �G+m. (26.91)

17 See Chapter 18, Sec. 18.1.6.
689

26 Fourier Shape
Descriptors

Fig. 26.15
Effects of choosing different

start points for contour sam-
pling. The start point (marked

× on the contour) is set to
0%, 5%, 10% of the contour

path length. The blue and
green circles represent the

partial reconstruction from
single DFT coefficients G−1

and G+1, respectively. The
dot on each circle and the as-
sociated radial line shows the

phase of the corresponding
coefficient. The black line in-

dicates the average orientation
(�G−1 + �G+1)/2. It can be
seen that the phase difference

of G−1 and G+1 is directly re-
lated to the start position, but
the average orientation (black

line) remains unchanged.

Start at 0% Start at 5% Start at 10%

(a) (b) (c)

In particular, we see from Eqn. (26.90) that shifting the start position
modifies the coefficients of the first descriptor pair FP1 = (G−1, G+1)
to

G′
−1 = e−i·ϕs·G−1 and G′

+1 = ei·ϕs·G+1. (26.92)

The resulting absolute phase change of the coefficients G−1, G+1 is
−ϕs, +ϕs, respectively, and thus the change in phase difference is
2 ·ϕs, that is, the phase difference between the coefficients G−1, G+1

is proportional to the chosen start position ks (see Fig. 26.15).

26.4.5 Effects of Phase Removal

As described in the two previous sections, shape rotation (Sec. 26.4.3)
and shift of start point (Sec. 26.4.4) both affect the phase of the
Fourier coefficients but not their magnitude. The fact that magni-
tude is preserved suggests a simple solution for rotation invariant
shape matching by simply ignoring the phase of the coefficients and
comparing only their magnitude (see Sec. 26.6). Although this comes
at the price of losing shape descriptiveness, magnitude-only descrip-
tors are often used for shape matching. Clearly, the original shape
cannot be reconstructed from a magnitude-only Fourier descriptor,
as demonstrated in Fig. 26.16. It shows the reconstruction of shapes
from Fourier descriptors with the phase of all coefficients set to zero,
except for G−1, G0 and G+1 (to preserve the shape’s center and main
orientation).

690

26.4 Effects of
Geometric
Transformations

(a) (b) (c)

Original Fourier descriptors

(d) (e) (f)

Zero-phase Fourier descriptors

(g) (h) (i)

Fig. 26.16
Effects of removing phase in-
formation. Original shapes and
reconstruction after phase re-
moval (a–c). Original Fourier
coefficients (d–f) and zero-
phase coefficients (g–i). The
red and green plots in (d–i)
show the real and imaginary
components, respectively; gray
plots show the coefficient mag-
nitude. Dark-shaded bars cor-
respond to the actual values,
light-shaded bars are logarith-
mic values. The magnitude of
the coefficients in (d–f) is the
same as in (g–i).

26.4.6 Direction of Contour Traversal

If the traversal direction of the contour samples is reversed, the co-
efficients of all Fourier descriptor pairs are exchanged, that is,

G′
m = G−m mod M . (26.93)

This is equivalent to scaling the original shape by s = −1, as pointed
out in Section 26.4.2. However, this is typically of no relevance in
matching, since we can specify all contours to be sampled in either
clockwise or counter-clockwise direction.

26.4.7 Reflection (Symmetry)

Mirroring or reflecting a contour about the x-axis is equivalent to
replacing each complex-valued point gk = xk + i · yk by its complex
conjugate g∗

k, that is,

g′
k = g∗

k = xk − i · yk. (26.94)

This change to the “signal” results in a modified DFT spectrum with
coefficients

G′
m = G∗

−m mod M , (26.95)
691

26 Fourier Shape
Descriptors

Table 26.1
Effects of spatial transfor-

mations upon the corre-
sponding DFT spectrum.

The original contour sam-
ples are denoted gk, the

DFT coefficients are Gm.

Operation Contour samples DFT coefficients

Forward transformation gk, for k =0, . . . , M −1 Gm = 1
M ·

M−1∑

k=0

gk ·e−i2πm k
M

Inverse transformation gk =

M−1∑

m=0

Gm ·ei2πm k
M Gm, for m =0, . . . , M −1

Translation (by z ∈C) g′
k = gk + z G′

m =

{
Gm +z for m = 0

Gm otherwise

Uniform scaling (by s∈R) g′
k = s · gk G′

m = s · Gm

Rotation about the origin
(by β)

g′
k = ei·β · gk G′

m = ei·β · Gm

Shift of start position (by ks) g′
k = g(k+ks) mod M G′

m = ei·m·
2πks

M · Gm

Direction of contour
traversal

g′
k = g−k mod M G′

m = G−m mod M

Reflection about the x-axis g′
k = g∗

k G′
m = G∗

−m mod M

where G∗ denotes the complex conjugate of the original DFT co-
efficients. Reflections about arbitrary axes can be described in the
same way with additional rotations. Fourier descriptors can be made
invariant against reflections, such that symmetric contours map to
equivalent descriptors [245]. Note, however, that invariance to sym-
metry is not always desirable, for example, for distinguishing the
silhouettes of left and right hands.

The relations between 2D point coordinates and the Fourier spec-
trum, as well as the effects of the aforementioned geometric shape
transformations upon the DFT coefficients are compactly summa-
rized in Table 26.1.

26.5 Transformation-Invariant Fourier Descriptors

As mentioned already, making a Fourier descriptor invariant to trans-
lation or absolute shape position is easy because the only affected
spectral coefficient is G0. Thus, setting coefficient G0 to zero implic-
itly moves the center of the corresponding shape to the coordinate
origin and thus creates a descriptor that is invariant to shape trans-
lation.

Invariance against a change in scale is also a simple issue because
it only multiplies the magnitude of all Fourier coefficients by the same
real-valued scale factor, which can be easily normalized.

A more challenging task is to make Fourier descriptors invariant
against shape rotation and shift of the contour starting point, because
they jointly affect the phase of the Fourier coefficients. If matching
is to be based on the complex-valued Fourier descriptors (not on co-
efficient magnitude only) to achieve better shape discrimination, the
phase changes introduced by shape rotation and start point shifts
must be eliminated first. However, due to noise and possible ambi-
guities, this is not a trivial problem (see also [183,184,189,245]).

692

26.5 Transformation-
Invariant Fourier
Descriptors

26.5.1 Scale Invariance

As mentioned in Section 26.4.2, the magnitude G+1 is often used as
a reference to normalize for scale, since G+1 is typically (though not
always) the Fourier coefficient with the largest magnitude. Alter-
natively, one could use the size of the fundamental ellipse, defined
by the Fourier descriptor pair FP1, to measure the overall scale, for
example, by normalizing to

GS
m ← 1

|G−1|+ |G+1|
·Gm, (26.96)

which normalizes the length of the major axis a1 = |G−1|+ |G+1| (see
Eqn. (26.57)) of the fundamental ellipse to unity. Another alternative
is

GS
m ← 1

(|G−1| · |G+1|)1/2
·Gm, (26.97)

which normalizes the area of the fundamental ellipse. Since all vari-
ants in Eqns. (26.83), (26.96) and (26.97) scale the coefficients Gm

by a fixed (real-valued) factor, the shape information contained in
the Fourier descriptor remains unchanged.

There are shapes, however, where coefficients G+1 and/or G−1

are small or almost vanish to zero, such that they are not always
a reliable reference for scale. An obvious solution is to include the
complete set of Fourier coefficients by standardizing the norm of the
coefficient vector G to unity in the form

GS
m ← 1

‖G‖ ·Gm, (26.98)

(assuming that G0 = 0). In general, the L2 norm of a complex-valued
vector Z = (z0, z1, . . . , zM−1), zi ∈ C, is defined as

‖Z‖ =
(M−1∑

i=1

|zi|2
)1/2

=
(M−1∑

i=1

Re(zi)
2 + Im(zi)

2
)1/2

. (26.99)

Scaling the vector Z by the reciprocal of its norm yields a vector with
unit norm, that is,

∥
∥

1
‖Z‖ · Z

∥
∥ = 1. (26.100)

To normalize a given Fourier descriptor G, we use all elements except
G0 (which relates to the absolute position of the shape and is not rel-
evant for its shape). The following substitution makes G scale invari-
ant by normalizing the remaining sub-vector (G1, G2, . . . , GM−1) to

GS
m ←

{

Gm for m = 0,
1√
ν
·Gm for 1 ≤ m < M ,

with ν =
M−1∑

m=1

|Gm|2. (26.101)

See procedure MakeScaleInvariant(G) in Alg. 26.6 (lines 7–15) for a
summary of this step.

693

26 Fourier Shape
Descriptors

26.5.2 Start Point Invariance

As discussed in Sections 26.4.3 and 26.4.4, respectively, shape rota-
tion and shift of start point both affect the phase of the Fourier coef-
ficients in a combined manner, without altering their magnitude. In
particular, if the shape is rotated by some angle β (see Eqn. (26.89))
and the start position is shifted by ks samples (see Eqn. (26.86)),
then each Fourier coefficient Gm is modified to

G′
m = ei·β · ei·m·ϕs ·Gm = ei·(β+m·ϕs) ·Gm, (26.102)

where ϕs = 2πks/M is the corresponding start point phase. Thus,
the incurred phase shift is not only different for each coefficient but
simultaneously depends on the rotation angle β and the start point
phase ϕs. Normalization in this case means to remove these phase
shifts, which would be straightforward if β and ϕs were known. We
derive these two parameters one after the other, starting with the cal-
culation of the start point phase ϕs, which we describe in this section,
followed by the estimation of the rotation β, shown subsequently in
Section 26.5.3.

To normalize the Fourier descriptor of a particular shape to a
“canonical” start point, we need a quantity that can be calculated
from the Fourier spectrum and only depends on the start point phase
ϕs but is independent of the rotation β. From Eqn. (26.90) and Fig.
26.15 we see that the phase difference within any Fourier descrip-
tor pair (G−m, G+m) is proportional to the start point phase ϕs and
independent to shape rotation β, since the latter rotates all coeffi-
cients by the same angle. Thus, we look for a quantity that depends
only on the phase differences within Fourier descriptor pairs. This is
accomplished, for example, by the function

fp(ϕ) =
Mp∑

m=1

[
e−i·m·ϕ ·G−m

]
⊗
[
ei·m·ϕ ·Gm

]
, (26.103)

where parameter ϕ is an arbitrary start point phase, Mp is the num-
ber of coefficient pairs, and ⊗ denotes the “cross product” between
two Fourier coefficients.18 Given a particular start point phase ϕ,
the function in Eqn. (26.103) yields the sum of the cross products
of each coefficient pair (G−m, Gm), for m = 1, . . . , Mp. If each of
the complex-valued coefficients is interpreted as a vector in the 2D
plane, the magnitude of their cross product is proportional to the
area of the enclosed parallelogram. The enclosed area is potentially
large only if both vectors are of significant length, which means that
the corresponding ellipse has a distinct eccentricity and orientation.
Note that the sign of the cross product may be positive or negative
and depends on the relative orientation or “handedness” of the two
vectors.

Since the function fp(ϕ) is based only on the relative orientation
(phase) of the involved coefficients, it is invariant to a shape rotation

18 In analogy to 2D vector notation, we define the “cross product” of two
complex quantities z1 = (a1, b1) and z2 = (a2, b2) as z1 ⊗ z2 = a1 ·b2 −
b1 ·a2 = |z1| · |z2| · sin(θ2 − θ1). See also Sec. B.3.3 in the Appendix.

694

26.5 Transformation-
Invariant Fourier
Descriptors

45 90 135 180 225 270 315 360

�0.1

0.1

ϕ[◦]

fp(ϕ)

(a) rotation θ = 0◦, start point phase ϕs = 0◦

45 90 135 180 225 270 315 360

�0.1

0.1

ϕ[◦]

fp(ϕ)

(b) rotation θ = 15◦, start point phase ϕs = 0◦

45 90 135 180 225 270 315 360

�0.1

0.1

ϕ[◦]

fp(ϕ)

(c) rotation θ = 0◦, start point phase ϕs = 90◦

Table 26.2
Plot of the function fp(ϕ)
used for start point normal-
ization. In the figures on the
left, the real start point is
marked by a black dot. The
normalized start points ϕA and
ϕB = ϕA + π are marked by a
blue and a brown cross, respec-
tively. They correspond to the
two peak positions of the func-
tion fp(ϕ), as defined in Eqn.
(26.103), separated by a fixed
phase shift of π = 180◦ (right).
The function is invariant under
shape rotation, as demon-
strated in (b), where the shape
is rotated by 15◦ but sampled
from the same start point as
in (a). However, the phase of
fp(ϕ) is proportional to the
start point shift, as shown in
(c), where the start point is
chosen at 25% (ϕs = 90◦) of
the boundary path length. The
functions were calculated af-
ter scale normalization, using
Mp = 25 Fourier coefficient
pairs.

β, which shifts all coefficients by the same angle (see Eqn. (26.86)).
As shown in Fig. 26.2, fp(ϕ) is periodic with π and its phase is
proportional to the actual start point shift. We choose the angle ϕ
that maximizes fp(ϕ) as the “canonical” start point phase ϕA, that is,

ϕA = argmax
0≤ϕ<π

fp(ϕ). (26.104)

However, since fp(ϕ) = fp(ϕ + π), there is also a second candidate
phase

ϕB = ϕA + π, (26.105)

displaced by π = 180◦. The two “canonical” start points correspond-
ing to ϕA and ϕB, respectively, are marked on the reconstructed
shapes in Fig. 26.2. Although it might seem easy at first to resolve
this 180◦ ambiguity of the start point phase, this turns out to be diffi-
cult to achieve in general from the Fourier coefficients alone. Several
functions have been proposed for this purpose that work well for cer-
tain shapes but fail on others, including the “positive real energy”
function suggested in [245]. In particular, any decision based on the
magnitude or phase of a single coefficient (or a single coefficient pair)
must eventually fail, since none of the coefficients is guaranteed to
have a significant magnitude. With vanishing coefficient magnitude,

695

26 Fourier Shape
Descriptors

phase measurements become unreliable and may be very susceptible
to noise.

The complete process of start point normalization is summarized
in Alg. 26.7. The start point phase ϕA is found numerically by eval-
uating the function fp(ϕ) at 400 discrete steps for ϕ = 0, . . . , π (lines
6–16). For practical use, this exhaustive method should be substi-
tuted by a more efficient and accurate optimization technique (for
example, using Brent’s method [190, Ch. 10]).19 Given the estimated
start point phase ϕA for the Fourier descriptor G, two normalized
versions GA, GB are calculated as

GA : GA
m ← Gm · ei·m·ϕA,

GB : GB
m ← Gm · ei·m·(ϕA+π),

(26.106)

for m = −Mp, . . . , Mp, m �= 0. Note that start point normaliza-
tion does not require the Fourier descriptor G to be normalized for
translation and scale (see Sec. 26.5.1).

26.5.3 Rotation Invariance

After normalizing for starting point, the orientation of the funda-
mental ellipse (formed by the descriptor pair (G−1, G+1)) could be
assumed to be a reliable reference for global shape rotation. However,
for certain shapes (e.g., regular polyhedra with an even number of
faces), G−1 may vanish. Therefore, we recover the overall shape ori-
entation from the vector obtained as the weighted sum of all Fourier
coefficients, that is,

z =
Mp∑

m=1

1
m
· (G−m + G+m), (26.107)

where the 1/m serves as a weighting factor, giving stronger empha-
sis to the low-frequency coefficients and attenuating the influence of
the high-frequency coefficients. The resulting shape orientation esti-
mate is

β = �z = tan−1

(
Im(z)
Re(z)

)

. (26.108)

To normalize GA, GB (obtained in Eqn. (26.106)) for shape orienta-
tion, we rotate each coefficient (except G0) by −β, that is,

GA: GA
m ← GA

m · e−i·β,

GB: GB
m ← GB

m · e−i·β,
(26.109)

for m = −Mp, . . . , Mp, m �= 0. For a summary of these steps, see
procedure MakeRotationInvariant(G) in Alg. 26.6 (lines 16–24).

19 The accompanying Java implementation uses the class BrentOptimizer

from the Apache Commons Math library [4] for this purpose.
696

26.5 Transformation-
Invariant Fourier
Descriptors

1: MakeInvariant(G)
Input: G, Fourier descriptor with Mp coefficient pairs.
Returns a pair of normalized Fourier descriptors GA, GB, with
a start point phase offset by 180◦.

2: MakeScaleInvariant(G) ⊲ see below
3: (GA, GB) ← MakeStartPointInvariant(G) ⊲ see Alg. 26.7
4: MakeRotationInvariant(GA) ⊲ see below
5: MakeRotationInvariant(GB)
6: return (GA, GB).

7: MakeScaleInvariant(G)
Modifies G by unifying its norm and returns the scale factor ν.

8: s ← 0 ⊲ s ∈ R

9: for m ← 1, . . . , Mp do

10: s ← s + |G(−m)|2 + |G(m)|2

11: ν ← 1/
√

s
12: for m ← 1, . . . , Mp do
13: G(−m) ← ν · G(−m)
14: G(m) ← ν · G(m)
15: return ν.

16: MakeRotationInvariant(G)
Modifies G and returns the estimated rotation angle β.

17: z ← 0 + i·0 ⊲ z ∈ C

18: for m ← 1, . . . , Mp do
19: z ← z + 1

m
· (G(−m) + G(m)) ⊲ complex addition!

20: β ← �z
21: for m ← 1, . . . , Mp do ⊲ rotate all coefficients by −β
22: G(−m) ← e−i·β · G(−m)
23: G(m) ← e−i·β · G(m)
24: return β.

Alg. 26.6
Making Fourier descriptors
invariant against scale, shift
of start point, and shape ro-
tation. For a given Fourier
descriptor G, procedure
MakeStartPointInvariant(G)
returns a pair of normalized
Fourier descriptors (GA, GB),
one for each normalized
start point phase ϕA and
ϕB = ϕA + π.

26.5.4 Other Approaches

The aforementioned normalization for making Fourier descriptors in-
variant to geometric transformations deviates from the published
“classic” techniques in certain ways, but also adopts some common
elements. As representative examples, we briefly discuss two of these
techniques (already referenced earlier) in the following.

Persoon and Fu [183,184] proposed (in what they call the “subop-
timal” approach) to choose the parameters s (common scale factor),
β (shape rotation), and ϕs (start point phase) such that the modified
coefficients G′

−1, G′
+1 are both imaginary and |G−1 + G+1| = 1. As

argued in [245], this method leaves a ±180◦ ambiguity for the shape
orientation. Also, it requires that both G−1, G+1 have significant
magnitude, which may not be true for G−1 in case of shapes that are
circularly symmetric (e.g., equilateral triangles, squares, pentagons
etc.).

Wallace and Wintz [245] use |G+1| as the common scale factor,
because the coefficient G+1 typically has the largest magnitude. The
phase of G+1, denoted φ1 = �G+1, and the phase of another co-
efficient Gk (k > 0) with the second-largest magnitude and phase
φk = �Gk are used to compensate for rotation and starting point.
Coefficients are phase shifted such that both G′

+1 and G′
k have zero

697

26 Fourier Shape
Descriptors

Alg. 26.7
Making Fourier descrip-

tors invariant to the shift
of start point. Since the re-
sult is ambiguous by 180◦,
two normalized descriptors

(GA, GB) are returned, with
the start point phase set to

ϕA and ϕA + π, respectively.

1: MakeStartPointInvariant(G)
Input: G, Fourier descriptor with Mp coefficient pairs.
Returns a pair of new Fourier descriptors GA, GB, normalized
to the start point phase ϕA and ϕA + π, respectively.

2: ϕA ← GetStartPointPhase(G) ⊲ see below
3: GA ← ShiftStartPointPhase(G, ϕA) ⊲ see below
4: GB ← ShiftStartPointPhase(G, ϕA + π)
5: return (GA, GB).

6: GetStartPointPhase(G)
Returns ϕ maximizing fp(G, ϕ), with ϕ ∈ [0, π). The maximum
is found by simple brute-force search (for illustration only).

7: cmax ← −∞
8: ϕmax ← 0
9: K ← 400 ⊲ do K search steps over 0, . . . , π

10: for k ← 0, . . . , K−1 do ⊲ find ϕ maximizing fp(G, ϕ)
11: ϕ ← π · k

K

12: c ← fp(G, ϕ)

13: if c > cmax then
14: cmax ← c
15: ϕmax ← ϕ
16: return ϕmax.

17: fp(G, ϕ) ⊲ see Eq. 26.103
18: s ← 0
19: for m ← 1, . . . , Mp do
20: z1 ← G(−m) · e−i·m·ϕ

21: z2 ← G(m) · ei·m·ϕ

22: s ← s + Re(z1) · Im(z2) − Im(z1) · Re(z2) ⊲ = s + (z1 ⊗ z2)
23: return s.

24: ShiftStartPointPhase(G, ϕ) ⊲ start-point normalize G by ϕ
25: G′ ← Duplicate(G)
26: for m ← 1, . . . , Mp do
27: G′(−m) ← G(−m) · e−i·m·ϕ

28: G′(m) ← G(m) · ei·m·ϕ

29: return G′.

phase. This is accomplished by multiplying all coefficients in the
form

G′
m = Gm · ei·[(m−k)·φ1+(1−m)·φk]·(k−1), (26.110)

for −M
2 + 1 ≤ m ≤ M

2 (also used in [189]). Depending on the
index k of the second-largest coefficient, there exist |k − 1| different
orientation/start point combinations to obtain zero-phase in G′

+1 and
G′

k. If k = 2, then |k − 1| = 1, thus the solution is unique and Eqn.
(26.110) simplifies to

G′
m = Gm · ei·[(m−2)·φ1+(1−m)·φ2], (26.111)

698

26.5 Transformation-
Invariant Fourier
Descriptors

β = 0◦ β = 15◦ β = 30◦ β = 45◦

β = 60◦ β = 75◦ β = 90◦ β = 105◦

β = 120◦ β = 135◦ β = 150◦ β = 165◦

β = 180◦ β = 195◦ β = 210◦ β = 225◦

β = 240◦ β = 255◦ β = 270◦ β = 285◦

Fig. 26.17
Start point normalization un-
der varying shape rotation (β).
The real start point (which
varies with shape rotation) is
marked by a black dot. The
two normalized start points
ϕA and ϕB = ϕA + π (cal-
culated with the procedure
in Alg. 26.7) are marked by a
blue and a brown ×, respec-
tively. Twenty-five Fourier
coefficient pairs are used for
the normalization and shape
reconstruction. Inaccuracies
are due to shape variations
caused by the use of nearest-
neighbor interpolation for the
image rotation.

with φ2 = �G2.20 Otherwise, the ambiguity is resolved by calculat-
ing an “ambiguity-resolving” criterion for each of the |k−1| solutions,
for example, the amount of “positive real energy”,

N−1∑

m=1

Re(G′
m) · |Re(G′

m)| ,

as defined in [245] (other functions were suggested in [189]). This
leaves the problem that, for matching, the normalization of the in-
vestigated shape descriptor must be based on the same set of domi-
nant coefficients as the reference descriptor. Alternatively, one could
memorize the relevant coefficient indexes for every reference descrip-

20 Unfortunately, the general use of coefficient G2 as a phase reference is
critical, because the magnitude of G2 may be small or even zero for
certain symmetrical shapes (including all regular polygons with an even
number of faces).

699

26 Fourier Shape
Descriptors

Fig. 26.18
Reconstruction of various

shapes from Fourier descrip-
tors normalized for start point
shift and shape rotation. The

blue shapes (rows 1, 3) cor-
respond to the normalized

Fourier descriptors GA with
start point phase ϕA. The

brown shapes (rows 2, 4) cor-
respond to the normalized

Fourier descriptors GB with
start point phase ϕB = ϕA + π.

No scale normalization was
applied for better visualization.

GA

GB

GA

GB

tor, but then different normalizations must be applied for matching
against multiple models in a database.

26.6 Shape Matching with Fourier Descriptors

A typical use of Fourier descriptors is to see if a given shape is iden-
tical or similar to an exemplar contained in a database of reference
shapes. For this purpose, we need to define a distance measure that
quantifies the difference between two Fourier shape descriptors G1

and G2. In the following, we assume that the Fourier descriptors
G1, G2 are at least scale-normalized (as described in Alg. 26.6) and
of identical length, each with Mp coefficient pairs.

26.6.1 Magnitude-Only Matching

In the simplest case, we only use the magnitude of the Fourier co-
efficients for comparison and entirely ignore their phase, using the
distance function

distM(G1, G2) =
[Mp∑

m=−Mp,
m �=0

(
|G1(m)| − |G2(m)|

)2
]1/2

(26.112)

=
[Mp∑

m=1

(
|G1(−m)| − |G2(−m)|

)2
+
(
|G1(m)| − |G2(m)|

)2
]1/2

,

700

26.6 Shape Matching
with Fourier
Descriptors

where Mp denotes the number of FD pairs used for matching. Note
that Eqn. (26.112) is simply the L2 norm of the magnitude difference
vector, and of course other norms (such as L1 or L∞) could be used
as well. The advantage of the magnitude-only approach is that no
normalization (except for scale) is required. Its drawback is that
even highly dissimilar shapes might be mistakenly matched, since
the removal of phase naturally eliminates shape information that is
possibly essential for discrimination. As demonstrated in Fig. 26.19,
a given Fourier magnitude vector may correspond to a great diversity
of shapes, and thus the subspace of “equivalent” shapes defined by
the magnitude-only distance distM is quite large.

Fig. 26.19
Magnitude-only reconstruc-
tion (randomized phase). Re-
construction of shapes from
Fourier descriptors with the
phase of all coefficients (except
G−1, G0, and G+1) individ-
ually randomized. Note that
the magnitude of the coef-
ficients is exactly the same
for each shape category, so
all blue shapes would be con-
sidered “equivalent” to the
original shape (first column)
by a magnitude-only matcher.

Nevertheless, magnitude-only matching may be sufficient in sit-
uations where the reference shapes are not too similar. In a sense,
the operation of reducing the complex-valued Fourier descriptors to
their magnitude vectors can be viewed as a hash function. While po-
tentially many different shapes may produce (i.e., “hash to”) similar
Fourier magnitude vectors, the chance of two real shapes mapping to
the same vector (and thus being confused) may be relatively small.
Thus, particularly considering its simplicity (only scale-normalization
of descriptors is required), magnitude-based matching can be quite
effective in practice.

Figure 26.20 shows the pair-wise magnitude-only distances (blue
cells, values are 10 × distM) between various sample shapes. The
corresponding intra-class distances, given in Fig. 26.21, are typically
more than one order of magnitude smaller, indicating that shape
discrimination based on this measure should be fairly reliable.

26.6.2 Complex (Phase-Preserving) Matching

Assuming that the Fourier descriptors G1 and G2 have been normal-
ized for scale, start point shift, and shape rotation (see Alg. 26.6),
we can use the following function to measure their mutual distance:

701

26 Fourier Shape
Descriptors

Fig. 26.20
Inter-class Fourier descriptor

distances (magnitude-only and
complex-valued). Numbers

inside the green fields (lower-
left half of the matrix) are

the magnitude-only distances
distM (see Eqn. (26.112)).

Numbers in blue fields (upper-
right half of the matrix) are

the complex-valued distances
distC (see Eqn. (26.114)).
Shapes were sampled uni-

formly at 125 contour posi-
tions, with 25 coefficient pairs.

Fourier descriptors were nor-
malized for scale, start point

and rotation. All distance
values are multiplied by 10.

bird cat camel elephant hand harrier menora piano creature

0.000 4.529 4.482 5.007 5.525 4.314 7.554 5.174 7.076

3.156 0.000 5.788 4.708 5.711 5.701 7.181 5.543 7.677

2.648 3.005 0.000 4.429 5.573 3.726 7.014 4.013 8.480

3.487 1.933 2.549 0.000 6.100 4.618 5.338 4.369 8.743

4.627 3.146 3.132 2.372 0.000 6.079 8.540 5.580 7.136

3.712 3.707 2.687 3.553 4.294 0.000 6.818 4.958 8.284

5.835 4.893 4.563 4.162 3.788 5.775 0.000 6.826 11.072

4.037 2.426 2.610 1.876 1.848 3.405 4.315 0.000 7.666

6.030 6.261 5.554 5.492 5.955 5.914 5.190 6.049 0.000

distM(G1, G2) distC(G1, G2)

distC(G1, G2) =
(Mp∑

m=−Mp,

m �=0

∣
∣G1(m)−G2(m)

∣
∣
2
)1/2

(26.113)

=
(Mp∑

m=1

∣
∣G1(−m)−G2(−m)

∣
∣
2

+
∣
∣G1(m)−G2(m)

∣
∣
2
)1/2

(26.114)

=
(Mp∑

m=−Mp,
m �=0

[
Re(G1(m))− Re(G2(m))

]2

+
[
Im(G1(m))− Im(G2(m))

]2
)1/2

. (26.115)

Again, this is simply the L2 norm of the complex-valued difference
vector G1 − G2 (ignoring the coefficients at m = 0), which could
be substituted by some other norm. Since the phase of the involved
coefficients is fully preserved, a zero distance between two Fourier
descriptors means that they represent the very same shape. Thus
the set of equivalent shapes defined by the distance function in Eqn.
(26.114) is much smaller than the one defined by the magnitude-only
distance in Eqn. (26.112). Consequently, the probability of two dif-
ferent shapes being confused for the same is also significantly smaller
with this distance measure.

702

26.6 Shape Matching
with Fourier
Descriptors

α = 0◦ 17◦ 34◦ 51◦ 68◦ 85◦ 102◦ 119◦ 136◦ 153◦ 170◦ 187◦ 204◦

distM 0.000 0.070 0.126 0.151 0.103 0.058 0.143 0.107 0.195 0.190 0.105 0.078 0.053
distC 0.000 0.141 0.222 0.299 0.198 0.111 0.274 0.159 0.313 0.400 0.142 0.162 0.092

distM 0.000 0.134 0.144 0.176 0.167 0.055 0.104 0.206 0.227 0.135 0.164 0.083 0.174
distC 0.000 0.222 0.214 0.252 0.244 0.081 0.141 0.310 0.339 0.197 0.231 0.157 0.281

distM 0.000 0.117 0.346 0.147 0.142 0.141 0.109 0.100 0.125 0.163 0.099 0.147 0.106
distC 0.000 0.229 0.728 0.367 0.310 0.386 0.161 0.186 0.202 0.252 0.141 0.191 0.271

distM 0.000 0.121 0.195 0.272 0.170 0.057 0.135 0.175 0.216 0.176 0.092 0.112 0.160
distC 0.000 0.180 0.317 0.392 0.278 0.080 0.218 0.257 0.307 0.266 0.160 0.198 0.248

distM 0.000 0.127 0.138 0.179 0.130 0.048 0.131 0.115 0.329 0.173 0.202 0.109 0.132
distC 0.000 0.179 0.186 0.361 0.180 0.085 0.234 0.188 0.496 0.263 0.313 0.182 0.195

distM 0.000 0.234 0.171 0.224 0.095 0.090 0.106 0.189 0.228 0.170 0.079 0.121 0.213
distC 0.000 0.433 0.290 0.317 0.147 0.129 0.197 0.276 0.344 0.251 0.146 0.197 0.308

distM 0.000 0.163 0.148 0.131 0.213 0.116 0.228 0.322 0.334 0.205 0.253 0.108 0.122
distC 0.000 0.570 0.330 0.395 0.456 0.169 0.271 0.401 0.465 0.295 0.440 0.149 0.251

distM 0.000 0.164 0.186 0.161 0.186 0.101 0.112 0.252 0.159 0.150 0.169 0.104 0.201
distC 0.000 0.264 0.362 0.311 0.255 0.175 0.148 0.576 0.230 0.267 0.232 0.142 0.284

distM 0.000 0.154 0.190 0.167 0.103 0.084 0.180 0.390 0.210 0.123 0.194 0.084 0.131
distC 0.000 0.203 0.260 0.248 0.141 0.108 0.232 0.447 0.308 0.171 0.234 0.120 0.160

Fig. 26.21
Intra-class Fourier descrip-
tor distances (magnitude-only
and complex-valued). The
reference images (0◦ column)
were rotated by angle α (mul-
tiples of 17◦), using no (i.e.,
nearest-neighbor) interpo-
lation. Numbers inside the
blue fields are the magnitude-
only distances distM (see Eqn.
(26.112)). Numbers inside the
green fields are the complex-
valued distances distC (see
Eqn. (26.114)). Shapes were
sampled uniformly at 125 con-
tour positions, with 25 coeffi-
cient pairs. Fourier descriptors
were normalized for scale, start
point shift and shape rotation.
All distance values are multi-
plied by 10. Note that all in-
tra-class distances are roughly
one order of magnitude smaller
than the inter-class distances
shown in Fig. 26.20.

Complex inter-class and intra-class distance values for the set of
sample shapes are listed in Figs. 26.20 and 26.21. Notice that, with
the normalization described in Alg. 26.6, the complex intra-class dis-
tance values in Fig. 26.21 (which should be as small as possible) are
typically about twice as large as the corresponding magnitude-only
distance values, but still an order of magnitude smaller than compa-
rable inter-class values in Fig. 26.20, so reliable shape discrimination
should be possible.

The price paid for the increased discriminative power is the extra
work necessary for normalizing the Fourier descriptors for start point
and shape rotation (in addition to scale), as described in Alg. 26.6.
Note that this involves the comparison with two normalized descrip-
tors to cope with the unresolved 180◦ ambiguity of the start point
normalization (see Eqns. (26.104) and (26.105)). For example, as-
sume we wish to compare two shapes V1, V2 with Fourier descriptors
G1, G2, respectively. We first calculate the corresponding invariant
descriptors (as described in Alg. 26.6),

703

26 Fourier Shape
Descriptors

(GA
1 , GB

1) ← MakeInvariant(G1) ,

(GA
2 , GB

2) ← MakeInvariant(G2) .
(26.116)

Now we use Eqn. (26.114) to calculate the complex-valued distance as

dmin = min
(
distC(GA

1 , GA
2), distC(GA

1 , GB
2)
)

(26.117)

or, alternatively, as

dmin = min
(
distC(GA

1 , GA
2), distC(GB

1 , GA
2)
)
. (26.118)

Note that, in any case, the resulting distance dmin will be small only
if the two shapes V1, V2 are really similar. This also means that we
only need to store one of the two normalized Fourier descriptors—
for example, GA

ref—for each reference shape Vref and then (following
Eqn. (26.117)) compare it to both normalized descriptors GA

new and
GB

new of any new shape Vnew.21

To illustrate this idea, Alg. 26.8 shows the construction of a sim-
ple Fourier descriptor database from a set of reference shapes and
its subsequent use for classifying unknown shapes. First, procedure
MakeFdDataBase(V) returns a map D holding a normalized Fourier
descriptor for each of the reference shapes given in V . Matching a
new shape Vnew to the entries in the database D is accomplished by
procedure FindBestMatch(Vnew, D, dmax), which returns the index of
the best-fitting shape in D, or nil if the distance of the closest match
exceeds the predefined threshold dmax. As common in this situation,
we use squared distance values (i.e., dist2

C) for matching in Alg. 26.8
(lines 15–18), thereby avoiding the square root operations in Eqns.
(26.112) and (26.114).

26.7 Java Implementation

The algorithms described in this chapter have been implemented as
part of the open imagingbook library,22 which is available at the
book’s accompanying website. As usual, most Java methods are
named and structured identically to the procedures defined in the
various algorithms for easy identification.

FourierDescriptor (class)

This is the main class of this package; it holds all data structures and
implements the functionality common to all Fourier descriptors, in-
cluding methods for shape reconstruction, invariance, and matching,
as will be described here.

21 The justification for keeping only one of the two normalized descriptors
GA

ref , GB
ref of each reference shape Vref is that if two candidate shapes

V1, V2 are similar, then the normalization will produce pairs of Fourier
descriptors (GA

1 , GB
1) and (GA

2 , GB
2) that are also similar but not nec-

essarily in the same order. Therefore GA
1 must only match with either

GA
2 or GB

2 to detect the similarity of V1 and V2.
22 Package imagingbook.pub.fd.

704

26.7 Java
Implementation

1: MakeFdDataBase(Vref , M ′)
Input: Vref = (V0, V1, . . . , VNR

), a sequence of reference shapes;
M ′, the number of Fourier coefficients. Returns a sequence of
model Fourier descriptors for the reference shapes in Vref .

2: NR ← |Vref |
3: R ← new map of Fourier descriptors over [0, NR−1]
4: for i ← 0, . . . , NR−1 do
5: G ← FourierDescriptorUniform(Vref(i), M ′) ⊲ Alg. 26.3
6: (GA, GB) ← MakeInvariant(G) ⊲ Alg. 26.6
7: R(i) ← GA ⊲ store only one normalized descriptor (GA)
8: return R.

9: FindBestMatch(Vnew, M ′, R, dmax)
Input: Vnew, a new shape; M ′, the number of Fourier coefficients;
R, a sequence of reference Fourier descriptors; dmax, maximum
squared distance acceptable for a positive match. Returns the
best-matching shape index imin or nil if no acceptable match was
found.

10: Gnew ← FourierDescriptorUniform(Vnew, M ′) ⊲ Alg. 26.3

11: (GA
new, GB

new) ← MakeInvariant(Gnew) ⊲ Alg. 26.6
12: dmin ← ∞, imin ← −1

13: for i ← 0, . . . , |R|−1 do
14: GA

ref ← R(i)
15: d2 ← min

(
D2(GA

new, GA
ref), D2(GB

new, GA
ref)
)

⊲ Eq. 26.118
16: if d2 < dmin then
17: dmin ← d2

18: imin ← i
19: if dmin ≤ dmax then
20: return imin ⊲ best match index is imin

21: else
22: return nil. ⊲ no matching shape found in R

23: D2(G1, G2)
Returns the squared complex distance dist2

C(G1, G2) between the
Fourier descriptors G1,G2 (see Eq. 26.114).

24: d ← 0, Mp ← (min(|G1| , |G2|) − 1) ÷ 2
25: for m ← −Mp, . . . , Mp, m �= 0 do
26: d ← d + [Re(G1(m))−Re(G2(m))]2 +

[Im(G1(m))−Im(G2(m))]2

27: return d. ⊲ d ≡ (distC(G1, G2))2

Alg. 26.8
Simple shape matching with a
database of Fourier descriptors.
MakeFdDataBase(Vref , M ′)
creates and returns a new
database (map) R from a
sequence of reference shapes
Vref . R can then be passed to
FindBestMatch(Vnew, M ′, R, dmax)
for classifying a new shape
Vnew, where dmax is a
predefined distance threshold.

Class FourierDescriptor is abstract and thus cannot be instan-
tiated. To create Fourier descriptor objects, one of the concrete sub-
classes FourierDescriptorUniform or FourierDescriptorFrom-

Polygon (discussed later in this section) may be used, which pro-
vide the appropriate constructors. FourierDescriptor provides the
following methods for both types of Fourier descriptors.

Access to Fourier coefficients

Complex[] getCoefficients ()

Returns the complete vector of complex-valued Fourier coeffi-
cients.23

23 The class Complex is defined in package imagingbook.lib.math.
705

26 Fourier Shape
Descriptors

Complex getCoefficient (int m)

Returns the value of the Fourier coefficient G(m mod M), with
M = |G| as above.

Complex setCoefficient (int m, Complex z)

Replaces the Fourier coefficient G(m mod M) by the complex
value z, with M = |G| as above.

Complex setCoefficient (int m, double a, double b)

Replaces the Fourier coefficient G(m mod M) by the complex
value z = a + i · b, with M = |G| as above.

int size ()

Returns the length (M) of the Fourier descriptor.
int getMaxNegHarmonic ()

Returns the max. negative harmonic m = −(M − 1) ÷ 2 for
this Fourier descriptor (of length M).

int getMaxPosHarmonic ()

Returns the max. positive harmonic m = M÷2 for this Fourier
descriptor (of length M).

int getMaxCoefficientPairs ()

Returns the maximum number of coefficient pairs, (M−1)÷2,
for this Fourier descriptor (of length M).

void truncate (int Mp)

Truncates this Fourier descriptor to the Mp lowest-frequency
coefficients (see Eqn. (26.23)).

Comparing Fourier descriptors

double distanceComplex (FourierDescriptor fd2)

Returns the complex-valued distance (distC(G1, G2), see Eqn.
(26.114)) between this Fourier descriptor (G1) and another
Fourier descriptor fd2 (G2). The zero-coefficients are ignored.

double distanceComplex (FourierDescriptor fd2, int Mp)

As above, but using only Mp coefficient pairs (see Eqn.
(26.114)).

double distanceMagnitude (FourierDescriptor fd2)

Returns the magnitude-only distance (distM(G1, G2), see Eqn.
(26.112)) between this Fourier descriptor (G1) and another
Fourier descriptor fd2 (G2). The zero-coefficients are ignored.

double distanceMagnitude (FourierDescriptor fd2,

int Mp)

As above, but using only Mp coefficient pairs (see Eqn.
(26.112)).

Shape reconstruction

Complex[] getReconstruction (int N)

Returns the shape reconstructed from the complete Fourier de-
scriptor as a sequence of N complex-valued contour points. The
contour points are obtained by evaluating getReconstruct-

ionPoint(t) at uniformly spaced positions t ∈ [0, 1).
Complex[] getReconstruction (int N, int Mp)

Returns a partial shape reconstruction from Mp Fourier coeffi-
cient pairs as a sequence of N complex-valued contour points.

706

26.7 Java
Implementation

Complex getReconstructionPoint (double t)

Returns a single point (as a complex value) on the continuous
contour for path parameter t ∈ [0, 1), reconstructed from the
complete Fourier descriptor (see Eqn. (26.20)).

Complex getReconstructionPoint (double t, int Mp)

Returns a single point (as a complex value) on the continuous
contour for path parameter t ∈ [0, 1), reconstructed from Mp

Fourier coefficient pairs.

Normalization

FourierDescriptor[] makeInvariant ()

Returns a pair of Fourier descriptors (GA, GB) that are nor-
malized for scale, start point shift and shape rotation (see Alg.
26.6).

double makeRotationInvariant ()

Normalizes the Fourier descriptor for shape rotation by phase-
shifting all coefficients (see Alg. 26.6). Returns the estimated
rotation angle β.

double makeScaleInvariant ()

Normalizes the Fourier descriptor for scale by multiplying with
a common factor, such that the L2 norm of the resulting vector
is 1. Returns the scale factor that was applied for normaliza-
tion.

FourierDescriptor[] makeStartPointInvariant ()

Returns a pair of normalized Fourier descriptors (GA, GB),
one for each start point normalization angles ϕA and ϕB = ϕA

+ π, respectively (see Alg. 26.7).
void makeTranslationInvariant ()

Modifies this Fourier descriptor by setting the coefficient G(0)
to zero. This method is rarely needed because G(0) is ignored
for matching.

FourierDescriptorUniform (class)

This sub-class of FourierDescriptor represents Fourier descriptors
obtained from uniformly sampled contours, as described in Alg. 26.2.
It provides the constructor methods

FourierDescriptorUniform (Point2D[] V),
FourierDescriptorUniform (Point2D[] V, int Mp),

where V is a sequence of M contour points (Point2D), assumed to
be uniformly sampled. The first constructor creates a full Fourier
descriptor with M coefficients (see Alg. 26.2). The second constructor
creates a Fourier descriptor with Mp coefficient pairs (i.e., 2 · Mp + 1
coefficients), as described in Alg. 26.3

FourierDescriptorFromPolygon (class)

This sub-class of FourierDescriptor represents Fourier descriptors
obtained directly from polygons (without contour sampling, see Alg.
26.5). It provides the single constructor method

FourierDescriptorFromPolygon (Point2D[] V, int Mp),
707

26 Fourier Shape
Descriptors

where V is a sequence of polygon vertices and Mp specifies the number
of Fourier coefficient pairs.

PolygonSampler (class)

Instances of this utility class can be used to produce uniformly sam-
pled polygons.

Point2D[] samplePolygonUniformly (Point2D[] V, int M)

Samples the closed polygon path specified by the vertices in
V at M equi-distant positions and returns the resulting point
sequence (see Alg. 26.1).

Example

The code example in Prog. 26.1 demonstrates the use of the Fourier
descriptor API. It assumes that the binary input image (ip) con-
tains at least one connected foreground region. Region labeling
and contour extraction is applied first, using methods provided by
the imagingbook.regions and imagingbook.contours packages.24

Subsequently, the longest region contour (C) is used to create a Fourier
descriptor (fd) with MP = 15 coefficient pairs. A partial reconstruc-
tion is calculated from the original Fourier descriptor with 100 sample
points along the contour. The last lines show how a pair of invariant
descriptors (GA, GB) is obtained by applying the makeInvariant()

method. Note that the code fragment in Prog. 26.1 is not complete
but would typically be part of the run() method in an ImageJ plugin.
The full version and additional code examples can be found on the
book’s website.

26.8 Discussion and Further Reading

The use of Fourier descriptors for shape description and matching
dates back to the early 1960’s [55,81], advanced by the work of Zahn
and Roskies [262], Granlund [93], Richard and Hemami [196], and
Persoon and Fu [183, 184] in the 1970s, particularly in the context
of character recognition and aircraft identification. Making Fourier
descriptors invariant against various geometric transformations was a
key issue from the very beginning, and several relevant contributions
were published in the 1980s, including [245], [57] [143], and [189].
Unfortunately, as illustrated in this chapter, to achieve robust in-
variance and uniqueness of representation in practice is not as easy
as sometimes suggested in the literature, despite the simplicity and
elegance of the underlying theory. In practice, normalization for de-
scriptor invariance is quite difficult for arbitrary shapes because of
possibly vanishing Fourier coefficients and the resulting sensitivity to
noise.

Fourier descriptors have nevertheless become popular in a wide
range of applications, including geology and, in particular, biological
imaging, as documented by the work of Lestrel and others in [146].

24 See also Chapter 10.
708

26.9 Exercises1 ...

2 import imagingbook.lib.math.Complex;

3 import imagingbook.pub.fd.*;

4 import imagingbook.pub.regions.*;

5

6 ByteProcessor ip ...; // assumed to contain a binary image

7

8 // segment ip and select the longest outer region contour:

9 RegionContourLabeling labeling =

10 new RegionContourLabeling(ip);

11 List<Contour> outerContours =

12 labeling.getAllOuterContours(true);

13 Contour contr = outerContours.get(0); // get the longest contour

14 Point2D[] V = contr.getPointArray();

15

16 // create the Fourier descriptor for V with 15 coefficient pairs:

17 FourierDescriptor fd = new FourierDescriptorUniform(V, 15);

18

19 // reconstruct the corresponding shape with 100 contour points:

20 Complex[] R = fd.getReconstruction(100);

21

22 // create a pair of invariant descriptors (GA, GB):

23 FourierDescriptor[] fdAB = fd.makeInvariant();

24 FourierDescriptor fdA = fdAB[0]; // = GA

25 FourierDescriptor fdB = fdAB[1]; // = GB

26 ...

Prog. 26.1
Fourier descriptor code ex-
ample. The input image ip
is assumed to contain a bi-
nary image (line 6). The class
RegionContourLabeling is used
to find connected regions (line
10). Then the list of outer
contours is retrieved (line 12)
and the longest contour is
assigned to V as an array of
type Point2D (lines 13–14). In
line 17, the contour V is used
to create a Fourier descrip-
tor with 15 coefficient pairs.
Alternatively, we could have
created a Fourier descriptor
of the same length (number
of coefficients) as the contour
and then truncated it (using
the truncate() method) to the
specified number of coefficient
pairs. A partial reconstruction
of the contour (with 100 sam-
ple points) is calculated from
the Fourier descriptor fd in
line 20. Finally, a pair of in-
variant descriptors (contained
in the array fdAB) is calculated
in line 23.

Fourier descriptors have been extended to accommodate affine trans-
formations and applied to 3D object identification [5] and stereo
matching [257].

Although Fourier descriptors have been investigated to handle
open contours and partial shapes [148], they are naturally best suited
to dealing with closed contours, as we have described. Of course, this
is a limitation if shapes are only partially visible or occluded. The
presentation in this chapter was limited to what are frequently called
“elliptical” Fourier descriptors [93], since they are most popular and
well known. Other types of Fourier descriptors have been proposed,
which are not covered here but can be found elsewhere in the litera-
ture (see, e.g., [126, p. 534] and [174, Ch. 7]).

26.9 Exercises

Exercise 26.1. Verify that the DFT spectrum is periodic, that is,
that G(−m) = G(M−m) holds for arbitrary m ∈ Z (as claimed in
Eqn. (26.22)).

Exercise 26.2. Algorithm 26.9 shows an alternative solution to uni-
form polygon sampling. Implement this algorithm and verify that it
is equivalent to Alg. 26.1 (implemented as method samplePolygon-

Uniformly() in class PolygonSampler, see Sec. 26.7).

Exercise 26.3. Assume that the complete outer contour of a binary
region is given as a sequence of P boundary pixels with coordinates

709

26 Fourier Shape
Descriptors

Alg. 26.9
Uniform sampling of a polygon
path (alternative to Alg. 26.1,
proposed by J. Heinzelreiter).

1: SamplePolygonUniformly(V, M)
Input: V = (v0, . . . , vN−1), a sequence of N points representing
the vertices of a closed 2D polygon; M , number of desired sample
points. Returns a new sequence g = (g0, . . . , gM−1) of complex
values representing sample points sampled uniformly along the
path of the input polygon V .

2: N ← |V |
3: Δ ← 1

M
· PathLength(V) ⊲ segment length Δ, see Alg. 26.1

4: Create map g : [0, M−1] → C ⊲ complex point sequence g
5: g(0) ← Complex(V (0))
6: i ← 0 ⊲ index of path segment 〈Vi, Vi+1〉
7: k ← 1 ⊲ index of first unassigned point in g
8: dp ← 0 ⊲ path distance between V (i) and V (k−1)

9: while (i < N) ∧ (k < M) do
10: vA ← V (i)
11: vB ← V ((i + 1) mod N)
12: δ ← ‖vB − vA‖ ⊲ Euclidean distance
13: if (Δ − dp) ≤ δ) then

14: x ← vA +
Δ−dp

δ
· (vB − vA) ⊲ xk by lin. interpolation

15: g(k) ← Complex(x)
16: dp ← dp − Δ
17: k ← k + 1
18: else
19: dp ← dp + δ
20: i ← i + 1
21: return g.

V = (p0, . . . , pP −1). To produce a Fourier descriptor of length M <
P there are several options:

1. Sample the original contour V at M uniformly-spaced positions
(see Alg. 26.1) and then calculate the Fourier descriptor of length
M using Alg. 26.2.

2. Calculate a partial Fourier descriptor of length M ′ from the orig-
inal contour V using Alg. 26.3.

3. Calculate the full Fourier descriptor (of length M) from the orig-
inal contour V (using Alg. 26.2) and subsequently truncate25 the
Fourier descriptor to length M ′, as described in Eqns. (26.23)
and (26.24).

4. Treat the original boundary coordinates V as the vertices of a
closed polygon and calculate a Fourier descriptor with MP =
M÷2 coefficient pairs, using the trigonometric method described
in Alg. 26.5.

Compare these approaches and discuss their individual merits or dis-
advantages in terms of efficiency and accuracy.

Exercise 26.4. Test the Fourier descriptor normalization described
in Algs. 26.6 and 26.7 (implemented by method makeInvariant()

in the Java API) for changes in scale, start point shift, and shape
rotation on a suitable set of binary shapes (e.g., images from the

25 See method truncate(int Mp) in Sec. 26.7.
710

26.9 ExercisesKIMIA dataset [134]). See the examples for shape rotation and (im-
plicit) start point shifts in Fig. 26.21. How reliably do the normalized
Fourier descriptors of the modified shapes match to their correspond-
ing originals?

Exercise 26.5. Magnitude-only matching (see Sec. 26.6.1) is much
simpler than complex-valued matching (see Sec. 26.6.2) of Fourier
descriptors, since no normalization for phase (start point shift and
shape rotation) is required. However, it can be assumed that differ-
ent shapes are more likely to be confused if the phase information is
ignored. Test this hypothesis on a large number and variety of differ-
ent shapes. Compare the confusion probability for magnitude-only
vs. complex-valued matching.

711

Appendix A

Mathematical Symbols and Notation

A.1 Symbols

The following symbols are used in the main text primarily with the
denotations given here. While some symbols may be used for pur-
poses other than the ones listed, the meaning should always be clear
in the particular context.

(a0, . . . , an−1) A vector or list, that is, an ordered sequence of n
elements of the same type. Unlike a set (see below), a list
may contain the same element more than once. If used to
denote a vector, then (a0, . . . , an−1) is usually a row vector
and (a0, . . . , an−1)⊺ is the corresponding (transposed) column
vector.1 If used to represent a list,2 () represents the empty
list and (a) is a list with a single element a. |A| is the length
of the sequence A, that is, the number of contained elements.
A�B denotes the concatenation of A, B. A(i) or ai refers to
the i-th element of A. A(i) ← x means that the i-th element
of A is set to (i.e., replaced by) the quantity x.

{a, b, c, d, . . .} A set, that is, an unordered collection of distinct ele-
ments. A particular element x can be contained in a set at
most once. { } denotes the empty set. |A| is the size (car-
dinality) of the set A. A ∪ B is the union and A ∩ B is the
intersection of two sets A,B. x ∈ A means that the element
x is contained in A.

〈A, B, C〉 A tuple, that is, a fixed-size, ordered sequence of elements,
each possibly of a different type.3

1 In most programming environments, vectors are implemented as one-
dimensional arrays, with elements being referred to by position (index).

2 Lists are usually implemented with dynamic data structures, such as
linked lists. Java’s Collections framework provides numerous easy-to-
use list implementations.

3 Tuples are typically implemented as objects (in Java or C++) or struc-

tures (in C) with elements being referred to by name.
713

© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

Appendix A
Mathematical Symbols

and Notation

[a, b] Numeric interval; x ∈ [a, b] means a ≤ x ≤ b. Similarly,
x ∈ [a, b) says that a ≤ x < b.

|A| Length (number of elements) of a sequence (see above) or size
(cardinality) of a set A, that is, |A| ≡ card A.

|A| Determinant of a matrix A (|A| ≡ det(A)).
|x| Absolute value (magnitude) of a scalar or complex quantity

x.
‖x‖ Euclidean (L2) norm of a vector x. ‖x‖n denotes the magni-

tude of x using a particular norm Ln.
⌈x⌉ “Ceil” of x, the smallest integer z ∈ Z greater than x ∈ R.

For example, ⌈3.141⌉ = 4, ⌈−1.2⌉ = −1.
⌊x⌋ “Floor” of x, the largest integer z ∈ Z smaller than x ∈ R.

For example, ⌊3.141⌋ = 3, ⌊−1.2⌋ = −2.
÷ Integer division operator: a ÷ b denotes the quotient of the

two integers a, b. For example, 5 ÷ 3 = 1 and −13 ÷ 4 =
−3 (equivalent to Java’s “/” operator in the case of integer
operands).

∗ Linear convolution operator (see Sec. 5.3.1).
⊛ Linear correlation operator (see Sec. 23.1.1).
⊗ Outer vector product (see Sec. B.3.2).

× Cross product (between vectors or complex quantities (see
Sec. B.3.3).

⊕ Morphological dilation operator (see Sec. 9.2.3).
⊖ Morphological erosion operator (see Sec. 9.2.4).

◦ Morphological opening operator (see Sec. 9.3.1).
• Morphological closing operator (see Sec. 9.3.2).
� Concatenation operator. Given two sequences A = (a, b, c)

and B = (d, e), A�B denotes the concatenation of A and B,
with the result (a, b, c, d, e). Inserting a single element x at
the end or front of the list A is written as A�(x) or (x)�A,
resulting in (a, b, c, x) or (x, a, b, c), respectively.

∼ “Similarity” relation used in the context of random variables
and statistical distributions.

≈ “Approximately equal” relation.

≡ Equivalence relation.
← Assignment operator: a ← expr means that expression expr

is evaluated and subsequently the result is assigned to the
variable a.

+← Incremental assignment operator: a
+← b is equivalent to a ←

a + b.

:= Function definition operator (used in algorithms). For exam-
ple, f(x) := x2 + 5 defines a function f() with the bound
variable (formal function argument) x.

. . . “upto” (incrementing) iteration, used in loop constructs like
for q ← 1, . . . , K (with q = 1, 2, . . . , K−1, K).

. . . “downto” (decrementing) iteration, for example, for q ←
K, . . . , 1 (with q = K, K−1, . . . , 2, 1).

714

A.1 Symbols∧ Logical “and” operator.

∨ Logical “or” operator.

∂ Partial derivative operator (see Sec. 6.2.1). For example,
∂

∂xi
f denotes the first derivative of the multi-dimensional

function f(x1, x2, . . . , xn) : Rn → R along variable xi,
∂2

∂x2
i
f

is the second derivative (i.e., differentiating f twice along
variable xi), etc.

∇ Gradient operator. The gradient of a multi-dimensional func-
tion f(x1, x2, . . . , xn) : Rn → R, denoted ∇f (also ∇f or
grad f), is the vector of its first partial derivatives (see also
Sec. C.2.2).

∇2 Laplace operator (or Laplacian). The Laplacian of a multi-
dimensional function f(x1, x2, . . . , xn) : Rn → R, denoted
∇2f (or ∇2

f), is the sum of its second partial derivatives (see
Sec. C.2.5).

0 Zero vector, 0 = (0, . . . , 0)⊺.

adj Adjugate of a square matrix, denoted adj(A); also called ad-
joint in older texts.

AND Bitwise “and” operation. Example: (0011b AND 1010b) =
0010b (binary) and (3 AND 6) = 2 (decimal).

ArcTan(x, y) Inverse tangent function. The result of ArcTan(x, y)
is equivalent to arctan(y

x) = tan−1(y
x) but with two argu-

ments and returning angles in the range [−π, +π] (i.e., cov-
ering all four quadrants). ArcTan(x, y) is equivalent to the
ArcTan[x,y] function in Mathematica and the Math.atan2

(y, x) method in Java (but note the reversed arguments!).

C The set of complex numbers.

card Size (cardinality) of a set. card(A) = |A| (see also Sec. 3.1).

det Determinant of a matrix (det(A) = |A|).
DFT Discrete Fourier transform (see Sec. 18.3).

e Euler’s constant.

e Unit vector. For example, ex = (1, 0)⊺ denotes the 2D unit
vector in x-direction. eθ = (cos θ, sin θ)⊺ is the 2D unit vector
oriented at angle θ and ei, ej, ek are the unit vectors along
the coordinate axes in 3D.

exp Exponential function: exp(x) = ex.

F Continuous Fourier transform (see Sec. 18.1.4).

false Boolean constant (false = ¬true).

grad Gradient operator (see ∇).

h Histogram of an image (see Sec. 3.1).

H Cumulative histogram (see Sec. 3.6).

H Hessian matrix (see Sec. C.2.6).

hom Operator for converting Cartesian to homogeneous coordi-
nates. hom(x) = x maps the Cartesian point x to a corre-
sponding homogeneous point x; the reverse mapping is de-
noted hom−1(x) = x (see Sec. B.5).

i Imaginary unit (i2 = −1), see Sec. A.3.
715

Appendix A
Mathematical Symbols

and Notation

I Image with scalar pixel values (e.g., an intensity or grayscale
image). I(u, v) ∈ R is the pixel value at position (u, v)

I Vector-valued image, for example, a RGB color image with
3D color vectors I(u, v) ∈ R3 at position (u, v).

In Identity matrix of size n× n. For example, I2 = (1 0
0 1) is the

2× 2 identity matrix.

J Jacobian matrix (see Sec. C.2.1).

L1, L2, L∞ Common distance measures or norms (see Eqns. (15.23)–
(15.25)).

M×N Domain of pixel coordinates (u, v) for an image with M columns
(width) and N rows (height); used as a shortcut notation for
the set {0, . . . , M−1} × {0, . . . , N−1}.

mod Modulus operator: (a mod b) is the remainder of the integer
division a÷ b (see Sec. F.1.2).

μ Arithmetic mean value.

N The set of natural numbers; N = {1, 2, 3, . . .}, N0 = {0, 1, 2,
. . .}.

nil Null (“nothing”) constant, typically used in algorithms to
denote an invalid quantity (similar to null in Java).

p Discrete probability density function (see Sec. 4.6.1).

P Discrete probability distribution function or cumulative prob-
ability density (see Sec. 4.6.1).

Q Quadrilateral (see Sec. 21.1.4).

R The set of real numbers.

R, G, B Red, green and blue color components.

rank Rank of a matrix A, denoted by rank(A).

round Rounding function: returns the integer closest to the scalar
x ∈ R. round(x) ≡ ⌊x + 0.5⌋.

σ Standard deviation (square root of the variance σ2).

S1 Unit square (see Sec. 21.1.4).

sgn “Sign” or “signum” function:

sgn(x) =
{ 1 for x > 0

0 for x = 0
−1 for x < 0

τ Interval in time or space.

t Continuous time variable.

t Threshold value.
⊺ Transpose of a vector (a⊺) or matrix (A⊺).

trace Trace (sum of the diagonal elements) of a matrix, e.g., trace(A).

true Boolean constant (true = ¬false).

u = (u, v) Discrete 2D coordinate variable with u, v ∈ Z.

x = (x, y) Continuous 2D coordinate variable with x, y ∈ R.

XOR Bitwise “xor” (exclusive OR) operator. Example: (0011b

XOR 1010b) = 1001b (binary) and (3 XOR 6) = 5 (decimal).

Z The set of integers.
716

A.3 Complex NumbersA.2 Set Operators

|A| The size of the set A (equal to card(A)).
∀x . . . “All” quantifier (for all x, . . .).
∃x . . . “Exists” quantifier (there is some x for which . . .).
∪ Set union (e.g., A∪ B).
∩ Set intersection (e.g., A ∩ B).
⋃

iAi Union of multiple sets Ai.
⋂

iAi Intersection over multiple sets Ai.
\ Set difference: if x ∈ A \ B, then x ∈ A and x /∈ B.

A.3 Complex Numbers

Basic relations:

z = a + i · b (with z, i ∈ C, a, b ∈ R, i2 = −1) (A.1)

s·z = s · a + i·s·b (for s ∈ R) (A.2)

|z| =
√

a2 + b2 (A.3)

|s·z| = s·|z| (A.4)

z = a + i · b = |z| · (cos ψ + i · sin ψ) (A.5)

= |z| · ei·ψ (with ψ = ArcTan(a, b)) (A.6)

Re
(
a + i · b

)
= a Re

(
ei·ϕ) = cos ϕ (A.7)

Im
(
a + i · b

)
= b Im

(
ei·ϕ) = sin ϕ (A.8)

ei·ϕ = cos ϕ + i · sin ϕ (A.9)

e−i·ϕ = cos ϕ− i · sin ϕ (A.10)

cos(ϕ) = 1
2 ·
(
ei·ϕ + e−i·ϕ) (A.11)

sin(ϕ) = 1
2i ·

(
ei·ϕ − e−i·ϕ) (A.12)

z∗ = a− i · b (complex conjugate) (A.13)

z ·z∗ = z∗ ·z = |z|2 = a2 + b2 (A.14)

z0 = (a + i · b)0 = (1 + i · 0) = 1 (A.15)

Arithmetic operations:

z1 = (a1 + i·b1) = |z1| ei·ϕ1 (A.16)

z2 = (a2 + i·b2) = |z2| ei·ϕ2 (A.17)

z1 + z2 = (a1 + a2) + i·(b1 + b2), (A.18)

z1 · z2 = (a1 ·a2 − b1 ·b2) + i·(a1 ·b2 + b1 ·a2) (A.19)

= |z1| · |z2| · ei·(ϕ1+ϕ2) (A.20)

z1

z2

=
a1 ·a2 + b1 ·b2

a2
2 + b2

2

+ i· a2 ·b1 − a1 ·b2

a2
2 + b2

2

=
|z1|
|z2|

· ei·(ϕ1−ϕ2)

(A.21)

717

Appendix B

Linear Algebra

This part contains a compact set of elementary tools and concepts
from algebra and calculus that are referenced in the main text. Many
good textbooks (probably including some of your school books) are
available on this subject, for example, [35,36,145,264]. For numerical
aspects of linear algebra see [160, 190].

B.1 Vectors and Matrices

Here we describe the basic notation for vectors in two and three
dimensions. Let

a =
(

a0

a1

)

, b =
(

b0

b1

)

(B.1)

denote vectors a, b in 2D, and analogously

a =

⎛

⎝

a0

a1

a2

⎞

⎠ , b =

⎛

⎝

b0

b1

b2

⎞

⎠ (B.2)

vectors in 3D (with ai, bi ∈ R). Vectors are used to describe 2D or
3D points (relative to the origin of the coordinate system) or the dis-
placement between two arbitrary points in the corresponding space.

We commonly use upper-case letters to denote a matrix, for ex-
ample,

A =

⎛

⎝

A0,0 A0,1

A1,0 A1,1

A2,0 A2,1

⎞

⎠ . (B.3)

This matrix consists of 3 rows and 2 columns; in other words, A is
of size (3, 2). Its individual elements are referenced as Ai,j , where
i is the row index (vertical coordinate) and j is the column index
(horizontal coordinate).1

1 Note that the usual notation for matrix coordinates is (unlike image
coordinates) vertical-first!

719
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

Appendix B
Linear Algebra

The transpose of A, denoted A⊺, is obtained be exchanging rows
and columns, that is,

A
⊺ =

⎛

⎝

A0,0 A0,1

A1,0 A1,1

A2,0 A2,1

⎞

⎠

⊺

=
(

A0,0 A1,0 A2,0

A0,1 A1,1 A2,1

)

. (B.4)

The inverse of a square matrix A is denoted A−1, such that

A ·A−1 = I and A−1 ·A = I (B.5)

(I is the identity matrix). Note that not every square matrix has an
inverse. Calculation of the inverse can be performed in closed form
up to the size (3, 3); for example, see Eqn. (21.29) and Eqn. (24.47).
In general, the use of standard numerical methods is recommended
(see Sec. B.6).

B.1.1 Column and Row Vectors

For practical purposes, a vector can be considered a special case of a
matrix. In particular, a the m-dimensional column vector

a =

⎛

⎜
⎝

a0
...

am−1

⎞

⎟
⎠ (B.6)

corresponds to a matrix of size (m, 1), while its transpose a⊺ is a row
vector and thus like a matrix of size (1, m). By default, and unless
otherwise noted, any vector is implicitly assumed to be a column
vector.

B.1.2 Length (Norm) of a Vector

The length or Euclidean norm (L2 norm) of a vector a = (a1, . . . ,
am−1)⊺, denoted ‖a‖, is defined as

‖a‖ =
(

m−1∑

i=0

a2
i

)1/2
. (B.7)

For example, the length of the 3D vector x = (x, y, z)⊺ is

‖x‖ =
√

x2 + y2 + z2. (B.8)

B.2 Matrix Multiplication

B.2.1 Scalar Multiplication

The product of a real-valued matrix and a scalar value s ∈ R is
defined as

s ·A = A · s =
[
s ·Ai,j

]
=

⎛

⎜
⎝

s·A0,0 · · · s·A0,n−1
...

. . .
...

s·Am−1,0 · · · s·Am−1,n−1

⎞

⎟
⎠. (B.9)

720

B.2 Matrix
Multiplication

B.2.2 Product of Two Matrices

We say that a matrix is of size (m, n) if consists of m rows and n
columns. Given two matrices A, B of size (m, n) and (p, q), respec-
tively, the product A ·B is only defined if n = p. Thus the number
of columns (n) in A must always match the number of rows (p) in
B. The result is a new matrix C of size (m, q), that is,

C = A ·B =

⎛

⎜
⎝

A0,0 . . . A0,n−1
...

. . .
...

Am−1,0 . . . Am−1,n−1

⎞

⎟
⎠

︸ ︷︷ ︸

(m,n)

·

⎛

⎜
⎝

B0,0 . . . B0,q−1
...

. . .
...

Bn−1,0 . . . Bn−1,q−1

⎞

⎟
⎠

︸ ︷︷ ︸

(n,q)

=

⎛

⎜
⎝

C0,0 . . . C0,q−1
...

. . .
...

Cm−1,0 . . . Cm−1,q−1

⎞

⎟
⎠

︸ ︷︷ ︸

(m,q)

, (B.10)

with the elements

Cij =
n−1∑

k=0

Ai,k · Bk,j , (B.11)

for i = 0, . . . , m−1 and j = 0, . . . , q−1. Note that this product is not
commutative, that is, A ·B �= B ·A in general.

B.2.3 Matrix-Vector Products

The product A·x between a matrix A and a vector x is only a special
case of the matrix-matrix multiplication given in Eqn. (B.10). In
particular, if x = (x0, . . . , xn−1)⊺ is a n-dimensional column vector
(i.e., a matrix of size (n, 1)), then the multiplication

y
︸︷︷︸

(m,1)

= A
︸︷︷︸

(m,n)

· x
︸︷︷︸

(n,1)

(B.12)

is only defined if the matrix A is of size (m, n), for arbitrary m ≥ 1.
The result y is a column vector of length m (equivalent to a matrix
of size (m, 1)). For example (with m = 2, n = 3),

A · x =
(

A B C
D E F

)

︸ ︷︷ ︸

(2,3)

·

⎛

⎝

x
y
z

⎞

⎠

︸ ︷︷ ︸

(3,1)

=
(

A·x + B ·y + C ·z
D ·x + E ·y + F ·z

)

︸ ︷︷ ︸

(2,1)

. (B.13)

Here A operates on the column vector x “from the left”, that is, A·x
is the left-sided matrix-vector product of A and x.

Similarly, a right-sided multiplication of a row vector x⊺ of length
m with a matrix of size (m, n) is performed as

x
⊺

︸︷︷︸

(1,m)

· B
︸︷︷︸

(m,n)

= z
︸︷︷︸

(1,n)

, (B.14)

721

Appendix B
Linear Algebra

where the result z is a n-dimensional row vector; for example (again
with m = 2, n = 3),

x
⊺ ·B =

(
x, y

)

︸ ︷︷ ︸

(1,2)

·
(

A B C
D E F

)

︸ ︷︷ ︸

(2,3)

=
(
x·A+y ·D, x·B+y ·E, x·C+y ·F

)

︸ ︷︷ ︸

(1,3)

.

(B.15)

In general, if A · x is defined, then

A · x = (x⊺ ·A⊺)⊺ and (A · x)⊺ = x
⊺ ·A⊺

. (B.16)

Thus, any right-sided matrix-vector product A ·x can also be calcu-
lated as a left-sided product x

⊺ ·A⊺ by transposing the corresponding
matrix A and vector x.

B.3 Vector Products

Products between vectors are a common cause of confusion, mainly
because the same symbol (·) is used to denote widely different oper-
ators.

B.3.1 Dot (Scalar) Product

The dot product (also called scalar or inner product) of two vectors
a = (a0, . . . , an−1)⊺, b = (b0, . . . , bn−1)⊺ of the same length n is
defined as

x = a · b =
n−1∑

i=0

ai ·bi. (B.17)

Thus the result x is a scalar value (hence the name of this product).
If we write this as the product of a row and a column vector, as in
Eqn. (B.14),

x
︸︷︷︸

(1,1)

= a
⊺

︸︷︷︸

(1,n)

· b
︸︷︷︸

(n,1)

, (B.18)

we conclude that the result x is a matrix of size (1, 1), that is, a single
scalar value. The dot product can be viewed as the projection of one
vector onto the other, with the relation

a · b = ‖a‖ · ‖b‖ · cos(α), (B.19)

where α is angle enclosed by the vectors a and b. As a consequence,
the dot product is zero if the two vectors are orthogonal to each other.

The dot product of a vector with itself gives the square of its
length (see Eqn. (B.7)), that is,

a · a =
n−1∑

i=0

a2
i = ‖a‖2

. (B.20)
722

B.4 Eigenvectors and
Eigenvalues

B.3.2 Outer Product

The outer product of two vectors a = (a0, . . . , am−1)⊺, b = (b0, . . . ,
bn−1)⊺ of length m and n, respectively, is defined as

M = a⊗ b = a · b⊺ =

⎛

⎜
⎜
⎜
⎝

a0b0 a0b1 . . . a0bn−1

a1b0 a1b1 . . . a1bn−1
...

...
. . .

...
am−1b0 am−1b1 . . . am−1bn−1

⎞

⎟
⎟
⎟
⎠

. (B.21)

Thus the result is a matrix M with m rows and n columns and
elements Mij = ai · bj , for i = 0, . . . , m−1 and j = 1, . . . , n−1. Note
that a · b⊺ in Eqn. (B.21) denotes the ordinary (matrix) product of
the column vector a (of size m×1) and the row vector b

⊺ (of size
1×n), as defined in Eqn. (B.10). The outer product is a special case
of the Kronecker product (⊗) which generally operates on pairs of
matrices.

B.3.3 Cross Product

Although the cross product (×) is generally defined for n-dimensional
vectors, it is almost exclusively used in the 3D case, where the result
is geometrically easy to understand. For a pair of 3D vectors, a =
(a0, a1, a2)⊺ and b = (b0, b1, b2)⊺, the cross product is defined as

c = a× b =

⎛

⎝

a0

a1

a2

⎞

⎠×

⎛

⎝

b0

b1

b2

⎞

⎠ =

⎛

⎝

a1 ·b2 − a2 ·b1

a2 ·b0 − a0 ·b2

a0 ·b1 − a1 ·b0

⎞

⎠ . (B.22)

In the 3D case, the cross product is another 3D vector that is per-
pendicular to both of the original vectors.2 The magnitude (length)
of the vector c relates to the angle θ between a and b as

‖c‖ = ‖a×b‖ = ‖a‖ · ‖b‖ · sin(θ). (B.23)

The quantity ‖a×b‖ corresponds to the area of the parallelogram
spanned by the vectors a and b.

B.4 Eigenvectors and Eigenvalues

This section gives an elementary introduction to eigenvectors and
eigenvalues, which are mentioned at several places in the main text
(see also [27, 64]). In general, the eigenvalue problem is to find solu-
tions x ∈ R

n and λ ∈ R for the linear equation

A · x = λ · x , (B.24)

with the given square matrix A of size (n, n). Any non-trivial3 so-
lution x is an eigenvector of A and the scalar λ (which may be

2 For dimensions greater than three, the definition (and calculation) of
the cross product is considerably more involved.

3 An obvious but trivial solution is x = 0 (where 0 denotes the zero-
vector).

723

Appendix B
Linear Algebra

complex-valued) is the associated eigenvalue. Eigenvalue and eigen-
vectors thus always come in pairs 〈λj , xj〉, usually called eigenpairs.
Geometrically speaking, applying the matrix A to an eigenvector only
changes the vector’s magnitude or length (by the associated eigen-
value λ), but not its orientation in space. Equation (B.24) can be
rewritten as

A · x− λ · x = 0 or
(
A− λ · In

)
· x = 0 , (B.25)

where In is the (n, n) identity matrix. This homogeneous linear equa-
tion has non-trivial solutions only if the matrix (A−λ·In) is singular,
that is, its rank is less than n and thus its determinant det() is zero,
that is,

det
(
A− λ · In

)
= 0 . (B.26)

Equation (B.26) is called the “characteristic equation” of the matrix
A and can be expanded to a n-th order polynomial in λ. This poly-
nomial has a maximum of n distinct roots, which are the eigenvalues
of A (that is, solutions to Eqn. (B.26)). A matrix of size (n, n) thus
has up to n non-distinct eigenvectors x1, x2, . . . , xn, each with an
associated eigenvalue λ1, λ2, . . . , λn.

If they exist, the eigenvalues of a matrix are unique, but the
associated eigenvectors are not! This results from the fact that, if
Eqn. (B.24) is satisfied for a vector x (and the associated eigenvalue
λ), it also applies to any scaled vector sx, that is,

A · sx = λ · sx , (B.27)

for arbitrary s ∈ R (and s �= 0). Thus, if x is an eigenvector of A,
then sx is also an (equivalent) eigenvector.

Note that the eigenvalues of a real-valued matrix may generally
be complex. However, (as an important special case) if the matrix A
is real and symmetric, all its eigenvalues are guaranteed to be real.

Example

For the real-valued (non-symmetric) 2× 2 matrix

A =
(3 −2
−4 1

)

,

the two eigenvalues and their associated eigenvectors are

λ1 = 5, x1 = s·
(4
−4

)

, and λ2 = −1, x2 = s·
(−2
−4

)

,

for any nonzero s ∈ R. The result can be easily verified by inserting
pairs 〈λ1, x1〉 and 〈λ2, x2〉, respectively, into Eqn. (B.24).

B.4.1 Calculation of Eigenvalues

Special case: 2×2 matrix

For the special (but frequent) case of n = 2, the solution can be found
in closed form (and without any software libraries). In this case, the
characteristic equation (Eqn. (B.26)) reduces to

724

B.4 Eigenvectors and
Eigenvalues

1: RealEigenValues2x2 (A, B, C, D)
Input: A, B, C, D ∈ R, the elements of a real-valued 2×2 ma-
trix A =

(
A B
C D

)
. Returns an ordered sequence of real-valued

eigenpairs 〈λi, xi〉 for A, or nil if the matrix has no real-valued
eigenvalues.

2: R ← A+D
2

3: S ← A−D
2

4: if (S2 + B · C) < 0 then
5: return nil ⊲ A has no real-valued eigenvalues
6: else

7: T ←
√

S2 + B · C
8: λ1 ← R + T ⊲ eigenvalue λ1

9: λ2 ← R − T ⊲ eigenvalue λ2

10: if (A − D) ≥ 0 then

11: x1 ← (S + T, C)
⊺

⊲ eigenvector x1

12: x2 ← (B,−S − T)
⊺

⊲ eigenvector x2

13: else
14: x1 ← (B,−S + T)

⊺
⊲ eigenvector x1

15: x2 ← (S − T, C)
⊺

⊲ eigenvector x2

16: return (〈λ1, x1〉, 〈λ2, x2〉) ⊲ λ1 ≥ λ2

Alg. B.1
Calculating the real eigenval-
ues and eigenvectors for a 2 × 2
real-valued matrix A. If the
matrix has real eigenvalues,
an ordered sequence of two
“eigenpairs” 〈λi, xi〉, each con-
taining the eigenvalue λi and
the associated eigenvector xi,
is returned (i = 1, 2). The
resulting sequence is ordered
by decreasing eigenvalues. nil
is returned if A has no real
eigenvalues.

det
(
A− λ · I2

)
=

∣
∣
∣
∣

(
A B
C D

)

− λ

(
1 0
0 1

)∣
∣
∣
∣

=

∣
∣
∣
∣

A−λ B
C D−λ

∣
∣
∣
∣

(B.28)

= λ2 − (A + D) · λ + (AD −BC) = 0 . (B.29)

The two possible solutions to this quadratic equation,

λ1,2 =
A + D

2
±
[(A + D

2

)2

− (AD −BC)
]1/2

=
A + D

2
±
[(A−D

2

)2

+ BC
]1/2

= R±
√

S2 + BC,

(B.30)

are the eigenvalues of the matrix A, with

λ1 = R +
√

S2 + B · C,

λ2 = R−
√

S2 + B · C.
(B.31)

Both λ1, λ2 are real-valued if the term under the square root is pos-
itive, that is, if

S2 + B · C =
(A−D

2

)2

+ B · C ≥ 0 . (B.32)

In particular, if the matrix is symmetric (i.e., B = C), this condition
is guaranteed (because B · C ≥ 0). In this case, λ1 ≥ λ2. Algorithm
B.14 summarizes the closed-form computation of the eigenvalues and
eigenvectors of a 2× 2 matrix.

4 See [27] and its reprint in [28, Ch. 5].
725

Appendix B
Linear Algebra

General case: n×n

In general, proven numerical software should be used for eigenvalue
calculations. See the example using the Apache Commons Math
library in Sec. B.6.5.

B.5 Homogeneous Coordinates

Homogeneous coordinates are an alternative representation of points
in multi-dimensional space. They are commonly used in 2D and
3D geometry because they can greatly simplify the description of
certain transformations. For example, affine and projective trans-
formations become matrices with homogeneous coordinates and the
composition of transformations can be performed by simple matrix
multiplication.5

To convert a given n-dimensional Cartesian point x = (x0, . . . ,
xn−1)⊺ to homogeneous coordinates x, we use the notation6

hom(x) = x. (B.33)

This operation increases the dimensionality of the original vector by
one by inserting the additional element 1, that is,

hom

⎛

⎜
⎝

x0
...

xn−1

⎞

⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

x0
...
xn−1

1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

x0
...
xn−1

xn

⎞

⎟
⎟
⎟
⎠

. (B.34)

Note that the homogeneous representation of a Cartesian vector is not
unique, but every multiple of the homogeneous vector is an equivalent
representation of x. Thus any scaled homogeneous vector x′ = s · x
(with s ∈ R, s �= 0) corresponds to the same Cartesian vector (see
also Eqn. (B.39)).

To convert a given homogeneous point x = (x0, . . . , xn)⊺ back to
Cartesian coordinates x we simply write

hom−1(x) = x. (B.35)

This operation can be easily derived as

hom−1

⎛

⎜
⎜
⎜
⎝

x0
...
xn−1

xn

⎞

⎟
⎟
⎟
⎠

=
1

xn

·

⎛

⎜
⎝

x0
...
xn−1

⎞

⎟
⎠ =

⎛

⎜
⎝

x0
...

xn−1

⎞

⎟
⎠ , (B.36)

provided that xn �= 0. Two homogeneous points x1, x2 are considered
equivalent (≡), if they represent the same Cartesian point, that is,

x1 ≡ x2 ⇔ hom−1(x1) = hom−1(x2). (B.37)

It follows from Eqn. (B.36) that

5 See Chapter 21, Sec. 21.1.2.
6 The operator hom() is introduced here for convenience and clarity.

726

B.6 Basic
Matrix-Vector
Operations with the
Apache Commons Math

Library

hom−1(x) = hom−1(s · x) (B.38)

for any nonzero factor s ∈ R. Thus, as mentioned earlier, any scaled
homogeneous point corresponds to the same Cartesian point, that is,

x ≡ s · x. (B.39)

For example, for the Cartesian point x = (3, 7, 2)⊺, the homogeneous
coordinates

hom(x) =
(

3
7
2
1

)

≡
(−3

−7
−2
−1

)

≡
(

9
31
6
3

)

≡
(

30
70
20
10

)

. . . (B.40)

are all equivalent. Homogeneous coordinates can be used for vector
spaces of arbitrary dimension, including 2D coordinates.

B.6 Basic Matrix-Vector Operations with the

Apache Commons Math Library

It is recommended to use proven standard software, such as the
Apache Commons Math7 (ACM) library, for any non-trivial linear
algebra calculation.

B.6.1 Vectors and Matrices

The basic data structures for representing vectors and matrices are
RealVector and RealMatrix, respectively. The following ACM ex-
amples show the conversion from and to simple Java arrays of element-
type double:

import org.apache.commons.math3.linear.MatrixUtils;

import org.apache.commons.math3.linear.RealMatrix;

import org.apache.commons.math3.linear.RealVector;

// Data given as simple arrays:

double[] xa = {1, 2, 3};

double[][] Aa = {{2, 0, 1}, {0, 2, 0}, {1, 0, 2}};

// Conversion to vectors and matrices:

RealVector x = MatrixUtils.createRealVector(xa);

RealMatrix A = MatrixUtils.createRealMatrix(Aa);

// Get a single matrix element Ai,j :

int i, j; // specify row (i) and column (j)

double aij = A.getEntry(i, j);

// Set a single matrix element to a new value:

double value;

A.setEntry(i, j, value);

// Extract data to arrays again:

double[] xb = x.toArray();

double[][] Ab = A.getData();

7 http://commons.apache.org/math/.
727

http://commons.apache.org/math/

Appendix B
Linear Algebra // Transpose the matrix A:

RealMatrix At = A.transpose();

B.6.2 Matrix-Vector Multiplication

The following examples show how to implement the various matrix-
vector products described in Sec. B.2.3.

RealMatrix A = ...; // matrix A of size (m, n)
RealMatrix B = ...; // matrix B of size (p, q), with p = n
RealVector x = ...; // vector x of length n

// Scalar multiplication C ← s · A:

double s = ...;

RealMatrix C = A.scalarMultiply(s);

// Product of two matrices: C ← A · B:

RealMatrix C = A.multiply(B); // C is of size (m, q)

// Left-sided matrix-vector product: y ← A · x:

RealVector y = A.operate(x);

// Right-sided matrix-vector product: y ← x
⊺ · A:

RealVector y = A.preMultiply(x);

B.6.3 Vector Products

The following code segments show the use of the ACM library for
calculating various vector products described in Sec. B.3.

RealVector a, b; // vectors a, b (both of length n)

// Multiplication by a scalar c ← s · a:

double s;

RealVector c = a.mapMultiply(s);

// Dot (scalar) product x ← a · b :

double x = a.dotProduct(b);

// Outer product M ← a ⊗ b:

RealMatrix M = a.outerProduct(b);

B.6.4 Inverse of a Square Matrix

The following example shows the inversion of a square matrix:

RealMatrix A = ... ; // a square matrix

RealMatrix Ai = MatrixUtils.inverse(A);

B.6.5 Eigenvalues and Eigenvectors

The following code segment illustrates the calculation of eigenvalues
and eigenvalues of a square matrix A using the class EigenDecompo-

sition of the Apache Commons Math API. Note that the eigenval-
728

B.7 Solving Systems of
Linear Equations

ues returned by getRealEigenvalues() are sorted in non-increasing
order. The same ordering applies to the associated eigenvectors.

import org.apache.commons.math3.linear.EigenDecomposition;

...

RealMatrix A = MatrixUtils.createRealMatrix(new double[][]

{{2, 0, 1},

{0, 2, 0},

{1, 0, 2}});

EigenDecomposition ed = new EigenDecomposition(A);

if (ed.hasComplexEigenvalues()) {

System.out.println("A has complex Eigenvalues!");

}

else {

// get all real eigenvalues:

double[] lambda = ed.getRealEigenvalues(); // = (3, 2, 1)
// get the associated eigenvectors:

for (int i = 0; i < lambda.length; i++) {

RealVector x = ed.getEigenvector(i);

...

}

}

B.7 Solving Systems of Linear Equations

This section describes standard methods for solving systems of linear
equations. Such systems appear widely and frequently in all sorts of
engineering problems. Identifying them and knowing about standard
solution methods is thus quite important and may save much time
in any development process. In addition, the solution techniques
presented here are very mature and numerically stable. Note that
this section is supposed to give only a brief summary of the topic and
practical implementations using the Apache Commons Math library.
Further details and the underlying theory can be found in most linear
algebra textbooks (e.g., [145, 190]).

Systems of linear equations generally come in the form
⎛

⎜
⎜
⎜
⎜
⎜
⎝

A0,0 A0,1 · · · A0,n−1

A1,0 A1,1 · · · A1,n−1

A2,0 A2,1 · · · A2,n−1
...

...
. . .

...
Am−1,0 Am−1,1 · · · Am−1,n−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

x0

x1
...

xn−1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b0

b1

b2
...

bm−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (B.41)

or, in the standard notation,

A · x = b, (B.42)

where the (known) matrix A is of size (m, n), the unknown vector x
is n-dimensional, and the (known) vector b is m-dimensional. Thus
n corresponds to the number of unknowns and m to the number

729

Appendix B
Linear Algebra

of equations. Each row i of the matrix A thus represents a single
equation

Ai,0 ·x0 + Ai,1 ·x1 + . . . + Ai,n−1 ·xn−1 = bi (B.43)

or
n−1∑

j=0

Ai,j ·xj = bi , (B.44)

for i = 0, . . . , m−1. Depending on m and n, the following situations
may occur:

• If m = n (i.e., A is square) the number of unknowns matches the
number of equations and the system typically (but not always,
of course) has a unique solution (see Sec. B.7.1 below).

• If m < n, we have more unknowns than equations. In this case
no unique solution exists (but possibly infinitely many).

• With m > n the system is said to be over-determined and thus
not solvable in general. Nevertheless, this is a frequent case that
is typically handled by calculating a minimum least squares so-
lution (see Sec. B.7.2).

B.7.1 Exact Solutions

If the number of equations (m) is equal to the number of unknowns
(n) and the resulting (square) matrix A is non-singular and of full
rank m = n, the system A · x = b can be expected to have a unique
solution for x. For example, the system8

2 · x0 + 3 · x1 − 2 · x2 = 1,

−x0 + 7 · x1 + 6 · x2 = −2, (B.45)
4 · x0 − 3 · x1 − 5 · x2 = 1,

with

A =

⎛

⎝

2 3 −2
−1 7 6

4 −3 −5

⎞

⎠ , x =

⎛

⎝

x0

x1

x2

⎞

⎠ , b =

⎛

⎝

1
−2

1

⎞

⎠ , (B.46)

has the unique solution x = (−0.3698, 0.1780,−0.6027)⊺. The fol-
lowing code segment shows how the previous example is solved using
class LUDecomposition of the ACM library:

import org.apache...linear.DecompositionSolver;

import org.apache...linear.LUDecomposition;

RealMatrix A = MatrixUtils.createRealMatrix(new double[][]

{{ 2, 3, -2},

{-1, 7, 6},

{ 4, -3, -5}});

RealVector b = MatrixUtils.createRealVector(new double[]

{1, -2, 1});

DecompositionSolver solver =

new LUDecomposition(A).getSolver();

RealVector x = solver.solve(b);

An exception is thrown if the matrix A is non-square or singular.
8 Example taken from the Apache Commons Math User Guide [4].

730

B.7 Solving Systems of
Linear Equations

B.7.2 Over-Determined System (Least-Squares Solutions)

If a system of linear equations has more equations than unknowns
(i.e., m > n) it is over-determined and thus has no exact solution. In
other words, there is no vector x that satisfies A · x = b or

A · x− b = 0. (B.47)

Instead, any x plugged into Eqn. (B.47) yields some non-zero “resid-
ual” vector ǫ, such that

A · x− b = ǫ. (B.48)

A “best” solution is commonly found by minimizing the squared norm
of this residual, that is, by searching for x such that

‖A · x− b‖2 = ‖ǫ‖2 → min . (B.49)

Several matrix decompositions can be used for calculating the “least-
squares solution” of an over-determined system of linear equations.
As a simple example, we add a fourth line (m = 4) to the system in
Eqns. (B.45) and (B.46) to

A =

⎛

⎜
⎜
⎝

2 3 −2
−1 7 6

4 −3 −5
2 −2 −1

⎞

⎟
⎟
⎠

, x =

⎛

⎝

x0

x1

x2

⎞

⎠ , b =

⎛

⎜
⎜
⎝

1
−2

1
0

⎞

⎟
⎟
⎠

, (B.50)

without changing the number of unknowns (n = 3). The least-
squares solution to this over-determined system is (approx.) x =
(−0.2339, 0.1157,−0.4942)⊺. The following code segment shows the
calculation using the SingularValueDecomposition class of the ACM
library:

import org.apache...linear.DecompositionSolver;

import org.apache...linear.SingularValueDecomposition;

RealMatrix A = MatrixUtils.createRealMatrix(new double[][]

{{ 2, 3, -2},

{-1, 7, 6},

{ 4, -3, -5},

{ 2, -2, -1});

RealVector b = MatrixUtils.createRealVector(new double[]

{1, -2, 1, 0});

DecompositionSolver solver =

new SingularValueDecomposition(A).getSolver();

RealVector x = solver.solve(b);

Alternatively, an instance of QRDecomposition could be used for
calculating the least-squares solution. If an exact solution exists (see
Sec. B.7.1), it is the same as the least-squares solution (with zero
residual ǫ = 0).

731

Appendix C

Calculus

This part outlines selected topics from calculus that may serve as a
useful supplement to Chapters 6, 16, 17, 24, and 25, in particular.

C.1 Parabolic Fitting

Given a single-variable (1D), discrete function g : Z �→ R, it is some-
times useful to locally fit a quadratic (parabolic) function, for exam-
ple, for precisely locating a maximum or minimum position.

C.1.1 Fitting a Parabolic Function to Three Sample Points

For a quadratic function (second-order polynomial)

y = f(x) = a · x2 + b · x + c (C.1)

with parameters a, b, c to pass through a given set of three sample
points pi = (xi, yi), i = 1, 2, 3, means that the following three equa-
tions must be satisfied:

y1 = a · x2
1 + b · x1 + c,

y2 = a · x2
2 + b · x2 + c,

y3 = a · x2
3 + b · x3 + c.

(C.2)

Written in the standard matrix form A · x = b, or
⎛

⎝

x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

⎞

⎠ ·

⎛

⎝

a
b
c

⎞

⎠ =

⎛

⎝

y1

y2

y3

⎞

⎠ , (C.3)

the unknown coefficient vector x = (a, b, c)⊺ is directly found as

x = A−1 · b =

⎛

⎝

x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

⎞

⎠

−1

·

⎛

⎝

y1

y2

y3

⎞

⎠ , (C.4)

assuming that the matrix A has a non-zero determinant. Geometri-
cally this means that the points pi must not be collinear.

733
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

Appendix C
Calculus

Example:

Fitting the sample points p1 = (−2, 5)⊺, p2 = (−1, 6)⊺, p3 = (3,
−10)⊺ to a quadratic function, the equation to solve is (analogous to
Eqn. (C.3))

⎛

⎝

4 −2 1
1 −1 1
9 3 1

⎞

⎠ ·

⎛

⎝

a
b
c

⎞

⎠ =

⎛

⎝

5
6
−10

⎞

⎠ , (C.5)

with the solution
⎛

⎝

a
b
c

⎞

⎠=

⎛

⎝

4 −2 1
1 −1 1
9 3 1

⎞

⎠

−1

·

⎛

⎝

5
6
−10

⎞

⎠ =
1
20
·

⎛

⎝

4 −5 1
−8 5 3
−12 30 2

⎞

⎠·

⎛

⎝

5
6
−10

⎞

⎠=

⎛

⎝

−1
−2
5

⎞

⎠.

Thus a = −1, b = −2, c = 5, and the equation of the quadratic
fitting function is y = −x2 − 2x + 5. The result for this example is
shown graphically in Fig. C.1.

Fig. C.1
Fitting a quadratic function to
three arbitrary sample points.

p1 = (−2, 5)
⊺

p2 = (−1, 6)
⊺

p3 = (3, −10)
⊺

�
�

�

�3 �2 �1 1 2 3

�10

�5

5

x

y = f(x)

C.1.2 Locating Extrema by Quadratic Interpolation

A special situation is when the given points are positioned at x1 =
−1, x2 = 0, and x3 = +1. This is useful, for example, to esti-
mate a continuous extremum position from successive discrete func-
tion values defined on a regular lattice. Again the objective is to
fit a quadratic function (as in Eqn. (C.1)) to pass through the points
p1 = (−1, y1)⊺, p2 = (0, y2)⊺, and p3 = (1, y3)⊺. In this case, the
simultaneous equations in Eqn. (C.2) simplify to

y1 = a− b + c,

y2 = c, (C.6)

y3 = a + b + c,

with the solution

a =
y1 − 2 · y2 + y3

2
, b =

y3 − y1

2
, c = y2. (C.7)

To estimate a local extremum position, we take the first derivative
of the quadratic fitting function (Eqn. (C.1)), which is the linear
function f ′(x) = 2a ·x + b, and find the position x̆ of its (single) root
by solving

2a · x + b = 0. (C.8)
734

C.2 Scalar and Vector
Fields

With a, b taken from Eqn. (C.7), the extremal position is thus found
as

x̆ =
−b

2a
=

y1 − y3

2 · (y1 − 2y2 + y3)
. (C.9)

The corresponding extremal value can then be found by evaluating
the quadratic function f() at position x̆, that is,

y̆ = f(x̆) = a · x̆2 + b · x̆ + c, (C.10)

with a, b, c as defined in Eqn. (C.7). Figure C.2 shows an example
with sample points p1 = (−1,−2)⊺, p2 = (0, 7)⊺, p3 = (1, 6)⊺. In
this case, the interpolated maximum position is at x̆ = 0.4 and the
corresponding maximum value is f(x̆) = 7.8.

p1 = (−1, −2)
⊺

p2 = (0, 7)
⊺

p3 = (1, 6)
⊺

�

�
�

��

�1.5 �1.0 �0.5 0.5 1.0 1.5

�10

�5

5

x

y = f(x) Fig. C.2
Fitting a quadratic function to
three reference points at posi-
tions x1 = −1, x2 = 0, x3 =
+1. The interpolated, contin-
uous curve has a maximum at
the continuous position x̆ = 0.4
(large circle).

Using the above scheme, we can interpolate any triplet of suc-
cessive sample values centered around some position u ∈ Z, that is,
p1 = (u−1, y1)⊺, p2 = (u, y2)⊺, p3 = (u+1, y3)⊺, with arbitrary
values y1, y2, y3. In this case the estimated position of the extremum
is simply (from Eqn. (C.9))

x̆ = u +
y1 − y3

2 · (y1 − 2 · y2 + y3)
. (C.11)

The application of quadratic interpolation to multi-variable functions
is described in Sec. C.3.3.

C.2 Scalar and Vector Fields

An RGB color image I(u, v) = (IR(u, v), IG(u, v), IB(u, v)) can be
considered a 2D function whose values are 3D vectors. Mathemati-
cally, this is a special case of a vector-valued function f : Rn �→ R

m,

f(x) = f(x0, . . . , xn−1) =

⎛

⎜
⎝

f0(x)
...

fm−1(x)

⎞

⎟
⎠ , (C.12)

which is composed of m scalar-valued functions fi : Rn �→ R, each
being defined on the domain of n-dimensional vectors.

A multi-variable, scalar-valued function f : Rn �→ R is called a
scalar field, while a vector-valued function f : Rn �→ Rm is referred
to as a vector field.

735

Appendix C
Calculus

C.2.1 The Jacobian Matrix

Assuming that the function f(x) = (f0(x), . . . , fm−1(x))⊺ is differen-
tiable, the so-called functional or Jacobian matrix at a specific point
ẋ = (ẋ0, . . . , ẋn−1) is defined as

Jf (ẋ) =

⎛

⎜
⎜
⎝

∂
∂x0

f0(ẋ) · · · ∂
∂xn−1

f0(ẋ)
...

. . .
...

∂
∂x0

fm−1(ẋ) · · · ∂
∂xn−1

fm−1(ẋ)

⎞

⎟
⎟
⎠

. (C.13)

The Jacobian matrix is of size m×n and composed of the first deriva-
tives of the m component functions f0, . . . , fm−1 with respect to each
of the n independent variables x0, . . . , xn−1. Thus each of its elements

∂
∂xj

fi(ẋ) quantifies how much the value of the scalar-valued compo-

nent function fi(x) = fi(x0, . . . , xn−1) changes when only variable xj

is varied and all other variables remain fixed. Note that the matrix
Jf (x) is not constant for a given function f but is different at each
position ẋ. In general, the Jacobian matrix is neither square (unless
m = n) nor symmetric.

C.2.2 Gradients

Gradient of a scalar field

The gradient of a scalar field f : Rn �→ R, with f(x) = f(x0, . . . ,
xn−1), at a given position ẋ ∈ Rn is defined as

(∇f)(ẋ) = (grad f)(ẋ) =

⎛

⎜
⎜
⎝

∂
∂x0

f(ẋ)
...

∂
∂xn−1

f(ẋ)

⎞

⎟
⎟
⎠

. (C.14)

The resulting vector-valued function quantifies the amount of output
change with respect to changing any of the input variables x0, . . . , xn−1

at position ẋ. Thus the gradient of a scalar field is a vector field.
The directional gradient of a scalar field describes how the (scalar)

function value changes when the coordinates are modified along a
particular direction, specified by the unit vector e. We denote the
directional gradient as ∇ef and define

(∇ef)(ẋ) = (∇f)(ẋ) · e , (C.15)

where · is the scalar product (see Sec. B.3.1). The result is a scalar
value that can be interpreted as the slope of the tangent on the n-
dimensional surface of the scalar field at position ẋ along the direction
specified by the n-dimensional unit vector e = (e0, . . . , en−1)⊺.

Gradient of a vector field

To calculate the gradient of a vector field f : Rn �→ Rm, we note
that each row i in the m×n Jacobian matrix Jf (Eqn. (C.13)) is the
transposed gradient vector of the corresponding component function
fi, that is,

736

C.2 Scalar and Vector
FieldsJf (ẋ) =

⎛

⎜
⎜
⎝

(∇f0)(ẋ)⊺

...
(∇fm−1)(ẋ)⊺

⎞

⎟
⎟
⎠

, (C.16)

and thus the Jacobian matrix is equivalent to the gradient of the
vector field f ,

(grad f)(ẋ) ≡ Jf (ẋ). (C.17)

Analogous to Eqn. (C.15), the directional gradient of the vector field
is then defined as

(grade f)(ẋ) ≡ Jf (ẋ) · e, (C.18)

where e is again a unit vector specifying the gradient direction and ·
is the ordinary matrix-vector product. In this case the resulting gra-
dient is a m-dimensional vector with one element for each component
function in f .

C.2.3 Maximum Gradient Direction

In case of a scalar field f(x), a resulting non-zero gradient vector
(∇f)(ẋ) (Eqn. (C.14)) is also the direction of the steepest ascent of
f(x) at position ẋ.1 In this case, the L2 norm (see Sec. B.1.2) of the
gradient vector, that is, ‖(∇f)(ẋ)‖, corresponds to the maximum
slope of f at point ẋ.

In case of a vector field f(x), the direction of maximum slope
cannot be obtained directly, since the gradient is not a n-dimensional
vector but its m × n Jacobian matrix. In this case, the direction of
maximum change in the function f is found as the eigenvector xk of
the square (n× n) matrix

M = J
⊺
f (ẋ)· Jf (ẋ) (C.19)

that corresponds to its largest eigenvalue λk (see also Sec. B.4).

C.2.4 Divergence of a Vector Field

If the vector field maps to the same vector space (i.e., f : Rn �→ Rn),
its divergence (div) is defined as

(divf)(ẋ) = ∂
∂x0

f0(ẋ) + · · ·+ ∂
∂xn−1

fn−1(ẋ) (C.20)

=
n−1∑

i=0

∂
∂xi

fi(ẋ) ∈ R, (C.21)

for a given point ẋ. The result is a scalar value and thus (divf)(ẋ)
yields a scalar field Rn �→ R. Note that, in this case, the Jacobian
matrix Jf in Eqn. (C.13) is square (of size n× n) and divf is equiv-
alent to the trace of Jf , that is,

(divf)(ẋ) ≡ trace(Jf (ẋ)). (C.22)
1 If the gradient vector is zero, that is, if (∇f)(ẋ) = 0, the direction of

the gradient is undefined at position ẋ.
737

Appendix C
Calculus

C.2.5 Laplacian Operator

The Laplacian (or Laplace operator) of a scalar field f : Rn �→ R is a
linear differential operator, commonly denoted Δ or∇2. The result of
applying ∇2 to the scalar field f : Rn �→ R generates another scalar
field that consists of the sum of all unmixed second-order partial
derivatives of f (if existent), that is,

(∇2f)(ẋ) = ∂2

∂x2
0
f(ẋ) + · · ·+ ∂2

∂x2
n−1

f(ẋ) =
n−1∑

i=0

∂2

∂x2
i
f(ẋ). (C.23)

The result is a scalar value that is equivalent to the divergence (see
Eqn. (C.21)) of the gradient (see Eqn. (C.14)) of the scalar field f ,
that is,

(∇2f)(ẋ) = (div∇f)s(ẋ). (C.24)

The Laplacian is also found as the trace of the function’s Hessian
matrix Hf (see Sec. C.2.6).

For a vector-valued function f : Rn �→ Rm, the Laplacian at point
ẋ is again a vector field R

n �→ R
m,

(∇2f)(ẋ) =

⎛

⎜
⎜
⎜
⎝

(∇2f0)(ẋ)
(∇2f2)(ẋ)

...
(∇2fm−1)(ẋ)

⎞

⎟
⎟
⎟
⎠
∈ R

m, (C.25)

that is obtained by applying the Laplacian to the individual (scalar-
valued) component functions.

C.2.6 The Hessian Matrix

The Hessian matrix of a n-variable, real-valued function f : Rn �→
R is the n × n square matrix composed of its second-order partial
derivatives (assuming they all exist), that is,

Hf =

⎛

⎜
⎜
⎜
⎜
⎝

H0,0 H0,1 · · · H0,n−1

H1,0 H1,1 · · · H1,n−1

...
...

. . .
...

Hn−1,0 Hn−1,1 · · · Hn−1,n−1

⎞

⎟
⎟
⎟
⎟
⎠

(C.26)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂2

∂x2
0
f ∂2

∂x0 ∂x1
f · · · ∂2

∂x0 ∂xn−1
f

∂2

∂x1 ∂x0
f ∂2

∂x2
1
f · · · ∂2

∂x1 ∂xn−1
f

...
...

. . .
...

∂2

∂x
n−1

∂x0
f ∂2

∂x
n−1

∂x1
f · · · ∂2

∂x2
n−1

f

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (C.27)

Since the order of differentiation does not matter (i.e., Hi,j = Hj,i),
Hf is symmetric. Note that the Hessian is a matrix of functions. To
evaluate the Hessian at a particular point ẋ ∈ Rn, we write

738

C.3 Operations on
Multi-Variable, Scalar
Functions (Scalar
Fields)

Hf (ẋ) =

⎛

⎜
⎜
⎜
⎜
⎝

∂2

∂x2
0
f(ẋ) · · · ∂2

∂x0 ∂xn−1
f(ẋ)

...
. . .

...

∂2

∂xn−1 ∂x0
f(ẋ) · · · ∂2

∂x2
n−1

f(ẋ)

⎞

⎟
⎟
⎟
⎟
⎠

, (C.28)

which is a scalar-valued matrix of size n× n. As mentioned already,
the trace of the Hessian matrix is the Laplacian ∇2 of the function
f , that is,

∇2f = trace
(
Hf

)
=

n−1∑

i=0

∂2

∂x2
i

f . (C.29)

Example

Given a 2D, continuous, grayscale image or scalar-valued intensity
function I(x, y), the corresponding Hessian matrix (of size 2 × 2)
contains all second derivatives along the coordinates x, y, that is,

HI =

⎛

⎝

∂2

∂x2 I ∂2

∂x∂y I

∂2

∂y∂x I ∂2

∂y2 I

⎞

⎠ =
(

Ixx Ixy

Iyx Iyy

)

, (C.30)

The elements of HI are 2D, scalar-valued functions over x, y and thus
scalar fields again. Evaluating the Hessian matrix at a particular
point ẋ yields the values of the second partial derivatives of I at this
position,

HI(ẋ) =

⎛

⎝

∂2

∂x2 I(ẋ) ∂2

∂x∂y I(ẋ)

∂2

∂y∂xI(ẋ) ∂2

∂y2 I(ẋ)

⎞

⎠ =

(

Ixx(ẋ) Ixy(ẋ)

Iyx(ẋ) Iyy(ẋ)

)

, (C.31)

that is, a matrix with scalar-valued elements.

C.3 Operations on Multi-Variable, Scalar Functions

(Scalar Fields)

C.3.1 Estimating the Derivatives of a Discrete Function

Images are typically discrete functions (i.e., I : N2 �→ R) and thus
not differentiable. The derivatives can nevertheless be estimated by
calculating finite differences from the pixel values in a 3 × 3 neigh-
borhood, which can be expressed as a linear filter or convolution
operation (∗). In particular, the first-order derivatives Ix = ∂I/∂x
and Iy = ∂I/∂y are usually estimated in the form

Ix ≈ I ∗
[
−0.5 0 0.5

]
, Iy ≈ I ∗

⎡

⎣

−0.5
0

0.5

⎤

⎦, (C.32)

the second-order derivatives Ixx = ∂2I/∂x2 and Iyy = ∂2I/∂y2 as

Ixx ≈ I ∗
[
1 −2 1

]
, Iyy ≈ I ∗

⎡

⎣

1
−2
1

⎤

⎦ , (C.33)

739

Appendix C
Calculus

and the mixed derivative

∂2I

∂x∂y
= Ixy = Iyx

≈ I∗
[
−0.5 0 0.5

]
∗

⎡

⎣

−0.5
0

0.5

⎤

⎦= I∗

⎡

⎣

0.25 0 −0.25
0 0 0

−0.25 0 0.25

⎤

⎦. (C.34)

C.3.2 Taylor Series Expansion of Functions

Single-variable functions

The Taylor series expansion (of degree d) of a single-variable function
f : R �→ R about a reference point a is

f(x) = f(a) + f ′(a)·(x−a) + f ′′(a)· (x−a)2

2
+ · · ·

· · ·+ f (d)(a)· (x−a)d

d!
+ Rd (C.35)

= f(a) +
d∑

i=1

f (i)(a) · (x−a)i

i !
+ Rd (C.36)

=
d∑

i=0

f (i)(a) · (x−a)i

i !
+ Rd, (C.37)

where Rd is the residual term.2 This means that if the value f(a) and
the first d derivatives f ′(a), f ′′(a), . . . , f (d)(a) exist and are known at
some position a, the value of f at another point ẋ can be estimated
(up to the residual Rd) only from the values at point a, without
actually evaluating f(x). Omitting the remainder Rd, the result is
an approximation for f(ẋ), that is,

f(x) ≈
d∑

i=0

f (i)(a) · (x − a)i

i !
, (C.38)

whose accuracy depends upon d and the distance x − a.

Multi-variable functions

In general, for a real-valued function of n variables,

f(x) = f(x0, x2, . . . , xn−1) ∈ R,

the full Taylor series expansion about a reference point a = (a0, . . . ,
an−1)⊺ is

f(x0, . . . , xn−1) = f(a) + (C.39)
∞∑

i0=1

· · ·
∞∑

in−1=1

[∂i0

∂x
i0
0

· · · ∂in−1

∂x
in−1

n−1

]
f(a) · (x0−a0)i0 · · · (xn−1−an−1)in−1

i1! · · · in!

=
∞∑

i1=0

· · ·
∞∑

in=0

[∂i0

∂x
i0
0

· · · ∂in−1

∂x
in−1

n−1

]
f(a) · (x0−a0)i0 · · · (xn−1−an−1)in−1

i0! · · · in−1!
.

2 Note that f (0) = f , f (1) = f ′, f (2) = f ′′ etc., and 1! = 1.
740

C.3 Operations on
Multi-Variable, Scalar
Functions (Scalar
Fields)

In Eqn. (C.39),3 the term

[∂i0

∂x
i0
0

· · · ∂in−1

∂x
in−1

n−1

]
f(a) (C.40)

is the value of the function f , after applying a sequence of n par-
tial derivatives, at the n-dimensional position a. The operator ∂i

∂xi
kdenotes the i-th partial derivative on the variable xk.

To formulate Eqn. (C.39) in a more compact fashion, we define
the index vector

i = (i0, i1, . . . , in−1), (C.41)

(with ik ∈ N0 and thus i ∈ Nn
0), and the associated operations

i! = i0! · i1! · . . . · in−1!,

xi = x
i0
1 · xi1

2 · . . . · xin−1

n−1 ,

Σi = i0 + i1 + . . . + in−1.

(C.42)

As a shorthand notation for the combined partial derivative operator
in Eqn. (C.40) we define

Di :=
∂i0

∂x
i0
0

∂i1

∂x
i1
1

· · · ∂in−1

∂x
in−1

n−1

=
∂i0+i1+...+in−1

∂x
i0
0 ∂x

i1
1 · · · ∂x

in−1

n−1

. (C.43)

With these definitions, the full Taylor expansion of a multi-variable
function about a point a, as given in Eqn. (C.39), can be elegantly
written in the form

f(x) =
∑

i ∈Nn
0

Dif(a) · (x−a)i

i!
. (C.44)

Note that Dif is again a n-dimensional function Rn �→ R, and thus
[
Dif

]
(a) in Eqn. (C.44) is the scalar quantity obtained by evaluating

the function [Dif] at the n-dimensional point a.
To obtain a Taylor approximation of order d, the sum of the

indices i1, . . . , in is limited to d, that is, the summation is constrained
to index vectors i, with Σi ≤ d. The resulting formulation,

f(x) ≈
∑

i ∈N
n
0

Σi≤d

Dif(a) · (x−a)i

i!
, (C.45)

is obviously analogous to the 1D case in Eqn. (C.38).

Example: two-variable (2D) function

This example demonstrates the second-order (d = 2) Taylor expan-
sion of a 2D (n = 2) function f : R2 �→ R around a point a = (xa, ya).
By inserting into Eqn. (C.44), we get

3 Note that symbols x0, . . . , xn−1 denote the individual variables, while
ẋ0, . . . , ẋn−1 are the coordinates of a specific point in n-dimensional
space.

741

Appendix C
Calculus

f(x , y) ≈
∑

i ∈N
2
0

Σi≤2

Dif(xa, ya) · 1
i !
·
(

x−xa

y−ya

)i

(C.46)

=
∑

0≤i,j≤2

(i+j)≤2

∂i+j

∂xi ∂yj
f(xa, ya) · (x − xa)i · (y − ya)j

i ! · j !
. (C.47)

Since d = 2, the six permissible index vectors i = (i, j), with Σi ≤ 2,
are (0, 0), (1, 0), (0, 1), (1, 1), (2, 0), and (0, 2). Inserting into Eqn.
(C.47), we obtain the corresponding Taylor approximationat position
(ẋ, ẏ) as

f(x , y) ≈ ∂0

∂x0 ∂y0 f(xa, ya) · (x−xa)0 · (y−ya)0

1 · 1 (C.48)

+ ∂1

∂x1 ∂y0 f(xa, ya) · (x−xa)1 · (y−ya)0

1 · 1
+ ∂1

∂x0 ∂y1 f(xa, ya) · (x−xa)0 · (y−ya)1

1 · 1
+ ∂2

∂x1 ∂y1 f(xa, ya) · (x−xa)1 · (y−ya)1

1 · 1
+ ∂2

∂x2 ∂y0 f(xa, ya) · (x−xa)2 · (y−ya)0

2 · 1
+ ∂2

∂x0 ∂y2 f(xa, ya) · (x−xa)0 · (y−ya)2

1 · 2
= f(xa, ya) (C.49)

+ ∂
∂x f(xa, ya)·(x−xa) + ∂

∂y f(xa, ya)·(y−ya)

+ ∂2

∂x ∂y f(xa, ya)·(x−xa)·(y−ya)

+
1
2
· ∂2

∂x2 f(xa, ya)·(x−xa)2 +
1
2
· ∂2

∂y2 f(xa, ya)·(y−ya)2.

It is assumed that the required derivatives of f exist, that is, f is
differentiable at point (xa, ya) with respect to x and y up to the
second order. By slightly rearranging Eqn. (C.49) to

f(x , y) ≈ f(xa, ya) + ∂
∂xf(xa, ya) · (x−xa) + ∂

∂y f(xa, ya) · (y−ya)

+
1
2
·
[

∂2

∂x2 f(xa, ya)·(x−xa)2 + 2· ∂2

∂x ∂y f(xa, ya)·(x−xa)·(y−ya)

+ ∂2

∂y2 f(xa, ya)·(y−ya)2
]

(C.50)

we can now write the Taylor expansion in matrix-vector notation as

f(x , y) ≈ f̃(x , y) = f(xa, ya) +
(

∂
∂x f(xa, ya), ∂

∂y f(xa, ya)
)

·
(

x−xa

y−ya

)

+
1
2
·
[

(x−xa, y−ya) ·
(

∂2

∂x2 f(xa, ya) ∂2

∂x ∂y f(xa, ya)
∂2

∂x ∂y f(xa, ya) ∂2

∂y2 f(xa, ya)

)

·
(

x−xa

y−ya

)]

(C.51)

or, even more compactly, in the form

f̃(x) = f(a) +∇⊺
f (a)·(x−a) + 1

2 ·(x−a)⊺ ·Hf (a) · (x−a). (C.52)
742

C.3 Operations on
Multi-Variable, Scalar
Functions (Scalar
Fields)

Here ∇⊺
f (a) denotes the (transposed) gradient vector of the function

f at point a (see Sec. C.2.2), and Hf is the 2× 2 Hessian matrix of
f (see Sec. C.2.6),

Hf (a) =
(

H00 H01

H10 H11

)

=

(
∂2

∂x2 f(a) ∂2

∂x ∂y f(a)
∂2

∂x ∂y f(a) ∂2

∂y2 f(a)

)

. (C.53)

If the function f is discrete, for example, a scalar-valued image I, the
required partial derivatives at some lattice point a = (ua, va)⊺ can
be estimated from its 3×3 neighborhood, as described in Sec. C.3.1.

Example: three-variable (3D) function

For a 3D function f : R3 �→ R, the second-order Taylor expansion
(d = 2) is analogous to Eqns. (C.51–C.52) for the 2D case, except
that now the positions x = (x, y, z)⊺ and a = (xa, ya, za)⊺ are 3D
vectors. The associated (transposed) gradient vector is

∇⊺
f (a) =

(
∂

∂x f(a), ∂
∂y f(a), ∂

∂z f(a)
)
, (C.54)

and the Hessian, composed of all second-order partial derivatives, is
the 3× 3 matrix

Hf(a) =

⎛

⎜
⎜
⎜
⎝

∂2

∂x2 f(a) ∂2

∂x∂y f(a) ∂2

∂x∂z f(a)

∂2

∂y∂xf(a) ∂2

∂y2 f(a) ∂2

∂y∂z f(a)

∂2

∂z∂xf(a) ∂2

∂z∂y f(a) ∂2

∂z2 f(a)

⎞

⎟
⎟
⎟
⎠

. (C.55)

Note that the order of differentiation is not relevant since, for exam-
ple, ∂2

∂x ∂y = ∂2

∂y ∂x , and therefore Hf is always symmetric.

This can be easily generalized to the n-dimensional case, though
things become considerably more involved for Taylor expansions of
higher orders (d > 2).

C.3.3 Finding the Continuous Extremum of a Multi-
Variable Discrete Function

In Sec. C.1.2 we described how the position of a local extremum
can be determined by fitting a quadratic function to the neighboring
samples of a 1D function. This section shows how this technique can
be extended to n-dimensional, scalar-valued functions f : Rn �→ R.

Without loss of generality we can assume that the Taylor expan-
sion of the function f(x) is carried out around the point a = 0 = (0,
. . . , 0), which clearly simplifies the remaining formulation. The Tay-
lor approximation function (see Eqn. (C.52)) for this point can be
written as

f̃(x) = f(0) +∇⊺
f (0) · x + 1

2 ·x
⊺ ·Hf(0) · x, (C.56)

with the gradient∇f and the Hessian matrix Hf evaluated at position
0. The vector of the first derivative of this function is

f̃ ′(x) = ∇f (0) + 1
2 ·
[
(x⊺ ·Hf (0))⊺ + Hf (0) · x

]
. (C.57)

743

Appendix C
Calculus

Since (x⊺ ·Hf)⊺ = (H⊺
f ·x) and because the Hessian matrix Hf is

symmetric (i.e., Hf = H⊺
f), this simplifies to

f̃ ′(x) = ∇f (0) + 1
2 ·(Hf(0) · x + Hf(0) · x) (C.58)

= ∇f (0) + Hf (0) · x. (C.59)

A local maximum or minimum is found where all first derivatives f̃ ′

are zero, so we need to solve

∇f (0) + Hf (0)·x̆ = 0, (C.60)

for the unknown position x̆. By multiplying both sides with H−1
f

(assuming that the inverse of Hf (0) exists), the solution is

x̆ = −H−1
f (0) · ∇f(0), (C.61)

for the specific expansion point a = 0 (Eqn. (C.63)). Analogously,
for an arbitrary expansion point a, the extremum position is

x̆ = a−H−1
f (a) · ∇f (a). (C.62)

Note that the inverse Hessian matrix H−1
f is again symmetric.

The estimated extremal value of the approximation function f̃ is
found by replacing x in Eqn. (C.56) with the extremal position x̆
(calculated in Eqn. (C.61)) as

f̃extrm = f̃(x̆) = f(0) +∇⊺
f (0) · x̆ + 1

2 · x̆
⊺ ·Hf(0) · x̆

= f(0) +∇⊺
f (0) · x̆ + 1

2 · x̆
⊺ ·Hf (0) · (−H−1

f (0)) · ∇f (0)

= f(0) +∇⊺
f (0) · x̆− 1

2 · x̆
⊺ · I · ∇f (0) (C.63)

= f(0) +∇⊺
f (0) · x̆− 1

2 · ∇
⊺
f (0) · x̆

= f(0) + 1
2 · ∇

⊺
f (0) · x̆,

again for the expansion point a = 0.

f̃extrm = f̃(x̆) = f(a) + 1
2 · ∇

⊺
f (a) · (x̆− a) . (C.64)

Note that f̃extrm may be a local minimum or maximum, but could
also be a saddle point where the first derivatives of the function are
zero as well.

Local extrema in 2D

The aforementioned scheme can be applied to n-dimensional func-
tions. In the special case of a 2D function f : R2 �→ R (e.g., a 2D
image), the gradient vector and the Hessian matrix for the given
expansion point a = (xa, ya)⊺ can be noted as

∇f (a) =
(

dx

dy

)

and Hf (a) =
(

H00 H01

H01 H11

)

, (C.65)

for a given expansion point a = (xa, ya)⊺. In this case, the inverse of
the Hessian matrix is

744

C.3 Operations on
Multi-Variable, Scalar
Functions (Scalar
Fields)

H−1
f =

1
H2

01 −H00 ·H11

·
(
−H11 H01

H01 −H00

)

(C.66)

and the resulting position of the extremal point is (see Eqn. (C.62))

x̆ =
(

xa

ya

)

− 1
H2

01−H00 ·H11

·
(
−H11 H01

H01 −H00

)

·
(

dx

dy

)

(C.67)

=
(

xa

ya

)

− 1
H2

01−H00 ·H11

·
(

H01 · dy −H11 · dx

H01 · dx −H00 · dy

)

. (C.68)

The extremal position is only defined if the denominator in Eqn.
(C.68), H2

01−H00·H11 (equivalent to the determinant of Hf), is non-
zero, indicating that the Hessian matrix Hf is non-singular and thus
has an inverse. The associated value of f̃ at the estimated extremal
position x̆ = (x̆, y̆)⊺ can be now calculated using Eqn. (C.64) as

f̃(x̆, y̆) = f(xa, ya) + 1
2 · (dx, dy) ·

(
x̆− xa

y̆ − ya

)

= f(xa, ya) +
dx ·(x̆− xa) + dy ·(y̆ − ya)

2
.

(C.69)

Numeric 2D example

The following example shows how a local extremum can be found
in a discrete 2D image with sub-pixel accuracy using a second-order
Taylor approximation. Assume we are given a grayscale image I : Z×
Z �→ R with the sample values

ua−1 ua ua+1

va−1 8 11 7
va 15 16 9

va+1 14 12 10

(C.70)

in the 3 × 3 neighborhood of position a = (ua, va)⊺. Obviously, the
discrete center value f(a) = 16 is a local maximum but (as we shall
see) the maximum of the continuous approximation function is not
at the center. The gradient vector ∇I and the Hessian Matrix HI at
the expansion point a are calculated from local finite differences (see
Sec. C.3.1) as

∇I(a) =
(

dx

dy

)

= 0.5·
(

9−15
12−11

)

=
(
−3
0.5

)

and (C.71)

HI(a) =
(

H11 H12

H12 H22

)

=
(

9−2·16+15 0.25·(8−14−7+10)
0.25·(8−14−7+10) 11−2·16+12

)

=
(
−8.00 −0.75
−0.75 −9.00

)

, (C.72)

respectively. The resulting second-order Taylor expansion about the
point a is the continuous function (see Eqn. (C.52))

f̃(x) = f(a) +∇⊺
I (a) · (x−a) + 1

2 · (x−a)⊺ ·HI(a) · (x−a)

= 16 + (−3, 0.5) ·
(

x−ua

y−va

)

(C.73)

+ 1
2 · (x−ua, y−va) ·

(
−8.00 −0.75
−0.75 −9.00

)

·
(

x−ua

y−va

)

.

745

Appendix C
Calculus

We use the inverse of the 2×2 Hessian matrix at position a (see Eqn.
(C.66)),

H−1
I (a) =

(
−8.00 −0.75
−0.75 −9.00

)−1

=
(
−0.125984 0.010499

0.010499 −0.111986

)

, (C.74)

to calculate the position of the local extremum x̆ (see Eqn. (C.68)) as

x̆ = a−H−1
I (a) · ∇I(a) (C.75)

=
(

ua

va

)

−
(
−0.125984 0.010499

0.010499 −0.111986

)

·
(
−3
0.5

)

=
(

ua − 0.3832
va + 0.0875

)

.

Finally, the extremal value (see Eqn. (C.64)) is found as

f̃(x̆) = f(a) + 1
2 · ∇

⊺
f (a) · (x̆− a)

= 16 + 1
2 · (−3, 0.5) ·

(
ua − 0.3832− ua

va + 0.0875− va

)

(C.76)

= 16 + 1
2 · (3 · 0.3832 + 0.5 · 0.0875) = 16.5967 .

Figure (C.3) illustrates the aforementioned example, with the expan-
sion point set to a = (ua, va)⊺ = (0, 0)⊺.

Fig. C.3
Continuous Taylor approxi-

mation of a discrete 2D image
function for determining the

local extremum position with
sub-pixel accuracy. The cubes

represent the discrete image
samples in a 3 × 3 neighbor-

hood around the reference
coordinate (0, 0), which is a

local maximum of the dis-
crete image function (see Eqn.

(C.70) for the concrete val-
ues). The parabolic surface

shows the continuous approx-
imation f̃(x, y) obtained by
second-order Taylor expan-

sion about the center position
a = (0, 0). The vertical line
marks the position of the lo-

cal maximum f̃(x̆) = 16.5967
at x̆ = (−0.3832, 0.0875).

x

y

x̆

f̃(x, y)

Local extrema in 3D

In the case of a three-variable, scalar function f : R3 �→ R, with a
given expansion point a = (xa, ya, za)⊺ and

∇f (a) =

⎛

⎝

dx

dy

dz

⎞

⎠ and Hf (a) =

⎛

⎝

H00 H01 H02

H01 H11 H12

H02 H12 H22

⎞

⎠ (C.77)

being the gradient vector and the Hessian matrix of f at point a,
respectively, the estimated extremal position is

746

C.3 Operations on
Multi-Variable, Scalar
Functions (Scalar
Fields)

x̆ = (x̆, y̆, z̆)⊺ = a−H−1
f (a) · ∇f(a) (C.78)

=

⎛

⎝

xa

ya

za

⎞

⎠− 1
H2

02·H11+H2
01·H22+H00·H2

12−H00·H11·H22−2·H01·H02·H12

·

⎛

⎝

H2
12−H11·H22 H01·H22−H02H12 H02·H11−H01·H12

H01·H22−H02·H12 H2
02−H00·H22 H00·H12−H01·H02

H02·H11−H01·H12 H00·H12−H01·H02 H2
01−H00·H11

⎞

⎠·

⎛

⎝

dx

dy

dz

⎞

⎠.

Note that the inverse of the 3 × 3 Hessian matrix H−1
f is again

symmetric and can be calculated in closed form (as shown in Eqn.
(C.78)).4

Again using Eqn. (C.64), the estimated extremal value at position
x̆ = (x̆, y̆, z̆)⊺ is found as

f̃(x̆) = f(a) + 1
2 · ∇

⊺
f (a) · (x̆− a) (C.79)

= f(a) +
dx ·(x̆−xa) + dy ·(y̆−ya) + dz ·(z̆−za)

2
. (C.80)

4 Nevertheless, the use of standard numerical methods is recommended.
747

Appendix D

Statistical Prerequisites

This part summarizes some essential statistical concepts for vector-
valued data, intended as a supplement particularly to Chapters 11
and 17.

D.1 Mean, Variance, and Covariance

For the following definitions we assume a sequence X = (x0, x1, . . . ,
xn−1) of n vector-valued, m-dimensional measurements, with “sam-
ples”

xi = (xi,0, xi,1, . . . , xi,m−1)⊺ ∈ R
m. (D.1)

D.1.1 Mean

The n-dimensional sample mean vector is defined as

μ(X) = (μ0, μ1, . . . , μm−1)⊺ (D.2)

=
1
n
· (x0 + x1 + . . . + xn−1) =

1
n
·

n−1∑

i=0

xi. (D.3)

Geometrically speaking, the vector μ(X) corresponds to the centroid
of the sample vectors xi in m-dimensional space. Each scalar element
μp is the mean of the associated component (also called variate or
dimension) p over all n samples, that is

μp =
1
n
·

n−1∑

i=0

xi,p , (D.4)

for p = 0, . . . , m−1.

D.1.2 Variance and Covariance

The covariance quantifies the strength of interaction between a pair
of components p, q in the sample X , defined as

749
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

Appendix D
Statistical

Prerequisites

σp,q(X) =
1
n
·

n−1∑

i=0

(xi,p − μp) · (xi,q − μq). (D.5)

For efficient calculation, this expression can be rewritten in the form

σp,q(X) =
1
n
·
[n−1∑

i=0

(
xi,p ·xi,q

)

︸ ︷︷ ︸

Sp,q(X)

− 1
n
·
(

n−1∑

i=0

xi,p

︸ ︷︷ ︸

Sp(X)

)
·
(

n−1∑

i=0

xi,q

︸ ︷︷ ︸

Sq(X)

)]

, (D.6)

which does not require the explicit calculation of μp and μq. In the
special case of p = q, we get

σp,p(X) = σ2
p (X) =

1
n
·

n−1∑

i=0

(xi,p−μp)2 (D.7)

=
1
n
·
[n−1∑

i=0

x2
i,p −

1
n
·
(

n−1∑

i=0

xi,p

)2
]

, (D.8)

which is the variance within the component p. This corresponds to
the ordinary (one-dimensional) variance σ2

p (X) of the n scalar sample
values x0,p, x1,p, . . . , xn−1,p (see also Sec. 3.7.1).

D.1.3 Biased vs. Unbiased Variance

If the variance (or covariance) of some population is estimated from a
small set of random samples, the results obtained by the formulation
given in the previous section are known to be statistically biased.1

The most common form of correcting for this bias is to use the factor
1/(n − 1) instead of 1/n in the variance calculations. For example,
Eqn. (D.5) would change to

σ̆p,q(X) =
1

n− 1
·

n−1∑

i=0

(xi,p − μp) · (xi,q − μq) (D.9)

to yield an unbiased sample variance. In the following (and through-
out the text), we ignore the bias issue and consistently use the factor
1/n for all variance calculations. Note, however, that many software
packages2 use the bias-corrected factor 1/(n−1) by default and thus
may return different results (which can be easily scaled for compari-
son).

D.2 The Covariance Matrix

The covariance matrix Σ for the m-dimensional sample X is a square
matrix of size m ×m that is composed of the covariance values σp,q

for all pairs (p, q) of components, that is,

1 Note that the estimation of the mean by the sample mean (Eqn. (D.3))
is not affected by this bias problem.

2 For example, Apache Commons Math, Matlab, Mathematica.
750

D.2 The Covariance
Matrix

Σ(X) =

⎛

⎜
⎜
⎜
⎝

σ0,0 σ0,1 · · · σ0,m−1

σ1,0 σ1,1 · · · σ1,m−1
...

...
. . .

...
σm−1,0 σm−1,1 · · · σm−1,m−1

⎞

⎟
⎟
⎟
⎠

(D.10)

=

⎛

⎜
⎜
⎜
⎝

σ2
0 σ0,1 · · · σ0,m−1

σ1,0 σ2
1 · · · σ1,m−1

...
...

. . .
...

σm−1,0 σm−1,1 · · · σ2
m−1

⎞

⎟
⎟
⎟
⎠

. (D.11)

Note that any diagonal element of Σ(X) is the ordinary (scalar) vari-
ance σ2

p (X) (see Eqn. (D.7)), for p = 0, . . . , m − 1, which can never
be negative. All other entries of a covariance matrix may be posi-
tive or negative in general. Since σp,q = σq,p, a covariance matrix is
always symmetric, with up to (m2 + m)/2 unique elements. Thus,
any covariance matrix has the important property of being positive
semidefinite, which implies that all its eigenvalues (see Sec. B.4) are
positive (i.e., non-negative). The covariance matrix can also be writ-
ten in the form

Σ(X) =
1
n
·

n−1∑

i=0

[xi − μ(X)] · [xi − μ(X)]⊺
︸ ︷︷ ︸

= [xi−µ(X)] ⊗ [xi−µ(X)]

, (D.12)

where ⊗ denotes the outer (vector) product.
The trace (sum of the diagonal elements) of the covariance matrix,

σtotal(X) = trace (Σ(X)) , (D.13)

is called the total variance of the multivariate sample. Alternatively,
the (Frobenius) norm of the covariance matrix Σ(X), defined as

‖Σ(X)‖2 =
(

m−1∑

i=0

m−1∑

j=0

σ2
i,j

)1/2
, (D.14)

can be used to quantify the overall variance in the sample data.

D.2.1 Example

Assume that the sample X consists of the following set of four 3D
vectors (i.e., m = 3 and n = 4)

x0 =

⎛

⎝

75
37
12

⎞

⎠ , x1 =

⎛

⎝

41
27
20

⎞

⎠ , x2 =

⎛

⎝

93
81
11

⎞

⎠ , x3 =

⎛

⎝

12
48
52

⎞

⎠ ,

with each xi = (xi,R, xi,G, xi,B)⊺ representing a particular RGB color.
The resulting sample mean vector (see Eqn. (D.3)) is

μ(X) =

⎛

⎝

μR

μG

μB

⎞

⎠=
1
4
·

⎛

⎝

75 + 41 + 93 + 12
37 + 27 + 81 + 48
12 + 20 + 11 + 52

⎞

⎠=
1
4
·

⎛

⎝

221
193
95

⎞

⎠=

⎛

⎝

55.25
48.25
23.75

⎞

⎠ ,

and the associated covariance matrix (Eqn. (D.11)) is
751

Appendix D
Statistical

Prerequisites

Σ(X) =

⎛

⎝

972.188 331.938 −470.438
331.938 412.688 −53.188

−470.438 −53.188 278.188

⎞

⎠ .

As predicted, this matrix is symmetric and all diagonal elements are
non-negative. Note that no sample bias-correction (see Sec. D.1.3)
was used in this example. The total variance (Eqn. (D.13)) of the
sample set is

σtotal(X) = trace (Σ(X)) = 972.188+412.688+278.188≈ 1663.06,

and the Froebenius norm of the covariance matrix (see Eqn. (D.14))
is ‖Σ(X)‖2 ≈ 1364.36.

D.2.2 Practical Calculation

The calculation of covariance matrices is implemented in almost any
software package for statistical analysis or linear algebra. For exam-
ple, with the Apache Commons Math library this could be accom-
plished as follows:

import org.apache.commons.math3.stat.correlation.Covariance;

...

double[][] X; // X[i] is the i-th sample vector

Covariance cov = new Covariance(X, false); // no bias correction

RealMatrix S = cov.getCovarianceMatrix();

...

D.3 Mahalanobis Distance

The Mahalanobis distance3 [157] is used to measure distances in
multi-dimensional distributions. Unlike the Euclidean distance it
takes into account the amount of scatter in the distribution and the
correlation between features. In particular, the Mahalanobis distance
can be used to measure distances in distributions, where the indi-
vidual components substantially differ in scale. Depending on their
scale, a few components (or even a single component) may domi-
nate the ordinary (Euclidean) distance outcome and the “smaller”
components have no influence whatsoever.

D.3.1 Definition

Given a distribution of m-dimensional samples X = (x0, . . . , xn−1),
with xk ∈ Rm, the Mahalanobis distance between two samples xa,
xb is defined as

dM(xa, xb) = ‖xa−xb‖M =
√

(xa−xb)
⊺ ·Σ−1 · (xa−xb), (D.15)

where Σ is the m ×m covariance matrix of the distribution X , as
described in Sec. D.2.4

3 http://en.wikipedia.org/wiki/Mahalanobis_distance.
4 Note that the expression under the root in Eqn. (D.15) is the (dot)

product of a row vector and a column vector, that is, the result is a
non-negative scalar value.

752

http://en.wikipedia.org/wiki/Mahalanobis_distance

D.3 Mahalanobis
Distance

The Mahalanobis distance normalizes each feature component to
zero mean and unit variance. This makes the distance calculation
independent of the scale of the individual components, that is, all
components are “treated fairly” even if their range is many orders
of magnitude different. In other words, no component can dominate
the others even if its magnitude is disproportionally large.

D.3.2 Relation to the Euclidean Distance

Recall that the Euclidean distance between two points xa, xb in Rm

is equivalent to the (L2) norm of the difference vector xa−xb, which
can be written in the form

dE(xa, xb) = ‖xa − xb‖2 =
√

(xa − xb)⊺ · (xa − xb). (D.16)

Note the structural similarity with the definition of the Mahalanobis
distance in Eqn. (D.15), the only difference being the missing matrix
Σ−1. This becomes even clearer if we analogously insert the identity
matrix I into Eqn. (D.16), that is,

dE(xa, xb) = ‖xa − xb‖2 =
√

(xa − xb)⊺ · I · (xa − xb) , (D.17)

which obviously does not change the outcome. The purpose of Σ−1

in Eqn. (D.15) is to map the difference vectors (and thus the involved
vectors xa, xb) into a transformed (scaled and rotated) space, where
the actual distance measurement is performed. In contrast, with the
Euclidean distance, all components contribute equally to the distance
measure, without any scaling or other transformation.

D.3.3 Numerical Aspects

For calculating the Mahalobis distance (Eqn. (D.15)) the inverse of
the covariance matrix (Sec. D.2) is needed. By definition, a covari-
ance matrix Σ is symmetric and its diagonal values are non-negative.
Similarly (at least in theory), its inverse Σ−1 should also be symmet-
ric with non-negative diagonal values. This is necessary to ensure
that the quantities under the square root in Eqn. (D.15) are always
positive.

Unfortunately, Σ is often ill-conditioned because of diagonal val-
ues that are very small or even zero. In this case, Σ is not positive-
definite (as it should be), that is, one or more of its eigenvalues are
negative, the inversion becomes numerically unstable and the result-
ing Σ−1 is non-symmetric. A simple remedy to this problem is to
add a small quantity to the diagonal of the original covariance matrix
Σ, that is,

Σ̃ = Σ + ǫ · I, (D.18)

to enforce positive definiteness, and to use Σ̃−1 in Eqn. (D.15).
A possible alternative is to calculate the Eigen decomposition5 of

Σ in the form
5 See http://mathworld.wolfram.com/EigenDecomposition.html and the class

EigenDecomposition in the Apache Commons Math library.
753

http://mathworld.wolfram.com/EigenDecomposition.html

Appendix D
Statistical

Prerequisites

Σ = V ·Λ ·V⊺ (D.19)

where Λ is a diagonal matrix containing the eigenvalues of Σ (which
may be zero or negative). From this we create a modified diagonal
matrix Λ̃ by substituting all non-positive eigenvalues with a small
positive quantity ǫ, that is,

Λ̃i,i = min(Λi,i, ǫ). (D.20)

(typically ǫ ≈ 10−6) and finally calculate the modified covariance
matrix as

Σ̃ = V · Λ̃ ·V⊺
, (D.21)

which should be positive definite. The (symmetric) inverse Σ̃−1 is
then used in Eqn. (D.15).

D.3.4 Pre-Mapping Data for Efficient Mahalanobis
Matching

Assume that we have a large set of sample vectors (“data base”)
X = (x0, . . . , xn−1) which shall be frequently queried for the instance
most similar (i.e., closest) to a given search sample xs. Assuming
that the search through X is performed linearly, we would need to
calculate dM(xs, xi)—using Eqn. (D.15)—for all elements of xi in X .

One way to accelerate the matching is to perform the transforma-
tion defined by Σ−1 to the entire data set only once, such that the
Euclidean norm alone can be used for the distance calculation. For
the sake of simplicity we write

d2
M(xa, xb) = ‖xa − xb‖2

M = ‖y‖2
M (D.22)

with the difference vector y = xa−xb, such that Eqn. (D.15) becomes

‖y‖2
M = y

⊺ ·Σ−1 · y . (D.23)

The goal is to find a transformation U such that we can calculate
the Mahalanobis distance from the transformed vectors directly as

ŷ = U · y, (D.24)

by using the ordinary Euclidean norm ‖·‖2 instead, that is, in the
form

‖y‖2
M = ‖ŷ‖2

2 = ŷ
⊺ · ŷ (D.25)

= (U · y)⊺ · (U · y) = (y⊺ ·U⊺) · (U · y) (D.26)

= y
⊺ ·U⊺ ·U · y = y

⊺ ·Σ−1 · y . (D.27)

While we do not know the matrix U yet, we see from Eqn. (D.27)
that it must satisfy

U
⊺ ·U = Σ−1. (D.28)

Fortunately, since Σ−1 is symmetric and positive definite, such a
decomposition of Σ−1 always exists.

754

D.3 Mahalanobis
Distance

The standard method for calculating U in Eqn. (D.28) is by the
Cholesky decomposition,6 which can factorize any symmetric, posi-
tive definite matrix A in the form

A = L · L⊺ or A = U
⊺ ·U, (D.29)

where L is a lower-triangular matrix or, alternatively, U is an upper-
triangular matrix (the second variant is the one we need).7 Since
the transformation of the difference vectors y → U · y is a linear
operation, the result is the same if we apply the transformation in-
dividually to the original vectors, that is,

ŷ = U · y = U · (xa − xb) = U·xa −U·xb . (D.30)

This means that, given the transformation U, we can obtain the
Mahalanobis distance between two points xa, xb (as defined in Eqn.
(D.15)) by simply calculating the Euclidean distance in the form

dM(xa, xb) = ‖U · (xa − xb)‖2 = ‖U·xa −U·xb‖2 . (D.31)

In summary, this suggests the following solution to a large-database
Mahalanobis matching problem:

1. Calculate the covariance matrix Σ for the original dataset X =
(x0, . . . , xn−1).

2. Condition Σ, such that it is positive definite (see Sec. D.3.3).
3. Find the matrix U, such that U⊺ ·U = Σ−1 (by Cholesky de-

composition of Σ−1).
4. Transform all samples of the original data set X = (x0, . . . , xn−1)

to X̂ = (x̂0, . . . , x̂n−1), with x̂k = U ·xk. This now becomes the
actual “database”.

5. Apply the same transformation to the search sample xs, that is,
calculate x̂s = U · xs.

6. Find the index l of the best-matching element in X (in terms of
the Mahalanobis distance) by calculating the Euclidean (!) dis-
tance between the transformed vectors, that is

l = argmin
0≤k<n

‖x̂s − x̂k‖2
. (D.32)

Since the matching is now performed with the ordinary Euclidean
distance and the Mahalanobis calculation is not required during the
search, the savings should be substantial. Also, this opens an easy
path to the use of advanced, tree-based matching techniques, such as
the common k-nearest neighbor methods.

6 See http://mathworld.wolfram.com/CholeskyDecomposition.html.
7 The Cholesky decomposition (CD) requires that the supplied matrix

A is symmetric and positive definite, otherwise the decomposition will
fail. In fact, the CD itself is commonly used to test if a given matrix is
positive definite. It is implemented by class CholeskyDecomposition of
the Apache Commons Math library.

755

http://mathworld.wolfram.com/CholeskyDecomposition.html

Appendix D
Statistical

Prerequisites

D.4 The Gaussian Distribution

The Gaussian distribution plays a major role in decision theory, pat-
tern recognition, and statistics in general, because of its convenient
analytical properties. A continuous, scalar quantity X is said to be
subject to a Gaussian distribution, if the probability of observing a
particular value x is

p(X =x) = p(x) =
1√

2πσ2
· e− (x−μ)2

2·σ2 . (D.33)

The Gaussian distribution is completely defined by its mean μ and
variance σ2. The Gaussian distribution, also called a “normal” dis-
tribution, is commonly denoted in the form

p(x) ∼ N (X |μ, σ2) or X ∼ N (μ, σ2), (D.34)

saying that “X is normally distributed with parameters μ and σ2.”
As required for any valid probability distribution,

N (X |μ, σ2) > 0 and
∫ ∞

−∞
N (X |μ, σ2) dx = 1. (D.35)

Thus the area under the probability distribution curve is always one,
that is, N () is normalized. The Gaussian function in Eqn. (D.33)
has its maximum height (called “mode”) at position x = μ, where its
value is

p(x=μ) =
1√

2πσ2
. (D.36)

If a random variable X is normally distributed with mean μ and
variance σ2, then the result of a linear mapping of the kind X ′ =
aX + b is again a random variable that is normally distributed, with
parameters μ̄ = a·μ + b and σ̄2 = a2 ·σ2:

X ∼ N (μ, σ2) ⇒ a·X + b ∼ N (a·μ+b, a2 ·σ2), (D.37)

for a, b ∈ R.
Moreover, if X1, X2 are statistically independent, normally dis-

tributed random variables with means μ1, μ2 and variances σ2
1 , σ2

2 ,
respectively, then a linear combination of the form a1X1 + a2X2 is
again normally distributed with μ12 = a1·μ1 + a2·μ2 and σ12 = a2

1·σ2
1

+ a2
2 ·σ2

2 , that is,

(a1X1 + a2X2) ∼ N (a1 ·μ1 + a2 ·μ2, a2
1 ·σ2

1 + a2
2 ·σ2

2). (D.38)

D.4.1 Maximum Likelihood Estimation

The probability density function p(x) of a statistical distribution tells
us how probable it is to observe the result x for some fixed distribu-
tion parameters, such as μ and σ, in case of a normal distribution.
If these parameters are unknown and need to be estimated,8 it is
interesting to ask the reverse question:

8 As required, for example, for “minimum error thresholding” in Chapter
11, Sec. 11.1.6.

756

D.4 The Gaussian
Distribution

How likely are particular parameter values for a given set of
empirical observations (assuming a certain type of distribu-
tion)?

This is (in a casual sense) what the term “likelihood” stands for. In
particular, a distribution’s likelihood function quantifies the proba-
bility that a given (fixed) set of observations was generated by some
varying distribution parameters.

Note that the probability of observing the outcome x from the
normal distribution,

p(x) = p(x |μ, σ2), (D.39)

is really a conditional probability, stating how probable it is to ob-
serve the value x from a given normal distribution with known pa-
rameters μ and σ2. Conversely, a likelihood function for the normal
distribution could be viewed as a conditional function

L(μ, σ2 |x), (D.40)

which quantifies the likelihood of (μ, σ2) being the correct distribu-
tion parameters for a given observation x. The maximum likelihood
method tries to find optimal parameters by maximizing the value of
a distribution’s likelihood function L.

If we draw two independent9 samples xa, xb that are subjected to
the same distribution, their joint probability (i.e., the probability of
xa and xb occurring together in the sample) is the product of their
individual probabilities, that is,

p(xa ∧ xb) = p(xa) · p(xb) . (D.41)

In general, if we are given a vector of m independent observations
X = (x1, x2, . . . , xm) from the same distribution, the probability of
observing exactly this set of values is

p(X) = p(x0 ∧ x1 ∧ . . . ∧ xm−1)

= p(x0) · p(x1) · . . . · p(xm−1) =
m−1∏

i=0

p(xi) . (D.42)

Thus, if the sample X originates from a normal distribution N , a
suitable likelihood function is

L(μ, σ2 |X) = p(X |μ, σ2) (D.43)

=
m−1∏

i=0

N (xi |μ, σ2) =
m−1∏

i=0

1√
2πσ2

· e− (xi−μ)2

2·σ2 . (D.44)

The parameters (μ̂, σ̂2), for which L(μ, σ2 |X) is a maximum, are
called the maximum-likelihood estimate for X .

Note that it is not necessary for a likelihood function to be a
proper (i.e., normalized) probability distribution, since it is only nec-
essary to calculate whether a particular set of distribution parameters

9 Although this assumption is often violated, independence is important
to keep statistical problems simple and tractable. In particular, the
values of adjacent image pixels are usually not independent.

757

Appendix D
Statistical

Prerequisites

is more probable than another. Thus the likelihood function L may
be any monotonic function of the corresponding probability p in Eqn.
(D.43), in particular its logarithm, which is commonly used to avoid
multiplying small values.

D.4.2 Gaussian Mixtures

In practice, probabilistic models are often too complex to be de-
scribed by a single Gaussian (or other standard) distribution. With-
out losing the mathematical convenience of Gaussian models, highly
complex distributions can be modeled as combinations of multiple
Gaussian distributions with different parameters. Such a Gaussian
mixture model is a linear superposition of K Gaussian distributions
of the form

p(x) =
K−1∑

j=0

πj · N (x |μj , σ2
j), (D.45)

where the weights (“mixing coefficients”) πj express the probability
that an event x was generated by the jth component (with

∑K−1
j=0 πj =

1).10 The interpretation of this mixture model is, that there are K
independent Gaussian “components” (each with its parameters μj ,
σj) that contribute to a common stream of events xi. If a particular
value x is observed, it is assumed to be the result of exactly one of
the K components, but the identity of that component is unknown.

Assume, as a special case, that a probability distribution p(x) is
the superposition (mixture) of two Gaussian distributions, that is,

p(x) = πa ·N (x |μa, σ2
a) + πb ·N (x |μb, σ2

b). (D.46)

Any observed value x is assumed to be generated by either the first
component (with μa, σ2

a and prior probability πa) or the second com-
ponent (with μb, σ2

b and prior probability πb). These parameters as
well as the prior probabilities are unknown but can be estimated by
maximimizing the likelihood function L. Note that, in general, the
unknown parameters cannot be calculated in closed form but only
with numerical methods. For further details and solution techniques
see [24, 64, 228], for example.

D.4.3 Creating Gaussian Noise

Synthetic Gaussian noise is often used for testing in image process-
ing, particularly for assessing the quality of smoothing filters. While
the generation of pseudo-random values that follow a Gaussian dis-
tribution is not a trivial task in general,11 it is readily implemented
in Java by the standard class Random. For example, the Java method
addGaussianNoise() in Prog. D.1 adds Gaussian noise with zero
mean (μ = 0) and standard deviation sigma (σ) to a grayscale image
I of type FloatProcessor (ImageJ). The random values produced

10 The weight πj is also called the prior probability of the component j.
11 Typically the so-called polar method is used for generating Gaussian

random values [138, Sec. 3.4.1].
758

D.4 The Gaussian
Distribution

by successive calls to the method nextGaussian() in line 10 follow a
Gaussian distribution N (0, 1), with mean μ = 0 and variance σ2 = 1.
As implied by Eqn. (D.37),

X ∼ N (0, 1) ⇒ a + s·X ∼ N (a, s2), (D.47)

and thus scaling the results from nextGaussian() by s and additive
shifting by a makes the resulting random variable noise normally
distributed with N (a, s2).

1 import java.util.Random;

2

3 void addGaussianNoise (FloatProcessor I, double sigma) {

4 int w = I.getWidth();

5 int h = I.getHeight();

6 Random rnd = new Random();

7 for (int v = 0; v < h; v++) {

8 for (int u = 0; u < w; u++) {

9 float val = I.getf(u, v);

10 float noise = (float) (rnd.nextGaussian() * sigma);

11 I.setf(u, v, val + noise);

12 }

13 }

14 }

Prog. D.1
Java method for adding Gaus-
sian noise to an image of type
FloatProcessor.

759

Appendix E

Gaussian Filters

This part supplements the material presented in Ch. 25 (SIFT).

E.1 Cascading Gaussian Filters

To compute a Gaussian scale space efficiently (as used in the SIFT
method, for example), the scale layers are usually not obtained di-
rectly from the input image by smoothing with Gaussians of increas-
ing size. Instead, each layer can be calculated recursively from the
previous layer by filtering with relatively small Gaussians. Thus, the
entire scale space is implemented as a concatenation or “cascade” of
smaller Gaussian filters.1

If Gaussian filters of sizes σ1, σ2 are applied successively to the
same image, the resulting smoothing effect is identical to using a
single larger Gaussian filter HG

σ , that is,
(
I ∗HG

σ1

)
∗HG

σ2
= I ∗

(
HG

σ1
∗HG

σ2

)
= I ∗HG

σ , (E.1)

with σ =
√

σ2
1 + σ2

2 being the size of the resulting combined Gaussian
filter HG

σ [129, Sec. 4.5.4]. Put in other words, the variances (squares
of the σ values) of successive Gaussian filters add up, that is,

σ2 = σ2
1 + σ2

2 . (E.2)

In the special case of the same Gaussian filter being applied twice
(σ1 = σ2), the effective width of the combined filter is σ =

√
2 · σ1.

E.2 Gaussian Filters and Scale Space

In a Gaussian scale space, the scale corresponding to each level is
proportional to the width (σ) of the Gaussian filter required to derive
this level from the original (completely unsmoothed) image. Given
an image that is already pre-smoothed by a Gaussian filter of width

1 See Chapter 25, Sec. 25.1.1 for details.
761

© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

Appendix E
Gaussian Filters

σ1 and should be smoothed to some target scale σ2 > σ1, the required
width of the additional Gaussian filter is

σd =
√

σ2
2 − σ2

1 . (E.3)

Usually the neighboring layers of the scale space differ by a constant
scale factor (κ) and the transformation from one scale level to an-
other can be accomplished by successively applying Gaussian filters.
Despite the constant scale factor, however, the width of the required
filters is not constant but depends on the image’s initial scale. In par-
ticular, if we want to transform an image with scale σ0 by a factor κ
to a new scale κ · σ0, then (from Eqn. (E.2)) for σd the relation

(κ · σ0)2 = σ2
0 + σ2

d (E.4)

must hold. Thus, the width σd of the required Gaussian smoothing
filter is

σd = σ0 ·
√

κ2 − 1. (E.5)

For example, doubling the scale (κ = 2) of an image that is pre-
smoothed with σ0 requires a Gaussian filter of width σd = σ0 · (22 −
1)1/2 = σ0 ·

√
3 ≈ σ0 · 1.732.

E.3 Effects of Gaussian Filtering in the Frequency

Domain

For the 1D Gaussian function

gσ(x) =
1

σ
√

2π
· e− x2

2σ2 (E.6)

the continuous Fourier transform2 F(gσ) is

Gσ(ω) =
1√
2π
· e− ω2σ2

2 . (E.7)

Doubling the width (σ) of a Gaussian filter corresponds to cutting the
bandwidth by half. If σ is doubled, the Fourier transform becomes

G2σ(ω) =
1√
2π
· e− ω2(2σ)2

2 =
1√
2π
· e− 4ω2σ2

2 (E.8)

=
1√
2π
· e− (2ω)2σ2

2 = Gσ(2ω) (E.9)

and, in general, when scaling the filter by a factor k,

Gkσ(ω) = Gσ(kω). (E.10)

That is, if σ is increased (or the kernel widened) by a factor k, the
corresponding Fourier transform gets contracted by the same factor.
In terms of linear filtering this means that widening the kernel by
some factor k decimates the resulting signal bandwidth by 1

k .

2 See also Chapter 18, Sec. 18.1.
762

E.4 LoG-Approximation
by the DoG

E.4 LoG-Approximation by the DoG

The 2D LoG kernel (see Ch. 25, Sec. 25.1.1),

Lσ(x, y) =
(
∇2gσ

)
(x, y) =

1
πσ4

(x2 +y2−2σ2

2σ2

)
·e− x2+y2

2σ2
, (E.11)

has a (negative) peak at the origin with the associated function value

Lσ(0, 0) = − 1
πσ4

. (E.12)

Thus, the scale normalized LoG kernel, defined in Eqn. (25.10) as

L̂σ(x, y) = σ2 ·Lσ(x, y), (E.13)

has the peak value

L̂σ(0, 0) = − 1
πσ2

(E.14)

at the origin. In comparison, for a given scale factor κ, the unscaled
DoG function

DoGσ,κ(x, y) = Gκσ(x, y)−Gσ(x, y)

=
1

2πκ2σ2
· e− x2+y2

2κ2σ2 − 1
2πσ2

· e− x2+y2

2σ2 , (E.15)

has a peak value

DoGσ,κ(0, 0) = − κ2 − 1
2πκ2σ2

. (E.16)

By scaling the DoG function by some factor λ to match the LoG’s
center peak value, such that Lσ(0, 0) = λ ·DoGσ,κ(0, 0), the original
LoG (Eqn. (E.11)) is approximated by the DoG in the form

Lσ(x, y) ≈ 2κ2

σ2(κ2 − 1)
·DoGσ,κ(x, y). (E.17)

Similarly, the scale-normalized LoG (Eqn. (E.13)) is approximated
by the DoG as3

L̂σ(x, y) ≈ 2κ2

κ2 − 1
·DoGσ,κ(x, y). (E.18)

Since the factor in Eqn. (E.18) depends on κ only, the DoG approx-
imation is (for a constant size ratio κ) implicitly proportional to the
scale normalized LoG for any scale σ.

3 A different formulation, L̂σ(x, y) ≈ 1
κ−1

·DoGσ,κ(x, y), is given in [153],
which is the same as Eqn. (E.18) for κ → 1, but not for κ > 1. The
essence is that the leading factor is constant and independent of σ,
and can thus be ignored when comparing the magnitude of the filter
responses at varying scales.

763

Appendix F

Java Notes

As a text for undergraduate engineering curricula, this book assumes
basic programming skills in a procedural language, such as Java, C#,
or C. The examples in the main text should be easy to understand
with the help of an introductory book on Java or one of the many
online tutorials. Experience shows, however, that difficulties with
some basic Java concepts pertain and often cause complications, even
at higher levels. The following sections address some of these typical
problem spots.

F.1 Arithmetic

Java is a “strongly typed” programming language, which means in
particular that any variable has a fixed type that cannot be altered
dynamically. Also, the result of an expression is determined by the
types of the involved operands and not (in the case of an assignment)
by the type of the “receiving” variable.

F.1.1 Integer Division

Division involving integer operands is a frequent cause of errors. If
the variables a and b are both of type int, then the expression a / b

is evaluated according to the rules of integer division. The result—
the number of times b is contained in a—is again of type int. For
example, after the Java statements

int a = 2;

int b = 5;

double c = a / b; // resulting value of c is zero!

the value of c is not 0.4 but 0.0 because the expression a / b on the
right yields the int-value 0, which is then automatically converted
to the double value 0.0.

If we wanted to evaluate a / b as a floating-point operation (as
most pocket calculators do), at least one of the involved operands

765
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

Appendix F
Java Notes

must be converted to a floating-point value, such as by an explicit
type cast, for example,

double c = (double) a / b; // value of c is 0.4

or alternatively

double c = a / (double) b; // value of c is 0.4

Example

Assume, for example, that we want to scale any pixel value a of an
image such that the maximum pixel value amax is mapped to 255 (see
Ch. 4). In mathematical notation, the scaling of the pixel values is
simply expressed as

c ← ai

amax

· 255

and it may be tempting to convert this 1:1 into Java code, such as

int a_max = ip.getMaxValue();

for ... {

int a = ip.getPixel(u,v);

int c = (a / a_max) * 255; // ← problem!

ip.putPixel(u, v, c);

}

...

As we can easily predict, the resulting image will be all black (zero
values), except those pixels whose value was a_max originally (they
are set to 255). The reason is again that the division a / a_max has
two operands of type int, and the result is thus zero whenever the
denumerator (a_max) is greater than the numerator (a).

Of course, the entire operation could be performed in the floating-
point domain by converting one of the operands (as we have shown),
but this is not even necessary in this case. Instead, we may simply
swap the order of operations and start with the multiplication:

int c = a * 255 / a_max;

Why does this work now? The subexpression a * 255 is evaluated
first,1 generating large intermediate values that pose no problem for
the subsequent (integer) division. Nevertheless, rounding should al-
ways be considered to obtain more accurate results when computing
fractions of integers (see Sec. F.1.5).

F.1.2 Modulus Operator

The result of the modulus operator a mod b (used in several places in
the main text) is defined [92, p. 82] as the remainder of the “floored”
division a/b,

a mod b ≡
{

a for b = 0,
a− b · ⌊a/b⌋ otherwise,

(F.1)

1 In Java, expressions at the same level are always evaluated in left-to-
right order, and therefore no parentheses are required in this example
(though they would do no harm either).

766

F.1 Arithmeticfor a, b ∈ R. This type of operator or library method was not available
in the standard Java API until recently.2 The following Java method
implements the mod operation according to the definition in Eqn.
(F.1):3

int Mod(int a, int b) {

if (b == 0)

return a;

if (a * b >= 0)

return a - b * (a / b);

else

return a - b * (a / b - 1);

}

Note that the remainder operator %, defined as

a % b ≡ a− b · truncate(a/b), for b �= 0, (F.2)

is often used in this context, but yields the same results only for
positive operands a ≥ 0 and b > 0. For example,

13 mod 4 = 1
13 mod −4 = −3

−13 mod 4 = 3
−13 mod −4 = −1

vs.

13 % 4 = 1
13 % −4 = 1
−13 % 4 = −1
−13 % −4 = −1

F.1.3 Unsigned Byte Data

Most grayscale and indexed images in Java and ImageJ are composed
of pixels of type byte, and the same holds for the individual compo-
nents of most color images. A single byte consists of eight bits and
can thus represent 28 = 256 different bit patterns or values, usually
mapped to the numeric range 0, . . . , 255. Unfortunately, Java (unlike
C and C++) does not provide a suitable “unsigned” 8-bit data type.
The primitive Java type byte is “signed”, using one of its eight bits
for the ± sign, and is intended to hold values in the range −128, . . . ,
+127.

Java’s byte data can still be used to represent the values 0 to
255, but conversions must take place to perform proper arithmetic
computations. For example, after execution of the statements

int a = 200;

byte b = (byte) p;

the variables a (32-bit int) and b (8-bit byte) contain the binary
patterns

a = 00000000000000000000000011001000

b = 11001000

Interpreted as a (signed) byte value, with the leftmost bit4 as the
sign bit, the variable b has the decimal value −56. Thus after the
statement

2 Starting with Java version 1.8 the mod operation (as defined in Eqn.
(F.1)) is implemented by the standard method Math.floorMod(a, b).

3 The definition in Eqn. (F.1) is not restricted to integer operands.
4 Java uses the standard “2s-complement” representation, where a sign

bit = 1 stands for a negative value.
767

Appendix F
Java Notes

int a1 = b; // a1 == -56

the value of the new int variable a1 is −56 ! To (ab-)use signed byte

data as unsigned data, we can circumvent Java’s standard conversion
mechanism by disguising the content of b as a logic (i.e., nonarith-
metic) bit pattern; for example, by

int a2 = (0xff & b); // a2 == 200

where 0xff (in hexadecimal notation) is an int value with the bi-
nary bit pattern 00000000000000000000000011111111 and & is the
bitwise AND operator. Now the variable a2 contains the right inte-
ger value (200) and we thus have a way to use Java’s (signed) byte

data type for storing unsigned values. Within ImageJ, access to pixel
data is routinely implemented in this way, which is considerably faster
than using the convenience methods getPixel() and putPixel().

F.1.4 Mathematical Functions in Class Math

Java provides most standard mathematical functions as static meth-
ods in class Math, as listed in Table F.1. The Math class is part of
the java.lang package and thus requires no explicit import to be
used. Most Math methods accept arguments of type double and also
return values of type double. As a simple example, a typical use of
the cosine function y = cos(x) is

double x;

double y = Math.cos(x);

Similarly, the Math class defines some common numerical constants
as static variables; for example, the value of π could be obtained by

double pi = Math.PI;

Table F.1
Mathematical meth-

ods and constants de-
fined by Java’s Math class.

double abs(double a) double max(double a, double b)

int abs(int a) float max(float a, float b)

float abs(float a) int max(int a, int b)

long abs(long a) long max(long a, long b)

double ceil(double a) double min(double a, double b)

double floor(double a) float min(float a, float b)

int floorMod(int a, int b) int min(int a, int b)

long floorMod(long a, long b) long min(long a, long b)

double rint(double a)

long round(double a) double random()

int round(float a)

double toDegrees(double rad) double toRadians(double deg)

double sin(double a) double asin(double a)

double cos(double a) double acos(double a)

double tan(double a) double atan(double a)

double atan2(double y, double x)

double log(double a) double exp(double a)

double sqrt(double a) double pow(double a, double b)

double E double PI

768

F.1 ArithmeticF.1.5 Numerical Rounding

Java’s Math class (confusingly) offers three different methods for
rounding floating-point values:

double rint(double x)

long round(double x)

int round(float x)

For example, a double value x can be rounded to int in any of the
following ways:

double x; int k;

k = (int) Math.rint(x);

k = (int) Math.round(x);

k = Math.round((float) x);

If the operand x is known to be positive (as is typically the case
with pixel values) rounding can be accomplished without using any
method calls by

k = (int) (x + 0.5); // only if x >= 0

In this case, the expression (x + 0.5) is first computed as a floating-
point (double) value, which is then truncated (toward zero) by the
explicit (int) typecast.

F.1.6 Inverse Tangent Function

The inverse tangent function ϕ = tan−1(a) or ϕ = arctan(a) is used
in several places in the main text. This function is implemented
by the method atan(double a) in Java’s Math class (Table F.1).
The return value of atan() is in the range [−π

2 , . . . , π
2] and thus re-

stricted to only two of the four quadrants. Without any additional
constraints, the resulting angle is ambiguous. In many practical sit-
uations, however, a is given as the ratio of two catheti (Δx, Δy) of a
right-angled triangle in the form

ϕ = arctan
(

y
x

)
, (F.3)

for which we introduced the two-parameter function

ϕ = ArcTan(x, y) (F.4)

in the main text. The function ArcTan(x, y) is implemented by the
standard method atan2(dy,dx) in Java’s Math class (note the re-
versed parameters though) and returns an unambiguous angle ϕ in
the range [−π, . . . , π]; that is, in any of the four quadrants of the unit
circle.5 Also, the atan2() method returns a useful value even if both
arguments are zero.

5 The function atan2(dy,dx) is available in most current programming
languages, including Java, C, and C++.

769

Appendix F
Java Notes

F.1.7 Classes Float and Double

The representation of floating-point numbers in Java follows the
IEEE standard, and thus the types float and double include the
values

Float.MIN_VALUE, Double.MIN_VALUE,
Float.MAX_VALUE, Double.MAX_VALUE,
Float.POSITIVE_INFINITY, Double.POSITIVE_INFINITY,
Float.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY,
Float.NaN, Double.NaN.

These values are defined as constants in the corresponding wrapper
classes Float and Double, respectively. If any INFINITY or NaN6

value occurs in the course of a computation (e.g., as the result of di-
viding by zero),7 Java continues without raising an error, so incorrect
values may ripple through a whole chain of calculations, making the
actual bugs difficult to locate.

F.1.8 Testing Floating-Point Values Against Zero

Comparing floating-point values or testing them for zero is a non-
trivial issue and a frequent cause of errors. In particular, one should
never write

if (x == 0.0) {...} ← problem!

if x is a floating-point variable. This is often needed, for example,
to make sure that it is safe to divide another quantity by x. The
aforementioned test, however, is not sufficient since x may be non-
zero but still too small as a divisor.

A much better alternative is to test if x is “close” to zero, that
is, within some small positive/negative (epsilon) interval. While the
proper choice of this interval depends on the specific situation, the
following settings are usually sufficient for safe operation:8

static final float EPSILON_FLOAT = 1e-7f;

static final double EPSILON_DOUBLE = 2e-16;

float x;

double y;

if (Math.abs(x) < EPSILON_FLOAT) {

... // x is practically zero

}

if (Math.abs(y) < EPSILON_DOUBLE) {

... // y is practically zero

}

6 NaN stands for “not a number”.
7 In Java, this only holds for floating-point operations, whereas integer

division by zero always causes an exception.
8 These settings account for the limited machine accuracy (ǫm) of the

IEEE 754 standard types float (ǫm ≈ 1.19 · 10−7) and double (ǫm ≈
2.22 · 10−16) [190, Ch. 1, Sec. 1.1.2].

770

F.2 Arrays in JavaF.2 Arrays in Java

F.2.1 Creating Arrays

Unlike in most traditional programming languages (such as FOR-
TRAN or C), arrays in Java can be created dynamically, meaning
that the size of an array can be specified at runtime using the value
of some variable or arithmetic expression. For example:

int N = 20;

int[] A = new int[N];

int[] B = new int[N * N];

Once allocated, however, the size of any Java array is fixed and cannot
be subsequently altered.9 Note that Java arrays may be of length
zero!

After its definition, an array variable can be assigned any other
compatible array or the constant value null, for example, 10

A = B; // A now references the data in B

B = null;

With the assignment A = B, the array initially referenced by A be-
comes unaccessible and thus turns into garbage. In contrast to C and
C++, where unnecessary storage needs to be deallocated explicitly,
this is taken care of in Java by its built-in “garbage collector”. It is
also convenient that newly created arrays of numerical element types
(int, float, double, etc.) are automatically initialized to zero.

F.2.2 Array Size

Since an array may be created dynamically, it is important that its
actual size can be determined at runtime. This is done by accessing
the length attribute11

int k = A.length; // number of elements in A

The size is a property of the array itself and can therefore be obtained
inside any method from array arguments passed to it. Thus (unlike
in C, for example) it is not necessary to pass the size of an array as
a separate function argument.

If an array has more than one dimension, the size (length) along
every dimension must be queried separately (see Sec. F.2.4). Also
arrays are not necessarily rectangular; for example, the rows of a 2D
array may have different lengths (including zero).

F.2.3 Accessing Array Elements

In Java, the index of the first array element is always 0 and the index
of the last element is N−1 for an array with a total of N elements.
To iterate through a 1D array A of arbitrary size, one would typically
use a construct like

9 For additional flexibility, Java provides a number of universal container
classes (e.g., the classes Set and List) for a wide range of applications.

10 This is not possible if the array variable was defined with the final

attribute.
11 Notice that the length attribute of an array is not a method!

771

Appendix F
Java Notes

for (int i = 0; i < A.length; i++) {

// do something with A[i]

}

Alternatively, if only the array values are relevant and the array
index (i) is not needed, one could use to following (even simpler)
loop construct:

for (int a : A) {

// do something with array values a

}

In both cases, the Java compiler can generate very efficient runtime
code, since the source code makes obvious that the for loop does
not access any elements outside the array limits and thus no explicit
boundary checking is needed at execution time. This fact is very
important for implementing efficient image processing programs in
Java.

Images in Java and ImageJ are usually stored as 1D arrays (acces-
sible through the ImageProcessor method getPixels() in ImageJ),
with pixels arranged in row-first order.12 Statistical calculations and
most point operations can thus be efficiently implemented by directly
accessing the underlying 1D array. For example, the run method of
the contrast enhancement plugin in Prog. 4.1 (see Chapter 4, p. 58)
could also be implemented in the following manner:

public void run(ImageProcessor ip) {

// ip is assumed to be of type ByteProcessor

byte[] pixels = (byte[]) ip.getPixels();

for (int i = 0; i < pixels.length; i++) {

int a = 0xFF & pixels[i]; // direct read operation

int b = (int) (a * 1.5 + 0.5);

if (b > 255)

b = 255;

pixels[i] = (byte) (0xFF & b); // direct write operation

}

}

F.2.4 2D Arrays

Multidimensional arrays are a frequent source of confusion. In Java,
all arrays are 1D in principle, and multi-dimensional arrays are im-
plemented as 1D arrays of arrays etc. (see Fig. F.1). If, for example,
the 3× 3 matrix

A =

⎡

⎣

a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

a2,0 a2,1 a2,2

⎤

⎦ =

⎡

⎣

1 2 3
4 5 6
7 8 9

⎤

⎦ (F.5)

is defined as a 2D int array,

int[][] A = {{1,2,3},

{4,5,6},

{7,8,9}};

12 This means that horizontally adjacent image pixels are stored next to
each other in computer memory.

772

F.2 Arrays in Java

45�6

45�6

45�6

45�65�6

45�65�6

45�65�6

45�65�6

45�65�6

45�65�6

45�65�6

45�65�6

45�65�6

4

� � �

� � �

	
 �

Fig. F.1
Layout of elements of a 2D
Java array (corresponding to
Eqn. (F.5)). In Java, multidi-
mensional arrays are generally
implemented as 1D arrays
whose elements are again 1D
arrays.

then A is actually a 1D array with three elements, each of which is
again a 1D array. The elements A[0], A[1] and A[2] are of type
int[] and correspond to the three rows of the matrix A (see Fig.
F.1).

The usual assumption is that the array elements are arranged
in row-first order, as illustrated in Fig. F.1. The first index thus
corresponds to the row number r and the second index corresponds
to the column number c, that is,

ar,c ≡ A[r][c] . (F.6)

This conforms to the mathematical convention and makes the array
definition in the code segment above look exactly the same as the
original matrix in Eqn. (F.5). Note that in this scheme the first
array index corresponds to the vertical coordinate and the second
index to the horizontal coordinate.

However, if an array is used to specify the contents of an image
I(u, v) or a filter kernel H(i, j), we usually assume that the first index
(u or i, respectively) is associated with the horizontal x-coordinate
and the second index (v bzw. j) with the vertical y-coordinate. For
example, if we represent the filter kernel

H =

⎡

⎣

h0,0 h1,0 h2,0

h0,1 h1,1 h2,1

h0,2 h1,2 h2,2

⎤

⎦ =

⎡

⎣

−1 −2 0
−2 0 2

0 2 1

⎤

⎦

as a 2D Java array,

double[][] H = {{-1,-2, 0},

{-2, 0, 2},

{ 0, 2, 1}};

then the row and column indexes must be reversed in order to access
the correct elements. In this case we have the relation

hi,j ≡ H[j][i], (F.7)

that is, the ordering of the indexes for array H is not the same as for
the i/j coordinates of the filter kernel. In this case the first array
index (j) corresponds to the vertical coordinate and the second index
(i) to the horizontal coordinate. The advantage is that (as shown in
the aforementioned code segment) the definition of the filter kernel

773

Appendix F
Java Notes

can be written in the usual matrix form13 (otherwise we would have
to specify the transposed kernel matrix).

If a 2D array is merely used as an image container (whose con-
tents are never defined in matrix form) any convention can be used
for the ordering of the indexes. For example, the ImageJ method
getFloatArray() of class ImageProcessor, when called in the form

float[][] I = ip.getFloatArray();

returns the image as a 2D array (I), whose indexes are arranged in
the usual x/y order, that is,

I(x, y) ≡ I[x][y]. (F.8)

In this case, the image pixels are arranged in column-order, that is,
vertically adjacent elements are stored next to each other in memory.

Size of multi-dimensional arrays

The size of a multi-dimensional array can be obtained by querying
the size of its sub-arrays. For example, given the following 3D array
with dimensions P×Q×R,

int A[][][] = new int[P][Q][R];

the size of A along its three dimensions is obtained by the statements

int p = A.length; // = P

int q = A[0].length; // = Q

int r = A[0][0].length; // = R

This at least works for “rectangular” Java arrays, that is, multi-
dimensional arrays with all sub-arrays at the same level having iden-
tical lengths, which is warranted by the array initialization in the
aforementioned case. However, every 1D sub-array of A may be re-
placed by a suitable 1D array of different length,14 for example, by
the statement

A[0][0] = new int[0];

To avoid “index-out-of-bounds” errors, the length of each sub-array
should be determined dynamically. The following example shows a
“bullet-proof” iteration over all elements of a 3D array A whose sub-
arrays may have different lengths or may even be empty:

int A[][][];

...

for (int i = 0; i < A.length; i++) {

for (int j = 0; j < A[i].length; j++) {

for (int k = 0; k < A[i][j].length; k++) {

// safely access A[i][j][k]

}

}

}

13 This scheme is used, for example, in the implementation of the 3×3
filter plugin in Prog. 5.2 (Chapter 5, p. 95).

14 Even if the array A was originally declared final, the structure and
contents of its sub-arrays may be modified any time.

774

F.2 Arrays in JavaF.2.5 Arrays of Objects

In Java, as mentioned earlier, we can create arrays dynamically; that
is, the size of an array can be specified at runtime. This is convenient
because we can adapt the size of the arrays to the given problem. For
example, we could write

Corner[] corners = new Corner[n];

to create an array that can hold n objects of type Corner (as defined
in Chapter 7, Sec. 7.3). Note that the new array corners is not filled
with corners yet but initialized with null references, so the newly
created array holds no objects at all. We can insert a Corner object
into its first (or any other) cell, for example, by

corners[0] = new Corner(10, 20, 6789.0f);

F.2.6 Searching for Minimum and Maximum Values

Unfortunately, the standard Java API does not provide methods for
retrieving the minimum and maximum values of a numeric array.
Although these values are easily found by iterating over all elements
of the sequence, care must be taken regarding the initialization.

For example, finding the extreme values of a sequence of int-
values could be accomplished as follows:15

int[] A = ...

int minval = Integer.MAX_VALUE;

int maxval = Integer.MIN_VALUE;

for (int val : A) {

minval = Math.min(minval, val);

maxval = Math.max(maxval, val);

}

Note the use of the constants MIN_VALUE and MAX_VALUE, which are
defined for any numeric Java type.

However, in the case of floating-point values, these are not the
proper values for initialization.16 Instead, POSITIVE_INFINITY and
NEGATIVE_INFINITY should be used, as shown in the following code
segment:

double[] B = ...

double minval = Double.POSITIVE_INFINITY;

double maxval = Double.NEGATIVE_INFINITY;

for (double val : B) {

minval = Math.min(minval, val);

maxval = Math.max(maxval, val);

}

15 Alternatively, one could initialize minval and maxval with the first array
element A[0].

16 Because Double.MIN_VALUE and Float.MIN_VALUE specify to the small-
est positive values.

775

Appendix F
Java Notes

F.2.7 Sorting Arrays

Arrays can be sorted efficiently with the standard method

Arrays.sort(type[] arr)

in class java.util.Arrays, where arr can be any array of primitive
type (int, float, etc.) or an array of objects. In the latter case, the
array may not have null entries. Also, the class of every contained
object must implement the Comparable interface, that is, provide a
public method compareTo() that returns an int value of −1, 0, or
1, depending upon the intended ordering relation. For example, the
class Corner defines the compareTo() method as follows:

public class Corner implements Comparable<Corner> {

float x, y, q;

...

public int compareTo(Corner other) {

if (this.q > other.q) return -1;

else if (this.q < other.q) return 1;

else return 0;

}

}

776

References

1. Adobe Systems. “Adobe RGB (1998) Color Space Specification”
(2005). http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf.

2. M. Ahmed and R. Ward. A rotation invariant rule-based thinning
algorithm for character recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence 24(12), 1672–1678 (2002).
3. L. Alvarez, P.-L. Lions, and J.-M. Morel. Image selective

smoothing and edge detection by nonlinear diffusion (II). SIAM Jour-

nal on Numerical Analysis 29(3), 845–866 (1992).
4. Apache Software Foundation. “Commons Math: The Apache Com-

mons Mathematics Library”. http://commons.apache.org/math/index.

html.
5. K. Arbter, W. E. Snyder, H. Burkhardt, and G. Hirzinger.

Application of affine-invariant Fourier descriptors to recognition of
3-D objects. IEEE Transactions on Pattern Analysis and Machine

Intelligence 12(7), 640–647 (1990).
6. G. R. Arce, J. Bacca, and J. L. Paredes. Nonlinear filtering for

image analysis and enhancement. In A. Bovik, editor, “Handbook
of Image and Video Processing”, pp. 109–133. Academic Press, New
York, second ed. (2005).

7. C. Arcelli and G. Sanniti di Baja. A one-pass two-operation
process to detect the skeletal pixels on the 4-distance transform. IEEE

Transactions on Pattern Analysis and Machine Intelligence 11(4),
411–414 (1989).

8. K. Arnold, J. Gosling, and D. Holmes. “The Java Programming
Language”. Prentice Hall, fifth ed. (2012).

9. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate nearest neighbor
searching in fixed dimensions. Journal of the ACM 45(6), 891–923
(1998).

10. J. Astola, P. Haavisto, and Y. Neuvo. Vector median filters.
Proceedings of the IEEE 78(4), 678–689 (1990).

11. J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda. Unique-
ness of the Gaussian kernel for scale-space filtering. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 8(1), 26–33
(1986).

12. W. Bailer. “Writing ImageJ Plugins—A Tutorial” (2003). http:

//www.imagingbook.com.
13. S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying

framework: Part 1. Technical Report CMU-RI-TR-02-16, Robotics
Institute, Carnegie Mellon University (2003).

14. S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying
framework. International Journal of Computer Vision 56(3), 221–255
(2004).

15. D. H. Ballard and C. M. Brown. “Computer Vision”. Prentice
Hall, Englewood Cliffs, NJ (1982).

16. D. Barash. Fundamental relationship between bilateral filtering,
adaptive smoothing, and the nonlinear diffusion equation. IEEE

777
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf
http://commons.apache.org/math/index
http://www.imagingbook.com

References Transactions on Pattern Analysis and Machine Intelligence 24(6),
844–847 (2002).

17. C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quick-
hull algorithm for convex hulls. ACM Transactions on Mathematical

Software 22(4), 469–483 (1996).
18. M. Barni. A fast algorithm for 1-norm vector median filtering. IEEE

Transactions on Image Processing 6(10), 1452–1455 (1997).
19. H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C.

Wolf. Parametric correspondence and chamfer matching: two new
techniques for image matching. In R. Reddy, editor, “Proceedings
of the 5th International Joint Conference on Artificial Intelligence”,
pp. 659–663, Cambridge, MA (1977). William Kaufmann, Los Altos,
CA.

20. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. SURF:
Speeded up robust features. Computer Vision, Graphics, and Im-

age Processing: Image Understanding 110(3), 346–359 (2008).
21. J. S. Beis and D. G. Lowe. Shape indexing using approximate

nearest-neighbour search in high-dimensional spaces. In “Proceedings
of the 1997 Conference on Computer Vision and Pattern Recognition
(CVPR’97)”, pp. 1000–1006, Puerto Rico (June 1997).

22. R. Bencina and M. Kaltenbrunner. The design and evolution
of fiducials for the reacTIVision system. In “Proceedings of the 3rd
International Conference on Generative Systems in the Electronic
Arts”, Melbourne (2005).

23. J. Bernsen. Dynamic thresholding of grey-level images. In “Proceed-
ings of the International Conference on Pattern Recognition (ICPR)”,
pp. 1251–1255, Paris (October 1986). IEEE Computer Society.

24. C. M. Bishop. “Pattern Recognition and Machine Learning”.
Springer, New York (2006).

25. R. E. Blahut. “Fast Algorithms for Digital Signal Processing”.
Addison-Wesley, Reading, MA (1985).

26. I. Blayvas, A. Bruckstein, and R. Kimmel. Efficient computa-
tion of adaptive threshold surfaces for image binarization. Pattern

Recognition 39(1), 89–101 (2006).
27. J. Blinn. Consider the lowly 2×2 matrix. IEEE Computer Graphics

and Applications 16(2), 82–88 (1996).
28. J. Blinn. “Jim Blinn’s Corner: Notation, Notation, Notation”. Mor-

gan Kaufmann (2002).
29. J. Bloch. “Effective Java”. Addison-Wesley, second ed. (2008).
30. G. Borgefors. Distance transformations in digital images. Com-

puter Vision, Graphics and Image Processing 34, 344–371 (1986).
31. G. Borgefors. Hierarchical chamfer matching: a parametric edge

matching algorithm. IEEE Transactions on Pattern Analysis and

Machine Intelligence 10(6), 849–865 (1988).
32. A. I. Borisenko and I. E. Tarapov. “Vector and Tensor Analysis

with Applications”. Dover Publications, New York (1979).
33. J. E. Bresenham. A linear algorithm for incremental digital display

of circular arcs. Communications of the ACM 20(2), 100–106 (1977).
34. E. O. Brigham. “The Fast Fourier Transform and Its Applications”.

Prentice Hall, Englewood Cliffs, NJ (1988).
35. I. N. Bronstein and K. A. Semendjajew. “Handbook of Mathe-

matics”. Springer-Verlag, Berlin, third ed. (2007).
36. I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Müh-

lig. “Taschenbuch der Mathematik”. Verlag Harri Deutsch, fifth ed.
(2000).

37. M. Brown and D. Lowe. Invariant features from interest point
groups. In “Proceedings of the British Machine Vision Conference”,
pp. 656–665 (2002).

778

References38. H. Bunke and P. S.-P. Wang, editors. “Handbook of Character
Recognition and Document Image Analysis”. World Scientific, Singa-
pore (2000).

39. W. Burger and M. J. Burge. “Digital Image Processing—An
Algorithmic Introduction using Java”. Texts in Computer Science.
Springer, New York (2008).

40. W. Burger and M. J. Burge. “ImageJ Short Reference for Java
Developers” (2008). http://www.imagingbook.com.

41. P. J. Burt and E. H. Adelson. The Laplacian pyramid as a com-
pact image code. IEEE Transactions on Communications 31(4), 532–
540 (1983).

42. J. F. Canny. A computational approach to edge detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence 8(6),
679–698 (1986).

43. K. R. Castleman. “Digital Image Processing”. Prentice Hall, Upper
Saddle River, NJ (1995).

44. E. E. Catmull and R. Rom. A class of local interpolating splines. In
R. E. Barnhill and R. F. Riesenfeld, editors, “Computer Aided
Geometric Design”, pp. 317–326. Academic Press, New York (1974).

45. F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll. Image se-
lective smoothing and edge detection by nonlinear diffusion. SIAM

Journal on Numerical Analysis 29(1), 182–193 (1992).

46. C. I. Chang, Y. Du, J. Wang, S. M. Guo, and P. D. Thouin. Sur-
vey and comparative analysis of entropy and relative entropy thresh-
olding techniques. IEE Proceedings—Vision, Image and Signal Pro-

cessing 153(6), 837–850 (2006).

47. F. Chang, C. J. Chen, and C. J. Lu. A linear-time component-
labeling algorithm using contour tracing technique. Computer Vision,

Graphics, and Image Processing: Image Understanding 93(2), 206–
220 (2004).

48. P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Bar-
laud. Two deterministic half-quadratic regularization algorithms for
computed imaging. In “Proceedings IEEE International Conference
on Image Processing (ICIP-94)”, vol. 2, pp. 168–172, Austin (Novem-
ber 1994).

49. Y. Chen and G. Leedham. Decompose algorithm for threshold-
ing degraded historical document images. IEE Proceedings—Vision,

Image and Signal Processing 152(6), 702–714 (2005).

50. H. D. Cheng, X. H. Jiang, Y. Sun, and J. Wang. Color image
segmentation: advances and prospects. Pattern Recognition 34(12),
2259–2281 (2001).

51. P. R. Cohen and E. A. Feigenbaum. “The Handbook of Artificial
Intelligence”. William Kaufmann, Los Altos, CA (1982).

52. B. Coll, J. L. Lisani, and C. Sbert. Color images filtering by
anisotropic diffusion. In “Proceedings of the IEEE International Con-
ference on Systems, Signals, and Image Processing (IWSSIP)”, pp.
305–308, Chalkida, Greece (2005).

53. D. Comaniciu and P. Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Transactions on Pattern Analysis and

Machine Intelligence 24(5), 603–619 (2002).

54. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
“Introduction to Algorithms”. MIT Press, Cambridge, MA, second
ed. (2001).

55. R. L. Cosgriff. Identification of shape. Technical Report 820-11,
Antenna Laboratory, Ohio State University, Department of Electrical
Engineering, Columbus, Ohio (December 1960).

779

http://www.imagingbook.com

References 56. A. Criminisi, I. D. Reid, and A. Zisserman. A plane measuring
device. Image and Vision Computing 17(8), 625–634 (1999).

57. T. R. Crimmins. A complete set of Fourier descriptors for two-
dimensional shapes. IEEE Transactions on Systems, Man, and Cy-

bernetics 12(6), 848–855 (1982).
58. F. C. Crow. Summed-area tables for texture mapping. SIGGRAPH

Computer Graphics 18(3), 207–212 (1984).
59. A. Cumani. Edge detection in multispectral images. Computer Vi-

sion, Graphics and Image Processing 53(1), 40–51 (1991).
60. A. Cumani. Efficient contour extraction in color images. In “Pro-

ceedings of the Third Asian Conference on Computer Vision”, ACCV,
pp. 582–589, Hong Kong (January 1998). Springer.

61. L. S. Davis. A survey of edge detection techniques. Computer Graph-

ics and Image Processing 4, 248–270 (1975).
62. R. Deriche. Using Canny’s criteria to derive a recursively imple-

mented optimal edge detector. International Journal of Computer

Vision 1(2), 167–187 (1987).
63. S. Di Zenzo. A note on the gradient of a multi-image. Computer

Vision, Graphics and Image Processing 33(1), 116–125 (1986).
64. R. O. Duda, P. E. Hart, and D. G. Stork. “Pattern Classifica-

tion”. Wiley, New York (2001).
65. F. Durand and J. Dorsey. Fast bilateral filtering for the display

of high-dynamic-range images. In “Proceedings of the 29th annual
conference on Computer graphics and interactive techniques (SIG-
GRAPH’02)”, pp. 257–266, San Antonio, Texas (July 2002).

66. B. Eckel. “Thinking in Java”. Prentice Hall, Englewood Cliffs, NJ,
fourth ed. (2006). Earlier versions available online.

67. M. Elad. On the origin of the bilateral filter and ways to improve it.
IEEE Transactions on Image Processing 11(10), 1141–1151 (2002).

68. A. Ferreira and S. Ubeda. Computing the medial axis transform
in parallel with eight scan operations. IEEE Transactions on Pattern

Analysis and Machine Intelligence 21(3), 277–282 (1999).
69. N. I. Fisher. “Statistical Analysis of Circular Data”. Cambridge

University Press (1995).
70. D. Flanagan. “Java in a Nutshell”. O’Reilly, Sebastopol, CA, fifth

ed. (2005).
71. L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink,

and M. A. Viergever. Scale and the differential structure of images.
Image and Vision Computing 10(6), 376–388 (1992).

72. J. Flusser. On the independence of rotation moment invariants.
Pattern Recognition 33(9), 1405–1410 (2000).

73. J. Flusser. Moment forms invariant to rotation and blur in arbitrary
number of dimensions. IEEE Transactions on Pattern Analysis and

Machine Intelligence 25(2), 234–246 (2003).
74. J. Flusser, B. Zitova, and T. Suk. “Moments and Moment In-

variants in Pattern Recognition”. John Wiley & Sons (2009).
75. J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. “Com-

puter Graphics: Principles and Practice”. Addison-Wesley, Reading,
MA, second ed. (1996).

76. A. Ford and A. Roberts. “Colour Space Conversions” (1998).
http://www.poynton.com/PDFs/coloureq.pdf.

77. W. Förstner and E. Gülch. A fast operator for detection and
precise location of distinct points, corners and centres of circular fea-
tures. In A. Grün and H. Beyer, editors, “Proceedings, Interna-
tional Society for Photogrammetry and Remote Sensing Intercommis-
sion Conference on the Fast Processing of Photogrammetric Data”,
pp. 281–305, Interlaken (June 1987).

780

http://www.poynton.com/PDFs/coloureq.pdf

References78. D. A. Forsyth and J. Ponce. “Computer Vision—A Modern Ap-
proach”. Prentice Hall, Englewood Cliffs, NJ (2003).

79. H. Freeman. Computer processing of line drawing images. ACM

Computing Surveys 6(1), 57–97 (1974).
80. J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algo-

rithm for finding best matches in logarithmic expected time. ACM

Transactions on Mathematical Software 3(3), 209–226 (1977).
81. D. L. Fritzsche. A systematic method for character recognition.

Technical Report 1222-4, Antenna Laboratory, Ohio State University,
Department of Electrical Engineering, Columbus, Ohio (November
1961).

82. M. Gervautz and W. Purgathofer. A simple method for color
quantization: octree quantization. In A. Glassner, editor, “Graph-
ics Gems I”, pp. 287–293. Academic Press, New York (1990).

83. T. Gevers, A. Gijsenij, J. van de Weijer, and J.-M. Geuse-
broek. “Color in Computer Vision”. Wiley (2012).

84. T. Gevers and H. Stokman. Classifying color edges in video into
shadow-geometry, highlight, or material transitions. IEEE Transac-

tions on Multimedia 5(2), 237–243 (2003).
85. T. Gevers, J. Van De Weijer, and H. Stokman. Color feature

detection. In R. Lukac and K. N. Plataniotis, editors, “Color
Image Processing: Methods and Applications”, pp. 203–226. CRC
Press (2006).

86. C. A. Glasbey. An analysis of histogram-based thresholding algo-
rithms. Computer Vision, Graphics, and Image Processing: Graphical

Models and Image Processing 55(6), 532–537 (1993).
87. A. S. Glassner. “Principles of Digital Image Synthesis”. Morgan

Kaufmann Publishers, San Francisco (1995).
88. R. C. Gonzalez and R. E. Woods. “Digital Image Processing”.

Addison-Wesley, Reading, MA (1992).
89. R. C. Gonzalez and R. E. Woods. “Digital Image Processing”.

Pearson Prentice Hall, Upper Saddle River, NJ, third ed. (2008).
90. M. Grabner, H. Grabner, and H. Bischof. Fast approximated

SIFT. In “Proceedings of the 7th Asian Conference of Computer
Vision”, pp. 918–927 (2006).

91. R. L. Graham. An efficient algorithm for determining the convex
hull of a finite planar set. Information Processing Letters 1, 132–133
(1972).

92. R. L. Graham, D. E. Knuth, and O. Patashnik. “Concrete
Mathematics: A Foundation for Computer Science”. Addison-Wesley,
Reading, MA, second ed. (1994).

93. G. H. Granlund. Fourier preprocessing for hand print charac-
ter recognition. IEEE Transactions on Computers 21(2), 195–201
(1972).

94. P. Green. Colorimetry and colour differences. In P. Green and
L. MacDonald, editors, “Colour Engineering”, ch. 3, pp. 40–77.
Wiley, New York (2002).

95. F. Guichard, L. Moisan, and J.-M. Morel. A review of P.D.E.
models in image processing and image analysis. J. Phys. IV France

12(1), 137–154 (2002).
96. W. W. Hager. “Applied Numerical Linear Algebra”. Prentice Hall

(1988).
97. E. L. Hall. “Computer Image Processing and Recognition”. Aca-

demic Press, New York (1979).
98. A. Hanbury. Circular statistics applied to colour images. In “Pro-

ceedings of the 8th Computer Vision Winter Workshop”, pp. 55–60,
Valtice, Czech Republic (February 2003).

781

References 99. J. C. Hancock. “An Introduction to the Principles of Communica-
tion Theory”. McGraw-Hill (1961).

100. I. Hannah, D. Patel, and R. Davies. The use of variance and en-
tropic thresholding methods for image segmentation. Pattern Recog-

nition 28(4), 1135–1143 (1995).
101. W. W. Harman. “Principles of the Statistical Theory of Communi-

cation”. McGraw-Hill (1963).
102. C. G. Harris and M. Stephens. A combined corner and edge

detector. In C. J. Taylor, editor, “4th Alvey Vision Conference”,
pp. 147–151, Manchester (1988).

103. R. Hartley and A. Zisserman. “Multiple View Geometry in Com-
puter Vision”. Cambridge University Press, 2 ed. (2013).

104. P. S. Heckbert. Color image quantization for frame buffer display.
Computer Graphics 16(3), 297–307 (1982).

105. P. S. Heckbert. Fundamentals of texture mapping and image warp-
ing. Master’s thesis, University of California, Berkeley, Dept. of Elec-
trical Engineering and Computer Science (1989).

106. R. Hess. An open-source SIFT library. In “Proceedings of the Inter-
national Conference on Multimedia, MM’10”, pp. 1493–1496, Firenze,
Italy (October 2010).

107. J. Holm, I. Tastl, L. Hanlon, and P. Hubel. Color processing
for digital photography. In P. Green and L. MacDonald, editors,
“Colour Engineering”, ch. 9, pp. 179–220. Wiley, New York (2002).

108. C. M. Holt, A. Stewart, M. Clint, and R. H. Perrott. An
improved parallel thinning algorithm. Communications of the ACM

30(2), 156–160 (1987).
109. V. Hong, H. Palus, and D. Paulus. Edge preserving filters on

color images. In “Proceedings Int’l Conf. on Computational Science,
ICCS”, pp. 34–40, Kraków, Poland (2004).

110. B. K. P. Horn. “Robot Vision”. MIT-Press, Cambridge, MA (1982).
111. P. V. C. Hough. Method and means for recognizing complex pat-

terns. US Patent 3,069,654 (1962).
112. M. K. Hu. Visual pattern recognition by moment invariants. IEEE

Transactions on Information Theory 8, 179–187 (1962).
113. A. Huertas and G. Medioni. Detection of intensity changes with

subpixel accuracy using Laplacian-Gaussian masks. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 8(5), 651–664
(1986).

114. R. W. G. Hunt. “The Reproduction of Colour”. Wiley, New York,
sixth ed. (2004).

115. J. Hutchinson. Culture, communication, and an information age
madonna. IEEE Professional Communications Society Newsletter

45(3), 1, 5–7 (2001).
116. J. Illingworth and J. Kittler. Minimum error thresholding. Pat-

tern Recognition 19(1), 41–47 (1986).
117. J. Illingworth and J. Kittler. A survey of the Hough transform.

Computer Vision, Graphics and Image Processing 44, 87–116 (1988).
118. International Color Consortium. “Specification ICC.1:2010-12 (Pro-

file Version 4.3.0.0): Image Technology Colour Management—
Architecture, Profile Format, and Data Structure” (2010). http:

//www.color.org.
119. International Electrotechnical Commission, IEC, Geneva. “IEC

61966-2-1: Multimedia Systems and Equipment—Colour Measure-
ment and Management, Part 2-1: Colour Management—Default
RGB Colour Space—sRGB” (1999). http://www.iec.ch.

120. International Organization for Standardization, ISO, Geneva. “ISO
13655:1996, Graphic Technology—Spectral Measurement and Colori-
metric Computation for Graphic Arts Images” (1996).

782

http://www.color.org
http://www.iec.ch

References121. International Organization for Standardization, ISO, Geneva. “ISO
15076-1:2005, Image Technology Colour Management—Architecture,
Profile Format, and Data Structure: Part 1” (2005). Based on
ICC.1:2004-10.

122. International Telecommunications Union, ITU, Geneva. “ITU-R Rec-
ommendation BT.709-3: Basic Parameter Values for the HDTV Stan-
dard for the Studio and for International Programme Exchange”
(1998).

123. International Telecommunications Union, ITU, Geneva. “ITU-R Rec-
ommendation BT.601-5: Studio Encoding Parameters of Digital Tele-
vision for Standard 4:3 and Wide-Screen 16:9 Aspect Ratios” (1999).

124. K. Jack. “Video Demystified—A Handbook for the Digital Engi-
neer”. LLH Publishing, Eagle Rock, VA, third ed. (2001).

125. B. Jähne. “Practical Handbook on Image Processing for Scientific
Applications”. CRC Press, Boca Raton, FL (1997).

126. B. Jähne. “Digitale Bildverarbeitung”. Springer-Verlag, Berlin, fifth
ed. (2002).

127. B. Jähne. “Digital Image Processing”. Springer-Verlag, Berlin, sixth
ed. (2005).

128. A. K. Jain. “Fundamentals of Digital Image Processing”. Prentice
Hall, Englewood Cliffs, NJ (1989).

129. R. Jain, R. Kasturi, and B. G. Schunck. “Machine Vision”.
McGraw-Hill, Boston (1995).

130. Y. Jia and T. Darrell. Heavy-tailed distances for gradient based
image descriptors. In “Proceedings of the Twenty-Fifth Annual Con-
ference on Neural Information Processing Systems (NIPS)”, Grenada,
Spain (December 2011).

131. X. Y. Jiang and H. Bunke. Simple and fast computation of mo-
ments. Pattern Recognition 24(8), 801–806 (1991).

132. L. Jin and D. Li. A switching vector median filter based on the
CIELAB color space for color image restoration. Signal Processing

87(6), 1345–1354 (2007).
133. J. N. Kapur, P. K. Sahoo, and A. K. C. Wong. A new

method for gray-level picture thresholding using the entropy of the
histogram. Computer Vision, Graphics, and Image Processing 29,
273–285 (1985).

134. B. Kimia. A large binary image database. Technical Report, LEMS
Vision Group, Brown University (2002).

135. J. King. Engineering color at Adobe. In P. Green and L. Mac-
Donald, editors, “Colour Engineering”, ch. 15, pp. 341–369. Wiley,
New York (2002).

136. R. A. Kirsch. Computer determination of the constituent structure
of biological images. Computers in Biomedical Research 4, 315–328
(1971).

137. L. Kitchen and A. Rosenfeld. Gray-level corner detection. Pat-

tern Recognition Letters 1, 95–102 (1982).
138. D. E. Knuth. “The Art of Computer Programming, Volume 2:

Seminumerical Algorithms”. Addison-Wesley, third ed. (1997).
139. J. J. Koenderink. The structure of images. Biological Cybernetics

50(5), 363–370 (1984).
140. A. Koschan and M. A. Abidi. Detection and classification of edges

in color images. IEEE Signal Processing Magazine 22(1), 64–73
(2005).

141. A. Koschan and M. A. Abidi. “Digital Color Image Processing”.
Wiley (2008).

142. P. Kovesi. Arbitrary Gaussian filtering with 25 additions and 5
multiplications per pixel. Technical Report UWA-CSSE-09-002, The

783

References University of Western Australia, School of Computer Science and
Software Engineering (2009).

143. F. P. Kuhl and C. R. Giardina. Elliptic Fourier features of a closed
contour. Computer Graphics and Image Processing 18(3), 236–258
(1982).

144. M. Kuwahara, K. Hachimura, S. Eiho, and M. Kinoshita.
Processing of RI-angiocardiographic image. In K. Preston and
M. Onoe, editors, “Digital Processing of Biomedical Images”, pp.
187–202. Plenum, New York (1976).

145. D. C. Lay. “Linear Algebra and Its Applications”. Pearson, Boston,
third ed. (2006).

146. P. E. Lestrel, editor. “Fourier Descriptors and Their Applications
in Biology”. Cambridge University Press, New York (1997).

147. P.-S. Liao, T.-S. Chen, and P.-C. Chung. A fast algorithm for
multilevel thresholding. Journal of Information Science and Engi-

neering 17, 713–727 (2001).
148. C. C. Lin and R. Chellappa. Classification of partial 2-D shapes

using Fourier descriptors. IEEE Transactions on Pattern Analysis

and Machine Intelligence 9(5), 686–690 (1987).
149. B. J. Lindbloom. Accurate color reproduction for computer graphics

applications. SIGGRAPH Computer Graphics 23(3), 117–126 (1989).
150. T. Lindeberg. “Scale-Space Theory in Computer Vision”. Kluwer

Academic Publishers (1994).
151. T. Lindeberg. Feature detection with automatic scale selection.

International Journal of Computer Vision 30(2), 77–116 (1998).
152. D. G. Lowe. Object recognition from local scale-invariant features.

In “Proceedings of the 7th IEEE International Conference on Com-
puter Vision”, vol. 2 of “ICCV’99”, pp. 1150–1157, Kerkyra, Corfu,
Greece (1999).

153. D. G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision 60, 91–110 (2004).

154. B. D. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision. In P. J. Hayes, editor,
“Proceedings of the 7th International Joint Conference on Artificial
Intelligence IJCAI’81”, pp. 674–679, Vancouver, BC (1981). William
Kaufmann, Los Altos, CA.

155. R. Lukac, B. Smolka, and K. N. Plataniotis. Sharpening vector
median filters. Signal Processing 87(9), 2085–2099 (2007).

156. R. Lukac, B. Smolka, K. N. Plataniotis, and A. N. Venet-
sanopoulos. Vector sigma filters for noise detection and removal in
color images. Journal of Visual Communication and Image Repre-

sentation 17(1), 1–26 (2006).
157. P. C. Mahalanobis. On the generalised distance in statistics. Pro-

ceedings of the National Institute of Sciences of India 2(1), 49–55
(1936).

158. S. Mallat. “A Wavelet Tour of Signal Processing”. Academic Press,
New York (1999).

159. C. Mancas-Thillou and B. Gosselin. Color text extraction with
selective metric-based clustering. Computer Vision, Graphics, and

Image Processing: Image Understanding 107(1-2), 97–107 (2007).
160. M. J. Maron and R. J. Lopez. “Numerical Analysis”. Wadsworth

Publishing, third ed. (1990).
161. D. Marr and E. Hildreth. Theory of edge detection. Proceedings

of the Royal Society of London, Series B 207, 187–217 (1980).
162. E. H. W. Meijering, W. J. Niessen, and M. A. Viergever.

Quantitative evaluation of convolution-based methods for medical
image interpolation. Medical Image Analysis 5(2), 111–126 (2001).

784

References163. J. Miano. “Compressed Image File Formats”. ACM Press, Addison-
Wesley, Reading, MA (1999).

164. D. P. Mitchell and A. N. Netravali. Reconstruction filters in
computer-graphics. In R. J. Beach, editor, “Proceedings of the
15th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH’88”, pp. 221–228, Atlanta, GA (1988). ACM
Press, New York.

165. P. A. Mlsna and J. J. Rodriguez. Gradient and Laplacian-type
edge detection. In A. Bovik, editor, “Handbook of Image and Video
Processing”, pp. 415–431. Academic Press, New York (2000).

166. P. A. Mlsna and J. J. Rodriguez. Gradient and Laplacian-type
edge detection. In A. Bovik, editor, “Handbook of Image and Video
Processing”, pp. 415–431. Academic Press, New York, second ed.
(2005).

167. J. Morovic. “Color Gamut Mapping”. Wiley (2008).
168. J. D. Murray and W. VanRyper. “Encyclopedia of Graphics File

Formats”. O’Reilly, Sebastopol, CA, second ed. (1996).
169. M. Nadler and E. P. Smith. “Pattern Recognition Engineering”.

Wiley, New York (1993).
170. M. Nagao and T. Matsuyama. Edge preserving smoothing. Com-

puter Graphics and Image Processing 9(4), 394–407 (1979).
171. S. K. Naik and C. A. Murthy. Standardization of edge magnitude

in color images. IEEE Transactions on Image Processing 15(9), 2588–
2595 (2006).

172. W. Niblack. “An Introduction to Digital Image Processing”.
Prentice-Hall (1986).

173. M. Nitzberg and T. Shiota. Nonlinear image filtering with edge
and corner enhancement. IEEE Transactions on Pattern Analysis

and Machine Intelligence 14(8), 826–833 (1992).
174. M. Nixon and A. Aguado. “Feature Extraction and Image Pro-

cessing”. Academic Press, second ed. (2008).
175. W. Oh and W. B. Lindquist. Image thresholding by indicator

kriging. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence 21(7), 590–602 (1999).
176. A. V. Oppenheim, R. W. Shafer, and J. R. Buck. “Discrete-Time

Signal Processing”. Prentice Hall, Englewood Cliffs, NJ, second ed.
(1999).

177. N. Otsu. A threshold selection method from gray-level histograms.
IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66
(1979).

178. N. R. Pal and S. K. Pal. A review on image segmentation tech-
niques. Pattern Recognition 26(9), 1277–1294 (1993).

179. S. Paris and F. Durand. A fast approximation of the bilateral
filter using a signal processing approach. International Journal of

Computer Vision 81(1), 24–52 (2007).
180. T. Pavlidis. “Algorithms for Graphics and Image Processing”. Com-

puter Science Press / Springer-Verlag, New York (1982).
181. O. Pele and M. Werman. A linear time histogram metric for

improved SIFT matching. In “Proceedings of the 10th European
Conference on Computer Vision (ECCV’08)”, pp. 495–508, Marseille,
France (October 2008).

182. P. Perona and J. Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and

Machine Intelligence 12(4), 629–639 (1990).
183. E. Persoon and K.-S. Fu. Shape discrimination using Fourier de-

scriptors. IEEE Transactions on Systems, Man and Cybernetics 7(3),
170–179 (1977).

785

References 184. E. Persoon and K.-S. Fu. Shape discrimination using Fourier de-
scriptors. IEEE Transactions on Pattern Analysis and Machine In-

telligence 8(3), 388–397 (1986).
185. T. Q. Pham and L. J. van Vliet. Separable bilateral filtering for

fast video preprocessing. In “Proceedings IEEE International Con-
ference on Multimedia and Expo”, pp. CD1–4, Los Alamitos, USA
(July 2005). IEEE Computer Society.

186. K. N. Plataniotis and A. N. Venetsanopoulos. “Color Image
Processing and Applications”. Springer (2000).

187. F. Porikli. Constant time O(1) bilateral filtering. In “Proceedings
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)”,
pp. 1–8, Anchorage (June 2008).

188. C. A. Poynton. “Digital Video and HDTV Algorithms and Inter-
faces”. Morgan Kaufmann Publishers, San Francisco (2003).

189. S. Prakash and F. V. D. Heyden. Normalisation of Fourier de-
scriptors of planar shapes. Electronics Letters 19(20), 828–830 (1983).

190. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. “Numerical Recipes”. Cambridge University Press, third
ed. (2007).

191. J. Prewitt. Object enhancement and extraction. In B. Lipkin and
A. Rosenfeld, editors, “Picture Processing and Psychopictorics”,
pp. 415–431. Academic Press (1970).

192. R. R. Rakesh, P. Chaudhuri, and C. A. Murthy. Thresholding in
edge detection: a statistical approach. IEEE Transactions on Image

Processing 13(7), 927–936 (2004).
193. W. S. Rasband. “ImageJ”. U.S. National Institutes of Health, MD

(1997–2007). http://rsb.info.nih.gov/ij/.
194. C. E. Reid and T. B. Passin. “Signal Processing in C”. Wiley, New

York (1992).
195. D. Rich. Instruments and methods for colour measurement. In

P. Green and L. MacDonald, editors, “Colour Engineering”, ch. 2,
pp. 19–48. Wiley, New York (2002).

196. C. W. Richard and H. Hemami. Identification of three-dimensional
objects using Fourier descriptors of the boundary curve. IEEE Trans-

actions on Systems, Man, and Cybernetics 4(4), 371–378 (1974).
197. I. E. G. Richardson. “H.264 and MPEG-4 Video Compression”.

Wiley, New York (2003).
198. T. W. Ridler and S. Calvard. Picture thresholding using an it-

erative selection method. IEEE Transactions on Systems, Man, and

Cybernetics 8(8), 630–632 (1978).
199. L. G. Roberts. Machine perception of three-dimensional solids.

In J. T. Tippet, editor, “Optical and Electro-Optical Information
Processing”, pp. 159–197. MIT Press, Cambridge, MA (1965).

200. G. Robinson. Edge detection by compass gradient masks. Computer

Graphics and Image Processing 6(5), 492–501 (1977).
201. P. I. Rockett. An improved rotation-invariant thinning algorithm.

IEEE Transactions on Pattern Analysis and Machine Intelligence

27(10), 1671–1674 (2005).
202. A. Rosenfeld and J. L. Pfaltz. Sequential operations in digital

picture processing. Journal of the ACM 12, 471–494 (1966).
203. J. C. Russ. “The Image Processing Handbook”. CRC Press, Boca

Raton, FL, third ed. (1998).
204. P. K. Sahoo, S. Soltani, A. K. C. Wong, and Y. C. Chen. A

survey of thresholding techniques. Computer Vision, Graphics and

Image Processing 41(2), 233–260 (1988).
205. G. Sapiro. “Geometric Partial Differential Equations and Image

Analysis”. Cambridge University Press (2001).
786

http://rsb.info.nih.gov/ij/

References206. G. Sapiro and D. L. Ringach. Anisotropic diffusion of multivalued
images with applications to color filtering. IEEE Transactions on

Image Processing 5(11), 1582–1586 (1996).
207. J. Sauvola and M. Pietikäinen. Adaptive document image bina-

rization. Pattern Recognition 33(2), 1135–1143 (2000).
208. H. Schildt. “Java: A Beginner’s Guide”. Mcgraw-Hill Osborne

Media (2014).
209. C. Schmid and R. Mohr. Local grayvalue invariants for image

retrieval. IEEE Transactions on Pattern Analysis and Machine In-

telligence 19(5), 530–535 (1997).
210. C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest

point detectors. International Journal of Computer Vision 37(2),
151–172 (2000).

211. Y. Schwarzer, editor. “Die Farbenlehre Goethes”. Westerweide
Verlag, Witten (2004).

212. M. Seul, L. O’Gorman, and M. J. Sammon. “Practical Algorithms
for Image Analysis”. Cambridge University Press, Cambridge (2000).

213. M. Sezgin and B. Sankur. Survey over image thresholding tech-
niques and quantitative performance evaluation. Journal of Elec-

tronic Imaging 13(1), 146–165 (2004).
214. L. G. Shapiro and G. C. Stockman. “Computer Vision”. Prentice

Hall, Englewood Cliffs, NJ (2001).
215. G. Sharma and H. J. Trussell. Digital color imaging. IEEE

Transactions on Image Processing 6(7), 901–932 (1997).
216. F. Y. Shih and S. Cheng. Automatic seeded region growing for color

image segmentation. Image and Vision Computing 23(10), 877–886
(2005).

217. N. Silvestrini and E. P. Fischer. “Farbsysteme in Kunst und
Wissenschaft”. DuMont, Cologne (1998).

218. S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc. Fea-
ture tracking and matching in video using programmable graphics
hardware. Machine Vision and Applications 22(1), 207–217 (2011).

219. Y. Sirisathitkul, S. Auwatanamongkol, and B. Uyyanonvara.
Color image quantization using distances between adjacent colors
along the color axis with highest color variance. Pattern Recogni-

tion Letters 25, 1025–1043 (2004).
220. S. M. Smith and J. M. Brady. SUSAN—a new approach to low

level image processing. International Journal of Computer Vision

23(1), 45–78 (1997).
221. B. Smolka, M. Szczepanski, K. N. Plataniotis, and A. N.

Venetsanopoulos. Fast modified vector median filter. In “Pro-
ceedings of the 9th International Conference on Computer Analysis
of Images and Patterns”, CAIP’01, pp. 570–580, London, UK (2001).
Springer-Verlag.

222. M. Sonka, V. Hlavac, and R. Boyle. “Image Processing, Analysis
and Machine Vision”. PWS Publishing, Pacific Grove, CA, second ed.
(1999).

223. M. Spiegel and S. Lipschutz. “Schaum’s Outline of Vector Anal-
ysis”. McGraw-Hill, New York, second ed. (2009).

224. M. Stokes and M. Anderson. “A Standard Default Color Space
for the Internet—sRGB”. Hewlett-Packard, Microsoft, www.w3.org/

Graphics/Color/sRGB.html (1996).
225. S. Süsstrunk. Managing color in digital image libraries. In

P. Green and L. MacDonald, editors, “Colour Engineering”,
ch. 17, pp. 385–419. Wiley, New York (2002).

226. B. Tang, G. Sapiro, and V. Caselles. Color image enhancement
via chromaticity diffusion. IEEE Transactions on Image Processing

10(5), 701–707 (2001).
787

http://www.w3.org/

References 227. C.-Y. Tang, Y.-L. Wu, M.-K. Hor, and W.-H. Wang. Modified
SIFT descriptor for image matching under interference. In “Proceed-
ings of the International Conference on Machine Learning and Cy-
bernetics (ICMLC)”, pp. 3294–3300, Kunming, China (July 2008).

228. S. Theodoridis and K. Koutroumbas. “Pattern Recognition”.
Academic Press, New York (1999).

229. C. Tomasi and R. Manduchi. Bilateral filtering for gray and color
images. In “Proceedings Int’l Conf. on Computer Vision”, ICCV’98,
pp. 839–846, Bombay (1998).

230. F. Tomita and S. Tsuji. Extraction of multiple regions by smooth-
ing in selected neighborhoods. IEEE Transactions on Systems, Man,

and Cybernetics 7, 394–407 (1977).

231. Ø. D. Trier and T. Taxt. Evaluation of binarization methods
for document images. IEEE Transactions on Pattern Analysis and

Machine Intelligence 17(3), 312–315 (1995).

232. E. Trucco and A. Verri. “Introductory Techniques for 3-D Com-
puter Vision”. Prentice Hall, Englewood Cliffs, NJ (1998).

233. D. Tschumperlé. “PDEs Based Regularization of Multivalued Im-
ages and Applications”. PhD thesis, Université de Nice, Sophia An-
tipolis, France (2005).

234. D. Tschumperlé. Fast anisotropic smoothing of multi-valued images
using curvature-preserving PDEs. International Journal of Computer

Vision 68(1), 65–82 (2006).

235. D. Tschumperlé and R. Deriche. Diffusion PDEs on vector-valued
images: local approach and geometric viewpoint. IEEE Signal Pro-

cessing Magazine 19(5), 16–25 (2002).

236. D. Tschumperlé and R. Deriche. Vector-valued image regular-
ization with PDEs: A common framework for different applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence

27(4), 506–517 (2005).

237. K. Turkowski. Filters for common resampling tasks. In A. Glass-
ner, editor, “Graphics Gems I”, pp. 147–165. Academic Press, New
York (1990).

238. T. Tuytelaars and L. J. Van Gool. Matching widely separated
views based on affine invariant regions. International Journal of Com-

puter Vision 59(1), 61–85 (2004).

239. J. van de Weijer. “Color Features and Local Structure in Images”.
PhD thesis, University of Amsterdam (2005).

240. M. I. Vardavoulia, I. Andreadis, and P. Tsalides. A new vector
median filter for colour image processing. Pattern Recognition Letters

22(6-7), 675–689 (2001).

241. A. Vedaldi and B. Fulkerson. VLFeat: An open and portable
library of computer vision algorithms. http://www.vlfeat.org/ (2008).

242. F. R. D. Velasco. Thresholding using the ISODATA clustering
algorithm. IEEE Transactions on Systems, Man, and Cybernetics

10(11), 771–774 (1980).

243. D. Vernon. “Machine Vision”. Prentice Hall (1999).

244. P. Viola and M. Jones. Robust real-time face detection. Interna-

tional Journal of Computer Vision 57(2), 137–154 (2004).

245. T. P. Wallace and P. A. Wintz. An efficient three-dimensional
aircraft recognition algorithm using normalized Fourier descriptors.
Computer Vision, Graphics and Image Processing 13(2), 99–126
(1980).

246. D. Wallner. Color management and transformation through ICC
profiles. In P. Green and L. MacDonald, editors, “Colour Engi-
neering”, ch. 11, pp. 247–261. Wiley, New York (2002).

788

http://www.vlfeat.org/

References247. A. Watt. “3D Computer Graphics”. Addison-Wesley, Reading, MA,
third ed. (1999).

248. A. Watt and F. Policarpo. “The Computer Image”. Addison-
Wesley, Reading, MA (1999).

249. J. Weickert. “Anisotropic Diffusion in Image Processing”. PhD
thesis, Universität Kaiserslautern, Fachbereich Mathematik (1996).

250. J. Weickert. A review of nonlinear diffusion filtering. In B. M.
ter Haar Romeny, L. Florack, J. J. Koenderink, and M. A.
Viergever, editors, “Proceedings First International Conference on
Scale-Space Theory in Computer Vision, Scale-Space’97”, Lecture
Notes in Computer Science, pp. 3–28, Utrecht (July 1997). Springer.

251. J. Weickert. Coherence-enhancing diffusion filtering. International

Journal of Computer Vision 31(2/3), 111–127 (1999).
252. J. Weickert. Coherence-enhancing diffusion of colour images. Image

and Vision Computing 17(3/4), 201–212 (1999).
253. B. Weiss. Fast median and bilateral filtering. ACM Transactions on

Graphics 25(3), 519–526 (2006).
254. M. Welk, J. Weickert, F. Becker, C. Schnörr, C. Feddern,

and B. Burgeth. Median and related local filters for tensor-valued
images. Signal Processing 87(2), 291–308 (2007).

255. P. Wendykier. “High Performance Java Software for Image Pro-
cessing”. PhD thesis, Emory University (2009).

256. G. Wolberg. “Digital Image Warping”. IEEE Computer Society
Press, Los Alamitos, CA (1990).

257. M.-F. Wu and H.-T. Sheu. Contour-based correspondence using
Fourier descriptors. IEE Proceedings—Vision, Image and Signal Pro-

cessing 144(3), 150–160 (1997).
258. G. Wyszecki and W. S. Stiles. “Color Science: Concepts and

Methods, Quantitative Data and Formulae”. Wiley–Interscience, New
York, second ed. (2000).

259. Q. Yang, K.-H. Tan, and N. Ahuja. Real-time O(1) bilateral fil-
tering. In “Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR)”, pp. 557–564, Miami (2009).

260. S. D. Yanowitz and A. M. Bruckstein. A new method for image
segmentation. Computer Vision, Graphics, and Image Processing

46(1), 82–95 (1989).
261. G. W. Zack, W. E. Rogers, and S. A. Latt. Automatic mea-

surement of sister chromatid exchange frequency. Journal of Histo-

chemistry and Cytochemistry 25(7), 741–753 (1977).
262. C. T. Zahn and R. Z. Roskies. Fourier descriptors for plane closed

curves. IEEE Transactions on Computers 21(3), 269–281 (1972).
263. P. Zamperoni. A note on the computation of the enclosed area

for contour-coded binary objects. Signal Processing 3(3), 267–271
(1981).

264. E. Zeidler, editor. “Teubner-Taschenbuch der Mathematik”. B. G.
Teubner Verlag, Leipzig, second ed. (2002).

265. T. Y. Zhang and C. Y. Suen. A fast parallel algorithm for thinning
digital patterns. Communications of the ACM 27(3), 236–239 (1984).

266. S.-Y. Zhu, K. N. Plataniotis, and A. N. Venetsanopoulos.
Comprehensive analysis of edge detection in color image processing.
Optical Engineering 38(4), 612–625 (1999).

267. S. Zokai and G. Wolberg. Image registration using log-polar map-
pings for recovery of large-scale similarity and projective transforma-
tions. IEEE Transactions on Image Processing 14(10), 1422–1434
(2005).

789

Index

Symbols
∀, 717
∃, 717
÷, 417, 714
∗, 100–102, 125, 283, 490, 541,

616, 714, 739
⊛, 568, 714
⊗, 714, 723, 751
×, 714
⊕, 185, 714
⊖, 186, 714
◦, 714
•, 714
∂, 123, 397, 715, 736, 737
∇, 123, 392, 397, 442–444, 715,

736
∇2, 139, 434, 611, 715, 738, 763
�, 713, 714
∪, 717
∩, 717
\, 717
. . . , 714
. . . , 714
∧, 715

∨, 715
∼, 714, 756
≈, 714
≡, 714
←, 714
+←, 714

:=, 714
| |, 714, 717
‖ ‖, 714
⌈ ⌉, 714
⌊ ⌋, 714
0, 715
μ, 716, 749, 756
σ, 716
τ , 716
& (operator), 768
| (operator), 296
/ (operator), 714
% (operator), 767
& (operator), 296
>> (operator), 296
<< (operator), 296

A
abs (method), 84, 768

absolute value, 714

accumulator, 164

achromatic, 308

acos (method), 768

AdaptiveThresholder (class), 284,
286

AdaptiveThresholdGauss (alg.), 285

ADD (constant), 85

add (method), 84, 157

addChoice (method), 88

addGaussianNoise (method), 758,
759

addNumericField (method), 88

adj, 715

adjugate matrix, 521, 715

Adobe

Illustrator, 12

Photoshop, 63, 96, 116, 143

RGB, 354

affine

combination, 369

mapping, 515–517, 526

AffineMapping (class), 532, 604

aggregate distance, 379

trimmed, 385

aliasing, 468, 472, 475, 476, 487,
556

alpha

channel, 14, 296

value, 85, 296

ambient lighting, 345

amplitude, 454, 455

Analyze (menu), 35

AND (constant), 84

and, 197, 715

angleFromIndex (method), 175

angular frequency, 454, 472, 476,
482

anisotropic diffusion, 433–448

Apache Commons Math library,
696, 727–729, 731

applyTable (method), 71, 79, 80,
83

791
© Springer-Verlag London 2016

DOI 10.1007/978-1-4471-6684-9

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

Index applyTo (method), 200, 385, 389,
449, 532–534, 537, 606

approximation, 547, 548

ArcTan, 236, 715, 769

area
polygon, 231

region, 231

arithmetic operation, 84
array

1D, 771

2D, 772

accessing elements, 771
creation, 771

in Java, 771

size, 771

sorting, 776
ArrayList (class), 155

Arrays (class), 324, 776

ARToolkit, 173
asin (method), 768

associativity, 186

atan (method), 768

atan2 (method), 715, 768, 769
auto-contrast, 61

modified, 62

AVERAGE (constant), 85

AVI, 608, 664
AWT, 296, 360

B
background, 181, 254
BackgroundMode (class), 286

bandwidth, 468, 620, 623, 762

Bartlett window, 492, 494, 495

basis function, 471–475, 481, 487,
503, 504, 510

Bayesian decision making, 268
BeanShell, 34

Bernsen thresholding, 274–275

BernsenThreshold (alg.), 275

BernsenThresholder (class), 287
bias, 171, 750, 752

bicubic interpolation, 553

BicubicInterpolator (class), 560,
561

big endian, 19, 20

bilateral filter, 420–432
color, 424

Gaussian, 423

separable, 428
BilateralFilter (class), 449

BilateralFilterColor (alg.), 428

BilateralFilterGray (alg.), 424

BilateralFilterGraySeparable (alg.),
432

BilateralFilterSeparable

(class), 449
bilinear

interpolation, 551
mapping, 525, 526

BilinearInterpolator (class),
534, 560

BilinearMapping (class), 533
binarization, 59, 253
binary

code, 195
image, 11, 132, 181, 209
morphology, 181
value, 19

BinaryMorphologyFilter (class),
198–200

BinaryMorphologyFilter.Box

(class), 200
BinaryMorphologyFilter.Disk

(class), 200
BinaryProcessor (class), 59
BinaryRegion (class), 224, 246
binning, 45–47, 54
bit

depth, 9
mask, 296
operation, 297

bitmap image, 11, 225
bitwise AND operator, 768
black box, 101
black-generation function, 322
blending, 85
Blitter (interface), 84, 85, 88, 145
blob, 624
block sum

first-order, 52
second-order, 53

blur
filter, 89, 90
Gaussian, 115

blur (method), 284
blurFloat (method), 284, 287
blurGaussian (method), 115, 284
BMP, 18, 20, 299
border handling, 282
boundary, 665

pixels, 280
bounding box, 218, 231, 232, 239,

241
box filter, 93, 103, 125, 283, 415
Bradford model, 356, 359
BradfordAdaptation (class), 363
breadth-first, 212
BreadthFirstLabeling (class), 246
Brent’s method, 696
BrentOptimizer (class), 696

792

IndexBresenham algorithm, 177

brightness, 58, 263

BuildGaussianScaleSpace (alg.), 624
BuildSiftScaleSpace (alg.), 631

byte, 19

byte (type), 767

ByteProcessor (class), 56, 84, 276,
289, 301, 709

C
C, 715

camera obscura, 4

Canny edge operator, 132–138,
404–406

color, 404–406, 410

grayscale, 410
CannyEdgeDetector (alg.), 135

CannyEdgeDetector (class), 138,
410, 411

card, 38, 714, 715, 717

cardinal spline, 546

cardinality, 714, 715, 717

cascaded Gaussian filters, 616, 761

Catmull-Rom interpolation, 546
CCITT, 12

cdf, see cumulative distribution
function

ceil, 714

ceil (method), 768

center line detection, 194

centralMoment (method), 235
centroid, 218, 233, 241, 673, 676,

749

CGM format, 12
chain code, 226, 231

chamfer

algorithm, 577

matching, 580

ChamferMatcher (class), 585
characteristic equation, 724

Cholesky decomposition, 755

CholeskyDecomposition (class),
755

chord algorithm, 255

chroma, 319

chromatic adaptation, 355

Bradford model, 356, 359
XYZ scaling, 355

ChromaticAdaptation (class), 363

chromaticity diagram, 365

CIE, 341

chromaticity diagram, 342, 345
L*a*b*, 323, 346, 347

LAB, 346

standard illuminant, 344

XYZ, 342, 346, 347, 352, 353,
361

CIELAB, 289, 381, 440
CIELUV, 348, 381, 440
circle, 176, 519, 674, 675
circular component, 328, 374
circularity, 231
circumference, 230
city block distance, 577
clamping, 58, 83, 94
clone (method), 324
close (method), 200
closing, 192, 203
clutter, 581
CMYK, 320–323
collectCorners (method), 156
Collections (class), 157
collinear, 733
collision, 216
Color (class), 309–311, 360
color

covariance matrix, 418
difference, 350
edge, 370, 391–410
edge magnitude, 399
edge orientation, 401
filter, 367–389, 424, 438
image, 11, 291–328
keying, 316
linear mixture, 370
management, 362
out-of-gamut, 372
picker, 328
pixel, 294, 296
saturation, 306
space, 370–374
table, 295, 299, 300, 326
temperature, 344
thresholding, 289

color quantization, 43, 295, 301,
329–338

3:3:2, 330
median-cut, 332
octree, 333
populosity, 331

color space, 303
CMYK, 320
colorimetric, 341–365
HLS, 307
HSB, 306, 361
HSV, 306, 361
in Java, 358
Kodak, 361
LAB, 346
LUV, 348
RGB, 292

793

Index sRGB, 350

XYZ, 342

YCbCr, 319

YIQ, 318

YUV, 317

color system

additive, 291

subtractive, 320

ColorCannyEdgeDetector (alg.), 405

ColorEdgeDetector (class), 410

ColorModel (class), 300, 360

ColorProcessor (class), 296–299,
302, 305, 324

ColorQuantizer (class), 337

ColorSpace (class), 359–361, 363

column vector, 720

comb function, 465

commutativity, 186, 187

compactness, 231

Comparable (interface), 776

compareTo (method), 155

comparing images, 565–584

complementary set, 184

Complex (class), 478, 705

complex

conjugate, 717

number, 456, 717

component

histogram, 47

ordering, 294

compression, 42

computeMatch (method), 574

computer

graphics, 2

vision, 3

concatenation, 596, 714

conditional probability, 268, 757

conductivity

coefficient, 434

function, 436, 438, 441, 442, 450

conic section, 519

connected components problem,
218

container, 155

Contour (class), 224, 246

contour, 131, 219–222

contrast, 40, 58, 263

automatic adjustment, 61

convertToByte (method), 88, 145,
224

convertToByteProcessor

(method), 305

convertToColorProcessor

(method), 158

convertToFloat (method), 145

convertToFloatProcessor

(method), 154, 281, 606, 662
convex hull, 232, 241, 249, 369
convexity, 232, 245
convolution, 100–102, 283, 284,

368, 499, 568, 739
associativity, 102
commutativity, 101
linearity, 101
property, 463, 496

convolve (method), 115, 145
Convolver (class), 115, 145
convolveX (method), 154
convolveXY (method), 154
convolveY (method), 154
coordinate

homogeneous, 515–516, 726–727
transformation, 514

COPY (constant), 85
copyBits (method), 84, 88, 145
Corner (class), 155
corner, 147

detection, 147–159
point, 159
response function, 149, 152
strength, 149

CorrCoeffMatcher (class), 574, 575
correlation, 100, 499, 567

coefficient, 569
cos (method), 768
cosine function, 461

1D, 454
2D, 483, 484

cosine transform, 15, 503–511
cosine2 window, 494, 495
countColors (method), 324
covariance, 749

efficient calculation, 750
matrix, 238, 244, 249, 750

covariance matrix
color, 418

create (method), 560
createProcessor (method), 562
createRealMatrix (method), 727,

729
createRealVector (method), 727
creating new images, 56
cross

correlation, 570
product, 694, 723

CRT, 292
CS_CIEXYZ (constant), 361
CS_GRAY (constant), 361
CS_LINEAR_RGB (constant), 361
CS_PYCC (constant), 361
CS_sRGB (constant), 361

794

Indexcubic

interpolation, 544, 547
spline, 546

cumulative

distribution function, 67, 264
histogram, 49, 63, 66, 67

cycle length, 454

D
D50, 345, 358, 361

D65, 345, 347, 351
dB, see decibel

DCT, 503–511

1D, 503–504
2D, 504–509

DCT (method), 506, 509, 510

Dct1d (class), 509
Dct2d (class), 509

debugging, 114

decibel, 338
Decimate (alg.), 624

decimated scale, 637

decimation, 622
deconvolution, 500

delta function, 464

depth of an image, 9
depth-first, 212

DepthFirstLabeling (class), 246

derivative, 434
estimation from discrete

samples, 739
first, 122, 150, 399, 610, 734, 736

partial, 123, 397, 611, 715

second, 130, 139, 611, 632
desaturation, 306, 316

selective, 317

det, 714, 715
determinant, 521, 635, 714, 715,

724, 733, 745

DFT, 469–501, 667–673, 715

1D, 469–479
2D, 481–501

forward, 668

inverse, 668
periodicity, 670, 679

spectrum, 668

truncated, 672, 673, 679
DFT (method), 478

Di Zenzo/Cumani algorithm, 402

diameter, 232
DICOM, 26

DIFFERENCE (constant), 85

difference
filter, 99

set, 717

difference-of-Gaussians (DoG),
613, 763

differential equation, 434
diffusion process, 434
digital image, 7
dilate (method), 200, 201
dilation, 185, 203, 251
dimension, 749
Dirac function, 104, 186, 460, 464
direction of maximum contrast,

404
directional gradient, 398, 737
discrete

cosine transform, 503–511
Fourier transform, 469–501, 715
sine transform, 503

disk filter, 283
distance, 566, 716

city block, 577
Mahalanobis, 243, 249
Manhattan, 577
mask, 578
maximum difference, 567
norm, 382, 656, 660
squared, 157
sum of differences, 567
sum of squared differences, 567
transform, 576
weighted, 243

distance norm, 379
distanceComplex (method), 706
distanceMagnitude (method), 706
DistanceTransform (class), 582,

585
distribution

normal (Gaussian), 756–758
uniform, 54, 64, 66

divergence, 434, 442, 737, 738
DIVIDE (constant), 85
DiZenzoCumaniEdgeDetector

(class), 410
DOES_8C (constant), 300, 301
DOES_8G (constant), 28, 44
DOES_ALL (constant), 451
DOES_RGB (constant), 297, 298
DOES_STACKS (constant), 451
domain, 716

filter, 420
dominant orientation, 637, 640
dot product, 722, 728
dotProduct (method), 728
dots per inch (dpi), 8, 476
Double (class), 770
double (type), 95
dpi, 476
drawCorner (method), 158

795

Index drawCorners (method), 158
drawLine (method), 158, 179
DST, 503
duplicate (method), 110, 145,

281, 532
DXF format, 12
dynamic range, 40

E
E (constant), 768
e, 715
e, 715
eccentricity, 237, 250
Eclipse, 31, 32
edge

direction, 134
linking, 137
localization, 134
map, 131, 132, 161
normal, 401
orientation, 392, 403
sharpening, 139–146
strength, 149, 392
suppression, 634
tangent, 134, 392, 446
tracing, 135

edge operator, 124–410
Canny, 132–138, 404–406
compass, 128
in ImageJ, 130
Kirsch, 129
LoG, 130, 133
monochromatic, 392–395
Prewitt, 125, 133
Roberts, 127, 133
Robinson, 128
Sobel, 125, 128, 130, 133
vector-valued (color), 395–404

edge-preserving smoothing filter,
413–451

Edit (menu), 33
effective gamma value, 81
EigenDecomposition (class), 729,

753
eigendecomposition, 753
eigenpair, 724
eigensystem, 446
eigenvalue, 148, 149, 238, 399, 402,

409, 446, 634, 723–726, 737,
751

ratio, 635
eigenvector, 149, 400, 446,

723–726, 737
2 × 2 matrix, 724

ellipse, 177, 238, 519, 677, 683
parameters, 677

elliptical window, 493
elongatedness, 237
EMF format, 12
Encapsulated PostScript (EPS), 12
entropy, 263, 264
erode (method), 200, 201
erosion, 186, 203
error (method), 30
Euclidean distance, 157, 573
Euler number, 245
Euler’s notation, 456
evidence, 269
EXIF, 16, 351
exp, 715
exp (method), 104, 768
extractImage (method), 606
extremum of a function, 633

F
F , 715
false, 715
fast Fourier transform, 479, 484,

498
FastIsodataThreshold (alg.), 260
FastKuwaharaFilter (alg.), 417
fax encoding, 226
feature, 229

vector, 242
FFT, 496, see fast Fourier

transform, 668
Fiji, 25
file format

BMP, 18
EXIF, 16
GIF, 13
JFIF, 15
JPEG-2000, 16
magic number, 20
PBM, 18
Photoshop, 20
PNG, 14
RAS, 19
RGB, 19
TGA, 19
TIFF, 12–13
XBM/XPM, 19

fill (method), 56
filter, 89–118

anisotropic diffusion, 433–448
bilateral, 420–432
blur, 89, 90, 115
border handling, 92, 113
box, 93, 98, 103, 125, 283, 415
cascaded, 616
color, 420, 424, 438
color image, 143, 367–389, 416

796

Indexcomputation, 93
debugging, 114
derivative, 123
difference, 99
disk, 283
domain, 420
edge, 124–130
edge-preserving smoothing,

413–451
efficiency, 112
Gaussian, 98, 103, 115, 134, 148,

150, 283, 413, 423, 446, 610,
617, 761–763

HSV color space, 375
ImageJ, 115–116
impulse response, 104
in frequency space, 496
indexed image, 299
inverse, 499
jitter, 118
kernel, 91, 100, 368, 392
Kuwahara-type, 414–420
Laplacian, 99, 117, 139, 145
Laplacian-of-Gaussian, 610
linear, 91–105, 115, 367–377, 739
low-pass, 98, 284, 415, 623
maximum, 105, 116, 207
median, 107, 116, 181
min/max, 281
minimum, 105, 116, 207
morphological, 181–208
multi-dimensional, 379
Nagao-Matsuyama, 415
nonhomogeneous, 118
nonlinear, 105–112, 116, 378–389
normalized, 95
Perona-Malik, 436–441
range, 421
scalar median, 378, 388
separable, 102, 103, 140, 284,

613, 620
sharpening vector median, 382
smoothing, 94, 95, 98, 143, 368,

370
sombrero, 612
successive Gaussians, 616
Tomita-Tsuji, 417
Tschumperle-Deriche, 444–448
unsharp masking, 142
vector median, 378, 389
weighted median, 109

final (type), 771, 774
Find_Corners (plugin), 158
Find_Straight_Lines (plugin),

173
FindCommands (menu), 33

findCorners (method), 157, 158
findEdges (method), 130
finite differences, 434
FITS, 26
flat image, 14
Float (class), 770
floating-point image, 11
FloatProcessor (class), 154
flood filling, 210–212
floor, 714
floor (method), 768
floorMod (method), 767, 768
Flusser’s moments, 242
foreground, 181, 254
four-point mapping, 519
Fourier, 457

analysis, 457
coefficients, 457
integral, 457
series, 457
shape descriptor, 229, 665–711
spectrum, 229, 458, 469
transform, 454–501, 667–673,

715, 762
transform pair, 459, 461, 462

Fourier descriptor, 665–711
elliptical, 709
from polygon, 682
geometric effects, 687–692
invariance, 692–700, 708
Java implementation, 704
magnitude, 700
matching, 700–704, 706
normalization, 692–700, 707
pair, 676–681
phase, 690
reconstruction, 668, 685
reflection, 691
start point, 689
trigonometric, 667, 682, 710

FourierDescriptor (class), 704
FourierDescriptorFromPolygon (alg.),

685
FourierDescriptorFromPolygon

(class), 707
FourierDescriptorUniform (alg.), 669,

673
FourierDescriptorUniform

(class), 707
frequency, 454, 476

2D, 486
angular, 454, 455, 472, 482
common, 455
directional, 487
distribution, 67
effective, 486, 487

797

Index fundamental, 457, 476
maximum, 468, 487
space, 459, 475, 496

Frobenius norm, 418, 751
fromCIEXYZ (method), 358–360
fromRGB (method), 364
function

basis, 471–475
complex-valued, 666
cosine, 454
delta, 464
Dirac, 460, 464
distance, 700, 701
gradient, 397
hash, 701
impulse, 460, 464
Jacobian, 397
partial derivative, 397
periodic, 454, 671
scalar-valued, 735
sine, 454
trigonometric, 134
vector-valued, 395, 735

fundamental
frequency, 457, 476
period, 476

G
gamma (method), 84
gamma correction, 74–82, 305,

358, 361, 372
applications, 78
inverse, 82
modified, 80–82, 352

gamut, 321, 345, 351, 354
garbage, 771
Gaussian

area formula, 231
component, 758
derivative, 610
distribution, 54, 258, 266, 268,

269, 756, 758
filter, 98, 103, 115, 148, 150,

282, 423, 446, 610, 617,
761–763

filter size, 103
function, 460, 462
kernel, 283
mixture, 266
noise, 758
normalized, 284
scale space, 615, 761
separable, 103
successive, 616, 761
weight, 638
window, 492, 493, 495

GaussianBlur (class), 115, 145,
284, 286, 287

GaussianFilter (class), 145
GenericDialog (class), 85, 86, 88,

117
GenericFilter (class), 385, 389,

449
geometric operation, 513–537
get (method), 29, 30, 58, 66, 113,

307
get2dHistogram (method), 327
getAccumulator (method), 174
getAccumulatorImage (method),

175
getAccumulatorMax (method), 175
getAccumulatorMaxImage

(method), 175
getAngle (method), 176
getBlues (method), 301, 302
getBounds (method), 606
getCoefficient (method), 706
getCoefficients (method), 705
getColorModel (method), 300, 301
getComponents (method), 361
getCornerPoints (method), 606
getCount (method), 176
getCovarianceMatrix (method),

752
getData (method), 727
getDistance (method), 176
getEdgeBinary (method), 410
getEdgeMagnitude (method), 410
getEdgeOrientation (method),

410
getEdgeTraces (method), 410
getEigenvector (method), 729
getEntry (method), 727
getf (method), 575, 576, 759
getForegroundColor (method),

328
getGreens (method), 301, 302
getHeight (method), 29, 30, 759
getHistogram (method), 45, 56,

66, 71, 289
getImage (method), 30
getInnerContours (method), 224
getIntArray (method), 585
getInterpolatedValue (method),

560
getInverse (method), 532
getIteration (method), 606
getLines (method), 174
getMapSize (method), 300, 301
getMatch (method), 575, 585, 604,

606, 607
getMatchValue (method), 576, 585

798

IndexgetMaxCoefficientPairs

(method), 706
getMaxNegHarmonic (method), 706
getMaxPosHarmonic (method), 706
getNextChoiceIndex (method), 88
getNextNumber (method), 88
getOpenImages (method), 88
getOuterContours (method), 224
GetPartialReconstruction (alg.), 684
getPix (method), 562
getPixel (method), 29, 113, 298,

768
getPixels (method), 154, 297, 772
getPixelSize (method), 301
getPolygon (method), 538
getProcessor (method), 30, 88
getRadius (method), 176
getRealEigenvalues (method),

729
getReconstruction (method), 706
getReconstructionPoint

(method), 707
getReds (method), 301, 302
getReferenceMappingTo (method),

604, 606
getReferencePoint (method), 175,

176
getReferencePoints (method),

604
getRegions (method), 224
getRmsError (method), 604, 606
getRoi (method), 538, 606
getShortTitle (method), 56, 88
getSiftFeatures (method), 662
getSolver (method), 730, 731
GetStartPointPhase (alg.), 698
getThreshold (method), 286, 288
getType (method), 30, 606
getWeightingFactors (method),

305
getWidth (method), 29, 30, 759
GIF, 13, 20, 26, 43, 226, 295, 299
GIMP, 447
global operation, 57
GlobalThresholder (class), 284
grad, 715, 736
gradient, 122, 123, 148, 150, 392,

434, 436, 633, 715, 736, 738
directional, 398, 736, 737
magnitude, 133, 637, 638
maximum direction, 737
multi-dimensional, 397
orientation, 133, 637, 638
scalar, 397, 401
vector, 133, 134
vector field, 736

graph, 208, 218
GRAY8 (constant), 30
grayscale

conversion, 304, 353
image, 10, 14
morphology, 202

GrayscaleEdgeDetector (class),
410

H
H, 715
h, 715
Hadamard transform, 510
Hanning window, 491, 492, 494,

495
harmonic number, 671
Harris corner detector, 148, 636
HarrisCornerDetector (class), 158
hasComplexEigenvalues (method),

729
hasConverged (method), 604, 606
hash function, 701
HDTV, 319
heat equation, 434
Hertz, 455, 476
Hessian matrix, 443–445, 447, 448,

630, 632–634, 647, 715, 738,
739, 743

discrete estimation, 445
Hessian normal form, 165, 173
hexadecimal, 19, 296, 768
hierarchical technique, 131
histogram, 37–55, 324–325, 715

binning, 45
calculation, 43
color image, 46
component, 47
cumulative, 49, 63, 67
equalization, 63
matching, 70
multiple peaks, 640
normalized, 67
orientation, 637, 639
smoothing, 639
specification, 66–73

HLS, 306, 307, 311–314, 316
HLStoRGB (method), 315
hom, 715, 726
homogeneous

coordinate, 515–516, 715,
726–727

linear equation, 724
point operation, 57, 64, 66
region, 414

homography, 524
hot spot, 91, 184

799

Index Hough transform, 132, 161–180
algorithm, 168
bias, 171
edge strength, 171
ellipse, 177
for circles, 176
for lines, 176
generalized, 178
hierarchical, 172
implementation, 173

HoughLine (class), 176
HoughTransformLines (class), 173,

174
HSB, see HSV
HSBtoRGB (method), 311, 312, 361
HSV, 289, 306, 309, 314, 316, 318,

361
HsvLinearFilter (alg.), 377
Hu’s moments, 241
Huffman coding, 15
hysteresis thresholding, 134, 135

I
i, 456, 715, 717
In, 716
ICC, 358

profile, 362
ICC_ColorSpace (class), 362
ICC_Profile (class), 362
iconic image, 14
iDCT (method), 506, 509, 510
idempotent, 193
identity matrix, 442, 716, 724
IJ (class), 30
IjUtils (class), 88
Illuminant (enum-type), 363
illuminant, 344
image

acquisition, 4
analysis, 2
binary, 11, 209
bitmap, 11
color, 11
compression, 42
coordinates, 9
creating new, 56
defects, 41
depth, 9, 11
digital, 7
display, 56
file format, 11
flat, 14
floating-point, 11
grayscale, 10, 14
iconic, 14
indexed color, 11, 14, 294, 337

inpainting, 447
intensity, 10
matching, 565–584
padding, 114
palette, 11
plane, 5
pyramid, 621
raster, 12
redisplay, 35
size, 8
space, 101, 496
special, 11
stack, 451, 664
true color, 14
vector, 12
warping, 526

ImageAccessor (class), 560–562
ImageExtractor (class), 606, 607
ImageInterpolator (class), 532
ImageJ, 23–35

debugging, 32
filter, 115–116
geometric operation, 531
macro, 26, 31
main window, 26
plugin, 26–31
point operation, 82–87
program structure, 26
snapshot, 31
stack, 25
tutorial, 34
undo, 26, 31
website, 34

ImageJ2, 25
ImagePlus (class), 29, 30, 56, 158,

299, 302, 538
ImageProcessor (class), 27, 29, 30,

297, 298, 300–302, 307, 772
ImageStack (class), 608
imagingbook library, VIII, 33, 34
ImgLib2, 25
impulse, 450

function, 104, 460, 464
response, 104, 190

in place processing, 483
IndexColorModel (class), 301–303
indexed color image, 11, 14, 294,

295, 299, 337
initializeMatch (method), 606
insert (method), 145
int (type), 35, 767
integral image, 51–53, 289, 560
IntegralImage (class), 53
intensity

histogram, 47
image, 10

800

Indexinterest point, 147, 610
intermeans algorithm, 258
interpolation, 539–563, 594, 597

1D, 539–549
2D, 549–556
B-spline, 546, 547
bicubic, 553, 556
bilinear, 551, 556
by convolution, 543
Catmull-Rom, 545, 546
cubic, 544
ideal, 540
kernel, 543
Lanczos, 548, 554, 563
Mitchell-Netravali, 546, 547
nearest-neighbor, 543, 550, 556,

557
spline, 546

InterpolationMethod (class), 560,
562

intersection
in Hough space, 168
line, 173, 179
set, 191, 717

invariance, 231, 234, 241, 244, 565,
692–700

rotation, 696
scale, 693
start point, 694

inverse
filter, 499
matrix, 599, 720
power function, 77
tangent function, 769

inverse (method), 728
inversion, 59
invert (method), 59, 84
Isodata

clustering, 258
thresholding, 258–260

IsodataThreshold (alg.), 259
IsodataThresholder (class), 285
isotropic, 90, 98, 123, 140, 141,

148, 159, 188, 611
iterateOnce (method), 604, 606
ITU601, 319
ITU709, 78, 82, 305, 319, 328, 351

J
J, 716
Jacobian matrix, 397, 398, 716,

736, 737
Java

applet, 25
arithmetic, 765
array, 771

AWT, 27
class file, 31
compiler, 31, 772
integer division, 66, 765
JVM, 20
mathematical functions, 768
rounding, 769
runtime environment, 25
virtual machine, 20

JavaScript, 34
JBuilder, 31
JFIF, 15, 18, 20
jitter filter, 118
joint probability, 757
JPEG, 12, 14–18, 20, 26, 43, 226,

295, 337, 351, 353, 508, 509
JPEG-2000, 16

K
k-d algorithm, 659
kernel, 100
key point

position refinement, 632
selection, 630

Kimia image dataset, 242, 250,
686, 711

Kirsch operator, 129
Kodak Photo YCC color space,

361
kriging, 289
Kronecker product, 723
Kuwahara-type filter, 414–420
KuwaharaFilter (alg.), 416
KuwaharaFilter (class), 449
KuwaharaFilterColor (alg.), 418

L
LAB, 346
LabColorSpace (class), 359, 363,

364
label, 210
Lanczos interpolation, 548, 554,

563
LanczosInterpolator (class), 560
Laplacian, 99, 434, 435, 444

filter, 99, 139, 141, 145
operator, 139, 611, 738

Laplacian-of-Gaussian, 117, 610
approximation by difference of

Gaussians, 613, 763
normalized, 612

left-sided vector-matrix product,
721, 728

Lena, 107
lens, 6
likelihood, 757
line

801

Index endpoints, 172
equation, 162, 165
Hessian normal form, 165
intercept/slope form, 162
intersection, 173

linear
blending, 85, 88
convolution, 100–102
correlation, 100
equation, 723, 724
transformation, 521

linearity, 463
lines per inch (lpi), 8
LinkedList (class), 212
List (class), 771
list, 713

concatenation, 714
little endian, 19, 20
local

extremum, 630, 734
mapping, 528
structure matrix, 148, 400, 402,

445
lock (method), 33
LoG

filter, 117
operator, 133

log (method), 31, 84, 768
log-polar matching, 574
long (type), 35
lookup table, 82
low-pass filter, 284, 415
LSB, 19
Lucas-Kanade matcher, 587–608
LucasKanadeForwardMatcher

(class), 605–607
LucasKanadeInverseMatcher

(class), 605–607
LucasKanadeMatcher (class), 604,

606
LUDecomposition (class), 730
luma, 320, 354, 440
luminance, 289, 304, 319, 320, 354,

371, 440
LUT, 200, 201
LUV, 348
LuvColorSpace (class), 362
LZW, 12, 13

M
machine accuracy, 770
macro recorder, 33
Macros (menu), 34
magic number, 20
magnitude, 714
Mahalanobis distance, 243, 249

major axis, 235
makeCrf (method), 154
MakeDogOctave (alg.), 631
MakeGaussianKernel2D (alg.), 285
MakeGaussianOctave (alg.), 624,

631
makeGaussKernel1d (method), 104,

145
makeIndexColorImage (method),

301
MakeInvariant (alg.), 697
makeInvariant (method), 707, 710
makeMapping (method), 606
MakeRotationInvariant (alg.), 697
makeRotationInvariant (method),

707
MakeScaleInvariant (alg.), 697
makeScaleInvariant (method),

707
MakeStartPointInvariant (alg.), 698
makeStartPointInvariant

(method), 707
makeTranslationInvariant

(method), 707
Manhattan distance, 577
mapMultiply (method), 728
Mapping (class), 533, 534
mapping

affine, 516, 517, 526
bilinear, 525, 526
four-point, 519
linear, 521
local, 528
nonlinear, 526
perspective, 520
projective, 519–526
ripple, 527
spherical, 527
three-point, 516
twirl, 526

mask, 142, 225
MatchDescriptors (alg.), 657
matchDescriptors (method), 663
matchHistograms (method), 71
matching, 700–704
Math (class), 768, 769
matrix, 719, 731

adjugate, 521, 715
decomposition, 521, 731, 755
Hessian, 443–445, 447, 448, 630,

632–634, 647, 715, 738, 743
identity, 442, 716, 724
inverse, 599, 720, 728
Jacobian, 397, 398, 716, 736, 737
norm, 418, 751, 752
rank, 716, 724

802

Indexsingular, 724
symmetric, 725
trace, 716
transpose, 716, 720

MatrixUtils (class), 727
MAX (constant), 85, 116
max (method), 84, 768
MaxEntropyThresholder (class),

285
maximum

entropy thresholding, 263–266
filter, 207, 281
frequency, 468, 487
likelihood estimation, 756
local contrast, 399

MaximumEntropyThreshold (alg.),
267

mean, 50–51, 53, 255, 257, 279,
414, 749, 756, 758, 759

from histogram, 50
vector, 749

MeanThresholder (class), 285
Measure (menu), 35
media-oriented color, 353
medial axis transform, 194
MEDIAN (constant), 116
median, 51, 256

filter, 107, 116, 181, 378
filter (weighted), 109

median-cut algorithm, 332
MedianCutQuantizer (class), 337,

338
MedianThresholder (class), 285
mesh partitioning, 528
Mexican hat filter, 99, 612
mid-range, 257
MIN (constant), 85, 116
min (method), 84, 768
MinErrorThresholder (class), 285
minimum error thresholding,

266–272
minimum filter, 207, 281
MinimumErrorThreshold (alg.), 273
Mitchell-Netravali interpolation,

547
mixture model, 758
mod, 478, 716, 766
mode, 756
modified auto-contrast, 62
modulus, see mod
moment, 226, 233–244

central, 234
Flusser, 242
Hu, 241
invariant, 241
least inertia, 235

moment (method), 235
monochromatic edge detection,

392–395
MonochromaticColorEdge (alg.), 395
MonochromaticEdgeDetector

(class), 410
morphing, 529
morphological filter, 181–208

binary, 181
closing, 192, 203
color, 202
dilation, 185, 203
erosion, 186, 203
grayscale, 202
opening, 192, 203
outline, 189

MPEG, 509
MSB, 19
mult (method), 154
multi-resolution techniques, 131
MultiGradientColorEdge (alg.), 402
MULTIPLY (constant), 85
multiply (method), 84, 145, 728
My_Inverter (plugin), 29

N
N, 716
N , 254, 269, 756, 759
Nagao-Matsuyama filter, 415
NaN (constant), 770
nCentralMoment (method), 235
nearest-neighbor interpolation, 543
NearestNeighborInterpolator

(class), 560
negative frequency, 676
NEGATIVE_INFINITY (constant),

770
neighborhood, 210, 230

2D, 274, 380, 383, 421, 422, 609,
746

3D, 630, 633
square, 415

NetBeans, 31, 32
neutral

element, 104, 186, 616
point, 343

nextGaussian (method), 54, 759
nextInt (method), 54
Niblack thresholding, 275–279
NiblackThreshold (alg.), 281
NiblackThresholder (class), 286,

287
NiblackThresholderGauss (class),

287
NIH-Image, 25
nil, 716

803

Index NO_CHANGES (constant), 31, 44, 302
noise, 159

energy, 338
Gaussian, 758
reduction, 413

nominal gamma value, 81
non-maximum suppression, 133,

137, 169
nonhomogeneous filter, 118
nonhomogeneous operation, 57
norm, 379, 393, 394, 396, 425, 716

Euclidean, 714, 720
Frobenius, 418, 751
matrix, 418, 751, 752
vector, 720

normal distribution, 54, 756
normalization, 95
normalized

histogram, 67
kernel, 284, 369

NormType (class), 389
NTSC, 78, 317, 318
null (constant), 771
Nyquist, 468, 487

O
OCR, 229, 245, 251, 279
octave, 614, 617, 618, 621–624,

628, 631, 642
octree algorithm, 333
OctreeQuantizer (class), 337
open (method), 200
opening, 192, 203
operate (method), 728
optical axis, 5
OR (constant), 84
orientation, 235, 486, 488

dominant, 640
histogram, 637

orthogonal, 511
oscillation, 454, 455
Otsu’s method, 260–263
OtsuThreshold (alg.), 262
OtsuThresholder (class), 285
out-of-gamut colors, 372
outer product, 103, 723, 728
outerProduct (method), 728
outlier, 257
outline, 189
outline (method), 200, 202
OutOfBoundsStrategy (class), 562

P
packed ordering, 294–296
padding, 114, 222
PAL, 78, 317
palette, 295, 299, 300

image, see indexed color image
parabolic fitting, 733–735
parameter space, 163
partial

derivative, 123, 715
differential equation, 434

Parzen window, 491, 492, 494, 495
pattern recognition, 3, 229
PDF, 12
pdf, see probability density

function
perimeter, 230
period, 454
periodicity, 454, 482, 486, 489
Perona-Malik filter, 436–441

color, 438
gray, 436

Perona_Malik_Demo (plugin), 451
PeronaMalikColor (alg.), 442
PeronaMalikFilter (class), 450
PeronaMalikGray (alg.), 438
perspective

image, 177
mapping, 520
projection, 5

phase, 455, 477, 690, 694, 695, 699
angle, 455

Photoshop, 20, 378, 393
PI (constant), 768
PICT format, 12
piecewise linear function, 68
pinhole camera, 4
pipette tool, 328
pixel, 4

value, 9
PixelInterpolator (class), 532,

534, 560, 561
PKZIP, 14
planar ordering, 294
Plessey detector, 148
PlugIn (interface), 27, 30, 33
PlugInFilter (class), 606
PlugInFilter (interface), 27, 29,

33, 35, 297, 389
PNG, 14, 20, 26, 299, 351
point operation, 57–87

arithmetic, 82
effects on histogram, 59
gamma correction, 74
histogram equalization, 63
homogeneous, 83
in ImageJ, 82–87
inversion, 59
thresholding, 59

point set, 184
point spread function, 105

804

IndexPoint2D (class), 538
polar method, 758
polygon, 667, 682

area, 231
path length, 683
uniform sampling, 667, 710

PolygonRoi (class), 538
PolygonSampler (class), 708
populosity algorithm, 331
positive definite, 754
POSITIVE_INFINITY (constant),

770
posterior probability, 268
PostScript, 12
pow (method), 80, 768
power spectrum, 477, 485
preMultiply (method), 728
Prewitt operator, 125, 133
primary color, 292
principal curvature ratio, 635
print pattern, 499
prior probability, 268, 273
probability, 67, 756

conditional, 268, 757
density function, 67, 264
distribution, 67, 264
joint, 757
posterior, 268
prior, 264, 268, 270, 273

product
cross, 714, 723
dot, 722, 728
matrix-vector, 721
outer, 714, 723, 728
scalar, 722, 728
vector, 722–723

profile connection space, 358, 361
projection, 244, 250, 325, 722
projective mapping, 519–526
ProjectiveMapping (class), 532,

534, 537, 604, 606
pseudo-perspective mapping, 520
pseudocolor, 326
putPixel (method), 29, 113, 298,

768
pyramid, 131, 621

Q
Q, 522, 525
QR decomposition, 521
QRDecomposition (class), 731
quadratic function, 632, 633, 640
quadrilateral, 519, 716
QuantileThreshold (alg.), 257
QuantileThresholder (class), 285
quantization, 8, 59, 329–338

linear, 330
scalar, 329
vector, 331

quasi-separable, 613

R
R, 716
radiusFromIndex (method), 175
Random (class), 758, 759
Random (package), 54
random

image, 54
process, 67
variable, 67, 756

random (method), 54, 768
range

filter, 421
rank, 716, 724
rank (method), 116, 281
rank ordering, 378
RankFilters (class), 116, 275, 276,

281
RAS format, 19
raster image, 12
RAW format, 299
RealMatrix (class), 727, 729
RealVector (class), 727, 729
Record (menu), 34
rectangular

pulse, 460, 462
window, 493

RecursiveLabeling (class), 246
redisplaying an image, 35
reflection, 185, 187
refraction index, 528
region, 209–251

area, 231, 234, 249
centroid, 233, 249
convex hull, 232
diameter, 232
eccentricity, 237
homogeneous, 414
labeling, 210–219
major axis, 235
matrix representation, 225
moment, 233
orientation, 235
perimeter, 230
projection, 244
run length encoding, 225
topological property, 244

region of interest, 327, 536, 538,
605, 606

RegionContourLabeling (class),
224, 246

RegionLabeling (class), 246
805

Index relative colorimetry, 355
remainder operator, 767
resampling, 529
resolution, 8
RGB

color image, 291
color space, 292, 316
format, 19

RGBtoHLS (method), 314
RGBtoHSB (method), 310, 361
RGBtoHSV (method), 311
right-sided vector-matrix product,

721, 728
rint (method), 768
ripple mapping, 527
RippleMapping (class), 533
Roberts operator, 127, 133
Robinson operator, 128
Roi (class), 538, 606
Rotation (class), 532, 533
rotation, 241, 497, 513, 515, 688
round, 84, 716
round (method), 80, 768
rounding, 58, 84, 766, 769
roundness, 231
row vector, 720
run (method), 27
run length encoding, 225

S
S1, 522, 525, 716
saddle point, 744
sample, 749

mean, 749
variance, 749

samplePolygonUniformly

(method), 708
sampling, 464–666

frequency, 487
interval, 466, 467
spatial, 7
theorem, 468, 473, 475, 487, 540
time, 7

saturation, 41, 306
Sauvola thresholding, 279
SauvolaThresholder (class), 287
scalar

field, 735–739
median filter, 378, 388
product, 722, 728

ScalarMedianFilter (class), 386
scalarMultiply (method), 728
scale

absolute, 617, 621
base, 621
change, 688

decimated, 637
increment, 630
initial, 617
ratio, 617
relative, 618

scale space, 610
decimation, 621, 622
discrete, 616
Gaussian, 615
hierarchical, 620, 623
LoG/DoG, 619, 623
octace, 621
SIFT, 624–636
spatial position, 623
sub-sampling, 621

Scaling (class), 532
scaling, 241, 513, 515
segmentation, 253, 289
separability, 102, 117, 188, 284,

507
separable filter, 99, 140, 613
sequence, 713
SequentialLabeling (class), 246
Set (class), 771
set, 184, 713

difference, 717
intersection, 717
union, 717

set (method), 29, 30, 58, 66, 113,
307

setCoefficient (method), 706
setColor (method), 158
setColorModel (method), 300,

301, 303
setEntry (method), 727
setf (method), 759
setNormalize (method), 115, 145
setPix (method), 562
setRGBWeights (method), 305
setup (method), 27, 28, 31, 297,

300, 411
setValue (method), 56
Shah function, 465
Shannon, 468
shape

feature, 229
number, 228, 249
reconstruction, 668, 679, 681,

684, 685, 706
representation, 208
rotation, 688

sharpen (method), 145
sharpening vector median filter,

382
SharpeningVectorMedianFilter (alg.),

384
806

IndexShear (class), 532
shearing, 515
ShereMapping (class), 533
shift property, 463
ShortProcessor (class), 289
show (method), 56, 158, 299
showDialog (method), 88
SIFT, 609–664

algorithm summary, 647
descriptor, 640–647
examples, 654–657
feature matching, 648–660
implementation, 634, 661–663
parameters, 648
scale space, 624–636

SiftDescriptor (class), 662
SiftDetector (class), 662
SiftMatcher (class), 663
signal

energy, 338
space, 101, 459, 475

signal-to-noise ratio, 338
similarity, 463
sin (method), 768
Sinc function, 460, 541, 550
sine

function, 454, 461
transform, 503

singular-value decomposition, 731
SingularValueDecomposition

(class), 731
size (method), 706
skeletonize (method), 202, 208
skew angle, 251
smoothing filter, 91, 94, 283
SNR, 338
Sobel operator, 125, 133, 392, 394

extended, 128
solve (method), 730, 731
sombrero filter, 612
sort (method), 110, 157, 324, 776
sorting arrays, 776
source-to-target mapping, 530
spatial sampling, 7
special image, 11
spectrum, 453
spherical mapping, 527
spline

cardinal, 546
Catmull-Rom, 545–547
cubic, 546, 547
cubic B-, 546, 547, 563
interpolation, 546

SplineInterpolator (class), 560
sqr (method), 84, 154
sqrt (method), 84, 768

square window, 495
squared local contrast, 398, 402
sRGB, 81, 82, 305, 350, 352, 353

ambient lighting, 345
grayscale conversion, 353
white point, 345

stack, 210, 299
standard deviation, 54, 275, 614,

716
standard illuminant, 344, 355
statistical independence, 756
step edge, 370
structure matrix, 447
structuring element, 184, 188, 202
sub-pixel accuracy, 745
sub-sampling, 623
SUBTRACT (constant), 85, 145
summed area table, 51
super-Gaussian window, 492, 493
SVD, 521
symmetry, 691
System.out (constant), 31

T
⊺, 716
t, 716
tan (method), 768
tangent function, 769
target-to-source mapping, 526, 530
Taylor expansion, 633, 740

multi-dimensional, 740
template matching, 565, 566
temporal sampling, 7
TGA format, 19
thin (method), 200, 208
thin lens, 6
thinning, 194–195
thinOnce (method), 200
three-point mapping, 516
threshold, 59, 132, 169
threshold (method), 59, 288
threshold surface, 288
Thresholder (class), 284
thresholding, 131, 253–289

Bernsen, 274–275
color image, 289
global, 253–272
hysteresis, 134
Isodata, 258–260
local adaptive, 273–284
maximum entropy, 263–266
minimum error, 266–272
Niblack, 275–279
Otsu, 260–263
shape-based, 255
statistical, 255

807

Index Suvola, 279

TIFF, 12, 16, 18, 20, 26, 226, 299

time unit, 455

toArray (method), 157, 727

toCIEXYZ (method), 358–361

toDegrees (method), 768

Tomita-Tsuji filter, 417

topological property, 244

toRadians (method), 768

toRGB (method), 364

total variance, 418, 751

trace, 419, 443, 444, 716, 737, 738,
751, 752

tracking, 147, 607, 664

transform pair, 459

TransformJ (package), 531

Translation (class), 532, 604

translation, 241, 515, 687

transparency, 85, 296, 303

transpose of a matrix, 720

tree, 210

triangle algorithm, 255

trigonometric coefficient, 684

trimmed aggregate distance, 385

tristimulus value, 344

true, 716

true color image, 11, 293, 295, 296

true colorimage, 14

truncate (method), 706, 710

truncated spectrum, 672, 673

truncation, 84

Tschumperle-Deriche filter,
444–448

TschumperleDericheFilter (alg.), 448

TschumperleDericheFilter

(class), 450

tuple, 713

twirl mapping, 526

TwirlMapping (class), 533

type cast, 58, 766

U
undercolor-removal function, 322

uniform distribution, 54, 64, 66

union, 717

unit square, 525

unit vector, 398, 400, 630, 715,
736, 737

unlock (method), 33

unsharp masking, 142–146

UnsharpMask (class), 145

unsharpMask (method), 145

unsigned byte (type), 767

updateAndDraw (method), 30, 35

V
variance, 50–51, 53, 256, 275, 414,

415, 569, 716, 749, 750, 756,
759, 761

between classes, 261
bias, 750
fast calculation, 50
from histogram, 50
local calculation, 279
total, 418, 751, 752
within class, 261

variate, 749
vector, 713, 719–731

column, 720
field, 391, 395, 397, 406, 735–739
image, 12
length, 720
median filter, 378, 389
norm, 720
product, 722–723
row, 720
unit, 398, 400, 630, 715, 736, 737
zero, 715

VectorMedianFilter (alg.), 381
VectorMedianFilter (class), 386,

389
VectorMedianFilterSharpen

(class), 386
video, 608
viewing angle, 345

W
Walsh transform, 510
warping, 526
wasCanceled (method), 88
wave number, 472, 482, 487, 504
wavelet, 510
website for this book, 34
weighted distance, 243
white point, 308, 344, 347

D50, 345, 358
D65, 345, 351

windowed matching, 573
windowing function, 490–491

Bartlett, 492, 494, 495
cosine2, 494, 495
elliptical, 492, 493
Gaussian, 492, 493, 495
Hanning, 492, 494, 495
Parzen, 492, 494, 495
rectangular pulse, 493
super-Gaussian, 492, 493

WMF format, 12

X
XBM/XPM format, 19
XOR, 191, 716

808

XYZ
color space, 304, 341–346, 371
scaling, 355

Y
YCbCr, 319
YIQ, 318
YUV, 317–319

Z
Z, 716
zero vector, 715
ZIP, 12

809

Index

Wilhelm Burger received a Master’s degree in Computer Science
from the University of Utah (Salt Lake City) and a doctorate in Sys-
tems Science from Johannes Kepler University in Linz, Austria. As a
post-graduate researcher at the Honeywell Systems & Research Cen-
ter in Minneapolis and the University of California at Riverside, he
worked mainly in the areas of visual motion analysis and autonomous
navigation. Since 1996, he has been Head of the Digital Media De-
partment at the University of Applied Sciences in Hagenberg, Aus-
tria. Privately, Wilhelm appreciates large-engine vehicles, chamber
music, and (occasionally) a glass of dry “Veltliner”.

Mark J. Burge is a senior scientist at Noblis, Inc. in Washington,
D.C. He spent seven years as a research scientist with the Swiss Fed-
eral Institute of Science (ETH) in Zürich and the Johannes Kepler
University in Linz, Austria. He earned tenure as a computer science
professor in the University System of Georgia (USG), and later served
as a program director at the National Science Foundation (NSF), at
MITRE and the Intelligence Advanced Research Programs Activ-
ity (IARPA). He also lectures at the United States Naval Academy
(USNA). Personally, Mark is an expert on classic Italian espresso
machines.

811

About the Authors

	Preface
	Prerequisites
	Use in research and development
	Classroom use
	Addendum to the second edition
	Online resources
	Exercises and solutions
	Thank you!

	Contents
	1 Digital Images
	1.1 Programming with Images
	1.2 Image Analysis and Computer Vision
	1.3 Types of Digital Images
	1.4 Image Acquisition
	1.4.1 The Pinhole Camera Model
	Perspective projection

	1.4.2 The “Thin” Lens
	1.4.3 Going Digital
	Step 1: Spatial sampling
	Step 2: Temporal sampling
	Step 3: Quantization of pixel values
	Images as discrete functions

	1.4.4 Image Size and Resolution
	1.4.5 Image Coordinate System
	1.4.6 Pixel Values
	Grayscale images (intensity images)
	Binary images
	Color images
	Special images

	1.5 Image File Formats
	1.5.1 Raster versus Vector Data
	1.5.2 Tagged Image File Format (TIFF)
	1.5.3 Graphics Interchange Format (GIF)
	1.5.4 Portable Network Graphics (PNG)
	1.5.5 JPEG
	JPEG File Interchange Format (JFIF)
	Exchangeable Image File Format (EXIF)
	JPEG-2000

	1.5.6 Windows Bitmap (BMP)
	1.5.7 Portable Bitmap Format (PBM)
	1.5.8 Additional File Formats
	1.5.9 Bits and Bytes
	Big endian and little endian
	File headers and signatures

	1.6 Exercises

	2 ImageJ
	2.1 Software for Digital Imaging
	2.2 ImageJ Overview
	2.2.1 Key Features
	2.2.2 Interactive Tools
	2.2.3 ImageJ Plugins
	Program structure

	2.2.4 A First Example: Inverting an Image
	2.2.5 Plugin My_Inverter_A (using PlugInFilter)
	The setup() method
	The run() method

	2.2.6 Plugin My_Inverter_B (using PlugIn)
	2.2.7 When to use PlugIn or PlugInFilter?
	Editing, compiling, and executing the plugin
	Displaying and “undoing” results
	Logging and debugging

	2.2.8 Executing ImageJ “Commands”

	2.3 Additional Information on ImageJ and Java
	2.3.1 Resources for ImageJ
	2.3.2 Programming with Java

	2.4 Exercises

	3 Histograms and Image Statistics
	3.1 What is a Histogram?
	3.2 Interpreting Histograms
	3.2.1 Image Acquisition
	Contrast
	Dynamic range

	3.2.2 Image Defects
	Saturation
	Spikes and gaps
	Impacts of image compression

	3.3 Calculating Histograms
	3.4 Histograms of Images with More than 8 Bits
	3.4.1 Binning
	3.4.2 Example
	3.4.3 Implementation

	3.5 Histograms of Color Images
	3.5.1 Intensity Histograms
	3.5.2 Individual Color Channel Histograms
	3.5.3 Combined Color Histograms

	3.6 The Cumulative Histogram
	3.7 Statistical Information from the Histogram
	3.7.1 Mean and Variance
	3.7.2 Median

	3.8 Block Statistics
	3.8.1 Integral Images
	3.8.2 Mean Intensity
	3.8.3 Variance
	3.8.4 Practical Calculation of Integral Images

	3.9 Exercises

	4 Point Operations
	4.1 Modifying Image Intensity
	4.1.1 Contrast and Brightness
	4.1.2 Limiting Values by Clamping
	4.1.3 Inverting Images
	4.1.4 Threshold Operation

	4.2 Point Operations and Histograms
	4.3 Automatic Contrast Adjustment
	4.4 Modified Auto-Contrast Operation
	4.5 Histogram Equalization
	4.6 Histogram Specification
	4.6.1 Frequencies and Probabilities
	4.6.2 Principle of Histogram Specification
	4.6.3 Adjusting to a Piecewise Linear Distribution
	4.6.4 Adjusting to a Given Histogram (Histogram Matching)
	4.6.5 Examples
	Adjusting to a piecewise linear reference distribution
	Adjusting to an arbitrary reference histogram
	Adjusting to another image

	4.7 Gamma Correction
	4.7.1 Why Gamma?
	4.7.2 Mathematical Definition
	4.7.3 Real Gamma Values
	4.7.4 Applications of Gamma Correction
	4.7.5 Implementation
	4.7.6 Modified Gamma Correction
	Gamma correction in common standards
	Inverting the modified gamma correction

	4.8 Point Operations in ImageJ
	4.8.1 Point Operations with Lookup Tables
	4.8.2 Arithmetic Operations
	4.8.3 Point Operations Involving Multiple Images
	4.8.4 Methods for Point Operations on Two Images
	4.8.5 ImageJ Plugins Involving Multiple Images
	Example: Linear blending

	4.9 Exercises

	5 Filters
	5.1 What is a Filter?
	5.2 Linear Filters
	5.2.1 The Filter Kernel
	5.2.2 Applying the Filter
	5.2.3 Implementing the Filter Operation
	5.2.4 Filter Plugin Examples
	Simple 3 × 3 averaging filter (“box” filter)
	Another 3 × 3 smoothing filter

	5.2.5 Integer Coefficients
	5.2.6 Filters of Arbitrary Size
	5.2.7 Types of Linear Filters
	Smoothing filters
	Box filter
	Gaussian filter

	Difference filters

	5.3 Formal Properties of Linear Filters
	5.3.1 Linear Convolution
	5.3.2 Formal Properties of Linear Convolution
	Commutativity
	Linearity
	Associativity

	5.3.3 Separability of Linear Filters
	x/y separability
	Separable Gaussian filters

	5.3.4 Impulse Response of a Filter

	5.4 Nonlinear Filters
	5.4.1 Minimum and Maximum Filters
	5.4.2 Median Filter
	5.4.3 Weighted Median Filter
	5.4.4 Other Nonlinear Filters

	5.5 Implementing Filters
	5.5.1 Efficiency of Filter Programs
	5.5.2 Handling Image Borders
	5.5.3 Debugging Filter Programs

	5.6 Filter Operations in ImageJ
	5.6.1 Linear Filters
	5.6.2 Gaussian Filters
	5.6.3 Nonlinear Filters

	5.7 Exercises

	6 Edges and Contours
	6.1 What Makes an Edge?
	6.2 Gradient-Based Edge Detection
	6.2.1 Partial Derivatives and the Gradient
	6.2.2 Derivative Filters

	6.3 Simple Edge Operators
	6.3.1 Prewitt and Sobel Operators
	Gradient filters
	Edge strength and orientation

	6.3.2 Roberts Operator
	6.3.3 Compass Operators
	Extended Sobel operator

	6.3.4 Edge Operators in ImageJ

	6.4 Other Edge Operators
	6.4.1 Edge Detection Based on Second Derivatives
	6.4.2 Edges at Different Scales
	6.4.3 From Edges to Contours
	Binary edge maps
	Contour following

	6.5 Canny Edge Operator
	6.5.1 Pre-processing
	6.5.2 Edge localization
	6.5.3 Edge tracing and hysteresis thresholding
	6.5.4 Additional Information
	6.5.5 Implementation

	6.6 Edge Sharpening
	6.6.1 Edge Sharpening with the Laplacian Filter
	Laplacian operator
	Sharpening

	6.6.2 Unsharp Masking
	Process
	Smoothing filter
	Extensions
	Implementation
	Laplace vs. USM filter

	6.7 Exercises

	7 Corner Detection
	7.1 Points of Interest
	7.2 Harris Corner Detector
	7.2.1 Local Structure Matrix
	7.2.2 Corner Response Function (CRF)
	7.2.3 Determining Corner Points
	7.2.4 Examples

	7.3 Implementation
	7.3.1 Step 1: Calculating the Corner Response Function
	7.3.2 Step 2: Selecting “Good” Corner Points
	Choosing a suitable container
	The collectCorners() method

	7.3.3 Step 3: Cleaning up
	7.3.4 Summary

	7.4 Exercises

	8 Finding Simple Curves: The Hough Transform
	8.1 Salient Image Structures
	8.2 The Hough Transform
	8.2.1 Parameter Space
	8.2.2 Accumulator Map
	8.2.3 A Better Line Representation

	8.3 Hough Algorithm
	8.3.1 Processing the Accumulator Array
	Approach A: Thresholding
	Approach B: Nonmaximum suppression
	Mind the vertical lines!

	8.3.2 Hough Transform Extensions
	Modified accumulation
	Considering edge strength and orientation
	Bias compensation
	Line endpoints
	Hierarchical Hough transform
	Line intersections

	8.4 Java Implementation
	HoughTransformLines (class)

	8.5 Hough Transform for Circles and Ellipses
	8.5.1 Circles and Arcs
	8.5.2 Ellipses

	8.6 Exercises

	9 Morphological Filters
	9.1 Shrink and Let Grow
	9.1.1 Neighborhood of Pixels

	9.2 Basic Morphological Operations
	9.2.1 The Structuring Element
	9.2.2 Point Sets
	9.2.3 Dilation
	9.2.4 Erosion
	9.2.5 Formal Properties of Dilation and Erosion
	9.2.6 Designing Morphological Filters
	9.2.7 Application Example: Outline

	9.3 Composite Morphological Operations
	9.3.1 Opening
	9.3.2 Closing
	9.3.3 Properties of Opening and Closing

	9.4 Thinning (Skeletonization)
	9.4.1 Thinning Algorithm by Zhang and Suen
	9.4.2 Fast Thinning Algorithm
	9.4.3 Java Implementation
	BinaryMorphologyFilter class

	9.4.4 Built-in Morphological Operations in ImageJ

	9.5 Grayscale Morphology
	9.5.1 Structuring Elements
	9.5.2 Dilation and Erosion
	9.5.3 Grayscale Opening and Closing

	9.6 Exercises

	10 Regions in Binary Images
	10.1 Finding Connected Image Regions
	10.1.1 Region Labeling by Flood Filling
	Java implementation

	10.1.2 Sequential Region Labeling
	Step 1: Initial labeling
	Propagating region labels
	Label collisions

	Step 2: Resolving label collisions
	10.1.3 Region Labeling—Summary

	10.2 Region Contours
	10.2.1 External and Internal Contours
	10.2.2 Combining Region Labeling and Contour Finding
	10.2.3 Java Implementation
	Examples

	10.3 Representing Image Regions
	10.3.1 Matrix Representation
	10.3.2 Run Length Encoding
	10.3.3 Chain Codes
	Absolute chain code
	Differential chain code
	Shape numbers
	Fourier shape descriptors

	10.4 Properties of Binary Regions
	10.4.1 Shape Features
	10.4.2 Geometric Features
	Perimeter
	Area
	Compactness and roundness
	Bounding box
	Convex hull

	10.5 Statistical Shape Properties
	10.5.1 Centroid
	10.5.2 Moments
	10.5.3 Central Moments
	10.5.4 Normalized Central Moments
	10.5.5 Java Implementation

	10.6 Moment-Based Geometric Properties
	10.6.1 Orientation
	Calculating orientation vectors

	10.6.2 Eccentricity
	10.6.3 Bounding Box Aligned to the Major Axis
	10.6.4 Invariant Region Moments
	Hu’s invariant moments
	Flusser’s invariant moments
	Shape matching with region moments

	10.7 Projections
	10.8 Topological Region Properties
	10.9 Java Implementation
	Example

	10.10 Exercises

	11 Automatic Thresholding
	11.1 Global Histogram-Based Thresholding
	11.1.1 Image Statistics from the Histogram
	11.1.2 Simple Threshold Selection
	11.1.3 Iterative Threshold Selection (Isodata Algorithm)
	11.1.4 Otsu’s Method
	11.1.5 Maximum Entropy Thresholding
	Entropy of images
	Using image entropy for threshold selection

	11.1.6 Minimum Error Thresholding
	Bayesian decision making
	Gaussian probability distributions
	Goodness of classification

	11.2 Local Adaptive Thresholding
	11.2.1 Bernsen’s Method
	11.2.2 Niblack’s Method
	Calculating local mean and variance
	Local average and variance with Gaussian kernels

	11.3 Java Implementation
	11.3.1 Global Thresholding Methods
	11.3.2 Adaptive Thresholding

	11.4 Summary and Further Reading
	11.5 Exercises

	12 Color Images
	12.1 RGB Color Images
	12.1.1 Structure of Color Images
	True color images
	Component ordering
	Packed ordering

	Indexed images

	12.1.2 Color Images in ImageJ
	RGB true color images
	Accessing RGB pixel values
	Opening and saving RGB images
	Creating RGB color images

	Indexed color images
	Opening and saving indexed images
	Processing indexed images
	Creating indexed images
	Transparency

	12.2 Color Spaces and Color Conversion
	12.2.1 Conversion to Grayscale
	Hueless (gray) color images
	Grayscale conversion in ImageJ

	12.2.2 Desaturating RGB Color Images
	12.2.3 HSV/HSB and HLS Color Spaces
	RGB→HSV conversion
	Java implementation

	HSV→RGB conversion
	Java implementation

	RGB→HLS conversion
	HLS→RGB conversion
	Java implementation

	HSV and HLS compared
	Desaturation in HSV/HLS color space

	12.2.4 TV Component Color Spaces—YUV, YIQ, and YCbCr
	YUV
	YIQ
	YCbCr

	12.2.5 Color Spaces for Printing—CMY and CMYK
	CMY→CMYK conversion (version 1)
	CMY→CMYK conversion (version 2)
	CMY.CMYK conversion (version 2)
	CMY→CMYK conversion (version 3)

	12.3 Statistics of Color Images
	12.3.1 How Many Different Colors are in an Image?
	12.3.2 Color Histograms
	2D color histograms

	12.4 Exercises

	13 Color Quantization
	13.1 Scalar Color Quantization
	13.2 Vector Quantization
	13.2.1 Populosity Algorithm
	13.2.2 Median-Cut Algorithm
	13.2.3 Octree Algorithm
	13.2.4 Other Methods for Vector Quantization
	13.2.5 Java Implementation

	13.3 Exercises

	14 Colorimetric Color Spaces
	14.1 CIE Color Spaces
	14.1.1 CIE XYZ Color Space
	14.1.2 CIE x, y Chromaticity
	14.1.3 Standard Illuminants
	14.1.4 Gamut
	14.1.5 Variants of the CIE Color Space

	14.2 CIELAB
	14.2.1 CIEXYZ→CIELAB Conversion
	14.2.2 CIELAB→CIEXYZ Conversion

	14.3 CIELUV
	14.3.1 CIEXYZ→CIELUV Conversion
	14.3.2 CIELUV→CIEXYZ Conversion
	14.3.3 Measuring Color Differences

	14.4 Standard RGB (sRGB)
	14.4.1 Linear vs. Nonlinear Color Components
	14.4.2 CIEXYZ→sRGB Conversion
	14.4.3 sRGB→CIEXYZ Conversion
	14.4.4 Calculations with Nonlinear sRGB Values
	Example: color to grayscale conversion

	14.5 Adobe RGB
	14.6 Chromatic Adaptation
	14.6.1 XYZ Scaling
	14.6.2 Bradford Adaptation

	14.7 Colorimetric Support in Java
	14.7.1 Profile Connection Space (PCS)
	14.7.2 Color-Related Java Classes
	Class Color (java.awt.Color)
	Class ColorSpace (java.awt.color.ColorSpace)

	14.7.3 Implementation of the CIELAB Color Space (Example)
	14.7.4 ICC Profiles

	14.8 Exercises

	15 Filters for Color Images
	15.1 Linear Filters
	15.1.1 Monochromatic Application of Linear Filters
	Linear smoothing filters
	Response to a color step edge

	15.1.2 Color Space Considerations
	Preservation of brightness (luminance)
	Out-of-gamut colors
	Implications and further reading

	15.1.3 Linear Filtering with Circular Values
	Filtering the hue component in HSV color space
	Saturation-weighted filtering

	15.2 Nonlinear Color Filters
	15.2.1 Scalar Median Filter
	15.2.2 Vector Median Filter
	15.2.3 Sharpening Vector Median Filter

	15.3 Java Implementation
	15.4 Further Reading
	15.5 Exercises

	16 Edge Detection in Color Images
	16.1 Monochromatic Techniques
	16.2 Edges in Vector-Valued Images
	16.2.1 Multi-Dimensional Gradients
	16.2.2 The Jacobian Matrix
	16.2.3 Squared Local Contrast
	16.2.4 Color Edge Magnitude
	16.2.5 Color Edge Orientation
	16.2.6 Grayscale Gradients Revisited

	16.3 Canny Edge Detector for Color Images
	16.4 Other Color Edge Operators
	16.5 Java Implementation

	17 Edge-Preserving Smoothing Filters
	17.1 Kuwahara-Type Filters
	17.1.1 Application to Color Images

	17.2 Bilateral Filter
	17.2.1 Domain Filter
	17.2.2 Range Filter
	17.2.3 Bilateral Filter—General Idea
	17.2.4 Bilateral Filter with Gaussian Kernels
	17.2.5 Application to Color Images
	17.2.6 Efficient Implementation by x/y Separation
	17.2.7 Further Reading

	17.3 Anisotropic Diffusion Filters
	17.3.1 Homogeneous Diffusion and the Heat Equation
	Diffusion in images

	17.3.2 Perona-Malik Filter
	17.3.3 Perona-Malik Filter for Color Images
	Color diffusion based on the brightness gradient
	Using the color gradient
	Examples

	17.3.4 Geometry Preserving Anisotropic Diffusion
	Generalized divergence-based formulation
	Trace-based formulation

	17.3.5 Tschumperlé-Deriche Algorithm
	Step 1:
	Step 2:
	Step 3:
	Step 4:
	Step 5:
	Step 6:
	Step 7:
	Step 8:
	Examples

	17.4 Java Implementation
	17.5 Exercises

	18 Introduction to Spectral Techniques
	18.1 The Fourier Transform
	18.1.1 Sine and Cosine Functions
	Frequency and amplitude
	Phase
	Complex-valued sine functions—Euler’s notation

	18.1.2 Fourier Series Representation of Periodic Functions
	18.1.3 Fourier Integral
	18.1.4 Fourier Spectrum and Transformation
	18.1.5 Fourier Transform Pairs
	18.1.6 Important Properties of the Fourier Transform
	Symmetry
	Linearity
	Similarity
	Shift property
	Convolution property

	18.2 Working with Discrete Signals
	18.2.1 Sampling
	The impulse function δ(x)
	Sampling with the impulse function
	The comb function
	Effects of sampling in frequency space
	Aliasing and the sampling theorem

	18.2.2 Discrete and Periodic Functions

	18.3 The Discrete Fourier Transform (DFT)
	18.3.1 Definition of the DFT
	18.3.2 Discrete Basis Functions
	18.3.3 Aliasing Again!
	18.3.4 Units in Signal and Frequency Space
	Example 1: time-domain signal
	Example 2: space-domain signal

	18.3.5 Power Spectrum

	18.4 Implementing the DFT
	18.4.1 Direct Implementation
	18.4.2 Fast Fourier Transform (FFT)

	18.5 Exercises

	19 The Discrete Fourier Transform in 2D
	19.1 Definition of the 2D DFT
	19.1.1 2D Basis Functions
	Examples
	19.1.2 Implementing the 2D DFT

	19.2 Visualizing the 2D Fourier Transform
	19.2.1 Range of Spectral Values
	19.2.2 Centered Representation of the DFT Spectrum

	19.3 Frequencies and Orientation in 2D
	19.3.1 Effective Frequency
	19.3.2 Frequency Limits and Aliasing in 2D
	19.3.3 Orientation
	19.3.4 Normalizing the Geometry of the 2D Spectrum
	19.3.5 Effects of Periodicity
	19.3.6 Windowing
	19.3.7 Common Windowing Functions

	19.4 2D Fourier Transform Examples
	Scaling
	Periodic Image Patterns
	Rotation
	Oriented, elongated structures
	Natural images
	Print patterns

	19.5 Applications of the DFT
	19.5.1 Linear Filter Operations in Frequency Space
	19.5.2 Linear Convolution and Correlation
	19.5.3 Inverse Filters

	19.6 Exercises

	20 The Discrete Cosine Transform (DCT)
	20.1 1D DCT
	20.1.1 DCT Basis Functions
	20.1.2 Implementing the 1D DCT

	20.2 2D DCT
	20.2.1 Examples
	20.2.2 Separability

	20.3 Java Implementation
	Dct1d (class)
	Dct2d (class)

	20.4 Other Spectral Transforms
	20.5 Exercises

	21 Geometric Operations
	21.1 2D Coordinate Transformations
	21.1.1 Simple Geometric Mappings
	Translation
	Scaling
	Shearing
	Rotation

	21.1.2 Homogeneous Coordinates
	21.1.3 Affine (Three-Point) Mapping
	Affine transformation parameters from three point pairs
	Inverse affine mapping

	21.1.4 Projective (Four-Point) Mapping
	Projective transformation parameters from four point pairs
	Inverse projective mapping
	Projective mapping via the unit square
	Projective transformation parameters from more than four point pairs

	21.1.5 Bilinear Mapping
	21.1.6 Other Nonlinear Image Transformations
	“Twirl” transformation
	“Ripple” transformation
	Spherical transformation

	21.1.7 Piecewise Image Transformations

	21.2 Resampling the Image
	21.2.1 Source-to-Target Mapping
	21.2.2 Target-to-Source Mapping

	21.3 Java Implementation
	21.3.1 General Mappings (Class Mapping)
	21.3.2 Linear Mappings
	21.3.3 Nonlinear Mappings
	21.3.4 Sample Applications
	Example 1: image rotation
	Example 2: projective transformation

	21.4 Exercises

	22 Pixel Interpolation
	22.1 Simple Interpolation Methods
	22.1.1 Ideal Low-Pass Filter

	22.2 Interpolation by Convolution
	22.3 Cubic Interpolation
	22.4 Spline Interpolation
	22.4.1 Catmull-Rom Interpolation
	22.4.2 Cubic B-spline Approximation
	22.4.3 Mitchell-Netravali Approximation
	22.4.4 Lanczos Interpolation

	22.5 Interpolation in 2D
	22.5.1 Nearest-Neighbor Interpolation in 2D
	22.5.2 Bilinear Interpolation
	22.5.3 Bicubic and Spline Interpolation in 2D
	22.5.4 Lanczos Interpolation in 2D
	22.5.5 Examples and Discussion

	22.6 Aliasing
	22.6.1 Sampling the Interpolated Image
	22.6.2 Low-Pass Filtering

	22.7 Java Implementation
	PixelInterpolator (class)

	22.8 Exercises

	23 Image Matching and Registration
	23.1 Template Matching in Intensity Images
	23.1.1 Distance between Image Patterns
	Sum of absolute differences:
	Maximum difference:
	Sum of squared differences:
	Distance and correlation
	Normalized cross correlation
	Correlation coefficient
	Examples and discussion
	Shape of the template

	23.1.2 Matching Under Rotation and Scaling
	23.1.3 Java Implementation

	23.2 Matching Binary Images
	23.2.1 Direct Comparison of Binary Images
	23.2.2 The Distance Transform
	Chamfer algorithm

	23.2.3 Chamfer Matching
	23.2.4 Java Implementation

	23.3 Exercises

	24 Non-Rigid Image Matching
	24.1 The Lucas-Kanade Technique
	24.1.1 Registration in 1D
	24.1.2 Extension to Multi-Dimensional Functions

	24.2 The Lucas-Kanade Algorithm
	24.2.1 Summary of the Algorithm
	Initialize:
	Repeat:
	Until

	24.3 Inverse Compositional Algorithm
	Initialize:
	Repeat:
	Until

	24.4 Parameter Setups for Various Linear Transformations
	24.4.1 Pure Translation
	24.4.2 Affine Transformation
	24.4.3 Projective Transformation
	24.4.4 Concatenating Linear Transformations

	24.5 Example
	24.6 Java Implementation
	LucasKanadeMatcher (class)
	LucasKanadeForwardMatcher (class)
	LucasKanadeInverseMatcher (class)
	24.6.1 Application Example

	24.7 Exercises

	25 Scale-Invariant Feature Transform (SIFT)
	25.1 Interest Points at Multiple Scales
	25.1.1 The LoG Filter
	Approximating the LoG by the difference of two Gaussians (DoG)

	25.1.2 Gaussian Scale Space
	Continuous Gaussian scale space
	Discrete Gaussian scale space

	25.1.3 LoG/DoG Scale Space
	25.1.4 Hierarchical Scale Space
	Octaves and sub-sampling (decimation)
	Decimation between successive octaves
	Spatial positions in the hierarchical scale space
	Hierarchical LoG/DoG scale space

	25.1.5 Scale Space Structure in SIFT

	25.2 Key Point Selection and Refinement
	25.2.1 Local Extrema Detection
	25.2.2 Position Refinement
	25.2.3 Suppressing Responses to Edge-Like Structures

	25.3 Creating Local Descriptors
	25.3.1 Finding Dominant Orientations Local orientation from Gaussian scale space
	Orientation histograms

	25.3.2 SIFT Descriptor Construction
	Descriptor geometry
	Gradient features
	Normalizing SIFT descriptors

	25.4 SIFT Algorithm Summary
	25.5 Matching SIFT Features
	25.5.1 Feature Distance and Match Quality
	25.5.2 Examples

	25.6 Efficient Feature Matching
	25.7 Java Implementation
	25.7.1 SIFT Feature Extraction
	25.7.2 SIFT Feature Matching

	25.8 Exercises

	26 Fourier Shape Descriptors
	26.1 Closed Curves in the Complex Plane
	26.1.1 Discrete 2D Curves
	Contour points in the complex plane
	Regular position sampling

	26.2 Discrete Fourier Transform (DFT)
	26.2.1 Forward Fourier Transform
	26.2.2 Inverse Fourier Transform (Reconstruction)
	26.2.3 Periodicity of the DFT Spectrum
	26.2.4 Truncating the DFT Spectrum

	26.3 Geometric Interpretation of Fourier Coefficients
	26.3.1 Coefficient G0 Corresponds to the Contour’s Centroid
	26.3.2 Coefficient G1 Corresponds to a Circle
	26.3.3 Coefficient Gm Corresponds to a Circle with Frequency
	26.3.4 Negative Frequencies
	26.3.5 Fourier Descriptor Pairs Correspond to Ellipses
	Ellipse parameters

	26.3.6 Shape Reconstruction from Truncated Fourier Descriptors
	Odd number of contour points
	Even number of contour points
	Reconstruction algorithm

	26.3.7 Fourier Descriptors from Unsampled Polygons

	26.4 Effects of Geometric Transformations
	26.4.1 Translation
	26.4.2 Scale Change
	26.4.3 Rotation
	26.4.4 Shifting the Sampling Start Position
	26.4.5 Effects of Phase Removal
	26.4.6 Direction of Contour Traversal
	26.4.7 Reflection (Symmetry)

	26.5 Transformation-Invariant Fourier Descriptors
	26.5.1 Scale Invariance
	26.5.2 Start Point Invariance
	26.5.3 Rotation Invariance
	26.5.4 Other Approaches

	26.6 Shape Matching with Fourier Descriptors
	26.6.1 Magnitude-Only Matching
	26.6.2 Complex (Phase-Preserving) Matching

	26.7 Java Implementation
	FourierDescriptor (class)
	FourierDescriptorUniform (class)
	FourierDescriptorFromPolygon (class)
	PolygonSampler (class)
	Example

	26.8 Discussion and Further Reading
	26.9 Exercises

	Appendix A Mathematical Symbols and Notation
	A.1 Symbols
	A.2 Set Operators
	A.3 Complex Numbers
	Basic relations:
	Arithmetic operations:

	Appendix B Linear Algebra
	B.1 Vectors and Matrices
	B.1.1 Column and Row Vectors
	B.1.2 Length (Norm) of a Vector

	B.2 Matrix Multiplication
	B.2.1 Scalar Multiplication
	B.2.2 Product of Two Matrices
	B.2.3 Matrix-Vector Products

	B.3 Vector Products
	B.3.1 Dot (Scalar) Product
	B.3.2 Outer Product
	B.3.3 Cross Product

	B.4 Eigenvectors and Eigenvalues
	B.4.1 Calculation of Eigenvalues
	Special case: 2×2 matrix

	General case: n×n

	B.5 Homogeneous Coordinates
	B.6 Basic Matrix-Vector Operations with the Apache Commons Math Library
	B.6.1 Vectors and Matrices
	B.6.2 Matrix-Vector Multiplication
	B.6.3 Vector Products
	B.6.4 Inverse of a Square Matrix
	B.6.5 Eigenvalues and Eigenvectors

	B.7 Solving Systems of Linear Equations
	B.7.1 Exact Solutions
	B.7.2 Over-Determined System (Least-Squares Solutions)

	Appenidx C Calculus
	C.1 Parabolic Fitting
	C.1.1 Fitting a Parabolic Function to Three Sample Points
	C.1.2 Locating Extrema by Quadratic Interpolation

	C.2 Scalar and Vector Fields
	C.2.1 The Jacobian Matrix
	C.2.2 Gradients
	Gradient of a scalar field
	Gradient of a vector field

	C.2.3 Maximum Gradient Direction
	C.2.4 Divergence of a Vector Field
	C.2.5 Laplacian Operator
	C.2.6 The Hessian Matrix

	C.3 Operations on Multi-Variable, Scalar Functions (Scalar Fields)
	C.3.1 Estimating the Derivatives of a Discrete Function
	C.3.2 Taylor Series Expansion of Functions
	Single-variable functions
	Multi-variable functions
	Example: two-variable (2D) function
	Example: three-variable (3D) function

	C.3.3 Finding the Continuous Extremum of a MultiVariable Discrete Function
	Local extrema in 2D
	Local extrema in 3D

	Appendix D Statistical Prerequisites
	D.1 Mean, Variance, and Covariance
	D.1.1 Mean
	D.1.2 Variance and Covariance
	D.1.3 Biased vs. Unbiased Variance

	D.2 The Covariance Matrix
	D.2.1 Example
	D.2.2 Practical Calculation

	D.3 Mahalanobis Distance
	D.3.1 Definition
	D.3.2 Relation to the Euclidean Distance
	D.3.3 Numerical Aspects
	D.3.4 Pre-Mapping Data for Efficient Mahalanobis Matching

	D.4 The Gaussian Distribution
	D.4.1 Maximum Likelihood Estimation
	D.4.2 Gaussian Mixtures
	D.4.3 Creating Gaussian Noise

	Appendix E Gaussian Filters
	E.1 Cascading Gaussian Filters
	E.2 Gaussian Filters and Scale Space
	E.3 Effects of Gaussian Filtering in the Frequency Domain
	E.4 LoG-Approximation by the DoG

	Appendix F Java Notes
	F.1 Arithmetic
	F.1.1 Integer Division
	Example

	F.1.2 Modulus Operator
	F.1.3 Unsigned Byte Data
	F.1.4 Mathematical Functions in Class
	F.1.5 Numerical Rounding
	F.1.6 Inverse Tangent Function
	F.1.7 Classes Float and Double
	F.1.8 Testing Floating-Point Values Against Zero

	F.2 Arrays in Java
	F.2.1 Creating Arrays
	F.2.2 Array Size
	F.2.3 Accessing Array Elements
	F.2.4 2D Arrays
	Size of multi-dimensional arrays

	F.2.5 Arrays of Objects
	F.2.6 Searching for Minimum and Maximum Values
	F.2.7 Sorting Arrays

	References
	Index

