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Preface

This book provides a modern, self-contained introduction to digital
image processing. We designed the book to be used both by learners
desiring a firm foundation on which to build as well as practitioners
in search of detailed analysis and transparent implementations of the
most important techniques. This is the second English edition of the
original German-language book, which has been widely used by:

e Scientists and engineers who use image processing as a tool and
wish to develop a deeper understanding and create custom solu-
tions to imaging problems in their field.

e IT professionals wanting a self-study course featuring easily
adaptable code and completely worked out examples, enabling
them to be productive right away.

e Faculty and students desiring an example-rich introductory text-
book suitable for an advanced undergraduate or graduate level
course that features exercises, projects, and examples that have
been honed during our years of experience teaching this material.

While we concentrate on practical applications and concrete imple-
mentations, we do so without glossing over the important formal
details and mathematics necessary for a deeper understanding of the
algorithms. In preparing this text, we started from the premise that
simply creating a recipe book of imaging solutions would not provide
the deeper understanding needed to apply these techniques to novel
problems, so instead our solutions are developed stepwise from three
different perspectives: in mathematical form, as abstract pseudocode
algorithms, and as complete Java programs. We use a common no-
tation to intertwine all three perspectives—providing multiple, but
linked, views of the problem and its solution.

Prerequisites

Instead of presenting digital image processing as a mathematical dis-
cipline, or strictly as signal processing, we present it from a practi-
tioner’s and programmer’s perspective and with a view toward re-
placing many of the formalisms commonly used in other texts with
constructs more readily understandable by our audience. To take full
advantage of the programming components of this book, a knowledge
of basic data structures and object-oriented programming, ideally in
Java, is required. We selected Java for a number of reasons: it is
the first programming language learned by students in a wide vari-
ety of engineering curricula, and professionals with knowledge of a
related language, especially C# or C++, will find the programming
examples easy to follow and extend.
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The software in this book is designed to work with ImageJ,
a widely used, programmer-extensible, imaging system developed,
maintained, and distributed by the National Institutes of Health
(NIH).! ImageJ is implemented completely in Java, and therefore
runs on all major platforms, and is widely used because its “plugin”-
based architecture enables it to be easily extended. While all exam-
ples run in ImagelJ, they have been specifically designed to be easily
ported to other environments and programming languages.

Use in research and development

This book has been especially designed for use as a textbook and as
such features exercises and carefully constructed examples that sup-
plement our detailed presentation of the fundamental concepts and
techniques. As both practitioners and developers, we know that the
details required to successfully understand, apply, and extend classi-
cal techniques are often difficult to find, and for this reason we have
been very careful to provide the missing details, many gleaned over
years of practical application. While this should make the text par-
ticularly valuable to those in research and development, it is not de-
signed as a comprehensive, fully-cited scientific research text. On the
contrary, we have carefully vetted our citations so that they can be
obtained from easily accessible sources. While we have only briefly
discussed the fundamentals of, or entirely omitted, topics such as
hierarchical methods, wavelets, or eigenimages because of space lim-
itations, other topics have been left out deliberately, including ad-
vanced issues such as object recognition, image understanding, and
three-dimensional (3D) computer vision. So, while most techniques
described in this book could be called “blind and dumb”, it is our
experience that straightforward, technically clean implementations
of these simpler methods are essential to the success of any further
domain-specific, or even “intelligent”, approaches.

If you are only in search of a programming handbook for Im-
ageJ or Java, there are certainly better sources. While the book
includes many code examples, programming in and of itself is not
our main focus. Instead Java serves as just one important element
for describing each technique in a precise and immediately testable
way.

Classroom use

Whether it is called signal processing, image processing, or media
computation, the manipulation of digital images has been an integral
part of most computer science and engineering curricula for many
years. Today, with the omnipresence of all-digital work flows, it has
become an integral part of the required skill set for professionals in
many diverse disciplines.

Today the topic has migrated into the early stages of many cur-
ricula, where it is often a key foundation course. This migration
uncovered a problem in that many of the texts relied on as standards

L http://rsb.info.nih.gov/ij/.
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in the older graduate-level courses were not appropriate for begin-
ners. The texts were usually too formal for novices, and at the same
time did not provide detailed coverage of many of the most popular
methods used in actual practice. The result was that educators had
a difficult time selecting a single textbook or even finding a compact
collection of literature to recommend to their students. Faced with
this dilemma ourselves, we wrote this book in the sincere hope of
filling this gap.

The contents of the following chapters can be presented in either
a one- or two-semester sequence. Where feasible, we have added
supporting material in order to make each chapter as independent
as possible, providing the instructor with maximum flexibility when
designing the course. Chapters 18-20 offer a complete introduction to
the fundamental spectral techniques used in image processing and are
essentially independent of the other material in the text. Depending
on the goals of the instructor and the curriculum, they can be covered
in as much detail as required or completely omitted. The following
road map shows a possible partitioning of topics for a two-semester
syllabus.

Road Map for a 1/2-Semester Syllabus Sem. 1 2
1. Digital Images ... |
2. ImageJ ..o |
3. Histograms and Image Statistics ...................... |
4. Point Operations .............ceoieiiiiiiiiiaiean.. m O
5. Filters ... |
6. Edges and Contours .......... ... |
7. Corner Detection ... Oom
8. The Hough Transform: Finding Simple Curves ........ om
9. Morphological Filters ........... ... ... ... ... ... |

10. Regions in Binary Images ................... .. ... ... |

11. Automatic Thresholding ............. ... .. ... ...... O m

12. Color Images ...t |

13. Color Quantization ................c.ooviiiiiiiiia... Om

14. Colorimetric Color Spaces ...........c.ccooiiiiiiin.... Oom

15. Filters for Color Images ........... ...t O m

16. Edge Detection in Color Images ....................... Oom

17. Edge-Preserving Smoothing Filters .................... Oom

18. Introduction to Spectral Techniques ................... 0Om

19. The Discrete Fourier Transform in 2D ................. O m

20. The Discrete Cosine Transform (DCT) ................ Oom

21. Geometric Operations ............c..ccoiiiiiiinenn... m O

22. Pixel Interpolation ............ ... i N

23. Image Matching and Registration ..................... |

24. Non-Rigid Image Matching .............. ... ... .. .. O m

25. Scale-Invariant Local Features (SIFT) ................. Oom

26. Fourier Shape Descriptors ................oooiiiii.... Om

Addendum to the second edition

This second edition is based on our completely revised German third
edition and contains both additional material and several new chap-

PREFACE
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Prerace  ters including: automatic thresholding (Ch. 11), filters and edge de-

tection for color images (Chs. 15 and 16), edge-preserving smoothing
filters (Ch. 17), non-rigid image matching (Ch. 24), and Fourier shape
descriptors (Ch. 26). Much of this new material is presented for the
first time at the level of detail necessary to completely understand
and create a working implementation.

The two final chapters on SIFT and Fourier shape descriptors
are particularly detailed to demonstrate the actual level of granu-
larity and the special cases which must be considered when actually
implementing complex techniques. Some other chapters have been
rearranged or split into multiple parts for more clarity and easier use
in teaching. The mathematical notation and programming examples
were completely revised and almost all illustrations were adapted or
created anew for this full-color edition.

For this edition, the ImageJ Short Reference and ancillary source
code have been relocated from the Appendix and the most re-
cently versions are freely available in electronic form from the book’s
website. The complete source code, consisting of the common
imagingbook library, sample ImageJ plugins for each book chapter,
and extended documentation are available from the book’s Source-
Forge site.?

Online resources

Visit the website for this book
www.imagingbook.com

to download supplementary materials, including the complete Java
source code for all examples and the underlying software library, full-
size test images, useful references, and other supplements. Com-
ments, questions, and corrections are welcome and may be ad-
dressed to

imagingbook @ gmail.com

Exercises and solutions

Each chapter of this book contains a set of sample exercises, mainly
for supporting instructors to prepare their own assignments. Most of
these tasks are easy to solve after studying the corresponding chapter,
while some others may require more elaborated reasoning or experi-
mental work. We assume that scholars know best how to select and
adapt individual assignments in order to fit the level and interest of
their students. This is the main reason why we have abstained from
publishing explicit solutions in the past. However, we are happy to
answer any personal request if an exercise is unclear or seems to elude
a simple solution.

Thank you!

This book would not have been possible without the understanding
and support of our families. Our thanks go to Wayne Rasband at
NIH for developing ImageJ and for his truly outstanding support of

2 http://sourceforge.net/projects/imagingbook/.
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the community and to all our readers of the previous editions who
provided valuable input, suggestions for improvement, and encour-
agement. The use of open source software for such a project always
carries an element of risk, since the long-term acceptance and conti-
nuity is difficult to assess. Retrospectively, choosing ImageJ as the
software basis for this work was a good decision, and we would con-
sider ourselves happy if our book has indirectly contributed to the
success of the ImageJ project itself. Finally, we owe a debt of grati-
tude to the professionals at Springer, particularly to Wayne Wheeler
and Simon Reeves who were responsible for the English edition.

Hagenberg / Washington D.C.
Fall 2015
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1

Digital Images

For a long time, using a computer to manipulate a digital image (i.e.,
digital image processing) was something performed by only a rela-
tively small group of specialists who had access to expensive equip-
ment. Usually this combination of specialists and equipment was
only to be found in research labs, and so the field of digital image
processing has its roots in the academic realm. Now, however, the
combination of a powerful computer on every desktop and the fact
that nearly everyone has some type of device for digital image ac-
quisition, be it their cell phone camera, digital camera, or scanner,
has resulted in a plethora of digital images and, with that, for many
digital image processing has become as common as word processing.
It was not that many years ago that digitizing a photo and saving it
to a file on a computer was a time-consuming task. This is perhaps
difficult to imagine given today’s powerful hardware and operating
system level support for all types of digital media, but it is always
sobering to remember that “personal” computers in the early 1990s
were not powerful enough to even load into main memory a single
image from a typical digital camera of today. Now powerful hard-
ware and software packages have made it possible for amateurs to
manipulate digital images and videos just as easily as professionals.
All of these developments have resulted in a large community
that works productively with digital images while having only a basic
understanding of the underlying mechanics. For the typical consumer
merely wanting to create a digital archive of vacation photos, a deeper
understanding is not required, just as a deep understanding of the
combustion engine is unnecessary to successfully drive a car.

Today, I'T professionals must be more then simply familiar with
digital image processing. They are expected to be able to knowledge-
ably manipulate images and related digital media, which are an in-
creasingly important part of the workflow not only of those involved
in medicine and media but all industries. In the same way, soft-
ware engineers and computer scientists are increasingly confronted
with developing programs, databases, and related systems that must
correctly deal with digital images. The simple lack of practical ex-
© Springer-Verlag London 2016
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1 DiciTaL ImMaces Pperience with this type of material, combined with an often unclear
understanding of its basic foundations and a tendency to underes-
timate its difficulties, frequently leads to inefficient solutions, costly
errors, and personal frustration.

1.1 Programming with Images

Even though the term “image processing” is often used interchange-
ably with that of “image editing”, we introduce the following more
precise definitions. Digital image editing, or as it is sometimes re-
ferred to, digital imaging, is the manipulation of digital images using
an existing software application such as Adobe Photoshop® or Corel
Paint®. Digital image processing, on the other hand, is the con-
ception, design, development, and enhancement of digital imaging
programs.

Modern programming environments, with their extensive APIs
(application programming interfaces), make practically every aspect
of computing, be it networking, databases, graphics, sound, or imag-
ing, easily available to nonspecialists. The possibility of developing
a program that can reach into an image and manipulate the individ-
ual elements at its very core is fascinating and seductive. You will
discover that with the right knowledge, an image becomes ultimately
no more than a simple array of values, that with the right tools you
can manipulate in any way imaginable.

“Computer graphics”, in contrast to digital image processing,
concentrates on the synthesis of digital images from geometrical de-
scriptions such as three-dimensional (3D) object models [75,87,247].
While graphics professionals today tend to be interested in topics
such as realism and, especially in terms of computer games, render-
ing speed, the field does draw on a number of methods that originate
in image processing, such as image transformation (morphing), recon-
struction of 3D models from image data, and specialized techniques
such as image-based and nonphotorealistic rendering [180,248]. Sim-
ilarly, image processing makes use of a number of ideas that have
their origin in computational geometry and computer graphics, such
as volumetric (voxel) models in medical image processing. The two
fields perhaps work closest when it comes to digital postproduction
of film and video and the creation of special effects [256]. This book
provides a thorough grounding in the effective processing of not only
images but also sequences of images; that is, videos.

1.2 Image Analysis and Computer Vision

Often it appears at first glance that a given image-processing task will
have a simple solution, especially when it is something that is easily
accomplished by our own visual system. Yet in practice it turns out
that developing reliable, robust, and timely solutions is difficult or
simply impossible. This is especially true when the problem involves
image analysis; that is, where the ultimate goal is not to enhance
or otherwise alter the appearance of an image but instead to extract



meaningful information about its contents—be it distinguishing an
object from its background, following a street on a map, or finding
the bar code on a milk carton, tasks such as these often turn out to
be much more difficult to accomplish than we would expect.

We expect technology to improve on what we can do by ourselves.
Be it as simple as a lever to lift more weight or binoculars to see
farther or as complex as an airplane to move us across continents—
science has created so much that improves on, sometimes by unbe-
lievable factors, what our biological systems are able to perform. So,
it is perhaps humbling to discover that today’s technology is nowhere
near as capable, when it comes to image analysis, as our own visual
system. While it is possible that this will always remain true, do not
let this discourage you. Instead consider it a challenge to develop cre-
ative solutions. Using the tools, techniques, and fundamental knowl-
edge available today, it is possible not only to solve many problems
but to create robust, reliable, and fast applications.

While image analysis is not the main subject of this book, it of-
ten naturally intersects with image processing and we will explore
this intersection in detail in these situations: finding simple curves
(Ch. 8), segmenting image regions (Ch. 10), and comparing images
(Ch. 23). In these cases, we present solutions that work directly
on the pixel data in a bottom-up way without recourse to domain-
specific knowledge (i.e., blind solutions). In this way, our solutions
essentially embody the distinction between image processing, pattern
recognition, and computer vision, respectively. While these two disci-
plines are firmly grounded in, and rely heavily on, image processing,
their ultimate goals are much more lofty.

Pattern recognition is primarily a mathematical discipline and has
been responsible for techniques such as clustering, hidden Markov
models (HMMs), decision trees, and principal component analysis
(PCA), which are used to discover patterns in data and signals.
Methods from pattern recognition have been applied extensively to
problems arising in computer vision and image analysis. A good ex-
ample of their successful application is optical character recognition
(OCR), where robust, highly accurate turnkey solutions are available
for recognizing scanned text. Pattern recognition methods are truly
universal and have been successfully applied not only to images but
also speech and audio signals, text documents, stock trades, and find-
ing trends in large databases, where it is often called data mining.
Dimensionality reduction, statistical, and syntactical methods play
important roles in pattern recognition (see, e.g., [64,169,228]).

Computer vision tackles the problem of engineering artificial visual
systems capable of somehow comprehending and interpreting our
real, 3D world. Popular topics in this field include scene under-
standing, object recognition, motion interpretation (tracking), au-
tonomous navigation, and the robotic manipulation of objects in a
scene. Since computer vision has its roots in artificial intelligence
(AI), many AI methods were originally developed to either tackle or
represent a problem in computer vision (see, e.g., [51, Ch. 13]). The
fields still have much in common today, especially in terms of adap-

1.2 IMAGE ANALYSIS AND
COMPUTER VISION
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tive methods and machine learning. Further literature on computer
vision includes [15,78,110,214,222,232].

Ultimately you will find image processing to be both intellectually
challenging and professionally rewarding, as the field is ripe with
problems that were originally thought to be relatively simple to solve
but have to this day refused to give up their secrets. With the back-
ground and techniques presented in this text, you will not only be
able to develop complete image-processing solutions but will also have
the prerequisite knowledge to tackle unsolved problems and the real
possibility of expanding the horizons of science: for while image pro-
cessing by itself may not change the world, it is likely to be the
foundation that supports marvels of the future.

1.3 Types of Digital Images

Digital images are the central theme of this book, and unlike just
a few years ago, this term is now so commonly used that there is
really no reason to explain it further. Yet this book is not about all
types of digital images, instead it focuses on images that are made
up of picture elements, more commonly known as pizels, arranged in
a regular rectangular grid.

Every day, people work with a large variety of digital raster images
such as color photographs of people and landscapes, grayscale scans
of printed documents, building plans, faxed documents, screenshots,
medical images such as x-rays and ultrasounds, and a multitude of
others (see Fig. 1.1 for examples). Despite all the different sources
for these images, they are all, as a rule, ultimately represented as
rectangular ordered arrays of image elements.

1.4 Image Acquisition

The process by which a scene becomes a digital image is varied and
complicated, and, in most cases, the images you work with will al-
ready be in digital form, so we only outline here the essential stages in
the process. As most image acquisition methods are essentially vari-
ations on the classical optical camera, we will begin by examining it
in more detail.

1.4.1 The Pinhole Camera Model

The pinhole camera is one of the simplest camera models and has
been in use since the 13th century, when it was known as the “Camera
Obscura”. While pinhole cameras have no practical use today except
to hobbyists, they are a useful model for understanding the essential
optical components of a simple camera. The pinhole camera consists
of a closed box with a small opening on the front side through which
light enters, forming an image on the opposing wall. The light forms
a smaller, inverted image of the scene (Fig. 1.2).
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Look in: I[:l images

Perspective projection

The geometric properties of the pinhole camera are very simple. The
optical axis runs through the pinhole perpendicular to the image
plane. We assume a visible object, in our illustration the cactus,
located at a horizontal distance Z from the pinhole and vertical dis-
tance Y from the optical axis. The height of the projection y is
determined by two parameters: the fixed depth of the camera box f
and the distance Z to the object from the origin of the coordinate
system. By comparison we see that

x:—f~§ and y:—f~% (1.1)

1.4 IMAGE ACQUISITION

Fig. 1.1

Examples of digital images.
Natural landscape (a), syn-
thetically generated scene (b),
poster graphic (c), computer
screenshot (d), black and white
illustration (e), barcode (f),
fingerprint (g), x-ray (h), mi-
croscope slide (i), satellite
image (j), radar image (k),
astronomical object (1).
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Fig. 1.2

Geometry of the pinhole cam-
era. The pinhole opening
serves as the origin (O) of the
3D coordinate system (X,Y, Z)
for the objects in the scene.
The optical axis, which runs
through the opening, is the Z
axis of this coordinate system.
A separate 2D coordinate sys-
tem (z,y) describes the projec-
tion points on the image plane.
The distance f (“focal length”)
between the opening and

the image plane determines
the scale of the projection.

Y
PN

optical
axis

d
image
plane

change with the scale of the resulting image in proportion to the
depth of the box (i.e., the distance f) in a way similar to how the
focal length does in an everyday camera. For a fixed image, a small f
(i.e., short focal length) results in a small image and a large viewing
angle, just as occurs when a wide-angle lens is used, while increasing
the “focal length” f results in a larger image and a smaller viewing
angle, just as occurs when a telephoto lens is used. The negative
sign in Eqn. (1.1) means that the projected image is flipped in the
horizontal and vertical directions and rotated by 180°.

Equation (1.1) describes what is commonly known today as the
perspective transformation.' Important properties of this theoretical
model are that straight lines in 3D space always appear straight in
2D projections and that circles appear as ellipses.

1.4.2 The “Thin” Lens

While the simple geometry of the pinhole camera makes it useful for
understanding its basic principles, it is never really used in practice.
One of the problems with the pinhole camera is that it requires a
very small opening to produce a sharp image. This in turn reduces
the amount of light passed through and thus leads to extremely long
exposure times. In reality, glass lenses or systems of optical lenses are
used whose optical properties are greatly superior in many aspects
but of course are also much more complex. Instead we can make our
model more realistic, without unduly increasing its complexity, by
replacing the pinhole with a “thin lens” as in Fig. 1.3.

In this model, the lens is assumed to be symmetric and infinitely
thin, such that all light rays passing through it cross through a virtual
plane in the middle of the lens. The resulting image geometry is the
same as that of the pinhole camera. This model is not sufficiently
complex to encompass the physical details of actual lens systems, such

! Tt is hard to imagine today that the rules of perspective geometry, while
known to the ancient mathematicians, were only rediscovered in 1430
by the Renaissance painter Brunelleschi.
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as geometrical distortions and the distinct refraction properties of
different colors. So, while this simple model suffices for our purposes
(i.e., understanding the mechanics of image acquisition), much more
detailed models that incorporate these additional complexities can
be found in the literature (see, e.g., [126]).

1.4.3 Going Digital

What is projected on the image plane of our camera is essentially
a two-dimensional (2D), time-dependent, continuous distribution of
light energy. In order to convert this image into a digital image on
our computer, the following three main steps are necessary:

1. The continuous light distribution must be spatially sampled.

2. This resulting function must then be sampled in time to create a
single (still) image.

3. Finally, the resulting values must be quantized to a finite range
of integers (or floating-point values) such that they can be rep-
resented by digital numbers.

Step 1: Spatial sampling

The spatial sampling of an image (i.e., the conversion of the contin-
uous signal to its discrete representation) depends on the geometry
of the sensor elements of the acquisition device (e.g., a digital or
video camera). The individual sensor elements are arranged in or-
dered rows, almost always at right angles to each other, along the
sensor plane (Fig. 1.4). Other types of image sensors, which include
hexagonal elements and circular sensor structures, can be found in
specialized products.

Step 2: Temporal sampling

Temporal sampling is carried out by measuring at regular intervals
the amount of light incident on each individual sensor element. The
CCD? in a digital camera does this by triggering the charging process
and then measuring the amount of electrical charge that has built up
during the specified amount of time that the CCD was illuminated.

2 Charge-coupled device.

1.4 IMAGE ACQUISITION

Fig. 1.3
Thin lens projection model.
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The geometry of the sensor \ | ' )/
elements is directly responsi- \ !
ble for the spatial sampling \ 1 I .

of the continuous image. In )
the simplest case, a plane of
sensor elements are arranged
in an evenly spaced grid, and
each element measures the
amount of light that falls on it.

sensor plane

image element I(u,v)

Step 3: Quantization of pixel values

In order to store and process the image values on the computer
they are commonly converted to an integer scale (e.g., 256 = 28 or
4096 = 2'2). Occasionally floating-point values are used in profes-
sional applications, such as medical imaging. Conversion is carried
out using an analog to digital converter, which is typically embedded
directly in the sensor electronics so that conversion occurs at image
capture or is performed by special interface hardware.

Images as discrete functions

The result of these three stages is a description of the image in the
form of a 2D, ordered matrix of integers (Fig. 1.5). Stated a bit
more formally, a digital image I is a 2D function that maps from
the domain of integer coordinates N x N to a range of possible pixel
values P such that

I(u,v) €P and w,veN.

Now we are ready to transfer the image to our computer so that we
can save, compress, and otherwise manipulate it into the file format
of our choice. At this point, it is no longer important to us how the
image originated since it is now a simple 2D array of numerical data.
Before moving on, we need a few more important definitions.

1.4.4 Image Size and Resolution

In the following, we assume rectangular images, and while that is a
relatively safe assumption, exceptions do exist. The size of an image
is determined directly from the width M (number of columns) and
the height N (number of rows) of the image matrix 1.

The resolution of an image specifies the spatial dimensions of
the image in the real world and is given as the number of image
elements per measurement; for example, dots per inch (dpi) or lines
per inch (Ipi) for print production, or in pizels per kilometer for
satellite images. In most cases, the resolution of an image is the
same in the horizontal and vertical directions, which means that the
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image elements are square. Note that this is not always the case as,
for example, the image sensors of most current video cameras have
non-square pixels!

The spatial resolution of an image may not be relevant in many
basic image processing steps, such as point operations or filters. Pre-
cise resolution information is, however, important in cases where ge-
ometrical elements such as circles need to be drawn on an image
or when distances within an image need to be measured. For these
reasons, most image formats and software systems designed for pro-
fessional applications rely on precise information about image reso-
lution.

1.4.5 Image Coordinate System

In order to know which position on the image corresponds to which
image element, we need to impose a coordinate system. Contrary
to normal mathematical conventions, in image processing the coor-
dinate system is usually flipped in the vertical direction; that is, the
y-coordinate runs from top to bottom and the origin lies in the upper
left corner (Fig. 1.6). While this system has no practical or theoret-
ical advantage, and in fact may be a bit confusing in the context of
geometrical transformations, it is used almost without exception in
imaging software systems. The system supposedly has its roots in
the original design of television broadcast systems, where the picture
rows are numbered along the vertical deflection of the electron beam,
which moves from the top to the bottom of the screen. We start the
numbering of rows and columns at zero for practical reasons, since
in Java array indexing also begins at zero.

1.4.6 Pixel Values

The information within an image element depends on the data type
used to represent it. Pixel values are practically always binary words
of length k so that a pixel can represent any of 2% different values.
The value k is called the bit depth (or just “depth”) of the image. The
exact bit-level layout of an individual pixel depends on the kind of
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Fig. 1.6

Image coordinates. In digital
image processing, it is com-
mon to use a coordinate sys-
tem where the origin (v = 0,
v = 0) lies in the upper left
corner. The coordinates u, v
represent the columns and the
rows of the image, respectively.
For an image with dimensions
M X N, the maximum col-
umn number is u, ., = M —1
and the maximum row num-
ber is v = N—1.

max

Table 1.1

Bit depths of common
image types and typi-
cal application domains.

10

M columns

0 u M-1

—— I(u,v)

N rows

Grayscale (Intensity Images):

Chan. | Bits/Pix. Range Use
1 1 [0,1] Binary image: document, illustration, fax
1 8 [0, 255] Universal: photo, scan, print
1 12 [0, 4095] High quality: photo, scan, print
1 14 [0, 16383] Professional: photo, scan, print
1 16 [0, 65535] Highest quality: medicine, astronomy
Color Images:
Chan. | Bits/Pix. Range Use
3 24 [0, 2552 RGB, universal: photo, scan, print
3 36 [0, 4095}3 RGB, high quality: photo, scan, print
3 42 [0,16383]% RGB, professional: photo, scan, print
4 32 [0, 255]4 CMYK, digital prepress
Special Images:
Chan. | Bits/Pix. Range Use
1 16 [—32768, 32767] | Integer values pos./neg., increased range
1 32 +3.4-10%8 Floating-point values: medicine, astronomy
1 64 +1.8.10%%8 Floating-point values: internal processing

image; for example, binary, grayscale, or RGB? color. The properties
of some common image types are summarized below (also see Table
1.1).

Grayscale images (intensity images)

The image data in a grayscale image consist of a single channel that
represents the intensity, brightness, or density of the image. In most
cases, only positive values make sense, as the numbers represent the
intensity of light energy or density of film and thus cannot be neg-
ative, so typically whole integers in the range 0,...,2F—1 are used.
For example, a typical grayscale image uses k = 8 bits (1 byte) per
pixel and intensity values in the range 0,...,255, where the value
0 represents the minimum brightness (black) and 255 the maximum
brightness (white).

For many professional photography and print applications, as well
as in medicine and astronomy, 8 bits per pixel is not sufficient. Image
depths of 12, 14, and even 16 bits are often encountered in these

3 Red, green, and blue.



domains. Note that bit depth usually refers to the number of bits
used to represent one color component, not the number of bits needed
to represent an entire color pixel. For example, an RGB-encoded
color image with an 8-bit depth would require 8 bits for each channel
for a total of 24 bits, while the same image with a 12-bit depth would
require a total of 36 bits.

Binary images

Binary images are a special type of intensity image where pixels can
only take on one of two values, black or white. These values are
typically encoded using a single bit (0/1) per pixel. Binary images
are often used for representing line graphics, archiving documents,
encoding fax transmissions, and of course in electronic printing.

Color images

Most color images are based on the primary colors red, green, and
blue (RGB), typically making use of 8 bits for each color component.
In these color images, each pixel requires 3 X 8 = 24 bits to encode all
three components, and the range of each individual color component
is [0,255]. As with intensity images, color images with 30, 36, and 42
bits per pixel are commonly used in professional applications. Finally,
while most color images contain three components, images with four
or more color components are common in most prepress applications,
typically based on the subtractive CMYK (Cyan-Magenta-Y ellow-
Black) color model (see Ch. 12).

Indezxed or palette images constitute a very special class of color
image. The difference between an indexed image and a true color
image is the number of different colors (fewer for an indexed image)
that can be used in a particular image. In an indexed image, the pixel
values are only indices (with a maximum of 8 bits) onto a specific
table of selected full-color values (see Sec. 12.1.1).

Special images

Special images are required if none of the above standard formats
is sufficient for representing the image values. Two common exam-
ples of special images are those with negative values and those with
floating-point values. Images with negative values arise during image-
processing steps, such as filtering for edge detection (see Sec. 6.2.2),
and images with floating-point values are often found in medical,
biological, or astronomical applications, where extended numerical
range and precision are required. These special formats are mostly
application specific and thus may be difficult to use with standard
image-processing tools.

1.5 Image File Formats

While in this book we almost always consider image data as be-
ing already in the form of a 2D array—ready to be accessed by a
program—, in practice image data must first be loaded into mem-
ory from a file. Files provide the essential mechanism for storing,

1.5 IMAGE FILE FORMATS
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archiving, and exchanging image data, and the choice of the correct
file format is an important decision. In the early days of digital im-
age processing (i.e., before around 1985), most software developers
created a new custom file format for almost every new application
they developed.* Today there exist a wide range of standardized file
formats, and developers can almost always find at least one existing
format that is suitable for their application. Using standardized file
formats vastly increases the ease with which images can be exchanged
and the likelihood that the images will be readable by other software
in the long term. Yet for many projects the selection of the right file
format is not always simple, and compromises must be made. The
following sub-sections outline a few of the typical criteria that need
to be considered when selecting an appropriate file format.

1.5.1 Raster versus Vector Data

In the following, we will deal exclusively with file formats for storing
raster images; that is, images that contain pixel values arranged in a
regular matrix using discrete coordinates. In contrast, vector graphics
represent geometric objects using continuous coordinates, which are
only rasterized once they need to be displayed on a physical device
such as a monitor or printer.

A number of standardized file formats exist for vector images,
such as the ANSI/ISO standard format CGM (Computer Graph-
ics Metafile) and SVG (Scalable Vector Graphics),® as well as pro-
prietary formats such as DXF (Drawing Exchange Format from
AutoDesk), AI (Adobe Illustrator), PICT (QuickDraw Graphics
Metafile from Apple), and WMF/EMF (Windows Metafile and En-
hanced Metafile from Microsoft). Most of these formats can con-
tain both vector data and raster images in the same file. The PS
(PostScript) and EPS (Encapsulated PostScript) formats from Adobe
as well as the PDF (Portable Document Format) also offer this possi-
bility, although they are typically used for printer output and archival
purposes.’

1.5.2 Tagged Image File Format (TIFF)

This is a widely used and flexible file format designed to meet the pro-
fessional needs of diverse fields. It was originally developed by Aldus
and later extended by Microsoft and currently Adobe. The format
supports a range of grayscale, indexed, and true color images, but
also special image types with large-depth integer and floating-point
elements. A TIFF file can contain a number of images with different
properties. The TIFF specification provides a range of different com-
pression methods (LZW, ZIP, CCITT, and JPEG) and color spaces,

4 The result was a chaotic jumble of incompatible file formats that for
a long time limited the practical sharing of images between research
groups.

5 www.w3.0rg/TR/SVG/.

6 Special variations of PS, EPS, and PDF files are also used as (editable)
exchange formats for raster and vector data; for example, both Adobe’s
Photoshop (Photoshop-EPS) and Illustrator (AI).
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so that it is possible, for example, to store a number of variations
of an image in different sizes and representations together in a single
TIFF file. The flexibility of TIFF has made it an almost universal ex-
change format that is widely used in archiving documents, scientific
applications, digital photography, and digital video production.

The strength of this image format lies within its architecture (Fig.
1.7), which enables new image types and information blocks to be cre-
ated by defining new “tags”. In this flexibility also lies the weakness of
the format, namely that proprietary tags are not always supported
and so the “unsupported tag” error is sometimes still encountered
when loading TIFF files. ImageJ also reads only a few uncompressed
variations of TIFF formats,” and bear in mind that most popular
Web browsers currently do not support TIFF either.

1.5.3 Graphics Interchange Format (GIF)

The Graphics Interchange Format (GIF) was originally designed by
CompuServe in 1986 to efficiently encode the rich line graphics used
in their dial-up Bulletin Board System (BBS). It has since grown
into one of the most widely used formats for representing images
on the Web. This popularity is largely due to its early support for
indexed color at multiple bit depths, LZW?® compression, interlaced
image loading, and ability to encode simple animations by storing
a number of images in a single file for later sequential display. GIF
is essentially an indexed image file format designed for color and
grayscale images with a maximum depth of 8 bits and consequently
it does not support true color images. It offers efficient support for
encoding palettes containing from 2 to 256 colors, one of which can
be marked for transparency. GIF supports color tables in the range

" The ImageI0 plugin offers support for a wider range of TIFF formats.

8 Lempel-Ziv-Welch 13
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of 2,...,256, enabling pixels to be encoded using fewer bits. As an
example, the pixels of an image using 16 unique colors require only 4
bits to store the 16 possible color values O, ...,15. This means that
instead of storing each pixel using 1 byte, as done in other bitmap
formats, GIF can encode two 4-bit pixels into each 8-bit byte. This
results in a 50% storage reduction over the standard 8-bit indexed
color bitmap format.

The GIF file format is designed to efficiently encode “flat” or
“iconic” images consisting of large areas of the same color. It uses
lossy color quantization (see Ch. 13) as well as lossless LZW compres-
sion to efficiently encode large areas of the same color. Despite the
popularity of the format, when developing new software, the PNG?
format, presented in the next sub-section, should be preferred, as it
outperforms GIF by almost every metric.

1.5.4 Portable Network Graphics (PNG)

PNG (pronounced “ping”) was originally developed as a replacement
for the GIF file format when licensing issues'? arose because of its use
of LZW compression. It was designed as a universal image format
especially for use on the Internet, and, as such, PNG supports three
different types of images:

e true color images (with up to 3 x 16 bits/pixel),
e grayscale images (with up to 16 bits/pixel),
e indexed color images (with up to 256 colors).

Additionally, PNG includes an alpha channel for transparency with a
maximum depth of 16 bits. In comparison, the transparency channel
of a GIF image is only a single bit deep. While the format only sup-
ports a single image per file, it is exceptional in that it allows images
of up to 239 x 230 pixels. The format supports lossless compression
by means of a variation of PKZIP (Phil Katz’s ZIP). No lossy com-
pression is available, as PNG was not designed as a replacement for
JPEG. Ultimately, the PNG format meets or exceeds the capabilities
of the GIF format in every way except GIF’s ability to include mul-
tiple images in a single file to create simple animations. Currently,
PNG should be considered the format of choice for representing un-
compressed, lossless, true color images for use on the Web.

1.5.5 JPEG

The JPEG standard defines a compression method for continuous
grayscale and color images, such as those that would arise from nature
photography. The format was developed by the Joint Photographic
Experts Group (JPEG)! with the goal of achieving an average data
reduction of a factor of 1:16 and was established in 1990 as ISO Stan-
dard IS-10918. Today it is the most widely used image file format. In
practice, JPEG achieves, depending on the application, compression
in the order of 1 bit per pixel (i.e., a compression factor of around

9 Portable network graphics
10 Unisys’s U.S. LZW Patent No. 4,558,302 expired on June 20, 2003.
1 www.jpeg.org.
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1:25) when compressing 24-bit color images to an acceptable quality
for viewing. The JPEG standard supports images with up to 256
color components, and what has become increasingly important is
its support for CMYK images (see Sec. 12.2.5).

The modular design of the JPEG compression algorithm [163]
allows for variations of the “baseline” algorithm; for example, there
exists an uncompressed version, though it is not often used. In the
case of RGB images, the core of the algorithm consists of three main
steps:

1. Color conversion and down sampling: A color transforma-
tion from RGB into the Y'C,C, space (see Ch. 12, Sec. 12.2.4) is
used to separate the actual color components from the brightness
Y component. Since the human visual system is less sensitive to
rapid changes in color, it is possible to compress the color com-
ponents more, resulting in a significant data reduction, without
a subjective loss in image quality.

2. Cosine transform and quantization in frequency space:
The image is divided up into a regular grid of 8 blocks, and for
each independent block, the frequency spectrum is computed us-
ing the discrete cosine transformation (see Ch. 20). Next, the 64
spectral coefficients of each block are quantized into a quantiza-
tion table. The size of this table largely determines the eventual
compression ratio, and therefore the visual quality, of the image.
In general, the high frequency coefficients, which are essential
for the “sharpness” of the image, are reduced most during this
step. During decompression these high frequency values will be
approximated by computed values.

3. Lossless compression: Finally, the quantized spectral compo-
nents data stream is again compressed using a lossless method,
such as arithmetic or Huffman encoding, in order to remove the
last remaining redundancy in the data stream.

The JPEG compression method combines a number of different com-
pression methods and its should not be underestimated. Implement-
ing even the baseline version is nontrivial, so application support for
JPEG increased sharply once the Independent JPEG Group (IJG)*?
made available a reference implementation of the JPEG algorithm
in 1991. Drawbacks of the JPEG compression algorithm include its
limitation to 8-bit images, its poor performance on non-photographic
images such as line art (for which it was not designed), its handling of
abrupt transitions within an image, and the striking artifacts caused
by the 8 x 8 pixel blocks at high compression rates. Figure 1.9 shows
the results of compressing a section of a grayscale image using differ-
ent quality factors (Photoshop Qj;pg = 10,5,1).

JPEG File Interchange Format (JFIF)

Despite common usage, JPEG is not a file format; it is “only” a
method of compressing image data. The actual JPEG standard only
specifies the JPEG codec (compressor and decompressor) and by de-

12 www.ijg.org.
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Fig. 1.8

JPEG compression of an RGB
image. Using a color space
transformation, the color com-
ponents Cy, C,. are separated
from the Y luminance com-
ponent and subjected to a
higher rate of compression.
Each of the three components
are then run independently
through the JPEG compression
pipeline and are merged into
a single JPEG data stream.
Decompression follows the
same stages in reverse order.
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sign leaves the wrapping, or file format, undefined.'> What is nor-
mally referred to as a JPEG file is almost always an instance of a
“JPEG File Interchange Format” (JFIF) file, originally developed by
Eric Hamilton and the IJG. JFIF specifies a file format based on the
JPEG standard by defining the remaining necessary elements of a file
format. The JPEG standard leaves some parts of the codec unde-
fined for generality, and in these cases JFIF makes a specific choice.
As an example, in step 1 of the JPEG codec, the specific color space
used in the color transformation is not part of the JPEG standard,
so it is specified by the JFIF standard. As such, the use of different
compression ratios for color and luminance is a practical implementa-
tion decision specified by JFIF and is not a part of the actual JPEG
encoder.

Exchangeable Image File Format (EXIF)

The Exchangeable Image File Format (EXIF) is a variant of the
JPEG (JFIF) format designed for storing image data originating
on digital cameras, and to that end it supports storing metadata
such as the type of camera, date and time, photographic parameters
such as aperture and exposure time, as well as geographical (GPS)
data. EXIF was developed by the Japan Electronics and Information
Technology Industries Association (JEITA) as a part of the DCF4
guidelines and is used today by practically all manufacturers as the
standard format for storing digital images on memory cards. Inter-
nally, EXIF uses TIFF to store the metadata information and JPEG
to encode a thumbnail preview image. The file structure is designed
so that it can be processed by existing JPEG/JFIF readers without
a problem.

JPEG-2000

JPEG-2000, which is specified by an ISO-ITU standard (“Coding
of Still Pictures”),'® was designed to overcome some of the better-
known weaknesses of the traditional JPEG codec. Among the im-

13 To be exact, the JPEG standard only defines how to compress the in-
dividual components and the structure of the JPEG stream.

' Design Rule for Camera File System.

5 www.jpeg.org/JPEG2000.htm.
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(a) Original
(75.08 kB)

(b) Qypg =10
(11.40 kB)

(c) Qspag =5
(7.24 kB)

(d) Qipg =1
(5.52 kB)

provements made in JPEG-2000 are the use of larger, 64 x 64 pixel
blocks and replacement of the discrete cosine transform by the wavelet
transform. These and other improvements enable it to achieve sig-
nificantly higher compression ratios than JPEG—up to 0.25 bits per
pixel on RGB color images. Despite these advantages, JPEG-2000
is supported by only a few image-processing applications and Web
browsers.'6

16 At this time, ImageJ does not offer JPEG-2000 support.
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Artifacts arising from JPEG
compression. A section of the
original image (a) and the re-
sults of JPEG compression
at different quality factors:
Qyra = 10 (b), Qypg =5
(¢), and Qypg = 1 (d). In
parentheses are the resulting
file sizes for the complete (di-
mensions 274 X 274) image.
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Fig. 1.10

Example of a PGM file in
human-readable text format
(top) and the correspond-
ing grayscale image (below).
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1.5.6 Windows Bitmap (BMP)

The Windows Bitmap (BMP) format is a simple, and under Win-
dows widely used, file format supporting grayscale, indexed, and true
color images. It also supports binary images, but not in an efficient
manner, since each pixel is stored using an entire byte. Optionally,
the format supports simple lossless, run-length-based compression.
While BMP offers storage for a similar range of image types as TIFF,
it is a much less flexible format.

1.5.7 Portable Bitmap Format (PBM)

The Portable Bitmap Format (PBM) family!” consists of a series
of very simple file formats that are exceptional in that they can be
optionally saved in a human-readable text format that can be easily
read in a program or simply edited using a text editor. A simple
PGM image is shown in Fig. 1.10. The characters P2 in the first
line indicate that the image is a PGM (“plain”) file stored in human-
readable format. The next line shows how comments can be inserted
directly into the file by beginning the line with the # symbol. Line
three gives the image’s dimensions, in this case width 17 and height
7, and line four defines the maximum pixel value, in this case 255.
The remaining lines give the actual pixel values. This format makes
it easy to create and store image data without any explicit imaging
API, since it requires only basic text I/O that is available in any
programming environment. In addition, the format supports a much
more machine-optimized “raw” output mode in which pixel values
are stored as bytes. PBM is widely used under Unix and supports
the following formats: PBM (portable bitmap) for binary bitmaps,
PGM (portable graymap) for grayscale images, and PNM (portable
any map) for color images. PGM images can be opened by ImagelJ.

P2

# oie.pgm

17 7

2565

013 131313131313 0 0 0 0 0 0 O O O
013 0 0 0 0 013 0 7 7 O 081818181
6013 o 7 7 7 013 0 7 7 0 08 0 O O
013 0 7 0 7 013 0 7 7 0O 0818181 0
013 0 7 7 7 013 0 7 7 0O 08 0 O O
013 0 0 0 0 013 0 7 7 O 081818181
013 131313131313 0 0 0 0 0 0 O O O

1.5.8 Additional File Formats

For most practical applications, one of the following file formats is
sufficient: TIFF as a universal format supporting a wide variety of
uncompressed images and JPEG/JFIF for digital color photos when
storage size is a concern, and there is either PNG or GIF for when
an image is destined for use on the Web. In addition, there exist

17 http://netpbm.sourceforge.net.
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countless other file formats, such as those encountered in legacy ap-
plications or in special application areas where they are traditionally
used. A few of the more commonly encountered types are:

¢ RGB, a simple format from Silicon Graphics.

¢ RAS (Sun Raster Format), a simple format from Sun Micro-
systems.

e TGA (Truevision Targa File Format), the first 24-bit file format
for PCs. It supports numerous image types with 8- to 32-bit
depths and is still used in medicine and biology.

e XBM/XPM (X-Windows Bitmap/Pixmap), a group of ASCII-
encoded formats used in the X-Windows system and similar to
PBM/PGM.

1.5.9 Bits and Bytes

Today, opening, reading, and writing image files is mostly carried out
by means of existing software libraries. Yet sometimes you still need
to deal with the structure and contents of an image file at the byte
level, for instance when you need to read an unsupported file format
or when you receive a file where the format of the data is unknown.

Big endian and little endian

In the standard model of a computer, a file consists of a simple se-
quence of 8-bit bytes, and a byte is the smallest entry that can be
read or written to a file. In contrast, the image elements as they are
stored in memory are usually larger then a byte; for example, a 32-bit
int value (= 4 bytes) is used for an RGB color pixel. The problem is
that storing the four individual bytes that make up the image data
can be done in different ways. In order to correctly recreate the orig-
inal color pixel, we must naturally know the order in which bytes in
the file are arranged.

Consider, for example, a 32-bit int number z with the binary and
hexadecimal values'®

z =00010010'00110100'01010110°01111000 g = 12345678, (1.2)
—— ——

124 78
(MSB) (LSB)

then 000100105 = 12 is the value of the most significant byte (MSB)
and 011110005 = 78y the least significant byte (LSB). When the
individual bytes in the file are arranged in order from MSB to LSB
when they are saved, we call the ordering “big endian”, and when in
the opposite direction, “little endian”. Thus the 32-bit value z from
Eqn. (1.2) could be stored in one of the following two modes:

Ordering Byte Sequence 1 2 3 4
big endian MSB — LSB | 124 34y 56y 78y
little endian | LSB — MSB | 78y 56y 34y 12y

Even though correctly ordering the bytes should essentially be the
responsibility of the operating and file systems, in practice it actually

8 The decimal value of z is 305419896.

1.5 IMAGE FILE FORMATS
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Table 1.2

Signatures of various image
file formats. Most image file
formats can be identified by
inspecting the first bytes of
the file. These byte sequences,
or signatures, are listed in
hexadecimal (0x..) form and
as ASCII text (U indicates

a nonprintable character).

20

Format Signature Format Signature
PNG 0x89504e47 [IPNG BMP 0x424d BM
JPEG/JFIF 0xffd8ffe0 [ GIF 0x4749463839 GIF89

TIFF e |0x49492200 II#0  Photoshop|0x38425053  8BPS
TIFF 0x4d4d002a MMI*  PS/EPS |0x25215053  %!PS

depends on the architecture of the processor.!? Processors from the
Intel family (e.g., x86, Pentium) are traditionally little endian, and
processors from other manufacturers (e.g., IBM, MIPS, Motorola,
Sun) are big endian.? Big endian is also called network byte ordering
since in the IP protocol the data bytes are arranged in MSB to LSB
order during transmission.

To correctly interpret image data with multi-byte pixel values,
it is necessary to know the byte ordering used when creating it. In
most cases, this is fixed and defined by the file format, but in some file
formats, for example TIFF, it is variable and depends on a parameter
given in the file header (see Table 1.2).

File headers and signatures

Practically all image file formats contain a data header consisting
of important information about the layout of the image data that
follows. Values such as the size of the image and the encoding of
the pixels are usually present in the file header to make it easier
for programmers to allocate the correct amount of memory for the
image. The size and structure of this header are usually fixed, but
in some formats, such as TIFF, the header can contain pointers to
additional subheaders.

In order to interpret the information in the header, it is necessary
to know the file type. In many cases, this can be determined by the
file name extension (e.g., .jpg or .tif), but since these extensions
are not standardized and can be changed at any time by the user, they
are not a reliable way of determining the file type. Instead, many file
types can be identified by their embedded “signature”, which is often
the first 2 bytes of the file. Signatures from a number of popular
image formats are given in Table 1.2. Most image formats can be
determined by inspecting the first few bytes of the file. These bytes,
or signatures, are listed in hexadecimal (0x..) form and as ASCII
text. A PNG file always begins with the 4-byte sequence 0x89, 0x50,
Ox4e, 0x47, which is the “magic number” 0x89 followed by the ASCII
sequence “PNG”. Sometimes the signature not only identifies the type
of image file but also contains information about its encoding; for
instance, in TIFF the first two characters are either IT for “Intel” or
MM for “Motorola” and indicate the byte ordering (little endian or big
endian, respectively) of the image data in the file.

19 At least the ordering of the bits within a byte is almost universally
uniform.

20 In Java, this problem does not arise since internally all implementations
of the Java Virtual Machine use big endian ordering.



1.6 Exercises

Exercise 1.1. Determine the actual physical measurement in mil-
limeters of an image with 1400 rectangular pixels and a resolution of
72 dpi.

Exercise 1.2. A camera with a focal length of f = 50 mm is used
to take a photo of a vertical column that is 12 m high and is 95m
away from the camera. Determine its height in the image in mm (a)
and the number of pixels (b) assuming the camera has a resolution
of 4000 dpi.

Exercise 1.3. The image sensor of a particular digital camera con-
tains 2016 x 3024 pixels. The geometry of this sensor is identical to
that of a traditional 35mm camera (with an image size of 24 x 36
mm) except that it is 1.6 times smaller. Compute the resolution of
this digital sensor in dpi.

Exercise 1.4. Assume the camera geometry described in Exercise
1.3 combined with a lens with focal length f = 50 mm. What amount
of blurring (in pixels) would be caused by a uniform, 0.1° horizontal
turn of the camera during exposure? Recompute this for f = 300
mm. Consider if the extent of the blurring also depends on the dis-
tance of the object.

Exercise 1.5. Determine the number of bytes necessary to store an
uncompressed binary image of size 4000 x 3000 pixels.

Exercise 1.6. Determine the number of bytes necessary to store an
uncompressed RGB color image of size 640 x 480 pixels using 8, 10,
12, and 14 bits per color channel.

Exercise 1.7. Given a black and white television with a resolution
of 625 x 512 8-bit pixels and a frame rate of 25 images per second:
(a) How may different images can this device ultimately display, and
how long would you have to watch it (assuming no sleeping) in order
to see every possible image at least once? (b) Perform the same
calculation for a color television with 3 x 8 bits per pixel.

Exercise 1.8. Show that the projection of a 3D straight line in a
pinhole camera (assuming perspective projection as defined in Eqn.
(1.1)) is again a straight line in the resulting 2D image.

Exercise 1.9. Using Fig. 1.10 as a model, use a text editor to create
a PGM file, disk.pgm, containing an image of a bright circle. Open
your image with ImageJ and then try to find other programs that
can open and display the image.

1.6 EXERCISES
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ImageJ

Until a few years ago, the image-processing community was a rel-
atively small group of people who either had access to expensive
commercial image-processing tools or, out of necessity, developed
their own software packages. Usually such home-brew environments
started out with small software components for loading and storing
images from and to disk files. This was not always easy because of-
ten one had to deal with poorly documented or even proprietary file
formats. An obvious (and frequent) solution was to simply design a
new image file format from scratch, usually optimized for a partic-
ular field, application, or even a single project, which naturally led
to a myriad of different file formats, many of which did not survive
and are forgotten today [163,168]. Nevertheless, writing software
for converting between all these file formats in the 1980s and early
1990s was an important business that occupied many people. Dis-
playing images on computer screens was similarly difficult, because
there was only marginal support from operating systems, APIs, and
display hardware, and capturing images or videos into a computer
was close to impossible on common hardware. It thus may have
taken many weeks or even months before one could do just elemen-
tary things with images on a computer and finally do some serious
image processing.

Fortunately, the situation is much different today. Only a few
common image file formats have survived (see also Sec. 1.5), which are
readily handled by many existing tools and software libraries. Most
standard APIs for C/C++, Java, and other popular programming
languages already come with at least some basic support for working
with images and other types of media data. While there is still much
development work going on at this level, it makes our job a lot easier
and, in particular, allows us to focus on the more interesting aspects
of digital imaging.

© Springer-Verlag London 2016
W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,
DOI 10.1007/978-1-4471-6684-9 2
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2> nacej 2.1 Software for Digital Imaging

Traditionally, software for digital imaging has been targeted at ei-
ther manipulating or processing images, either for practitioners and
designers or software programmers, with quite different requirements.

Software packages for manipulating images, such as Adobe Photo-
shop, Corel Paint, and others, usually offer a convenient user interface
and a large number of readily available functions and tools for work-
ing with images interactively. Sometimes it is possible to extend the
standard functionality by writing scripts or adding self-programmed
components. For example, Adobe provides a special API' for pro-
gramming Photoshop “plugins” in C++4, though this is a nontrivial
task and certainly too complex for nonprogrammers.

In contrast to the aforementioned category of tools, digital im-
age processing software primarily aims at the requirements of al-
gorithm and software developers, scientists, and engineers working
with images, where interactivity and ease of use are not the main
concerns. Instead, these environments mostly offer comprehensive
and well-documented software libraries that facilitate the implemen-
tation of new image-processing algorithms, prototypes, and work-
ing applications. Popular examples are Khoros/Accusoft,? MatLab,?
ImageMagick,* among many others. In addition to the support for
conventional programming (typically with C/C++), many of these
systems provide dedicated scripting languages or visual programming
aides that can be used to construct even highly complex processes in
a convenient and safe fashion.

In practice, image manipulation and image processing are of
course closely related. Although Photoshop, for example, is aimed
at image manipulation by nonprogrammers, the software itself im-
plements many traditional image-processing algorithms. The same is
true for many Web applications using server-side image processing,
such as those based on ImageMagick. Thus image processing is really
at the base of any image manipulation software and certainly not an
entirely different category.

2.2 Imaged Overview

ImageJ, the software that is used for this book, is a combination
of both worlds discussed in the previous section. It offers a set of
ready-made tools for viewing and interactive manipulation of images
but can also be extended easily by writing new software components
in a “real” programming language. ImageJ is implemented entirely
in Java and is thus largely platform-independent, running without
modification under Windows, MacOS, or Linux. Java’s dynamic ex-
ecution model allows new modules (“plugins”) to be written as in-
dependent pieces of Java code that can be compiled, loaded, and
executed “on the fly” in the running system without the need to

www.adobe.com/products/photoshop/.
www.accusoft.com.
www.mathworks.com.

1
2
3
4 www.imagemagick.org.
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even restart ImageJ. This quick turnaround makes ImageJ an ideal 9 9 IyacET OVERVIEW
platform for developing and testing new image-processing techniques
and algorithms. Since Java has become extremely popular as a first
programming language in many engineering curricula, it is usually
quite easy for students to get started in ImageJ without having to
spend much time learning another programming language. Also, Im-
agelJ is freely available, so students, instructors, and practitioners
can install and use the software legally and without license charges
on any computer. ImagelJ is thus an ideal platform for education and
self-training in digital image processing but is also in regular use for
serious research and application development at many laboratories
around the world, particularly in biological and medical imaging.
ImageJ was (and still s) developed by Wayne Rasband [193] at
the U.S. National Institutes of Health (NIH), originally as a sub-
stitute for its predecessor, NIH-Image, which was only available for
the Apple Macintosh platform. The current version of ImagelJ, up-
dates, documentation, the complete source code, test images, and a
continuously growing collection of third-party plugins can be down-
loaded from the ImageJ website.® Installation is simple, with detailed
instructions available online, in Werner Bailer’s programming tuto-
rial [12], and in the authors’ ImageJ Short Reference [40]. NG
In addition to ImagelJ itself there are several popular software Wayne Rasband (right) at the
. . .. . . 1st ImageJ Conference 2006
projects that build on or extend ImageJ. This includes in particular (i ture courtesy of Mare Seil,
Fiji% (“Fiji Is Just ImageJ”) which offers a consistent collection of CRP Henri Tudor,
. . . . . Luxembourg).
numerous plugins, simple installation on various platforms and ex-
cellent documentation. All programming examples (plugins) shown
in this book should also execute in Fiji without any modifications.
Another important development is ImgLib2, which is a generic Java
API for representing and processing n-dimensional images in a con-
sistent fashion. ImgLib2 also provides the underlying data model for
ImageJ?2,” which is a complete reimplementation of ImagelJ.

2.2.1 Key Features

As a pure Java application, ImageJ should run on any computer
for which a current Java runtime environment (JRE) exists. Im-
ageJ comes with its own Java runtime, so Java need not be installed
separately on the computer. Under the usual restrictions, ImageJ can
be run as a Java “applet” within a Web browser, though it is mostly
used as a stand-alone application. It is sometimes also used on the
server side in the context of Java-based Web applications (see [12]
for details). In summary, the key features of ImagelJ are:

e A set of ready-to-use, interactive tools for creating, visualizing,
editing, processing, analyzing, loading, and storing images, with
support for several common file formats. ImagelJ also provides
“deep” 16-bit integer images, 32-bit floating-point images, and
image sequences (“stacks”).

® http://rsb.info.nih.gov/ij/.

S http://iji.sc.

" http://imagej.net/lImageJ2. To avoid confusion, the “classic” ImageJ plat-
form is sometimes referred to as “ImageJ1” or simply “IJ1”.
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e A simple plugin mechanism for extending the core functionality
of ImageJ by writing (usually small) pieces of Java code. All
coding examples shown in this book are based on such plugins.

e A macro language and the corresponding interpreter, which make
it easy to implement larger processing blocks by combining ex-
isting functions without any knowledge of Java. Macros are not
discussed in this book, but details can be found in ImageJ’s online
documentation.®

2.2.2 Interactive Tools

When Imagel] starts up, it first opens its main window (Fig. 2.1),
which includes the following menu entries:

e File: for opening, saving, and creating new images.

e Edit: for editing and drawing in images.

e Image: for modifying and converting images, geometric opera-
tions.

e Process: for image processing, including point operations, filters,
and arithmetic operations between multiple images.

e Analyze: for statistical measurements on image data, histograms,
and special display formats.

e Plugin: for editing, compiling, executing, and managing user-
defined plugins.

The current version of ImageJ can open images in several common
formats, including TIFF (uncompressed only), JPEG, GIF, PNG,
and BMP, as well as the formats DICOM?® and FITS,'® which are
popular in medical and astronomical image processing, respectively.
As is common in most image-editing programs, all interactive oper-
ations are applied to the currently active image, i.e., the image most
recently selected by the user. ImageJ provides a simple (single-step)
“undo” mechanism for most operations, which can also revert modi-
fications effected by user-defined plugins.

2.2.3 ImageJ Plugins

Plugins are small Java modules for extending the functionality of
ImageJ by using a simple standardized interface (Fig. 2.2). Plugins
can be created, edited, compiled, invoked, and organized through
the Plugin menu in ImageJ’s main window (Fig. 2.1). Plugins can
be grouped to improve modularity, and plugin commands can be
arbitrarily placed inside the main menu structure. Also, many of Im-
ageJ’s built-in functions are actually implemented as plugins them-
selves.

Program structure

Technically speaking, plugins are Java classes that implement a par-
ticular interface specification defined by ImageJ. There are two main
types of plugins:

8 http:/rsb.info.nih.gov/ij/developer/macro/macros.html.
9 Digital Imaging and Communications in Medicine.
10 Flexible Image Transport System.
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e Plugln: requires no image to be open to start a plugin.

e PlugInFilter: the currently active image is passed to the plugin
when started.

Throughout the examples in this book, we almost exclusively use plu-
gins of the second type (i.e., PlugInFilter) for implementing image-
processing operations. The interface specification requires that any
plugin of type PlugInFilter must at least implement two methods,
setup() and run(), with the following signatures:

int setup (String args, ImagePlus im)
When the plugin is started, ImageJ calls this method first to
verify that the capabilities of this plugin match the target image.
setup() returns a vector of binary flags (packaged as a 32-bit
int value) that describes the plugin’s properties.

void run (ImageProcessor ip)
This method does the actual work for this plugin. It is passed
a single argument ip, an object of type ImageProcessor, which
contains the image to be processed and all relevant information

2.2 IMAGEJ OVERVIEW

Fig. 2.1
ImageJ main window (under
Windows).

Fig. 2.2

ImageJ software structure
(simplified). ImageJ is based
on the Java core system and
depends in particular upon
Java’s Advanced Windowing
Toolkit (AWT) for the imple-
mentation of the user interface
and the presentation of image
data. Plugins are small Java
classes that extend the func-
tionality of the basic ImagelJ
system.
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about it. The run() method returns no result value (void) but
may modify the passed image and create new images.

2.2.4 A First Example: Inverting an Image

Let us look at a real example to quickly illustrate this mechanism.
The task of our first plugin is to invert any 8-bit grayscale image to
turn a positive image into a negative. As we shall see later, inverting
the intensity of an image is a typical point operation, which is dis-
cussed in detail in Chapter 4. In ImagelJ, 8-bit grayscale images have
pixel values ranging from 0 (black) to 255 (white), and we assume
that the width and height of the image are M and IV, respectively.
The operation is very simple: the value of each image pixel I(u,v) is
replaced by its inverted value,

I(u,v) <+ 255—I(u,v),

for all image coordinates (u,v), withu =0,...,M—1land v=0,...,
N-—1.

2.2.5 Plugin My_Inverter_A (using PlugInFilter)

We decide to name our first plugin “My_Inverter_A”, which is both
the name of the Java class and the name of the source file!! that
contains it (see Prog. 2.1). The underscore characters (“_”) in the
name cause ImageJ to recognize this class as a plugin and to insert it
automatically into the menu list at startup. The Java source code in
file My_Inverter. java contains a few import statements, followed
by the definition of the class My_Inverter, which implements the
PlugInFilter interface (because it will be applied to an existing
image).

The setup() method

When a plugin of type PlugInFilter is executed, ImagelJ first in-
vokes its setup() method to obtain information about the plugin
itself. In this example, setup() only returns the value DOES_8G (a
static int constant specified by the PlugInFilter interface), indi-
cating that this plugin can handle 8-bit grayscale images. The pa-
rameters arg and im of the setup() method are not used in this
example (see also Exercise 2.7).

The run() method

As mentioned already, the run() method of a PlugInFilter plugin
receives an object (ip) of type ImageProcessor, which contains the
image to be processed and all relevant information about it. First,
we use the ImageProcessor methods getWidth() and getHeight ()
to query the size of the image referenced by ip. Then we use two
nested for loops (with loop variables u, v for the horizontal and
vertical coordinates, respectively) to iterate over all image pixels. For
reading and writing the pixel values, we use two additional methods
of the class ImageProcessor:

' File My_Inverter_A.java.



1 import ij.ImagePlus;

2 import ij.plugin.filter.PluglnFilter;

3 import ij.process.ImageProcessor;

4

5 public class My_Inverter_A implements PlugInFilter {

public int setup(String args, ImagePlus im) {
return DOES_8G; // this plugin accepts 8-bit grayscale images
}

© 0 N O

11 public void run(ImageProcessor ip) {

12 int M = ip.getWidth();

13 int N = ip.getHeight();

14

15 /I iterate over all image coordinates (u,v)
16 for (int u = 0; u < M; u++) {
17 for (int v = 0; v < N; v++) {
18 int p = ip.getPixel(u, v);
19 ip.putPixel(u, v, 255 - p);
20 }

21 }

22}

23

24 }

int getPixel (int wu, int v)
Returns the pixel value at the given position or zero if (u, v) is
outside the image bounds.

void putPixel (int wu, int v, int a)
Sets the pixel value at position (u, v) to the new value a. Does
nothing if (u, v) is outside the image bounds.

Both methods check the supplied image coordinates and pixel val-
ues to avoid unwanted errors. While this makes them more or less
fail-safe it also makes them slow. If we are sure that no coordinates
outside the image bounds are ever accessed (as in My_Inverter in
Prog. 2.1) and the inserted pixel values are guaranteed not to ex-
ceed the image processor’s range, we can use the significantly faster
methods get () and set () in place of getPixel() and putPixel(),
respectively. The most efficient way to process the image is to avoid
read/write methods altogether and directly access the elements of
the associated (1D) pixel array. Details on these and other methods
can be found in the ImageJ API documentation.!?

2.2.6 Plugin My_Inverter_B (using PlugIn)

Program 2.2 shows an alternative implementation of the inverter
plugin based on ImagelJ’s PlugIn interface, which requires a run()
method only. In this case the reference to the current image is not
supplied directly but is obtained by invoking the (static) method

2 http://rsbweb.nih.gov/ij/developer/api/index.html.

2.2 IMAGEJ OVERVIEW

Prog. 2.1

ImageJ plugin for inverting
8-bit grayscale images. This
plugin implements the inter-
face PlugInFilter and defines
the required methods setup()
and run(). The target im-

age is received by the run()
method as an instance of type
ImageProcessor. ImagelJ as-
sumes that the plugin modifies
the supplied image and auto-
matically redisplays it after the
plugin is executed. Program
2.2 shows an alternative imple-
mentation that is based on the
Plugln interface.
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Prog. 2.2

Alternative implementation

of the inverter plugin, based
on ImageJ’s PlugIn interface.
In contrast to Prog. 2.1 this
plugin has no setUp() method
but defines a run() method
only. The current image (im)
is obtained as an instance of
class ImagePlus by invoking
the IJ.getImage() method. Af-
ter checking for the proper
image type the associated
ImageProcessor (ip) is retrieved
from im. The parameter string
(args) is not used in this ex-
ample. The remaining parts
of the plugin are identical to
Prog. 2.1, except that the
(slightly faster) pixel access
methods get() and set() are
used. Also note that the mod-
ified image is not re-displayed
automatically but by an ex-
plicit call to updateAndDraw().

30

1 import ij.IJ;

2 import ij.ImagePlus;

3 import ij.plugin.Plugln;

4 import ij.process.ImageProcessor;

5

6 public class My_Inverter_B implements PlugIn {
7

8  public void run(String args) {

9 ImagePlus im = IJ.getImage();

10

11 if (im.getType() != ImagePlus.GRAY8) {

12 IJ.error("8-bit grayscale image required");
13 return;

14 }

15

16 ImageProcessor ip = im.getProcessor();

17 int M = ip.getWidth();

18 int N = ip.getHeight();

19

20 /I iterate over all image coordinates (u,v)

21 for (int u = 0; u < M; u++) {

22 for (int v = 0; v < N; v++) {

23 int p = ip.get(u, v);

24 ip.set(u, v, 255 - p);

25 }

26 }

27

28 im.updateAndDraw(); //redraw the modified image
29}

30 }

IJ.getImage(). If no image is currently open, getImage() auto-
matically displays an error message and aborts the plugin. However,
the subsequent test for the correct image type (GRAY8) and the cor-
responding error handling must be performed explicitly. The run()
method accepts a single string argument that can be used to pass
arbitrary information for controlling the plugin.

2.2.7 When to use PlugIn or PlugInFilter?

The choice of PlugIn or PlugInFilter is mostly a matter of taste,
since both versions have their advantages and disadvantages. As a
rule of thumb, we use the P1lugIn type for tasks that do not require
any image to be open but for tasks that create, load, or record im-
ages or perform operations without any images. Otherwise, if one
or more open images should be processed, PlugInFilter is the pre-
ferred choice and thus almost all plugins in this book are of type
PlugInFilter.

Editing, compiling, and executing the plugin

The Java source file for our plugin should be stored in directory
<ij>/plugins/'® or an immediate subdirectory. New plugin files

13 <ij> denotes TmageJ’s installation directory.



can be created with ImageJ’s Plugins>New... menu. ImageJ even
provides a built-in Java editor for writing plugins, which is available
through the Plugins > Edit... menu but unfortunately is of little use for
serious programming. A better alternative is to use a modern editor
or a professional Java programming environment, such as Eclipse,'*
NetBeans,'® or JBuilder,!% all of which are freely available.

For compiling plugins (to Java bytecode), ImageJ comes with its
own Java compiler as part of its runtime environment. To compile
and execute the new plugin, simply use the menu

Plugins > Compile and Run...

Compilation errors are displayed in a separate log window. Once the
plugin is compiled, the corresponding .class file is automatically
loaded and the plugin is applied to the currently active image. An
error message is displayed if no images are open or if the current
image cannot be handled by that plugin.

At startup, ImageJ automatically loads all correctly named plu-
gins found in the <ij>/plugins/ directory (or any immediate sub-
directory) and installs them in its Plugins menu. These plugins can
be executed immediately without any recompilation. References to
plugins can also be placed manually with the

Plugins > Shortcuts > Install Plugin...

command at any other position in the ImageJ menu tree. Sequences
of plugin calls and other ImageJ commands may be recorded as macro
programs with Plugins > Macros > Record.

Displaying and “undoing” results

Our first plugins in Prog. 2.1-2.2 did not create a new image but
“destructively” modified the target image. This is not always the
case, but plugins can also create additional images or compute only
statistics, without modifying the original image at all. It may be sur-
prising, though, that our plugin contains no commands for displaying
the modified image. This is done automatically by ImageJ whenever
it can be assumed that the image passed to a plugin was modified.'”
In addition, ImageJ automatically makes a copy (“snapshot”) of the
image before passing it to the run() method of a PlugInFilter-type
plugin. This feature makes it possible to restore the original image
(with the Edit> Undo menu) after the plugin has finished without any
explicit precautions in the plugin code.

Logging and debugging

The usual console output from Java via System.out is not available
in ImageJ by default. Instead, a separate logging window can be
used which facilitates simple text output by the method

IJ.log(String s).

4 www.eclipse.org.

5 www.netbeans.org.

6 www.borland.com.

7 No automatic redisplay occurs if the NO_CHANGES flag is set in the return
value of the plugin’s setup() method.

2.2 IMAGEJ OVERVIEW
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Fig. 2.3

Information displayed in Im-
agelJ’s main window is ex-
tremely helpful for debugging
image-processing operations.
The current cursor position is
displayed in pixel coordinates
unless the associated image

is spatially calibrated. The
way pixel values are displayed
depends on the image type;
in the case of a color image
(as shown here) integer RGB
component values are shown.
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Such calls may be placed at any position in the plugin code for quick
and simple debugging at runtime. However, because of the typically
large amounts of data involved, they should be used with caution in
real image-processing operations. Particularly, when placed in the
body of inner processing loops that could execute millions of times,
text output may produce an enormous overhead compared to the
time used for the actual calculations.

ImagelJ itself does not offer much support for “real” debugging,
i.e., for setting breakpoints, inspecting local variables etc. However, it
is possible to launch ImageJ from within a programming environment
(IDE) such as Eclipse or Netbeans and then use all debugging options
that the given environment provides.'® According to experience, this
is only needed in rare and exceptionally difficult situations. In most
cases, inspection of pixel values displayed in ImageJ’s main window
(see Fig. 2.3) is much simpler and more effective. In general, many
errors (in particular those related to image coordinates) can be easily
avoided by careful planning in advance.

2.2.8 Executing ImageJ “Commands”

If possible, it is wise in most cases to re-use existing (and extensively
tested) functionality instead of re-implementing it oneself. In partic-
uar, the Java library that comes with ImageJ covers many standard
image-processing operations, many of which are used throughout this

8 For details see the “HowTo” section at http:/imagejdocu.tudor.lu.


http://imagejdocu.tudor.lu

1 import ij.IJ;

2 import ij.ImagePlus;

3 import ij.plugin.Plugln;

4

5 public class Run_Command_From_PlugIn implements PlugIn {
6

7 public void run(String args) {

8 ImagePlus im = IJ.getImage();

9 IJ.run(im, "Invert", ""); //run the “Invert” command on im
10 /I ... continue with this plugin

11 ¥

12 }

"

public class Run_Command_From_PlugInFilter implements
PlugInFilter {

2 ImagePlus im;

3

4 public int setup(String args, ImagePlus im) {

5 this.im = im;

6 return DOES_ALL;

7}

8

9 public void run(ImageProcessor ip) {

10 im.unlock(); // unlock im to run other commands
11 IJ.run(im, "Invert", "");  //run “Invert’” command on im
12 im.lock(); /l'lock im again (to be safe)

13 /I ... continue with this plugin

14 3}

15 }

book. Additional classes and methods for specific operations are con-
tained in the associated (imagingbook) library.

In the context of ImageJ, the term “command” refers to any com-
posite operation implemented as a (Java) plugin, a macro command
or as a script.!® ImageJ itself includes numerous commands which
can be listed with the menu Plugins > Utilities > Find Commands....
They are usually referenced “by name”, i.e., by a unique string. For
example, the standard operation for inverting an image (Edit> Invert)
is implemented by the Java class ij.plugin.filter.Filters (with
the argument "invert").

An existing command can also be executed from within a Java
plugin with the method IJ.run(), as demonstrated for the “Invert”
command in Prog. 2.3. Some caution is required with plugins of type
PlugInFilter, since these lock the current image during execution,
such that no other operation can be applied to it. The example in
Prog. 2.4 shows how this can be resolved by a pair of calls to unlock ()
and lock(), respectively, to temporarily release the current image.

A convenient tool for putting together complex commands is
ImageJ’s built-in Macro Recorder. Started with Plugins > Macros >

19 Scripting languages for ImageJ currently include JavaScript, BeanShell,
and Python.

2.2 IMAGEJ OVERVIEW

Prog. 2.3

Executing the ImageJ com-
mand “Invert” within a Java
plugin of type PlugIn.

Prog. 2.4

Executing the ImageJ com-
mand “Invert” within a Java
plugin of type PlugInFilter.

In this case the current image
is automatically locked during
plugin execution, such that no
other operation may be applied
to it. However, the image can
be temporarily unlocked by
calling unlock() and lock(), re-
spectively, to run the external
command.
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2 ImaceJ Record..., it logs all subsequent commands in a text file for later use.

It can be set up to record commands in various modes, including
Java, JavaScript, BeanShell, or ImageJ macro code. Of course it
does record the application of self-defined plugins as well.

2.3 Additional Information on ImagedJ and Java

In the following chapters, we mostly use concrete plugins and Java
code to describe algorithms and data structures. This not only makes
these examples immediately applicable, but they should also help in
acquiring additional skills for using ImageJ in a step-by-step fashion.
To keep the text compact, we often describe only the run() method
of a particular plugin and additional class and method definitions if
they are relevant in the given context. The complete source code
for these examples can of course be downloaded from the book’s
supporting website.2?

2.3.1 Resources for ImageJ

The complete and most current API reference, including source code,
tutorials, and many example plugins, can be found on the official Im-
ageJ website. Another great source for any serious plugin program-
ming is the tutorial by Werner Bailer [12].

2.3.2 Programming with Java

While this book does not require extensive Java skills from its readers,
some elementary knowledge is essential for understanding or extend-
ing the given examples. There is a huge and still-growing number
of introductory textbooks on Java, such as [8,29, 66, 70, 208] and
many others. For readers with programming experience who have
not worked with Java before, we particularly recommend some of
the tutorials on Oracle’s Java website.2! Also, in Appendix F of this
book, readers will find a small compilation of specific Java topics that
cause frequent problems or programming errors.

2.4 Exercises

Exercise 2.1. Install the current version of ImageJ on your com-
puter and make yourself familiar with the built-in commands (open,
convert, edit, and save images).

Exercise 2.2. Write a new ImageJ plugin that reflects a grayscale
image horizontally (or vertically) using My_Inverter.java (Prog.
2.1) as a template. Test your new plugin with appropriate images
of different sizes (odd, even, extremely small) and inspect the results
carefully.

20 www.imagingbook.com.
21 http://docs.oracle.com/javase/.
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Exercise 2.3. The run() method of plugin Inverter_Plugin_A (see
Prog. 2.1) iterates over all pixels of the given image. Find out in which
order the pixels are visited: along the (horizontal) lines or along the
(vertical) columns? Make a drawing to illustrate this process.

Exercise 2.4. Create an ImageJ plugin for 8-bit grayscale images of
arbitrary size that paints a white frame (with pixel value 255) 10
pixels wide into the image (without increasing its size). Make sure
this plugin also works for very small images.

Exercise 2.5. Create a plugin for 8-bit grayscale images that calcu-
lates and prints the result (with IJ.log()). Use a variable of type
int or long for accumulating the pixel values. What is the maximum
image size for which we can be certain that the result of summing
with an int variable is correct?

Exercise 2.6. Create a plugin for 8-bit grayscale images that cal-
culates and prints the minimum and maximum pixel values in the
current image (with IJ.1log()). Compare your output to the results
obtained with Analyze > Measure.

Exercise 2.7. Write a new ImageJ plugin that shifts an 8-bit gray-
scale image horizontally and circularly until the original state is
reached again. To display the modified image after each shift, a
reference to the corresponding ImagePlus object is required (Image-
Processor has no display methods). The ImagePlus object is only
accessible to the plugin’s setup() method, which is automatically
called before the run() method. Modify the definition in Prog. 2.1
to keep a reference and to redraw the ImagePlus object as follows:

public class XY_Plugin implements PlugInFilter {
ImagePlus im; /I new variable!

public int setup(String args, ImagePlus im) {
this.im = im; /I reference to the associated ImagePlus object
return DOES_8G;

}

public void run(ImageProcessor ip) {
/... modify ip
im.updateAndDraw () ; // redraw the associated ImagePlus object
...
}
}

2.4 EXERCISES
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Histograms and Image Statistics

Histograms are used to depict image statistics in an easily interpreted
visual format. With a histogram, it is easy to determine certain
types of problems in an image, for example, it is simple to conclude
if an image is properly exposed by visual inspection of its histogram.
In fact, histograms are so useful that modern digital cameras often
provide a real-time histogram overlay on the viewfinder (Fig. 3.1) to
help prevent taking poorly exposed pictures. It is important to catch
errors like this at the image capture stage because poor exposure
results in a permanent loss of information, which it is not possible to
recover later using image-processing techniques. In addition to their
usefulness during image capture, histograms are also used later to
improve the visual appearance of an image and as a “forensic” tool
for determining what type of processing has previously been applied
to an image. The final part of this chapter shows how to calculate
simple image statistics from the original image, its histogram, or the
so-called integral image.

Fig. 3.1

Digital camera back display
showing the associated RGB
histograms.

EEAITO 0, 0
NIKON D5100
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3 HISTOGRAMS AND
IMAGE STATISTICS

Fig. 3.2

An 8-bit grayscale image
and a histogram depicting
the frequency distribution
of its 256 intensity values.

Fig. 3.3

Histogram vector for an image
with K = 16 possible inten-
sity values. The indices of the
vector element ¢ = 0...15
represent intensity values. The
value of 10 at index 2 means
that the image contains 10
pixels of intensity value 2.
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3.1 What is a Histogram?

Histograms in general are frequency distributions, and histograms of
images describe the frequency of the intensity values that occur in
an image. This concept can be easily explained by considering an
old-fashioned grayscale image like the one shown in Fig. 3.2.

EEE—— 200 |
0 25

Count: 1920000
Mean: 118.548
StdDev: 59178

Min: O
Max: 251
Mode: 184 (30513)

The histogram h for a grayscale image I with intensity values in
the range I(u,v) € [0, K—1] holds exactly K entries, where K = 28 =
256 for a typical 8-bit grayscale image. Each single histogram entry
is defined as

h(i) = the number of pixels in I with the intensity value i,
for all 0 < i < K. More formally stated,!

h(i) = card{(u,v) | I(u,v) =i } . (3.1)

Therefore, h(0) is the number of pixels with the value 0, h(1) the
number of pixels with the value 1, and so forth. Finally, h(255) is
the number of all white pixels with the maximum intensity value
255 = K —1. The result of the histogram computation is a 1D vector
h of length K. Figure 3.3 gives an example for an image with K = 16
possible intensity values.

.-~ 10 pixels with intensity value i = 2

h(7)
10 '

ol Uinllnlng

0123456 78 9101112131415

hi) [0]2]10j0of0o[5[7]3]9]1]6][3]6[3]2]
i 012345678 9101112131415

Since the histogram encodes no information about where each of
its individual entries originated in the image, it contains no infor-
mation about the spatial arrangement of pixels in the image. This

! card{...} denotes the number of elements (“cardinality”) in a set (see

also Sec. A.1 in the Appendix).



is intentional, since the main function of a histogram is to provide
statistical information, (e.g., the distribution of intensity values) in
a compact form. Is it possible to reconstruct an image using only its
histogram? That is, can a histogram be somehow “inverted”? Given
the loss of spatial information, in all but the most trivial cases, the
answer is no. As an example, consider the wide variety of images
you could construct using the same number of pixels of a specific
value. These images would appear different but have exactly the
same histogram (Fig. 3.4).

3.2 Interpreting Histograms

A histogram depicts problems that originate during image acquisi-
tion, such as those involving contrast and dynamic range, as well as
artifacts resulting from image-processing steps that were applied to
the image. Histograms are often used to determine if an image is
making effective use of its intensity range (Fig. 3.5) by examining
the size and uniformity of the histogram’s distribution.

-~ ~ intensity range
'
Alow | Qhigh

)

256

linear logarithmic

3.2.1 Image Acquisition

Histograms make typical exposure problems readily apparent. As an
example, a histogram where a large section of the intensity range
at one end is largely unused while the other end is crowded with

3.2 INTERPRETING
HIisTOGRAMS

Fig. 3.4
Three very different images
with identical histograms.

Fig. 3.5

Effective intensity range. The
graph depicts the frequencies
of pixel values linearly (black
bars) and logarithmically (gray
bars). The logarithmic form
makes even relatively low oc-
currences, which can be very
important in the image, readily
apparent.
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3 HISTOGRAMS AND
IMAGE STATISTICS

Fig. 3.6

Exposure errors are read-
ily apparent in histograms.
Underexposed (a), prop-
erly exposed (b), and over-
exposed (c) photographs.
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(a)
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high-value peaks (Fig. 3.6) is representative of an improperly exposed
image.

Contrast

Contrast is understood as the range of intensity values effectively
used within a given image, that is the difference between the image’s
maximum and minimum pixel values. A full-contrast image makes
effective use of the entire range of available intensity values from
@ = Apin, - -5 Gmax With ap = 0, @ = K —1 (black to white).
Using this definition, image contrast can be easily read directly from
the histogram. Figure 3.7 illustrates how varying the contrast of an
image affects its histogram.

Dynamic range

The dynamic range of an image is, in principle, understood as the
number of distinct pixel values in an image. In the ideal case, the dy-
namic range encompasses all K usable pixel values, in which case the
value range is completely utilized. When an image has an available
range of contrast a = a5y, - - -, high, With

Omin < Qlow and ahigh < Upmax »

then the maximum possible dynamic range is achieved when all the
intensity values lying in this range are utilized (i.e., appear in the
image; Fig. 3.8).

While the contrast of an image can be increased by transforming
its existing values so that they utilize more of the underlying value
range available, the dynamic range of an image can only be increased
by introducing artificial (that is, not originating with the image sen-
sor) values using methods such as interpolation (see Ch. 22). An
image with a high dynamic range is desirable because it will suffer
less image-quality degradation during image processing and compres-
sion. Since it is not possible to increase dynamic range after image
acquisition in a practical way, professional cameras and scanners work
at depths of more than 8 bits, often 12-14 bits per channel, in order
to provide high dynamic range at the acquisition stage. While most
output devices, such as monitors and printers, are unable to actually
reproduce more than 256 different shades, a high dynamic range is
always beneficial for subsequent image processing or archiving.



3.2 INTERPRETING
HISTOGRAMS

Fig. 3.7

How changes in contrast af-
fect the histogram: low con-
trast (a), normal contrast (b),
high contrast (c).

Fig. 3.8

How changes in dynamic range
affect the histogram: high dy-
namic range (a), low dynamic
range with 64 intensity val-

ues (b), extremely low dynamic
range with only 6 intensity
values (c).

(a) (b) (c)

3.2.2 Image Defects

Histograms can be used to detect a wide range of image defects that
originate either during image acquisition or as the result of later im-
age processing. Since histograms always depend on the visual char-
acteristics of the scene captured in the image, no single “ideal” his-
togram exists. While a given histogram may be optimal for a specific
scene, it may be entirely unacceptable for another. As an exam-
ple, the ideal histogram for an astronomical image would likely be
very different from that of a good landscape or portrait photo. Nev-
ertheless, there are some general rules; for example, when taking a
landscape image with a digital camera, you can expect the histogram
to have evenly distributed intensity values and no isolated spikes.

Saturation

Ideally the contrast range of a sensor, such as that used in a camera,
should be greater than the range of the intensity of the light that it

receives from a scene. In such a case, the resulting histogram will 11
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Fig. 3.9

Effect of image capture errors
on histograms: saturation of
high intensities (a), histogram
gaps caused by a slight in-
crease in contrast (b), and
histogram spikes resulting from
a reduction in contrast (c).
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be smooth at both ends because the light received from the very
bright and the very dark parts of the scene will be less than the
light received from the other parts of the scene. Unfortunately, this
ideal is often not the case in reality, and illumination outside of the
sensor’s contrast range, arising for example from glossy highlights
and especially dark parts of the scene, cannot be captured and is lost.
The result is a histogram that is saturated at one or both ends of its
range. The illumination values lying outside of the sensor’s range
are mapped to its minimum or maximum values and appear on the
histogram as significant spikes at the tail ends. This typically occurs
in an under- or overexposed image and is generally not avoidable
when the inherent contrast range of the scene exceeds the range of
the system’s sensor (Fig. 3.9(a)).

Spikes and gaps

As discussed already, the intensity value distribution for an unpro-
cessed image is generally smooth; that is, it is unlikely that isolated
spikes (except for possible saturation effects at the tails) or gaps will
appear in its histogram. It is also unlikely that the count of any given
intensity value will differ greatly from that of its neighbors (i.e., it is
locally smooth). While artifacts like these are observed very rarely
in original images, they will often be present after an image has been
manipulated, for instance, by changing its contrast. Increasing the
contrast (see Ch. 4) causes the histogram lines to separate from each
other and, due to the discrete values, gaps are created in the his-
togram (Fig. 3.9(b)). Decreasing the contrast leads, again because
of the discrete values, to the merging of values that were previously
distinct. This results in increases in the corresponding histogram en-
tries and ultimately leads to highly visible spikes in the histogram
(Fig. 3.9(c)).2

Impacts of image compression

Image compression also changes an image in ways that are immedi-
ately evident in its histogram. As an example, during GIF compres-
sion, an image’s dynamic range is reduced to only a few intensities

2 Unfortunately, these types of errors are also caused by the internal con-
trast “optimization” routines of some image-capture devices, especially
consumer-type scanners.
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or colors, resulting in an obvious line structure in the histogram that
cannot be removed by subsequent processing (Fig. 3.10). Generally,
a histogram can quickly reveal whether an image has ever been sub-
jected to color quantization, such as occurs during conversion to a
GIF image, even if the image has subsequently been converted to a
full-color format such as TIFF or JPEG.

Figure 3.11 illustrates what occurs when a simple line graphic
with only two gray values (128, 255) is subjected to a compression
method such as JPEG, that is not designed for line graphics but in-
stead for natural photographs. The histogram of the resulting image
clearly shows that it now contains a large number of gray values that
were not present in the original image, resulting in a poor-quality
image® that appears dirty, fuzzy, and blurred.

3.3 Calculating Histograms

Computing the histogram of an 8-bit grayscale image containing in-
tensity values between 0 and 255 is a simple task. All we need is a
set of 256 counters, one for each possible intensity value. First, all
counters are initialized to zero. Then we iterate through the image I,
determining the pixel value p at each location (u,v), and increment-
ing the corresponding counter by one. At the end, each counter will
contain the number of pixels in the image that have the corresponding
intensity value.

An image with K possible intensity values requires exactly K
counter variables; for example, since an 8-bit grayscale image can
contain at most 256 different intensity values, we require 256 coun-
ters. While individual counters make sense conceptually, an actual

3 Using JPEG compression on images like this, for which it was not de-
signed, is one of the most egregious of imaging errors. JPEG is designed
for photographs of natural scenes with smooth color transitions, and us-
ing it to compress iconic images with large areas of the same color results
in strong visual artifacts (see, e.g., Fig. 1.9 on p. 17).

3.3 CALCULATING
HIisTOGRAMS

Fig. 3.10

Color quantization effects re-
sulting from GIF conversion.
The original image converted
to a 256 color GIF image
(left). Original histogram (a)
and the histogram after GIF
conversion (b). When the RGB
image is scaled by 50%, some
of the lost colors are recreated
by interpolation, but the re-
sults of the GIF conversion
remain clearly visible in the
histogram (c).
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Fig. 3.11
Effects of JPEG compres-
sion. The original image (a)
contained only two different
gray values, as its histogram
(b) makes readily apparent.
JPEG compression, a poor
choice for this type of im-
age, results in numerous addi-
tional gray values, which are
visible in both the resulting
image (c) and its histogram
(d). In both histograms,

the linear frequency (black
bars) and the logarithmic fre-
quency (gray bars) are shown.

Prog. 3.1

ImagelJ plugin for comput-
ing the histogram of an 8-bit
grayscale image. The setup()
method returns DOES_8G +
NO_CHANGES, which indicates
that this plugin requires an
8-bit grayscale image and
will not alter it (line 4).

In Java, all elements of a
newly instantiated numeri-
cal array are automatically
initialized to zero (line 8).
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PIX

(2)

PIX

(c)

1 public class Compute_Histogram implements PlugInFilter {
2

3 public int setup(String arg, ImagePlus img) {
4 return DOES_8G + NO_CHANGES;

5 }

6

7 public void run(ImageProcessor ip) {

8 int[] h = new int[256]; // histogram array

9 int w = ip.getWidth();

10 int h = ip.getHeight();

11

12 for (int v = 0; v < h; v++) {

13 for (int u = 0; u < w; u++) {

14 int i = ip.getPixel(u, v);

15 h[i] = h[i] + 1;

16 }

17 }

18 /I ... histogram h can now be used

19 }

20 }

implementation would not use K individual variables to represent the
counters but instead would use an array with K entries (int [256]
in Java). In this example, the actual implementation as an array is
straightforward. Since the intensity values begin at zero (like arrays
in Java) and are all positive, they can be used directly as the indices
i € [0, N—1] of the histogram array. Program 3.1 contains the com-
plete Java source code for computing a histogram within the run()
method of an ImageJ plugin.

At the start of Prog. 3.1, the array h of type int [] is created (line
8) and its elements are automatically initialized* to 0. It makes no
difference, at least in terms of the final result, whether the array is

4 In Java, arrays of primitives such as int, double are initialized at cre-

ation to 0 in the case of integer types or 0.0 for floating-point types,
while arrays of objects are initialized to null.



traversed in row or column order, as long as all pixels in the image 3.4 HisrocrAMS OF
are visited exactly once. In contrast to Prog. 2.1, in this example we [magrs WiTH MORE THAN
traverse the array in the standard row-first order such that the outer 8 Bits
for loop iterates over the wvertical coordinates v and the inner loop
over the horizontal coordinates u.> Once the histogram has been
calculated, it is available for further processing steps or for being
displayed.
Of course, histogram computation is already implemented in Im-
ageJ and is available via the method getHistogram() for objects of
the class ImageProcessor. If we use this built-in method, the run()
method of Prog. 3.1 can be simplified to

public void run(ImageProcessor ip) {
int[] h = ip.getHistogram(); //built-in ImageJ method
. // histogram h can now be used

3.4 Histograms of Images with More than 8 Bits

Normally histograms are computed in order to visualize the image’s
distribution on the screen. This presents no problem when dealing
with images having 28 = 256 entries, but when an image uses a larger
range of values, for instance 16- and 32-bit or floating-point images
(see Table 1.1), then the growing number of necessary histogram en-
tries makes this no longer practical.

3.4.1 Binning

Since it is not possible to represent each intensity value with its own
entry in the histogram, we will instead let a given entry in the his-
togram represent a range of intensity values. This technique is often
referred to as “binning” since you can visualize it as collecting a range
of pixel values in a container such as a bin or bucket. In a binned
histogram of size B, each bin h(j) contains the number of image
elements having values within the interval [a;,a; ), and therefore
(analogous to Eqn. (3.1))

h(j) = card{(u,v) | a; < I(u,v) < aj+1} , (3.2)

for 0 < j < B. Typically the range of possible values in B is divided
into bins of equal size kg = K/B such that the starting value of the

interval j is
K .
a’j:].EZ.].kB'

3.4.2 Example

In order to create a typical histogram containing B = 256 entries
from a 14-bit image, one would divide the original value range j =

5 In this way, image elements are traversed in exactly the same way that
they are laid out in computer memory, resulting in more efficient mem-
ory access and with it the possibility of increased performance, especially
when dealing with larger images (see also Appendix F).
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64, such that ag = 0, a; = 64, ay = 128, ..., ag55 = 16320 and
(g5 = ap = 2" = 16320 = K. This gives the following association
between pixel values and histogram bins h(0), ..., h(255):

0,...., 63— h(0),
64, ..., 127 — h(1),

128, ..., 191 — h(2),

16320, ..., 16383 — h(255).

3.4.3 Implementation

If, as in the previous example, the value range 0, ..., K—1 is divided
into equal length intervals kg = K/B, there is naturally no need to
use a mapping table to find a; since for a given pixel value a = I(u, v)
the correct histogram element j is easily computed. In this case, it is
enough to simply divide the pixel value I(u,v) by the interval length
kg; that is,

I(u,v)  I(u,v) I(u,v)-B

ks  K/B K (3:3)

As an index to the appropriate histogram bin h(j), we require an
integer value

j- |fem) o

where || denotes the floor operator.® A Java method for computing
histograms by “linear binning” is given in Prog. 3.2. Note that all the
computations from Eqn. (3.4) are done with integer numbers without
using any floating-point operations. Also there is no need to explicitly
call the floor function because the expression

a*xB /K

in line 11 uses integer division and in Java the fractional result of
such an operation is truncated, which is equivalent to applying the
floor function (assuming positive arguments).” The binning method
can also be applied, in a similar way, to floating-point images.

3.5 Histograms of Color Images

When referring to histograms of color images, typically what is meant
is a histogram of the image intensity (luminance) or of the individual
color channels. Both of these variants are supported by practically
every image-processing application and are used to objectively ap-
praise the image quality, especially directly after image acquisition.

6 |z] rounds = down to the next whole number (see Appendix A).
7 For a more detailed discussion, see the section on integer division in
Java in Appendix F (p. 765).



1 int[] binnedHistogram(ImageProcessor ip) {
2 int K = 256; // number of intensity values

3 int B = 32; // size of histogram, must be defined
4 int[] H = new int[B]; //histogram array

5 int w = ip.getWidth();

6 int h = ip.getHeight ();

7

8 for (int v = 0; v < h; v++) {

9 for (int u = 0; u < w; u++) {

10 int a = ip.getPixel(u, v);

11 int i = a * B / K; //integer operations only!
12 H[i] = H[i] + 1;

13 }

14 }

15 /I return binned histogram

16 return H;

17 %

3.5.1 Intensity Histograms

The intensity or luminance histogram hy,,,,, of a color image is nothing
more than the histogram of the corresponding grayscale image, so
naturally all aspects of the preceding discussion also apply to this
type of histogram. The grayscale image is obtained by computing
the luminance of the individual channels of the color image. When
computing the luminance, it is not sufficient to simply average the
values of each color channel; instead, a weighted sum that takes into
account color perception theory should be computed. This process
is explained in detail in Chapter 12 (p. 304).

3.5.2 Individual Color Channel Histograms

Even though the luminance histogram takes into account all color
channels, image errors appearing in single channels can remain undis-
covered. For example, the luminance histogram may appear clean
even when one of the color channels is oversaturated. In RGB im-
ages, the blue channel contributes only a small amount to the total
brightness and so is especially sensitive to this problem.

Component histograms supply additional information about the
intensity distribution within the individual color channels. When
computing component histograms, each color channel is considered
a separate intensity image and each histogram is computed inde-
pendently of the other channels. Figure 3.12 shows the luminance
histogram hy,,,,,, and the three component histograms hg, hg, and hg
of a typical RGB color image. Notice that saturation problems in
all three channels (red in the upper intensity region, green and blue
in the lower regions) are obvious in the component histograms but
not in the luminance histogram. In this case it is striking, and not
at all atypical, that the three component histograms appear com-
pletely different from the corresponding luminance histogram hy,,,,
(Fig. 3.12(b)).

3.5 HISTOGRAMS OF
COLOR IMAGES

Prog. 3.2

Histogram computation us-
ing “binning” (Java method).
Example of computing a histo-
gram with B = 32 bins for

an 8-bit grayscale image with
K = 256 intensity levels. The
method binnedHistogram()
returns the histogram of the
image object ip passed to it as
an int array of size B.
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Fig. 3.12

Histograms of an RGB color
image: original image (a), lu-
minance histogram hy ., (b),
RGB color components as in-
tensity images (c—e), and the
associated component his-
tograms hg, hg, hg (f-h).
The fact that all three color
channels have saturation prob-
lems is only apparent in the
individual component his-
tograms. The spike in the
distribution resulting from
this is found in the middle of
the luminance histogram (b).
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3.5.3 Combined Color Histograms

Luminance histograms and component histograms both provide use-
ful information about the lighting, contrast, dynamic range, and sat-
uration effects relative to the individual color components. It is im-
portant to remember that they provide no information about the
distribution of the actual colors in the image because they are based
on the individual color channels and not the combination of the indi-
vidual channels that forms the color of an individual pixel. Consider,
for example, when hg, the component histogram for the red channel,
contains the entry
hg (200) = 24.

Then it is only known that the image has 24 pixels that have a red
intensity value of 200. The entry does not tell us anything about the
green and blue values of those pixels, which could be any valid value
(%), that is,

(Ta g, b) = (2007 *, *)

Suppose further that the three component histograms included the
following entries:

hr(50) = 100, hg(50) = 100, hg(50) = 100.

Could we conclude from this that the image contains 100 pixels with
the color combination

(r,9,b) = (50,50, 50)

or that this color occurs at all? In general, no, because there is no
way of ascertaining from these data if there exists a pixel in the image
in which all three components have the value 50. The only thing we
could really say is that the color value (50, 50,50) can occur at most
100 times in this image.



So, although conventional (intensity or component) histograms of g 7 graTISTICAL
color images depict important properties, they do not really provide INFORMATION FROM THE
any useful information about the composition of the actual colors in HisTocrAM
an image. In fact, a collection of color images can have very similar
component histograms and still contain entirely different colors. This
leads to the interesting topic of the combined histogram, which uses
statistical information about the combined color components in an
attempt to determine if two images are roughly similar in their color
composition. Features computed from this type of histogram often
form the foundation of color-based image retrieval methods. We will
return to this topic in Chapter 12, where we will explore color images
in greater detail.

3.6 The Cumulative Histogram

The cumulative histogram, which is derived from the ordinary his-
togram, is useful when performing certain image operations involving
histograms; for instance, histogram equalization (see Sec. 4.5). The
cumulative histogram H is defined as

H(7) :i:h(j) for 0 <i< K. (3.5)

A particular value H(4) is thus the sum of all histogram values h(j),
with j < i. Alternatively, we can define H recursively (as imple-
mented in Prog. 4.2 on p. 66):

. )h(0) for i =0,
H(Z){H(i—l)—i—h(i) for 0 <i< K. (3.6)

The cumulative histogram H(¢) is a monotonically increasing function
with the maximum value

HEK 1) = z_: h(j) = M-N, (3.7)

J=

Ju

that is, the total number of pixels in an image of width M and height
N. Figure 3.13 shows a concrete example of a cumulative histogram.

The cumulative histogram is useful not primarily for viewing but
as a simple and powerful tool for capturing statistical information
from an image. In particular, we will use it in the next chapter to
compute the parameters for several common point operations (see
Sec. 4.4-4.6).

3.7 Statistical Information from the Histogram

Some common statistical parameters of the image can be conveniently
calculated directly from its histogram. For example, the minimum

and maximum pixel value of an image I can be obtained by simply 19
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Fig. 3.13
The ordinary histogram
h(¢) and its associated cu-
mulative histogram H(i).
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finding the smallest and largest histogram index with nonzero value,
ie.,
min(I) = min {i|h(i) > 0},

max(I) = max{i|h(i) > 0}. (38)

If we assume that the histogram is already available, the advantage
is that the calculation does not include the entire image but only the
relatively small set of histogram elements (typ. 256).

3.7.1 Mean and Variance

The mean value p of an image I (of size M x N) can be calculated
as

(3.9)

IIF12
S‘H
2.

!

M—
'uMNZ

i.e., either directly from the pixel values I(u,v) or indirectly from the
histogram h (of size K), where M N = " h(i) is the total number of
pixels.

Analogously we can also calculate the variance of the pixel values
straight from the histogram as

M—-1N-1 1 K—-1
- . . 2‘ .
= N ;) ZO u,v) _MN ;(z )2 h(i). (3.10)

As we see in the right parts of Eqns. (3.9) and (3.10), there is no need
to access the original pixel values.

The formulation of the variance in Eqn. (3.10) assumes that the
arithmetic mean p has already been determined. This is not nec-
essary though, since the mean and the variance can be calculated
together in a single iteration over the image pixels or the associated
histogram in the form

1
1 1

2 _ _ - . = A2

“=un \Poaun 4 ) (3.12)



with the quantities

A= I(u,v) = i-h(i), (3.13)
u=0 v=0 =0
M—-1N-1 K—-1

B= I (u,v) = i%-h(i). (3.14)
u=0 v=0 =0

The above formulation has the additional numerical advantage that
all summations can be performed with integer values, in contrast to
Eqn. (3.10) which requires the summation of floating-point values.

3.7.2 Median

The median m of an image is defined as the smallest pixel value
that is greater or equal to one half of all pixel values, i.e., lies “in the
middle” of the pixel values.® The median can also be easily calculated
from the image’s histogram.

To determine the median of an image I from the associated his-
togram it is sufficient to find the index ¢ that separates the histogram
into two halves, such that the sum of the histogram entries to the left
and the right of i are approximately equal. In other words, i is the
smallest index where the sum of the histogram entries below (and
including) ¢ corresponds to at least half of the image size, that is,

m:min{i | Zi:h(j) > @} (3.15)
=0

Since Zj‘:o h(j) = H(%) (see Eqn. (3.5)), the median calculation can
be formulated even simpler as
MN }

m = min{i [HG) > == (3.16)

given the cumulative histogram H.

3.8 Block Statistics

3.8.1 Integral Images

Integral images (also known as summed area tables [58]) provide a
simple way for quickly calculating elementary statistics of arbitrary
rectangular sub-images. They have found use in several interest-
ing applications, such as fast filtering, adaptive thresholding, image
matching, local feature extraction, face detection, and stereo recon-
struction [20, 142, 244].

Given a scalar-valued (grayscale) image I: M x N +— R the asso-
ciated first-order integral image is defined as

Iy(u,v) = > > (i, §). (3.17)
i=0 j=0

8 See Sec. 5.4.2 for an alternative definition of the median.

3.8 BLOCK STATISTICS
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Fig. 3.14

Block-based calculations with
integral images. Only four
samples from the integral im-
age X, are required to cal-
culate the sum of the pix-

els inside the (green) rect-
angle R = (a,b), defined

by the corner coordinates

a = (uy,v,) and b = (uy, vy).
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Thus a value in X, is the sum of all pixel values in the original image
T located to the left and above the given position (u,v), inclusively.
The integral image can be calculated efficiently with a single pass
over the image I by using the recurrence relation

0 foru < 0orv <0,

Zi(u=1v) 4+ Xy (u,v—1) —
Zi(u—=1,v—1) 4 I(u,v)

Zl(u’ U) =

for u,v >0, (3.18)

for positions u =0,...,M—1land v =0,...,N—1 (see Alg. 3.1).

Suppose now that we wanted to calculate the sum of the pixel
values in a given rectangular region R, defined by the corner positions
a = (Ug,V,), b= (uy,vy), that is, the first-order block sum

SiR) = > > 1(i,)),

i=u, j=U,

(3.19)

from the integral image £,;. As shown in Fig. 3.14, the quantity
¥ (u,—1,v,—1) corresponds to the pixel sum within rectangle A,
and X (uy, v,) is the pixel sum over all four rectangles A, B, C and
R, that is,

Zi(ug—1,v,—1) =
Zl(ubavafl) =
Zl(uailavb) =
Iy (uy, vp) =

(3.20)

Thus S;(R) can be calculated as
S1(R) = S1(A)+51(B)+5:(C)+5:1(R) + 51(4)
——r

54 (ug,vp) T (ug—1v,—1)

= [S1(A)+5:(B)] = [51(A4)+5:1(C)]
1 (up g —1)
=2 (up, vp) + L1 (ug—1,0—1) — Iy (up, v,—1) —

(3.21)

Zl(ua711vb)
Zl(ua_17 'Ub),

that is, by taking only four samples from the integral image X .



3.8.2 Mean Intensity

Given the region size Ny and the sum of the pixel values S;(R), the
average intensity value (mean) inside the rectangle R can now easily
be found as

1

KR = N_R -S1(R), (3.22)

with S;(R) as defined in Eqn. (3.21) and the region size
NR: |R‘ :(ubfua+l)~(vbf’ua+1). (323)

3.8.3 Variance

Calculating the wvariance inside a rectangular region R requires the
summation of squared intensity values, that is, tabulating

ZZ(U’U) - 2212(273)7 (324)

i=0 j=0
which can be performed analogously to Eqn. (3.18) in the form

0 foru < 0 orv <0,
Lo(u,v) = ¢ Lo(u—1,v) + Zy(u,v—1) —
Yo(u—1,v—1)+ I*(u,v) foru,v>0. (3.25)

Asin Eqns. (3.19)—(3.21), the sum of the squared values inside a given
rectangle R (i.e., the second-order block sum) can be obtained as

S =3 S P.) (3.26)

= Z2(“1)3 vb) + Z2(“0,7]-3 vafl) - ZZ(“b?”afl) - ZZ(Uaflavb)'

From this, the variance inside the rectangular region R is finally
calculated as

0f = = [52(R) = = (S1(R))?], (3.27)

with Np as defined in Eqn. (3.23). In addition, certain higher-order
statistics can be efficiently calculated with summation tables in a
similar fashion.

3.8.4 Practical Calculation of Integral Images

Algorithm 3.1 shows how X; and X, can be calculated in a single
iteration over the original image I. Note that the accumulated values
in the integral images X, £, tend to become quite large. Even with
pictures of medium size and 8-bit intensity values, the range of 32-bit
integers is quickly exhausted (particularly when calculating ¥,). The
use of 64-bit integers (type long in Java) or larger is recommended to
avoid arithmetic overflow. A basic implementation of integral images
is available as part of the imagingbook library.”?

9 Class imagingbook.lib.image.Integrallmage.

3.8 BLOCK STATISTICS
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Alg. 3.1

Joint calculation of the in-
tegral images X, and Z,
for a scalar-valued image I.

54

1: Integrallmage(])
Input: I, a scalar-valued input image with I(u,v) € R.
Returns the first and second order integral images of I.

2: (M, N) + Size(I)

3: Create maps X,,Zy: M x N — R
Process the first image line (v = 0):

4: Z,(0,0) + 1(0,0)

5: 7,(0,0) « I?(0,0)

6: foru<+1,...,M—1do

7 21 (4,0) « Xy (u—1,0) + I(u,0)

8: Yo (u,0) < Zy(u—1,0) + I*(u,0)

Process the remaining image lines (v > 0):
9: forv+1,...,N—1do

10: 21(0,v) - Z,(0,v—1) + I(0,v)

11: 7,(0,v) ¢ Z,(0,v—1) 4 I*(0,v)

12: foru<+1,...,M—1do

13: Iy (u,v) «— Xy (u—1,v) + Iy (u,v—1) —
Li(u—1,v—1) + I(u,v)

14: Lo (u,v) + Zp(u—1,v) + Ly (u,v—1) —

To(u—1,v—1) + I*(u,v)
15: return (X;,%,)

3.9 Exercises

Exercise 3.1. In Prog. 3.2, B and K are constants. Consider if there
would be an advantage to computing the value of B/K outside of the
loop, and explain your reasoning.

Exercise 3.2. Develop an ImageJ plugin that computes the cumu-
lative histogram of an 8-bit grayscale image and displays it as a new
image, similar to H(¢) in Fig. 3.13. Hint: Use the ImageProcessor
method int[] getHistogram() to retrieve the original image’s his-
togram values and then compute the cumulative histogram “in place”
according to Eqn. (3.6). Create a new (blank) image of appropriate
size (e.g., 256 x 150) and draw the scaled histogram data as black
vertical bars such that the maximum entry spans the full height of
the image. Program 3.3 shows how this plugin could be set up and
how a new image is created and displayed.

Exercise 3.3. Develop a technique for nonlinear binning that uses a
table of interval limits a; (Eqn. (3.2)).

Exercise 3.4. Develop an ImageJ plugin that uses the Java meth-
ods Math.random() or Random.nextInt (int n) to create an image
with random pixel values that are uniformly distributed in the range
[0,255]. Analyze the image’s histogram to determine how equally
distributed the pixel values truly are.

Exercise 3.5. Develop an ImageJ plugin that creates a random im-
age with a Gaussian (normal) distribution with mean value p = 128
and standard deviation ¢ = 50. Use the standard Java method
double Random.nextGaussian() to produce normally-distributed



random numbers (with ¢ = 0 and o = 1) and scale them appro-
priately to pixel values. Analyze the resulting image histogram to
see if it shows a Gaussian distribution too.

Exercise 3.6. Implement the calculation of the arithmetic mean u
and the variance o2 of a given grayscale image from its histogram h
(see Sec. 3.7.1). Compare your results to those returned by ImagelJ’s
Analyze > Measure tool (they should match ezactly).

Exercise 3.7. Implement the first-order integral image (X;) calcu-
lation described in Eqn. (3.18) and calculate the sum of pixel values
S;(R) inside a given rectangle R using Eqn. (3.21). Verify numeri-
cally that the results are the same as with the naive formulation in
Eqn. (3.19).

Exercise 3.8. Values of integral images tend to become quite large.
Assume that 32-bit signed integers (int) are used to calculate the
integral of the squared pixel values, that is, Z, (see Eqn. (3.24)), for
an 8-bit grayscale image. What is the maximum image size that is
guaranteed not to cause an arithmetic overflow? Perform the same
analysis for 64-bit signed integers (long).

Exercise 3.9. Calculate the integral image X; for a given image I,
convert it to a floating-point iamge (FloatProcessor) and display
the result. You will realize that integral images are without any
apparent structure and they all look more or less the same. Come
up with an efficient method for reconstructing the original image I
from X;.

3.9 EXERCISES
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Prog. 3.3

Creating and displaying a new
image (ImageJ plugin). First,
we create a ByteProcessor ob-
ject (histIp, line 20) that is
subsequently filled. At this
point, histIp has no screen
representation and is thus not
visible. Then, an associated
ImagePlus object is created
(line 33) and displayed by
applying the show() method
(line 34). Notice how the ti-
tle (String) is retrieved from
the original image inside the
setup() method (line 10) and
used to compose the new im-
age’s title (lines 30 and 33). If
histIp is changed after call-
ing show(), then the method
updateAndDraw() could be
used to redisplay the associ-
ated image again (line 34).

56

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

import
import
import
import

ij.ImagePlus;
ij.plugin.filter.PlugInFilter;
ij.process.ByteProcessor;
ij.process.ImageProcessor;

public class Create_New_Image implements PlugInFilter {
ImagePlus im;

public int setup(String arg, ImagePlus im) {
this.im = im;
return DOES_8G + NO_CHANGES;

}

public void run(ImageProcessor ip) {
/I obtain the histogram of ip:
int[] hist = ip.getHistogram();
int K = hist.length;

/I create the histogram image:

ImageProcessor hip = new ByteProcessor (K, 100);
hip.setValue(255); // white =255

hip.£ill(Q);

/I draw the histogram values as black bars in hip here,
/I for example, using hip.putpixel(u, v, 0)
...

/I compose a nice title:
String imTitle = im.getShortTitle();
String histTitle = "Histogram of " + imTitle;

/I display the histogram image:
ImagePlus him = new ImagePlus(title, hip);

him.show();

}




4

Point Operations

Point operations perform a modification of the pixel values without
changing the size, geometry, or local structure of the image. Each
new pixel value b = I’ (u,v) depends exclusively on the previous value
a = I(u,v) at the same position and is thus independent from any
other pixel value, in particular from any of its neighboring pixels.!
The original pixel values a are mapped to the new values b by some
given function f, i.e.,

b= f(I(u,v)) or b= f(a). (4.1)

If, as in this case, the function f() is independent of the image coor-
dinates (i.e., the same throughout the image), the operation is called
“global” or “homogeneous”. Typical examples of homogeneous point
operations include, among others:

modifying image brightness or contrast,

applying arbitrary intensity transformations (“curves”),
inverting images,

quantizing (or “posterizing”) images,

global thresholding,

gamma correction,

color transformations

etc.

We will look at some of these techniques in more detail in the follow-
ing.

In contrast to Eqn. (4.1), the mapping function g() for a nonho-
mogeneous point operation would also take into account the current
image coordinate (u,v), that is,

b= g([(u, v), u,v) or b= f(a,u,v). (4.2)

A typical nonhomogeneous operation is the local adjustment of con-
trast or brightness used, for example, to compensate for uneven light-
ing during image acquisition.

L If the result depends on more than one pixel value, the operation is
called a “filter”, as described in Chapter 5.

© Springer-Verlag London 2016
W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,
DOI 10.1007/978-1-4471-6684-9 4
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Prog. 4.1

Point operation to increase
the contrast by 50% (ImagelJ
plugin). Note that in line 8
the result of the multiplication
of the integer pixel value by
the constant 1.5 (implicitly of
type double) is of type double.
Thus an explicit type cast
(int) is required to assign the
value to the int variable a.
0.5 is added in line 8 to round
to the nearest integer values.
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4.1 Modifying Image Intensity

4.1.1 Contrast and Brightness

Let us start with a simple example. Increasing the image’s contrast
by 50% (i.e., by the factor 1.5) or raising the brightness by 10 units
can be expressed by the mapping functions

fcontr(a) =a-1.5 or fbright(a) =a+10, (43)

respectively. The first operation is implemented as an ImageJ plugin
by the code shown in Prog. 4.1, which can easily be adapted to per-
form any other type of point operation. Rounding to the nearest inte-
ger values is accomplished by simply adding 0.5 before the truncation
effected by the (int) typecast in line 8 (this only works for positive
values). Also note the use of the more efficient image processor meth-
ods get () and set() (instead of getPixel() and putPixel()) in
this example.

1 public void run(ImageProcessor ip) {
2 int w = ip.getWidth();

3 int h = ip.getHeight();

4

5 for (int v = 0; v < h; v++) {

6 for (int u = 0; u < w; u++) {

7 int a = ip.get(u, v);

8 int b = (int) (a * 1.5 + 0.5);
9 if (b > 255)

10 b = 255; //clamp to the maximum value (a,.y)
11 ip.set(u, v, b);

12 }

13 }

14 %

4.1.2 Limiting Values by Clamping

When implementing arithmetic operations on pixel values, we must
keep in mind that the calculated results must not exceed the admissi-
ble range of pixel values for the given image type (e.g., [0, 255] in the
case of 8-bit grayscale images). This is commonly called “clamping”
and can be expressed in the form

Amin fOI‘ f(a) < Gmin
b = min(max(f(a), Gmin), Cmax) = § Gmax 0T f(a) > ap., (4.4)
f(a) otherwise.

For this purpose, line 10 of Prog. 4.1 contains the statement
if (b > 2565) b = 255;

which limits the result to the maximum value 255. Similarly, one
may also want to limit the results to the minimum value (0) to avoid
negative pixel values (which cannot be represented by this type of
8-bit image), for example, by the statement



if (b < 0) b = 0; 4.2 POINT OPERATIONS

The above statement is not needed in Prog. 4.1 because the interme- AND HISTOGRAMS

diate results can never be negative in this particular operation.

4.1.3 Inverting Images

Inverting an intensity image is a simple point operation that reverses
the ordering of pixel values (by multiplying by —1) and adds a con-
stant value to map the result to the admissible range again. Thus
for a pixel value a = I(u,v) in the range [0, apay], the corresponding
point operation is

finv(a’> = =0+ Qpax = Qpax — - (45)

The inversion of an 8-bit grayscale image with a,,,, = 255 was the
task of our first plugin example in Sec. 2.2.4 (Prog. 2.1). Note that
in this case no clamping is required at all because the function al-
ways maps to the original range of values. In ImagelJ, this oper-
ation is performed by the method invert() (for objects of type
ImageProcessor) and is also available through the Edit> Invert menu.
Obviously, inverting an image mirrors its histogram, as shown in Fig.
4.5(c).

4.1.4 Threshold Operation

Thresholding an image is a special type of quantization that separates
the pixel values in two classes, depending upon a given threshold
value ¢ that is usually constant. The threshold operation maps all
pixels to one of two fixed intensity values aq or a;, that is,

ag for a < g,

fthreshold(a) = { (46)

ay fora>gq,

with 0 < ¢ < apax- A common application is binarizing an intensity
image with the values ag = 0 and a; = 1.

ImageJ does provide a special image type (BinaryProcessor)
for binary images, but these are actually implemented as 8-bit in-
tensity images (just like ordinary intensity images) using the val-
ues 0 and 255. ImagelJ also provides the ImageProcessor method
threshold(int lewel), with level = ¢, to perform this opera-
tion, which can also be invoked through the Image > Adjust > Thresh-
old menu (see Fig. 4.1 for an example). Thresholding affects the
histogram by separating the distribution into two entries at positions
ag and aq, as illustrated in Fig. 4.2.

4.2 Point Operations and Histograms

We have already seen that the effects of a point operation on the
image’s histogram are quite easy to predict in some cases. For ex-
ample, increasing the brightness of an image by a constant value

shifts the entire histogram to the right, raising the contrast widens 59
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Fig. 4.1

Threshold operation: orig-
inal image (a) and corre-
sponding histogram (c); re-
sult after thresholding with
ag, = 128, a5 = 0, a; = 255
(b) and corresponding his-
togram (d); ImagelJ’s inter-
active Threshold menu (e).

Fig. 4.2
Effects of thresholding upon
the histogram. The thresh-
old value is ay,. The origi-
nal distribution (a) is split
and merged into two iso-
lated entries at ag and a; in
the resulting histogram (b).
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h(3)

ag a;

(a) (b)

it, and inverting the image flips the histogram. Although this ap-
pears rather simple, it may be useful to look a bit more closely at
the relationship between point operations and the resulting changes
in the histogram.

As the illustration in Fig. 4.3 shows, every entry (bar) at some
position 7 in the histogram maps to a set (of size h(i)) containing all
image pixels whose values are exactly 7.2

If a particular histogram line is shifted as a result of some point op-
eration, then of course all pixels in the corresponding set are equally
modified and vice versa. So what happens when a point operation
(e.g., reducing image contrast) causes two previously separated his-
togram lines to fall together at the same position ¢? The answer is
that the corresponding pixel sets are merged and the new common
histogram entry is the sum of the two (or more) contributing entries
(i.e., the size of the combined set). At this point, the elements in
the merged set are no longer distinguishable (or separable), so this
operation may have (perhaps unintentionally) caused an irreversible
reduction of dynamic range and thus a permanent loss of information
in that image.

2 Of course this is only true for ordinary histograms with an entry for
every single intensity value. If binning is used (see Sec. 3.4.1), each
histogram entry maps to pixels within a certain range of values.
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4.3 Automatic Contrast Adjustment

Automatic contrast adjustment (auto-contrast) is a point operation
whose task is to modify the pixels such that the available range of
values is fully covered. This is done by mapping the current darkest
and brightest pixels to the minimum and maximum intensity values,
respectively, and linearly distributing the intermediate values.

Let us assume that a;, and ay; are the lowest and highest pixel
values found in the current image, whose full intensity range is
[@min, Gmax)- To stretch the image to the full intensity range (see
Fig. 4.4), we first map the smallest pixel value a;, to zero, subse-
quently increase the contrast by the factor (amax —amin)/ (@ni — a0,
and finally shift to the target range by adding a,;,. The mapping
function for the auto-contrast operation is thus defined as

Amax — Amin
= Qpin + (a - alo) ' )

4.7
api — Qo ( )

fac (a>

provided that ay; # a),; that is, the image contains at least two
different pixel values. For an 8-bit image with ¢, = 0 and @y, =
255, the function in Eqn. (4.7) simplifies to

255

. 4.8
api— a1 ( )

fac(a) - (afalo) :

The target range [apin, Gmax] n€ed not be the maximum available
range of values but can be any interval to which the image should
be mapped. Of course the method can also be used to reduce the
image contrast to a smaller range. Figure 4.5(b) shows the effects
of an auto-contrast operation on the corresponding histogram, where
the linear stretching of the intensity range results in regularly spaced
gaps in the new distribution.

4.3 AUTOMATIC
CONTRAST ADJUSTMENT

Fig. 4.3

Histogram entries represent
sets of pixels of the same
value. If a histogram line

is moved as a result of some
point operation, then all pixels
in the corresponding set are
equally modified (a). If, due to
this operation, two histogram
lines h(a,), h(asy) coincide on
the same index, the two corre-
sponding pixel sets merge and
the contained pixels become
undiscernable (b).
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Fig. 4.4

Auto-contrast operation
according to Eqn. (4.7).
Original pixel values a

in the range [ay,, ay;] are
mapped linearly to the
target range [@in, @max)-

Fig. 4.5

Effects of auto-contrast and
inversion operations on the
resulting histograms. Origi-
nal image (a), result of auto-
contrast operation (b), and
inversion (c). The histogram
entries are shown both lin-
early (black bars) and log-
arithmically (gray bars).

Fig. 4.6

Modified auto-contrast oper-
ation (Eqn. (4.11)). Prede-
fined quantiles (q,, gp;) of
image pixels—shown as dark
areas at the left and right
ends of the histogram h(i)—
are “saturated” (i.e., mapped
to the extreme values of the
target range). The intermedi-

ate values (a = al,,...,ap;)
are mapped linearly to the
interval a iy, .- Qax-

62

o Apj

amax

4.4 Modified Auto-Contrast Operation

In practice, the mapping function in Eqn. (4.7) could be strongly
influenced by only a few extreme (low or high) pixel values, which
may not be representative of the main image content. This can be
avoided to a large extent by “saturating” a fixed percentage (pio, Ph;)
of pixels at the upper and lower ends of the target intensity range.
To accomplish this, we determine two limiting values af,, aj; such
that a predefined quantile ¢, of all pixel values in the image I are
smaller than a{, and another quantile ¢,; of the values are greater

than ay; (Fig. 4.6).

h(4)

@min Amax



The values aj,, ap; depend on the image content and can be easily
obtained from the image’s cumulative histogram? H:

a, = min{ i | H(i) > M-N-p,}, (4.9)
ap; = max{i | H(@) < M'N‘(lfphi)}a (4.10)

in the image. All pixel values outside (and including) aj, and aj;
are mapped to the extreme values a,;, and a,,,,, respectively, and
intermediate values are mapped linearly to the interval [aiy, Gmax)-
Using this formulation, the mapping to minimum and maximum in-
tensities does not depend on singular extreme pixels only but can be
based on a representative set of pixels. The mapping function for the
modified auto-contrast operation can thus be defined as

where 0 < p1o, Pri < 1, pio +pn; < 1, and M-N is the number of pixels

Ain for a < aj,,
/ Gmax — Omin 2 /
finac(@) = { Gmin+ (a*%)'ia, — for aj, <a<ay;, (4.11)
hi lo
Gnax for a > aj;.

Usually the same value is taken for both upper and lower quantiles
(i.e., Pl = pni = p), with p = 0.005,...,0.015 (0.5,...,1.5%) being
common values. For example, the auto-contrast operation in Adobe
Photoshop saturates 0.5 % (p = 0.005) of all pixels at both ends of the
intensity range. Auto-contrast is a frequently used point operation
and thus available in practically any image-processing software. Im-
ageJ implements the modified auto-contrast operation as part of the
Brightness/Contrast and Image > Adjust menus (Auto button), shown in
Fig. 4.7.

i | =)
il LI -l

Minirum
il 1= F

Maxirnum ||Hm
[ | Ml

Brightness j J j
ﬂ ContraJst J Level: 100

il =]

L Window  len

Set Apply Tauto Y Reset
Thresh Update Set Apply

4.5 Histogram Equalization

A frequent task is to adjust two different images in such a way that
their resulting intensity distributions are similar, for example, to use

3 See Sec. 3.6.

4.5 HISTOGRAM
EQUALIZATION

Fig. 4.7

ImageJ’s Brightness/Contrast tool
(left) and Window/Level tool
(right) can be invoked through
the Image > Adjust menu. The
Auto button displays the result
of a modified auto-contrast
operation. Apply must be hit to
actually modify the image.
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Fig. 4.8

Histogram equalization.

The idea is to find and apply
a point operation to the im-
age (with original histogram
h) such that the histogram
heq of the modified image
approximates a uniform dis-
tribution (top). The cumu-
lative target histogram H.q
must thus be approximately
wedge-shaped (bottom).

Fig. 4.9
Histogram equalization on
the cumulative histogram.
A suitable point operation

b < foq(a) shifts each his-
togram line from its origi-
nal position a to b (left or
right) such that the result-

ing cumulative histogram

Heq is approximately linear.

64

Original modified

heq(i)

H(4)

them in a print publication or to make them easier to compare. The
goal of histogram equalization is to find and apply a point opera-
tion such that the histogram of the modified image approximates
a uniform distribution (see Fig. 4.8). Since the histogram is a dis-
crete distribution and homogeneous point operations can only shift
and merge (but never split) histogram entries, we can only obtain
an approximate solution in general. In particular, there is no way
to eliminate or decrease individual peaks in a histogram, and a truly
uniform distribution is thus impossible to reach. Based on point
operations, we can thus modify the image only to the extent that
the resulting histogram is approximately uniform. The question is
how good this approximation can be and exactly which point opera-
tion (which clearly depends on the image content) we must apply to
achieve this goal.

We may get a first idea by observing that the cumulative his-
togram (Sec. 3.6) of a uniformly distributed image is a linear ramp
(wedge), as shown in Fig. 4.8. So we can reformulate the goal as find-
ing a point operation that shifts the histogram lines such that the
resulting cumulative histogram is approximately linear, as illustrated
in Fig. 4.9.

H()  Heq(i) ’

The desired point operation f.,() is simply obtained from the
cumulative histogram H of the original image as*

feale) = |H(@) - 3 |

(4.12)

4 For a derivation, see, for example, [88, p. 173].
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for an image of size M x N with pixel values a in the range [0, K—1].
The resulting function f.,(a) in Eqn. (4.12) is monotonically increas-
ing, because H(a) is monotonic and K, M, N are all positive con-
stants. In the (unusual) case where an image is already uniformly dis-
tributed, linear histogram equalization should not modify that image
any further. Also, repeated applications of linear histogram equaliza-
tion should not make any changes to the image after the first time.
Both requirements are fulfilled by the formulation in Eqn. (4.12).
Program 4.2 lists the Java code for a sample implementation of lin-
ear histogram equalization. An example demonstrating the effects
on the image and the histograms is shown in Fig. 4.10.

Notice that for “inactive” pixel values 7 (i.e., pixel values that do
not appear in the image, with h(¢) = 0), the corresponding entries
in the cumulative histogram H(i) are either zero or identical to the
neighboring entry H(i — 1). Consequently a contiguous range of zero
values in the histogram h(i) corresponds to a constant (i.e., flat)
range in the cumulative histogram H(i), and the function f,,(a) maps
all “inactive” intensity values within such a range to the next lower
“active” value. This effect is not relevant, however, since the image
contains no such pixels anyway. Nevertheless, a linear histogram
equalization may (and typically will) cause histogram lines to merge
and consequently lead to a loss of dynamic range (see also Sec. 4.2).

This or a similar form of linear histogram equalization is imple-
mented in almost any image-processing software. In ImagelJ it can
be invoked interactively through the Process > Enhance Contrast menu
(option Equalize). To avoid extreme contrast effects, the histogram

4.5 HISTOGRAM
EQUALIZATION

Fig. 4.10

Linear histogram equalization
example. Original image I (a)
and modified image I’ (b), cor-
responding histograms h, h’ (c,
d), and cumulative histograms
H, H’ (e, f). The resulting
cumulative histogram H’ (f)
approximates a uniformly dis-
tributed image. Notice that
new peaks are created in the
resulting histogram h’ (d) by
merging original histogram
cells, particularly in the lower
and upper intensity ranges.
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public void run(ImageProcessor ip) {
int M = ip.getWidth();
int N = ip.getHeight ();
int K = 256; // number of intensity values

4 POINT OPERATIONS

Prog. 4.2

Linear histogram equaliza-
tion (ImageJ plugin). First
the histogram of the im-

age ip is obtained using the
standard ImageJ method
ip.getHistogram() in line 7.
In line 9, the cumulative his-
togram is computed “in place”
based on the recursive defi-
nition in Eqn. (3.6). The int 10 +
division in line 16 implicitly 11
performs the required floor 12

(| ]) operation by truncation.

/I compute the cumulative histogram:

int[] H = ip.getHistogram();

for (int j = 1; j < H.length; j++) {
H[j] = H[j - 1] + H[]I;

© 00 N U W N

/I equalize the image:

13 for (int v = 0; v < N; v++) {

14 for (int u = 0; u < M; u++) {

15 int a = ip.get(u, v);

16 int b = H[a]l] * (K - 1) / (M * N); //s. Equation (4.12)
17 ip.set(u, v, b);

18 }

19 }

20 %}

equalization in ImageJ by default® cumulates the square root of the
histogram entries using a modified cumulative histogram of the form

H(i) = > vh(). (4.13)
j=0

4.6 Histogram Specification

Although widely implemented, the goal of linear histogram equalization—
a uniform distribution of intensity values (as described in the previous
section)—appears rather ad hoc, since good images virtually never
show such a distribution. In most real images, the distribution of
the pixel values is not even remotely uniform but is usually more
similar, if at all, to perhaps a Gaussian distribution. The images
produced by linear equalization thus usually appear quite unnatural,
which renders the technique practically useless.

Histogram specification is a more general technique that modifies
the image to match an arbitrary intensity distribution, including the
histogram of a given image. This is particularly useful, for exam-
ple, for adjusting a set of images taken by different cameras or under
varying exposure or lighting conditions to give a similar impression in
print production or when displayed. Similar to histogram equaliza-
tion, this process relies on the alignment of the cumulative histograms
by applying a homogeneous point operation. To be independent of
the image size (i.e., the number of pixels), we first define normalized
distributions, which we use in place of the original histograms.

® The “classic” linear approach (see Eqn. (3.5)) is used when simultane-
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4.6.1 Frequencies and Probabilities

The value in each histogram cell describes the observed frequency
of the corresponding intensity value, i.e., the histogram is a discrete
frequency distribution. For a given image I of size M x N, the sum
of all histogram entries h(7) equals the number of image pixels,

> h(i)=M-N. (4.14)

%

The associated normalized histogram,

"
p(i) = M(.Ziv , for0<i<K, (4.15)

is usually interpreted as the probability distribution or probability den-
sity function (pdf) of a random process, where p(i) is the probability
for the occurrence of the pixel value 7. The cumulative probability
of i being any possible value is 1, and the distribution p must thus

satisfy
K—

Z p(i) =1. (4.16)

1=

=

The statistical counterpart to the cumulative histogram H (Eqn.
(3.5)) is the discrete distribution function P() (also called the cu-
mulative distribution function or cdf),

L HE)  HG) &< hG) -

for i = 0,..., K—1. The computation of the cdf from a given his-
togram h is outlined in Alg. 4.1. The resulting function P(7) is (as the
cumulative histogram) monotonically increasing and, in particular,

K—

PO)=p(0) and PE-1)=)» pi)=1. (4.18)
=0

=

This statistical formulation implicitly treats the generation of
images as a random process whose exact properties are mostly un-
known.® However, the process is usually assumed to be homogeneous
(independent of the image position); that is, each pixel value is the
result of a “random experiment” on a single random variable i. The
observed frequency distribution given by the histogram h(7) serves as
a (coarse) estimate of the probability distribution p(¢) of this random
variable.

4.6.2 Principle of Histogram Specification

The goal of histogram specification is to modify a given image I, by
some point operation such that its distribution function P4 matches

5 Statistical modeling of the image generation process has a long tradition
(see, e.g., [128, Ch. 2]).

4.6 HISTOGRAM
SPECIFICATION
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Alg. 4.1

Calculation of the cumula-
tive distribution function (cdf)
P(i) from a given histogram

h of length K. See Prog. 4.3
(p. 73) for the correspond-

ing Java implementation.

Fig. 4.11
Principle of histogram specifi-
cation. Given is the reference
distribution Py (left) and the

distribution function for the
original image P, (right). The
result is the mapping function
fus: a — a’ for a point op-
eration, which replaces each
pixel a in the original image

I, by a modified value a’. The

process has two main steps:
@ For each pixel value a, de-
termine b = P, (a) from the
right distribution function.
® d’ is then found by in-
verting the left distribution
function as a’ = P}gl (b).

In summary, the result is

Fus(a) = o' = Py" (Pa(a).
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1: cdf(h)
Returns the cumulative distribution function P(i) € [0,1] for a
given histogram h(z), with ¢ =0,..., K—1.
Let K < Size(h)
Let n < Zf:ol h(4)
Create map P: [0, K—1] = R
Let ¢ <0
fori < 0,...,K—1do

¢« c+h(7)

P(i) < ¢/n

return P.

> cumulate histogram values

a reference distribution Pr as closely as possible. We thus look for a
mapping function

a/ = fhs(a’>

to convert the original image I 4 by a point operation to a new image
14, with pixel values a’, such that its distribution function P} matches
Pr, that is,

(4.19)

Py(i) ~ Pg(i), for0<i< K.

As illustrated in Fig. 4.11, the desired mapping f, is found by com-
bining the two distribution functions Pr and P4 (see [88, p. 180] for
details). For a given pixel value a in the original image, we obtain
the new pixel value a’ as

(4.20)

a =Pz (Pa(a)) = P5'(b) (4.21)
and thus the mapping fis (Eqn. (4.19)) is defined as
fus(a) = Pg'(Pa(a)), for0<a<K. (4.22)

This of course assumes that Pr(7) is invertible, that is, that the func-
tion P (b) exists for b € [0,1].

4.6.3 Adjusting to a Piecewise Linear Distribution

If the reference distribution Pp is given as a continuous, invertible
function, then the mapping function f;, can be obtained from Eqn.
(4.22) without any difficulty. In practice, it is convenient to specify
the (synthetic) reference distribution as a piecewise linear function
Pr(i); that is, as a sequence of N+1 coordinate pairs



4.6 HISTOGRAM
SPECIFICATION

Fig. 4.12

Piecewise linear reference
distribution. The func-

tion Py (2) is specified by

N = 5 control points (0, Py),
(@, P1),..., (ayq, Py), with
ap < apyq and Py < Py
The final point Py is fixed at
(K—1,1).

L= ((a()?PO)a(alapl)7'"7(ak:7pk)a"'a(aNaPN))a

each consisting of an intensity value a;, and the corresponding cumu-
lative probability P,,. We assert that 0 < a;, < K, ap < a4, and
0 < P, < 1. Also, the two endpoints (ag, Py) and (ay, Py) are fixed
at

(0, Py) and (K-1,1),

respectively. To be invertible, the function must also be strictly mo-
notonic, that is, P, < Py,q for 0 < k < N. Figure 4.12 shows an
example of such a function, which is specified by N = 5 variable
points (Fy,...,P;) and a fixed end point Ps and thus consists of
N = 5 linear segments. The reference distribution can of course
be specified at an arbitrary accuracy by inserting additional control
points.

The intermediate values of Py (i) are obtained by linear interpo-
lation between the control points as

' (a'm+17a7"-) (4.23)
1 fori = K—1.

, P+ (i—ay,) Loti=lo) g5 0 < i< K1,
PL(i) =

where m = max{j € [0,N—1] | a; < i} is the index of the line
segment (a,,, P,) — (@my1, Prmy1), which overlaps the position 4.
For instance, in the example in Fig. 4.12, the point a lies within the
segment that starts at point (ay, Py); i.e., m = 2.

For the histogram specification according to Eqn. (4.22), we also
need the inverse distribution function P;*(b) for b € [0, 1]. As we see
from the example in Fig. 4.12, the function Py (i) is in general not
invertible for values b < P (0). We can fix this problem by mapping
all values b < P (0) to zero and thus obtain a “semi-inverse” of the
reference distribution in Eqn. (4.23) as

0 for 0 < b < P.(0),
P'(b) =S a,+ (b—P,)- % for PL(0)<b<1, (4.24)
K—-1 for b > 1.

Here n = max{j € {0,...N—1} | P; < b} is the index of the line
segment (a,,, P,) = (@11, P, 1), which overlaps the argument value
b. The required mapping function f; 4 for adapting a given image with
intensity distribution P 4 is finally specified, analogous to Eqn. (4.22),
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Alg. 4.2

Histogram specification using
a piecewise linear reference
distribution. Given is the his-
togram h of the original image
and a piecewise linear reference
distribution function, speci-
fied as a sequence of N control
points L. The discrete map-
ping fy, for the corresponding
point operation is returned.

70

1: MatchPiecewiseLinearHistogram(h, L)
Input: h, histogram of the original image I; L, reference distri-
bution function, given as a sequence of N 4 1 control points L =
[(ag, Py),(ay, Py),...,(an,Py)], with 0 < ap < K, 0< P, <1,
and Py, < Pj;. Returns a discrete mapping fis(a) to be applied
to the original image I.

2: N + Size(L) + 1
3: Let K < Size(h)
4: Let P <— Cpr(h) > cdf for h (see Alg. 4.1)
5: Create map fis: [0, K—1] — R > function fjq
6: fora<+0,...,K—1do
T: b+« P(a)
8: if (b < P,) then
9: a +0
10: else if (b > 1) then
11: a +— K-1
12: else
13: n<+< N—-1
14: while (n > 0) A (P, >b) do > find line segment in L
15: n+<n-—1 ( )
Upy1 — Q
16: a +a, + (b—P,) 2t 1L > see BEqn. 4.24
( ) (Pn+1 - Pn)
17: Jusla] < a’
18: return f.

fns(@) =P (Pa(a)), for0<a<K.

The whole process of computing the pixel mapping function for a
given image (histogram) and a piecewise linear target distribution is
summarized in Alg. 4.2. A real example is shown in Fig. 4.14 (Sec.
4.6.5).

(4.25)

4.6.4 Adjusting to a Given Histogram (Histogram
Matching)

If we want to adjust one image to the histogram of another image,
the reference distribution function P (i) is not continuous and thus,
in general, cannot be inverted (as required by Eqn. (4.22)). For ex-
ample, if the reference distribution contains zero entries (i.e., pixel
values k with probability p(k) = 0), the corresponding cumulative
distribution function P (just like the cumulative histogram) has in-
tervals of constant value on which no inverse function value can be
determined.

In the following, we describe a simple method for histogram
matching that works with discrete reference distributions. The prin-
cipal idea is graphically illustrated in Fig. 4.13. The mapping func-
tion fi¢ is not obtained by inverting but by “filling in” the reference
distribution function P (7). For each possible pixel value a, starting
with a = 0, the corresponding probability p4(a) is stacked layer by
layer “under” the reference distribution Pr. The thickness of each
horizontal bar for a equals the corresponding probability p 4 (a). The
bar for a particular intensity value a with thickness p4(a) runs from



Pr (i) Reference pa (i) Original

right to left, down to position a’, where it hits the reference distribu-
tion Pp. This position a’ corresponds to the new pixel value to which
a should be mapped.

Since the sum of all probabilities p4 and the maximum of the
distribution function Pg are both 1 (i.e., Y. pa(i) = max; Pr(i) =
1), all horizontal bars will exactly fit underneath the function Pj.
One may also notice in Fig. 4.13 that the distribution value resulting
at a’ is identical to the cumulated probability P4(a). Given some
intensity value a, it is therefore sufficient to find the minimum value
a’, where the reference distribution Pr(a’) is greater than or equal to
the cumulative probability P(a), that is,

fus(@) =min{ j | (0 <j < K)A (Pala) < Pgp(5))} - (4.26)

This results in a very simple method, which is summarized in
Alg. 4.3. The corresponding Java implementation in Prog. 4.3, con-
sists of the method matchHistograms (), which accepts the original
histogram (hA) and the reference histogram (hR) and returns the
resulting mapping function (fhs) specifying the required point oper-
ation.

Due to the use of normalized distribution functions, the size of
the associated images is not relevant. The following code fragment
demonstrates the use of the matchHistograms () method from Prog.
4.3 in ImageJ:

ImageProcessor ipA = ... // target image I 4 (to be modified)
ImageProcessor ipR // reference image I

int[] hA
int[] hR

ipA.getHistogram(); // get histogram for I,
ipR.getHistogram(); // get histogram for Iz

int[] fhs = matchHistograms (hA, hR); // mapping function fy(a)

ipA.applyTable (fhs) ; /I modify the target image I 4

The original image ipA is modified in the last line by applying the
mapping function f; (fhs) with the method applyTable () (see also
p. 83).

4.6.5 Examples

Adjusting to a piecewise linear reference distribution

The first example in Fig. 4.14 shows the results of histogram spec-
ification for a continuous, piecewise linear reference distribution, as

4.6 HISTOGRAM
SPECIFICATION

Fig. 4.13

Discrete histogram specifica-
tion. The reference distribu-
tion Py (left) is “filled” layer
by layer from bottom to top
and from right to left. For ev-
ery possible intensity value a
(starting from a = 0), the as-
sociated probability p4(a) is
added as a horizontal bar to a
stack accumulated ‘under” the
reference distribution Pg. The
bar with thickness p4(a) is
drawn from right to left down
to the position a’, where the
reference distribution Pg is
reached. The function f ()
must map a to a’.
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Alg. 4.3

Histogram matching.

Given are two histograms: the
histogram h 4 of the target
image I, and a reference his-
togram hp, both of size K.
The result is a discrete map-
ping function fi, () that, when
applied to the target image,
produces a new image with a
distribution function similar
to the reference histogram.
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1: MatchHistograms(h 4, hy)
Input: hy, histogram of the target image [4; hg, reference his-
togram (the same size as h ). Returns a discrete mapping fys(a)
to be applied to the target image 4.
2 K + SiZG(hA)
3 P4 < CpF(hy) > c.d.f. for h, (Alg. 4.1)
4 Pr + CpF(hg) > c.d.f. for hy (Alg. 4.1)
5: Create map fy: [0, K—1] — R > pixel mapping function fi4
6 fora+0,...,K—1do
7
8

j+— K—1
: repeat
9: fuslal < J
10: j+—j7—1
11: while (j > 0) A (P4(a) < Pr(j))
12: return f.

described in Sec. 4.6.3. Analogous to Fig. 4.12, the actual distribution
function Pr (Fig. 4.14(f)) is specified as a polygonal line consisting
of five control points (ay, q;) with coordinates

k= 0 1 2 3 4 5

ay = 0 28 75 150 210 255
qx 0.002 0.050 0.250 0.750 0.950 1.000

The resulting reference histogram (Fig. 4.14(c)) is a step function
with ranges of constant values corresponding to the linear segments
of the probability density function. As expected, the cumulative
probability function for the modified image (Fig. 4.14(h)) is quite
close to the reference function in Fig. 4.14(f), while the resulting
histogram (Fig. 4.14(e)) shows little similarity with the reference his-
togram (Fig. 4.14(c)). However, as discussed earlier, this is all we
can expect from a homogeneous point operation.

Adjusting to an arbitrary reference histogram

The example in Fig. 4.15 demonstrates this technique using synthetic
reference histograms whose shape is approximately Gaussian. In this
case, the reference distribution is not given as a continuous func-
tion but specified by a discrete histogram. We thus use the method
described in Sec. 4.6.4 to compute the required mapping functions.

The target image used here was chosen intentionally for its poor
quality, manifested by an extremely unbalanced histogram. The his-
tograms of the modified images thus naturally show little resemblance
to a Gaussian. However, the resulting cumulative histograms match
nicely with the integral of the corresponding Gaussians, apart from
the unavoidable irregularity at the center caused by the dominant
peak in the original histogram.

Adjusting to another image

The third example in Fig. 4.16 demonstrates the adjustment of two
images by matching their intensity histograms. One of the images
is selected as the reference image I'p (Fig. 4.16(b)) and supplies the



1 int[] matchHistograms (int[] hA, int[] hR) {

2 // hA ... histogram h 4 of the target image 4 (to be modified)
3 /I hR ... reference histogram hp

4 /I returns the mapping f1,s() to be applied to image I 4

5

6 int K = hA.length;

7 double[] PA = Cdf (hA); /I get CDF of histogram h 4
8 double[] PR = Cdf (hR); /I get CDF of histogram h
9 int[] fhs = new int[X]; /I mapping fus()
10

11 /I compute mapping function fy,():

12 for (int a = 0; a < K; a++) {

13 int j =K - 1;

14 do {

15 fhslal = j;

16 i

17 } while (j >= 0 && PA[a] <= PR[j1);

18 }

19 return fhs;
20 }

22  double[] Cdf (int[] h) {

23 /I returns the cumul. distribution function for histogram h

24 int K = h.length;

25

26 int n = 0; /I sum all histogram values
27 for (int i = 0; i < K; i++) {

28 n += h[i];

29 }

30

31 double[] P = new double[K]; // create CDF table P

32 int ¢ = h[0]; // cumulate histogram values
33 P[0] = (double) c / n;

34 for (int i = 1; i < K; i++) {

35 c += h[i];

36 P[i] = (double) c / n;

37 }

38 return P;

39}

reference histogram hp (Fig. 4.16(¢)). The second (target) image
I, (Fig. 4.16(a)) is modified such that the resulting cumulative his-
togram matches the cumulative histogram of the reference image I.
It can be expected that the final image 14, (Fig. 4.16(c)) and the
reference image give a similar visual impression with regard to tonal
range and distribution (assuming that both images show similar con-
tent).

Of course this method may be used to adjust multiple images
to the same reference image (e.g., to prepare a series of similar pho-
tographs for a print project). For this purpose, one could either select
a single representative image as a common reference or, alternatively,
compute an “average” reference histogram from a set of typical im-
ages (see also Exercise 4.7).

4.6 HISTOGRAM
SPECIFICATION

Prog. 4.3

Histogram matching (Java
implementation of Alg. 4.3).
The method matchHistograms ()
computes the mapping func-
tion fhs from the target his-
togram hA and the reference
histogram hR (see Eqn. (4.26)).
The method Cdf () computes
the cumulative distribution
function (cdf) for a given his-
togram (Eqn. (4.17)).
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Fig. 4.14

Histogram specification with

a piecewise linear reference
distribution. The target image
I, (a), its histogram (d), and
distribution function P4 (g);
the reference histogram hp (c)
and the corresponding distri-
bution Py (f); the modified
image I,/ (b), its histogram

h 4/ (e), and the resulting dis-
tribution P4, (h). Associ-
ated mapping function f¢ (j).
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4.7 Gamma Correction

We have been using the terms “intensity” and “brightness” many
times without really bothering with how the numeric pixel values in
our images relate to these physical concepts, if at all. A pixel value
may represent the amount of light falling onto a sensor element in a
camera, the photographic density of film, the amount of light to be
emitted by a monitor, the number of toner particles to be deposited
by a printer, or any other relevant physical magnitude. In practice,
the relationship between a pixel value and the corresponding physical
quantity is usually complex and almost always nonlinear. In many
imaging applications, it is important to know this relationship, at
least approximately, to achieve consistent and reproducible results.

When applied to digital intensity images, the ideal is to have some
kind of “calibrated intensity space” that optimally matches the hu-
man perception of intensity and requires a minimum number of bits
to represent the required intensity range. Gamma correction denotes
a simple point operation to compensate for the transfer character-
istics of different input and output devices and to map them to a
unified intensity space.
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4.7.1 Why Gamma?

The term “gamma” originates from analog photography, where the
relationship between the light energy and the resulting film density
is approximately logarithmic. The “exposure function” (Fig. 4.17),
specifying the relationship between the logarithmic light intensity
and the resulting film density, is therefore approximately linear over
a wide range of light intensities. The slope of this function within
this linear range is traditionally referred to as the “gamma” of the
photographic material. The same term was adopted later in televi-

4.7 GAMMA CORRECTION

Fig. 4.15

Histogram matching: adjust-
ing to a synthetic histogram.
Original image I, (a), corre-
sponding histogram (f), and
cumulative histogram (i).
Gaussian-shaped reference
histograms with center p = 128
and o = 50 (d) and o = 100
(e), respectively. Resulting
images after histogram match-
ing, Igs0 (b) and Igigo (c)
with the corresponding his-
tograms (g, h) and cumulative
histograms (j, k). Associated
mapping function f,¢ (1).
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Fig. 4.16

Histogram matching: adjust-
ing to a reference image. The
target image 4 (a) is modified
by matching its histogram to
the reference image Iy (b),
resulting in the new image

I,/ (c). The corresponding
histograms h 4, hg, h,/ (d-f)
and cumulative histograms
Ha, Hg, P4/ (g-i) are shown.
Notice the good agreement
between the cumulative his-
tograms of the reference and
adjusted images (h,i). Associ-
ated mapping function f¢ (j).

Fig. 4.17

Exposure function of photo-
graphic film. With respect

to the logarithmic light in-
tensity B, the resulting film
density D is approximately
linear over a wide intensity
range. The slope (AD/AB) of
this linear section of the func-
tion specifies the “gamma” ()
value for a particular type

of photographic material.
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sion broadcasting to describe the nonlinearities of the cathode ray
tubes used in TV receivers, that is, to model the relationship be-
tween the amplitude (voltage) of the video signal and the emitted
light intensity. To compensate for the nonlinearities of the receivers,
a “gamma correction” was (and is) applied to the TV signal once
before broadcasting in order to avoid the need for costly correction
measures on the receiver side.




4.7.2 Mathematical Definition 4.7 GAMMA CORRECTION

Gamma correction is based on the exponential function

fy(a) =a”, (4.27)

where the parameter v € R is called the gamma value. If a is con-
strained to the interval [0, 1], then—independent of v—the value of
[+ (a) also stays within [0, 1], and the function always runs through
the points (0,0) and (1,1). In particular, f (a) is the identity func-
tion for v = 1, as shown in Fig. 4.18. The function runs above the di-
agonal for gamma values v < 1, and below it for v > 1. Controlled by
a single continuous parameter (), the power function can thus “im-
itate” both logarithmic and exponential types of functions. Within
the interval [0, 1], the function is continuous and strictly monotonic,
and also very simple to invert as

a=f7'(b) =", (4.28)

since b!/7 = (oﬂ)l/7 = a' = a. The inverse of the exponential
function f;*(b) is thus again an exponential function,

F7H0) = f5(6) = f1/,(0), (4.29)

with the parameter ¥ = 1/~.

b=a"
A
Fig. 4.18
1 |- - Gamma correction function
fy(a) = a” for a € [0,1] and
B . | different gamma values.
20 |
I
R = Y e 21
I
e e e T -y S & T fffffffffff =2
I
”””” T’""’"’" vy=5
I
‘L fffffffffff v =20
0 : > a
0 1

4.7.3 Real Gamma Values

The actual gamma values of individual devices are usually specified
by the manufacturers based on real measurements. For example,
common gamma values for CRT monitors are in the range 1.8 to 2.8,
with 2.4 as a typical value. Most LCD monitors are internally ad-
justed to similar values. Digital video and still cameras also emulate
the transfer characteristics of analog film and photographic cameras
by making internal corrections to give the resulting images an accus-

tomed “look”. e
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Fig. 4.19

Principle of gamma correction.
To compensate the output
signal S produced by a camera
with nominal gamma value 7,
a gamma correction is applied
with 4, = 1/~.. The corrected
signal S’ is proportional to
the received light intensity L.
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In TV receivers, gamma values are standardized with 2.2 for ana-
log NTSC and 2.8 for the PAL system (these values are theoretical;
results of actual measurements are around 2.35). A gamma value of
1/2.2 ~ 0.45 is the norm for cameras in NTSC as well as the EBU”
standards. The current international standard ITU-R BT.7098 calls
for uniform gamma values of 2.5 in receivers and 1/1.956 ~ 0.51
for cameras [76,122]. The ITU 709 standard is based on a slightly
modified version of the gamma correction (see Sec. 4.7.6).

Computers usually allow adjustment of the gamma value applied
to the video output signals to adapt to a wide range of different
monitors. Note, however, that the power function f,() is only a
coarse approximation to the actual transfer characteristics of any
device, which may also not be the same for different color channels.
Thus significant deviations may occur in practice, despite the careful
choice of gamma settings. Critical applications, such as prepress or
high-end photography, usually require additional calibration efforts
based on exactly measured device profiles (see Sec. 14.7.4).

4.7.4 Applications of Gamma Correction

Let us first look at the simple example illustrated in Fig. 4.19. As-
sume that we use a digital camera with a nominal gamma value 7.,
meaning that its output signal s relates to the incident light intensity
L as

S =1L, (4.30)
Camera Gamma
correction
Light Corrected
signal
Lok f5.(8) > S'=~L

To compensate the transfer characteristic of this camera (i.e., to
obtain a measurement S’ that is proportional to the original light
intensity L), the camera signal S is subject to a gamma correction
with the inverse of the camera’s gamma value 4, = 1/, and thus

S' = f5.(S) = St/ (4.31)
The resulting signal
S/ _ Sl/'Yc _ (L'yc)l/’% _ L(’h%) _ Ll

is obviously proportional (in theory even identical) to the original
light intensity L. Although this example is quite simplistic, it still
demonstrates the general rule, which holds for output devices as well:

" European Broadcast Union (EBU).
8 International Telecommunications Union (ITU).



The transfer characteristic of an input or output device with
specified gamma value v is compensated for by a gamma cor-
rection with ¥ = 1/~.

In the aforementioned, we have implicitly assumed that all values are
strictly in the range [0, 1], which usually is not the case in practice.
When working with digital images, we have to deal with discrete pixel
values, for example, in the range [0, 255] for 8-bit images. In general,
performing a gamma correction

b+ fgc(a77)7

on a pixel value a € [0, a,,«] and a gamma value v > 0 requires the
following three steps:

1. Scale a linearly to @ € [0, 1].
2. Apply the gamma correction function to a: b < a’.
3. Scale b € [0, 1] linearly back to b € [0, ayax]-

Formulated in a more compact way, the corrected pixel value b is
obtained from the original value a as

b ( a )7- o (4.32)

amax

Figure 4.20 illustrates the typical role of gamma correction in the
digital work flow with two input (camera, scanner) and two output
devices (monitor, printer), each with its individual gamma value.
The central idea is to correct all images to be processed and stored
in a device-independent, standardized intensity space.

Storage

Ei e

Processing

I
=t | =

4.7.5 Implementation

Program 4.4 shows the implementation of gamma correction as an
ImageJ plugin for 8-bit grayscale images. The mapping function
Jac(a,y) is computed as a lookup table (Fgc), which is then applied
to the image using the method applyTable() to perform the actual
point operation (see also Sec. 4.8.1).

4.7 GAMMA CORRECTION

Fig. 4.20
Gamma correction in the digi-
tal imaging work flow. Images
are processed and stored in

a “linear” intensity space,
where gamma correction is
used to compensate for the
transfer characteristic of each
input and output device. (The
gamma values shown are exam-
ples only.)
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Prog. 4.4

Implementation of gamma cor-
rection in the run() method
of an ImageJ plugin. The
corrected intensity values b
are only computed once and
stored in the lookup table
Fgc (line 15). The gamma
value GAMMA is constant. The
actual point operation is per-
formed by calling the ImageJ
method applyTable(Fgc) on
the image object ip (line 18).
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1 public void run(ImageProcessor ip) {

2 /I works for 8-bit images only

3 int K = 256;

4 int aMax = K - 1;

5 double GAMMA = 2.8;

6

7 /I create and fill the lookup table:

8 int[] Fgc = new int[K];

9

10 for (int a = 0; a < K; a++) {

11 double aa = (double) a / aMax; /] scale to [0, 1]
12 double bb = Math.pow(aa, GAMMA); // power function
13 // scale back to [0, 255]:

14 int b = (int) Math.round(bb * aMax);

15 Fgclal = b;

16 }

17

18 ip.applyTable(Fgc); // modify the image

19

4.7.6 Modified Gamma Correction

A subtle problem with the simple power function f,(a) = a” (Eqn.
(4.27)) appears if we take a closer look at the slope of this function,
expressed by its first derivative,

Fila) =~-a07Y,

which for a = 0 has the values

0 forvy>1,
fL0)=<1 fory=1, (4.33)
oo fory < 1.

The tangent to the function at the origin is thus horizontal (y >
1), diagonal (y = 1), or vertical (y < 1), with no intermediate values.
For v < 1, this causes extremely high amplification of small intensity
values and thus increased noise in dark image regions. Theoretically,
this also means that the power function is generally not invertible at
the origin.

A common solution to this problem is to replace the lower part
(0 < a < agp) of the power function by a linear segment with constant
slope and to continue with the ordinary power function for a > aq.
The resulting modified gamma correction function,

_ s-a for 0 < a < ag,
f'y,ao(a) = (434)
(I+d)-a¥"—d for ag < a <1,
1
with s = J and d= -1 (4.35)

ag(y—1) +al' ™ ag(y—1)+1

thus consists of a linear section (for 0 < a < ay) and a nonlinear sec-
tion (for ay < a < 1) that connect smoothly at the transition point
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a = ag. The linear slope s and the parameter d are determined by
the requirement that the two function segments must have identical
values as well as identical slopes (first derivatives) at a = ag to pro-
duce a continuous function. The function in Eqn. (4.34) is thus fully
specified by the two parameters ay and .

Figure 4.21 shows two examples of the modified gamma correction
f%ao() with values v = 0.5 and v = 2.0, respectively. In both cases,
the transition point is at ay = 0.2. For comparison, the figure also
shows the ordinary gamma correction f (a) for the same gamma
values (dashed lines), whose slope at the origin is co (Fig. 4.21(a))
and zero (Fig. 4.21(b)), respectively.

Gamma correction in common standards

The modified gamma correction is part of several modern imaging
standards. In practice, however, the values of ay are considerably
smaller than the ones used for the illustrative examples in Fig. 4.21,
and v is chosen to obtain a good overall match to the desired cor-
rection function. For example, the ITU-BT.709 specification [122]
mentioned in Sec. 4.7.3 specifies the parameters

1
1= 53995 0.45 and ag=0.018, (4.36)

with the corresponding slope and offset values s = 4.50681 and
d = 0.0991499, respectively (Eqn. (4.35)). The resulting correction
function firy(a) has a nominal gamma value of 0.45, which corre-
sponds to the effective gamma value v, = 1/1.956 ~ 0.511. The
gamma correction in the sRGB standard [224] is specified on the
same basis (with different parameters; see Sec. 14.4).

Figure 4.22 shows the actual correction functions for the ITU and
sRGB standards, respectively, each in comparison with the equiv-
alent ordinary gamma correction. The ITU function (Fig. 4.22(a))
with v = 0.45 and ag = 0.018 corresponds to an ordinary gamma cor-
rection with effective gamma value v, = 0.511 (dashed line). The
curves for sSRGB (Fig. 4.22(b)) differ only by the parameters v and
ag, as summarized in Table 4.1.
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Fig. 4.22

Gamma correction func-
tions specified by the ITU-R
BT.709 (a) and sRGB (b)
standards. The continu-

ous plot shows the mod-
ified gamma correction

with the nominal v values
and transition points ag.

Table 4.1

Gamma correction pa-
rameters for the ITU and
sRGB standards based on
the modified mapping in
Eqns. (4.34) and (4.35).

82

fITU(a) stGB(a)

1.0} 1ot
0.8} 0.8t
0.6 0.6¢
04 / 041
Vi
/
/
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0.2 7/ 0.2r
/
/)
02 04 06 08 10" 02 04 06 08  10°
(a) v = 0.450, ay = 0.018 (b) v =~ 0.417, ay = 0.0031308
Nominal Effective
gamma value gamma value
Standard o ag s d Yorf
ITU-R BT.709 || 1/2.222 ~ 0.450 | 0.018 4.5010.099 || 1/1.956 ~ 0.511
sRGB 1/2.400 =~ 0.417 | 0.0031308 || 12.92 | 0.055 || 1/2.200 = 0.455

Inverting the modified gamma correction

To invert the modified gamma correction of the form b = f%% (a)
(Eqn. (4.34)), we need the inverse of the function f%ao(), which is
again defined in two parts,

1) b/s for 0 < b < s-ag, (437)
Tt (zl;i_g)l/v for s-ag < b < 1. '

s and d are the quantities defined in Eqn. (4.35) and thus

a= f{ia (f%ao (a)) for a € [0, 1], (4.38)

with the same value v being used in both functions. The inverse
gamma correction function is required in particular for transforming
between different color spaces if nonlinear (i.e., gamma-corrected)
component values are involved (see also Sec. 14.2).

4.8 Point Operations in ImageJ

Several important types of point operations are already implemented
in ImageJ, so there is no need to program every operation manually
(as shown in Prog. 4.4). In particular, it is possible in ImageJ to
apply point operations efficiently by using tabulated functions, to
use built-in standard functions for point operations on single images,
and to apply arithmetic operations on pairs of images. These issues
are described briefly in the remaining parts of this section.

4.8.1 Point Operations with Lookup Tables

Some point operations require complex computations for each pixel,
and the processing of large images may be quite time-consuming. If



the point operation is homogeneous (i.e., independent of the pixel 4.8 PoNT OPERATIONS IN
coordinates), the value of the mapping function can be precomputed [yage]

for every possible pixel value and stored in a lookup table, which

may then be applied very efficiently to the image. A lookup table L

represents a discrete mapping (function f) from the original to the

new pixel values,

Fof0,K—1]+5 [0, K—1]. (4.39)

For a point operation specified by a particular pixel mapping function
a’ = f(a), the table L is initialized with the values

Fla] < f(a), for0<a< K. (4.40)

Thus the K table elements of F need only be computed once, where
typically K = 256. Performing the actual point operation only re-
quires a simple (and quick) table lookup in F at each pixel, that
is,

I'(u,v) < F[I(u,v)], (4.41)

which is much more efficient than any individual function call. Im-
aged provides the method

void applyTable(int[] F)

for objects of type ImageProcessor, which requires a lookup table
F as a 1D int array of size K (see Prog. 4.4 on page 80 for an
example). The advantage of this approach is obvious: for an 8-bit
image, for example, the mapping function is evaluated only 256 times
(independent of the image size) and not a million times or more as in
the case of a large image. The use of lookup tables for implementing
point operations thus always makes sense if the number of image
pixels (M x N) is greater than the number of possible pixel values
K (which is usually the case).

4.8.2 Arithmetic Operations

ImageJ implements a set of common arithmetic operations as meth-
ods for the class ImageProcessor, which are summarized in Table
4.2. In the following example, the image is multiplied by a scalar
constant (1.5) to increase its contrast:

ImageProcessor ip = ... //some image
ip.multiply(1.5);

The image ip is destructively modified by all of these methods, with
the results being limited (clamped) to the minimum and maximum
pixel values, respectively.

4.8.3 Point Operations Involving Multiple Images

Point operations may involve more than one image at once, with
arithmetic operations on the pixels of pairs of images being a special
but important case. For example, we can express the pointwise addi-
tion of two images I, and I, (of identical size) to create a new image

!
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Table 4.2

ImageJ methods for arithmetic
operations applicable to ob-
jects of type ImageProcessor.
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void abs() I(u,v) « |I(u, 1))|

void add(int p) I(u,v) < I(u,v) +p

void gamma(double g) I(u,v) + ( (u, v /255)
void invert(int p) I(u,v) < 255 — I(u,v)
void log() I(u,v) + loglo( (u,v))
void max(double s) I(u,v) + max( (u,v) s)
void min(double s) I(u,v) « mm( (u,v), s)
void multiply(double s) I(u,v) + round( )
void sqr() I(u,v) < I(u,v)?

void sqrt() I(u,v) < /I(u,v)

I'(u,v) « I (u,v) + I(u,v) (4.42)

for all positions (u,v). In general, any function f(ay,as, ..., a,) over
n pixel values a; may be defined to perform pointwise combinations
of n images, that is,

I'(u,v) « f(I(u,0), Iy(u,v),...,I,(u,v)). (4.43)
Of course, most arithmetic operations on multiple images can also
be implemented as successive binary operations on pairs of images.

4.8.4 Methods for Point Operations on Two Images

ImagelJ supplies a single method for implementing arithmetic opera-
tions on pairs of images,

copyBits(ImageProcessor ¢p2, int u, int v, int mode),

which applies the binary operation specified by the transfer mode
parameter mode to all pixel pairs taken from the source image ip2
and the target image (the image on which this method is invoked)
and stores the result in the target image. u, v are the coordinates
where the source image is inserted into the target image (usually
u = v = 0). The following code segment demonstrates the addition
of two images:

ImageProcessor ipl
ImageProcessor ip2

. // target image (/)
. // source image (I5)

ipl.copyBits(ip2, 0, 0, Blitter.ADD);
/I ip1 holds the result, ip2 is unchanged

NI« I, + 1,

In this operation, the target image ip1 is destructively modified,
while the source image ip2 remains unchanged. The constant ADD
is one of several arithmetic transfer modes defined by the Blitter
interface (see Table 4.3). In addition, Blitter defines (bitwise) log-
ical operations, such as OR and AND. For arithmetic operations, the
copyBits () method limits the results to the admissible range of pixel
values (of the target image). Also note that (except for target images
of type FloatProcessor) the results are not rounded but truncated
to integer values.



ADD I (u,v) « I (u,v) + I (u,v) 4.8 POINT OPERATIONS IN

AVERAGE I (u,v) = (I (u,0) + I (u,0)) / 2 IMAGEJ

COPY I (u,v) « Ir(u,v) Tablo 4.3

DIFFERENCE I (u,v) «— |[1(u’ v) — [2(% v)| Arithmetic operations and
corresponding transfer mode

DIVIDE I (U, U) — I ('LL, U) / IQ(U, U) constants for ImageProcessor’s
copyBits() method. Example:

MAX Il(uvv) — maX(Il(uv v)7]2(uvv)) ipl.copyBits(ip2, 0, O,

MIN I (u,v) + min([l(u,v),lg(u,v)) Blitter.ADD).

MULTIPLY I (u,v) « I (u,v) - I5(u,v)

SUBTRACT I (u,v) « I (u,v) — Iy(u,v)

4.8.5 ImageJ Plugins Involving Multiple Images

ImageJ provides two types of plugin: a generic plugin (PlugIn),
which can be run without any open image, and plugins of type
PlugInFilter, which apply to a single image. In the latter case, the
currently active image is passed as an object of type ImageProcessor
(or any of its subclasses) to the plugin’s run() method (see also Sec.
2.2.3).

If two or more images I, I5, ..., I}, are to be combined by a plugin
program, only a single image I; can be passed directly to the plugin’s
run() method, but not the additional images I, ..., I;,. The usual
solution is to make the plugin open a dialog window to let the user
select the remaining images interactively. This is demonstrated in
the following example plugin for transparently blending two images.

Example: Linear blending

Linear blending is a simple method for continuously mixing two im-
ages, Igg and Ipg. The background image Igg is covered by the
foreground image Ipg, whose transparency is controlled by the value
« in the form

I/(U,U) = IB(;(U,”U) + (170‘) ! IFG(uav) ’ (444)

with 0 < o < 1. For a = 0, the foreground image Ipg is nontrans-
parent (opaque) and thus entirely hides the background image Ipg.
Conversely, the image Ipg is fully transparent for « = 1 and only
Ipq is visible. All « values between 0 and 1 result in a weighted
sum of the corresponding pixel values taken from Izg and Ipg (Eqn.
(4.44)).

Figure 4.23 shows the results of linear blending for different «
values. The Java code for the corresponding implementation (as an
ImageJ plugin) is listed in Prog. 4.5. The background image (bgIp)
is passed directly to the plugin’s run() method. The second (fore-
ground) image and the « value are specified interactively by creating
an instance of the ImageJ class GenericDialog, which allows the

simple implementation of dialog windows with various types of input
fields.
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Fig. 4.23
Linear blending example.
Foreground image Ipg (a)
and background image (Izq)
(e); blended images for trans-
parency values o = 0.25, 0.50,
and 0.75 (b—d) and dialog
window (f) produced by
GenericDialog (see Prog. 4.5).

(a) Ipg, = 0.0 (b) @ =0.25

Alpha Blending

Foreground image:  [{es]y[[sK]sls}

Alphavalug [0.1] |0.50

OK | Cancel
()

(e) Ing, «=1.0

4.9 Exercises

Exercise 4.1. Implement the auto-contrast operation as defined in
Eqns. (4.9)—(4.11) as an ImageJ plugin for an 8-bit grayscale image.
Set the quantile p of pixels to be saturated at both ends of the in-
tensity range (0 and 255) to p = pi, = pp; = 1%.

Exercise 4.2. Modify the histogram equalization plugin in Prog. 4.2

86 to use a lookup table (Sec. 4.8.1) for computing the point operation.



Exercise 4.3. Implement the histogram equalization as defined in
Eqn. (4.12), but use the modified cumulative histogram defined in
Eqn. (4.13), cumulating the square root of the histogram entries.
Compare the results to the standard (linear) approach by plotting
the resulting histograms and cumulative histograms as shown in Fig.
4.10.

Exercise 4.4. Show formally that (a) a linear histogram equaliza-
tion (Eqn. (4.12)) does not change an image that already has a uni-
form intensity distribution and (b) that any repeated application of
histogram equalization to the same image causes no more changes.

Exercise 4.5. Show that the linear histogram equalization (Sec. 4.5)
is only a special case of histogram specification (Sec. 4.6).

Exercise 4.6. Implement the histogram specification using a piece-
wise linear reference distribution function, as described in Sec. 4.6.3.
Define a new object class with all necessary instance variables to rep-
resent the distribution function and implement the required functions
P (i) (Eqn. (4.23)) and P, *(b) (Eqn. (4.24)) as methods of this class.

Exercise 4.7. Using a histogram specification for adjusting multiple
images (Sec. 4.6.4), one could either use one typical image as the
reference or compute an “average” reference histogram from a set
of images. Implement the second approach and discuss its possible
advantages (or disadvantages).

Exercise 4.8. Implement the modified gamma correction (see Eqn.
(4.34)) as an ImageJ plugin with variable values for v and a( using
a lookup table as shown in Prog. 4.4.

Exercise 4.9. Show that the modified gamma correction function
f%ao (a), with the parameters defined in Eqns. (4.34)—(4.35), is C1-
continuous (i.e., both the function itself and its first derivative are
continuous).

4.9 EXERCISES
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4 POINT OPERATIONS

Prog. 4.5

ImageJ-Plugin
(Linear_Blending). A back-
ground image is transparently
blended with a selected fore-
ground image. The plugin is
applied to the (currently ac-
tive) background image, and
the foreground image must
also be open when the plugin
is started. The background
image (bgIp), which is passed
to the plugin’s run() method,
is multiplied with « (line 22).
The foreground image (£gIP,
selected in part 2) is first du-
plicated (line 20) and then
multiplied with (1 —«) (line
21). Thus the original fore-
ground image is not modified.
The final result is obtained
by adding the two weighted
images (line 23). To select
the foreground image, a list
of currently open images and
image titles is obtained (lines
30-32). Then a dialog object
(of type GenericDialog) is cre-
ated and opened for specifying
the foreground image (£gIm)
and the a value (lines 36-46).
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public
static double alpha =
ImagePlus fglm;

import ij.ImagePlus;

import ij.gui.GenericDialog;

import ij.plugin.filter.PlugInFilter;
import ij.process.Blitter;

import ij.process.ImageProcessor;
import

imagingbook.lib.ij.IjUtils;

class Linear_Blending implements PlugInFilter {
0.5; //transparency of foreground image
/[ foreground image (to be selected)

public int setup(String arg, ImagePlus im) {

return DOES_8G;

}
public void run(ImageProcessor ipBG) { // ipBG = [gg
if (runDialog()) {
ImageProcessor ipFG = /I ipFG = Irq

fgIm.getProcessor () .convertToByte (false);
ipFG = ipFG.duplicate();
ipFG.multiply (1 - alpha); // Irg < Irg - (1 — )
ipBG.multiply(alpha) ; /l Igg < Ipg - @
ipBG.copyBits (ipFG,0,0,Blitter.ADD); // Igg ¢ lag+Ira

boolean runDialog() {

}

/I get list of open images and their titles:
ImagePlus[] openImages = IjUtils.getOpenImages (true);
String[] imageTitles = new String[openImages.length];
for (int i = 0; i < openImages.length; i++) {
imageTitles[i] = openImages[i].getShortTitle();
}
/I create the dialog and show:
GenericDialog gd =
new GenericDialog("Linear Blending");

gd.addChoice ("Foreground image:",

imageTitles, imageTitles[0]);
gd.addNumericField ("Alpha value [0..1]:", alpha, 2);
gd.showDialog() ;

if (gd.wasCanceled())
return false;

else {
fgIm = openImages [gd.getNextChoiceIndex ()];
alpha = gd.getNextNumber () ;

return true;

}




5

Filters

The essential property of point operations (discussed in the previous
chapter) is that each new pixel value only depends on the original
pixel at the same position. The capabilities of point operations are
limited, however. For example, they cannot accomplish the task of
sharpening or smoothing an image (Fig. 5.1). This is what filters
can do. They are similar to point operations in the sense that they
also produce a 1:1 mapping of the image coordinates, that is, the
geometry of the image does not change.

Fig. 5.1

No point operation can blur or
sharpen an image. This is an
example of what filters can do.
Like point operations, filters
do not modify the geometry of
an image.

5.1 What is a Filter?

The main difference between filters and point operations is that filters
generally use more than one pixel from the source image for comput-
ing each new pixel value. Let us first take a closer look at the task
of smoothing an image. Images look sharp primarily at places where
the local intensity rises or drops sharply (i.e., where the difference
between neighboring pixels is large). On the other hand, we perceive
an image as blurred or fuzzy where the local intensity function is
smooth.

A first idea for smoothing an image could thus be to simply re-
place every pixel by the average of its neighboring pixels. To deter-

mine the new pixel value in the smoothed image I’ (u, v), we use the 89
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5 FILTERS

Fig. 5.2

Principal filter operation. Each
new pixel value I’(u, v) is cal-
culated as a function of the

R

pixel values within a speci-
fied region of source pixels
in the original image I.

u,v

90

original pixel I(u,v) = p, at the same position plus its eight neigh-
boring pixels pq, po, ..., pg to compute the arithmetic mean of these
nine values,

Po +P1 + P2+ p3 + Py + ps + Pe + Pr + Pg

I/
(u,0) -

(5.1)

Expressed in relative image coordinates this is

I'(u,v) < 5[ I(u=1,v-1) + I(u,v—1) + I(u+1,0-1) +
I(u—1,v) + I(u,v)  + I(ut+1l,v) +
Iu—1,v4+1) + I(u,v+1) + I(u+1,v+1) ],

(5.2)

which we can write more compactly in the form

I'(u,v) « %_Z S w0+ ). (5.3)

This simple local averaging already exhibits all the important
elements of a typical filter. In particular, it is a so-called linear filter,
which is a very important class of filters. But how are filters defined in
general? First they differ from point operations mainly by using not
a single source pixel but a set of them for computing each resulting
pixel. The coordinates of the source pixels are fixed relative to the
current image position (u,v) and usually form a contiguous region,
as illustrated in Fig. 5.2.

i

R I’ (u,v)

u,v

The size of the filter region is an important parameter of the
filter because it specifies how many original pixels contribute to each
resulting pixel value and thus determines the spatial extent (support)
of the filter. For example, the smoothing filter in Eqn. (5.2) uses a
3 x 3 region of support that is centered at the current coordinate
(u,v). Similar filters with larger support, such as 5 x 5, 7 x 7, or even
21 x 21 pixels, would obviously have stronger smoothing effects.

The shape of the filter region is not necessarily quadratic or even
rectangular. In fact, a circular (disk-shaped) region would be pre-
ferred to obtain an isotropic blur effect (i.e., one that is the same in
all image directions). Another option is to assign different weights to
the pixels in the support region, such as to give stronger emphasis to
pixels that are closer to the center of the region. Furthermore, the
support region of a filter does not need to be contiguous and may



not even contain the original pixel itself (imagine a ring-shaped filter g o 1 NpAR FILTERS

region, for example). Theoretically the filter region could even be of
infinite size.

It is probably confusing to have so many options—a more sys-
tematic method is needed for specifying and applying filters in a
targeted manner. The traditional and proven classification into lin-
ear and nonlinear filters is based on the mathematical properties of
the filter function; that is, whether the result is computed from the
source pixels by a linear or a nonlinear expression. In the following,
we discuss both classes of filters and show several practical examples.

5.2 Linear Filters

Linear filters are denoted that way because they combine the pixel
values in the support region in a linear fashion, that is, as a weighted
summation. The local averaging process discussed in the beginning
(Eqn. (5.3)) is a special example, where all nine pixels in the 3 x
3 support region are added with identical weights (1/9). With the
same mechanism, a multitude of filters with different properties can
be defined by simply modifying the distribution of the individual
weights.

5.2.1 The Filter Kernel

For any linear filter, the size and shape of the support region, as well
as the individual pixel weights, are specified by the “filter kernel” or
“filter matrix” H(i,j). The size of the kernel H equals the size of
the filter region, and every element H (i, j) specifies the weight of the
corresponding pixel in the summation. For the 3 x 3 smoothing filter
in Eqn. (5.3), the filter kernel is

o 1 1/ HERE
H= |1 Yo Yg|l==-|111], (5.4)
Lo g 1o 111

because each of the nine pixels contributes one-ninth of its value to
the result.

In principle, the filter kernel H (i, j) is, just like the image itself, a
discrete, 2D, real-valued function, H: Z x Z — R. The filter has its
own coordinate system with the origin—often referred to as the “hot
spot”— mostly (but not necessarily) located at the center. Thus,
filter coordinates are generally positive and negative (Fig. 5.3). The
filter function is of infinite extent and considered zero outside the
region defined by the matrix H.

5.2.2 Applying the Filter

For a linear filter, the result is unambiguously and completely speci-
fied by the coefficients of the filter matrix. Applying the filter to an
image is a simple process that is illustrated in Fig. 5.4. The following
steps are performed at each image position (u,v):

91



5 FILTERS

Fig. 5.3

Filter matrix and its coor-
dinate system. i is the hor-
izontal (column) index, j
is the vertical (row) index.

Fig. 5.4

Linear filter operation. The
filter kernel H is placed with
its origin at position (u, v)
on the image I. Each filter
coefficient H(, j) is multi-
plied with the corresponding
image pixel I(u+1i,v+j),
the results are added, and
the final sum is inserted as
the new pixel value I’ (u, v).
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(0,0) = Hot Spot

- g

1. The filter kernel H is moved over the original image I such that
its origin H(0,0) coincides with the current image position (u, v).

2. All filter coefficients H (i, j) are multiplied with the corresponding
image element I(u+i,v+j), and the results are added up.

3. Finally, the resulting sum is stored at the current position in the
new image I'(u,v).

Described formally, the pixel values of the new image I'(u,v) are
computed by the operation

I'(uv) < > I(u+iv+j)- H(i,j),
(i,J)€ERy

(5.5)

where Ry denotes the set of coordinates covered by the filter H. For
a typical 3 x 3 filter with centered origin, this is

i=1 j=1
I(u,v) <> > Hu+iv+j) - H,j),
=—1

i=—1 j=—

(5.6)

for all image coordinates (u,v). Not quite for all coordinates, to
be exact. There is an obvious problem at the image borders where
the filter reaches outside the image and finds no corresponding pixel
values to use in computing a result. For the moment, we ignore this
border problem, but we will attend to it again in Sec. 5.5.2.



5.2.3 Implementing the Filter Operation

Now that we understand the principal operation of a filter (Fig. 5.4)
and know that the borders need special attention, we go ahead and
program a simple linear filter in ImageJ. But before we do this, we
may want to consider one more detail. In a point operation (e.g.,
in Progs. 4.1 and 4.2), each new pixel value depends only on the
corresponding pixel value in the original image, and it was thus no
problem simply to store the results back to the same image—the
computation is done “in place” without the need for any intermediate
storage. In-place computation is generally not possible for a filter
since any original pixel contributes to more than one resulting pixel
and thus may not be modified before all operations are complete.

We therefore require additional storage space for the resulting
image, which subsequently could be copied back to the source im-
age again (if desired). Thus the complete filter operation can be
implemented in two different ways (Fig. 5.5):

A. The result of the filter computation is initially stored in a new
image whose content is eventually copied back to the original
image.

B. The original image is first copied to an intermediate image that
serves as the source for the actual filter operation. The result
replaces the pixels in the original image.

The same amount of storage is required for both versions, and thus
none of them offers a particular advantage. In the following examples,
we generally use version B.

Original Original
image | image

-

Filter
@ Copy Filter

A 2
Inter- Inter-
mediate mediate
image image

(a) Version A (b) Version B

5.2.4 Filter Plugin Examples

The following examples demonstrate the implementation of two very
basic filters that are nevertheless often used in practice.

Simple 3 x 3 averaging filter (“box” filter)

Program 5.1 shows the ImageJ code for a simple 3 X 3 smoothing
filter based on local averaging (Eqn. (5.4)), which is often called a

5.2 LINEAR FILTERS

Fig. 5.5

Practical implementation of
in-place filter operations.
Version A: The result of the
filter operation is first stored
in an intermediate image and
subsequently copied back to
the original image (a).
Version B: The original image
is first copied to an interme-
diate image that serves as the
source for the filter operation.
The results are placed in the
original image (b).

93



5 FILTERS

Prog. 5.1

3 X 3 averaging “box” filter
(Filter_Box_3x3). First (in
line 10) a duplicate (copy) of
the original image (orig) is
created, which is used as the
source image in the subsequent
filter computation (line 18).
In line 23, the resulting value
is placed in the original image
(line 23). Notice that the bor-
der pixels remain unchanged
because they are not reached
by the iteration over (u, v).

94

1 import ij.ImagePlus;

2 import ij.plugin.filter.PluglnFilter;

3 import ij.process.ImageProcessor;

4

5 public class Filter_Box_3x3 implements PlugInFilter {
6 .

7 public void run(ImageProcessor ip) {

8 int M = ip.getWidth();

9 int N = ip.getHeight();

10 ImageProcessor copy = ip.duplicate();
11

12 for (int u = 1; u <= M - 2; u++) {

13 for (int v = 1; v <= N - 2; v++) {

14 //lcompute filter result for position (u, v):

15 int sum = 0;

16 for (int i = -1; i <= 1; i++) {
17 for (dint j = -1; j <= 1; j++) {
18 int p = copy.getPixel(u + i, v + j);
19 sum = sum + p;

20 }

21 }

22 int q = (int) (sum / 9.0);

23 ip.putPixel(u, v, q);

24 }

25 }

26 }

27 }

“box” filter because of its box-like shape. No explicit filter matrix
is required in this case, since all filter coefficients are identical (1/y).
Also, no clamping (see Sec. 4.1.2) of the results is needed because the
sum of the filter coefficients is 1 and thus no pixel values outside the
admissible range can be created.

Although this example implements an extremely simple filter, it
nevertheless demonstrates the general structure of a 2D filter pro-
gram. In particular, four nested loops are needed: two (outer) loops
for moving the filter over the image coordinates (u,v) and two (in-
ner) loops to iterate over the (4, j) coordinates within the rectangular
filter region. The required amount of computation thus depends not
only upon the size of the image but equally on the size of the filter.

Another 3 X 3 smoothing filter

Instead of the constant weights applied in the previous example, we
now use a real filter matrix with variable coefficients. For this pur-
pose, we apply a bell-shaped 3 x 3 filter function H (i, j), which puts
more emphasis on the center pixel than the surrounding pixels:

0.075 0.125 0.075
0.125 0.200 0.125
0.075 0.125 0.075

H= (5.7)

Notice that all coefficients in H are positive and sum to 1 (i.e., the
matrix is normalized) such that all results remain within the origi-



1 ...

2 public void run(ImageProcessor ip) {

3 int M = ip.getWidth();

4 int N = ip.getHeight();

5

6 //3x3 filter matrix:

7 double[l[] H = {

8 {0.075, 0.125, 0.075},

9 {0.125, 0.200, 0.125},

10 {0.075, 0.125, 0.075}};

11

12 ImageProcessor copy = ip.duplicate();
13

14 for (int u=1; u <=M - 2; u++) {

15 for (int v = 1; v <= N - 2; v++) {
16 /I compute filter result for position (u,v):

17 double sum = 0;

18 for (int i = -1; i <= 1; i++) {
19 for (int j = -1; j <= 1; j++) {
20 int p = copy.getPixel(u + i, v + j);
21 /I get the corresponding filter coefficient:
22 double ¢ = H[j + 1][1 + 1];
23 sum = sum + C * p;

24 }

25 }

26 int q = (int) Math.round(sum);

27 ip.putPixel(u, v, q);

28 }

29 }

30 7}

nal range of pixel values. Again no clamping is necessary and the
program structure in Prog. 5.2 is virtually identical to the previous
example. The filter matrix (filter) is represented by a 2D array!
of type double. Each pixel is multiplied by the corresponding coeffi-
cient of the filter matrix, the resulting sum being also of type double.
Accessing the filter coefficients, it must be considered that the coor-
dinate origin of the filter matrix is assumed to be at its center (i.e.,
at position (1,1)) in the case of a 3 x 3 matrix. This explains the
offset of 1 for the 7 and j coordinates (see Prog. 5.2, line 22).

5.2.5 Integer Coefficients

Instead of using floating-point coefficients (as in the previous ex-
amples), it is often simpler and usually more efficient to work with
integer coefficients in combination with some common scale factor s,
that is,

with H'(i,j) € Z and s € R. If all filter coeflicients are positive
(which is the case for any smoothing filter), then s is usually taken

! See the additional comments regarding 2D arrays in Java in Sec. F.2.4
in the Appendix.

5.2 LINEAR FILTERS

Prog. 5.2

3 X 3 smoothing filter
(Filter_Smooth_3x3). The filter
matrix is defined as a 2D array
of type double (line 7). The
coordinate origin of the filter
is assumed to be at the cen-
ter of the matrix (i.e., at the
array position [1, 1]), which is
accounted for by an offset of 1
for the i, j coordinates in line
22. The results are rounded
(line 26) and stored in the
original image (line 27).
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Fig. 5.6

Adobe Photoshop’s “Custom
Filter” implements linear fil-
ters up to a size of 5 x 5.
The filter’s coordinate ori-
gin (“hot spot”) is assumed to
be at the center (value set to
3 in this example), and empty
cells correspond to zero co-
efficients. In addition to the
(integer) coefficients, common
Scale and Offset values can
be specified (see Eqn. (5.11)).
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as the reciprocal of the sum of the coefficients,

1
i HGg)

to obtain a normalized filter matrix. In this case, the results are
bounded to the original range of pixel values. For example, the filter
matrix in Eqn. (5.7) could be defined equivalently as

s (5.9)

0.075 0.125 0.075 353
H={0.125 0.200 0.125 | = 75+ | 5 8 5 (5.10)
0.075 0.125 0.075 353

with the common scale factor s = % = 0.025. A similar scaling is

used for the filter operation in Prog. 5.3.

In Adobe Photoshop, linear filters can be specified with the “Cus-
tom Filter” tool (Fig. 5.6) using integer coefficients and a common
scale factor Scale (which corresponds to the reciprocal of s). In ad-
dition, a constant Offset value can be specified; for example, to shift
negative results (caused by negative coefficients) into the visible range
of values. In summary, the operation performed by the 5 x 5 Photo-
shop custom filter can be expressed as

1 Jj=2 =2
I'(u,v) + Offset + Soale Z Z I(u+i,v+7)- H(i,j). (5.11)

j=—2i=—2

Reset
Load...
Save..

,— ,— ’— ’— ’— IV Breview
Scale: 15 Offset: |0

0
BN
1
1
110N

=]

100%

5.2.6 Filters of Arbitrary Size

Small filters of size 3x 3 are frequently used in practice, but sometimes
much larger filters are required. Let us assume that the filter matrix
H is centered and has an odd number of (2K +1) columns and (2L+1)
rows, with K, L > 0. If the image is of size M x N, that is

I(u,v) with 0<u<M and 0<v <N, (5.12)

then the result of the filter can be calculated for all image coordinates
(u',v") with

K<u <(M-K-1) and L<J <(N-L-1), (5.13)

as illustrated in Fig. 5.7. Program 5.3 (which is adapted from Prog.
5.2) shows a 7 x 5 smoothing filter as an example for implementing



1 public void run(ImageProcessor ip) {

2 int M = ip.getWidth();

3 int N = ip.getHeight ();

4

5 // filter matrix H of size (2K + 1) x (2L + 1)

6 int[1[1 H = {

7 {0,0,1,1,1,0,03,

8 {0,1,1,1,1,1,03,

9 {1,1,1,1,1,1,1},

10 {0,1,1,1,1,1,0},

11 {0,0,1,1,1,0,0}};

12

13 double s = 1.0 / 23; // sum of filter coefficients is 23
14

15 /I H[L][K] is the center element of H:

16 int K = H[0].length / 2; /K=3

17 int L = H.length / 2; /L=2

18

19 ImageProcessor copy = ip.duplicate();

20

21 for (int u = K; u <=M - K - 1; u++) {
22 for (int v =L; v <=N-L - 1; v++) {
23 /I compuite filter result for position (u, v):

24 int sum = 0;

25 for (int i = -K; i <= K; i++) {
26 for (int j = -L; j <= L; j++) {
27 int p = copy.getPixel(u + i, v + j);
28 int ¢ = H[j + LI[i + K];

29 sum = sum + C * p;

30 }

31 }

32 int q = (int) Math.round(s * sum);
33 /I clamp result:

34 if (@ <0) q=0;

35 if (q > 255) q = 255;

36 ip.putPixel(u, v, q);

37 }

38 }

39}

linear filters of arbitrary size. This example uses integer-valued filter
coefficients (line 6) in combination with a common scale factor s, as
described already. As usual, the “hot spot” of the filter is assumed
to be at the matrix center, and the range of all iterations depends
on the dimensions of the filter matrix. In this case, clamping of the
results is included (in lines 34-35) as a preventive measure.

5.2.7 Types of Linear Filters

Since the effects of a linear filter are solely specified by the filter
matrix (which can take on arbitrary values), an infinite number of
different linear filters exists, at least in principle. So how can these
filters be used and which filters are suited for a given task? In the
following, we briefly discuss two broad classes of linear filters that are

5.2 LINEAR FILTERS

Prog. 5.3

Linear filter of arbitrary size
using integer coefficients
(Filter_Arbitrary). The fil-
ter matrix is an integer array
of size (2K +1) x (2L+1) with
the origin at the center ele-
ment. The summation variable
sum is also defined as an inte-
ger (int), which is scaled by a
constant factor s and rounded
in line 32. The border pixels
are not modified.
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Fig. 5.7

Border geometry. The filter
can be applied only at lo-
cations where the kernel H
of size (2K +1) x (2L +1)
is fully contained in the
image (inner rectangle).
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of key importance in practice: smoothing filters and difference filters
(Fig. 5.8).

Smoothing filters

Every filter we have discussed so far causes some kind of smoothing.
In fact, any linear filter with positive-only coefficients is a smoothing
filter in a sense, because such a filter computes merely a weighted
average of the image pixels within a certain image region.

Boz filter

This simplest of all smoothing filters, whose 3D shape resembles a
box (Fig. 5.8(a)), is a well-known friend already. Unfortunately, the
box filter is far from an optimal smoothing filter due to its wild behav-
ior in frequency space, which is caused by the sharp cutoff around
its sides. Described in frequency terms, smoothing corresponds to
low-pass filtering, that is, effectively attenuating all signal compo-
nents above a given cutoff frequency (see also Chs. 18-19). The box
filter, however, produces strong “ringing” in frequency space and is
therefore not considered a high-quality smoothing filter. It may also
appear rather ad hoc to assign the same weight to all image pixels in
the filter region. Instead, one would probably expect to have stronger
emphasis given to pixels near the center of the filter than to the more
distant ones. Furthermore, smoothing filters should possibly operate
“isotropically” (i.e., uniformly in each direction), which is certainly
not the case for the rectangular box filter.

Gaussian filter
The filter matrix (Fig. 5.8(b)) of this smoothing filter corresponds to
a 2D Gaussian function,

z24y?

HE (z,y) =e¢ 27 | (5.14)

where o denotes the width (standard deviation) of the bell-shaped
function and r is the distance (radius) from the center. The pixel at
the center receives the maximum weight (1.0, which is scaled to the
integer value 9 in the matrix shown in Fig. 5.8(b)), and the remain-
ing coefficients drop off smoothly with increasing distance from the
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center. The Gaussian filter is isotropic if the discrete filter matrix
is large enough for a sufficient approximation (at least 5 x 5). As
a low-pass filter, the Gaussian is “well-behaved” in frequency space
and thus clearly superior to the box filter. The 2D Gaussian filter
is separable into a pair of 1D filters (see Sec. 5.3.3), which facilitates
its efficient implementation.?

Difference filters

If some of the filter coefficients are negative, the filter calculation can
be interpreted as the difference of two sums: the weighted sum of all
pixels with associated positive coefficients minus the weighted sum
of pixels with negative coefficients in the filter region R, that is,

I'(u,0) = I(uti,v+5) - [H(i, 5)| = > I(uti,v+5) - |H(, 5)|,
(i.)eR (i-)€R™ (5.15)

where R}; and R denote the partitions of the filter with positive
coefficients H (i,j) > 0 and negative coefficients H (i, j) < 0, respec-
tively. For example, the 5x5 Laplace filter in Fig. 5.8(c) computes the
difference between the center pixel (with weight 16) and the weighted
sum of 12 surrounding pixels (with weights —1 or —2). The remain-
ing 12 pixels have associated zero coefficients and are thus ignored in
the computation.

While local intensity variations are smoothed by averaging, we can
expect the exact contrary to happen when differences are taken: local
intensity changes are enhanced. Important applications of difference
filters thus include edge detection (Sec. 6.2) and image sharpening
(Sec. 6.6).

5.3 Formal Properties of Linear Filters

In the previous sections, we have approached the concept of filters
in a rather casual manner to quickly get a grasp of how filters are
defined and used. While such a level of treatment may be sufficient
for most practical purposes, the power of linear filters may not really

2 See also Sec. E in the Appendix.

5.3 FORMAL PROPERTIES
OF LINEAR FILTERS

Fig. 5.8

Typical examples of linear fil-
ters, illustrated as 3D plots
(top), profiles (center), and
approximations by discrete
filter matrices (bottom). The
“box” filter (a) and the Gauss
filter (b) are both smoothing
filters with all-positive coef-
ficients. The “Laplacian” or
“Mexican hat” filter (c¢) is a
difference filter. It computes
the weighted difference be-
tween the center pixel and the
surrounding pixels and thus
reacts most strongly to local
intensity peaks.
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seen so far.

The real importance of linear filters (and perhaps their formal
elegance) only becomes visible when taking a closer look at some of
the underlying theoretical details. At this point, it may be surprising
to the experienced reader that we have not mentioned the term “con-
volution” in this context yet. We make up for this in the remaining
parts of this section.

5.3.1 Linear Convolution

The operation associated with a linear filter, as described in the pre-
vious section, is not an invention of digital image processing but has
been known in mathematics for a long time. It is called linear con-
volution® and in general combines two functions of the same dimen-
sionality, either continuous or discrete. For discrete, 2D functions
and H, the convolution operation is defined as

Iuv)= > > I(u—iv—j)- H(i,j), (5.16)

i=—00 j=—00

or, expressed with the designated convolution operator (%) in the
form

I'=1IxH. (5.17)

This almost looks the same as Eqn. (5.5), with two differences: the
range of the variables 4, j in the summation and the negative signs in
the coordinates of I(u — i,v — j). The first point is easy to explain:
because the coefficients outside the filter matrix H (i, j), also referred
to as a filter kernel, are assumed to be zero, the positions outside the
matrix are irrelevant in the summation. To resolve the coordinate
issue, we modify Eqn. (5.16) by replacing the summation variables
1,5 to

I'(u,0) =Y I(u—i,v—j)- H(i,j) (5.18)
(4,5)€ERy
=" I(uti,v+j) - H(—i,—j) (5.19)
(4,5)ERy
=Y I(uti,vtj)- H*(i,5). (5.20)
(4,5)ERy

The result is identical to the linear filter in Eqn. (5.5), with the
H*(i,j) = H(—i,—j) being the horizontally and vertically reflected
(i.e., rotated by 180°) kernel H. To be precise, the operation in
Eqn. (5.5) actually defines the linear correlation, which is merely a
convolution with a reflected filter matrix.*

3 0ddly enough the simple concept of convolution is often (though un-
justly) feared as an intractable mystery.

4 Of course this is the same in the 1D case. Linear correlation is typically
used for comparing images or subpatterns (see Sec. 23.1 for details).
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% Fig. 5.9

Convolution as a “black box”
operation. The original im-
age I is subjected to a linear
convolution (*) with the convo-
lution kernel H, producing the
output image I”.

Thus the mathematical concept underlying all linear filters is the
convolution operation (x) and its results are completely and suffi-
ciently specified by the convolution matrix (or kernel) H. To illus-
trate this relationship, the convolution is often pictured as a “black
box” operation, as shown in Fig. 5.9.

5.3.2 Formal Properties of Linear Convolution

The importance of linear convolution is based on its simple math-
ematical properties as well as its multitude of manifestations and
applications. Linear convolution is a suitable model for many types
of natural phenomena, including mechanical, acoustic, and optical
systems. In particular (as shown in Ch. 18), there are strong formal
links to the Fourier representation of signals in the frequency domain
that are extremely valuable for understanding complex phenomena,
such as sampling and aliasing. In the following, however, we first look
at some important properties of linear convolution in the accustomed
“signal” or image space.

Commutativity

Linear convolution is commutative; that is, for any image I and filter
kernel H,

I«H=H=xI. (5.21)

Thus the result is the same if the image and filter kernel are inter-
changed, and it makes no difference if we convolve the image I with
the kernel H or the other way around. The two functions I and H
are interchangeable and may assume either role.

Linearity

Linear filters are so called because of the linearity properties of the
convolution operation, which manifests itself in various aspects. For
example, if an image is multiplied by a scalar constant s € R, then
the result of the convolution multiplies by the same factor, that is,

(s-I)xH = Ix(s-H) = s-(IxH). (5.22)

Similarly, if we add two images I, I, pixel by pixel and convolve the

resulting image with some kernel H, the same outcome is obtained 101
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by convolving each image individually and adding the two results
afterward, that is,

(I, + L)« H = (I, * H) + (I, « H). (5.23)

It may be surprising, however, that simply adding a constant (scalar)
value b to the image does not add to the convolved result by the same
amount,

b+I)xH # b+ (IxH), (5.24)

and is thus not part of the linearity property. While linearity is
an important theoretical property, one should note that in practice
“linear” filters are often only partially linear because of rounding
errors or a limited range of output values.

Associativity

Linear convolution is associative, meaning that the order of successive
filter operations is irrelevant, that is,

(I« Hy)x Hy=1x(H,* H,). (5.25)
Thus multiple successive filters can be applied in any order, and
multiple filters can be arbitrarily combined into new filters.
5.3.3 Separability of Linear Filters

A direct consequence of associativity is the separability of linear fil-
ters. If a convolution kernel H can be expressed as the convolution
of multiple kernels H; in the form

H=Hy+«Hy*...xH,, (5.26)

then (as a consequence of Eqn. (5.25)) the filter operation I «+ H may
be performed as a sequence of convolutions with the constituting
kernels H;,

I«H=1x(H *Hyx*...xH,)

=(...((IxH)xHy)*...x Hp). (5.27)

Depending upon the type of decomposition, this may result in signif-
icant computational savings.
x/y separability

The possibility of separating a 2D kernel H into a pair of 1D ker-
nels h,, h, is of particular relevance and is used in many practical
applications. Let us assume, as a simple example, that the filter is
composed of the 1D kernels h, and h,, with

hy=[11111] and h,=|1], (5.28)

respectively. If these filters are applied sequentially to the image I,
I'= (I xhy)*hy, (5.29)



then (according to Eqn. (5.27)) this is equivalent to applying the g 3 ForMAL PROPERTIES
composite filter OF LINEAR FILTERS

11111
H=hyxh,=|11111]. (5.30)
11111

Thus the 2D 5 x 3 “box” filter H can be constructed from two 1D
filters of lengths 5 and 3, respectively (which is obviously true for
box filters of any size). But what is the advantage of this? In the
aforementioned case, the required amount of processing is 5 -3 =
15 steps per image pixel for the 2D filter H as compared with 5 +
3 = 8 steps for the two separate 1D filters, a reduction of almost
50%. 1In general, the number of operations for a 2D filter grows
quadratically with the filter size (side length) but only linearly if the
filter is x/y-separable. Clearly, separability is an eminent bonus for
the implementation of large linear filters (see also Sec. 5.5.1).

Separable Gaussian filters

In general, a 2D filter is x/y-separable if (as in the earlier example)
the filter function H(i,j) can be expressed as the outer product (®)
of two 1D functions,

because in this case the resulting function also corresponds to the
convolution product H = H, x H,. A prominent example is the
widely employed 2D Gaussian function G, (z,y) (Eqn. (5.14)), which
can be expressed as the product

G, (z,y) = e 5* (5.32)
— oxp(— %) - exp(— i) = 6, (2) - g, (y).  (5.33)

Thus a 2D Gaussian filter HS can be implemented by a pair of 1D
Gaussian filters h,ﬁa and hgo as

I« HS = I*hﬁa *hia. (5.34)

The ordering of the two 1D filters is not relevant in this case. With
different o-values along the x and y axes, elliptical 2D Gaussians can
be realized as separable filters in the same fashion.

The Gaussian function decays relatively slowly with increasing
distance from the center. To avoid visible truncation errors, discrete
approximations of the Gaussian should have a sufficiently large extent
of about £2.5 0 to £3.5 0 samples. For example, a discrete 2D Gaus-
sian with “radius” ¢ = 10 requires a minimum filter size of 51 x 51
pixels, in which case the x/y-separable version can be expected to
run about 50 times faster than the full 2D filter. The Java method
makeGaussKernelld () in Prog. 5.4 shows how to dynamically create
a 1D Gaussian filter kernel with an extent of £3 0 (i.e., a vector of
odd length 60 4+ 1). As an example, this method is used for imple-
menting “unsharp masking” filters where relatively large Gaussian

kernels may be required (see Prog. 6.1 in Sec. 6.6.2). 103
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Prog. 5.4

Dynamic creation of 1D
Gaussian filter kernels. For

a given o, the Java method
makeGaussKernelld() returns a
discrete 1D Gaussian filter ker-
nel (float array) large enough
to avoid truncation effects.

Fig. 5.10
Discrete 2D ¢mpulse or
Dirac function §(u, v).
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1 float[] makeGaussKernelld(double sigma) {

2 /I create the 1D kernel h:

3 int center = (int) (3.0 * sigma);

4 float[] h = new float[2 * center + 1]; // odd size
5 /[ fill the 1D kernel h:

6 double sigma2 = sigma * sigma; Il o?

7 for (int i = 0; i < h.length; i++) {

8 double r = center - 1i;

9 h[i] = (float) Math.exp(-0.5 * (r * r) / sigma2);
10 }

11 return h;

12}

5.3.4 Impulse Response of a Filter

Linear convolution is a binary operation involving two functions as
its operands; it also has a “neutral element”, which of course is a
function, too. The impulse or Dirac function §() is neutral under
convolution, that is,

Ixd=1. (5.35)

In the 2D, discrete case, the impulse function is defined as

1 foru=v=0,

0 otherwise. (5.36)

d(u,v) = {
Interpreted as an image, this function is merely a single bright pixel
(with value 1) at the coordinate origin contained in a dark (zero
value) plane of infinite extent (Fig. 5.10).

When the Dirac function is used as the filter kernel in a linear
convolution as in Eqn. (5.35), the result is identical to the original
image (Fig. 5.11). The reverse situation is more interesting, however,
where some filter H is applied to the impulse § as the input function.
What happens? Since convolution is commutative (Eqn. (5.21)) it is
evident that

Hxé=0«H=H (5.37)

and thus the result of this filter operation is identical to the filter
H itself (Fig. 5.12)! While sending an impulse into a linear filter to
obtain its filter function may seem paradoxical at first, it makes sense
if the properties (coefficients) of the filter H are unknown. Assuming
that the filter is actually linear, complete information about this
filter is obtained by injecting only a single impulse and measuring the
result, which is called the “impulse response” of the filter. Among
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other applications, this technique is used for measuring the behavior
of optical systems (e.g., lenses), where a point light source serves as
the impulse and the result—a distribution of light energy—is called
the “point spread function” (PSF) of the system.

5.4 Nonlinear Filters
5.4.1 Minimum and Maximum Filters

Like all other filters, nonlinear filters calculate the result at a given
image position (u,v) from the pixels inside the moving region R, ,
of the original image. The filters are called “nonlinear” because the
source pixel values are combined by some nonlinear function. The

simplest of all nonlinear filters are the minimum and mazimum filters,
defined as

I'(u,v) = min {I(u+i,v+3)}, (5.38)
(i.j)eR

I'(u,v) = max {I(u+i,v+7)}, (5.39)
(i.j)eR

5.4 NONLINEAR FILTERS

Fig. 5.11

Convolving the image I with
the impulse 6 returns the origi-
nal (unmodified) image.

Fig. 5.12

The linear filter H with the

impulse § as the input yields
the filter kernel H as the re-
sult.

Fig. 5.13

Any image structure is blurred
by a linear smoothing fil-

ter. Important image struc-
tures such as step edges (top)
or thin lines (bottom) are
widened, and local contrast

is reduced.
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Fig. 5.14

3 x 3 linear box filter ap-
plied to a grayscale image
corrupted with salt-and-pepper
noise. Original (a), filtered
image (b), enlarged details
(c,d). Note that the indi-
vidual noise pixels are only
flattened but not removed.

Fig. 5.15

Effects of a 1D minimum fil-
ter on different local signal
structures. Original signal
(top) and result after filtering
(bottom), where the colored
bars indicate the extent of the
filter. The step edge (a) and
the linear ramp (c) are shifted
to the right by half the filter
width, and the narrow pulse
(b) is completely removed.
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Original Box filter

<«—— Width of filter

[
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[
> T

(a) (b) (c)

where R denotes the filter region (set of filter coordinates, usually a
square of size 3 x 3 pixels). Figure 5.15 illustrates the effects of a 1D
minimum filter on various local signal structures.

Figure 5.16 shows the results of applying 3 x 3 pixel minimum
and maximum filters to a grayscale image corrupted with “salt-and-
pepper” noise (i.e., randomly placed white and black dots), respec-
tively. Obviously the minimum filter removes the white (salt) dots,
because any single white pixel within the 3 x 3 filter region is replaced



Minimum filter Maximum filter

(c) (d)

by one of its surrounding pixels with a smaller value. Notice, how-
ever, that the minimum filter at the same time widens all the dark
structures in the image.

The reverse effects can be expected from the mazimum filter. Any
single bright pixel is a local maximum as soon as it is contained in the
filter region R. White dots (and all other bright image structures) are
thus widened to the size of the filter, while now the dark (“pepper”)
dots disappear.?

5.4.2 Median Filter

It is impossible of course to design a filter that removes any noise
but keeps all the important image structures intact, because no filter
can discriminate which image content is important to the viewer and
which is not. The popular median filter is at least a good step in this
direction.

® The image shown in Figs. 5.14 and 5.16, called “Lena” (or “Lenna”), is
one of the most popular test images in digital image processing ever and
thus of historic interest. The picture of the Swedish “playmate” Lena
Sjooblom (Soderberg?), published in Playboy in 1972, was included in
a collection of test images at the University of Southern California and
was subsequently used by researches throughout the world (presumably
without knowledge of its delicate origin) [115].

5.4 NONLINEAR FILTERS

Fig. 5.16

Minimum and maximum fil-
ters applied to a grayscale
image corrupted with “salt-
and-pepper” noise (see original
in Fig. 5.14(a)). The 3 x 3
minimum filter eliminates the
bright dots and widens all dark
image structures (a,c). The
mazimum filter shows the ex-
act opposite effects (b,d).
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Fig. 5.17

Calculation of the median.
The nine pixel values col-
lected from the 3 X 3 im-

age region are arranged as a

vector that is subsequently
sorted (A). The center value
of A is taken as the median.

108

The median filter replaces every image pixel by the median of the
pixels in the current filter region R, that is,

I'(u,v) = median{I(u +i,v + j)}.

nediag (5.40)

The median of a set of 2n+1 values A = {ay, ..., as, } can be defined
as the center value a,, after arranging (sorting) A to an ordered
sequence, that is,

(5.41)

"aa’2n> = Qp,

n values

medlan(ao, ApyeeeyQp1, 0y, an-‘rh .

n values

where a; < a;,,. Figure 5.17 demonstrates the calculation of the
median filter of size 3 x 3 (i.e., n =4).

I A
13] 10 a,
712 7] 0]
1[0]0 2] 1]
518 1 2|a,_1
%F Sort 4> a, =
10| 15|an median(A)
19 17
15 18]
i 2‘1211,

Equation (5.41) defines the median of an odd-sized set of values,
and if the side length of the rectangular filters is odd (which is usually
the case), then the number of elements in the filter region is odd as
well. In this case, the median filter does not create any new pixel
values that did not exist in the original image. If, however, the
number of elements is even, then the median of the sorted sequence

A = (ag,...,09,_1) is defined as the arithmetic mean of the two
adjacent center values a,,_; and a,,,
. ap—1 + ap,
median (ag, ..., @, 1,0y, ...,y 1) = — 5 (5.42)
n values n values
a;<a a;>a

1 =%n 1= %n

By averaging a,_; and a,,, new pixel values are generally introduced
by the median filter if the region is of even size.

Figure 5.18 compares the results of median filtering with a linear-
smoothing filter. Finally, Fig. 5.19 illustrates the effects of a 3 x 3
pixel median filter on selected 2D image structures. In particular,
very small structures (smaller than half the filter size) are eliminated,
but all other structures remain largely unchanged. A sample Java
implementation of the median filter of arbitrary size is shown in Prog.
5.5. The constant K specifies the side length of the filter region R of
size (2r + 1) x (2r + 1). The number of elements in R (equal to the

length of the vector A) is
(2r +1)2 =4(r® +7) + 1, (5.43)

and thus the index of the middle vector element is n = 2(r? + r).
Setting r = 1 gives a 3 X 3 median filter (n =4), r =2 givesa 5 x 5
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(c) (d)

(a) (b)

(c) (d)

filter (n = 12), etc. The structure of this plugin is similar to the
arbitrary size linear filter in Prog. 5.3.

5.4.3 Weighted Median Filter

The median is a rank order statistic, and in a sense the “majority” of
the pixel values involved determine the result. A single exceptionally
high or low value (an “outlier”) cannot influence the result much but
only shift the result up or down to the next value. Thus the median
(in contrast to the linear average) is considered a “robust” measure.
In an ordinary median filter, each pixel in the filter region has the
same influence, regardless of its distance from the center.

5.4 NONLINEAR FILTERS

Fig. 5.18

Linear smoothing filter vs.
median filter applied to a
grayscale image corrupted
with salt-and-pepper noise (see
original in Fig. 5.14(a)). The
3 x 3 linear box filter (a,c)
reduces the bright and dark
peaks to some extent but is
unable to remove them com-
pletely. In addition, the entire
image is blurred. The median
filter (b, d) effectively elimi-
nates the noise dots and also
keeps the remaining structures
largely intact. However, it also
creates small spots of flat in-
tensity that noticeably affect
the sharpness.

Fig. 5.19

Effects of a 3 X 3 pixel median
filter on different 2D image
structures. Isolated dots are
eliminated (a), as are thin lines
(b). The step edge remains
unchanged (c), while a corner
is rounded off (d).
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Prog. 5.5
Median filter of arbitrary size
(Plugin Filter_Median). An
array A of type int is defined
(line 16) to hold the region’s
pixel values for each filter po-
sition (u,v). This array is
sorted by using the Java utility
method Arrays.sort() in line
32. The center element of the
sorted vector (A[n]) is taken as
the median value and stored in
the original image (line 33).
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1 import ij.ImagePlus;

2 import ij.plugin.filter.PluglnFilter;

3 import ij.process.ImageProcessor;

4 import java.util.Arrays;

5

6 public class Filter_Median implements PlugInFilter {
7

8 final int r = 4; // specifies the size of the filter

9

10  public void run(ImageProcessor ip) {

11 int M = ip.getWidth();

12 int N = ip.getHeight();

13 ImageProcessor copy = ip.duplicate();

14

15 /I vector to hold pixels from (2r+1)x(2r+1) neighborhood:
16 int[] A = new int[(2 * v + 1) * (2 *x r + 1)];
17

18 // index of center vector element n = 2(r? 4 7):

19 intn=2%* (r*xr +r);

20

21 for (int u =r; u <=M -1 - 2; u++) {

22 for (int v=r; v<=N-1-2; vit+) {

23 /I fill the pixel vector A for filter position (u,v):

24 int k = 0;

25 for (int i = -r; i <= r; i++) {

26 for (int j = -r; j <= r; j++) {

27 A[k] = copy.getPixel(u + i, v + j);
28 k++;

29 }

30 }

31 /I sort vector A and take the center element A[n]:
32 Arrays.sort(A);

33 ip.putPixel(u, v, A[nl);

34 }

35 }

36}

37 }

The weighted median filter assigns individual weights to the posi-
tions in the filter region, which can be interpreted as the “number of
votes” for the corresponding pixel values. Similar to the coefficient
matrix H of a linear filter, the distribution of weights is specified by
a weight matriz W, with W (i, j) € N. To compute the result of the
modified filter, each pixel value I(u + i,v + j) involved is inserted
W (i,7) times into the extended pixel vector

of length (5.44)

A=(ag,...,ar_1)

L= W(,j).

(i,J)ER

This vector is again sorted, and the resulting center value is taken as
the median, as in the standard median filter. Figure 5.21 illustrates
the computation of the weighted median filter using the 3 x 3 weight
matrix



Median Filter

Weighted Median Filter

121
W=1232], (5.45)
121
which requires an extended pixel vector of length L = 15, equal

to the sum of the weights in W. If properly used, the weighted
median filter yields effective noise removal with good preservation of
structural details (see Fig. 5.20 for an example).

Of course this method may also be used to implement ordinary
median filters of nonrectangular shape; for example, a cross-shaped
median filter can be defined with the weight matrix

010
111
010

Wt = (5.46)

Not every arrangement of weights is useful, however. In particular, if
the weight assigned to the center pixel is greater than the sum of all
other weights, then that pixel would always have the “majority vote”
and dictate the resulting value, thus inhibiting any filter effect.

5.4.4 Other Nonlinear Filters

Median and weighted median filters are two examples of nonlinear
filters that are easy to describe and frequently used. Since “nonlin-

5.4 NONLINEAR FILTERS

Fig. 5.20

Ordinary vs. weighted median
filter. Compared to the ordi-
nary median filter (a,c), the
weighted median (b, d) shows
superior preservation of struc-
tural details. Both filters are of
size 3 X 3; the weight matrix
in Eqn. (5.45) was used for the
weighted median filter.
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Fig. 5.21

Weighted median example.
Each pixel value is inserted
into the extended pixel vec-
tor multiple times, as spec-
ified by the weight matrix
W. For example, the value

0 from the center pixel is
inserted three times (since

W (0,0) = 3) and the pixel
value 7 twice. The pixel vector
is sorted and the center value
(2) is taken as the median.
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ear” refers to anything that is not linear, there are a multitude of
filters that fall into this category, including the morphological filters
for binary and grayscale images, which are discussed in Ch. 9. Other
types of nonlinear filters, such as the corner detector described in
Ch. 7, are often described algorithmically and thus defy a simple,
compact description.

In contrast to the linear case, there is usually no “strong theory”
for nonlinear filters that could, for example, describe the relationship
between the sum of two images and the results of a median filter,
as does Eqn. (5.23) for linear convolution. Similarly, not much (if
anything) can be stated in general about the effects of nonlinear
filters in frequency space.

5.5 Implementing Filters

5.5.1 Efficiency of Filter Programs

Computing the results of filters is computationally expensive in most
cases, especially with large images, large filter kernels, or both. Given
an image of size M x N and a filter kernel of size (2K +1) x (2L+1),
a direct implementation requires

2K-2L-M-N =4AKLMN (5.47)

operations, namely multiplications and additions (in the case of a
linear filter). Thus if both the image and the filter are simply assumed
to be of size N x N, the time complexity of direct filtering is O(N?).
As described in Sec. 5.3.3, substantial savings are possible when large,
2D filters can be decomposed (separated) into smaller, possibly 1D
filters.

The programming examples in this chapter are deliberately de-
signed to be simple and easy to understand, and none of the solutions
shown is particularly efficient. Possibilities for tuning and code opti-
mization exist in many places. It is particularly important to move
all unnecessary instructions out of inner loops if possible because



these are executed most often. This applies especially to “expensive”
instructions, such as method invocations, which may be relatively
time-consuming.

In the examples, we have intentionally used the ImageJ standard
methods getPixel() for reading and putPixel() for writing image
pixels, which is the simplest and safest approach to accessing image
data but also the slowest, of course. Substantial speed can be gained
by using the quicker read and write methods get () and set () defined
for class ImageProcessor and its subclasses. Note, however, that
these methods do not check if the passed image coordinates are valid.
Maximum performance can be obtained by accessing the pixel arrays
directly.

5.5.2 Handling Image Borders

As mentioned briefly in Sec. 5.2.2, the image borders require special
attention in most filter implementations. We have argued that the-
oretically no filter results can be computed at positions where the
filter matrix is not fully contained in the image array. Thus any filter
operation would reduce the size of the resulting image, which is not
acceptable in most applications. While no formally correct remedy
exists, there are several more or less practical methods for handling
the remaining border regions:

Method 1: Set the unprocessed pixels at the borders to some con-
stant value (e.g., “black”). This is certainly the simplest method,
but not acceptable in many situations because the image size is
incrementally reduced by every filter operation.

Method 2: Set the unprocessed pixels to the original (unfiltered)
image values. Usually the results are unacceptable, too, due to
the noticeable difference between filtered and unprocessed image
parts.

Method 3: Expand the image by “padding” additional pixels
around it and apply the filter to the border regions as well. Fig.
5.22 shows different options for padding images.

A. The pixels outside the image have a constant value (e.g.,
“black” or“gray”, see Fig. 5.22(a)). This may produce strong
artifacts at the image borders, particularly when large filters
are used.

B. The border pizels extend beyond the image boundaries (Fig.
5.22(b)). Only minor artifacts can be expected at the bor-
ders. The method is also simple to compute and is thus often
considered the method of choice.

C. The image is mirrored at each of its four boundaries (Fig.
5.22(c)). The results will be similar to those of the previous
method unless very large filters are used.

D. The image repeats periodically in the horizontal and vertical
directions (Fig. 5.22(d)). This may seem strange at first, and
the results are generally not satisfactory. However, in discrete
spectral analysis, the image is implicitly treated as a periodic
function, too (see Ch. 18). Thus, if the image is filtered in
the frequency domain, the results will be equal to filtering in
the space domain under this repetitive model.

5.5 IMPLEMENTING

FILTERS
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Fig. 5.22
Methods for padding the im-
age to facilitate filtering along
the borders. The assump-
tion is that the (nonexist-
ing) pixels outside the orig-
inal image are either set to
some constant value (a), take
on the value of the closest
border pixel (b), are mir-
rored at the image bound-
aries (c), or repeat periodically
along the coordinate axes (d).
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None of these methods is perfect and, as usual, the right choice de-
pends upon the type of image and the filter applied. Notice also that
the special treatment of the image borders may sometimes require
more programming effort (and computing time) than the processing
of the interior image.

5.5.3 Debugging Filter Programs

Experience shows that programming errors can hardly ever be avoided,
even by experienced practitioners. Unless errors occur during execu-
tion (usually caused by trying to access nonexistent array elements),
filter programs always “do something” to the image that may be sim-
ilar but not identical to the expected result. To assure that the code
operates correctly, it is not advisable to start with full, large images
but first to experiment with small test cases for which the outcome
can easily be predicted. Particularly when implementing linear fil-
ters, a first “litmus test” should always be to inspect the impulse
response of the filter (as described in Sec. 5.3.4) before processing
any real images.



5.6 Filter Operations in ImagedJ 5.6 FILTER OPERATIONS

IN IMAGEJ
ImagelJ offers a collection of readily available filter operations, many

of them contributed by other authors using different styles of imple-
mentation. Most of the available operations can also be invoked via
ImagelJ’s Process menu.

5.6.1 Linear Filters

Filters based on linear convolution are implemented by the Im-
ageJ plugin class ij.plugin.filter.Convolver, which offers useful
“public” methods in addition to the standard run() method. Usage
of this class is illustrated by the following example that convolves an
8-bit grayscale image with the filter kernel from Eqn. (5.7):

0.075 0.125 0.075
H = 0.125 0.200 0.125
0.075 0.125 0.075

In the following run () method, we first define the filter matrix H as a
1D float array (notice the syntax for the float constants “0.075£”,
etc.) and then create a new instance (cv) of class Convolver in line 8:

import ij.plugin.filter.Convolver;

public void run(ImageProcessor I) {
float[] H = { // coefficient array H is one-dimensional!
0.075f, 0.125f, 0.075f,
0.125f, 0.200f, 0.125f,
0.075f, 0.125f, 0.075f };
Convolver cv = new Convolver();
cv.setNormalize (true); // turn on filter normalization
cv.convolve(I, H, 3, 3); // apply the filter Hto I
}

The invocation of the method convolve () applies the filter H to the
image I. It requires two additional arguments for the dimensions of
the filter matrix since H is passed as a 1D array. The image I is
destructively modified by the convolve operation.

In this case, one could have also used the nonnormalized, integer-
valued filter matrix given in Eqn. (5.10) because convolve () normal-
izes the given filter automatically (after cv.setNormalize(true)).

5.6.2 Gaussian Filters

The ImageJ class ij.plugin.filter.GaussianBlur implements a
simple Gaussian blur filter with arbitrary radius (o). The filter uses
separable 1D Gaussians as described in Sec. 5.3.3. Here is an example
showing its application with ¢ = 2.5:

import ij.plugin.filter.GaussianBlur;

public void run(ImageProcessor I) {
GaussianBlur gb = new GaussianBlur();
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double sigmaX = 2.5;

double sigmaY = sigmaX;

double accuracy = 0.01;

gb.blurGaussian(I, sigmaX, sigmaY, accuracy);

}

The accuracy value specifies the size of the discrete filter kernel.
Higher accuracy reduces truncation errors but requires larger kernels
and more processing time.

An alternative implementation of separable Gaussian filters can
be found in Prog. 6.1 (see p. 145), which uses the method make-
GaussKernel1d() defined in Prog. 5.4 (page 104) for dynamically
calculating the required 1D filter kernels.

5.6.3 Nonlinear Filters

A small set of nonlinear filters is implemented in the ImageJ class
ij.plugin.filter.RankFilters, including the minimum, maxi-
mum, and standard median filters. The filter region is (approxi-
mately) circular with variable radius. Here is an example that applies
three different filters with the same radius in sequence:

import ij.plugin.filter.RankFilters;

public void run(ImageProcessor I) {
RankFilters rf = new RankFilters();
double radius = 3.5;
rf.rank(I, radius, RankFilters.MIN); // minimum filter
rf.rank (I, radius, RankFilters.MAX); // maximum filter
rf.rank(I, radius, RankFilters.MEDIAN); // median filter

5.7 Exercises

Exercise 5.1. Explain why the “custom filter” in Adobe Photoshop
(Fig. 5.6) is not strictly a linear filter.

Exercise 5.2. Determine the possible maximum and minimum re-
sults (pixel values) for the following linear filter, when applied to an
8-bit grayscale image (with pixel values in the range [0, 255]):

-1-2 0
H=|-2 0 2
0 2 1

Assume that no clamping of the results occurs.

Exercise 5.3. Modify the ImageJ plugin shown in Prog. 5.3 such
that the image borders are processed as well. Use one of the methods
for extending the image outside its boundaries as described in Sec.
5.5.2.

Exercise 5.4. Show that a standard box filter is not isotropic (i.e.,
does not smooth the image identically in all directions).



Exercise 5.5. Explain why the clamping of results to a limited range 5 7 Exgrcises

of pixel values may violate the linearity property (Sec. 5.3.2) of linear
filters.

Exercise 5.6. Verify the properties of the impulse function with re-
spect to linear filters (see Eqn. (5.37)). Create a black image with
a white pixel at its center and use this image as the 2D impulse.
See if linear filters really deliver the filter matrix H as their impulse
response.

Exercise 5.7. Describe the effects of the linear filters with the fol-
lowing kernels:

000 000 L Joo1
Hy=|001|,  Hy=|020f, Hy=5|010
000 000 100

Exercise 5.8. Design a linear filter (kernel) that creates a horizontal
blur over a length of 7 pixels, thus simulating the effect of camera
movement during exposure.

Exercise 5.9. Compare the number of processing steps required for
non-separable linear filters and = /y-separable filters sized 5 x 5, 11 x
11, 25 x 25, and 51 x 51 pixels. Compute the speed gain resulting
from separability in each case.

Exercise 5.10. Program your own ImageJ plugin that implements a
Gaussian smoothing filter with variable filter width (radius o). The
plugin should dynamically create the required filter kernels with a
size of at least 5o in both directions. Make use of the fact that the
Gaussian function is z/y-separable (see Sec. 5.3.3).

Exercise 5.11. The Laplacian of Gaussian (LoG) filter (see Fig. 5.8)
is based on the sum of the second derivatives of the 2D Gaussian. It
is defined as

2 2
x2+y2*2o02) e—” +y

Lo(w,y) = ( . o (5.48)

o
Implement the LoG filter as an ImageJ plugin of variable width (o),
analogous to Exercise 5.10. Find out if the LoG function is x/y-
separable.

Exercise 5.12. Implement a circular (i.e., disk-shaped) median filter
for grayscale images. Make the filter’s radius r adjustable in the range
from 1 to 10 pixels (e.g., using ImageJ’s GenericDialog class). Use a
binary (0/1) disk-shaped mask to represent the filter’s support region
R, with a minimum size of (2r+1) x (2r+1), as shown in Fig. 5.23(a).
Create this mask dynamically for the chosen filter radius r (see Fig.
5.23(c-h) for typical results).

Exercise 5.13. Implement a weighted median filter (see Sec. 5.4.3)
as an ImagelJ plugin, specifying the weights as a constant, 2D int
array. Test the filter on suitable images and compare the results with
those from a standard median filter. Explain why, for example, the
following weight matrix does not make sense:

117



5 FILTERS

Fig. 5.23

Disk-shaped median filter.
Example of a binary mask

to represent the support re-
gion R with radius r = 8 (a).
The origin of the filter re-
gion is located at its center.
Synthetic test image (b).
Results of the median fil-

ter for r = 1,...,6 (c-h).
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Exercise 5.14. The “jitter” filter is a (quite exotic) example for a
nonhomogeneous filter. For each image position, it selects a space-
variant filter kernel (of size 2r 4+ 1) containing a single, randomly
placed impulse (1); for example,

00010
00000
Hy,,=[00000 (5.49)
00000
00000

for r = 2. The position of the 1-value in the kernel H,, , is uniformly
distributed in the range i,j € [—r,r]; thus the filter effectively picks
a random pixel value from the surrounding (2r + 1) x (2r + 1) neigh-
borhood. Implement this filter for » = 3,5, 10, as shown in Fig. 5.24.
Is this filter linear or nonlinear? Develop another version using a
Gaussian random distribution.
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Fig. 5.24
Jitter filter example.

Original
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Edges and Contours

Prominent image “events” originating from local changes in inten-
sity or color, such as edges and contours, are of high importance for
the visual perception and interpretation of images. The perceived
amount of information in an image appears to be directly related to
the distinctiveness of the contained structures and discontinuities. In
fact, edge-like structures and contours seem to be so important for
our human visual system that a few lines in a caricature or illus-
tration are often sufficient to unambiguously describe an object or a
scene. It is thus no surprise that the enhancement and detection of
edges has been a traditional and important topic in image processing
as well. In this chapter, we first look at simple methods for localizing
edges and then attend to the related issue of image sharpening.

6.1 What Makes an Edge?

Edges and contours play a dominant role in human vision and prob-
ably in many other biological vision systems as well. Not only are
edges visually striking, but it is often possible to describe or recon-
struct a complete figure from a few key lines, as the example in Fig.
6.1 shows. But how do edges arise, and how can they be technically
localized in an image?

(b)

© Springer-Verlag London 2016
W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,
DOI 10.1007/978-1-4471-6684-9_6

Fig. 6.1

Edges play an important role
in human vision. Original im-
age (a) and edge image (b).
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Fig. 6.2

Sample image and first deriva-
tive in one dimension: original
image (a), horizontal inten-
sity profile f(z) along the
center image line (b), and
first derivative f'(z) (c).
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Edges can roughly be described as image positions where the lo-
cal intensity changes distinctly along a particular orientation. The
stronger the local intensity change, the higher is the evidence for an
edge at that position. In mathematics, the amount of change with
respect to spatial distance is known as the first derivative of a func-
tion, and we thus start with this concept to develop our first simple
edge detector.

6.2 Gradient-Based Edge Detection

For simplicity, we first investigate the situation in only one dimen-
sion, assuming that the image contains a single bright region at the
center surrounded by a dark background (Fig. 6.2(a)). In this case,
the intensity profile along one image line would look like the 1D func-
tion f(z), as shown in Fig. 6.2(b). Taking the first derivative of the
function f,

7@ = L), (6.1)

results in a positive swing at those positions where the intensity rises
and a negative swing where the value of the function drops (Fig.

6.2(c)).

(a)

Unlike in the continuous case, however, the first derivative is un-
defined for a discrete function f(u) (such as the line profile of a real
image), and some method is needed to estimate it. Figure 6.3 shows
the basic idea, again for the 1D case: the first derivative of a con-
tinuous function at position x can be interpreted as the slope of its
tangent at this position. One simple method for roughly approximat-
ing the slope of the tangent for a discrete function f(u) at position u
is to fit a straight line through the neighboring function values f(u—1)
and f(u+1),

df o futl) = flu=1)  flutl)— flu—1)
W= (u+1) — (u—1) 2 ' (6.2)

Of course, the same method can be applied in the vertical direction
to estimate the first derivative along the y-axis, thats is, along the
image columns.



6.2.1 Partial Derivatives and the Gradient

A derivative of a multi-dimensional function taken along one of its
coordinate axes is called a partial derivative; for example,

u,v) and I, =

y a—y(u,v) (6.3)

are the partial derivatives of the 2D image function I(u,v) along the
w and v axes, respectively.! The vector

B %(u,v))
) - (2_5(%”) (6.4)

is called the gradient of the function I at position (u,v). The mag-

nitude of the gradient,
\VI| = /12 +12, (6.5)

is invariant under image rotation and thus independent of the orien-
tation of the underlying image structures. This property is important
for isotropic localization of edges, and thus |VI] is the basis of many
practical edge detection methods.

VI (u,v) = (ZEE

u
u

)
)

, U
, U

6.2.2 Derivative Filters

The components of the gradient function (Eqn. (6.4)) are simply the
first derivatives of the image lines (Eqn. (6.1)) and columns along the
horizontal and vertical axes, respectively. The approximation of the
first horizontal derivatives (Eqn. (6.2)) can be easily implemented by
a linear filter (see Sec. 5.2) with the 1D kernel

HP =[-05 0 05]=05-[-1 0 1], (6.6)

where the coefficients —0.5 and +0.5 apply to the image elements
I(u—1,v) and I(u+1,v), respectively. Notice that the center pixel
I(u,v) itself is weighted with the zero coefficient and is thus ignored.
Analogously, the vertical component of the gradient is obtained with
the linear filter

1 9 denotes the partial derivative or “del” operator.

6.2 GRADIENT-BASED
EDGE DETECTION

Fig. 6.3

Estimating the first derivative
of a discrete function.The slope
of the straight (dashed) line
between the neighboring func-
tion values f(u—1) and f(u+1)
is taken as the estimate for the
slope of the tangent (i.e., the
first derivative) at f(u).
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Fig. 6.4

Partial derivatives of a 2D
function: synthetic image func-
tion I (a); approximate first
derivatives in the horizon-

tal direction 8I/9u (b) and
the vertical direction 9I/dv
(¢); magnitude of the result-
ing gradient |VI| (d). In (b)
and (c), the lowest (negative)
values are shown black, the
maximum (positive) values are
white, and zero values are gray.
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(a) I

©1, @) V1|
-0.5 ~1
HY)=1] 0 | =05-| 0]. (6.7)
0.5 1

Figure 6.4 shows the results of applying the gradient filters defined
in Eqn. (6.6) and Eqn. (6.7) to a synthetic test image.

The orientation dependence of the filter responses can be seen
clearly. The horizontal gradient filter HP reacts most strongly to
rapid changes along the horizontal direction, (i.e., to vertical edges);
analogously the vertical gradient filter HyD reacts most strongly to
horizontal edges. The filter response is zero in flat image regions
(shown as gray in Fig. 6.4(b, c)).

6.3 Simple Edge Operators

The local gradient of the image function is the basis of many classical
edge-detection operators. Practically, they only differ in the type of
filter used for estimating the gradient components and the way these
components are combined. In many situations, one is not only in-
terested in the strength of edge points but also in the local direction
of the edge. Both types of information are contained in the gradient
function and can be easily computed from the directional compo-
nents. The following small collection describes some frequently used,
simple edge operators that have been around for many years and are
thus interesting from a historic perspective as well.



6.3.1 Prewitt and Sobel Operators

The edge operators by Prewitt [191] and Sobel [61] are two classic
methods that differ only marginally in the derivative filters they use.

Gradient filters

Both operators use linear filters that extend over three adjacent
lines and columns, respectively, to counteract the noise sensitivity
of the simple (single line/column) gradient operators (Eqns. (6.6)
and (6.7)). The Prewitt operator uses the filter kernels

-1 0 1 —1-1-1
Hy=|-1 0 1| and H ' =| 0 0 0}, (6.8)
-1 0 1 11 1

which compute the average gradient components across three neigh-
boring lines or columns, respectively. When the filters are written in
separated form,

1 -1
Hy =] 1|x[-10 1] and H)=[111]*| 0, (6.9)
1 1

respectively, it becomes obvious that HI performs a simple (box)
smoothing over three lines before computing the x gradient (Eqn.
(6.6)), and analogously H/” smooths over three columns before com-
puting the y gradient (Eqn. (6.7)).2 Because of the commutativity
property of linear convolution, this could equally be described the
other way around, with smoothing being applied after the computa-
tion of the gradients.

The filters for the Sobel operator are almost identical; however,
the smoothing part assigns higher weight to the current center line
and column, respectively:

-1 0 1
HS=|-2 0 2| and H =
-1 0 1

(6.10)

—_ O =
N O N
—_ O =

The estimates for the local gradient components are obtained from
the filter results by appropriate scaling, that is,

1 I+ HY)(u,v)
VI(u,v) ~ G (EI . H;;(u,"u)> (6.11)

for the Prewitt operator and

(I = HS)(u, v)) (6.12)

1
VI(uv) = 2 ((I* H9)(.v)

for the Sobel operator.

2 In Eqn. (6.9), * is the linear convolution operator (see Sec. 5.3.1).

6.3 SIMPLE EDGE
OPERATORS
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Fig. 6.5
Calculation of edge magnitude
and orientation (geometry).

Fig. 6.6
Typical process of gradient-
based edge extraction. The
linear derivative filters HE
and H? produce two gradi-

ent images, I, and I, re-
spectively. They are used to
compute the edge strength
FE and orientation ¢ for
each image position (u, v).
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Edge strength and orientation

In the following, we denote the scaled filter results (obtained with
either the Prewitt or Sobel operator) as

I,=1xH, and I,=1xH,.
In both cases, the local edge strength E(u,v) is defined as the gradi-

ent magnitude

E(u,v) = \/Ig(u, v) + I12(u, v) (6.13)
and the local edge orientation angle ®(u,v) is
D(u,v) = tanfl<m) = ArcTan(I,(u,v), I,(u,v)), (6.14)
) Ix (u’ ’l}) xT ) 1Y ) 9 -

as illustrated in Fig. 6.5.

The whole process of extracting the edge magnitude and orien-
tation is summarized in Fig. 6.6. First, the original image I is inde-
pendently convolved with the two gradient filters H, and H,, and
subsequently the edge strength E and orientation ¢ are computed
from the filter results. Figure 6.7 shows the edge strength and ori-
entation for two test images, obtained with the Sobel filters in Eqn.
(6.10).

The estimate of the edge orientation based on the original Prewitt
and Sobel filters is relatively inaccurate, and improved versions of the
Sobel filters were proposed in [126, p. 353] to minimize the orientation
errors:

3 See the hints in Sec. F.1.6 in the Appendix for computing the inverse

tangent tan~'(y/x) with the ArcTan(z,y) function.



==\,
o[ 303 o, [3-10-3

Hj =535 |10 010 and Hj =3 | 0 0 0].(615)
-3 0 3 3 10 3

These edge operators are frequently used because of their good results
(see also Fig. 6.11) and simple implementation. The Sobel operator,
in particular, is available in many image-processing tools and software
packages (including ImageJ).

6.3.2 Roberts Operator

As one of the simplest and oldest edge finders, the Roberts operator
[199] today is mainly of historic interest. It employs two extremely
small filters of size 2 x 2 for estimating the directional gradient along

6.3 SIMPLE EDGE
OPERATORS

Fig. 6.7

Edge strength and orienta-
tion obtained with a Sobel
operator. Original images (a),
the edge strength E(u,v) (b),
and the local edge orientation
@(u,v) (c). The images in (d)
show the orientation angles
coded as color hues, with the
edge strength controlling the
color saturation (see Sec. 12.2.3
for the corresponding defini-
tions).
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Fig. 6.8

Diagonal gradient com-
ponents produced by
the two Roberts filters.

Fig. 6.9

Definition of edge strength
for the Roberts operator. The
edge strength E(u,v) corre-
sponds to the length of the
vector obtained by adding
the two orthogonal gradi-

ent components (filter re-
sults) D, (u,v) and Dy(u,v).
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Dl:I*H? D2=I>s<Hrf,t

the image diagonals:

Hle[ 0 1] and H?:[_(l) (1)] (6.16)

These filters naturally respond to diagonal edges but are not highly
selective to orientation; that is, both filters show strong results over
a relatively wide range of angles (Fig. 6.8). The local edge strength
is calculated by measuring the length of the resulting 2D vector,

similar to the gradient computation but with its components rotated
45° (Fig. 6.9).

6.3.3 Compass Operators

The design of linear edge filters involves a trade-off: the stronger
a filter responds to edge-like structures, the more sensitive it is to
orientation. In other words, filters that are orientation insensitive
tend to respond to nonedge structures, while the most discriminating
edge filters only respond to edges in a narrow range of orientations.
One solution is to use not only a single pair of relatively “wide” filters
for two directions (such as the Prewitt and the simple Sobel operator
discussed in Sec. 6.3.1) but a larger set of filters with narrowly spaced
orientations.

Extended Sobel operator

Classic examples are the edge operator proposed by Kirsch [136] and
the “extended Sobel” or Robinson operator [200], which employs the
following eight filters with orientations spaced at 45°:



-1 0 1 [—2 -1 0

HPS=|-2 0 2|, HES=1-1 0 1], (6.17)
-1 0 1] 0 1 2]
—1-2-1] [0 —1—2]

HES=1 0 0 o], HPS =1 1 0-1], (6.18)
1 2 1) 2 1 0]
1 0-1] 2 1 0]

HES =1 2 0-2], HES=1] 1 0-1], (6.19)
| 1 0-1] | 0-1-2]
1 2 1] 0 1 2]

HES =1 0 0 0], HFS=1-1 0 1 (6.20)
| -1-2-1] |-2-1 0

Only the results of four of these eight filters (HFS, HES, ... HES)
must actually be computed since the remaining four are identical
except for the reversed sign. For example, from the fact that HI'S =
—HES and the convolution being linear (Eqn. (5.22)), it follows that

IT«HPS =T%—HFS = —(I«HPS), (6.21)

that is, the result for filter H} is simply the negative result for filter
Hy . The directional outputs Dy, D1, ... D; for the eight Sobel filters
can thus be computed as follows:

Dy« I« HES, Dy« I+« HFS, Dy« IxHFS Dy« IxHFS,
D, < —D,, Dy <+ —Dy, Dg <+ —D,, D, + —D;.
(6.22)
The edge strength E° at position (u,v) is defined as the maximum
of the eight filter outputs; that is,

E®S(u,v) = max (Dy(u,v), Dy (u,v),..., Dy(u,v)) (6.23)
— max(|Dy(u, o)), | Dy (u, 0)], | Do, 0)], | D, )]

and the strongest-responding filter also determines the local edge
orientation as

P8 (u,v) = %j, with j = argmax D, (u,v).

0<i<7

(6.24)

Kirsch operator

Another classic compass operator is the one proposed by Kirsch [136],
which also employs eight oriented filters with the following kernels:

[—5 3 3] [ 3 3-5]

HY=|-5 0 3|, Hf=1] 3 0-5], (6.25)
| -5 3 3] | 3 3-5]
[—5 -5 3] [ 3 3 3]

Hf=|-5 0 3|, HY=1 3 0-5], (6.26)
| 3 3 3] | 3-5-5]
[—5 —5 —5]] [ 3 3 3]

HY=1 3 0 3|, HY=1 3 0 3], (6.27)
| 3 3 3] | —5 -5 —5 |
[ 3 -5-5] [ 3 3 3]

HX¥=1 3 0-5], HY=1-5 0 3 (6.28)
| 3 3 3] | —5-5 3]

6.3 SIMPLE EDGE

OPERATORS

129



6 EDGES AND CONTOURS

130

Again, because of the symmetries, only four of the eight filters need
to be applied and the results may be combined in the same way as
already described for the extended Sobel operator.

In practice, this and other “compass operators” show only minor
benefits over the simpler operators described earlier, including the
small advantage of not requiring the computation of square roots
(which is considered a relatively “expensive” operation).

6.3.4 Edge Operators in ImageJ

The current version of ImageJ implements the Sobel operator (as
described in Eqn. (6.10)) for practically any type of image. It can be
invoked via the

Process > Find Edges

menu and is also available through the method void findEdges()
for objects of type ImageProcessor.

6.4 Other Edge Operators

One problem with edge operators based on first derivatives (as de-
scribed in the previous section) is that each resulting edge is as wide
as the underlying intensity transition and thus edges may be difficult
to localize precisely. An alternative class of edge operators makes use
of the second derivatives of the image function, including some pop-
ular modern edge operators that also address the problem of edges
appearing at various levels of scale. These issues are briefly discussed
in the following.

6.4.1 Edge Detection Based on Second Derivatives

The second derivative of a function measures its local curvature. The
idea is that edges can be found at zero positions or—even better—at
the zero crossings of the second derivatives of the image function,
as illustrated in Fig. 6.10 for the 1D case. Since second derivatives
generally tend to amplify image noise, some sort of presmoothing is
usually applied with suitable low-pass filters.

A popular example is the “Laplacian-of-Gaussian” (LoG) oper-
ator [161], which combines gGussian smoothing and computing the
second derivatives (see the Laplace Filter in Sec. 6.6.1) into a single
linear filter. The example in Fig. 6.11 shows that the edges produced
by the LoG operator are more precisely localized than the ones deliv-
ered by the Prewitt and Sobel operators, and the amount of “clutter”
is comparably small. Details about the LoG operator and a compre-
hensive survey of common edge operators can be found in [203, Ch. 4]
and [165].

6.4.2 Edges at Different Scales

Unfortunately, the results of the simple edge operators we have dis-
cussed so far often deviate from what we as humans perceive as im-
portant edges. The two main reasons for this are:
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(b)
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Zero crossing

e First, edge operators only respond to local intensity differences,
while our visual system is able to extend edges across areas of
minimal or vanishing contrast.

e Second, edges exist not at a single fixed resolution or at a certain
scale but over a whole range of different scales.

Typical small edge operators, such as the Sobel operator, can only
respond to intensity differences that occur within their 3 x 3 pixel
filter regions. To recognize edge-like events over a greater horizon, we
would either need larger edge operators (with correspondingly large
filters) or to use the original (small) operators on reduced (i.e., scaled)
images. This is the principal idea of “multiresolution” techniques
(also referred to as “hierarchical” or “pyramid” techniques), which
have traditionally been used in many image-processing applications
[41,151]. In the context of edge detection, this typically amounts to
detecting edges at various scale levels first and then deciding which
edge (if any) at which scale level is dominant at each image position.

6.4.3 From Edges to Contours

Whatever method is used for edge detection, the result is usually a
continuous value for the edge strength for each image position and
possibly also the angle of local edge orientation. How can this in-
formation be used, for example, to find larger image structures and
contours of objects in particular?

Binary edge maps

In many situations, the next step after edge enhancement (by some
edge operator) is the selection of edge points, a binary decision about

6.4 OTHER EDGE
OPERATORS

Fig. 6.10

Principle of edge detection
with the second derivative:
original function (a), first
derivative (b), and second
derivative (c). Edge points

are located where the second
derivative crosses through zero
and the first derivative has a
high magnitude.
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is to apply a threshold operation to the edge strength delivered by
the edge operator using either a fixed or adaptive threshold value,
which results in a binary edge image or “edge map”.

In practice, edge maps hardly ever contain perfect contours but
instead many small, unconnected contour fragments, interrupted at
positions of insufficient edge strength. After thresholding, the empty
positions of course contain no edge information at all that could pos-
sibly be used in a subsequent step, such as for linking adjacent edge
segments. Despite this weakness, global thresholding is often used at
this point because of its simplicity, and some common postprocess-
ing methods, such as the Hough transform (see Ch. 8), can cope well
with incomplete edge maps.

Contour following

The idea of tracing contours sequentially along the discovered edge
points is not uncommon and appears quite simple in principle. Start-
ing from an image point with high edge strength, the edge is followed
iteratively in both directions until the two traces meet and a closed
contour is formed. Unfortunately, there are several obstacles that
make this task more difficult than it seems at first, including the
following:

e edges may end in regions of vanishing intensity gradient,
e crossing edges lead to ambiguities, and
e contours may branch into several directions.

Because of these problems, contour following usually is not applied
to original images or continuous-valued edge images except in very
simple situations, such as when there is a clear separation between
objects (foreground) and the background. Tracing contours in seg-
mented binary images is much simpler, of course (see Ch. 10).

6.5 Canny Edge Operator

The operator proposed by Canny [42] is widely used and still consid-
ered “state of the art” in edge detection. The method tries to reach
three main goals: (a) to minimize the number of false edge points, (b)
achieve good localization of edges, and (c) deliver only a single mark
on each edge. These properties are usually not achieved with sim-
ple edge operators (mostly based on first derivatives and subsequent
thresholding).

At its core, the Canny “filter” is a gradient method (based on
first derivatives; see Sec. 6.2), but it uses the zero crossings of second
derivatives for precise edge localization.* In this regard, the method
is similar to edge detectors that are based on the second derivatives
of the image function [161].

Fully implemented, the Canny detector uses a set of relatively
large, oriented filters at multiple image resolutions and merges the

4 The zero crossings of a function’s second derivative are found where the
first derivates exhibit a local maximum or minimum.



Laplacian of Gaussian Canny operator (o = 1.0)

individual results into a common edge map. It is quite common, how-
ever, to use only a single-scale implementation of the algorithm with
an adjustable filter radius (smoothing parameter o), which is never-
theless superior to most of the simple edge operators (see Fig. 6.11).
In addition, the algorithm not only yields a binary edge map but
connected chains of edge pixels, which greatly simplifies the subse-
quent processing steps. Thus, even in its basic (single-scale) form, the
Canny operator is often preferred over other edge detection methods.

In its basic (single-scale) form, the Canny operator performs the
following steps (stated more precisely in Algs. 6.1-6.2):

1. Pre-processing: Smooth the image with a Gaussian filter of
width o, which specifies the scale level of the edge detector. Cal-
culate the x/y gradient vector at each position of the filtered
image and determine the local gradient magnitude and orienta-
tion.

2. Edge localization: Isolate local maxima of gradient magnitude
by “non-maximum suppression” along the local gradient direc-
tion.

6.5 CANNY EDGE
OPERATOR

Fig. 6.11

Comparison of various edge
operators. Important criteria
for the quality of edge results
are the amount of “clutter”
(irrelevant edge elements) and
the connectedness of dominant
edges. The Roberts operator
responds to very small edge
structures because of the small
size of its filters. The similar-
ity of the Prewitt and Sobel
operators is manifested in the
corresponding results. The
edge map produced by the
Canny operator is substan-
tially cleaner than those of the
simpler operators, even for a
fixed and relatively small scale
value o.
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Fig. 6.12

Non-maximum suppression
of gradient magnitude. The
gradient direction at posi-
tion (u,v) is coarsely quan-
tized to four discrete orien-
tations sy € {0,1,2,3} (a).
Only pixels where the gra-
dient magnitude E,,,, (u,v)
is a local maximum in the
gradient direction (i.e., per-
pendicular to the edge tan-
gent) are taken as candidate
edge points (b). The gradient
magnitude at all other points
is set (suppressed) to zero.
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3. Edge tracing and hysteresis thresholding: Collect sets of
connected edge pixels from the local maxima by applying “hys-
teresis thresholding”.

6.5.1 Pre-processing

The original intensity image [ is first smoothed with a Gaussian filter
kernel H%7; its width o specifies the spatial scale at which edges are
to be detected (see Alg. 6.1, lines 2-10). Subsequently, first-order
difference filters are applied to the smoothed image I to calculate
the components fgc,j:y of the local gradient vectors (Alg. 6.1, line
3-3).> Then the local magnitude E\ag 1s calculated as the norm
of the corresponding gradient vector (Alg. 6.1, line 11). In view of
the subsequent thresholding it may be helpful to normalize the edge
magnitude values to a standard range (e.g., to [0, 100]).

6.5.2 Edge localization

Candidate edge pixels are isolated by local “non-maximum suppres-
sion” of the edge magnitude E,,,,. In this step, only those pixels are
preserved that represent a local maximum along the 1D profile in the
direction of the gradient, that is, perpendicular to the edge tangent
(see Fig. 6.12). While the gradient may point in any continuous di-
rection, only four discrete directions are typically used to facilitate
efficient processing. The pixel at position (u,v) is only retained as
an edge candidate if its gradient magnitude is greater than both its
immediate neighbors in the direction specified by the gradient vector
(d,d,) at position (u,v). If a pixel is not a local maximum, its edge
magnitude value is set to zero (i.e., “suppressed”). In Alg. 6.1, the
non-maximum suppressed edge values are stored in the map E .

vyvvvvllvvvyve

(@) (b)

The problem of finding the discrete orientation s, = 0,...,3 for
a given gradient vector ¢ = (d,,d,) is illustrated in Fig. 6.13. This
task is simple if the corresponding angle 6 = tan™'(d, /d,.) is known,
but at this point the use of the trigonometric functions is typically
avoided for efficiency reasons. The octant that corresponds to g can
be inferred directly from the signs and magnitude of the components
dg,d,, however, the necessary decision rules are quite complex. Much

simpler rules apply if the coordinate system and gradient vector q are

5 See also Sec. C.3.1 in the Appendix.
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CannyEdgeDetector (I, o, ty;, tio)

—_ =
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e

Input: I, a grayscale image of size M x N; o, scale (radius of
Gaussian filter H%?); ty;, ty,, hysteresis thresholds (ty; > t10).
Returns a binary edge map of size M X N.

T« I«H%’
I+ I%[-05 0 0.5]
I, I%[-05 0 05]"
(M, N) < Size(I)
Create maps:
Erag : MXN — R
Eppe: MXN R
Byt MxN — {0,1}
for all image coordinates (u,v) € M x N do
Erag(u,v) < [fg(u,v) + fg(u,v)] 1z
E, s (u,v) <0
Epin(u,v) <0
foru<+1,...,M—2 do
forv+1,..., N—-2do
dy I (u,v), d, < I,(u,v)
59 < GetOrientationSector(d,, d,) > Alg. 6.2
if IsLocalMax(Ey,ag, u, v, ¢, t),) then > Alg. 6.2
Eyms(u,v) < Eyap(u,v) > only keep local maxima

foru<+1,...,M—2do
forv+1,..., N—-2do
if (Eums(u,v) > tyi) A (Epin(u,v) = 0) then
TraceAndThreshold (F, s, Ebin, 4, v, tio)

> blur with Gaussian of width o
> x-gradient
> y-gradient

> gradient magnitude
> maximum magnitude
> binary edge pixels

> Alg. 6.2

return F;,.

rotated by %, as illustrated in Fig. 6.13(b). This step is implemented
by the function GetOrientationSector() in Alg. 6.2.5

6.5.3 Edge tracing and hysteresis thresholding

In the final step, sets of connected edge points are collected from the
magnitude values that remained unsuppressed in the previous oper-

5 Note that the elements of the rotation matrix in Alg. 6.2 (line 2) are con-
stants and thus no repeated use of trigonometric functions is required.

6.5 CANNY EDGE
OPERATOR

Fig. 6.13

Discrete gradient directions.
In (a), calculating the octant
for a given orientation vec-
tor ¢ = (d,,d,) requires a
relatively complex decision.
Alternatively (b), if q is ro-
tated by % to q’, the corre-
sponding octant can be found
directly from the components
of ¢' = (di,,d;) without the
need to calculate the actual
angle. Orientation vectors in
the other octants are mirrored
to octants sy = 0,1,2,3.

Alg. 6.1
Canny edge detector for
grayscale images.
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Alg. 6.2
Procedures used in Alg.
6.1 (Canny edge detector).
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1: GetOrientationSector(d,, d,)
Returns the discrete octant sy for the orientation vector (d,, dy)T‘
See Fig. 6.13 for an illustration.

. d; cos(w/8) — sin(w/8) d, B
2: (d;) A (sin(ﬂ'/S) cos(‘/r/8)) ! (d,q) > rotate < > by 7—/8
3: if d;, < 0 then
4: d, + —d., d, + —d, > mirror to octants 0,...,3
0 if (d >0) A (d, > dy)
. 1 it (d, > 0) A (d, < d))
ST Ny it (d, < 0)A(-d, < d))
3 (d, <0)A(—d, >d,)
6: return sg. > sector index s, € {0, 1,2, 3}

7: IsLocalMax(E,,,., u, v, S, tio)
Determines if the gradient magnitude E,,,, is a local maximum
at position (u,v) in direction sy € {0, 1,2, 3}.

8: Mg < Epag(u, v)
9: if mg < tlo then
10: return false
11: else
Erag(u—1,v) if s =0
) Erg(u—1,0-1) if sy =1
12: L Erag(u,v—1) if 59 =2
Erg(u—1,04+1) ifsy=3
Erag(u+1,v) if s=0
Eoae(ut+1,0+1) if sg=1
13: mag )
3 MR E g (u,v+1) if sp =2
Epag(u+1,v—-1) if s =3
14: return (my, < mg) A (mg > mg).

15: TraceAndThreshold(E,, s, Evin, tg, Vg, tio)
Recursively collects and marks all pixels of an edge that are 8-
connected to (ug,vy) and have a gradient magnitude above ty,,.

16: Eyin(ug,vg) < 1 > mark (ug,vy) as an edge pixel
17: uy, < max(ug—1,0) > limit to image bounds
18: ug < min(ug+1, M—1)

19: vr < max(vy—1,0)

20: vg < min(vy+1, N—1)

21: for u < uy,,...,ur do

22: for v < vp,...,vg do

23: if (Eums(u,v) > t1o) A (Epin(u,v) = 0) then

24: TraceAndThreshold (E, s, Epin, 4, v, t)

25: return

ation. This is done with a technique called “hysteresis thresholding”
using two different threshold values , t;, (with ty; > t,). The image is
scanned for pixels with edge magnitude E,(u,v) > t,;. Whenever
such a (previously unvisited) location is found, a new edge trace is
started and all connected edge pixels (u’,v) are added to it as long
as Eyp(u',v") > t,. Only those edge traces remain that contain at
least one pixel with edge magnitude greater than ty; and no pixels
with edge magnitude less than t),. This process (which is similar to



(d) (e)

flood-fill region growing) is detailed in procedure GetOrientationSector
in Alg. 6.2. Typical threshold values for 8-bit grayscale images are
ty; = 5.0 and t), = 2.5.

Figure 6.14 illustrates the effectiveness of non-maximum suppres-
sion for localizing the edge centers and edge-linking with hysteresis
thresholding. Results from the single-scale Canny detector are shown
in Fig. 6.15 for different settings of o and fixed upper/lower thresh-
old values t; = 20%, t,, = 5% (relative to the maximum gradient
magnitude).

6.5.4 Additional Information

Due to the long-lasting popularity of the Canny operator, additional
descriptions and some excellent illustrations can be found at various
places in the literature, including [89, p. 719], [232, pp. 71-80], and
[166, pp. 548-549]. An edge operator similar to the Canny detector,
but based on a set of recursive filters, is described in [62]. While the
Canny detector was originally designed for grayscale images, modified
versions for color images exist, including the one we describe in the
next section.

6.5 CANNY EDGE
OPERATOR

Fig. 6.14

Grayscale Canny edge opera-
tor details. Inverted gradient
magnitude (a), detected edge
points with connected edge
tracks shown in distinctive col-
ors (b). Details with gradient
magnitude and detected edge
points overlaid (c,d). Settings:
o = 2.0, t; = 20%, t,, = 5%
(of the max. edge magnitude).
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Fig. 6.15

Results from the single-scale
grayscale Canny edge opera-
tor (Algs. 6.1-6.2) for different
values of o = 0.5,...,5.0.
Inverted gradient magnitude
(left column) and detected
edge points (right column).
The detected edge points
(right column) are linked

to connected edge chains.
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6.5.5 Implementation

A complete implementation of the Canny edge detector for both
grayscale and RGB color images can be found in the Java library
for this book.” A basic usage example Prog. 16.1 is shown in Prog.

16.1 on p. 411.

7 Class CannyEdgeDetector in package imagingbook.pub.coloredge.



6.6 Edge Sharpening

Making images look sharper is a frequent task, such as to make up
for a lack of sharpness after scanning or scaling an image or to pre-
compensate for a subsequent loss of sharpness in the course of print-
ing or displaying an image. A common approach to image sharpening
is to amplify the high-frequency image components, which are mainly
responsible for the perceived sharpness of an image and for which the
strongest occur at rapid intensity transitions. In the following, we
describe two methods for artificial image sharpening that are based
on techniques similar to edge detection and thus fit well in this chap-
ter. In the following, we describe two methods for artificial image
sharpening that are based on techniques similar to edge detection
and thus fit well in this chapter.

6.6.1 Edge Sharpening with the Laplacian Filter

A common method for localizing rapid intensity changes are filters
based on the second derivatives of the image function. Figure 6.16
illustrates this idea on a 1D, continuous function f(x). The second
derivative f”(z) of the step function shows a positive pulse at the
lower end of the transition and a negative pulse at the upper end.
The edge is sharpened by subtracting a certain fraction w of the
second derivative f”(z) from the original function f(x),

PN

fl@) = f(z) —w- f(x). (6.29)

Depending upon the weight factor w > 0, the expression in Eqn.
(6.29) causes the intensity function to overshoot at both sides of an
edge, thus exaggerating edges and increasing the perceived sharpness.

Laplacian operator

Sharpening of a 2D function can be accomplished with the second
derivatives in the horizontal and vertical directions combined by the
so-called Laplacian operator. The Laplacian operator V2 of a 2D
function f(x,y) is defined as the sum of the second partial derivatives
along the x and y directions:

2 2
(V20)) = ot (ov0) + g (@,0) (6:30)

Similar to the first derivatives (see Sec. 6.2.2), the second derivatives
of a discrete image function can also be estimated with a set of sim-
ple linear filters. Again, several versions, have been proposed. For
example, the two 1D filters

1
f L f L
pria Hy =[1-2 1] and 2y ~H,; = —? , (6.31)

for estimating the second derivatives along the x and y directions,
respectively, combine to make the 2D Laplacian filter

6.6 EDGE SHARPENING
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Fig. 6.16

Edge sharpening with the sec-
ond derivative. The original
intensity function f(x), first
derivative f’(z), second deriva-
tive f”/(z), and sharpened
intensity function f(z) =
f(z)—w - f"(x) are shown

(w is a weighting factor).
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H"=H}+H) =

o = O

10
—4 1. (6.32)
10

Figure 6.17 shows an example of applying the Laplacian filter H"
to a grayscale image, where the pairs of positive-negative peaks at
both sides of each edge are clearly visible. The filter appears al-
most isotropic despite the coarse approximation with the small filter
kernels.

Notice that H* in Eqn. (6.32) is not separable in the usual sense
(as described in Sec. 5.3.3) but, because of the linearity property
of convolution (Eqns. (5.21) and (5.23)), it can be expressed (and
computed) as the sum of two 1D filters,

I«HY =TI« (Hy+Hy)=I+«Hy)+ I *Hy)=1,,+1,. (6.33)

Analogous to the gradient filters (for estimating the first derivatives),
the sum of the coefficients is zero in any Laplace filter, such that its
response is zero in areas of constant (flat) intensity (Fig. 6.17). Other
common variants of 3 x 3 pixel Laplace filters are

111 1 21
HY=|1-8 1| oder Hip=[2-12 2]. (6.34)
111 1 21
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Sharpening

To perform the actual sharpening, as described by Eqn. (6.29) for
the 1D case, we first apply a Laplacian filter H" to the image I and
then subtract a fraction of the result from the original image,

I'—T—w-(H"%I). (6.35)
The factor w specifies the proportion of the Laplacian component and
thus the sharpening strength. The proper choice of w also depends
on the specific Laplacian filter used in Eqn. (6.35) since none of the
aforementioned filters is normalized.

Figure 6.17 shows the result of applying a Laplacian filter (with
the kernel given in Eqn. (6.32)) to a synthetic test image where the
pairs of positive/negative peaks at both sides of each edge are clearly
visible. The filter appears almost isotropic despite the coarse ap-
proximation with the small filter kernels. The application to a real
grayscale image using the filter H" (Eqn. (6.32)) and w = 1.0 is
shown in Fig. 6.18.

As we can expect from second-order derivatives, the Laplacian
filter is fairly sensitive to image noise, which can be reduced (as is
commonly done in edge detection with first derivatives) by previous
smoothing, such as with a Gaussian filter (see also Sec. 6.4.1).

6.6 EDGE SHARPENING

Fig. 6.17

Results of Laplace filter HY:
synthetic test image I (a),
second partial derivative I, =
8%1/8%z in the horizontal
direction (b), second partial
derivative I, = 8%1/9%y in
the vertical direction (c), and
Laplace filter V2I = I, +
I, (d). Intensities in (b-d)
are scaled such that maximally
negative and positive values
are shown as black and white,
respectively, and zero values
are gray.
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Fig. 6.18

Edge sharpening with the
Laplacian filter. Original
image with a horizontal pro-
file taken from the marked
line (a, b), result of Laplacian
filter H" (c,d), and sharp-
ened image with sharpen-

ing factor w = 1.0 (e,f).
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6.6.2 Unsharp Masking

“Unsharp masking” (USM) is a technique for edge sharpening that is
particularly popular in astronomy, digital printing, and many other
areas of image processing. The term originates from classical pho-
tography, where the sharpness of an image was optically enhanced
by combining it with a smoothed (“unsharp”) copy. This process is
in principle the same for digital images.

Process

The first step in the USM filter is to subtract a smoothed version of
the image from the original, which enhances the edges. The result
is called the “mask” In analog photography, the required smoothing
was achieved by simply defocusing the lens. Subsequently, the mask
is again added to the original, such that the edges in the image are
sharpened. In summary, the steps involved in USM filtering are:

1. The mask image M is generated by subtracting (from the original
image I) a smoothed version of I, obtained by filtering with H,
that is,

M«—T—(IxH)=1-1. (6.36)

The kernel H of the smoothing filter is assumed to be normalized
(see Sec. 5.2.5).



2. To obtain the sharpened image f, the mask M is added to the g.6 Epce SHARPENING
original image I, weighted by the factor a, which controls the
amount of sharpening,

[+ T+a M, (6.37)
and thus (by inserting from Eqn. (6.36))
I«T+a-(I-1)=QQ+a)-I—a-I (6.38)

Smoothing filter

In principle, any smoothing filter could be used for the kernel H in
Eqn. (6.36), but Gaussian filters H%?with variable radius o are most
common (see also Sec. 5.2.7). Typical parameter values are 1 to 20
for o and 0.2 to 4.0 (equivalent to 20% to 400%) for the sharpening
factor a.

Figure 6.19 shows two examples of USM filters using Gaussian
smoothing filters with different radii o.

Extensions

The advantages of the USM filter over the Laplace filter are reduced
noise sensitivity due to the involved smoothing and improved control-
lability through the parameters o (spatial extent) and a (sharpening
strength).

Of course the USM filter responds not only to real edges but to
some extent to any intensity transition, and thus potentially increases
any visible noise in continuous image regions. Some implementations
(e.g., Adobe Photoshop) therefore provide an additional threshold pa-
rameter ¢, to specify the minimum local contrast required to perform
edge sharpening. Sharpening is only applied if the local contrast at
position (u,v), expressed, for example, by the gradient magnitude
|IVI| (Eqn. (6.5)), is greater than that threshold. Otherwise, that
pixel remains unmodified, that is,

I(u,v) (6.39)

. I(u,v) +a- M(u,v) for |VI|(u,v) > t,

I(u,v) otherwise.
Different to the original USM filter (Eqn. (6.37)), this extended ver-
sion is no longer a linear filter. On color images, the USM filter is
usually applied to all color channels with identical parameter set-
tings.

Implementation

The USM filter is available in virtually any image-processing software
and, due to its simplicity and flexibility, has become an indispens-
able tool for many professional users. In ImageJ, the USM filter is
implemented by the plugin class UnsharpMask® and can be applied
through the menu

Process > Filter > Unsharp Mask...

8 In package ij.plugin.filter.
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Fig. 6.19

Unsharp masking filters with
varying smoothing radii

o = 2.5 and 10.0. The
sharpening strength a is set
to 1.0 (100%). The profiles
show the intensity function
for the image line marked in
the original image (top-left).
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This filter can also be used from other plugin classes, for example, in .6 Epar SHARPENING
the following way:

import ij.plugin.filter.UnsharpMask;

public void run(ImageProcessor ip) {

}

UnsharpMask usm = new UnsharpMask() ;
double r = 2.0; //standard settings for radius
double a = 0.6; //standard settings for weight
usm.sharpen(ip, r, a);

ImageJ’s UnsharpMask implementation uses the class GaussianBlur
for the required smoothing operation. The alternative implementa-
tion shown in Prog. 6.1 follows the definition in Eqn. (6.38) and uses
Gaussian filter kernels that are created with the method makeGauss-
Kernelld (), as defined in Prog. 5.4.

double radius = 1.
double amount = 1.

public void run(ImageProcessor ip) {

0; //radius (sigma of Gaussian)
0; // amount of sharpening (1 = 100%)

ImageProcessor I = ip.convertToFloat(); /1

/I create a blurred version of the image:

ImageProcessor J = I.duplicate(); i
float[] H = GaussianFilter .makeGaussKernelld (sigma) ;
Convolver cv = new Convolver();

cv.setNormalize (true);

cv.convolve(J, H, 1, H.length);

cv.convolve(J, H, H.length, 1);

I.multiply (1 + a); N« (1+a)-I
J.multiply(a); NI+—a-I ) )
I.copyBits(J,0,0,Blitter.SUBTRACT); /I < (1+a)-I—a-1I

/I copy result back into original byte image
ip.insert(I.convertToByte (false), 0, 0);

Laplace vs. USM filter

A closer look at these two methods reveals that sharpening with the
Laplace filter (Sec. 6.6.1) can be viewed as a special case of the USM
filter. If the Laplace filter in Eqn. (6.32) is decomposed as

010
H=|(1-4 1| =
010

010 000 )
111[-5{010]|=5(H"-¢), (6.40)
010 000

one can see that H” consists of a simple 3 x 3 pixel smoothing fil-
ter H minus the impulse function §. Laplace sharpening with the
weight factor w as defined in Eqn. (6.35) can therefore (by a little
manipulation) be expressed as

Prog. 6.1

Unsharp masking (Java im-
plementation). First the orig-
inal image is converted to a
FloatProcessor object I (I)
in line 5, which is duplicated
to hold the blurred image J
(I) in line 8. The method
makeGaussKernelld (), defined
in Prog. 5.4, is used to create
the 1D Gaussian filter ker-
nel applied in the horizontal
and vertical directions (lines
12-13). The remaining calcula-
tions follow Eqn. (6.38).
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I «IT—w-(H"«I) =1—w- (5(H"—0)«1)
=T —b5w-(H I —-1)=T1+5w-(I—H"%1I) (6.41)
= I +5w- M"Y,

that is, in the form of a USM filter I < I + a - M (Eqn. (6.37)).
Laplacian sharpening is thus a special case of a USM filter with the
mask M = ML = (I — HL % I), the specific smoothing filter

) 1 010
HL:g 111
010
and the sharpening factor a = Hw.

6.7 Exercises

Exercise 6.1. Calculate (manually) the gradient and the Laplacian
(using the discrete approximations in Eqn. (6.2) and Eqn. (6.32),
respectively) for the following “image”:

14 10 19 16 14 12
18 911 1210 19

914 15 26 13 6
21 27 17 17 19 16
11 18 18 19 16 14
16 10 13 7 22 21

Exercise 6.2. Implement the Sobel edge operator as defined in Eqn.
(6.10) (and illustrated in Fig. 6.6) as an ImageJ plugin. The plugin
should generate two new images for the edge magnitude F(u,v) and
the edge orientation @(u,v). Come up with a suitable way to display
local edge orientation.

Exercise 6.3. Express the Sobel operator (Eqn. (6.10)) in z/y-
separable form analogous to the decomposition of the Prewitt op-
erator in Eqn. (6.9).

Exercise 6.4. Implement the Kirsch operator (Eqns. (6.25)—(6.28))
analogous to the two-directional Sobel operator in Exercise 6.2 and
compare the results from both methods, particularly the edge orien-
tation estimates.

Exercise 6.5. Devise and implement a compass edge operator with
more than eight (167) differently oriented filters.

Exercise 6.6. Compare the results of the unsharp masking filters
in ImageJ and Adobe Photoshop using a suitable test image. How
should the parameters for o (radius) and a (weight) be defined in
both implementations to obtain similar results?
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Corner Detection

Corners are prominent structural elements in an image and are there-
fore useful in a wide variety of applications, including following ob-
jects across related images (tracking), determining the correspon-
dence between stereo images, serving as reference points for precise
geometrical measurements, and calibrating camera systems for ma-
chine vision applications. Thus corner points are not only important
in human vision but they are also “robust” in the sense that they
do not arise accidentally in 3D scenes and, furthermore, can be lo-
cated quite reliably under a wide range of viewing angles and lighting
conditions.

7.1 Points of Interest

Despite being easily recognized by our visual system, accurately and
precisely detecting corners automatically is not a trivial task. A
good corner detector must satisfy a number of criteria, including
distinguishing between true and accidental corners, reliably detecting
corners in the presence of realistic image noise, and precisely and
accurately determining the locations of corners. Finally, it should
also be possible to implement the detector efficiently enough so that
it can be utilized in real-time applications such as video tracking.

Numerous methods for finding corners or similar interest points
have been proposed and most of them take advantage of the following
basic principle. While an edge is usually defined as a location in the
image at which the gradient is especially high in one direction and low
in the direction normal to it, a corner point is defined as a location
that exhibits a strong gradient value in multiple directions at the
same time.

Most methods take advantage of this observation by examining
the first or second derivative of the image in the z and y directions to
find corners (e.g., [77,102,137,154]). In the next section, we describe
in detail the Harris detector, also known as the “Plessey feature point
detector” [102], since it turns out that even though more efficient
© Springer-Verlag London 2016
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7 CorNER DETECTION detectors are known (see, e.g., [210,220]), the Harris detector, and
other detectors based on it, are the most widely used in practice.

7.2 Harris Corner Detector

This operator, developed by Harris and Stephens [102], is one of a
group of related methods based on the same premise: a corner point
exists where the gradient of the image is especially strong in more
than one direction at the same time. In addition, locations along
edges, where the gradient is strong in only one direction, should not
be considered as corners, and the detector should be isotropic, that
is, independent of the orientation of the local gradients.

7.2.1 Local Structure Matrix

The Harris corner detector is based on the first partial derivatives
(gradient) of the image function I(u,v), that is,

I (u,v) = %(u,v) and I,(u,v) = —(u,v). (7.1)

For each image position (u,v), we first calculate the three quantities

Au,v) = I2(u,v), (7.2)
B(u,v) = I (u,v), .
C(u,v) = I, (u,v) - I,(u,v) (7.4)

that constitute the elements of the local structure matriz M(u,v):!

I AC
— xT "y —
M- (2, i) - (e5) &

Next, each of the three scalar fields A(u,v), B(u,v), C(u,v) is indi-
vidually smoothed by convolution with a linear Gaussian filter H%-¢
(see Sec. 5.2.7),

- AxHS CxHE\ [(AC
M(C*HE B*H§)<CB>' (7.6)

The eigenvalues® of the matrix M, defined as®

Moo= traCZ(M) + \/ (traC;(M))z — det(M)

(7.7)

:%.(A+Bi\/ﬁ2—2~A~B+B2+4C2),

! For improved legibility, we simplify the notation used in the following
by omitting the function coordinates (u,v); for example, the function
I, (u,v) is abbreviated as I, or A(u,v) is simply denoted A etc.

2 See also Sec. B.4 in the Appendix.

3 det(M) denotes the determinant and trace(M) denotes the trace of the
matrix M (see, e.g., [35, pp. 252 and 259]).



are (because the matrix is symmetric) positive and real. They contain
essential information about the local image structure. Within an
image region that is uniform (that is, appears flat), M = 0 and
therefore \; = Ay = 0. On an ideal ramp, however, the eigenvalues
are A; > 0 and Ay = 0, independent of the orientation of the edge.
The eigenvalues thus encode an edge’s strength, and their associated
eigenvectors correspond to the local edge orientation.

A corner should have a strong edge in the main direction (cor-
responding to the larger of the two eigenvalues), another edge nor-
mal to the first (corresponding to the smaller eigenvalues), and both
eigenvalues must be significant. Since A, B > 0, we can assume that
trace(M) > 0 and thus |A\;| > |A\y|. Therefore only the smaller of
the two eigenvalues, A\, = trace(M)/2 — / ..., is relevant when
determining a corner.

7.2.2 Corner Response Function (CRF)

From Eqn. (7.7) we see that the difference between the two eigenval-
ues of the local structure matrix is

A=A =2 \/0.25 - (trace(M))* — det (M), (7.8)

where the expression under the square root is always non-negative.
At a good corner position, the difference between the two eigenvalues
A1, Ay should be as small as possible and thus the expression under
the root in Eqn. (7.8) should be a minimum. To avoid the explicit cal-
culation of the eigenvalues (and the square root) the Harris detector
defines the function

Q(u,v) = det(M(u,v)) — a - (trace(M(u, v)))2 (7.9)
A

= A(u,v) - B(u,v) — C?*(u,v) — o - [A(u,v) + B(u,v))?

as a measure of “corner strength”, where the parameter o determines
the sensitivity of the detector. Q(u,v) is called the “corner response
function” and returns maximum values at isolated corners. In prac-
tice, « is assigned a fixed value in the range of 0.04 to 0.06 (max.
0.25 = 1). The larger the value of , the less sensitive the detector
is and the fewer corners detected.

7.2.3 Determining Corner Points

An image location (u,v) is selected as a potential candidate for a
corner point if

Q(u,v) > ty,

where the threshold t is selected based on image content and typi-
cally lies within the range of 10,000 to 1,000,000. Once selected, the
corners ¢; = {u;, v;,q;) are inserted into the sequence

C= (617627...,01\]’)7

which is then sorted in descending order (i.e., ¢; > ¢; 1) according to
corner strength q; = Q(u;,v;), as defined in Eqn. (7.9). To suppress

7.2 HARRIS CORNER

DETECTOR
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7 CORNER DETECTION

Table 7.1
Harris corner detector—typical
parameter settings for Alg. 7.1.

150

Prefilter (Alg. 7.1, line 2-3): Smoothing with a small zy-separable
filter H,, = H,, * H,,, where

H =

px

Nelio

2
[252]  and przH;le-[r)].
9
2
Gradient filter (Alg. 7.1, line 3): Computing the first partial
derivative in the x and y directions with

—0.5
haz = [~0.5 0 0.5] and  hg, = hj, = l 0 ] )
0.5

Blur filter (Alg. 7.1, line 10): Smoothing the individual components
of the structure matrix M with separable Gaussian filters
H, = H,,  Hy, with

1 . 1
h;m:@-[l615201561] and hby:hbm:@~ 20

Control parameter (Alg. 7.1, line 14): o = 0.04,...,0.06 (default
0.05).

Response threshold (Alg. 7.1, line 19): tyz = 10000, ...,1000 000
(default 20 000).

Neighborhood radius (Alg. 7.1, line 37): d,,;, = 10 Pixel.

the false corners that tend to arise in densely packed groups around
true corners, all except the strongest corner in a specified vicinity
are eliminated. To accomplish this, the list C is traversed from the
front to the back, and the weaker corners toward the end of the list,
which lie in the surrounding neighborhood of a stronger corner, are
deleted.

The complete algorithm for the Harris detector is summarized
again in Alg. 7.1; the associated parameters are listed in Table 7.1.

7.2.4 Examples

Figure 7.1 uses a simple synthetic image to illustrate the most impor-
tant steps in corner detection using the Harris detector. The figure
shows the result of the gradient computation, the three components
of the structure matrix M(u,v) = (é g), and the values of the cor-
ner response function Q(u,v) for each image position (u,v). This
example was calculated with the standard settings as given in Table
7.1.

The second example (Fig. 7.2) illustrates the detection of corner
points in a grayscale representation of a natural scene. It demon-
strates how weak corners are eliminated in favor of the strongest
corner in a region.



1: HarrisCorners(I, o, ty, dyiyn)
Input: I, the source image; «, sensitivity parameter (typ. 0.05);
ty, response threshold (typ. 20000); d;,, minimum distance
between final corners. Returns a sequence of the strongest corners
detected in I.
Step 1 — calculate the corner response function:
2: I, < (Ixhy,)*hg, > horizontal prefilter and derivative
3: I, < (I * hyy) * hgy > vertical prefilter and derivative
4: (M, N) + Size(I)
5: Create maps A, B,C,Q: M x N — R
6: for all image coordinates (u,v) do
Compute the local structure matrix M = (é i ):
T A(u, ) = (L (u, v))?
8: B(u,v) + (1,(u,v))?
9: C(u,v) < I,(u,v) - I,(u,v)
Blur the components of the local structure matrix (M):
10: A<+ AxH,
11: B+ B« H,
12: C <+ Cx H,
13: for all image coordinates (u,v) do > calc. corner response:
14: Q(u,v) + A(u,v)-B(u,v)—C?(u,v) —a-[A(u, v)+ B(u, v)]?
Step 2 — collect the corner points:
15: C+ () > start with an empty corner sequence
16: for all image coordinates (u,v) do
17: if Q(u,v) >ty AlsLocalMax(Q,u,v) then
18: c <+ (u,v,Q(u,v)) > create a new corner ¢
19: C+Cv(c) > add ¢ to corner sequence C
20: Celean < CleanUpCorners(C, d i)
21: return Cjcap,
22: IsLocalMax(Q, u,v) > determine if Q(u,v) is a local maximum
23: N < GetNeighbors(Q, u,v) > se below
24: return Q(u,v) > max(N) > true or false
25: GetNeighbors(Q, u, v)
Returns the 8 neighboring values around Q(u,v).
26: N+ (Q(U+1, U)a Q(U+1, Uﬁl)a Q(uv vfl)v Q('LL - 15 U*l),
Q(uf 17 U), Q(uf 15 U+1), Q(ua ’U+1), Q(u+1a U+1))
27: return N/
28: CleanUpCorners(C,d i)
20: Sort(C) > sort C by desc. g; (strongest corners first)
30: Celean < () > empty “clean” corner sequence
31: while C is not empty do
32: ¢o < GetFirst(C) > get the strongest corner from C
33: C < Delete(cy,C) > the 1st element is removed from C
34: Cclean «— Cclean ~ (CO) > add Co to Cclean
35: for all ¢; in C do
36: if Dist(cy, ¢;) < dpin then
37: C <« Delete(c;,C) > remove element ¢; from C
38: return Cgjcap,

7.2 HARRIS CORNER
DETECTOR

Alg. 7.1

Harris corner detector. This al-
gorithm takes an intensity im-
age I and creates a sorted list
of detected corner points. * is
the convolution operator used
for linear filter operations. De-
tails for the parameters H,
Hg,,, Hyy, Hy, a, and ty can
be found in Table 7.1.
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7 CORNER DETECTION

Fig. 7.1

Harris corner detector—
Example 1. Starting with the
original image I(u,v), the first
derivative is computed, and
then from it the components of
the structure matrix M(u, v),
with A(u,v) = I2(u,v), B =
IZ(u,v), C =I,(u,v)- I, (u,v).
A(u,v) and B(u,v) represent,
respectively, the strength of
the horizontal and vertical
edges. In C(u,v), the values
are strongly positive (white) or
strongly negative (black) only
where the edges are strong in
both directions (null values

are shown in gray). The cor-
ner response function, Q(u, v),
exhibits noticeable positive
peaks at the corner positions.
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I(u,v) A = I%(u,v)

— 72 P
B = I, (u,v) C=1I,1,(u,v)
S + + i
S— + + +
+
Q(u, v) Corner points

7.3 Implementation

Since the Harris detector algorithm is more complex than the al-
gorithms we presented earlier, in the following sections we explain
its implementation in greater detail. While reading the following
you may wish to refer to the complete source code for the class
HarrisCornerDetector, which is available online as part of the
imagingbook library.*

4 Package imagingbook.pub.corners.



(b)

(d)

7.3.1 Step 1: Calculating the Corner Response Function

To handle the range of the positive and negative values generated by
the filters used in this step, we will need to use floating-point images
to store the intermediate results, which also assures sufficient range
and precision for small values. The kernels of the required filters,
that is, the presmoothing filter H,,, the gradient filters Hgy,, Hy,),
and the smoothing filter for the structure matrix H;, are defined as
1D float arrays:

1 float[] hp = {2£/9, 5£/9, 2f/9};

7.3 IMPLEMENTATION

Fig. 7.2

Harris corner detector—
Example 2. A complete result
with the final corner points
marked (a). After selecting the
strongest corner points within
a 10-pixel radius, only 335 of
the original 615 candidate cor-
ners remain. Details before

(b, c) and after selection (d,e).
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2 float[] hd = {0.5f, 0, -0.5f};
3 float[] hb
4 {1f/64, 6f/64, 15f/64, 20f/64, 15f/64, 6f/64, 1f/64};

From the original 8-bit image (of type ByteProcessor), we first cre-
ate two copies, Ix and Iy, of type FloatProcessor:

5 FloatProcessor Ix = I.convertToFloatProcessor();
6  FloatProcessor Iy = I.convertToFloatProcessor();

The first processing step is to presmooth the image with the 1D
filter kernel hp (= hy,, = hj},, see Alg. 7.1, line 2). Subsequently
the 1D gradient filter hd (= hg, = hj,) is used to calculate the
horizontal and vertical derivatives (see Alg. 7.1, line 3). To perform
the convolution with the corresponding 1D kernels we use the (static)

methods convolveX() and convolveY() defined in class Filter:®

Filter.convolveX (Ix, hp); T, < I, % hpy,
Filter.convolveX(Ix, hd); N1y < I, % hy,
Filter.convolveY(Iy, hp); Ly <+ I, * hy,
10 Filter.convolveY(Iy, hd); T, < I, % hg,

Now the components A(u,v), B(u,v), C(u,v) of the structure matrix
M are calculated for all image positions (u,v):

11 A = ImageMath.sqr(Ix); Il Au,v) + I2(u,v)

12 B = ImageMath.sqr(Iy); Il B(u,v) + I2(u,v)

13  C = ImageMath.mult(Ix, Iy); 11 C(u,v) < I (u,v) - I, (u,v)
14

The components of the structure matrix are then smoothed with a
separable filter kernel Hy, = hy,, * hy,:

15  Filter.convolveXY(A, hb); 1A < (A x hyy) * hy,
16  Filter.convolveXY(B, hb); Il B <= (B * hyy,) * hy,
17 Filter.convolveXY(C, hb); I1C < (C * hyy) * hyy

The variables A, B, C of type FloatProcessor are declared in the
class HarrisCornerDetector. sqr() and mult () are static methods
of class ImageMath for squaring an image and multiplying two images,
respectively. The method convolveXY(I, h) is used to apply a z/y-
separable 2D convolution with the 1D kernel h to the image I.

Finally, the corner response function (Alg. 7.1, line 14) is calcu-
lated by the method makeCrf () and a new image (of type Float-
Processor) is created:

18 private FloatProcessor makeCrf(float alpha) {
19 FloatProcessor Q = new FloatProcessor (M, N);
20 final float[] pA = (float[]) A.getPixels();
21  final float[] pB = (float[]) B.getPixels();
22  final float[] pC = (float[]) C.getPixels();
23  final float[] pQ (float[]) Q.getPixels();
24 for (int 1 = 0; i < M * N; i++) {

25 float a = pA[il, b = pB[il, ¢ = pC[il;
26 float det = a * b - ¢ * c; //det(M)

27 float trace = a + b; // trace(M)
28 pQ[i]l = det - alpha * (trace * trace);

5 Package imagingbook.1lib.image.



29}
30 return Q;
31 }

7.3.2 Step 2: Selecting “Good” Corner Points

The result of the first stage of Alg. 7.1 is the corner response func-
tion Q(u, v), which in our implementation is stored as a floating-point
image (FloatProcessor). In the second stage, the dominant corner
points are selected from Q. For this we need (a) an object type to
describe the corners and (b) a flexible container, in which to store
these objects. In this case, the container should be a dynamic data
structure since the number of objects to be stored is not known be-
forehand.

The Corner class

Next we define a new class Corner® to represent individual corner
points ¢ = (z,y,q) and a single constructor (in line 35) with float
parameters z, y for the position and corner strength q:

32 public class Corner implements Comparable<Corner> {
33 final float x, y, q;

34

35 public Cormer (float x, float y, float q) {

36 this.x = x;

37 this.y = y;

38 this.q = q;

39}

40

41  public int compareTo (Cormer c2) {
42 if (this.q > c2.q) return -1;
43 if (this.q < c2.q) return 1;
44 else return O;

45 }

46

47 }

The class Corner implements Java’s Comparable interface, such that
objects of type Corner can be compared with each other and thereby
sorted into an ordered sequence. The compareTo () method required
by the Comparable interface is defined (in line 41) to sort corners by
descending q values.

Choosing a suitable container

In Alg. 7.1, we used the notion of a sequence or lists to organize
and manipulate the collections of potential corner points generated
at various stages. One solution would be to utilize arrays, but since
the size of arrays must be declared before they are used, we would
have to allocate memory for extremely large arrays in order to store
all the possible corner points that might be identified. Instead, we
make use of the ArrayList class, which is one of many dynamic data
structures conveniently provided by Java’s Collections Framework.”

5 Package imagingbook.pub.corners.
" Package java.util.

7.3 IMPLEMENTATION
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The collectCorners() method

The method collectCorners() outlined here selects the dominant
corner points from the corner response function Q(u,v). The param-
eter border specifies the width of the image’s border, within which
corner points should be ignored.

48 List<Corner> collectCorners (FloatProcessor Q, float tH, int
border) {

49  List<Corner> C = new ArrayList<Corner>();

50 for (int v = border; v < N - border; v++) {

51 for (int u = border; u < M - border; u++) {
52 float q = Q.getf(u, v);

53 if (q > tH && isLocalMax(Q, u, v)) {

54 Corner c = new Corner(u, v, q);

55 C.add(c);

56 ¥

57 }

58  }

59 return C;

60 }

First (in line 49), a new instance of ArrayList® is created and as-
signed to the variable C. Then the CRF image Q is traversed, and
when a potential corner point is located, a new Corner is instan-
tiated (line 54) and added to C (line 55). The Boolean method
isLocalMax () (defined in class HarrisCornerDetector) determines
if the 2D function Q is a local maximum at the given position u, v:

61 boolean isLocalMax (FloatProcessor Q, int u, int v) {
62 if (u<=0 |l u>M-1|lv<=01Ilv>0N-1){
63 return false;

64

65 else {

66 float[] q = (float[]) Q.getPixels();

67 int 10 = (v - 1) * M + u;

68 int i1l = v * M + u;

69 int i2 = (v + 1) * M + u;

70 float q0 = ql[ill;

71 return // check 8 neighbors of q0:

72 q0 >= ql[i0 - 1] && qO0 >= q[i0] && qO0 >= q[i0 + 1] &&

73 q0 >= ql[i1 - 1] && q0 >= ql[i1 + 1]
&&

74 q0 >= qli2 - 1] && qO0 >= q[i2] && q0 >= q[i2 + 1] ;

75}

76 }

7.3.3 Step 3: Cleaning up

The final step is to remove the weakest corners in a limited area
where the size of this area is specified by the radius d,,;, (Alg. 7.1,
lines 29-38). This process is outlined in Fig. 7.3 and implemented by
the following method cleanupCorners().

8 The specification ArrayList<Corner> indicates that the list C may only
contain objects of type Corner.
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77 List<Corner> cleanupCorners (List<Corner> C, double dmin) {
78 double dmin2 = dmin * dmin;

79 /I sort corners by descending g-value:

80 Collections.sort(C);

81 /I we use an array of corners for efficiency reasons:

82  Corner[] Ca = C.toArray(new Corner[C.size()]);

83  List<Corner> Cclean = new ArrayList<Corner>(C.size());
84 for (int i = 0; i < Ca.length; i++) {

85 Corner cO = Calil; /I get next strongest corner
86 if (cO !'= null) {

87 Cclean.add(c0);

88 /I delete all remaining corners cj too close to cO:

89 for (int j =i + 1; j < Ca.length; j++) {
90 Corner cj = Caljl;

91 if (c¢j !'= null && c0.dist2(cj) < dmin2)
92 Cal[j] = null; /Idelete corner cj from Ca
93 }

94 }

95 }

96 return Cclean;

97 }

Initially (in line 80) the corner list C is sorted by decreasing corner
strenth ¢ by calling the static method sort (). The sorted sequence
is then converted to an array (line 82) which is traversed from start
to end (line 84-95). For each selected corner (c0), all subsequent
corners (cj) with a distance d,;,, are deleted from the sequence (line
92). The “surviving” corners are then transferred to the final corner
sequence Cclean.

Note that the call c0.dist2(cj) in line 91 returns the squared
Euclidean distance between the corner points ¢, and ¢;, that is, the
quantity d? = (x, ij)z + (yo fyj)Q. Since the square of the distance
suffices for the comparison, we do not need to compute the actual
distance, and consequently we avoid calling the expensive square root
function. This is a common trick when comparing distances.

7.3.4 Summary

Most of the implementation steps we have just described are initi-
ated through calls from the method findCorners () in class Harris-
CornerDetector:

98 public List<Corner> findCorners() {

9 Defined in class java.util.Collections

7.3 IMPLEMENTATION

Fig. 7.3

Selecting the strongest corners
within a given spatial distance.
(a) Sample corner positions in
the 2D plane. (b) The origi-
nal list of corners (C) is sorted
by “corner strength” (q) in
descending order; that is, cg
is the strongest corner. First,
corner ¢ is added to a new
list Celoan, While the weaker
corners ¢, and cg (which are
both within distance d,,;,
from ¢;) are removed from the
original list C. The following
corners ¢y, Cy, . .. are treated
similarly until no more ele-
ments remain in C. None of
the corners in the resulting
list Ciloan is closer to another
corner than d,;,.
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99  FloatProcessor Q = makeCrf ((float)params.alpha);
100  List<Corner> corners =

101 collectCorners(Q, (float)params.tH, params.border);
102  if (params.doCleanUp) {

103 corners = cleanupCorners (corners, params.dmin);
104}

105 return corners;

106 }

An example of how to use the class HarrisCornerDetector is shown
by the associated ImageJ plugin Find_Corners whose run() consists
of only a few lines of code. This method simply creates a new object of
the class HarrisCornerDetector, calls the findCorners () method,
and finally displays the results in a new image (R):

107 public class Find_Corners implements PlugInFilter {
108
109  public void run(ImageProcessor ip) {

110 HarrisCornerDetector cd = new HarrisCornerDetector (ip);
111 List<Corner> corners = cd.findCorners();

112 ColorProcessor R = ip.convertToColorProcessor ();
113 drawCorners (R, corners);

114 (new ImagePlus("Result", R)).show();

115 %

116

117  void drawCorners (ImageProcessor ip,

118 List<Corner> corners) {

119 ip.setColor (cornerColor) ;

120 for (Cornmer c : corners) {

121 drawCorner (ip, c);

122 }

123}

124

125  void drawCorner (ImageProcessor ip, Corner c) {
126 int size = cornerSize;

127 int x = Math.round(c.getX());

128 int y = Math.round(c.getY());

129 ip.drawLine(x - size, y, x + size, y);

130 ip.drawLine(x, y - size, x, y + size);
131}

132 }

For completeness, the definition of the drawCorners() method has
been included here; the complete source code can be found online.
Again, when writing this code, the focus is on understandability and
not necessarily speed and memory usage. Many elements of the code
can be optimized with relatively little effort (perhaps as an exercise?)
if efficiency becomes important.

7.4 Exercises

Exercise 7.1. Adapt the draw() method in the class Corner (see
p. 155) so that the strength (¢g-value) of the corner points can also
be visualized. This could be done, for example, by manipulating



the size, color, or intensity of the markers drawn in relation to the
strength of the corner.

Exercise 7.2. Conduct a series of experiments to determine how im-
age contrast affects the performance of the Harris detector, and then
develop an idea for how you might automatically determine the pa-
rameter ty depending on image content.

Exercise 7.3. Explore how rotation and distortion of the image af-
fect the performance of the Harris corner detector. Based on your
experiments, is the operator truly isotropic?

Exercise 7.4. Determine how image noise affects the performance
of the Harris detector in terms of the positional accuracy of the de-
tected corners and the omission of actual corners. Remark: ImageJ’s
menu command Process > Noise > Add Specified Noise... can be used
to easily add certain types of random noise to a given image.

7.4 EXERCISES
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8

Finding Simple Curves: The Hough

Transform

In Chapter 6 we demonstrated how to use appropriately designed
filters to detect edges in images. These filters compute both the edge
strength and orientation at every position in the image. In the fol-
lowing sections, we explain how to decide (e.g., by using a threshold
operation on the edge strength) if a curve is actually present at a
given image location. The result of this process is generally repre-
sented as a binary edge map. Edge maps are considered preliminary
results, since with an edge filter’s limited (“myopic”) view it is not
possible to accurately ascertain if a point belongs to a true edge.
Edge maps created using simple threshold operations contain many
edge points that do not belong to true edges (false positives), and,
on the other hand, many edge points are not detected and hence are
missing from the map (false negatives).

8.1 Salient Image Structures

An intuitive approach to locating large image structures is to first
select an arbitrary edge point, systematically examine its neighbor-
ing pixels and add them if they belong to the object’s contour, and
repeat. In principle, such an approach could be applied to either a
continuous edge map consisting of edge strengths and orientations
or a simple binary edge map. Unfortunately, with either input, such
an approach is likely to fail due to image noise and ambiguities that
arise when trying to follow the contours. Additional constraints and
information about the type of object sought are needed in order to
handle pixel-level problems such as branching, as well as interrup-
tions. This type of local sequential contour tracing makes for an
interesting optimization problem [128] (see also Sec. 10.2).

A completely different approach is to search for globally appar-
ent structures that consist of certain simple shape features. As an
example, Fig. 8.1 shows that certain structures are readily apparent
to the human visual system, even when they overlap in noisy images.
The biological basis for why the human visual system spontaneously
© Springer-Verlag London 2016
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Fig. 8.1

The human visual system is
capable of instantly recogniz-
ing prominent image structures
even under difficult conditions.

Fig. 8.2

Simple geometrical forms
such as sections of lines, cir-
cles, and ellipses are often
found in man-made objects.
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recognizes four lines or three ellipses in Fig. 8.1 instead of a larger
number of disjoint segments and arcs is not completely known. At
the cognitive level, theories such as “Gestalt” grouping have been
proposed to address this behavior. The next sections explore one
technique, the Hough transform, that provides an algorithmic solu-
tion to this problem.

8.2 The Hough Transform

The method from Paul Hough—originally published as a US Patent
[111] and often referred to as the “Hough transform” (HT)—is a
general approach to localizing any shape that can be defined para-
metrically within a distribution of points [64,117]. For example,
many geometrical shapes, such as lines, circles, and ellipses, can be
readily described using simple equations with only a few parameters.
Since simple geometric forms often occur as part of man-made ob-
jects, they are especially useful features for analysis of these types of
images (Fig. 8.2).

The Hough transform is perhaps most often used for detecting
straight line segments in edge maps. A line segment in 2D can be
described with two real-valued parameters using the classic slope-
intercept form

y=k-x+d, (8.1)
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P4 Fig. 8.3

- Two points, p; and p,, lie

. |y =k-x,+d on the same line when y; =

27 py = (1, Y1) ys =k -my+d kx, + d and y, = kzy + d for a
- particular pair of parameters k
- and d.

where k is the slope and d the intercept—that is, the height at which
the line would intercept the y axis (Fig. 8.3). A line segment that
passes through two given edge points p; = (21, y;) and py = (25, Ys)
must satisfy the conditions

pw=k-z,+d and Yo =k - 19 +d, (8.2)

for k,d € R. The goal is to find values of k and d such that as many
edge points as possible lie on the line they describe; in other words,
the line that fits the most edge points. But how can you determine
the number of edge points that lie on a given line segment? One
possibility is to exhaustively “draw” every possible line segment into
the image while counting the number of points that lie exactly on
each of these. Even though the discrete nature of pixel images (with
only a finite number of different lines) makes this approach possible
in theory, generating such a large number of lines is infeasible in
practice.

8.2.1 Parameter Space

The Hough transform approaches the problem from another direc-
tion. It examines all the possible line segments that run through a
single given point in the image. Every line L; = (k;,d;) that runs
through a point py = (¢, yp) must satisfy the condition

for suitable values k;,d;. Equation 8.3 is underdetermined and the
possible solutions for k;, d; correspond to an infinite set of lines pass-
ing through the given point p, (Fig. 8.4). Note that for a given k;,
the solution for d; in Eqn. (8.3) is

which is another equation for a line, where now k;, d; are the variables
and xg, Yy are the constant parameters of the equation. The solution
set {(k;,d;)} of Eqn. (8.4) describes the parameters of all possible
lines L; passing through the image point py = (0, ¥o)-

For an arbitrary image point p, = (x;,y;), Eqn. (8.4) describes
the line

with the parameters —z;,y; in the so-called parameter or Hough

space, spanned by the coordinates k,d. The relationship between 163



8 FINDING SIMPLE
CurvEes: THE HoucH
TRANSFORM

Fig. 8.4
A set of lines passing through
an image point. For all possi-

ble lines L; passing through

the point py = (zq,¥yq), the
equation yo = k;zo + d;
holds for appropriate val-

ues of the parameters k;, d;.

Fig. 8.5
Relationship between image
space and parameter space.
The parameter values for all

possible lines passing through
the image point p;, = (z;,y;)
in image space (a) lie on a
single line M, in parameter
space (b). This means that
each point g; = (kj,dj) in
parameter space corresponds
to a single line L; in image
space. The intersection of the
two lines M, M, at the point
qi5 = (k1o,dy5) in parameter
space indicates that a line L,
through the two points k5 and
dq, exists in the image space.
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(x,y) image space and (k,d) parameter space can be summarized as
follows:
Image Space (x,y) Parameter Space (k,d)
Point p, = (z;,y;) +— M;:d=—-x;-k+vy,;
Liry=kj-x+d; <+— q;=(kd))

Line
Point

Line =

Each image point p; and its associated line bundle correspond to ex-
actly one line M, in parameter space. Therefore we are interested
in those places in the parameter space where lines intersect. The
example in Fig. 8.5 illustrates how the lines M; and M, intersect at
the position g5 = (kq2,d;2) in the parameter space, which means
(k19,d12) are the parameters of the line in the image space that runs
through both image points p,; and p,. The more lines M; that inter-
sect at a single point in the parameter space, the more image space

points lie on the corresponding line in the image! In general, we can
state:

If N lines intersect at position (k/, d’) in parameter space, then
N image points lie on the corresponding line y = ¥’z + d’ in
mage space.

y PRt d
,'/—\‘
,7 Dy = (z2,Y2) =
7 .
. \
n WMyrd=—zy - k+ys
P I::> N
’ .~ ‘\
. W 8
© Py = (21,51) |
4 - b Q“‘
/{ ! v Q‘hz = (K12, d12)
4 . "‘\Ml: d=—x, - k+uy;

(a) z/y Image space (b) k/d Parameter space

8.2.2 Accumulator Map

Finding the dominant lines in the image can now be reformulated as
finding all the locations in parameter space where a significant num-
ber of lines intersect. This is basically the goal of the HT. In order
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(a) Image space (b) Accumulator map

to compute the HT, we must first decide on a discrete representation
of the continuous parameter space by selecting an appropriate step
size for the k and d axes. Once we have selected step sizes for the
coordinates, we can represent the space naturally using a 2D array.
Since the array will be used to keep track of the number of times
parameter space lines intersect, it is called an “accumulator” array.
Each parameter space line is painted into the accumulator array and
the cells through which it passes are incremented, so that ultimately
each cell accumulates the total number of lines that intersect at that
cell (Fig. 8.6).

8.2.3 A Better Line Representation

The line representation in Eqn. (8.1) is not used in practice because
for vertical lines the slope is infinite, that is, k = co. A more practi-
cal representation is the so-called Hessian normal form (HNF)! for
representing lines,

x - cos(f) +y -sin(f) =, (8.6)

which does not exhibit such singularities and also provides a natural
linear quantization for its parameters, the angle 6 and the radius r
(Fig. 8.7).

With the HNF representation, the parameter space is defined by
the coordinates 6,7, and a point p = (z,y) in image space corre-
sponds to the relation

r(f) = x - cos(0) + y - sin(6), (8.7)

for angles in the range 0 < 6 < 7 (see Fig. 8.8). Thus, for a given
image point p, the associated radius r is simply a function of the
angle . If we use the center of the image (of size M x N),

=) =3 (V) o

! The Hessian normal form is a normalized version of the general (“alge-
braic”) line equation Az + By + C = 0, with A = cos(§), B = sin(6),
and C' = —r (see, e.g., [35, p. 194]).

8.2 THE HouGH
TRANSFORM

Fig. 8.6

The accumulator map is a
discrete representation of the
parameter space (k, d). For
each image point found (a), a
discrete line in the parameter
space (b) is drawn. This oper-
ation is performed additively
so that the values of the array
through which the line passes
are incremented by 1. The
value at each cell of the accu-
mulator array is the number
of parameter space lines that
intersect it (in this case 2).
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Fig. 8.7
Representation of lines in 2D.
In the common k, d represen-
tation (a), vertical lines pose

a problem because k = oco.
The Hessian normal form (b)
avoids this problem by repre-

senting a line by its angle 6

and distance r from the origin.

Fig. 8.8
Image space and parameter
space using the HNF represen-
tation. The image (a) of size
M x N contains four straight
lines L, ..., Ly. Each point
on an image line creates a
sinusoidal curve in the 6/r pa-
rameter space (b) and the cor-
responding line parameters are
indicated by the clearly visible
cluster points in the accumula-
tor map. The reference point
x,. for the x/y coordinates lies
at the center of the image. The
line angles 0, are in the range
[0, 7) and the associated radii
7 Are i [Ty, Taa] (the
length r, ., is half of the im-
age diagonal). For example,
the the angle 6, of line L, is
approximately /3, with the
(positive) radius r, &~ 0.47r,,, .
Note that, with this param-
eterization, line L, has the
angle 0, ~ 27 /3 and the neg-
ative radius r, =~ —0.4r

max*
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as the reference point for the z/y image coordinates, then it is possi-
ble to limit the range of the radius to half the diagonal of the image,
that is,

—Tmax < 7(0) <7 with

Tmax =

(8.9)

max max»

3V M? + N2,
We can see that the function r(#) in Eqn. (8.7) is the sum of a cosine
and a sine function on 6, each being weighted by the x and y coordi-
nates of the image point (assumed to be constant for the moment).
The result is again a sinusoidal function whose magnitude and phase
depend only on the weights (coefficients) x,y. Thus, with the Hes-
sian parameterization 6/r, an image point (x,y) does not create a
straight line in the accumulator map A(i, j) but a unique sinusoidal
curve, as shown in Fig. 8.8. Again, each image point adds a curve to
the accumulator and each resulting cluster point corresponds to to
a dominant line in the image with a proportional number of points
on it.?

Image Space (z/y) Parameter Space (0/r )

+r
v v m—1
Tmax n—1
N
2
—x +x 7
N
2 :
Tz —r 6
0 M M "o z ™
2 Zy 2 Zr

2 Note that, in Fig. 8.8(a), the positive direction of the y-coordinate runs

upwards (unlike our usual convention for image coordinates) to stay
in line with the previous illustrations (and high school geometry). In
practice, the consequences are minor: only the rotation angle runs in
the opposite direction and thus the accumulator image in Fig. 8.8(b)
was mirrored horizontally for proper display.



8.3 Hough Algorithm

The fundamental Hough algorithm using the HNF line representation
(Eqn. (8.6)) is given in Alg. 8.1. Starting with a binary image I (u,v)
where the edge pixels have been assigned a value of 1, the first stage
creates a 2D accumulator array and then iterates over the image to
fill it. The resulting increments are

dg =7m/m and d, =+M?+ N2/n (8.10)

for the angle 6 and the radius r, respectively. The discrete indices of
the accumulators cells are denoted ¢ and j, with j, = n + 2 as the
center index (for r = 0).

For each relevant image point (u,v), a sinusoidal curve is added
to the accumulator map by stepping over the discrete angles 6, =
0o,...,0,,_1, calculating the corresponding radius®

7(0;) = (u— ;) - cos(0;) + (v — y,) - sin(6;) (8.11)
(see Eqn. (8.7)) and its discrete index

j = jo + round (%) , (8.12)

r

and subsequently incrementing the accumulator cell A(Z,j) by one
(see Alg. 8.1, lines 10-17). The line parameters 6; and r; for a given
accumulator position (4, j) can be calculated as

0, =1i-dy and r; = (j —Jo) - d,. (8.13)

In the second stage of Alg. 8.1, the accumulator array is searched
for local peaks above a given minimum Values a,,;,. For each detected
peak, a line object is created of the form

L= <0k>rkaak>a (8-14)

consisting of the angle 6, the radius r, (relative to the reference
point x,.), and the corresponding accumulator value a;,. The resulting
sequence of lines £ = (Ly, Lo,...) is then sorted by descending ay,
and returned.

Figure 8.9 shows the result of applying the Hough transform to a
very noisy binary image, which obviously contains four straight lines.
They appear clearly as cluster points in the corresponding accumu-
lator map in Fig. 8.9 (b). Figure 8.9 (¢) shows the reconstruction
of these lines from the extracted parameters. In this example, the
resolution of the discrete parameter space is set to 256 x 256.4

3 The frequent (and expensive) calculation of cos(6;) and sin(;) in Eqn.
(8.11) and Alg. 8.1 (line 15) can be easily avoided by initially tabulating
the function values for all m possible angles 6, = 6,,...,0,,_;, which
should yield a significant performance gain.

4 Note that drawing a straight line given in Hessian normal form is not
really a trivial task (see Excercises 8.1-8.2 for details).

8.3 HOUGH ALGORITHM
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Alg. 8.1

Hough algorithm for detect-
ing straight lines. The algo-
rithm returns a sorted list

of straight lines of the form

L, = (0y,ry,ay) for the bi-
nary input image I of size

M x N. The resolution of the
discrete Hough accumulator
map (and thus the step size for
the angle and radius) is spec-
ified by parameters m and n,
respectively. a,,;, defines the
minimum accumulator value,
that is, the minimum number
of image point on any detected
line. The function IsLocalMax()
used in line 20 is the same

as in Alg. 7.1 (see p. 151).
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1: HoughTransformLines(I,m,n, a;,)
Input: I, a binary image of size M x N; m, angular accumulator
steps; n, radial accumulator steps; an;,, minimum accumulator
count per line. Returns a sorted sequence £ = (Ly, Lo, ...) of the
most dominant lines found.

2: (M, N) + Size(I)

3: (Tryr) < 5+ (M,N) > reference point «, (image center)
4: dg < m/m > angular step size
5: d, < M2+ N2/n > radial step size
6: Jo+—n+2 > map index for r =0

Step 1 — set up and fill the Hough accumulator:

T Create map A: [0,m—1] X [0,n—1] — Z > accumulator

8: for all accumulator cells (4,7) do

9: A(i,j) + 0 > initialize accumulator
10: for all (u,v) € M xN do > scan the image
11: if I(u,v) > 0 then > I(u,v) is a foreground pixel

12: (z,y) + (u—zx,.,v—y,) > shift to reference
13: for i < 0,...,m—1 do > angular coordinate 4
14: 0 <« dg-i >angle, 0 <O <m
15: r < x - cos(f) +y - sin(6) > see Eqn. 8.7
16: j < jo +round(r/d,) > radial coordinate j
17: A(i, j) « A, J) + 1 > increment A(i, 7)

Step 2 — extract the most dominant lines:

18: L+ () > start with empty sequence of lines
19: for all accumulator cells (¢,5) do > collect local maxima
20: if (A(4,7) > amin) A IsLocalMax(A, 7, j) then

21: 0 <+ i-dg > angle 6
22: r<« (j—17Jo)d, > radius r
23: a < A(i, j) > accumulated value a
24: L+ (0,r,a) > create a new line L
25: L+ L~ (L) > add line L to sequence L
26: Sort(L) > sort £ by descending accumulator count a

27: return £

8.3.1 Processing the Accumulator Array

The reliable detection and precise localization of peaks in the accu-
mulator map A(4, j) is not a trivial problem. As can readily be seen
in Fig. 8.9(b), even in the case where the lines in the image are ge-
ometrically “straight”, the parameter space curves associated with
them do not intersect at exactly one point in the accumulator array
but rather their intersection points are distributed within a small
area. This is primarily caused by the rounding errors introduced by
the discrete coordinate grid used for the accumulator array. Since the
maximum points are really maximum areas in the accumulator array,
simply traversing the array and returning the positions of its largest
values is not sufficient. Since this is a critical step in the algorithm,
we examine two different approaches below (see Fig. 8.10).



(a) (b)

(c)

Approach A: Thresholding

First the accumulator is thresholded to the value of t, by setting
all accumulator values A(4,j) < t, to 0. The resulting scattering of
points, or point clouds, are first coalesced into regions (Fig. 8.10(b))
using a technique such as a morphological closing operation (see Sec.
9.3.2). Next the remaining regions must be localized, for instance
using the region-finding technique from Sec. 10.1, and then each re-
gion’s centroid (see Sec. 10.5) can be utilized as the (noninteger)
coordinates for the potential image space line. Often the sum of
the accumulator’s values within a region is used as a measure of the
strength (number of image points) of the line it represents.

Approach B: Nonmaximum suppression

In this method, local maxima in the accumulator array are found by
suppressing nonmaximal values.® This is carried out by determining
for every accumulator cell A(4,7) whether the value is higher than
the value of all of its neighboring cells. If this is the case, then
the value remains the same; otherwise it is set to 0 (Fig. 8.10(c)).
The (integer) coordinates of the remaining peaks are potential line
parameters, and their respective heights correlate with the strength
of the image space line they represent. This method can be used
in conjunction with a threshold operation to reduce the number of
candidate points that must be considered. The result for Fig. 8.9(a)
is shown in Fig. 8.10(d).

® Nonmaximum suppression is also used in Sec. 7.2.3 for isolating corner
points.

8.3 HOUGH ALGORITHM

Fig. 8.9

Hough transform for straight
lines. The dimensions of the
original image (a) are 360 x 240
pixels, so the maximal radius
(measured from the image cen-
ter) is r.« &~ 216. For the
parameter space (b), a step
size of 256 is used for both

the angle & = 0,..., 7 (hor-
izontal axis) and the radius
T = —Tiaxs- s Tmax (vertical

axis). The four (dark) clusters
in (b) surround the maximum
values in the accumulator ar-
ray, and their parameters cor-
respond to the four lines in the
original image. Intensities are
shown inverted in all images to
improve legibility.
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Fig. 8.10
Finding local maximum val-
ues in the accumulator ar-

ray. Original distribution of
the values in the Hough ac-
cumulator (a). Variant A:
Threshold operation using 50%
of the maximum value (b).
The remaining regions repre-
sent the four dominant lines

in the image, and the coor-
dinates of their centroids are

a good approximation to the
line parameters. Variant B:
Using non-mazimum sup-
pression results in a large
number of local maxima (c)
that must then be reduced us-
ing a threshold operation (d).
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(2) (b)

(c) (d)

Mind the vertical lines!

Special consideration should be given to wertical lines (once more!)
when processing the contents of the accumulator map. The param-
eter pairs for these lines lie near # = 0 and 6 = 7 at the left and
right borders, respectively, of the accumulator map (see Fig. 8.8(b)).
Thus, to locate peak clusters in this part of the parameter space,
the horizontal coordinate along the 6 axis must be treated circularly,
that is, modulo m. However, as can be seen clearly in Fig. 8.8(b), the
sinusoidal traces in the parameter space do not continue smoothly at
the transition # = m — 0, but are vertically mirrored! Evaluating
such neighborhoods near the borders of the parameter space thus
requires special treatment of the vertical (r) accumulator coordinate.

8.3.2 Hough Transform Extensions

So far, we have presented the Hough transform only in its most basic
formulation. The following is a list of some of the more common
methods of improving and refining the method.

Modified accumulation

The purpose of the accumulator map is to locate the intersections of
multiple 2D curves. Due to the discrete nature of the image and ac-
cumulator coordinates, rounding errors usually cause the parameter
curves not to intersect in a single accumulator cell, even when the



associated image lines are exactly straight. A common remedy is, for
a given angle § = iy - Ay (Alg. 8.1), to increment not only the main
accumulator cell A(Z, j) but also the neighboring cells A(i, j—1) and
A(i,j+1), possibly with different weights. This makes the Hough
transform more tolerant against inaccurate point coordinates and
rounding errors.

Considering edge strength and orientation

Until now, the raw data for the Hough transform was typically an
edge map that was interpreted as a binary image with ones at poten-
tial edge points. Yet edge maps contain additional information, such
as the edge strength F(u,v) and local edge orientation @(u,v) (see
Sec. 6.3), which can be used to improve the results of the HT.

The edge strength E(u,v) is especially easy to take into consid-
eration. Instead of incrementing visited accumulator cells by 1, add
the strength of the respective edge, that is,

Ali,§) < A(i, §) + E(u, v). (8.15)

In this way, strong edge points will contribute more to the accumu-
lated values than weak ones (see also Exercise 8.6).

The local edge orientation ®(u,v) is also useful for limiting the
range of possible orientation angles for the line at (u,v). The angle
&(u,v) can be used to increase the efficiency of the algorithm by
reducing the number of accumulator cells to be considered along the
0 axis. Since this also reduces the number of irrelevant “votes” in
the accumulator, it increases the overall sensitivity of the Hough
transform (see, e.g., [125, p. 483)]).

Bias compensation

Since the value of a cell in the Hough accumulator represents the
number of image points falling on a line, longer lines naturally have
higher values than shorter lines. This may seem like an obvious point
to make, but consider when the image only contains a small section
of a “long” line. For instance, if a line only passes through the corner
of an image then the cells representing it in the accumulator array
will naturally have lower values than a “shorter” line that lies entirely
within the image (Fig. 8.11). It follows then that if we only search
the accumulator array for maximal values, it is likely that we will
completely miss short line segments. One way to compensate for

8.3 HOUGH ALGORITHM

Fig. 8.11

Hough transform bias problem.
‘When an image represents only
a finite section of an object,
then those lines nearer the
center (smaller r values) will
have higher values than those
farther away (larger r values).
As an example, the maximum
value of the accumulator for
line a will be higher than that
of line b.
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with the corresponding parameters and then normalize the result, for
example, in the form

A, j)
max(1, Ay (i, 7))

AL, j) + (8.16)
The normalization map A . (i, 7) can be determined analytically (by
calculating the intersecting length of each line) or by simulation; for
example, by computing the Hough transform of an image with the
same dimensions in which all pixels are edge pixels or by using a
random image in which the pixels are uniformly distributed.

Line endpoints

Our simple version of the Hough transform determines the parame-
ters of the line in the image but not their endpoints. These could be
found in a subsequent step by determining which image points belong
to any detected line (e.g., by applying a threshold to the perpendic-
ular distance between the ideal line—defined by its parameters—and
the actual image points). An alternative solution is to calculate the
extreme point of the line during the computation of the accumulator
array. For this, every cell of the accumulator array is supplemented
with four addition coordinates to

A(Zv J) = (a7 Umins Ymins Ymax> vmax>7 (817>

where component a denotes the original accumulator value and u,,;,,
Umin, Umax, Umax are the coordinates of the line’s bounding box. After
the additional coordinates are initialized, they are updated simulta-
neously with the positions along the parameter trace for every image
point (u,v). After completion of the process, the accumulator cell
(4, 7) contains the bounding box for all image points that contributed
it. When finding the maximum values in the second stage, care should
be taken so that the merged cells contain the correct endpoints (see
also Exercise 8.4).

Hierarchical Hough transform

The accuracy of the results increases with the size of the parameter
space used; for example, a step size of 256 along the 6 axis is equiv-
alent to searching for lines at every 5£= ~ 0.7°. While increasing the
number of accumulator cells provides a finer result, bear in mind that
it also increases the computation time and especially the amount of
memory required.

Instead of increasing the resolution of the entire parameter space,
the idea of the hierarchical HT is to gradually “zoom” in and refine
the parameter space. First, the regions containing the most impor-
tant lines are found using a relatively low-resolution parameter space,
and then the parameter spaces of those regions are recursively passed
to the HT and examined at a higher resolution. In this way, a rel-
atively exact determination of the parameters can be found using a
limited (in comparison) parameter space.



Line intersections

It may be useful in certain applications not to find the lines them-
selves but their intersections, for example, for precisely locating the
corner points of a polygon-shaped object. The Hough transform de-
livers the parameters of the recovered lines in Hessian normal form
(that is, as pairs L, = (0}, r)). To compute the point of intersection
Ty = (T19,Y12)" for two lines Ly = (0y,71) and Ly, = (0,75) we
need to solve the system of linear equations

Ty - cos(0y) + yy2 - sin(by) = 1y,

. (8.18)
Ty - cos(0y) + Y12 - sin(fy) = 7y,

for the unknowns x5, y;2. The solution is

() = (i) ()
B 1 (7"1 sin(fy) —7ry sin(@l)) 7 (8.19)

"~ sin(f,—6;) \rycos(8y)—r cos(6y)

for sin(f, — 0;) # 0. Obviously x, is undefined (no intersection point
exists) if the lines L, L, are parallel to each other (i.e., if 6; = 6,).

Figure 8.12 shows an illustrative example using A RToolkit® mark-
ers. After automatic thresholding (see Ch. 11) the straight line seg-
ments along the outer boundary of the largest binary region are an-
alyzed with the Hough transform. Subsequently, the corners of the
marker are calculated precisely as the intersection points of the in-
volved line segments.

8.4 Java Implementation

The complete Java source code for the straight line Hough transform
is available online in class HoughTransformLines.” Detailed usage of
this class is shown in the ImageJ plugin Find_Straight_Lines (see
also Prog. 8.1 for a minimal example).®

HoughTransformLines (class)

This class is a direct implementation of the Hough transform for
straight lines, as outlined in Alg. 8.1. The sin/cos function calls (see
Alg. 8.1, line 15) are substituted by precalculated tables for improved
efficiency. The class defines the following constructors:
HoughTransformLines (ImageProcessor I, Parameters
params)
I denotes the input image, where all pixel values > 0 are
assumed to be relevant (edge) points; params is an instance of
the (inner) class HoughTransformLines.Parameters, which
allows to specify the accumulator size (nAng, nRad) etc.

6 Used for augmented reality applications, see www.hit.washington.edu/
artoolkit/.

" Package imagingbook.pub.hough.

8 Note that the current implementation has no bias compensation (see
Sec. 8.3.2, Fig. 8.11).

8.4 JAVA
IMPLEMENTATION
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Fig. 8.12

Hough transform used for
precise calculation of corner
points. Original image showing
a typical ARToolkit marker
(a), result after automatic
thresholding (b). The outer
contour pixels of the largest
binary region (c) are used as
input points to the Hough
transform. Hough accumulator
map (d), detected lines and
marked intersection points (e).
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' (b)
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(d)

HoughTransformLines (Point2D[] points, int M, int N,

Parameters params)
In this case the Hough transform is calculated for a sequence
of 2D points (points); M, N specify the associated coordinate
frame (for calculating the reference point @), which is
typically the original image size; params is a parameter object
(as described before).

The most important public methods of the class ClassHoughTrans-
formLines are:

HoughLine[] getLines (int amin, int maxLines)

Returns a sorted sequence of line objects® whose accumulator
value is amin or greater. The sequence is sorted by accumula-
tor values and contains up to maxLines elements

int[][] getAccumulator ()

Returns a reference to the accumulator map A (of size m x n
for angles and radii, respectively).

9 Of type HoughTransformLines .HoughLine.



1 import imagingbook. ..
2 import imagingbook...
3 import imagingbook...

.HoughTransformLines;
.HoughTransformLines .HoughLine;
.HoughTransformLines .Parameters;

5

6 public void run(ImageProcessor ip) {

7 Parameters params = new Parameters();
8
9

params.nAng = 256; I=m
params.nRad = 256; I=mn
10
11 /I compute the Hough Transform:
12 HoughTransformLines ht =
13 new HoughTransformLines (ip, params);
14
15 /I retrieve the 5 strongest lines with min. 50 accumulator votes
16 HoughLine[] lines = ht.getLines(50, 5);
17
18 if (lines.length > 0) {
19 IJ.log("Lines found:");
20 for (HoughLine L : lines) {
21 IJ.1log(L.toString()); // listthe resulting lines
22 }
23 }
24 else
25 IJ.log("No lines found!");
26}

int[J[] getAccumulatorMax ()
Returns a copy of accumulator array in which all non-maxima
are replaced by zero values.

FloatProcessor getAccumulatorImage ()
Returns a floating-point image of the accumulator array, anal-
ogous to getAccumulator (). Angles #; run horizontally, radii

r; vertically.

FloatProcessor getAccumulatorMaxImage ()
Returns a floating-point image of the accumulator array with
suppressed non-maximum values, analogous to getAccumu-
latorMax ().

double angleFromIndex (int i)
Returns the angle ; € [0, 7) for the given index i in the range
0,...,m—1.

double radiusFromIndex (int j)
Returns the radius 7; € [~7yax; "'max] for the given index j in
the range 0,...,n—1.

Point2D getReferencePoint ()
Returns the (fixed) reference point «,. for this Hough transform
instance.

8.4 JAVA
IMPLEMENTATION

Prog. 8.1

Minimal example for the usage
of class HoughTransformLines
(run() method for an ImageJ
plugin of type PlugInFilter).
First (in lines 7-9) a parameter
ob ect is created and config-
ured; nAng (= m) and nRad
(= n) specify the number of
discrete angular and radial
steps in the Hough accumula-
tor map. In lines 12-13 an in-
stance of HoughTransformLines
is created for the image ip.
The accumulator map is cal-
culated in this step. In line
16, getLines() is called to re-
trieve the sequence of the 5
strongest detected lines, with
at least 50 image points each.
Unless empty, this sequence is
subsequently listed.
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Transrory HoughLine represents a straight line in Hessian normal form. It is

implemented as an inner class of HoughTransformLines. It offers no
public constructor but the following methods:
double getAngle ()
Returns the angle 6 € [0, 7) of this line.

double getRadius ()
Returns the radius 7 € [—7ax, Tmax) Of this line, relative to
the associated Hough transform’s reference point «,..

int getCount ()
Returns the Hough transform’s accumulator value (number of
registered image points) for this line.

Point2D getReferencePoint ()
Returns the (fixed) reference point @, for this line. Note that
all lines associated with a given Hough transform share the
same reference point.

double getDistance (Point2D p)
Returns the Euclidean distance of point p to this line. The
result may be positive or negative, depending on which side of
the line p is located.

8.5 Hough Transform for Circles and Ellipses

8.5.1 Circles and Arcs

Since lines in 2D have two degrees of freedom, they could be com-
pletely specified using two real-valued parameters. In a similar fash-
ion, representing a circle in 2D requires three parameters, for example

C = <£’ g? T.>7

where z, y are the coordinates of the center and p is the radius of
the circle (Fig. 8.13).

Fig. 8.13
Representation of circles and |
ellipses in 2D. A circle (a)
requires three parameters
(e.g., T,y,r). An arbitrary
ellipse (b) takes five param- - -- 7
eters (e.g., T,Y,Tg, Ty, ).

p=(z,y)

(@) o
A point p = (z,y) lies exactly on the circle C' if the condition
(x—2)% + (x —9)* =12 (8.20)

holds. Therefore the Hough transform for circles requires a 3D pa-

176 rameter space A(%, j, k) to find the position and radius of circles (and



circular arcs) in an image. Unlike the HT for lines, there does not ex-
ist a simple functional dependency between the coordinates in param-
eter space; so how can we find every parameter combination (Z,y, r)
that satisfies Eqn. (8.20) for a given image point (x,y)? A “brute
force” is to a exhaustively test all cells of the parameter space to see
if the relation in Eqn. (8.20) holds, which is computationally quite
expensive, of course.

If we examine Fig. 8.14, we can see that a better idea might be
to make use of the fact that the coordinates of the center points also
form a circle in Hough space. It is not necessary therefore to search
the entire 3D parameter space for each image point. Instead we need
only increase the cell values along the edge of the appropriate circle
on each r plane of the accumulator array. To do this, we can adapt
any of the standard algorithms for generating circles. In this case,
the integer math version of the well-known Bresenham algorithm [33]
is particularly well-suited.

Y; AL, 4, k) T

Potential centers
Hr for pg

True center
U~ of C

Ty

Figure 8.15 shows the spatial structure of the 3D parameter space
for circles. For a given image point p,, = (u,,,v,,), at each plane
along the r axis (for r, = 7y, .-, max), & circle centered at
(Up,, v,,) with the radius r,, is traversed, ultimately creating a 3D
cone-shaped surface in the parameter space. The coordinates of the
dominant circles can be found by searching the accumulator space
for the cells with the highest values; that is, the cells where the most
cones intersect. Just as in the linear HT, the bias problem (see Sec.
8.3.2) also occurs in the circle HT. Sections of circles (i.e., arcs) can
be found in a similar way, in which case the maximum value possible
for a given cell is proportional to the arc length.

8.5.2 Ellipses

In a perspective image, most circular objects originating in our real,
3D world will actually appear in 2D images as ellipses, except in the
case where the object lies on the optical axis and is observed from
the front. For this reason, perfectly circular structures seldom occur

8.5 HouGH TRANSFORM
FOR CIRCLES AND
ELLIPSES

Fig. 8.14

Hough transform for circles.
The illustration depicts a sin-
gle slice of the 3D accumula-
tor array A(i, j, k) at a given
circle radius 7. The center
points of all the circles running
through a given image point
p, = (x1,y,) form a circle C;
with a radius of rj, centered
around p,, just as the cen-
ter points of the circles that
pass through p, and p; lie on
the circles Cy, C3. The cells
along the edges of the three
circles Cy, Cy, C3 of radius 7y,
are traversed and their val-
ues in the accumulator array
incremented. The cell in the
accumulator array contains

a value of 3 where the circles
intersect at the true center of
the image circle C.
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Fig. 8.15
3D parameter space for cir-
cles. For each image point

p = (u,v), the cells lying

on a cone (with its axis at
(u,v) and varying radius

ry) in the 3D accumulator
A(i, j, k) are traversed and
incremented. The size of the
discrete accumulator is set to
100x100x30. Candidate center
points are found where many
of the 3D surfaces intersect.
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in photographs. While the Hough transform can still be used to find
ellipses, the larger parameter space required makes it substantially
more expensive.

A general ellipse in 2D has five degrees of freedom and therefore
requires five parameters to represent it, for example,

E = (Z,y,1q,Ty, ), (8.21)
where (z,y) are the coordinates of the center points, (r,,r,) are the
two radii, and « is the orientation of the principal axis (Fig. 8.13).1°
In order to find ellipses of any size, position, and orientation using the
Hough transform, a 5D parameter space with a suitable resolution in
each dimension is required. A simple calculation illustrates the enor-
mous expense of representing this space: using a resolution of only
128 = 27 steps in every dimension results in 23° accumulator cells,
and implementing these using 4-byte int values thus requires 237
bytes (128 gigabytes) of memory. Moreover, the amount of process-
ing required for filling and evaluating such a huge parameter space
makes this method unattractive for real applications.

An interesting alternative in this case is the generalized Hough
transform, which in principle can be used for detecting any arbitrary
2D shape [15,117]. Using the generalized Hough transform, the shape
of the sought-after contour is first encoded point by point in a table
and then the associated parameter space is related to the position
(2, ye), scale S, and orientation @ of the shape. This requires a 4D

space, which is smaller than that of the Hough method for ellipses
described earlier.

10 See Chapter 10, Eqn. (10.39) for a parametric equation of this ellipse.



8.6 Exercises

Exercise 8.1. Drawing a straight line given in Hessian normal (HNF)
form is not directly possible because typical graphics environments
can only draw lines between two specified end points.!' An HNF line
L = (0,r), specified relative to a reference point x, = (z,,y,), can
be drawn into an image I in several ways (implement both versions):

Version 1: Tterate over all image points (u, v); if Eqn. (8.11), that is,
r=(u—uwx,)-cos(d) + (v —y,) - sin(h), (8.22)

is satisfied for position (u,v), then mark the pixel I(u,v). Of
course, this “brute force” method will only show those (few) line
pixels whose positions satisfy the line equation exactly. To ob-
tain a more “tolerant” drawing method, we first reformulate Eqn.
(8.22) to

(u—2x,) - cos(d) + (v—y,)-sin(@) —r =d. (8.23)

Obviously, Eqn. (8.22) is only then exactly satisfied if d = 0
in Eqn. (8.23). If, however, Eqn. (8.22) is not satisfied, then the
magnitude of d # 0 equals the distance of the point (u, v) from the
line. Note that d itself may be positive or negative, depending on
which side of the line (u, v) is located. This suggests the following
version.

Version 2: Define a constant w > 0. Iterate over all image positions
(u,v); whenever the inequality

|(u— ) cos(f) + (v—uy,) sin(d) —r| <w (8.24)

is satisfied for position (u,v), mark the pixel I(u,v). For example,
all line points should show with w = 1. What is the geometric
meaning of w?

Exercise 8.2. Develop a less “brutal” method (compared to Exercise
8.1) for drawing a straight line L = (6,r) in Hessian normal form
(HNF). First, set up the HNF equations for the four border lines
of the image, A, B,C,D. Now determine the intersection points of
the given line L with each border line A,..., D and use the built-
in drawLine () method or a similar routine to draw L by connecting
the intersection points. Consider which special situations may appear
and how they could be handled.

Exercise 8.3. Implement (or extend) the Hough transform for
straight lines by including measures against the bias problem, as
discussed in Sec. 8.3.2 (Eqn. (8.16)).

Exercise 8.4. Implement (or extend) the Hough transform for find-
ing lines that takes into account line endpoints, as described in Sec.
8.3.2 (Eqn. (8.17)).

Exercise 8.5. Calculate the pairwise intersection points of all de-
tected lines (see Eqns. (8.18)—(8.19)) and show the results graphi-
cally.

1 For example, with drawLine (x1, y1, x2, y2) in Imagel.

8.6 EXERCISES
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CurvEs: THE Hougn updating the accumulator map takes into account the intensity (edge
TransrorM magnitude) of the current pixel, as described in Eqn. (8.15).

Exercise 8.7. Implement a hierarchical Hough transform for straight
lines (see p. 172) capable of accurately determining line parameters.

Exercise 8.8. Implement the Hough transform for finding circles
and circular arcs with varying radii. Make use of a fast algorithm for
drawing circles in the accumulator array, such as described in Sec.
8.5.
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9

Morphological Filters

In the discussion of the median filter in Chapter 5 (Sec. 5.4.2), we
noticed that this type of filter can somehow alter 2D image structures.
Figure 9.1 illustrates once more how corners are rounded off, holes of
a certain size are filled, and small structures, such as single dots or
thin lines, are removed. The median filter thus responds selectively to
the local shape of image structures, a property that might be useful
for other purposes if it can be applied not just randomly but in a
controlled fashion. Altering the local structure in a predictable way
is exactly what “morphological” filters can do, which we focus on in
this chapter.

Fig. 9.1

- L] Median filter applied to a bi-
nary image: original image (a)
and results from a 3 X 3 pixel
median filter (b) and a 5x 5
& pixel median filter (c).

In their original form, morphological filters are aimed at binary
images, images with only two possible pixel values, 0 and 1 or black
and white, respectively. Binary images are found in many places,
in particular in digital printing, document transmission (FAX) and
storage, or as selection masks in image and video editing. Binary
images can be obtained from grayscale images by simple thresholding
(see Sec. 4.1.4) using either a global or a locally varying threshold
value. We denote binary pixels with values 1 and 0 as foreground and
background pixels, respectively. In most of the following examples,
the foreground pixels are shown in black and background pixels are
shown in white, as is common in printing.

At the end of this chapter, we will see that morphological filters

are applicable not only to binary images but also to grayscale and 181
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9 MORPHOLOGICAL

Basic idea of size-dependent

FILTERS

Fig. 9.2

removal of image structures.
Small structures may be elim-
inated by iterative shrink-
ing and subsequent grow-

ing. Ideally, the “surviv-

ing” structures should be re-
stored to their original shape.
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Shrink I:>

&= Grow

even color images, though these operations differ significantly from
their binary counterparts.

9.1 Shrink and Let Grow

Our starting point was the observation that a simple 3 x 3 pixel me-
dian filter can round off larger image structures and remove smaller
structures, such as points and thin lines, in a binary image. This
could be useful to eliminate structures that are below a certain size
(e.g., to clean an image from noise or dirt). But how can we control
the size and possibly the shape of the structures affected by such an
operation?

Although its structural effects may be interesting, we disregard
the median filter at this point and start with this task again from
the beginning. Let’s assume that we want to remove small struc-
tures from a binary image without significantly altering the remain-
ing larger structures. The key idea for accomplishing this could be
the following (Fig. 9.2):

1. First, all structures in the image are iteratively “shrunk” by peel-
ing off a layer of a certain thickness around the boundaries.

2. Shrinking removes the smaller structures step by step, and only
the larger structures remain.

3. The remaining structures are then grown back by the same
amount.

4. Eventually the larger regions should have returned to approxi-
mately their original shapes, while the smaller regions have dis-
appeared from the image.

All we need for this are two types of operations. “Shrinking” means
to remove a layer of pixels from a foreground region around all its
borders against the background (Fig. 9.3). The other way around,
“growing”, adds a layer of pixels around the border of a foreground
region (Fig. 9.4).



(b) (c)

(a) (b) (c)

9.1.1 Neighborhood of Pixels

For both operations, we must define the meaning of two pixels being
adjacent (i.e., being “neighbors”). Two definitions of “neighborhood”
are commonly used for rectangular pixel grids (Fig. 9.5):

e 4-neighborhood (N;): the four pixels adjacent to a given pixel
in the horizontal and vertical directions;

e 8-neighborhood (Nj): the pixels contained in N, plus the four
adjacent pixels along the diagonals.

N4 N8
N No Ny No
N N5 Ng N7

9.2 Basic Morphological Operations

Shrinking and growing are indeed the two most basic morphological
operations, which are referred to as “erosion” and “dilation”, respec-
tively. These morphological operations, however, are much more gen-
eral than illustrated in the example in Sec. 9.1. They go well beyond
removing or attaching single pixel layers and—in combination—can
perform much more complex operations.

9.2.1 The Structuring Element

Similar to the coefficient matrix of a linear filter (see Sec. 5.2), the
properties of a morphological filter are specified by elements in a ma-
trix called a “structuring element”. In binary morphology, the struc-
turing element (just like the image itself) contains only the values 0

9.2 BAsIC
MORPHOLOGICAL
OPERATIONS

Fig. 9.3

“Shrinking” a foreground re-
gion by removing a layer of
border pixels: original im-
age (a), identified foreground
pixels that are in direct con-
tact with the background (b),
and result after shrinking (c).

Fig. 9.4

“Growing” a foreground re-
gion by attaching a layer of
pixels: original image (a), iden-
tified background pixels that
are in direct contact with the
region (b), and result after
growing (c).

Fig. 9.5

Definitions of “neighbor-
hood” on a rectangular
pixel grid: 4-neighborhood

Ny = {Ny,..., Ny} and
8-neighborhood Ng =
Ny U{Ng, ..., Ng}.
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Fig. 9.6
Binary structuring ele-
ment (example). 1-elements
are marked with e; O—cells
are empty. The hot spot
(boxed) is not necessar-

ily located at the center.

Fig. 9.7
A binary image I or a struc-
turing element H can each

be described as a set of co-
ordinate pairs, Q; and Qy,
respectively. The dark shaded
element in H marks the co-
ordinate origin (hot spot).
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and 1,
H{(i,j) €{0,1},

and the hot spot marks the origin of the coordinate system of H (Fig.
9.6). Notice that the hot spot is not necessarily located at the center
of the structuring element, nor must its value be 1.

origin (hot spot)

9.2.2 Point Sets

For the formal specification of morphological operations, it is some-
times helpful to describe binary images as sets of 2D coordinate
points.!

For a binary image I(u,v) € {0, 1}, the corresponding point set
Q; cousists of the coordinate pairs p = (u, v) of all foreground pixels,

Qr={p|I(p) =1} (9.1)

Of course, as shown in Fig. 9.7, not only a binary image I but also a
structuring element H can be described as a point set.

I H
01 2 3
0 -10 1
1 o o -1
9 R 0 o o
3

I'=09;={(1,1),(21),(2,2)} H=Qy =1{(0,0),(1,0)}

With the description as point sets, fundamental operations on
binary images can also be expressed as simple set operations. For
example, inverting a binary image I — I (i.e., exchanging foreground
and background) is equivalent to building the complementary set

Q;=9,={peZ’|p¢ O} (9.2)

Combining two binary images I; and I, by an OR operation between
corresponding pixels, the resulting point set is the union of the indi-
vidual point sets Q; and Q; ; that is,

Qrvr, = Qr, UQy,. (9:3)

Since a point set Q; is only an alternative representation of the bi-
nary image I (i.e., I = Q;), we will use both image and set notations
synonymously in the following. For example, we simply write I in-
stead of Q; for an inverted image as in Eqn. (9.2) or I; U I, instead
of Q; U Qp, in Eqn. (9.3). The meaning should always be clear in
the given context.

L Morphology is a mathematical discipline dealing with the algebraic anal-
ysis of geometrical structures and shapes, with strong roots in set theory.



Translating (shifting) a binary image I by some coordinate vector
d creates a new image with the content

= I(p)

Iy(p+d) oder Ia(p) = I(p —d), (9.4)
which is equivalent to changing the coordinates of the original point

set in the form
Iy={(p+d)|pel}.

In some cases, it is also necessary to reflect (mirror) a binary image
or point set about its origin, which we denote as

(9.5)

r={-plpel}. (9.6)

9.2.3 Dilation

A dilation is the morphological operation that corresponds to our in-
tuitive concept of “growing” as discussed already. As a set operation,
it is defined as

IoH={(p+q)|forallpel,qec H}. (9.7)
Thus the point set produced by a dilation is the (vector) sum of all
possible pairs of coordinate points from the original sets I and H,
as illustrated by a simple example in Fig. 9.8. Alternatively, one
could view the dilation as the structuring element H being replicated
at each foreground pixel of the image I or, conversely, the image I
being replicated at each foreground element of H. Expressed in set
notation,? this is

IoH=|JH (9.8)

P UI
pel

qeH

with Hp,, I, denoting the sets H, I shifted by p and g, respectively
(see Eqn. (9.5)).

I H I1®H
0 1 2 3 -1 0 1 0o 1 2 3
0 —1 0
° D 0 e o = 1 °
2 1 2
3 3
I={(1,1),(2,1),(2,2)}, H={(0,0),(1,0)}
I@HE{UJ%HO@JLU (1,0),
(2,1) +(0,0), (2,1) + (1,0),
(2,2) + ( 0), (2,2) +(1,0) }

2 See also Sec. A.2 in the Appendix.

9.2 BAsIC
MORPHOLOGICAL
OPERATIONS

Fig. 9.8

Binary dilation example. The
binary image I is subject to
dilation with the structuring
element H. In the result I & H
the structuring element H is
replicated at every foreground
pixel of the original image I.
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Fig. 9.9

Binary erosion example. The
binary image I is subject to
erosion with H as the structur-
ing element. H is only covered
by I when placed at position
p = (1,1), thus the result-
ing points set contains only
the single coordinate (1,1).
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9.2.4 Erosion

The quasi-inverse of dilation is the erosion operation, again defined
in set notation as

IeH={peZ’|(p+q)el, forallge H}. (9.9)

This operation can be interpreted as follows. A position p is con-
tained in the result I © H if (and only if) the structuring element
H—when placed at this position p—is fully contained in the fore-
ground pixels of the original image; that is, if H,, is a subset of I.
Equivalent to Eqn. (9.9), we could thus define binary erosion as

IoH={peZ’|H,C I} (9.10)

Figure 9.9 shows a simple example for binary erosion.

1 H IoH
0o 1 2 3 -1 0 1 0 1 2 3
0 -1 0
1 ° (&) 0 o o = 1 °
2 1 2
3 3

I1={(1,1),(21),(2,2)}, H=1{(0,0),(1,0)}

IcH={(,1)} because
(1,1)+ (0,0)=(1,1) €I and (1,1)+(1,0)=(2,1) €I

9.2.5 Formal Properties of Dilation and Erosion

The dilation operation is commutative,
I®H=H®I, (9.11)

and therefore—just as in linear convolution—the image and the struc-
turing element (filter) can be exchanged to get the same result. Di-
lation is also associative, that is,

(LheL)®l;=1,® (I, ®I3), (9.12)

and therefore the ordering of multiple dilations is not relevant. This
also means—analogous to linear filters (cf. Eqn. (5.25))—that a dila-
tion with a large structuring element of the form Hy;, = H, & Hy &
... ® Hg can be efficiently implemented as a sequence of multiple
dilations with smaller structuring elements by

IT® Hye=(..(I®H,)®Hy)® ... ® Hg) (9.13)

There is also a neutral element (&) for the dilation operation, similar
to the Dirac function for the linear convolution (see Sec. 5.3.4),

[®5=6®1=1, withd={(0,0)} (9.14)



The erosion operation is, in contrast to dilation (but similar to
arithmetic subtraction), not commutative, that is,

IeH+HSI, (9.15)

in general. However, if erosion and dilation are combined, then—
again in analogy with arithmetic subtraction and addition—the fol-
lowing chain rule holds:

(Lobh)oly=1,0 (). (9.16)

Although dilation and erosion are not mutually inverse (in gen-
eral, the effects of dilation cannot be undone by a subsequent ero-
sion), there are still some strong formal relations between these two
operations. For one, dilation and erosion are dual in the sense that a

dilation of the foreground (I) can be accomplished by an erosion of
the background (I) and subsequent inversion of the result,

IoH = (IS HY), (9.17)

where H* denotes the reflection of H (Eqn. (9.6)). This works simi-
larly the other way, too, namely

TeH={aH), (9.18)

effectively eroding the foreground by dilating the background with
the mirrored structuring element, as illustrated by the example in
Fig. 9.10 (see [88, pp. 521-524] for a formal proof).

1 H IoH

(a) e o o S) e o =

[ ]
[ ]
/]\

+ L
4 + T

(b) ° ° D ° = ° e o o
I H* IeH

Equation (9.18) is interesting because it shows that we only need
to implement either dilation or erosion for computing both, consider-
ing that the foreground-background inversion is a very simple task.
Algorithm 9.1 gives a simple algorithmic description of dilation and
erosion based on the aforementioned relationships.

9.2 BAsIC
MORPHOLOGICAL
OPERATIONS

Fig. 9.10

Implementing erosion via di-
lation. The binary erosion of
the foreground I © H (a) can
be implemented by dilating the
inverted (background) image I
with the reflected structuring
element H* and subsequently
inverting the result again (b).
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Alg. 9.1

Binary dilation and erosion.
Procedure DILATE() imple-
ments the binary dilation as
suggested by Eqn. (9.8). The
original image [ is displaced
to each foreground coordinate
of H and then copied into the
resulting image I’. The hot
spot of the structuring ele-
ment H is assumed to be at
coordinate (0,0). Procedure
ERODE() implements the bi-
nary erosion by dilating the
inverted image I with the re-
flected structuring element H*,
as described by Eqn. (9.18).

Fig. 9.11
Typical binary structur-
ing elements of various
sizes. 4-neighborhood (a),
8-neighborhood (b),
“small disk” (c).
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1: Dilate(1, H)
Input: I, a binary image of size M x Nj;
H, a binary structuring element.
Returns the dilated image I' = I & H.
2: Create map I': M x N+ {0,1} > new binary image I’
3: for all (p) € M x N do
4: I'(p) «+ 0 >I'+{}
5: for all g € H do
6: for all p € I do
T: I'(p+q) 1 oI I'U{(p+9)}
8: return I’ >I'=I1®H
9: Erode(I,H)
Input: I, a binary image of size M x Nj;
H, a binary structuring element.
Returns the eroded image I' = I © H.
10: I + Invert(I) > I I
11: H* < Reflect(H)
12: I’ + Invert(Dilate(I, H*)) >I'=ToH=(I®H*)
13: return I’
e o o
[ ] e o o e o o
e o o e o o e o o
[ ] e o o e o o
e o o

9.2.6 Designing Morphological Filters

A morphological filter is unambiguously specified by (a) the type of
operation and (b) the contents of the structuring element. The ap-
propriate size and shape of the structuring element depends upon the
application, image resolution, etc. In practice, structuring elements
of quasi-circular shape are frequently used, such as the examples
shown in Fig. 9.11.

A dilation with a circular (disk-shaped) structuring element with
radius r adds a layer of thickness r to any foreground structure in the
image. Conversely, an erosion with that structuring element peels off
layers of the same thickness. Figure 9.13 shows the results of dilation
and erosion with disk-shaped structuring elements of different diam-
eters applied to the original image in Fig. 9.12. Dilation and erosion
results for various other structuring elements are shown in Fig. 9.14.

Disk-shaped structuring elements are commonly used to imple-
ment isotropic filters, morphological operations that have the same
effect in every direction. Unlike linear filters (e.g., the 2D Gaussian
filter in Sec. 5.3.3), it is generally not possible to compose an isotropic
2D structuring element H° from 1D structuring elements H, and H,,
since the dilation H, & H, always results in a rectangular (i.e., non-
isotropic) structure. A remedy for approximating large disk-shaped
filters is to alternately apply smaller disk-shaped operators of differ-



ent shapes, as illustrated in Fig. 9.15. The resulting filter is generally
not fully isotropic but can be implemented efficiently as a sequence
of small filters.

9.2.7 Application Example: Outline

A typical application of morphological operations is to extract the
boundary pixels of the foreground structures. The process is very
simple. First, we apply an erosion on the original image I to remove
the boundary pixels of the foreground,

9.2 BAsIC
MORPHOLOGICAL
OPERATIONS

Fig. 9.12
Original binary image and the
section used in the following
examples (illustration by Al-
brecht Diirer, 1515).

Fig. 9.13
Results of binary dilation and
erosion with disk-shaped struc-
turing elements. The radius of
the disk (r) is 1.0 (a), 2.5 (b),
and 5.0 (c).
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Fig. 9.14

Examples of binary dilation
and erosion with various free-
form structuring elements.
The structuring elements H
are shown in the left column
(enlarged). Notice that the
dilation expands every iso-
lated foreground point to the
shape of the structuring ele-
ment, analogous to the impulse
response of a linear filter. Un-
der erosion, only those ele-
ments where the structuring
element is fully contained in
the original image survive.
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H Dilation

I'=IsH,,

where H,, is a structuring element, for example, for a 4- or 8-
neighborhood (Fig. 9.11) as the structuring element H,,. The actual
boundary pixels B are those contained in the original image but not
in the eroded image, that is, the intersection of the original image I
and the inverted result I’, or

B« INT=In(I&H,). (9.19)

Figure 9.17 shows an example for the extraction of region boundaries.
Notice that using the 4-neighborhood as the structuring element H,,
produces “8-connected” contours and vice versa [125, p. 504].

The process of boundary extraction is illustrated on a simple ex-
ample in Fig. 9.16. As can be observed in this figure, the result B



o &

H, Hy®H, H,G0H,®H, H,®H,&H,®H,

(b) .

Hyg Hy @ Hy Hy ®Hy®Hy Hg ®Hg ®Hp® Hp

o ¢

Hp Hp ® Hy Hp ® Hy® Hp Hp ®Hy®Hp ® Hy

contains exactly those pixels that are different in the original image
I and the eroded image I’ = I & H,,, which can also be obtained by
an exclusive-OR (XOR) operation between pairs of pixels; that is,
boundary extraction from a binary image can be implemented as

B(p) < I(p) XOR (I © H,)(p), for all p. (9.20)

Figure 9.17 shows a more complex example for isolating the boundary
pixels in a real image.

I IoH,
o o °
° e o o o o o
H,= o |0 o e o o o e o o
° e o o o o o
e o o
IoH, B=INnlIocH,
e 0o 0 0 0 0
e o 0o 0 0 0 0 o o °
o o e o o o o
o o o o °
o o o o ° °
o o o o e o o
o o o o

9.2 BAsIC
MORPHOLOGICAL
OPERATIONS

Fig. 9.15

Composition of large morpho-
logical filters by repeated ap-
plication of smaller filters: re-
peated application of the struc-
turing element H, (a) and
structuring element Hg (b);
alternating application of Hy
and H 4 (c).

Fig. 9.16

Outline example using a 4-
neighborhood structuring ele-
ment H,,. The image I is first
eroded (I © H,,) and subse-
quently inverted (I & H,,).
The boundary pixels are finally
obtained as the intersection
INIeH,.
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Fig. 9.17

Extraction of boundary pixels
using morphological opera-
tions. The 4-neighborhood
structuring element used in
(a) produces 8-connected
contours. Conversely, using
the 8-neighborhood as the
structuring element gives
4-connected contours (b).
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9.3 Composite Morphological Operations

Due to their semiduality, dilation and erosion are often used together
in composite operations, two of which are so important that they even
carry their own names and symbols: “opening” and “closing”. They
are probably the most frequently used morphological operations in
practice.

9.3.1 Opening

A binary opening I o H denotes an erosion followed by a dilation with
the same structuring element H,

ToH=(ISH)®H. (9.21)

The main effect of an opening is that all foreground structures that
are smaller than the structuring element are eliminated in the first
step (erosion). The remaining structures are smoothed by the subse-
quent dilation and grown back to approximately their original size, as
demonstrated by the examples in Fig. 9.18. This process of shrinking
and subsequent growing corresponds to the idea for eliminating small
structures that we had initially sketched in Sec. 9.1.

9.3.2 Closing

When the sequence of erosion and dilation is reversed, the resulting
operation is called a closing and denoted [ e H,

TeH=(I®H)OH. (9.22)



Opening Closing
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(c) r=5.0

A closing removes (closes) holes and fissures in the foreground struc-
tures that are smaller than the structuring element H. Some exam-
ples with typical disk-shaped structuring elements are shown in Fig.
9.18.

9.3.3 Properties of Opening and Closing

Both operations, opening as well as closing, are idempotent, mean-
ing that their results are “final” in the sense that any subsequent
application of the same operation no longer changes the result, that
is,

(IocH)oH)oH =...,

IoH=(IoH)oH (9.23)
H=(IeH)oeH)eH=.... ’

TeH=(IeH)eo

Also, opening and closing are “duals” in the sense that opening the
foreground is equivalent to closing the background and vice versa,
that is,

IoH=IeH and TeH=1Io0H. (9.24)

9.3 COMPOSITE
MORPHOLOGICAL
OPERATIONS

Fig. 9.18

Binary opening and closing
with disk-shaped structuring
elements. The radius r of the
structuring element H is 1.0
(top), 2.5 (center), or 5.0 (bot-
tom).

193



9 Morrrorocicar,  9-4 Thinning (Skeletonization)

194

FILTERS

Thinning is a common morphological technique which aims at shrink-
ing binary structures down to a maximum thickness of one pixel
without splitting them into multiple parts. This is accomplished by
iterative “conditional” erosion. It is applied to a local neighborhood
only if a sufficiently thick structure remains and the operation does
not cause a separation to occur. This requires that, depending on
the local image structure, a decision must be made at every image
position whether another erosion step may be applied or not. The
operation continues until no more changes appear in the resulting
image. It follows that, compared to the ordinary (“homogeneous”)
morphological discussed earlier, thinning is computationally expen-
sive in general. A frequent application of thinning is to calculate the
“skeleton” of a binary region, for example, for structural matching of
2D shapes.

Thinning is also known by the terms center line detection and
medial azis transform. Many different implementations of varied
complexity and efficiency exist (see, e.g., [2,7,68,108,201]). In the
following, we describe the classic algorithm by Zhang and Suen [265]
and its implementation as a representative example.3

9.4.1 Thinning Algorithm by Zhang and Suen

The input to this algorithm is a binary image I, with foreground
pixels carrying the value 1 and background pixels with value 0. The
algorithm scans the image and at each position (u,v) examines a 3x 3
neighborhood with the central element P and the surrounding values
N = (Ng,Ny,...,N;), as illustrated in Fig. 9.5(b). The complete
process is summarized in Alg. 9.2.

For classifying the contents of the local neighborhood N we first
define the function

7
B(N)=Ng+ Ny +--+ Ny = >N, (9.25)

1=0

which simply counts surrounding foreground pixels. We also define
the so-called “connectivity number” to express how many binary com-
ponents are connected via the current center pixel at position (u,v).
This quantity is equivalent to the number of 1 — 0 transitions in the

sequence (Ny, ..., Ny, Ny), or expressed in arithmetic terms,
7
C(N) = ZNi [N — N(i41) mod 8- (9.26)
i=0

Figure 9.19 shows some selected examples for the neighborhood N and
the associated values for the functions B(N) and C'(N). Based on the
above functions, we finally define two Boolean predicates R;, Ry on
the neighborhood N,

3 The built-in thinning operation in ImageJ is also based on this
algorithm.
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[
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Depending on the outcome of R;(N) and Ry(N), the foreground
pixel at the center position of N is either deleted (i.e., eroded) or
marked as non-removable (see Alg. 9.2, lines 16 and 27).

Figure 9.20 illustrates the effect of layer-by-layer thinning per-
formed by procedure ThinOnce(). In every iteration, only one “layer”
of foreground pixels is selectively deleted. An example of thinning
applied to a larger binary image is shown in Fig. 9.21.

(a) Original (b) 1359 deletions (c) 881 deletions

(d) 305 deletions (e) 56 deletions (f) 0 deletions

9.4.2 Fast Thinning Algorithm

In a binary image, only 2% = 256 different combinations of zeros and
ones are possible inside any 8-neighborhood. Since the expressions
in Eqns. (9.27)—(9.27) are relatively costly to evaluate it makes sense
to pre-calculate and tabulate all 256 instances (see Fig. 9.22). This
is the basis of the fast version of Zhang and Suen’s algorithm, sum-
marized in Alg. 9.3. It uses a decision table Q, which is constant and
calculated only once by procedure MakeDeletionCodeTable() in Alg.
9.3 (lines 34-45). The table contains the binary codes

Q('L) € {Oa 1,2, 3} = {00b7 01y, 10y, ]-]-b}v (929)

for i = 0,...,255, where the two bits correspond to the predicates
R, and R,, respectively. The associated test is found in procedure
ThinOnceFast() in line 19. The two passes are in this case controlled
by a separate loop variable (p = 1,2). In the concrete implemen-
tation, the map Q is not calculated at the start but defined as a
constant array (see Prog. 9.1 for the actual Java code).

9.4 THINNING
(SKELETONIZATION)

Fig. 9.19

Selected binary neighborhood
patterns N and associated
function values B(N) and C'(N)
(see Eqns. (9.25)—(9.26)).

Fig. 9.20

Iterative application of the
ThinOnce() procedure. The
“deletions” indicated in (b-f)
denote the number of pixels
that were removed from the
previous image. No deletions
occurred in the final iteration
(from (e) to (f)). Thus five
iterations were required to thin
this image.
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Alg. 9.2

Iterative thinning algorithm
by Zhang und Suen [265]. Pro-
cedure ThinOnce() performs

a single thinning step on the
supplied binary image I}, and
returns the number of deleted
foreground pixels. It is itera-
tively invoked by Thin() until
no more pixels are deleted.
The required pixel deletions
are only registered in the bi-
nary map D and executed
en-bloc at the end of every
iteration. Lines 40-42 define
the functions R, (), R5(), B()
and C() used to characterize
the local pixel neighborhoods.
Note that the order of process-
ing the image positions (u, v)
in the for all loops in Pass

1 and Pass 2 is completely
arbitrary. In particular, posi-
tions could be processed simul-
taneously, so the algorithm
may be easily parallelized
(and thereby accelerated).
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1: Thin(Ly, imax)
Input: [, binary image with background = 0, foreground > 0;
imax, Max. number of iterations. Returns the number of iterations
performed and modifies I,.
2: (M, N) «+ Size(1,)
3: Create a binary map D: M x N — {0,1}
4: 10
5: do
6: ng < ThinOnce(1;,, D)
7 t—1+1
8: while (ng > 0A ¢ < ipay) > do ... while more deletions required
9: return ¢
10: ThinOnce(Iy, D)
Pass 1
11: ny <0 > deletion counter
12: for all image positions (u,v) € M x N do
13: D(u,v) + 0
14: if I,,(u,v) > 0 then
15: N <+ GetNeighborhood(1,, u, v)
16: if R;(N) then > see Eq.9.27
17: D(u,v) + 1 > mark pixel (u,v) for deletion
18: ny < ng+1
19: if n; > 0 then > at least 1 deletion required
20: for all image positions (u,v) € M x N do
21: Iy (u,v) < I (u,v) — D(u,v) > delete all marked pixels
Pass 2:
22: ng < 0
23: for all image positions (u,v) € M x N do
24: D(u,v) + 0
25: if I,,(u,v) > 0 then
26: N «+ GetNeighborhood (I}, u, v)
27 if Ry(N) then > see Eq.9.28
28: D(u,v) + 1 > mark pixel (u,v) for deletion
29: No — N + 1
30: if ny > 0 then > at least 1 deletion required
31: for all image positions (u,v) € M x N do
32: Iy (u,v) < I (u,v) — D(u,v) © delete all marked pixels
33: return n; + ny
34: GetNeighborhood(1y,, u,v)
35: Ny + Iy(u+ 1,v), Ny «+ Iy(u+1,v—1)
36: Ny« Iy (u,v — 1), N3+ Iyj(u—1,0—1)
37: Ny + Iy(u—1,v), Ny« Iy(u—1,v+1)
38: Ng < Iy (u,v + 1), N, Iy(u+1,v+1)
39: return (Ny, Ny, ..., N;)
40: R, (N):= [2< B(N) <6]A[C(N)=1]A[Ng-No-No =0] A[Ny-Ng- Ny =0]
41: Ry(N):= [2< B(N) <6]A[C(N)=1]A[Ny-Ny-Ny =0] A[No-Ny - Ng =0]
7 7
42: B(N) := Y N, C(N) := 3" N; - [N; = N(i41) mod 8]

=0




1: ThinFast(Iy, iyay)
Input: [, binary image with background = 0, foreground > 0;
imax, Max. number of iterations. Returns the number of iterations
performed and modifies I,.
2: (M, N) + Size(1,)
3: Q < MakeDeletionCodeTable()
4: Create a binary map D: M x N — {0,1}
5: i+ 0
6: do
7 ng < ThinOnce(1;,, D)
8: while (ng > 0 A4 < ipay) > do ... while more deletions required
9: return ¢
10: ThinOnceFast(Iy, D) > performs a single thinning iteration
11: ng < 0 > number of deletions in both passes
12: for p < 1,2 do > pass counter (2 passes)
13: n<+ 0 > number of deletions in current pass
14: for all image positions (u,v) do
15: D(u,v) <0
16: if I (u,v) =1 then > Iy (u,v) = P
17: ¢ < GetNeighborhoodIndex(1,, u,v)
18: 7+ Q(o) > g€ {0,1,2,3} = {00,,01,,10,,11,}
19: if (p and ¢) # 0 then > bitwise ‘and’ operation
20: D(u,v) + 1 > mark pixel (u,v) for deletion
21: n+<n+1
22: if n > 0 then > at least 1 deletion is required
23: Ng < Ng +n
24: for all image positions (u,v) do
25: Iy (u,v) < I,(u,v) — D(u,v) > delete all marked
pixels
26: return ng
27: GetNeighborhoodindex(1y,, u, v)
28: Ny + Iy(u+1,v), Ny + Iy(u+1,v—1)
29: Ny« Iy(u,v — 1), N3+ Iy(u—1,0—1)
30: Ny + Iy(u—1,v), N5+ Iy(u—1,v+1)
31: Ng + Iy (u,v + 1), N; « Iy(u+1,v+1)
32: ¢ Ny+ N2+ Nyd+ Ng-8+ Ny-16 + N5-32 + Ng-64 + N;-128
33: return c > ¢ € [0, 255]
34: MakeDeletionCodeTable()
35: Create maps Q: [0, 255] — {0,1,2,3}, N:[0,7] — {0,1}
36: for i < 0,...,255 do > list all possible neighborhoods
37: for k+0,...,7 do > check neighbors 0,...,7
e &
38: N(k) + 1 if (i an.d 2 #0 > test the k' bit of 4
0 otherwise
39: q+ 0
40: if R;(N) then > see Alg. 9.2, line 40
41: g+ q+1 > set bit 0 of ¢
42: if Ry(N) then > see Alg. 9.2, line 41
43: q+—q+2 > set bit 1 of ¢
44: Qi) « ¢ > g€ {0,1,2,3} = {00,,01,10,,11,}
45: return Q

9.4 THINNING
(SKELETONIZATION)

Alg. 9.3

Thinning algorithm by Zhang
und Suen (accelerated version
of Alg. 9.2). This algorithm
employs a pre-calculated ta-
ble of “deletion codes” (Q).
Procedure GetNeighborhood()
has been replaced by
GetNeighborhoodIndex(), which
does not return the neighbor-
ing pixel values themselves
but the associated 8-bit in-
dex ¢ with possible values in
0,...,255 (see Fig. 9.22). For
completeness, the calculation
of table Q is included in proce-
dure MakeDeletionCodeTable(),
although this table is fixed and
may be simply defined as a
constant array (see Prog. 9.1).
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Fig. 9.21

Thinning a binary image (Alg.
with enlarged detail (a, ¢)

9.2 or 9.3). Original image
and results after thinning (b,
d). The original foreground
pixels are marked green, the

resulting pixels are black.
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9.4.3 Java Implementation

The complete Java source code for the morphological operations on
binary images is available online as part of the imagingbook* library.

4 Package imagingbook.pub.morphology.
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Codes Q(c¢) for ¢ =0,...,255:

B 0 = 00, (never deleted)
B 1 =01, (deleted only in Pass 1)

B 2 = 10, (deleted only in Pass 2)
3 =11, (deleted in Pass 1 and 2)

BinaryMorphologyFilter class

This class implements several morphological operators for binary im-
ages of type ByteProcessor. It defines the sub-classes Box and Disk
with different structuring elements. The class provides the following
constructors:

9.4 THINNING
(SKELETONIZATION)

Fig. 9.22
“Deletion codes” for the

256 possible binary 8-
neighborhoods tabulated in
map Q(c) of Alg. 9.3. 0 =0
and B = 1 denote background
and foreground pixels, respec-
tively. The 2-bit codes are
color coded as indicated at the
bottom.
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9 MorpHoLOGICAL ~ BinaryMorphologyFilter ()
FILTERS Creates a morphological filter with a (default) structuring el-

ement of size 3 x 3 as depicted in Fig. 9.11(b).

BinaryMorphologyFilter (int[][] H)
Creates a morphological filter with a structuring element spec-
ified by the 2D array H, which may contain 0/1 values only (all
values > 0 are treated as 1).

BinaryMorphologyFilter.Box (int rad)
Creates a morphological filter with a square structuring ele-
ment of radius rad > 1 and side length 2 - rad + 1 pixels.

BinaryMorphologyFilter.Disk (double rad)
Creates a morphological filter with a disk-shaped structuring
element with radius rad > 1 and diameter 2 - round(rad) + 1
pixels.

The key methods® of BinaryMorphologyFilter are:
void applyTo (ByteProcessor I, OpType op)
Destructively applies the morphological operator op to the im-
age I. Possible arguments for op are Dilate, Erode, Open,
Close, Outline, Thin.

void dilate (ByteProcessor I)
Performs (destructive) dilation on the binary image I with the
initial structuring element of this filter.

void erode (ByteProcessor I)
Performs (destructive) erosion on the binary image I.

void open (ByteProcessor I)
Performs (destructive) opening on the binary image I.

void close (ByteProcessor I)
Performs (destructive) closing on the binary image I.

void outline (ByteProcessor I)
Performs a (destructive) outline operation on the binary image
I using a 3 x 3 structuring element (see Sec. 9.2.7).

void thin (ByteProcessor I)
Performs a (destructive) thinning operation on the binary
image I using a 3 x 3 structuring element (with at most
imax = 1500 iterations, see Alg. 9.3).

void thin (ByteProcessor I, int iMax)
Performs a thinning operation with at most iMax iterations
(see Alg. 9.3).

int thinOnce (ByteProcessor I)
Performs a single iteration of the thinning operation and re-
turns the number of pixel deletions (see Alg. 9.3).

The methods listed here always treat image pixels with value 0 as
background and values > 0 as foreground. Unlike ImageJ’s built-in
implementation of morphological operations (described in Sec. 9.4.4),
the display lookup table (LUT, typically only used for display pur-
poses) of the image is not taken into account at all.

5 See the online documentation for additional methods.



import
import
import
import

ij.ImagePlus;

ij.plugin.filter.PlugInFilter;
ij.process.ByteProcessor;
ij.process.ImageProcessor;

import imagingbook.pub.morphology.BinaryMorphologyFilter;
import imagingbook.pub.morphology.BinaryMorphologyFilter.

OpType;

DU R W N =

8 public class Bin_Dilate_Disk_Demo implements PlugInFilter {
9 static double radius = 5.0;
10  static OpType op = OpType.Dilate; //Erode, Open, Close, ...

12 public int setup(String arg, ImagePlus imp) {
13 return DOES_8G;

14}

15

16  public void run(ImageProcessor ip) {

17 BinaryMorphologyFilter bmf =

18 new BinaryMorphologyFilter .Disk(radius);
19 bmf . applyTo ((ByteProcessor) ip, op);

20 }

21 }

The example in Prog. 9.2 shows the use of class BinaryMorpho-
logyFilter in a complete ImageJ plugin that performs dilation with
a disk-shaped structuring element of radius 5 (pixel units). Other
examples can be found in the online code repository.

9.4.4 Built-in Morphological Operations in ImagelJ

Apart from the implementation described in the previous section,
the ImageJ API provides built-in methods for basic morphological
operations, such as dilate () and erode (). These methods use a 3x3
structuring element (analogous to Fig. 9.11(b)) and are only defined
for images of type ByteProcessor and ColorProcessor. In the case
of RGB color images (ColorProcessor) the morphological operation
is applied individually to the three color channels. All these and
other morphological operations can be applied interactively through
ImageJ’s Process > Binary menu (see Fig. 9.23(a)).

Note that ImageJ’s dilate () and erode () methods use the cur-
rent settings of display lookup table (LUT) to discriminate between
background and foreground pixels. Thus the results of morphological
operations depend not only on the stored pixel values but how they
are being displayed (in addition to the settings in Process > Binary
> Options..., see Fig. 9.23(b)).® Tt is therefore recommended to use
the methods (defined for ByteProcessor only)

dilate(int count, int background),
erode(int count, int background)

5 These dependencies may be quite confusing because the same program
will produce different results under different user setups.

9.4 THINNING
(SKELETONIZATION)

Prog. 9.2

Example for using class
BinaryMorphologyFilter (see
Sec. 9.4.3) inside a ImagelJ
plugin. The actual filter op-
erator is instantiated in line
18 and subsequently (in line
19) applied to the image ip
of type ByteProcessor. Avail-
able operations (OpType) are
Dilate, Erode, Open, Close,
Outline and Thin. Note that
the results depend strictly on
the pixel values of the input
image, with values 0 taken as
background and values > 0
taken as foreground. The dis-
play lookup-table (LUT) is
irrelevant.
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9 MORPHOLOGICAL
FILTERS

Fig. 9.23

Morphological operations in
ImageJ’s built-in standard
menu Process 1> Binary (a) and
optional settings with Process
> Binary > Options... (b). The
choice “Black background”
specifies if background pixels
are bright or dark, which is
taken into account by ImagelJ’s
morphological operations.
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instead, since they provide explicit control of the background pixel
value and are thus independent from other settings. ImageJ’s Byte-
Processor class defines additional methods for morphological opera-
tions on binary images, such as outline () and skeletonize (). The
method outline() implements the extraction of region boundaries
using an 8-neighborhood structuring element, as described in Sec.
9.2.7. The method skeletonize(), on the other hand, implements
a thinning process similar to Alg. 9.3.

9.5 Grayscale Morphology

Morphological operations are not confined to binary images but
are also for intensity (grayscale) images. In fact, the definition of
grayscale morphology is a generalization of binary morphology, with
the binary OR and AND operators replaced by the arithmetic MAX
and MIN operators, respectively. As a consequence, procedures de-
signed for grayscale morphology can also perform binary morphology
(but not the other way around).” In the case of color images, the
grayscale operations are usually applied individually to each color
channel.

9.5.1 Structuring Elements

Unlike in the binary scheme, the structuring elements for grayscale
morphology are not defined as point sets but as real-valued 2D func-
tions, that is,

H(i,j) €R, for (i,j) € Z2. (9.30)

The values in H may be negative or zero. Notice, however, that, in
contrast to linear convolution (Sec. 5.3.1), zero elements in grayscale

" ImageJ provides a single implementation of morphological operations
that handles both binary and grayscale images (see Sec. 9.4.4).



morphology generally do contribute to the result.® The design of
structuring elements for grayscale morphology must therefore dis-
tinguish explicitly between cells containing the value 0 and empty
(“don’t care”) cells, for example,

010 1
1B l: # 1@~ (9.31)
010 1

9.5.2 Dilation and Erosion

The result of grayscale dilation I & H is defined as the mazimum of
the values in H added to the values of the current subimage of I,
that is,

(10 H) (u.0) = mase (I(uti, o)+ HG. )

(9.32)
Similarly, the result of grayscale erosion is the minimum of the dif-
ferences,

(I ©H)(u,v) = min (I(uti,v+j) = H(i,j)).

9.33
(i,7)€H ( )

Figures 9.24 and 9.25 demonstrate the basic process of grayscale di-
lation and erosion, respectively, on a simple example.

I H I®H
617]3)4 1111
5668@121: 819
614|512 111 719
61423

I+H

7 Ts47] /. max

61817

71516

In general, either operation may produce negative results that
must be considered if the range of pixel values is restricted, for ex-
ample, by clamping the results (see Ch. 4, Sec. 4.1.2). Some examples
of grayscale dilation and erosion on natural images using disk-shaped
structuring elements of various sizes are shown in Fig. 9.26. Figure
9.28 demonstrates the same operations with some freely designed
structuring elements.

9.5.3 Grayscale Opening and Closing

Opening and closing on grayscale images are defined, identical to
the binary case (Eqns. (9.21) and (9.22)), as operations composed

8 While a zero coefficient in a linear convolution matrix simply means
that the corresponding image pixel is ignored.

9.5 GRAYSCALE
MORPHOLOGY

Fig. 9.24

Grayscale dilation I @ H.

The 3 x 3 pixel structuring ele-
ment H is placed on the image
I in the upper left position.
Each value of H is added to
the corresponding element of I;
the intermediate result (I + H)
for this particular position is
shown below. Its maximum
value 8 = 7 + 1 is inserted
into the result (I @ H) at the
current position of the filter
origin. The results for three
other filter positions are also
shown.
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Fig. 9.25

Grayscale erosion I & H.

The 3 x 3 pixel structuring
element H is placed on the
image I in the upper left posi-
tion. Each value of H is sub-
tracted from the corresponding
element of I; the intermedi-
ate result (I — H) for this
particular position is shown
below. Its minimum value
3—1 = 2 is inserted into the
result (I © H) at the current
position of the filter origin.
The results for three other
filter positions are also shown.

Fig. 9.26

Grayscale dilation and erosion
with disk-shaped structur-
ing elements. The radius r

of the structuring element is
2.5 (a), 5.0 (b), and 10.0 (c).
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of dilation and erosion with the same structuring element. Some
examples are shown in Fig. 9.27 for disk-shaped structuring elements
and in Fig. 9.29 for various nonstandard structuring elements. Notice
that interesting effects can be obtained, particularly from structuring
elements resembling the shape of brush or other stroke patterns.

As mentioned in Sec. 9.4.4, the morphological operations ava-
iable in ImageJ can be applied to binary images as well as grayscale
images. In addition, several additional plugins and complete mor-
phological packages are available online,’ including the morphology
operators by Gabriel Landini and the Grayscale Morphology package
by Dimiter Prodanov, which allows structuring elements to be inter-
actively specified (a modified version was used for some examples in
this chapter).

9.6 Exercises

Exercise 9.1. Manually calculate the results of dilation and erosion
for the following image I and the structuring elements H; and Hy:

9 See http:/rsb.info.nih.gov/ij/plugins/.

9.6 EXERCISES

Fig. 9.27

Grayscale opening and closing
with disk-shaped structuring
elements. The radius r of the
structuring element is 2.5 (a),
5.0 (b), and 10.0 (c).
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Fig. 9.28
Grayscale dilation and
erosion with various free-
form structuring elements.
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Exercise 9.2. Assume that a binary image I contains unwanted fore-
ground spots with a maximum diameter of 5 pixels that should be
removed without damaging the remaining structures. Design a suit-
able morphological procedure, and evaluate its performance on ap-
propriate test images.

Exercise 9.3. Investigate if the results of the thinning operation de-
scribed in Alg. 9.2 (and implemented by the thin() method of class
BinaryMorphologyFilter) are invariant against rotating the image



H Opening Closing

by 90° and horizontal or vertical mirroring. Use appropriate test
images to see if the results are identical.

Exercise 9.4. Show that, in the special case of the structuring ele-
ments with the contents

e o o 000
o [&l o for binary and 0 [8 o for grayscale images,
o o o 000

dilation is equivalent to a 3 x 3 pixel maximum filter and erosion is
equivalent to a 3 x 3 pixel minimum filter (see Ch. 5, Sec. 5.4.1).

Exercise 9.5. Thinning can be applied to extract the “skeleton”
of a binary region, which in turn can be used to characterize the
shape of the region. A common approach is to partition the skele-
ton into a graph, consisting of nodes and connecting segments, as a

9.6 EXERCISES

Fig. 9.29

Grayscale opening and closing
with various free-form struc-
turing elements.
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Fig. 9.30
Segmentation of a region skele-
ton. Original binary image (a)

and the skeleton obtained by
thinning (b). Terminal nodes
are marked green, connecting
(inner) nodes are marked red.
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shape representation (see Fig. 9.30 for an example). Use ImageJ’s
skeletonize () method or the thin() methode of class Binary-
MorphologyFilter (see Sec. 9.4.3) to generate the skeleton, then
locate and mark the connecting and terminal nodes of this struc-
ture. Define precisely the properties of each type of node and use
this definition in your implementation. Test your implementation on
different examples. How would you generally judge the robustness of
this approach as a 2D shape representation?



10

Regions in Binary Images

In a binary image, pixels can take on exactly one of two values.
These values are often thought of as representing the “foreground”
and “background” in the image, even though these concepts often
are not applicable to natural scenes. In this chapter we focus on
connected regions in images and how to isolate and describe such
structures.

Let us assume that our task is to devise a procedure for finding
the number and type of objects contained in an image as shown in
Fig. 10.1. As long as we continue to consider each pixel in isolation,
we will not be able to determine how many objects there are overall in
the image, where they are located, and which pixels belong to which
objects. Therefore our first step is to find each object by grouping
together all the pixels that belong to it. In the simplest case, an
object is a group of touching foreground pixels, that is, a connected
binary region or “component”.

'~ N\

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,

© Springer-Verlag London 2016
DOI 10.1007/978-1-4471-6684-9 10

Fig. 10.1
Binary image with nine com-
ponents. Each component cor-
responds to a connected region
of (black) foreground pixels.
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In the search for binary regions, the most important tasks are to find
out which pixels belong to which regions, how many regions are in
the image, and where these regions are located. These steps usually
take place as part of a process called region labeling or region color-
ing. During this process, neighboring pixels are pieced together in
a stepwise manner to build regions in which all pixels within that
region are assigned a unique number (“label”) for identification. In
the following sections, we describe two variations on this idea. In the
first method, region marking through flood filling, a region is filled in
all directions starting from a single point or “seed” within the region.
In the second method, sequential region marking, the image is tra-
versed from top to bottom, marking regions as they are encountered.
In Sec. 10.2.2, we describe a third method that combines two useful
processes, region labeling and contour finding, in a single algorithm.

Independent of which of these methods we use, we must first set-
tle on either the 4- or 8-connected definition of neighboring (see Ch.
9, Fig. 9.5) for determining when two pixels are “connected” to each
other, since under each definition we can end up with different results.
In the following region-marking algorithms, we use the following con-
vention: the original binary image I (u,v) contains the values 0 and 1
to mark the background and foreground, respectively; any other value
is used for numbering (labeling) the regions, that is, the pixel values
are

0 background,
I(u,v) =<1 foreground, (10.1)
2,3,... region label.

10.1.1 Region Labeling by Flood Filling

The underlying algorithm for region marking by flood filling is simple:
search for an unmarked foreground pixel and then fill (visit and mark)
all the rest of the neighboring pixels in its region. This operation is
called a “flood fill” because it is as if a flood of water erupts at
the start pixel and flows out across a flat region. There are various
methods for carrying out the fill operation that ultimately differ in
how to select the coordinates of the next pixel to be visited during
the fill. We present three different ways of performing the FloodFill()
procedure: a recursive version, an iterative depth-first version, and
an iterative breadth-first version (see Alg. 10.1):

A. Recursive Flood Filling: The recursive version (Alg. 10.1, line
8) does not make use of explicit data structures to keep track
of the image coordinates but uses the local variables that are
implicitly allocated by recursive procedure calls.! Within each
region, a tree structure, rooted at the starting point, is defined
by the neighborhood relation between pixels. The recursive step
corresponds to a depth-first traversal [54] of this tree and results

! In Java, and similar imperative programming languages such as C and
C++, local variables are automatically stored on the call stack at each
procedure call and restored from the stack when the procedure returns.



1: RegionLabeling(I)
Input: I, an integer-valued image with initial values 0 = back-
ground, 1 = foreground. Returns nothing but modifies the im-
age I.
2: label + 2 > value of the next label to be assigned
3: for all image coordinates u, v do
4: if I(u,v) =1 then > a foreground pixel
5: FloodFill(1,u, v, label) > any of the 3 versions below
6: label <+ label + 1.
T return
8: FloodFill(I, u, v, label) > Recursive Version
9: if w,v is within the image boundaries and I(u,v) = 1 then
10: I(u,v) < label
11: FloodFill(1,u+1, v, label) > recursive call to FloodFill()
12: FloodFill(1,u,v+1, label)
13: FloodFill(1,u,v—1, label)
14: FloodFill(I,u—1, v, label)
15: return
16: FloodFill(1,u, v, label) > Depth-First Version
17: S+ () > create an empty stack S
18: S <+ (u,v)« S > push seed coordinate (u,v) onto S
19: while S # () do > while S is not empty
20: (z,y) + GetFirst(.S)
21: S <+ Delete((z,y),.5) > pop first coordinate off the stack
22: if 2,y is within the image boundaries and I(z,y) = 1 then
23: I(z,y) < label
24: S+ (x+1,y)~ S > push (z+1,y) onto S
25: S (z,y+1)— S > push (z, y+1) onto S
26: S+ (z,y—1)- S > push (z,y—1) onto S
27: S+ (x—1,y)~ S > push (x—1,y) onto S
28: return
29:  FloodFill(I,u, v, label) > Breadth-First Version
30: Q+ () > create an empty queue
31: Q + Q~ (u,v) > append seed coordinate (u,v) to Q
32: while @ # () do > while @ is not empty
33: (z,y) < GetFirst(Q)
34: Q + Delete((z,y),Q) > dequeue first coordinate
35: if z,y is within the image boundaries and I(z,y) = 1 then
36: I(z,y) < label
37: Q+ Qv (z+1,y) > append (z+1,y) to Q
38: Q<+ Q- (x,y+1) > append (z,y+1) to Q
39: Q<+ Qv (x,y—1) > append (z,y—1) to Q
40: Q+ Qv (z—1,y) > append (z—1,y) to Q
41: return

in very short and elegant program code.

risky and really only practical for very small images.

Unfortunately, since
the maximum depth of the recursion—and thus the size of the
required stack memory—is proportional to the size of the region,
stack memory is quickly exhausted. Therefore this method is

10.1 FINDING CONNECTED
IMAGE REGIONS

Alg. 10.1

Region marking by flood fill-
ing. The binary input image

I uses the value 0 for back-
ground pixels and 1 for fore-
ground pixels. Unmarked fore-
ground pixels are searched for,
and then the region to which
they belong is filled. Procedure
FloodFill() is defined in three
different versions: recursive,
emphdepth-first and breadth-
first.
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10 REcIons IN Binary B- Iterative Flood Filling (depth-first): Every recursive algo-
IMAGES rithm can also be reformulated as an iterative algorithm (Alg.
10.1, line 16) by implementing and managing its own stacks. In
this case, the stack records the “open” (that is, the adjacent but
not yet visited) elements. As in the recursive version (A), the
corresponding tree of pixels is traversed in depth-first order. By
making use of its own dedicated stack (which is created in the
much larger heap memory), the depth of the tree is no longer
limited to the size of the call stack.

C. Iterative Flood Filling (breadth-first): In this version, pixels
are traversed in a way that resembles an expanding wave front
propagating out from the starting point (Alg. 10.1, line 29). The
data structure used to hold the as yet unvisited pixel coordinates
is in this case a queue instead of a stack, but otherwise it is
identical to version B.

Java implementation

The recursive version (A) of the algorithm is an exact blueprint of
the Java implementation. However, a normal Java runtime environ-
ment does not support more than about 10,000 recursive calls of the
FloodFill() procedure (Alg. 10.1, line 8) before the memory allocated
for the call stack is exhausted. This is only sufficient for relatively
small images with fewer than approximately 200 x 200 pixels.

Program 10.1 (line 1-17) gives the complete Java implementation
for both variants of the iterative FloodFill() procedure. The stack (S)
in the depth-first Version (B) and the queue (Q) in the breadth-first
variant (C) are both implemented as instances of type LinkedList.?
<Point> is specified as a type parameter for both generic container
classes so they can only contain objects of type Point.?

Figure 10.2 illustrates the progress of the region marking in both
variants within an example region, where the start point (i.e., seed
point), which would normally lie on a contour edge, has been placed
arbitrarily within the region in order to better illustrate the process.
It is clearly visible that the depth-first method first explores one
direction (in this case horizontally to the left) completely (that is,
until it reaches the edge of the region) and only then examines the
remaining directions. In contrast the breadth-first method markings
proceed outward, layer by layer, equally in all directions.

Due to the way exploration takes place, the memory requirement
of the breadth-first variant of the flood-fill version is generally much
lower than that of the depth-first variant. For example, when flood
filling the region in Fig. 10.2 (using the implementation given Prog.
10.1), the stack in the depth-first variant grows to a maximum of
28,822 elements, while the queue used by the breadth-first variant
never exceeds a maximum of 438 nodes.

2 The class LinkedList is part of Java’s collections framework.

3 Note that the depth-first and breadth-first implementations in Prog.
10.1 typically run slower than the recursive version described in Alg.
10.1, since they allocate (and immediately discard) large numbers of
Point objects. A better solution is to use a queue or stack with elements
of a primitive type (e.g., int) instead. See also Exercise 10.3.



Depth-first version (using a stack):

1 void floodFill(int u, int v, int label) {

2 Deque<Point> S = new LinkedList<Point>(); //stack S
3 S.push(new Point(u, v));

4 while (!S.isEmpty()) {

5 Point p = S.pop();

6 int x = p.Xx;

7 int y = p.y;

8 if ((x >= 0) && (x < width) & (y >= 0) && (y < height)
9 && ip.getPixel(x, y) == 1) {

10 ip.putPixel(x, y, label);

11 S.push(new Point(x + 1, y));

12 S.push(new Point(x, y + 1));

13 S.push(new Point(x, y - 1));

14 S.push(new Point(x - 1, y));

15 }

16}

17 }

Breadth-first version (using a queue):

18 void floodFill(int u, int v, int label) {

19  Queue<Point> Q = new LinkedList<Point>(); //queue @
20 Q.add(new Point(u, v));

21 while (!Q.isEmpty()) {

22 Point p = Q.remove(); // getthe next point to process
23 int x = p.x;

24 int y = p.y;

25 if ((x >= 0) && (x < width) & (y >= 0) && (y < height)
26 && ip.getPixel(x, y) == 1) {

27 ip.putPixel(x, y, label);

28 Q.add(new Point(x + 1, y));

29 Q.add(new Point(x, y + 1));

30 Q.add(new Point(x, y - 1));

31 Q.add(new Point(x - 1, y));

32 }

33 %}

34 }

10.1.2 Sequential Region Labeling

Sequential region marking is a classical, nonrecursive technique that
is known in the literature as “region labeling”. The algorithm consists
of two steps: (1) preliminary labeling of the image regions and (2) re-
solving cases where more than one label occurs (i.e., has been assigned
in the previous step) in the same connected region. Even though
this algorithm is relatively complex, especially its second stage, its
moderate memory requirements make it a good choice under limited
memory conditions. However, this is not a major issue on modern
computers and thus, in terms of overall efficiency, sequential labeling
offers no clear advantage over the simpler methods described ear-
lier. The sequential technique is nevertheless interesting (not only
from a historic perspective) and inspiring. The complete process is
summarized in Alg. 10.2, with the following main steps:

10.1 FINDING CONNECTED
IMAGE REGIONS

Prog. 10.1

Java implementation of iter-
ative flood filling (depth-first
and breadth-first variants).
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Fig. 10.2

Iterative flood filling—
comparison between the
depth-first and breadth-first
approach. The starting point,
marked + in the top two im-
age (a), was arbitrarily chosen.
Intermediate results of the
flood fill process after 1000
(a), 5000 (b), and 10,000 (c)
marked pixels are shown. The
image size is 250 X 242 pixels.
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(a)
Original

Depth-first Breadth-first
(a)
K =1.000
(b)
K = 5.000
()
K =10.000

Step 1: Initial labeling

In the first stage of region labeling, the image is traversed from top
left to bottom right sequentially to assign a preliminary label to ev-
ery foreground pixel. Depending on the definition of neighborhood
(either 4- or 8-connected) used, the following neighbors in the direct
vicinity of each pixel must be examined (x marks the current pixel
at the position (u,v)):



1: SequentialLabeling(I)
Input: I, an integer-valued image with initial values 0 = back-
ground, 1 = foreground. Returns nothing but modifies the im-
age I.
Step 1 — Assign initial labels:
2: (M, N) + Size(I)
3: label < 2 > value of the next label to be assigned
4: C+() > empty list of label collisions
5: forv«0,...,N —1do
6: for u<+0,...,M —1do
T if I(u,v) =1 then > I(u,v) is a foreground pixel
8: N «+ GetNeighbors(I,u,v) > see Eqn. 10.2
9: if N; =0 for all N; € N/ then
10: I(u,v) < label.
11: label < label + 1.
12: else if exactly one N; € A has a value > 1 then
13: set I(u,v) < N;
14: else if more than one N, € N have values > 1 then
15: I(u,v) < Ny > select one N, > 1 as the new
label
16: for all N, € N, with [ # k and N; > 1 do
17: C « C v (N, Ny) > register collision (N, N;)
Remark: The image I now contains labels 0,2, ..., label—1.
Step 2 — Resolve label collisions:
Create a partitioning of the label set (sequence of 1-element sets):
18: R« ({2}, {3}, {4}, ..., {label-1})
19: for all collisions (A4, B) in C do
Find the sets R(a), R(b) holding labels A, B:
20: a + index of the set R(a) that contains label A
21: b < index of the set R(b) that contains label B
22: if a # b then > A and B are contained in different sets
23: R(a) < R(a) UR(b) > merge elements of R(b) into R(a)
24: R(b) < {}
Remark: All equivalent labels (i.e., all labels of pixels in the same
connected component) are now contained in the same subset of R.
25: Step 3: Relabel the image:
26: for all (u,v) € M x N do
27: if I(u,v) > 1 then > this is a labeled foreground pixel
28: j « index of the set R(j) that contains label I(u,v)
Choose a representative element k from the set R(j):
29: k < min(R(y)) > e.g., pick the minimum value
30: I(u,v) + k > replace the image label
31: return
Ny N3 Ny Ny
N4 - N2 X NO or Ng - N4 X NO . (102)
N3 N5 Ng Ny

10.1 FINDING CONNECTED
IMAGE REGIONS

Alg. 10.2

Sequential region labeling. The
binary input image I uses the
value I(u,v) = 0 for back-
ground pixels and I(u,v) = 1
for foreground (region) pixels.
The resulting labels have the
values 2, ..., label — 1.
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Images bors Ny = I(u—1,v) and Ny = I(u,v—1) need to be considered,

but when using the 8-connected neighborhood N5, all four neighbors
N; ... N, must be examined. In the following examples (Figs. 10.3—
10.5), we use an 8-connected neighborhood and a very simple test
image (Fig. 10.3(a)) to demonstrate the sequential region labeling
process.

Propagating region labels

Again we assume that, in the image, the value I(u,v) = 0 represents
background pixels and the value I(u,v) = 1 represents foreground
pixels. We will also consider neighboring pixels that lie outside of
the image matrix (e.g., on the array borders) to be part of the back-
ground. The neighborhood region A (u,v) is slid over the image
horizontally and then vertically, starting from the top left corner.
When the current image element I(u,v) is a foreground pixel, it is
either assigned a new region number or, in the case where one of its
previously examined neighbors in A/(u,v) was a foreground pixel, it
takes on the region number of the neighbor. In this way, existing
region numbers propagate in the image from the left to the right and
from the top to the bottom, as shown in (Fig. 10.3(b—c)).

Label collisions

In the case where two or more neighbors have labels belonging to
different regions, then a label collision has occurred; that is, pixels
within a single connected region have different labels. For example,
in a U-shaped region, the pixels in the left and right arms are at
first assigned different labels since it is not immediately apparent
that they are actually part of a single region. The two labels will
propagate down independently from each other until they eventually
collide in the lower part of the “U” (Fig. 10.3(d)).

When two labels a, b collide, then we know that they are actually
“equivalent”; that is, they are contained in the same image region.
These collisions are registered but otherwise not dealt with during
the first step. Once all collisions have been registered, they are then
resolved in the second step of the algorithm. The number of collisions
depends on the content of the image. There can be only a few or very
many collisions, and the exact number is only known at the end of the
first step, once the whole image has been traversed. For this reason,
collision management must make use of dynamic data structures such
as lists or hash tables.

Upon the completion of the first steps, all the original foreground
pixels have been provisionally marked, and all the collisions between
labels within the same regions have been registered for subsequent
processing. The example in Fig. 10.4 illustrates the state upon com-
pletion of step 1: all foreground pixels have been assigned preliminary
labels (Fig. 10.4(a)), and the following collisions (depicted by circles)
between the labels (2,4), (2,5), and (2,6) have been registered. The
labels £ = {2,3,4,5,6,7} and collisions C = {(2,4),(2,5),(2,6)}
correspond to the nodes and edges of an undirected graph (Fig.
10.4(b)).
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Step 2: Resolving label collisions

The task in the second step is to resolve the label collisions that arose
in the first step in order to merge the corresponding “partial” regions.
This process is nontrivial since it is possible for two regions with dif-

10.1 FINDING CONNECTED
IMAGE REGIONS

Fig. 10.3

Sequential region labeling—
label propagation. Original
image (a). The first foreground
pixel (marked 1) is found in
(b): all neighbors are back-
ground pixels (marked 0), and
the pixel is assigned the first
label (2). In the next step (c),
there is exactly one neighbor
pixel marked with the label 2,
so this value is propagated. In
(d) there are two neighboring
pixels, and they have differing
labels (2 and 5); one of these
values is propagated, and the
collision (2, 5) is registered.

Fig. 10.4

Sequential region labeling—
intermediate result after

step 1. Label collisions indi-
cated by circles (a); the nodes
of the undirected graph (b)
correspond to the labels, and
its edges correspond to the
collisions.
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Fig. 10.5
Sequential region labeling—
final result after step 2. All
equivalent labels have been
replaced by the smallest
label within that region.

Fig. 10.6
Example of a complete region
labeling. The pixels within
each region have been col-
ored according to the consec-
utive label values 2,3,...,10
they were assigned. The cor-
responding region statistics
are shown in the table (total
image size is 1212 x 836).
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ferent labels to be connected transitively (e.g., (a,b)N (b, ¢) = (a,c))
through a third region or, more generally, through a series of regions.
In fact, this problem is identical to the problem of finding the con-
nected components of a graph [54], where the labels £ determined in
step 1 constitute the “nodes” of the graph and the registered colli-
sions C make up its “edges” (Fig. 10.4(b)).

Once all the distinct labels within a single region have been col-
lected, the labels of all the pixels in the region are updated so they
carry the same label (e.g., choosing the smallest label number in the
region), as depicted in Fig. 10.5. Figure 10.6 shows the complete seg-
mentation with some region statistics that can be easily calculated
from the labeling data.
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Area Bounding Box Centroid

Label || (pizels) | (left, top, right, bottom) (zeyye)
2 14978 (887, 21, 1144, 399) (1049.7, 242.8)
3 36156 | ( 40, 37, 438, 419) | ( 261.9, 209.5)
4 25904 (464, 126, 841, 382) ( 680.6, 240.6)
5 2024 | (387, 281, 442, 341) | ( 414.2, 310.6)
6 2293 | (244, 367, 342, 506) | ( 294.4, 439.0)
7 4394 | (406, 400, 507, 512) | ( 454.1, 457.3)
8 29777 | (510, 416, 883, 765) | ( 704.9, 583.9)
9 20724 | (833, 497, 1168, 759) | (1016.0, 624.1)
10 16566 | ( 82, 558, 411, 821) | ( 208.7, 661.6)




10.1.3 Region Labeling—Summary

In this section, we have described a selection of algorithms for finding
and labeling connected regions in images. We discovered that the
elegant idea of labeling individual regions using a simple recursive
flood-filling method (Sec. 10.1.1) was not useful because of practical
limitations on the depth of recursion and the high memory costs as-
sociated with it. We also saw that classical sequential region labeling
(Sec. 10.1.2) is relatively complex and offers no real advantage over
iterative implementations of the depth-first and breadth-first meth-
ods. In practice, the iterative breadth-first method is generally the
best choice for large and complex images. In the following section
we present a modern and efficient algorithm that performs region
labeling and also delineates the regions’ contours. Since contours
are required in many applications, this combined approach is highly
practical.

10.2 Region Contours

Once the regions in a binary image have been found, the next step is
often to find the contours (that is, the outlines) of the regions. Like
so many other tasks in image processing, at first glance this appears
to be an easy one: simply follow along the edge of the region. We will
see that, in actuality, describing this apparently simple process algo-
rithmically requires careful thought, which has made contour finding
one of the classic problems in image analysis.

10.2.1 External and Internal Contours

As we discussed in Chapter 9, Sec. 9.2.7, the pixels along the edge
of a binary region (i.e., its border) can be identified using simple
morphological operations and difference images. It must be stressed,
however, that this process only marks the pixels along the contour,
which is useful, for instance, for display purposes. In this section, we
will go one step further and develop an algorithm for obtaining an
ordered sequence of border pixel coordinates for describing a region’s
contour. Note that connected image regions contain exactly one outer
contour, yet, due to holes, they can contain arbitrarily many inner
contours. Within such holes, smaller regions may be found, which
will again have their own outer contours, and in turn these regions
may themselves contain further holes with even smaller regions, and
so on in a recursive manner (Fig. 10.7). An additional complication
arises when regions are connected by parts that taper down to the
width of a single pixel. In such cases, the contour can run through the
same pixel more than once and from different directions (Fig. 10.8).
Therefore, when tracing a contour from a start point xg, returning
to the start point is not a sufficient condition for terminating the
contour-tracing process. Other factors, such as the current direction
along which contour points are being traversed, must be taken into
account.

One apparently simple way of determining a contour is to proceed
in analogy to the two-stage process presented in Sec. 10.1; that is,

10.2 REGION CONTOURS
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Fig. 10.7

Binary image with outer and
inner contours. The outer con-
tour lies along the outside of
the foreground region (dark).
The inner contour surrounds
the space within the region,
which may contain further
regions (holes), and so on.

Fig. 10.8

The path along a contour as
an ordered sequence of pixel
coordinates with a given start
point .. Individual pixels
may occur (be visited) more
than once within the path,
and a region consisting of a
single isolated pixel will also
have a contour (bottom right).
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Outer contour

Inner contour

to first identify the connected regions in the image and second, for
each region, proceed around it, starting from a pixel selected from its
border. In the same way, an internal contour can be found by starting
at a border pixel of a region’s hole. A wide range of algorithms based
on first finding the regions and then following along their contours
have been published, including [202], [180, pp. 142-148], and [214, p.
296].

As a modern alternative, we present the following combined al-
gorithm that, in contrast to the aforementioned classical methods,
combines contour finding and region labeling in a single process.

10.2.2 Combining Region Labeling and Contour Finding

This method, based on [47], combines the concepts of sequential re-
gion labeling (Sec. 10.1) and traditional contour tracing into a single
algorithm able to perform both tasks simultaneously during a single
pass through the image. It identifies and labels regions and at the
same time traces both their inner and outer contours. The algorithm
does not require any complicated data structures and is relatively
efficient when compared to other methods with similar capabilities.
The key steps of this method are described here and illustrated in
Fig. 10.9:

1. As in the sequential region labeling (Alg. 10.2), the binary image
1 is traversed from the top left to the bottom right. Such a traver-
sal ensures that all pixels in the image are eventually examined
and assigned an appropriate label.



A—fef-f-d-d-d-d--F-f-fof-q-4-4- - 10,2 REGION CONTOURS

Fig. 10.9
Combined region labeling and
contour following (after [47]).
The image in (a) is traversed
from the top left to the lower
| right, one row at a time. In
(b), the first foreground pixel
A on the outer edge of the re-
— gion is found. Starting from
point A, the pixels on the edge
along the outer contour are
visited and labeled until A
is reached again (c). Labels
(a) (b) picked up at the outer contour
are propagated along the im-

A age line inside the region (d).

C—1=

- In (e), B was found as the first
N\ point on the inner contour.
Now the inner contour is tra-
versed in clock-wise direction,
marking the contour pixels
until point B is reached again
(f). The same tracing process
is used as in step (c), with

the inside of the region always
lying to the right of the con-
tour path. In (g) a previously
marked point C' on an inner
contour is detected. Its label is
again propagated along the im-
age line inside the region. The
final result is shown in (h).

() (h)
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10 REGIONS IN Binary 2- At a given position in the image, the following cases may occur:

IMAGES Case A: The transition from a background pixel to a previously
unmarked foreground pixel means that this pixel lies on the outer
edge of a new region. A new label is assigned and the associated
outer contour is traversed and marked by calling the method
TraceContour (see Alg. 10.3 and Fig. 10.9(a)). Furthermore, all
background pixels directly bordering the region are marked with
the special label —1.

Case B: The transition from a foreground pixel B to an un-
marked background pixel means that this pixel lies on an inner
contour (Fig. 10.9(b)). Starting from B, the inner contour is tra-
versed and its pixels are marked with labels from the surrounding
region (Fig. 10.9(c)). Also, all bordering background pixels are
again assigned the special label value —1.

Case C: When a foreground pixel does not lie on a contour, then
the neighboring pixel to the left has already been labeled (Fig.
10.9(d)) and this label is propagated to the current pixel.

In Algs. 10.3-10.4, the entire procedure is presented again and ex-
plained precisely. Procedure RegionContourLabeling traverses the im-
age line-by-line and calls procedure TraceContour whenever a new
inner or outer contour must be traced. The labels of the image ele-
ments along the contour, as well as the neighboring foreground pixels,
are stored in the “label map” L (a rectangular array of the same size
as the image) by procedure FindNextContourPoint in Alg. 10.4.

10.2.3 Java Implementation

The Java implementation of the combined region labeling and con-
tour tracing algorithm can be found online in class RegionContour-
Labeling* (for details see Sec. 10.9). It almost exactly follows Algs.
10.3-10.4, only the image I and the associated label map L are ini-
tially padded (i.e., enlarged) by a surrounding layer of background
pixels. This simplifies the process of tracing the outer region con-
tours, since no special treatment is needed at the image borders.
Program 10.2 shows a minimal example of its usage within the run()
method of an ImagelJ plugin (class Trace_Contours).

Examples

This combined algorithm for region marking and contour following
is particularly well suited for processing large binary images since it
is efficient and has only modest memory requirements. Figure 10.10
shows a synthetic test image that illustrates a number of special situ-
ations, such as isolated pixels and thin sections, which the algorithm
must deal with correctly when following the contours. In the re-
sulting plot, outer contours are shown as black polygon lines running
trough the centers of the contour pixels, and inner contours are drawn
white. Contours of single-pixel regions are marked by small circles
filled with the corresponding color. Figure 10.11 shows the results
for a larger section taken from a real image (Fig. 9.12).

4 Package imagingbook.pub.regions.



1: RegionContourlLabeling(])
Input: I, a binary image with 0 = background, 1 = foreground.
Returns sequences of outer and inner contours and a map of
region labels.

2: (M, N) + Size(I)

3: Cous + () > empty list of outer contours
4: Cin < () > empty list of inner contours
5: Create map L: M x N — Z > create the label map L
6: for all (u,v) do

7 L(u,v) <0 > initialize L to zero
8: r<0 > region counter
9: forv+0,...,N—1do > scan the image top to bottom
10: label < 0

11: foru<+0,...,M—1do > scan the image left to right
12: if I(u,v) > 0 then > I(u,v) is a foreground pixel
13: if (label # 0) then > continue existing region
14: L(u,v) « label

15: else

16: label <+ L(u,v)

17: if (label = 0) then > hit a new outer contour
18: r—r+1

19: label <— 1

20: xz, + (u,v)

21: C' <+ TraceContour(x, 0, label, I, L) © outerc.
22: Cout < Cous ~ (O) > collect outer contour
23: L(u,v) « label

24: else > I(u,v) is a background pixel
25: if (label # 0) then

26: if (L(u,v) =0) then > hit new inner contour
27 z, + (u—1,v)

28: C' <+ TraceContour(xg, 1, label, I,L) > inner

cntr.

29: Cin + Cin — (O) > collect inner contour
30: label < 0

31: return (C,y, Ci,, L)

continued in Alg. 10.4 >

ol ol

(a) (b)

10.2 REGION CONTOURS

Alg. 10.3

Combined contour tracing and
region labeling (part 1). Given
a binary image I, the applica-
tion of RegionContourLabeling(I)
returns a set of contours and
an array containing region la-
bels for all pixels in the image.
‘When a new point on either
an outer or inner contour is
found, then an ordered list of
the contour’s points is con-
structed by calling procedure
TraceContour (line 21 and line
28). TraceContour itself is de-
scribed in Alg. 10.4.

Fig. 10.10

Combined contour and region
marking. Original image, with
foreground pixels marked green
(a); located contours with
black lines for outer and white
lines for inner contours (b).
Contour polygons pass through
the pixel centers. Outer con-
tours of single-pixel regions
(e.g., in the upper-right of (b))
are marked by a single dot.
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Alg. 10.4

Combined contour finding
and region labeling (part 2,
continued from Alg. 10.3).
Starting from @, the proce-
dure TraceContour traces along
the contour in the direction
dg = 0 for outer contours or
dg = 1 for inner contours.
During this process, all con-
tour points as well as neigh-
boring background points are
marked in the label array L.
Given a point x., TraceContour
uses FindNextContourPoint()
to determine the next point
along the contour (line 9).
The function Delta() returns
the next coordinate in the
sequence, taking into ac-
count the search direction d.

Prog. 10.2

Example of using the class
ContourTracer. (plugin
Trace_Contours). First (in

line 9) a new instance of
RegionContourLabeling is cre-
ated for the input image I.
The segmentation into re-
gions and contours is done

by the constructor. In lines
11-12 the outer and inner con-
tours are retrieved as (possibly
empty) lists of type Contour.
Finally, the list of connected
regions is obtained in line 14.
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1: TraceContour(x, dg, label, I, L)
Input: @, start position; dg, initial search direction; label, the
label assigned to this contour; I, the binary input image; L, label
map. Returns a new outer or inner contour (sequence of points)
starting at x.
2: (z,d) + FindNextContourPoint(x,, dg, I, L)
3: ¢ (x) > new contour with the single point x
4: T, — T > previous position x, = (u,,v})
5: T, T > current position @, = (uc, v,)
6: done + (x, = x) > isolated pixel?
T: while (—done) do
8: L(ue,ve)  label
9: (z,,d) < FindNextContourPoint(x,, (d + 6) mod 8, I,L)
10: T, < T
11: T4 T,
12: done « (x, =x; N, =) > back at starting position?
13: if (—done) then
14: ¢+ cv~ (xy) > add point x, to contour c
15: return c > return this contour
16: FindNextContourPoint(x, d, I,L)
Input: @, initial position; d € [0, 7], search direction, I, binary
input image; L, the label map.
Returns the next point on the contour and the modified search
direction.
17: for i< 0,...,6 do > search in 7 directions
18: x, < x + Delta(d)
19: if I(x,) =0 then > I(uy,,v,) is a background pixel
20: L(x,) «+ —1 > mark background as wvisited (—1)
21: d <+ (d+ 1) mod 8
22: else > found a non-background pixel at x,
23: return (z,,d)
24: return (z,d) > found no next node, return start position
Ax d| 01 2 3 45 6 7
25: Delta(d) := (A ), with Az 1 1 0-1-1-1 0 1
Y Ayl 0 1 1 1 0-1-1-1
1 import imagingbook.pub.regions.BinaryRegion;
2 import imagingbook.pub.regions.Contour;
3 import imagingbook.pub.regions.RegionContourLabeling;
4 import java.util.List;
5 ...
6 public void run(ImageProcessor ip) {
7 /I Make sure we have a proper byte image:
8  ByteProcessor I = ip.convertToByteProcessor ();
9 /I Create the region labeler / contour tracer:
10  RegionContourLabeling seg = new RegionContourLabeling(I);
11 /I Get all outer/inner contours and connected regions:
12 List<Contour> outerContours = seg.getOuterContours();
13 List<Contour> innerContours = seg.getInnerContours();
14  List<BinaryRegion> regions = seg.getRegions();
15
16 }




10.3 Representing Image Regions

10.3.1 Matrix Representation

A natural representation for images is a matrix (i.e., a two-dimensional
array) in which elements represent the intensity or the color at a cor-
responding position in the image. This representation lends itself, in
most programming languages, to a simple and elegant mapping onto
two-dimensional arrays, which makes possible a very natural way to
work with raster images. One possible disadvantage with this rep-
resentation is that it does not depend on the content of the image.
In other words, it makes no difference whether the image contains
only a pair of lines or is of a complex scene because the amount of
memory required is constant and depends only on the dimensions of
the image.

Regions in an image can be represented using a logical mask in
which the area within the region is assigned the value true and the
area without the value false (Fig. 10.12). Since these values can be
represented by a single bit, such a matrix is often referred to as a

“bitmap”.®

10.3.2 Run Length Encoding

In run length encoding (RLE), sequences of adjacent foreground pix-
els can be represented compactly as “runs”. A run, or contiguous

® Java does not provide a genuine 1-bit data type. Even variables of
type boolean are represented internally (i.e., within the Java virtual
machine) as 32-bit ints.

10.3 REPRESENTING
IMAGE REGIONS

Fig. 10.11

Example of a complex con-
tour (original image in Ch.

9, Fig. 9.12). Outer contours
are marked in black and inner
contours in white.
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Fig. 10.12

Use of a binary mask to
specify a region of an im-
age: original image (a),
logical (bit) mask (b),
and masked image (c).

Fig. 10.13

Run length encoding in row
direction. A run of pixels can
be represented by its starting
point (1,2) and its length (6).
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(a) (b) (c)

block, is a maximal length sequence of adjacent pixels of the same
type within either a row or a column. Runs of arbitrary length can
be encoded compactly using three integers,

Run; = (row;, columny, length,),

as illustrated in Fig. 10.13. When representing a sequence of runs
within the same row, the number of the row is redundant and can be
left out. Also, in some applications, it is more useful to record the
coordinate of the end column instead of the length of the run.

Bitmap RLE

01 2 3 4 5 6 7 8
(row, column, length)

0

1 e o o o o o (1,2,6)
2 — (3,4, 4)
3 e o o (4,1,3)
4 e o o o o (4,5,3)
5 e © © o o o o . (5,0,9)
6

Since the RLE representation can be easily implemented and ef-
ficiently computed, it has long been used as a simple lossless com-
pression method. It forms the foundation for fax transmission and
can be found in a number of other important codecs, including TIFF,
GIF, and JPEG. In addition, RLE provides precomputed information
about the image that can be used directly when computing certain
properties of the image (for example, statistical moments; see Sec.
10.5.2).

10.3.3 Chain Codes

Regions can be represented not only using their interiors but also by
their contours. Chain codes, which are often referred to as Freeman
codes [79], are a classical method of contour encoding. In this encod-
ing, the contour beginning at a given start point x4 is represented by
the sequence of directional changes it describes on the discrete image
grid (Fig. 10.14).

Absolute chain code

For a closed contour of a region R, described by the sequence of
points ¢x = (xg, T,...xy_1) With x; = (u;,v;), we create the
elements of its chain code sequence ¢ = (cp, ¢}, ... ;1) with
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(a) 4-Chain Code
3223222322303303...111
length = 28

(b) 8-Chain Code
54544546767 . . .222
length = 16 + 6v/2 ~ 24.5

¢; = Code(u’, "), (10.3)
where

for 0 <i< M—1,
fori=M-1,

(uz‘+1 — Uiy Vigq —v;)

(ug—1u;, vo—v;)

!/ /

(u',0v") = (10.4)

and Code(u’,v") being defined (assuming an 8-connected neighbor-
hood) by the following table:

u’ 1 1 0 -1 -1 -1 0 1
v 0 1 1 1 0 -1 -1 -1
Code(w/, /)| 0 1 2 3 4 5 6 7

Chain codes are compact since instead of storing the absolute coor-
dinates for every point on the contour, only that of the starting point
is recorded. The remaining points are encoded relative to the start-
ing point by indicating in which of the eight possible directions the
next point lies. Since only 3 bits are required to encode these eight
directions the values can be stored using a smaller numeric type.

Differential chain code

Directly comparing two regions represented using chain codes is dif-
ficult since the description depends on the starting point selected g,
and for instance simply rotating the region by 90° results in a com-
pletely different chain code. When using a differential chain code,
the situation improves slightly. Instead of encoding the difference in
the position of the next contour point, the change in the direction
along the discrete contour is encoded. A given absolute chain code
cr = (¢, c),...ch_1) can be converted element by element to a
differential chain code ¢ = (cf,cY,...c};_,), withS

(ciyp —cj) mod 8 for 0 <i< M—1,
fori=M-1,

/!
;= 10.5
! (cp — ¢;) mod 8 (10.5)
5 For the implementation of the mod operator see Sec. F.1.2 in the
Appendix.

10.3 REPRESENTING
IMAGE REGIONS

Fig. 10.14

Chain codes with 4- and 8-
connected neighborhoods. To
compute a chain code, be-
gin traversing the contour
from a given starting point
x,. Encode the relative posi-
tion between adjacent contour
points using the directional
code for either 4-connected
(left) or 8-connected (right)
neighborhoods. The length of
the resulting path, calculated
as the sum of the individual
segments, can be used to ap-
proximate the true length of
the contour.
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Imaces element ¢ thus describes the change in direction (curvature) of the

contour between two successive segments ¢; and c;,; of the original
chain code 5. For the contour in Fig. 10.14(b), for example, the
result is

cr = (5,4,5,4,4,5,4,6,7,6,7,...,2,2,2),
cr=(7,1,7,0,1,7,2,1,7,1,1,...,0,0, 3).

Given the start position x, and the (absolute) initial direction ¢,
the original contour can be unambiguously reconstructed from the
differential chain code.

Shape numbers

While the differential chain code remains the same when a region is
rotated by 90°, the encoding is still dependent on the selected starting
point. If we want to determine the similarity of two contours of the
same length M using their differential chain codes ¢f, ¢}, we must
first ensure that the same start point was used when computing the
codes. A method that is often used [15,88] is to interpret the elements
¢/ in the differential chain code as the digits of a number to the base b
(b = 8 for an 8-connected contour or b = 4 for a 4-connected contour)
and the numeric value

M-1
Val(ch) = cf - b0 4+ /b + ... + i M= Z cl-b'. (10.6)
i=0

Then the sequence ¢% is shifted circularly until the numeric value of
the corresponding number reaches a maximum. We use the expres-
sion ¢/ >k to denote the sequence ¢ being circularly shifted by k
positions to the right.” For example, for k = 2 this is

ch=1(0,1,3,2,...,5,3,7,4),
cp>2=(7,4,0,1,3,2,...,5,3),

and

kmax = argmax Val(cf > k), (10.7)
0<k<M

denotes the shift required to maximize the corresponding arithmetic
value. The resulting code sequence or shape number,

Sr = CR > Kpax, (10.8)

is normalized with respect to the starting point and can thus be
directly compared element by element with other normalized code
sequences. Since the function Val() in Eqn. (10.6) produces values
that are in general too large to be actually computed, in practice the
relation

Val(c) > Val(cy)

" That is, (ck>k) (i) = ¢k ((i — k) mod M).



is determined by comparing the lexicographic ordering between the
sequences cf and ¢j so that the arithmetic values need not be com-
puted at all.

Unfortunately, comparisons based on chain codes are generally
not very useful for determining the similarity between regions simply
because rotations at arbitrary angles (# 90°) have too great of an
impact (change) on a region’s code. In addition, chain codes are
not capable of handling changes in size (scaling) or other distortions.
Section 10.4 presents a number of tools that are more appropriate in
these types of cases.

Fourier shape descriptors

An elegant approach to describing contours are so-called Fourier
shape descriptors, which interpret the two-dimensional contour C =
(g, @q,...,xp—1) wWith x; = (u;,v;) as a sequence of values in the
complex plane, where

From this sequence, one obtains (using a suitable method of interpo-
lation in case of an 8-connected contour), a discrete, one-dimensional
periodic function f(s) € C with a constant sampling interval over
s, the path length around the contour. The coefficients of the
1D Fourier spectrum (see Sec. 18.3) of this function f(s) provide
a shape description of the contour in frequency space, where the
lower spectral coefficients deliver a gross description of the shape.
The details of this classical method can be found, for example,
in [88,97,126,128,222]. This technique is described in considerable
detail in Chapter 26.

10.4 Properties of Binary Regions

Imagine that you have to describe the contents of a digital image
to another person over the telephone. One possibility would be to
call out the value of each pixel in some agreed upon order. A much
simpler way of course would be to describe the image on the basis of
its properties—for example, “a red rectangle on a blue background”,
or at an even higher level such as “a sunset at the beach with two
dogs playing in the sand”. While using such a description is simple
and natural for us, it is not (yet) possible for a computer to generate
these types of descriptions without human intervention. For comput-
ers, it is of course simpler to calculate the mathematical properties
of an image or region and to use these as the basis for further clas-
sification. Using features to classify, be they images or other items,
is a fundamental part of the field of pattern recognition, a research
area with many applications in image processing and computer vi-
sion [64,169,228].

10.4.1 Shape Features

The comparison and classification of binary regions is widely used, for
example, in optical character recognition (OCR) and for automating

10.4 PROPERTIES OF
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tion of manufactured products on assembly lines. The analysis of
binary regions turns out to be one of the simpler tasks for which
many efficient algorithms have been developed and used to imple-
ment reliable applications that are in use every day.

By a feature of a region, we mean a specific numerical or quali-
tative measure that is computable from the values and coordinates
of the pixels that make up the region. As an example, one of the
simplest features is its size or area; that is the number of pixels that
make up a region. In order to describe a region in a compact form,
different features are often combined into a feature vector. This vec-
tor is then used as a sort of “signature” for the region that can be used
for classification or comparison with other regions. The best features
are those that are simple to calculate and are not easily influenced
(robust) by irrelevant changes, particularly translation, rotation, and
scaling.

10.4.2 Geometric Features

A region R of a binary image can be interpreted as a two-dimensional
distribution of foreground points p;, = (u;,v;) on the discrete plane
72, that is, as a set

R ={zg,...,2n_1} = {(u0,v0); (U1,v1), .-, (uny_1,vn_1)}

Most geometric properties are defined in such a way that a region is
considered to be a set of pixels that, in contrast to the definition in
Sec. 10.1, does not necessarily have to be connected.

Perimeter

The perimeter (or circumference) of a region R is defined as the
length of its outer contour, where R must be connected. As illus-
trated in Fig. 10.14, the type of neighborhood relation must be taken
into account for this calculation. When using a 4-neighborhood, the
measured length of the contour (except when that length is 1) will
be larger than its actual length.

In the case of 8-neighborhoods, a good approximation is reached
by weighing the horizontal and vertical segments with 1 and diag-
onal segments with /2. Given an 8-connected chain code ¢j, =
(¢p,€hs---Ch_q), the perimeter of the region is arrived at by

M-1
Perimeter(R) = Z length(c}), (10.10)
i=0

with
1 for ¢ =0,2,4,6,

10.11
V2 fore=1,357. ( )

length(c) = {
However, with this conventional method of calculation, the real
perimeter P(R) is systematically overestimated. As a simple rem-
edy, an empirical correction factor of 0.95 works satisfactorily even
for relatively small regions, that is,

P(R) =~ 0.95 - Perimeter(R). (10.12)



Area
The area of a binary region R can be found by simply counting the
image pixels that make up the region, that is,

AR) =N =|R|. (10.13)

The area of a connected region without holes can also be approx-
imated from its closed contour, defined by M coordinate points
(g, xq,... Ty_1), where x; = (u;,v;), using the Gaussian area for-
mula for polygons:

. (10.14)

1
A(R) ~ 5’ (Uz “V(i+1) mod M — U(i+1) mod M ° Uz')
i=0

When the contour is already encoded as a chain code ¢ = (¢{), ¢}, - ..
chr_1), then the region’s area can be computed (trivially) with Eqn.
(10.14) by expanding C,; into a sequence of contour points from
an arbitrary starting point (e.g., (0,0)). However, the area can also
be calculated directly from the chain code representation without
expanding the contour [263] (see also Exercise 10.12).

While simple region properties such as area and perimeter are not
influenced (except for quantization errors) by translation and rota-
tion of the region, they are definitely affected by changes in size; for
example, when the object to which the region corresponds is imaged
from different distances. However, as will be described, it is possi-
ble to specify combined features that are invariant to translation,
rotation, and scaling as well.

Compactness and roundness

Compactness is understood as the relation between a region’s area
and its perimeter. We can use the fact that a region’s perimeter
P increases linearly with the enlargement factor while the area A
increases quadratically to see that, for a particular shape, the ratio
A/P? should be the same at any scale. This ratio can thus be used
as a feature that is invariant under translation, rotation, and scaling.
When applied to a circular region of any diameter, this ratio has a
value of ﬁ, so by normalizing it against a filled circle, we create a
feature that is sensitive to the roundness or circularity of a region,

A(R)
P2(R)’

Circularity(R) = 4w - (10.15)
which results in a maximum value of 1 for a perfectly round region
R and a value in the range [0, 1] for all other shapes (Fig. 10.15). If
an absolute value for a region’s roundness is required, the corrected
perimeter estimate (Eqn. (10.12)) should be employed. Figure 10.15
shows the circularity values of different regions as computed with the
formulation in Eqn. (10.15).

Bounding box

The bounding box of a region R is the minimal axis-parallel rectangle
that encloses all points of R,

10.4 PROPERTIES OF
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Fig. 10.15

Circularity values for differ-
ent shapes. Shown are the
corresponding estimates for
Circularity(R) as defined in
Eqgn. (10.15). Corrected values
calculated with Eqn. (10.12)
are shown in parentheses.

Fig. 10.16
Example bounding box
(a) and convex hull (b)

of a binary image region.
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(a) 0.904 (b) 0.607 (c) 0.078
(1.001) (0.672) (0.086)
(a) (b)
BoundingBox(R) = <umin> Umaxs Umins vmax>a (1016)

where Upin, Umax a0d Vpin, Umax are the minimal and maximal co-
ordinate values of all points (u;,v;) € R in the z and y directions,
respectively (Fig. 10.16(a)).

Convex hull

The convex hull is the smallest convex polygon that contains all
points of the region R. A physical analogy is a board in which nails
stick out in correspondence to each of the points in the region. If
you were to place an elastic band around all the nails, then, when
you release it, it will contract into a convex hull around the nails (see
Figs. 10.16(b) and 10.21(c)). Given N contour points, the convex
hull can be computed in time O(NlogV'), where V is the number
vertices in the polygon of the resulting convex hull [17].

The convex hull is useful, for example, for determining the con-
vexity or the density of a region. The convexity is defined as the
relationship between the length of the convex hull and the original
perimeter of the region. Density is then defined as the ratio between
the area of the region and the area of its convex hull. The diameter,
on the other hand, is the maximal distance between any two nodes
on the convex hull.

10.5 Statistical Shape Properties

When computing statistical shape properties, we consider a region
R to be a collection of coordinate points distributed within a two-
dimensional space. Since statistical properties can be computed for
point distributions that do not form a connected region, they can



be applied before segmentation. An important concept in this con-

10.5 STATISTICAL SHAPE

text are the central moments of the region’s point distribution, which ProprrTIES

measure characteristic properties with respect to its midpoint or cen-
troid.

10.5.1 Centroid

The centroid or center of gravity of a connected region can be easily
visualized. Imagine drawing the region on a piece of cardboard or
tin and then cutting it out and attempting to balance it on the tip of
your finger. The location on the region where you must place your
finger in order for the region to balance is the centroid of the region.®

The centroid = (Z,%)" of a binary (not necessarily connected)
region is the arithmetic mean of the pont coordinates x; = (u;, v;),
that is,

1
- 1 . 10.17
R o
or 1 1

10.5.2 Moments

The formulation of the region’s centroid in Eqn. (10.18) is only a
special case of the more general statistical concept of a moment.
Specifically, the expression

Mpg(R) =Y I(u,v) - ul - v* (10.19)
(u,v)ER

describes the (ordinary) moment of order p, ¢ for a discrete (image)
function I(u,v) € R; for example, a grayscale image. All the follow-
ing definitions are also generally applicable to regions in grayscale
images. The moments of connected binary regions can also be calcu-
lated directly from the coordinates of the contour points [212, p. 148].

In the special case of a binary image I(u,v) € {0,1}, only the
foreground pixels with I(u,v) = 1 in the region R need to be consid-
ered, and therefore Eqn. (10.19) can be simplified to

Myg(R) =D _ul-vt. (10.20)
(u,v)ER

In this way, the area of a binary region can be expressed as its zero-
order moment,

AR) =Rl = > 1 => u’v"=mg(R) (10.21)
(u,v) (u,v)
and similarly the centroid & Eqn. (10.18) can be written as

8 Assuming you did not imagine a region where the centroid lies outside
of the region or within a hole in the region, which is of course possible.
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_ my(R)
10 REGIONS IN BINARY T = u'? = = S
m S
(10.22)
g= Z Wl = m01(R)
7 T T mg(®R)

These moments thus represent concrete physical properties of a re-
gion. Specifically, the area mygq is in practice an important basis for
characterizing regions, and the centroid (z,y) permits the reliable
and (within a fraction of a pixel) exact specification of a region’s
position.

10.5.3 Central Moments

To compute position-independent (translation-invariant) region fea-
tures, the region’s centroid, which can be determined precisely in
any situation, can be used as a reference point. In other words, we
can shift the origin of the coordinate system to the region’s centroid
x = (z,y) to obtain the central moments of order p, ¢:

Ppg(R ZI u,v) - (u—2)P - (v—7y)~. (10.23)
(u,v)ER

For a binary image (with I(u,v) = 1 within the region R), Eqn.
(10.23) can be simplified to

tipg(R) = Z(u —z)P - (v—y)l. (10.24)

(u,v)ER

10.5.4 Normalized Central Moments

Central moment values of course depend on the absolute size of the
region since the value depends directly on the distance of all region
points to its centroid. So, if a 2D shape is scaled uniformly by some
factor s € R, its central moments multiply by the factor

sprat2), (10.25)

Thus size-invariant “normalized” moments are obtained by scaling
with the reciprocal of the area A = pgy = mg raised to the required
power in the form

, (10.26)

_ 1 (p+q+2)/2
/qu(R) = Hpq * )

( too(R)

for (p+¢q) > 2 [126, p. 529].

10.5.5 Java Implementation

Program 10.3 gives a direct (brute force) Java implementation for
computing the ordinary, central, and normalized central moments
for binary images (BACKGROUND = 0). This implementation is only
meant to clarify the computation, and naturally much more efficient
implementations are possible (see, e.g., [131]).



/I Ordinary moment:

1

2

3 double moment (ImageProcessor I, int p, int q) {
4  double Mpq = 0.0;

5 for (int v = 0; v < I.getHeight(); v++) {

6 for (int u = 0; u < I.getWidth(); u++) {
7 if (I.getPixel(u, v) > 0) {

8 Mpg+= Math.pow(u, p) * Math.pow(v, q);
9 }

10 }

1}

12 return Mpq;

13 F

14

15 // Central moments:

16

17 double centralMoment (ImageProcessor I, int p, int q) {
18  double m00 = moment(I, O, 0); //region area
19 double xCtr = moment(I, 1, 0) / mO0;

20 double yCtr = moment(I, 0, 1) / m0O;

21 double cMpg = 0.0;

22 for (int v = 0; v < I.getHeight(); v++) {

23 for (int u = 0; u < I.getWidth(); u++) {
24 if (I.getPixel(u, v) > 0) {

25 cMpg+= Math.pow(u-xCtr, p) * Math.pow(v-yCtr, q);
26 }

27 }

28}

29 return cMpq;

30 }

31

32 // Normalized central moments:

33

34 double nCentralMoment (ImageProcessor I, int p, int q) {
35 double mO0O0 = moment(I, 0, 0);

36 double norm = Math.pow(m00, 0.5 * (p + q + 2));

37  return centralMoment (I, p, q) / norm;

38 }

10.6 Moment-Based Geometric Properties

While normalized moments can be directly applied for classifying
regions, further interesting and geometrically relevant features can
be elegantly derived from statistical region moments.

10.6.1 Orientation

Orientation describes the direction of the major axis, that is, the
axis that runs through the centroid and along the widest part of the
region (Fig. 10.18(a)). Since rotating the region around the major
axis requires less effort (smaller moment of inertia) than spinning it
around any other axis, it is sometimes referred to as the major axis
of rotation. As an example, when you hold a pencil between your
hands and twist it around its major axis (that is, around the lead),

10.6 MOMENT-BASED
GEOMETRIC PROPERTIES

Prog. 10.3

Example of directly computing
moments in Java. The meth-
ods moment (), centralMoment (),
and nCentralMoment () com-
pute for a binary image the
moments My, flyq, and fi,,
(Eqns. (10.20%7 (10.24), and
(10.26)).
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Fig. 10.17

Major axis of a region. Ro-
tating an elongated region
R, interpreted as a physical
body, around its major axis
requires less effort (least mo-
ment of inertia) than rotat-
ing it around any other axis.
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the pencil exhibits the least mass inertia (Fig. 10.17). As long as a
region exhibits an orientation at all (uog(R) # ga(R)), the direction
07 of the major axis can be found directly from the central moments

Hpq 88

2- 1 (R)
tan(265p) = (10.27
) t20(R) = 1102(R) )
and thus the corresponding angle is
1 - 2-1111(R)
0r = = -tan~ " 10.28
®T 2 (/LQO(R) - Mo2(R)) ( )
1
=3 ArCTan(M2o(R) — koz2(R), 2'#11(72))- (10.29)
The resulting angle 05 is in the range [~5,%].? Orientation mea-

surements based on region moments are very accurate in general.

Calculating orientation vectors

When visualizing region properties, a frequent task is to plot the
region’s orientation as a line or arrow, usually anchored at the center
of gravity & = (z,y)T; for example, by a parametric line of the form

T=F+ Ay = (z) 4 <COS(9R)) , (10.30)

sin(fg)

with the normalized orientation vector x4 and the length variable
A > 0. To find the unit orientation vector x; = (cos®,sinf)7, we
could first compute the inverse tangent to get 26 (Eqn. (10.28)) and
then compute the cosine and sine of §. However, the vector x,; can
also be obtained without using trigonometric functions as follows.
Rewriting Eqn. (10.27) as

_ 2-u(R) _a _ sin(20R)
tan(26) = p20(R) — pio2(R) b ng’ (10:31)

we get (by Pythagora’s theorem)

9 See Sec. A.1 in the Appendix for the computation of angles with the
ArcTan() (inverse tangent) function and Sec. F.1.6 for the corresponding
Java method Math.atan2().
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Fig. 10.18

Region orientation and ec-
centricity. The major axis of
the region extends through its
center of gravity @ at the ori-
entation . Note that angles
P g are in the range [—%,+Z] and
increment in the clockwise di-
rection because the y axis of
the image coordinate system
points downward (in this ex-
ample, 0 ~ —0.759 &~ —43.5°).
The eccentricity of the region
is defined as the ratio between
the lengths of the major axis
(r,) and the minor axis (r,) of
the “equivalent” ellipse.

in(205) ¢ d (20) b
sin = — an cos = —,
Vet B Ve
where A = 2411 (R) and B = uy9(R) — g2 (R). Using the relations
cos?a = £[1 + cos(2a)] and sin?a = 3[1 — cos(2a)], we can compute
the normalized orientation vector g4 = (z4,v4)" as

0 fora=b=0,

7a = cos(fr) = % . (1—1— TZb-s-bQ)F otherwise, (10-32)
0 ) for a =b=0,
ya =sin(0g) =4 |3 (-vatm)|]” forez=0,  (1033)
,[é(lfﬁ)]% for a < 0,

straight from the central region moments p11(R), t99(R), and pga(R),
as defined in Eqn. (10.31). The horizontal component (z,4) in Eqn.
(10.32) is always positive, while the case switch in Eqn. (10.33) cor-
rects the sign of the vertical component (y;) to map to the same
angular range [—%,+7%] as Eqn. (10.28). The resulting vector x, is
normalized (i.e., ||(z4,yq)]] = 1) and could be scaled arbitrarily for
display purposes by a suitable length A, for example, using the re-

gion’s eccentricity value described in Sec. 10.6.2 (see also Fig. 10.19).

10.6.2 Eccentricity

Similar to the region orientation, moments can also be used to de-
termine the “elongatedness” or eccentricity of a region. A naive ap-
proach for computing the eccentricity could be to rotate the region
until we can fit a bounding box (or enclosing ellipse) with a maximum
aspect ratio. Of course this process would be computationally inten-
sive simply because of the many rotations required. If we know the
orientation of the region (Eqn. (10.28)), then we may fit a bounding
box that is parallel to the region’s major axis. In general, the propor-

tions of the region’s bounding box is not a good eccentricity measure 237
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the box.

Based on region moments, highly accurate and stable measures
can be obtained without any iterative search or optimization. Also,
moment-based methods do not require knowledge of the boundary
length (as required for computing the circularity feature in Sec.
10.4.2), and they can also handle nonconnected regions or point
clouds. Several different formulations of region eccentricity can be
found in the literature [15,126,128] (see also Exercise 10.17). We
adopt the following definition because of its simple geometrical inter-
pretation:

ar _ fgo + Hoa + /(20 — pop)? +4- Mn

Ecc(R) = — =
A2 oo + poa — v/ (pao — Ho2)? + 4+ i3y

(10.34)

where a; = 2){, ay = 2)\y are proportional to the eigenvalues \j, A,
(with A\; > \y) of the symmetric 2 x 2 matrix

A= (/’LZO /’[’11) , (1035)
H11 Ho2

with the region’s central moments fi1, fag, Hoz (see Eqn. (10.23)).1°
The values of Ecc are in the range [1,00), where Ecc = 1 corresponds
to a circular disk and elongated regions have values > 1.

The value returned by Ecc(R) is invariant to the region’s orien-
tation and size, that is, this quantity has the important property of
being rotation and scale invariant. However, the values a;, a5 contain
relevant information about the spatial structure of the region. Geo-
metrically, the eigenvalues A\;, Ay (and thus a;, ay) directly relate to
the proportions of the “equivalent” ellipse, positioned at the region’s
center of gravity (Z,y) and oriented at § = 0z Eqn. (10.28). The
lengths of the major and minor axes, r, and ry, are

2. (%)j (%)% (10.36)
=2 (%) - (%) (10.37)

respectively, with aq, a, as defined in Eqn. (10.34) and |R| being the
number of pixels in the region. Given the axes’ lengths r,, 7, and the
centroid (z,y), the parametric equation of this ellipse is

“0=(3)+ (o) i) (o) 0o
_ (m + Cos()) : -cos(t) — sin(f) - rb-sin(t))7 (10.39)

y + sin(0) - r, - cos(t) + cos(@) 7y, - sin(t)

for 0 < t < 2w. If entirely filled, the region described by this el-
lipse would have the same central moments as the original region
R. Figure 10.19 shows a set of regions with overlaid orientation and
eccentricity results.

10" A is actually the covariance matriz for the distribution of pixel positions
inside the region (see Sec. D.2 in the Appendix).
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10.6.3 Bounding Box Aligned to the Major Axis

While the ordinary, z/y axis-aligned bounding box (see Sec. 10.4.2)
is of little practical use (because it is sensitive to rotation), it may
be interesting to see how to find a region’s bounding box that is
aligned with its major axis, as defined in Sec. 10.6.1. Given a region’s
orientation angle 6z,

~ (zq\ _ [cos(6r)
crm (1) = (0 a0
is the unit vector parallel to its major axis; thus
ey =ey = (_z“> (10.41)

is the unit vector orthogonal to e,.!' The bounding box can now be
determined as follows (see Fig. 10.20):

1. Project each region point!? u; = (u;,v;) onto the vector e, (par-
allel to the region’s major axis) by calculating the dot product!'?

a; = u; - e, (10.42)

and keeping the minimum and maximum values
Qmin = Min a; a = max a;. 10.43
min w ER (2 max ’U,,LER K2 ( )

i

2. Analogously, project each region point w,; onto the orthogonal
azis (specified by the vector e;) by
" gt = perp(x) = (_(1) (1)) - T,
12-0Of course, if the region’s contour is available, it is sufficient to iterate
over the contour points only.
3 See Sec. B.3.1, Eqn. (B.19) in the Appendix.

10.6 MOMENT-BASED
GEOMETRIC PROPERTIES

Fig. 10.19
Orientation and eccentricity
examples. The orientation 6
(Eqn. (10.28)) is displayed
for each connected region as
a vector with the length pro-
portional to the region’s ec-
centricity value Ecc(R) (Eqn.
(10.34)). Also shown are the
ellipses (Eqns. (10.36) and
(10.37)) corresponding to the
orientation and eccentricity
parameters.
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Fig. 10.20
Calculation of a region’s ma-
jor axis-aligned bounding box.
The unit vector e, is paral-
lel to the region’s major axis
(oriented at angle 0); e, is
perpendicular to e,. The pro-
jection of a region point u;
onto the lines defined by e,
and e, yields the lengths a;
and b;, respectively (measured
from the coordinate origin).
The resulting quantities a,,;,,
Amax» bmin’ bmax define the
corner points (A, B,C, D) of
the axis-aligned bounding box.
Note that the position of the
region’s centroid (&) is not b,’ =Uu; - € (1044)
required in this calculation.

and keeping the minimum and maximum values, that is,

bmin = 1{{1&1711 b;, bmax = 51112% b;. (10.45)
Note that steps 1 and 2 can be performed in a single iteration
over all region points.

3. Finally, from the resulting quantities ¢,,in, @max> Omin> Omax, Cal-
culate the four corner points A, B, C, D of the bounding box as

A= Omin-€q + bmin'eba B= Gmin“€q + bmax’eba (1046)
C= Omax €q + bmax'elw D= Omax €q + bmin'eb'

The complete calculation is summarized in Alg. 10.20; a typical ex-
ample is shown in Fig. 10.21(d).

Alg. 10.5

Calculation of the major | 11 MajorAxisAlignedBoundingBox(R)
axis-aligned bounding box Input: R = {u;}, a binary region containing points u; € R.
for a binary region R. If Returns the four corner points of the region’s bounding box.
the region’s contour is avail-
ble, it is sufficient t . .
a tﬁe lcolr?t(s)‘flr ;‘;I;lts (;r':li,e 2: 0 < 0.5 - ArcTan (o9 (R) —po2(R), 2 - 111 (R)) > see Eq.10.28
3: €q + (cos(f),sin(#))" > unit vector parall. to region’s major axis
4: e, + (sin(#), —cos(6))" > unit vector perpendic. to major axis
5: Qpin = 00,  Qpay ¢ —00
6: bin ¢ 00,  bpax ¢ —00
T for all u € R do
8: au-e, > project u onto e, (Eq.10.42)
9: Apmin  Min(apgy, a)
10: Gmax < Max(Apax, @)
11: b+ u-e > project u onto e, (Eq.10.44)
12: bmin < min(bmin, b)
13: bmax  mMax(byay, b)
14: A Qpin - €4 + bmin - €5
15: B < Gmin - €4 + bmax - €
16: C < Gpmax * €4 + bmax - €
17: D < iy €0 + bimin - €
18: return (A, B,C, D) > corners of the bounding box
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Fig. 10.21
Geometric region properties.
Original binary image (a),
centroid and orientation vec-
tor (length determined by the
region’s eccentricity) of the
major axis (b), convex hull (c),
and major axis-aligned bound-
ing box (d).

(c)

10.6.4 Invariant Region Moments

Normalized central moments are not affected by the translation or
uniform scaling of a region (i.e., the values are invariant), but in
general rotating the image will change these values.

Hu'’s invariant moments

A classical solution to this problem is a clever combination of simpler
features known as “Hu’s Moments” [112]:1

$1 = oo + Hoz, (10.47)
$o = (izg — fig2)” + 4 [ii1,
¢3 = (jizo — 3 fir2)” + (3 fia1 — fio3)”,
¢4 = (iizo + fir2)” + (21 + fio3)*,
¢5 = (fizo — 3 fi12) - (B30 + f12) - [(fizo + fi12)” — 3(fiox + fio3)’] +
(3 fi21 — fi03) - (a1 + fios) - [3 (130 + f12)? — (21 + fi03)°],
¢ = (2o — fio2) - [(Aizo + F12)? — (Fia1 + fo3)?] +
41y - (B30 + f12) - (Ho1 + fio3),
¢7 = (3 fi21 — fio3) - (fizo + fira) - [(iz0 + fir2)® — 3 (i1 + fi03)”] +
(3 fixa — fizo) - (Aia1 + figs) - [3 (fizo + fx2)® — (fiax + fios)”]-
1 n order to improve the legibility of Eqn. (10.47) the argument for the

region (R) has been dropped; as an example, with the region argument,
the first line would read H,(R) = fizo(R) + fio2(R), and so on. 241
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used since the raw values may have a very large range. These fea-
tures are also known as moment invariants since they are invariant
under translation, rotation, and scaling. While defined here for bi-
nary images, they are also applicable to parts of grayscale images;
examples can be found in [88, p. 517].

Flusser’s invariant moments

It was shown in [72,73] that Hu’s moments, as listed in Eqn. (10.47),
are partially redundant and incomplete. Based on so-called complex
moments cp, € C, Flusser designed an improved set of 11 rotation
and scale-invariant features ¢y, ...,1%;; (see Eqn. (10.51)) for char-
acterizing 2D shapes. For grayscale images (with I(u,v) € R), the

complex moments of order p, g are defined as

= I(u,v)- (z+iy) - (x—iy), (10.48)

with centered positions © = u— and y = v — y, and (Z,y) being the
centroid of R (i denotes the imaginary unit). In the case of binary
images (with I(u,v) € [0,1]) Eqn. (10.48) simplifies to

¢pg(R) = Z(CE +iy)P-(z—1iy)” (10.49)
(u,v)ER

Analogous to Eqn. (10.26), the complex moments can be scale-
normalized to

. 1
2pa(R) = orrarars o (10.50)
with A being the area of R [74, p. 29]. Finally, the derived rotation

and scale invariant region moments of 2nd to 4th order are'®

P = Re(é1,1)7 Py = Re(52,1 : é1 )7 Py = Re(éz,o %,2)7
Wy = Im(é2,o : 51,2)7 s = Re(é&o 5“;',2)7 Y = Im(éf,,o C?,2)7
Py = Re(62’2)7 Py = Re(ém é%,2)7 g = Im(éS,l % )7
P19 = Re(64 0" 6411,2) Y11 = Im(é4 0 %2)- (1 51)

)

Table 10.1 lists the normalized Flusser moments for five binary shapes
taken from the Kimia dataset [134].

Shape matching with region moments

One obvious use of invariant region moments is shape matching and
classification. Given two binary shapes A and B, with associated
moment (“feature”) vectors

fa=@(A4),...,¥11(A)) and  fp = (1(B),...,¥11(B)),

respectively, one approach could be to simply measure the difference
between shapes by the Euclidean distance of these vectors in the form

15 Tn Eqn. (10.51), the use of Re() for the quantities 11, 14,47 (which are
real-valued per se) is redundant.



vy 0.3730017575 0.2545476083 0.2154034257 0.2124041195 0.3600613700
¥y 0.0012699373 0.0004247053 0.0002068089 0.0001089652 0.0017187073
13 0.0004041515 0.0000644829 0.0000274491 0.0000014248 -0.0003853999
14 0.0000097827 -0.0000076547 0.0000071688 -0.0000022103 -0.0001944121
s 0.0000012672 0.0000002327 0.0000000637  0.0000000083 -0.0000078073
g 0.0000001090 -0.0000000483 0.0000000041 0.0000000153 -0.0000061997
¥, 0.2687922057 0.1289708408 0.0814034374 0.0712567626 0.2340886626
g 0.0003192443 0.0000414818 0.0000134036 0.0000003020 -0.0002878997
g 0.0000053208 -0.0000032541 0.0000030880 -0.0000008365 -0.0001628669
Y9 0.0000103461 0.0000000091 0.0000000019 -0.0000000003 0.0000001922
117, 0.0000000120 -0.0000000020 0.0000000008 -0.0000000000 0.0000003015

*®

0.000 | 0.183 | 0.245 | 0.255 | 0.037

0.183 | 0.000 | 0.062 | 0.071 | 0.149

0.245 | 0.062 | 0.000 | 0.011 | 0.210

‘v 0.255 | 0.071 | 0.011 | 0.000 | 0.220

0.037 | 0.149 | 0.210 | 0.220 | 0.000

11
de(A,B) = || £4 — Fsll = D li(A) - (B2 (10.52)
i=1
Concrete distances between the five sample shapes are listed in Table
10.2. Since the moment vectors are rotation and scale invariant,®
shape comparisons should remain unaffected by such transforma-
tions. Note, however, that the magnitude of the individual moments
varies over a very large range. Thus, if the Euclidean distance is
used as we have just suggested, the comparison (matching) of shapes
is typically dominated by a few moments (or even a single moment)
of relatively large magnitude, while the small-valued moments play
virtually no role in the distance calculation. This is because the Eu-
clidean distance treats the multi-dimensional feature space uniformly
along all dimensions.

As a consequence, moment-based shape discrimination with the
ordinary Euclidean distance is typically not very selective. A simple
solution is to replace Eqn. (10.52) by a weighted distance measure of
the form

di(A, B) = Zw [s(A) — (B[22, (10.53)

with fixed weights wq,...,w;; > 0 assigned to each each moment
feature to compensate for the differences in magnitude.

A more elegant approach is to use of the Mahalanobis distance
[24,157] for comparing the moment vectors, which accounts for the
statistical distribution of each vector component and avoids large-
magnitude components dominating the smaller ones. In this case,

16 Although the invariance property holds perfectly for continuous shapes,
rotating and scaling discrete binary images may significantly affect the
associated region moments.

10.6 MOMENT-BASED
GEOMETRIC PROPERTIES

Table 10.1

Binary shapes and associated
normalized Flusser moments
Yy, ...,%;1. Notice the magni-
tude of the moments varies by
a large factor.

Table 10.2

Inter-class (Euclidean) dis-
tances dg (A, B) between nor-
malized shape feature vectors
for the five reference shapes
(see Eqgn. (10.52)). Off-diagonal
values should be consistently
large to allow good shape dis-
crimination.
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(A, B) = [(F4 = £5) =7 (Fa— £2)], (10.54)
where ¥ is the 11 x 11 covariance matriz for the moment vectors f.
Note that the expression under the root in Eqn. (10.54) is the dot
product of a row vector and a column vector, that is, the result is a
non-negative scalar value. The Mahalanobis distance can be viewed
as a special form of the weighted Euclidean distance (Eqn. (10.53)),
where the weights are determined by the variability of the individual
vector components. See Sec. D.3 in the Appendix and Exercise 10.16
for additional details.

10.7 Projections

Image projections are 1D representations of the image contents, usu-
ally calculated parallel to the coordinate axis. In this case, the hori-
zontal and vertical projections of a scalar-valued image I (u,v) of size
M x N are defined as

M—1
)=

Phor (v I(u,v) for0<wv <N, (10.55)

i
Ll

Prer (1) = I(u,v) for0<u< M. (10.56)

v=0

The horizontal projection Py, (vy) (Eqn. (10.55)) is the sum of the
pixel values in the image row vy and has length N corresponding to
the height of the image. On the other hand, a vertical projection P,
of length M is the sum of all the values in the image column u, (Eqn.
(10.56)). In the case of a binary image with I(u,v) € 0,1, the projec-
tion contains the count of the foreground pixels in the corresponding
image row or column.

Program 10.4 gives a direct implementation of the projection cal-
culations as the run() method for an ImageJ plugin, where projec-
tions in both directions are computed during a single traversal of the
image.

Projections in the direction of the coordinate axis are often uti-
lized to quickly analyze the structure of an image and isolate its com-
ponent parts; for example, in document images it is used to separate
graphic elements from text blocks as well as to isolate individual lines
(see the example in Fig. 10.22). In practice, especially to account for
document skew, projections are often computed along the major axis
of an image region Eqn. (10.28). When the projection vectors of a
region are computed in reference to the centroid of the region along
the major axis, the result is a rotation-invariant vector description
(often referred to as a “signature”) of the region.

10.8 Topological Region Properties

Topological features do not describe the shape of a region in continu-
ous terms; instead, they capture its structural properties. Topological



1 public void run(ImageProcessor I) {
2 int M = I.getWidth();

3 int N = I.getHeight();

4 int[] pHor = new int[N]; /= P, (v)
5 int[] pVer = new int[Ml; /= P, (u)
6 for (int v = 0; v < N; v++) {

7 for (int u = 0; u < M; u++) {

8 int p = I.getPixel(u, v);

9 pHor[v] += p;

10 pVer[u] += p;

11 }

12 }  // use projections pHor, pVer now

13 ...

14}

Phor (V)

kR E B
REAE

Prer (u)

properties are typically invariant even under strong image transfor-
mations. The convexity of a region, which can be calculated from
the convex hull (Sec. 10.4.2), is also a topological property.

A simple and robust topological feature is the number of holes
N;(R) in a region. This feature is easily determined while finding
the inner contours of a region, as described in Sec. 10.2.2.

A useful topological feature that can be derived directly from the
number of holes is the so-called Fuler number Np, which is the dif-
ference between the number of connected regions N and the number
of their holes Ny, that is,

Ng(R) = Ng(R) — N, (R). (10.57)

In the case of a single connected region this is simply 1 — N;. For a
picture of the number “8”, for example, Np =1 —2 = —1 and for
the letter “D” we get Np =1—-1=0.

Topological features are often used in combination with numeri-
cal features for classification. A classic example of this combination
is OCR (optical character recognition) [38]. Figure 10.23 shows an

10.8 TOPOLOGICAL
REGION PROPERTIES

Prog. 10.4

Calculation of horizontal and
vertical projections. The run()
method for an ImageJ plugin
(ip is of type ByteProcessor
or ShortProcessor) computes
the projections in x and y di-
rections simultaneously in a a
single traversal of the image.
The projections are repre-
sented by the one-dimensional
arrays horProj and verProj
with elements of type int.

Fig. 10.22
Horizontal and vertical projec-
tions of a binary image.
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Fig. 10.23

Visual identification mark-
ers composed of recur-
sively nested regions [22].
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interesting use of topological structures for coding optical markers
used in augmented reality applications [22].!7 The recursive nesting
of outer and inner regions is equivalent to a tree structure that allows
fast and unique identification of a larger number of known patterns
(see also Exercise 10.21).

10.9 Java Implementation

Most algorithms described in this chapter are implemented as part of
the imagingbook library.!® The key classes are BinaryRegion and
Contour, the abstract class RegionLabeling and its concrete sub-
classes RecursiveLabeling, BreadthFirstLabeling, DepthFirst-
Labeling (Alg. 10.1) and Sequentiallabeling (Alg. 10.2). The
combined region labeling and contour tracing method (Algs. 10.3 and
10.4) is implemented by class RegionContourLabeling. Additional
details can be found in the online documentation.

Example

A complete example for the use of this API is shown in Prog. 10.5.
Particularly useful is the facility for visiting all positions of a specific
region using the iterator returned by method getRegionPoints(),
as demonstrated by this code segment:

RegionLabeling segmenter =
/I Get the largest region:
BinaryRegion r = segmenter.getRegions (true).get(0);
/I Loop over all points of region r:
for (Point p : r.getRegionPoints()) {
int u = p.x;
int v = p.y;
/I do something with position u, v
}

10.10 Exercises

Exercise 10.1. Manually simulate the execution of both variations
(depth-first and breadth-first) of the flood-fill algorithm using the
image in Fig. 10.24 and starting at position (5, 1).

7 http://reactivision.sourceforge.net/.
18 Package imagingbook.pub.regions.
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import imagingbook.pub.regions.BinaryRegion;

import imagingbook.pub.regions.Contour;

import imagingbook.pub.regions.ContourOverlay;

import imagingbook.pub.regions.RegionContourLabeling;
import java.awt.geom.Point2D;

import java.util.List;

public class Region_Contours_Demo implements PlugInFilter {

public int setup(String arg, ImagePlus im) {
return DOES_8G + NO_CHANGES;
}

public void run(ImageProcessor ip) {
/I Make sure we have a proper byte image:
ByteProcessor bp = ip.convertToByteProcessor ();

/I Create the region labeler / contour tracer:
RegionContourLabeling segmenter =
new RegionContourLabeling (bp);

/I Get the list of detected regions (sort by size):
List<BinaryRegion> regions =
segmenter .getRegions (true) ;
if (regions.isEmpty()) {
IJ.error("No regions detected!");
return;

}

// List all regions:

IJ.log("Detected regions: " + regions.size());

for (BinaryRegion r: regions) {
IJ.log(r.toString());

}

/I Get the outer contour of the largest region:
BinaryRegion largestRegion = regions.get(0);
Contour oc = largestRegion.getOuterContour ();
IJ.log("Points on outer contour of largest region:");
Point2D[] points = oc.getPointArray();
for (int i = 0; i < points.length; i++) {
Point2D p = points[i];
IJ.log("Point " + i + ": " + p.toString());
}

/I Get all inner contours of the largest region:
List<Contour> ics = largestRegion.getInnerContours();
IJ.log("Inner regions (holes): " + ics.size());

10.10 EXERCISES

Prog. 10.5

Complete example for

the use of the regions

API. The ImageJ plugin
Region_Contours_Demo seg-
ments the binary (8-bit
grayscale) image ip into con-
nected components. This is
done with an instance of class
RegionContourLabeling (see
line 21), which also extracts
the regions’ contours. In line
25, a list of regions (sorted by
size) is produced which is sub-
sequently traversed (line 33).
The treatment of outer and
inner contours as well as the
iteration over individual con-
tour points is shown in lines
38-49.
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Fig. 10.24
Binary image for Exercise 10.1.
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0123 45 6 7 8 910111213
010/0/0/0]0/0]|0]0|0|0|0]0|0]|0 @ Background
1]/0/0|0|0|0O|1|1|0|0O|1|1]|0|1]|O 1
2|0j1|1j1f1f1(1|/0|0|1|0|0|1]0 Foreground
3/0/0|0|Of1|Of1|0|0O|0O|O|O|1]0
4011112 |2]2|2]2]2]2]21]|0
5/0/0|0jO|21 /12|21 21|21|2]1]2 0
6|/0/1|1/0|0|Of1|0f1]|0|0|0O|0O]|O
7/0/0/0|0|O|O|O|O|O|0O|O|O|O]|O

Exercise 10.2. The implementation of the flood-fill algorithm in
Prog. 10.1 places all the neighboring pixels of each visited pixel into
either the stack or the queue without ensuring they are foreground
pixels and that they lie within the image boundaries. The number
of items in the stack or the queue can be reduced by ignoring (not
inserting) those neighboring pixels that do not meet the two condi-
tions given. Modify the depth-first and breadth-first variants given in
Prog. 10.1 accordingly and compare the new running times.

Exercise 10.3. The implementations of depth-first and breadth-first
labeling shown in Prog. 10.1 will run significantly slower than the
recursive version because the frequent creation of new Point objects
is quite time consuming. Modify the depth-first version of Prog. 10.1
to use a stack with elements of a primitive type (e.g., int) instead.
Note that (at least in Java)'® it is not possible to specify a built-in
list structure (such as Deque or LinkedList) for a primitive element
type. Implement you own stack class that internally uses an int-
array to store the (u,v) coordinates. What is the maximum number
of stack entries needed for a given image of size M x N7 Compare the
performance of your solution to the original version in Prog. 10.1.

Exercise 10.4. Implement an ImageJ plugin that encodes a given
binary image by run length encoding (Sec. 10.3.2) and stores it in a
file. Develop a second plugin that reads the file and reconstructs the
image.

Exercise 10.5. Calculate the amount of memory required to rep-
resent a contour with 1000 points in the following ways: (a) as a
sequence of coordinate points stored as pairs of int values; (b) as an
8-chain code using Java byte elements, and (c) as an 8-chain code
using only 3 bits per element.

Exercise 10.6. Implement a Java class for describing a binary image
region using chain codes. It is up to you, whether you want to use
an absolute or differential chain code. The implementation should be
able to encode closed contours as chain codes and also reconstruct
the contours given a chain code.

Exercise 10.7. The Graham Scan method [91] is an efficient algo-
rithm for calculating the convex hull of a 2D point set (of size n),
with time complexity O(n - log(n)).2° Implement this algorithm and
show that it is sufficient to consider only the outer contour points of
a region to calculate its convex hull.

19 Other languages like C# allow this.
20 See also http://en.wikipedia.org/wiki/Graham_scan.



Exercise 10.8. While computing the convex hull of a region, the
maximal diameter (maximum distance between two arbitrary points)
can also be simply found. Devise an alternative method for comput-
ing this feature without using the convex hull. Determine the running
time of your algorithm in terms of the number of points in the region.

Exercise 10.9. Implement an algorithm for comparing contours us-
ing their shape numbers Eqn. (10.6). For this purpose, develop a met-
ric for measuring the distance between two normalized chain codes.
Describe if, and under which conditions, the results will be reliable.

Exercise 10.10. Sketch the contour equivalent to the absolute chain
code sequence ¢ = (6,7,7,1,2,0,2,3,5,4,4). (a) Choose an arbi-
trary starting point and determine if the resulting contour is closed.
(b) Find the associated differential chain code ¢ (Eqn. (10.5)).

Exercise 10.11. Calculate (under assumed 8-neighborhood) the sha-
pe number of base b = 8 (see Eqn. (10.6)) for the differential chain
code ¢4 =(1,0,2,1,6,2,1,2,7,0,2) and all possible circular shifts of
this code. Which shift yields the maximum arithmetic value?

Exercise 10.12. Using Eqn. (10.14) as the basis, develop and im-
plement an algorithm that computes the area of a region from its
8-chain-encoded contour (see also [263], [127, Sec. 19.5]).

Exercise 10.13. Modify Alg. 10.3 such that the outer and inner con-
tours are not returned as individual lists (C,y, Ci,) but as a compos-
ite tree structure. An outer contour thus represents a region that
may contain zero, one, or more inner contours (i.e., holes). Each
inner contour may again contain other regions (i.e., outer contours),
and so on.

Exercise 10.14. Sketch an example binary region where the cen-
troid does not lie inside the region itself.

Exercise 10.15. Implement the binary region moment features pro-
posed by Hu (Eqn. (10.47)) and/or Flusser (Eqn. (10.51)) and verify
that they are invariant under image scaling and rotation. Use the
test image in Fig. 10.25%! (or create your own), which contains ro-
tated and mirrored instances of the reference shapes, in addition to
other (unknown) shapes.

Exercise 10.16. Implement the Mahalanobis distance calculation,
as defined in Eqn. (10.54), for measuring the similarity between shape
moment vectors.

A. Compute the covariance matrix 3 (see Sec. D.3 in the Appendix)
for the m = 11 Flusser shape features vy, ...,%;; of the refer-
ence images in Table 10.1. Calculate and tabulate the inter-class
Mahalanobis distances for the reference shapes, analogous to the
example in Table 10.2.

2! Images are available on the book’s website.
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10 REGIONS IN BINARY
IMAGES

Fig. 10.25

Test image for moment-based
shape matching. Reference
shapes (top) and test image
(bottom) composed of rotated
and/or scaled shapes from
the Kimia database and ad-
ditional (unclassified) shapes.
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B. Extend your analysis to a larger set of 500-1000 shapes (e.g.,
from the Kimia dataset [134], which contains more than 20000
binary shape images). Calculate the normalized moment features
and the covariance matrix 3 for the entire image set. Calculate
the inter-class distance matrices for (a) the Euclidean and (b) the
Mahalanobis distance. Display the distance matrices as grayscale
images (FloatProcessor) and interpret them.

e
A
s 2

Exercise 10.17. There are alternative definitions for the eccentricity
of a region Eqn. (10.34); for example [128, p. 394],

[1190(R) = 1102 (R)]” + 4431 (R) .
[1120(R) + Moz(R)}Q

Implement this version as well as the one in Eqn. (10.34) and contrast
the results using suitably designed regions. Determine the numeric
range of these quantities and test if they are really rotation and scale-
invariant.

Eccy(R) =

(10.58)

Exercise 10.18. Write an ImageJ plugin that (a) finds (labels) all
regions in a binary image, (b) computes the orientation and eccen-
tricity for each region, and (c¢) shows the results as a direction vector
and the equivalent ellipse on top of each region (as exemplified in
Fig. 10.19). Hint: Use Eqn. (10.39) to develop a method for drawing
ellipses at arbitrary orientations (not available in ImagelJ).

Exercise 10.19. The Java method in Prog. 10.4 computes an im-
age’s horizontal and vertical projections. The scheme described in
Sec. 10.6.3 and illustrated in Fig. 10.20 can be used to calculate pro-
jections along arbitrary directions 6. Develop and implement such a
process and display the resulting projections.



Exercise 10.20. Text recognition (OCR) methods are likely to fail
if the document image is not perfectly axis-aligned. One method for
estimating the skew angle of a text document is to perform binary
segmentation and connected components analysis (see Fig. 10.26):

e Smear the original binary image by applying a disk-shaped
morphological dilation with a specified radius (see Chapter 9,
Sec. 9.2.3). The aim is to close the gaps between neighboring
glyphs without closing the space between adjacent text lines (Fig.
10.26(b))

e Apply region segmentation to the resulting image and calculate
the orientation §(R) and the eccentricity E(R) of each region R
(see Secs. 10.6.1 and 10.6.2). Ignore all regions that are either
too small or not sufficiently elongated.

e Estimate the global skew angle by averaging the regions’ orien-
tations 6;. Note that, since angles are circular, they cannot be
averaged in the usual way (see Chapter 15, Eqn. (15.14) for how
to calculate the mean of a circular quantity). Consider using
the eccentricity as a weight for the contribution of the associated
region to the global average.

e Obviously, this scheme is sensitive to outliers, that is, against
angles that deviate strongly from the average orientation. Try to
improve this estimate (i.e., make it more robust and accurate) by
iteratively removing angles that are “too far” from the average
orientation and then recalculating the result.

Exercise 10.21. Draw the tree structure, defined by the recursive
nesting of outer and inner regions, for each of the markers shown in
Fig. 10.23. Based on this graph structure, suggest an algorithm for
matching pairs of markers or, alternatively, for retrieving the best-
matching marker from a database of markers.

10.10 EXERCISES
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IMAGES

Fig. 10.26

Document skew estimation
example (see Exercise 10.20).
Original binary image (a); re-

N R verification provisions. Rea-
sult of applying a disk-shaped todiscuss eliminating nuclear  gan’s first requi on the
: : B 3 Weapons. road to a nuclear test ban was
morphological dilation with The two leaders focusedon complete,

radius 3.0 (b); region orien-
tation vectors (c); histogram
of the orientation angle 6 (d).
The real skew angle in this
scan is approximately 1.1°.

As President Eisenhower
ance said, nuclear weapons are
the only thing that can destroy
the United States, Americans
want to hear how the next
president plans to contral the
thousands of these weapons of
mass destruction that exist in
the world,

It's worth remembering that
in October 1986 President Ron-
ald Reagan was meeting with
Soviet President Mikhail Gor-
bachev in Reykjavik, Iceland,

nuclear weapons testing. If you
are serious about total nuclear
disarmament, you have to end
testing first. As Reagan wrote
then, “1 am committed to the
ultimate attainment of a total
ban on nuclear testing, a goal
that has been endorsed by
every U.S. president since
Fresident Eisenhower."

But Reagan had some prere-
quisites. In 1986 the United
States Senate had yet to ratify
two treaties that had been
negotiated with the Soviets: the
Threshold Test Ban, which
limited the size of underground

TN or
peaceful purposes, Reagan
wanted to get these treaties
ratified first, and that meant
making sure the agreements
could not be cheated on by
secrel tests. As Reagan like to
say “Trust, but verify.”

In 1990, after Reagan had
left office, both the Threshold
Test Ban and the Peaceful
Nuclear Explosions Treaty
were ratified by the Senate
after satisfactory review of the

Reagan's second require-
ment for ending nuclear test.
ing was that the Soviets and the
Americans should reduce their
nuclear stockpiles, That effort
started with the 1987 Interme-
diate-Range Nuclear Forces

Treaty, which d medi-
um- and short-range nuclear
missiles. The Strategic Arms
Reduction Talks (START) trea-
ties subsequently continued
U.5. and Russian reductions,
although thousands still re-
main.

In 1996 the Comprehensive
Nuclear Test Ban Treaty was
crafted to ban all nuclear test
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11

Automatic Thresholding

Although techniques based on binary image regions have been used
for a very long time, they still play a major role in many practical
image processing applications today because of their simplicity and
efficiency. To obtain a binary image, the first and perhaps most
critical step is to convert the initial grayscale (or color) image to a
binary image, in most cases by performing some form of thresholding
operation, as described in Chapter 4, Sec. 4.1.4.

Anyone who has ever tried to convert a scanned document image
to a readable binary image has experienced how sensitively the result
depends on the proper choice of the threshold value. This chapter
deals with finding the best threshold automatically only from the in-
formation contained in the image, i.e., in an “unsupervised” fashion.
This may be a single, “global” threshold that is applied to the whole
image or different thresholds for different parts of the image. In the
latter case we talk about “adaptive” thresholding, which is partic-
ularly useful when the image exhibits a varying background due to
uneven lighting, exposure, or viewing conditions.

Automatic thresholding is a traditional and still very active area
of research that had its peak in the 1980s and 1990s. Numerous
techniques have been developed for this task, ranging from sim-
ple ad-hoc solutions to complex algorithms with firm theoretical
foundations, as documented in several reviews and evaluation stud-
ies [86,178,204,213,231]. Binarization of images is also considered a
“segmentation” technique and thus often categorized under this term.
In the following, we describe some representative and popular tech-
niques in greater detail, starting in Sec. 11.1 with global thresholding
methods and continuing with adaptive methods in Sec. 11.2.

11.1 Global Histogram-Based Thresholding

Given a grayscale image I, the task is to find a single “optimal”
threshold value for binarizing this image. Applying a particular
threshold q is equivalent to classifying each pixel as being either part
© Springer-Verlag London 2016

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,
DOI 10.1007/978-1-4471-6684-9 11
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THRESHOLDING

Fig. 11.1
Test images used for sub-
sequent thresholding ex-
periments. Detail from a
manuscript by Johannes
Kepler (a), document with
fingerprint (b), ARToolkit
marker (c), synthetic two-
level Gaussian mixture im-
age (d). Results of threshold-
ing with the fixed threshold
value ¢ = 128 (e-h). His-
tograms of the original im-
ages (i-1) with intensity values
from 0 (left) to 255 (right).
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of the background or the foreground. Thus the set of all image pix-
els is partitioned into two disjoint sets Cy and C;, where C; contains
all elements with values in [0,1,...,q] and C; collects the remaining
elements with values in [¢+1,..., K—1], that is,

i <
(u,0) € {Co if I(u,v) < q (background), L)

C, if I(u,v) > q (foreground).

Of course, the meaning of background and foreground may differ from
one application to another. For example, the aforementioned scheme
is quite natural for astronomical or thermal images, where the rele-
vant “foreground” pixels are bright and the background is dark. Con-
versely, in document analysis, for example, the objects of interest are
usually the dark letters or artwork printed on a bright background.
This should not be confusing and of course one can always invert the
image to adapt to this scheme, so there is no loss of generality here.

Figure 11.1 shows several test images used in this chapter and
the result of thresholding with a fixed threshold value. The synthetic
image in Fig. 11.1(d) is the mixture of two Gaussian random distri-
butions N, V;for the background and foreground, respectively, with
o = 80, uy = 170, 0y = 07 = 20. The corresponding histograms of
the test images are shown in Fig. 11.1(i-1). Note that all histograms
are normalized to constant area (not to maximum values, as usual),
with intensity values ranging from 0 (left) to 255 (right).

The key question is how to find a suitable (or even “optimal”)
threshold value for binarizing the image. As the name implies,
histogram-based methods calculate the threshold primarily from the
information contained in the image’s histogram, without inspecting
the actual image pixels. Other methods process individual pixels
for finding the threshold and there are also hybrid methods that rely
both on the histogram and the local image content. Histogram-based



techniques are usually simple and efficient, because they operate on

11.1 GLOBAL

a small set of data (256 values in case of an 8-bit histogram); they HisTtocraM-BASED

can be grouped into two main categories: shape-based and statistical THRESHOLDING

methods.

Shape-based methods analyze the structure of the histogram’s dis-
tribution, for example by trying to locate peaks, valleys and other
“shape” features. Usually the histogram is first smoothed to elimi-
nate narrow peaks and gaps. While shape-based methods were quite
popular early on, they are usually not as robust as their statistical
counterparts or at least do not seem to offer any distinct advantages.
A classic representative of this category is the “triangle” (or “chord”)
algorithm described in [261]. References to numerous other shape-
based methods can be found in [213].

Statistical methods, as their name suggests, rely on statistical in-
formation derived from the image’s histogram (which of course is a
statistic itself), such as the mean, variance, or entropy. In the next
section, we discuss a few elementary parameters that can be obtained
from the histogram, followed by a description of concrete algorithms
that use this information. Again there are a vast number of similar
methods and we have selected four representative algorithms to be de-
scribed in more detail: (a) iterative threshold selection by Ridler and
Calvard [198], (b) Otsu’s clustering method [177], (c¢) the minimum
error method by Kittler and Illingworth [116], and (d) the maximum
entropy thresholding method by Kapur, Sahoo, and Wong [133].

11.1.1 Image Statistics from the Histogram

As described in Chapter 3, Sec. 3.7, several statistical quantities,
such as the arithmetic mean, variance and median, can be calculated
directly from the histogram, without reverting to the original image
data. If we threshold the image at level ¢ (0 < ¢ < K), the set of
pixels is partitioned into the disjoint subsets Cy, C;, corresponding to
the background and the foreground. The number of pixels assigned
to each subset is

q

no(@) = 1Col = Y h(g) and m(@)=1c= 3 hig). (112)

9=0 9=q+1

respectively. Also, because all pixels are assigned to either the back-
ground set Cy or the foreground set Cq,
no(q) +n1(q) = [Co| +[Ci| = [CoUC,| = MN. (11.3)

For any threshold ¢, the mean values of the associated partitions
Cp,C; can be calculated from the image histogram as

1 q
1 K—-1
11(q) = ) ~g=2q+19 ~h(g) (11.5)
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11 Automatic and these quantities relate to the image’s overall mean p; (Eqn. (3.9))
THRESHOLDING DY

= ﬁ “[n0(q) - po(@) +11(q) - 11 (@)] = po(E—1).  (11.6)

Analogously, the variances of the background and foreground parti-
tions can be extracted from the histogram as?

o3lq) = — > (9 10(@)* - h(g)

no(q) 9=0

L (11.7)
o) = — D (g (@) - hlo)

(Of course, as in Eqn. (3.12), this calculation can also be performed in
a single iteration and without knowing 1q(q), p1(¢q) in advance.) The
overall variance o2 for the whole image is identical to the variance of
the background for ¢ = K —1,

K—1
ot = R LS R

that is, for all pixels being assigned to the background partition. Note
that, unlike the simple relation of the means given in Eqn. (11.6),

ot # s lnolo) @+ m@) ot@]  (119)

in general (see also Eqn. (11.20)).

We will use these basic relations in the discussion of histogram-
based threshold selection algorithms in the following and add more
specific ones as we go along.

11.1.2 Simple Threshold Selection

Clearly, the choice of the threshold value should not be fixed but
somehow based on the content of the image. In the simplest case, we
could use the mean of all image pixels,

q <+ mean(l) = pr, (11.10)

as the threshold value g, or the median, (see Sec. 3.7.2),
q + median(I) = my, (11.11)

or, alternatively, the average of the minimum and the mazimum
(mid-range value), that is,

max(I) + min([) .

5 (11.12)

q <—
! Note that 10(q), 11 () are meant to be functions over ¢ and thus o (K—1)
in Eqn. (11. 6) denotes the mean of partition Cy for the threshold K —1.

2 63(q) and o1 (q) in Eqn. (11.7) are also functions over q.



1: QuantileThreshold(h, p)
Input: h: [0, K—1] — N, a grayscale histogram. p, the proportion
of expected background pixels (0 < p < 1). Returns the optimal
threshold value or —1 if no threshold is found.
2: K < Size(h) > number of intensity levels
K1
3: MN « > h(4) > number of image pixels
i=0
4: 1+ 0
5: ¢+ h(0)
6: while (i < K) A (¢ < MN -p)do > quantile calc. (Eq.11.13)
7 t—1+1
8: ¢+ c+h(j)
9: if ¢c < M N then > foreground is non-empty
10: g i
11: else > foreground is empty, all pixels are background
12: g+ —1
13: return q

Like the image mean p; (see Eqn. (3.9)), all these quantities can be
obtained directly from the histogram h.

Thresholding at the median segments the image into approxi-
mately equal-sized background and foreground sets, that is, |Cy| =~
|C1], which assumes that the “interesting” (foreground) pixels cover
about half of the image. This may be appropriate for certain images,
but completely wrong for others. For example, a scanned text image
will typically contain a lot more white than black pixels, so using the
median threshold would probably be unsatisfactory in this case. If
the approximate fraction p (0 < p < 1) of expected background pix-
els is known in advance, the threshold could be set to that quantile
instead. In this case, ¢ is simply chosen as

g« min{i [ Y h(i)>M-N-p}, (11.13)
§=0

where N is the total number of pixels. We see that the median is
only a special case of a quantile measure, with p = 0.5. This simple
thresholding method is summarized in Alg. 11.1.

For the mid-range technique (Eqn. (11.12)), the limiting intensity
values min(JI) and max(I) can be found by searching for the smallest
and largest non-zero entries, respectively, in the histogram h. The
mid-range threshold segments the image at 50 % (or any other per-
centile) of the contrast range. In this case, nothing can be said in
general about the relative sizes of the resulting background and fore-
ground partitions. Because a single extreme pixel value (outlier) may
change the contrast range dramatically, this approach is not very ro-
bust. Here too it is advantageous to define the contrast range by
specifying pixel quantiles, analogous to the calculation of the quan-
tities aj,,, and aj;,;, in the modified auto-contrast function (see Ch.
4, Sec. 4.4).

In the pathological (but nevertheless possible) case that all pixels
in the image have the same intensity g, all the aforementioned meth-

11.1 GLOBAL
HISTOGRAM-BASED
THRESHOLDING

Alg. 11.1

Quantile thresholding. The
optimal threshold value ¢ €

[0, K —2] is returned, or —1 if
no valid threshold was found.
Note the test in line 9 to check
if the foreground is empty or
not (the background is always
non-empty by definition).
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Fig. 11.2
Results from various simple
thresholding schemes. Mean

(a—d), median (e-h), and mid-
range (i-1) threshold, as spec-
ified in Eqns. (11.10)—(11.12).
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ods will return the threshold ¢ = ¢, which assigns all pixels to the
background partition and leaves the foreground empty. Algorithms
should try to detect this situation, because thresholding a uniform
image obviously makes no sense. Results obtained with these simple
thresholding techniques are shown in Fig. 11.2. Despite the obvi-
ous limitations, even a simple automatic threshold selection (such as
the quantile technique in Alg. 11.1) will typically yield more reliable
results than the use of a fixed threshold.

11.1.3 Iterative Threshold Selection (Isodata Algorithm)

This classic iterative algorithm for finding an optimal threshold is
attributed to Ridler and Calvard [198] and was related to Isodata
clustering by Velasco [242]. Tt is thus sometimes referred to as the
“isodata” or “intermeans” algorithm. Like in many other global
thresholding schemes it is assumed that the image’s histogram is
a mixture of two separate distributions, one for the intensities of the
background pixels and the other for the foreground pixels. In this
case, the two distributions are assumed to be Gaussian with approx-
imately identical spreads (variances).

The algorithm starts by making an initial guess for the threshold,
for example, by taking the mean or the median of the whole image.
This splits the set of pixels into a background and a foreground set,
both of which should be non-empty. Next, the means of both sets are
calculated and the threshold is repositioned to their average, that is,
centered between the two means. The means are then re-calculated
for the resulting background and foreground sets, and so on, until



1: lIsodataThreshold(h)
Input: h: [0, K—1] — N, a grayscale histogram.
Returns the optimal threshold value or —1 if no threshold is

found.

2 K < Size(h) > number of intensity levels
3 q + Mean(h,0, K—1) > set initial threshold to overall mean
4: repeat

5: ng < Count(h, 0, q) > background population
6: n, « Count(h,q+1, K—1) > foreground population
7 if (ng =0) V (n; =0) then > backgrd. or foregrd. is empty
8 return —1

9: 1o < Mean(h, 0, q) > background mean
10: 1y < Mean(h,g+1, K—1) > foreground mean
11: q +q > keep previous threshold
12: q {%J > calculate the new threshold

13: until ¢ = ¢/ > terminate if no change

14: return q

b
15: Count(h,a,b) := > h(g)

16: Mean(h,a,b) := {éag . h(g)}/[éh(g)}

the threshold does not change any longer. In practice, it takes only
a few iterations for the threshold to converge.

This procedure is summarized in Alg. 11.2. The initial threshold
is set to the overall mean (line 3). For each threshold ¢, separate
mean values g, p; are computed for the corresponding foreground
and background partitions. The threshold is repeatedly set to the
average of the two means until no more change occurs. The clause
in line 7 tests if either the background or the foreground partition is
empty, which will happen, for example, if the image contains only a
single intensity value. In this case, no valid threshold exists and the
procedure returns —1. The functions Count(h, a,b) and Mean(h, a, b)
in lines 15-16 return the number of pixels and the mean, respectively,
of the image pixels with intensity values in the range [a, b]. Both can
be computed directly from the histogram h without inspecting the
image itself.

The performance of this algorithm can be easily improved by us-
ing tables g (q), 1 (g) for the background and foreground means, re-
spectively. The modified, table-based version of the iterative thresh-
old selection procedure is shown in Alg. 11.3. It requires two passes
over the histogram to initialize the tables p, 1, and only a small,
constant number of computations for each iteration in its main loop.
Note that the image’s overall mean puj, used as the initial guess for
the threshold ¢ (Alg. 11.3, line 4), need not be calculated separately
but can be obtained as u; = po(K—1), given that threshold ¢ = K—1
assigns all image pixels to the background. The time complexity of
this algorithm is thus O(K), that is, linear w.r.t. the size of the

11.1 GLOBAL
HISTOGRAM-BASED
THRESHOLDING

Alg. 11.2

“Isodata” threshold selection
based on the iterative method
by Ridler and Calvard [198].
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Alg. 11.3

Fast version of “isodata”
threshold selection. Pre-
calculated tables are used for
the foreground and background
means p, and pq, respectively.

Fig. 11.3

Thresholding with the iso-
data algorithm. Binarized
images and the corresponding
optimal threshold values (gq).
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1: FastlsodataThreshold(h)

11:

Input: h: [0, K—1] — N, a grayscale histogram.
Returns the optimal threshold value or —1 if no threshold is
found.

K < Size(h) > number of intensity levels
(o, b1, N) < MakeMeanTables(h)
q < |po(K—1)| > take the overall mean p; as initial threshold

repeat
if (110(q) < 0) V (1, (g) < 0) then
return —1 > background or foreground is empty
q +q > keep previous threshold
q {WJ > calculate the new threshold
until ¢ = ¢’ > terminate if no change
return q

12: MakeMeanTables(h)

13:
14:
15:
16:
17:
18:

19:

20:

21:
22:
23:
24:
25:

26:
27:

K < Size(h)

Create maps pg, pbq @ [0, K—1] — R

ng <0, s+ 0

forq«+0,.-",K—1do > tabulate background means 14(q)
ngy < ng + h(q)
89 < 8o+ ¢q-h(q)

so/ng ifng >0
Hola) { -1 otherwise
N + g
ny < 0, S1 < 0
pi(K—=1) « 0
for g« K—2,-.,0 do > tabulate foreground means p,(q)

ny < ny +h(g+1)
51 ¢ 51+ (g+1) - h(g+1)

si/ny ifng >0
mi(9) { -1 otherwise

return (ug, pq, N)

[avgularn.
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histogram. Figure 11.3 shows the results of thresholding with the
isodata algorithm applied to the test images in Fig. 11.1.

11.1.4 Otsu’s Method

The method proposed by Otsu [147,177] also assumes that the orig-
inal image contains pixels from two classes, whose intensity distri-
butions are unknown. The goal is to find a threshold ¢ such that
the resulting background and foreground distributions are maximally
separated, which means that they are (a) each as narrow as possi-



ble (have minimal variances) and (b) their centers (means) are most
distant from each other.

For a given threshold ¢, the variances of the corresponding back-
ground and foreground partitions can be calculated straight from the
image’s histogram (see Eqn. (11.7)). The combined width of the two
distributions is measured by the within-class variance

o2 (q) = Po(q) - 05 (q) + Pi(q) - 07 (q) (11.14)
= v [0(@ oB@) + ) ot@],  (115)
where
- o _ S ~ ng(q)
Pola) = 3 p() = 17 Do) = "2 (1)
=0 =0
= = n1(q)
P1(Q) = Z P(Z) = MN h(l) = MN (11~17)
i=q+1 i=q+1

are the class probabilities for Cy, C;, respectively. Thus the within-
class variance in Eqn. (11.15) is simply the sum of the individual
variances weighted by the corresponding class probabilities or “pop-
ulations”. Analogously, the between-class variance,

o2(q) = Po(q) - (1o(a) — 11)” +Pi(a) - () — )’ (11.18)
B ﬁ [m0(0)- (tt0(@) — 1) * + (@) (m(@) = 11)"] (11.19)

measures the distances between the cluster means g, ©; and the
overall mean p;. The total image variance o7 is the sum of the
within-class variance and the between-class variance, that is,

ot = ow(a) + ot(q), (11.20)
for ¢ = 0,...,K—1. Since o7 is constant for a given image, the

threshold g can be found by either minimizing the within-variance
o2, or mazimizing the between-variance . The natural choice is
to maximize og, because it only relies on first-order statistics (i.e.,
the within-class means pg, t;). Since the overall mean u; can be
expressed as the weighted sum of the partition means pg and py

(Eqn. (11.6)), we can simplify Eqn. (11.19) to

a2(q) = Po(a) - P1(@) - [Ho(2) — (0] (11.21)
- W no(q) -1 (9) - [p0(a) — 1 ()] (11.22)

The optimal threshold is finally found by mazimizing the expres-
sion for the between-class variance in Eqn. (11.22) with respect to ¢,
thereby minimizing the within-class variance in Eqn. (11.15).
Noting that oZ(q) only depends on the means (and not on the
variances) of the two partitions for a given threshold ¢ allows for a
very efficient implementation, as outlined in Alg. 11.4. The algorithm
assumes a grayscale image with a total of N pixels and K intensity
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Alg. 11.4

Finding the optimal threshold
using Otsu’s method [177]. Ini-
tially (outside the for-loop),
the threshold ¢ is assumed to
be —1, which corresponds to
the background class being
empty (ny = 0) and all pixels
are assigned to the foreground
class (n; = N). The for-loop
(lines 7-14) examines each pos-
sible threshold ¢ = 0,..., K—2.
The factor 1/(MN)? in line

11 is constant and thus not
relevant for the optimiza-

tion. The optimal threshold
value is returned, or —1 if no
valid threshold was found. The
function MakeMeanTables()

is defined in Alg. 11.3.

262

1: OtsuThreshold(h)
Input: h: [0, K—1] — N, a grayscale histogram. Returns the
optimal threshold value or —1 if no threshold is found.
2: K < Size(h) > number of intensity levels
3: (tg, pbq, MN) < MakeMeanTables(h) > see Alg. 11.3
4: Ol a0
o Imax < -1
6: Ng < 0
7 for ¢ + 0,. ", K—2 do > examine all possible threshold values ¢
8: ng < ng + h(q)
9: ny < MN —ng
10: if (ng > 0) A (ny > 0) then
11: of W “ng -1 - [o(q) — e (@) > see Bq. 11.22
12: if 0 > ot ax then > maximize o
13: Ol max < OF
14: Imax < ¢
15: return g,

levels. As in Alg. 11.3, precalculated tables p,(q), pt1(q) are used
for the background and foreground means for all possible threshold
values ¢ =0,..., K—1.

Possible threshold values are ¢ =0, ..., K—2 (with ¢ = K—1, all
pixels are assigned to the background). Initially (before entering the
main for-loop in line 7) ¢ = —1; at this point, the set of background
pixels (< ¢) is empty and all pixels are classified as foreground (ng =
0 and n; = N). Each possible threshold value is examined inside the
body of the for-loop.

As long as any of the two classes is empty (ng(¢) =0 or ni(q) =
0),® the resulting between-class variance o2 (q) is zero. The threshold
that yields the maximum between-class variance (o, ) is returned,
or —1 if no valid threshold could be found. This occurs when all
image pixels have the same intensity, that all pixels are in either the
background or the foreground class.

Note that in line 11 of Alg. 11.4, the factor z is constant (inde-
pendent of ¢) and can thus be ignored in the optimization. However,
care must be taken at this point because the computation of ag may
produce intermediate values that exceed the range of typical (32-bit)
integer variables, even for medium-size images. Variables of type
long should be used or the computation be performed with floating-
point values.

The absolute “goodness” of the final thresholding by ¢y,., could
be measured as the ratio

_ Ug (qmax)
n= p)
o1

€[0,1] (11.23)

3 This is the case if the image contains no pixels with values I(u,v) < ¢

or I(u,v) > g, that is, the histogram h is empty either below or above
the index gq.
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il LA - | — Otsu’s method. Calculated
(b) Gax = 124 (€) Gmax = 94 (d) Gmax = 92 threshold values ¢ and re-

sulting binary images (a—d).

Graphs in (e-h) show the cor-
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Fig. 11.4

variance o¢ (green), the
within-foreground variance
o? (blue), and the between-
class variance of (red), for
varying threshold values

q = 0,...,255. The optimal
threshold g, (dashed verti-
cal line) is positioned at the
maximum of og. The value n
. . . denotes the “goodness” esti-
(see Eqn. (11.8)), which is invariant under linear changes of contrast mate for the thresholding, as

and brightness [177]. Greater values of 7 indicate better threshold- —defined in Ean. (11.23).
ing.
Results of automatic threshold selection with Otsu’s method are
shown in Fig. 11.4, where ¢, denotes the optimal threshold and 7
is the corresponding “goodness” estimate, as defined in Eqn. (11.23).
The graph underneath each image shows the original histogram
(gray) overlaid with the variance within the background o3 (green),
the variance within the foreground o7 (blue), and the between-class
variance of (red) for varying threshold values g. The dashed vertical
line marks the position of the optimal threshold gy ay-

Due to the pre-calculation of the mean values, Otsu’s method re-
quires only three passes over the histogram and is thus very fast
(O(K)), in contrast to opposite accounts in the literature. The
method is frequently quoted and performs well in comparison to other
approaches [213], despite its long history and its simplicity. In gen-
eral, the results are very similar to the ones produced by the iterative
threshold selection (“isodata”) algorithm described in Sec. 11.1.3.

11.1.5 Maximum Entropy Thresholding

Entropy is an important concept in information theory and particu-
larly in data compression. It is a statistical measure that quantifies
the average amount of information contained in the “messages” gen-
erated by a stochastic data source [99,101]. For example, the M N
pixels in an image I can be interpreted as a message of M N sym-
bols, each taken independently from a finite alphabet of K (e.g.,
256) different intensity values. Every pixel is assumed to be stati-
cally independent. Knowing the probability of each intensity value
g to occur, entropy measures how likely it is to observe a particular
image, or, in other words, how much we should be surprised to see
such an image. Before going into further details, we briefly review
the notion of probabilities in the context of images and histograms
(see also Ch. 4, Sec. 4.6.1).

For modeling the image generation as a random process, we first

need to define an “alphabet”, that is, a set of symbols 263
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Z={0,1,..., K—1}, (11.24)

which in this case is simply the set of possible intensity values
g =0,...,K—1, together with the probability p(g) that a partic-
ular intensity value g occurs. These probabilities are supposed to be
known in advance, which is why they are called a priori (or prior)
probabilities. The vector of probabilities,

(p(o)ap(l)a ce ap(Kfl))a

is a probability distribution or probability density function (pdf). In
practice, the a priori probabilities are usually unknown, but they can
be estimated by observing how often the intensity values actually oc-
cur in one or more images, assuming that these are representative
instances of the images typically produced by that source. An esti-
mate p(g) of the image’s probability density function p(g) is obtained
by normalizing its histogram h in the form

(o) ~ plg) = 09, (125

for 0 < g < K, such that 0 < p(g) < 1 and fo;& p(g) = 1. The
associated cumulative distribution function (cdf) is

Plo) =3 M9 — 3 p0) (11.20

where P(0) = p(0) and P(K —1) = 1. This is simply the normalized
cumulative histogram.*

Entropy of images

Given an estimate of its intensity probability distribution p(g), the
entropy of an image is defined as®

H(Z)=> plg) -logb(i) =~ 3 p(g) -logy (p(g)), (11.27)

= p(9) =

where g = I(u,v) and log; (x) denotes the logarithm of z to the base
b. If b = 2, the entropy (or “information content”) is measured in
bits, but proportional results are obtained with any other logarithm
(such as In or log;,). Note that the value of H() is always positive,
because the probabilities p() are in [0, 1] and thus the terms log, [p()]
are negative or zero for any b.

Some other properties of the entropy are also quite intuitive. For
example, if all probabilities p(g) are zero except for one intensity ¢’,
then the entropy H (I) is zero, indicating that there is no uncertainty
(or “surprise”) in the messages produced by the corresponding data
source. The (rather boring) images generated by this source will
contain nothing but pixels of intensity ¢’, since all other intensities are

4 See also Chapter 3, Sec. 3.6.
5 Note the subtle difference in notation for the cumulative histogram H
and the entropy H.



impossible. Conversely, the entropy is a maximum if all K intensities
have the same probability (uniform distribution),

—~

for 0 < g < K, (11.28)

K-1 1 1 1 K-1
H(Z) == = log () = = D log,(K) (11.29)
=0 i=0
1 K-logy, (K)
= (K . logb(K)) = log, (K). (11.30)

This is the maximum possible entropy of a stochastic source with an
alphabet Z of size K. Thus the entropy H(Z) is always in the range
[0, log(K)].

Using image entropy for threshold selection

The use of image entropy as a criterion for threshold selection has a
long tradition and numerous methods have been proposed. In the fol-
lowing, we describe the early (but still popular) technique by Kapur
et al. [100,133] as a representative example.

Given a particular threshold ¢ (with 0 < ¢ < K—1), the estimated
probability distributions for the resulting partitions C, and C; are

L ¢ p(0)  p(1) p(q)

Co : ( Po(q) Polq) ~" " Pola) 0 0 0 )’ (11.31)
) p(g+1) p(g+2) pK—1) '

Cl : ( 0 0 ... 0 P.(q) Pi(gq) " Pi(q )7

with the associated cumulated probabilities (see Eqn. (11.26))

Po@) =3 () =P(q) and  Pyg)= 3 p(i)=1-P(g).
=0 =att (11.32)

Note that Py(q) + P;(¢) = 1, since the background and foreground
partitions are disjoint. The entropies within each partition are de-
fined as

p

log( p(i))), (11.33)

_ N~ p)
Hole) = ;PU(Q) Po(g
K-1 . .
mo=-2 e Fg) ma

and the overall entropy for the threshold ¢ is

Hyi(q) = Ho(q) + Hy(q)- (11.35)

This expression is to be maximized over ¢, also called the “infor-
mation between the classes” Cy and C;. To allow for an efficient
computation, the expression for Hy(¢) in Eqn. (11.33) can be rear-
ranged to
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() = *; ppo((Z;) [log(p(i)) — log(Po(a))] (11.36)
1 I .
= Pl ;p() [log(p(i)) —log(Po(q))] (11.37)
1 1 1 q
=D gpw log(p(1) + 515 ;p() log(Po(q))
) So(q) = Py(q)
= g 0@ +log(Py(q))- (11.38)

H,(q) = _'Zi ppl((z(;) ’ [10g<P(i)) - 10g(P1(C]))] (11.39)
i=q+1
1

= TTopyp 1@ log(1—Po(q))- (11.40)

Given the estimated probability distribution p(¢), the cumulative
probability Py and the summation terms Sy, S; (see Eqns. (11.38)—
(11.40)) can be calculated from the recurrence relations

~ Jpo) for ¢ =0,
Po(q) = {Po(q1)+P(Q) for 0 < g < K,
_ Jp(0) - log(p(0) for g =0,
So(q) = {So(q 1)+ p(q) .10g(p(q)) for0 < ¢ < K,
$1(q) = 0 for = K—1,
NPT Sua+1) +plg+1) - log(plg+1) for 0 < g < K—1.

(11.41)

The complete procedure is summarized in Alg. 11.5, where the val-
ues Sy(q), S1(q) are obtained from precalculated tables Sg,S;. The
algorithm performs three passes over the histogram of length K (two
for filling the tables Sy,S; and one in the main loop), so its time
complexity is O(K), like the algorithms described before.

Results obtained with this technique are shown in Fig. 11.5. The
technique described in this section is simple and efficient, because
it again relies entirely on the image’s histogram. More advanced
entropy-based thresholding techniques exist that, among other im-
provements, take into account the spatial structure of the original
image. An extensive review of entropy-based methods can be found
in [46].

11.1.6 Minimum Error Thresholding

The goal of minimum error thresholding is to optimally fit a combi-
nation (mixture) of Gaussian distributions to the image’s histogram.
Before we proceed, we briefly look at some additional concepts from
statistics. Note, however, that the following material is only intended



1: MaximumEntropyThreshold(h)
Input: h: [0, K —1] — N, a grayscale histogram. Returns the
optimal threshold value or —1 if no threshold is found.
2: K <+ Size(h) > number of intensity levels
3: p < Normalize(h) > normalize histogram
4: (So,S1) < MakeTables(p, K) > tables for Sy(q),S1(q)
5: PO < O > P() € [0H 1]
6: Qmax -1
7 H, oy ¢ —00 > maximum joint entropy
8: for g+ 0,.-",K—2 do © check all possible threshold values ¢
9: Po < Po +p(q)
10: P, 1-P, > P, €[0,1]
1 .
—=-S log(P fP 0
11: Hy + Po o(9) +log(Po) if Py >, > BG entropy
0 otherwise
1 .
—5-S log(P fP 0
12: H, + P 1(g) +log(Py) if Py >, > F'G entropy
0 otherwise
13: Hy = Hy+ H, > overall entropy for ¢
14: if Hy; > H,, .y then > maximize Hy;(q)
15: H,.x < Hy,
16: Qmax < ¢
17: return g,
18: MakeTables(p, K)
19: Create maps Sg,S; : [0, K—1] = R
200 sy« 0
21: fori+0,.-",K—1do > initialize table S,
22: if p(¢) > 0 then
23: Sg < So + p(t) - log(p(i))
24: So(Z) < So
25: s+ 0
26: fori <+ K—-1,"-.,0do > initialize table S;
27 S, (i) « s
28: if p(¢) > 0 then
20: sy < 81+ p(i) - log(p(i))
30: return (Sg,S;)
:h:rl'::;a e difpafitia Tlasersram dia

(d) ¢ = 126

— ™
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Alg. 11.5

Maximum entropy thresh-

old selection after Kapur et
al. [133]. Initially (outside the
for-loop), the threshold q is
assumed to be —1, which cor-
responds to the background
class being empty (n, = 0)
and all pixels assigned to the
foreground class (n; = N).
The for-loop (lines 8-16) ex-
amines each possible threshold
q=20,...,K—2. The optimal
threshold value (0,..., K —2)
is returned, or —1 if no valid
threshold was found.

Fig. 11.5

Thresholding with the
Maximum-entropy method.
Calculated threshold values ¢
and resulting binary images
(a—d). Graphs in (e—h) show
the background entropy Hq(q)
(green), foreground entropy
H,(q) (blue) and overall en-
tropy Hoy(q) = Ho(q) + Hy(q)
(red), for varying threshold
values ¢q. The optimal thresh-
old g, .y is found at the max-
imum of Hy; (dashed vertical
line).
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as a superficial outline to explain the elementary concepts. For a
solid grounding of these and related topics readers are referred to
the excellent texts available on statistical pattern recognition, such
as [24,64].

Bayesian decision making

The assumption is again that the image pixels originate from one of
two classes, Cy and Cq, or background and foreground, respectively.
Both classes generate random intensity values following unknown sta-
tistical distributions. Typically, these are modeled as Gaussian dis-
tributions with unknown parameters p and o2, as will be described.
The task is to decide for each pixel value x to which of the two classes
it most likely belongs. Bayesian reasoning is a classic technique for
making such decisions in a probabilistic context.

The probability, that a certain intensity value x originates from a
background pixel is denoted

p(x | Co)-

This is called a “conditional probability”.% It tells us how likely it is to
observe the gray value x when a pixel is a member of the background
class Cy. Analogously, p(z | C;) is the conditional probability of
observing the value z when a pixel is known to be of the foreground
class C;.

For the moment, let us assume that the conditional probability
functions p(z | Cy) and p(x | C;) are known. Our problem is reversed
though, namely to decide which class a pixel most likely belongs
to, given that its intensity is x. This means that we are actually
interested in the conditional probabilities

p(Cy | ) and  p(C; | x), (11.42)

also called a posteriori (or posterior) probabilities. If we knew these,
we could simply select the class with the higher probability in the
form

. (11.43)
C, otherwise.

o {co if p(Co | ) > p(Cy | 2),
Bayes’ theorem provides a method for estimating these posterior
probabilities, that is,

p(z | Cj) ‘P(Cj)

o) : (11.44)

P(Cj | ) =

where p(C;) is the prior probability of class C;. While, in theory, the
prior probabilities are also unknown, they can be easily estimated
from the image histogram (see also Sec. 11.1.5). Finally, p(z) in Eqn.
(11.44) is the overall probability of observing the intensity value x,

6 In general, p(A | B) denotes the (conditional) probability of observing
the event A in a given situation B. It is usually read as “the probability
of A, given B”.



which is typically estimated from its relative frequency in one or more
images.”

Note that for a particular intensity x, the corresponding evidence
p(z) only scales the posterior probabilities and is thus not relevant for
the classification itself. Consequently, we can reformulate the binary
decision rule in Eqn. (11.43) to

) (11.45)
C, otherwise.

o {co if p( | Co) - p(Co) > p( | €1) - p(Cy),
This is called Bayes’ decision rule. It minimizes the probability of
making a classification error if the involved probabilities are known
and is also called the “minimum error” criterion.

Gaussian probability distributions

If the probability distributions p(z | C;) are modeled as Gaussian®

distributions NV (z | ;,02), where p;, 0]2- denote the mean and vari-
ance of class C;, we can rewrite the scaled posterior probabilities in
Eqn. (11.45) as

(z — Mj)2
20]2-

§1€))p(C)) = —— exp(~ )op(C;).  (11.46)

V2mo?
As long as the ordering between the resulting class scores remains un-
changed, these quantities can be scaled or transformed arbitrarily. In
particular, it is common to use the logarithm of the above expression
to avoid repeated multiplications of small numbers. For example,
applying the natural logarithm® to both sides of Eqn. (11.46) yields

In(p(z | C;) - p(C;)) = In(p(z | C;)) + In(p(C;)) (11.47)
1 (z — )
_ ln(ﬁ) + ln(exp(—T‘?)) +In(p(C;))  (11.48)
T )2
_ _% n(2r) — % Tn(o?) - % () (11.49)
= —; [ln(277) + (x;i;j)g +1In(07) — 2~ln(p(Cj))]. (11.50)

J

Since In(27) in Eqn. (11.50) is constant, it can be ignored for the
classification decision, as well as the factor % at the front. Thus, to
find the class C; that maximizes p(x | C;) - p(C;) for a given intensity

value z, it is sufficient to maximize the quantity
(x — ;)
— [ +2: (o) - In(p(C))]] (11.51)

or, alternatively, to minimize

" p(x) is also called the “evidence” for the event .

8 See also Sec. D.4 in the Appendix.

9 Any logarithm could be used but the natural logarithm complements
the exponential function of the Gaussian.
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e;(z) = 2 1+ 2.[In(o;) — In(p(C;))]. (11.52)

The quantity ;(x) can be viewed as a measure of the potential error
involved in classifying the observed value = as being of class C;. To
obtain the decision associated with the minimum risk, we can modify
the binary decision rule in Eqn. (11.45) to

o {co if £q(z) < &1(x), (11.53)

C, otherwise.

Remember that this rule tells us how to correctly classify the observed
intensity value x as being either of the background class C, or the
foreground class Cy, assuming that the underlying distributions are
really Gaussian and their parameters are well estimated.

Goodness of classification

If we apply a threshold ¢, all pixel values g < q are implicitly classified
as Cy (background) and all g > ¢ as C; (foreground). The goodness of
this classification by ¢ over all N image pixels I(u, v) can be measured
with the criterion function

_ 1 eo(I(u,v)) for I(u,v) <gq
(1) = 11w ;{Ef(uu’v)) for I(u.0) > g (11.54)
S Ly h s 11.55
7%; (g)~50(g)+M—; g ( . )
q K—1
= pl9)-e0l9) + > pg)-1(9), (11.56)
9=0 g=q+1

with the normalized frequencies p(g) = h(g)/N and the function €, (g)
as defined in Eqn. (11.52). By substituting ¢;(g) from Eqn. (11.52)
and some mathematical gymnastics, e(q) can be written as

e(q) = 1+ Py(q) - In(05(q)) + Pi(q) - In(07(q))
—2- Py(q) - In(Py(q)) —2- Pi(q) - In(Pi(q)).  (11.57)

The remaining task is to find the threshold ¢ that minimizes e(q)
(where the constant 1 in Eqn. (11.57) can be omitted, of course).
For each possible threshold ¢, we only need to estimate (from the
image’s histogram, as in Eqn. (11.31)) the “prior” probabilities Py(q),
P;(q) and the corresponding within-class variances o4(q), o (g). The
prior probabilities for the background and foreground classes are
estimated as

EINUESL S WIUES 7 LS
ISP B = SN ()
Pi(q)~ ) pl9) = 7 2 o) = S (11.59)
g=q+1 g=q+1



. K— .
where ng(q) = g:o h(i), n1(q) = Zi:qil h(i), and MN = ny(q) + 11.1 Grosar

nq(q) is the total number of image pixels. Estimates for background HistoeraM-BASED

and foreground variances ()o3(q) and o3 (q), respectively) defined in THRESHOLDING

Eqn. (11.7), can be calculated efficiently by expressing them in the
form

YU 1 ) 1 q )
e wrl {gz_(:)h(g) T @ (g;) h(9) - 9)°]
—————
1 By (q) 1 Ay(q)
= ol Bol@ = ooy - Ao (11.60)
o2 (q) ~ 1 Iilh(). , 1 Kﬁlh() )2]
e " mi(g) g1 A n1(q) = 9)-9
————
1 Bl(‘]) 1 Al(q)
=g B0 - - Ao, (11.61)

(11.62)

Furthermore, the values 03(q), 03(q) can be tabulated for every pos-

sible ¢ in only two passes over the histogram, using the recurrence
relations

0 forg=20
Aol = ’ 11.63
= {Ao(q1)+h(Q)'q for1 <¢<K-1, ( )

f =
By(q) = ) , 0 (11.64)
Bylg—1)+h(q) - ¢*> for1<q<K-1,
0 for g = K—1
Ai(q) = o ©(11.65)
A(g+1) 4+ h(g+1) - (q+1) for 0<g< K—2,

By(q) = {0 , forg=K-1 " ) 4
Bi(g+1)+h(g+1) - (g+1)* for0<¢< K-2.

The complete minimum-error threshold calculation is summarized
in Alg. 11.6. First, the tables Sy, S; are set up and initialized with
the values of 03(q),0%(q), respectively, for 0 < ¢ < K, following
the recursive scheme in Eqns. (11.63-11.66). Subsequently, the error
value e(q) is calculated for every possible threshold value ¢ to find
the global minimum. Again e(q) can only be calculated for those
values of ¢, for which both resulting partitions are non-empty (i.e.,
with ny(q),n,(¢) > 0). Note that, in lines 27 and 37 of Alg. 11.6,
a small constant (%) is added to the variance to avoid zero values
when the corresponding class population is homogeneous (i.e., only
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11 AutomaTic contains a single intensity value).!® This ensures that the algorithm

THRESHOLDING

Fig. 11.6
Results from minimum-error
thresholding. Calculated
threshold values ¢ and re-
sulting binary images (a—d).
The green and blue graphs in
(e~h) show the fitted Gaussian
background and foreground
distributions Ny = (ug, 0q)
and N7 = (uq,0,), respec-
tively. The red graph cor-
responds to the error quan-
tity e(q) for varying thresh-
old values ¢ = 0,...,255
(see Egn. (11.57)). The op-
timal threshold q,,;, is lo-
cated at the minimum of e(q)
(dashed vertical line). The
estimated parameters of the
background/foreground Gaus-
sians are listed at the bottom.
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works properly on images with only two distinct gray values. The
algorithm computes the optimal threshold by performing three passes
over the histogram (two for initializing the tables and one for finding
the minimum); it thus has the same time complexity of O(K) as the
algorithms described before.

Figure 11.6 shows the results of minimum-error thresholding on
our set of test images. It also shows the fitted pair of Gaussian distri-
butions for the background and the foreground pixels, respectively,
for the optimal threshold as well as the graphs of the error function
e(g), which is minimized over all threshold values ¢q. Obviously the
error function is quite flat in certain cases, indicating that similar
scores are obtained for a wide range of threshold values and the opti-
mal threshold is not very distinct. We can also see that the estimate
is quite accurate in case of the synthetic test image in Fig. 11.6(d),
which is actually generated as a mixture of two Gaussians (with pa-
rameters gy = 80, pu; = 170 and oy = o, = 20). Note that the
histograms in Fig. 11.6 have been properly normalized (to constant
area) to illustrate the curves of the Gaussians, that is, properly scaled
by their prior probabilities (P, P;), while the original histograms are
scaled with respect to their maximum values.

[engulem.
b Bodierna mese difpafitia plam

up rtinet diew confan Tienie Saturai o fovi)

b Bresomir, 4 e verd ad diem 1. 17, vel
loae sbfirvatiane ad veularms patee, buws  pra
ifE. 1d jequen paloals camprababs.

cucnur A fabittr i

(a) ¢ =161 (d) ¢ = 140

0 255 0 255 0 255 0 255

(e) () (2) (h)
po = 97.18 po = 33.16 po = 12.96 po = 80.12
oy = 39.48 oy = 7.28 oy = 8.74 oy = 19.98
@ = 181.74 pp = 164.94 = 168.44 @y = 171.93
o = 7.09 o, = 51.04 o, = 32.22 o, = 17.80

A minor theoretical problem with the minimum error technique
is that the parameters of the Gaussian distributions are always esti-
mated from truncated samples. This means that, for any threshold
q, only the intensity values smaller than ¢ are used to estimate the
parameters of the background distribution, and only the intensities
greater than ¢ contribute to the foreground parameters. In prac-
tice, this problem is of minor importance, since the distributions are
typically not strictly Gaussian either.

10 This is explained by the fact that each histogram bin h(i) represents

intensities in the continuous range [i£0.5] and the variance of uniformly

distributed values in the unit interval is %



1: MinimumErrorThreshold(h)
Input: h: [0, K —1] — N, a grayscale histogram. Returns the
optimal threshold value or —1 if no threshold is found.
2: K <+ Size(h)
3: (So,S1, N) < MakeSigmaTables(h, K)
4: ng < 0
5: Qmin — —1
6: €min < 00
7: for g+ 0,.-",K—2do > evaluate all possible thresholds ¢
8: ng < ng + h(q) > background population
9: ny < N —ng > foreground population
10: if (ng > 0) A (n; > 0) then
11: Py < ng/N > prior probability of Cg
12: P, < ny/N > prior probability of C;
13: e < Py -In(So(q)) + P - In(S1(q))
—2-(Py-In(Py) + Py - In(Py)) > Eq.11.57
14: if e < e, then > minimize error for ¢
15: €nin < €
16: Qmin & ¢
17: return ¢,
18: MakeSigmaTables(h, K)
19: Create maps Sg,S; : [0, K—1] = R
200 mg <0
21: Ay« 0
22: By« 0
23: for g« 0,.-",K—1do > tabulate o2 (q)
24: ng < ng + h(q)
25: Ay Ay +h(q)-q > Eq.11.63
26: By <+ By +h(q) - ¢* > Eq.11.64
1 2
27: So(q) { ” + (Bo = Aa/no)/no i(;i:r"w?seo > Eq. 11.60
28: N < ng
29: n, <0
30: A+ 0
31: B, 0
32: S{(K—=1)+0
33: for g+ K—2,-.,0 do > tabulate 07 (q)
34: ny < ny + h(g+1)
35: A+ Ay +h(g+1) - (g+1) > Eq.11.65
36: By < By +h(g+1) - (g+1)? > Eq.11.66
1 2
37: S, (q) { ” + (B = Ai/m)/m (fi:rlw;o > Eq.11.61
38: return (Sy,S;, N)

11.2 Local Adaptive Thresholding

In many situations, a fixed threshold is not appropriate to classify
the pixels in the entire image, for example, when confronted with
stained backgrounds or uneven lighting or exposure.
shows a typical, unevenly exposed document image and the results
obtained with some global thresholding methods described in the

previous sections.

Figure 11.7

11.2 LocAL ADAPTIVE
THRESHOLDING

Alg. 11.6

Minimum error threshold
selection based on a Gaus-
sian mixture model (af-

ter [116]). Tables Sy, S; are
intialized with values o§(q)
and o2 (q), respectively (see
Eqns. (11.60)—(11.61)), for

all possible threshold values
q=0,...,K—1. N is the num-
ber of image pixels. Initially
(outside the for-loop), the
threshold ¢ is assumed to be
—1, which corresponds to the
background class being empty
(ng = 0) and all pixels as-
signed to the foreground class
(ny = N). The for-loop (lines
8-16) examines each possible
threshold ¢ = 0,..., K—2. The
optimal threshold is returned,
or —1 if no valid threshold was
found.
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Fig. 11.7

Global thresholding methods
fail under uneven lighting or
exposure. Original image (a),
results from global thresh-
olding with various meth-
ods described above (b—d).
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(a) Original (b) Otsu (¢) Max. entropy (d) Min. error

Instead of using a single threshold value for the whole image,
adaptive thresholding specifies a varying threshold value Q(u,v) for
each image position that is used to classify the corresponding pixel
I(u,v) in the same way as described in Eqn. (11.1) for a global thresh-
old. The following approaches differ only with regard to how the
threshold “surface” @ is derived from the input image.

11.2.1 Bernsen’s Method

The method proposed by Bernsen [23] specifies a dynamic threshold
for each image position (u, v), based on the minimum and maximum
intensity found in a local neighborhood R(u,v). If

Iin(u,v) = min (4, j), (11.67)
(ir4)€
R(u,v)

Inax(u,v) = max I(i, j) (11.68)
R

are the minimum and maximum intensity values within a fixed-size
neighborhood region R centered at position (u,v), the space-varying
threshold is simply calculated as the mid-range value

Imin u,v + Im' x\U,V
Q(U,U) — ( ) 2 a ( )

(11.69)

This is done as long as the local contrast c(u,v) = I . (u,v) —
Iin(u,v) is above some predefined limit cp;,. If e(u,v) < cpin,
the pixels in the corresponding image region are assumed to belong
to a single class and are (by default) assigned to the background.

The whole process is summarized in Alg. 11.7. Note that the
meaning of “background” in terms of intensity levels depends on the
application. For example, in astronomy, the image background is usu-
ally darker than the objects of interest. In typical OCR applications,
however, the background (paper) is brighter than the foreground ob-
jects (print). The main function provides a control parameter bg to
select the proper default threshold ¢, which is set to K in case of
a dark background (bg = dark) and to 0 for a bright background
(bg = bright). The support region R may be square or circular, typi-
cally with a radius 7 = 15. The choice of the minimum contrast limit
Cmin depends on the type of imagery and the noise level (¢, = 15
is a suitable value to start with).

Figure 11.8 shows the results of Bernsen’s method on the uneven
test image used in Fig. 11.7 for different settings of the region’s ra-
dius r. Due to the nonlinear min- and max-operation, the resulting



1: BernsenThreshold(I, 7, ¢yin, bg)
Input: I, intensity image of size M x N; r, radius of support
region; ¢y, minimum contrast; bg, background type (dark or
bright). Returns a map with an individual threshold value for
each image position.

2: (M, N) + Size(I)

3: Create map @ : M x N — R

K if bg = dark

B TS0 if by — bright
5: for all image coordinates (u,v) € M x N do
6: R <+ MakeCircularRegion(u, v, r)
7 Lin < min I(2,5
(Join 10, j)
8: Lhax ¢ max I(i,7
(4,7)ER (,9)
9: ¢ Lo — Iiin
. (Imin + Imax)/Q lf & 2 Cmin
10: Qu,v) {q otherwise

11: return

12: MakeCircularRegion(u, v, )
Returns the set of pixel coordinates within the circle of radius r,
centered at (u,v)

13:  return {(i,j) € Z° | (u—1i)*+ (v —j)* <1’}

threshold surface is not smooth. The minimum contrast is set to
Cmin = 15, which is too low to avoid thresholding low-contrast noise
visible along the left image margin. By increasing the minimum
contrast c,,;,, more neighborhoods are considered “flat” and thus ig-
nored, that is, classified as background. This is demonstrated in Fig.
11.9. While larger values of c,;, effectively eliminate low-contrast
noise, relevant structures are also lost, which illustrates the difficulty
of finding a suitable global value for ¢,;,. Additional examples, using
the test images previously used for global thresholding, are shown in
Fig. 11.10.

What Alg. 11.7 describes formally can be implemented quite effi-
ciently, noting that the calculation of local minima and maxima over
a sliding window (lines 6-8) corresponds to a simple nonlinear filter
operation (see Ch. 5, Sec. 5.4). To perform these calculations, we
can use a minimum and maximum filter with radius r, as provided
by virtually every image processing environment. For example, the
Java implementation of the Bernsen thresholder in Prog. 11.1 uses
ImageJ’s built-in RankFilters class for this purpose. The complete
implementation can be found on the book’s website (see Sec. 11.3 for
additional details on the corresponding API).

11.2.2 Niblack’s Method

In this approach, originally presented in [172, Sec. 5.1], the threshold
Q(u,v) is varied across the image as a function of the local intensity
average i (u,v) and standard deviation!'! o (u,v) in the form

' The standard deviation o is the square root of the variance o2

11.2 LOCAL ADAPTIVE
THRESHOLDING

Alg. 11.7

Adaptive thresholding using
local contrast (after Bernsen
[23]). The argument to bg
should be set to dark if the
image background is darker
than the structures of interest,
and to bright if the background
is brighter than the objects.
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Prog. 11.1

Bernsen’s thresholder (Im-
agelJ plugin implementation
of Alg. 11.7). Note the use

of ImagelJ’s RankFilters class
(lines 30-32) for calculating
the local minimum (Imin) and
maximum (Imax) maps inside
the getThreshold() method.
The resulting threshold surface
Q(u,v) is returned as an 8-bit
image of type ByteProcessor.
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1 package imagingbook.pub.threshold.adaptive;

2 import ij.plugin.filter.RankFilters;

3 import ij.process.ByteProcessor;

4 import imagingbook.pub.threshold.BackgroundMode;

5

6 public class BernsenThresholder extends AdaptiveThresholder
{

7

8 public static class Parameters {

9 public int radius = 15;

10 public int cmin = 15;

11 public BackgroundMode bglMode = BackgroundMode .DARK;

12 3

13

14  private final Parameters params;

15

16  public BernsenThresholder () {

17 this.params = new Parameters();

18 3

19

20  public BernsenThresholder (Parameters params) {

21 this.params = params;

22}

23

24  public ByteProcessor getThreshold(ByteProcessor I) {

25 int M = I.getWidth();

26 int N = I.getHeight();

27 ByteProcessor Imin = (ByteProcessor) I.duplicate();

28 ByteProcessor Imax = (ByteProcessor) I.duplicate();

29

30 RankFilters rf = new RankFilters();

31 rf.rank (Imin,params.radius,RankFilters .MIN); // I;,(u,v)

32 rf.rank (Imax,params.radius,RankFilters .MAX); /I .. (u,v)

33

34 int q = (params.bgMode == BackgroundMode.DARK) 7

35 256 : 0;

36 ByteProcessor Q = new ByteProcessor(M, N); // Q(u,v)

37

38 for (int v = 0; v < N; v++) {

39 for (int u = 0; u < M; u++) {

40 int gMin = Imin.get(u, v);

41 int gMax = Imax.get(u, v);

42 int ¢ = gMax - gMin;

43 if (¢ >= params.cmin)

44 Q.set(u, v, (gMin + gMax) / 2);

45 else

46 Q.set(u, v, q);

47 }

48 }

49 return Q;

50 7}

51 }
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(a) Cmin = 15

Q(u,v) := pp(u,v) + £ - o (u,v).

(b) ¢

min

=30

(C) Cmin = 60

(11.70)

Thus the local threshold Q(u,v) is determined by adding a constant
portion (k > 0) of the local standard deviation o to the local mean
- pr and og are calculated over a square support region R centered

at (u,v).

The size (radius) of the averaging region R should be as

large as possible, at least larger than the size of the structures to be
detected, but small enough to capture the variations (unevenness)

11.2 LOCAL ADAPTIVE
THRESHOLDING

Fig. 11.8
Adaptive thresholding using
Bernsen’s method. Original
image (a), local minimum (b),
and maximum (c). The cen-
ter row shows the binarized
images for different settings
of r (d—f). The correspond-
ing curves in (g-i) show the
original intensity (gray), local
minimum (green), maximum
(red), and the actual thresh-
old (blue) along the horizontal
line marked in (a—c). The re-
gion radius r is 15 pixels, the
minimum contrast c is 15
intensity units.

min

Fig. 11.9
Adaptive thresholding using
Bernsen’s method with differ-
ent settings of c,;,. Binarized
images (top row) and threshold
surface Q(u,v) (bottom row).
Black areas in the threshold
functions indicate that the lo-
cal contrast is below ¢, ;,; the
corresponding pixels are clas-
sified as background (white in
this case).
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Fig. 11.10
Additional examples for
Bernsen’s method. Original
images (a—d), local minimum
I, (e-h), maximum I,
(i-1), and threshold map Q
(m—p); results after thresh-
olding the images (q—t). Set-
tings are r = 15, c,;;,, = 15.
A bright background is as-
sumed for all images (bg =
bright), except for image (d).
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of the background. A size of 31 x 31 pixels (or radius r = 15) is
suggested in [172] and k = 0.18, though the latter does not seem to
be critical.

One problem is that, for small values of o (as obtained in “flat”
image regions of approximately constant intensity), the threshold will
be close to the local average, which makes the segmentation quite
sensitive to low-amplitude noise (“ghosting”). A simple improvement
is to secure a minimum distance from the mean by adding a constant
offset d, that is, replacing Eqn. (11.70) by

Q(u,v) := pur(u,v) + k- op(u,v) + d, (11.71)



with d > 0, in the range 2,...,20 for typical 8-bit images.

The original formulation (Eqn. (11.70)) is aimed at situations
where the foreground structures are brighter than the background
(Fig. 11.11(a)) but does not work if the images are set up the other
way round (Fig. 11.11(b)). In the case that the structures of interest
are darker than the background (as, e.g., in typical OCR applica-
tions), one could either work with inverted images or modify the
calculation of the threshold to

pr(u,v) + (k- op(u,v) +d) for dark BG,

11.72
pr(u,v) — (k- op(u,v) +d) for bright BG. ( )

Qu,v) :== {

Dark background Bright background

The modified procedure is detailed in Alg. 11.8. The example
in Fig. 11.12 shows results obtained with this method on an image
with a bright background containing dark structures, for k = 0.3
and varying settings of d. Note that setting d = 0 (Fig. 11.12(d,
g)) corresponds to Niblack’s original method. For these examples,
a circular window of radius » = 15 was used to compute the local
mean fp(u, v) and variance o p(u, v). Additional examples are shown
in Fig. 11.13. Note that the selected radius r is obviously too small
for the structures in the images in Fig. 11.13(c, d), which are thus
not segmented cleanly. Better results can be expected with a larger
radius.

With the intent to improve upon Niblack’s method, particularly
for thresholding deteriorated text images, Sauvola and Pietikédinen
[207] proposed setting the threshold to

g (u,v)-[1— m(w—l)] for dark BG,

Umax

pp(u,v)[1+ k- (Mfl)] for bright BG,

max

Q(u,v) := (11.73)

with k = 0.5 and oy, = 128 (the “dynamic range of the standard
deviation” for 8-bit images) as suggested parameter values. In this
approach, the offset between the threshold and the local average not
only depends on the local variation o (as in Equ. (11.70)), but also
on the magnitude of the local mean ppr! Thus, changes in absolute
brightness lead to modified relative threshold values, even when the
image contrast remains constant. Though this technique is frequently
referenced in the literature, it appears questionable if this behavior
is generally desirable.

Calculating local mean and variance

Algorithm 11.8 shows the principle operation of Niblack’s method
and also illustrates how to efficiently calculate the local average and

11.2 LocAL ADAPTIVE
THRESHOLDING

Fig. 11.11
Adaptive thresholding based
on average local intensity. The
illustration shows a line profile
as typically found in document
imaging. The space-variant
threshold @ (dotted blue line)
is chosen as the local average
pp (dashed green line) offset
by a multiple of the local in-
tensity variation op. The offset
is chosen to be positive for im-
ages with a dark background
and bright structures (a) and
negative if the background is
brighter than the contained
structures of interest (b).
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Fig. 11.12

Adaptive thresholding using
Niblack’s method (with r = 15,
x = 0.3). Original image (a),
local mean pp (b), and stan-
dard deviation oy (c). The
result for d = 0 in (d) corre-
sponds to Niblack’s original
formulation. Increasing the
value of d reduces the amount
of clutter in regions with low
variance (e, f). The curves in
(g—i) show the local intensity
(gray), mean (green), vari-
ance (red), and the actual
threshold (blue) along the hor-
izontal line marked in (a—c).
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variance. Given the image I and the averaging region R, we can use
the shortcut suggested in Eqn. (3.12) to obtain these quantities as

1 1 1
pr=—-A  and l%i:n-(B—E.A?), (11.74)
with
A=>"1(6,5), B=Y IG,j), n=|R.  (11.75)
(i,5)ER (i,7)€ER

Procedure GetLocalMeanAndVariance() in Alg. 11.8 shows this calcu-
lation in full detail.

When computing the local average and variance, attention must
be paid to the situation at the image borders, as illustrated in Fig.
11.14. Two approaches are frequently used. In the first approach
(following the common practice for implementing filter operations),
all outside pixel values are replaced by the closest inside pixel, which
is always a border pixel. Thus the border pixel values are effectively
replicated outside the image boundaries and thus these pixels have
a strong influence on the local results. The second approach is to
perform the calculation of the average and variance on only those
image pixels that are actually covered by the support region. In this
case, the number of pixels (V) is reduced at the image borders to
about 1/4 of the full region size.

Although the calculation of the local mean and variance outlined
by function GetLocalMeanAndVariance() in Alg. 11.8 is definitely more



1: NiblackThreshold(I,r, k,d, bg)
Input: I, intensity image of size M x N; r, radius of sup-
port region; k, variance control parameter; d, minimum offset;
bg € {dark, bright}, background type. Returns a map with an
individual threshold value for each image position.

2: (M, N) + Size(I)

3: Create map Q : M x N — R
for all image coordinates (u,v) € M x N do

Define a support region of radius r, centered at (u,v):
5: (u,0?) < GetLocalMeanAndVariance(I,u, v, )
6: o+ Vo2 > local std. deviation op
. d) if bg = dark
7: Qu,v) « JPT (R0t d) i by =dar b Bq.11.72
uw—(k-o+d) if bg = bright

8: return

9: GetLocalMeanAndVariance(l, u,v, )
Returns the local mean and variance of the image pixels (i, j)
within the disk-shaped region with radius r around position
(u,v).

10: R < MakeCircularRegion (u, v, ) > see Alg. 11.7

11: n<+0

12: A<«+0

13: B+ 0

14: for all (i,7) € R do

15: n+<n+1

16: A+ A+1(1,5)

17: B+ B +1%(4,7)

18: no— % -A

19: a2<—%-(B—%~A2)

20: return (u,o?)

efficient than a brute-force approach, additional optimizations are
possible. Most image processing environments have suitable routines
already built in. With ImagelJ, for example, we can again use the
RankFilters class (as with the min- and maz-filters in the Bernsen
approach, see Sec. 11.2.1). Instead of performing the computation for
each pixel individually, the following ImageJ code segment uses pre-
defined filters to compute two separate images Imean (up) and Ivar
(012%) containing the local mean and variance values, respectively, with
a disk-shaped support region of radius 15:

ByteProcessor I; //original image I(u,v)

int radius = 15;
FloatProcessor Imean = I.convertToFloatProcessor ();
FloatProcessor Ivar = Imean.duplicate();

RankFilters rf = new RankFilters();
rf.rank(Imean, radius, RankFilters.MEAN);
rf.rank(Ivar, radius, RankFilters.VARIANCE);

I i, )
Il o2 (u,v)

11.2 LOCAL ADAPTIVE
THRESHOLDING

Alg. 11.8

Adaptive thresholding us-

ing local mean and variance
(modified version of Niblack’s
method [172]). The argument
to bg should be dark if the im-
age background is darker than
the structures of interest, bright
if the background is brighter
than the objects. The function
MakeCircularRegion() is defined
in Alg. 11.7.
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Fig. 11.13

Additional examples for
thresholding with Niblack’s
method using a disk-shaped
support region of radius

r = 15. Original images (a—d),
local mean pp (e-h), std. de-
viation op (i-1), and threshold
Q (m-p); results after thresh-
olding the images (q-t). The
background is assumed to be
brighter than the structures of
interest, except for image (d),
which has a dark background.
Settings are k = 0.3, d = 5.
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See Sec. 11.3 and the online code for additional implementation de-
tails. Note that the filter methods implemented in RankFilters
perform replication of border pixels as the border handling strategy,
as discussed earlier.

Local average and variance with Gaussian kernels

The purpose of taking the local average is to smooth the image to
obtain an estimate of the varying background intensity. In case of
a square or circular region, this is equivalent to convolving the im-
age with a box- or disk-shaped kernel, respectively. Kernels of this
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type, however, are not well suited for image smoothing, because they
create strong ringing and truncating effects, as demonstrated in Fig.
11.15. Moreover, convolution with a box-shaped (rectangular) ker-
nel is a non-isotropic operation, that is, the results are orientation-
dependent. From this perspective alone it seems appropriate to con-
sider other smoothing kernels, Gaussian kernels in particular.

Disk Gaussian

- -

Using a Gaussian kernel HC for smoothing is equivalent to cal-
culating a weighted average of the corresponding image pixels, with
the weights being the coefficients of the kernel. Thus calculating this
weighted local average can be expressed by

(I *H%)(u,v), (11.76)

(u ’U) — L
MG (U, - Y HG

where Y HC is the sum of the coefficients in the kernel H® and
denotes the linear convolution operator.!? Analogously, there is also

12 Gee Chapter 5, Sec. 5.3.1.

11.2 LOCAL ADAPTIVE
THRESHOLDING

Fig. 11.14

Calculating local statistics at
image boundaries. The illus-
tration shows a disk-shaped
support region with radius r,
placed at the image border.
Pixel values outside the image
can be replaced (“filled-in”)
by the closest border pixel,

as is common in many filter
operations. Alternatively, the
calculation of the local statis-
tics can be confined to include
only those pixels inside the im-
age that are actually covered
by the support region. At any
border pixel, the number of
covered elements (N) is still
more than &~ 1/4 of the full
region size. In this particular
case, the circular region covers
a maximum of N = 69 pix-
els when fully embedded and
N = 22 when positioned at an
image corner.

Fig. 11.15

Local average (a—c) and vari-
ance (d-f) obtained with differ-
ent smoothing kernels. 31 x 31
box filter (a,d), disk filter with
radius » = 15 (b, e), Gaussian
kernel with ¢ = 0.6 - 15 = 9.0
(c,f). Both the box and disk
filter show strong truncation
effects (ringing), the box filter
is also highly non-isotropic. All
images are contrast-enhanced
for better visibility.
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11 Avromaric & weighted variance o2 which can be calculated jointly with the local
THRESHOLDING average ug (as in Eqn. (11.74)) in the form

1

pe(,v) = g - Ac(w,v), (11.77)
1 1

o0& (u,v) = ik (Bg(u,v) — TG - A (u,v)), (11.78)

with Aq = I HS and Bg = I? * HE.

Thus all we need is two filter operations, one applied to the
original image (I * H G) and another applied to the squared image
(I? + HS), using the same 2D Gaussian kernel HS (or any other
suitable smoothing kernel). If the kernel HS is normalized (i.e.,
YHS =1), Eqns. (11.77)—(11.78) reduce to

pta(u,v) = Ag(u,v), (11.79)
o0& (u,v) = B (u,v) — A4 (u,v), (11.80)

with Ag, Bg as defined already.

This suggests a very simple process for computing the local aver-
age and variance by Gaussian filtering, as summarized in Alg. 11.9.
The width (standard deviation o) of the Gaussian kernel is set to 0.6
times the radius r of the corresponding disk filter to produce a sim-
ilar effect as Alg. 11.8. The Gaussian approach has two advantages:
First, the Gaussian makes a much superior low-pass filter, compared
to the box or disk kernels. Second, the 2D Gaussian is (unlike the
circular disk kernel) separable in the z- and y-direction, which per-
mits a very efficient implementation of the 2D filter using only a pair
of 1D convolutions (see Ch. 5, Sec. 5.2).

For practical calculation, Ag, Bg can be represented as (floating-
point) images, and most modern image-processing environments
provide efficient (multi-scale) implementations of Gaussian filters
with large-size kernels. In ImagelJ, fast Gaussian filtering is imple-
mented by the class GaussianBlur with the public methods blur (),
blurGaussian(), and blurFloat (), which all use normalized filter
kernels by default. Programs 11.2-11.3 show the complete ImageJ
implementation of Niblack’s thresholder using Gaussian smoothing
kernels.

11.3 Java Implementation

All thresholding methods described in this chapter have been imple-
mented as part of the imagingbook library that is available with
full source code at the book’s website. The top class in this li-
brary'? is Thresholder with the sub-classes GlobalThresholder and
AdaptiveThresholder for the methods described in Secs. 11.1 and
11.2, respectively. Class Thresholder itself is abstract and only de-
fines a set of (non-public) utility methods for histogram analysis.

'3 Package imagingbook.pub.threshold.



1: AdaptiveThresholdGauss(I,, k, d, bg)
Input: I, intensity image of size M x N; r, support region ra-
dius; k, variance control parameter; d, minimum offset; bg €
{dark, bright}, background type.
Returns a map Q of local thresholds for the grayscale image I.

2: (M, N) + Size(I)

3: Create maps A,;B,Q: M x N — R

4: for all image coordinates (u,v) € M x N do

5: A(u,v) + I(u,v)

6: B(u,v) + (I(u,v))?

T: HE < MakeGaussianKernel2D (0.6 - r)

8: A+ AxHC > filter the original image with H¢

9: B« BxH® > filter the squared image with H¢

10: for all image coordinates (u,v) € M x N do

11: g < Au,v) > Eq.11.79

12: og  /B(u,v) — A%(u,v) > Eq.11.80

- d) if bg = dark

13: Q(u,v) + Ha (K 76+ ) 1 J a.r > Eq.11.72

ha — (K cog + d) if bg = bright

14: return Q

15: MakeGaussianKernel2D (o)
Returns a discrete 2D Gaussian kernel H with std. deviation o,
sized sufficiently large to avoid truncation effects.

16: r < max(1,[3.5-0])

17: Create map H : [-r,7]> — R

> size the kernel sufficiently large

18: 5+ 0
19: for x < —r,...,7 do
20: for y < —r,...,r do
22 +y?
21: H(z,y) e 2 > unnormalized 2D Gaussian
22: s s+ H(z,y)
23: for x < —r,...,r do
24: for y < —r,...,r do
25: H(z,y) + 1 H(z,y) > normalize H

26: return H

11.3.1 Global Thresholding Methods

The thresholding methods covered in Sec. 11.1 are implemented by

the following classes:

MeanThresholder, MedianThresholder (Sec. 11.1.2),
QuantileThresholder (Alg. 11.1),
IsodataThresholder (Alg. 11.2-11.3),
OtsuThresholder (Alg. 11.4),
MaxEntropyThresholder (Alg. 11.5), and
MinErrorThresholder (Alg. 11.6).

These are sub-classes of the (abstract) class GlobalThresholder.
The following example demonstrates the typical use of this method

for a given ByteProcessor object I:

GlobalThresholder thr = new IsodataThresholder();
int q = thr.getThreshold(I);

11.3 Java
IMPLEMENTATION

Alg. 11.9

Adaptive thresholding using
Gaussian averaging (extended
from Alg. 11.8). Parame-
ters are the original image

I, the radius r of the Gaus-
sian kernel, variance control
k, and minimum offset d.
The argument to bg should
be dark if the image back-
ground is darker than the
structures of interest, bright

if the background is brighter
than the objects. The proce-
dure MakeGaussianKernel2D (o)
creates a discrete, normalized
2D Gaussian kernel with stan-
dard deviation o.
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11 AUTOMATIC
THRESHOLDING

Prog. 11.2

Niblack’s thresholder using
Gaussian smoothing ker-
nels (ImageJ implementa-
tion of Alg. 11.9, part 1).
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package threshold;

import ij.plugin.filter.GaussianBlur;

import ij.plugin.filter.RankFilters;

import ij.process.ByteProcessor;

import ij.process.FloatProcessor;

import imagingbook.pub.threshold.BackgroundMode;

public abstract class NiblackThresholder extends
AdaptiveThresholder {

// parameters for this thresholder
public static class Parameters {
public int radius = 15;
public double kappa = 0.30;
public int dMin = 5;
public BackgroundMode bgMode = BackgroundMode.DARK;

private final Parameters params; // parameter object

protected FloatProcessor Imean; // = ug(u,v)
protected FloatProcessor Isigma; // = oq(u,v)

public ByteProcessor getThreshold(ByteProcessor I) {
int w = I.getWidth();
int h = I.getHeight();

makeMeanAndVariance (I, params);
ByteProcessor Q = new ByteProcessor (w, h);

final double kappa = params.kappa;
final int dMin = params.dMin;
final boolean darkBg =
(params.bgMode == BackgroundMode .DARK) ;

for (int v = 0; v < h; v++) {
for (int u = 0; u < w; u++) {
double sigma = Isigma.getf(u, v);
double mu = Imean.getf(u, v);
double diff = kappa * sigma + dMin;
int q = (int)
Math.rint ((darkBg) ? mu + diff : mu - diff);
if (@ <0) q=0;

if (q > 255) q = 255;
Q.set(u, v, q;
}
}
return Q;

}

/I continues in Prog. 11.3




52 // continued from Prog. 11.2 11.3 JAVA
53 IMPLEMENTATION
54 public static class Gauss extends NiblackThresholder {
55 Prog. 11.3
56 protected void makeMeanAndVariance (ByteProcessor I, Niblack’s thresholder using
Gaussian smoothing kernels
PaFametérs params) {. (part 2). The floating-point
57 int width = I. getwj-dth() H images AG and BG correspond
58 int height = I.getHeight(); to the maps Ag (filtered orig-
59 inal image) and Bg (filtered
squared image) in Alg. 11.9.
60 Imean = new FloatProcessor (width,height); An instance of the ImageJ
61 Isigma = new FloatProcessor (width,height); class GaussianBlur is created in
line 67 and subsequently used
62 to filter both images in lines
63 FloatProcessor A = I.convertToFloatProcessor(); /=1 | 69-70. The last argument to
64 FloatProcessor B = I.convertToFloatProcessor(); /=] | theImagel method blurFloat
9 (0.002) specifies the accuracy
65 B.sqr(; =1 of the Gaussian kernel.
66
67 GaussianBlur gb = new GaussianBlur();
68 double sigma = params.radius * 0.6;
69 gb.blurFloat (A, sigma, sigma, 0.002); //=A
70 gb.blurFloat (B, sigma, sigma, 0.002); /=B
71
72 for (int v = 0; v < height; v++) {
73 for (int u = 0; u < width; u++) {
74 float a = A.getf(u, v);
75 float b = B.getf(u, v);
76 float sigmaG =
7 (float) Math.sqrt(b - a*a); // Eq.11.80
78 Imean.setf(u, v, a); = pg(u,v)
79 Isigma.setf(u, v, sigma®); /= oq(u,v)
80 }
81 }
82 ¥
83 } // endofinner class NiblackThresholder.Gauss
84 } // end of class NiblackThresholder

if (q > 0) I.threshold(q);
else ...

Here threshold() is the built-in ImageJ’s method defined by class
ImageProcessor.

11.3.2 Adaptive Thresholding

The techniques described in Sec. 11.2 are implemented by the follow-
ing classes:

e BernsenThresholder (Alg. 11.7),
e NiblackThresholder (Alg. 11.8, multiple versions), and
e SauvolaThresholder (Eqn. (11.73)).

These are sub-classes of the (abstract) class AdaptiveThresholder.
The following example demonstrates the typical use of these methods
for a given ByteProcessor object I:

AdaptiveThresholder thr = new BernsenThresholder (); 287
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11 AUTOMATIC ByteProcessor Q = thr.getThreshold(I);
THRESHOLDING thr.threshold (I, Q);

The 2D threshold surface is represented by the image Q; the method
threshold (I, Q) is defined by class AdaptiveThresholder. Alter-
natively, the same operation can be performed without making Q
explicit, as demonstrated by the following code segment:

/I Create and set up a parameter object:

Parameters params = new BernsenThresholder.Parameters();
params.radius = 15;

params.cmin = 15;

params.bgMode = BackgroundMode .DARK;

/I Create the thresholder:
AdaptiveThresholder thr = new BernsenThresholder (params) ;

/I Perform the threshold operation:
thr.threshold(I);

This example also shows how to specify a parameter object (params)
for the instantiation of the thresholder.

11.4 Summary and Further Reading

The intention of this chapter was to give an overview of established
methods for automatic image thresholding. A vast body of relevant
literature exists, and thus only a fraction of the proposed techniques
could be discussed here. For additional approaches and references,
several excellent surveys are available, including [86, 178,204, 231]
and [213].

Given the obvious limitations of global techniques, adaptive thresh-
olding methods have received continued interest and are still a focus
of ongoing research. Another popular approach is to calculate an
adaptive threshold through image decomposition. In this case, the
image is partitioned into (possibly overlapping) tiles, an “optimal”
threshold is calculated for each tile and the adaptive threshold is
obtained by interpolation between adjacent tiles.  Another inter-
esting idea, proposed in [260], is to specify a “threshold surface” by
sampling the image at specific points that exhibit a high gradient,
with the assumption that these points are at transitions between the
background and the foreground. From these irregularly spaced point
samples, a smooth surface is interpolated that passes through the
sample points. Interpolation between these irregularly spaced point
samples is done by solving a Laplacian difference equation to obtain
a continuous “potential surface”. This is accomplished with the so-
called “successive over-relaxation” method, which requires about N
scans over an image of size N X N to converge, so its time complex-
ity is an expensive O(N3). A more efficient approach was proposed
in [26], which uses a hierarchical, multi-scale algorithm for interpo-
lating the threshold surface. Similarly, a quad-tree representation



was used for this purpose in [49]. Another interesting concept is
“kriging” [175], which was originally developed for interpolating 2D
geological data [190, Ch. 3, Sec. 3.7.4].

In the case of color images, simple thresholding is often applied
individually to each color channel and the results are subsequently
merged using a suitable logical operation. Transformation to a non-
RGB color space (such as HSV or CIELAB) might be helpful for
this purpose. For a binarization method aimed specifically at vector-
valued images, see [159], for example. Since thresholding can be
viewed as a specific form of segmentation, color segmentation meth-
ods [50,53,85,216] are also relevant for binarizing color images.

11.5 Exercises

Exercise 11.1. Define a procedure for estimating the minimum and
maximum pixel value of an image from its histogram. Threshold
the image at the resulting mid-range value (see Eqn. (11.12)). Can
anything be said about the size of the resulting partitions?

Exercise 11.2. Define a procedure for estimating the median of an
image from its histogram. Threshold the image at the resulting me-
dian value (see Eqn. (11.11)) and verify that the foreground and back-
ground partitions are of approximately equal size.

Exercise 11.3. The algorithms described in this chapter assume 8-
bit grayscale input images (of type ByteProcessor in ImagelJ). Adopt
the current implementations to work with 16-bit integer image (of
type ShortProcessor). Images of this type may contain pixel values
in the range [0,2'9—1] and the getHistogram() method returns the
histogram as an integer array of length 65536.

Exercise 11.4. Implement simple thresholding for RGB color im-
ages by thresholding each (scalar-valued) color channel individually
and then merging the results by performing a pixel-wise AND op-
eration. Compare the results to those obtained by thresholding the
corresponding grayscale (luminance) images.

Exercise 11.5. Re-implement the Bernsen and/or Niblack thres-
holder (classes BernsenThresholder and NiblackThresholder) us-
ing integral images (see Ch. 3, Sec. 3.8) for efficiently calculating the
required local mean and variance of the input image over a rectan-
gular support region R.

11.5 EXERCISES
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Color Images

Color images are involved in every aspect of our lives, where they play
an important role in everyday activities such as television, photogra-
phy, and printing. Color perception is a fascinating and complicated
phenomenon that has occupied the interests of scientists, psycholo-
gists, philosophers, and artists for hundreds of years [211,217]. In
this chapter, we focus on those technical aspects of color that are
most important for working with digital color images. Our empha-
sis will be on understanding the various representations of color and
correctly utilizing them when programming. Additional color-related
issues, such as colorimetric color spaces, color quantization, and color
filters, are covered in subsequent chapters.

12.1 RGB Color Images

The RGB color schema encodes colors as combinations of the three
primary colors: red, green, and blue (R, G, B). This scheme is widely
used for transmission, representation, and storage of color images on
both analog devices such as television sets and digital devices such
as computers, digital cameras, and scanners. For this reason, many
image-processing and graphics programs use the RGB schema as their
internal representation for color images, and most language libraries,
including Java’s imaging APIs, use it as their standard image repre-
sentation.

RGB is an additive color system, which means that all colors start
with black and are created by adding the primary colors. You can
think of color formation in this system as occurring in a dark room
where you can overlay three beams of light—one red, one green, and
one blue—on a sheet of white paper. To create different colors, you
would modify the intensity of each of these beams independently.
The distinct intensity of each primary color beam controls the shade
and brightness of the resulting color. The colors gray and white are
created by mixing the three primary color beams at the same inten-
sity. A similar operation occurs on the screen of a color television or
© Springer-Verlag London 2016

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,
DOI 10.1007/978-1-4471-6684-9 12
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12 CoLOR IMAGES

Fig. 12.1

Representation of the RGB
color space as a 3D unit cube.
The primary colors red (R),
green (G), and blue (B) form
the coordinate system. The
“pure” red color (R), green
(G), blue (B), cyan (C), ma-
genta (M), and yellow (Y)

lie on the vertices of the

color cube. All the shades

of gray, of which K is an ex-
ample, lie on the diagonal
between black S and white W.
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RGB values

Pt. Color R G B
S |Black 0.00|0.00/0.00
R |Red 1.00/0.00|0.00
Y |Yellow 1.00/1.00|0.00
G |Green 0.00]1.00|0.00
C |Cyan 0.00|1.00|1.00
B |Blue 0.00|0.00|1.00
M |Magenta ||1.00]0.00|1.00
W | White 1.00/1.00|1.00
K |50% Gray ||0.50]0.50|0.50
R5|75% Red ||0.75]0.00|0.00
Ry, |50% Red ||0.50|0.00|0.00
Ry |25% Red ||0.25]0.00|0.00
P |Pink 1.00/0.50/0.50

CRT'-based computer monitor, where tiny, close-lying dots of red,
green, and blue phosphorous are simultaneously excited by a stream
of electrons to distinct energy levels (intensities), creating a seemingly
continuous color image.

The RGB color space can be visualized as a 3D unit cube in which
the three primary colors form the coordinate axis. The RGB values
are positive and lie in the range [0, Cy,.,]; for most digital images,
Cliax = 255. Every possible color C,; corresponds to a point within
the RGB color cube of the form

Ci = (RivGivBi>7

where 0 < R;,G;, B; < C,,.x. RGB values are often normalized to
the interval [0, 1] so that the resulting color space forms a unit cube
(Fig. 12.1). The point S = (0,0,0) corresponds to the color black,
W = (1,1, 1) corresponds to the color white, and all the points lying
on the diagonal between S and W are shades of gray created from
equal color components R = G = B.

Figure 12.2 shows a color test image and its corresponding RGB
color components, displayed here as intensity images. We will refer
to this image in a number of examples that follow in this chapter.

RGB is a very simple color system, and as demonstrated in Sec.
12.2, a basic knowledge of it is often sufficient for processing color
images or transforming them into other color spaces. At this point,
we will not be able to determine what color a particular RGB pixel
corresponds to in the real world, or even what the primary colors red,
green, and blue truly mean in a physical (i.e., colorimetric) sense. For
now we rely on our intuitive understanding of color and will address
colorimetry and color spaces later in the context of the CIE color
system (see Ch. 14).

12.1.1 Structure of Color Images

Color images are represented in the same way as grayscale images, by
using an array of pixels in which different models are used to order the

! Cathode ray tube.



individual color components. In the next sections we will examine the
difference between true color images, which utilize colors uniformly
selected from the entire color space, and so-called palleted or indexed
images, in which only a select set of distinct colors are used. Deciding
which type of image to use depends on the requirements of the appli-
cation. Farbbilder werden iiblicherweise, genau wie Grauwertbilder,
als Arrays von Pixeln dargestellt, wobei unterschiedliche Modelle fir
die Anordnung der einzelnen Farbkomponenten verwendet werden.
Zunéchst ist zu unterscheiden zwischen Vollfarbenbildern, die den
gesamten Farbraum gleichférmig abdecken kénnen, und so genan-
nten Paletten- oder Indexbildern, die nur eine beschriankte Zahl un-
terschiedlicher Farben verwenden. Beide Bildtypen werden in der
Praxis haufig eingesetzt.

True color images

A pixel in a true color image can represent any color in its color
space, as long as it falls within the (discrete) range of its individual
color components. True color images are appropriate when the im-
age contains many colors with subtle differences, as occurs in digital
photography and photo-realistic computer graphics. Next we look at
two methods of ordering the color components in true color images:
component ordering and packed ordering.

12.1 RGB CoOLOR IMAGES

Fig. 12.2

A color image and its corre-
sponding RGB channels. The
fruits depicted are mainly yel-
low and red and therefore have
high values in the R and G
channels. In these regions, the
B content is correspondingly
lower (represented here by
darker gray values) except for
the bright highlights on the
apple, where the color changes
gradually to white. The table-
top in the foreground is purple
and therefore displays corre-
spondingly higher values in its
B channel.
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12 CoLOR IMAGES

Fig. 12.3

RGB color image in com-
ponent ordering. The three
color components are laid
out in separate arrays Ip,
I, I of the same size.
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— IG(uv 'U)
I (u,v)

Component ordering
In component ordering (also referred to as planar ordering) the color

components are laid out in separate arrays of identical dimensions.
In this case, the color image

Icomp = (IR7IG7[B) (12'1)

can be thought of as a vector of related intensity images I, I, and
Ip (Fig. 12.3), and the RGB values of the color image I at position
(u,v) are obtained by accessing the three component images in the
form

R(u,v) I (u,v)
G(u,v) | = [ Ie(u,v) | . (12.2)
B(u,v) Iz (u,v)

Packed ordering

In packed ordering, the component values that represent the color of
a particular pixel are packed together into a single element of the
image array (Fig. 12.4) such that

Ipack(u’v) = (Ra Ga B) (123)

The RGB value of a packed image I at the location (u,v) is obtained
by accessing the individual components of the color pixel as

R(uvv) Red(IpaCk(uvv))
G(u,v) | = [Green(I 0 (u,v)) | . (12.4)
B(u,v) Blue(Iacx(u,v))

The access functions Red(), Green(), Blue(), will depend on the spe-
cific implementation used for encoding the color pixels.

Indexed images

Indexed images permit only a limited number of distinct colors and
therefore are used mostly for illustrations and graphics that contain
large regions of the same color. Often these types of images are stored
in indexed GIF or PNG files for use on the Web. In these indexed



pack

images, the pixel array does not contain color or brightness data but
instead consists of integer numbers k that are used to index into a
color table or “palette”

P=(P,PsPy) : [0,Q—1 — [0,K—1]. (12.5)
Here @) denotes the size of the color table, equal to the maximum
number of distinct image colors (typically @ = 2,...,256). K is the
number of distinct component values (typ. K = 256). This table
contains a specific color vector P(q) = (R,,G,, B,) for every color
index ¢ =0,...,Q—1 (see Fig. 12.5). The RGB component values of
an indexed image I4, at position (u,v) are obtained as

R(u,v) R, P.(q)
Gu,v) | =G, | = [Pelad) ], (12.6)
B(uav) Bq Pb(q)

with the index ¢ = Ijq.(u,v). To allow proper reconstruction, the
color table P must of course be stored and/or transmitted along with
the indexed image.

Tiax Index P. P Py
0 | Ro | Go | Bo
1 —| B | & | B
2 | R, | G, | B,
L] L]
L] L]
v 4 >’ g ‘Rq |Gq |Bq ‘
J-___L-- . .
L] L]
’Q*1 }_" RQ—ll GQAIBQA‘

w Color table P

During the transformation from a true color image to an indexed
image (e.g., from a JPEG image to a GIF image), the problem of
optimal color reduction, or color quantization, arises. Color quanti-
zation is the process of determining an optimal color table and then
mapping it to the original colors. This process is described in detail
in Chapter 13.

12.1 RGB CoLOR IMAGES

Fig. 12.4
RGB-color image using packed
ordering. The three color com-
ponents R, G, and B are
placed together in a single
array element.

Fig. 12.5
RGB indexed image. The im-
age array I;q, itself does not
contain any color component
values. Instead, each cell con-
tains an index ¢ € [0, Q—1].
into the associated color table
(“palette”) P. The actual color
value is specified by the table
entry P, = (R,, G, By,).
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Fig. 12.6

Structure of a packed RGB
color pixel in Java. Within a
32-bit int, 8 bits are allocated,
in the following order, for each
of the color components R,

G, B, and the transparency
value o (unused in ImagelJ).
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12.1.2 Color Images in ImageJ

ImageJ provides two simple types of color images:

e RGB full-color images (24-bit “RGB color”).
e Indexed images (“8-bit color”).

RGB true color images

RGB color images in Image] use a packed order (see Sec. 12.1.1),
where each color pixel is represented by a 32-bit int value. As Fig.
12.6 illustrates, 8 bits are used to represent each of the RGB compo-
nents, which limits the range of the individual components to 0-255.
The remaining 8 bits are reserved for the transparency,? or alpha (),
component. This is also the usual ordering in Java® for RGB color
images.

—_—
(RN I N
31

2423 16 15 8 7 0
Bits

Accessing RGB pizel values

RGB color images are represented by an array of pixels, the elements
of which are standard Java ints. To disassemble the packed int
value into the three color components, you apply the appropriate
bitwise shifting and masking operations. In the following example,
we assume that the image processor ip (of type ColorProcessor)
contains an RGB color image:

int ¢ = ip.getPixel(u,v); //a packed RGB color pixel

int r = (c & 0xf£f0000) >> 16; //red component
int g = (c & 0x00££00) >> 8; // green component
int b = (c & 0x0000ff); // blue component

In this example, each of the RGB components of the packed pixel
c are isolated using a bitwise AND operation (&) with an appropriate
bit mask (following convention, bit masks are given in hexadecimal?®
notation), and afterwards the extracted bits are shifted right by 16
(for R) or 8 (for G) bit positions (see Fig. 12.7).

The “assembly” of an RGB pixel from separate R, G, and B
values works in the opposite direction using the bitwise OR operator
(1) and shifting the bits left (<<):

int r = 169; //red component

int g = 212; // green component

int b 17; // blue component

int ¢ = ((r & Oxff) << 16) | ((g & Oxff) << 8) | b & Oxff;
ip.putPixel(u, v, c);

The transparency value « (alpha) represents the ability to see through
a color pixel onto the background. At this time, the o channel is unused
in ImagelJ.

3 Java Advanced Window Toolkit (AWT).

4 The mask 0xf£0000 is of type int and represents the 32-bit binary

pattern 00000000111111110000000000000000.
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1 // File Brighten_RGB_1. java

2 import ij.ImagePlus;

3 import ij.plugin.filter.PlugInFilter;

4 import ij.process.ImageProcessor;

5

6 public class Brighten RGB_1 implements PlugInFilter {
7

8 public int setup(String arg, ImagePlus imp) {

9 return DOES_RGB; //this plugin works on RGB images
10}

11

12 public void run(ImageProcessor ip) {

13 int[] pixels = (int[]) ip.getPixels();

14

15 for (int i = 0; i < pixels.length; i++) {

16 int ¢ = pixels[i];

17 /I split color pixel into rgb-components:

18 int r = (c & 0xff0000) >> 16;

19 int g = (c & 0x00££f00) >> 8;

20 int b = (c & 0x0000ff);

21 /I modify colors:

22 r =r + 10; if (r > 255) r = 255;

23 g =g + 10; if (g > 2565) g = 255;

24 b =Db + 10; if (b > 255) b = 255;

25 /I reassemble color pixel and insert into pixel array:

26 pixels[i]

27 = ((r & 0xff)<<16) | ((g & 0xff)<<8) | b & Oxff;
28 }

29 }

30 }

Masking the component values with 0xff works in this case because,
except for the bits in positions 0,...,7 (values in the range 0-255),
all the other bits are already set to zero. A complete example of
manipulating an RGB color image using bit operations is presented
in Prog. 12.1. Instead of accessing color pixels using ImageJ’s access
functions, these programs directly access the pixel array for increased
efficiency

The ImageJ class ColorProcessor provides an easy to use alter-
native which returns the separated RGB components (as an int array

12.1 RGB CoOLOR IMAGES

Fig. 12.7

Decomposition of a 32-bit
RGB color pixel using bit op-
erations. The R component
(bits 16-23) of the RGB pix-
els C (above) is isolated using
a bitwise AND operation (&)
together with a bit mask M =
0x££0000. All bits except the R
component are set to the value
0, while the bit pattern within
the R component remains un-
changed. This bit pattern is
subsequently shifted 16 posi-
tions to the right (>>), so that
the R component is moved into
the lowest 8 bits and its value
lies in the range of 0, ..., 255.
During the shift operation,
zeros are filled in from the left.

Prog. 12.1

Processing RGB color data
with the use of bit operations
(ImageJ plugin, version 1).
This plugin increases the val-
ues of all three color compo-
nents by 10 units. It demon-
strates the use of direct access
to the pixel array (line 16),
the separation of color com-
ponents using bit operations
(lines 18-20), and the reassem-
bly of color pixels after mod-
ification (line 27). The value
DOES_RGB (defined in the inter-
face PlugInFilter) returned by
the setup() method indicates
that this plugin is designed to
work on RGB formatted true
color images (line 9).
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Prog. 12.2

Working with RGB color im-
ages without bit operations
(ImageJ plugin, version 2).
This plugin increases the val-
ues of all three color compo-
nents by 10 units using the
access methods getPixel(int,
int, int[]) and putPixel(int,
int, int[]) from the class
ColorProcessor (lines 21 and
25, respectively). Exection
time is approximately four
times higher than that of ver-
sion 1 (Prog. 12.1) because of
the additional method calls.
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1 // File Brighten_RGB_2. java

2 import ij.ImagePlus;

3 import ij.plugin.filter.PlugInFilter;

4 import ij.process.ColorProcessor;

5 import ij.process.ImageProcessor;

6

7 public class Brighten_RGB_2 implements PlugInFilter {

8 static final int R = 0, G = 1, B = 2; //component indices
9

10  public int setup(String arg, ImagePlus imp) {

11 return DOES_RGB; //this plugin works on RGB images

12}

13

14  public void run(ImageProcessor ip) {

15 /I typecast the image to ColorProcessor (no duplication):

16 ColorProcessor cp = (ColorProcessor) ip;

17 int[] RGB = new int[3];

18

19 for (int v = 0; v < cp.getHeight(); v++) {

20 for (int u = 0; u < cp.getWidth(); u++) {

21 cp.getPixel(u, v, RGB);

22 RGB[R] = Math.min(RGB[R] + 10, 255); //add 10and
23 RGB[G] = Math.min(RGB[G] + 10, 255); //limitto 255
24 RGB[B] = Math.min(RGB[B] + 10, 255);

25 cp.putPixel(u, v, RGB);

26 }

27 }

28}

29 }

with three elements). In the following example, which demonstrates
its use, ip is of type ColorProcessor:

int[] RGB = new int[3];
ip.getPixel(u, v, RGB); // modifies RGB
int r = RGB[O0];

int g = RGB[1];
int b = RGB[2];

ip.putPixel(u, v, RGB);

A more detailed and complete example is shown by the simple plugin
in Prog. 12.2, which increases the value of all three color components
of an RGB image by 10 units. Notice that the plugin limits the
resulting component values to 255, because the putPixel () method
only uses the lowest 8 bits of each component and does not test if
the value passed in is out of the permitted 0-255 range. Without
this test, arithmetic overflow errors can occur. The price for using
this access method, instead of direct array access, is a noticeably
longer running time (approximately a factor of 4 when compared to
the version in Prog. 12.1).



Opening and saving RGB images

ImageJ supports the following types of image formats for RGB true
color images:

e TIFF (uncompressed only): 3 x 8bit RGB. TIFF color images
with 16-bit depth are opened as an image stack consisting of three
16-bit intensity images.

¢ BMP, JPEG: 3 x 8-bit RGB.

e PNG: 3 x 8-bit RGB.

e RAW: using the ImageJ menu File >Import > Raw, RGB images
can be opened whose format is not directly supported by Im-
agelJ. It is then possible to select different arrangements of the
color components.

Creating RGB color images

The simplest way to create a new RGB image using ImageJ is to use
an instance of the class ColorProcessor, as the following example
demonstrates:

int w = 640, h = 480;
ColorProcessor cp = new ColorProcessor(w, h);
(new ImagePlus("My New Color Image", cp)).show();

When needed, the color image can be displayed by creating an in-
stance of the class ImagePlus and calling its show() method. Since
cip is of type ColorProcessor, the resulting ImagePlus object cimg
is also a color image.

Indexed color images

The structure of an indexed image in ImageJ is given in Fig. 12.5,
where each element of the index array is 8 bits and therefore can
represent a maximum of 256 different colors. When programming,
indexed images are similar to grayscale images, as both make use
of a color table to determine the actual color of the pixel. Indexed
images differ from grayscale images only in that the contents of the
color table are not intensity values but RGB values.

Opening and saving indexed images

ImageJ supports the indexed images in GIF, PNG, BMP, and TIFF
format with index values of 1-8 bits (i.e., 2-256 distinct colors) and
3 x 8-bit color values.

Processing indexed images

The indexed format is mostly used as a space-saving means of image
storage and is not directly useful as a processing format since an
index value in the pixel array is arbitrarily related to the actual
color, found in the color table, that it represents. When working
with indexed images it usually makes no sense to base any numerical
interpretations on the pixel values or to apply any filter operations
designed for 8-bit intensity images. Figure 12.8 illustrates an example
of applying a Gaussian filter and a median filter to the pixels of an
indexed image. Since there is no meaningful quantitative relation
between the actual colors and the index values, the results are erratic.

12.1 RGB CoOLOR IMAGES
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Fig. 12.8

Improper application of
smoothing filters to an in-
dexed color image. Indexed
image with 16 colors (a) and
results of applying a linear
smoothing filter (b) and a

3 X 3 median filter (c) to the
pixel array (that is, the index
values). The application of a
linear filter makes no sense, of
course, since no meaningful re-
lation exists between the index
values in the pixel array and
the actual image intensities.
While the median filter (c)
delivers seemingly plausible re-
sults in this case, its use is also
inadmissible because no mean-
ingful ordering relation ex-
ists between the index values.
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Note that even the use of the median filter is inadmissible because
no ordering relation exists between the index values. Thus, with few
exceptions, ImageJ functions do not permit the application of such
operations to indexed images. Generally, when processing an indexed
image, you first convert it into a true color RGB image and then after
processing convert it back into an indexed image.

When an ImageJ plugin is supposed to process indexed images,
its setup() method should return the DOES_8C (“8-bit color”) flag.
The plugin in Prog. 12.3 shows how to increase the intensity of the
three color components of an indexed image by 10 units (analogously
to Progs. 12.1 and 12.2 for RGB images). Notice how in indexed
images only the palette is modified and the original pixel data, the
index values, remain the same. The color table of ImageProcessor
is accessible through a ColorModel® object, which can be read using
the method getColorModel () and modified using setColorModel ().

The ColorModel object for indexed images (as well as 8-bit
grayscale images) is a subtype of IndexColorModel, which contains
three color tables (maps) representing the red, green, and blue com-
ponents as separate byte arrays. The size of these tables (2,...,256)
can be determined by calling the method getMapSize (). Note that
the elements of the palette should be interpreted as unsigned bytes
with values ranging from 0,...,255. Just as with grayscale pixel
values, during the conversion to int values, these color component
values must also be bitwise masked with 0xff as shown in Prog. 12.3
(lines 30-32).

As a further example, Prog. 12.4 shows how to convert an indexed
image to a true color RGB image of type ColorProcessor. Conver-
sion in this direction poses no problems because the RGB component
values for a particular pixel are simply taken from the corresponding
color table entry, as described by Eqn. (12.6). On the other hand,

5 Defined in the standard Java class java.awt.image.ColorModel.



1 // File Brighten_Index_Image.java

2

3 import ij.ImagePlus;

4 import ij.plugin.filter.PluglnFilter;

5 import ij.process.ImageProcessor;

6 import java.awt.image.IndexColorModel;

7

8 public class Brighten_Index_Image implements PlugInFilter {
9

10  public int setup(String arg, ImagePlus imp) {
11 return DOES_8C; // this plugin works on indexed color images
12}

13

14  public void run(ImageProcessor ip) {

15 IndexColorModel icm =

16 (IndexColorModel) ip.getColorModel();

17 int pixBits = icm.getPixelSize();

18 int nColors = icm.getMapSize();

19

20 /I retrieve the current lookup tables (maps) for R, G, B:
21 byte[] pRed = new byte[nColors];

22 byte[] pGrn = new byte[nColors];

23 byte[] pBlu = new byte[nColors];

24 icm.getReds (pRed) ;

25 icm.getGreens (pGrn) ;

26 icm.getBlues (pBlu) ;

27

28 //modify the lookup tables:

29 for (int idx = 0; idx < nColors; idx++){

30 int r = Oxff & pRed[idx]; // mask to treat as unsigned byte
31 int g = Oxff & pGrn[idx];

32 int b = Oxff & pBlul[idx];

33 pRed[idx] = (byte) Math.min(r + 10, 255);
34 pGrn[idx] = (byte) Math.min(g + 10, 255);
35 pBlul[idx] = (byte) Math.min(b + 10, 255);
36 }

37 /I create a new color model and apply to the image:

38 IndexColorModel icm2 =

39 new IndexColorModel (pixBits,nColors,pRed,pGrn,pBlu) ;
40 ip.setColorModel (icm2) ;

41 7

42 }

conversion in the other direction requires quantization of the RGB
color space and is as a rule more difficult and involved (see Ch. 13
for details). In practice, most applications make use of existing con-

version methods such as those provided by the ImageJ API.

Creating indezed images

In ImageJ, no special method is provided for the creation of indexed
images, so in almost all cases they are generated by converting an
existing image. The following method demonstrates how to directly

create an indexed image if required:

ByteProcessor makeIndexColorImage (int w, int h, int nColors) {

12.1 RGB CoOLOR IMAGES

Prog. 12.3

Working with indexed images
(ImageJ plugin). This plugin
increases the brightness of an
image by 10 units by modi-
fying the image’s color table
(palette). The actual values

in the pixel array, which are
indices into the palette, are not
changed.
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12 COLOR IMAGES 1 // File Index_To_Rgb. java
2
Prog. 12.4 3 import ij.ImagePlus;
Cii;ﬁgtfgi;iﬁjf%g;; 4 import ij.plugin.filter.PlugInFilter;
image (ImageJ plugin). 5 import ij.process.ColorProcessor;

6 import ij.process.ImageProcessor;
7 import java.awt.image.IndexColorModel;
8
9 public class Index_To_Rgb implements PlugInFilter {
10 static final int R =0, G =1, B = 2;
11 ImagePlus imp;
12
13 public int setup(String arg, ImagePlus imp) {
14 this.imp = imp;
15 return DOES_8C + NO_CHANGES; //does not alter original image
16 3
17
18  public void run(ImageProcessor ip) {
19 int w = ip.getWidth();
20 int h = ip.getHeight();
21
22 /I retrieve the lookup tables (maps) for R, G, B:
23 IndexColorModel icm =
24 (IndexColorModel) ip.getColorModel();
25 int nColors = icm.getMapSize();
26 byte[] pRed = new byte[nColors];
27 byte[] pGrn = new byte[nColors];
28 byte[] pBlu = new byte[nColors];
29 icm.getReds (pRed) ;
30 icm.getGreens (pGrn) ;
31 icm.getBlues (pBlu) ;
32
33 /I create a new 24-bit RGB image:
34 ColorProcessor cp = new ColorProcessor(w, h);
35 int[] RGB = new int[3];
36 for (int v = 0; v < h; v++) {
37 for (int u = 0; u < w; u++) {
38 int idx = ip.getPixel(u, v);
39 RGB[R] = OxFF & pRed[idx];
40 RGB[G] = OxFF & pGrn[idx];
41 RGB[B] = OxFF & pBlul[idx];
42 cp.putPixel(u, v, RGB);
43 }
44 }
45 ImagePlus cwin =
46 new ImagePlus(imp.getShortTitle() + " (RGB)", cp);
a7 cwin.show();
48 }
49 }

byte[] rMap = new byte[nColors]; //red, green, blue color maps
byte[] gMap = new byte[nColors];

byte[] bMap = new byte[nColors];

/I color maps need to be filled here

byte[] pixels = new bytel[w * h];



IndexColorModel cm
= new IndexColorModel (8, nColors, rMap, gMap, bMap);
return new ByteProcessor(w, h, pixels, cm);

}

The parameter nColors defines the number of colors (and thus the
size of the palette) and must be a value in the range of 2,...,256. To
use the above template, you would complete it with code that filled
the three byte arrays for the RGB components (rMap, gMap, bMap)
and the index array (pixels) with the appropriate values.

Transparency

Transparency is one of the reasons indexed images are often used
for Web graphics. In an indexed image, it is possible to define one
of the index values so that it is displayed in a transparent manner
and at selected image locations the background beneath the image
shows through. In Java this can be controlled when creating the
image’s color model (IndexColorModel). As an example, to make
color index 2 in Prog. 12.3 transparent, line 39 would need to be
modified as follows:

int tidx = 2; //index of transparent color
IndexColorModel icm2 =

new IndexColorModel (pixBits,nColors,pRed,pGrn,pBlu,tidx);
ip.setColorModel (icm2) ;

At this time, however, ImageJ does not support the transparency
property; it is not considered during display, and it is lost when the
image is saved.

12.2 Color Spaces and Color Conversion

The RGB color system is well-suited for use in programming, as it is
simple to manipulate and maps directly to the typical display hard-
ware. When modifying colors within the RGB space, it is important
to remember that the metric, or measured distance within this color
space, does not proportionally correspond to our perception of color
(e.g., doubling the value of the red component does not necessarily
result in a color which appears to be twice as red). In general, in
this space, modifying different color points by the same amount can
cause very different changes in color. In addition, brightness changes
in the RGB color space are also perceived as nonlinear.

Since changing any component modifies color tone, saturation,
and brightness all at once, color selection in RGB space is difficult and
quite non-intuitive. Color selection is more intuitive in other color
spaces, such as the HSV space (see Sec. 12.2.3), since perceptual color
features, such as saturation, are represented individually and can be
modified independently. Alternatives to the RGB color space are also
used in applications such as the automatic separation of objects from
a colored background (the blue bozx technique in television), encoding
television signals for transmission, or in printing, and are thus also
relevant in digital image processing.

12.2 COLOR SPACES AND
CoLOR CONVERSION
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Fig. 12.9
Examples of the color dis-
tribution of natural images.
Original images: landscape
photograph with dominant
green and blue components
and sun-spot image with rich
red and yellow components
(a). Distribution of image
colors in RGB-space (b).
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(a)

(b)
RGB

Figure 12.9 shows the distribution of the colors from natural im-
ages in the RGB color space. The first half of this section introduces
alternative color spaces and the methods of converting between them,
and later discusses the choices that need to be made to correctly
convert a color image to grayscale. In addition to the classical color
systems most widely used in programming, precise reference systems,
such as the CIEXYZ color space, gain increasing importance in prac-
tical color processing.

12.2.1 Conversion to Grayscale

The conversion of an RGB color image to a grayscale image proceeds
by computing the equivalent gray or luminance value Y for each RGB
pixel. In its simplest form, Y could be computed as the average

R+G+B

Y = Avg(R,G, B) = 3

(12.7)
of the three color components R, GG, and B. Since we perceive both
red and green as being substantially brighter than blue, the resulting
image will appear to be too dark in the red and green areas and
too bright in the blue ones. Therefore, a weighted sum of the color
components is typically used for calculating the equivalent brightness
or luminance in the form

Y =Lum(R,G, B) = wr-R+ wg G + wg-B (12.8)

The weights most often used were originally developed for encoding
analog color television signals (see Sec. 12.2.4) are

wg, = 0.299, we = 0.587, wg = 0.114, (12.9)



and the weights recommended in ITU-BT.709 [122] for digital color
encoding are

wr, = 0.2126, we = 0.7152, wg =0.0722.  (12.10)

If each color component is assigned the same weight, as in Eqn. (12.7),
this is of course just a special case of Eqn. (12.8).

Note that, although these weights were developed for use with TV
signals, they are optimized for linear RGB component values, that
is, signals with no gamma correction. In many practical situations,
however, the RGB components are actually nonlinear, particularly
when we work with sRGB images (see Ch. 14, Sec. 14.4). In this
case, the RGB components must first be linearized to obtain the
correct luminance values with the aforementioned weights.

In some color systems, instead of a weighted sum of the RGB
color components, a nonlinear brightness function, for example the
value V' in HSV (Eqn. (12.14) in Sec. 12.2.3) or the luminance L in
HLS (Eqn. (12.25)), is used as the intensity value Y.

Hueless (gray) color images
An RGB image is hueless or gray when the RGB components of each
pixel I(u,v) = (R, G, B) are the same; that is, if
R=G=05.
Therefore, to completely remove the color from an RGB image, sim-

ply replace the R, G, and B component of each pixel with the equiv-
alent gray value Y,

Ry Y
eay | = (Y] (12.11)
gray Y

by using ¥ = Lum(R, G, B) from Eqns. (12.8) and (12.9), for exam-
ple. The resulting grayscale image should have the same subjective
brightness as the original color image.

Grayscale conversion in ImagelJ

In ImageJ, the simplest way to convert an RGB color image (of
type ColorProcessor) into an 8-bit grayscale image is to use the
ImageProcessor-method

convertToByteProcessor (),

which returns a new image of type ByteProcessor. ImageJ uses the
default weights wp = wg = wy = % (as in Eqn. (12.7)) for the RGB
components, or alternatively wp = 0.299, wgs = 0.587, wg = 0.114
(as in Eqn. (12.9)) if the “Weighted RGB Conversions” option is
selected in the Edit> Options > Conversions dialog. Arbitrary com-
ponent weights can be specified for subsequent conversion operations

through the static ColorProcessor method
setRGBWeights(double wR, double wG, double wB).

Similarly, the static method getWeightingFactors() of class Color-
Processor can be used to retrieve the current component weights as
a 3-element double-array. Note that no linearization is performed
on the color components, which should be considered when working
with (nonlinear) sRGB colors (see Ch. 14, Sec. 14.4 for details).

12.2 COLOR SPACES AND
CoLOR CONVERSION
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Fig. 12.10
Desaturation in RGB space:
original color point C =
(R, G, B), its corresponding
gray point G = (Y,Y,Y),
and the desaturated color
point D. Saturation is con-
trolled by the factor s.
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12.2.2 Desaturating RGB Color Images

Desaturation is the uniform reduction of the amount of color in an
RGB image in a continuous manner. It is done by replacing each
RGB pixel by a desaturated color obtained by linear interpolation
between the pixel’s original color and the corresponding (V,Y,Y)
gray point in the RGB space, that is,

Rdesat Y R-Y
Gaownt | = | Y | +s|G-Y], (12.12)
Bdesat Y B-Y

again with Y = Lum(R, G, B) from Eqns. (12.8) and (12.9), where
the factor s € [0,1] controls the remaining amount of color satura-
tion (Fig. 12.10). A value of s = 0 completely eliminates all color,
resulting in a true grayscale image, and with s = 1 the color values
will be unchanged. In Prog. 12.5, continuous desaturation as defined
in Eqn. (12.12) is implemented as an ImageJ plugin.

In color spaces where color saturation is represented by an explicit
component (such as HSV and HLS, for example), desaturation is of
course much easier to accomplish (by simply reducing the saturation
value to zero).

12.2.3 HSV/HSB and HLS Color Spaces

In the HSV color space, colors are specified by the components hue,
saturation, and value. Often, such as in Adobe products and the
Java API, the HSV space is called HSB. While the acronym is
different (in this case B = brightness),® it denotes the same color
space. The HSV color space is traditionally shown as an upside-down,
six-sided pyramid (Fig. 12.11(a)), where the vertical axis represents
the V' (brightness) value, the horizontal distance from the axis the S
(saturation) value, and the angle the H (hue) value. The black point
is at the tip of the pyramid and the white point lies in the center of the
base. The three primary colors red, green, and blue and the pairwise
mixed colors yellow, cyan, and magenta are the corner points of the

6 Sometimes the HSV space is also referred to as the “HSI” space, where
“I” stands for intensity.



1 // File Desaturate_Rgb.java

2

3 import ij.ImagePlus;

4 import ij.plugin.filter.PluglnFilter;

5 import ij.process.ImageProcessor;

6

7 public class Desaturate_Rgb implements PlugInFilter {
8 double s = 0.3; //color saturation value

9

10  public int setup(String arg, ImagePlus imp) {
11 return DOES_RGB;

12}

13

14  public void run(ImageProcessor ip) {

15 /literate over all pixels:

16 for (int v = 0; v < ip.getHeight(); v++) {
17 for (int u = 0; u < ip.getWidth(); u++) {
18

19 /I get int-packed color pixel:

20 int ¢ = ip.get(u, v);

21

22 /lextract RGB components from color pixel

23 int r = (¢ & 0x£ff0000) >> 16;

24 int g = (c & 0x00££00) >> 8;

25 int b = (¢ & 0x0000£ff);

26

27 /l compute equiv. gray value:

28 double y = 0.299 * r + 0.587 * g + 0.114 * b;
29

30 /l linear interpolate (yyy) <> (rgb):

31 r=(int) (y +s * (r - y));

32 g=(int) (y +s * (g - y));

33 b= (int) (y + s * (b - y));

34

35 // reassemble the color pixel:

36 c = ((r & 0xff)<<16) | ((g & Oxff)<<8) | b & Oxff;
37 ip.set(u, v, c);

38 }

39 }

40 7

41

42 }

base. While this space is often represented as a pyramid, according
to its mathematical definition, the space is actually a cylinder, as
shown in Fig. 12.12.

The HLS color space” (hue, luminance, saturation) is very sim-
ilar to the HSV space, and the hue component is in fact completely
identical in both spaces. The luminance and saturation values also
correspond to the vertical axis and the radius, respectively, but are
defined differently than in HSV space. The common representation
of the HLS space is as a double pyramid (Fig. 12.11(b)), with black

" The acronyms HLS and HSL are used interchangeably.

12.2 COLOR SPACES AND
CoLOR CONVERSION

Prog. 12.5

Continuous desaturation of

an RGB color image (ImagelJ
plugin). The amount of color
saturation is controlled by the
variable s defined in line 8 (see
Eqn. (12.12)).
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Fig. 12.11

HSV and HLS color space are
traditionally visualized as a
single or double hexagonal
pyramid. The brightness V
(or L) is represented by the
vertical dimension, the color
saturation S by the radius
from the pyramid’s axis, and
the hue A by the angle. In
both cases, the primary col-
ors red (R), green (G), and
blue (B) and the mixed col-
ors yellow (Y), cyan (C), and
magenta (M) lie on a com-
mon plane with black (S) at
the tip. The essential differ-
ence between the HSV and
HLS color spaces is the loca-
tion of the white point (W).
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(a) HSV

(b) HLS

on the bottom tip and white on the top. The primary colors lie on the
corner points of the hexagonal base between the two pyramids. Even
though it is often portrayed in this intuitive way, mathematically the
HLS space is again a cylinder (see Fig. 12.15).

RGB—HSYV conversion

To convert from RGB to the HSV color space, we first find the satu-
ration of the RGB color components R, G, B € [0, Cp.x], with Cp .«
being the maximum component value (typically 255), as

S for Cign > 0
Siras = 4 Chign high ~ 5 12.13
sV {O otherwise ( )
and the brightness (value)
...
Visy = 22, (12.14)
Cmax
with
Clow = min(R, G, B), Chigh = R,G,B),
1 min ) high max( ) (12.15)

C'rng = C'hig;h - C'low'

Finally, we need to specify the hue value Hygy. When all three
RGB color components have the same value (R = G = B), then
we are dealing with an achromatic (gray) pixel. In this particular
case Cy,, = 0 and thus the saturation value Sygy = 0, consequently

the hue is undefined. To calculate Hygy when C,, > 0, we first
normalize each component using
Chien—R Chigh—G Chien—B
R = Zhish G = heh 7 B = Meh 7 (12.16)
Crng Crng Crng

Then, depending on which of the three original color components had
the maximal value, we compute a preliminary hue H' as

B — G/ for R = Chigha
R/ — B/ + 2 fOI' G = Chigh7
Gl — R/ + 4 fOI' B = Chigh‘

H = (12.17)



Since the resulting value for H' lies on the interval [—1, 5], we obtain
the final hue value by normalizing to the interval [0, 1] as

1 J(H +6) for H <0,
H = _. 12.18
HSV ™ ¢ H' otherwise. ( )

Hence all three components Hysy, Susv, and Vygy will lie within the
interval [0, 1]. The hue value Hygy can naturally also be computed
in another angle interval, for example, in the 0 to 360° interval using

HIC-)ISV - HHSV . 360 (1219)

Under this definition, the RGB space unit cube is mapped to a
cylinder with height and radius of length 1 (Fig. 12.12). In con-
trast to the traditional representation (Fig. 12.11), all HSB points
within the entire cylinder correspond to valid color coordinates in
RGB space. The mapping from RGB to the HSV space is nonlinear,
as can be noted by examining how the black point stretches com-
pletely across the cylinder’s base. Figure 12.12 plots the location of
some notable color points and compares them with their locations in
RGB space (see also Fig. 12.1). Figure 12.13 shows the individual
HSV components (in grayscale) of the test image in Fig. 12.2.

RGB/HSV values

Pt. Color R G B H| S 14
S |Black 0.00|0.00{0.00 || — ]0.00|0.00
R |Red 1.00|0.00(0.00|| O |1.00|1.00
Y |Yellow 1.00{1.00|0.00 ||1/6]1.00|1.00
G [ Green 0.00{1.00|0.00 |[2/6|1.00|1.00
C |[Cyan 0.00{1.00|1.00 |[3/6|1.00|1.00
B |Blue 0.00{0.00|1.00 |{4/6|1.00|1.00
M |Magenta |{1.00]0.00|1.00 |[5/6|1.00|1.00
W | White 1.00|1.00(1.00 || — |0.00|1.00
R5|75% Red ||0.75]0.00|0.00 || 0 [1.00]0.75
R, |50% Red ||0.50/0.00]0.00 || 0 |1.00|0.50
Ro5|25% Red || 0.25]0.00|0.00 || 0 [1.00]0.25
P |Pink 1.0010.50(0.50(|| 0 | 0.5 |1.00

Java implementation

In Java, the RGB—HSV conversion is implemented in the standard
AWT Color class by the static method

12.2 COLOR SPACES AND
CoLOR CONVERSION

Fig. 12.12
HSV color space. The illus-
tration shows the HSV color
space as a cylinder with the
coordinates H (hue) as the
angle, S (saturation) as the
radius, and V (brightness
value) as the distance along
the vertical axis, which runs
between the black point S
and the white point W. The
table lists the (R, G, B) and
(H,S,V) values of the color
points marked on the graphic.
Pure colors (composed of only
one or two components) lie on
the outer wall of the cylinder
(S = 1), as exemplified by the
gradually saturated reds (Ros,
R’507 R757 R)

Fig. 12.13

HSV components for the test
image in Fig. 12.2. The darker
areas in the hygy component
correspond to the red and
yellow colors, where the hue
angle is near zero.
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float[] RGBtoHSB (int 7, int g, int b, float[] hsv)

(HSV and HSB denote the same color space). The method takes
three int arguments r, g, b (within the range [0,255]) and returns
a float array with the resulting H, S,V values in the interval [0, 1].
When an existing float array is passed as the argument hsv, then
the result is placed in it; otherwise (when hsv = null) a new array
is created. Here is a simple example:

import java.awt.Color;

float[] hsv = new float[3];

int red = 128, green = 255, blue = 0;

hsv = Color.RGBtoHSB (red, green, blue, hsv);
float h = hsv[0];

float s = hsv[1];

float v = hsv[2];

A possible implementation of the Java method RGBtoHSB () using the
definition in Eqns. (12.14)—(12.18) is given in Prog. 12.6.

HSV—RGB conversion

To convert an HSV tuple (Hygv, Susv, Vasy), where Hygy, Shsv,
and Vygy € [0,1], into the corresponding (R, G, B) color values, the
appropriate color sector

H' = (6 - Hygy) mod 6 (12.20)

(with 0 < H' < 6) is determined first, followed by computing the
intermediate values

e = [H'], r = (1 - Susv) - Vasv,
co=H' —¢, y = (1—(Susv - c2)) - Vasv, (12.21)
z=(1-(Susv - (1 —=c¢3))) - Vusy-

Depending on the value of ¢;, the normalized RGB values R', G’, B’ €
[0,1] are then calculated from v = Viygy, 7, 9, and z as follows:®

(v,z,2) for ¢ =0,

(y,v,x) for ¢y =1,

PR (z,v,2) for ¢ =2,
(R.GB) 4 00 forer 3. (12.22)

(z,2,v) for ¢; =4,

(v,z,y) for ¢ =5.

Scaling the RGB components back to integer values in the range
[0,255] is carried out as follows:
R < min(round(K - R'),255),
G « min(round(K-G’), 255), (12.23)
B+ min(lround(K~B’)7 255).

8 The variables z, y, z used here are not related to the CIEXYZ color
space (see Ch. 14, Sec. 14.1).



1 float[] RGBtoHSV (int[] RGB) {

2 int R = RGB[0], G = RGB[1], B = RGB[2]; /R, G, B € [0,255]
3 int cHi = Math.max(R,Math.max(G,B)); // max.comp. value
4 int cLo = Math.min(R,Math.min(G,B)); // min.comp. value

5 int cRng = cHi - cLo; /l component range
6

7

8

9

float H=0, S =0, V= 0;
float cMax = 255.0f;

/I compute value V

10 V = cHi / cMax;

11

12 /I compute saturation S

13 if (cHi > 0)

14 S = (float) cRng / cHi;

15

16 // compute hue H

17 if (cRng > 0) { //hueis defined only for color pixels

18 float rr = (float)(cHi - R) / cRag;

19 float gg = (float)(cHi - G) / cRng;

20 float bb = (float)(cHi - B) / cRng;

21 float hh;

22 if (R == cHi) /I R is largest component value
23 hh = bb - gg;

24 else if (G == cHi) /I G is largest component value
25 hh = rr - bb + 2.0f;

26 else /I B is largest component value
27 hh = gg - rr + 4.0f;

28 if (hh < 0)

29 hh = hh + 6;

30 H =hh / 6;

31 }

32 return new float[] {H, S, V};

33}

Java implementation

HSV—RGB conversion is implemented in Java’s standard AWT
Color class by the static method

int HSBtoRGB (float h, float s, float w),

which takes three float arguments h,s,v € [0,1] and returns the
corresponding RGB color as an int value with 3 x 8 bits arranged in
the standard Java RGB format (see Fig. 12.6). One possible imple-
mentation of this method is shown in Prog. 12.7.

RGB—HLS conversion

In the HLS model, the hue value Hgy,g is computed in the same way
as in the HSV model (Eqns. (12.16)—(12.18)), that is,

Hyps = Hpsv. (12.24)

The other values, Ly g and Sy, are calculated as follows (for Cy;gp,
Clow, and Ci,, see Eqn. (12.15)):

12.2 COLOR SPACES AND
CoLOR CONVERSION

Prog. 12.6

RGB—HSV conversion (Java
implementation). This Java
method for RGB—HSV con-
version follows the process
given in the text to compute a
single color tuple. It takes the
same arguments and returns
results identical to the stan-
dard Color.RGBtoHSB() method.
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Prog. 12.7
HSV—RGB conversion
(Java implementation).

Fig. 12.14
HLS color components Hyy g
(hue), Syrs (saturation),
and Lyyg (luminance).
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1 int HSVtoRGB (float[] HSV) {

2 float H = HSV[0], S = HSV[1], V = HSV[2]; //H,S,V € [0, 1]

3 float r =0, g =0, b =0;

4 float hh = (6 * H) % 6; //h' + (6-h) mod 6

5 int ¢l = (int) hh; Il ey« |1 ]

6 float ¢c2 = hh - cl;

7 float x = (1 - 8) * V;

8 float y = (1 - (8 * c2)) * V;

9 float z = (1 - (8 *x (1 - c2))) * V;

10 switch (c1) {

11 case 0: r =V; g =2z; b = x; break;

12 case 1: r =y; g =V; b = x; break;

13 case 2: r = x; g =V; b = z; break;

14 case 3: r = x; g =y; b =1V; break;

15 case 4: r = z; g = x; b = V; break;

16 case 5: r = V; g = x; b = y; break;

17 }

18 int R = Math.min((int) (r * 255), 255);

19 int G = Math.min((int) (g * 255), 255);

20 int B = Math.min((int) (b * 255), 255);

21 return new int[] {R, G, B};

22 }

LHLS _ (Chlgh + 2CYIOW)/255, (1225)
0 fOI' LHLS = O,
0.5+ Z2s28  for 0 < Lypgs < 0.5,
TSN 05 Gl g 05 < Ly < 1 (12:26)
. T—LyLs : HLS )

O fOI' LHLS = 1

Using the aforementioned definitions, the RGB color cube is again
mapped to a cylinder with height and radius 1 (see Fig. 12.15). In
contrast to the HSV space (Fig. 12.12), the primary colors lie together
in the horizontal plane at Lyp,g = 0.5 and the white point lies outside
of this plane at Lyp,g = 1.0. Using these nonlinear transformations,
the black and the white points are mapped to the top and the bottom
planes of the cylinder, respectively. All points inside HLS cylinder
correspond to valid colors in RGB space. Figure 12.14 shows the
individual HLS components of the test image as grayscale images.




RGB/HLS values

A L Pt Color R| G| B | H| S L
S |Black 0.00]0.00{0.00|| — [0.00| 0.00
R [Red 1.00{0.00|0.00|| 0 |1.00{0.50
Y [Yellow 1.00{1.00{0.00|1/6|1.00| 0.50
G |Green 0.00{1.00(0.00(|2/6(1.00| 0.50
C |Cyan 0.00{1.00(1.00(|3/6(1.00| 0.50
B |Blue 0.00{0.00(1.00(|4/6(1.00| 0.50
M |Magenta |{1.00{0.00{1.00||5/6|1.00| 0.50
W |White 1.00|1.00(1.00|| — [0.00] 1.00
R5(75% Red||0.75(0.00/0.00|| 0 |1.00|0.375
R;([50% Red||0.50(0.00]0.00|| 0 |{1.00|0.250
R,5(25% Red||0.25(0.00(0.00|| 0 |1.00|0.125

P |Pink 1.00/0.50{0.50{/0/6{1.00| 0.75

HLS—RGB conversion

When converting from HLS to the RGB space, we assume that Hypg,
Strs, Lurs € [0,1]. In the case where Lypg = 0 or Lypg = 1, the
result is

0,0,0)  for Lypg =0
(R,G",B') = (0,0.0) for Lyus =0, (12.27)
(17 17 1) fOI' LHLS =1.

Otherwise, we again determine the appropriate color sector
H/ = (6 . HHLS) mod 6, (1228)
such that 0 < H’ < 6, and from this

Cp = LHIJ, Cy = H/ — Cq, (1229)

Surs - Luws for Lyps < 0.5,

(12.30)
Surs - (1 — Lyrg) for Lypg > 0.5,

and the quantities

w = LHLS + d, xr = LHLS — d, (1231)
y=w— (w—2x) - cy, z=x+ (w—1x)-cy. (12.32)

The final mapping to the RGB values is (similar to Eqn. (12.22))

for ¢; =0,
for ¢ =1,
for ¢y = 2, (12.33)

for ¢; =4,

(
(
(R/7G/7B/>: E
(
(

)
)
)
x,y,w) forcy =3,
)
)

for ¢; = 5.

Finally, scaling the normalized R, G’, B’ (€ [0, 1]) color components
back to the [0,255] range is done as in Eqn. (12.23).

12.2 COLOR SPACES AND
CoLOR CONVERSION

Fig. 12.15

HLS color space. The illustra-
tion shows the HLS color space
visualized as a cylinder with
the coordinates H (hue) as the
angle, S (saturation) as the
radius, and L (lightness) as
the distance along the vertical
axis, which runs between the
black point S and the white
point W. The table lists the
(R,G, B) and (H, S, L) values
where “pure” colors (created
using only one or two color
components) lie on the lower
half of the outer cylinder wall
(S = 1), as illustrated by the
gradually saturated reds (Ros,
R;o, R;5, R). Mixtures of all
three primary colors, where at
least one of the components is
completely saturated, lie along
the upper half of the outer
cylinder wall; for example, the
point P (pink).
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Prog. 12.8
RGB—HLS conversion
(Java implementation).

314

1 float[] RGBtoHLS (int[] RGB) {

2 int R = RGB[0O], G = RGB[1], B = RGB[2]; //R,G,Bin [0,255]
3 float cHi = Math.max(R, Math.max(G, B));

4 float cLo = Math.min(R, Math.min(G, B));

5 float cRng = cHi - cLo; /I component range

6

7 /I compute lightness L

8 float L = ((cHi + cLo) / 255f) / 2;

9

10 /I compute saturation S

11 float S = 0;

12 if (0 <L && L < 1) {

13 float d = (L <= 0.5f) ? L : (1 - L);

14 S = 0.5f * (cRng / 255f) / d;

15 }

16

17 /I compute hue H (same as in HSV)

18 float H = 0;

19 if (cHi > O && cRng > 0) { // this is a color pixel!
20 float r = (float)(cHi - R) / cRng;

21 float g = (float)(cHi - G) / cRng;

22 float b = (float) (cHi - B) / cRng;

23 float h;

24 if (R == cHi) /I R is largest component
25 h=>b-g;

26 else if (G == cHi) // G is largest component
27 h=r-b+ 2.0f;

28 else /I B is largest component
29 h=g-r+ 4.0f;

30 if (h < 0)

31 h=h+ 6;

32 H=h/ 6;

33 }

34 return new float[] {H, L, S};

35 }

Java implementation

Currently there is no method in either the standard Java API or
ImageJ for converting color values between RGB and HLS. Program
12.8 gives one possible implementation of the RGB—HLS conversion
that follows the definitions in Eqns. (12.24)—(12.26). The HLS—RGB
conversion is shown in Prog. 12.9.

HSV and HLS compared

Despite the obvious similarity between the two color spaces, as Fig.
12.16 illustrates, substantial differences in the V' /L and S compo-
nents do exist. The essential difference between the HSV and HLS
spaces is the ordering of the colors that lie between the white point W
and the “pure” colors (R, G, B, Y, C, M), which consist of at most
two primary colors, at least one of which is completely saturated.
The difference in how colors are distributed in RGB, HSV, and
HLS space is readily apparent in Fig. 12.17. The starting point was a
distribution of 1331 (11 x 11 x 11) color tuples obtained by uniformly



1 float[] HLStoRGB (float[] HLS) { 12.2 COLOR SPACES AND
2 float H = HLS[0], L = HLS[1], S = HLS[2]; //H,L,Sin |0, 1] COLOR CONVERSION
3 float r = 0, g =0, b = 0;

4 if (L <= 0) /1 black Prog. 12.9

5 r=g=5b=0; HLS—RGB conversion (Java
6 else if (L >= 1)  // white implementation).

7 r=g=>b=1;

8 else {

9 float hh = (6 * H) % 6; //=H'

10 int cl = (int) hh;

11 float c¢2 = hh - cl;

12 float d = (L <= 0.5£) ? (8 * L) : (S * (1 - L));

13 float w = L + d;

14 float x = L - d;

15 float y = w - (w - x) * c2;

16 float z = x + (w - x) * c2;

17 switch (c1) {

18 case 0: r = w; g = 2z; b =x; break;

19 case 1: r =y; g =w; b =x; break;

20 case 2: r = x; g = W; b= 2z; break;

21 case 3: r = x; g =17y; b =w; break;

22 case 4: r = z; g = x; b = w; break;

23 case b: r = w; g = x; b =y; break;

24 }

25 } //r,gbin|0,1]

26 int R = Math.min(Math.round(r * 255), 255);

27 int G = Math.min(Math.round(g * 255), 255);

28 int B = Math.min(Math.round(b * 255), 255);

29 return new int[] {R, G, B};

30 )

Difference Fig. 12.16

HSV and HLS components
compared. Saturation (top
row) and intensity (bottom
row). In the color saturation
difference image Sysyv — SuLs
(top), light areas correspond to
positive values and dark areas
to negative values. Saturation
in the HLS representation,
especially in the brightest sec-
tions of the image, is notably
higher, resulting in negative
values in the difference im-
age. For the intensity (value
and luminance, respectively)
in general, Vygyv > Lyrg

and therefore the difference
Viasv — Lups (bottom) is al-
ways positive. The hue compo-
nent H (not shown) is identical
in both representations.
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Fig. 12.17

Distribution of colors in the
RGB, HSV, and HLS spaces.
The starting point is the uni-
form distribution of colors in
RGB space (top). The corre-
sponding colors in the cylin-
drical spaces are distributed
nonsymmetrically in HSV
and symmetrically in HLS.
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sampling the RGB space at an interval of 0.1 in each dimension. We
can see clearly that in HSV space the maximally saturated colors
(s = 1) form circular rings with increasing density toward the upper
plane of the cylinder. In HLS space, however, the color samples are
spread out symmetrically around the center plane and the density
is significantly lower, particularly in the region near white. A given
coordinate shift in this part of the color space leads to relatively small
color changes, which allows the specification of very fine color grades
in HLS space, especially for colors located in the upper half of the
HLS cylinder.

Both the HSV and HLS color spaces are widely used in practice;
for instance, for selecting colors in image editing and graphics design
applications. In digital image processing, they are also used for color
keying (i.e., isolating objects according to their hue) on a homoge-
neously colored background where the brightness is not necessarily
constant.

Desaturation in HSV/HLS color space

Desaturation of color images (cf. Sec. 12.2.2) represented in HSV
or HLS color space is trivial since color saturation is available as a
separate component. In particular, pixels with zero saturation are
uncolored or gray. For example, HSV colors can be gradually or
fully desaturated by simply multiplying the component S by a fixed
saturation factor s € [0, 1] and keeping H, V unchanged, that is,



Hdesat H
Sdesat =|sS s (1234)
Vdesat Vv

which works analogously with HLS colors. While Eqn. (12.34) applies
equally to all colors, it might be interesting to selectively modify only
colors with certain hues. This is easily accomplished by replacing the
fixed saturation factor s by a hue-dependent function f(H) (see also
Exercise 12.6).

12.2.4 TV Component Color Spaces—Y UV, YIQ, and
YC,C,

These color spaces are an integral part of the standards surrounding
the recording, storage, transmission, and display of television sig-
nals. YUV and YIQ are the fundamental color-encoding methods
for the analog NTSC and PAL systems, and YC,C, is a part of the
international standards governing digital television [114]. All of these
color spaces have in common the idea of separating the luminance
component Y from two chroma components and, instead of directly
encoding colors, encoding color differences. In this way, compatibil-
ity with legacy black and white systems is maintained while at the
same time the bandwidth of the signal can be optimized by using
different transmission bandwidths for the brightness and the color
components. Since the human visual system is not able to perceive
detail in the color components as well as it does in the intensity part
of a video signal, the amount of information, and consequently band-
width, used in the color channel can be reduced to approximately
1/4 of that used for the intensity component. This fact is also used
when compressing digital still images and is why, for example, the
JPEG codec converts RGB images to YC,,C,. That is why these
color spaces are important in digital image processing, even though
raw YIQ or YUV images are rarely encountered in practice.

YUV

YUV is the basis for the color encoding used in analog television in
both the North American NTSC and the European PAL systems.
The luminance component Y is computed, just as in Eqn. (12.9),
from the RGB components as

Y =0.299-R+0.587-G +0.114-B (12.35)

under the assumption that the RGB values have already been gamma
corrected according to the TV encoding standard (yytgc = 2.2 and
vpar, = 2.8, see Ch. 4, Sec. 4.7) for playback. The UV components
are computed from a weighted difference between the luminance and
the blue or red components as

U=0492-(B—Y) und V =0877-(R-Y), (12.36)

and the entire transformation from RGB to YUV is

Y 0.299 0.587 0.114 R
U|=/[-0147-0289 0436 |-|G]. (12.37)
v 0.615 —0.515 —0.100 B

12.2 COLOR SPACES AND
CoLOR CONVERSION
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Fig. 12.18
Examples of the color distri-
bution of natural images in
different color spaces. Orig-
inal images (a); color dis-
tribution in HSV- (b), and
YUV-space (c). See Fig. 12.9
for the corresponding distri-
butions in RGB color space.
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(a)

(b)
HSV

(c)
YUV

The transformation from YUV back to RGB is found by inverting
the matrix in Eqn. (12.37):

R 1.000 0.000 1.140 Y
G| = 1.000 —0.395 =0.581 | - | U | . (12.38)
B 1.000 2.032 0.000 |4

The color distributions in YUV-space for a set of natural images are
shown in Fig. 12.18.
YIQ

The original NTSC system used a variant of YUV called YIQ (I
for “in-phase”, Q for “quadrature”), where both the U and V color
vectors were rotated and mirrored such that

(&)= (o mn) (1), oo



where f = 0.576 (33°). The Y component is the same as in YUV.
Although the YIQ has certain advantages with respect to bandwidth
requirements it has been completely replaced by YUV [124, p. 240].

YC,C,

The YC,C, color space is an internationally standardized variant
of YUV that is used for both digital television and image compres-
sion (e.g., in JPEG). The chroma components C,, C, are (similar
to U, V) difference values between the luminance and the blue and
red components, respectively. In contrast to YUV, the weights of
the RGB components for the luminance Y depend explicitly on the
coefficients used for the chroma values Cj, and C. [197, p. 16]. For
arbitrary weights wg, wg, the transformation is defined as

0.5
= -(B-Y 12.41
G oo (B ), (12.41)
0.5
_ (R-Y 12.42
C= 2o (R V) (12.42)

with wg = 0.299 and wg = 0.114 (wg = 0.587)% according to ITU
recommendation BT.601 [123]. Analogously, the reverse mapping
from YC,,C, to RGB is

R—v + % (12.43)

Gzyin'(lfwB)'CberR'(l*wR)'Cr, (12.44)
0.5 - (1 — W —’LUR)

By d-wn) G (12.45)

0.5

In matrix-vector notation this gives the linear transformation

Y 0.299 0.587 0.114 R
C, | =1 —-0.169 -0.331 0500 | - | G |, (12.46)
C, 0.500 —0.419 —0.081 B
R 1.000 0.000 1.403 Y
G| = 1.000 —0.344 —0.714 | - | G}, | . (12.47)
B 1.000 1.773 0.000 G

r

Different weights are recommended based on how the color space is
used; for example, ITU-BT.709 [122] recommends wr = 0.2125 and
wg = 0.0721 to be used in digital HDTV production. The values of
U, V, 1,Q, and Cy, C, may be both positive or negative. To encode
Cy, C,. values to digital numbers, a suitable offset is typically added
to obtain positive-only values, for example, 128 = 27 in case of 8-bit
components.

Figure 12.19 shows the three color spaces YUV, YIQ, and YC, C,
together for comparison. The U,V, I,Q, and Cy,C, values in the

% wr +wg +wg = 1.
10 International Telecommunication Union (www.itu.int).

12.2 COLOR SPACES AND
CoLOR CONVERSION
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Fig. 12.19

Comparing YUV-, YIQ-,
and YC,,C, values. The
Y values are identical

in all three color spaces.

320

YUV

Cp

right two frames have been offset by 128 so that the negative values
are visible. Thus a value of zero is represented as medium gray in
these images. The YC,,C, encoding is practically indistinguishable
from YUV in these images since they both use very similar weights
for the color components.

12.2.5 Color Spaces for Printing—CMY and CMYK

In contrast to the additive RGB color scheme (and its various color
models), color printing makes use of a subtractive color scheme, where
each printed color reduces the intensity of the reflected light at that
location. Color printing requires a minimum of three primary colors;
traditionally cyan (C), magenta (M), and yellow (Y)'' have been
used.

Using subtractive color mixing on a white background, C' = M =
Y = 0 (no ink) results in the color white and C = M =Y =1
(complete saturation of all three inks) in the color black. A cyan-
colored ink will absorb red (R) most strongly, magenta absorbs green

' Note that in this case Y stands for yellow and is unrelated to the Y
luma or luminance component in YUV or YC,C,.



(G), and yellow absorbs blue (B). The simplest form of the CMY 12 9 CoLOR SPACES AND
model is defined as CoLoR CONVERSION

C=1-R, M=1-G, Y =1-B. (12.48)

In practice, the color produced by fully saturating all three inks is not
physically a true black. Therefore, the three primary colors C, M,Y
are usually supplemented with a black ink (K) to increase the color
range and coverage (gamut). In the simplest case, the amount of
black is

K =min(C,M,Y). (12.49)

With rising levels of black, however, the intensity of the C, MY
components can be gradually reduced. Many methods for reducing
the primary dyes have been proposed and we look at three of them
in the following.

CMY—CMYK conversion (version 1)

In this simple variant the C, M,Y values are reduced linearly with
increasing K (Eqn. (12.49)), which yields the modified components

as
e} C—-K
M| | M-K
vil=|v x| (12.50)
K, K

CMY—-CMYK conversion (version 2)

The second variant corrects the color by reducing the C, M,Y com-
ponents by s = —— resulting in stronger colors in the dark areas of

—K>
the image:
M, (M—-K)-s . — for K <1,
= ., with s= 12.51
Y, (Y-K)-s Wi e 1 otherwise. ( )
K, K

In both versions, the K component (as defined in Eqn. (12.49)) is
used directly without modification, and all gray tones (that is, when
R = G = B) are printed using black ink K, without any contribution
from C, M, or Y.

While both of these simple definitions are widely used, neither
one produces high quality results. Figure 12.20(a) compares the re-
sult from version 2 with that produced with Adobe Photoshop (Fig.
12.20(c)). The difference in the cyan component C' is particularly no-
ticeable and also the exceeding amount of black (K) in the brighter
areas of the image.

In practice, the required amounts of black K and C, M,Y depend
so strongly on the printing process and the type of paper used that

print jobs are routinely calibrated individually. 321
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Fig. 12.20

RGB—CMYK conversion com-
parison. Simple conversion
using Eqn. (12.51) (a), apply-
ing the undercolor-removal
and black-generation func-
tions of Eqn. (12.52) (b), and
results obtained with Adobe
Photoshop (c). The color in-
tensities are shown inverted,
that is, darker areas represent
higher CMYK color values.
The simple conversion (a), in
comparison with Photoshop’s
result (c), shows strong devia-
tions in all color components,
C and K in particular. The
results in (b) are close to Pho-
toshop’s and could be further
improved by tuning the corre-
sponding function parameters.
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Version 2 (Eqn. (12.51))

Adobe Photoshop

Version 3 (Eqn. (12.52))

CMY—CMYK conversion (version 3)

In print production, special transfer functions are applied to tune
the results. For example, the Adobe PostScript interpreter [135, p.
345] specifies an undercolor-removal function fycr(K) for gradually
reducing the CMY components and a separate black-generation func-
tion fpg(K) for controlling the amount of black. These functions are
used in the form

G (G s

3 _ — JUCR

Y, v _fUCR<K) , (12.52)
K; fea(K)

where K = min(C, M,Y), as defined in Eqn. (12.49). The func-
tions fycr and fpg are usually nonlinear, and the resulting values



F(K)

1.0
fea(K)
0.8f
0.6f
0.4r
0.2f
______ fucr(K)
___________ K

C3, M3, Y5, K5 are scaled (typically by means of clamping) to the in-
terval [0,1]. The example shown in Fig. 12.20(b) was produced to
approximate the results of Adobe Photoshop using the definitions

fucr(K) = sk - K, (12.53)

0 for K < K,
K) =
fea(K) {K KK g K> K,

max 1-K,

(12.54)

where s = 0.1, Ky = 0.3, and K, = 0.9 (see Fig. 12.21). With
this definition, fycgr reduces the CMY components by 10% of the
K value (by Eqn. (12.52)), which mostly affects the dark areas of
the image with high K values. The effect of the function fgg (Eqn.
(12.54)) is that for values of K < K (i.e., in the light areas of the
image) no black ink is added at all. In the interval K = Kj,..., 1.0,
the black component is increased linearly up to the maximum value
K ax- The result in Fig. 12.20(b) is relatively close to the CMYK
component values produced by Photoshop!? in Fig. 12.20(c). It could
be further improved by adjusting the function parameters sy, K,
and K., (Eqn. (12.52)).

Even though the results of this last variant (3) for converting
RGB to CMYK are better, it is only a gross approximation and still
too imprecise for professional work. As we discuss in Chapter 14,
technically correct color conversions need to be based on precise,
“colorimetric” grounds.

12.3 Statistics of Color Images

12.3.1 How Many Different Colors are in an Image?

A minor but frequent task in the context of color images is to de-
termine how many different colors are contained in a given image.

12 Actually Adobe Photoshop does not convert directly from RGB to
CMYK. Instead, it first converts to, and then from, the CIELAB color
space (see Ch. 14, Sec. 14.1).

12.3 STATISTICS OF
COLOR IMAGES

Fig. 12.21

Examples of undercolor-
remowval function fycr (Eqn.
(12.53)) and black generation
function fge (Eqn. (12.54)).
The parameter settings are
sg = 0.1, K, = 0.3, and
Koax = 0.9.
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Prog. 12.10

Counting the colors con-
tained in an RGB image.
The method countColors()
first creates a copy of the

1D RGB (int) pixel array
(line 3), then sorts that ar-
ray, and finally counts the
transitions between contigu-
ous blocks of identical colors.
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One way of doing this would be to create and fill a histogram array
with one integer element for each color and subsequently count all
histogram cells with values greater than zero. But since a 24-bit RGB
color image potentially contains 224 = 16, 777,216 colors, the result-
ing histogram array (with a size of 64 megabytes) would be larger
than the image itself in most cases!

A simple solution to this problem is to sort the pixel values in
the (1D) pixel array such that all identical colors are placed next
to each other. The sorting order is of course completely irrelevant,
and the number of contiguous color blocks in the sorted pixel vector
corresponds to the number of different colors in the image. This
number can be obtained by simply counting the transitions between
neighboring color blocks, as shown in Prog. 12.10. Of course, we do
not want to sort the original pixel array (which would destroy the
image) but a copy of it, which can be obtained with Java’s clone ()
method.!® Sorting of the 1D array in Prog. 12.10 is accomplished
(in line 4) with the generic Java method Arrays.sort (), which is
implemented very efficiently.

1 int countColors (ColorProcessor cp) {

2 /I duplicate the pixel array and sort it

3 int[] pixels = ((int[]) cp.getPixels()).clone();
4 Arrays.sort(pixels); //requires java.util.Arrays
5

6 int k = 1; // color count (image contains at least 1 color)
7 for (int i = 0; i < pixels.length-1; i++) {

8 if (pixels[i] != pixels[i + 1])

9 k =k + 1;

10 }

11 return k;

12}

12.3.2 Color Histograms

We briefly touched on histograms of color images in Chapter 3, Sec.
3.5, where we only considered the 1D distributions of the image in-
tensity and the individual color channels. For instance, the built-in
ImageJ method getHistogram(), when applied to an object of type
ColorProcessor, simply computes the intensity histogram of the
corresponding gray values:

ColorProcessor cp;
int[] H = cp.getHistogram();

As an alternative, one could compute the individual intensity his-
tograms of the three color channels, although (as discussed in Chap-
ter 3, Sec. 3.5.2) these do not provide any information about the ac-
tual colors in this image. Similarly, of course, one could compute the
distributions of the individual components of any other color space,
such as HSV or CIELAB.

13 Java arrays implement the Cloneable interface.



A full histogram of an RGB image is 3D and, as noted earlier,
consists of 256 x 256 x 256 = 224 cells of type int (for 8-bit color
components). Such a histogram is not only very large!* but also
difficult to visualize.

2D color histograms

A useful alternative to the full 3D RGB histogram are 2D histogram
projections (Fig. 12.22). Depending on the axis of projection, we ob-
tain 2D histograms with coordinates red-green (hgg ), red-blue (hgg),
or green-blue (hgp), respectively, with the values

hra(r, g) := number of pixels with I(u,v) = (r,g, %),
hrg(r,b) := number of pixels with I(u,v) = (r,*,b), (12.55)
hee(g,b) := number of pixels with I(u,v) = (x,g,b),

where * denotes an arbitrary component value. The result is, in-
dependent of the original image size, a set of 2D histograms of size
256 x 256 (for 8-bit RGB components), which can easily be visualized
as images. Note that it is not necessary to obtain the full RGB his-
togram in order to compute the combined 2D histograms (see Prog.
12.11).

R R
(a) (b)

As the examples in Fig. 12.23 show, the combined color his-
tograms do, to a certain extent, express the color characteristics of an
image. They are therefore useful, for example, to identify the coarse
type of the depicted scene or to estimate the similarity between im-
ages (see also Exercise 12.8).

12.4 Exercises

Exercise 12.1. Create an ImageJ plugin that rotates the individual
components of an RGB color image; that is, R - G — B — R.

Exercise 12.2. Pseudocolors are sometimes used for displaying gray-
scale images (i.e., for viewing medical images with high dynamic

' It may seem a paradox that, although the RGB histogram is usually
much larger than the image itself, the histogram is not sufficient in
general to reconstruct the original image.

12.4 EXERCISES

Fig. 12.22
2D RGB histogram projec-
tions. 3D RGB cube illustrat-
ing an image’s color distri-
bution (a). The color points
indicate the corresponding
pixel colors and not the color
frequency. The combined his-
tograms for red-green (hgg),
red-blue (hgpg), and green-blue
(hgp) are 2D projections of
the 3D histogram. The cor-
responding image is shown in
Fig. 12.9(a).
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Fig. 12.23

Combined color histogram
examples. For better view-

ing, the images are inverted
(dark regions indicate high fre-
quencies) and the gray value
corresponds to the logarithm
of the histogram entries (scaled
to the maximum entries).
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(a) Original images

(c) Red-blue histogram (R —, B 1)

(d) Green-blue histogram (G —, B 1)

range). Create an ImageJ plugin for converting 8-bit grayscale im-
ages to an indexed image with 256 colors, simulating the hues of
glowing iron (from dark red to yellow and white).

Exercise 12.3. Create an ImageJ plugin that shows the color table
of an 8-bit indexed image as a new image with 16 x 16 rectangular
color fields. Mark all unused color table entries in a suitable way.
Look at Prog. 12.3 as a starting point.

Exercise 12.4. Show that a “desaturated” RGB pixel produced in
the form (r,g,b) — (y,y,y), where y is the equivalent luminance
value (see Eqn. (12.11)), has the luminance y as well.



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18 }

int[J[] get2dHistogram

(ColorProcessor cp, int cl, int c2) {
/I ¢1, c2: componentindex R=0,G=1,B=2

int[] RGB = new int[3];
int[J[] h = new int[256][256]; // 2D histogram h[c1] [c2]

for (int v = 0; v < cp.getHeight); v++) {
for (int u = 0; u < cp.getWidth(); u++) {
cp.getPixel(u, v, RGB);
int il = RGB[c1];
int i2 = RGB[c2];
/I increment the associated histogram cell
h[i1] [i2]++;
}
}

return h;

Exercise 12.5. Extend the ImageJ plugin for desaturating color im-
ages in Prog. 12.5 such that the image is only modified inside the

user-selected region of interest (ROI).

Exercise 12.6. Write an ImageJ plugin that selectively desaturates
an RGB image, preserving colors with a hue close to a given reference
color €rop = (Ryety Grots Bret), with (HSV) hue H, ¢ (see the example
in Fig. 12.24). Transform the image to HSV and modify the colors

(cf. Eqn. (12.34)) in the form

Hdesat H
Sdesat = f(H)S ) (1256)
Vdesat Vv

0.5 1

12.4 EXERCISES

Prog. 12.11

Java method get2dHistogram()
for computing a combined 2D
color histogram. The color
components (histogram axes)
are specified by the parameters
c1 and c2. The color distribu-
tion H is returned as a 2D int
array. The method is defined
in class ColorStatistics (Prog.
12.10).

Fig. 12.24

Selective desaturation ex-
ample. Original image with
selected reference color

Cer = (250,92,150) (a), de-
saturated image (b). Gaus-
sian saturation function f(H)
(see Eqn. (12.58)) with refer-
ence hue H ., = 0.9388 and
o =0.1 (c).
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12 CoLor Imacrs Where f(H) is a smooth saturation function, for example, a Gaussian

function of the form

(H—Hof)

f(H) =e zo = go(H_Href>7 (12'57)

with center H,. and variance o2 (see Fig. 12.24(c)). Recall that
the H component is circular in [0,1). To obtain a continuous and
periodic saturation function we note that H' = H — H, is in the
range [—1,1] and reformulate f(H) as

9. (H") for —0.5 < H' < 0.5,
f(H) =1 g,(H'+1) for H' < —0.5, (12.58)
go(H'—1) for H > 0.5.

Verify the values of the function f(H), check in particular that it is
1 for the reference color! What would be a good (synthetic) color
image for validating the saturation function? Use ImageJ’s color
picker (pipette) tool to specify the reference color ¢, interactively.®

Exercise 12.7. Calculate (analogous to Eqns. (12.46)—(12.47)) the
complete transformation matrices for converting from (linear) RGB
colors to YC,C, for the ITU-BT.709 (HDTV) standard with the
coefficients wg = 0.2126, wg = 0.0722 and wg = 0.7152.

Exercise 12.8. Determining the similarity between images of differ-
ent sizes is a frequent problem (e.g., in the context of image data
bases). Color statistics are commonly used for this purpose because
they facilitate a coarse classification of images, such as landscape im-
ages, portraits, etc. However, 2D color histograms (as described in
Sec. 12.3.2) are usually too large and thus cumbersome to use for
this purpose. A simple idea could be to split the 2D histograms or
even the full RGB histogram into K regions (bins) and to combine
the corresponding entries into a K-dimensional feature vector, which
could be used for a coarse comparison. Develop a concept for such a
procedure, and also discuss the possible problems.

Exercise 12.9. Write a program (plugin) that generates a sequence
of colors with constant hue and saturation but different brightness
(value) in HSV space. Transform these colors to RGB and draw them
into a new image. Verify (visually) if the hue really remains constant.

Exercise 12.10. When applying any type of filter in HSV or HLS
color space one must keep in mind that the hue component H is
circular in [0, 1) and thus shows a discontinuity at the 1 — 0 (360 —
0°) transition. For example, a linear filter would not take into account
that H = 0.0 and H = 1.0 refer to the same hue (red) and thus
cannot be applied directly to the H component. One solution is to
filter the cosine and sine values of the H component (which really
is an angle) instead, and composing the filtered hue array from the
filtered cos / sin values (see Ch. 15, Sec. 15.1.3 for details). Based on
this idea, implement a variable-sized linear Gaussian filter (see Ch.
5, Sec. 5.2.7) for the HSV color space.

15 The current color pick is returned by the ImageJ method Toolbar.
getForegroundColor ().
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Color Quantization

The task of color quantization is to select and assign a limited set
of colors for representing a given color image with maximum fidelity.
Assume, for example, that a graphic artist has created an illustra-
tion with beautiful shades of color, for which he applied 150 dif-
ferent crayons. His editor likes the result but, for some technical
reason, instructs the artist to draw the picture again, this time using
only 10 different crayons. The artist now faces the problem of color
quantization—his task is to select a “palette” of the 10 best suited
from his 150 crayons and then choose the most similar color to redraw
each stroke of his original picture.

In the general case, the original image I contains a set of m dif-
ferent colors C = {C;,C,,...,C,,}, where m could be only a few or
several thousand, but at most 22 for a 3 x 8-bit color image. The
goal is to replace the original colors by a (usually much smaller) set
of colors ¢’ = {C,C5,...,CL}, with n < m. The difficulty lies in
the proper choice of the reduced color palette C’ such that damage
to the resulting image is minimized.

In practice, this problem is encountered, for example, when con-
verting from full-color images to images with lower pixel depth or to
index (“palette”) images, such as the conversion from 24-bit TIFF
to 8-bit GIF images with only 256 (or fewer) colors. Until a few
years ago, a similar problem had to be solved for displaying full-color
images on computer screens because the available display memory
was often limited to only 8 bits. Today, even the cheapest display
hardware has at least 24-bit depth and therefore this particular need
for (fast) color quantization no longer exists.

13.1 Scalar Color Quantization

Scalar (or uniform) quantization is a simple and fast process that is
independent of the image content. Each of the original color compo-
nents ¢; (e.g., R;,G;, B;) in the range [0, ...,m—1] is independently
converted to the new range [0,...,n—1], in the simplest case by a
© Springer-Verlag London 2016

W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,
DOI 10.1007/978-1-4471-6684-9_13
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Fig. 13.1

Scalar quantization of color
components by truncating
lower bits. Quantization

of 3 x 12-bit to 3 x 8-bit
colors (a). Quantization of
3 X 8-bit to 3:3:2-packed
8-bit colors (b). The Java
code segment in Prog. 13.1
shows the corresponding se-
quence of bit operations.

Prog. 13.1
Quantization of a 3 x 8-
bit RGB color pixel to

8 bits by 3:3:2 packing.
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linear quantization in the form
n
ey {ci : —J (13.1)
m

for all color components ¢;. A typical example would be the conver-
sion of a color image with 3 x 12-bit components (m = 4096) to an
RGB image with 3 x 8-bit components (n = 256). In this case, each
original component value is multiplied by n/m = 256,/4096 = 1/16 =
24 and subsequently truncated, which is equivalent to an integer di-
vision by 16 or simply ignoring the lower 4 bits of the corresponding
binary values (see Fig. 13.1(a)). m and n are usually the same for all
color components but not always.

An extreme (today rarely used) approach is to quantize 3 x 8
color vectors to single-byte (8-bit) colors, where 3 bits are used for
red and green and only 2 bits for blue, as shown in Prog. 13.1(b). In
this case, m = 256 for all color components, n,eq4 = Ngreen = 8, and
Mplye = 4.

ColorProcessor cp = (ColorProcessor) ip;
int C = cp.getPixel(u, v);

int R = (C & 0x00££0000) >> 16;
int G = (C & 0x0000££f00) >> 8;
int B = (C & 0x000000ff);

/[ 3:3:2 uniform color quantization
byte RGB =
(byte) ((R & 0xE0) | (G & 0xE0)>>3 | ((B & 0xC0)>>6));

o N TS N N O

Unlike the techniques described in the following, scalar quanti-
zation does not take into account the distribution of colors in the
original image. Scalar quantization is an optimal solution only if the
image colors are uniformly distributed within the RGB cube. How-
ever, the typical color distribution in natural images is anything but
uniform, with some regions of the color space being densely populated
and many colors entirely missing. In this case, scalar quantization is
not optimal because the interesting colors may not be sampled with
sufficient density while at the same time colors are represented that
do not appear in the image at all.



R
(b)

13.2 Vector Quantization

Vector quantization does not treat the individual color components
separately as does scalar quantization, but each color vector C; =
(r;,9;,b;) or pixel in the image is treated as a single entity. Starting
from a set of original color tuples C = {cy,c¢s,...,C,,}, the task of
vector quantization is

a) to find a set of n representative color vectors C' = {c},ch,...,c,}
and
b) to replace each original color C; by one of the new color vectors

Clec,

where n is usually predetermined (n < m) and the resulting deviation
from the original image shall be minimal. This is a combinatorial
optimization problem in a rather large search space, which usually
makes it impossible to determine a global optimum in adequate time.
Thus all of the following methods only compute a “local” optimum
at best.

13.2.1 Populosity Algorithm

The populosity algorithm! [104] selects the n most frequent colors in
the image as the representative set of color vectors C’. Being very
easy to implement, this procedure is quite popular. The method
described in Sec. 12.3.1, based on sorting the image pixels, can be
used to determine the n most frequent image colors. Each original

! Sometimes also called the “popularity” algorithm.

13.2 VECTOR
QUANTIZATION

Fig. 13.2
Color distribution after a
scalar 3:3:2 quantization. Orig-
inal color image (a). Distri-
bution of the original 226,321
colors (b) and the remaining

8 X 8 X 4 = 256 colors after
3:3:2 quantization (c) in the
RGB color cube.
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Fig. 13.3
Median-cut algorithm. The
RGB color space is recur-
sively split into smaller cubes
along one of the color axes.
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pixel C; is then replaced by the closest representative color vector in
C’; that is, the quantized color vector with the smallest distance in
the 3D color space.

The algorithm performs sufficiently only as long as the original
image colors are not widely scattered through the color space. Some
improvement is possible by grouping similar colors into larger cells
first (by scalar quantization). However, a less frequent (but possibly
important) color may get lost whenever it is not sufficiently similar
to any of the n most frequent colors.

13.2.2 Median-Cut Algorithm

The median-cut algorithm [104] is considered a classical method for
color quantization that is implemented in many applications (includ-
ing ImageJ). As in the populosity method, a color histogram is first
computed for the original image, traditionally with a reduced number
of histogram cells (such as 32 x 32 x 32) for efficiency reasons.? The
initial histogram volume is then recursively split into smaller boxes
until the desired number of representative colors is reached. In each
recursive step, the color box representing the largest number of pixels
is selected for splitting. A box is always split across the longest of its
three axes at the median point, such that half of the contained pixels
remain in each of the resulting subboxes (Fig. 13.3).

1st cut 2nd cut 3rd cut

The result of this recursive splitting process is a partitioning of
the color space into a set of disjoint boxes, with each box ideally
containing the same number of image pixels. In the last step, a
representative color vector (e.g., the mean vector of the contained
colors) is computed for each color cube, and all the image pixels it
contains are replaced by that color.

The advantage of this method is that color regions of high pixel
density are split into many smaller cells, thus reducing the overall
quantization error. In color regions of low density, however, relatively
large cubes and thus large color deviations may occur for individual
pixels.

The median-cut method is described in detail in Algorithms 13.1-
13.3 and a corresponding Java implementation can be found in the
source code section of this book’s website (see Sec. 13.2.5).

2 This corresponds to a scalar prequantization on the color components,
which leads to additional quantization errors and thus produces subop-
timal results. This step seems unnecessary on modern computers and
should be avoided.



1: MedianCut(I, K ,..)
I: color image, K,,,.: max. number of quantized colors
Returns a new quantized image with at most K, ,, colors.
2: C, + FindRepresentativeColors(I, K,,x)

3: return Quantizelmage(I,C,) > see Alg. 13.3

4: FindRepresentativeColors(I, K ,,.)
Returns a set of up to K,,,, representative colors for the image
I.

5: Let C = {ey, ¢, - .., cx } be the set of distinct colors in I. Each of
the K color elements in C is a tuple ¢; = (red,, grn,, blu,, cnt;)
consisting of the RGB color components (red, grn, blu) and
the number of pixels (cnt) in I with that particular color.

6: if |C| < Kax then

7 return C
8: else
Create a color box by at level 0 that contains all image colors
C and make it the initial element in the set of color boxes B:
9: by + CreateColorBox(C, 0) > see Alg. 13.2
10: B+ {by} > initial set of color boxes
11: k+1
12: done « false
13: while k < N, and —done do
14: b < FindBoxToSplit(5) > see Alg. 13.2
15: if b # nil then
16: (by, bsy) < SplitBox(b) > see Alg. 13.2
17: B+ B—{b} > remove b from B
18: B+ BU{by, by} > insert by, by into B
19: k+—k+1
20: else > no more boxes to split
21: done <« true
Collect the average colors of all color boxes in B:
22: C, < {AverageColor(b;) | b; € B} > see Alg. 13.3
23: return C,

13.2.3 Octree Algorithm

Similar to the median-cut algorithm, this method is also based on
partitioning the 3D color space into cells of varying size. The octree
algorithm [82] utilizes a hierarchical structure, where each cube in
color space may contain eight subcubes. This partitioning is repre-
sented by a tree structure (octree) with a cube at each node that may
again link to up to eight further nodes. Thus each node corresponds
to a subrange of the color space that reduces to a single color point at
a certain tree depth d (e.g., d = 8 for a 3 x 8-bit RGB color image).

When an image is processed, the corresponding quantization tree,
which is initially empty, is created dynamically by evaluating all pix-
els in a sequence. Each pixel’s color tuple is inserted into the quanti-
zation tree, while at the same time the number of nodes is limited to
a predefined value K (typically 256). When a new color tuple C; is
inserted and the tree does not contain this color, one of the following
situations can occur:

13.2 VECTOR
QUANTIZATION

Alg. 13.1

Median-cut color quantiza-
tion (part 1). The input im-
age I is quantized to up to

K ,ax representative colors

and a new, quantized im-

age is returned. The main
work is done in procedure
FindRepresentativeColors(), which
iteratively partitions the color
space into increasingly smaller
boxes. It returns a set of rep-
resentative colors (C,) that are
subsequently used by proce-
dure Quantizelmage() to quan-
tize the original image I. Note
that (unlike in most common
implementations) no prequanti-
zation is applied to the original
image colors.
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13 COLOR QUANTIZATION 1:

Alg. 13.2
Median-cut color quan-
tization (part 2).

CreateColorBox(C, m)

w

Creates and returns a new color box containing the colors C and
level m. A color box b is a tuple (colors, level, rmin, rmax, gmin,
gmax, bmin, bmax), where colors is the set of image colors repre-
sented by the box, level denotes the split-level, and rmin, ..., bmax
describe the color boundaries of the box in RGB space.

Find the RGB extrema of all colors in C:

Tmins Ymin> bmin — too

Tmasxs Imaxs Omax — —00

for all c€ C do
Tmin  min (7, red(c)
Tmax < Max (Fyay, red(c)
Jmin < Min (gmin, grn(c)
Imax < MaxX (Gmax, grn(c)
bmin + min (b, blu(e))
bax ¢ max (byay, blu(e))

b« <C7 M5 "mins "max) Yminy Ymaxs bmin? bmax>
return b

)
)
)
)

FindBoxToSplit(53)

10:
11:
12:

13:
14:

Searches the set of boxes B for a box to split and returns this
box, or nil if no splittable box can be found.

Find the set of color boxes that can be split (i.e., contain at least
2 different colors):
Bs < {b|be B A |colors(b)| > 2}

if B, = {} then > no splittable box was found
return nil
else

Select a box b, from B,, such that level(b,) is a minimum:
b, < argmin(level(b))

beB,
return b,

15: SplitBox(b)

16:
17:
18:

19:

20:
21:
22:
23:

Splits the color box b at the median plane perpendicular to its

longest dimension and returns a pair of new color boxes.

m < level(b)

d < FindMaxBoxDimension (b) > see Alg. 13.3

C <+ colors(b) > the set of colors in box b
From all colors in C determine the median of the color dis-
tribution along dimension d and split C into Cy, Cy:

{ceC|red(c) < median(red(c))} for d = Red

C,+ {{celC|gm(c) < medlan(grn( ))} for d = Green
{c € C|blu(e) < medéan(blu( c))} for d = Blue
ce
Cy +—C\Cy

b, + CreateColorBox(Cy,m + 1)
b, < CreateColorBox(Cy,m + 1)
return (b, by)

1. If the number of nodes is less than K and no suitable node for

the color c; exists already, then a new node is created for C;.

2. Otherwise (i.e., if the number of nodes is K), the existing nodes
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at the maximum tree depth (which represent similar colors) are
merged into a common node.



1: AverageColor(b)
Returns the average color ¢
color box b.

for the pixels represented by the

avg

2: C < colors(b) > the set of colors in box b
3: n<+0

4: Yo+ 0, XYy 0, Xy« 0
5: for all c € C do

6: k < cnt(c)

7 n<n+k

8: Yo+ X +k-red(c)

9: Y, X+ k-gm(c)

10: Eb < Eb —+ k‘ . bIU(C)
11: ¢« (X /n, X, /n, Xy /n)

12: return c

13: FindMaxBoxDimension(b)
Returns the largest dimension of the color box b (Red, Green, or
Blue).

14: d, = rmax(b) — rmin(b)

15: d, = gmax(b) — gmin(b)

16: d,, = bmax(b) — bmin(d)

17: dmax = max(d,, dg, dy,)

18: if d,.x = d, then

19: return Red.

20: else if d,;,,x = d, then
21: return Green

22: else

23: return Blue

24: Quantizelmage(I,C,)
Returns a new image with color pixels from I replaced by their
closest representative colors in C,.
25: I’ + duplicate(I) > create a new image
26: for all image coordinates (u,v) do
Find the quantization color in C, that is “closest” to the cur-
rent pixel color (e.g., using the Euclidean distance in RGB
space):
27: I' (u,v) « argmin ||I(u,v) — ¢
ceCy
28: return I’

A key advantage of the iterative octree method is that the number
of color nodes remains limited to K in any step and thus the amount
of required storage is small. The final replacement of the image
pixels by the quantized color vectors can also be performed easily
and efficiently with the octree structure because only up to eight
comparisons (one at each tree layer) are necessary to locate the best-
matching color for each pixel.

Figure 13.4 shows the resulting color distributions in RGB space
after applying the median-cut and octree algorithms. In both cases,
the original image (Fig. 13.2(a)) is quantized to 256 colors. Notice in
particular the dense placement of quantized colors in certain regions
of the green hues. For both algorithms and the (scalar) 3:3:2 quan-

13.2 VECTOR
QUANTIZATION

Alg. 13.3
Median-cut color quantization
(part 3).
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13 COLOR QUANTIZATION

Fig. 13.4
Color distribution after appli-
cation of the median-cut (a)
and octree (b) algorithms. In
both cases, the set of 226,321
colors in the original image
(Fig. 13.2(a)) was reduced

to 256 representative colors.

Fig. 13.5
Quantization errors. Original
image (a), distance between
original and quantized color
pixels for scalar 3:3:2 quan-
tization (b), median-cut (c),
and octree (d) algorithms.
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tization, the resulting distances between the original pixels and the
quantized colors are shown in Fig. 13.5. The greatest error naturally
results from 3:3:2 quantization, because this method does not con-
sider the contents of the image at all. Compared with the median-cut
method, the overall error for the octree algorithm is smaller, although
the latter creates several large deviations, particularly inside the col-
ored foreground regions and the forest region in the background. In
general, however, the octree algorithm does not offer significant ad-
vantages in terms of the resulting image quality over the simpler
median-cut algorithm.

(c) Median-cut (d) Octree

13.2.4 Other Methods for Vector Quantization

A suitable set of representative color vectors can usually be deter-
mined without inspecting all pixels in the original image. It is often



sufficient to use only 10% of randomly selected pixels to obtain a high 13 3 Exgrcrses

probability that none of the important colors is lost.

In addition to the color quantization methods described already,
several other procedures and refined algorithms have been proposed.
This includes statistical and clustering methods, such as the classical
k-means algorithm, but also the use of neural networks and genetic
algorithms. A good overview can be found in [219].

13.2.5 Java Implementation

The Java implementation® of the algorithms described in this chapter
consists of a common interface ColorQuantizer and the concrete
classes

e MedianCutQuantizer,
e OctreeQuantizer.

Program 13.2 shows a complete ImageJ plugin that employs the class
MedianCutQuantizer for quantizing an RGB full-color image to an
indexed image. The choice of data structures for the representation
of color sets and the implementation of the associated set operations
are essential to achieve good performance. The data structures used
in this implementation are illustrated in Fig. 13.6.

Initially, the set of all colors contained in the original image (ip of
type ColorProcessor) is computed by new ColorHistogram(). The
result is an array imageColors of size K Each cell of imageColors
refers to a colorNode object (c¢;) that holds the associated color (red,
green, blue) and its frequency (cnt) in the image. Each colorBox
object (corresponding to a color box b in Alg. 13.1) selects a con-
tiguous range of image colors, bounded by the indices lower and
upper. The ranges of elements in imageColors, indexed by differ-
ent colorBox objects, never overlap. Each element in imageColors
is contained in exactly one colorBox; that is, the color boxes held
in colorSet (B in Alg. 13.1) form a partitioning of imageColors
(colorSet is implemented as a list of ColorBox objects). To split a
particular colorBox along a color dimension d = Red, Green, or Blue,
the corresponding subrange of elements in imageColors is sorted
with the property red, green, or blue, respectively, as the sorting
key. In Java, this is quite easy to implement using the standard
Arrays.sort () method and a dedicated Comparator object for each
color dimension. Finally, the method quantize () replaces each pixel
in ip by the closest color in colorSet.

13.3 Exercises
Exercise 13.1. Simplify the 3:3:2 quantization given in Prog. 13.1

such that only a single bit mask/shift step is performed for each color
component.

3 Package imagingbook.pub.color.quantize.
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Fig. 13.6

Data structures used in the
implementation of the median-
cut quantization algortihm
(class MedianCutQuantizer).
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Exercise 13.2. The median-cut algorithm for color quantization
(Sec. 13.2.2) is implemented in the Independent JPEG Group’s*
libjpeg open source software with the following modification: the
choice of the cube to be split next depends alternately on (a) the
number of contained image pixels and (b) the cube’s geometric vol-
ume. Consider the possible motives and discuss examples where this
approach may offer an improvement over the original algorithm.

Exercise 13.3. The signal-to-noise ratio (SNR) is a common mea-
sure for quantifying the loss of image quality introduced by color
quantization. It is defined as the ratio between the average signal
energy Pigna and the average noise energy Pgs- For example,
given an original color image I and the associated quantized image
I’, this ratio could be calculated as

M—-1N-1 )
P 2 2 [[I(w o)
signa. u= v=
SNR(L,I') = P g. T M-1N-1
noise

> 2 [Iw0) ~ I )|

u=0 v=0

(13.2)

Thus all deviations between the original and the quantized image are
considered “noise”. The signal-to-noise ratio is usually specified on a
logarithmic scale with the unit decibel (dB), that is,

SNR o, (I, I') = 10 - log,o(SNR(I, I')) [dB]. (13.3)

Implement the calculation of the SNR, as defined in Eqns. (13.2)-
(13.3), for color images and compare the results for the median-cut
and the octree algorithms for the same number of target colors.

+ www.ijg.org.
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1 import ij.ImagePlus;

2 import ij.plugin.filter.PluglnFilter;

3 import ij.process.ByteProcessor;

4 import ij.process.ColorProcessor;

5 import ij.process.ImageProcessor;

6 import imagingbook.pub.color.quantize.ColorQuantizer;

7 import imagingbook.pub.color.quantize.MedianCutQuantizer;

8

9 public class Median_Cut_Quantization implements
PlugInFilter {

10  static int NCOLORS = 32;

11

12 public int setup(String arg, ImagePlus imp) {

13 return DOES_RGB + NO_CHANGES;

14}

15

16  public void run(ImageProcessor ip) {

17 ColorProcessor cp = ip.convertToColorProcessor () ;

18 int w = ip.getWidth();

19 int h = ip.getHeight();

20

21 /I create a quantizer:

22 ColorQuantizer q =

23 new MedianCutQuantizer (cp, NCOLORS) ;

24

25 /I quantize cp to an indexed image:

26 ByteProcessor idxIp = q.quantize(cp);

27 (new ImagePlus("Quantized Index Image", idxIp)).show();

28

29 /I quantize cp to an RGB image:

30 int[] rgbPix = q.quantize((int[]) cp.getPixels());

31 ImageProcessor rgblp =

32 new ColorProcessor(w, h, rgbPix);

33 (new ImagePlus("Quantized RGB Image", rgbIp)).show();

34 %

35 }

13.3 EXERCISES

Prog. 13.2

Color quantization by the
median-cut method (ImagelJ
plugin). This example uses
the class MedianCutQuantizer
to quantize the original full-
color RGB image into (a) an
indexed color image (of type
ByteProcessor) and (b) an-
other RGB image (of type
ColorProcessor). Both images
are finally displayed.
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14

Colorimetric Color Spaces

In any application that requires precise, reproducible, and device-
independent presentation of colors, the use of calibrated color sys-
tems is an absolute necessity. For example, color calibration is rou-
tinely used throughout the digital print work flow but also in digi-
tal film production, professional photography, image databases, etc.
One may have experienced how difficult it is, for example, to render
a good photograph on a color laser printer, and even the color repro-
duction on monitors largely depends on the particular manufacturer
and computer system.

All the color spaces described in Chapter 12, Sec. 12.2, somehow
relate to the physical properties of some media device, such as the
specific colors of the phosphor coatings inside a CRT tube or the
colors of the inks used for printing. To make colors appear similar
or even identical on different media modalities, we need a repre-
sentation that is independent of how a particular device reproduces
these colors. Color systems that describe colors in a measurable,
device-independent fashion are called colorimetric or calibrated, and
the field of color science is traditionally concerned with the proper-
ties and application of these color systems (see, e.g., [258] or [215] for
an overview). While several colorimetric standards exist, we focus
on the most widely used CIE systems in the remaining part of this
section.

14.1 CIE Color Spaces

The XYZ color system, developed by the CIE (Commission Interna-
tionale d’]:]clairage)1 in the 1920s and standardized in 1931, is the
foundation of most colorimetric color systems that are in use to-
day [195, p. 22].

! International Commission on Illumination (www.cie.co.at).

© Springer-Verlag London 2016
W. Burger, M.J. Burge, Digital Image Processing, Texts in Computer Science,
DOI 10.1007/978-1-4471-6684-9 14
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14 COLORIMETRIC COLOR
SPACES

Fig. 14.1
The XYZ color space is de-
fined by the three imaginary
primary colors X, Y, Z, where
the Y dimension corresponds
to the perceived luminance.
All visible colors are contained
inside an open, cone-shaped
volume that originates at the
black point S (a), where E
denotes the axis of neutral
(gray) colors. The RGB color
space maps to the XYZ space
as a linearly distorted cube
(b). See also Fig. 14.5(a).
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14.1.1 CIE XYZ Color Space

The CIE XYZ color scheme was developed after extensive measure-
ments of human visual perception under controlled conditions. It is
based on three imaginary primary colors X, Y, Z, which are cho-
sen such that all visible colors can be described as a summation of
positive-only components, where the Y component corresponds to
the perceived lightness or luminosity of a color. All visible colors
lie inside a 3D cone-shaped region (Fig. 14.1(a)), which interestingly
enough does not include the primary colors themselves.

Y Y
1 1
Y
Gr“ N
> E
O4A X

(a) (b)

Some common color spaces, and the RGB color space in partic-
ular, conveniently relate to XYZ space by a linear coordinate trans-
formation, as described in Sec. 14.4. Thus, as shown in Fig. 14.1(b),
the RGB color space is embedded in the XYZ space as a distorted
cube, and therefore straight lines in RGB space map to straight lines
in XYZ again. The CIE XYZ scheme is (similar to the RGB color
space) nonlinear with respect to human visual perception, that is, a
particular fixed distance in XYZ is not perceived as a uniform color
change throughout the entire color space. The XYZ coordinates of
the RGB color cube (based on the primary colors defined by ITU-R
BT.709) are listed in Table 14.1.

14.1.2 CIE z,y Chromaticity

As mentioned, the luminance in XYZ color space increases along the
Y axis, starting at the black point S located at the coordinate origin
(X =Y = Z =0). The color hue is independent of the luminance
and thus independent of the Y value. To describe the corresponding
“pure” color hues and saturation in a convenient manner, the CIE
system also defines the three chromaticity values

X Y B 7z
T Xiv+z YT Xyvyz T X+v+z

where (obviously) 24y +z = 1 and thus one of the three values (e.g.,
z) is redundant. Equation (14.1) describes a central projection from

(14.1)



Color R G B X Y Z T y
Black 0.00 | 0.00 | 0.00 || 0.0000 | 0.0000 | 0.0000 || 0.3127 | 0.3290

Red 1.00|0.00 | 0.00 || 0.4125 | 0.2127 | 0.0193 || 0.6400 | 0.3300 | Table 14.1
Coordinates of the RGB color

Yellow 1.00 | 1.00 | 0.00 || 0.7700 | 0.9278 | 0.1385 || 0.4193 | 0.5052 |  cube in CIE XYZ space. The

Green 0.00 [ 1.00{0.00 || 0.3576 | 0.7152 | 0.1192 || 0.3000 | 0.6000 | XY, Z values refer to stan-
dard (ITU-R BT. 709) pri-

Cyan 0.00]1.00|1.00 || 0.5380 | 0.7873 | 1.0694 || 0.2247 | 0.3288 | maries and white point D65
Blue 0.00 [ 0.00 | 1.00 || 0.1804 | 0.0722 | 0.9502 || 0.1500 | 0.0600 | (see Table 14.2), z,y denote
the corresponding CIE chro-
Magenta [| 1.00 | 0.00 | 1.00 || 0.5929 | 0.2848 | 0.9696 || 0.3209 | 0.1542 | maticity coordinates.

White 1.00 | 1.00 | 1.00 || 0.9505 | 1.0000 | 1.0888 | 0.3127 | 0.3290

14.1 CIE COLOR SPACES

SzZwaQ~< 7 n?

X,Y, Z coordinates onto the 3D plane
X+Y+7Z=1, (14.2)

with the origin S as the projection center (Fig. 14.2). Thus, for
an arbitrary XYZ color point A = (X,,Y,, Z,), the corresponding
chromaticity coordinates a = (z, Y4, 2,) are found by intersecting
the line SA with the X + Y + Z = 1 plane (Fig. 14.2(a)). The
final x,y coordinates are the result of projecting these intersection
points onto the X/Y-plane (Fig. 14.2(b)) by simply dropping the Z
component z,.

The result is the well-known horseshoe-shaped CIE x,y chro-
maticity diagram, which is shown in Fig. 14.2(c). Any z,y point
in this diagram defines the hue and saturation of a particular color,
but only the colors inside the horseshoe curve are potentially visible.
Obviously an infinite number of X,Y, Z colors (with different lumi-
nance values) project to the same x, y, 2 chromaticity values, and the
XYZ color coordinates thus cannot be uniquely reconstructed from
given chromaticity values. Additional information is required. For
example, it is common to specify the visible colors of the CIE system
in the form Yzy, where Y is the original luminance component of
the XYZ color. Given a pair of chromaticity values z,y (with y > 0)
and an arbitrary Y value, the missing X, Z coordinates are obtained
(using the definitions in Eqn. (14.1)) as

Y Y Y
X=z —, Z=z-—=1—-z—y) —. (14.3)
Y Y Y

The CIE diagram not only yields an intuitive layout of color hues
but exhibits some remarkable formal properties. The xy values along
the outer horseshoe boundary correspond to monochromatic (“spec-
trally pure”), maximally saturated colors with wavelengths ranging
from below 400nm (purple) up to 780nm (red). Thus the position
of any color inside the zy diagram can be specified with respect to
any of the primary colors at the boundary, except for the points on
the connecting line (“purple line”) between 380 and 780nm, whose
purple hues do not correspond to primary colors but can only be
generated by mixing other colors.

The saturation of colors falls off continuously toward the “neutral
point” (E) at the center of the horseshoe, with 2 =y = 1 (or X =
Y = Z = 1, respectively) and zero saturation. All other colorless (i.e.,

gray) values also map to the neutral point, just as any set of colors 343



14 COLORIMETRIC COLOR
SPACES

Fig. 14.2

CIE z,y chromaticity diagram.
For an arbitrary XYZ color
point A = (X,,Y,,Z,),

the chromaticity values

a = (v,4,Y,,2,) are obtained
by a central projection onto
the 3D plane X + Y +2Z =1
(a). The corner points of the
RGB cube map to a triangle,
and its white point W maps
to the (colorless) neutral point
E. The intersection points are
then projected onto the X/Y
plane (b) by simply dropping
the Z component, which pro-
duces the familiar CIE chro-
maticity diagram shown in (c).
The CIE diagram contains all
visible color tones (hues and
saturations) but no luminance
information, with wavelengths
in the range 380-780 nanome-
ters. A particular color space
is specified by at least three
primary colors (tristimulus val-
ues; e.g., R, G, B), which de-
fine a triangle (linear hull) con-
taining all representable colors.
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with the same hue but different brightness corresponds to a single
x,y point. All possible composite colors lie inside the convex hull
specified by the coordinates of the primary colors of the CIE diagram
and, in particular, complementary colors are located on straight lines
that run diagonally through the white point.

14.1.3 Standard Illuminants

A central goal of colorimetry is the quantitative measurement of col-
ors in physical reality, which strongly depends on the color properties
of the illumination. The CIE system specifies a number of standard
illuminants for a variety of real and hypothetical light sources, each
specified by a spectral radiant power distribution and the “correlated
color temperature” (expressed in degrees Kelvin) [258, Sec. 3.3.3].
The following daylight (D) illuminants are particularly important for
the design of digital color spaces (Table 14.2):



D50 emulates the spectrum of natural (direct) sunlight with an 141 CIE CoLor SPACES
equivalent color temperature of approximately 5000° K. D50 is
the recommended illuminant for viewing reflective images, such
as paper prints. In practice, D50 lighting is commonly imple-
mented with fluorescent lamps using multiple phosphors to ap-
proximate the specified color spectrum.

D65 has a correlated color temperature of approximately 6500° K
and is designed to emulate the average (indirect) daylight ob-
served under an overcast sky on the northern hemisphere. D65
is also used as the reference white for emittive devices, such as
display screens.

The standard illuminants serve to specify the ambient viewing light
but also to define the reference white points in various color spaces
in the CIE color system. For example, the sSRGB standard (see Sec.
14.4) refers to D65 as the media white point and D50 as the ambient
viewing illuminant. In addition, the CIE system also specifies the
range of admissible viewing angles (commonly at +2°).

° Table 14.2
K X Y z € Y CIE color parameters for the
standard illuminants D50 and
D50 || 5000 || 0.96429 | 1.00000 | 0.82510 || 0.3457 | 0.3585 standard illuminants D50 an
D65 || 6500 | 0.95045 | 1.00000 | 1.08905 || 0.3127 | 0.3290 neutral point in CIE XYZ
N — |/ 1.00000 | 1.00000 | 1.00000 || 0.3333 | 0.3333 space:

14.1.4 Gamut

The set of all colors that can be handled by a certain media device
or can be represented by a particular color space is called “gamut”.
This is usually a contiguous region in the 3D CIE XYZ color space or,
reduced to the representable color hues and ignoring the luminance
component, a convex region in the 2D CIE chromaticity diagram.

Figure 14.3 illustrates some typical gamut regions inside the CIE
diagram. The gamut of an output device mainly depends on the
technology employed. For example, ordinary color monitors are typ-
ically not capable of displaying all colors of the gamut covered by
the corresponding color space (usually sRGB). Conversely, it is also
possible that devices would reproduce certain colors that cannot be
represented in the utilized color space. Significant deviations exist,
for example, between the RGB color space and the gamuts asso-
ciated with CMYK-based printers. Also, media devices with very
large gamuts exist, as demonstrated by the laser display system in
Fig. 14.3. Representing such large gamuts and, in particular, trans-
forming between different color representations requires adequately
sized color spaces, such as the Adobe-RGB color space or CIELAB
(described in Sec. 14.2), which covers the entire visible portion of the
CIE diagram.

14.1.5 Variants of the CIE Color Space

The original CIEXYZ color space and the derived xy chromaticity
diagram have the disadvantage that color differences are not per-

ceived equally in different regions of the color space. For example, 345
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Fig. 14.3

Gamut regions for different
color spaces and output de-
vices inside the CIE diagram.
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large color changes are perceived in the magenta region for a given
shift in XYZ while the change is relatively small in the green region
for the same coordinate distance. Several variants of the CIE color
space have been developed for different purposes, primarily with the
goal of creating perceptually uniform color representations without
sacrificing the formal qualities of the CIE reference system. Popular
CIE-derived color spaces include CIE YUV, YU'V’, YC,,C,, and par-
ticularly CIELAB and CIELUV, which are described in the follow-
ing sections. In addition, CIE-compliant specifications exist for most
common color spaces (see Ch. 12, Sec. 12.2), which allow more or less
dependable conversions between almost any pair of color spaces.

14.2 CIELAB

The CIELAB color model (specified by CIE in 1976) was developed
with the goal of linearizing the representation with respect to human
color perception and at the same time creating a more intuitive color
system. Since then, CIELAB? has become a popular and widely used
color model, particularly for high-quality photographic applications.
It is used