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Preface
1 Audience
Students seeking master’s degrees in applied statistics in the late 1960s and 1970s typically took a year-long sequence in statistical methods. Popular choices of the course textbook in that period prior to the availability of high-speed computing and graphics capability were those authored by Snedecor and Cochran (1980) and Steel and Torrie (1960).
By 1980, the topical coverage in these classics failed to include a great many new and important elementary techniques in the data analyst’s toolkit. In order to teach the statistical methods sequence with adequate coverage of topics, it became necessary to draw material from each of four or five text sources. Obviously, such a situation makes life difficult for both students and instructors. In addition, statistics students need to become proficient with at least one high-quality statistical software package.

                  This book
                  Statistical Analysis and Data Display
                  can serve as a standalone text for a contemporary year-long course in statistical methods at a level appropriate for statistics majors at the master’s level and for other quantitatively oriented disciplines at the doctoral level. The topics include concepts and techniques developed many years ago and also a variety of newer tools.
                
This text requires some previous studies of mathematics and statistics. We suggest some basic understanding of calculus including maximization or minimization of functions of one or two variables, and the ability to undertake definite integrations of elementary functions. We recommend acquired knowledge from an earlier statistics course, including a basic understanding of statistical measures, probability distributions, interval estimation, hypothesis testing, and simple linear regression.

2 Motivation

                  The Second Edition in 2015 has four major changes since the First Edition in 2004 Heiberger and Holland (2004). The changes are summarized here and described in detail in Section 
                  5
                  .
                  	
                        The computation for the Second Edition is entirely in
                        R
                         (R Core Team, 2015).
                        R
                         is a free open-source publicly licensed software environment for statistical computing and graphics. The computation for the First Edition is mostly in
                        S-Plus
                        , with some
                        R
                         and some
                        SAS
                        .
                        R
                         uses a dialect of the
                        S
                         language developed at Bell Labs. The
                        R
                         dialect is closely related to the dialect of
                        S
                         used by
                        S-Plus
                        .
                        R
                         is much more powerful now than it was when the First Edition was written.
                      

	
                        All graphs from the First Edition have been redrawn in color. There are many additional graphs new to the Second Edition. The graphs are easier to specify because they are built with the much more powerful graphical primitives that exist now and didn’t exist 12 years ago. Most graphs are constructed with
                        lattice
                        , the
                        R
                         implementation of
                        trellis
                        graphics pioneered by
                        S-Plus
                        . Some, particularly in Chapter 
                        15
                        , are drawn using mosaic and related functions in the
                        vcd
                        package. Functions for the graphic displays designed for this book are included in the
                        HH
                        package available at CRAN (Heiberger, 2015).
                      

	Most chapters in the Second Edition are similar in content to the chapters in the First Edition. There are several revised and expanded chapters and several additional appendices.

	The new appendices respond to shifts in the software landscape and/or in the assumed knowledge of computing by the intended audience since 2004.




                

3 Structure
The book is organized around statistical topics. Each chapter introduces concepts and terminology, develops the rationale for its methods, presents the mathematics and calculations for its methods, and gives examples supported by graphics and computer output, culminating in a writeup of conclusions. Some chapters have greater detail of presentation than others, based on our personal interests and expertise.
Our emphasis on graphical display of data is a distinguishing characteristic of this book. Many of our graphical displays appeared here for the first time. We show graphs, how to construct and interpret them, and how they relate to the tabular outputs that appear automatically when a statistical program “analyzes” a data set. The graphs are not automatic and so must be requested. Gaining an understanding of a data set is always more easily accomplished by looking at appropriately drawn graphs than by examining tabular summaries. In our opinion, graphs are the heart of most statistical analyses; the corresponding tabular results are formal confirmations of our visual impressions.

                  We believe that a firm control of the language gives the analyst the tools to think about the ideal way to detect and display the information in the data. We focus our presentation on the written command languages
                  
                    
                  
                  
                    
                    
                  
                  , the most flexible descriptors of the statistical techniques. The written languages provide the opportunity for growth and understanding of the underlying techniques. The point-and-click technology of icons and menus is sometimes convenient for routine tasks. However, many interesting data analyses are not routine and therefore cannot be accomplished by pointing and clicking the icons provided by the program developers.
                

4 Computation
In the First Edition, and again in the Second Edition, the code and data for all examples and figures in the book is available for download.

                  For the Second Edition, the datasets and
                  R
                   code will be distributed as the
                  R
                   package
                  HH
                  through CRAN (Heiberger, 2015).
                

                  For the First Edition, the download containing
                  S-Plus
                  ,
                  R
                  , and
                  SAS
                   code was initially (in 2004) available from my web site. In 2007, the
                  R
                   code was placed on CRAN (the Comprehensive R Archive Network) as the
                  R
                   package
                  HH
                  . In 2009, the
                  S-Plus
                   code was placed on CSAN (the Comprehensive S Archive Network) as the
                  S-Plus
                   package
                  HH
                  (Heiberger, 2009).
                

                  All datasets in the
                  HH
                  package are documented in the book.
                

                    4.1
                    R
                  

                    R
                     (R Core Team, 2015) is free, publicly licensed, extensible, open-source software. The
                    R
                     language is a dialect of the
                    S
                     language (Becker et al., 1988), similar to that used by
                    S-Plus
                     (Insightful Corp., 2002; TIBCO Software Inc., 2010). Much code (both functions and examples) written for one will also work in the other.
                    R
                     has been increasing its reach—within academia, industry, government, and internationally. Please see Appendix A for information on downloading and using
                    R
                    .
                  

                    The
                    S
                     language was originally developed at Bell Labs in the 1970s. The Association for Computing Machinery (ACM
                    
                      
                    
                    ) awarded John M. Chambers
                    
                      
                    
                    of Bell Labs
                    
                      
                    
                    the 1998 Software System Award for developing the
                    S
                     system.
                  

                    The
                    R
                     language is an exceptionally well-developed tool for statistical research and analysis, that is for exploring and designing new techniques of analysis, as well as for analysis. The trellis graphics implementation in
                    R
                    ’s
                    lattice
                    package is especially strong for statistical graphics, the output of data analysis through which both the raw data and the results are displayed for the analyst and the client.
                  

                    R
                     is available by download. The developers are The R Development Core Team
                    
                      
                    
                    , an international group that includes John Chambers and other former Bell Labs researchers.
                  


                    4.2 The
                    HH
                    Package in
                    R
                  

                    An important feature of this book is its graphical displays of statistical analyses. For the Second Edition, the
                    HH
                     functions for graphing have been rewritten using the more powerful graphing infrastructure that is now available in the
                    lattice
                    package in
                    R
                    . The package version number has been changed from the
                    HH_2.3.x
                    series to the
                    HH_3.1-x
                    series to reflect the redesign. The First Edition had black-and-white figures in print, even though the software at that time produced color figures. In the Second Edition all figures, both in print and in the eBook edition, are in color.
                  

                    Please see Appendix B for information on working with the
                    HH
                    package.
                  

                    R
                     graphics have much improved since the time of the First Edition. The
                    lattice
                    graphics package for plotting coordinated sets of displays was in its infancy when we wrote the First Edition, not yet as capable as the equivalent
                    trellis
                    graphics system in
                    S-Plus
                    , and specifically not capable of all the figures in the book. Now
                    lattice
                    is much more powerful than
                    trellis
                    , and can be even further extended with the capabilities since encoded in the
                    latticeExtra
                    
                      
                    
                    package (Sarkar and Andrews, 2013).
                  

                    The
                    R
                     package system was also not as extensive at that time, and the
                    S-Plus
                     package system did not yet exist. The code and examples for the First Edition of the book were distributed as a zip file on my website and accessible through the Springer website. The code and examples were revised and distributed as an
                    R
                     package
                    HH
                    beginning in 2007, and as an
                    S-Plus
                     package in 2009, when
                    S-Plus
                     created their package system. I have continually maintained and extended the software.
                  


                    4.3
                    S-Plus
                    , now called
                    S+
                  

                    
                      
                    
                    
                      
                    
                  

                    S+
                     is still available, but less commonly used. TIBCO, the owner of
                    S+
                     is now distributing a Developer’s Edition of
                    R
                     called
                    TERR
                    (TIBCO Enterprise Runtime for R) based on their new enterprise-grade, high-performance statistical engine (TIBCO Software Inc., 2014). The design goal of
                    TERR
                    is to be able to install all
                    R
                     packages. As of July 2014,
                    TERR
                    had not yet implemented their graphics system. Once their graphics system is implemented,
                    HH_3.1-x
                    will work with
                    TERR
                    .
                  

                    The older version of
                    HH
                     (Heiberger, 2009), designed for the First Edition of this book, continues to work with
                    S+
                    .
                  


                    4.4
                    SAS
                  

                    SAS
                     is an important statistical computing system in industry. All the code from our First Edition still works. My own personal work has become more highly
                    R
                    -focused. I have chosen to drop most of the
                    SAS
                     discussion and examples from the body of the Second Edition.
                  

                    Some
                    SAS
                     material is still in the body of the Second Edition. Now-standard terminology introduced by
                    SAS
                    , primarily the notation for “Types” of Sums of Squares described in Section 
                    13.​6
                    , is referenced and described. The notation of the
                    SAS
                     MODEL statement is similar to the notation of the
                    R
                     model formula. Comparisons of the two notations are in Sections 
                    9.​4.​1
                    , 12.13.1, 12.15, 12.A, 13.4, and 13.5.
                  

                    All datasets in the Second Edition can be used with
                    SAS
                    . See Appendix H for details.
                  


5 Chapters in the Second Edition
5.1 Revised Chapters
All graphs from the First Edition have been redrawn in color and with the use of much more powerful graphical primitives that didn’t exist 12 years ago.
There are many additional graphs new to the Second Edition.

                    Chapters 
                    3
                    and 
                    5
                    have many new figures, most built with the NTplot function. The graphs, showing significance and power of hypothesis tests for the normal and
                    t
                    distributions, produced by this single function cover most of the standard first semester introductory Statistics course.
                  

                    Chapter
                    11
                     “Multiple Regression—Regression Diagnostics” has a new section 
                    11.​3.​7
                    “Residuals vs Leverage” to discuss one of the panels produced by
                    R
                    ’s plot.lm function that was not in the similar
                    S-Plus
                     function.
                  

                    Chapter
                    15
                     “Bivariate Statistics—Discrete Data” has undergone major revision. The examples are now centered on mosaic graphics, using the
                    vcd
                    package that was not available when the First Edition was written.
                  

                    Section 
                    15.​8
                    “Example—Adverse Experiences” is new. The discussion focuses on the Adverse Effects dotplot, and shows how multi-panel plots graphical displays can replace pages of tabular data. The discussion is based on the work in which I participated while at research leave at GSK (Amit et al., 2008).
                  

                    Section 
                    15.​9
                    “Likert Scale Data” is new. This section is based on my recent work with Naomi Robbins (Heiberger and Robbins, 2014). Rating scales, such as Likert scales and semantic differential scales, are very common in marketing research, customer satisfaction studies, psychometrics, opinion surveys, population studies, and numerous other fields. We recommend diverging stacked bar charts as the primary graphical display technique for Likert and related scales. We discuss the perceptual issues in constructing the graphs. Many examples of plots of Likert scales are given.
                  

5.2 Revised Appendices

                    We have made major changes to the Appendices. There are more appendices now and the previous appendices have been restructured and expanded. The description of the Second Edition appendices is in Section 
                    1.​3.​5
                  


6 Exercises

                  Learning requires that the student work a fair selection of the exercises provided, using, where appropriate, one of the statistical software packages we discuss. Beginning with the exercises in Chapter 
                  5
                  , even when not specifically asked to do so, the student should routinely plot the data in a way that illuminates its structure, and state all assumptions made and discuss their reasonableness.
                
Acknowledgments: First Edition

                    We are indebted to many people for providing us advice, comments, and assistance with this project. Among them are our editor John Kimmel and the production staff at Springer, our colleagues Francis Hsuan and Byron Jones, our current and former students (particularly Paolo Teles who coauthored the paper on which Chapter 
                    18
                    is based, Kenneth Swartz, and Yuo Guo), and Sara R. Heiberger. Each of us gratefully acknowledges the support of a study leave from Temple University. We are also grateful to Insightful Corp. for providing us with current copies of
                    S-Plus
                     software for ourselves and our student, and to the many professionals who reviewed portions of early drafts of this manuscript.
                  



Richard M. Heiberger
Burt Holland
Philadelphia, PA, USAPhiladelphia, PA, USA
July 2004

Acknowledgements
We are indebted to many additional people for support in preparing the Second Edition. Our editors at Springer Jon Gurstelle (now at Wiley), Hannah Bracken, and Michael Penn encouraged the preparation of this Second Edition. Alicia Strandberg at Villanova University used a preliminary version of this edition with two of her classes. She and her students provided excellent feedback and suggestions for the preparation of this material. I also used drafts of this edition in my own courses at Temple University and incorporated the classes’ feedback into the revision.

                We are grateful to the
                R
                 Core and the many
                R
                 users and contributors who have provided the software we use so heavily in our graphical and tabular analyses.
              
The material in the new section on Adverse Effects is based on the work with the GSK team investigating graphics for safety data in clinical trials, particularly coauthors Ohad Amit and Peter W. Lane.
The material in the new section on Likert scale plots is based on the work with Naomi Robbins.
The First Edition was coauthored by Burt Holland. Even though Burt died in 2010, I am writing this second preface mostly in the plural. Burt’s voice is present in much of the text of the Second Edition. Most of the numbered chapters have essentially the same content as in the First Edition.

                The new sections and the Appendices in the Second Edition are entirely by me. All graphs in this edition are newly drawn by me using the more powerful graphics infrastructure that is now available in
                R
                .
              
I had several discussions with Kenneth Swartz when I was initially considering writing this edition and at various points along the way.
Barbara Bloomfield provided me overall support in everything. She also responded to my many queries on stylistic and appearance issues in the revised manuscript and graphs.
October 2015

Richard M. Heiberger

Contents


                1 Introduction and Motivation
              1

                  1.​1 Statistics in Context
                3


                  1.​2 Examples of Uses of Statistics
                4

                    1.​2.​1 Investigation of Salary Discrimination
                  4


                    1.​2.​2 Measuring Body Fat
                  5


                    1.​2.​3 Minimizing Film Thickness
                  5


                    1.​2.​4 Surveys
                  5


                    1.​2.​5 Bringing Pharmaceutical Products to Market
                  6



                  1.​3 The Rest of the Book
                6

                    1.​3.​1 Fundamentals
                  6


                    1.​3.​2 Linear Models
                  7


                    1.​3.​3 Other Techniques
                  8


                    1.​3.​4 New Graphical Display Techniques
                  9


                    1.​3.​5 Appendices on Software
                  9


                    1.​3.​6 Appendices on Mathematics and Probability
                  10


                    1.​3.​7 Appendices on Statistical Analysis and Writing
                  10




                2 Data and Statistics
              13

                  2.​1 Types of Data
                13


                  2.​2 Data Display and Calculation
                14

                    2.​2.​1 Presentation
                  15


                    2.​2.​2 Rounding
                  15



                  2.​3 Importing Data
                16

                    2.​3.​1 Datasets for This Book
                  16


                    2.​3.​2 Other Data sources
                  17



                  2.​4 Analysis with Missing Values
                17


                  2.​5 Data Rearrangement
                18


                  2.​6 Tables and Graphs
                18


                  
                      2.7 R Code Files for
                      Statistical Analysis and Data Display
                      (HH)
                    
                19


                  
                      2.A Appendix: Missing Values in
                      R
                    
                21



                3 Statistics Concepts
              29

                  3.​1 A Brief Introduction to Probability
                29


                  3.​2 Random Variables and Probability Distributions
                30

                    3.​2.​1 Discrete Versus Continuous Probability Distributions
                  31


                    3.​2.​2 Displaying Probability Distributions—Discrete Distributions
                  33


                    3.​2.​3 Displaying Probability Distributions—Continuous Distributions
                  35



                  3.​3 Concepts That Are Used When Discussing Distributions
                36

                    3.​3.​1 Expectation and Variance of Random Variables
                  36


                    3.​3.​2 Median of Random Variables
                  37


                    3.​3.​3 Symmetric and Skewed Distributions
                  38


                    3.​3.​4 Displays of Univariate Data
                  39


                    3.​3.​5 Multivariate Distributions—Covariance and Correlation
                  44



                  3.​4 Three Probability Distributions
                47

                    3.​4.​1 The Binomial Distribution
                  48


                    3.​4.​2 The Normal Distribution
                  49


                    
                        3.4.3 The (Student’s)
                        t
                        Distribution
                      
                  50



                  3.​5 Sampling Distributions
                54


                  3.​6 Estimation
                56

                    3.​6.​1 Statistical Models
                  57


                    3.​6.​2 Point and Interval Estimators
                  58


                    3.​6.​3 Criteria for Point Estimators
                  58


                    3.​6.​4 Confidence Interval Estimation
                  60


                    
                        3.6.5 Example—Confidence Interval on the Mean
                        μ
                        of a Population Having Known Standard Deviation
                      
                  61


                    3.​6.​6 Example—One-Sided Confidence Intervals
                  61



                  3.​7 Hypothesis Testing
                62


                  3.​8 Examples of Statistical Tests
                68


                  3.​9 Power and Operating Characteristic (O.​C.​) (Beta) Curves
                69


                  3.​10 Efficiency
                71


                  3.​11 Sampling
                74

                    3.​11.​1 Simple Random Sampling
                  75


                    3.​11.​2 Stratified Random Sampling
                  76


                    3.​11.​3 Cluster Random Sampling
                  77


                    3.​11.​4 Systematic Random Sampling
                  78


                    3.​11.​5 Standard Errors of Sample Means
                  78


                    3.​11.​6 Sources of Bias in Samples
                  79



                  3.​12 Exercises
                80



                4 Graphs
              85

                  4.​1 What Is a Graph?​
                86


                  4.​2 Example—Ecological Correlation
                87


                  4.​3 Scatterplots
                88


                  4.​4 Scatterplot Matrix
                89


                  4.​5 Array of Scatterplots
                92


                  4.​6 Example—Life Expectancy
                93

                    4.​6.​1 Study Objectives
                  93


                    4.​6.​2 Data Description
                  94


                    4.​6.​3 Initial Graphs
                  94



                  4.​7 Scatterplot Matrices—Continued
                95


                  4.​8 Data Transformations
                100


                  4.​9 Life Expectancy Example—Continued
                104


                  4.​10 Color Vision
                108


                  4.​11 Exercises
                108


                  
                      4.A Appendix:
                      R
                       Graphics
                    
                111

                    4.​A.​1 Cartesian Products
                  111


                    4.​A.​2 Trellis Paradigm
                  112


                    4.​A.​3 Implementation of Trellis Graphics
                  112


                    4.​A.​4 Coordinating Sets of Related Graphs
                  113


                    4.​A.​5 Cartesian Product of Model Parameters
                  113


                    4.​A.​6 Examples of Cartesian Products
                  114


                    
                        4.A.7
                        latticeExtra
                        —Extra Graphical Utilities Based on Lattice
                      
                  115



                  4.​B Appendix:​ Graphs Used in This Book
                116

                    4.​B.​1 Structured Sets of Graphs
                  116


                    4.​B.​2 Combining Panels
                  116


                    4.​B.​3 Regression Diagnostics
                  117


                    
                        4.B.4 Graphs Requiring Multiple Calls to
                        xyplot
                      
                  117


                    4.​B.​5 Asymmetric Roles for the Row and Column Sets
                  119


                    4.​B.​6 Rotated Plots
                  119


                    4.​B.​7 Squared Residual Plots
                  120


                    4.​B.​8 Adverse Events Dotplot
                  120


                    4.​B.​9 Microplots
                  120


                    4.​B.​10 Alternate Presentations
                  120




                5 Introductory Inference
              123

                  
                      5.1 Normal (
                      z
                      ) Intervals and Tests
                    
                123

                    5.​1.​1 Test of a Hypothesis Concerning the Mean of a Population Having Known Standard Deviation
                  124


                    
                        5.1.2 Confidence Intervals for Unknown Population Proportion
                        p
                      
                  126


                    
                        5.1.3 Tests on an Unknown Population Proportion
                        p
                      
                  127


                    5.​1.​4 Example—One-Sided Hypothesis Test Concerning a Population Proportion
                  127



                  
                      5.2
                      t
                      -Intervals and Tests for the Mean of a Population Having Unknown Standard Deviation
                    
                129

                    
                        5.2.1 Example—Inference on a Population Mean
                        μ
                      
                  130



                  5.​3 Confidence Interval on the Variance or Standard Deviation of a Normal Population
                131


                  5.​4 Comparisons of Two Populations Based on Independent Samples
                133

                    5.​4.​1 Confidence Intervals on the Diff erence Between Two Population Proportions
                  133


                    5.​4.​2 Confidence Interval on the Diff erence Between Two Means
                  134


                    5.​4.​3 Tests Comparing Two Population Means When the Samples Are Independent
                  135


                    5.​4.​4 Comparing the Variances of Two Normal Populations
                  138



                  5.​5 Paired Data
                139

                    
                        5.5.1 Example—
                        t
                        -test on Matched Pairs of Means
                      
                  140



                  5.​6 Sample Size Determination
                142

                    5.​6.​1 Sample Size for Estimation
                  143


                    5.​6.​2 Sample Size for Hypothesis Testing
                  144



                  5.​7 Goodness of Fit
                148

                    5.​7.​1 Chi-Square Goodness-of-Fit Test
                  149


                    5.​7.​2 Example—Test of Goodness-of-Fit to a Discrete Uniform Distribution
                  150


                    5.​7.​3 Example—Test of Goodness-of-Fit to a Binomial Distribution
                  151



                  5.​8 Normal Probability Plots and Quantile Plots
                152

                    5.​8.​1 Normal Probability Plots
                  155


                    
                        5.8.2 Example—Comparing
                        t
                        -Distributions
                      
                  156



                  5.​9 Kolmogorov–Smirnov Goodness-of-Fit Tests
                158

                    5.​9.​1 Example—Kolmogorov–Smirnov Goodness-of-Fit Test
                  158



                  5.​10 Maximum Likelihood
                161

                    5.​10.​1 Maximum Likelihood Estimation
                  161


                    5.​10.​2 Likelihood Ratio Tests
                  162



                  5.​11 Exercises
                163



                6 One-Way Analysis of Variance
              167

                  6.​1 Example—Catalyst Data
                167


                  6.​2 Fixed Effects
                169


                  6.​3 Multiple Comparisons—Tukey Procedure for Comparing All Pairs of Means
                172


                  6.​4 Random Effects
                173


                  6.​5 Expected Mean Squares (EMS)
                175


                  6.​6 Example—Catalyst Data—Continued
                176


                  6.​7 Example—Batch Data
                177


                  6.​8 Example—Turkey Data
                178

                    6.​8.​1 Study Objectives
                  178


                    6.​8.​2 Data Description
                  179


                    6.​8.​3 Analysis
                  181


                    6.​8.​4 Interpretation
                  181


                    6.​8.​5 Specification of Analysis
                  183



                  6.​9 Contrasts
                184

                    6.​9.​1 Mathematics of Contrasts
                  185


                    6.​9.​2 Scaling
                  187



                  6.​10 Tests of Homogeneity of Variance
                188


                  6.​11 Exercises
                189


                  6.​A Appendix:​ Computation for the Analysis of Variance
                193


                  6.​B Object Oriented Programming
                196



                7 Multiple Comparisons
              199

                  7.​1 Multiple Comparison Procedures
                200

                    7.​1.​1 Bonferroni Method
                  200


                    7.​1.​2 Tukey Procedure for All Pairwise Comparisons
                  201


                    7.​1.​3 The Dunnett Procedure for Comparing One Mean with All Others
                  201


                    7.​1.​4 Simultaneously Comparing All Possible Contrasts Scheffé and Extended Tukey
                  206



                  7.​2 The Mean–Mean Multiple Comparisons Display (MMC Plot)
                212

                    7.​2.​1 Difficulties with Standard Displays
                  212


                    7.​2.​2 Hsu and Peruggia’s Mean–Mean Scatterplot
                  217


                    7.​2.​3 Extensions of the Mean–Mean Display to Arbitrary Contrasts
                  222


                    7.​2.​4 Display of an Orthogonal Basis Set of Contrasts
                  224


                    7.​2.​5 Hsu and Peruggia’s Pulmonary Example
                  228



                  7.​3 Exercises
                232



                8 Linear Regression by Least Squares
              235

                  8.​1 Introduction
                235


                  8.​2 Example—Body Fat Data
                236

                    8.​2.​1 Study Objectives
                  236


                    8.​2.​2 Data Description
                  236


                    8.​2.​3 Data Input
                  237


                    
                        8.2.4 One-
                        X
                        Analysis
                      
                  238



                  8.​3 Simple Linear Regression
                238

                    8.​3.​1 Algebra
                  238


                    8.​3.​2 Normal Distribution Theory
                  240


                    8.​3.​3 Calculations
                  240


                    8.​3.​4 Residual Mean Square in Regression Printout
                  247


                    8.​3.​5 New Observations
                  247



                  8.​4 Diagnostics
                254


                  8.​5 ECDF of Centered Fitted Values and Residuals
                256


                  8.​6 Graphics
                259


                  8.​7 Exercises
                260



                9 Multiple Regression—More Than One Predictor
              263

                  9.​1 Regression with Two Predictors—Least-Squares Geometry
                263


                  
                      9.2 Multiple Regression—Two-
                      X
                      Analysis
                    
                264


                  9.​3 Multiple Regression—Algebra
                266

                    9.​3.​1 The Hat Matrix and Leverage
                  269


                    9.​3.​2 Geometry of Multiple Regression
                  270



                  9.​4 Programming
                271

                    9.​4.​1 Model Specification
                  271


                    9.​4.​2 Printout Idiosyncrasies
                  272



                  9.​5 Example—Albuquerque Home Price Data
                272

                    9.​5.​1 Study Objectives
                  272


                    9.​5.​2 Data Description
                  273


                    9.​5.​3 Data Input
                  273



                  
                      9.6 Partial
                      F
                      -Tests
                    
                274


                  9.​7 Polynomial Models
                277


                  9.​8 Models Without a Constant Term
                281


                  9.​9 Prediction
                285


                  9.​10 Example—Longley Data
                287

                    9.​10.​1 Study Objectives
                  287


                    9.​10.​2 Data Description
                  287


                    9.​10.​3 Discussion
                  288



                  9.​11 Collinearity
                290


                  9.​12 Variable Selection
                292

                    9.​12.​1 Manual Use of the Stepwise Philosophy
                  293


                    9.​12.​2 Automated Stepwise Regression
                  297


                    9.​12.​3 Automated Stepwise Modeling of the Longley Data
                  299



                  9.​13 Residual Plots
                301

                    9.​13.​1 Partial Residuals
                  301


                    9.​13.​2 Partial Residual Plots
                  303


                    9.​13.​3 Partial Correlation
                  303


                    9.​13.​4 Added Variable Plots
                  304


                    9.​13.​5 Interpretation of Residual Plots
                  304



                  9.​14 Example—U.​S.​ Air Pollution Data
                306


                  9.​15 Exercises
                310


                  9.​A Appendix:​ Computation for Regression Analysis
                314



                10 Multiple Regression—Dummy Variables, Contrasts, and Analysis of Covariance
              315

                  10.​1 Dummy (Indicator) Variables
                315


                  10.​2 Example—Height and Weight
                316

                    10.​2.​1 Study Objectives
                  316


                    10.​2.​2 Data Description
                  317


                    10.​2.​3 Data Problems
                  317


                    10.​2.​4 Three Variants on the Analysis
                  320



                  
                      10.3 Equivalence of Linear Independent
                      X
                      -Variables (such as Contrasts) for Regression
                    
                322


                  10.​4 Polynomial Contrasts and Orthogonal Polynomials
                325

                    10.​4.​1 Specification and Interpretation of Interaction Terms
                  330



                  10.​5 Analysis Using a Concomitant Variable (Analysis of Covariance—ANCOVA)
                330


                  10.​6 Example—Hot Dog Data
                332

                    10.​6.​1 Study Objectives
                  332


                    10.​6.​2 Data Description
                  332


                    10.​6.​3 One-Way ANOVA
                  332


                    10.​6.​4 Concomitant Explanatory Variable—ANCOVA
                  333


                    10.​6.​5 Tests of Equality of Regression Lines
                  340



                  
                      10.7
                      ancovaplot
                      Function
                    
                341


                  10.​8 Exercises
                342



                11 Multiple Regression—Regression Diagnostics
              345

                  11.​1 Example—Rent Data
                345

                    11.​1.​1 Study Objectives
                  345


                    11.​1.​2 Data Description
                  345


                    11.​1.​3 Rent Levels
                  346


                    11.​1.​4 Alfalfa Rent Relative to Other Rent
                  350



                  11.​2 Checks on Model Assumptions
                356

                    11.​2.​1 Scatterplot Matrix
                  356


                    11.​2.​2 Residual Plots
                  356



                  11.​3 Case Statistics
                362

                    11.​3.​1 Leverage
                  363


                    11.​3.​2 Deleted Standard Deviation
                  364


                    11.​3.​3 Standardized and Studentized Deleted Residuals
                  365


                    11.​3.​4 Cook’s Distance
                  366


                    11.​3.​5 DFFITS
                  367


                    11.​3.​6 DFBETAS
                  369


                    11.​3.​7 Residuals vs Leverage
                  371


                    11.​3.​8 Calculation of Regression Diagnostics
                  372



                  11.​4 Exercises
                373



                12 Two-Way Analysis of Variance
              377

                  12.​1 Example—Display Panel Data
                377

                    12.​1.​1 Study Objectives
                  377


                    12.​1.​2 Data Description
                  378


                    12.​1.​3 Analysis Goals
                  378



                  12.​2 Statistical Model
                382


                  12.​3 Main Effects and Interactions
                383


                  12.​4 Two-Way Interaction Plot
                385


                  12.​5 Sums of Squares in the Two-Way ANOVA Table
                386


                  12.​6 Treatment and Blocking Factors
                387


                  12.​7 Fixed and Random Effects
                388


                  12.​8 Randomized Complete Block Designs
                388


                  12.​9 Example—The Blood Plasma Data
                389

                    12.​9.​1 Study Objectives
                  389


                    12.​9.​2 Data Description
                  390


                    12.​9.​3 Analysis
                  390



                  12.​10 Random Effects Models and Mixed Models
                393


                  12.​11 Example—Display Panel Data—Continued
                394


                  12.​12 Studentized Range Distribution
                396


                  12.​13 Introduction to Nesting
                397

                    12.​13.​1 Example—Workstation Data
                  397


                    12.​13.​2 Data Description
                  397


                    12.​13.​3 Analysis Goals
                  398



                  
                      12.14 Example—The
                      Rhizobium
                      Data
                    
                400

                    12.​14.​1 Study Objectives
                  400


                    12.​14.​2 Data Description
                  400


                    
                        12.14.3 First
                        Rhizobium
                        Experiment: Alfalfa Plants
                      
                  401


                    
                        12.14.4 Second
                        Rhizobium
                        Experiment: Clover Plants
                      
                  401


                    12.​14.​5 Initial Plots
                  401


                    12.​14.​6 Alfalfa Analysis
                  403


                    12.​14.​7 Clover Analysis
                  406



                  12.​15 Models Without Interaction
                417


                  12.​16 Example—Animal Feed Data
                418

                    12.​16.​1 Study Objectives
                  418


                    12.​16.​2 Analysis
                  418



                  12.​17 Exercises
                421


                  12.​A Appendix:​ Computation for the Analysis of Variance
                425



                13 Design of Experiments—Factorial Designs
              427

                  13.​1 A Three-Way ANOVA—Muscle Data
                427


                  13.​2 Latin Square Designs
                435

                    13.​2.​1 Example—Latin Square
                  437



                  13.​3 Simple Effects for Interaction Analyses
                441

                    13.​3.​1 Example—The filmcoat Data
                  442


                    13.​3.​2 Study Objectives
                  442


                    13.​3.​3 Data Description
                  442


                    13.​3.​4 Data Analysis
                  443



                  13.​4 Nested Factorial Experiment
                448

                    13.​4.​1 Example—Gunload Data
                  448


                    13.​4.​2 Example—Turkey Data (Continued)
                  451



                  13.​5 Specification of Model Formulas
                456

                    13.​5.​1 Crossing of Two Factors
                  462


                    13.​5.​2 Example—Dummy Variables for Crossed Factors Nested Within Another Factor—Turkey Data (Continued Again)
                  464



                  13.​6 Sequential and Conditional Tests
                464

                    
                        13.6.1
                        SAS
                        Terminology for Conditional Sums of Squares
                      
                  466


                    13.​6.​2 Example—Application to Clover Data
                  468


                    13.​6.​3 Example—Application to Body Fat Data
                  470



                  13.​7 Exercises
                472


                  13.​A Appendix:​ Orientation for Boxplots
                478



                14 Design of Experiments—Complex Designs
              479

                  14.​1 Confounding
                479


                  14.​2 Split Plot Designs
                481


                  14.​3 Example—Yates Oat Data
                482

                    14.​3.​1 Alternate Specification
                  487


                    14.​3.​2 Polynomial Effects for Nitrogen
                  489



                  14.​4 Introduction to Fractional Factorial Designs
                492

                    
                        14.4.1 Example—2
                        8−2
                        Design
                      
                  493


                    
                        14.4.2 Example—2
                        5−1
                        Design
                      
                  495



                  14.​5 Introduction to Crossover Designs
                497

                    14.​5.​1 Example—Two Latin Squares
                  498



                  14.​6 ANCOVA with Blocks:​ Example—Apple Tree Data
                501

                    14.​6.​1 Study Objectives
                  502


                    14.​6.​2 Data Description
                  502


                    14.​6.​3 Data Analysis
                  502


                    
                        14.6.4 Model 1:  
                        yield
                        ~
                        block + pre * treat
                      
                  504


                    
                        14.6.5 Model 2:  
                        yield.block
                        ~
                        pre.block * treat
                      
                  506


                    
                        14.6.6 Model 3:  
                        yield.block
                        ~
                        pre.block
                      
                  508


                    
                        14.6.7 Model 4:  
                        yield.block
                        ~
                        treat
                      
                  509


                    
                        14.6.8 Model 5:  
                        yield.block
                        ~
                        pre.block + treat
                      
                  509


                    
                        14.6.9 Model 6:  
                        yield.block.pre
                        ~
                        treat
                      
                  511


                    14.​6.​10 Multiple Comparisons
                  513



                  
                      14.7 Example—
                      testscore
                    
                516

                    14.​7.​1 Study Objectives
                  516


                    14.​7.​2 Data Description
                  516


                    14.​7.​3 Analysis—Plots
                  517


                    14.​7.​4 Analysis—ANOVA
                  517


                    14.​7.​5 Summary of ANOVA
                  520



                  14.​8 The Tukey One Degree of Freedom for Nonadditivity
                524

                    14.​8.​1 Example—Crash Data—Study Objectives
                  524


                    14.​8.​2 Data Description
                  525


                    14.​8.​3 Data Analysis
                  525


                    14.​8.​4 Theory
                  534



                  14.​9 Exercises
                535



                15 Bivariate Statistics—Discrete Data
              539

                  15.​1 Two-Dimensional Contingency Tables—Chi-Square Analysis
                539

                    15.​1.​1 Example—Drunkenness Data
                  539


                    15.​1.​2 Chi-Square Analysis
                  542



                  15.​2 Two-Dimensional Contingency Tables—Fisher’s Exact Test
                545

                    15.​2.​1 Example—Do Juvenile Delinquents Eschew Wearing Eyeglasses?​
                  545



                  15.​3 Simpson’s Paradox
                548


                  15.​4 Relative Risk and Odds Ratios
                552

                    15.​4.​1 Glasses (Again)
                  552


                    15.​4.​2 Large Sample Approximations
                  553


                    15.​4.​3 Example—Treating Cardiac Arrest with Therapeutic Hypothermia
                  555



                  15.​5 Retrospective and Prospective Studies
                558


                  15.​6 Mantel–Haenszel Test
                559


                  15.​7 Example—Salk Polio Vaccine
                563


                  15.​8 Example—Adverse Experiences
                565


                  15.​9 Ordered Categorical Scales, Including Rating Scales
                567

                    15.​9.​1 Display of Professional Challenges Dataset
                  568


                    15.​9.​2 Single-Panel Displays
                  570


                    15.​9.​3 Multiple-Panel Displays
                  572



                  15.​10 Exercises
                573



                16 Nonparametrics
              577

                  16.​1 Introduction
                577


                  16.​2 Sign Test for the Location of a Single Population
                578


                  16.​3 Comparing the Locations of Paired Populations
                581

                    16.​3.​1 Sign Test
                  581


                    16.​3.​2 Wilcoxon Signed-Ranks Test
                  582



                  16.​4 Mann–Whitney Test for Two Independent Samples
                586


                  16.​5 Kruskal–Wallis Test for Comparing the Locations of at Least Three Populations
                590


                  16.​6 Exercises
                591



                17 Logistic Regression
              593

                  17.​1 Example—The Space Shuttle Challenger Disaster
                595

                    17.​1.​1 Study Objectives
                  595


                    17.​1.​2 Data Description
                  595


                    17.​1.​3 Graphical Display
                  596


                    17.​1.​4 Numerical Display
                  599



                  17.​2 Estimation
                603


                  17.​3 Example—Budworm Data
                605


                  17.​4 Example—Lymph Nodes
                609

                    17.​4.​1 Data
                  610


                    17.​4.​2 Data Analysis
                  610


                    17.​4.​3 Additional Techniques
                  612


                    17.​4.​4 Diagnostics
                  619



                  17.​5 Numerical Printout
                619


                  17.​6 Graphics
                620

                    17.​6.​1 Conditioned Scatterplots
                  620


                    17.​6.​2 Common Scaling in Comparable Plots
                  621


                    17.​6.​3 Functions of Predicted Values
                  622



                  17.​7 Model Specification
                622

                    17.​7.​1 Fitting Models When the Response Is Dichotomous
                  622


                    17.​7.​2 Fitting Models When the Response Is a Sample Proportion
                  623



                  17.​8 LogXact
                624


                  17.​9 Exercises
                625



                18 Time Series Analysis
              631

                  18.​1 Introduction
                631


                  18.​2 The ARIMA Approach to Time Series Modeling
                632

                    18.​2.​1 AutoRegression (AR)
                  633


                    18.​2.​2 Moving Average (MA)
                  634


                    18.​2.​3 Differencing
                  635


                    18.​2.​4 Autoregressive Integrated Moving Average (ARIMA)
                  635



                  18.​3 Autocorrelation
                636

                    18.​3.​1 Autocorrelation Function (ACF)
                  636


                    18.​3.​2 Partial Autocorrelation Function (PACF)
                  637



                  18.​4 Analysis Steps
                637


                  18.​5 Some Algebraic Development, Including Forecasting
                640

                    18.​5.​1 The General ARIMA Model
                  640


                    18.​5.​2 Special Case—The AR(1) Model
                  641


                    18.​5.​3 Special Case—The MA(1) Model
                  642



                  18.​6 Graphical Displays for Time Series Analysis
                642


                  18.​7 Models with Seasonal Components
                648

                    18.​7.​1 Multiplicative Seasonal ARIMA Models
                  648


                    
                        18.7.2 Example—
                        co2
                        ARIMA(0, 1, 1) × (0, 1, 1)
                        12
                        Model
                      
                  649


                    18.​7.​3 Determining the Seasonal AR and MA Parameters
                  649



                  18.​8 Example of a Seasonal Model—The Monthly co2 Data
                650

                    18.​8.​1 Identification of the Model
                  650


                    18.​8.​2 Parameter Estimation and Diagnostic Checking
                  652


                    18.​8.​3 Forecasting
                  661



                  18.​9 Exercises
                661


                  18.​A Appendix:​ Construction of Time Series Graphs
                692

                    18.​A.​1 Characteristics of This Presentation of the Time Series Plot
                  694


                    18.​A.​2 Characteristics of This Presentation of the Sample ACF and PACF Plots
                  695


                    18.​A.​3 Construction of Graphical Displays
                  695


                    
                        18.A.4 Functions in the
                        HH
                         package for
                        R
                      
                  696




              A
              R
            699

              A.1 Installing
              R
              —Initial Installation
            699

              A.1.1 Packages Needed for This Book—
              Macintosh
              and
              Linux
            700

              A.1.2 Packages and Other Software Needed for This Book—
              Windows
            700
A.1.3 Installation Problems—Any Operating System703
A.1.4 XLConnect : All Operating Systems703

              A.2 Installing
              R
              —Updating
            704

              A.3 Using
              R
            704

              A.3.1 Starting the
              R
               Console
            704

              A.3.2 Making the Functions in the
              HH
               Package Available to the Current Session
            705

              A.3.3 Access
              HH
               Datasets
            705

              A.3.4 Learning the
              R
               Language
            705

              A.3.5 Duplicating All
              HH
               Examples
            706

              A.3.6 Learning the Functions in
              R
            706

              A.3.7 Learning the
              lattice
              Functions in
              R
            707
A.3.8 Graphs in an Interactive Session707

              A.4
              S
              /
              R
              Language Style
            708

              A.5 Getting Help While Learning and Using
              R
            711

              A.6
              R
               Inexplicable Error Messages—Some Debugging Hints
            712

              B
              HH
            715

              B.1 Contents of the
              HH
               Package
            715

              B.2
              R
               Scripts for all Figures and Tables in the Book
            716
B.2.1 Macintosh716
B.2.2 Linux716
B.2.3 Windows717

              B.3 Functions in the
              HH
               Package
            717

              B.4
              HH
              and
              S+
            717

              C
              Rcmdr: R Commander
            719

              D
              RExcel
              : Embedding
              R
               inside
              Excel
               on 
              Windows
            733

              D.1 Installing
              RExcel
               for
              Windows
            734

              D.1.1 Install
              R
            734

              D.1.2 Install Two
              R
               Packages Needed by
              RExcel
            734

              D.1.3 Install
              RExcel
               and Related Software
            735

              D.1.4 Install
              Rcmdr
               to Work with
              RExcel
            735

              D.1.5 Additional Information on Installing
              RExcel
            735

              Using
              RExcel
            736

              D.2.1 Automatic Recalculation of an
              R
               Function
            736

              D.2.2 Transferring Data To/From
              R
               and
              Excel
            737

              D.2.3 Control of a
              lattice
              Plot from an
              Excel
              /
              Rcmdr
              Menu
            740

              E Shiny: Web-Based Access to
              R
               Functions
            743
E.1 NTplot744
E.2 bivariateNormal745
E.3 bivariateNormalScatterplot746

              E.4
              PopulationPyramid
            747

              F
              R
               Packages
            749
F.1 What Is a Package?749

              F.2 Installing and Loading
              R
               Packages
            749
F.3 Where Are the Packages on Your Computer?750

              F.4 Structure of an
              R
               Package
            751
F.5 Writing and Building Your Own Package751

              F.6 Building Your Own Package with
              Windows
            752
G Computational Precision and Floating-Point Arithmetic753
G.1 Examples753
G.2 Floating Point Numbers in the IEEE 754 Floating-Point Standard755
G.3 Multiple Precision Floating Point756
G.4 Binary Format757
G.5 Round to Even758
G.6 Base-10, 2-Digit Arithmetic758
G.7 Why Is .9 Not Recognized to Be the Same as (.3 + .6)?760

              G.8 Why Is
              [image: $$\left (\sqrt{2\,}\right )^{2}$$]
              Not Recognized to Be the Same as 2?
            760

              G.9
              zapsmall
              to Round Small Values to Zero for Display
            760
G.10 Apparent Violation of Elementary Factoring762
G.11 Variance Calculations763
G.12 Variance Calculations at the Precision Boundary763
G.13 Can the Answer to the Calculation be Represented?769
G.14 Explicit Loops770
H Other Statistical Software773
I Mathematics Preliminaries775
I.1 Algebra Review775
I.1.1 Line776
I.1.2 Parabola776
I.1.3 Ellipse777
I.1.4 Simultaneous Equations777
I.1.5 Exponential and Logarithm Functions778
I.1.6 Asymptote780
I.2 Elementary Di ff erential Calculus780
I.3 An Application of Di ff erential Calculus781
I.4 Topics in Matrix Algebra782
I.4.1 Elementary Operations784
I.4.2 Linear Independence786
I.4.3 Rank787
I.4.4 Quadratic Forms787
I.4.5 Orthogonal Transformations788
I.4.6 Orthogonal Basis788

              I.4.7 Matrix Factorization—
              QR
            789
I.4.8 Modified Gram–Schmidt (MGS) Algorithm789
I.4.9 Matrix Factorization—Cholesky793
I.4.10 Orthogonal Polynomials793
I.4.11 Projection Matrices794
I.4.12 Geometry of Matrices795
I.4.13 Eigenvalues and Eigenvectors796
I.4.14 Singular Value Decomposition797
I.4.15 Generalized Inverse801
I.4.16 Solving Linear Equations803
I.5 Combinations and Permutations804
I.5.1 Factorial804
I.5.2 Permutations804
I.5.3 Combinations805
I.6 Exercises805
J Probability Distributions807
J.1 Continuous Central Distributions808
J.1.1 Beta808
J.1.2 Cauchy809
J.1.3 Chi-Square809
J.1.4 Exponential810
J.1.5 F811
J.1.6 Gamma811
J.1.7 Log Normal812
J.1.8 Logistic813
J.1.9 Normal814
J.1.10 Studentized Range Distribution815

              J.1.11 Student’s)
              T
            816
J.1.12 Uniform816
J.1.13 Weibull817
J.2 Noncentral Continuous Probability Distributions817
J.2.1 Chi-Square: Noncentral819

              J.2.2
              T
              : Noncentral
            819

              J.2.3
              F
              : Noncentral
            820
J.3 Discrete Distributions820
J.3.1 Discrete Uniform822
J.3.2 Binomial822
J.3.3 Geometric823
J.3.4 Hypergeometric824
J.3.5 Negative Binomial825
J.3.6 Poisson825
J.3.7 Signed Rank826
J.3.8 Wilcoxon827
J.4 Multivariate Distributions828
J.4.1 Multinomial828
J.4.2 Multivariate Normal829
K Working Style831
K.1 Text Editor831
K.1.1 Requirements for an Editor832
K.1.2 Choice of Editor833

              K.2 Types of interaction with
              R
            833
K.3 Script File834
K.4 Directory Structure834
K.4.1 Directory Structure of This Book835
K.4.2 Directory Structure for Users of This Book835
K.4.3 Other User Directories836
L Writing Style837
L.1 Typographic Style837
L.2 Graphical Presentation Style841
L.2.1 Resolution841
L.2.2 Aspect Ratio841
L.2.3 Other Features843
L.3 English Writing Style844
L.4 Programming Style and Common Errors845
L.5 Presentation of Results847

              M Accessing
              R
               Through a Powerful Editor —With
              Emacs
               and
              ESS
               as the Example
            851

              M.1
              Emacs
               Features
            852
M.1.1 Text Editing852
M.1.2 File Comparison852
M.1.3 Buffers853
M.1.4 Shell Mode854
M.1.5 Controlling Other Programs854

              M.2
              ESS
            854
M.2.1 Syntactic Indentation and Color/Font-Based Source Code Highlighting855
M.2.2 Partial Code Evaluation856
M.2.3 Object Name Completion857
M.2.4 Process Interaction857
M.2.5 Interacting with Statistical Programs on Remote Computers858
M.2.6 Transcript Editing and Reuse858

              M.2.7 Help File Editing (
              R
              )
            858

              M.3 Learning
              Emacs
            858
M.3.1 GUI (Graphical User Interface)859
M.3.2 Keyboard Interface859

              M.4 Nuisances with
              Windows
               and
              Emacs
            860
M.5 Requirements860
N LATEX863
N.1 Organization Using LATEX863
N.2 Setting Equations864

              N.3 Coordination with
              R
            864
N.4 Global Changes: Specification of Fonts864
O Word Processors and Spreadsheets867
O.1 Microsoft Word867
O.1.1 Editing Requirements868
O.1.2 SWord868
O.2 Microsoft Excel869
O.2.1 Database Management869
O.2.2 Organizing Calculations869
O.2.3 Excel as a Statistical Calculator869
References873
Index of Datasets887
Index889


Author Bios

Richard M. Heibergeris Professor Emeritus in the Department of Statistics of Temple University, an elected Fellow of the American Statistical Association, and a former Chair of the Section on Statistical Computing of the American Statistical Association. He was Graduate Chair for the Department of Statistics and Acting Associate Vice Provost for the University. He participated in the design of the linear model and analysis of variance functions while on research leave at Bell Labs. He has taught short courses at the Joint Statistics Meetings, the American Statistical Association Conference on Statistical Practice, the R Users Conference, and the Deming Conference on Applied Statistics. He has consulted with several pharmaceutical companies.

 

Burt Hollandwas Professor in the Department of Statistics of Temple University, an elected Fellow of the American Statistical Association, Chair of the Department of Statistics of Temple University, and Chair of Collegial Assembly of the Fox School. He has taught short courses at the Joint Statistics Meetings and the Deming Conference on Applied Statistics. He has made many contributions to linear modeling and simultaneous statistical inference. He frequently served as consultant to medical investigators. He developed a very popular General Education course on Statistics and the News.

 




© Springer Science+Business Media New York 2015
Richard M. Heiberger and Burt HollandStatistical Analysis and Data DisplaySpringer Texts in Statistics10.1007/978-1-4939-2122-5_1

1. Introduction and Motivation

Richard M. Heiberger1  and Burt Holland1
(1)Department of Statistics, Temple University, Philadelphia, PA, USA

 


Statistics is the science and art of making decisions based on quantitative evidence. This introductory chapter motivates the study of statistics by describing where and how it is used in all endeavors. It gives examples of applications, a little history of the subject, and a brief overview of the structure and content of the remaining chapters.
Almost all fields of study (including but not limited to physical science, social science, business, and economics) collect and interpret numerical data. Statistical techniques are the standard ways of summarizing and presenting the data, of turning data from an accumulation of numbers into usable information. Not all numbers are the same. No group of people are all the same height, no group has an identical income, not all cars get the same gas mileage, not all manufactured parts are absolutely identical. How much do they differ? Variability is the key concept that statistics offers. It is possible to measure how much things are not alike. We use standard deviation, variance, range, interquartile range, and MAD
              
             (median absolute deviation from the median) as measures of not-the-sameness. When we compare groups we compare their variability as well as their range.

Statistics uses many mathematical tools. The primary tools—algebra, calculus, matrix algebra, analytic geometry—are reviewed in Appendix I. Statistics is not purely mathematics. Mathematics problems are usually well specified and have a single correct answer on which all can agree. Data interpretation problems calling for statistics are not yet well specified. Part of the data analyst’s task is to specify the problem clearly enough that a mathematical tool may be used. Different answers to the same initial decision problem may be valid because a statistical analysis requires assumptions about the data and its manner of collection, and analysts can reasonably disagree about the plausibility of such assumptions.

Statistics uses many computational tools. In this book, we use R (R Core Team, 2015) as our primary tool for statistical analysis. R is an exceptionally well-developed tool for statistical research and analysis, that is for exploring and designing new techniques of analysis, as well as for analysis. We discuss installation and use of R

              
             in Appendix A.
We make liberal use of graphs in our presentations. Data analysts are responsible for the display

              
             of data with graphs and tables that summarize and represent the data and the analysis. Graphs are often the output of data analysis that provide the best means of communication between the data analyst and the client. We study a variety of display techniques.
While producing this book, we designed many innovative graphical displays of data and analyses. We introduce our displays in Section 1.3.4. We discuss the displays throughout the book in the context of their associated statistical techniques. These discussions are indexed under the term graphical design

              
            . In the appendix to Chapter 4, we summarize the large class of newly created graphs that are based on Cartesian products.
The R code for all the graphs and tables in this book is included in the HH package for R (Heiberger, 2015). See Appendix B for a summary of the HH package. We consider the HH package to be an integral part of the book.

Statistics is an art. Skilled use of the mathematical tools is necessary but not sufficient. The data analyst must also know the subject area under study (or must work closely with a specialist in the subject area) to ensure an appropriate choice of statistical techniques for solving a problem. Experience, good judgment, and considerable creativity on the part of the statistical analyst are frequently needed.
Statistics is “the science of doing science” and is perhaps the only discipline that interfaces with all other sciences. Most statisticians have training or considerable knowledge in one or more areas other than statistics. The statistical analyst needs to communicate successfully both orally and in writing with the client for the analysis.

Statistics uses many communications skills, both written and oral. Results must be presented to the client and to the client’s management. We discuss some of the mechanics of writing programs and technical reports in Appendices K, L, M, N, and O.
A common statistical problem is to discover the characteristics of an unobservable population
              
             by examining the corresponding characteristics of a sample
              
             randomly selected
              
             from the population and then (inductively) inferring
              
             the population characteristics (parameters)
              
             from the corresponding sample characteristics (statistics)
              
            . The task of selecting a random sample is not trivial. The discipline of statistics has developed a vast array of techniques for inferring from samples to populations, and for using probabilities to quantify the quality of such inferences.
Most statistical problems involve simultaneous consideration of several related measurements. Part of the statistician’s task is to determine the interdependence among such measures, and then to account for it in the analysis.

The word “statistics”
                
               derives from the political science collections of numerical data describing demographics, business, politics that are useful for management of the “state”. The development of statistics as a scientific discipline dates from the end of the 19[image: 
$$^{\mbox{ th}}$$
] century with the design and analysis of agricultural experiments aimed at finding the best combination of fertilization, irrigation, and variety to maximize crop yield. Early in the 20[image: 
$$^{\mbox{ th}}$$
] century, these ideas began to take hold in industry, with experiments designed to maximize output or minimize cost. Techniques for statistical analysis are developed in response to the needs of specific subject areas. Most of the techniques developed in one subject field can be applied unchanged to other subjects.
1.1 Statistics in Context
We write as if the statistician and the client are two separate people. In reality they are two separate roles and the same person often plays both roles. The client has a problem associated with the collection and interpretation of numerical data. The statistician is the expert in designing the data collection procedures and in calculating and displaying the results of statistical analyses.
The statistician’s contribution to a research project typically includes the following steps:
1.Help the client phrase the question(s) to be answered in a manner that leads to sensible data collection and that is amenable to statistical analysis.

 

2.Design the experiment, survey, or other plan to approach the problem.

 

3.Gather the data.

 

4.Analyze the data.

 

5.Communicate the results.

 




In most statistics courses, including the one for which this book is designed, much of the time is spent learning how to perform step 4, the science of statistics. However, step 2, the art of statistics, is very important. If step 2 is poorly executed, the end results in step 5 will be misleading, disappointing, or useless. On the other hand, if step 4 is performed poorly following an excellent plan from step 2 and a correct execution of step 3, a reanalysis of the data (a new step 4) can “save the day”.
Today (2015) there are more than 18,000 statisticians
                
               practicing in the United States. Most fields in the biological, physical, and social sciences require training in statistics as educational background. Over 100 U.S. universities offer graduate degrees in statistics. Most firms of any size and most government agencies employ statisticians to assist in decision making. The profession of statistician is highly placed in the Jobs Rated Almanac Krantz (1999). A shortage of qualified statisticians to fill open positions is expected to persist for some time American Statistical Association (2015).

1.2 Examples of Uses of Statistics
Below are a few examples of the countless situations and problems for which statistics plays an important part in the solution.
1.2.1 Investigation of Salary Discrimination
When a group of workers believes that their employer is illegally discriminating against the group, legal remedies are often available. Usually such groups are minorities consisting of a racial, ethnic, gender, or age group. The discrimination may deal with salary, benefits, an aspect of working conditions, mandatory retirement, etc. The statistical evidence is often crucial to the development of the legal case.
To illustrate the statistician’s approach, we consider the case of claimed salary discrimination against female employees. The legal team and statistician begin by developing a defensible list of criteria that the defendant may legally use to determine a worker’s salary. Suppose such a list includes years of experience (yrsexp), years of education (yrsed), a measure of current job responsibility or complexity (respon), and a measure of the worker’s current productivity (product). The statistician then obtains from a sample of employees, possibly following a subpoena by the legal team, data on these four criteria and a fifth criterion that distinguishes between male and female employees (gender). Using regression analysis techniques we introduce in Chapter 9, the statistician considers two statistical models, one that explains salary as a function of the four stipulated permissible criteria, and another that explains salary as a function of these four criteria plus gender. If the model containing the predictor gender predicts salary appreciably better than does the model excluding gender and if, according to the model with gender included, females receive significantly less salary than males, then this may be regarded as statistical evidence of discrimination against females. Tables and graphs based on techniques discussed in Chapters 15, 17, and 4 (and other chapters) are often used in legal proceedings.
In the previous section it is pointed out that two statisticians can provide different analyses because of different assumptions made at the outset. In this discrimination context, the two legal teams may disagree over the completeness or relevance of the list of permissible salary determinants. For example, the defense team may claim that females are “less ambitious” than males, or that women who take maternity or child care leaves have less continuous or current experience than men. If the court accepts such arguments, this will undermine the plaintiff statistician’s finding of the superiority of the model with the extra predictor.

1.2.2 Measuring Body Fat
In Chapters 8, 9, and 13 we discuss an experiment designed to develop a way to estimate the percentage of fat in a human body based only on body measurements that can be made with a simple tape measure. The motivation for this investigation is that measurement of body fat is difficult and expensive (it requires an underwater weighing technique), but tape measurements are easy and inexpensive to obtain. At the outset of this investigation, the client offered data consisting of 15 inexpensive measurements and the expensive body fat measurement on each of 252 males of various shapes and sizes. Our analysis in Chapter 9 demonstrates that essentially all of the body fat information in the 15 other measurements can be captured by just three of these other measurements. We develop a regression model of body fat as a function of these three measurements, and then we examine how closely these three inexpensive measurements alone can estimate body fat.

1.2.3 Minimizing Film Thickness
In Section 13.​3.​1 we discuss an experiment that seeks to find combinations of temperature and pressure that minimize the thickness of a film deposited on a substrate. Each of these factors can affect thickness, and the complication here is the possibility that the optimum amount of one of these factors may well depend on the chosen amount of another factor. Modeling such interaction

                  
                 between factors is key to a proper analysis. The statistician is also expected to advise on the extent of sensitivity of thickness to small changes in the optimum mix of factors.

1.2.4 Surveys

                
                  
                
              
Political candidates and news organizations routinely sample potential voters for their opinions on candidates and issues. Results gleaned from samples selected by contemporary methods are often regarded as sufficiently reliable to influence candidate behavior or public policy.
The marketing departments of retail firms often sample potential customers to learn their opinions on product composition or packaging, and to help find the best matches between specialized products and locales for their sale.
Manufacturers sample production to determine if the proportion of output that is defective is excessive. If so, this may lead to the decision the output should be scrapped, or at least that the production process be inspected and corrected for problems.
All three of these examples share statistical features. The data are collected using techniques discussed in Section 3.​11 The initial analysis is usually based on techniques of Chapter 5


1.2.5 Bringing Pharmaceutical Products to Market
The successful launching of a new pharmaceutical drug is a huge undertaking in which statisticians are key members of the investigative team. After candidate drugs are found to be effective for alleviation of a condition, experiments must be run to check them for toxicity, safety, side effects, and interactions with other drugs. Once these tests are passed, statisticians help to determine the optimum quantity and spacing of dosages. Much of the testing is done on lab animals; only at the later stages are human subjects involved. The entire process is performed in a manner mandated by government regulatory agencies (such as the Food and Drug Administration (FDA) in the United States, The European Medicines Agency (EMA) in the European Union, or the Ministry of Health, Labour and Welfare (MHLW) in Japan). Techniques are based on material developed in all chapters of this book.


1.3 The Rest of the Book
1.3.1 Fundamentals
Chapters 2 through 5 discuss data, types of data analysis, and graphical display of data and of analyses.
Chapter 2 describes data acquisition and how to get the data ready for its analysis. We emphasize that an important early step in any data analysis is graphical display of the data.
Chapter 3 provides an overview of basic concepts—probability, distributions, estimation, testing, principles of inference, and sampling—that are background material for the remainder of the book. Several common distributions are discussed and illustrated here. Others appear in Appendix J. Two important fitting criteria—least squares and maximum likelihood—are introduced. Random sampling is a well-defined technique for collecting data on a subset of the population of interest. Random sampling provides a basis for making inferences that a haphazard collection of data cannot provide.
A variety of graphical displays are discussed and illustrated in Chapter 4. The graphs themselves are critically important analysis tools, and we show examples where different display techniques help in the interpretation of the data. On occasion we display graphs that are intermediate steps leading to other graphs. For example, Figure 14.​17 belongs in a final report, but Figure 14.​15, which suggests the improved and expanded Figure 14.​17, should not be shown to the client.
Chapter 5 introduces some of the elementary inference techniques that are used throughout the rest of the book. We focus on tests on data from one or two normal distributions. We show the algebra and graphics for finding the center and spread of the distributions. These algebraic and graphical techniques are used in all remaining chapters.

1.3.2 Linear Models
Chapters 6 through 13 build on the techniques developed in Chapter 5 The word “linear” means that the equations are all linear functions of the model parameters and that graphs of the analyses are all straight lines or planes.
In Chapter 6 we extend the t-tests of Chapter 5 to the comparison of the means of several (more than two) populations.
With k > 2 populations, there are only k − 1 independent comparisons possible, yet we often wish to make [image: 
$${k\choose 2}$$
] comparisons. In Chapter 7 we discuss the concept of multiple comparisons, the way to make valid inferences when there are more comparisons of interest than there are degrees of freedom. We introduce the fundamental concept of “contrasts”, direct comparisons of linear combinations of the means of these populations, and show several potentially sensible ways to choose k − 1 independent contrasts. We introduce the MMC plot, the mean–mean plot for displaying arbitrary multiple comparisons.
Chapters 8 through 11 cover regression analysis, the process of modeling a continuous response variable as a linear function of one or more predictor variables.
In Chapter 8 we plot a continuous response variable against a single continuous predictor variable and develop the least-squares procedure for fitting a straight line to the points in the plot. We cast the algebra of least squares in matrix notation (relevant matrix material is in Appendix I) and apply it to more than one predictor variable. We introduce the statistical assumptions of a normally distributed error term and show how that leads to estimation and testing procedures similar to those introduced in Chapter 5

Chapter 9 builds on Chapter 8 by allowing for more than one predictor for a response variable and introducing additional structure, such as interactions, among the predictor variables. We show techniques for studying the relationships of the predictors to each other as well as to the response.
Chapter 10 shows how dummy variables are used to incorporate categorical predictors into multiple regression models. We begin to use dummy variables to encode the contrasts introduced in Chapter 6, and we continue using dummy variables and contrasts in Chapters 12, 13, and 14. We show how the use of continuous (concomitant) variables (also known as covariates) can enhance the modeling of designed experiments.
Chapter 11 evaluates the models, introduces diagnostic techniques for checking assumptions and detecting outliers, and uses tools such as transformation of the variables to respond to the problems detected.
In Chapter 12 we extend the analysis of one-way classifications of continuous data to several types of two-way classifications. We cast the analysis of variance into the regression framework with dummy variables that code the classification factors with sets of contrasts.
In Chapters 13 and 14 we consider the principles of experimental design and their application to more complex classifications of continuous data. We discuss the analysis of data resulting from designed experiments.

1.3.3 Other Techniques
The analysis of tabular categorical data is considered in Chapter 15. We discuss contingency tables
                  
                , tables in which frequencies are classified by two or more factors. For 2 × 2 tables or sets of 2 × 2 tables we use odds ratios or the Mantel–Haenszel test. For larger tables we use χ
2 analysis. We discuss several situations in which contingency tables arise, including sample surveys and case–control studies.
In Chapter 16 we briefly survey nonparametric testing methods that don’t require the assumption of an underlying normal distribution.
Chapter 17 is concerned with logistic regression, the statistical modeling of a response variable which is either dichotomous or which represents a probability. We place logistic regression in the setting of generalized linear models (although we do not fully discuss generalized linear models in this volume). We extend the graphical and algebraic analysis of linear regression to this case.
We conclude in Chapter 18 with an introduction to ARIMA modeling of time series. Time series analysis makes the explicit assumption that the observations are not independent and models the structure of the dependence.

1.3.4 New Graphical Display Techniques

                
                  
                
              
This book presents many new graphical display techniques for statistical analysis. Most of our new displays are based on defining the panels of a multipanel graphical display by a Cartesian product of sets of variables, of transformations of a variable, of functions of a fit, of models for a fit, of numbers of parameters, or of levels of a factor. The appendix to Chapter 4 summarizes how we use the Cartesian products to design these new displays and gives a reference to an example in the book for each. The displays, introduced throughout this book’s 18 chapters, cover a wide variety of statistical methods. The construction and interpretation of each display are provided in the chapter where it appears.
We produced these displays with the functions that are included in the HH package available at CRAN (Heiberger, 2015) and CSAN (Heiberger, 2009). We use R because it is especially strong for designing and programming statistical graphics. We encourage readers and software developers to write and publish functions and macros for these displays in other software systems that have a similarly rich graphics environment.

1.3.5 Appendices on Software
Appendix A discusses the installation and use of R. Some of its material was in the First Edition Appendix B.
Appendix B discusses the HH package. The scripts for all examples in both the First and Second Editions of the book are included in the HH package. The Appendix shows how to use the scripts to duplicate the figures and tables in the book. Some of its materials were in the First Edition Appendix B.
Appendix C “Rcmdr” is new. It discusses and illustrates menu-driven access to the functions and graphics in the book. It is based on my R package RmcdrPlugin.HH, an add-in for the R package Rcmdr that provides the menu system.
Appendix D “RExcel” is new. It discusses the RExcel interface described in my book with Erich Neuwirth (Heiberger and Neuwirth, 2009) describing his RExcel software (Neuwirth, 2014). RExcel provides a seamless integration of R and Excel. RExcel both places R inside the Excel automatic recalculation model and makes the Rcmdr menu system available on the Excel menu bar.
Appendix E “Shiny” is new. It discusses and illustrates web-based access to R functions using the shiny

                  
                 package written by R-Studio and distributed on CRAN. shiny provides an R language interface for writing interactive web pages.
Appendix F “R Packages” gives a very brief discussion of software design. It includes references to the R documentation.
Appendix G “Computational Precision and Floating Point Arithmetic” is new. Computers use floating point arithmetic. The floating point system is not identical to the real-number system that we (teachers and students) know well, having studied it from kindergarten onward. In this appendix we show several examples to illustrate and emphasize the distinction.
Appendix H “Other Statistical Software” is new. It tells how to use the datasets for this book with software other than R.

1.3.6 Appendices on Mathematics and Probability
Appendix I “Mathematics Preliminaries” has been expanded from First Edition Appendix F with many more graphs and tables.
Appendix J “Probability Distributions” has been expanded from First Edition Appendix D to include additional probability distributions. It now covers all probability distributions in the R stats package, and it now includes a density graph for each distribution.

1.3.7 Appendices on Statistical Analysis and Writing
Appendix K “Working Style” has been split off and expanded from First Edition Appendix E. It includes a discussion of the importance of a good R-aware text editor and defines what that means. It includes a discussion of our process in writing this book and my process in writing and maintaining the HH package.
Appendix L “Writing Style” has been split off and expanded from First Edition Appendix E. It discusses some of the basics of clear writing—including typography, presentation of graphs, and alignment in tables, and programming style.
Appendix M “Accessing R through a Powerful Editor—with Emacs and ESS as the Example” has been split off and expanded from First Edition Appendix E. A good editor is one of the most important programs on your computer. It is the direct contact with all the documents, including R scripts and R functions, that you write. A good editor will understand the syntax of your programming language (R specifically) and will simplify the running and testing of code. We write in the terminology of Emacs because it is our working environment. Most of what we illustrate applies to other high-quality editors.
Appendix N “LaTeX” has been split off and expanded from First Edition Appendix E. It provides basic information about LaTeX, the document preparation system in which we wrote this book.
Appendix O “Word Processors and Spreadsheets” has been split off and expanded from First Edition Appendix E. Unless there are specific add-ins that understand R, we do not recommend word processing software for working with R. We can recommend spreadsheet software for use as a small-scale database management system and as a way of organizing calculations. Unless you are working with RExcel (discussed in Appendix D) we do not recommend the use of spreadsheets for the actual statistical calculations.
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2. Data and Statistics

Richard M. Heiberger1  and Burt Holland1
(1)Department of Statistics, Temple University, Philadelphia, PA, USA

 


Statistics is the field of study whose objective is the transformation of data (usually sets of numbers along with identifying characteristics) into information (usually in the form of tables, graphs, and written and verbal summaries) that can inform sound policy decisions. We give examples of applications of statistics to many fields in Chapter 1 Here we focus on the general concepts describing the collection and arrangement of the numbers themselves.
2.1 Types of Data

              
                
                
              
            
Traditionally, we refer to five different types of data: count
                
                
              , categorical
                
                
              , ordered
                
                
              , interval
                
                
              , and ratio
                
                
              . count data:
                      
                      
                    
The observational unit either has, or does not have, a particular property. For example, tossed coins can come up heads or tails. We count the number n of heads when a total of N coins are tossed.


categorical data:
                      
                      
                    
The data values are distinct from each other. Categorical variables are also referred to as nominal
                          
                        
 variables, class variables
                        
                      , or factors

                        
                      . The various categories or classes of a categorical variable are called its levels

                        
                      . An example of a factor, from the introductory paragraph of Chapter 6, is factory having six levels. That is, the investigation takes place at six factories. If we code

                        
                       factory as {1, 2, 3, 4, 5, 6}, meaning that we arbitrarily assign these six numbers to the six factories, we must be careful not to interpret these codes as ratio data. Coding the factory levels as integers doesn’t give us the right to do arithmetic on the code numbers.


ordered data:
                      
                      
                    
The data values can be placed in a rank ordering. For any two observations, the analyst knows which of the two is larger, but not necessarily the magnitude of the difference between them. There is a distinct concept of first, second, …, last. There is no way to measure the distance between values. An example is military ranks
                        
                      : A general is higher-ranked than a colonel, which in turn is higher than a major. There is no easy way to say something like, “A general is twice as far above a colonel as a colonel is above a major.”


interval data:
                      
                      
                    
The data values have well-defined distances between them, but there is not a ratio relationship. School grades are an example. Students in [image: 
$$10^{\mbox{ th}}$$
] grade have studied one year longer than students in [image: 
$$9^{\mbox{ th}}$$
] grade; similarly, students in [image: 
$$9^{\mbox{ th}}$$
] grade have studied one year longer than students in [image: 
$$8^{\mbox{ th}}$$
] grade. It is not meaningful to say a [image: 
$$10^{\mbox{ th}}$$
]-grade student is twice as knowledgeable as a [image: 
$$5^{\mbox{ th}}$$
]-grade student.


ratio data:
                      
                      
                    
The data values are measured by real numbers: There are a well-defined origin and a well-defined unit. Height of people is an example. There is a well-defined 0 height. We can speak of one person being 1 inch taller than another or of being 10% taller than another.





We also have another categorization of data as discrete
                  
                  
                
 or continuous
                  
                  
                
. Discrete data have a finite or countably infinite number of possible values the data can take. Continuous data take any real number value in an interval; the interval may be either closed or open.
Many of the datasets we will study, both in this book and in the data analysis situations that this book prepares you for, have several variables. Frequently, there are one or more ratio-scaled numeric variables associated with each value of a categorical variable. When only one numeric variable is measured for each observational unit, the dataset is said to be univariate. When there are k (k > 1) variables measured on each observational unit, the dataset is said to be multivariate

                
                
              . Multivariate datasets require additional techniques to identify and respond to correlations among the observed variables.

2.2 Data Display and Calculation
Data are often collected and presented as tables of numbers. Analysis reports are also frequently presented as numbers. Tables of numbers can be presented on a page in ways that make them easier to read or harder to read. We illustrate some of each here and will identify some of the formatting decisions that affect the legibility of numerical tables.
2.2.1 Presentation
There are two general principles: alignment
                        
                       of decimal points:Units digits of each number are in the same vertical column. Larger numbers extend farther to the left.


display comparable numbers with common precision:

                          
                         Numbers to be compared are displayed so the positions to be compared are in the same column.





Table 2.1 shows two tables with identical numerical information. The first is legible because it follows both principles; the second is not because it doesn’t.Table 2.1Legible and illegible tabular displays of the same numerical data: In panel a the numbers are aligned on the decimal point and are displayed to the same precision (the same number of decimal digits). In panel b the numbers are centered or left justified—with the effect of hiding the comparability, and displayed with different precisions—which further hides comparability.


[image: A77776_2_En_2_Figa_HTML.gif]


                            

2.2.2 Rounding

                
                  
                
              
The number of decimal digits in a number indicates the precision with which the number was observed. Any analysis normally retains the same precision. Any changes in the number of decimal digits that are not justified by the method of analysis implicitly suggests that the data are either more or less precise than they actually are. This can lead to misleading inferences and wrong policy decisions.
Please see Appendix G for an illustration of the potential problems and references to more detailed discussion. Be sure to read FAQ 7.31
                  
                 in file

                system.file("../../doc/FAQ")
              
The help menus in Rgui in Windows and R.app on Macintosh have direct links to the FAQ file.
There are simple rules:
1.DO NOT ROUND intermediate values! Keep all 16 digits of double precision
                          
                         arithmetic in a computer program and all 12 digits on pocket calculators. For example, if a correct calculation 7.1449/3.6451 = 1.9601 is rounded to 7.14/3.65, the quotient is less than 1.96 and a decision based on whether or not the result exceeds 1.96 will reach an incorrect conclusion.

 

2.Final answers may be rounded to the SAME number of significant digits as the original data. You may never have final answers with more digits than any intermediate value or with more digits than the original data.
                          
                        


 

3.Standard deviations can give a hint as to the number of believable digits. For example, if [image: 
$$\bar{x} = 1.23456$$
] and [image: 
$$s_{\bar{x}} =.0789$$
], then we can justifiably round to [image: 
$$\bar{x} \approx 1.234$$
] (using the logic that [image: 
$$t = 1.23456/.0789 = 15.64715 \approx 15.647$$
] is good to three decimal positions).

 






2.3 Importing Data

              
                
                
              
              
                
              
            

R, and other statistical software systems, have functions that can read data in a variety of formats. All the datasets used in this book are included in the HH package. Section 2.3.1 tells how to access them.
Access to datasets in other formats and in other locations (anywhere on the internet) is described in Section 2.3.2.
2.3.1 Datasets for This Book

                
                  
                
                
                  
                
              
We have many datasets that we analyze in examples or make available for analysis in exercises. Most datasets are real, taken from journal articles; data repositories of governments, corporations and organizations; data libraries; or our own consulting experience. Citations to these datasets are included in the text. As befits a text, most data we present are structured for the techniques of the chapter in which we present it. Our datasets are frequently used in more than one chapter. We have an Index of Datasets with which you can locate all references to a specific dataset across chapters.
The datasets discussed in this book are available for readers in two different formats.
For use with R, all datasets mentioned in the book are available in the HH package for R. The HH package can be downloaded from CRAN (Comprehensive R Archive Network) for use on any computer on which R is installed. Details on installing R are in Appendix A. Once the HH is loaded into an R session, the ABCD dataset is made accessible with the statement

                data(ABCD)
              
Additional information on the HH package is in Appendix B.
For use with any other software system, the datasets mentioned in the book are available in ASCII format
                  
                 as csv files. These are text files in which each row of data appears on one row of the file. Within a row, the items are separated by commas. Further discussion of the ASCII files, including the url where they are available, is in Appendix H.

2.3.2 Other Data sources
In consulting environments data is often collected and stored in a database management system. R has packages that can read directly from database management systems
                  
                 that may be housed anywhere on the internet.
Datasets are often stored in MS Excel xls
                  
                 files. These can be directly read into R on any operating system using the XLConnect package. See Section A.1.4
                  
                 for further discussion. On MS Windows machines, the RExcel software
                  
                 is available for direct interaction between R and Excel. See Appendix D for further information.
Datasets stored as datafiles in the internal format of other statistical software systems may be migrated to an R analysis. R can read and write most of them with the aid of the foreign

                  
                 package. See the help file help(package="foreign") for further information.


2.4 Analysis with Missing Values

              
                
                
              
              
                
              
              
                
                
              
              
                
              
            
Statisticians frequently encounter situations where an analysis cannot be completed in a straightforward fashion because some portion of the data is missing. For some analyses, missing or unbalanced data cause no difficulty beyond the need to calculate results with a revised formula. Examples include the two-sample t-test of Section 5.​4.​3 and the one-way analysis of variance of Chapter 6. In other circumstances, such as multiple regression analyses discussed in Chapters 9 to 11, the analyst must either discard the observations carrying incomplete information or use sophisticated techniques beyond the scope of this book to impute
                
              , or estimate, the missing portions of the existing data. If the reasons for “missingness” are related to the problem being addressed, abandoning observations is likely to lead to incorrect inferences. If the data are missing at random, discarding a few observations may be a satisfactory solution, but the smaller the ultimate sample size, the less likely the analysis will produce useful and correct results. Imputing the values of missing data is usually preferable to discarding cases with incomplete information. We recommend Little and Rubin (2002) as a comprehensive reference on how to handle missing data, particularly techniques of imputation.
                
              

A discussion of how missing values are handled is in R is in Section 2.A.

2.5 Data Rearrangement

              
                
                
              
            
Datasets are not necessarily arranged in the most convenient way for the analysis you have in mind. Rearrangement is usually easy. Frequently the functions in the reshape2

                
               package will be helpful.
We usually work with one of the two data arrangements. Table 2.2 shows both arrangements and the use of the reshape2 functions melt and dcast to convert between them. One arrangement (the data.frame wide in Table 2.2) is a set of multiple columns (x and y), one per variable, with factor levels Names explicitly indicated by data values in the appropriate column. Each observation has all its values listed in the same row of all columns.Table 2.2Define wide, a data.frame in the wide arrangement. Convert it to the long arrangement with the melt function, and convert it back with the dcast function.


[image: A77776_2_En_2_Figb_HTML.gif]


                        
The other (the data.frame long in Table 2.2) contains all the numeric values in a single column (value), with levels of factors explicitly identified in their own columns (Names and variable). Note that the two different variables in the wide arrangement are represented by two levels of the variable factor in the long arrangement.

2.6 Tables and Graphs

              
                
              
            
Graphs constructed from data arranged in a table are generally more useful and informative than the table. The human eye and brain can quickly discern patterns from a well-constructed picture that would be far from obvious from the underlying tabular data. Excellent examples are contained in Tufte (2001) and Wainer (1997).
Characteristics that we wish to reveal with our graphs are location, variability, scale, shape, correlation, interaction, clustering, and outliers. In Chapter 4 we illustrate many of these characteristics, primarily through our discussion of scatterplots and scatterplot matrices. Additional types of displays are presented in many subsequent chapters. We discuss both the information about the data that we obtain from the graphs and the structure of the graphs. We introduce many new types of graphs throughout the book. In the appendix to Chapter 4 we provide a summary on those new graphs that are based on Cartesian products.

2.7 
R Code Files for Statistical Analysis and Data Display (HH)

              
                
              
            
The HH package is available for R from CRAN. See Appendix A for details on installing R with our recommended packages on your computer. The HH package includes all datasets used in the book. R scripts for all figures and tables in the book are included in files in the HH package. See Appendix B for details. Many of the graphs were produced with functions that are included and fully documented in the HH package.


                
              

                
              

                
               The R code for all examples, and for occasional exercises is included with the HH package from CRAN. Thus you can duplicate all tables and figures in the book and you can use these as templates for analyzing other datasets. The R code for the examples in each chapter of the Second Edition is in a file named after the chapter. For example, the code file for Chapter 6, the one-way analysis of variance chapter, is in file hh2/oway.R. The full path to the file on your computer is found by entering

              HHscriptnames(6)
              
                
              
            
at the R prompt. The content of the tables and figures is not available as files. They may all be reproduced by running the code.
The R code for the First Edition is also available. Enter

              HHscriptnames(6, edition=1)
            
at the R prompt.
The Second edition code is identical to the code that actually produced the tables and figures. The book was written using the Sweave
                            
                
               and Stangle
                            
                
               functions from the utils package with the LaTeX document preparation system. See Appendix N for links to LaTeX. All code is included within the LaTeX
                
               source for the book. See help(Sweave, package="utils") for details on writing using Sweave.
For the reader of this book, all you need to know is how to find the code for a chapter (HHscriptnames(6) as indicated above), and the structure of the files. Each file starts with a line that tells the name of my LaTeX source file for that chapter. It then has code chunks, with each chunk being the code associated with a table or figure. The first chunk in all files is the line

              library(HH)
            
Each file is independent of all other chapters and assumes only that the HH package is loaded. Multiple chunks associated with the same dataset in the same file assume the previous chunks have already been run.
The chunks begin with function calls to the hhpdf
                            
                
               or hhcapture
                            
                
               functions. When I was writing the book, these calls were defined to capture the figure or table as a file. For the reader, these calls are defined in the HH package as noops (NO OPeration)—that is, they don’t do anything. All output goes directly to your console window or your graphics window.
The best way to use the files is to pick up their lines and paste them in the R console window. It will often be helpful to study how the lines are constructed.
It is possible to source the entire file. While it works, all it does is produce all the tables and figures that you already have in the book. Sourcing the files won’t help in learning.
                
              


2.A Appendix: Missing Values in R


                
                  
                  
                
                
                  
                
                
                  
                  
                
                
                  
                
              
The R convention for missing values is NA

                  
                 (a standard abbreviation for “Not Available” or “No Answer”). When R knows that a value is missing it prints “NA” (without the quotes). When R is reading an ASCII
                  
                 data file, it will recognize by default the character sequence “NA” as a missing observation.
If the ASCII
                  
                 data file uses some other convention (such as the “.” that SAS uses by default), then we must tell R to use a different convention for reading missing values either with an argument to the read.table function or, after the reading, by some logical investigation of the data values.

R has several conventions for working with datasets containing NA values. Data Input:See Tables 2.3, 2.4, and 2.5 for an example. We use the default missing value indicator in Table 2.3, an explicitly defined missing value indicator in Table 2.4, and a non-default missing value indicator in Table 2.5 without telling the read.table function that we were doing so.Table 2.3The data are read from a text argument, which is equivalent to reading from a text file. In the AA example, the default missing value is NA. In the BB example in Table 2.4, the argument na.strings defines strings "999" and "." to indicate missing values. The internal representation is the R value NA. In the CC example in Table 2.5, where we didn’t use the argument na.strings, the y variable has been coerced to be a factor. Read the help file help("read.table", package="utils") for more information


[image: A77776_2_En_2_Figc_HTML.gif]


Table 2.4The argument na.strings defines strings "999" and "." to indicate missing values.


[image: A77776_2_En_2_Figd_HTML.gif]


Table 2.5We neglected to use the argument na.strings. The y variable has become a factor.


[image: A77776_2_En_2_Fige_HTML.gif]





Printing:Missing numerical values are displayed as NA. Missing character and factor items are displayed as <NA>. See Table 2.6 Table 2.6Missing numerical values are displayed as NA. Missing character and factor items are displayed as <NA>.


[image: A77776_2_En_2_Figf_HTML.gif]





Graphs:Points whose coordinates are not known (points “O” and “P”) are not printed. Points with known coordinates and unknown value (the first point whose value should have been “M”) are displayed as NA in the known position. See Figure 2.1. [image: A77776_2_En_2_Fig1_HTML.gif]
Fig. 2.1The dataset abcd is defined in Table 2.6. The plot was drawn with







Arithmetic:Arithmetic with missing values returns a missing value. Many functions, sum is illustrated in Table 2.7, can be told to remove the missing values and sum the non-missing values. Table 2.7Arithmetic with missing values returns a missing value. Many functions, sum and mean are illustrated in Table 2.7, can be told to remove the missing values and sum the non-missing values.


[image: A77776_2_En_2_Figg_HTML.gif]





Linear Models:Default (na.action=na.omit) behavior is to remove the row. Table 2.8 shows the default behavior of the lm and related modeling functions. The entire row containing the missing values is removed from the analysis and subsequent processing. Table 2.9 shows an optional better behavior. Table 2.8The default behavior of the lm and related modeling functions. The entire row containing the missing values is removed from the analysis and subsequent processing. See Table 2.9 for an optional better behavior.


[image: A77776_2_En_2_Figh_HTML.gif]


Table 2.9With na.action=na.exclude, the rows with missing values are still removed from the calculations of the "lm" object, but information on which rows were suppressed is retained.


[image: A77776_2_En_2_Figi_HTML.gif]





Linear Models: Better behavior (na.action=na.exclude)is to keep track of which rows have been omitted. Table 2.9 shows an optional better behavior. The rows with missing values are still removed from the calculations of the "lm" object, but information on which rows were suppressed is retained.
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3. Statistics Concepts
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In this chapter we discuss selected topics on probability. We define and graph several basic probability distributions. We review estimation, testing, and sampling from populations. The discussion here is at an intermediate technical level and at a speed appropriate for review of material learned in the prerequisite course.
3.1 A Brief Introduction to Probability

              
                
              
            
The quality of inferences are commonly conveyed by probabilities. Therefore, before discussing inferential techniques later in this chapter, we briefly digress to discuss probability in this section and random variables

                
               in Section 3.2.
If A is any event, P(A) represents the probability of occurrence of A. Always, [image: 
$$0 \leq P(A) \leq 1$$
]. The odds in favor of the occurrence of event A are [image: 
$$\displaystyle\begin{array}{rcl} \frac{P(A)} {1 - P(A)}& &{}\end{array}$$
]

 (3.1)

 and the odds against the occurrence of event A are [image: 
$$\displaystyle\begin{array}{rcl} \frac{1 - P(A)} {P(A)} & &{}\end{array}$$
]

 (3.2)

 Thus, if [image: 
$$P(A) = \frac{3} {4}$$
], then the odds in favor of A are 3, also referred to as 3 to 1, and the odds against A are [image: 
$$\frac{1} {3}$$
].
If B is a second event, [image: 
$$A \cup B$$
]

                
               represents the event that “either A or B occurs”, that is, the union

                
               of A and B,
                
               then [image: 
$$\displaystyle\begin{array}{rcl} P(A \cup B) = P(A) + P(B) - P(A \cap B)& &{}\end{array}$$
]

 (3.3)

 where [image: 
$$A \cap B$$
] is the event that “both A and B occur”, that is the intersection

                
               of A and B. Events A and B are said to be mutually exclusive events if they cannot both occur; in this case, [image: 
$$A \cap B =\emptyset$$
] (the impossible event) and so [image: 
$$P(A \cap B) = 0$$
]. Events A and B are said to be independent

                
               events if the occurrence or nonoccurrence of one of them does not affect the probability of occurrence of the other one; for independent events, [image: 
$$\displaystyle\begin{array}{rcl} P(A \cap B) = P(A)\,P(B)& & {}\\ \end{array}$$
]


 The conditional probability

                
               of B given A, written [image: 
$$P(B\mid A)$$
], is the probability of occurrence of B given that A occurs. If P(A) ≠ 0, [image: 
$$\displaystyle\begin{array}{rcl} P(B\mid A) = \frac{P(A \cap B)} {P(A)} & & {}\\ \end{array}$$
]


 Note that P(B∣A) = P(B) if A and B are independent events, but not otherwise.
To illustrate these ideas, imagine a box containing six white and four red billiard balls, identical to the touch. Suppose we select two balls from the box and let A = “the first ball is white” and B = “the second ball is white”. A and B are independent
                
               events if the first ball is replaced in the box prior to drawing the second ball, but not otherwise. Let us assume that the first ball is not replaced so that the two events are dependent. Various sets of events are listed with their probabilities in Table 3.1.Table 3.1Probability of intersection events, conditional events, union events in the setting of a box containing six white and four red billiard balls. We select two balls from the box. The A event is “the first ball is white” and the B event is “the second ball is white”. See Figure 3.1 for an illustration of this distribution.


[image: A77776_2_En_3_Figa_HTML.gif]


[image: A77776_2_En_3_Fig1_HTML.gif]
Fig. 3.1Mosaic plot corresponding to Table 3.1. The area of each panel is equal to the probability of the event identified in that panel. The bottom row representing the event A = “W is selected first” consists of the two panels WR and WW. The bottom row has height. 6 = P(A). The right-hand column represents the event B = “W is selected second” consists of the two panels RW and WW. The event “[image: 
$$B \cap A$$
]” is the white region WW in the lower right corner. The event WW has height.6 and width 5/9, hence area [image: 
$$.6 \times 5/9 = 1/3$$
]. The event B∣A is also the white area WW, but now thought of as the proportion of the A area that is also B. The probability of [image: 
$$B\mid A$$
] is the ratio of the area of [image: 
$$B\mid A$$
] to the A area [image: 
$$(1/3)/.6 = 5/9$$
]. The event [image: 
$$B\mid \bar{A}$$
] is the pink region RW in the upper right corner. The probability of [image: 
$$B\mid \bar{A}$$
] is the ratio of the pink area RW to the [image: 
$$\bar{A}$$
] area [image: 
$$(4/15)/.4 = 2/3$$
]. The event [image: 
$$\bar{B} \cap \bar{ A}$$
] is the red region RR in the upper left corner. The event RR has height.4 and width 3/9, hence area [image: 
$$.4 \times 3/9 = 2/15$$
].





In this table we demonstrate two ways to calculate the probability [image: 
$$\frac{78} {90}$$
] that we get a white ball in either the first selection or second selection or both selections. One way is with the formula for [image: 
$$P(A \cup B)$$
] in Equation (3.3). Another method is to recognize that the event “at least one white” can be partitioned into three mutually exclusive events: First draw white and second draw red; first draw red and second draw white; and both draws white. The probability of “at least one white” is seen to be the sum of the probabilities of the events comprising this partitioning.
                
              


              
                
              
              
                
              
              
                
              
            

3.2 Random Variables and Probability Distributions

              
                
              
              
                
              
            
A random variable, abbreviated as r.v., is a function that associates events with real numbers. For example, if we toss a coin 10 times, we can define an r.v. X to be the number of heads observed in these 10 tosses. This r.v. has possible values
[image: 
$$x = 0,1,2,\ldots,10$$
]. Observing 7 heads among the 10 tosses is an event, and “7” is the number that this r.v. X associates with it.
A closely related concept is the r.v.’s probability distribution, which indicates how the total probability, 1, is distributed or allocated to the possible values of the r.v. It is usual to denote an r.v. with a capital letter and a possible value of this r.v. with the corresponding lowercase letter.
3.2.1 Discrete Versus Continuous Probability Distributions
There are essentially two distinct types of probability distribution of a quantitative variable: discrete and continuous. (Random variables are also classified as discrete or continuous according to the classification of their probability distributions.) It is important to distinguish between the two types because they differ in their methods of display and calculation.
The key distinction between these two types relates to the spacings between adjacent possible values of the data. For discrete data, the distance separating consecutive possible values of the variable does not depend on a measurement device; indeed it may be completely arbitrary. For continuous data, the distances may (theoretically) assume all possible values in some interval.
For example, the number of times an archer hits a target in 10 attempts is a discrete variable because the answer is a count of the number of occurrences. It is impossible for there to be 3.5 hits. A discrete variable need not be integer-valued. The proportion of hits in 10 attempts is also discrete. It is impossible for this proportion to be.35. It is possible for a discrete variable to have a countably infinite number of possible values. An example would be the number of attempts needed for the archer to achieve her ninth hit. This variable can assume any positive integer value; it is possible but unlikely that the archer will need 100 attempts.
On the other hand, the archer’s height in inches is a continuous variable because it can be anything between perhaps 3 feet and 8 feet (90–240 cm). While as a practical matter it would be difficult to measure height to within [image: 
$$\frac{1} {4}$$
]-inch (6 mm) accuracy, it is not theoretically impossible for someone to be 68[image: 
$$\frac{3} {4}$$
] inches (174.6 cm) tall.
In summary, it is possible to make a list of the possible values of a discrete random variable, but this is not true for a continuous random variable.
For completeness, we also point out that it is possible for data to be a mixture of discrete and continuous types. Let Y = the total measurable daily precipitation measured at Philadelphia International Airport. On some fraction of all days, roughly 70% of them, there is no precipitation. So P(Y = 0) ≈ . 7. But considering only those dates with measurable precipitation, Y is continuous, i.e., the distribution of (Y ∣Y > 0) is continuous.

3.2.2 Displaying Probability Distributions—Discrete Distributions
The display of a probability distribution varies according to whether the r.v. is discrete or continuous. We can make an ordered list of the possible values of a discrete r.v. For example, if X denotes the number of heads in two tosses of a fair coin, then X has three possible values {0,1,2}. We will see later that for this coin, the probabilities are as given in Table 3.2.Table 3.2The total probability 1.0 has been distributed to the three possible values: 0, 1, 2.


[image: A77776_2_En_3_Figb_HTML.gif]


                            
Sometimes we choose to study several interdependent random variables at the same time. In such instances, we require their bivariate or multivariate probability distribution.
In Table 3.3 we consider an example of a discrete bivariate and conditional distribution. Here p.m.f. stands for probability mass function.

                  
                

                  
                
Table 3.3Example of Discrete Bivariate and Conditional Distributions. The top panel shows the probabilities of each of the six events in the distribution. The area of the six events adds up to 1. The center panel shows conditioning of x on y. Within each column, the area adds up to 1. The bottom panel shows conditioning of y on x. Within each row, the area adds up to 1.


[image: A77776_2_En_3_Figc_HTML.gif]


                            
Here X and Y are dependent r.v.’s because, e.g., f(1, 0) = . 10, which differs from [image: 
$$f(1) \times g(0) =.60 \times.15 =.09$$
]. Alternatively, [image: 
$$f(1\mid 0) = \frac{2} {3}$$
], which differs from f(1) = . 6. In general, if U and V are discrete random variables, then U and V are independent
                  
                 r.v.’s if [image: 
$$\displaystyle\begin{array}{rcl} P\big((U = u) \cap (V = v)\big) = P(U = u) \times P(V = v)& & {}\\ \end{array}$$
]


 for all possible values u of U and v of V, i.e., the distribution of U doesn’t depend on the value of V.
The cumulative distribution
                  
                
[image: 
$$\mathcal{F}$$
] of a discrete random variable is calculated as [image: 
$$\displaystyle\begin{array}{rcl} \mathcal{F}(x) = P(X \leq x) =\sum _{t\leq x}f(t)& & {}\\ \end{array}$$
]


 where the sum is taken over all possible values t of X that are less than or equal to x.

3.2.3 Displaying Probability Distributions—Continuous Distributions
The probability distribution of a continuous random variable cannot be described in the manner of Table 3.2 or 3.3 (listing its possible values alongside their associated probabilities) because a continuous r.v. has an uncountably infinite number of possible values. Instead the probability distribution of a continuous r.v. X is described by its probability density function (p.d.f.), say f(x). This function has the properties that
1.
f(x) ≥ 0

 

2.the probability that X lies in any interval is given by the area under f(x) above this interval.

 




In the p.d.f. in Figure 3.2, the shaded area under the density and above the horizontal axis represents the probability that the random variable lies between 2 and 4.[image: A77776_2_En_3_Fig2_HTML.gif]
Fig. 3.2
P(2 < X < 4) equals the area under the density between 2 and 4.




                            
The cumulative distribution
                  
                
[image: 
$$\mathcal{F}$$
]

                  
                 of a continuous random variable is calculated as [image: 
$$\displaystyle\begin{array}{rcl} \mathcal{F}(x) = P(X \leq x) =\int _{ -\infty }^{x}f(t)\,dt& & {}\\ \end{array}$$
]




Continuous r.v.’s U and V are also independent
                  
                 if the distribution of U doesn’t depend on the value of V or, equivalently, if the distribution of V doesn’t depend on the value of U. In this case, we can express the independence
                  
                 condition as [image: 
$$\displaystyle\begin{array}{rcl} P{\bigl ((U \leq u) \cap (V \leq v)\bigr )} = P(U \leq u) \times P(V \leq v)& &{}\end{array}$$
]

 (3.4)

 for all u and v.
Appendix J catalogs frequently encountered probability distributions, illustrates their density functions, and includes function names in R for calculations with the distributions.
                  
                



3.3 Concepts That Are Used When Discussing Distributions
Understanding the distribution of observations is critical to interpreting data. In this section we introduce several concepts that are used to describe distributions: mean, variance, median, symmetry, correlation; and types of graphs that are used to display these concepts: histogram, stem-and-leaf, density, scatterplot.
3.3.1 Expectation and Variance of Random Variables

                
                  
                
                
                  
                
              
The expectation of an r.v. X, denoted E(X), is its expected or long-run average value; alternatively it is the mean of the probability distribution of X and so we write E(X) = μ.
                  
                 If X is discrete with p.m.f. p(x), then E(X) = ∑ x p(x). If X is continuous, then E(X) = ∫ x f(x) dx, where the range of integration extends over the set of real numbers that X may assume. The variance of X is defined by [image: 
$$\sigma ^{2} =\mathop{ \mbox{ var}}(X) = E(X-\mu )^{2} = E(X^{2}) -\mu ^{2}$$
].
                  
                 The square root σ

                  
                 of the variance is called the standard deviation

                  
                , abbreviated s.d.
                  
                 It is a more useful measure of variability than the variance because it is measured in the same units as X, rather than in artificial squared units.
If [image: 
$$x_{1},x_{2},\ldots,x_{n}$$
] is a random sample of n items selected from some population, the sample mean [image: 
$$\displaystyle\begin{array}{rcl} \bar{x} = \frac{1} {n}\sum _{i=1}^{n}x_{ i}& &{}\end{array}$$
]

 (3.5)

 estimates the population mean μ, and the sample variance [image: 
$$\displaystyle\begin{array}{rcl} s^{2} = \frac{1} {n - 1}\sum _{i=1}^{n}(x_{ i} -\bar{x})^{2}& &{}\end{array}$$
]

 (3.6)

 estimates the population variance σ
2. In addition, the sample standard deviation [image: 
$$s = \sqrt{s^{2}}$$
] estimates the population standard deviation σ. Please see Section G.12 for a discussion on the importance of using the two-pass algorithm based on the definition in Equation 3.6, and not the alternative one-pass algorithm based on Equation 3.7, [image: 
$$\displaystyle\begin{array}{rcl} s^{2} = \frac{1} {n - 1}\sum _{i=1}^{n}\left (x_{ i}^{2} - n\bar{x}^{2}\right )& &{}\end{array}$$
]

 (3.7)

 when doing arithmetic by computer. The short explanation is that you will always get the right answer with Equation 3.6 and may sometimes get a very wrong answer with Equation 3.7.
It can be shown that if a
1 and a
2 are constants and x
1 and x
2 are any two random variables, then
                  
                

                  
                 [image: 
$$\displaystyle\begin{array}{rcl} E(a_{1}x_{1} \pm a_{2}x_{2})& =& a_{1}E(x_{1}) \pm a_{2}E(x_{2}){}\end{array}$$
]

 (3.8)

 If, in addition, x
1 and x
2 are uncorrelated random variables, then [image: 
$$\displaystyle\begin{array}{rcl} \mathop{\mbox{ var}}(a_{1}x_{1} \pm a_{2}x_{2})& =& a_{1}^{2}\mathop{ \mbox{ var}}(x_{ 1}) + a_{2}^{2}\mathop{ \mbox{ var}}(x_{ 2}){}\end{array}$$
]

 (3.9)



                  
                

                  
                 When x
1 and x
2 are correlated, then the variance of the sum is given by
                  
                 [image: 
$$\displaystyle\begin{array}{rcl} \mathop{\mbox{ var}}(a_{1}x_{1} \pm a_{2}x_{2})& =& a_{1}^{2}\mathop{ \mbox{ var}}(x_{ 1}) + a_{2}^{2}\mathop{ \mbox{ var}}(x_{ 2}) \pm 2a_{1}a_{2}\mathop{ \mbox{ cov}}(x_{1},x_{2}){}\end{array}$$
]

 (3.10)

 These three formulas (Equations 3.8, 3.9, and 3.10) generalize to the multivariate situation in Equations 3.16 and 3.17.

3.3.2 Median of Random Variables

                
                  
                
              
The median
                  
                 of an r.v. X, denoted [image: 
$$\mathop{\mbox{ median}}(X) =\eta$$
],
                  
                 is the middle value of the distribution. The population median is defined as the value η such that [image: 
$$\displaystyle\begin{array}{rcl} \int _{-\infty }^{\eta }f(x)\,dx =.5& & \text{for continuous distributions}{}\end{array}$$
]

 (3.11)

 or [image: 
$$\displaystyle\begin{array}{rcl} \sum \limits _{x\leq \eta }p(x) \geq.5\ \mbox{ and}\ \sum \limits _{x<\eta }p(x) \leq.5& & \text{for discrete distributions.}{}\end{array}$$
]

 (3.12)

 We show an example of the median of a distribution in Figure 3.6.
The order
                  
                 statistics X
(i) are the values of the observed X

                  i
                 ordered from smallest to largest. The middle order statistic [image: 
$$\mathop{X}\limits ^{\mbox{ $\boldsymbol{ \perp }$}}$$
] is called the sample median and is defined as [image: 
$$\displaystyle\begin{array}{rcl} \mathop{X}\limits ^{\mbox{ $\boldsymbol{ \perp }$}}& =& \left \{\begin{array}{l@{}l} X_{\mbox{ $\left (\frac{n+1} {2} \right )$}}  &\mbox{ odd }n \\  \\ \left (X_{\mbox{ $\left (\frac{n} {2} \right )$}} + X_{\mbox{ $\left (\frac{n+1} {2} \right )$}}\right )/2 &\mbox{ even }n \end{array} \right.{}\end{array}$$
]

 (3.13)

 The notation [image: 
$$\mathop{X}\limits ^{\mbox{ $\boldsymbol{ \perp }$}}$$
]

                  
                 for the sample median used here is intended to be self-descriptive, with an overbar split in the middle into two equal halves. We believe the notation is due to Tukey
                  
                . There is no standard notation for the median.
                  
                


3.3.3 Symmetric and Skewed Distributions

                
                  
                
              
Symmetry and skewness are classifications applicable to both continuous and discrete distributions. The mean of a symmetric distribution coincides with its median. A continuous distribution example is the normal distribution having a density function such as that plotted in Figure 3.13. A symmetric distribution has equivalent behavior on either side of its mean. In particular, its tails, the values of the density function away from the center, are mirror images.
A skewed distribution is one that is not symmetric. Unimodal distributions (ones having a single point where the probability mass is higher than at adjacent points) that are skewed are further classified as being positively or negatively skewed. A positively skewed distribution has a long, thin tail on its right side and a short, fat tail on its left side. Its mean exceeds its median. A negatively skewed distribution has a long, thin tail on its left side and a short, fat tail on its right side. Its median exceeds its mean. Note that the left/right naming convention for skewed distributions is based on the side containing the long, thin tail. We illustrate a negatively skewed, symmetric, and positively skewed distribution in Figure 3.3. We show boxplots of negatively skewed, symmetric, and positively skewed data in Figure 3.7.[image: A77776_2_En_3_Fig3_HTML.gif]
Fig. 3.3Negatively skewed, symmetric, and positively skewed distributions.




                            
The χ
2

                  
                 distribution described in Section J.1.3 is an example of a continuous positively skewed distribution. The (discrete) binomial distribution to be described in Section 3.4.1 is negatively skewed, symmetric, or positively skewed according to whether its parameter p is less than, equal to, or greater than 0.5.
The skewness terminology often comes into play because many statistics procedures work best when underlying distributions are symmetric, and tactics that move the distribution toward symmetry (for example, with data transformations such as the power transformations
                  
                 described in Section 4.​8) are frequently used in the analysis of skewed distributions.
Each of the densities in Figure 3.3 has a single mode. Some densities have more than one mode. Figure 3.2 is an example of a bimodal density, with one mode between 0 and 1 and another mode between 2 and 3. Multimodal distributions, ones having more than two modes, are occasionally encountered. Sometimes bimodality and multimodality arise as a result of interpreting samples coming from two or more populations with different locations as having arisen from a single population. Therefore, bimodality or multimodality may suggest a need for disaggregation of samples.
                  
                


3.3.4 Displays of Univariate Data
It is difficult to gain an understanding of data presented as a table of numbers. Summary statistics such as those presented in the preceding sections are helpful for this purpose but may fail to capture some important features. In this section we present three displays (Histogram, Stem-and-leaf, and Boxplots) for univariate data that are basic tools for studying both the distributional shape and unusual data values. We illustrate these displays with the variable male.life.exp (1990 male life expectancy) in each of 40 countries, part of the datafile data(tv) to be examined in more detail in Section 4.​6 We summarize the variable in Table 3.4 as a frequency table, a partitioning of the data into k evenly spaced nonoverlapping categories, and a tally of the number or proportion of items in each category.Table 3.4Frequency Distribution of Male Life Expectancy


[image: A77776_2_En_3_Figd_HTML.gif]


                            
3.3.4.1 Histogram

                  
                    
                  
                
The construction of a histogram begins with the frequency table. Usually the number of categories is between 6 and 12—the use of fewer than 6 categories tends to undersummarize the data while the use of more than 12 categories tends to oversummarize the data. For male.life.exp we chose 6 age-range categories that encompass the ages from all 40 countries.
The corresponding histogram in Figure 3.4 is a graph consisting of rectangles with width covering the breadth of the classes and heights equal to the class frequencies. This plot is also called a relative frequency histogram, particularly when the vertical axis is labeled to show the proportion of countries in each category, for example [image: 
$$\frac{6} {40} = 0.15$$
] in the first category for ages 50–54. We show both axis labelings in Figure 3.4 with the proportion axis on the right.[image: A77776_2_En_3_Fig4_HTML.gif]
Fig. 3.4Life Expectancy for Males. The count axis is on the left and the proportion axis is on the right.




                                
Figure 3.4 is an example of a bimodal distribution, one having two peaks. In this example, the lower peak may correspond to economically poorer countries and the upper peak to wealthier countries, with relatively few countries falling between these extremes. In general, bimodal distributions sometimes suggest an amalgamation of samples from two separate populations that perhaps should be investigated separately. An advantage of histograms is that they can be constructed from huge datasets with no more effort than from small data sets. A disadvantage is that the data used to construct a histogram cannot be recovered from the histogram
                    
                   itself.

3.3.4.2 Stem-and-Leaf Display

                  
                    
                  
                
Stem-and-leaf displays, designed by John Tukey, resemble histograms in that they portray the shape of a distribution. The stem-and-leaf display is usually preferable because it is possible to recover the data used to construct a stem-and-leaf display (at least to some degree of precision). Unlike histograms, stem-and-leaf displays are limited to data sets of not more than a few hundred observations in order that the display fits entirely on one page or one computer monitor.
A stem-and-leaf display for male life expectancy is in Table 3.5. This is a table, not a figure, because stem-and-leaf is a text-based graphic display.Table 3.5Stem-and-Leaf Display of Male Life Expectancy


[image: A77776_2_En_3_Fige_HTML.gif]


                                
The column of numbers in this display to the left of the vertical bars represent the tens digit of each of the life expectancies. This column is the stem. The numbers to the right of the vertical bars, one digit for each country, are the leaves, the unit digits of the life expectancies for the 40 countries. The stem-and-leaf display, following Tukey, rounds down, to maintain the same digit as appears in the data table. A 90∘ counterclockwise rotation of the stem and leaves gives a picture that closely resembles Figure 3.4. The legend locating the decimal point tells the reader that “5 | 0” in the display stands for 50, rather than.05 or 500.
Stem-and-leaf displays can accommodate measurements containing more than two significant digits. This is accomplished either by suppressing the values of trailing digits or by allowing more than a single digit for each leaf. For example, suppose in a different problem the measurement is 564. This can be represented as “5 | 6”, with the stem indicating the hundreds, rounding the units digit down to a multiple of 10, and with a legend locating the decimal point 2 places to the right of the vertical bar. Alternatively, it can be represented with a stem indicating the hundreds and with two-digit leaves as “5 | 64,”, again locating the decimal point two places to the right of the vertical bar, and with the “,” indicating that the leaf is two digits wide. Or, another option, as “56 | 4” with a stem of 56 tens (representing 560) and with a single-digit leaf of 4.
                    
                  


3.3.4.3 Boxplots

                  
                    
                  
                
Boxplots
                    
                  , also known as box-and-whisker plots, are among the many inventions of John Tukey
                    
                  . Their main use is as a compact, simultaneous display to compare several related data sets. Many examples of side-by-side boxplots appear in this book. Boxplots may be arranged along either a vertical or horizontal scale. This book contains examples illustrating both options.
Boxplots make use of the sample first quartile Q
1, median [image: 
$$\mathop{x}\limits ^{\mbox{ $\boldsymbol{ \perp }$}} = Q_{2}$$
], and third quartile Q
3.
                    
                   The statistics [image: 
$$Q_{1},\mathop{x}\limits ^{\mbox{ $\boldsymbol{ \perp }$}},Q_{3}$$
] divide the sample into four equal parts. Q
1 is the median of the sample values that are less than or equal to [image: 
$$\mathop{x}\limits ^{\mbox{ $\boldsymbol{ \perp }$}}$$
] and Q
3 is the median of the sample values that are greater than or equal to [image: 
$$\mathop{x}\limits ^{\mbox{ $\boldsymbol{ \perp }$}}$$
]. Approximately 25% of the sample lies within each of the four intervals (all finite intervals are closed, so double counting is possible) [image: 
$$\displaystyle\begin{array}{rcl} (-\infty,Q_{1}],\qquad [Q_{1},\mathop{x}\limits ^{\mbox{ $\boldsymbol{ \perp }$}}],\qquad [\mathop{x}\limits ^{\mbox{ $\boldsymbol{ \perp }$}},Q_{3}],\qquad [Q_{3},\infty )& & {}\\ \end{array}$$
]




A rectangle (box) is drawn so that when placed against a numerical scale its edges occur at Q
1 and Q
3. A line is drawn, parallel to the edges, through the inside of the box at the median [image: 
$$\mathop{x}\limits ^{\mbox{ $\boldsymbol{ \perp }$}}$$
]. Lines perpendicular to the edges of the box extend outward from the midpoints of the edges. These lines are sometimes called “whiskers”. The lower whisker extends to the lowest sample item not more than 1. 5 ×IQR below Q
1. The upper whisker extends to the largest sample item not more than 1. 5 ×IQR above Q
3. Points outside the range of the whiskers are plotted as filled-in circles. Such points are deemed extreme or outlying values (“outliers”). In general, outliers should be carefully scrutinized. Sometimes they are due to transcription errors and are not legitimately part of the data under consideration (in which case you should attempt to correct the data). Other times, they are the critical data points that provide the key to an explanation of the study. One example of a critically important outlier is the Gulf of Mexico oil spill. On most days very little oil is released into the ocean. If we ignored the large spill detected on 20 April 2010, we would be missing the important information. In astronomy, ”transient” events are very important. That is how supernovas are detected (Table 3.6).Table 3.6Quartiles of Life Expectancy for Males


[image: A77776_2_En_3_Figf_HTML.gif]


                                
Table 3.6 shows the quartiles for the male.life.exp variable. Figure 3.5 shows the boxplot for the male.life.exp variable.[image: A77776_2_En_3_Fig5_HTML.gif]
Fig. 3.5Boxplot of Life Expectancy for Males




[image: A77776_2_En_3_Fig6_HTML.gif]
Fig. 3.6Illustration of median and quartiles for a continuous distribution.




                                
See the illustration in Figure 3.6 for the quartiles of a continuous distribution. The interquartile range [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ IQR} = Q_{3} - Q_{1}& & {}\\ \end{array}$$
]


 is a measure of dispersion of the central portion of a distribution. When X is normally distributed X ∼ N(μ, σ
2), we have IQR = 1. 34898σ.
                    
                  
                                
Figure 3.7 contains parallel boxplots depicting three samples on a common scale, illustrating the distinctions between boxplots for negatively skewed, symmetric, and positively skewed distributions. This parallels the density presentations in Figure 3.3. Asymmetry is nicely displayed in this figure.[image: A77776_2_En_3_Fig7_HTML.gif]
Fig. 3.7Boxplots illustrating negatively skewed, symmetric, and positively skewed distributions.




                                
Several more elaborate versions of the boxplot exist. For example, adding a notch

                    
                   to the sides of a box provides information on the variability of the sample median. For details, see Hoaglin et al. (1983).
Boxplots are generally unsuccessful in conveying the existence of multiple modes. For such data, histograms and stem-and-leaf displays are often preferred choices.
                    
                  



3.3.5 Multivariate Distributions—Covariance and Correlation

                
                  
                
                
                  
                
                
                  
                
              
In Section 3.2.2 we give an example of a discrete multivariate (actually bivariate) probability distribution. We now touch on the notion of the continuous multivariate distribution of a continuous random vector [image: 
$$X = (X_{1},X_{2},\ldots,X_{p})'$$
].
                  
                 For example, variable X
1 could be height and variable X
2 weight, all measured on the same set of people. The mean or expectation of X is [image: 
$$\mu = (\mu _{1},\mu _{2},\ldots,\mu _{p})'$$
],
                  
                 the vector of means of the univariate distribution of the X

                  i
                ′s. The variance–covariance matrix of X, say V, also called the covariance matrix
                  
                

                  
                 or dispersion matrix, is the symmetric p × p matrix having the variances of the X

                  i
                ′s on its main diagonal, and the covariances of different X

                  i
                ′s elsewhere. The covariance of X

                  i
                 and X

                  j
                 is [image: 
$$\displaystyle\begin{array}{rcl} V _{ij} =\sigma _{ij} =\mathop{ \mbox{ cov}}(X_{i},X_{j}) = E\big((X_{i} -\mu _{i})(X_{j} -\mu _{j})\big)& & {}\\ \end{array}$$
]


 is the element in the row i column j position of V. If we denote the standard deviations of X

                  i
                 and X

                  j
                 by σ

                  i
                

                  
                 and σ

                  j
                , respectively, then the correlation between X

                  i
                 and X

                  j
                 is [image: 
$$\displaystyle\begin{array}{rcl} \rho _{ij} = \frac{\mathop{\mbox{ cov}}(X_{i},X_{j})} {\sigma _{i}\sigma _{j}} = \frac{V _{ij}} {\sqrt{V _{ii } V _{jj}}}& &{}\end{array}$$
]

 (3.14)



                  
                 This is a rescaling of the covariance, interpreted as a measure of the strength of the (straight line) linear relationship between X

                  i
                 and X

                  j
                . It can be shown that − 1 ≤ ρ

                  ij
                 ≤ 1. If this correlation is close to ± 1, X

                  i
                 and X

                  j
                 are closely linearly associated; the association is direct if ρ

                  ij
                 > 0 and inverse if ρ

                  ij
                 < 0. If ρ

                  ij
                 = 0,
                  
                 then X

                  i
                 and X

                  j
                 are said to be uncorrelated, i.e., the X’s are not linearly related. It is easy to construct an example of correlated variables for any specified correlation. Figure 3.8 gives a static view of a sequence of related variables with specified correlation coefficient. A dynamic illustration of the effect of the correlation coefficient can be constructed by plotting a sequence of panels similar to those in Figure 3.8 and cycling through them. We do so in a shiny

                  
                 app in the HH package with the statement[image: A77776_2_En_3_Fig8_HTML.gif]
Fig. 3.8Bivariate Normal distribution—scatterplot at various correlations. The distributions in the panels are related. The x-variable in all panels is the same. The y is generated from a common e-variable by the formula [image: 
$$y =\rho x + (1 -\rho ^{2})^{1/2}e$$
] for a sequence of values for ρ. The x- and e-variables were independently generated from the N(0,1) distribution. We provide a shiny app bivariateNormalScatterplot for a dynamic version of this set of panels. See Figure E.3 for a screenshot.




                            

                  shiny::runApp(system.file("shiny/bivariateNormalScatterplot",
              

                                            package="HH"))
              
at the R prompt. See Figure E.3 for a screenshot. In both the static and dynamic illustrations the formula is very simple. Define x and e as independent realizations from the N(0, 1) distribution. Then [image: 
$$\displaystyle\begin{array}{rcl} y =\rho x + (1 -\rho ^{2})^{1/2}e& &{}\end{array}$$
]

 (3.15)

 has correlation ρ with x.

                
                  
                
                
                  
                
              
Matrix algebra plays an important role in the study of multivariate distributions. For example, in matrix notation, the covariance
                  
                 matrix is [image: 
$$\displaystyle\begin{array}{rcl} V = E{\bigl ((X-\mu )(X-\mu )'\bigr )}& & {}\\ \end{array}$$
]


 and the correlation matrix P
                  
                 (uppercase ρ) is given by [image: 
$$\displaystyle\begin{array}{rcl} \mathrm{P} ={\bigl (\mathop{ \mbox{ diag}}(V )\bigr )}^{-\frac{1} {2} }\:V \:{\bigl (\mathop{\mbox{ diag}}(V )\bigr )}^{-\frac{1} {2} }& & {}\\ \end{array}$$
]




                  
                


                
                  
                
              

                
                  
                
              
When the individual x

                  i
                 are normally distributed, their joint distribution is called the multivariate normal and is notated x ∼ N(μ, V ). The bivariate (p = 2) normal distribution with means μ

                  i
                 = 0, variances [image: 
$$\sigma _{i}^{2} = 1$$
], and correlation ρ = . 7 [image: 
$$\left [\mbox{ hence }V ={ 1.0\ \ 0.7\choose 0.7\ \ 1.0}\right ]$$
] is plotted as a three-dimensional object in Figure 3.9. This is actually one panel of the set of rotated views of the density shown in Figure 3.10. A rotating version (see the shiny

                  
                 screenshot in Figure E.2) of the bivariate
                  
                 normal density example runs in R with the statement[image: A77776_2_En_3_Fig9_HTML.gif]
Fig. 3.9Bivariate Normal density with [image: 
$$(\mu _{1},\sigma _{1}^{2},\mu _{2},\sigma _{2}^{2},\rho ) = (0,1,0,1,.7)$$
] in 3D space with viewing angle = 112. 5∘. A set of eight viewing angles is shown in Figure 3.10





                                [image: A77776_2_En_3_Fig10_HTML.gif]
Fig. 3.10Bivariate Normal density in 3D space with various viewpoints. Figure 3.9 shows a higher resolution view of the 112. 5∘ panel. The reader can view an interactive version of this plot with the shiny app shiny::runApp(system.file("shiny/bivariateNormal", package="HH")). See Figure E.2 for a screenshot.
                                            




                            

                  shiny::runApp(system.file("shiny/bivariateNormal",
              

                                            package="HH"))
              
If X and Y are random vectors with
                  
                 [image: 
$$\displaystyle\begin{array}{rcl} Y = B + CX& & {}\\ \end{array}$$
]


 for some vector B and some matrix C, then [image: 
$$\displaystyle\begin{array}{rcl} E(Y )& =& B + C\,E(X){}\end{array}$$
]

 (3.16)

 and [image: 
$$\displaystyle\begin{array}{rcl} \mathop{\mbox{ var}}(Y )& =& C\,\mathop{\mbox{ var}}(X)\:C'{}\end{array}$$
]

 (3.17)

 If, moreover, X has a multivariate normal distribution, then so does Y. In other words, linear functions of normal r.v.’s are normal. Equations 3.16 and 3.17 generalize the scalar versions in Equations 3.8, 3.9, and 3.10.
                  
                

It follows from Equation 3.17 that if X
1, X
2, X
3, X
4 are univariate random variables, then [image: 
$$\displaystyle\begin{array}{rcl} \mathop{\mbox{ var}}(X_{1} + X_{2})& =& \mathop{\mbox{ var}}(X_{1}) +\mathop{ \mbox{ var}}(X_{2}) + 2\mathop{\mbox{ cov}}(X_{1},X_{2}) {}\\ \mbox{ and}\qquad \qquad \qquad \qquad \quad & & {}\\ \mathop{\mbox{ cov}}(X_{1} + X_{3},X_{2} + X_{4})& =& \mathop{\mbox{ cov}}(X_{1},X_{2}) +\mathop{ \mbox{ cov}}(X_{1},X_{4}) +\mathop{ \mbox{ cov}}(X_{3},X_{2}) +\mathop{ \mbox{ cov}}(X_{3},X_{4}){}\\ \end{array}$$
]




If Y has a k-dimensional multivariate normal distribution with mean μ and covariance matrix V, then [image: 
$$\displaystyle\begin{array}{rcl} Q = (Y -\mu )'V ^{-1}(Y -\mu )& & {}\\ \end{array}$$
]


 has a χ
2 distribution with k degrees of freedom (See Appendix J).
                  
                

                  
                



3.4 Three Probability Distributions
In this section we introduce three probability distributions, the (discrete) binomial distribution and the (continuous) Normal and t distributions, that frequently arise in practice. Details of how to perform probability-related calculations for these and other frequently encountered distributions are discussed in Appendix J.
3.4.1 The Binomial Distribution

                
                  
                
              
The binomial distribution is perhaps the most commonly encountered discrete distribution in statistics. Consider a sequence of n independent trials, or mini-experiments, each of which can result in one of just two possible outcomes. For convenience these outcomes are labeled success and failure although in context the success outcome may not connote a favorable event. Further assume that the probability of success, p, is the same for each trial. Let X denote the number of successes observed in the n trials. Then X has a binomial distribution with parameters n and p. This distribution has mean μ = np and standard deviation [image: 
$$\sigma = \sqrt{np\,(1 - p)}$$
]. We show an illustration of the discrete density for the binomial with n = 15 and p = . 4 in Section J.3.2. In Figure 3.11 we show the discrete density for the binomial with n = 15 and p = . 4, underlaid with the normal approximation
                  
                

                  
                 with [image: 
$$\mu = np = 15 \times.4 = 6$$
] and [image: 
$$\sigma = \sqrt{np(1 - p)} = \sqrt{15 \times.4 \times.6} = \sqrt{3.6} = 1.897$$
].[image: A77776_2_En_3_Fig11_HTML.gif]
Fig. 3.11We show the discrete density for the binomial with n = 15 and p = . 4, underlaid with the normal approximation with [image: 
$$\mu = np = 15 \times.4 = 6$$
] and [image: 
$$\sigma = \sqrt{np(1 - p)} = \sqrt{15 \times.4 \times.6} = \sqrt{3.6} = 1.897$$
]. The dark bar at x = 6 has probability [image: 
$$P(x = 6) =.2066$$
] from the binomial and P(5. 5 < x < 6. 5) = . 2079 from the normal. The dark bar at x = 6 and all bars to its left together have probability P(x ≤ 6) = . 6098 from the binomial and P(x < 6. 5) = . 6039 from the normal approximation. The normal approximations are calculated with the correction for continuity (the interval [6-.5, 6+.5] is the full width of the dark bar at x = 6).




[image: A77776_2_En_3_Figg_HTML.gif]



                
                  
                
                
                  
                
                
                  
                
              
The above scenario is widely applicable. If one randomly samples with replacement from a population with a proportion p of successes, then the number of successes in the sample is binomially distributed. Even if the sampling is without replacement, the number of successes is approximately binomial if the population size is much greater than the sample size; in this case the first two assumptions above are only mildly violated. Applications include the number of voters favoring a candidate in a political poll, the number of patients in a population that suffer from a particular illness, and the number of defective items in one day’s output from an assembly line.
However, it is not unusual for one or more of the binomial assumptions to be violated. For example, suppose we sample without replacement from a population of successes and failures and the population size is not much greater than the sample size, say less than 20 times as large as the sample. Then the trials are not independent and the success probability is not constant from trial to trial. (In this situation the correct distribution to use for X is the hypergeometric distribution. See Appendix J.)
                  
                

Similarly, the binomial model is unlikely to apply to the number of hits by the archer in Section 3.2.1 because her shots (trials) may not be independent and may not have the same probability of a hit.
Usually in practice, we need to calculate not just P(X = x), the probability of achieving exactly x successes, but probabilities of an interval of successes such as P(X ≤ x), the probability of at most x successes, or P(a ≤ X ≤ b), the probability of observing between a and b successes inclusive.
A table of binomial probabilities can be used when n and p appear in the table. Otherwise, as illustrated in Appendix J, R functions can easily be used to produce accurate results.
                  
                


3.4.2 The Normal Distribution

                
                  
                
              
Many natural phenomena follow the normal distribution, whose probability density function is the familiar “bell-shaped” curve, symmetric about
                  
                 the mean μ. In addition, a celebrated theoretical result called the Central Limit Theorem says that the sampling distributions of sample means (see Section 3.5), sample proportions, and sample totals each are approximately normally distributed if the sample size is “sufficiently large.” Since this theorem applies to almost all possible probability distributions from which a sample might be selected, including discrete distributions, the theorem brings the normal distribution into play in a wide variety of circumstances.

                
                  
                
              
If X has a normal distribution with mean μ and standard deviation σ, and we define the standardization of X as [image: 
$$Z ={ X-\mu \over \sigma }$$
], then Z is normally distributed with mean 0 and standard deviation 1, i.e., the standard normal distribution. We write X ∼ N(μ, σ
2) to indicate that X has a normal distribution with mean μ and variance σ
2 (or we could say with standard deviation σ). In this notation, the standard normal distribution is N(0, 1). The density function ϕ(z) and cumulative distribution function Φ(z) are defined in Section J.1.9 and illustrated in Figure 3.12.[image: A77776_2_En_3_Fig12_HTML.gif]
[image: A77776_2_En_3_Figh_HTML.gif]
Fig. 3.12The standard normal density N(0, 1) is shown in the top panel. The darker colored area is [image: 
$$\varPhi (1.645) = P(Z \leq 1.645) =.95$$
]. The lighter colored area is [image: 
$$1 -\varPhi (1.645) = P(Z> 1.645) =.05$$
]. The height of the density function in the top panel at z = 1. 645 is ϕ(1. 645) = . 1031. The cumulative distribution is shown in the bottom panel. The height of the darker line segment (below the curve) at z = 1. 645 is P(Z ≤ 1. 645) = . 95. The height of the lighter line segment (above the curve) at z = 1. 645 is P(Z > 1. 645) = . 05.




                            
The normal distribution is “bell-shaped” and symmetrically distributed about μ, which is also this distribution’s median and mode. Almost all of the probability is concentrated in the interval μ ± 3σ. We use z

                  α
                 to be the solution to the equation P(Z > z

                  α
                ) = α. This is the value on the horizontal axis that has area α under the curve and to its right. For example, z
. 05 = 1. 645. Figure 3.13 shows the normal density function for a N(100, 25) distribution. If X has this distribution, the left shaded area in Figure 3.13 represents 95% of the area under the density function. That is, [image: 
$$\displaystyle\begin{array}{rcl} P(Z <1.645) = P\left (\frac{X-\mu } {\sigma } <1.645\right ) = P(X <108.225) =.95& & {}\\ \end{array}$$
]


 after substituting μ = 100 and σ = 5.
                  
                 The right shaded area is [image: 
$$\displaystyle\begin{array}{rcl} \alpha =.05 = P\left ((X-\mu )/\sigma \geq \varPhi ^{-1}(1-\alpha ) = 1.645\right )& & {}\\ \end{array}$$
]


 A dynamic version of any call to the NTplot function is available as a shiny

                  
                 app in the HH package with the argument shiny=TRUE included as an additional argument, for example

                  NTplot(shiny=TRUE) 
              
A dynamic version of Figure 3.13 is initialized with the call[image: A77776_2_En_3_Fig13_HTML.gif]
Fig. 3.13A normal curve centered on the assumed true mean μ = 100. We assume σ = 5 and α = . 05. The left lightly shaded area is [image: 
$$.95 = P\left (z = (X-\mu )/\sigma \; \leq \;\varPhi ^{-1}(1-\alpha ) = 1.645\right )$$
]. The right darkly shaded area is [image: 
$$\alpha =.05 = P\left (z = (X-\mu )/\sigma \; \geq \;\varPhi ^{-1}(1-\alpha ) = 1.645\right )$$
]. The plot shows both the [image: 
$$\bar{x}$$
] scale and (in smaller font) the z scale. The table below the plot shows μ
0 and the right critical value [image: 
$$\bar{x}_{\mbox{ crit.R}}$$
] in both scales. The critical value in the z scale is directly from the normal table.




                            

                  NTplot(mean0=100, mean1=NA, xbar=NA, xlim=c(75, 125),
              

                         sd=5, digits=6, zaxis=TRUE, cex.z=0.6,
              

                         cex.prob=.9, shiny=TRUE)
              
A screenshot of a dynamic NTplot example is in Figure E.1.

3.4.3 The (Student’s) t Distribution

                
                  
                
                
                  
                
              
The t distribution is similar to the standard normal distribution in that its density is a bell-shaped curve symmetric about 0. However, as we see in Figure 3.14, where we compare several t distributions to the normal distribution, the probability density function for the t is lower in the center and “heavier” in the tails. If the mean of a sample of size n is standardized with a sample standard deviation s rather than with a population standard deviation σ, then the resulting standardization, [image: 
$${ \bar{X}-\mu \over s/\sqrt{n}}$$
], has a Student’s t distribution with degrees of freedom

                  
                 parameter n − 1. The t distribution is used for inference on population means and regression coefficients.[image: A77776_2_En_3_Fig14_HTML.gif]
Fig. 3.14These panels are similar to Figure 3.13, the first panel is identical to Figure 3.13. The remaining panels show t-distributions with 30 df, 10 df, and 2 df. Each panel has less area in the center and more area in the tails. Use the reference line at y = . 08 to see the drop in central area, use the thickness of the tails at [image: 
$$\bar{x} = 120$$
] to see the increase in the probability in the tails. Use the location of the critical value [image: 
$$w_{c} =\bar{ x}_{c}$$
] on the graph and in the table below the graph to see that the critical value for the α = . 05 test is moving away from the null hypothesis value μ
0 as the df gets larger.




                            
That [image: 
$${\bar{X}-\mu \over s/\sqrt{n}}$$
] has a t distribution rests on the fact that [image: 
$$\bar{X}$$
] and s are independent random variables when sampling from a normal population.

                
                  
                
              

                
                  
                
              
As the sample size n and hence the degrees of freedom get large, the sample standard deviation s increasingly approximates σ so that [image: 
$${\bar{X}-\mu \over s/\sqrt{n}}$$
] increasingly approximates [image: 
$${\bar{X}-\mu \over \sigma /\sqrt{n}}$$
]. In other words, as the degrees of freedom increases, a t distribution increasingly resembles a standard normal distribution.
                  
                

                  
                



3.5 Sampling Distributions

              
                
              
            
In Chapter 1 we learn that knowledge about characteristics of populations can be gleaned from analogous characteristics of random samples from these populations. Also recall that population characteristics are called parameters and sample characteristics are called statistics. In the next two sections we discuss the two main techniques for using statistics to infer about parameters: estimation, and hypothesis testing. Implementation of these techniques requires that we use knowledge about the likely values of statistics. Such information about statistics is contained in their sampling distribution. The sampling distribution of a statistic depends on our assumed knowledge of the distribution of values in the population to which we are inferring. The term standard error

                
               is used to refer to the standard deviation of a sampling distribution.
Consider first the mean [image: 
$$\bar{X}$$
] of a sample of n items randomly selected from a normal population, N(μ, σ
2). It can be shown that the sampling distribution of [image: 
$$\bar{X}$$
] is also normally distributed with this same mean but with a much smaller variance: [image: 
$$\displaystyle\begin{array}{rcl} \bar{X} \sim N(\mu,\sigma ^{2}/n)& & {}\\ \end{array}$$
]


 We illustrate this phenomenon in Figures 3.15 and 3.16. Figure 3.15 shows the individual observations and their means. Figure 3.16 shows the distribution of the means.[image: A77776_2_En_3_Fig15_HTML.jpg]
Fig. 3.15Each panel shows 10 sets of n observations from the [image: 
$$N(\mu = 100,\;\sigma ^{2} = 5^{2})$$
] distribution. The number n (from the set {1, 4, 16, 64}) differs by panel. The open circles show each individual observation. The semi-transparent triangle overlay shows the mean of each set of observations. As n gets larger, the set of 10 means are closer together. In the n = 1 panel, the means are identical to the individual observations and they occupy the full width of the panel. More precisely the variance of the means in the n = 1 panel is [image: 
$$\sigma ^{2} = 5^{2}$$
]. In the n = 4 panel, the means are the average of 4 observations and they spread over only the central half of the panel with [image: 
$$\sigma _{\bar{x}}^{2} = 5^{2}/4$$
]. In the n = 16 panel, the means are the average of 16 observations and they spread over only the central quarter of the panel with [image: 
$$\sigma _{\bar{x}}^{2} = 5^{2}/16$$
]. In the n = 64 panel, the means are the average of 64 observations and they spread over only the central eighth of the panel with [image: 
$$\sigma _{\bar{x}}^{2} = 5^{2}/64$$
].




                            [image: A77776_2_En_3_Fig16_HTML.gif]
Fig. 3.16These panels are also similar to Figure 3.13, with both the [image: 
$$\bar{x}$$
]-scale and the z-scale shown in each panel of the graph. Again the panel with n = 1 is identical to Figure 3.13. The remaining panels show the sampling distribution of [image: 
$$\bar{x}$$
] as n increases. Each time the sample size goes up by a multiple of 4, the distance on the [image: 
$$\bar{x}$$
]-scale from the critical value [image: 
$$w_{c} =\bar{ x}_{c}$$
] to μ

                        o
                       is halved, and the height of the density is doubled. On the z-scale, the distance from [image: 
$$w_{c} =\bar{ x}_{c}$$
] to μ

                        o
                       is always exactly z

                        α
                       = 1. 645.




                        
In the more likely situation where σ
2 is unknown, analogous probability statements are made with reference to the Student’s t distribution.
Next suppose that the population is not necessarily normal. Then under fairly general conditions, a statistical theory result called the Central Limit Theorem
                
               states that [image: 
$$\bar{X}$$
] has “approximately” a N(μ, σ
2∕n) distribution if the sample size n is “sufficiently large”. Thus, the inferential statements concerning μ made in the normal distribution case are also approximately valid if the population is not normal.
What is meant here by “approximately” and “sufficiently large”? We mean that the closer the population is to a normal population, the smaller the sample size needs to be for the approximation to be acceptably accurate. Unless the population is multimodal or severely skewed, a sample size of 30 to 50 is usually sufficient for the approximation to hold.
                
              

Another application of the Central Limit Theorem
                
               implies that the sampling distribution of the proportion [image: 
$$\hat{p} = X/n$$
] of successes in n binomial trials is approximately normally distributed with mean μ = np and variance σ
2 = npq, where [image: 
$$q = 1 - p$$
]. This result is used for inferences concerning the proportion of successes in a dichotomous
                
               population where the binomial assumptions apply.
If S
2 is the variance of a random sample of size n from a normal population having variance σ
2, then the sampling distribution of [image: 
$$(n - 1)S^{2}/\sigma ^{2}$$
] is χ
2 with n − 1 degrees of freedom. We use this result for inferences concerning the population standard deviation σ.
                
              

                
              


              
                
              
              
                
              
            

              
                
              
              
                
              
            

3.6 Estimation

              
                
              
            
A fundamental task of statistical analysis is inference of the characteristics of a large population from a sample of n items or individuals selected at random from the population. Sampling is commonly undertaken because it is

              a.cheaper and

 

b.less prone to error

 



            
than examining the entire population. Estimation is one of the two broad categories of statistical techniques used for this purpose. The other is hypothesis testing, discussed in Section 3.7.
                
              

An estimator

                
               is a formula that can be evaluated with numbers from the sample. When the sample values are plugged into the formula, the result becomes an estimate.
                
               An estimator is a particular example of a statistic.
3.6.1 Statistical Models

                
                  
                
                
                  
                
              
A key component of statistical analysis involves proposing a statistical model. A statistical model is a relatively simple approximation to account for complex phenomena that generate data. A statistical model consists of one or more equations involving both random variables and parameters. The random variables have stated or assumed distributions. The parameters are unknown fixed quantities. The random components of statistical models account for the inherent variability in most observed phenomena. Subsequent chapters of this book contain numerous examples of statistical models.
The term estimation is used to describe the process of determining specific values for the parameters by fitting the model to the data. This is followed by determinations of the quality of the fit, often via hypothesis testing or evaluation of an index of goodness-of-fit.
Model equations are often of the form [image: 
$$\displaystyle\begin{array}{rcl} \mathtt{data = model + residual}& & {}\\ \end{array}$$
]


 where model is an equation that explains most of the variation in the data, and residual, or lack-of-fit, represents the portion of the data that is not accounted for by the model. A good-quality model is one where model accounts for most of the variability in the data, that is, the data are well fitted by the model.
A proposed model provides a framework for the statistical analysis. Experienced analysts know how to match models to data and the method of data collection. They are also prepared to work with a wide variety of models, some of which are discussed in subsequent chapters of this book. Statistical analysis then proceeds by estimating the model and then providing figures and tables to support a discussion of the model fit. 
                  
                


3.6.2 Point and Interval Estimators

                
                  
                  
                
                
                  
                
              
There are essentially two types of estimation: point estimation and interval estimation.
A typical example begins with a sample of n observations collected from a normal distribution with unknown mean μ and unknown standard deviation σ. We calculate the sample statistics [image: 
$$\displaystyle\begin{array}{rcl} \bar{x}& =& \left (\sum _{i=1}^{n}x_{ i}\right )/n {}\\ s^{2}& =& \left (\sum _{ i=1}^{n}(x -\bar{ x})^{2}\right )/(n - 1) {}\\ \end{array}$$
]




Then [image: 
$$\bar{x}$$
] is a point estimator for μ. Define the standard error of the mean [image: 
$$s_{\bar{x}}$$
] as [image: 
$$s_{\bar{x}} = s/\!\sqrt{n}$$
]. We then have [image: 
$$\displaystyle\begin{array}{rcl} \bar{x} \pm t_{\alpha /2,\nu }\,s_{\bar{x}} = \left (\bar{x} - t_{\alpha /2,\nu }\,s_{\bar{x}},\;\bar{x} + t_{\alpha /2,\nu }\,s_{\bar{x}}\right )& & {}\\ \end{array}$$
]


 as a two-sided 100(1 −α)% confidence interval for μ.
For specificity, let us look in Figure 3.17 at the situation with n = 25, [image: 
$$\bar{x} = 8.5$$
], ν = 24, s
2 = 4, α = . 05. From the t-table, the critical value [image: 
$$t_{\alpha /2,24} = 2.064$$
]. We get [image: 
$$s_{\bar{x}} = s/\!\sqrt{n} = 2/\!\sqrt{25} =.4$$
] as the standard error of the mean.[image: A77776_2_En_3_Fig17_HTML.gif]
Fig. 3.17Confidence interval plot for the t distribution with n = 25, [image: 
$$\bar{x} = 8.5$$
], ν = 24, s
2 = 4, α = . 05. We calculate [image: 
$$t_{\alpha /2,24} = 2.064$$
] and the two-sided 95% confidence interval (7. 674, 9. 326). The algebra and R notation for the estimators are shown in Table 3.7.




                                Table 3.7Algebra and R notation for the example in Figure 3.17.


	
                            [image: 
$$\bar{x}$$
]
                          
	
                              > xbar <- 8.5
                          

	
                            s
                          
	
                              > s <- sqrt(4)
                          

	
                            n
                          
	
                              > n <- 25
                          

	
                            [image: 
$$s_{\bar{x}}$$
]
                          
	
                              > s.xbar <- s/sqrt(n)
                          

	 	
                              > s.xbar
                          

	 	
                              [1] 0.4
                          

	
                            t
                            
α∕2, 24
                          
	
                              > qt(.975, df=24)
                          

	 	
                              [1] 2.063899
                          

	
                            [image: 
$$\bar{x} \pm t_{\alpha /2,24}\;s_{\bar{x}}$$
]
                          
	
                              8.5 + c(-1,1) * 2.064 * 0.4
                          

	 	
                              [1] 7.6744 9.3256
                          




                            

                
                  
                
                
                  
                
              
Point estimators are single numbers calculated from the sample, in this example [image: 
$$\hat{\mu }= 8.5$$
]. Interval estimators are intervals within which the parameter is expected to fall, with a certain degree of confidence, in this example [image: 
$$95\%\,\mbox{ CI}(\mu ) = 8.5 \pm 2.064 \times 0.4 = (7.6744,\,9.3256)$$
]. Interval estimators are generally more useful than point estimators because they indicate the precision of the estimate. Often, as here, interval estimators are of the form: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ point estimate $\pm $ constant $\times $ standard error}& & {}\\ \end{array}$$
]


 where “standard error” is the observed standard deviation of the statistic used as the point estimate. The constant is a percentile of the standardized sampling distribution of the point estimator. We summarize the calculations in Table 3.7.

3.6.3 Criteria for Point Estimators

                
                  
                
              
There are a number of criteria for what constitutes “good” point estimators. Here is a heuristic description of some of these. unbiasedness:

                          
                         The expected value of the sampling distribution of the estimator is the parameter being estimated. The bias
                          
                         is defined as: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ bias = expected value of sampling distribution $-$ parameter}& & {}\\ \end{array}$$
]


 Unbiasedness is not too crucial if the bias is small and if the bias decreases with increasing n. The sample mean [image: 
$$\bar{x}$$
] is an unbiased estimator of the population mean μ and the sample variance s
2 is an unbiased estimate of the population variance σ
2. The sample standard deviation s is a biased estimator of the population standard deviation σ. However, the bias of s decreases toward zero as the sample size increases; we say that s is an asymptotically unbiased estimator of σ.


small variance:Higher precision.
                          
                        

                          
                         For example, for estimating the mean μ of a normal population, the variance [image: 
$$s_{\bar{x}} = s/\!\sqrt{n}$$
] of the sample mean [image: 
$$\bar{x}$$
] is less than the variance [image: 
$$s_{\mathop{ x}\limits ^{\mbox{ $\boldsymbol{ \perp }$}}} = \sqrt{ \frac{\pi }{2}}\,s/\!\sqrt{n}$$
] of the sample median [image: 
$$\mathop{x}\limits ^{\mbox{ $\boldsymbol{ \perp }$}}$$
].
                          
                        

                          
                        



consistency:

                          
                         The quality of the estimator improves as n increases.


sufficiency:

                          
                         the estimator fully uses all the sample information. Example: If X is distributed as continuous uniform on [0, a], how would you estimate a? Since the population mean is a∕2, you might think that [image: 
$$2\bar{x}$$
] is a “good” estimator for a. The largest item in the sample of size n, denoted x
(n), is a better and sufficient estimator of a. This estimator cannot overestimate a while [image: 
$$2\bar{x}$$
] can either underestimate or overestimate a. If x
(n) exceeds [image: 
$$2\bar{x}$$
], then it must be closer to a than is [image: 
$$2\bar{x}$$
].
                          
                          
                        







3.6.4 Confidence Interval Estimation
A confidence interval estimate of a parameter is an interval that has a certain probability, called its confidence coefficient,
                  
                 of containing the parameter. The confidence coefficient is usually denoted 1 −α

                  
                 or as a percentage, 100(1 −α)%. Common values for the confidence coefficient are 95% and 99%, corresponding to α = . 05 or. 01, respectively. Figure 3.17 illustrates a 95% confidence interval for the mean of a normal distribution.
If we construct a 95% confidence interval (CI), what is the meaning of 95%? It is easy to incorrectly believe that 95% is the probability that the CI contains the parameter. This is false because the statement “CI contains the parameter” is not an event, but rather a situation that is certainly either true or false. The correct interpretation refers to the process used to construct the CI: If, hypothetically, many people were to use this same formula to construct this CI, plugging in the results of their individual random samples, about 95% of the CI’s of these many people would contain the parameter and about 5% of the CI’s would exclude the parameter.
It is important to appreciate the tradeoff between three quantities: 	confidence coefficient (the closer to 1 the better)

	interval width (the narrower the better)

	sample size (the smaller the better)





In practice it is impossible to optimize all three quantities simultaneously. There is an interrelationship among the three so that specification of two of them uniquely determines the third. A common practical problem is to seek the sample size required to attain a given interval width and confidence. Examples of such formulas appear in Section 5.​6


3.6.5 Example—Confidence Interval on the Mean μ of a Population Having Known Standard Deviation
The interpretation of the confidence coefficient may be further clarified by the following illustration of the construction of a 100(1 −α)% confidence interval on an unknown mean μ of a normal population having known standard deviation σ, using a random sample of size n from this population. If [image: 
$$\bar{X}$$
] denotes the sample mean, then [image: 
$$\frac{\bar{X}-\mu } {\sigma /\sqrt{n}}$$
] has a standard normal distribution. Let [image: 
$$z_{\mbox{ $ \frac{\alpha }{ 2} $}}$$
] denote the [image: 
$$100(1 - \frac{\alpha } {2})^{\mbox{ th}}$$
] percentile of this distribution. Then [image: 
$$\displaystyle\begin{array}{rcl} P\left (-z_{\mbox{ $ \frac{\alpha }{ 2} $}} <\frac{\bar{X}-\mu } {\sigma /\sqrt{n}} <z_{\mbox{ $ \frac{\alpha }{ 2} $}}\right ) = 1-\alpha & & {}\\ \end{array}$$
]


 After a bit of algebraic rearrangement, this becomes [image: 
$$\displaystyle\begin{array}{rcl} P\left (\bar{X} - z_{\mbox{ $ \frac{\alpha }{ 2} $}} \frac{\sigma } {\sqrt{n}} <\mu <\bar{ X} + z_{\mbox{ $ \frac{\alpha }{ 2} $}} \frac{\sigma } {\sqrt{n}}\right ) = 1-\alpha & & {}\\ \end{array}$$
]


 The endpoints of the interval [image: 
$$\left (\bar{X} - z_{\mbox{ $ \frac{\alpha }{ 2} $}} \frac{\sigma } {\sqrt{n}},\ \bar{X} + z_{\mbox{ $ \frac{\alpha }{ 2} $}} \frac{\sigma } {\sqrt{n}}\right )$$
] are random variables, so the probability statement refers to the probability that the interval contains the parameter, not the probability that the parameter is contained in the interval.
In practice, we replace the random variable [image: 
$$\bar{X}$$
] with [image: 
$$\bar{x}$$
], the realized value from the sample, and wind up with the 100(1 −α)% confidence interval for μ: [image: 
$$\displaystyle\begin{array}{rcl} \left (\bar{x} - z_{\mbox{ $ \frac{\alpha }{ 2} $}} \frac{\sigma } {\sqrt{n}},\ \bar{x} + z_{\mbox{ $ \frac{\alpha }{ 2} $}} \frac{\sigma } {\sqrt{n}}\right )& &{}\end{array}$$
]

 (3.18)

 Figure 3.18 shows an example from the situation with known variance σ
2.[image: A77776_2_En_3_Fig18_HTML.gif]
Fig. 3.18Confidence interval plot for the normal distribution with n = 25, [image: 
$$\bar{x} = 8.5$$
], σ
2 = 4, α = . 05. We calculate [image: 
$$z_{\alpha /2} = 1.96$$
] and the two-sided 95% confidence interval (7. 716, 9. 284). Compare this to the t-based confidence interval in Figure 3.17 and note that the width of the interval is narrower here because we have more information, that is, because we know the variance, we don’t have to estimate the variance.




                            

                
                  
                
                
                  
                
              

3.6.6 Example—One-Sided Confidence Intervals
One-sided
                  
                  
                 confidence intervals correspond to one-sided tests of hypotheses. Such intervals have infinite width and therefore are much less commonly used in practice than two-sided confidence intervals, which have finite width. The rationale for using one-sided intervals matches that for one-sided tests—sometimes the analyst believes the value of a parameter is at least or at most some value rather than on either side. One-sided confidence intervals on the mean of a population having known standard deviation are shown in Table 5.​1 Other examples of one-sided confidence intervals appear in Tables 5.​2 and 5.​3.
                  
                

                  
                 Figure 3.19 shows a one-sided example from the situation with known variance σ
2.[image: A77776_2_En_3_Fig19_HTML.gif]
Fig. 3.19One-sided confidence interval plot for the normal distribution with n = 25, [image: 
$$\bar{x} = 8.5$$
], σ
2 = 4, α = . 05. We are confident that the true mean is larger than the calculated value. We calculate z

                          α
                         = 1. 645 and the one-sided 95% confidence interval (7. 842, ∞).




                            

                
                  
                
                
                  
                
              


3.7 Hypothesis Testing

              
                
              
            
The statistician sets up two competing hypotheses, the null hypothesis H
0 and the alternative hypothesis H
1, for example in Figure 3.21 in Section 3.8,

H
0: μ = 32 vs H
1: μ ≠ 32. The task is to decide whether the sample evidence better supports H
0 (decision to “retain H
0”) or H
1 (decision to “reject H
0”).
There are two types of errors: the Type I error
                
               of rejecting H
0 when H
0 is true, and the Type II error
                
               of retaining H
0 when H
1 is true. In the classical hypothesis setup, the statistician prespecifies α

                
              —the maximum probability of committing a Type I error. Subject to this constraint, we select a testing procedure that gives good control over β

                
              —the probability of committing a Type II error. This probability is a function of the unknown parameter being tested. A plot of the probability against the parameter is called an operating characteristic curve

                
               (O.C. curve) of the test.
The power

                
               of a hypothesis test is the probability of correctly rejecting a false null hypothesis, equivalently, the probability 1 −β

                
              . A power curve

                
               is a plot of the probability of rejecting H
0 against the true value of the parameter. It contains information identical to that conveyed by an O.C. curve.
                
               It is a convention in various scientific fields whether the power or the O.C. curve is used. We illustrate both in Figure 3.20. Statisticians can determine the sample
                
               size needed to conduct a test that has a high probability of detecting a departure from H
0 by studying O.C. or power curves for a variety of proposed sample sizes. Examination of these curves displays the tradeoffs between Type I error, Type II error, and sample size. See Figure 3.20 for a static example. The reader can explore these options dynamically with the shiny=TRUE
                            
                
               argument to the NTplot function. Figure E.1 shows a screenshot of our shiny app duplicating Figure 3.20. Further discussion of Operating Characteristic and power curves is in Section 3.9.[image: A77776_2_En_3_Fig20_HTML.gif]
Fig. 3.20The three sets of panels show the same null hypothesis (μ
0 = 8) and alternative hypothesis (μ
1 = 8. 411) with three different sample sizes (n = 32, 64, 128) and their corresponding powers (.315,.500,.752). Each set contains a normal plot in the top panel, the corresponding power curve in the middle panel, and the beta curve (operating characteristic curve) in the bottom panel.
The pink area in each top panel shows the power, the probability that an observed [image: 
$$\bar{x}$$
] will be to the right of the critical value [image: 
$$\bar{x}_{C} = 8.411$$
] when the true mean is μ
1 = 8. 411. The gray curve in each middle panel is the power curve, showing the power for all possible values of the alternate mean μ
1. The crosshairs in the middle panel are at μ
1 = 8. 411 and power(μ
1 = 8. 411). The red area in the top panels shows [image: 
$$\beta = 1 -$$
] power, the probability of the Type II Error. The gray curve in each bottom panel is the beta curve (the Operating Characteristic curve) showing the β for all possible values of the alternate mean μ
1. The crosshairs in the bottom panel are at μ
1 = 8. 411 and beta(μ
1 = 8. 411). As we increase the sample size (move from the left set of panels toward the right set of panels), the density functions get taller and thinner while maintaining a constant area of 1, the power and beta curves get steeper, and the power increases (hence beta decreases) for any specified value of μ
1. The reader can duplicate these panels by running the R code in file HHscriptnames(3). The reader can set up a dynamic version of this plot from the same code with NTplot(tmp64, shiny=TRUE) and then clicking the animate icon for the n-slider. See Figure E.1 for a screenshot. The screenshot initially doesn’t show the Power and Beta curves. They can be included by checking the Power and Beta checkboxes on the Display Options tab.




                        
Do not confuse the decision to retain H
0 with the statement that H
0 is true. We might be committing a Type II error.
                
               Similarly, the decision to reject H
0 is not the same as saying that H
0 is false because we might be committing a Type I error.
Commonly selected values of α are.05 or.01. The choice is sometimes governed by what is traditional in a research area.
With the prespecification of α, the statistician maintains better control over Type I error than Type II error. When we have a choice, the names H
0 and H
1 should be assigned such that the hypothesis with the more serious error is called H
0 and its more serious error is the Type I error. The hypothesis with the less serious error is called H
1 and its less serious error is the Type II error. In many applications, H
0 is essentially the statement that the status quo is better, while H
1 is the statement that an innovation is better. The Type I error of incorrectly deciding in favor of an innovation is typically more serious than the error of incorrectly maintaining the status quo because innovation is usually costly. As a result, classical testing puts the burden of proof on the innovation [image: 
$$H_{1};H_{0}$$
] is retained unless there is compelling evidence not to do so.
The preceding rules for deciding which hypothesis is H
0 are based on the fact that classical hypothesis testing places more control over Type I error at the cost of reduced control over Type II error. The logic for this approach is seen by comparing in Table 3.8 the definitions of these two errors in the hypothesis testing context with the potential errors in a U.S. courtroom.
                
              

                
              

                
              

                
              
                            Table 3.8Comparison of Hypothesis Testing with the Decision Options in a Court of Law


	Hypothesis Testing
	 	Court of Law

	 	True situation
	 	 	True situation

	Decision    
	
H
0 true
	
H
0 false
	 	Decision    
	Innocent
	Guilty

	Reject H
0

	Type I error   
	correct
	 	Convict
	greater error  
	correct

	Retain H
0

	correct
	Type II error
	 	Acquit
	correct
	lesser error





In the United States, the error of convicting an innocent defendant is viewed as far more serious than the error of acquitting a guilty defendant. Accordingly, the U.S. legal system places the burden of proof on the prosecution to establish guilt beyond a reasonable doubt. If sufficient evidence is not presented to the court, the defendant is acquitted. Similarly, in hypothesis testing, the burden is placed on the analyst to provide convincing evidence that H
0 is false; in the absence of such evidence, H
0 is accepted. Continuing the analogy, in the hypothesis testing framework, the way to reduce the probability of committing a Type II error without compromising control of Type I error is to seek an increased sample size. In the legal framework, courts can best reduce the probability of acquitting guilty defendants by obtaining as much relevant evidence as possible.
Table 3.8 also demonstrates that if we modify a hypothesis testing procedure to less readily reject a null hypothesis, this results in both greater control of Type I error and reduced control of Type II error.
Tests of hypotheses are conducted by determining what sample results would be likely if H
0 is true. If then a sufficiently unlikely sample statistic is observed, doubt is cast on the truth of H
0; i.e., H
0 is rejected.
Most tests are constructed by calculating a test statistic from a random sample. This is compared to a critical value, or values. If the test statistic is on one side of the critical value(s), H
0 is retained; if on the other side, H
0 is rejected. If the value of the test statistic leads to rejection of H
0, the test statistic is said to be (statistically) significant.
                
              

                
              

A criticism of classical hypothesis testing is the requirement that α be prespecified. One way around this is to calculate the p-value
                
               of the test.
The p-value is the probability of observing, in hypothetical repeated samples from the null distribution (that is, when H
0 is true), a value of the test statistic at least as extreme in the direction of H
1 as the test statistic calculated from the present sample.
For most testing procedures, calculating the p-value requires the use of the computer. We reject H
0 (that is, we make the decision to act as if H
0 does not describe the world) if α > p-value; we retain H
0 (that is, we make the decision to act as if H
0 does describe the world) otherwise. Then the analyst needs only to know how α compares with the p-value, and does not have to commit to a particular value of α. Most software provides p-values
                
               as part of the output rather than requesting α as part of the input.
Another criticism of classical hypothesis testing is that if H
0 is barely false, it is always possible to reject H
0 simply by taking a large enough sample size. For example, if we test [image: 
$$H_{0}: \mu = 32$$
], where μ is the mean amount of soda a bottling plant puts into 32-ounce (0.946 liter) bottles, and if in reality, μ = 32. 001 ounces, H
0 can be rejected even though as a practical matter it makes no sense to act as though anything is wrong with the filling mechanism. This would be an instance of a statistically significant result that is not of practical significance. Because of this criticism, many statisticians are much more comfortable using CIs than tests.
In practice, a very small p-value may be regarded as sufficiently strong evidence against H
0 to convince us to act as though H
0 is false (that is, as though H
0 does not describe the world). However, even in this situation and especially if the sample size is large, we should be mindful of the possibility that one is making a Type I error. Also, we should always be alert to the possibility that an underlying assumption about the population is incorrect; if so, the p-value calculation may be distorted.
                
              

                
              


3.8 Examples of Statistical Tests
Suppose in the example of the previous section, the standard deviation of fill volume is known to be 0.3 ounces, and that a sample of 100 bottles yields a mean of 31.94 ounces. If the alternative hypothesis is [image: 
$$H_{1}: \mu \neq 32$$
], then we should reject H
0 if [image: 
$$\bar{x}$$
] is sufficiently above or below 32. We illustrate this example in Figure 3.21. In this example, in order to maintain Type I error
                
               probability at α = . 01, we should reject H
0 if [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{lc lcr@{\,}c@{}c@{}rcl} \bar{x}& <&32&-& z_{.005}\,& \sigma &/&\sqrt{n}& \\ & =&32&-&2.576\,&(0.3)&/& 10& =&31.923\end{array} & & {}\\ \end{array}$$
]




                
                
               or [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{lc lcr@{\,}c@{}c@{}rcl} \bar{x}&>&32&+& z_{.005}\,& \sigma &/&\sqrt{n}& \\ & =&32&+&2.576\,&(0.3)&/& 10& =&32.077\end{array} & & {}\\ \end{array}$$
]


 Since [image: 
$$\bar{x}$$
] meets neither condition, we should retain H
0 when testing at α = . 01. This is an example of a “two-tailed” (or “two-sided”) test because we reject H
0 if [image: 
$$\bar{x}$$
] lies sufficiently far on either tail of the Z distribution with the null hypothesized mean.
At this point we might ask whether a larger choice of α would have led to the “retain H
0” decision. This is answered by finding the p-value, here equal to [image: 
$$2P(Z> \vert z_{\mbox{ calc}}\vert )$$
] for [image: 
$$z_{\mbox{ calc}} = (\bar{x} -\mu _{0})/(\sigma /\sqrt{n}) = -2$$
]. Thus p-value[image: 
$$= 2P(Z> 2.00) = 0.046$$
]. Then any choice of α ≤ 0. 046 requires retention of H
0; i.e., the decision to act as if the filling machine is in control.
A two-tailed test can be conducted as follows. Reject the null hypothesis at level α if the null hypothesized value of the parameter lies outside the 100(1 −α)% confidence interval for the parameter.
                
                
              

                
              

[image: A77776_2_En_3_Fig21_HTML.gif]
Fig. 3.21Test whether the bottle production is within bounds. The figure shows a two-sided rejection region—anything in the deep blue region outside the critical bounds [image: 
$$(\bar{x}_{\mbox{ critLeft}} = 31.92,\,\bar{x}_{\mbox{ critRight}} = 32.08)$$
]. The observed value [image: 
$$\bar{x} = 31.94$$
] is within the central light-blue do-not-reject region. The p-value is the green shaded area outside the bounds [image: 
$$(\bar{x} = 31.94,\,\bar{x}_{\mbox{ otherside}} = 32.06)$$
] where [image: 
$$\bar{x}_{\mbox{ otherside}} =\mu _{0} + (\mu _{0} -\bar{ x}) = 32.06$$
] is the value equally far from the null value μ
0 = 32 in the other direction.



Sometimes analysts prefer to conduct a “one-tailed” (or “one-sided”)
                
                
               test where the alternative hypothesis statement is a one-sided inequality. Suppose in the soda bottling example it was felt that the error of incorrectly claiming bottles are being underfilled is much more serious than an error of incorrectly claiming bottles are being overfilled. We illustrate the one-tailed test in Figure 3.22. Then we might test [image: 
$$H_{0}: \mu \geq 32$$
] vs H
1: μ < 32, because this way the more serious error is the better controlled Type I error.
                
               Now H
0 will be rejected only when [image: 
$$\bar{x}$$
] is sufficiently below 32. If once again we take α = . 01, we reject H
0 if [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{lc l@{}c@{}r@{\,}c@{}c@{}rcl} \bar{x}& <&32&-& z_{.01}\,& \sigma &/&\sqrt{n}& \\ & =&32&-&2.326\,&(0.3)&/& 10& =&31.93\end{array} & & {}\\ \end{array}$$
]


 As with the two-tailed test, H
0 is retained.[image: A77776_2_En_3_Fig22_HTML.jpg]
Fig. 3.22Test whether the bottle production is within bounds. The figure shows a one-sided rejection region—anything in the deep blue region below the limit [image: 
$$\bar{x}_{c} = 31.93$$
]. The observed value [image: 
$$\bar{x} = 31.94$$
] is in the right light-blue do-not-reject region. The p-value is the green shaded area to the left of [image: 
$$\bar{x} = 31.94)$$
].




                        

              
                
              
            
Note that, if instead we had observed [image: 
$$\bar{x} = 31.925$$
] ounces, we would have rejected H
0 with the one-tailed alternative but retained it with the two-tailed alternative. The explanation for this distinction is that the portion of the left side of the parameter space where H
1 is true is larger under the one-tailed setup than under the analogous two-tailed setup.

3.9 Power and Operating Characteristic (O.C.) (Beta) Curves

              
                
              
              
                
              
              
                
              
            
These two types of curves are used to assess the degree of Type II error control of a proposed test. The O.C. curve is a plot of the probability of retaining H
0 under the condition of a specified value of the parameter vs the specified value of the parameter being tested, and the power curve is a plot of the probability of rejecting H
0 vs the parameter being tested. These two plots give equivalent information, and the choice of which to use is a matter of taste or tradition in one’s discipline.
Power and O.C. curves are used to display the menu of competing choices of sample size, α, and Type II error probability. One desires that all three of these quantities be as small as possible, but fixing any two of them uniquely determines the third. Analysts commonly use one of these curves to assess the needed sample size to achieve desired control over the two errors. If the required sample size is infeasibly large, the analyst can see what combinations of diminished control over the two errors are possible with the maximum attainable sample size. Note that β = P(Type II error) is a function of the true value of the unknown parameter being tested and that α is the maximum probability of committing a Type I error.
                
              

                
               In the case discussed above, β = P(Type II error | μ

                a
              ) is a function of the true (and unknown) value μ

                a
               of the parameter.
We illustrate the formulation of an O.C. curve and its construction using R. The pnorm function calculates the normal c.d.f. Φ.
                
               The qnorm function calculated the inverse normal c.d.f. Φ
−1.
Consider a situation where we have a normal population with unknown mean μ and known s.d. σ = 2. 0. Suppose we wish to test [image: 
$$H_{0}: \mu \leq 8$$
] vs [image: 
$$H_{1}: \mu> 8$$
], using α = . 05 and a sample of n = 64 items. Here we retain H
0 if [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{lcllc@{}c@{}l} \bar{X}& \leq &\mu _{0} & +&\varPhi ^{-1}(.95)&\ &\sigma /\sqrt{n} \\ & =&8&+& 1.645 &\ &2/8 \\ & =&{8.411}\\ \end{array} & & {}\\ \end{array}$$
]




i.e., H
0 is retained if [image: 
$$\bar{X} \leq 8.411.$$
] Since the true μ is unknown, the probability that H
0 is retained is a function of this μ:

[image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{lcl} P(\bar{X} \leq 8.411\mid \mu )& =&P\left [ \frac{\bar{X}-\mu } {\sigma /\sqrt{n}} \leq \frac{8.411-\mu } {(2/8)} \right ] \\ & =&P\left [Z \leq 4(8.411-\mu )\right ] \\ & =&\varPhi (33.644 - 4\mu )\\ \end{array} & & {}\\ \end{array}$$
]


 where Z is N(0, 1). The power curve for this problem is the plot of [image: 
$$1 -\varPhi (33.644 - 4\mu )$$
] vs μ. Figure 3.23 shows the normal plot under both the null and alternative hypotheses for several values of μ
1, and the associated power plot and beta (Operating Characteristic) plots. The power and beta curves in all three columns of Figure 3.23 are identical. The crosshairs identify the location on the curves of the power and probability of the Type II error for the specified value μ

                a
               of the alternative.[image: A77776_2_En_3_Fig23_HTML.gif]
Fig. 3.23The three sets of panels show the same null hypothesis (μ
0 = 8) with a sequence of alternative hypothesis values ([image: 
$$\mu _{1} = 8,\;\mu _{1} = 8.411 =\mu _{c},\;\mu _{1} = 8.7314$$
]) and their corresponding powers (.05,.5,.90). Each set contains a normal plot in the top panel, the corresponding power curve in the middle panel, and the beta curve in the bottom panel.
Start on the right with μ
1 = 8. 7314, power =.90, and β = . 10. In this right-most set, the μ
1 and μ
0 are far enough apart that there is less overprinting in the top axis. The pink area in the top panel shows the power, the probability that an observed [image: 
$$\bar{x}$$
] will be to the right of the critical value [image: 
$$\bar{x}_{C} =\mu _{1} = 8.411$$
] when the true mean is μ
1 = 8. 7314. The gray curve in the middle panel is the power curve, showing the power for all possible values of the alternate mean μ
1. The crosshairs in the middle panel on the right are at μ
1 = 8. 7314 and power(μ
1 = 8.7314) = . 9. The red area in the top panel shows [image: 
$$\beta = 1 -$$
] power, the probability of the Type II Error. The gray curve in the bottom panel is the beta curve (the Operating Characteristic curve) showing the β for all possible values of the alternate mean μ
1. The crosshairs in the bottom panel on the right are at μ
1 = 8. 7314 and beta(μ
1 = 8.7314) = . 1.
Move to the center set of panels. Now the [image: 
$$\mu _{0} =\bar{ x}_{c} = 8.411$$
] and the power is exactly 1/2. In the top axis, we see that the labels μ
0 and μ
1 are close together and partially obscure each other. In the bottom panel, the [image: 
$$\beta = 1 - 1/2 = 1/2$$
].
Move to the left panels where [image: 
$$\mu _{0} =\mu _{1} = 8$$
] and note that the power is equal to α = . 05 and [image: 
$$\beta = 1-\alpha =.95$$
]. The value and labels μ
0 and μ
1 are now identical and the coloring for the alternative hypothesis regions completely masks the coloring for the null hypothesis regions.
The reader can duplicate these panels by running the R code in file HHscriptnames(3). The user can set up a dynamic version of this plot from the same code with NTplot(tmp8411, shiny=TRUE) and then clicking the animate icon for the mu[a]-slider. The user can also get there from the example in Figure E.1. On the Display Options tab, check Power and Beta. On the Normal and t tab, click the [image: 
$$\blacktriangleright$$
] button on mu[a].




                        
For most distributions, tests of hypotheses, calculation of Type II error probabilities, and construction of O.C. and power curves involves the use of a noncentral probability distribution. Noncentral
                
               distributions are discussed in Section J.2 in Appendix J. Noncentrality is not an issue for tests using the normal distribution, as the normal does not have a noncentral form.
We illustrate a noncentral alternative distribution in Figure 3.24.[image: A77776_2_En_3_Fig24_HTML.gif]
Fig. 3.24The t-test of the same null hypothesis (μ
0 = 8) as Figure 3.23 and alternative hypothesis values (μ
1 = 9. 4). On the left, under the assumption of known variance which implies that the density curve for the alternative is also normal with the same variance as under the null, the power is.782. On the right, under the assumption of unknown variance which requires that s must be estimated from the data, the alternative distribution has a noncentral t distribution. The null has a smaller central peak value and larger critical value. The alternative is no longer symmetric and has an even smaller peak value. See further discussion of the noncentral t distribution in Section J.2.2.




                        
The power.t.test function is essentially the same as the right panel in Figure 3.24, the only difference is that power.t.test assumes μ
0 = 0.

3.10 Efficiency

              
                
              
            
Efficiency is a measure of value (usually information in Statistics) per unit cost. We wish to maximize efficiency. We want small sample sizes because each observation has a cost, and fewer observations cost less than more observations. We want larger sample sizes because that gives us a better estimate of the precision of our study. A larger sample size increases the degrees of freedom for the error term. When we look at a table of t- or F- or χ
2-values we see that the critical value of the test statistics for a specified significance level is smaller as the sample size increases. We can see this in many of the figures in this chapter. Figure 3.20 shows that the critical value for a normal test goes down as the sample size goes up. Figure 3.14 shows that the critical value is smaller as the degrees of freedom increase. Choosing the right sample size is therefore important. It needs to be large enough that there is information about the population, and small enough that the client is willing to pay for the observations.

              
                
              
              
                
              
              
                
              
              
                
              
              
                
              
            

              
                
              
            

              
                
              
              
                
              
              
                
              
              
                
              
            

3.11 Sampling

              
                
              
            
Whenever we wish to learn the characteristics of a large population or universe that is unwieldy or expensive to completely examine, we may instead select a sample from the population. If the sample has been selected by a random mechanism, it is usually possible to infer population characteristics from the analogous characteristics in the sample. Much of the remainder of this volume deals with methods for conducting such inferences. In this section we discuss methods for selecting random samples. Only rarely is it practical to sample the entire population; such a sample is called a census of the population.
Here are some examples of situations where we would learn about a population by choosing a random sample from it. 	A factory wishes to know if the proportion of today’s output that is defective is sufficiently small that the output may be shipped for sale rather than scrapped. Examining the entire output stream is likely to be impractical and expensive, and clearly impossible if examining an item results in its destruction. Instead, a quality-control worker may suggest a random sample of the output, with a size of sample that is sufficient to accurately estimate the proportion of defectives without being excessively costly. [Formula (5.​17) may be used for determining the sample size in this situation.]

	A candidate for statewide political office wants to assess whether more than half of the electorate will vote for her. An accurate estimate of the proportion favoring her would greatly influence her future campaign strategy. She obviously must contract for a sample because her campaign cannot afford to contact all potential voters. A complication in this situation is that the population of voters and their opinions are apt to be somewhat different on election day from what they are at the time the sample is selected.

	A timber company wishes to estimate the average height of the trees in a forest under its control. Such measurements are expensive to obtain because they involve sighting a tree’s top at a fixed ground distance from the tree. Therefore, a census of the forest would be prohibitively expensive and some type of random sample of trees is preferred.





If an arbitrary sample (essentially any procedure that isn’t based on a specified probability distribution) is used, there is no guarantee that it will truly represent the population. To ensure that the sample adequately reflects the population, a randomization
                
               mechanism must be used. The techniques for inferring from sample to population discussed in the following chapters rest on the assumption that samples are randomly selected. If this assumption is unjustified, the probability-based statements that accompany the inferences will be incorrect.
For a given sample size n the analyst seeks to maximize the likely precision of the inference from sample to population while minimizing the cost of selecting and using the sample information. The most straightforward random sampling plan is termed simple random sampling
                  
                
. Sometimes, however, a different sampling plan can afford greater precision, or lower cost, or be easier to administer. We discuss simple random sampling and several commonly used alternatives.
3.11.1 Simple Random Sampling

                
                  
                
              
A simple random sample of size n from a population of size N is one selected according to a mechanism guaranteeing that each of the [image: 
$$N\choose n$$
] potential samples have the same probability, [image: 
$$1/{N\choose n}$$
], of being the sample actually selected.
If, as is usually the case, the population is already identified with a numbering from 1 to N, or if it is easy to set up such a numbering, then statistical software can be used to select n distinct integers in the range 1 to N so that all potential selections are equally likely to occur.
Such a sample is easily produced in R with the statement sample(N, n). If the population is not numbered but exists as a character vector x [where [image: 
$$n \leq \mathtt{length(x)}$$
]], then sample(x, n) produces the required sample from x.

3.11.2 Stratified Random Sampling

                
                  
                
              
Sometimes the population of interest is meaningfully partitioned into groups, called strata in the sampling literature. For example, in a school situation the strata could be individual classrooms. In addition to making inferences about the entire population, it is also desired to learn about each stratum (the singular of strata). When this is the case, we may wish to select a random sample within each stratum. Then sample estimates are available for each stratum, and these can be combined into estimates for the entire population.
Suppose there are k strata and the number of population items in stratum i is [image: 
$$N_{i},i = 1,\ldots,k$$
], where [image: 
$$\sum _{i=1}^{k}N_{i} = N$$
]. The analyst then needs to decide how many of the n total sample items should be selected from stratum i. One popular possibility, called proportional allocation, stipulates sampling [image: 
$$n_{i} = \left (\frac{N_{i}} {N} \right )n$$
] items from the i
th stratum. Since n

                  i
                 need not be an integer, it is customary to round this calculation to the nearest integer. The mean estimated from the stratified random sample is [image: 
$$\bar{x}_{ \mbox{ ST}} = \frac{1} {N}\sum _{i}N_{i}\bar{x}_{i}$$
], i.e., a weighted average of the stratum sample means using the relative strata sizes as weights.
As an example, suppose it is desired to estimate the average annual malpractice premium paid by physicians licensed to practice in Pennsylvania. Since the risk of malpractice differs across medical specialties, it is likely also to be of interest to determine such estimates for each medical specialty. A physician considering relocation to Pennsylvania from elsewhere will be more interested in the estimated premium for her own medical specialty than the average premium of all Pennsylvania physicians. Accordingly, an investigator first decides the size n of a statewide sample she can afford. Then she obtains a directory of Pennsylvania physicians classified according to specialty and notes the number N

                  i
                 of Pennsylvania physicians in each specialty [image: 
$$i,i = 1,\ldots,k$$
], where k is the number of distinct medical specialties. (Such a directory may be available for purchase from the American Medical Association.) Then a sample of approximately [image: 
$$n_{i} = \left (\frac{N_{i}} {N} \right )n$$
] physicians is selected from among the Pennsylvania practitioners of specialty i.
Stratified sampling has the virtue of avoiding an undersampling of any stratum and so guarantees some minimum degree of precision for estimates from each stratum. When the population exhibits minimal variability within strata but considerable variability between units in different strata, estimates based on stratified random sampling are likely to be more precise than ones based on simple random samples of comparable total size. This fact will be demonstrated in Section 3.11.5.
                  
                


3.11.3 Cluster Random Sampling

                
                  
                
              
This technique is designed to control the cost of sampling in exchange for some decrease in precision of estimation. It is most frequently used when it is necessary to make personal contact with the sampling units (entity that is to be sampled), and the sampling units are physically dispersed to the extent that traveling from one unit to another is an appreciable cost.
As with stratified sampling, cluster sampling involves two stages. Assume that the population is partitioned into c clusters. A cluster is typically formed from geographically contiguous units so that sampling units within the same cluster are much closer to one another than two units in different clusters. In stage 1 the analyst selects c
0 of these clusters, where c
0 is considerably less than c. Then in stage 2 the analyst randomly samples n

                  i
                 items from each selected cluster i, where [image: 
$$\sum _{i=1}^{c_{0}}n_{i} = n$$
]. The samples within each cluster can be simple random samples, stratified random samples, etc. As in the case of stratified random sampling, we must decide on a rule for allocating the total sample size n to the clusters.
If T

                  i
                 is the total for all observations in cluster i, then the mean estimated from the cluster random sample is [image: 
$$\bar{y}_{ \mbox{ CRS}} =\big (\sum _{i}T_{i}\big)/{\bigl (\sum _{i}N_{i}\bigr )}$$
], where both sums extend from 1 to c
0.
Cluster random sampling saves costs because it involves much less travel from one cluster to another than other sampling methods. But precision is sacrificed because this method prevents a large part of the population from appearing in the sample. In contrast to stratified sampling of strata, cluster sampling of clusters is most efficient when the variation within clusters is large compared to the variation between clusters.
                  
                

When it is required to personally interview persons sampled from a city’s population of eligible voters, a good strategy would be to identify voting districts as clusters and use cluster sampling. If, instead, we wanted to interview city residents as to their product preferences, an analyst might prefer to use zip codes as clusters because geography-based marketing strategies are more likely to be segmented by zip code than by voting district.
                  
                


3.11.4 Systematic Random Sampling

                
                  
                
              
This method may be considered when simplicity of the sampling design and administration is of prime importance.
Order the population from 1 to N and initially assume that N is an integral multiple of n, say N = mn. Then randomly select an integer i,   1 ≤ i ≤ m. Then sample population item i and every m
th item thereafter. For example, if [image: 
$$N = 120,\ n = 20,\ m = 6$$
], we might randomly sample items [image: 
$$4,10,16,\ldots,118.$$
]

Suppose instead that [image: 
$$N = mn + l,\ 1 \leq l <n$$
]. The analyst may then seek to move toward the N proportional to n situation. Suppose we modify the preceding illustration to N = 132. A possibility is to accept a larger n = 22. Another option that maintains n = 20 is to randomly remove l = 12 observations from sampling consideration and then proceed as before with the mn remaining observations.
This method should not be used if the population displays a periodic characteristic with the same period as m. For example, if we wish to randomly sample 20 houses in a subdivision consisting of 120 houses where each block has exactly 6 houses, then the preceding plan would either contain, or avoid, sampling houses on the end of blocks. Such houses tend to be on larger lots than ones in the middle of blocks and the plan would either include them exclusively or miss them entirely.
                  
                

                  
                


3.11.5 Standard Errors of Sample Means

                
                  
                
              
In this section we provide standard errors for the means of random samples selected by various methods. Then according to the Central Limit Theorem, an approximate large-sample 100(1 −α)% confidence interval for the population mean is of the form [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ sample mean $\pm $ standard error}\ \cdot z_{(1-\mbox{ $\frac{\alpha }{ 2} $})}& & {}\\ \end{array}$$
]


 For a simple random sample, the standard error is [image: 
$$\displaystyle\begin{array}{rcl} s_{\mbox{ SRS}} = \sqrt{\frac{s^{2 } } {n} \left (\frac{N - n} {N - 1} \right )}& & {}\\ \end{array}$$
]




For a stratified random sample with sample variance [image: 
$$s_{i}^{2}$$
] from stratum i, the standard error is [image: 
$$\displaystyle\begin{array}{rcl} s_{\mbox{ ST}} = \frac{1} {N}\sqrt{\sum _{i } N_{i }^{2 }\left (\frac{N_{i } - n_{i } } {N_{i} - 1} \right )\frac{s_{i}^{2}} {n_{i}}} & & {}\\ \end{array}$$
]


 If the [image: 
$$\{s_{i}^{2}\}$$
] tend to be smaller than s, then [image: 
$$s_{\mbox{ ST}}$$
] will tend to be smaller than [image: 
$$s_{\mbox{ SRS}}$$
] with the conclusion that stratification was worthwhile.
To present the standard error for the mean of a cluster random sample, define [image: 
$$\bar{N} = N/c$$
] to be the average cluster size. The standard error is [image: 
$$\displaystyle\begin{array}{rcl} s_{\mbox{ CRS}} = \sqrt{\left ( \frac{c - c_{0 } } {c_{0}c\bar{N}^{2}}\right )\frac{\sum _{i}(T_{i} -\bar{y}_{\mbox{ CRS}}N_{i})^{2}} {c_{0} - 1}} & & {}\\ \end{array}$$
]


 The summation extends from 1 to c
0, where as before, c
0 is the number of clusters that were sampled.
                  
                


3.11.6 Sources of Bias in Samples

                
                  
                
              
Sampling error is the discrepancy between the estimate and parameter being estimated. This error decreases as the sample size increases. Nonsampling errors are more serious than sampling errors because they can’t be minimized by increasing the sample size. Continuing the example discussed in Section 3.11.2, we discuss two such sources of bias in the context of randomly sampling physicians who practice in Pennsylvania. Selection bias occurs when it is impossible to sample some members of the population. Nonresponse bias occurs if responses are not obtained from some members of the sample.
In order to randomly sample from the population consisting of all physicians licensed to practice medicine in Pennsylvania, we must obtain a list or computer file of such physicians. Even if we could obtain a list of physicians licensed to practice, there is no way to know which physicians on such a list are in fact practicing medicine (as opposed to performing medical research or administrative tasks). Therefore, use of such a list would introduce selection bias. A better approach might be to obtain a list of the Pennsylvania membership of the American Medical Association (AMA). This list does indicate the nature of the physician’s practice, if any, so nonpractitioners on the list can be ignored. However, not all physicians practicing in Pennsylvania are AMA members; such membership is not legally required in order to practice medicine. Thus some selection bias would still be present with this approach. Selection bias would be eliminated if the client can be persuaded to amend the target population to AMA members practicing in Pennsylvania.
Next suppose that this amendment is accepted and that a random sample of n practicing physicians is selected from the list. How should the physicians be contacted? Since physicians are busy individuals; visiting them in person or contacting them by telephone is unlikely to yield a response. Ignoring nonrespondents is likely to result in nonresponse bias because busier physicians are less likely to respond, and busyness may be associated with the survey questions.
Mail contact of the sampled physicians is preferred for several reasons. Since a written questionnaire can be answered at the physician’s convenience, the physician is more likely to respond. Second, the questionnaire can be placed under a cover letter that encourages participation, written by a person respected by the respondents. Third, it is possible to keep track of who does not initially respond so that such individuals can be contacted again. This is accomplished by asking respondents to mail in a signed postcard indicating that they have participated, and to return the anonymous questionnaire in an envelope mailed separately.
Even this elaborate mail questionnaire approach does not eliminate the possibility of nonresponse bias. The extent of any remaining bias can be judged by comparing characteristics of the sampled physicians with those of the physician population reported in the AMA membership directory.


3.12 Exercises

3.1. Refer to the discrete bivariate distribution considered in Table 3.3.
a.Let [image: 
$$Z = X + 1$$
]. Find the distribution of Z.

 

b.Find E(2X + 1) and 2E(X) + 1. Then find E(X
2) and [E(X)]2.

 

c.Find P(X < Y ).

 

d.Let X
1 and X
2 be independent and identically distributed as X. Make a table of the joint distribution of X
1 and X
2, and use this to find [image: 
$$P(X_{1} <X_{2} + 1)$$
].

 





3.2. How large a random sample is required for there to be a 92% probability of sampling at least one defective from a lot of 100,000 items which contains 100 defectives? (Hints: What is the random variable here? Consider the event that is the complement of “at least one defective”.)

3.3. Suppose X is binomial(50,.10), and Y is binomial(20,.25). Draw the distribution functions of X and Y. Which one has a bigger mean? Which one has a bigger standard deviation?

3.4. If X, Y are each standard normal random variables, and they are independent of one another, what is the distribution of [image: 
$$Z = 3X + 2Y$$
]?

3.5. Suppose that Y is a 2 × 1 random vector such that [image: 
$$\displaystyle\begin{array}{rcl} W ={ 80\choose 40} + \left (\begin{array}{cc} 10&7\\ 7 &5 \end{array} \right )Y & & {}\\ \end{array}$$
]


 has a bivariate normal distribution with mean [image: 
$$\left (\begin{array}{c} 60\\ 70\\ \end{array} \right )$$
] and covariance matrix [image: 
$$\left (\begin{array}{cc} 100&40\\ 40 &50 \end{array} \right )$$
]. Find the probability distribution of Y, including its mean vector and covariance matrix.

3.6. In class #1, 32 out of 40 students earned fewer than 70 points on the final exam. In class #2, 40 out of 50 students earned fewer than 75 points on the same exam. Restate the given class information in terms of percentiles. Is it possible to tell which class had a higher average score?

3.7. Somebody tells you that a 95% confidence interval for the mean number of customers per day is (74.2, 78.5), and that this indicates that 95% is the probability that the mean is between 74.2 and 78.5. Criticize this statement and replace it with one correct sentence.

3.8. Acme, Inc. thinks it has a new way of manufacturing a key product. It is trying to choose between A = “new way is better than old way” or B = “old way is better than new way”. Acme plans to reach its tentative conclusion by sampling some of the product produced the new way and conducting a statistical test. The new way is much more expensive than the old way. Which statement, A or B, should be the null hypothesis? Justify your answer.

3.9. The probability that a project succeeds in New York is.4, the probability that it succeeds in Chicago is.5, and the probability that it succeeds in at least one of these cities is.6. Find the probability that this project succeeds in Chicago given that it succeeds in New York.

3.10. You are considering two projects, A and B. With A you estimate a payoff of $60,000 with probability.6 and $30,000 with probability.4. With B you estimate a payoff of $80,000 with probability.5 or $30,000 with probability.5. Answer the following questions after performing appropriate calculations.
a.Which project is better in terms of expected payoff?

 

b.Which project is better in terms of variability of payoff?

 





3.11. If X has a mean of 15 and a standard deviation of 4, and if [image: 
$$Y = 5 - 3X$$
], what are the mean and standard deviation of Y?

3.12. State the two ways in which a data analyst can modify a statistical test in order to decrease its Type II error probability.

3.13. An analyst makes three independent inferences. For each of these inferences, the probability is.05 that it is incorrect. Find the probability that all three inferences are correct.

3.14. Let A = “a McDonald’s franchise in Kansas is profitable” and let B = “the Philadelphia Eagles will have a winning season next year”. If P(A) = . 8 and P(B) = . 6, find the probability that either A or B occurs.

3.15. Use statistical software commands to do this problem. A new medicine has probability.70 of curing gout. If a random sample of 10 people with gout are to be given this medicine, what is the probability that among the 10 people in the sample, between 5 and 8 people will be cured?

3.16. Use statistical software commands to do this problem. The daily output of a production line is normally distributed with a mean of 163 units and a standard deviation of 4 units.
a.Find the probability that a particular day’s output will be 160 units or less.

 

b.The production manager wants to tell her supervisor, “80% of the time our production is at least x units”. What number should she use for x?

 





3.17. Find the expected value and standard deviation of a random variable U if its probability distribution is as follows: [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{cc}\hline \\ \hline u&P(U = u) \\ \hline 1 &.6\\ 2&.3 \\ 3 &.1\\ \hline \end{array} & & {}\\ \end{array}$$
]





3.18. A random variable W has probability density function [image: 
$$f(w) = 2 - 2w,\ 0 <w <1$$
], and f(w) = 0 for all other values of w.
a.Verify that f(w) is indeed a probability density function.

 

b.Find the corresponding cumulative distribution function, [image: 
$$\mathcal{F}(w)$$
].

 

c.Find the expectation of W.

 

d.Find the standard deviation of W.

 

e.Find the median of this distribution, i.e., the number w

                        m
                       such that P(W < w

                        m
                      ) = . 5.

 





3.19. Use a statistical software command to approximate the value of z
. 08.

3.20. State the two things that a data analyst can do in order to make a confidence interval narrower.

3.21. A data analyst tentatively decides on values for α and n for a statistical test. Before performing the test she investigates its Type II error control and finds this to be unsatisfactory. What two options does she have to improve Type II error control?

3.22. In the discussion of sufficiency of a point estimator in Section 3.6.3, we indicated that [image: 
$$2\bar{x}$$
] is not a good estimator of a from a sample of n items from a continuous uniform distribution on [0, a]. Can you suggest a better estimator of a and explain why it is better than [image: 
$$2\bar{x}$$
]?

3.23. The dataset data(salary), from Forbes Magazine (1993), contains the ages and salaries of the chief executives of the 60 most highly ranked firms among Forbes Magazine’s “Best small firms in 1993.” Consider the variable age.
a.Produce a boxplot and a stem-and-leaf plot for age.

 

b.Construct a 95% confidence interval for the mean age. What assumptions were made in your construction?

 

c.Test [image: 
$$H_{0}: \mu \leq 50$$
] against [image: 
$$H_{1}: \mu> 50$$
], reporting and interpreting the p-value for this test.

 

d.Approximate the power of this test for the alternative μ
1 = 53 by using the normal distribution as an approximation for the test statistic in part c, assuming α = . 05.

 





3.24. The dataset data(cereals) contains various nutritional measurements for 77 breakfast cereals. We are concerned here with the variable carbo (carbohydrates) measured in grams per serving. Be aware that the cereal Quaker Oatmeal shows a negative value for carbohydrates, probably indicating a missing value for that observation. Be sure that you inform your data analysis package of this anomaly and that the package does something sensible with that information. Elimination of the observation is one possible response to missingness.
a.Produce boxplots and stem-and-leaf plot for carbo. Do these plots suggest that this variable comes from a normal population?

 

b.Construct at 99% confidence interval for the mean carbohydrate content.

 

c.Test [image: 
$$H_{0}: \mu \geq 16$$
] against [image: 
$$H_{1}: \mu <16$$
], reporting and interpreting the p-value for this test.

 

d.Approximate the probability of committing a Type II error for the alternative μ
1 = 15. Use the normal distribution to approximate the test statistic in part c, assuming α = . 05.

 





3.25. The sampling bias in the December 1969 U.S. Draft Lottery, with data in file data(draft70mn), is described in Exercise 4.1. Suppose you had been the administrator of that lottery. Explain how you would have performed the sampling without incurring such bias.

3.26. Royalties paid to authors of novels have sometimes been based on the number of words contained in the novel. Recommend to an old-fashioned author how to estimate the number of words in a handwritten manuscript she is planning to give to her publisher.

3.27. Samples are taken from two strata. Suppose the variance of the two samples combined is s
2 = 7. 6 and the following within-stratum information is known: [image: 
$$\displaystyle{\begin{array}{crrr}\hline \\ \hline \\ \mbox{ Stratum}& \ \ \ \ \ N_{i}& \ \ \ \ \ n_{i}& \ \ \ \ \ s_{i}^{2} \\ \hline 1 &100&30&1.2\\ 2&120&40&1.4 \\ \hline \end{array} }$$
]


 Observe that there is far less variability within the two strata than between the two strata. Calculate [image: 
$$s_{\mbox{ SRS}}$$
] and [image: 
$$s_{\mbox{ ST}}$$
] to verify that for estimating the common population mean in this situation, [image: 
$$\bar{x}_{\mbox{ SRS}}$$
] is much preferred to [image: 
$$\bar{x}_{\mbox{ ST}}$$
].

3.28. The organization of a candidate for a city political office wishes to poll the electorate. For this purpose, discuss the relative advantages and disadvantages of personal interview polling vs telephone polling.

3.29. Explain how it is possible for a census to yield less accurate results than a random sample from the same population.

3.30. A student claims that a random sample of n items from a population of N items is one selected so that each item in the population has the same probability [image: 
$$\frac{n} {N}$$
] of appearing in the sample. Demonstrate that this definition is inadequate.

3.31. A four-drawer file cabinet contains several thousand sheets of paper, each containing a statement of the dollar amount due to be paid to your company. The sheets are arranged in the order that the debt was incurred. You are asked to spend not more than one hour to estimate the average dollar amount on all sheets in the file cabinet. Propose a plan for accomplishing this.
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4. Graphs
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Graphs are used to inspect and display patterns in data. Appropriately drawn graphs are, in our opinion, the best way to gain an understanding of what data have to say. In this chapter we present several of the types of graphs and plots we will be using throughout. We discuss the visual impact of the graphs and relate them to the tabular presentation of the same material.
Statistical techniques have underlying assumptions. An important use of graphs is to aid in the checking of a list of assumptions a technique requires in order for an analysis using the technique to be correct. For example, regression analysis, discussed in Chapters 8 to 11, requires that model residuals are randomly distributed. Residual plots, discussed in these chapters, must show random scatter rather than a systematic pattern.
We discuss the construction of graphs and pay attention to each of the components of graphs that can aid (or hinder) the interpretation of the data. We show good (and some bad) examples of plots and discuss why we make those value judgments. Appendix 4.A gives an overview of R Graphics with an emphasis on the design and use of the lattice package.
The appendix to this chapter summarizes many graphs that are introduced in this book.
We see graphs as the heart of most statistical analyses; the corresponding tabular results are formal confirmations of our visual impressions. The graphs are not automatically produced by most software; instead it is up to the analyst to request them.
4.1 What Is a Graph?
A graph is a geometrical representation of the information in a table of numbers. Our prototype graph is the traditional scatterplot—a two-dimensional plot of two variables (x on the abscissa or horizontal axis and y on the ordinate or vertical axis). For each observation (x, y) in the data we locate a point on the graphing surface with coordinates (x, y). For a dataset with n observations we mark n points on the graphing surface. Figure 4.1 is an example of such a plot.[image: A77776_2_En_4_Fig1_HTML.gif]
Fig. 4.1Selling price by lot size for 105 single-family homes in Mount Laurel, New Jersey, from March 1992 through September 1994. What is the meaning of a lot size of zero?




                        
Note the graphic features of the plot in Figure 4.1 (the interpretation of this graph will be discussed in Section 4.3): 
                    x-axis tick marks, tick labels, label:
                  Information on the variable that defines the horizontal direction of the graph. The range of the scale is large enough to show all points.



                    y-axis tick marks, tick labels, label:
                  Information on the variable that defines the vertical direction of the graph. The range of the scale is large enough to show all points.



                    main title:
                  Information on the subject matter of the graph.



                    plotting character:
                  A plotting character, in this case a blue ’0’ or a red ’+’, is placed at each x–y coordinate. The color and character represent some aspect of the data. In this example they are redundant and represent whether the reported Lot Size has a zero or nonzero value.



                    color:
                  The characters are color coded to represent a factor within the data. Please see Section 4.A.4 for more information on color.



                    legend:
                  There are several different plotting characters and colors used in this graph. The reader needs identification of each. For this plot, they indicate levels of a factor. In other examples, they might be used to indicate different response variables.



                    caption:
                  A short paragraph describing the structure of the graph and the message that the graph is designed to illustrate.





The goal of statistical graphics is to make evident the characteristics of the data such as location, variability, scale, shape, correlation, interaction, and clustering. Once we have a visual understanding of the data, we usually attempt to model it with formal algebraic procedures. We will normally translate our algebraic understanding back to a graphical presentation and to a verbal discussion of our findings.

4.2 Example—Ecological Correlation

              
                
              
            
Examination of plots of the data at early stages of the analysis, before requesting and examining tabular output, is an essential part of data analysis. This point is demonstrated in Figure 4.2, which illustrates what is known as the Ecological Fallacy. If without examining a plot of these (simulated) data we perform a simple regression of y on x, we find that y and x are directly related. The plot strongly suggests that what we have is the amalgamation of three disparate groups. Within each of the groups it is clear that y and x are inversely related, the opposite conclusion from the amalgamated result. In practice it is likely that the existence of the groups is meaningful information that must be accounted for by the analyst. In this case the individual within-group results are what should be reported.[image: A77776_2_En_4_Fig2_HTML.gif]
Fig. 4.2Ecological Correlation. The overall slope ignoring groups is strongly positive. The slope within each group is strongly negative. These are simulated data.




                        
Robinson (1950) introduced the idea by showing that the correlation between percentage illiterate and percentage black racial group for the United States as a whole, based on the 1930 U.S. Census, is different from this correlation within various subgroups of the U.S. population. The terms Ecological Fallacy and Ecological Correlation were coined by Selvin (1965). Human ecology is a branch of sociology dealing with the relationship between human groups and their environments. The fallacy is that we cannot necessarily use a finding from an entire population to reach conclusions about various subsets of the population.
                
              


4.3 Scatterplots

              
                
              
            
Figure 4.1 shows the selling price by lot size for 105 single-family homes in Mount Laurel, New Jersey, from March 1992 through September 1994. The data, from Asabere and Huffman (1996), are accessed with data(njgolf).
There is much information in Figure 4.1. We start by listing the most obvious items, and then we will look at the less obvious and more puzzling items. The range of lot sizes is 0–30,000 square feet, with most of the lots in the 8,000–15,000-square-foot range. But what is that large cluster of lot sizes at 0 square feet? The range of sale prices is $50,000–$250,000, with most of the 0-size lots selling for under $130,000 and most of the nonzero lots selling above $130,000. Within the 5,000–25,000-square-foot range price seems independent of size of lot, that is, for any lot size in that range the best estimate of sales price is the same, about $165,000.
The scatterplot is an ordinary 2-dimensional plot with one variable lotsize on the x-axis (horizontal axis or abscissa) and the other variable sprice on the y-axis (vertical axis or ordinate). The plotting routine automatically determines the appropriate scale and tick locations for both axes and prints the variable names as the default labels for the axes.
We raised many questions in our perusal of Figure 4.1. Answering them requires us to look carefully at the definitions of the variables we displayed in the figure. We find that the variable labeled lotsize is actually a conflation of two distinct concepts. If the property is a condominium (a form of ownership of an apartment that combines single ownership of the residence unit with joint ownership of the building and associated grounds), the variable lotsize was arbitrarily coded to 0. If the property is a single-family house, then the variable lotsize contains the actual lot size in square feet. This explains the numerous observations having lotsize=0 in Figure 4.1.
We must also look at additional variables. We will start with three measures of the size of the dwelling unit, rather than of the lot on which it is built. In Figure 4.3 we look at selling price against the number of bedrooms, the dining room area, and the kitchen area. All three plots show a rise in selling price as the x-variable increases. We can also see a hint in Figure 4.3 that selling price increases with x for both the lower-priced properties (the condominiums) and the higher-priced ones (the single-family houses).[image: A77776_2_En_4_Fig3_HTML.gif]
Fig. 4.3Selling price by number of bedrooms, by dining room area, and by kitchen area for 105 single-family homes in Mount Laurel, New Jersey, from March 1992 through September 1994.




                        
We investigate that possibility in Figure 4.4 where we show all three plots conditioned on whether the property is a condominium or house. Now we see very clear uphill trends of price on the measures of size within each of the panels of the figure.
                
              
[image: A77776_2_En_4_Fig4_HTML.gif]
Fig. 4.4Selling price by number of bedrooms, by dining room area, and by kitchen area for 105 single-family homes, conditioned on whether the property is a condominium or house, in Mount Laurel, New Jersey, from March 1992 through September 1994.






4.4 Scatterplot Matrix

              
                
              
            
We looked at five variables in Figure 4.4 and nominally two, but actually three, variables in Figure 4.1. In both figures we used selling price as the y-variable and the others as either x-variables or as conditioning variables. In Figure 4.5 we look at all six variables together. This display shows all the individual panels that we looked at in the previous graphs in the sprice row and also shows the relationships among the other variables.[image: A77776_2_En_4_Fig5_HTML.gif]
Fig. 4.5Scatterplot matrix of six variables for the 105 single-family homes in Mount Laurel, New Jersey, from March 1992 through September 1994. The sprice ~ lotsize panel outlined in gray (bottom row, second column) is the same as Figure 4.1. The three panels in the bottom row outlined in black (third, fourth, and fifth columns) are the same as Figure 4.3. The same three panels, separated by color, are in Figure 4.4.




                        
The display type is a scatterplot matrix or splom

                
               (Scatter PLOt Matrix), a matrix of scatterplots with each of the six variables taking the role of x-variable and y-variable against all the others. Thus there are6
P
2 = 30 distinct plots in Figure 4.5. Each of these 30 plots is a plot of a pair of variables comparable to Figure 4.1. Since each of the six variables appears in both the x- and y-position, there are only [image: 
$$_{6}P_{2}/2 = 30/2 ={ 6\choose 2} = 15$$
] distinct pairs of variables in the plots. We see that the (i, j) panel of the splom (counting from the lower-left corner) is the reflection of the (j, i) panel.
A defining property of the scatterplot matrix is that all panels in the same row have identical y-scaling and all panels in the same column have identical x-scaling. It is therefore easy to trace an interesting point in one panel across to the other panels. For example, the single point visible in the condominium position of the lotsize ~ cond.house panel is recognized as an overplotting of many condominium points when we trace it in the other panels to the left and see that the dining area of condominiums runs the full range of dining areas for the entire dataset.
Unfortunately, Figure 4.5 has also lost (although we partially retain it by different colors) the distinction between the condominiums and houses that we worked so hard to find. We recover that distinction in Figure 4.6 where we now show the five numeric variables separately for condominiums and houses. We can look across the subpanels in each main panel of Figure 4.6 and see relationships among multiple variables. On the condominium panel of Figure 4.6 we see that the condominium with largest kitchen and dining room is one of the higher-priced properties (but not the highest) and it has only two bedrooms. On the house panel of Figure 4.6 we see that the highest-priced house has the largest lot size, but not the largest dining area and only four bedrooms.[image: A77776_2_En_4_Fig6_HTML.gif]
Fig. 4.6Scatterplot matrix of five variables for the 105 single-family homes, conditioned on whether the property is a condominium or house, in Mount Laurel, New Jersey, from March 1992 through September 1994.




                        
Additional discussion of scatterplot matrices appears in Section 4.7.
                
              


              
                
              
            

4.5 Array of Scatterplots
Let us step away from data analysis for a moment and look at the structure of the graphs. Figures 4.2 and 4.3 contain graphs with multiple panels. The panels are clearly labeled with a strip label

                
               that shows the level of the factor on which the panels are conditioned. In Figure 4.2 the factor levels in the strip labels describe the model by which the slopes were calculated. The x- and y-axes are identical in both panels.
In Figure 4.3 the factor levels in the strip labels name the room of the house for which the measurements are shown. Here, the three panels represent different variables (number of bedrooms) or value ranges (square feet), hence each panel has its own x-scale. All three panels have the same response variable Selling Price and are therefore shown on the same y-scale.
Figure 4.4 is more elaborate, with conditioning on two factors. The horizontal factor, the room of the house, is the same as the factor in Figure 4.3 and therefore the top strips and the x-scales are the same as in Figure 4.3. The vertical factor is the form of ownership (condominium or house), which in this case makes the same distinction as the Lot Size factor. We distinguish the panels for the ownership/Lot Size factor with left strip labels for each row. The response variable Selling Price is the same in all six panels, and all are shown on the same y-scale. The panels are defined by the 3 × 2 crossing of the factor levels. Within each panel we show the data points for only the specified factor levels.
A set of scatterplots can be conditioned on more than two factors. Figure 4.7 has three factors. Figure 4.7 is a preview of Figure 17.​10 and its content will be discussed in Chapter 17 In this figure we use two rows of top strip labels, one for the pairs of columns representing stage, and the other for levels of grade nested within stage. We have a single column of left strip labels for levels of X.ray.[image: A77776_2_En_4_Fig7_HTML.gif]
Fig. 4.7A scatterplot array conditioned on three factors. There are two rows of top strip labels and one column of left strip labels. The upper strip label distinguishes pairs of columns for levels of the stage factor. We also have additional horizontal space between the pairs of columns. The lower strip label distinguishes levels of grade within each level of stage. The left strip label distinguishes levels of X.ray. The plotting symbol and color represent a fourth factor. Within each panel, the points show a plot of age ~ acid.ph.




                        

4.6 Example—Life Expectancy
4.6.1 Study Objectives
For each of the 40 largest countries in the world (according to 1990 population figures), the dataset data(tv) gives the country’s life expectancy at birth partitioned by gender, number of people per television set, and number of people per physician Rossman (1994).

4.6.2 Data Description

                
                      life.exp:
                    Life expectancy at birth



                      ppl.per.tv:
                    Number of people per television set



                      ppl.per.phys:
                    Number of people per physician



                      fem.life.exp:
                    Female life expectancy at birth



                      male.life.exp:
                    Male life expectancy at birth




              

4.6.3 Initial Graphs
We initially focus on the male and female life expectancies in Table 4.1 and Figure 4.8.[image: A77776_2_En_4_Fig8_HTML.gif]
Fig. 4.8Life Expectancy. In most countries, female life expectancy is longer than male life expectancy.




                                Table 4.1Life expectancy. The country abbreviations used here are from the R function call abbreviate(row.names(tv)).


	Abbrev
	Country
	Female
	Male
	 	Abbrev
	Country
	Female
	Male

	Argn
	Argentina
	74
	67
	 	M(B)
	Myanmar (Burma)
	56
	53

	Bngl
	Bangladesh
	53
	54
	 	Pkst
	Pakistan
	57
	56

	Brzl
	Brazil
	68
	62
	 	Peru
	Peru
	67
	62

	Cand
	Canada
	80
	73
	 	Phlp
	Philippines
	67
	62

	Chin
	China
	72
	68
	 	Plnd
	Poland
	77
	69

	Clmb
	Colombia
	74
	68
	 	Romn
	Romania
	75
	69

	Egyp
	Egypt
	61
	60
	 	Russ
	Russia
	74
	64

	Ethp
	Ethiopia
	53
	50
	 	StAf
	South Africa
	67
	61

	Frnc
	France
	82
	74
	 	Span
	Spain
	82
	75

	Grmn
	Germany
	79
	73
	 	Sudn
	Sudan
	54
	52

	Indi
	India
	58
	57
	 	Tawn
	Taiwan
	78
	72

	Indn
	Indonesia
	63
	59
	 	Tnzn
	Tanzania
	55
	50

	Iran
	Iran
	65
	64
	 	Thln
	Thailand
	71
	66

	Itly
	Italy
	82
	75
	 	Trky
	Turkey
	72
	68

	Japn
	Japan
	82
	76
	 	Ukrn
	Ukraine
	75
	66

	Keny
	Kenya
	63
	59
	 	UnKn
	United Kingdom
	79
	73

	K,Nr
	Korea, North
	73
	67
	 	UnSt
	United States
	79
	72

	K,St
	Korea, South
	73
	67
	 	Vnzl
	Venezuela
	78
	71

	Mexc
	Mexico
	76
	68
	 	Vtnm
	Vietnam
	67
	63

	Mrcc
	Morocco
	66
	63
	 	Zair
	Zaire
	56
	52




                            
Figure 4.8 shows each data row of Table 4.1 as a distinct point. Since both x and y are the same variable in the same units for two different subsets of the population, it is important to use a common range and ticks on both axes and maintain an aspect ratio of 1. In a good graphical system we have control of the plotting symbols. We plotted the points with a solid dot • and labeled one point (Japan) with text to show its coordinates (x, y) = (82, 76).
The first impression we get from reading Figure 4.8 is that most of the points are below the 45∘ line. This is such an important part of the interpretation of this graph that we drew the 45∘ line. Once the line is there for reference we immediately note that one country’s point is above the 45∘ line. Which one? The easiest way to find out is to plot the abbreviated country names instead of dots (Figure 4.9a). Bangladesh is the country that has a longer life expectancy for males than females. On an interactive graphics system we merely click on the point and the system will label it [see file (code/grap.identify.s)]. We have simulated the interactive appearance in Figure 4.9b.[image: A77776_2_En_4_Fig9_HTML.gif]
Fig. 4.9Life expectancy—variations on the plot. See discussion in text.




                            
We see from the figures that life expectancy for males and females is related; as one goes up the other tends to go up as well. We have done several other fine tunings on Figure 4.8. Life expectancy is measured on the same numerical scale for both male and female; therefore, we forced both scales to have the same range and we forced the graph to be square. By default, most plotting systems independently determine the x- and y-scales and use the maximum available area for the graph. Figure 4.9c releases the constraint on the ranges and we see that the male and female ranges are different (the female range is offset from the male range by 5 years). Since the graph goes from the lower-left corner to the upper-right corner, it falsely gives the visual impression that the two ranges are the same. When we plot the 45∘ line in Figure 4.9d we get much of the correct impression back. In Figure 4.9e, where we no longer constrain the graph to be square, we lose the visual effect of forcing the ranges to be the same on both axes. In Figure 4.9e we have plotted the least-squares line through the points in addition to the 45∘ line. Least squares will be discussed in detail in Chapter 8 For now we note that this line attempts to get close to most of the points. It is used as an indicator of the linear relationship between the two variables male and female life expectancy.


4.7 Scatterplot Matrices—Continued

              
                
              
            
There are five variables in the tv dataset. Figure 4.10 plots them all in a scatterplot matrix.[image: A77776_2_En_4_Fig10_HTML.gif]
Fig. 4.10Televisions, physicians, and life expectancy. Variable ppl.per.tv has two missing values. We notice this immediately in panel ppl.per.tv ~ ppl.per.phys, where the two points at ppl.per.phys = 25000 in the bottom three rows of the ppl.per.phys column do not appear. Similarly these points are missing in Figures 4.11, 4.14, and 4.15.




                            [image: A77776_2_En_4_Fig11_HTML.gif]
Fig. 4.11Nonoptimal alternate orientation with rectangular panels for splom. The downhill diagonal is harder to read (see Figure 4.12). The rectangular panels make it hard to compare each panel with its transpose.




                            [image: A77776_2_En_4_Fig12_HTML.gif]
Fig. 4.12Axes of symmetry for splom. Figure 4.12a has six axes of symmetry. We focus on panel 6, which appears in positions reflected about the main NW–SE axis. The individual points within panels 6 and 6′ are reflected about the dashed SW–NE line, as indicated by the position of the arrow. The other four axes, which reflect respectively panel 5, panels 3 and 4, panel 2, and panel 1 are indicated with dotted lines. Figure 4.12b has only one axis of symmetry. The arrow for panel 6 is reflected by the same SW–NE axis that reflects panels 6 and 6′.




                        
Continuing with the discussion begun in Section 4.4, the scatterplot matrix is a coordinated set of scatterplots, one for each pair of variables in the dataset. We refer to the individual scatterplots comprising the matrix as panels. The panels are labeled by their [image: 
$$Y \sim X$$
], that is RowName by ColumnName, variable names. Thus, in Figure 4.10, the panel in the upper-left-hand corner (also called the NW or Northwest corner) is called the ppl.per.phys [image: 
$$\sim $$
] fem.life.exp panel. Variable names are unambiguous and are constant across multiple views of the data: The male.life.exp [image: 
$$\sim $$
] fem.life.exp panel refers to the same data values all of Figures 4.8, 4.9, and 4.10. We would NOT say “row 1 by column 4” because the sequencing of variables and the direction of ordering the rows and columns (is row 1 at the top or bottom?) are unclear.
There are several possible orientations of the panels; we display the best in Figure 4.10 and will discuss other orientations in Figures 4.11 and 4.12. There are five variables; hence the matrix consists of a 5×5 array of scatterplots. Indexing for the set of plots is sorted in the same way as the axes in each individual panel. Indexing begins at the lower left and proceeds from left to right and from bottom to top. The main diagonal runs from southwest to northeast (SW–NE). Each panel containing one scatterplot is square. Each pair of variables appears twice, once below the main diagonal and again as a mirror image above the main diagonal. There is a single axis of symmetry for the entire splom.
The variables in Figure 4.10 are all continuous measurements. When using a splom to display data with categorical variables, we recommend avoiding inclusion of categorical variables among the variables comprising the splom itself, particularly for categorical variables having few categories, as they will usually appear as a noninformative regular lattice (see, for example, the customf×cornerf panel of Figure 9.​3). It is usually more informative to produce two or more adjacent sploms, by conditioning on the categorical variables, or to use different plotting symbols for the different levels of one of the factors. We use both strategies in Figure 9.​4, conditioning on the levels of corner and using different plotting symbols for the levels of custom. Another example is Figure 11.​1, which contains two adjacent sploms conditioned on the two levels of the categorical variable lime.
We have presented what we consider to be the best orientation of the splom in Figure 4.10. Two other orientations are commonly used. When scatterplot matrices were first invented, the importance of a single axis of symmetry was not yet realized. Older scatterplot matrix programs (and some current ones) default, or are limited, to the more difficult main diagonal from northwest to southeast (NW–SE). The R splom function defaults to the optimal SW–NE main diagonal. It can be told to use the nonoptimal alternate diagonal with the argument as.matrix=TRUE. The older R function pairs defaults to the nonoptimal NW–SE diagonal but provides the option to change it with the row1attop=FALSE argument. pairs also defaults to rectangular panels (the goal is maximal use of the plotting surface) but fortunately provides an option to force square panels (with a previous use of par(pty="s"). We recommend also using a square plotting region.). We show the pairs plot with both suboptimal choices in Figure 4.11.
The major difficulty with Figure 4.11 is that the multiple axes of symmetry
                
               are hard to find. The axes of symmetry are illustrated in Figure 4.12. The confusion in Figure 4.12a occurs because pairs of plots with the same variable names appear to the lower left and upper right of the NW–SE main axis of the matrix of plots. Within each pair, the upper plot needs to be reflected about its own SW–NE axis to match the lower plot. By comparison, Figure 4.12b has a single axis of symmetry for the entire plot. All pairs of plots and reflections within each pair occur around a single SW–NE axis of symmetry. Note also that the individual panels of the display are square to help ease the eye’s task of seeing the symmetry.

              
                
              
            
Earlier versions of S (Becker et al., 1988) defaulted to printing just one triangle of the two mirror image triangles in pairs and had an option full=TRUE to print the full matrix. From the manual, “By default, only the lower triangle is produced, saving space and plot time, but making interpretation harder.” That option made sense with typewriter terminals at 10 characters per second. It no longer makes sense with desktop workstations, windowing terminals, and laser printers. The single triangle of a scatterplot matrix can be created in R by suppressing one of the triangles, for example with a call similar to

splom(iris, lower.panel=function(...){}).
Older programs sometimes display a very confusing subset of the lower triangle in which the rows and columns of the display show different sets of variables. The intent is to save space by suppressing a presumably non-informative main diagonal. The effect on the reader is to add confusion by breaking symmetry. A symbolic version of this form of the plot is in Figure 4.13.[image: A77776_2_En_4_Fig13_HTML.gif]
Fig. 4.13Symbolic form of very confusing subset of panels for the scatterplot matrix. This form has different variables along the rows and columns and has very little symmetry that might aid the reader. Note, for example, that panels 31 and 42 are positioned such that the eye wants to treat them as symmetric. This form is mostly obsolete and is strongly not recommended.




                        

              
                
              
            

4.8 Data Transformations

              
                
              
            
Since the three life expectancy variables are similar, let us look at the simplified splom in Figure 4.14. The bottom row of the splom, with life.exp as the y-coordinate, shows an L-shaped pattern against both ppl.per.tv and ppl.per.phys as the x-variables. We have learned (or will learn in this chapter and again in Chapter 8) that straight lines are often helpful in understanding a plot. There is no sensible way to draw a straight line here. The plot of the two potential x-variables against each other is bunched up in the lower-left corner. The bunching suggests that a log transformation of the ppl.* variables will straighten out the plot. We see in Figure 4.15 that it has done so.[image: A77776_2_En_4_Fig14_HTML.gif]
Fig. 4.14Televisions, physicians, and life expectancy.




[image: A77776_2_En_4_Fig15_HTML.gif]
Fig. 4.15log(televisions), log(physicians), and life expectancy.





We also see that the log transformation has stabilized
                  
                 the variance. By this we mean that the ppl.per.phys ~ life.exp panel of Figure 4.14 has a range that fills the vertical dimension of the panel for values of life.exp near 50 and that is almost constant for values of life.exp larger than 65. After the log transformation of ppl.per.phys shown in Figure 4.15, for any given value of life.exp we observe that the vertical range of the response is about [image: 
$$\frac{1} {3}$$
] of the vertical dimension of the panel.
There are several issues associated with data transformations. In the life expectancy example the natural logarithm [image: 
$$\ln$$
] was helpful in straightening out the plots. In other examples other transformations may be helpful. We will take a first look at a family of power transformations. We recommend Emerson and Stoto (1983) for a more complete discussion. We identify some of the issues here and then focus on the use of graphics to help determine which transformation in the family of power transformation would be most helpful in any given situation. 	Stabilize variance. This chapter and also Chapters 6 and 14


	Remove curvature. This chapter.

	Remove asymmetry. This chapter.

	Respond to systematic residuals. Chapters 8 and 11






The family of power transformations
                
               T

                p
              (x), often called the Box–Cox transformations

                
               Box and Cox (1964), are given by
                
               [image: 
$$\displaystyle\begin{array}{rcl} T_{p}(x)& =& \left \{\begin{array}{cl} x^{p} &(p > 0) \\ \ln (x) &(p = 0) \\ - x^{p}&(p < 0) \end{array} \right.{}\end{array}$$
]

 (4.1)

 Notice that the family includes both positive and negative powers, with the logarithm taking the place of the 0 power. The negative powers have a negative sign to maintain the same direction of the monotonicity; if x
1 < x
2, then T

                p
              (x
1) < T

                p
              (x
2) for all p. When the data are nonnegative but contain zero values, logarithms and negative powers are not defined. In this case we often add a “start
                
              ” value, frequently [image: 
$$\frac{1}{2}$$
], to the data values before taking the log or power transformation.
When we wish to study the mathematical properties of these transformations, we use the related family of scaled power transformations T

                p
              
∗(x) given by [image: 
$$\displaystyle\begin{array}{rcl} T_{p}^{{\ast}}(x)& =& \left \{\begin{array}{cl} \frac{x^{p}-1} {p} &(p\neq 0) \\ \ln (x) &(p = 0) \end{array} \right.{}\end{array}$$
]

 (4.2)

 The scaling in T

                p
              
∗(x) gives the same value T

                p
              
∗(1) = 0 and derivative [image: 
$$\frac{d} {dx}T_{p}^{{\ast}}(1) = 1$$
] for all p.
There is also a third family of power transformations W

                p
              (x) given by [image: 
$$\displaystyle\begin{array}{rcl} W_{p}(x)& =& \left \{\begin{array}{cl} x^{p} &(p\neq 0)\qquad \mbox{ Do not use this form,} \\ \ln (x)&(p = 0)\qquad \mbox{ the reciprocal is not negated.}\\ \end{array} \right.{}\end{array}$$
]

 (4.3)

 that is occasionally (and incorrectly) used. This family does not negate the reciprocals; hence, as we see in Figure 4.16b, it is very difficult to read.[image: A77776_2_En_4_Fig16_HTML.gif]
Fig. 4.16Power Transformations. The smooth transitions between the scaled curves in Figure 4.16c is the justification for using the family of power transformations T

                        p
                      
∗(x) in Equation (4.2). This is the only one of three panels in which both (a) the monotonicity of the individual powers is visible and (b) the simple relation between the curves and the sequence of powers in the ladder of powers [image: 
$$p = -1,-\frac{1} {2},0, \frac{1} {2},1,2$$
] is retained over the entire x domain. Figure 4.16a keeps the monotonicity but loses the sequencing. Figure 4.16b, which doesn’t negate the reciprocals, is very hard to read because two of the curves are monotone decreasing and four are monotone increasing. Figure 4.16 is based on Figures 4-2 and 4-3 of Emerson and Stoto (1983).




                        
Figure 4.16 shows the plots of all three families: the two parameterizations of the Box–Cox power transformations T

                p
              (x) and T

                p
              
∗(x), and the third, poorly parameterized power family W

                p
              (x). There are several things to note in these graphs.
1.Figure 4.16a, the plots of T

                        p
                      (x), correctly negates the reciprocals, thereby maintaining a positive slope for all curves and permitting the perception that these are all monotone transformations.

 

2.In Figure 4.16b, the plots of W

                        p
                      (x), we see that the plots of the two reciprocal transformations have negative slope and that all the others have positive slope. This reversal interferes with the perception of the monotonicity of the transformations.

 

3.Figure 4.16c, the plots of T

                        p
                      
∗(x), is used to study the mathematical and geometric properties of the family of transformations. The individual formulas in Equations (4.1) and (4.2) are linear functions of each other; hence the properties and appearance of the individual lines in the graphs based on them are equivalent. Equation (4.1) is simpler for hand arithmetic. Equation (4.2) makes evident that the powers (including 0 and negative) are simply and systematically related. Taking the negative of the reciprocal explains how the negative powers fits in. Showing how the 0 power or logarithm fits in is trickier; we use l’Hôpital’s rule:
                        
                       [image: 
$$\displaystyle{\lim _{p\rightarrow 0}\frac{x^{p} - 1} {p} =\lim _{p\rightarrow 0}\frac{ \frac{d} {dp}(x^{p} - 1)} { \frac{d} {dp}p} =\lim _{p\rightarrow 0}x^{p}\ln x =\ln x}$$
]





 




The ladder of powers

                
              

                
               is the sequential set of power transformations with [image: 
$$p = -1,-\frac{1} {2},0, \frac{1} {2},1,2$$
].

4.9 Life Expectancy Example—Continued
We look again at the plot of life.exp vs ppl.per.phys from Figures 4.14 and 4.15 where we see that taking the logarithm of ppl.per.phys straightened out the graph. In Figure 4.17 we use the ladder.fstar function in the HH package to take the full set of scaled powers (in the ladder of powers T

                p
              
∗) of each of these two variables and plot them against each other. It is apparent from these plots that any power of life.exp plots as a straight line against the log of the number of physicians (power = 0). This is unusual behavior. More typically the shape of the plot shifts as the power of either variable shifts. This calls for further investigation.[image: A77776_2_En_4_Fig17_HTML.gif]
Fig. 4.17Ladder of powers for “Life Expectancy” and “People per Physician”.




                        
We plot in Figure 4.18 the various scaled powers using equation (4.2) against life.exp. This equation is plotted for each of the values [image: 
$$p = -2,-1,0,.5,1,2$$
], where p = 0 represents the log transformation. We see that within the observed range of values (51, 79) of life exp, all the simple power transformations are essentially linear. This explains why all panels in the ppp^0 column of Figure 4.17 are almost identical.[image: A77776_2_En_4_Fig18_HTML.gif]
Fig. 4.18Powers of “Life Expectancy”. All powers in the range we are looking at yield a graph very close to straight line. Read the panels starting on the bottom-left position, then the rest of the bottom row, then the top row.




                        
The columns of Figure 4.17 look different from each other. We look (for convenience) at row life.exp^1, with the original scaling of life expectancy, and note that the shape of the graphs shifts from concave-SW through diagonal to concave-NE as the power of ppp (people per physician) increases. We need to look at just this single variable as it moves through the series of powers. We do so in Figure 4.19. Panel 4.19a shows the boxplots, panel 4.19b shows the dotplots, and panel 4.19c shows the stem-and-leaf plots. All three panels show the same information. At the positive powers, the data for ppp are extremely asymmetric
                
              ; they are bunched up at the low end of the scale. As the power moves from positive to negative, the center moves toward the higher end and the distribution becomes more symmetric. At the negative powers the data become asymmetric again; this time they are bunched up at the high end. If symmetry for just one variable was the only objective, we might try the −. 3 power [image: 
$$-x^{-.3}$$
] (-(x^-.3)).[image: A77776_2_En_4_Fig19a_HTML.gif][image: A77776_2_En_4_Fig19b_HTML.gif]
Fig. 4.19Powers of “People per Physician”: boxplots, strip plots, and stem-and-leaf. Stem-and-leaf appears in continuation of figure. Fig. 
4.19 continued. Powers of “People per Physician”: stem-and-leaf. We are using non-syntactic names for the variables taken to a power (‘-1‘ for the ppp^-1) in this display. The negative sign in the function call is a response to the difference in display conventions between graphics (with small numbers at the bottom of the response axis) and the stem and leaf (with small numbers at the top).




                        
The boxplots show the shift in center as the dot for the median moves from one side to the other. They show the shift in symmetry as the center box increases from a small portion to a large fraction of the total width and as the whisker and outliers shift from one side to the other. The dotplots show the same information by density and spread of dots. Both dotplots and boxplots have the same scale. The stem-and-leaf is essentially a density plot. It shows the points bunched up at the low values for positive powers, centered and symmetric for 0 power, and bunched at the high values for the negative powers.
                
              


4.10 Color Vision

              
                
              
              
                
              
              
                
              
            
About 10% of the population have color deficient vision. Your job is make your graphs legible to everyone. Download ImageJ (Rasband, 2015) and VischeckJ (Dougherty and Wade, 2006) and follow the instructions in those sites. This program will allow you to simulate color deficient vision on your computer.
Figure 4.20 shows the first six colors of the lattice default colors and the color scheme col3x2, designed to work well for use with a 3 × 2 classification, and used here in many of the figures. We constructed the color scheme col3x2 using the Dark2 and Set2 palettes in the RColorBrewer package (Brewer, 2002; Neuwirth, 2011).[image: A77776_2_En_4_Fig20_HTML.gif]
Fig. 4.20Four visual appearances of two color schemes. The four vision types are crossed with the two color schemes to create eight cells. The three color deficiency simulations were made with the vischeck software. Six color choices which are intended to be distinct are in each of the eight cells. It is very easy to track each color scheme across the four vision types. The six colors on the left, consisting of three dark colors followed by lighter versions of the same three colors, are the Dark2 and Set2 palettes from the RColorBrewer package. For all four vision types, the six colors on the left are perceived as a set of darker three and lighter three colors. The six colors on the right are the first six of the standard lattice colors. They are not clearly distinct in any of the color deficiency simulations.




                        

4.11 Exercises
We recommend that you begin all exercises by examining a scatterplot matrix of the variables. Based on the scatterplot matrix, you might wish to consider transforming some of the variables.
                
              


4.1. The U.S. Draft Lottery held in December 1969 was meant to prioritize the order in which young men would be drafted during 1970 for service in the Vietnam War. Each of the 366 dates was written on a small piece of paper and placed in a capsule. In chronological order the capsules were placed in a vessel and the vessel was stirred. The capsules were then drawn one at a time, thereby assigning ranks 1 to 366 to the dates. But because of inadequate stirring, men with birthdays toward the end of the year tended to have higher rank and thus greater vulnerability to the draft than men born early in the year. The dataset data(draft70mn), originally from Data Archive (1997), contains 12 columns for the months January through December. For each month, the m
th entry represents the rank between 1 and 366 for the m
th day of that month. Produce parallel boxplots for the months arranged chronologically, and draw the line segments connecting the medians of adjacent months. This illustrates the claim that the drawing was not random.

4.2. Sokal and Rohlf (1981), later in Hand et al. (1994), examined factors contributing to air pollution in 41 U.S. cities, as assessed by sulfur dioxide content. The dataset appears in data(usair). The variables are 
                    SO2:
                  SO2 content of air in mcg per cubic meter



                    temp:
                  average annual temperature in degrees Fahrenheit



                    mfgfirms:
                  number of manufacturing firms employing at least 20 workers



                    popn:
                  1970 census population size, in thousands



                    wind:
                  average annual wind speed in mph



                    precip:
                  average annual precipitation in inches



                    raindays:
                  average number of days per year having precipitation





Produce a scatterplot matrix for these data both before and after log-transforming all 7 variables. Compare the sploms and explain why the log transformation is appropriate for these data. Which of the 6 predictor variables are most highly correlated with the logged response SO2? Which of the 15 pairs of logged predictors appear to be highly correlated?

4.3. Vandaele (1978), also in Hand et al. (1994), contains data on the reported 1960 crime rate per million population and 13 potential explanatory variables for each of 47 states. The data appear in the file data(uscrime). The variables are 
                    R:
                  reported crime rate per million population



                    Age:
                  the number of males aged 14 to 24



                    S:
                  1 if Southern state, 0 otherwise



                    Ed:
                  10 times mean years of schooling of population age 25 or older



                    Ex0:
                  1960 per capital expenditures by state and local government on police protection



                    Ex1:
                  same as Ex0 but for 1959



                    LF:
                  number of employed urban males aged 14–24 per 1000 such individuals



                    M:
                  number of males per 1000 females



                    N:
                  state population size in hundred thousands



                    NW:
                  number of nonwhites per 1000 population



                    U1:
                  unemployment rate per 1000 among urban males aged 14–24



                    U2:
                  unemployment rate per 1000 among urban males aged 25–39



                    W:
                  a measure of wealth, units = 10 dollars



                    X:
                  number of families per 1000 earning below one half of the median income (a measure of income inequality)





Construct a scatterplot matrix for these data. The variables other than R will be referred to as predictors in Exercise 9.6. Based on this plot, which pairs of predictors are highly correlated? Which predictors are most closely linearly associated with R?

4.4. Hand et al. (1994) contains data on the average mortality rate for males per 100,000 and the calcium concentration (ppm) in the public drinking water in 61 large towns in England and Wales, averaged over the years 1958 to 1964. Each town was also identified as being at least as far north as the town Derby (derbynor=1) or south of Derby (derbynor=0). The data are accessed as data(water). Exercise 10.4 will request investigation of the relationship between water hardness (calcium) and mortality. The sampling units are towns in two regions. Produce two separate but adjacent plots of mortality vs calcium for the two regions specified by derbynor. Discuss the differences you see in the two plots.

4.5. Williams (1959), also in Hand et al. (1994), presents data on the density and hardness of 36 Australian eucalyptus trees. The dataset is accessed as data(hardness). Determine a transformation from the Box–Cox family that will make hardness as close as possible to normally distributed. The result will be useful for Exercise 11.2, which requests a model of hardness as a function of density.

4.6. Following a severe water shortage in Concord, New Hampshire, during the late 1970s, conservation measures were instituted there in 1980. The shortage became especially acute during the summer of 1981. Hamilton (1983) and Hamilton (1992) discuss models of the 1981 household water consumption in Concord, New Hampshire, in terms of several other variables. The dataset, accessed as data(concord), contains information on the following variables from each of 496 households: 
                    water81:
                  cubic feet of household water use in 1981



                    water80:
                  cubic feet of household water use in 1980



                    income:
                  1981 household income in $1000s



                    educat:
                  education of head of household, in years



                    peop81:
                  number of people living in household in summer 1981



                    retired:
                  1 if head of household is retired, otherwise 0





Exercise 11.3 requests the modeling of household water use in 1981 in Concord as a function of 5 predictors. To assist with this task, investigate which transformation from the ladder of powers family will bring the response variable, water81, as close as possible to normality.

4.A Appendix: R Graphics

R has three major tool sets for graphics specification: base, lattice/trellis, and ggplot. R has a fourth tool set in the vcd package for Visualizing Categorical Data.
Base graphics, in the graphics package, is the oldest, going back to the beginning of S (Becker et al., 1988). It provides functions for drawing plots and components of plots directly on the graphics device (computer screen or paper).
Lattice graphics with the lattice package (Sarkar, 2008, 2014) dates back to the Trellis system (Becker et al., 1996a,b) of S and S-Plus. lattice functions construct R objects which represent the graph. The objects can be stored and updated with additional labeling or other annotation. When the objects are printed, they produce a visible plot on the graphics device.
Grammar of Graphics (Wilkinson, 1999), implemented in package ggplot2 (Wickham, 2009), is the newest system. While ggplot2 functions also construct R objects which represent the graph, they do so with a completely different partitioning of the components of a graph.
Packages lattice, ggplot2, and vcd have all been implemented in the grid package (R Core Team, 2015; Murrell, 2011).
Most graphics in this book were constructed using lattice. Many were drawn by direct use of the functions provided in the lattice package. Others were drawn by first constructing new functions, distributed in the HH package, and then using the new functions. The vcd graphics package (Meyer et al., 2012, 2006) is used for mosaic plots and related plots in Chapter 15

The R code for all graphs in this book is available in the HH package. To see the code for any chapter, say Chapter 7, enter at the R prompt the line:
HHscriptnames(7)
and discover the pathname for the script file. Open that file in your favorite R-aware editor. See Appendix B for more details on the R scripts distributed with the HH package.
4.A.1 Cartesian Products

                  
                    
                  
                  
                    
                  
                
A feature common to many of the displays in this book is the Cartesian product principle behind their construction.
The Cartesian product of two sets A and B is the set consisting of all possible ordered pairs (a, b) where a is a member of the set A and b is a member of the set B. Many of our graphs are formed as a rectangular set of panels, or subgraphs, where each panel is based on one pair from a Cartesian
                    
                   product. The sets defining the Cartesian product differ for each graph type. For example, a set can be a collection of variables, functions of a single variable, levels of a single factor, functions of a fitted model, different models, etc.
When constructing a graph that can be envisioned as a Cartesian product, it is necessary that the code writer be aware of the Cartesian product relationship. The lattice code for such a graph includes a command that explicitly states the Cartesian product.
                    
                  


4.A.2 Trellis Paradigm

                  
                    
                  
                
Most of the graphs in this book have been constructed using the trellis paradigm as implemented in lattice. The trellis system of graphics is based on the paradigm of repeating the same graphical specifications for each element in a Cartesian product
                    
                   of levels of one or more factors.
The majority of the methods supplied in the R lattice package are based on a typical formula having the structure [image: 
$$\displaystyle\begin{array}{rcl} {\tt y\ ~\ x\ |\ a\ *\ b}& &{}\end{array}$$
]

 (4.4)

 where [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{ll} \mathtt{y}&\text{is either continuous or factor } \\ \mathtt{x}&\text{ is continuous }\\ \mathtt{a}&\text{is factor } \\ \mathtt{b}&\text{ is factor}\end{array} & & {}\\ \end{array}$$
]


 and each panel, as defined by the Cartesian product of the levels of a and b, is a plot of y ~ x for the subset of the data with the stated values of a and b.
                    
                  


4.A.3 Implementation of Trellis Graphics

                  
                    
                  
                
The concept of trellis plots can be implemented in any graphics system. In the S family of languages (S-Plus and R), selection of
                    
                  

                    
                   the set of panels, assignment of individual observations to one panel in the set, and coordinated scaling across all panels are automated in response to a formula specification in the user level.
The term trellis comes from gardening, where it describes an open structure used as a support for vines. In graphics, a trellis
                    
                   provides a framework in which related graphs can be placed. The term lattice has a similar meaning.

4.A.4 Coordinating Sets of Related Graphs
There are several graphical issues that needed attention in any multipanel graph. See Figure 10.​8 for an example illustrating these issues. 
                        positioning:
                      The panels containing marginal displays (if any) need to be clearly delineated as distinct from the panels containing data from just a single set of levels of the factors. We do this by placing extra space between the set of panels for the individual factor values and the panels containing marginal displays.



                        scaling:
                      All panels need to be on exactly the same scale to enhance the reader’s ability to compare the panels visually. We use the automatic scaling feature of trellis
                            
                           plots to scale simultaneously both the individual panels and the marginal panels.
                            
                          




                        labeling:
                      We indicate the marginal panels by use of the strip labels. 
                            
                          




                        shape of plotting characters:
                      We used three distinct plotting characters for the three-level factor.



                        color
                            
                           of plotting characters:
                      We used three contrasting colors for the three-level factor. The choice to use both distinct plotting characters and distinct colors is redundant (reemphasizing the difference between levels), accessible (making the graph work for people with color vision deficiencies), and defensive (protecting the interpretability of the graph from black-and-white copying by a reader).
There are several packages in R that address color selection. The RColorBrewer package (Neuwirth, 2011), based on the ColorBrewer website (Brewer, 2002), gives a discussion on the principles of color choice and gives a series of palettes for distinguishing nominal sets of items or sequences of items.
                            
                          

                            
                           The colorspace package (Ihaka et al., 2013) provides qualitative, sequential, and diverging color palettes based on HCL colors.






4.A.5 Cartesian Product of Model Parameters

                  
                    
                  
                
Figure 10.​12 displays four different models of a
                    
                   response variable as a function of a factor and a continuous covariate. The model in the center row and right column is the same model shown in Figure 10.​8. The models are shown as a Cartesian product of model parameters. The models in the columns of Figure 10.​12

                    
                   are distinguished by the absence or presence of a parameter for Type—forcing a common intercept in the left column and allowing different intercepts by Type in the right column. The three rows are distinguished by how the covariate Calories is handled: separate slopes by Type in the top row, constant slope for all Types in the middle row, or identically zero slope (horizontal line) in the bottom row.
Figure 10.​12

                    
                   is structured as a set of small multiples, a term introduced by Tufte Tufte (2001) to indicate repetition of the same graphical design structure. “Small multiples
                    
                   are economical: once viewers understand the design of one slice, they have immediate access to the data in all other slices. Thus, as the eye moves from one slice to the next, the constancy of the design allows the viewer to focus on changes in the data rather than on changes in graphical design (Tufte (2001), page 48).” Figure 10.​12

                    
                   may be interpreted as a four-way Cartesian product: slope (α vs α

                    i
                  ), intercept (β = 0, β, β

                    j
                  ), individual panels vs superpose, hotdog Type (Beef, Meat, Poultry) with a an ordinary two-way scatterplot with a fitted line inside each element of the four-way product.
                    
                  


4.A.6 Examples of Cartesian Products

                  
                    
                  
                

                  1.In the plots illustrating lack of homogeneity of variance
                            
                           (Figure 6.​6), one of the sets in the Cartesian product is the function of the data represented (observed data, median-centered data, absolute value of the median-centered data). The other set is the levels of the catalyst factor. We discuss in Section 6.​10 the Brown–Forsyth test for variance homogeneity.

 

2.In the logistic regression plots (Figure 17.​12)
                            
                           there are several sets used to define the Cartesian products. The rows of the array are functions of the fitted probability. The columns of the array are the levels of one of the factors (X-ray) with a marginal value of X-ray in the left-most column. The individual lines within the panels, as identified in the legend, are levels of the X.ray × stage × grade interaction. This is an ordinary xyplot of the predicted response variable displayed on three scales—the logit scale, the odds scale, and the probability scale—against one of the predictor variables acid.ph.

 

3.In the ladder-of-power plots (Figure 4.17)
                            
                           the rows of the array are powers of y and the columns are powers of x. This plot is useful in a regression context for determining the optimal power transformations of both the response and predictor variables.

 

4.Figure 4.21 shows the ability to control the position
                            
                          

                            
                           and color of boxplots.
                            
                            
                           This simulated example shows the results of a clinical trial where the patients’ followup visits were scheduled with nonconstant intervals between visits. Here, the boxes for both treatment levels are grouped by week and the weeks are correctly spaced. The default positioning for bwplot places the boxes evenly spaced, honoring neither the week nor the treatment factor.[image: A77776_2_En_4_Fig21_HTML.gif]
Fig. 4.21The response to treatments A and B was measured at weeks 1, 2, 4, and 8. The boxplots have been positioned at distances illustrating the time difference and with A and B adjacent at each time point.




                                                

 

5.Mosaic
                            
                           plots (Figure 15.​11 and other figures in Chapter 15) as constructed as Cartesian products of several factors.

 

6.Diverging stacked bar charts
                            
                           as used in displays of Likert scale data (Figure 15.​14 and others in Section 15.​9 are a crossing of a set of questions (possibly nested in another factor) with a set of potential responses.

 



                

4.A.7 latticeExtra—Extra Graphical Utilities Based on Lattice

                  
                    
                  
                
The latticeExtra provides many functions for combining independently constructed lattice plots and for controlling the size and placement of arrays of lattice plots. We use these functions in many of our graphs. The mmcplot (Figure 7.​18 and elsewhere in the book) is built by constructing the two panels independently and then combining them with the latticeExtra:::c.trellis function. Many of our plots are constructed by overlaying two independently drawn graphs with the layer function or with the latticeExtra:::‘+.trellis‘ as illustrated in Figure 4.22.[image: A77776_2_En_4_Fig22_HTML.gif]
Fig. 4.22Several ways to plot multiple variables simultaneously. The top row shows the "trellis" objects from three separate calls to the xyplot function. The second row shows two ways of combining the "trellis" objects in the top row. On the left they are overlaid into the same panel using the latticeExtra +.trellis function. On the right they are concatenated into a multi-panel "trellis" object by using the latticeExtra c.trellis function. The third row shows two ways of specifying similar displays with a single xyplot command. On the left there are three response variables in the model formula with the default setting that places them into the same panel. On the right the outer=TRUE argument places them into three adjacent panels. The bottom row shows placement of the points into separate panels by specifying the Cartesian product of the levels of the factors a and b in the conditioning section (following the “|” symbol) of the model formula. The code for these plots is included in the file identified by HHscriptnames(4).




                                


4.B Appendix: Graphs Used in This Book

                
                  
                
              
We emphasize throughout this book that graphical display is an integral part of data analysis. Superior data analysis almost always benefits from high-quality graphics. Appropriately drawn graphs are, in our opinion, the best way to gain an understanding of what data have to say, and also to convey results of the analysis to others, both other statisticians and persons with minimal training in statistics.
We illustrate many standard graphs. We also illustrate many graphical displays that are not currently standard and some of which are new. The software for our displays is included in the HH package.
Analysts occasionally require a graph unlike any readily available elsewhere. We recommend that serious data analysts invest time in becoming proficient in writing code rather than using the graphical user interface
                  
                

                  
                 (GUI). Very few of the graphs in this book can be produced using a standard GUI. Some of them can be produced using the menus in our package RcmdrPlugin.HH. Users of a GUI are limited to the current capabilities of the GUI. While the design of GUIs will continually improve, their capabilities will always remain far behind what skilled programmers can produce. Even less-skilled analysts can take advantage of cutting-edge graphics by accessing libraries of graphing functions such as those included in the HH package and other packages available on CRAN.
4.B.1 Structured Sets of Graphs
Several of our examples extend the concept of a structured presentation of plots of different sets of variables, or of different parametric transformations of the same set of variables. Several of our examples extend the interpretation of the model formula, that is, the semantics of the formula, to allow easier exposition of standard statistical techniques.
In this appendix we list these displays in order to comment on their construction. We provide a reference to an example in the book for each type of display. Discussion of the interpretation of the graphs appears in the indicated chapters.

4.B.2 Combining Panels

                  1.Scatterplot Matrices: splom

                            
                           A scatterplot matrix (splom) is a trellis display in which the panels are defined by a Cartesian product of variables. In the standard scatterplot matrix constructed by splom, Figure 4.5 for example, the same set of variables define both the rows and columns of the matrix.
A scatterplot matrix (splom) does not follow the semantic paradigm of Equation (4.4). It differs from the majority of trellis-based methods in two ways. First, each of the panels is a plot of a different set of variables. Second, each of the panels is based on the entire set of observations.
Subsections 4.4 and 4.7 contain extensive discussions of scatterplot matrices. We strongly recommend the use of a splom, sometimes conditioned on values of relevant categorical variables, as an initial step in analyzing a set of data.

 

2.xyplot can be used to construct more general matrices of panels, for example with different of sets of variables for the rows and columns of the scatterplot matrix. Figure 4.4, for example, shows that xyplot can be used to specify a set of variables to define the columns of the matrix and subsets of the observations (specified as different levels of a factor) to define the rows. The formula is essentially
sprice ~ beds + drarea + kitarea | CondoHouse
Sets of xyplots with coordinated subsets of variables can be useful in situations where the number of variables under study is too large to produce a legible splom containing all variables on a single page. In such a circumstance we recommend the use of two or more pages of xyplots to display pairwise relationships among variables.
                            
                          


 

3.Figure 4.22 shows several ways to combine multiple variables in one or more panels. The figure shows overlaying plots, concatenating plots, and conditioning panels on the levels of a factor.

 



                

                  
                    
                  
                

4.B.3 Regression Diagnostics

                  
                    
                  
                
In the regression diagnostics plots (Figure 11.​6), the panels are defined by conditioning on a set of functions (one for each statistic). This plot displays all common regression diagnostics on a single page. Included are thresholds for flagging cases as unusual along with identification of such cases.

4.B.4 Graphs Requiring Multiple Calls to xyplot


                  
                    
                  
                
When one of the sets in the Cartesian product is a set of functions, the easiest way to construct the product is to make several xyplot calls, one for each function in the set.

                  1.Partial residual plots (Figure 9.​10) — [functions of fitted values and residual] × [variables]. Response against predictors, residuals against predictors, partial residuals against predictors (partial residual plots), and partial residuals of Y against partial residuals of X (added variable plots). Each row of Figure 9.​10 is a different function of fitted values or residual. Each column is either one of the predictor variables or a function of the predictor variables. See the discussion
                            
                            
                           in Section 9.​13


 

2.Analysis of covariance plots (One example is in the set of
                            
                            
                           Figures 10.6, 10.7, 10.8, and 10.9. Another example is in Figure 14.​6) — [models] × [levels]. A key feature of this set of plots is its presentation of all points both superposed into one panel and also segregated into individual panels defined by the levels of a factor. In this framework, the superposition of all levels of the factor is itself considered a level.

 

3.ODOFFNA plots (Figure 14.​17) — [transformation
                            
                            
                          

                            
                           power] × [factors] × [factors], a 3-dimensional Cartesian product. This is a series of interaction plots indexed by a third variable, the transformation power, all on a single page. Figure 14.​17 is intended to find a satisfactory power transformation to achieve homogeneity of variance and then assess interaction among the two factors for the chosen power transformation.

 



                

4.B.5 Asymmetric Roles for the Row and Column Sets

                  1.Interaction plots (Figure 12.​1) — [factors]
                            
                            
                           × [factors]. Each off-diagonal panel is a standard interaction plot. Panels in transpose positions interchange the trace- and x-factors. Rows are labeled by the trace factor. Columns are labeled by the x-factor. The main diagonal is used for boxplots of the main effects.

 

2.ARIMA-trellis plots (Figure 18.​8) — [number of AR
                            
                            
                           parameters] × [number of MA parameters] × [type of display]. Each of the 3 × 3 displays contains diagnostic information about each of the 9 models indexed by the numbers of autoregressive and moving average parameters p and q. In addition we group several types of display on a single page. This plot displays most commonly used diagnostics for identifying the number of AR and MA parameters in time series models of the ARIMA class.

 



                

4.B.6 Rotated Plots
Mean–mean multiple comparisons plots (MMC plots)
                    
                    
                   (Figure 7.​19) — [means at levels] × [means at levels]. The plot is designed as a crossing of the means of a response variable at the levels of one factor with itself. It is then rotated 45∘ so the horizontal axis can be interpreted as the differences in mean levels and the vertical axis can be interpreted as the weighted averages of the means comprising each comparison. This class of plots is used to display the results of a multiple comparison procedure.

4.B.7 Squared Residual Plots
The fundamental concept of “least squares” is difficult to present to introductory classes. Here, we illustrate the squares. The sum of their areas is the “sum of squares” that is minimized according to the “least-squares” principle.
Illustrations of 2D and 3D least-squares fits (Figures 8.2
                    
                    
                  , 9.1, and 9.5)—[fitted models] × [methods of displaying residuals]. The rows of Figure 8.​2 are ways of displaying residuals; the first row shows the residuals as vertical lines, the second as squares. The columns show different models: none, least-squares, and a too-shallow fit.

4.B.8 Adverse Events Dotplot

                  
                    
                  
                
There are two primary panels in Figure 15.​13 — [factor] × [functions of percents]. The first panel shows the observed percentages on the x-axis. The second panel shows the relative risk with its confidence interval on the x axis. Both panels have the same y axis showing the event names.

4.B.9 Microplots

                  
                    
                  
                
Microplots (as in Table 13.​2) are small plots embedded into a table of numbers. The plot often carries as much or more information as the numbers.

4.B.10 Alternate Presentations
We have alternate presentations of existing ideas.
1.Transposed trellis plots are sometimes helpful. In Figure 13.​13 we show a set of boxplots with the response variable on the vertical axis. The vertical orientation places the response variable in the vertical direction and accords with how we have been trained to think of functions—levels of the independent variable along the abscissa and the response variable along the ordinate. In Section 13.A we show in Figure 13.​17 the same graphs with the response variable on the horizontal axis.

 

2.Odds-ratio CI plot (Figure 15.​10). The
                            
                            
                          

                            
                          

                            
                           odds ratio [image: 
$$\displaystyle{\left (\frac{p_{1}} {q_{1}}\right )/\left (\frac{p_{2}} {q_{2}}\right )}$$
]


 does not, by construction, give information on both underlying p
1- and p
2-values. It is necessary to specify one of them to estimate the other. We backtransform the CI on the odds ratio to a CI on the probability scale and plot the CI of p
2 for all possible values of p
1. The two axes have the same (0, 1) probability scale.
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5. Introductory Inference
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In this chapter we discuss selected topics and issues dealing with statistical inferences from samples to populations, building upon the brief introduction to these ideas in Chapter 3 The discussion here is at an intermediate technical level and at a speed appropriate for review of material learned in the prerequisite course.
We provide procedures for constructing confidence intervals and conducting hypothesis tests for several frequently encountered situations.
5.1 Normal (z) Intervals and Tests

              
                
                
              
            
A confidence interval and test concerning a population mean were briefly described in Chapter 3 This is a more extensive presentation.
The confidence interval on the mean μ of a normal population when the standard deviation is known was given in Equation (3.​18). The development there assumed that the population was normal. However, since the Central Limit Theorem discussed in Section 3.​4.​2 guarantees that [image: 
$$\frac{\bar{Y }-\mu } {\sigma /\sqrt{n}}$$
] is approximately normally distributed if n is “sufficiently large”, the interval [image: 
$$\displaystyle{ \left (\bar{y} - z_{\mbox{ $ \frac{\alpha }{ 2} $}} \frac{\sigma } {\sqrt{n}},\ \bar{y} + z_{\mbox{ $ \frac{\alpha }{ 2} $}} \frac{\sigma } {\sqrt{n}}\right ) }$$
]

 (5.1)

 is an approximate two-sided 100(1 −α)% confidence interval when the population is not normal. The closer the population is to a normal population, the closer will be this interval’s coverage probability to 1 −α. Thus, in the nonnormal case, this interval is an approximate CI for μ.
Also shown in the rightmost column of Table 5.1 are one-sided confidence intervals for μ. These are less commonly used than two-sided intervals because they have infinite width. But they are sometimes encountered in contexts where an upper or lower bound for μ is required.Table 5.1Confidence intervals and tests with known standard deviation [image: 
$$\sigma$$
], where [image: 
$$\sigma _{\bar{y}} = \frac{\sigma } {\sqrt{n}}$$
] and [image: 
$$z_{\mbox{ calc}} = \frac{\bar{y} -\mu _{0}} {\sigma _{\bar{y}}}$$
]. The six situations are shown graphically in Figure 5.1



[image: A77776_2_En_5_Figa_HTML.gif]


                        
5.1.1 Test of a Hypothesis Concerning the Mean of a Population Having Known Standard Deviation

                
                  
                  
                
              
We consider three pairs of null and alternative hypotheses in Table 5.1 and Figure 5.1. [image: A77776_2_En_5_Fig1_HTML.jpg]
Fig. 5.1Graphical display of the six situations described in Table 5.1: Confidence intervals and tests with known standard deviation [image: 
$$\sigma$$
]. See Section 5.1.1 for full discussion.




                            
The first two pairs are called one-tailed or one-sided tests because their rejection regions lie on one side of the normal distribution. The third pair has a two-sided rejection region and hence is termed a two-tailed or two-sided test. In any given problem, only one of these three is applicable. For expository purposes, it is convenient to discuss them together.
Some authors formulate the one-sided tests with sharp null hypotheses [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{ccc} \\ \\ \\ \\ \\ \\ H_{ 0} & \ \ \ & H_{1} \\ \mu =\mu _{0} & & \mu >\mu _{0} \\ \mu =\mu _{0} & & \mu <\mu _{0}\\ \end{array} & & {}\\ \end{array}$$
]


 However, with the sharp formulation it can happen that neither the null nor alternative hypothesis is true, in which case the action of rejecting the null hypothesis has an uncertain interpretation.
For the first pair of hypotheses, we reject H
0 if the sample mean is sufficiently greater than μ
0, specifically, if [image: 
$$\bar{y} > (\mu _{0} + z_{\alpha }\sigma /\sqrt{n})$$
]. Otherwise, H
0 is retained. Equivalently, if we define the calculated Z statistic under the null hypothesis, [image: 
$$\displaystyle\begin{array}{rcl} z_{\mbox{ calc}} = \frac{\bar{y} -\mu _{0}} {\sigma /\sqrt{n}} & &{}\end{array}$$
]

 (5.2)

 then we reject H
0 if [image: 
$$z_{\mbox{ calc}} > z_{\alpha }$$
]; otherwise H
0 is retained. The p-value of this test is [image: 
$$P(Z > z_{\mbox{ calc}})$$
].
The testing procedure for the second pair of hypotheses is the mirror image of the first pair. H
0 is rejected if [image: 
$$\bar{y} < (\mu _{0} - z_{\alpha }\sigma /\sqrt{n})$$
] and retained otherwise. Equivalently, we reject H
0 if [image: 
$$z_{\mbox{ calc}} < -z_{\alpha }$$
]. The p-value of this test is [image: 
$$P(Z < z_{\mbox{ calc}})$$
].
For the third pair, the two-sided test, we reject H
0 if either [image: 
$$\displaystyle\begin{array}{rcl} \bar{y} < (\mu _{0} - z_{\mbox{ $ \frac{\alpha }{ 2} $}}\sigma /\sqrt{n})\quad \mbox{ or}\quad \bar{y} > (\mu _{0} + z_{\mbox{ $ \frac{\alpha }{ 2} $}}\sigma /\sqrt{n});& & {}\\ \end{array}$$
]


 equivalently, if [image: 
$$\vert z_{\mbox{ calc}}\vert > z_{\mbox{ $ \frac{\alpha }{ 2} $}}$$
]. The p-value of this two-sided test is [image: 
$$2P(Z > \vert z_{\mbox{ calc}}\vert )$$
]. Hence H
0 is rejected if [image: 
$$\bar{y}$$
] is sufficiently above or sufficiently below μ
0. Another equivalent rule is to reject H
0 if and only if μ
0 falls outside the 100(1 −α)% confidence interval for μ.
The rejection region for all three pairs is included in Table 5.1.
                  
                  
                


5.1.2 Confidence Intervals for Unknown Population Proportion p

We consider a confidence interval
                  
                  
                 on the unknown proportion p of successes in a population consisting of items or people labeled as successes and failures. Such populations are very frequently encountered in practice. For example, we might wish to estimate the proportion p of voters who will ultimately vote for a particular candidate, based on a random sample from a population of likely voters. Inspectors of industrial output may wish to estimate the proportion p of a day’s output that is defective based on a random sampling of this output.
Suppose the sample size is n, of which Y items are successes and that [image: 
$$\hat{p} = \frac{Y } {n}$$
], a point estimator of p, is the proportion of sampled items that fall into the success category. Until recently, the usual 100(1 −α)% confidence interval for p suggested in the statistics literature was [image: 
$$\displaystyle\begin{array}{rcl} \hat{p} \pm z_{\mbox{ $ \frac{\alpha }{ 2} $}}\ \sqrt{\frac{\hat{p}\,(1 -\hat{ p})} {n}} & & {}\\ \end{array}$$
]


 This interval is satisfactory when n ≥ 100 unless p is close to either 0 or 1. The large sample is needed for the Central Limit Theorem to assure us that the discrete probability distribution of [image: 
$$\hat{p}$$
] is adequately approximated by the continuous normal distribution.
Agresti and Caffo (2000)
                  
                

                  
                 suggest the following alternative confidence interval for p, where [image: 
$$\tilde{p} = \frac{Y +2} {n+4}$$
] and [image: 
$$\tilde{n} = n + 4$$
]: [image: 
$$\displaystyle\begin{array}{rcl} \tilde{p} \pm z_{\mbox{ $ \frac{\alpha }{ 2} $}}\ \sqrt{\frac{\tilde{p}\,(1 -\tilde{ p})} {\tilde{n}}} & &{}\end{array}$$
]

 (5.3)

 Agresti and Caffo show that their interval has coverage probability that typically is much closer to the nominal 1 −α than the usual confidence interval. It differs from the usual interval in that we artificially add two successes and two failures to the original sample. For p near 0 or 1, the usual interval, which is symmetric about [image: 
$$\hat{p}$$
], may extend beyond one of these extremes and hence not make sense, while the alternative interval is likely to remain entirely between 0 and 1.
Conventional one-sided confidence intervals for p are shown in Table 5.2. Comparable to Agresti and Caffo’s proposed two-sided interval, Cai (2003) proposes improved one-sided confidence intervals for p having coverage probabilities closer to 1 −α than the conventional intervals. These lower and upper intervals, respectively, are [image: 
$$\displaystyle\begin{array}{rcl} \left [0,\mathcal{F}_{\mbox{ Be}}^{-1}(1 -\alpha \mid Y +.5,n - Y +.5)\right ]& &{}\end{array}$$
]

 (5.4)

 and [image: 
$$\displaystyle\begin{array}{rcl} \left [\mathcal{F}_{\mbox{ Be}}^{-1}(\alpha \mid Y +.5,n - Y +.5),1\right ]& &{}\end{array}$$
]

 (5.5)

 where [image: 
$$\mathcal{F}_{\mbox{ Be}}^{-1}(\alpha \mid a,b)$$
] denotes the value x of a random variable corresponding to the 100α percentile of the beta distribution with parameters a and b. See Section J.1.1 for a brief discussion of the beta distribution.
                  
                  
                
Table 5.2Conventional confidence intervals and tests with unknown population proportion p, where [image: 
$$\sigma _{p_{0}} = \sqrt{\frac{p_{0 } \,(1 - p_{0 } )} {n}}$$
] and [image: 
$$z_{\mbox{ calc}} = \frac{\hat{p} - p_{0}} {\sigma _{p_{0}}}$$
] for tests, and [image: 
$$s_{\hat{p}} = \sqrt{\frac{\hat{p}\,(1 -\hat{ p})} {n}}$$
] for confidence intervals.


[image: A77776_2_En_5_Figb_HTML.gif]


                            

5.1.3 Tests on an Unknown Population Proportion p

Assume we have a sample of n ≥ 100 items from a population of successes and failures, and we wish to test a hypothesis
                  
                  
                 about the proportion p of successes. Paralleling the previous discussion of tests on a population mean, there are two one-tailed tests and one two-tailed test as detailed in Table 5.2 and Figure 5.2. As in the discussion of the confidence interval on p, the normal approximation to the distribution of [image: 
$$\hat{p}$$
] requires that n not be too small. Note that the confidence intervals are based on densities centered on the observed proportion [image: 
$$\hat{p} = x/n$$
]. They therefore have a different standard deviation [image: 
$$\sqrt{ \hat{p}(1 -\hat{ p})/n}$$
], and therefore height at the center of the density, than the densities centered at the null hypothesis p
0 with standard deviation [image: 
$$\sqrt{p_{0 } (1 - p_{0 } )/n}$$
].
[image: A77776_2_En_5_Fig2_HTML.gif]
Fig. 5.2Graphical display of the six situations described in Table 5.2: Confidence intervals and tests for population proportions. Note that the confidence intervals, centered on the observed [image: 
$$\hat{p}$$
], have differently scaled density functions than the null hypothesis distributions, centered on the hypothesized p
0. For the tests, the standard deviation is [image: 
$$\sigma _{p_{0}} = \sqrt{{\bigl (p_{0 } /(1 - p_{0 } )\bigr )}/n}$$
]. For the confidence intervals, the standard deviation is [image: 
$$s_{\hat{p}} = \sqrt{{\bigl (\hat{p}/(1 -\hat{ p})\bigr )}/n}$$
]. In this example the densities for the confidence interval are taller and narrower. See Section 5.1.3 for full discussion.




                            

5.1.4 Example—One-Sided Hypothesis Test Concerning a Population Proportion
As an illustration, suppose a pollster wishes to test the hypothesis that at least 50% of a city’s voting population favors a certain bond issue. The pollster observed only 222 of a random sample of 500 persons in the population favors this bond issue. Let us conduct this test at α = 0. 01.
Here H
1 is of the form H
1: p < . 50. We reject H
0 if [image: 
$$\displaystyle\begin{array}{rcl} \hat{p} < p_{0} - z_{.01}\sqrt{\frac{p_{0 } (1 - p_{0 } )} {n}} & &{}\end{array}$$
]

 (5.6)

 With p
0 = . 50, [image: 
$$\hat{p} = 222/500 = 0.444$$
], z
. 01 = 2. 326, and [image: 
$$\displaystyle\begin{array}{rcl} \sqrt{ p_{0}(1 - p_{0})/n} =.0224& &{}\end{array}$$
]

 (5.7)

 we find that the right side of (5.6) is 0.448 so that H
0 is (barely) rejected. In this example, [image: 
$$z_{\mbox{ calc}} = -2.500$$
] so that the p-value = P(Z < −2. 500) = . 0062. Hence we reject H
0 because α = . 01  >   p = . 0062.
                  
                  
                



5.2 
                            t-Intervals and Tests for the Mean of a Population Having Unknown Standard Deviation

              
                
                
              
            
When we wish to construct a confidence interval or test a hypothesis about an unknown population mean μ, more often than not the population standard deviation [image: 
$$\sigma$$
] is also unknown. Then we must use the sample standard deviation [image: 
$$s =\sum \left ((x -\bar{ x})^{2}\right )/(n - 1)$$
] from Equation 3.9 in place of [image: 
$$\sigma$$
] when standardizing [image: 
$$\bar{y}$$
]. But while [image: 
$$(\bar{y}-\mu )/(\sigma /\!\sqrt{n}\,)$$
] has an approximate normal distribution if n is sufficiently large, [image: 
$$(\bar{y}-\mu )/(s/\!\sqrt{n}\,)$$
] has an approximate t distribution with n − 1 degrees-of-freedom. The latter standardization with s in the denominator has more variability than the former standardization with [image: 
$$\sigma$$
] in the denominator. The t distribution reflects this increased variability because it has less probability concentrated near zero than does the standard normal distribution.
The confidence interval and tests for μ using the t distribution are similar to those using the normal (Z) distribution (that is, Table 5.1 is applicable), with [image: 
$$t_{\mbox{ calc}}$$
] replacing [image: 
$$z_{\mbox{ calc}}$$
] and t

                α
               replacing z

                α
              . For this problem, the degrees-of-freedom parameter for the t distribution is always n − 1.
For example, to test H
0: μ ≥ μ
0 vs H
1: μ < μ
0, we reject H
0 if [image: 
$$\displaystyle\begin{array}{rcl} t_{\mbox{ calc}} = \frac{\bar{y}-\mu } {s/\sqrt{n}} < -t_{\alpha }& &{}\end{array}$$
]

 (5.8)

 Here the p-value [image: 
$$= P(t < t_{\mbox{ calc}})$$
] is calculated from the t distribution with n − 1 degrees of freedom.
Calculating the power associated with t-tests is more difficult than for the normal tests because the alternative distribution is not the same as the null distribution. With the normal tests, both distributions have the same shape. With the t-tests, the alternative distribution has the noncentral t distribution with noncentrality parameter [image: 
$$(\mu _{1} -\mu _{0})/(\sigma /\sqrt{n})$$
]. We postpone further discussion of the noncentral t distribution to Section 5.6.2 and Figure 5.10 in the context of sample size calculations. Also see the illustration in Section J.2.2.
The approximate confidence interval on μ is [image: 
$$\bar{y} \pm t_{\mbox{ $ \frac{\alpha }{ 2} $}} \frac{s} {\sqrt{n}}$$
].
5.2.1 Example—Inference on a Population Mean μ

Hand et al. (1994) presents a data set, reproduced in data(vocab), containing the scores on a vocabulary test of a sample of 54 students from a study population. Assume that the test was constructed to have a mean score of 10 in the general population. We desire to assess whether the mean score of the study population is also μ = 10. Assuming that standard deviation for the study population is not known, we wish to calculate a 95% confidence interval for μ and to test [image: 
$$H_{0}: \mu = 10$$
] vs [image: 
$$H_{1}: \mu \neq 10$$
].
We begin by looking at a stem-and-leaf display of the sample data to see if the underlying assumption of normality is tenable. We observe in Figure 5.3 that the sample is slightly positively skewed with one high value that may be considered an outlier. Based on the Central Limit Theorem, the t-based procedures in Figure 5.4 are justified here. The small p-value ([image: 
$$p \approx 3\mbox{ 10}^{-14}$$
]) is a strong evidence that μ is not 10. The 95% confidence interval (12.30, 13.44) suggests that the mean score is close to 12.9 in the study population.
[image: A77776_2_En_5_Fig3_HTML.gif]
Fig. 5.3Stem-and-leaf display of vocabulary scores.




[image: A77776_2_En_5_Fig4_HTML.gif]
Fig. 5.4
t-test and t-based confidence interval of vocabulary scores.




                            
We examine a nonparametric approach to this problem in Section 16.​2

                  
                  
                



5.3 Confidence Interval on the Variance or Standard Deviation of a Normal Population
Let the (unbiased) estimator of [image: 
$$\sigma ^{2}$$
] based on a sample of size n be denoted s
2. Then [image: 
$$(n - 1)s^{2}/\sigma ^{2}$$
] has a χ
2 distribution with df = n − 1. Thus

              [image: 
$$\displaystyle\begin{array}{rcl} P\left (\chi _{\mbox{ $ \frac{\alpha }{ 2} $},\,n-1}^{2} < (n - 1)\,s^{2}/\sigma ^{2} <\chi _{ 1-\mbox{ $\frac{\alpha }{2} $},\,n-1}^{2}\right ) = 1-\alpha & & {}\\ \end{array}$$
]



            
Inverting this statement leads to the 100(1 −α)% confidence interval
                
                
               for [image: 
$$\sigma ^{2}$$
]:

[image: 
$$\displaystyle\begin{array}{rcl} \left ( \frac{(n - 1)s^{2}} {\chi _{1-\mbox{ $\frac{\alpha }{ 2} $},\,n-1}^{2}}, \frac{(n - 1)s^{2}} {\chi _{\mbox{ $ \frac{\alpha }{ 2} $},\,n-1}^{2}} \right )& & {}\\ \end{array}$$
]


 If instead a CI on [image: 
$$\sigma$$
] is desired, take the square roots of both the lower and upper limits in the above. We graph the estimation of a confidence interval in Figure 5.5.[image: A77776_2_En_5_Fig5_HTML.gif]
Fig. 5.5Confidence interval for variance assuming a chi-square distribution with ν = 12 degrees of freedom and an observed s
2 = 15. The estimated 95% confidence interval on [image: 
$$\sigma ^{2}$$
] is (7. 71, 40. 87). By taking the square root, we find the estimated 95% confidence interval on [image: 
$$\sigma$$
] is (2. 777, 6. 393).




                        
The distribution of [image: 
$$(n - 1)s^{2}/\sigma ^{2}$$
] can also be used to conduct a test
                
                
               about [image: 
$$\sigma ^{2}$$
] (or [image: 
$$\sigma$$
]). For example, to test [image: 
$$H_{0}: \,\sigma ^{2}\! \leq \!\sigma _{0}^{2}$$
] vs [image: 
$$H_{1}: \,\sigma ^{2}\! >\!\sigma _{ 0}^{2}$$
], the p-value is [image: 
$$1 -\mathcal{F}_{\chi _{n-1}^{2}}\left ((n - 1)s^{2}/\sigma _{0}^{2}\right )$$
]. Tests of the equality of two or more variances are addressed in Section 6.​10
[image: A77776_2_En_5_Figm_HTML.gif]



5.4 Comparisons of Two Populations Based on Independent Samples
Two populations are often compared by constructing confidence intervals on the difference of the population means or proportions. In this discussion it is assumed that random samples are independently selected from each population.
5.4.1 Confidence Intervals on the Difference Between Two Population Proportions

                
                  
                  
                
              
The need for confidence intervals on the difference of two proportions is frequently encountered. We might wish to estimate the difference in the proportions of voters in two populations who favor a particular candidate, or the difference in the proportions of defectives produced by two company locations.
Labeling the populations as 1 and 2, the traditional confidence interval, assuming that both populations are large and that neither proportion is close to either 0 or 1, is [image: 
$$\displaystyle\begin{array}{rcl} (\hat{p}_{1} -\hat{ p}_{2}) \pm z_{\mbox{ $ \frac{\alpha }{ 2} $}}\sqrt{\frac{\hat{p}_{1 } (1 -\hat{ p}_{1 } )} {n_{1}} + \frac{\hat{p}_{2}(1 -\hat{ p}_{2})} {n_{2}}} & &{}\end{array}$$
]

 (5.9)

 Agresti and Caffo (2000) also provided an improved confidence interval for this situation, which again provides confidence closer to 100(1 −α)% than the preceding interval. For i = 1, 2, let [image: 
$$\tilde{p}_{i} = \frac{Y _{i}+1} {n_{i}+2}$$
], i.e., revise the estimate of p

                  i
                 by adding one success and one failure to both samples. Then the improved interval
                  
                  
                 is [image: 
$$\displaystyle\begin{array}{rcl} (\tilde{p}_{1} -\tilde{ p}_{2}) \pm z_{\mbox{ $ \frac{\alpha }{ 2} $}}\sqrt{\frac{\tilde{p}_{1 } (1 -\tilde{ p}_{1 } )} {n_{1} + 2} + \frac{\tilde{p}_{2}(1 -\tilde{ p}_{2})} {n_{2} + 2}} & &{}\end{array}$$
]

 (5.10)



To test the null hypothesis [image: 
$$H_{0}: p_{1} - p_{2}$$
] the appropriate statistic is [image: 
$$\displaystyle\begin{array}{rcl} z = \frac{\hat{p}_{1} -\hat{ p}_{2}} {\sqrt{\hat{p}(1 -\hat{ p})\left ( \frac{1} {n_{1}} + \frac{1} {n_{2}}\right )}}& &{}\end{array}$$
]

 (5.11)

 where [image: 
$$\hat{p} = \frac{n_{1}p_{1} + n_{2}p_{2}} {n_{1} + n_{2}}$$
].
Notice the distinction between the standard error portions of Equations 5.9 and 5.10. The standard error in the test statistic 5.11 is calculated under the assumption that the null hypothesis is true. The larger standard error in 5.9 cannot utilize this assumption.

5.4.2 Confidence Interval on the Difference Between Two Means

                
                  
                  
                
              
For a CI on a difference of two means under the assumption that the population variances are unknown, there are two cases. If the variances can be assumed to be equal, their common value is estimated as a weighted average of the two individual sample variances. In general, the process of calculating such meaningfully weighted averages is referred to as pooling
                    
                  
, and the result in this context is called a pooled variance: [image: 
$$\displaystyle\begin{array}{rcl} s_{p}^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{ 2} - 1)s_{2}^{2}} {n_{1} + n_{2} - 2} & &{}\end{array}$$
]

 (5.12)

 The pooled estimator s

                  p
                
2 has more degrees of freedom (uses more information) than either s
1
2 or s
2
2 for the estimation of the common population variance. When the pooled variance is used as the denominator of F-tests
                  
                 it provides a more powerful test than either of the components, and therefore it is preferred for this purpose. Then the CI is [image: 
$$\displaystyle\begin{array}{rcl} (\bar{y}_{1} -\bar{ y}_{2}) \pm t_{\mbox{ $ \frac{\alpha }{ 2} $},n_{1}+n_{2}-2}\,s_{p}\,\sqrt{ \frac{1} {n_{1}} + \frac{1} {n_{2}}}& & {}\\ \end{array}$$
]




In the case where the variances cannot be assumed equal, there are two procedures. The Satterthwaite option is [image: 
$$\displaystyle\begin{array}{rcl} (\bar{y}_{1} -\bar{ y}_{2}) \pm t_{\mbox{ $ \frac{\alpha }{ 2} $},\mathrm{df}}\,\sqrt{\frac{s_{1 }^{2 }} {n_{1}} + \frac{s_{2}^{2}} {n_{2}}} & & {}\\ \end{array}$$
]


 where df is the integer part of [image: 
$$\displaystyle\begin{array}{rcl} \frac{\left (\frac{s_{1}^{2}} {n_{1}} + \frac{s_{2}^{2}} {n_{2}} \right )^{2}} {\frac{\left (\frac{s_{1}^{2}} {n_{1}} \right )^{2}} {n_{1} - 1} + \frac{\left (\frac{s_{2}^{2}} {n_{2}} \right )^{2}} {n_{2} - 1}}& & {}\\ \end{array}$$
]


 The Satterthwaite option is sometimes referred to as the Welch option.
The Cochran option is
                  
                
[image: 
$$\displaystyle\begin{array}{rcl} (\bar{y}_{1} -\bar{ y}_{2}) \pm t\,\sqrt{\frac{s_{1 }^{2 }} {n_{1}} + \frac{s_{2}^{2}} {n_{2}}} & & {}\\ \end{array}$$
]


 where [image: 
$$t = \frac{w_{1}t_{1} + w_{2}t_{2}} {w_{1} + w_{2}},\;\;\;\;\;w_{i} = s_{i}^{2}/n_{ i}$$
], and t

                  i
                 is [image: 
$$t_{\mbox{ $ \frac{\alpha }{ 2} $},(n_{i}-1)}$$
].
The Satterthwaite option is more commonly used than the Cochran option. In practice, they lead to similar results.

5.4.3 Tests Comparing Two Population Means When the Samples Are Independent

                
                  
                  
                
              
There are two situations to consider with independent samples. When the populations may be assumed to have a common unknown variance [image: 
$$\sigma$$
], the calculated t statistic is [image: 
$$\displaystyle\begin{array}{rcl} t_{\mbox{ calc}} = \frac{\bar{y}_{1} -\bar{y}_{2}} {s_{p}\sqrt{ \frac{1} {n_{1}} + \frac{1} {n_{2}}} } & &{}\end{array}$$
]

 (5.13)

 where s

                  p
                 was defined in Equation (5.12) and [image: 
$$t_{\mbox{ calc}}$$
] has n
1 + n
2 − 2 degrees of freedom.
When the two samples might have different unknown variances, then the test is based on [image: 
$$\displaystyle\begin{array}{rcl} s_{(\bar{y}_{1}-\bar{y}_{2})} = \sqrt{\mathop{\mbox{ var} } (\bar{y}_{1 } -\bar{ y}_{2 } )} = \sqrt{\frac{s_{1 }^{2 }} {n_{1}} + \frac{s_{2}^{2}} {n_{2}}} \quad \mbox{ and}\quad t_{\mbox{ calc}} = \frac{\bar{y}_{1} -\bar{y}_{2}} {s_{(\bar{y}_{1}-\bar{y}_{2})}}& &{}\end{array}$$
]

 (5.14)



In either case, we consider one of the three tests in Table 5.3.
                  
                  
                
Table 5.3Confidence intervals and tests for two population means. When the samples are independent and we can assume a common unknown variance, use [image: 
$$s_{\varDelta \bar{y}} = s_{p}\sqrt{ \frac{1} {n_{1}} + \frac{1} {n_{2}}}$$
] and [image: 
$$t_{\mbox{ calc}}$$
] as given by Equation (5.13). When the samples are independent and we assume different unknown variances, use [image: 
$$s_{\varDelta \bar{y}} = s_{(\bar{y}_{1}-\bar{y}_{2})}$$
] and [image: 
$$t_{\mbox{ calc}}$$
] as given by Equation (5.14). When the samples are paired, use [image: 
$$s_{\varDelta \bar{y}} = s_{\bar{d}}$$
] and [image: 
$$t_{\mbox{ calc}}$$
] as given by Equation (5.15).


[image: A77776_2_En_5_Figc_HTML.gif]




R uses the t.test function which calculates a one-sample, two-sample, or paired t-test
                  
                , or a Welch modified two-sample t-test.
                  
                

                  
                 The Welch modification is synonymous with the Satterthwaite method.
                  
                  
                

The example in Tables 5.4 and 5.5 and Figure 5.6 compares two means where the samples are independent and assumed to have a common unknown variance. Table 5.4 shows the t-test calculated with the t.test function. Table 5.5 calculates the t-value manually using the definitions in Equations 5.12 and 5.13. Figure 5.6 plots the result of the t.test with the NTplot function. Table 5.4Select the subset of the cereals dataset for “Cold cereal” and manufacturers “G” and “K”. Use t.test to compare their mean carbohydrate values assuming independent samples with a common unknown variance. The result from the t.test is plotted in Figure 5.6.


[image: A77776_2_En_5_Figd_HTML.gif]


Table 5.5The t-value −. 3415 in Table 5.4 is calculated manually.


[image: A77776_2_En_5_Fige_HTML.gif]


[image: A77776_2_En_5_Fig6_HTML.jpg]
Fig. 5.6Show the NTplot(t.t, zaxis=TRUE) of the t-test in Table 5.4. There are two horizontal scales on the bottom axis of the plot. The [image: 
$$w =\bar{ x}_{1} -\bar{ x}_{2}$$
] scale is the top scale and the t scale is the bottom scale. Specific interesting values in the w scale are identified on the top axis. w
obs = −. 403 and its symmetrically placed w
otherside = . 403 are very close to the center of the graph, illustrating that the observation is not anywhere near the rejection region | W |  > 2. 38.




                            

5.4.4 Comparing the Variances of Two Normal Populations

                
                  
                  
                
                
                  
                  
                
              
We assume here that independent random samples are available from both populations. The F distribution is used to compare the variances [image: 
$$\sigma _{1}^{2}$$
] and [image: 
$$\sigma _{2}^{2}$$
] of two normal populations. Let s
1
2 and s
2
2 be the variances of independent random samples of size n

                  i
                , i = 1, 2 from these populations.
To test [image: 
$$\displaystyle\begin{array}{rcl} H_{0}: \sigma _{1}^{2}& \leq & \sigma _{ 2}^{2} {}\\ \mbox{ vs }& & {}\\ H_{1}: \sigma _{1}^{2}& >& \sigma _{ 2}^{2} {}\\ \end{array}$$
]


 define F = s
1
2∕s
2
2 and reject H
0 if F is sufficiently large. The p-value of the test is [image: 
$$1 -\mathcal{F}_{F_{(n_{ 1}-1,\,n_{2}-1)}}(F)$$
]. The power of this and other F-tests
                  
                 is sensitive to the second (denominator) df parameter and is usually not adequate unless this df ≥ 20.
A 100(1 −α)% confidence interval for a ratio of variances of two normal populations, [image: 
$$\sigma _{1}^{2}/\sigma _{2}^{2}$$
], is [image: 
$$\displaystyle\begin{array}{rcl} \left (\frac{s_{1}^{2}} {s_{2}^{2}} \frac{1} {F_{\mbox{ low}}},\, \frac{s_{1}^{2}} {s_{2}^{2}}F_{\mbox{ high}}\right )& & {}\\ \end{array}$$
]


 where 
                      [image: 
$$F_{\mbox{ low}}$$
]
                    is [image: 
$$F_{1-\mbox{ $\frac{\alpha }{ 2} $},\,n_{1}-1,\,n_{2}-1}$$
], the upper [image: 
$$100(1 - \frac{\alpha } {2})$$
] percentage point of an F distribution with n
1 − 1 and n
2 − 1 degrees of freedom, and



                      [image: 
$$F_{\mbox{ high}}$$
]
                    is [image: 
$$F_{1-\mbox{ $\frac{\alpha }{ 2} $},\,n_{2}-1,\,n_{1}-1}$$
], the upper [image: 
$$100(1 - \frac{\alpha } {2})$$
] percentage point of an F distribution with n
2 − 1 and n
1 − 1 degrees of freedom.





An extension to testing the homogeneity of more than two population variances will be presented in Section 6.​10



5.5 Paired Data

              
                
                
              
              
                
                
              
            
Sometimes we wish to compare the mean change in a measurement observed on an experimental unit under two different conditions. For example:
1.Compare the subject knowledge of students before and after they receive instruction on the subject.

 

2.Compare the yield per acre of a population of farms for a crop grown with two different fertilizers.

 

3.Compare the responses of patients to both an active drug and a placebo,
                        
                       when they are administered each of them in sequential random order with a suitable “washout” period between the administrations.

 




This “matched pairs” design is superior to a design of the same total size using independent samples because (in illustrations 1 and 3 above) the person to person variation is removed from the comparison of the two administrations, thereby improving the precision of this comparison. The principles of designing experiments to account for and remove extraneous sources of variation are discussed in more detail in Chapter 13

It is assumed that the populations have a common variance and are approximately normal. Let [image: 
$$y_{11},y_{12},\ldots,y_{1n}$$
] be the sample of n items from the population under the first condition, having mean μ
1, and similarly let [image: 
$$y_{21},y_{22},\ldots,y_{2n}$$
] be the sample from the population under the second condition, having mean μ
2.
Define the n differences [image: 
$$d_{1} = y_{11} - y_{21},\ d_{2} = y_{12} - y_{22},\ldots,d_{n} = y_{1n} - y_{2n}$$
]. Let [image: 
$$\bar{d}$$
] and s

                d
               be the mean and standard deviation, respectively, of the sample of nd

                i
              ’s. Then an approximate 100(1 −α)% confidence interval on the mean difference μ
1 −μ
2 is [image: 
$$\bar{d} \pm t_{\mbox{ $ \frac{\alpha }{ 2} $},n-1}\,s_{\bar{d}}$$
] where [image: 
$$s_{\bar{d}} = s_{d}/\sqrt{n}$$
]. Tests of hypotheses proceed similarly to t-tests
                
               for two independent samples. Table 5.3 can still be used, but with [image: 
$$\displaystyle\begin{array}{rcl} s_{\bar{d}} = s_{d}/\sqrt{n},\quad \mbox{ and}\quad t_{\mbox{ calc}} = \frac{\bar{d}} {s_{\bar{d}}}& &{}\end{array}$$
]

 (5.15)

 with degrees of freedom n − 1.
5.5.1 Example—t-test on Matched Pairs of Means

                
                  
                
              
Woods et al. (1986), later in Hand et al. (1994), investigate whether native English speakers find it easier to learn Greek than native Greek speakers learning English. Thirty-two sentences are written in both languages. Each sentence is scored according to the quantity of errors made by an English speaker learning Greek and by a Greek speaker learning English. It is desired to compare the mean scores of the two groups. The data are available as data(teachers); the first column is the error score on the English version of the sentence and the second column is the error score on the Greek version of the sentence.
These are 32 pairs of observations because the same sentence is evaluated in both languages. It would be incorrect to regard these as independent samples. The dotplot in Figure 5.7 reveals that for most sentences the English version shows fewer errors. The stem-and-leaf of the differences in Figure 5.8a shows the difference variable is positively skewed so that a transformation, as discussed in Section 4.​8, is required. Care must be used with a power transformation because many of the differences are negative. The smallest difference is − 16. Therefore, we investigate a square root transformation following the addition of 17 to each value. The second stem-and-leaf in Figure 5.8b illustrates that this transformation succeeds in bringing the data closer to symmetry. Since a difference of zero in the original scale corresponds to a transformed difference of [image: 
$$\sqrt{ 17} \approx 4.123$$
], the null hypothesis of equal difficulty corresponds to a comparison of the sample means in the transformed scale to 4.123, not to 0. The observed p-value is.0073, showing a very clear difference in difficulty of learning the two languages. For comparison, the t-test
                  
                 on the untransformed differences show a p-value of only.0346.
                  
                  
                

                  
                  
                
[image: A77776_2_En_5_Fig7_HTML.gif]
Fig. 5.7Dotplot of language difficulty scores. The difficulty in learning each of 32 sentences written in English for Greek speakers (marked English) and written in Greek for English speakers (marked Greek) is noted. The panels are defined by placing the sentences in which the English version showed fewer errors on the bottom and the sentences in which the Greek version showed fewer errors on the top. The sentences have been ordered by the difference in the English and Greek error scores. The left panels show the observed error scores. The center panels show the differences, English−Greek, of the error scores. The right panels show the square root transformed differences, [image: 
$$\sqrt{ \mbox{ English$-$Greek + 17}}$$
]. The t-tests in Table 5.8 will be based on the differences and the transformed differences.




[image: A77776_2_En_5_Fig8_HTML.gif]
Fig. 5.8Stem-and-leaf display and t-test of sentence difference scores from Figure 5.7 in the original scale and in the offset square-root transformed scale.




                            


5.6 Sample Size Determination

              
                
              
            
Deciding on an appropriate sample size is a fundamental aspect of experimental design. In this section we provide discussions of the minimum required sample size for some situations of inference about population means: 	A confidence interval on μ with specified width W and confidence coefficient 100(1 −α)%.

	A test about μ having specified Type I error α, and
                      
                     power 1 −β at a specified distance δ from the null hypothesized parameter.





These are key design objectives for many experiments with modest inferential goals. Specialized software exists for the purpose of determining sample sizes in a vast array of inferential situations. But our discussion here is limited to a few commonly encountered situations for which the formulas are sometimes mentioned in elementary statistics texts.
We assume throughout this discussion that the sample size will be large enough to guarantee that the standardized test statistic is approximately normally distributed. If, as is usual, a sample size calculation does not yield an integer, it is conservative to take n as the next-higher integer. The sample size formulas here are all the result of explicitly solving a certain equation for n. In situations not discussed here, an explicit solution for n may not exist, and the software may produce an iterative solution for n.
5.6.1 Sample Size for Estimation
Since the width of a confidence interval can be expressed as a function of the sample size, the solution of the problem of sample size for a confidence interval is straightforward in the case of a single sample.
For a CI on a single mean, assuming a known population variance [image: 
$$\sigma ^{2}$$
], [image: 
$$\displaystyle\begin{array}{rcl} n = \frac{4\sigma ^{2}\big(\varPhi ^{-1}(1 - \frac{\alpha } {2})\big)^{2}} {W^{2}} & &{}\end{array}$$
]

 (5.16)



where Φ
−1 is the inverse cumulative distribution of a standard normal distribution defined in Section J.1.9. Equation 5.16 is found by solving Equation 5.1 for n when we want the width of the confidence interval to be [image: 
$$W = 2\,z_{\mbox{ $ \frac{\alpha }{ 2} $}} \frac{\sigma } {\sqrt{n}}$$
]. If [image: 
$$\sigma ^{2}$$
] is unknown, a reasonable guess may be made in its place. (Note that the sample variance is not known prior to selecting the sample.) If we are unable to make a reasonable guess, an ad hoc strategy would be to take a small pilot sample of n
0 items and replace [image: 
$$\sigma$$
] in the formula with the standard deviation of the pilot sample. Then if the calculation results in a recommended n greater than n
0, one samples n − n
0 additional items.
The required sample size for the Agresti and Caffo CI on a single proportion, Equation (5.3), is [image: 
$$\displaystyle{ n = \frac{\left (\varPhi ^{-1}(1 - \frac{\alpha } {2})\right )^{2}} {W^{2}} - 4 }$$
]

 (5.17)

 This formula is based on the normal approximation to the binomial distribution. Many statistics texts contain charts for finding the required sample size based on the exact binomial distribution.

5.6.2 Sample Size for Hypothesis Testing
For hypothesis testing we are interested in controlling the specified Type II error probability β when the unknown parameter being tested is a distance δ from the null hypothesized value. For a one-tailed test on the mean of a population with known variance [image: 
$$\sigma ^{2}$$
], use [image: 
$$\displaystyle\begin{array}{rcl} n =\sigma ^{2}\left (\varPhi ^{-1}(1-\alpha ) +\varPhi ^{-1}(1-\beta )\right )^{2}/\delta ^{2}& &{}\end{array}$$
]

 (5.18)

 We illustrate Equation 5.18 in Figure 5.9.
                  
                

                  
                
[image: A77776_2_En_5_Fig9_HTML.gif]
Fig. 5.9Sample size and power for the one-sample, one-sided normal test. This figure illustrates Equation 5.18. Both the null and alternative distributions are normal with the same standard error [image: 
$$\sigma = 3$$
]. There are three colored line segments in the horizontal axis region. The top line segment (light gray) on the [image: 
$$w =\bar{ x}$$
] scale is δ = μ

                          a
                         −μ
0 = 2 w-units wide, going from w = μ
0 = 1 to w = μ

                          a
                         = 3. The middle line segment (light blue) and the bottom line segment (pink) together also are δ = 2 w units wide. The middle segment is 2. 323 − 1 = 1. 323 w units wide which is equal to 1.6448 z units. The bottom segment is 3 − 2. 323 = 0. 677 w units wide which is equal to.84167 z units We know [image: 
$$\sigma = 3$$
] and we know that [image: 
$$\sigma _{\bar{x}} =\sigma /\sqrt{n}$$
]. We need to solve for n = 32(1. 6488 +. 84167)2∕22 = 13. 96. We round up to use n = 14.




                                [image: A77776_2_En_5_Fig10_HTML.gif]
Fig. 5.10Sample size and power figures for the one-sample, one-sided t-test. The left figure shows the sample size n=26.14 calculated in Table 5.7. The right figure shows the starting position with n=30 from Table 5.8. When the sample size n is larger (on the right), the df goes up, the height of the densities (both null and alternative) go up, the densities become thinner, the critical value in the t scale and in the [image: 
$$\bar{x}$$
] scale goes down. The alternative distribution is noncentral t, has a different maximum height, and is not symmetric.




                            
For a two-tailed test, use [image: 
$$\displaystyle\begin{array}{rcl} n =\sigma ^{2}\left (\varPhi ^{-1}(1 - \frac{\alpha } {2}) +\varPhi ^{-1}(1-\beta )\right )^{2}/\delta ^{2}& &{}\end{array}$$
]

 (5.19)



For testing the equality of the means of two populations with a common variance, with δ now equal to the mean difference under the alternative hypothesis, use [image: 
$$\displaystyle\begin{array}{rcl} n = 2\,\sigma ^{2}\left (\varPhi ^{-1}(1-\alpha ) +\varPhi ^{-1}(1-\beta )\right )^{2}/\delta ^{2}& &{}\end{array}$$
]

 (5.20)

 for the one-tailed test, and [image: 
$$\displaystyle\begin{array}{rcl} n = 2\,\sigma ^{2}\left (\varPhi ^{-1}(1 - \frac{\alpha } {2}) +\varPhi ^{-1}(1-\beta )\right )^{2}/\delta ^{2}& &{}\end{array}$$
]

 (5.21)

 for the two-tailed test.
When the variance [image: 
$$\sigma ^{2}$$
] is unknown and has to be estimated with s
2 from the sample, the formulas are more difficult because the inverse t cumulative function for the alternative depends on the standard deviation through the noncentrality parameter [image: 
$$(\mu _{1} -\mu _{0})/(\sigma /\sqrt{n})$$
]. The t formulas might require several iterations as the degrees of freedom, hence the critical values are a function of the sample size.
Tables 5.6, 5.7, and 5.8 show sample size calculations for the one-sample, one-sided test. The example is done three times. Table 5.6 shows the calculation using Equation 5.18 when [image: 
$$\sigma ^{2}$$
] is assumed and the normal equations apply. Table 5.7 uses the R function power.t.test which solves the t equations efficiently. Table 5.8 iterates the definitions for the t distribution. Figure 5.10 shows the power plot for the n value in Table 5.7 and one of the n values in Table 5.8.Table 5.6We calculate the sample size for a one-sided, one-sample test for the normal distribution with the assumption that the variance is known. In Tables 5.7 and 5.8 we show the same calculations for the t-test under the assumption that the variance has been estimated from the sample.


[image: A77776_2_En_5_Figf_HTML.gif]


                                Table 5.7We calculate the sample size for a one-sided, one-sample t-test using the power.t.test function. We show the same calculation manually in Table 5.8. We show a static plot of the result in the left column of Figure 5.10. We also show the shiny

                          
                        code to specify a dynamic plot.


[image: A77776_2_En_5_Figg_HTML.gif]


                                Table 5.8We manually calculate the sample size for a one-sided, one-sample t-test to illustrate the iterative process directly. The power.t.test function does this much more efficiently (see Table 5.7). The iterative process starts with an initial sample size n
0 and calculates the critical value t

c, 0 using the central t distribution for that sample size. The second step in the process is to evaluate the power associated with that critical value assuming fixed δ and a series of sample sizes and their associated df and ncp. For the next iterate choose as the new sample size n
1 the sample size whose power is closest to the target power. Calculate a new critical value t

c, 1 and then a new set of powers associated with that critical value. Continue until convergence, meaning the new sample size is the same as the previous one.


[image: A77776_2_En_5_Figh_HTML.gif]


                            

                
                  
                
              

                
                  
                
              

                
                  
                
              

                
                  
                
                
                  
                
              
Lastly, consider attempting to detect a difference between a proportion p
1 and a proportion p
2. The required common sample size for the one-tailed test is [image: 
$$\displaystyle\begin{array}{rcl} n = \frac{\big(p_{1}\,(1 - p_{1}) + p_{2}\,(1 - p_{2})\big)\left (\varPhi ^{-1}(1-\alpha ) +\varPhi ^{-1}(1-\beta )\right )^{2}} {(p_{1} - p_{2})^{2}} & &{}\end{array}$$
]

 (5.22)

 From the preceding pattern, you should be able to deduce the modification for the two-tailed test (see Exercise 5.16).
                  
                



5.7 Goodness of Fit

              
                
              
            
Goodness-of-fit tests are used to assess whether a dataset is consistent with having been sampled from a designated hypothesized distribution. In this section we discuss two general goodness-of-fit tests, the Chi-Square Goodness-of-Fit Test and the Kolmogorov–Smirnov
                
               Goodness-of-Fit Test. For testing goodness of fit to specific distributions, there may be better (more powerful) specialized tests than these. For example, the Shapiro–Wilk test of normality (shapiro.test) is more powerful than either general test.
Since many statistics procedures assume an underlying normal distribution, a test of goodness of fit to normal, either before or after transformation, is frequently performed. Occasionally, analysts need to check for fit to other distributions. For example, it is often the case that the distribution of a test statistics is known asymptotically (i.e., if the sample is “large”), but not if the sample is of modest size. It is therefore of interest to investigate how large a sample is needed for the asymptotic distribution to be an adequate approximation. This requires a series of goodness-of-fit tests to the asymptotic distribution. In Chapter 15, we will learn in our discussion of the analysis of contingency table data that the distribution of [image: 
$$\chi ^{2} =\sum \frac{(O-E)^{2}} {E}$$
] is approximately chi-square provided that no cell sizes are too small. A determination of the ground rule for “too small” required tests of goodness of fit to chi-square distributions with appropriate degrees of freedom.
This class of tests assesses whether a sample may be assumed to be taken from a null hypothesized distribution.
5.7.1 Chi-Square Goodness-of-Fit Test
The chi-square distribution may be used to conduct goodness-of-fit tests, i.e., ones of the form [image: 
$$\displaystyle\begin{array}{rcl} H_{0}: & \ & \mbox{ the data are from a [specified population]} {}\\ \mbox{ vs }& & {}\\ H_{1}: & \ & \mbox{ the data are from some other population} {}\\ \end{array}$$
]


 For certain specific populations, including normal ones, other specialized tests are more powerful.
The test begins by partitioning the population into k classes or categories. For a discrete population the categories are the possible values; for a continuous population the choice of a decomposition is rather arbitrary, and the ultimate conclusion may well depend on the selected size of k and the selected partition.
The test statistic is the same as that used for contingency tables. For each category, calculate from the probability distribution the theoretical or expected frequency E. If over all k categories, there is a substantial discrepancy between the k observed frequencies O and the kE’s, then H
0 is rejected. The measure of discrepancy is the test statistic [image: 
$$\chi ^{2} =\sum \frac{(O-E)^{2}} {E}$$
]. A “large” value of χ
2 is evidence against H
0. If the total sample size, [image: 
$$n =\sum O =\sum E$$
], is sufficiently “large”, χ
2 is approximately chi-square distributed and the p-value is approximately the chi-square tail probability associated with χ
2 with k − 1 degrees of freedom.
For adequacy of the chi-square approximation it is suggested that all expected frequencies be at least 5. If this is not the case, the analyst may consider combining adjacent categories after which this condition is met. Then k represents the number of categories following such combining.
Sometimes, the statement of the null hypothesis is so vague that calculation of expected frequencies requires that some parameters be estimated from the data. In such instances, the df is further reduced by the number of such parameters estimated. This possibility is illustrated in Example 5.7.3.

5.7.2 Example—Test of Goodness-of-Fit to a Discrete Uniform Distribution
A six-sided die (singular of the word dice) is rolled 30 times with the following outcomes: 1, 3 times; 2, 7 times; 3, 5 times; 4, 8 times; 5, 1 time; and 6, 6 times. Test whether the die is fair.
A fair die is one that has a discrete uniform distribution on 1, 2, 3, 4, 5, 6. Each of these six possibilities has [image: 
$$\frac{1} {6}$$
] chance of occurring, and all six E’s are [image: 
$$30(\frac{1} {6}) = 5.$$
] Then [image: 
$$\displaystyle\begin{array}{rcl} \chi ^{2}\ =\ \frac{(3 - 5)^{2}} {5} +\ldots +\frac{(6 - 5)^{2}} {5} \ =\ 6.8& & {}\\ \end{array}$$
]


 and the p-value from χ
5
2 is 0.236. Hence these 30 observations do not provide evidence to refute the fairness of the die. We show the calculations in Table 5.9 and the plot of the test in Figure 5.11.
Table 5.9Test of Goodness-of-Fit to a Discrete Uniform Distribution. The test is plotted in Figure 5.11.


[image: A77776_2_En_5_Figi_HTML.gif]


[image: A77776_2_En_5_Fig11_HTML.gif]
Fig. 5.11Plot of the hypothesis test of Table 5.9. The observed value χ
2 = 6. 8 shows p = 0. 236 and is in the middle of the do-not-reject region,




                            

5.7.3 Example—Test of Goodness-of-Fit to a Binomial Distribution
In a certain community, there were 80 families containing exactly five children. It was noticed that there was an excess of boys among these. It was desired to test whether Y = “number of girls in family” is a binomial r.v. with n = 5 and p = . 4. The expected frequencies calculated from this binomial distribution are shown in Table 5.10 along with the observed frequencies and the calculated χ
5
2 statistic. Then the p-value is, [image: 
$$8.5\mbox{ 10}^{-6}$$
], calculated as the tail probability at 31.215 for a chi-square distribution with 5 df. We conclude that the sample data contain more dispersion than does binomial(5,.4). The excess dispersion is visible in the left panel of Figure 5.12.
[image: A77776_2_En_5_Fig12_HTML.gif]
Fig. 5.12Plot of family size data from Table 5.11. The Observed data is more spread out than the Expected (binomial) data. The sample variance for the Observed is var(rep(0:5, times=Observed)) == 1.987 and the sample variance for the Expected is var(rep(0:5, times=Expected)) == 1.131.
                                            




                                Table 5.10Observed and expected frequencies for the goodness-of-fit example in Section 5.7.3.


	
                            Y
                          
	
                            O
                          
	
                            E
                          
	
                            [image: 
$$\frac{(O - E)^{2}} {E}$$
]
                          

	0
	13
	6.221
	7.388

	1
	18
	20.736
	0.361

	2
	20
	27.648
	2.116

	3
	18
	18.432
	0.010

	4
	6
	6.144
	0.003

	5
	5
	0.819
	21.337

	 	 	 	31.215




                                Table 5.11Calculation of p-value for chi-square test with known p and with estimated [image: 
$$\hat{p}$$
]. The Observed and Expected frequencies are plotted in Figure 5.12.


[image: A77776_2_En_5_Figj_HTML.gif]


                            
In this example, the value of the binomial proportion parameter, p, was specified. If instead it had to be estimated, the df would decrease from 5 to 4. We illustrate the calculation of both tests in R in Table 5.11.
                  
                


                
                  
                
              


5.8 Normal Probability Plots and Quantile Plots
Quantile plots (Q-Q plots)
                
               are visual diagnostics used to assess whether (a) a dataset may reasonably be treated as if it were a sample from a designated probability distribution, or (b) whether two datasets show evidence of coming from a common unspecified distribution.
The normal probability plot
                
              , an important special case of the more general quantile plot, is used to assess whether data are consistent with a normal distribution. The normal probability plot is a standard diagnostic plot in regression analysis (Chapters 8–11) used to check the assumption of normally distributed residuals. This condition is required for the validity of many of the usual inferences in a regression analysis. If the normality assumption appears to be violated, it is often possible to retain a simple analysis by transforming the data scale, for example by a power transformation, and then reanalyzing and replotting to see if the residuals from the transformed data are close to normal. The choice of transformation may be guided by the interpretation of the normal probability plot.
In R, a normal probability plot is produced with the qqmath function (in lattice) or the qqnorm function (in base graphics). function. Normal probability plots are included in the default plots for the results of linear model analyses.
A quantile plot to assess consistency of observed data y

                i
               with a designated distribution is easily constructed. We sort the observed data to get y
[i], find the quantiles of the distribution by looking up the fractions [image: 
$$(i -\frac{1} {2})/n$$
] in the inverse cumulative distribution function to get [image: 
$$q_{i} = F^{-1}((i -\frac{1} {2})/n)$$
], and then plotting the sorted data y
[i] against the quantiles q

                i
              . Consistency is suggested if the points tend to fall along a straight line. A pattern of a departure from a straight-line quantile plot usually suggests the nature of the departure from the assumed distribution. The R one-sample quantile plots (both the lattice qqmath and the base graphics qqnorm) default to the usual convention of plotting the data against the theoretical values. Other software and a number of references reverse the axes. Readers of presentations containing quantile plots should be alert to which convention is used, and writers must be sure to label the axes to indicate the convention, because the choice matters considerably for interpretation of departures from compatibility.
A general Q-Q (or quantile-quantile) plot is invoked in R with the base graphics command qqplot(x, y, plot=TRUE), whereby the quantiles of two samples, x and y, are compared. As with a normal probability case, the straightness of the Q-Q plot indicates the degree of agreement of the distributions of x and y, and departure from a well-fitting straight line on an end of the plot indicates the presence of outlier(s). Quoting from the S-Plus online help for qqplot:A Q-Q plot with a “U” shape means that one distribution is skewed relative to the other. An “S” shape implies that one distribution has longer tails than the other. In the default configuration (data on the y-axis) a plot from qqnorm that is bent down on the left and bent up on the right means that the data have longer tails than the Gaussian [normal].



For a normal probability plot with default configuration, a plot that is bent up on the left and bent down on the right indicates that the data have shorter tails than the normal. A curved plot that opens upward suggests positive skewness and curvature opening downward suggests negative skewness.
It is possible to construct a Q-Q plot comparing a sample with any designated distribution, not just the normal distribution. In R and S-Plus this is accomplished with the function ppoints(y), which returns a vector of n=length(y) fractions uniformly spaced between 0 and 1 which will be used as input to the quantile (inverse cumulative distribution) function. For example, all three R statements	
                          plot(sort(y) ~ qlnorm(ppoints(y)))
                        

	
                          qqplot(qlnorm(ppoints(y)), y)
                        

	
                          qqmath(y, distribution=qlnorm)
                        




                        
produce a lognormal Q-Q plot of the data in y. See Appendix J for the lognormal distribution.
If it is unclear from a normal probability plot whether the data are in fact normal, the issue may be further addressed by a specialized goodness-of-fit test to the normal distribution, the Shapiro–Wilk
                
              

                
               test. This test works by comparing
	
S(y)
	 	the empirical distribution function of the data, the fraction of

	 	 	the data that is less than or equal to y


	with

	
                        [image: 
$$\varPhi \big((y -\bar{ y})/s\big)$$
]
                      
	 	the probability that a normal r.v. Y (with mean [image: 
$$\bar{y}$$
] and s.d. s) is less

	 	 	than or equal to y




Over the observed sample, S(y) and [image: 
$$\varPhi \big((y -\bar{ y})/s\big)$$
] should be highly correlated if the data are normal, but not otherwise. The Shapiro–Wilk statistic W is closely related to the square of this correlation. If the normal probability plot is nearly a straight line, W will be close to 1. A small value of W is evidence of nonnormality. The Shapiro–Wilk test is available in R with the shapiro.test function. For this specific purpose the Shapiro–Wilk test is more powerful than a general goodness-of-fit test such as the Kolmogorov–Smirnov procedure discussed in Section 5.9.
5.8.1 Normal Probability Plots
Figure 5.13 contrasts the appearance of normal probability plots for the normal distribution and various departures from normality. Typically, the plot has these appearances: 	An “S” shape for distributions with thinner tails than the normal.

	An inverted “S” shape for distribution with heavier tails than the normal.

	A “J” shape for positively skewed distributions.

	An inverted “J” shape for negatively skewed distributions.

	Isolated points at the extremes of a plot for distributions having outliers.




[image: A77776_2_En_5_Fig13_HTML.gif]
Fig. 5.13Normal probability plots of data randomly selected from normal and other distributions. The density plots of these variables are in Figure 5.14.




                                [image: A77776_2_En_5_Fig14_HTML.gif]
Fig. 5.14Density plots of the data randomly selected from normal and other distributions. This is the same data whose normal probability plots are shown in Figure 5.13.




                            

                
                  
                
              

5.8.2 Example—Comparing t-Distributions
We compare a random sample of 100 from a t distribution with 5 df to quantiles from a longer-tailed t
3 distribution and from shorter-tailed t
7 and normal distributions. The four superimposed Q-Q plots and a reference 45∘ line are shown in Figure 5.15.
[image: A77776_2_En_5_Fig15_HTML.gif]
Fig. 5.15Q-Q plots for the t distribution with several different degrees of freedom. The normal is the same as the t with infinite degrees of freedom. The scaling here is isometric, the same number of inches per unit on the x and y scales. The aspect ratio is chosen to place the normal QQ plot exactly on the 45∘ line.




                            
Note that the picture we get will vary according to the particular random sample selected. In this example the plot against the quantiles of t
5, the same distribution from which the sample was drawn, is close to the 45∘ line. The longer-tailed t
3 quantiles show a reflected “S” shape. The shorter-tailed t
7 and normal distributions show an “S” shape.
Long and short tails refer to the appearance of plots of the density functions. Note that the normal has almost no probability (area) outside of ± 2. 5. The t distributions have more and more probability in the tails of the distribution (larger | q | ) as the degrees of freedom decrease. The superimposed densities are displayed in Figure 5.16.
                  
                

                  
                
[image: A77776_2_En_5_Fig16_HTML.gif]
Fig. 5.16
t densities. The normal (t with infinite degrees of freedom) is the tallest and thinnest. As the degrees of freedom decrease, the center gets less high and the tails have noticeable weight farther away from the center.




                            


5.9 Kolmogorov–Smirnov Goodness-of-Fit Tests

              
                
              
            
The Kolmogorov–Smirnov goodness-of-fit tests
                
               are used to formally assess hypothesis statements concerning probability distributions. The K–S one-sample test tests whether a random sample comes from a hypothesized null distribution. The K–S two-sample test tests whether two independent random samples are coming from the same but unspecified probability distribution. The alternative hypothesis can be either one-sided or two-sided.
The K–S one-sample test involves comparing the maximum discrepancy between the empirical cumulative distribution of the data, defined as S(y) = fraction of the data that is less than or equal to y, and the cumulative distribution function of the hypothesized population being sampled. The K–S two-sample test statistic is the maximum discrepancy between the empirical distribution functions of the two samples.
The Shapiro–Wilk test of normality is more powerful than K–S for assessing normality. The Shapiro–Wilk test statistic W more fully uses the sample than does K–S. If we have data that are close to normal except for one very unusual point, K–S will be more sensitive to this point than W. In general, the K–S procedure focuses on the most extreme departure from the hypothesized distribution while Shapiro–Wilk’s assessment based on Q-Q focuses on the average departure.
The K–S tests are performed in R with the function ks.test. See the R help file for ks.test for details. This function can handle both one- and two-sample tests. For the one-sample test, a long list of probability distributions can be specified as the null hypothesis. The parameters of the null distribution can be estimated from the data or left unspecified. With some exceptions, the alternative hypothesis can be "greater" or "less" as well as "two-sided". The interpretation of a one-sided hypothesis is that one c.d.f. is uniformly and appreciably shifted to one side of the other c.d.f.
5.9.1 Example—Kolmogorov–Smirnov Goodness-of-Fit Test
We illustrate the One-Sample Kolmogorov–Smirnov Test in Table 5.12 and Figure  5.17. We illustrate the Two-Sample Kolmogorov–Smirnov Test in Table 5.13 and Figure 5.18. Table 5.12Kolmogorov–Smirnov One-Sample Test. The first test corresponds to the left panels of Figure 5.17. We see a p-value of 0.2982 and do not reject the null. The second test corresponds to the right panels of Figure 5.17. We see a p-value of 0.003808 and reject the null.


[image: A77776_2_En_5_Figk_HTML.gif]


[image: A77776_2_En_5_Fig17_HTML.gif]
Fig. 5.17Kolmogorov–Smirnov plots. Kolmogorov–Smirnov One-Sample Test. On the left we compare a random selection from the t distribution with 5 df to a null hypothesis distribution of t with 2 df. The ks.test in Table 5.12 shows a p-value of 0.2982 and does not reject the null. On the right we compare a random selection from the standard normal distribution to a null hypothesis distribution of t with 2 df. The ks.test in Table 5.12 shows a p-value of 0.003808 and rejects the null. The solid line in the top panels is the CDF for null distribution, in this example the t with 2 df. The deviation lines connect the observed y-values from the dataset under test to the hypothesized y-values from the null distribution. The deviation lines are magnified and centered in the bottom panels. The largest | vertical deviation | is the value of the K–S statistic in Table 5.12.




                                [image: A77776_2_En_5_Fig18_HTML.gif]
Fig. 5.18Kolmogorov–Smirnov two-sample plot. We plotted the two empirical CDF on the same axes. The largest absolute vertical deviation is the value of the K–S statistic. Interpolation to calculate the vertical deviations is messier in the two-sample case, therefore we didn’t do it for the figure. The ks.test function in Table 5.13 does do the interpolation.




                            
Table 5.13Kolmogorov–Smirnov Two-Sample Test. The test corresponds to Figure 5.18. We see a p-value of 0.09956 and we do not reject the null.


[image: A77776_2_En_5_Figl_HTML.gif]

We selected two random samples of 300 items, the first from a t distribution with 5 df, and the second from a standard normal distribution. Table 5.12 shows the K–S tests and Figure 5.17 the plot of the tests.
In the table we test to see if these sample datasets are consistent with a t distribution with 2 df. The 5-df dataset is consistent with the 2-df null distribution. The normal dataset is not. The top panel in both columns of Figure 5.17 shows the distribution for the hypothesized t
2 distribution, and the vertical deviations of the data from the hypothesized distribution. The largest absolute value of these vertical deviations is the Kolmogorov–Smirnov statistic. The lower panel shows the deviations.
In Table 5.13 and Figure 5.18 we directly compare two different samples to see if the Two-Sample ks.test can distinguish between them. In this example the null hypothesis is retained. The plot shows both empirical distribution functions. 
                  
                



5.10 Maximum Likelihood

Maximum likelihood

                
               is a general method of constructing “good” point estimators. Likelihood ratio

                
               is a general method of constructing tests with favorable properties. We briefly consider both of these ideas.
5.10.1 Maximum Likelihood Estimation

                
                  
                
              
We start from the joint distribution of the sample statistics. The maximum likelihood estimator (MLE) is the value of the parameter that maximizes this expression of the joint distribution, which is called the likelihood function L. In practice it is usually easier to solve the equivalent problem of maximizing [image: 
$$\ln (L)$$
], equivalent since [image: 
$$\ln (\cdot )$$
] is an increasing function.
As a simple example, we derive the MLE of the mean μ of a normal population with known standard deviation [image: 
$$\sigma$$
], based on a random sample of n from this population.
The likelihood function L(μ) is a function of the parameter μ. L(μ) is constructed as the product of the individual density functions for the observed data values y

                  i
                . [image: 
$$\displaystyle\begin{array}{rcl} L(\mu ) =\prod \phi \left (\frac{y_{i}-\mu } {\sqrt{2}\,\sigma } \right ) = (2\pi \sigma ^{2})^{-\frac{n} {2} }\,\exp \left (-\frac{\sum (y_{i}-\mu )^{2}} {2\,\sigma ^{2}} \right )& &{}\end{array}$$
]

 (5.23)



Apart from an additive constant that does not depend on μ, we find [image: 
$$\displaystyle\begin{array}{rcl} \ln (L) = -\frac{\sum (y_{i}-\mu )^{2}} {2\sigma ^{2}} & & {}\\ \end{array}$$
]


 The value of μ that maximizes this expression is the value of μ that minimizes [image: 
$$\displaystyle\begin{array}{rcl} \sum (y_{i}-\mu )^{2} =\sum (y_{ i} -\bar{y})^{2} + n(\bar{y}-\mu )^{2}& & {}\\ \end{array}$$
]


 The answer, [image: 
$$\hat{\mu }=\bar{ y}$$
], is both the “least-squares” and maximum likelihood estimator of μ. (The least-squares and maximum likelihood estimators do not necessarily coincide for other estimands than μ.)
                  
                


5.10.2 Likelihood Ratio Tests
Let [image: 
$$y_{1},y_{2},\ldots,y_{n}$$
] denote a random sample of some population and let L = L(y
1, y
2, . . . , y

                  n
                ) denote the likelihood of this sample, i.e., the joint probability distribution of the sample values. Let H
0 be a null hypothesis about the parameter(s) of this population. A likelihood ratio (LR) test

                  
                 of H
0 uses the likelihood ratio [image: 
$$\displaystyle\begin{array}{rcl} \lambda = \frac{\mbox{ maximum of $L$ over only those parameter values for which $H_{0}$ is true}} {\mbox{ maximum of $L$ over all possible parameter values}} & &{}\end{array}$$
]

 (5.24)

 or some random variable that is a strictly increasing or strictly decreasing function of only [image: 
$$\lambda.\ H_{0}$$
] is rejected if [image: 
$$\lambda$$
] is sufficiently small, where “sufficiently small” depends on α.
While likelihood ratio tests do not, in general, have optimal properties, experience has taught that they frequently are competitive. One reason for their popularity is that they have a known asymptotic (i.e., large sample size n) distribution: [image: 
$$-2\,\ln (\lambda )$$
] is approximately a χ
2 r.v. with d.f. equal to the number of parameters constrained by H
0. This fact can be used to construct a large sample test.
For example, to test [image: 
$$H_{0}: \mu = 0$$
] vs [image: 
$$H_{1}: \mu \neq 0$$
], where μ is the mean of a normal population with unknown variance, it is not difficult to show that the likelihood ratio test procedure gives [image: 
$$\lambda = \frac{1} {\left (1+t^{2}\right )^{n/2}}$$
], where | t | is the usual absolute t statistic used for this purpose. Here | t | arises as the appropriate test statistic because it is a strictly decreasing function of [image: 
$$\lambda$$
].
                  
                



5.11 Exercises

5.1. Suppose that hourly wages in the petroleum industry in Texas are normally distributed with a mean of $17.60 and a standard deviation of $1.30. A large company in this industry randomly sampled 50 of its workers, determining that their hourly wage was $17.30. Stating your assumptions, can we conclude that this company’s average hourly wage is below that of the entire industry?

5.2. The mean age of accounts payable has been 22 days. During the past several months, the firm has tried a new method to reduce this mean age. A simple random sample of 200 accounts payable last month had mean age 20.2 days and standard deviation 7.2 days. Use a confidence interval to determine if the new method has made a difference.

5.3. The Security and Exchange Commission (SEC) requires companies to file annual reports concerning their financial status. Firms cannot audit every account receivable, so the SEC allows firms to estimate the true mean. They require that a reported mean must be within $5 of the true mean with 98% confidence. In a small sample of 20 from firm Y, the sample standard deviation was $40. What must the total sample size be so that the audit meets the standard of the SEC?

5.4. The Kansas City division of a company produced 982 units last week. Of these, 135 were defective. During this same time period, the Detroit division produced 104 defectives out of 1,088 units. Test whether the two divisions differed significantly in their tendency to produce defectives.

5.5. A human resources manager is interested in the proportion of firms in the United States having on-site day-care facilities. What is the required sample size to be 90% certain that the sample proportion will be within 5% of the unknown population proportion?

5.6. A health insurance company now offers a discount on group policies to companies having a sufficiently high percentage of nonsmoking employees. Suppose a company with several thousand workers randomly samples 200 workers and finds that 186 are nonsmokers. Find a 95% confidence interval for the proportion of this company’s employees who do not smoke.

5.7. Out of 750 people chosen at random, 150 were unable to identify your product. Find a 90% confidence interval for the proportion of all people in the population who will be unable to identify your product.

5.8. A national poll, based on interviews with a random sample of 1,000 voters, gave one candidate 56% of the vote. Set up a 98% confidence interval for the proportion of voters supporting this candidate in the population. You need not complete the calculations.

5.9. Two hundred people were randomly selected from the adult population of each of two cities. Fifty percent of the city #1 sample and 40% of the city #2 sample were opposed to legalization of marijuana. Test the two-sided hypothesis that the two cities have equal proportions of citizens who favor legalization of marijuana. (Calculate and interpret the p-value.)

5.10. A random sample of 200 people revealed that 80 oppose a certain bond issue. Find a 90% confidence interval for the proportion in the population who oppose this bond issue. Work the arithmetic down to a final numerical answer.

5.11. The confidence interval answer to the previous question is rather wide. How large a sample would have been required to reduce the confidence interval error margin to 0.02?

5.12. Random samples of 400 voters were selected in both New Jersey and Pennsylvania. There were 210 New Jersey respondents and 190 Pennsylvania respondents who stated that they were leaning toward supporting the Democratic nominee for President. Test the claim (alternative hypothesis) that the proportion of all New Jersey voters who lean Democratic exceeds the proportion of all Pennsylvania voters who lean Democratic.
a.Set up H
0 and H
1.

 

b.Calculate [image: 
$$\hat{p}_{1}$$
], [image: 
$$\hat{p}_{2}$$
], and [image: 
$$\hat{p}$$
].

 

c.Calculate [image: 
$$z_{\mbox{ calc}}$$
].

 

d.Approximate the p-value.

 

e.State your conclusion concerning the claim.

 





5.13. The relative rotation angle between the L2 and L3 lumbar vertebrae is defined as the acute angle between posterior tangents drawn to each vertebra on a spinal X-ray. See Figure 7.​20 for an illustration with different vertebrae. When this angle is too large the patient experiences discomfort or pain. Chiropractic treatment of this condition involves decreasing this angle by applying (nonsurgical) manipulation or pressure. Harrison et al. (2002) propose a particular such treatment. They measured the angle on both pre- and post-treatment X-rays from a random sample of 48 patients. The data are available as data(har1).
a.Test whether the mean post-treatment angle is less than the mean angle prior to treatment.

 

b.Construct a quantile plot
                        
                       to assess whether the post-treatment sample is compatible with a t distribution with 5 degrees of freedom.

 





5.14. The Harrison et al. (2002) study also measured the weights in pounds of the sample of 48 treated patients and a random sample of 30 untreated volunteer controls.
a.Use the data available as data(har2) to compare the mean weights of the treatment and control populations.

 

b.Use these data to compare the standard deviation of weights of the treatment and control populations.

 

c.Construct and interpret a normal probability plot for the weights of the treated patients.

 





5.15. The Poisson probability distribution
                
               is defined on the set of nonnegative integers. The Poisson is often used to model the number of occurrences of some event per unit time or unit space. Examples are the number of phone calls reaching a switchboard in a given minute (with the implication that the number of operators scheduled to answer the phones will be determined from the model) or the number of amoeba counted in a 1 ml. specimen of pond water. The probability that a Poisson r.v. Y has a particular (nonnegative integer) value y is given by [image: 
$$\displaystyle\begin{array}{rcl} P(Y = y) = \frac{e^{-\mu }\mu ^{y}} {y!},\ \ y = 0,1,2,\ldots & & {}\\ \end{array}$$
]


 (While the value of y may be arbitrarily large, the probability of obtaining a very large y is infinitesimally small.) The parameter μ is the mean number of occurrences per unit. The mean μ of the Poisson distribution is either known in advance or must be estimated from the data. Poisson probabilities may be calculated with R as noted in Section J.3.6.
You are asked to perform a chi-square goodness-of-fit test of the Poisson distribution to the following data, which concern the number of specimens per microscope field in a sample of lake water. [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{llllllllr} y: &0 &1 &2 &3 &4 &5&6&7 \\ O:&21&30&54&26&11&3&3&2\\ \end{array} & & {}\\ \end{array}$$
]


 The observed value O

                y
               is the number of fields in which exactly y specimens were observed. In this example, [image: 
$$\sum O_{y} = 150$$
] fields were examined and, for example, exactly O
2 = 54 of the fields showed y = 2 specimens. The Poisson
                
               parameter μ is unknown and should be estimated as a weighted average of the possible values y, i.e., [image: 
$$\displaystyle\begin{array}{rcl} \hat{\mu }= \frac{\sum \limits _{y=0}^{7}y\,O_{y}} {\sum \limits _{y=0}^{7}O_{y}} & & {}\\ \end{array}$$
]





5.16. Extend the one-tailed sample size formula for comparing two proportions, Equation (5.22), to the two-tailed case.
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In Chapter 5 we consider ways to compare the means of two populations. Now we extend these procedures to comparisons of means from several populations. For example, we may wish to compare the average hourly production of a company’s six factories. We say that the investigation has a factor

              
             factory that has six levels

              
            , namely the six identifiers distinguishing the factories from one another. Or we may wish to compare the yields per acre of five different varieties of wheat. Here, the factor is wheat, and the levels of wheat are variety1 through variety5. This chapter discusses investigations having a single factor. Experiments having two factors are discussed in Chapter 12, while situations with two or more factors are discussed in Chapters 13 and 14

One-way analysis of variance (ANOVA) is the natural generalization of the two-sample t-test to more than two groups. Suppose that we have a factor A with a levels. We select independent samples from each of these a populations, where n

              i
             is the size of the sample from population i. We distinguish between two possible assumptions about these populations comprising the single factor. We discuss fixed effects

              
             beginning in Section 6.1 and random effects beginning in Section 6.4.
              
            

6.1 Example—Catalyst Data
With the catalyst data from Montgomery (1997) we are interested in comparing the concentrations of one component of a liquid mixture in the presence of each of four catalysts. We investigate whether the catalysts provide for equal mean concentrations, and then since this does not appear to be true, we study the extent of differences among the mean concentrations. We access the dataset with data(catalystm) and plot it in Figure 6.1. We see that group D does not overlap groups A and B and that group C has a wider spread than the others.[image: A77776_2_En_6_Fig1_HTML.gif]
Fig. 6.1Boxplots Comparing the Concentrations for each Catalyst




                        
The ANOVA (analysis of variance) table
                
              

                
               and the table of means are in Table 6.1. The F-test
                
               in the ANOVA table addresses the null hypothesis that the four catalysts have equal mean concentrations. We see immediately, from the small p-value (p = . 0014), that these four catalysts do not provide the same average concentrations.
Table 6.1ANOVA Table for Catalyst Data


[image: A77776_2_En_6_Figa_HTML.gif]




6.2 Fixed Effects

              
                
              
            
Initially we assume that the a stated levels of A are the totality of all levels of interest to us. We call A a fixed
                  
                
 factor.
                
               We model
                
               the j
th observation from population i as [image: 
$$\displaystyle{ y_{ij} =\mu +\alpha _{i} +\epsilon _{ij}\qquad \quad \mbox{ for}\quad i = 1,\ldots,a\quad \mbox{ and}\quad j = 1,\ldots,n_{i} }$$
]

 (6.1)

 where μ and the α

                i
               are fixed quantities with the constraint [image: 
$$\displaystyle{ \sum _{i}\alpha _{i} = 0 }$$
]

 (6.2)

 and the ε

                ij
               are assumed to be normally and independently distributed (NID)
                
               with common mean 0 and common variance σ
2, which we denote by [image: 
$$\displaystyle{ \epsilon _{ij} \sim \mbox{ NID}(0,\sigma ^{2}) }$$
]

 (6.3)

 We interpret μ as the grand mean of all a populations, α

                i
               as the deviation of the mean of population i from μ, and assume that the responses from all a populations have a normal distribution with a common variance. If the normality assumption is more than mildly violated, we must either transform the response variable to one for which this assumption is satisfied, perhaps with a power transformation
                
               such as those discussed in Section 4.​8, or use a nonparametric procedure
                
               as described in Chapter 16 The common variance assumption may be examined with the hypothesis test described in Section 6.10. If the variances are not homogeneous, a transformation
                
               such as those discussed in Section 4.​8 sometimes can fix the inhomogeneity of variance problem as well as the nonnormality problem by changing to a scale in which the transformed observations show homogeneity of variance.
                
                
              

We discuss in Appendix 6.A the correspondence between the notation of Equation (6.1) and the software notation in Table 6.1.
                
              

The initial question of interest is the equality of the a population means, which we investigate with the test of [image: 
$$\displaystyle\begin{array}{rcl} && \quad H_{0}: \alpha _{1} =\alpha _{2} =\ldots =\alpha _{a} \\ && \mbox{ vs} \\ && \quad H_{a}: \mbox{ the }\alpha _{i}\mbox{ are not all equal.}{}\end{array}$$
]

 (6.4)



When a = 2, the test is the familiar [image: 
$$\displaystyle\begin{array}{rcl} t_{n_{1}+n_{2}-2} = \frac{\bar{y}_{1} -\bar{ y}_{2}} {s_{p}\sqrt{( \frac{1} {n_{1}} + \frac{1} {n_{2}} )}}& & {}\\ \end{array}$$
]




where [image: 
$$\displaystyle\begin{array}{rcl} s_{p}^{2} = \left ((n_{ 1} - 1)s_{1}^{2} + (n_{ 2} - 1)s_{2}^{2}\right )/(n_{ 1} + n_{2} - 2)& & {}\\ \end{array}$$
]


 from Equations (5.​13) and (5.​12). By squaring both sides, we can show [image: 
$$\displaystyle\begin{array}{rcl} F_{1,n_{1}+n_{2}-2} = t_{n_{1}+n_{2}-2}^{2} = \frac{n_{1}(\bar{y}_{1} -\bar{\bar{ y}})^{2} + n_{ 2}(\bar{y}_{2} -\bar{\bar{ y}})^{2}} {s_{p}^{2}} & &{}\end{array}$$
]

 (6.5)

 where [image: 
$$\displaystyle\begin{array}{rcl} \bar{\bar{y}} = \frac{n_{1}\bar{y}_{1} + n_{2}\bar{y}_{2}} {n_{1} + n_{2}} & & {}\\ \end{array}$$
]




In the special case where n
1 = n
2, Equation (6.5) is easily proved by using these hints:
1.
                      [image: 
$$\bar{\bar{y}} = \frac{\bar{y}_{1} +\bar{ y}_{2}} {2}$$
]
                    

 

2.
                      [image: 
$$(\bar{y}_{1} -\bar{\bar{ y}}) = -(\bar{y}_{2} -\bar{\bar{ y}})$$
]
                    

 

3.
                      [image: 
$$\frac{1} {n_{1}} + \frac{1} {n_{2}} = \frac{2} {n_{1}}$$
]
                    

 




The equality (6.5) is also true for unequal n

                i
              , but the proof is messier.
When a ≥ 2, we generalize formula (6.5) to [image: 
$$\displaystyle\begin{array}{rcl} F_{a-1,\;(\varSigma n_{i})-a} = \frac{(\sum n_{i}(\bar{y}_{i} -\bar{\bar{ y}})^{2})/(a - 1)} {s_{p}^{2}} & &{}\end{array}$$
]

 (6.6)

 where [image: 
$$\bar{\bar{y}}$$
] and [image: 
$$s_{p}^{2}$$
] are the weighted mean [image: 
$$\displaystyle\begin{array}{rcl} \bar{\bar{y}} = \frac{\sum n_{i}\bar{y}_{i}} {\sum n_{i}} & &{}\end{array}$$
]

 (6.7)

 and pooled variance [image: 
$$\displaystyle\begin{array}{rcl} s^{2} = s_{ p}^{2} = \frac{\sum (n_{i} - 1)s_{i}^{2}} {\sum (n_{i} - 1)} = \mathsf{MS}_{\mathrm{residual}}& &{}\end{array}$$
]

 (6.8)

 over all a samples.
The usual display of this formula is in the analysis of variance table and the notation is [image: 
$$\displaystyle\begin{array}{rcl} F_{(a-1),\;\left (\varSigma n_{i}\right )-a} = \frac{\mathsf{SS}_{\mathrm{treatment}}/\mathsf{df}_{\mathrm{treatment}}} {\mathsf{SS}_{\mathrm{residual}}/\mathsf{df}_{\mathrm{residual}}} = \frac{\mathsf{MS}_{\mathrm{treatment}}} {\mathsf{MS}_{\mathrm{residual}}} = \frac{\mathsf{MS}_{\mathrm{Tr}}} {\mathsf{MS}_{\mathrm{Res}}}& &{}\end{array}$$
]

 (6.9)

 The sample ANOVA table in Table 6.2 illustrates the structure. Note that Figure 6.2 includes a section “Total” that is missing in Table 6.1. The Total Sum of Squares is the sum of the Treatment and Residual Sums of Squares, and the Total Degrees of Freedom is the sum of the Treatment and Residual Degrees of Freedom. R does not print the Total line in its ANOVA tables.
Table 6.2Sample Table to Illustrate Structure of the ANOVA Table


[image: A77776_2_En_6_Figb_HTML.gif]



As in Section 5.​4.​4, this F-test
                
               of the pair of hypotheses in Equation (6.4) compares two estimates of the population variance σ
2. [image: 
$$\mathsf{MS}_{\mathrm{Res}}$$
] is an unbiased estimator of σ
2 whether or not H
0 is true. [image: 
$$\mathsf{MS}_{\mathrm{Tr}}$$
] is unbiased for σ
2 when H
0 is true but an overestimate of σ
2 when H

                a
               is true. Hence, the larger the variance ratio [image: 
$$F = \mathsf{MS}_{\mathrm{Tr}}/\mathsf{MS}_{\mathrm{Res}}$$
], the stronger the evidence in support of H

                a
              . Comparing two variances facilitates the comparison of a means. For this reason, the foregoing procedure is called analysis of variance.
                
               It involves decomposing the total sum of squares [image: 
$$\mathsf{SS}_{\mathrm{Total}}$$
] into the variances used to conduct this F-test.
                
               The p-value in this table is calculated as the probability that a central F random variable with [image: 
$$\mathsf{df}_{\mathrm{Tr}}$$
] and [image: 
$$\mathsf{df}_{\mathrm{Res}}$$
] degrees of freedom exceeds the calculated F
Tr.
                
              


6.3 Multiple Comparisons—Tukey Procedure for Comparing All Pairs of Means

              
                
              
              
                
              
            
Multiple comparisons refer to procedures for simultaneously conducting all inferences in a family of related inferences, while keeping control of a Type I error concept that relates to the entire family. This class of inferential procedures is discussed in detail in Chapter 7 In the present chapter, we introduce the Tukey procedure, used for the family of all [image: 
$$a\choose 2$$
] pairwise comparisons involving a population means.
We illustrate the Tukey procedure with a continuation of the analysis of the catalyst data. We seek to determine which catalyst mean differences are responsible for the overall conclusion that the catalyst means are not identical.
Under the assumption that catalyst is a fixed factor, we investigate the nature of the differences among the four catalysts. There are [image: 
$${4\choose 2} = 6$$
] pairs of catalysts, and for each of these pairs we wish to determine whether there is a significant difference between the concentrations associated with the two catalysts comprising the pair. (If the levels of catalyst had instead been quantitative or bore a structural relationship to one another, a different follow-up to the analysis of variance table
                
               would have been more appropriate. An example of such a situation is the analysis of the turkey data presented in Section 6.8.)
We seek to control at a designated level α the familywise error rate,
                
               FWE, defined as the probability of incorrectly rejecting at least one true null hypothesis under any configuration of true and false null hypotheses. For the family consisting of all pairs of means, the Tukey procedure maximizes, in various senses, the probability of detecting truly differing pairs of means while controlling the FWE at α.
The Tukey procedure uses a critical value q

                α
               from the Studentized range distribution
                
               (see Section J.1.10), i.e., the distribution of standardized difference between the maximum sample mean and the minimum sample mean, rather than an ordinary t distribution for comparing two means discussed in Section 5.​4.​3 The Tukey output may be presented in the form of simultaneous confidence intervals
                
               on each of the mean differences rather than, or in addition to, tests on each difference. The interpretation is that the confidence coefficient 1 −α is the probability that all of the [image: 
$$a\choose 2$$
] pairwise confidence intervals among a sample means contain their respective true values of the difference between the two population means: [image: 
$$\begin{array}{lllllll} 1-\alpha & \leq & P(\mbox{ CI}_{12} & \cap &\mbox{CI}_{13} & \cap \ldots \cap &\mbox{CI}_{1a} \\ \cap &\mbox{ CI}_{23} & \cap \ldots \cap &\mbox{ CI}_{2a} \\  & \cap \ldots \cap &\mbox{ CI}_{(a-1)a})\end{array} $$
]

 (6.10)

 where [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ CI}_{ii'}: (\bar{y}_{i} -\bar{ y}_{i'}) -{ q_{\alpha } \over \sqrt{2}}\,s_{(\bar{y}_{i}-\bar{y}_{i'})} \leq (\mu _{i} -\mu _{i'}) \leq (\bar{y}_{i} -\bar{ y}_{i'}) +{ q_{\alpha } \over \sqrt{2}}\,s_{(\bar{y}_{i}-\bar{y}_{i'})}& &{}\end{array}$$
]

 (6.11)

 and [image: 
$$\displaystyle\begin{array}{rcl} s_{(\bar{y}_{i}-\bar{y}_{i'})} &=& s\sqrt{{ 1 \over n_{i}} +{ 1 \over n_{i'}}} {}\\ s &=& \sqrt{\mathsf{MS } _{\mathrm{residual }}} {}\\ \end{array}$$
]


 If the sample sizes are unequal, the confidence intervals (6.11) are conservative in the sense that the coverage probability in Equation (6.10) exceeds 1 −α. If the sample sizes are equal, the inequality in Equation (6.10) is instead an equality and the simultaneous 1 −α confidence for the set of intervals in (6.11) is exact.
We show the listing for the Tukey test of the catalyst data in Table 6.3 and the MMC multiple comparisons plot in Figure 6.2. The Mean–mean Multiple Comparisons display is discussed in Section 7.​2 Denoting the mean concentration associated with catalyst i as μ

                i
              , since the confidence intervals on [image: 
$$\mu _{A} -\mu _{D}$$
] and [image: 
$$\mu _{B} -\mu _{D}$$
] lie entirely above 0 while all other confidence intervals include 0, we conclude that both catalysts A and B provide, on average, a significantly greater concentration than catalyst D; no other significant differences between catalysts were uncovered. We continue with this example in Section 7.​2.​4
[image: A77776_2_En_6_Fig2_HTML.gif]
Fig. 6.2Tukey Multiple Comparisons of All Pairwise Comparisons of Catalyst Means with the MMC plot. The MMC plot is fully developed in Section 7.​2 The top panel is the MMC display. The cell means are on the vertical axis and the confidence intervals for the contrasts are on the horizontal axis. The isomeans grid in the MMC panel displays the cell means on both diagonal axes. The bottom panel, labeled “Tiebreaker” even though there are no ties in the top panel for this example, shows the contrasts in the same order as the MMC panel, but evenly spaced in the vertical direction. The left tick labels in the Tiebreaker panel are the heights of the confidence lines in the MMC panel. For example, the A-B line has height 56.34, halfway between the height of the A mean at 56.90 and the height of the B mean at 55.77. The bottom panel does not have any information on the values of the means themselves.




Table 6.3Tukey Multiple Comparisons for Catalyst Data


[image: A77776_2_En_6_Figc_HTML.gif]



In view of this finding one might be tempted to focus on the differences demonstrated to be significant in Table 6.3, and construct hypothesis tests or confidence intervals using a method from Section 5.​4.​2 A more general framing of this temptation is to ask, “Is it permissible to use preliminary examinations of the data to develop subsequent hypotheses about the data” (a practice referred to as data snooping

                
              )? With few exceptions, the answer is no because the two-stage nature of the procedure distorts the claimed significance levels or confidence coefficients of the analyses in the second stage. Inferential strategies should be developed before the data are collected—based entirely on the structure of the data and the sampling method used. Strategies should not depend on the observed data. Here one should be content with the analyses in Table 6.3 and supporting graphical displays such as Figure 6.2, assuming the correctness of the assumptions underlying their construction.
Although in this example there were equal sample sizes from the levels of catalyst, neither the basic analysis of variance nor the Tukey multiple comparison procedure requires that the factor levels have the same sample size. Analyses of one-way data having unequal sample sizes are requested in the Exercises.
                
              

                
              

                
              


              
                
              
            

              
                
              
              
                
              
            

6.4 Random Effects

              
                
              
            
We could assume that the a observed levels of A are a random sample from a large or conceptually infinite population of levels. We call A a random factor.
                
               For example, in a study to compare the daily productivity of assembly line workers in a large firm, the workers in the study may be a random sample of a employees from among thousands of employees performing identical tasks.
We still work with Equation (6.1), and still maintain the same assumptions about μ and the ε

                ij
              ’s. We have a different interpretation of the α

                i
              . Now the term α

                i
               in Equation (6.1) is assumed to be a [image: 
$$N(0,\sigma _{A}^{2})$$
] random variable and the restriction [image: 
$$\sum _{i}\alpha _{i}$$
] no longer applies. Instead we work with the hypotheses [image: 
$$\displaystyle\begin{array}{rcl} && \quad H_{0}: \ \sigma _{A}^{2} = 0 \\ && \mbox{ vs} \\ && \quad H_{a}: \ \sigma _{A}^{2}> 0{}\end{array}$$
]

 (6.12)

 The sample ANOVA table in Table 6.2 still applies. The F statistic now compares the hypotheses in Equation 6.12. In the context of the worker productivity example, the factor worker is referred to as a random factor. We are using the a sampled workers to assess whether the entire population of workers has identical or nonidentical productivity.

6.5 Expected Mean Squares (EMS)

              
                
              
              
                
              
            
To better understand the distinction between the F-test
                
               in the fixed and random factor cases, it is useful to compare the expected mean squares (EMS) for the ANOVA table under the two assumptions.
                
               The EMS are algebraically displayed in Table 6.4. Calculation of the EMS values in this table are outlined in Exercise 6.14.Table 6.4Expected Mean Squares in One-Way Analysis of Variance. Similar tables for Two-Way models and Three-Way models are in Tables 12.8 and 13.11.


	Source
	df
	
                          [image: 
$$E(\mathsf{MS}_{\mathrm{}})$$
]
                        
	EMS, factor A fixed
	EMS, factor A random
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                          [image: 
$$E(\mathsf{MS}_{\mathrm{Tr}})$$
]
                        
	
                          [image: 
$$\sigma ^{2} + \left ( \frac{1} {a-1}\right )\sum _{i}n_{i}(\alpha _{i}-\bar{\alpha })^{2}$$
]
                        
	
                          [image: 
$$\sigma ^{2} + \frac{1} {a-1}\left (\sum _{i}n_{i} -\frac{\sum _{i}n_{i}^{2}} {\sum _{i}n_{i}} \right )\sigma _{A}^{2}$$
]
                        

	Residual
	
                          [image: 
$$\sum _{i}(n_{i} - 1)$$
]
                        
	
                          [image: 
$$E(\mathsf{MS}_{\mathrm{Res}})$$
]
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                          2
                        
	
                          σ
                          2
                        

	Total
	
                          [image: 
$$\left (\sum _{i}n_{i}\right ) - 1$$
]
                        
	 	 	 





              
                
              
            
In the case of factor A fixed, the F statistic is testing whether [image: 
$$\sum _{i}n_{i}(\alpha _{i}-\bar{\alpha })^{2} = 0$$
], where [image: 
$$\bar{\alpha }= \left (\sum _{i}n_{i}\alpha _{i}\right )/\left (\sum _{i}n_{i}\right )$$
]. This statement is true if and only if the α

                i
               are identical. In the case of factor A random, the F statistic tests whether [image: 
$$\sigma _{A}^{2} = 0$$
] because the coefficient of [image: 
$$\sigma _{A}^{2}$$
] is positive whether or not H
0 is true.
For fixed effects the power
                
               of the F-test
                
               is an increasing function of the noncentrality parameter of the F statistic, which in turn is an increasing function of [image: 
$$\mathsf{EMS}_{\mathrm{Treatment}}/\mathsf{EMS}_{\mathrm{Residual}}$$
]. When factor A is random, it follows that the power is an increasing function of [image: 
$$\sum _{i}n_{i} -\sum _{i}n_{i}^{2}/\sum _{i}n_{i}$$
]. For fixed total sample size [image: 
$$\sum _{i}n_{i}$$
], this quantity and hence power is maximized when [image: 
$$n_{i} =\sum _{i}n_{i}/a$$
], that is, when the sample is equally allocated to the levels, or nearly equal allocation if ∑

                i
              
n

                i
              ∕a is not an integer.
In general in Analysis of Variance tables, examination of expected mean squares suggests the appropriate numerator and denominator mean squares for conducting tests of interest. We look for [image: 
$$\mathsf{EMS}_{\mathrm{Treatment}}/\mathsf{EMS}_{\mathrm{Residual}}$$
] that exceeds 1 if and only if the null hypothesis of interest is false. This idea is especially useful in analyzing mixed models (i.e., ones containing both fixed and random factors) as is discussed in Section 12.​10

                
              


6.6 Example—Catalyst Data—Continued
In Section 6.1 the four levels of the factor catalyst were assumed to be qualitative rather than quantitative. It was also assumed that these are the only catalysts of interest. In this situation catalyst is a fixed factor since the four catalyst levels we study are the only levels of interest.
If instead these four catalysts had been regarded as a random sample from a large population of catalysts, then catalyst would have been considered a random factor. Figure 6.1 provides a tentative answer to the question of whether the four distributions are homogeneous. This figure also addresses the reasonableness of the assumption that the data come from normal homoskedastic populations, that is, populations having equal variances. The boxplots hint at the possibility that catalyst 3 has a more variable concentration than the others, but the evidence is not substantial in view of the small sample sizes (5,4,3,4). We look more formally at the homogeneity of the variances of these four catalysts in Section 6.10.
The F-test
                
               in Table 6.1 addresses the null hypothesis that the four catalysts have equal mean concentrations. The small p-value suggests that these four catalysts provide different average concentrations.
If instead, the factor catalyst in this experiment had been a random factor rather than a fixed factor, the F-test
                
               would be addressing the hypothesis that there is no variability in concentration over the population of catalysts from which these four catalysts are a random sample.

6.7 Example—Batch Data
In the batch data data(batch) taken from Montgomery (1997), the 5 sampled batches constitute a random sample from a large population of batches. Thus batch is a random factor, not a fixed factor. The response variable is calcium content. The ANOVA is in Table 6.5. The small p-value,.0036, leads us to conclude that the population of batches, from which these 5 batches were a random sample, had nonhomogeneous calcium content. We must investigate whether the variances within batches are the same. We do so in Table 6.6 and Figure 6.3 and 6.4.
Table 6.5ANOVA of Batch data. The batches are a random effect, therefore means are not meaningful. Instead the test compares the variability between groups with the variability of within groups.


[image: A77776_2_En_6_Figd_HTML.gif]


Table 6.6Homogeneity of Variance test for Batch data. With p = . 9978, the conclusion is to retain the null hypothesis and act as if all the group variances are equal. See caption of Figure 6.3 for discussion of this test.


[image: A77776_2_En_6_Fige_HTML.gif]


[image: A77776_2_En_6_Fig3_HTML.gif]
Fig. 6.3Homogeneity of Variance plot for Batch. The left panel shows the data within each group. The center panel shows the same variabilities centered on the group medians ([image: 
$$y_{ij} -\mathop{y}\limits ^{\mbox{ $\boldsymbol{ \perp }$}}_{j}$$
]). The right panel shows the boxplot of the absolute deviations from the median ([image: 
$$\vert \,y_{ij} -\mathop{y}\limits ^{\mbox{ $\boldsymbol{ \perp }$}}_{j}\,\vert$$
]). The Brown–Forsyth test is an ordinary analysis of variance of these absolute deviations from the median. If the means of each group of the absolute deviations differ, then the test says the variances of the groups of original data differ.




[image: A77776_2_En_6_Fig4_HTML.gif]
Fig. 6.4Centered variability for the Batch data. The data has been centered on the group medians. The left panel is identical to the middle panel of Figure 6.3. The center panel shows the variability of the set of group means. The right panel shows the variability of the entire set of y = Calcium values. The central box in each glyph shows the interquartile range, which is approximately proportional to the standard deviation. The variability in the three panels corresponds to the square root of the values in the Mean Square column of the ANOVA table in Table 6.5. The variability of the right panel represents the Total line of the ANOVA table (the one that R doesn’t show) which is the variance of the response variable ignoring all the predictor variables. When the center panel variability is larger than the left panel variabilities, then the F value will be large (use the p-value from the F table to see whether it is significantly large).






6.8 Example—Turkey Data
6.8.1 Study Objectives
The goal in many agricultural experiments is to increase yield. In the Turkey experiment (data from Ott (1993)) data(turkey) the response is weight gain (in pounds) of turkeys and the treatments are diet supplements.

6.8.2 Data Description
Six turkeys were randomly assigned to each of 5 diet groups and fed for the same length of time. The diets have a structure such that it is possible and desirable to undertake an orthogonal contrast analysis, a systematic set of comparisons among their mean responses. A contrast
                  
                 is a comparison of two or more means such that the expected value of the comparison is zero when the null hypothesis is true. (Contrasts and orthogonal contrasts are discussed in Section 6.9.) The diets are 
                      control:
                    control



                      A1:
                    control + amount 1 of additive A



                      A2:
                    control + amount 2 of additive A



                      B1:
                    control + amount 1 of additive B



                      B2:
                    control + amount 2 of additive B





The data are accessed as data(turkey) and plotted in Figure 6.5.
[image: A77776_2_En_6_Fig5_HTML.gif]
Fig. 6.5Turkey Data: Boxplots of Weight Gain for each Diet






6.8.3 Analysis
The ANOVA table and table of means are in Table 6.7. The first thing we notice is that the diets differ significantly in their promotion of weight gain (F
4, 25 = 81. 7, p-value ≈ 0). Then we observe that the diets are structured so that particular comparisons among them are of special interest. We make these comparisons by partitioning the sum of squares to reflect several well-defined contrasts. The contrasts are displayed in Table 6.8. The ANOVA table using them is in Table 6.9.Table 6.7ANOVA Table for Turkey Data


[image: A77776_2_En_6_Figf_HTML.gif]


Table 6.8Specification of contrasts for turkey data. This set of contrasts has been constructed to reflect the intent of the experiment: to compare A vs B, amount 1 vs amount 2, and control vs treatment. We first show the default treatment contrasts, then replace them with our constructed contrasts.


[image: A77776_2_En_6_Figg_HTML.gif]


Table 6.9ANOVA Table for Turkey Data with Contrasts. The sum of the individual sums of squares from each “diet:” line is the sum of squares for diet. The point estimates of the contrasts are in Table 7.​4 Development of this table’s F statistic for diet: A.vs.B is explained in the discussion surrounding Equations (6.15)–(6.17).


[image: A77776_2_En_6_Figh_HTML.gif]



The interaction
                  
                 line diet: A.vs.B.by.amount in Table 6.8 asks the question, “Does the increase from amount 1 to amount 2 of additive A have the same effect as the increase from amount 1 to amount 2 of additive B?” This question may equivalently be stated as: “Does the change from amount 1 of additive A to amount 1 of additive B have the same effect as the change from amount 2 of additive A to amount 2 of additive B?” (We interpret the description of the experiment to mean that the amounts 1 and 2 of the additives are measured in the same units). The concept of interaction is discussed in detail in Chapter 12.
These contrasts decompose the 4-df sum of squares for diet into four single-df sums of squares, one for each of the four contrasts. This set of contrast sums of squares is additive because we have defined the contrasts in such a way that they are mutually orthogonal.
                  
                  
                 In essence this means that the information contained in one of the contrasts is independent of the information contained in any of the other contrasts. The independence of information makes each of the contrasts more readily interpretable than they would be if the contrasts had been defined without the property of orthogonality.

6.8.4 Interpretation
We tentatively interpret the contrast analysis as follows:
1.trt.vs.control: averaged over the 4 treatments, turkeys receiving a dietary additive gain significantly more weight than ones not receiving an additive.

 

2.additive: turkeys receiving additive B gain significantly more weight than turkeys receiving additive A.

 

3.amount: turkeys receiving amount 2 gain significantly more weight than turkeys receiving amount 1.

 

4.interaction between additive and amount: the extent of increased weight gain as a result of receiving amount 2 rather than amount 1 is not significantly different for the two additives.

 




Our conclusions derive from the definitions of the contrasts, the signs of their estimates in Table 6.7, and the results of the tests that each contrast is 0, shown in Table 6.8. We give further discussion of appropriate techniques for simultaneously testing the point estimates of the contrasts in Section 7.​1.​4.​1 We illustrate the conclusions in Figure 7.​4 In general, conclusions such as these are tentative because we are making several simultaneous inferences. Therefore, it may be appropriate to use a form of Type I error control that accounts for the simultaneity. See the discussion of multiple comparisons in Chapter 7 In this example, with very small p-values, the use of simultaneous error control will not lead to different conclusions.
                  
                  
                


6.8.5 Specification of Analysis
The partitioned ANOVA table in Table 6.8 is constructed and displayed in two separate steps in Tables 6.8 and 6.9.
We specify the contrasts
                  
                 in several steps: We display the default contrasts, we define new contrasts, we display the new contrasts. Sometimes several iterations are needed until we get it right. Table 6.8 displays both the default and the new contrasts.
Once the contrasts are defined, we use them in the aov() command in Table 6.9. The aov() command uses the contrasts that are in the data.frame when it is called. Redefining the contrasts after the aov() command has been used has no effect on the aov object that has already been created.
The split argument to the summary command indexes the columns of the contrasts that are in the aov object. The index numbers in the list argument are necessary. The names of the items in the list are optional. They are used to provide pretty labels in the ANOVA table.


6.9 Contrasts

              
                
              
            
Once we have determined that there are differences among the means of the groups, that is, that the null hypothesis is rejected, we must follow through by determining the pattern of differences. Is one specific group responsible for the differences? Are there subsets of groups that behave differently than other subsets? We make this determination by partitioning the treatment sum of squares [image: 
$$\mathsf{SS}_{\mathrm{treatment}}$$
] into single degree-of-freedom components, each associated with a contrast among the group means. There are many possible contrasts that might be chosen. In this section we discuss the algebra of a single contrast vector c. In Chapter 10 we discuss sets of contrast vectors collected into a contrast matrix, and the relation between different possible sets.
Contrasts are associated with precisely formulated hypotheses. In the turkey example of Section 6.8 the initial null hypothesis was [image: 
$$\displaystyle\begin{array}{rcl} && H_{0}: \mu _{\mbox{ control}} =\mu _{A1} =\mu _{A2} =\mu _{B1} =\mu _{A2} {}\\ && H_{1}: \mbox{ Not all $\mu _{i}$ are the same} {}\\ \end{array}$$
]


 That initial null hypothesis was rejected when we observed the overall p-value 5. 6 ×10−14.
For the next step in the analysis we must refine the hypotheses we are testing. In this example there are 5 levels of diet, hence 5 − 1 = 4 degrees of freedom for the diet effect. That means there are 4 statements that can be tested independently. For this example we will specify a set of 4 null hypothesis statements: [image: 
$$\displaystyle\begin{array}{rcl} \mu _{\mbox{ control}} &=& (\mu _{A1} +\mu _{A2} +\mu _{B1} +\mu _{A2})/4 \\ (\mu _{A1} +\mu _{A2})/2 &=& (\mu _{B1} +\mu _{B2})/2 \\ (\mu _{A1} +\mu _{B1})/2 &=& (\mu _{A2} +\mu _{B2})/2 \\ (\mu _{A1} -\mu _{A2})/2 &=& (\mu _{B1} -\mu _{B2})/2 {}\end{array}$$
]

 (6.13)

 These statements are usually written as inner products of the vector of group means with a contrast vector C. We can rewrite Equations 6.13 by moving all terms to the left-hand side and then using the inner product notation: [image: 
$$\begin{array}{ll}  (\mu _{\mbox{ control}} \quad\mu _{A1} \quad\mu _{A2} \quad\mu _{B1} \quad\mu _{A2}) \quad\cdot  \quad(1 \quad -.25 \quad -.25\quad -.25 \quad -.25) \quad=\quad0 \\ (\mu _{\mbox{ control}} \quad\mu _{A1} \quad\mu _{A2} \quad\mu _{B1} \quad\mu _{A2}) \quad\cdot  \quad(0 \quad.50 \quad.50 \quad -.50 \quad -.50) \quad=\quad0 \\ (\mu _{\mbox{ control}} \quad\mu _{A1} \quad\mu _{A2} \quad\mu _{B1} \quad\mu _{A2}) \quad\cdot \quad(0 \quad.50 \quad -.50 \quad.50 \quad -.50) \quad=\quad0 \\ (\mu _{\mbox{ control}} \quad\mu _{A1} \quad\mu _{A2} \quad\mu _{B1} \quad\mu _{A2}) \quad\cdot  \quad(0 \quad.50 \quad -.50 \quad -.50 \quad.50) \quad=\quad0\\ \end{array}$$
]

 (6.14)

 The rest of this section discusses the properties of the various choices for the contrasts vector C.
The concept of a contrast among group means was first encountered in Section 6.8. Contrasts are chosen primarily from the structure of the levels, for example, the average effect of Treatment A at several levels compared to the average effect of Treatment B at several levels (the A.vs.B contrast in Tables 6.8 and 7.4 and in Figure 7.​4). Or, for another example, a linear effect of the response to a linear increase in speed (the .L contrast in Section 10.​4).
6.9.1 Mathematics of Contrasts
The mathematics of contrasts follows directly from the mathematics of the independent two-sample t-test: [image: 
$$\displaystyle\begin{array}{rcl} t_{\mbox{ calc}} = \frac{\bar{y}_{1} -\bar{ y}_{2}} {s_{p}\sqrt{ \frac{1} {n_{1}} + \frac{1} {n_{2}}} } \qquad \qquad \qquad \qquad \qquad (5.13)& & {}\\ \end{array}$$
]


 The residual mean square [image: 
$$s_{\mbox{ Resid}}^{2}$$
] from the ANOVA table takes the place of [image: 
$$s_{p}^{2}$$
].
We will look closely at the A.vs.B contrast in Table 6.8 comparing the average of the A treatments [image: 
$$\bar{Y }_{1} = (\bar{Y }_{A1} +\bar{ Y }_{A2})/2$$
] to the average of the B treatments [image: 
$$\bar{Y }_{2} = (\bar{Y }_{B1} +\bar{ Y }_{B2})/2$$
] with [image: 
$$n_{1} = n_{A1} + n_{A2} = n_{2} = n_{B1} + n_{B2}$$
].
Direct substitution of these values into Equation (5.​13) with [image: 
$$n\ {\stackrel{\mathrm{def}}{=}}\ n_{\mbox{ control}} = n_{A1} = n_{A2} = n_{B1} = n_{B2}$$
], followed by simplification (see Exercise 6.12) leads to [image: 
$$\displaystyle\begin{array}{rcl} t_{\mbox{ calc}} = \frac{(\bar{Y }_{A1} +\bar{ Y }_{A2})/2 - (\bar{Y }_{B1} +\bar{ Y }_{B2})/2} {\frac{1} {2}\,s_{\mbox{ Resid}}\sqrt{ \frac{1} {n} + \frac{1} {n} + \frac{1} {n} + \frac{1} {n}}} \; {\stackrel{\mathrm{def}}{=}}\; t_{\mathtt{ A.vs.B}}& &{}\end{array}$$
]

 (6.15)

 We can write the numerator of Equation (6.15) as the dot product [image: 
$$\displaystyle\begin{array}{rcl} C_{\mathtt{A.vs.B}} &=& (\begin{array}{rrrrr} \bar{Y }_{\mbox{ control}} & \bar{Y }_{A1} & \bar{Y }_{A2} & \bar{Y }_{B1} & \bar{Y }_{B2} \end{array} ) \cdot (\begin{array}{rrrrr} 0&\frac{1} {2} & \frac{1} {2} & -\frac{1} {2} & -\frac{1} {2} \end{array} ) \\  &=& (\bar{Y }_{j}) \cdot (c_{j}) {}\end{array}$$
]

 (6.16)

 and then recognize the denominator of Equation (6.15) as the square root of the estimator of the variance of the numerator when the null hypothesis is true [image: 
$$\displaystyle\begin{array}{rcl} \widehat{\mathop{\mbox{ var}}}(C_{\mathtt{A.vs.B}}) = \frac{1} {4}\,s_{\mbox{ Resid}}^{2}\left ( \frac{1} {n} + \frac{1} {n} + \frac{1} {n} + \frac{1} {n}\right )& &{}\end{array}$$
]

 (6.17)

 When we do the arithmetic, the value [image: 
$$\displaystyle\begin{array}{rcl} t_{\mathtt{A.vs.B}} = \frac{C_{\mathtt{A.vs.B}}} {\sqrt{\widehat{\mathop{\mbox{ var} }}(C_{\mathtt{A.vs.B } } )}} = 8.5051 = \sqrt{72.3367} = \sqrt{F_{\mathtt{A.vs.B }}}& & {}\\ \end{array}$$
]


 is recognized as the square root of the F-statistic for the diet: A.vs.B line of the ANOVA table in Table 6.8.
The vector [image: 
$$c = (c_{j}) = (\begin{array}{rrrrr} 0 &\frac{1} {2} & \frac{1} {2} & -\frac{1} {2} & -\frac{1} {2} \end{array} )$$
] is called a contrast vector
                  
                 and the product C

                  A.vs.B
                 is called a contrast
                  
                . The numbers c

                  j
                 in a contrast vector satisfy the constraint [image: 
$$\displaystyle\begin{array}{rcl} \sum _{j}c_{j} = 0& &{}\end{array}$$
]

 (6.18)

 Under the null hypothesis that [image: 
$$\mu _{1} =\mu _{2} =\ldots =\mu _{5}$$
], we have [image: 
$$\displaystyle\begin{array}{rcl} E(C_{\mathtt{A.vs.B}}) = E{\biggl (\sum _{j}c_{j}\mu _{j}\biggr )} = 0& & {}\\ \end{array}$$
]


 Under both the null and alternative hypotheses, assuming that all [image: 
$$\sigma _{j}^{2}$$
] are identical and equal to σ
2, we see that [image: 
$$\displaystyle\begin{array}{rcl} \mathop{\mbox{ var}}(C_{\mathtt{A.vs.B}}) = \frac{\sigma ^{2}} {n}\sum c_{j}^{2}& & {}\\ \end{array}$$
]


 A similar argument shows that each of the columns listed under

contrasts(turkey$diet) in Table 6.8 can be used to construct the correspondingly named row of the ANOVA table (Exercise 6.13).
This set of contrasts has an additional property. They are orthogonal. This means that the dot product of each column with any of the others is 0, for example, [image: 
$$\displaystyle\begin{array}{rcl} c_{\mathtt{A.vs.B}} \cdot c_{\mbox{ amount}} = (\begin{array}{rrrrr} 0&\frac{1} {2} & \frac{1} {2} & -\frac{1} {2} & -\frac{1} {2} \end{array} ) \cdot (\begin{array}{rrrrr} 0&\frac{1} {2} & -\frac{1} {2} & \frac{1} {2} & -\frac{1} {2} \end{array} ) = 0& &{}\end{array}$$
]

 (6.19)

 This implies that the covariance of the contrasts is zero, for example [image: 
$$\displaystyle{\mathop{\mbox{ cov}}(C_{\mathtt{A.vs.B}},C_{\mbox{ amount}}) = 0}$$
]


 that is, the contrasts are uncorrelated. As a consequence, the sum of sums of squares for each of the four contrasts in Table 6.8 is the same as the sum of squares for diet given by the [image: 
$$\mathsf{SS}_{\mathrm{treatment}}$$
] term in Equations (6.6) and (6.9).
The [image: 
$$\mathsf{SS}_{\mathrm{treatment}}$$
], and the sum of squares for each of the single degree-of-freedom contrasts comprising it, is independent of the [image: 
$$\mathsf{MS}_{\mathrm{residual}} = s_{\mbox{ Resid}}^{2}$$
]. The F-tests
                  
                 for each of the orthogonal contrasts are not independent of each other because all use the same denominator term.
In general, the n

                  j
                 are not required to be identical. The general statement for a contrast vector [image: 
$$\displaystyle\begin{array}{rcl} (c_{j}) = (c_{1},\ldots,c_{J})& &{}\end{array}$$
]

 (6.20)

 is that the contrast [image: 
$$C =\sum c_{j}\bar{Y }_{j}$$
] has variance [image: 
$$\displaystyle\begin{array}{rcl} \mathop{\mbox{ var}}(C) =\sigma ^{2}\sum \frac{c_{j}^{2}} {n_{j}} & &{}\end{array}$$
]

 (6.21)




6.9.2 Scaling
The contrasts displayed here were scaled to make the sum of the positive values and the sum of the negative values each equal to 1. This scaling is consistent with the phrasing that a contrast is a comparison of the average response over several levels of a factor to the average response over several different levels of the factor. Any alternate scaling is equally valid and will give the same sum of squares.
6.9.2.1 Absolute-Sum-2 Scaling

                  
                    
                  
                
We recommend the absolute-sum-2 scaling where the sum of the absolute values of the coefficients equals 2, [image: 
$$\displaystyle\begin{array}{rcl} \sum _{j}\vert c_{j}\vert = 2& &{}\end{array}$$
]

 (6.22)

 Equivalently, the sum of the positive coefficients equals 1 and the sum of the negative coefficients also equals 1. The absolute-sum-2 scaling makes it easy to extend the mean–mean multiple comparisons plots to arbitrary sets of contrasts. See Section 7.​2.​3 for details on the mean–mean multiple comparisons plots.
                    
                  


6.9.2.2 Normalized Scaling

                  
                    
                  
                
The normalized scaling, with [image: 
$$c_{j}^{{\ast}} = c_{j}/\sqrt{\sum c_{j }^{2}}$$
], is frequently used because the corresponding dot product [image: 
$$\displaystyle\begin{array}{rcl} C_{\mathtt{A.vs.B}}^{{\ast}} &=& (\begin{array}{rrrrr} \bar{Y }_{\mbox{ control}} & \bar{Y }_{A1} & \bar{Y }_{A2} & \bar{Y }_{B1} & \bar{Y }_{B2} \end{array} ) \cdot (\begin{array}{rrrrr} 0&\frac{1} {2} & \frac{1} {2} & -\frac{1} {2} & -\frac{1} {2} \end{array} ) \\  &=& (\bar{Y }_{j}) \cdot (c_{j}^{{\ast}}) {}\end{array}$$
]

 (6.23)

 
                    
                   is simply related to the A.vs.B sum of squares by [image: 
$$\displaystyle\begin{array}{rcl} \mathsf{SS}_{\mathrm{\mathtt{A.vs.B}}} = n(C_{\mathtt{A.vs.B}}^{{\ast}})^{2} = 22.815.& &{}\end{array}$$
]

 (6.24)

 Under the null hypothesis [image: 
$$\displaystyle\begin{array}{rcl} \mathop{\mbox{ var}}(C_{\mathtt{A.vs.B}}^{{\ast}}) =\sigma _{ \mbox{ Resid}}^{2}& &{}\end{array}$$
]

 (6.25)

 and under the alternate hypothesis [image: 
$$\displaystyle\begin{array}{rcl} \mathop{\mbox{ var}}(C_{\mathtt{A.vs.B}}^{{\ast}}) \gg \sigma _{\mbox{ Resid}}^{2}& &{}\end{array}$$
]

 (6.26)

 This provides the justification for the F-test.
In this example, the normalized scaling in Equation (6.23) is identical to the scaling in Equation (6.16) that makes the positive and negative sums each equal to 1. That is not always the case. The control.vs.treatment contrast with positive and negative values each summing to 1 as displayed in Table 6.8 is [image: 
$$\displaystyle\begin{array}{rcl} (1 -.25 -.25 -.25 -.25)& & {}\\ \end{array}$$
]


 The samecontrol.vs.treatment contrast with normalized scaling is [image: 
$$\displaystyle\begin{array}{rcl} \sqrt{.8}\:(1 -.25 -.25 -.25 -.25)& & {}\\ \end{array}$$
]





6.9.2.3 Integer Scaling

                  
                    
                  
                
Another frequently used scaling makes each individual value c

                    j
                   an integer. For the examples shown here, this gives [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{l rrrrr} \mathtt{A.vs.B} &(0& 1& 1& - 1& - 1) \\ \mathtt{control.vs.treatment}&(4& - 1& - 1& - 1& - 1)\end{array} & & {}\\ \end{array}$$
]


 Because this scaling eases hand arithmetic, it was very important prior to digital computers.
                    
                   This scaling is included in tables of orthogonal contrasts in many texts, see for example, Cochran and Cox (1957), Table 3.​4, page 64.



6.10 Tests of Homogeneity of Variance

              
                
                
              
            
In Sections 5.​3, 5.4.4, 6.2, and 6.6 we mention that the assumption that several populations have a common variance can be checked via a statistical test. Assuming there are a populations having variances [image: 
$$\sigma _{i}^{2}$$
] for i = 1, 2, …, a, the test is of the form [image: 
$$\displaystyle\begin{array}{rcl} && \quad H_{0}: \sigma _{1}^{2} =\sigma _{ 2}^{2} =\ldots =\sigma _{ a}^{2} \\ && \mbox{ vs} \\ && \quad H_{1}: \mbox{ not all the $\sigma _{i}^{2}$ are identical to each other.}{}\end{array}$$
]

 (6.27)



For this purpose, Brown and Forsyth (1974) present the recommended test. Intensive simulation investigations, including Conover et al. (1981), have found that this test performs favorably compared with all competitors in terms of Type I error control and power for a wide variety of departures from Normality.
The Brown and Forsyth test statistic is the F statistic resulting from an ordinary one-way analysis of variance on the absolute deviations from the median [image: 
$$\displaystyle\begin{array}{rcl} Z_{ij} = \vert Y _{ij} -\mathop{Y }\limits ^{\mbox{ $\boldsymbol{ \perp }$}}_{i}\vert & &{}\end{array}$$
]

 (6.28)

 where Y
                ⊥
              

                i
               is the median of [image: 
$$\{Y _{i1},\ldots,Y _{i,n_{i}}\}$$
].
The test is available as the hovBF function in the HH package with the form [image: 
$$\displaystyle\begin{array}{rcl} \mathtt{hovBF(y} \tilde{\mathtt{A}}  ) \end{array}$$
]


 where A is a factor. The plot illustrating the test is available as the hovplotBF function in the HH package.
We continue the data(catalystm) example of Sections 6.1 and 6.6. Our impression from Figure 6.1 is that catalyst 3 has a larger variance than the other three catalysts. We formally test this possibility with the Brown–Forsyth test
                
              , illustrated in Figure 6.6. Because of the large p-value,.74, we are unable to conclude that the variances of the concentrations are not identical.
                
                
              

                
              
[image: A77776_2_En_6_Fig6_HTML.gif]
Fig. 6.6Catalyst data: Brown–Forsyth test of the hypothesis of equal variances in Equation (6.27). The left panel shows the original data. The middle panel shows the deviations from the median for each group, hence is a recentering of the left panel. The right panel shows absolute deviations from the median. The central dots for each catalyst in the right panel, the MAD
                        
                       (median absolute deviation from the median), are approximately equal, reflecting the null distribution of the Brown–Forsyth test statistic. The Brown–Forsyth test shows F = . 42 with 3 and 12 df and p = . 74. Hence we do not reject this test’s null hypothesis. We conclude that the variances of the concentrations in the four catalyst groups are approximately equal.






              
                
                
              
              
                
              
            

6.11 Exercises

6.1. Till (1974), also cited in Hand et al. (1994), compared the salinity (in parts per 1000) for three distinct bodies of water in the Bimini Lagoon, Bahamas. The data are available as ata(salinity). Analyze the data under the assumption that the 3 bodies of water constitute a random sample from a large number of such bodies of water.

6.2. Milliken and Johnson (1984) report on an experiment to compare the rates of workers’ pulses during 20-second intervals while performing one of 6 particular physical tasks. Here 68 workers were randomly assigned to one of these tasks. The data are available as data(pulse). Investigate differences between the mean pulse rates associated with the various tasks.

6.3. Johnson and Leone (1967) provide data(operator). Five operators randomly selected from all company operators are each given four equal time slots in which their production is measured. Perform an appropriate analysis. Does it appear as if the population of operators has homogeneous productivity?

6.4. Anionwu et al. (1981), also reprinted in Hand et al. (1994), examine whether hemoglobin levels for patients with sickle cell anemia differ across three particular types of sickle cell disease. Here type is a fixed factor and its three qualitative levels are “HB SS”, “HB S/thalassaemia”, and “HB SC”. The data are available as data(sickle). Perform an analysis of variance and multiple comparison with the Tukey procedure to compare the patients’ hemoglobin for the three types.

6.5. Cameron and Pauling (1978), also reprinted in Hand et al. (1994), compare the survival times in days of persons treated with supplemental ascorbate following a diagnosis of cancer at five organ sites: Stomach, Bronchus, Colon, Ovary, and Breast. The dataset is available as data(patient).

              a.Perform a log transformation of the response days for each of the five levels of the factor site in order to improve conformity with the required assumption that the data be approximately normally distributed with equal within-site variance. Produce and compare boxplots to compare the response before and after the transformation.

 

b.Perform an analysis to assess differences in mean survival between the different cancer sites.

 



            

6.6. NIST (2002) reports the result of an experiment comparing the absorbed energy produced by each of four machines. The machines are labeled Tinius1, Tinius2, Satec, and Tokyo. The data are available as data(notch). Assuming that these were the only machines of interest, compare the responses on the four machines and use the Tukey procedure to assess significant differences among them.

6.7. An experiment was designed to examine the effect of storage temperature on the potency of an antibiotic. Fifteen antibiotic samples were obtained and three samples were stored at each of the five indicated temperatures (degrees F). The potencies of each sample were checked after 30 days. The dataset, taken from Peterson (1985), are available as data(potency).
a.Perform an analysis of variance to confirm that potency changes with storage temperature.

 

b.Set up two orthogonal contrasts to assess the nature of the dependence of potency on temperature. You may use the contrast (−2, −1, 0, 1, 2) to assess linearity and the contrast (2, −1, −2, −1, 2) to assess whether there is a quadratic response. (Further discussion of polynomial contrasts is in Section 10.​4.)

 

c.Test whether each of the contrasts you proposed in part b) is significantly different from 0.

 

d.Report your recommendations for the temperature at which this antibiotic should be stored.

 





6.8. Anderson and McLean (1974) report the results of an experiment to compare the disintegration times in seconds of four types of pharmaceutical tablets labeled A, B, C, D. These were the only tablet types of interest. The data are available as data(tablet1). Perform an analysis of variance to see if the tablets have equivalent disintegration times. The time to disintegration determines when the medication begins to work. Shorter times mean the tablet will begin disintegrating in the stomach. Longer times mean the table will disintegrate in the small intestines where it is more easily absorbed and less susceptible to degradation from the digestive enzymes. Assuming that longer times to disintegration are desirable, use the Tukey procedure to prepare a recommendation to the tablet manufacturer.

6.9. The dataset data(blood) contain the results of an experiment reported by Box et al. (1978) to compare the coagulation times in seconds of blood drawn from animals fed four different diets labeled A, B, C, D. Assuming that these were the only diets of interest, set up an analysis of variance to compare the effects of the diets on coagulation. Use the Tukey procedure to investigate whether any pairs of the diets can be considered to provide essentially equivalent coagulation times.

6.10. Reconsider data(draft70mn) from Data Archive (1997), previously visited in Exercises 4.1 and 3.25. Assuming that the ranks were randomly assigned to the dates of the year, construct a one-way analysis of variance with the ranks as response and the months as groups. Isolate the linear effect of month.

6.11. Westfall and Rom (1990) considered the nonbirth litter weights of mice whose mothers were previously subjected to one of three treatments or a control, with the objectives of relating weight differences to treatment dosages. (It is conjectured that “nonbirth weight” refers to weight at some definite time following birth.) The data are available as data(mice). Perform a Brown–Forsyth homogeneity of variance test on these data and carefully state your conclusions.

6.12. Derive Equation (6.15) from Equation (5.​13) by substitution and simplification as outlined in Section 6.9.

6.13. Verify that the four single degree-of-freedom lines in the ANOVA table in Table 6.8 can be obtained from the contrasts in the contrasts(turkey$dist) section of Table 6.8.

6.14. 
                
               Calculate the EMS values in Table 6.4. MS

                Tr
               is defined in Table 6.2. Define [image: 
$$y_{ij} =\mu +\alpha _{i} +\epsilon _{ij}$$
] from Equation (6.1) and substitute into the formula for MS

                Tr
               to get the EMS. When α

                i
               is fixed [image: 
$$\left (\sum _{i}\alpha _{i} = 0\right )$$
], then [image: 
$$E\left ((\alpha _{i}-\bar{\alpha })^{2}\right )$$
] is σ
2 plus a function of the α

                i
               values. When α

                i
               is random [image: 
$$\left (\alpha _{i} \sim N(0,\sigma _{A}^{2})\right )$$
], then [image: 
$$E\left ((\alpha _{i}-\bar{\alpha })^{2}\right )$$
] is σ
2 plus a constant times [image: 
$$\sigma _{A}^{2}$$
].

6.A Appendix: Computation for the Analysis of Variance
Model formulas are expressed in R with a symbolic notation which is a simplification of the more extended traditional notation [image: 
$$\displaystyle\begin{array}{rcl} y_{ij} =\mu +\alpha _{i} +\epsilon _{ij}\quad \quad \mbox{ for}\quad i = 1,\ldots,a\quad \mbox{ and}\quad j = 1,\ldots,n_{i}\qquad \qquad \qquad (6.1)& & {}\\ \end{array}$$
]


 The intercept term μ and the error term ε

                  ij
                 are usually assumed. The existence of the subscripts is implied and the actual values are specified by the data values.
With R we will be using aov for the calculations and anova and related commands for the display of the results. aov can be used with equal or unequal cell sizes n

                  i
                . Model (6.1) is denoted in R by the formula

                   Y ~ A 
              
The operator ~ is read as “is modeled by”.
Two different algorithms are used to calculate the analysis of variance for data with one factor: sums of squared differences of cell means and regression on dummy variables. Both give identical results.
The intuition of the analysis is most easily developed with the sums of squared differences algorithm. We began there in Equation 6.6 and the definitions in the notes to Table 6.2. We show in Table 6.10 the partitioning of the observed values for the response variable concent in catalystm example into columns associated with the terms in the model. The sum of each row reproduces the response variable. This is called the linear identity.
                  
                 The sum of the squares in each column is the ANOVA table. This is called the quadratic identity.
                  
                 In the notation of Table 6.2 the numbers in the (Intercept) column are [image: 
$$\bar{\bar{y}}$$
], the numbers in the catalyst column are the treatment effects [image: 
$$\bar{y}_{i} -\bar{\bar{ y}}$$
], and the numbers in the Residuals column are [image: 
$$y_{ij} -\bar{ y}_{i}$$
]. The numbers in the result of the apply statement are the sums of squares: [image: 
$$\sum _{ij}\bar{\bar{y}}^{2}$$
], [image: 
$$\mathsf{SS}_{\mathrm{Tr}} =\sum _{ i=1}^{a}n_{i}(\bar{y}_{i} -\bar{\bar{ y}})^{2}$$
], [image: 
$$\mathsf{SS}_{\mathrm{Res}} =\sum _{ i=1}^{a}\sum _{j=1}^{n_{i}}(y_{ij} -\bar{y}_{i})^{2}$$
], and [image: 
$$\sum _{ij}y_{ij}^{2}$$
]. We come back to the linear and quadratic identities in Table 8.​6
Table 6.10Linear and quadratic identities for the one way Analysis of Variance.
                          
                        

                          
                         The column labeled Sum is the sum of the three columns of the projection matrix onto the space of the Grand Mean (labeled (Intercept)), the effects due to the factor catalyst, and the Residuals. The Sum column is identical to the observed response variable concent. The sums of squares of each column of the projection matrix are the numbers in the similarly labeled row in the “Sum of Squares” column of the ANOVA table.


[image: A77776_2_En_6_Figi_HTML.gif]



The regression formulation is easier to work with and generalizes better. Once we have developed our intuition we will usually work with the regression formulation. The discussion of contrasts in Section 6.9 leads in to the regression formulation in Chapter 10.
                  
                 For the moment, In Table 6.11 we step forward into the notation of Chapter 10 and express the catalystm example in regression notation.
Table 6.11The aov by the factor catalyst in Table 6.10 is identical to the lm shown here by the three dummy variables generated from the catalyst factor. The degrees of freedom (1+1+1=3) and the Sums of Squares (8.8+2.7+741.1=85.7) are both the same.


[image: A77776_2_En_6_Figj_HTML.gif]




6.B Object Oriented Programming

                
                  
                
                
                  
                
              
Many of R’s functions are designed to be sensitive to the class of object to which they are applied. Figure 6.7 shows that the same syntax plot(x) produces a different form of plot depending on the class of the argument x.[image: A77776_2_En_6_Fig7_HTML.gif]
Fig. 6.7The three columns of the data.frame tmp have three different classes. The plot function is sensitive to the class of its argument and draws a different style plot for each of these classes. The integer object (more generally numeric object) is plotted as a scatterplot with an index on the horizontal axis. The factor object is plotted as a barchart with the level names on the horizontal axis. The time series object is plotted as a line graph with the time value on the horizontal axis.






                
                  
                
                
                  
                
              
The result of a function call (aov for example) is an object with a class ("aov"). Accessor functions such as summary or plot are sensitive to the class of their argument and produce an appropriate form of output as shown in Figures 6.7 and 6.8.[image: A77776_2_En_6_Fig8_HTML.gif]
Fig. 6.8The two accessor functions summary and plot are sensitive to the class of their argument and produce a form of output appropriate to the argument, in this case an "aov" object. Note that "aov" objects are a special case of "lm" objects. The summary function for an "aov" object produces an ANOVA table. The plot function for an "lm" object is a set of four diagnostic plots of the residuals from the fitted model. The contents of the panels of the plot are discussed in Sections 8.​4 and 11.​3.​7
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In Exercise 3.13 we discover that the probability of simultaneously making three correct inferences, when each of the three individually has P(correct inference) = 1 −α = 0. 95, is only [image: 
$$(1-\alpha )^{3} =.95^{3} = 0.857$$
]. Alternatively, the probability of making at least one incorrect inference is 1 −−0. 857 = 0. 143 ≈ 3α. In general, the more simultaneous inferences we make at one time, the smaller the probability that all are correct. In this chapter we learn how to control the probability that all inferences are simultaneously correct. We usually phrase the goal as controlling the probability of making at least one incorrect inference.
We consider all inferences in a related family

              
             of inferences. Such a family is typically a natural and coherent collection; for example, all inferences resulting from a single experiment. The inferences can be individual tests of hypotheses or confidence intervals. In the context of a family of hypothesis tests, if we control the Type I error probability for each test at level α, the probability of committing at least one Type I error in the family will be much larger than α. For example, if the tests are independent and α = . 05, then the probability of at least one Type I error is 1 − (1 −. 05)6 ≈ . 26, which seems an unacceptably large error threshold. The way to control the probability of at least one Type I error in the family is to choose a smaller α for each individual test. For example, with a single two-sided test with α = . 05 from a standard normal the critical value is 1.96. The intention of all multiple comparison procedures is to provide a larger critical value than the default value.
A way to avoid such errors when conducting many related inferences simultaneously is to employ a multiple comparison procedure. Such a procedure for simultaneous hypothesis testing may seek to (strongly) control the familywise
              
             error rate (FWE), defined as P(reject at least one true hypothesis under any configuration of true and false hypotheses). A procedure for simultaneous confidence intervals should control the probability that at least one member of the family of confidence intervals does not contain the parameter being estimated by the interval. When a multiple comparison procedure is used, it is said that the analyst is controlling for multiplicity

              
            .
              
            

In order to exert FWE
              
             control over a family of related hypothesis tests, it is necessary to have a reduced probability of rejecting any particular null hypothesis in the family. As explained in Section 3.​7, reducing the probability of rejecting particular hypotheses results in an increased probability of retaining them, and therefore reduced power for tests of these hypotheses. This implies that, as compared with testing hypotheses in isolation from one another, a multiple comparison procedure has a diminished ability to reject false null hypotheses. In other words, a test of a particular hypothesis using a multiple comparison procedure will be less powerful than the test of the same hypothesis in isolation. In deciding whether to use a multiple comparison procedure, the protection against the possibility of an excessive number of incorrect hypothesis rejections must be weighted against this loss of power
              
            . An analogous statement holds for simultaneous versus isolated confidence intervals.
In general, the choice of multiple comparison procedure to be used depends on the structure of the family of related inferences and the nature of the collection of statistics from which the confidence intervals or tests will be calculated.
Section 7.1 summarizes the most frequently used multiple comparisons procedures. Section 7.2 presents a graphical procedure for looking at the results of the multiple comparisons procedures.
7.1 Multiple Comparison Procedures
7.1.1 Bonferroni Method

                
                  
                
              
A very general way to control the FWE is based on the Bonferroni
                  
                 inequality, [image: 
$$P(\bigcup E_{i}) \leq \sum _{i}P(E_{i})$$
], where the E

                  i
                 are arbitrary events. If the family consists of m related tests, conducting each test at level [image: 
$$\frac{\alpha }{m}$$
] ensures that FWE ≤ α. If the family consists of m related confidence intervals, maintaining confidence [image: 
$$100(1 - \frac{\alpha } {m})\%$$
] for each interval will ensure that the overall confidence of all m intervals will be at least 100(1 −α)%. The Bonferroni method should be considered for use when the family of related inferences is unstructured (e.g., not like the structured families required for the procedures discussed in Sections 7.1.2–7.1.4), or when the statistics used for inference about each family member have nonidentical probability distributions.
The Bonferroni inequality
                  
                 is very blunt in the sense that its right side is typically much larger than its left. One reason for this is that it does not seek to take into account information about the intersections of the events E

                  i
                . As a result, the Bonferroni approach is very conservative
                  
                 in the sense of typically guaranteeing an FWE substantially less than its nominal value of α, and the extent of this conservativeness increases with m. The value of this approach is that it is very generally applicable, for example, when the pivotal statistics associated with the m inferences have nonidentical probability distributions. Hochberg (1988) provides an easy-to-understand improvement to the Bonferroni approach for hypothesis testing that tends to reject more false null hypotheses than Bonferroni. Hochberg’s
                  
                 procedure has been proven to be applicable to a wide variety of testing situations; see Sarkar (1998).
                  
                


7.1.2 Tukey Procedure for All Pairwise Comparisons
Often a family of inferences has a special structure that allows us to use available information about the joint distributions of the pivotal statistics, thus enabling the use of a less conservative approach than Bonferroni. An example of this, discussed in Section 6.​3, is the family consisting of all [image: 
$$m ={ k\choose 2}$$
] comparisons among all pairs of means of k populations. For this family, Tukey’s Studentized range test
                  
                 is usually recommended.

7.1.3 The Dunnett Procedure for Comparing One Mean with All Others
The Dunnett procedure
                  
                 is used when the family of inferences of interest is the comparisons of the mean of one designated population with each of the means of the remaining populations, all populations being at least approximately normal with approximately the same variance. Often in practice the designated population is a control and the others are active treatments. The Dunnett procedure uses the percentiles of a multivariate t distribution rather than a univariate t distribution discussed in Section 5.​4.​3

For purposes of illustration of the Dunnett procedure, we use weightloss data. A random sample of 50 men who were matched for pounds overweight was randomly separated into 5 equal groups. Each group was given exactly one of the weight loss agents A, B, C, D, or E. After a fixed period of time, each man’s weight loss was recorded. The data, taken from Ott (1993), are accessed as data(weightloss) and shown in Figure 7.1.
[image: A77776_2_En_7_Fig1_HTML.gif]
Fig. 7.1Weightloss data: Boxplots of weight loss for each group.





The F-statistic tests the null hypothesis that the five groups have identical mean weight loss vs the alternative that the groups do not have identical mean weight loss. The small p-value from the F test in the basic ANOVA in Table 7.1 suggests that the agents have differing impacts on weight loss.
Table 7.1Weightloss ANOVA


[image: A77776_2_En_7_Figa_HTML.gif]



When we regard agent D as the control, we seek to investigate whether any of the other four agents appear to promote significantly greater weight loss than agent D. From Figure 7.1 we see that the five populations are approximately normal with approximately the same variance. Therefore, we may proceed with the Dunnett procedure. Since we are investigating whether the other agents improve on D, we display infinite upper one-sided confidence intervals against D in Table 7.2 and Figures 7.2 and 7.3.[image: A77776_2_En_7_Fig2_HTML.gif]
Fig. 7.2Weightloss data: Standard display of one-sided multiple comparisons using the Dunnett method against the control treatment D.




[image: A77776_2_En_7_Fig3_HTML.gif]
Fig. 7.3Weightloss data: Mean–mean display of one-sided multiple comparisons using the Dunnett method against the control treatment D. The Tiebreaker panel is needed in this example because the E-D and A-D contrasts are at almost the same height in the top panel and are therefore overprinted. The similar heights for these two contrasts follow from the similar means for the E and A levels of the loss factor. Please see the discussion of the mean–mean display in Section 7.2.




[image: A77776_2_En_7_Fig4_HTML.gif]
Fig. 7.4Scheffé plot for turkey data. See also Table 7.4.




Table 7.2Weight loss using the Dunnett procedure.


[image: A77776_2_En_7_Figb_HTML.gif]



The (default) 95% confidence level in Table 7.2 applies simultaneously to all four confidence statements. The fact that all four confidence intervals lie entirely above zero suggests that D is significantly inferior to the other four weightloss agents.
Figure 7.3 is a mean–mean display of Dunnett’s multiple comparison procedure applied to the weightloss data. Tabular results are shown in Table 7.3. Figure 7.3 is analogous to Figure 6.​2 in Section 6.​3. The mean–mean display technique is discussed in detail in Section 7.2. In Figure 7.3, reflecting the results for upper one-sided Dunnett confidence intervals, all horizontal lines except that for comparing groups D and C fall to the right of zero. The line for C-D sits on the boundary with lower limit.009. Consistent with the boxplots in Figure 7.1, we conclude that all weightloss agents (except possibly C) provide superior mean weight loss to that provided by agent D.Table 7.3MMC calculations for weightloss using the Dunnett procedure.


[image: A77776_2_En_7_Figc_HTML.gif]



The Dunnett procedure is used in Exercises 7.7 and 12.4.
7.1.3.1 Computing Note—Specifying the Alternative Hypothesis

                  
                    
                  
                  
                    
                  
                  
                    
                  
                
There are at least three conventions for indicating the alternative hypothesis. Be very clear which you are using.
As shown here, the glht function in R uses the argument alternative to indicate the alternative hypothesis. glht uses alternative="greater" to indicate an infinite upper bound, alternative="less" for an infinite lower bound, and defaults to alternative="two-sided".
The S-Plus function multicomp uses the argument bounds="lower" to indicate a finite lower bound, implying an infinite upper bound. multicomp uses bounds="upper" for a finite upper bound, implying an infinite lower bound. For two-sided intervals multicomp defaults to bounds="both".

SAS PROC ANOVA specifies the alternative hypothesis by using a different option name for each. SAS uses the option dunnettu, with the suffix “u” to indicate an infinite upper interval, the option dunnettl with the suffix “l” to indicate an infinite lower bound, and the option dunnett with no suffix for two-sided intervals.
                    
                  


                  
                    
                  
                

                  
                    
                  
                

                  
                    
                  
                  
                    
                  
                


7.1.4 Simultaneously Comparing All Possible Contrasts Scheffé and Extended Tukey
7.1.4.1 The Scheffé Procedure
In the context of comparing the means of a populations, the Scheffé multiple comparison procedure
                    
                   controls the familywise error rate over the infinite-sized family consisting of all possible contrasts [image: 
$$\sum _{j=1}^{a}c_{j}\,\mu _{j}$$
] involving the population means. The Scheffé procedure is therefore appropriate for exerting simultaneous error control over the set of four contrasts in our analysis of the turkey data data(turkey) from Section 6.​8 In exchange for maintaining familywise error control over so large a family, the Scheffé method gives rise to wide confidence limits and relatively unpowerful tests. Therefore, we recommend its use only in the narrowly defined situation of simultaneously inferring about mean contrasts more complex than a comparison of two means. The Scheffé procedure uses a percentile of an F distribution, derived as the distribution of the most significant standardized contrast among the sample means.
The confidence interval formula by the Scheffé procedure is [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ CI}\left (\sum _{j=1}^{a}c_{ j}\,\mu _{j}\right ) =\sum _{ j=1}^{a}c_{ j}\,\bar{y}_{j} \pm \sqrt{(a - 1)F_{.05,a-1,N-a}}\;s\sqrt{\sum _{j=1 }^{a }\frac{c_{j }^{2 }} {n_{j}}} & &{}\end{array}$$
]

 (7.1)

 This provides the set of 100(1 −α)% simultaneous confidence intervals for all possible contrasts among the population means. In this equation [image: 
$$N =\sum _{ j=1}^{a}n_{j}$$
].
For R glht, we must manually calculate the critical value with, for example in the turkey data,
scheffe.quantile <- sqrt(4*qf(.95, 4, 25))
The Scheffé test is one of the methods available in the S-Plus multicomp function and is one of the options for the MEANS statement in SAS PROC ANOVA.

7.1.4.2 Scheffé Intervals with the Turkey Data
Table 6.​8 provides F-tests of the hypotheses that the members of a basis set of four contrasts are zero. These four tests do not control for multiplicity.
                    
                   The finding in Table 6.​8 is that three of these contrasts differ significantly from zero. We do not declare the fourth contrast significantly different from zero because its p-value exceeds 0.05.
The Scheffé procedure allows us to make inferences about these same contrasts while controlling for multiplicity. The confidence interval and testing results are shown in Table 7.4 and in Figure 7.4. An additional advantage of the Scheffé analysis is that the results specify the direction of contrasts’ significant difference from zero. For example, in Table 7.4, the fact that the confidence interval on A.vs.B lies entirely below zero implies that, on average, the mean weight gain from diet B exceeds that from diet A. The F-statistics in Table 6.​8 are essentially squared t-statistics, and this obscures information on directionality unless the definitions of the contrasts being tested are carefully examined alongside the test results.Table 7.4Scheffé Test for Turkey Data Contrasts. See also Figure 7.4.


[image: A77776_2_En_7_Figd_HTML.gif]



We may use the results of the Scheffé analysis to assess the extent to which, if any, of the Scheffé simultaneous confidence intervals cause us to modify our previous conclusions about the contrasts. When doing so it is important to observe the contrast codings
                    
                  , that is, the numerical values defining the contrast. Observing that the first three of the four Scheffé intervals exclude 0 while the last one includes 0, the Scheffé results reinforce our original impressions from the nonsimultaneous F-tests of these contrasts in Table 6.​8.
In this example, examination of the Scheffé results did not cause us to revise our earlier results ignoring multiplicity
                    
                  . In general, use of a multiple comparison procedure is an appropriately conservative approach that may not declare a difference found by nonsimultaneous tests or confidence intervals.
Figure 7.5 is a graphic presentation of the Scheffé procedure applied to comparisons of all pairs of means. We use Scheffé intervals here because these pairwise comparisons are part of a larger family of contrasts that includes those displayed in Figure 7.6. There are [image: 
$$10 ={ 5\choose 2}$$
] pairwise differences among the means of the 5 diet combinations studied. Figure 7.5 is a mean–mean display of Scheffé simultaneous confidence intervals on these mean differences.[image: A77776_2_En_7_Fig5_HTML.gif]
Fig. 7.5MMC: mca plot for Turkey data. Overprinting of contrasts at the same height in the MMC panel are separated in the Tiebreaker panel by a standard multiple comparisons plot ordered to match the order of the MMC plot.




[image: A77776_2_En_7_Fig6_HTML.gif]
Fig. 7.6MMC: Orthogonal basis set of contrasts for Turkey data. Overprinting of the confidence lines (for contrasts A.vs.B-, amount-, and A.vs.B.by.amount, in this example) and their labels in the right-axis labels of the MMC panel is a consequence of almost identical values for the group means in the left-axis labels (A2 and B1). The overprinting is resolved in the Tiebreaker panel, a standard multiple comparisons plot (without information on the group means) ordered to match the order of the MMC plot. The contrasts in these panels are the same contrasts that appear in Figure 7.4, but negative estimates there have been reversed here. During the reversal a “-” was appended to contrast names for which it was not possible to figure out how to reverse the contrast name.





Figures 7.5 and 7.6 contain overprinting of the confidence lines and labels for several of their comparisons of level means. The overprinting in Figure 7.5 is due to almost identical mean values for levels B1 and A2. The overprinting in Figure 7.6 is a consequence of the same almost identical mean values, now reflected as identical heights for the contrasts because the interaction of the A.vs.B and the amount comparisons is not significant. In situations with such overprinting, we augment the mean–mean display with a traditional display of these same confidence intervals. This Tiebreaker plot lists the contrasts in the same vertical order as in the mean–mean plot. The conclusions here, based on the fact that 9 of the 10 intervals lie entirely above zero, are 	For both amount 1 and 2, the mean weight gain from additive B is significantly greater than the mean weight gain from additive A.

	For both additive A or B, the mean weight gain from amount 2 significantly exceeds the mean weight gain from amount 1.

	The weight gain from the control diet is significantly below that from any of the other 4 diets.





We graphically summarize these conclusions with the orthogonal contrasts in Figure 7.6. The 3 contrasts that differ significantly from zero do not cross the vertical d = 0 axis. The nonsignificant contrast does cross the d = 0 axis.
                    
                  

Table 7.4 and Figure 7.4 show three of the user-defined contrasts to have negative estimates. Figure 7.6 shows those contrasts to be reversed to have positive contrasts. We believe that multiple comparisons are most easily interpreted when the means are sequenced in numerical order (not lexicographic order), and consequently that all displayed contrasts should compare the larger value to the smaller value. That is, all displayed contrast values should be positive. Such reversal of the direction of a contrast creates no problem when assessing how contrasts relate to zero so long as the reversal is noted. We note the reversal by appending a “−” to the names of the reversed contrasts.
                    
                  


                  
                    
                  
                  
                    
                  
                

7.1.4.3 The Extended Tukey Procedure
The Tukey procedure
                    
                   can be extended to cover the family of all possible contrasts when the samples are of the same size n. Generalizing Equation (6.​11) to any contrast vector (c

                    j
                  ) in the equal n case, we get [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ CI}\left (\sum _{j=1}^{a}c_{ j}\,\mu _{j}\right ) =\sum _{ j=1}^{a}c_{ j}\,\bar{y}_{j} \pm { q_{\alpha } \over 2}{ s \over \sqrt{n}}\sum _{j=1}^{a}\vert c_{ j}\vert & &{}\end{array}$$
]

 (7.2)

 as the set of 100(1 −α)% simultaneous confidence intervals for all possible contrasts among the population means.
The q

                    α
                   here is the same value used in Equation (6.​11). Except for very simple contrasts, such as between pairs of means, these generalized Tukey intervals will be even wider than the analogous Scheffé intervals, Hochberg and Tamhane (1987). The generalized Tukey intervals (7.2) may be considered for use when interest lies in a family consisting of the union of all pairwise contrasts with a small number of more complicated contrasts.
As discussed in Hochberg and Tamhane (1987), the family encompassed by the generalized Tukey intervals also includes the set of individual intervals on each population mean, [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ CI}(\mu _{j}) = \bar{y}_{j} \pm q_{\alpha }{ s \over \sqrt{n_{j}}}& &{}\end{array}$$
]

 (7.3)

 These intervals are illustrated for the artificial data in Figure 7.11.
                    
                  




7.2 The Mean–Mean Multiple Comparisons Display (MMC Plot)

              
                
              
              
                
                
              
            
7.2.1 Difficulties with Standard Displays
The conclusions from the application of the Tukey procedure to the catalyst data are not well conveyed by the standard tabular and graphical output shown in Table 7.5 and Figure 7.7. In both displays, the magnitudes of the sample means themselves are not shown. These displays are therefore not capable of depicting the relative distances between adjacent sorted sample means. Indeed, the standard display ignores the sample means entirely and instead sorts the contrasts alphabetically. Compare Table 7.5 to the $mca section of Table 6.​3, and Figure 7.7 to the bottom panel of Figure 6.​2.[image: A77776_2_En_7_Fig7_HTML.gif]
Fig. 7.7All Pairwise Comparisons of Catalyst Means. In this standard display, the group means are not displayed. The contrasts are sorted alphabetically. Compare this figure to the bottom panel of Figure 6.​2 where the contrasts are sorted by the values of the means being compared.




Table 7.5Tukey Multiple Comparisons for Catalyst Data—Standard Display (not showing means)


[image: A77776_2_En_7_Fige_HTML.gif]



Another standard display of results of a Tukey test, shown here in Figure 7.8, is often used to communicate results when sample sizes are equal. The sample means 
                  
                
[image: A77776_2_En_7_Fig8_HTML.gif]
Fig. 7.8This example is constructed from the cld function in the multcomp package. The function call plot(cld(catalystm.glht)) draws the boxplots and the letter values. We manually (by supplementary code) placed the numerical values of the means and the underlines connecting the letters.





are listed in ascending magnitude. Straight-line segments are used to indicate significance according to the following rules. If two sample means are not covered by the same line segment, the corresponding population means are declared significantly different. If two sample means are covered by a common line segment, the corresponding population means are declared not significantly different.
With this procedure it is difficult to depict correctly the relative distances between adjacent sorted sample means because the table is constrained by the limited resolution of a fixed-width typewriter font rather than the high resolution of a graphical display.
                  
                

Further, the procedure cannot be used when sample sizes are unequal. Table 7.6 and Figure 7.9 illustrate this limitation using artificial data:[image: A77776_2_En_7_Fig9_HTML.gif]
Fig. 7.9Underlining of means that are not significantly different. Both the a and b lines, which are valid for the comparison of catalysts A and D (in this example based on the low precision test for small sample sizes), mask the significant difference between catalysts B and C (based on a much higher precision test for much larger sample sizes).




	Group
	N
	Mean

	A
	5
	2.0

	B
	100
	2.1

	C
	100
	2.8

	D
	5
	3.0




Table 7.6Simultaneous confidence intervals on all pairs of mean differences. The means of samples B and C both lie between the means of samples A and D. This example is based on highly unbalanced artificial data. Sample sizes were 100 from populations B and C and 5 from populations A and D. The Tukey procedure finds a significant difference between the means of populations B and C but no significant difference between the means of populations A and D.


[image: A77776_2_En_7_Figf_HTML.gif]



The Tukey procedure shown in Table 7.6 uncovers a significant difference between the means of populations B and C, for which the sample sizes are large, but no significant difference between the means of populations A and D, for which the sample sizes are small. With the lines-type graph in Figure 7.9 the nonsignificant difference between the means of A and D requires that a common line covers the range from 2.0 to 3.0, including the location of the means of groups B and C. The presence of this line contradicts the finding of a significant difference between the means of groups B and C that is seen in the standard displays in Figures 7.10 and 7.11 and in the mean–mean display (described in Section 7.2.2) in Figure 7.12.[image: A77776_2_En_7_Fig10_HTML.gif]
Fig. 7.10Simultaneous confidence intervals on all pairs of mean differences. The means of samples B and C both lie between the means of samples A and D. Sample sizes were 100 from populations B and C and 5 from populations A and D. The Tukey procedure finds a significant difference between the means of populations B and C but no significant difference between the means of populations A and D. The short confidence interval for the C-A contrast reflects the higher precision of the contrasts based on the larger sample sizes.




[image: A77776_2_En_7_Fig11_HTML.gif]
Fig. 7.11The means of samples B and C both lie between the means of samples A and D. Sample sizes were 100 from populations B and C and 5 from populations A and D. The Tukey procedure finds a significant difference between the means of populations B and C but no significant difference between the means of populations A and D. The underlying formula for these intervals appears in Equation (7.3).




[image: A77776_2_En_7_Fig12_HTML.gif]
Fig. 7.12A mean–mean display (MMC plot described in Section 7.2.2) of simultaneous confidences on the means from populations A, B, C, D in the artificial data. Each confidence interval on a mean difference is represented by a horizontal line. If and only if an horizontal line crosses the vertical “contrast value = 0” line, the corresponding population mean difference is declared nonsignificant. In this display we use dashed black lines for nonsignificant comparisons and solid red lines for significant comparisons. This display shows the relative differences between sample means and allows for unequal sample sizes. The short confidence interval for the C-A contrast reflects the higher precision of the contrasts based on the larger sample sizes.






                
                  
                
              

                
                  
                
              

7.2.2 Hsu and Peruggia’s Mean–Mean Scatterplot
Hsu and Peruggia (1994) address the deficiencies in standard displays of multiple comparison procedures with their
                  
                

                  
                 innovative graphical display of the Tukey procedure for all pairwise comparisons. In Section 7.2.2.1 we show the details of the construction of the MMC plot displayed in Figure 7.13. We postpone interpretation of Figure 7.13 until Section 7.2.2.2.[image: A77776_2_En_7_Fig13_HTML.gif]
Fig. 7.13Multiple comparisons of all pairwise comparisons of catalyst means with the MMC display. This is a repeat of the top panel of Figure 6.​2.





In Section 7.2.3 we extend their display to show other multiple comparison procedures for arbitrary sets of contrasts. Software for our extension is included in the HH package as function mmc and its related functions.

                
                  
                
              

                
                  
                
              
7.2.2.1 Construction of the Mean–Mean Scatterplot

                  
                    
                    
                  
                
We begin with data-oriented orthogonal h- and v-axes in Figures 7.14 and 7.15 and then move to rotated difference (h − v) and mean (h + v)∕2 axes in Figure 7.16. The rotations by 45∘ introduce factors of [image: 
$$\sqrt{2}$$
] that are there to maintain the orthogonality of h and v in the rotated coordinates.
1.Draw a square plot in Figure 7.14 on (h, v)-axes. Define (d, m)-axes at ± 45∘.

 

2.Plot each [image: 
$$\bar{y}_{i}$$
] against [image: 
$$\bar{y}_{j}$$
].

 

3.Connect the points with [image: 
$$h =\bar{ y}_{i}$$
] and [image: 
$$v =\bar{ y}_{j}$$
] lines. The lines are labeled with the level names of the group means. We call this the isomeans grid.
                            
                           It is used as the background reference for the MMC plot.

 

4.Draw the 45∘ line h = v. Define the value d = h − v, where the letter d indicates differences between group means. The line we just drew corresponds to d = 0. We will call this line the m-axis, where the name m = (h + v)∕2 indicates the group means.

 

5.Place tick marks on the m-axis at the points [image: 
$$(\bar{y}_{i},\,\bar{y}_{i})$$
].

 

6.Draw the − 45∘ line through the origin (h = 0, v = 0). The line we just drew corresponds to m = 0. We will call this line the d-axis, where the name d indicates the differences.
                            
                          


 

7.Copy Figure 7.14 to Figure 7.15.

 

8.Draw another m-axis parallel to the d = 0 line. Drop a perpendicular from the [image: 
$$(\bar{y}_{A},\bar{y}_{A})$$
] intersection on the d = 0 line to the new m-axis. Place a tick at that point and label it with the [image: 
$$m =\bar{ y}_{A}$$
] value. Place similar tick marks at the heights [image: 
$$m =\bar{ y}_{i}$$
]. (The actual distances from the m = 0 line to the tick marks are [image: 
$$\bar{y}_{i}\sqrt{2}$$
].)

 

9.Draw another d-axis parallel to the line m = 0. We will place two sets of tick marks on the new d-axis: at the projections of the observed differences [image: 
$$(h,v) = (\bar{y}_{i},\mbox{ min}_{i}(\bar{y}_{i}))$$
], and at unit intervals on the difference scale. Drop a perpendicular from the [image: 
$$(\bar{y}_{A},\bar{y}_{D})$$
] intersection to the new d-axis. Place a tick at that point and label it with the level name A and the value [image: 
$$\bar{y}_{A} -\bar{ y}_{D}$$
]. Place similar ticks at the distances [image: 
$$\bar{y}_{i} -\bar{ y}_{D}$$
]. (The actual distances from the d = 0 line to the tick marks are [image: 
$$(\bar{y}_{i} -\bar{ y}_{D})/\sqrt{2}$$
].) Place ticks below the d-axis at the distances [image: 
$$(0,1,2,3,4,5,6)/\sqrt{2}$$
] and label them (0, 1, 2, 3, 4, 5, 6).

 

10.Rotate Figure 7.15 counterclockwise by 45∘ to get Figure 7.16.

 

11.Construct the confidence intervals. We show just one pairwise interval, the one centered on the point [image: 
$${\bigl (d =\bar{ y}_{B} -\bar{ y}_{D},\;m = (\bar{y}_{B} +\bar{ y}_{D})/2\bigr )}$$
]. The confidence interval line is parallel to the d-axis at a height equal to the average of the two observed means. The interval is on the d-scale and covers all points [image: 
$$(\bar{y}_{B} -\bar{ y}_{D}) \pm \hat{\sigma }\, q\sqrt{1/n_{B } + 1/n_{D}}$$
], where [image: 
$$\hat{\sigma }$$
] is the standard deviation from the ANOVA table and q is the critical value used for the comparison. In this example we use the critical value [image: 
$$q = q_{.05,4,12}/\sqrt{2} = 2.969141$$
] from the Studentized range distribution.

 

12.We show all [image: 
$${4\choose 2} = 6$$
] pairwise differences [image: 
$$\bar{y}_{i} -\bar{ y}_{j}$$
] with their confidence intervals in Figure 7.13.

                          
                            
                          
                        

                          [image: A77776_2_En_7_Fig14_HTML.gif]
Fig. 7.14Construction of mean–mean multiple comparisons plot for the catalyst data.
Data-oriented axes and isomeans grid, steps 1–6 in the discussion in Section 7.2.




                          [image: A77776_2_En_7_Fig15_HTML.gif]
Fig. 7.15Construction of mean–mean multiple comparisons plot for the catalyst data.
Data-oriented axes, steps 7–9 in the discussion in Section 7.2.




                          [image: A77776_2_En_7_Fig16_HTML.gif]
Fig. 7.16Construction of mean–mean multiple comparisons plot for the catalyst data.
Difference and mean-oriented axes. This figure shows steps 1–11 in the discussion in Section 7.2. This figure is essentially the same as Figure 7.15 with a single contrast and rotated 45∘ counterclockwise. This figure shows only one of the six pairwise contrasts. All six contrasts and the result of all 12 construction steps are shown in Figure 7.13.




                        

 




Figures 7.14, 7.15, and two additional intermediate figures were drawn with function HH:::mmc.explain, an unexported but accessible function in the HH package. Figure 7.16 is an ordinary MMC plot with an lmat matrix indicating exactly one contrast. The code for all figures is included in file HHscriptnames(7).

7.2.2.2 Interpretation of the Mean–Mean Scatterplot
We construct the background of Figures 7.16 and 7.13 by rotating Figure 7.15 counterclockwise by 45∘ and suppressing the h- and v-axes. The horizontal d-axis shows the values of the contrasts and the vertical m-axis shows the average values of the two means being contrasted.
In Figure 7.13, each mean pair [image: 
$$(\bar{y}_{i},\bar{y}_{j})$$
] is plotted on the now-diagonal (h, v)-axes and can also be identified with its (d, m)-coordinates. In Figure 7.16, we focus on the pair of means [image: 
$$\bar{y}_{B}$$
] and [image: 
$$\bar{y}_{D}$$
]. We begin with the (h, v)-system and identify the point as [image: 
$$\displaystyle\begin{array}{rcl} (h,v) = (\bar{y}_{B},\bar{y}_{D}) = (55.8,\,51.1)& & {}\\ \end{array}$$
]


 The coordinates of the same pair of means [image: 
$$(\bar{y}_{B}$$
], [image: 
$$\bar{y}_{D})$$
] in the (d, m)-system are [image: 
$$\displaystyle\begin{array}{rcl} (d,m)& =& {\bigl (\bar{y}_{B} -\bar{ y}_{D},\,(\bar{y}_{B} +\bar{ y}_{D})/2\bigr )} {}\\ & =& {\bigl ((55.8 - 51.1),\,(55.8 + 51.1)/2\bigr )} = (4.65,\,53.45) {}\\ \end{array}$$
]




We choose to label the ticks on the m-axis by the means because they are more easily interpreted: The confidence interval on [image: 
$$\bar{y}_{B} -\bar{ y}_{D}$$
] is at the mean height [image: 
$$m = (\bar{y}_{B} +\bar{ y}_{D})/2$$
] in Figure 7.16. Hsu and Peruggia label the ticks on the m-axis by the sum [image: 
$$\bar{y}_{B} +\bar{ y}_{D} = 2m$$
] because one unit on the 2m-scale takes exactly the same number of inches as one unit on the d-scale.
Figure 7.13 is constructed from Figure 7.16 by including all of the [image: 
$${4\choose 2} = 6$$
] pairwise differences [image: 
$$\bar{y}_{i} -\bar{ y}_{j}$$
], not just the single difference we use for the illustration.
Each of the confidence intervals for the [image: 
$${4\choose 2} = 6$$
] pairwise differences [image: 
$$\bar{y}_{i} -\bar{ y}_{j}$$
] in Figure 7.13 is centered at a point whose height on the vertical m-axis is equal to the average of the corresponding means [image: 
$$\bar{y}_{i}$$
] and [image: 
$$\bar{y}_{j}$$
] and whose location along the horizontal d-axis is at distance [image: 
$$\bar{y}_{i} -\bar{ y}_{j}$$
] from the vertical line d = 0. Horizontal lines are drawn at these heights so that the midpoints of these lines intersect their [image: 
$$(h =\bar{ y}_{i},v =\bar{ y}_{j})$$
] intersection. The width of each horizontal line is the width of a confidence interval estimating the difference [image: 
$$\bar{y}_{i} -\bar{ y}_{j}$$
]. By default the endpoints of the line are chosen to be the endpoints of the 95% two-sided confidence interval chosen by the Tukey procedure for all [image: 
$${4\choose 2}$$
] possible pairs.
If a horizontal confidence interval line crosses the vertical d = 0 line, the mean difference is declared not significant. Otherwise the mean difference is declared significant. If an end of a horizontal line is close to the vertical d = 0, this says that the declaration of significance was a close call.
When the critical value q is chosen by one of the standard multiple comparisons procedures (we illustrate with and default to the Tukey procedure), the widths of the horizontal confidence interval lines are the simultaneous confidence intervals for the six pairs of population mean differences. This depiction is not restricted to the case of equal sample sizes and hence equal interval widths.
The display in Figure 7.13 has several advantages over traditional presentations of Tukey procedure results. In a single graph we see
1.The means themselves, with correct relative distances,

 

2.The point and interval estimates of the [image: 
$${4\choose 2}$$
] pairwise differences,

 

3.The point and interval estimates for arbitrary contrasts of the level means,

 

4.Declarations of significance,

 

5.Confidence interval widths that are correct when the sample sizes are unequal.

 






7.2.3 Extensions of the Mean–Mean Display to Arbitrary Contrasts

                
                  
                
              
Heiberger and Holland (2006) extend the mean–mean multiple comparisons plot to arbitrary contrasts,
                  
                  
                 that is, contrasts that are not limited to the set of pairwise comparisons.
Two critical issues needed to be addressed. The first is the scaling of the contrast and the second is the set of contrasts selected for consideration.
7.2.3.1 Scaling

                  
                    
                  
                
The standard definition of a contrast in Equation (6.​19) requires that it satisfy the zero-sum constraint Equation (6.​17). The variance of the contrast is calculated with Equation (6.​20).
When we calculate sums of squares and F-tests, this definition is sufficient. When we wish to plot arbitrary contrasts on the mean–mean multiple comparisons plot described in Section 7.2.2, the contrasts must be comparably scaled. The heights must be in the range of the observed [image: 
$$\bar{y}_{j}$$
], and all confidence intervals must fall inside the range of the d-axis. To satisfy this additional requirement, we need to require the absolute-sum-2
                    
                   scaling introduced in Section 6.​9.​2.​1 and made explicit in Equation (6.​21). Any other scaling makes it impossible to fit these values on the mean–mean plot.
With the absolute-sum-2 scaling we can think of any contrast as the comparison of two weighted averages of [image: 
$$\bar{y}_{j}$$
]. Let us call them [image: 
$$\bar{y}_{+} =\sum c_{j}^{+}\bar{y}_{j}$$
] and [image: 
$$\bar{y}_{-} =\sum c_{j}^{-}\bar{y}_{j}$$
], where we use the superscript notation [image: 
$$a^{+} =\max (a,0)$$
] and [image: 
$$a^{-} =\max (-a,0)$$
]. We illustrate with the contrast comparing the average of means [image: 
$$\bar{y}_{A}$$
] and [image: 
$$\bar{y}_{B}$$
] with the mean [image: 
$$\bar{y}_{D}$$
].

                  [image: 
$$\begin{array}{lll} A  \quad B  \quad C \quad D  \quad \bar{y}_{ +}  \quad\bar{y}_{-} \\ \hline  \\ \mbox{ absolute-sum-2}  \quad.5 \quad.5  \quad0 \quad - 1  \quad(\bar{y}_{A} +\bar{ y}_{B})/2 \quad\bar{y}_{D} \\ \mbox{ integer}  \quad 1  \quad 1  \quad0 \quad - 2  \quad  \quad \\ \mbox{ normalized} \quad1/\sqrt{6} \quad1/\sqrt{6} \quad0 \quad - 2/\sqrt{6} \quad  \quad \\ \hline \end{array}$$
]
                
We plot the contrast centered at the (h, v)-location [image: 
$$(\bar{y}_{-},\,\bar{y}_{+})$$
], where each term is at the correctly weighted average of the observed [image: 
$$\bar{y}_{j}$$
]-values. The height on the m-axis of the MMC plot is [image: 
$$(\bar{y}_{+} +\bar{ y}_{-})/2$$
] and the difference on the d-axis is [image: 
$$\bar{y}_{+} -\bar{ y}_{-}$$
]. The confidence interval widths are proportional to the standard error of [image: 
$$\bar{y}_{+} -\bar{ y}_{-}$$
], which, from (6.​20), is proportional to [image: 
$$\sqrt{\sum c_{j }^{2 }/n_{j}}$$
].

7.2.3.2 Contrasts

                  
                    
                  
                
The simplest set of contrasts is the set of all pairwise comparisons [image: 
$$\bar{y}_{i} -\bar{ y}_{j}$$
] (as in Figure 6.​2). Others sets include comparisons [image: 
$$\bar{y}_{j} -\bar{ y}_{0}$$
] of all treatment values to a control (as in Figure 7.3) and a basis set of orthogonal contrasts that span all possible contrasts (as will be seen in Figure 7.17).[image: A77776_2_En_7_Fig17_HTML.gif]
Fig. 7.17MMC plot constructed with
mmcplot(catalystm.mmc, type="lmat", style="both")
using the orthogonal set of contrasts defined in Table 7.8 based on the pairwise set in Figures 7.13 and 6.2. The comparison between the average of [image: 
$$\bar{y}_{A}$$
] and [image: 
$$\bar{y}_{B}$$
] with the mean [image: 
$$\bar{y}_{D}$$
] is the only significant comparison. The other two confidence intervals include 0. The Tiebreaker panel is needed to respond to the overprinting of labels in the right axis of the MMC panel.






7.2.3.3 Labeling
Our presentation of the MMC plot, for example in Figure 6.​2, has improved labeling compared to the Hsu and Peruggia presentation.
The left-axis ticks are the [image: 
$$\bar{y}_{i}$$
]-values themselves, at the heights of the intersections of the 45∘ h- and v-lines with the vertical d = 0 line. The labels on the outside of the left axis are the [image: 
$$\bar{y}_{i}$$
]-values. The labels on the inside of the left axis are the names of the factor levels.
The right-axis labels belong to the horizontal CI lines for the contrasts. The labels outside the right axis are the automatically generated contrasts, either pairwise [image: 
$$\bar{y}_{i} -\bar{ y}_{j}$$
] or comparisons [image: 
$$\bar{y}_{j} -\bar{ y}_{0}$$
] of all treatment values to a control. The labels inside the right axis are the requested contrasts from the explicitly specified lmat matrix. Each CI line is at the height corresponding to the average of the two [image: 
$$\bar{y}_{{\ast}}$$
] [image: 
$${\bigl ((\bar{y}_{i} +\bar{ y}_{j})/2\quad \mbox{ or}\quad (\bar{y}_{+} +\bar{ y}_{-})/2\bigr )}$$
] values they are comparing. Each CI line is centered at the observed difference [image: 
$${\bigl ((\bar{y}_{i} -\bar{ y}_{j})\quad \mbox{ or}\quad (\bar{y}_{+} -\bar{ y}_{-})\bigr )}$$
]. The half-width of the (two-sided) CI line is [image: 
$$qs_{\bar{y}_{i}-\bar{y}_{j}}$$
], where q is calculated according to the specified multiple comparisons criterion.
The bottom axis is in the difference [image: 
$$\bar{y}_{i} -\bar{ y}_{j}$$
] d-scale. The ticks and labels outside the bottom axis are regularly spaced values on the difference scale. The ticks inside the bottom axis, at distances [image: 
$$\pm \,\vert \bar{y}_{j} -\min _{j}\bar{y}_{j}\vert $$
], correspond to the horizontal d-axis positions of the foot of the 45∘ h- and v-lines. The names of the factor levels appear at the foot of each 45∘ line.

7.2.3.4 
q Multipliers
Hypothesis test and confidence interval formulas, introduced in Chapter 3, depend on a multiple of the standard deviation. The multiplier is a quantile chosen from an appropriate distribution. When only one hypothesis is tested or only one interval is constructed, the multiplier is denoted z when the test statistic is normally distributed and t when the test statistic is from a t distribution. Multipliers denoted q, sometimes with a subscript, are used in many of this chapter’s formulas for confidence intervals and rules for rejecting null hypotheses. In both Sections 7.1.2 and 7.1.4.3 discussing Tukey procedures, and in plots in Section 7.2 displaying results from these procedures, q refers to the Studentized range distribution. The multiplier used in the Dunnett procedure of Section 7.1.3 is a percentile of a marginal distribution of a multivariate t distribution. The multiplier for the Scheffé procedure is the square root of a percentile of an
                    
                    
                   F distribution. For details, see Hochberg and Tamhane (1987).


7.2.4 Display of an Orthogonal Basis Set of Contrasts

                
                  
                  
                
                
                  
                
              
The sum of squares associated with the factor A with a levels has a − 1 degrees of freedom. The missing degree of freedom is associated with the grand mean and is normally suppressed from the ANOVA table.
In Section 6.​8.​3 we note that it is always possible to construct an orthogonal set of contrasts that decompose the a − 1 df sum of squares for an effect into a − 1 independent single-df sums of squares. In this section we illustrate the mathematics for constructing an orthogonal basis set by constructing one from the set of pairwise contrasts. From this basis set, we show that we can construct any other set of contrasts. We also show that an orthogonal basis set, augmented with an additional contrast for the grand mean (not actually a contrast since it doesn’t sum to 0), can be used to construct any linear combination of the group means.
This discussion uses all the matrix algebra results summarized in Appendix Section I.4. This section is placed here in Chapter 7 because it belongs to the discussion of the MMC plots. It might be more easily read after Section 10.​3 where contrast matrices
                  
                 and their relation to dummy variables
                  
                 are discussed.
We illustrate the discussion with the catalyst data in data(catalystm). We begin with the set of pairwise contrasts behind the construction of Figure 7.13. We isolate the contrasts implicit in the "mmc" object with the lmatPairwise
                  
                

                  
                 function in Table 7.7. 
                  
                
Table 7.7Contrast matrix for pairwise comparisons. There are three matrices displayed here. The first is the contrasts for the catalyst factor as used by the aov function. We show the default contrasts as defined by the contr.treatment function. The first level is omitted. Note that these are not ‘contrasts’ as defined in the standard theory for linear models as they are not orthogonal to the intercept. Then the contrast matrix for pairwise comparisons is displayed in two different structures. The glht function uses the linfct (linear function) format. Each row is the difference of two columns of the contr.treatment matrix. The last matrix, structured to be used in the focus.lmat argument to the mmc function, shows columns which are standard contrasts (each column sums to zero).


[image: A77776_2_En_7_Figg_HTML.gif]



Table 7.8 illustrates an orthogonal basis set of contrasts for the catalyst data. This examination of 3 linearly independent contrasts succinctly summarizes the information contained in the 3 degrees of freedom for comparing the means of the 4 levels of the fixed factor catalyst. For completeness we show that catalystm.lmat and catalyst.pairwise span the same subspace.
Table 7.8The orthogonal contrast matrix catalysm.lmat contains three columns that decompose the 3-df catalyst sum of squares term into three single-df sums of squares. The crossprod shows that catalystm.lmat is an orthogonal rank-3 matrix. The zero residuals from the regression of catalystm.lmat on catalyst.pairwise shows that they span the same subspace.


[image: A77776_2_En_7_Figh_HTML.gif]



In Table 7.9 and Figure 7.17 we use the orthogonal basis to construct an easily interpretable MMC plot on the catalyst levels. The principal conclusion from Figure 7.13 is that the means of both catalysts A and B significantly exceed the mean of catalyst D. Figure 7.17 reforces this conclusion with the finding that the average of the means of catalysts A and B significantly exceeds the mean of catalyst D because the confidence interval for this contrast lies entirely above 0. A second new conclusion from Figure 7.17 is that the average of the means of catalysts A, B, and D is not significantly different from the mean of catalyst C because the confidence interval for this contrast includes 0. 
                  
                  
                
Table 7.9We use catalysm.lmat as the focus.lmat argument to mmc leading to Figure 7.17.


[image: A77776_2_En_7_Figi_HTML.gif]




                
                  
                
                
                  
                  
                
              

7.2.5 Hsu and Peruggia’s Pulmonary Example
This is the example that Hsu and Peruggia (1994) use to introduce the mean–mean multiple comparisons plots. The response variable is FVC, forced vital capacity. The groups are levels of the smoker factor
	
                          NS
                        
	nonsmokers

	
                          PS
                        
	passive smokers

	
                          NI
                        
	noninhaling smokers

	
                          LS
                        
	light smokers (1–10 cigarettes per day for at least the last 20 years)

	
                          MS
                        
	moderate smokers (11–39 cigarettes per day for at least the last 20 years)

	
                          HS
                        
	heavy smokers ( ≥ 40 cigarettes per day for at least the last 20 years)



There are six levels of the smoker factor, hence 5 df for comparing them. The means for the six groups are accessed as data(pulmonary). The ANOVA table is in Table 7.10. The MMC plot is in Figure 7.18. The MMC plot of a set of orthogonal contrasts is in Figure 7.19.
[image: A77776_2_En_7_Fig18_HTML.gif]
Fig. 7.18Hsu and Peruggia’s pulmonary example. The apparent clustering of the three groups PS, NI, LS suggests the set of contrasts we show in Figure 7.19.




[image: A77776_2_En_7_Fig19_HTML.gif]
Fig. 7.19Hsu and Peruggia’s pulmonary example: An orthogonal set of contrasts. There are three significant contrasts and two not significant contrasts. The means for the three groups we discovered in Figure 7.18 are indistinguishable. The other differences are significant. The ability to display an arbitrary orthogonal set of contrasts is one of our enhancements to the mean–mean plot.




Table 7.10ANOVA table for pulmonary data.


[image: A77776_2_En_7_Figj_HTML.gif]



Figure 7.18 shows that the three levels {PS, NI, and LS} are indistinguishable; we call this the low-smoker cluster. This comparison of three levels uses 2 df. There are only 3 df left. From the SW–NE HS line, we see that the MS-HS contrast is significant, that the comparisons between each of the three levels in the low-smoker cluster with MS is significant, and that the comparison of NS with HS and with MS are each significant. All three comparisons of NS with the low-smoker cluster have lower bounds close to zero, and one of the three comparisons is significant.
                  
                

We can summarize these visual impressions by constructing an orthogonal set of contrasts that reflect them exactly. Figure 7.19 shows a basis set of five orthogonal contrasts. In the center, the p-nl and n-l contrasts show that the three levels in the low-smoker cluster are indistinguishable. The other three lines show that the nonsmoker group is significantly different from the low-smoker cluster (n-pnl), that the moderate- and heavy-smoker groups are significantly different (m-h), and that the combined nonsmoker group and low-smoker cluster are significantly different from the combined moderate- and heavy-smoker groups (npnl-mh).

                
                  
                
                
                  
                
              
The center of the interval for each of the contrasts in Figure 7.19 is constructed by the linear combination of the means for the levels. For example, the n-pnl interval is on the NW–SE NS line and on the average of the NE–SW PS, NI, and LS lines. The width of the interval is calculated from the algebra of the contrast. A simultaneous 95% coverage probability applies to the five confidence intervals in Figure 7.19 because they are constructed using the extended Tukey procedure. This procedure guarantees the coverage probability over the set of all possible contrasts. In exchange for this guarantee, these extended Tukey intervals are fairly wide. Having used the Tukey procedure to construct the intervals in Figure 7.18, it would be incorrect to switch to the narrower Scheffé procedure simultaneous intervals for the basis set of contrasts. With such a switch we would have two competing analyses, and this would distort the claimed coverage probabilities for the now distinct analyses in the two figures.
                  
                

                  
                  
                

                  
                



7.3 Exercises

7.1. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.2.

7.2. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.4.

7.3. Use an MMC plot to display the results of the Tukey procedure applied to the [image: 
$$\log$$
]-transformed data discussed in Exercise 6.5.

7.4. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.6.

7.5. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.8.

7.6. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.9.

7.7. The relative rotation angle between tangents to cervical vertebrae C3 and C4 is a standard musculoskeletal measurement. Figure 7.20 illustrates the measurement of relative rotation angles. Harrison et al. (2004) hypothesize that the value of this angle, C3–C4, in persons complaining of neck pain tends to differ from that in healthy individuals. The dataset, accessed as data(c3c4), contains the C3–C4 measurements of a random sample of 194 patients of which 72 had no complaints of neck pain, 52 complained of acute neck pain of recent origin, and 70 have had chronic neck pain. The pain condition is coded 0 for none, 1 for acute, and 2 for chronic. There is no implied ordering in this coding scheme. Perform an analysis of variance followed by Dunnett’s procedure to determine if the mean C3–C4 value of persons with acute or chronic neck pain differs from the mean C3–C4 value of persons without neck pain.[image: A77776_2_En_7_Fig20_HTML.gif]
Fig. 7.20Illustration of the relative rotation angles between the cervical vertebrae (neck area). Exercise 7.7 uses the C3–C4 angle.
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8.1 Introduction
We usually study more than one variable at a time. When the variables are continuous, and one is clearly a response variable and the others are predictor variables, we usually plot the variables and then attempt to fit a model to the plotted points. With one continuous predictor, the first model we attempt is a straight line; with two or more continuous predictors, we attempt a plane. We plot the model, the residuals from the model, and various diagnostics of the quality of the fit.
In this chapter we are primarily concerned with modeling a straight-line relationship between two variables using n pairs of observations on these variables, a common and fundamental task. One of these variables, conventionally denoted y, is a response or output variable. The other variable, often denoted x, is known as an explanatory or input or predictor variable. Usually, but not always, it is clear from the context which of the two variables is the response and which is the predictor. For example, if the two variables are personal income and consumption spending, then consumption is the response variable because the amount that is spent depends on how much income is available to be spent.
The relationship between y and x is almost never perfectly linear. When the n points are plotted in two dimensions, they appear as a random scatter about some unknown straight line. We model this line as [image: 
$$\displaystyle\begin{array}{rcl} y_{i} =\beta _{0} +\beta _{1}x_{i} +\epsilon _{i}\quad \mbox{ for $i = 1,\ldots,n$ }& &{}\end{array}$$
]

 (8.1)

 where [image: 
$$\displaystyle{ \epsilon _{i} \sim N(0,\sigma ^{2}) }$$
]

 (8.2)

 that is, the ε

                i
               are assumed normally independently distributed with constant mean 0 and common variance [image: 
$$\sigma ^{2}$$
] [abbreviated as [image: 
$$\epsilon _{i} \sim NID(0,\sigma ^{2})$$
]].
                
               In other words, we assume that the response variable is linearly related to the predictor variables, plus a normally distributed random component. Here the intercept β
0 and slope β
1 are unknown regression coefficients

                
               that must be estimated from the data. The variance [image: 
$$\sigma ^{2}$$
] is a third unknown parameter, introduced along with the assumption of a normally distributed error term, which must also be estimated.
A commonly used procedure for estimating β
0 and β
1 is the method of least squares

                
               because, as we will see in Section 8.3.2, this mathematical criterion leads to simple “closed-form” formulas for the estimates. Under the stated normality assumptions in Equation (8.2) about the residuals ε

                i
               of Model (8.1), the least-squares estimates of the regression coefficients are also the maximum likelihood
                
               estimates of these coefficients.

8.2 Example—Body Fat Data
8.2.1 Study Objectives
The example is taken from Johnson (1996). A group of subjects is gathered, and various body measurements and an accurate estimate of the percentage of body fat are recorded for each. Then body fat can be fit to the other body measurements using multiple regression, giving, we hope, a useful predictive equation for people similar to the subjects. The various measurements other than body fat recorded on the subjects are, implicitly, ones that are easy to obtain and serve as proxies for body fat, which is not so easily obtained.
Percentage of body fat, age, weight, height, and ten body circumference measurements (e.g., abdomen) are recorded for 252 men. Body fat, a measure of health, is estimated through an underwater weighing technique. Fitting body fat to the other measurements using multiple regression provides a convenient way of estimating body fat for men using only a scale and a measuring tape.

8.2.2 Data Description
We will initially use only 47 observations and only five of the measurements that have been recorded. 
                      bodyfat:
                    Percent body fat using Siri’s equation, 495/Density − 450



                      abdomin:
                    Abdomen circumference (cm) “at the umbilicus and level with the iliac crest”



                      biceps:
                    Extended biceps circumference (cm)



                      wrist:
                    Wrist circumference (cm) “distal to the styloid processes”



                      forearm:
                    Forearm circumference (cm)






8.2.3 Data Input
We access the data from data(fat) and then look at the data with the scatterplot matrix
                  
                 in Figure 8.1.[image: A77776_2_En_8_Fig1_HTML.gif]
Fig. 8.1Body Fat Data






                
                  
                
              
The response variable bodyfat is in the bottom row of the plot. We can see that a linear fit makes sense against abdomin. A linear relationship between bodyfat and the other predictor variables is also visible in the plot, but is weaker. All the predictor variables show correlation with each other.

8.2.4 One-X Analysis
The initial analysis will look at just bodyfat and abdomin. We will come back to the other variables later. We expand the bodyfat ~ abdomin panel of Figure 8.1 in the left column of Figure 8.2 and place two straight lines on the graph in the two rightmost columns. The line in column 3 is visibly not a good fit. It is too shallow and is far above the points in the lower left. The line in column 2, labeled “least-squares fit”, is just right. The criterion we use is least squares,
                  
                 which means that the sum of the squared differences from the fitted to observed points is to be minimized. The least-squares line is the straight line that achieves the minimum.[image: A77776_2_En_8_Fig2_HTML.gif]
Fig. 8.2One X-variable and two straight lines. The second column is the least-squares line, the third is too shallow. Row 1 shows the residuals. Row 2 shows the squared residuals. The least-squares line minimizes the sum of the squared residuals.





The top row of Figure 8.2 displays the vertical differences from the fitted to observed points. The bottom row displays the squares of the differences from the fitted to observed points. The least-squares line minimizes the sum of the areas of these squares. It is evident that the sum of the squared areas in column 2 is smaller than the sum of squared areas for the badly fitting line in column 3.
From any of these panels it is apparent that on average, body fat is directly related to abdominal circumference. As will be explained in Section 8.3.5, the least-squares
                  
                 line in Figure 8.2 can be used to predict bodyfat from abdomin. Note that although it is mathematically correct to say that abdomin increases with bodyfat, this is a misleading statement because it implies an unlikely direction of causality among these variables.

                
                  
                
                
                  
                
                
                  
                
              


8.3 Simple Linear Regression
8.3.1 Algebra
Figure 8.2 illustrates the least-squares line that best fits bodyfat to abdomin. Now that we see from the bottom row of the figure that the least-squares line actually does minimize the sum of squares, let us review the mathematics behind the calculation of the least-squares line. The standard notation we use for the least-squares straight line is [image: 
$$\displaystyle{ \hat{y} =\hat{\beta } _{0} +\hat{\beta } _{1}x }$$
]

 (8.3)

 where [image: 
$$\hat{\beta }_{0}$$
] and [image: 
$$\hat{\beta }_{1}$$
] are called the regression coefficients.
                  
                 We define the residuals
                  
                 by [image: 
$$\displaystyle{ e_{i} = y_{i} -\hat{ y}_{i} }$$
]

 (8.4)

 We wish to find [image: 
$$\hat{\beta }_{0}$$
] and [image: 
$$\hat{\beta }_{1}$$
] that minimize the expression for the sum of squares of the calculated residuals: [image: 
$$\displaystyle{ \sum _{i=1}^{n}e_{ i}^{2} =\sum _{ i=1}^{n}(y_{ i} -\hat{ y}_{i})^{2} =\sum _{ i=1}^{n}{\bigl (y_{ i} - (\beta _{0} +\beta _{1}x_{i})\bigr )}^{2} }$$
]

 (8.5)

 We minimize by differentiation with respect to the parameters β
0 and β
1, setting the derivatives to 0 (thus getting what are called the normal equations)
                  
                


[image: 
$$\displaystyle\begin{array}{rcl} \frac{\partial } {\partial \beta _{0}}\sum _{i=1}^{n}\bigl (y_{ i} - (\beta _{0} +\beta _{1}x_{i})\big)^{2} =\sum _{ i=1}^{n}2{\bigl (y_{ i} - (\beta _{0} +\beta _{1}x_{i})\bigr )}(-1)& =& 0 \\ \frac{\partial } {\partial \beta _{1}}\sum _{i=1}^{n}{\bigl (y_{ i} - (\beta _{0} +\beta _{1}x_{i})\bigr )}^{2} =\sum _{ i=1}^{n}2{\bigl (y_{ i} - (\beta _{0} +\beta _{1}x_{i})\bigr )}(-x_{i})& =& 0{}\end{array}$$
]

 (8.6)

 and then solving simultaneously for the regression coefficients [image: 
$$\displaystyle\begin{array}{rcl} \hat{\beta }_{1}& =& \frac{\sum (y_{i} -\bar{ y})(x_{i} -\bar{ x})} {\sum (x_{i} -\bar{ x})^{2}} \\ \hat{\beta }_{0}& =& \bar{y} -\hat{\beta }_{1}\bar{x} {}\end{array}$$
]

 (8.7)



In addition to minimizing the sum of squares of the calculated residuals, [image: 
$$\hat{\beta }_{0}$$
] and [image: 
$$\hat{\beta }_{1}$$
] have the property that the sum of the calculated residuals is zero, i.e., [image: 
$$\displaystyle\begin{array}{rcl} \sum _{i=1}^{n}e_{ i} = 0& &{}\end{array}$$
]

 (8.8)

 We request a proof of this assertion in Exercise 8.9.
For two or more predictor variables, the procedure (equating derivatives to zero) is identical but the algebra is more complex. We postpone details until Section 9.​3


8.3.2 Normal Distribution Theory
Under the normality assumption (8.2) for the residuals of Model (8.1), the least-squares estimates are also maximum likelihood estimates. This is true because if the residuals are normally distributed, their likelihood function is maximized when Equation (8.5) is minimized.
In Model (8.1), the unknown population variance of the ε

                  i
                , [image: 
$$\sigma ^{2}$$
], is estimated by the sample variance [image: 
$$\displaystyle\begin{array}{rcl} \hat{\sigma }^{2} = s^{2} = \frac{\sum _{i=1}^{n}(y_{ i} -\hat{ y}_{i})^{2}} {n - 2} & &{}\end{array}$$
]

 (8.9)

 Because the sample variance is proportional to the residual sum of squares
                  
                  
                 in Equation (8.5), minimizing the sample variance also leads us to the least-squares estimates [image: 
$$\hat{\beta }_{0}$$
] and [image: 
$$\hat{\beta }_{1}$$
] in Equations (8.7). The square root s of the sample variance in Equation (8.9), variously termed the standard error of estimate

                  
                , the standard error

                  
                , or the root mean square error

                  
                , indicates the size of a typical vertical deviation of a point from the calculated regression line.

8.3.3 Calculations
The results of the statistical analysis are displayed in several tables, primarily the ANOVA (analysis of variance) table,
                  
                 the table of regression coefficients, and the table of other statistics shown in Table 8.1. These tables are fundamental to our interpretation of the analysis. The formulas for each number in these tables appear in Tables 8.2, 8.3, and 8.4. As with Tables 6.​2 and 6.​2, the ANOVA table in Section 8.1 does not include the “Total” line and the interpretation in Table 8.2 does include the “Total” line. R does not print the Total line in its ANOVA tables.Table 8.1ANOVA table and table of regression coefficients for the simple linear regression model with y=bodyfat and x=abdomin.


[image: A77776_2_En_8_Figa_HTML.gif]


Table 8.2Interpretation of items in “ANOVA Table” from Table 8.1. The symbols in the abdomin section are subscripted Reg, short for “Regression”. In this setting, “Regression” refers to the group of all model predictors. In this example there is only one predictor, abdomin.


	Name
	Notation
	Formula
	Value in

	 	 	 	Table 8.1


	Total
	 	 	 
	Sum of Squares
	
                            [image: 
$$\mathsf{SS}_{\mathrm{Total}}$$
]
                          
	
[image: 
$$\sum _{i=1}^{n}(y_{i} -\bar{ y})^{2}$$
] = [image: 
$$\mathsf{SS}_{\mathrm{Reg}} + \mathsf{SS}_{\mathrm{Res}}$$
]

	3711.199

	Degrees of Freedom
	
                            [image: 
$$\mathsf{df}_{\mathrm{Total}}$$
]
                          
	
n − 1
	46

	Variance about Mean
	 	
                            [image: 
$$\mathsf{SS}_{\mathrm{Total}}/\mathsf{df}_{\mathrm{Total}}$$
]
                          
	80.678

	Residual
	 	 	 
	Sum of Squares
	
                            [image: 
$$\mathsf{SS}_{\mathrm{Res}}$$
]
                          
	
                            [image: 
$$\sum _{i=1}^{n}(y_{i} -\hat{ y}_{i})^{2}$$
]
                          
	1270.699

	Degrees of Freedom
	
                            [image: 
$$\mathsf{df}_{\mathrm{Res}}$$
]
                          
	
n − 2
	45

	Mean Square
	
                            [image: 
$$\mathsf{MS}_{\mathrm{Res}}$$
]
                          
	
                            [image: 
$$\hat{\sigma }^{2} = s^{2} = \frac{\sum _{i=1}^{n}(y_{i} -\hat{ y}_{i})^{2}} {n - 2}$$
]
                          
	28.238

	abdomin
	 	 	 
	Sum of Squares
	
                            [image: 
$$\mathsf{SS}_{\mathrm{Reg}}$$
]
                          
	
                            [image: 
$$\sum _{i=1}^{n}(\hat{y}_{i} -\bar{ y})^{2}$$
]
                          
	2440.500

	Degrees of Freedom
	
                            [image: 
$$\mathsf{df}_{\mathrm{Reg}}$$
]
                          
	number of predictor variables
	1

	Mean Square
	
                            [image: 
$$\mathsf{MS}_{\mathrm{Reg}}$$
]
                          
	variability in [image: 
$$\hat{y}$$
] attributable to [image: 
$$\hat{\beta }_{1}$$
]

	 
	 	 	
                            [image: 
$$\left ( \frac{\mbox{ abdomin Sum of Squares}} {\mbox{ abdomin Degrees of Freedom}}\right )$$
]
                          
	2440.500

	
F-Value
	
                            F
                            Reg
                          
	
                            [image: 
$$\left (\frac{\mbox{ abdomin Mean Square}} {\mbox{ Residual Mean Square}}\right )$$
]
                          
	86.427

	Pr( > F)
	
                            p
                            Reg
                          
	
                            [image: 
$$P(F_{1,45}> 86.427) = 1 -\mathcal{F}_{1,45}(86.427)$$
]
                          
	 < 0. 0001




Table 8.3Interpretation of items in “Table of Regression Coefficients” from Table 8.1.


	Name
	Notation
	Formula
	Value in

	 	 	 	Table 8.1


	(Intercept)
	 	 	 
	Value
	
                            [image: 
$$\hat{\beta }_{0}$$
]
                          
	
                            [image: 
$$\bar{y} -\hat{\beta }_{1}\bar{x}$$
]
                          
	− 28. 560

	Standard Error
	
                            [image: 
$$\hat{\sigma }_{\beta _{0}}$$
]
                          
	
                            [image: 
$$\hat{\sigma }\sqrt{ \frac{1} {n} + \frac{\bar{x}^{2}} {\sum (x_{i} -\bar{ x})^{2}}}$$
]
                          
	5.110

	
t-value
	
                            [image: 
$$t_{\beta _{0}}$$
]
                          
	
                            [image: 
$$\frac{\hat{\beta }_{0}} {\hat{\sigma }_{\beta _{0}}}$$
]
                          
	− 5. 589

	Pr( > | t | )
	
                            [image: 
$$p_{\hat{\beta }_{0}}$$
]
                          
	
P( t
45 > | − 5. 589 | )
	 < 0. 0001

	abdomin
	 	 	 
	Value
	
                            [image: 
$$\hat{\beta }_{1}$$
]
                          
	
                            [image: 
$$\frac{\sum (y_{i} -\bar{ y})(x_{i} -\bar{ x})} {\sum (x_{i} -\bar{ x})^{2}}$$
]
                          
	0.505

	Standard Error
	
                            [image: 
$$\hat{\sigma }_{\beta _{1}}$$
]
                          
	
                            [image: 
$$\hat{\sigma }/\sqrt{\sum (x_{i } -\bar{ x})^{2}}$$
]
                          
	0.054

	
t-value
	
                            [image: 
$$t_{\beta _{1}}$$
]
                          
	
                            [image: 
$$\hat{\beta }_{1}/\hat{\sigma }_{\beta _{1}}$$
]
                          
	9.297

	Pr( > | t | )
	
                            [image: 
$$p_{\hat{\beta }_{1}}$$
]
                          
	
P(t
45 > | 9. 297 | )
	 < 0. 0001




Table 8.4Interpretation of additional items, some of which are shown in Table 8.1.


	Name
	Notation
	Formula
	Value

	 	 	 	based on

	 	 	 	Table 8.1


	Coefficient of Determination
	 	 	 
	Multiple R
2

	
                            R
                            2
                          
	
                            [image: 
$$\left (\frac{\mbox{ abdomin Sum of Squares}} {\mbox{ Total Sum of Squares}} \right )$$
]
                          
	0.6576

	 	p
	Number of predictor x variables in the model
	1.

	 	 	in the model
	 
	Adjusted R
2

	
                            [image: 
$$R_{\mbox{ adj}}^{2}$$
]
                          
	
                            [image: 
$$1 -\left ( \frac{n - 1} {n - p - 1}\right )(1 - R^{2})$$
]
                          
	0.6500

	Dependent Mean
	
                            [image: 
$$\bar{Y }$$
]
                          
	
                            [image: 
$$\frac{\sum Y _{i}} {n}$$
]
                          
	18.3957

	Residual Standard Error
	
                            [image: 
$$\hat{\sigma }= s$$
]
                          
	
                            [image: 
$$\sqrt{s^{2}}$$
]
                          
	5.3139

	Coefficient of Variation
	
                            cv
                          
	
                            [image: 
$$s/\bar{Y }$$
]
                          
	28.8867






                
                  
                
                
                  
                  
                
                
                  
                  
                
                
                  
                  
                
                
                  
                  
                
                
                  
                
              
For one-x regression (this example), there is usually only one null and alternative hypothesis of interest: [image: 
$$\displaystyle{ H_{0}: \beta _{1} = 0\quad \mbox{ vs}\quad H_{1}: \beta _{1}\neq 0 }$$
]

 (8.10)

 Both t = 9. 297 in the table of coefficients and [image: 
$$F = 86.427 = 9.297^{2} = t^{2}$$
]

                  
                 in the ANOVA table are tests between those hypotheses. The associated p-value ([image: 
$$p =.5\mbox{ 10}^{-12}$$
], which we report as < 0. 0001), is smaller than any reasonable α (the traditional.05 or.01, for example). Therefore, we are justified in rejecting the null hypothesis in favor of the alternative. Inference on β
0 frequently makes no sense. In this example, for example, β
0 is the expected bodyfat of an individual having the impossible abdomin with zero circumference.

                
                  
                  
                
                
                  
                
                
                  
                  
                
                
                  
                  
                
                
                  
                  
                
              

                
                  
                
                
                  
                
              

                
                  
                
                
                  
                
              
The Total line in the ANOVA table shows the sum of squares and degrees of freedom for the response variable bodyfat around its mean. When we divide these two numbers we recognize the formula [image: 
$$\sum _{i=1}^{n}(y_{i} -\bar{ y})^{2}/(n - 1) = 80.678$$
] as Equation (3.​6) for the sample variance of the response variable. The goal of the analysis is to explain as much of the variance in the response variable as possible with a model that relates the response to the predictors. When we have explained the variance, the residual (or leftover) mean square
                  
                  
                

                  
                 s
2 is much smaller than the sample variance of the response variable.
The coefficient of determination,
                  
                 also known as Multiple R
2, usually accompanies ANOVA tables. This measure, generally denoted R
2, is the proportion of variation in the response variable that is accounted for by the predictor variable(s). It is desirable that R
2 be as close to 1 as possible. Models with R
2 considerably below 1 may be acceptable in some disciplines. The defining formula for R
2

                  
                 is [image: 
$$\displaystyle\begin{array}{rcl} R^{2} = \frac{\mathsf{SS}_{\mathrm{Reg}}} {\mathsf{SS}_{\mathrm{Total}}}& &{}\end{array}$$
]

 (8.11)



In regression models with only one predictor, an alternative notation is r
2. This notation is motivated by the fact that r
2 is the square of the sample correlation coefficient
                  
                 r between the response and predictor variable. r is the usual estimate of the population correlation coefficient defined and interpreted in Equation (3.​14). A formula for the sample correlation r is [image: 
$$\displaystyle\begin{array}{rcl} r = \frac{\sum (y_{i} -\bar{ y})(x_{i} -\bar{ x})} {\sqrt{\sum (y_{i } -\bar{ y})^{2 } \sum (x_{i } -\bar{ x})}}& &{}\end{array}$$
]

 (8.12)



It can be shown that − 1 ≤ r ≤ 1. If r = ±1, then x and y are perfectly linearly related, directly so if r = 1 and inversely so if [image: 
$$r = -1$$
]. The arithmetic sign of r

                  
                 matches the arithmetic sign of [image: 
$$\hat{\beta }_{1}$$
].
In the present body fat example, we find r = 0. 811 and r
2 = 0. 658. This value of r

                  
                 is consistent with the moderately strong positive linear relationship between bodyfat and abdomin in the least-squares fit shown in Figure 8.2. Continuing with this example, the estimated response variance ignoring the predictor is 80.678 and the estimated response variance paying attention to the predictor abdomin, the Residuals Mean Square,
                  
                  
                 is 28.238. Graphically, we see in Figure 8.3 that the variance estimate 80.678 about the mean belongs to Figure 8.3a and the variance estimate 28.238 about the regression line belongs to Figure 8.3b.[image: A77776_2_En_8_Fig3_HTML.gif]
Fig. 8.3Variance about mean and about least-squares line.





While these two estimates of response variance are intuitive, they are not actually the statistically correct numbers to compare because they are not independent. The Total Sum of Squares 
                  
                  
                

                  
                 is the sum of the Residuals Sum of Squares

                  
                  
                 and the abdomin Sum of Squares. These two components of the Total Sum of Squares

                  
                  
                 are independent and are therefore the base for the correct quantities to compare. The abdomin mean square is an unbiased estimate of [image: 
$$\sigma ^{2}$$
] if H
0 is true but an overestimate of [image: 
$$\sigma ^{2}$$
] if H
0 is false. The Residuals Mean Square

                  
                

                  
                  
                 is unbiased for [image: 
$$\sigma ^{2}$$
] in either case. Therefore, the ratio of these two mean squares will tend to be close to 1 if H
0 is true but greater than 1 otherwise. With the assumption of independent normally distributed ε

                  i
                , the ratio, given as the F-Value = 86.427 in the table, follows a (central) F distribution with 1 and 45 degrees of freedom if H
0 is true, but not otherwise. Appeal to this distribution tells us whether the ratio is significantly greater than 1. When the observed Pr( > 
F) value in the table (in this case < 0. 0001) is small, we interpret that as evidence that H
0 is false.
The formal statement of the test is: Under the null hypothesis that β
1 = 0 (that is, that information about x=abdomin gives no information about y=bodyfat), the probability of observing an F-value as large as the one we actually saw (in this case 86.427) is very small (in this case the probability is less than 0.0001). This very small p-value (assuming H
0 is true) is very strong evidence that H
0 is not true, that is, it is evidence that β
1 ≠ 0. We will therefore act as if H
0 is false and take further actions as if the relationship of the fitted regression model actually explains what is going on.
The estimate [image: 
$$\hat{\beta }_{1}$$
] from Equation (8.7) can be rewritten as a weighted sum of y

                  i
                -values or of single-point slopes [image: 
$$\hat{\beta }_{1i} = (y_{i} -\bar{ y})/(x_{i} -\bar{ x})$$
] [image: 
$$\displaystyle\begin{array}{rcl} \hat{\beta }_{1}& =& \sum _{i}(y_{i} -\bar{ y})\left ( \frac{(x_{i} -\bar{ x})} {\sum (x_{i} -\bar{ x})^{2}}\right ){}\end{array}$$
]

 (8.13)

 [image: 
$$\displaystyle\begin{array}{rcl} & =& \sum _{i}\left (\frac{y_{i} -\bar{ y}} {x_{i} -\bar{ x}}\right )\left (\frac{(x_{i} -\bar{ x})^{2}} {\sum (x_{i} -\bar{ x})^{2}}\right ){}\end{array}$$
]

 (8.14)

 Figure 8.4 illustrates equation 8.14 with the R command demo("betaWeightedAverage", ask=FALSE).[image: A77776_2_En_8_Fig4_HTML.gif]
Fig. 8.4Equation 8.14 shows that the slope [image: 
$$\hat{\beta }_{1}$$
] can be written as the weighted sum of the single-point slopes [image: 
$$\hat{\beta }_{1i} = (y_{i} -\bar{ y})/(x_{i} -\bar{ x})$$
]. The top set of panels shows the set of single-point slopes. The bottom panel shows all six single-point slopes and the regression line whose slope is the weighted sum of the individual slopes. The dataset for this example is displayed.





The variance of [image: 
$$\hat{\beta }_{1}$$
] [image: 
$$\displaystyle\begin{array}{rcl} \sigma _{\hat{\beta }_{1}}^{2} =\mathop{ \mbox{ var}}(\hat{\beta }_{ 1}) = \frac{\sigma ^{2}} {\sum (x_{i} -\bar{ x})^{2}}& &{}\end{array}$$
]

 (8.15)

 is constructed from the sum in Equation (8.13) with formulas based on Equation (3.​9) (see Exercise 8.7). The sample estimate of the standard error
                  
                 of [image: 
$$\hat{\beta }_{1}$$
] is [image: 
$$\displaystyle\begin{array}{rcl} \hat{\sigma }_{\hat{\beta }_{1}} = \frac{\hat{\sigma }} {\sqrt{\sum (x_{i } -\bar{ x})^{2}}}& &{}\end{array}$$
]

 (8.16)

 Under H
0, and with the assumption of independent normally distributed ε

                  i
                , the t-ratio [image: 
$$t_{\hat{\beta }_{1}} =\hat{\beta } _{1}/\hat{\sigma }_{\hat{\beta }_{1}}$$
] has a t
45 distribution allowing us to use the t table in our tests. It follows from this that a 100(1 −α)% confidence interval on β
1 is [image: 
$$\displaystyle\begin{array}{rcl} \hat{\beta }_{1} \pm t_{df,\mbox{ $ \frac{\alpha }{ 2} $}}\;\hat{\sigma }_{\hat{\beta }_{1}}& & {}\\ \end{array}$$
]


 where [image: 
$$df = \mathsf{df}_{\mathrm{Res}}$$
] degrees of freedom.
Similarly, we can show (see Exercise 8.8) [image: 
$$\displaystyle\begin{array}{rcl} \sigma _{\hat{\beta }_{0}}^{2} =\mathop{ \mbox{ var}}(\hat{\beta }_{ 0}) =\sigma ^{2}\left ( \frac{1} {n} + \frac{\bar{x}^{2}} {\sum (x_{i} -\bar{ x})^{2}}\right )& &{}\end{array}$$
]

 (8.17)




8.3.4 Residual Mean Square in Regression Printout
The residual mean square

                  
                  
                 is also called the error mean square.
                  
                  
                 It is called residual

                  
                 because it is the variability in the response variable left over after fitting the model. It is called error

                  
                 because it is a measure of the difference between the model and the data. We prefer the term “residual” and discourage the term “error” because the term “error” suggests a mistake, and that is not the intent of this component of the analysis. Nevertheless, on occasion we use the term “error” as a synonym for “residual” to match the continued use by SAS of “Error Mean Square” rather than our preferred “Residual Mean Square”. See Table 8.5 for a comparison of several notations. See Tables 8.5 and 8.6 for illustrations of how the fitted values and the residuals are related to the various sums of squares used in the ANOVA table. These tables show the linear and quadratic identities introduced in Section 6.A.Table 8.5Residual Mean Square in Regression Printout. The “Residual Mean Square” and “Error Mean Square” are two names for the same concept. Note that the (Std Err Residual)
                          i
                         is different for each i. It is smallest for x values closest to [image: 
$$\bar{x}$$
] and increases as the x values move away from [image: 
$$\bar{x}$$
]. This is the reason that the confidence bounds for the regression line (see Figure 8.5) show curvature.


[image: A77776_2_En_8_Figb_HTML.gif]


Table 8.6We show the linear identity [image: 
$$y_{i} =\bar{ y} +\hat{\beta } _{1}(x_{i} -\bar{ x}) + e_{i}$$
] and the quadratic identity [image: 
$$\sum (y_{i} -\bar{ y})^{2} =\sum (\beta _{1}x_{i})^{2} +\sum \epsilon _{i}^{2}$$
] for least squares regression. The linear identity is the partitioning of the column of y

                          i
                         into columns for the grand mean, the product of the regression coefficient and the difference of x

                          i
                         from [image: 
$$\bar{x}$$
], and the column of residuals e

                          i
                        . The quadratic identity is the arithmetic behind the sums of squares in the ANOVA table.


[image: A77776_2_En_8_Figc_HTML.gif]




                
                  
                  
                
                
                  
                
                
                  
                
                [image: A77776_2_En_8_Fig5_HTML.gif]
Fig. 8.5Confidence and prediction bands for modeling bodyfat ~ abdomin, body fat data. The widths of these bands are minimized at [image: 
$$x = \bar{x}$$
] because h
0 is minimized at [image: 
$$x = \bar{x}$$
].




              

                
                  
                
              

8.3.5 New Observations

                
                  
                
              
One of the uses of a fitted regression equation is to make inferences about new observations. A new observation y
0 at x
0 has the model [image: 
$$\displaystyle\begin{array}{rcl} y_{0} =\beta _{0} +\beta _{1}x_{0} +\epsilon _{0} =\mu _{0} +\epsilon _{0}& & {}\\ \end{array}$$
]


 where 	
y
0 is a single unobserved value

	
x
0 is a the value of the predictor x at the new observation

	
β
0 and β
1 are the regression coefficients.
                        
                      






The concepts that we introduce here extend, almost without change, to the multiple regression setting of Chapter 9 We therefore preview the slightly more elaborate notation of Chapter 9 The model in Equation (8.1) can be rewritten in matrix notation as [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{cccccc} \\ \left (\begin{array}{c} y_{1}\\ \vdots \\ y_{n}\end{array} \right )& =&\left (\begin{array}{c} 1\;\;x_{1}\\ \vdots \\ 1\;\;x_{n} \end{array} \right )&\left (\begin{array}{c} \beta _{0}\\ \beta _{ 1} \end{array} \right )&+&\left (\begin{array}{c} \epsilon _{1}\\ \vdots\\ \epsilon _{n} \end{array} \right ) \\ \mathop{Y }_{n\times 1} & =& \mathop{X}_{n\times (1+p)} & \mathop{ \beta } _{(1+p)\times 1} & +& \mathop{\epsilon }_{n\times 1}\end{array} & &{}\end{array}$$
]

 (8.18)

 We restrict p = 1 in Chapter 8. More generally, beginning in Chapter 9, p is a positive integer.
In the extended notation, a new observation y
0 at x
0+ has the model [image: 
$$\displaystyle\begin{array}{rcl} y_{0} = x_{0+}\,\beta +\epsilon _{0} =\mu _{0} +\epsilon _{0}& & {}\\ \end{array}$$
]


 where 	
y
0 is a single unobserved value

	
x
0+ is a 1 × (1 + p) row of predictors [image: 
$$[(1\ x_{0})\mbox{ in Chapter 8}]$$
]


	
β is a (1 + p)-vector of regression coefficients
                        
                       [image: 
$$[(\beta _{0}\ \beta _{1})'\mbox{ in Chapter 8}]$$
].





There are two related questions to ask about the new observation:
1.Estimate the parameter [image: 
$$\mu _{0} = E(y_{0}) = x_{0+}\beta$$
].

 

2.Predict a specific observation [image: 
$$y_{0} =\mu _{0} +\epsilon _{0}$$
].

 




Estimation intervals for new μ
0 and prediction intervals
                  
                 for new y
0 based on a new value x
0+ depend on the quantity h
0 defined as [image: 
$$\displaystyle\begin{array}{rcl} h_{0}& =& \frac{1} {n} + \frac{(x_{0} -\bar{ x})_{}^{2}} {\sum \limits _{i=1}^{n}(x_{i} -\bar{ x})^{2}}{}\end{array}$$
]

 (8.19)

 The formula for h
0 is similar to the leverage
                  
                 formula for h

                  i
                 to be introduced in Equations (9.​14) or (9.​15), where the new value x
0+ replaces one of the observed values X

i+. The notation i specifically means one of the original n observations and the notation 0 means an additional observation that need not be one of the original ones. Equation (8.19) is specifically for simple linear regression (p = 1). The more complex formula in Equations (9.​14) or (9.​15) is needed when p > 1.
Answering the questions requires information about estimated variances:
1.Estimate the
a.parameter [image: 
$$\mu _{0} = E(y_{0}) = x_{0+}\beta$$
] with

 

b.estimator [image: 
$$\hat{\mu }_{0} = x_{0+}\hat{\beta }$$
],

 

c.variance of the estimator [image: 
$$\mathop{\mbox{ var}}(\hat{\mu }_{0}) = h_{0}\sigma ^{2}$$
], and

 

d.estimated variance of the estimator [image: 
$$\widehat{\mathop{\mbox{ var}}}(\hat{\mu }_{0}) = h_{0}\hat{\sigma }^{2}$$
].

 





 

2.Predict
a.a specific observation [image: 
$$y_{0} =\mu _{0} +\epsilon _{0}$$
] with

 

b.predictor [image: 
$$\hat{y}_{0} =\hat{\mu } _{0} = x_{0+}\hat{\beta }$$
] (the same as the parameter estimate),

 

c.variance of the predictor [image: 
$$\mathop{\mbox{ var}}(\hat{y}_{0}) =\mathop{ \mbox{ var}}(\hat{\mu }_{0} +\epsilon _{0}) =\mathop{ \mbox{ var}}(\hat{\mu }_{0}) +\mathop{ \mbox{ var}}(\epsilon _{0})$$
], and

 

d.estimated variance of the predictor [image: 
$$\widehat{\mathop{\mbox{ var}}}(\hat{y}_{0}) =\widehat{\mathop{ \mbox{ var}}}(\hat{\mu }_{0}) +\widehat{\mathop{ \mbox{ var}}}(\epsilon _{0}) = h_{0}\hat{\sigma }^{2} +\hat{\sigma } ^{2} =\hat{\sigma } ^{2}(h_{0} + 1)$$
].

 




In the special case that [image: 
$$x_{0+} = x_{i+}$$
] (one of the observed points), we have [image: 
$$\displaystyle\begin{array}{rcl} \widehat{\mathop{\mbox{ var}}}(\hat{y}_{i}) = (1 + h_{i})\hat{\sigma }^{2} =\hat{\sigma } ^{2} +\widehat{\mathop{ \mbox{ var}}}(\hat{\mu }_{ i})& & {}\\ \end{array}$$
]





 




Note that the (standard error)2

                  
                 for prediction [image: 
$$\hat{\sigma }^{2}(h_{0} + 1)$$
] is larger than the (standard error)2 for estimation [image: 
$$\hat{\sigma }^{2}h_{0}$$
]. A prediction interval
                  
                 for individual observations [image: 
$$\hat{y}_{0}$$
] estimates the range of observations that we might see. A confidence interval for the estimated mean of the new observations estimates the center point of the predicted range.
Most regression programs print the standard error
                  
                 for estimation of the mean: [image: 
$$\hat{\sigma }\sqrt{ h_{0}}$$
], the confidence interval for estimating μ
0 = E(y
0 | x): [image: 
$$\hat{y}_{0} \pm t_{df,\mbox{ $ \frac{\alpha }{ 2} $}}\hat{\sigma }\sqrt{h_{0}}$$
], [also shown in Equation (9.​24)], and the prediction interval for a new observation (y
0 | x): [image: 
$$\hat{y}_{0} \pm t_{df,\mbox{ $ \frac{\alpha }{ 2} $}}\;\hat{\sigma }\sqrt{1 + h_{0}}$$
] [also shown in Equation (9.​25)]. These items are discussed in detail in Section 9.​9

The commands that construct the confidence and prediction intervals
                  
                 in R, and their interpretation, are shown in Table 8.7. To see the standard error
                  
                 for prediction of a new observation, we must manually do the arithmetic [image: 
$$\displaystyle\begin{array}{rcl} \hat{\sigma }^{2}h_{ 0} +\hat{\sigma } ^{2} = (1 + h_{ 0})\hat{\sigma }^{2}& &{}\end{array}$$
]

 (8.20)



The two questions about a new observation are actually familiar questions in a new guise. They are the same questions addressed in Section 3.​6 about the location parameter μ of a sample from a single variable. We elaborate on the comparison in Table 8.8.
Table 8.7

                          
                        

                          
                         Construction of the confidence and prediction intervals for new observations in R. See also the discussion surrounding Equations (9.​24) and (9.​25).


[image: A77776_2_En_8_Figd_HTML.gif]


Table 8.8Comparison of confidence and prediction intervals in the one-sample problem (t-test) and in the regression problem.


[image: A77776_2_En_8_Fige_HTML.gif]




                
                  
                
                
                  
                
              
In both the confidence interval and the prediction interval
                  
                 of the regression problem in Table 8.8, the magnitude of (Standard Deviation)2 increases as the new value x moves further from the mean [image: 
$$\bar{x}$$
] of the existing x

                  i
                ’s. This indicates that we have more confidence in a prediction for an x in the vicinity of the x

                  i
                ’s of the existing data than in an x far from the x

                  i
                ’s of the existing data. The lesson is that extrapolations of the fitted regression relationship for remote values of x are likely to be unreliable.
Confidence and prediction intervals
                  
                 for a particular new observation at x
0 are shown in Table 8.7. These intervals can be extended to confidence and prediction bands

                  
                

                  
                 by letting x
0 vary over the entire range of x. Figure 8.5 illustrates such 95% bands for fat.lm, the modeling of bodyfat as a function of abdomin, displayed in Table 8.1. The 0.95 probability statement applies to each particular value of x = x
0. It does not apply to statements that the bands enclose the infinite set of all possible means or predictions as x varies over its range.
                  
                


                
                  
                
                
                  
                
                
                  
                
              


8.4 Diagnostics

              
                
              
              
                
              
            
There are two steps to a statistical analysis. The first step is to construct a model and estimate its parameters. Sections 8.3.2 and 9.2 discuss estimation of the parameters of linear models with one and two predictor variables. The second step is to study the quality of the fit of the data to that model and determine if the model adequately describes the data. This section introduces the diagnostics. They are investigated more thoroughly in Section 11.​3

The choice of diagnostic techniques is connected directly to the model and assumptions. If the assumption (8.2) that the error terms ε

                i
               are normally independently distributed with constant mean 0 and variance [image: 
$$\sigma ^{2}$$
] is valid, then the residuals [image: 
$$e_{i} = (y_{i} -\hat{ y}_{i})$$
] will be approximately normally distributed. More precisely, the n values e

                i
               will behave exactly like n numbers independently chosen from the normal distribution and subjected to p + 1 linear constraints. In the simplest case, when p = 0 (one-sample t-test
                
               in Chapter 5), the residuals e

                i
               behave like n independent normals centered on their observed mean [image: 
$$\bar{x}$$
]. For simple linear regression (p = 1), the residuals behave like n independent normals vertically centered on a straight line specified by the two estimated parameters [image: 
$$\hat{\beta }_{1}$$
] and [image: 
$$\hat{\beta }_{0}$$
].
The diagnostic techniques are various procedures for looking at approximately normal numbers and seeing if they display any systematic behavior. If we see systematic behavior, then we conclude that the model did not capture all the interesting features of the data. We iterate the analysis steps by trying to model the systematic behavior we just detected and then looking at the residuals from the newer model.
Figure 8.6 shows several diagnostic plots from the simple regression model of Section 8.1. These are our versions of standard plots of the Fitted Values and Residuals from the regression analysis. The first three panels are based on the output of the R statement plot(fat.lm) (using the plot.lm method in the stats package). The fourth is based on an S-Plus plot. All four as displayed here were drawn with the statement lmplot(fat.lm) using the lmplot function in the HH package.[image: A77776_2_En_8_Fig6_HTML.gif]
Fig. 8.6Diagnostics for lm(bodyfat ~ abdomin, data=fat). Diagnostic Plots of the Residuals and Fitted Values from a regression analysis. See Section 8.4 for an extensive discussion of each of the four panels in this display. On the left we show two views of the Residuals plotted against the Fitted Values, with the Residuals themselves on the top, and the square root of the absolute values of the Residuals on the bottom. On the top right, we show the QQ plot of the Residuals against the Normal quantiles. On the right bottom, we show the r-f spread plot—a two-panel display of the transposed empirical distributions of the Centered Fitted Values and of the Residuals (see Section 8.5).





(We show plots from plot(fat.lm) in Figure 11.​18 We prefer the lattice-based appearance of our first three plots to the base graphics of plot(fat.lm). We believe the fourth panel of Figure 11.​18 (enlarged in Figure 11.​19) can’t be described until Chapter 11 We believe the fourth panel of Figure 8.6 is highly informative and wish that R had included it as part of their standard display.)

              
                
              
            
We discuss each panel in turn, with the numbering sequence [image: 
$$13\choose 24$$
].
1.Panels 1 and 2 are coordinated. Panel 1 is a plot of the Residuals
                        
                       [image: 
$$e = y -\hat{ y}$$
] against the Fitted Values [image: 
$$\hat{y}$$
] along with a horizontal line at e = 0. The horizontal line corresponds to the least-squares fit of the Residuals against the Fitted Values. There is, by construction, no linear effect in this panel. There may be quadratic (or higher-order polynomial) effects visible. The marginal distribution of the Fitted Values [image: 
$$\hat{y}$$
] may show patterns that need further investigation. When there is only one x-variable, as in the example in Figure 8.6, the Fitted Values are a linear transformation of the x-variable. In this example, we see that the x-value of the point with the largest absolute residual is noticeably larger than any of the other x-values.

 

2.Panel 2 plots
                        
                       [image: 
$$\sqrt{\vert e\vert } = \sqrt{\vert \mbox{ Residuals} \vert }$$
] against the Fitted Values [image: 
$$\hat{y}$$
]. It shows much of the same information as Panel 1. The absolute value folds the negative residuals onto the positive direction in order to emphasize magnitude of departure from the model at the expense of not showing direction. The square root transformation brings in the larger residuals and spreads out the smaller ones. See the discussion of the ladder of powers in Section 4.​9 for more information on the effects of transformations. In this display we chose to retain the original directionality by choice of plotting symbol and color.

 

3.Panel 3 is a normal probability plot
                        
                       with the Residuals on the vertical axis and the normal quantiles on the horizontal axis. The diagonal line has the standard deviation s for its slope. When the residuals are approximately normal, the points will be close to the diagonal line. Asymmetries in the residuals will be visible. Short tails in the distribution of the residuals will be visible as an “S”-shaped display, and long tails in the distribution of the residuals (seen as vertical outliers in panels 1 and 2) will be visible as a mirror-image “ S ” shape. See Section 5.​8 for further discussion of probability plots.

 

4.Panel 4 is subdivided into two transposed empirical distributions. The left panel shows the Centered Fitted Values [image: 
$$\hat{y} -\bar{ y}$$
] and the right panel shows the Residuals [image: 
$$y -\hat{ y}$$
]. The relative vertical ranges of these two panels gives some information on the multiple correlation coefficient R
2.
                        
                       We develop the construction and interpretation of panel 4 in Section 8.5 and Figure 8.7.[image: A77776_2_En_8_Fig7_HTML.gif]
Fig. 8.7Explanation of panel 4 of Figure 8.6. Panels a,b,c are empirical distribution plots and panel d is the transposed empirical distribution plot of the fitted values and residuals from the linear regression fat.lm <- lm(bodyfat ~ abdomin, data=fat). Please see the discussion in the text of Section 8.5 for more detailed description of the panels in this figure.






 





8.5 ECDF of Centered Fitted Values and Residuals

              
                
              
              
                
              
            
The ECDF plot of Centered Fitted Values and Residuals is the r-f spread plot

                
               defined by Cleveland (1993). The empirical distribution of S(x) is defined in Section 5.​7 as the fraction of the data that is less than or equal to x. The empirical distribution is defined analogously to the cumulative distribution F(x) = P(X ≤ x) of a theoretical distribution.
We discuss each of the panels of Figure 8.7.
a.The plot of the cumulative distribution is a plot of F(x) against x.

 

b.The empirical cumulative distribution
                        
                       of an observed set of data is a plot of proportion(X ≤ x) against x. If there are n observations in the dataset, we plot i∕n against x
[i]. We use the convention here that subscripts in square brackets mean that the data have been sorted. For example, let us look at the fitted values [image: 
$$\hat{y}$$
] and residuals [image: 
$$e = y -\hat{ y}$$
] from the regression analysis in Table 8.1. The left side of Figure 8.7b is the cumulative distribution of the fitted values. The right side is the cumulative distribution of the residuals. Note that these plots are on very different scales for the abscissa and therefore cannot easily be compared visually.

 

c.We construct Figure 8.7c by making two adjustments to Figure 8.7b. First, we center the fitted values on their mean. Second, we plot both graphs on the same abscissa scale by forcing them to have the same x-axis constructed as the range of the union of their individual abscissas.

 

d.Figure 8.7d is the transpose of the pair of graphs in Figure 8.7c. We interchange the axes, putting the proportions on the abscissa and the data (centered fitted values in the left panel and residuals in the right panel) on the ordinate. We therefore force the y-axes to have a common limits. S-Plus uses Figure 8.7d as the fifth diagnostic plot of their analog of Figure 8.6. The vertical axis now uses the same y units as panels 1 and 3 of Figure 8.6.

 





              
                
              
            
If our model explains the data well, then we would anticipate that the residuals have less variability than the fitted values.
The multiple correlation R
2 can be written as
                
               [image: 
$$\displaystyle\begin{array}{rcl} R^{2} = \frac{\mathsf{SS}_{\mathrm{Reg}}} {\mathsf{SS}_{\mathrm{Total}}} = \frac{\mathsf{SS}_{\mathrm{Reg}}} {\mathsf{SS}_{\mathrm{Reg}} + \mathsf{SS}_{\mathrm{Res}}}& &{}\end{array}$$
]

 (8.21)

 We can use the squared range of the fitted values as a surrogate for the [image: 
$$\mathsf{SS}_{\mathrm{Reg}}$$
] and the squared range of the residuals as a surrogate for the [image: 
$$\mathsf{SS}_{\mathrm{Res}}$$
]. This leads to the interpretation of panel 4 of Figure 8.6 as an indicator of R
2. We show a series of illustrations of this interpretation in Figure 8.8. If the ranges of the [image: 
$$\hat{y} -\bar{ y}$$
] and [image: 
$$y -\hat{ y}$$
] panels are similar, then [image: 
$$R^{2} \approx \frac{1} {2}$$
]. If the range of the fitted values is larger, then the R
2 is closer to 1, and if the range of the fitted values is smaller, then the R
2 is closer to 0. 
                
              
[image: A77776_2_En_8_Fig8_HTML.gif]
Fig. 8.8There are three columns y, [image: 
$$\hat{y} -\bar{ y}$$
], and [image: 
$$y -\hat{ y}$$
]. The rows of the y column shows a plot of y against x along with the fitted regression line for each of three levels of R
2 (.1,.5,.9). The [image: 
$$\hat{y} -\bar{ y}$$
] and [image: 
$$y -\hat{ y}$$
] columns show the transposed ECDF of the Fitted Values and Residuals for those situations. For R
2 = . 1, the Residuals [image: 
$$y -\hat{ y}$$
] has a wider range than the Centered Fitted Values [image: 
$$\hat{y} -\bar{ y}$$
]. For R
2 = . 5, the two ranges are equal. For R
2 = . 9, the Residuals [image: 
$$y -\hat{ y}$$
] has a narrower range than the Centered Fitted Values [image: 
$$\hat{y} -\bar{ y}$$
].






              
                
              
              
                
              
              
                
              
            

8.6 Graphics
The figures in this chapter represent several different types of plots.
Figure 8.1 is a scatterplot matrix,
                
               constructed in R with splom().
                
              

Figures 8.2 and 8.3 use regrresidplot, a function in the HH package in R. Our function panel.residSquare, used by regrresidplot, constructs the squares that represent the squared residuals with real squares on the plotting surface. The heights of the squares are in y-coordinates. The widths of the squares are the same number of inches (or cm) on the plotting surface as the heights. Each of the figures has been placed into a lattice structure which enforces the same x- and y-ranges for comparability. Our function regrresidplot is based on the explanation of least-squares regression in Smith and Gonick (1993).
Figure 8.5 is a scatterplot drawn with HH function ci.plot with superimposed lines for the fitted regression line and the confidence and prediction intervals.
Figures 8.6, 8.7, and 8.8 use functions in the HH package that are based on the R function plot.lm to display the standard plots of Residuals and Fitted Values from a regression analysis. The ECDF plots of Centered Fitted Values and Residuals are drawn by the HH function diagplot5new, which is based on the S-Plus function rfplot, which in turn is based on a plot by Cleveland (1993). 
                
                
              


8.7 Exercises

8.1. Hand et al. (1994) report on a study by Lea (1965) that investigated the relationship between mean annual temperature (degrees F) in regions of Britain, Norway, and Sweden, and the rate of mortality from a type of breast cancer in women. The data are accessed as data(breast).
a.Plot the data. Does it appear that the relationship can be adequately modeled by a linear function?

 

b.Estimate the regression line and add this to your plot.

 

c.Calculate and interpret R
2.

 

d.Calculate and interpret the standard error of estimate.

 

e.Interpret the estimated slope coefficient in terms of the variables mortality and temperature.

 

f.Find a 95% confidence interval on the population slope coefficient.

 

g.Find a 95% prediction interval
                        
                       for a region having mean annual temperature 45.

 

h.One of these 16 data points is unusual compared to the others. Describe how.

 





8.2. Shaw (1942), later in Mosteller and Tukey (1977), shows the level of Lake Victoria Nyanza relative to a standard level and the number of sunspots in each of 20 consecutive years. The data are accessed as data(lake). Use linear regression to model the lake level as a function of the number of sunspots in the same year.

8.3. Does muscle mass decrease with age? The age in years and muscle mass were obtained from 16 women. The data come from Neter et al. (1996) and are accessed as data(muscle).
a.Plot mass vs age and overlay the fitted regression line.

 

b.Interpret the slope coefficient in terms of the model variables.

 

c.Predict with 90% confidence the muscle mass of a 66-year-old woman.

 

d.Interpret the calculated standard error of estimate.

 

e.Interpret R
2 in terms of the model variables.

 





8.4. The dataset data(girlht) contains the heights (in cm) at ages 2, 9, and 18 of 70 girls born in Berkeley, California in 1928 or 1929. The variables are named h2, h9, and h18, respectively. The data come from a larger file of physical information on these girls in Cook and Weisberg (1999).

              a.Regress h18 on h9 and also h18 on h2.

 

b.Discuss the comparative strengths of these two regression relationships.

 

c.Interpret the slope coefficients of both regressions.

 



            

8.5. We would expect that the price of a diamond ring would be closely related to the size of the diamond the ring contains. Chu (1996) presents data on the price (Singapore dollars) of ladies’ diamond rings and the number of carats in the ring’s diamond. The data are accessed as data(diamond).
a.Regress price on carats.

 

b.Notice that the estimated intercept coefficient is significantly less than 0. Therefore, this model is questionable, although the range of the predictor variables excludes 0. Instead fit a model without an intercept term.
                        
                      

                        
                      


 

c.Compare the goodness of fits of the two models. Which is preferable?

 





8.6. The data data(income), from Bureau of the Census (2001), contains year 2000 data on the percentage of college graduates and per capita personal income for each of the 50 states and District of Columbia. Regress income on college. Interpret the meaning of R
2 for these data. Discuss which states have unusually low or high per capita income in relation to their percentage of college graduates.

8.7. Prove Equation (8.15) [image: 
$$\displaystyle\begin{array}{rcl} \sigma _{\hat{\beta }_{1}}^{2} =\mathop{ \mbox{ var}}(\hat{\beta }_{ 1}) = \frac{\sigma ^{2}} {\sum (x_{i} -\bar{ x})^{2}}& & {}\\ \end{array}$$
]


 The proof is primarily algebraic manipulation. Rewrite (8.13) as a weighted sum of the independent y

                i
              , that is as [image: 
$$\displaystyle\begin{array}{rcl} \hat{\beta }_{1} =\sum (y_{i} -\bar{ y})\left ( \frac{(x_{i} -\bar{ x})} {\sum (x_{i} -\bar{ x})^{2}}\right ) =\sum y_{i}k_{i}& &{}\end{array}$$
]

 (8.22)

 then write [image: 
$$\displaystyle\begin{array}{rcl} \mathop{\mbox{ var}}(\hat{\beta }_{1}) =\sigma ^{2}\sum k_{ i}^{2}& &{}\end{array}$$
]

 (8.23)

 and simplify.

8.8. Prove Equation (8.17) that the variance of the estimate of the intercept [image: 
$$\hat{\beta }_{0}$$
] has variance [image: 
$$\displaystyle\begin{array}{rcl} \sigma _{\hat{\beta }_{0}}^{2} =\mathop{ \mbox{ var}}(\hat{\beta }_{ 0}) =\sigma ^{2}\left ( \frac{1} {n} + \frac{\bar{x}^{2}} {\sum (x_{i} -\bar{ x})^{2}}\right )& & {}\\ \end{array}$$
]





8.9. Algebraically prove the assertion in Equation (8.8) that in simple regression, the sum of the calculated residuals is zero.

8.10. In Figure 8.2 we construct the actual squares of the residuals and show that the sum of the areas of the squared residuals is smallest for the least-squares line. We do the construction in the simplest way, placing the other three sides on the side that is already there representing the residual. Other possibilities are
a.Place the left–right center of the square on the residual line. Use the function panel.residSquare as the model for your function.

 

b.Place a circle (a real circle in inches of graph surface) on the points. Base your function on the functions panel.residSquare and the descriptions of the R points function (?points). The value pch=1 provides a circle. You can use the cex argument to control the size of the circles.
Option 1: Keep the existing residual line and center the circle on the observed point.
Option 2: Use the existing residual line as the diameter of the circle.
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In Chapter 8 we introduce the algebra and geometry behind the fitting of a linear model relating a single response variable to one or more explanatory (predictor)
              
            variables using the criterion of least squares. In this chapter we consider in more detail situations where there are two or more predictors.
The two linear modeling techniques we have studied so far, regression in Chapter 8 and analysis of variance in Chapter 6, have much of their mathematics interpretation in common. In this chapter we explore the common mathematical features, with some examples of how they apply. In the following chapters we use this common structure.
We begin by extending the Chapter 8 discussion of regression with a single predictor (simple regression) to allow for two or more predictors. Multiple regression refers to regression analysis with at least two predictors. There is another term multivariate regression which refers to situations with more than one response variable. We do not discuss multivariate regression in this book.
9.1 Regression with Two Predictors—Least-Squares Geometry

              
                
              
            
The graphics for least squares with two x-variables, and in general for more than two x-variables, are similar to the graphics in Figure 8.​2 We will work with two x-variables, abdomin and biceps, from the data(fat) dataset we used in Chapter 8. In the three snapshots of the basic 3-dimensional plot in Figure 9.1, bodyfat is plotted as y against the other two variables as x
1 and x
2.[image: A77776_2_En_9_Fig1_HTML.gif]
Fig. 9.1Bodyfat data with one response variable bodyfat and two predictor variables biceps and abdomin. This figure is three static screenshots of an interactive 3-d plot. The plot is the two-x extension of the display of squared residuals we introduced in Figure 8.​2 The center panel shows a viewpoint aligned with the least-squares plane. The left panel shows a rotation to the left and we see the negative residuals under the plane and the partially occluded positive residuals through the plane. The right panel shows a rotation to the right and we see the positive residuals above the plane and the partially occluded negative residuals through the plane. See the text for the detailed description of the three panels. See Table 9.1 for the corresponding ANOVA table.




                        
The response variable is placed on the vertical dimension and the two x-variables biceps and abdomin define the horizontal plane. The red and green dots at the observations show the three-dimensional location of the observed points. Positive residuals are shown as green dots above the least-squares plane and are connected to the fitted value on the plane by a green residual line. The green residual line forms one edge of the square. Negative residuals are shown as red dots below the least-squares plane and are connected to the fitted value on the plane by a red residual line. The red residual line forms one edge of the square.
The least-squares plane minimizes the sum of the squared areas. The displayed squares are the squares whose sum has been minimized by the least-squares process. The view in the right panel is from above the plane. It shows biceps coming out of the page and abdomin going into the page. The view in the center panel is from a point that is on the least-squares plane. The view in the left panel is from below the least-squares plane. Variable biceps is coming out of the page and variable abdomin is almost along the page. The code in file HHscriptnames(9) constructs an interactive 3-d version of this plot. We selected these specific static snapshots from the interactive plot.
We think of this plot as a point cloud
                
              in 3-space floating over the surface defined by the x-variables. Any plane other than the least-squares plane
                
              will show a larger sum of squared areas than the least-squares plane illustrated here.

              
                
              
            

9.2 Multiple Regression—Two-X Analysis
The specification of the analysis for two x-variables is similar to that for one x-variable. The sequential ANOVA table and the table of coefficients for a two x-variable analysis of the body fat data data(fat) are in Table 9.1.
Since both predictors
                
              are significantly different from 0, the arithmetic justifies the illustration in Figure 9.1, where we see from the regression plane that [image: 
$$\hat{y}$$
] changes linearly with changes in either x
1 and x
2. The table of coefficients tells us that on average for this population, percent body fat increases by 0.683 if abdomen circumference increases by one cm and biceps is unchanged, and percent body fat decreases by.922 if biceps increases by one cm while abdomin is unchanged.
The t-value for biceps (the second variable in the ANOVA table) is related to the F-value for biceps: t
2 = (−2. 946)2 = 8. 677 = F. The t-value (8.693) for abdomin (the first variable in the ANOVA table) is not simply related to the correspondingly labeled F-value (101.172). We investigate this relationship in the discussion of Table 13.​27


              
                
              
              Table 9.1Sequential ANOVA table and table of regression coefficients from the two-x model with y=bodyfat, x
1=abdomin, and x
2=biceps. See Figure 9.1.


	
                          [image: A77776_2_En_9_Figa_HTML.gif]
                        
	 



            
Figure 9.2 shows the diagnostics from the two-X regression model of Section 9.2. Compare this to the similar plot for one-X regression in Figure 8.​6
[image: A77776_2_En_9_Fig2_HTML.gif]
Fig. 9.2Diagnostics for lm(bodyfat ~ abdomin + biceps, data=fat). Compare this to the similar plot for one-X regression in Figure 8.​6







9.3 Multiple Regression—Algebra
Everything in simple regression analysis carries over to multiple regression. There are additional issues that arise because we must also study the relations among the predictor variables. The algebra for multiple regression is most easily expressed in matrix form. (A brief introduction to matrix algebra appears in Appendix I.) The formulas for simple regression can be derived as the special case of multiple regression with p = 1.
Assume
                
              

                
              
[image: 
$$\displaystyle{ \mathop{Y }_{n\times 1} =\mathop{ X}_{n\times (1+p)}\mathop{ \beta } _{(1+p)\times 1} +\mathop{ \epsilon }_{n\times 1} }$$
]

 (9.1)

 or equivalently [image: 
$$\displaystyle{ y_{i} =\beta _{0} +\beta _{1}X_{i1} + \cdots +\beta _{p}X_{ip} +\epsilon _{i}\quad \mbox{ for $i = 1,\ldots,n$ } }$$
]

 (9.2)

 where

              	
[image: 
$$\mathop{Y }_{n\times 1}$$
] are observed values,

	
[image: 
$$\mathop{X}_{n\times (1+p)} = [\mathbf{1\,}X_{1}X_{2}\ldots X_{p}\,]$$
] are observed values with [image: 
$$\mathop{\mathbf{1}}_{n\times 1}$$
] representing the constant column with 1 in each row and [image: 
$$\mathop{X_{j}} _{n\times 1}$$
] indicating the column with X

                      ij
                     in the i
th row,

	
[image: 
$$\mathop{\beta }_{(1+p)\times 1}$$
] are unknown constants,

	
[image: 
$$\mathop{\epsilon }_{n\times 1} \sim N(0,\sigma ^{2}I)$$
] are independent.




            
Then the least-squares
                
              estimate [image: 
$$\widehat{\beta }$$
] is obtained by minimizing the sum of squared deviations [image: 
$$\displaystyle{S = (Y - X\beta )'(Y - X\beta ) =\sum _{ i=1}^{n}{\bigl (y_{ i} - (\beta _{0} +\beta _{1}X_{i1} + \cdots +\beta _{p}X_{ip})\bigr )}^{2}}$$
]


 by taking the derivatives (∂ S∕∂ β

                j
              ) with respect to all the β

                j
               and setting them to 0. The resulting set of equations, called the Normal Equations

                
              and generalizing Equation 8.​6, [image: 
$$\displaystyle{ (X'X)\widehat{\beta } = (X'Y ) }$$
]

 (9.3)

 are solved for [image: 
$$\widehat{\beta }$$
]. The solution [equivalent to Equation 8.7] is equal to [image: 
$$\displaystyle{ \widehat{\beta }= (X'X)^{-1}(X'Y ) = \left ((X'X)^{-1}X'\right )Y = (X^{+})Y }$$
]

 (9.4)

 The symbol [image: 
$$X^{+}\stackrel{\mathrm{def}}{=}(X'X)^{-1}X'$$
]

                
              

                
              is the notation for the Moore–Penrose generalized inverse

                
              

                
              of any rectangular matrix. In the special case of square invertible matrices the generalized inverse becomes the familiar matrix inverse. We introduce this notation here because it simplifies the appearance of the equations. We start with the model Y = X β +ε in Equation (9.1) and conclude with the estimate [image: 
$$\hat{\beta }= X^{+}Y$$
] in Equation (9.4). We effectively moved the X to the other side and replaced the ε with the hat on the β. Note that Equation (9.4) is an identity, but neither efficient nor numerically stable as a computing algorithm. An efficient algorithm uses Gaussian
                
              elimination to solve the equations directly. See Section I.4.7 for further discussion on efficient computation.
We construct the fitted values with
                
              
[image: 
$$\displaystyle{ \widehat{Y } = X\widehat{\beta } ={\bigl ( X(X'X)^{-1}X'\bigr )}Y = HY }$$
]

 (9.5)

 where the matrix [image: 
$$\displaystyle{ H\stackrel{\mathrm{def}}{=}X(X'X)^{-1}X' }$$
]

 (9.6)

 is a projection matrix.
                
              The sum of squares (SS)
                
              for the regression is [image: 
$$\mathsf{SS}_{\mathrm{Reg}} = Y 'HY$$
]. The projection matrix H is called the hat matrix

                
              because multiplying H by Y places a hat ‘[image: 
$$\,\widehat{\ }\,$$
]’ on Y. We can see that [image: 
$$H_{ij} = \partial \widehat{Y }_{i}/\partial Y _{j}$$
]. We discuss the hat matrix in Section 9.3.1.
The residuals

                
              are defined as the difference [image: 
$$\displaystyle{ e = Y -\widehat{ Y } = (I - H)Y }$$
]

 (9.7)

 between the observed values Y and the fitted values [image: 
$$\widehat{Y }$$
]. With least-squares fitting, the residuals are orthogonal to the observed x-values [image: 
$$\displaystyle\begin{array}{rcl} e'X = 0& &{}\end{array}$$
]

 (9.8)

 and therefore to the fitted values [image: 
$$\displaystyle\begin{array}{rcl} e'\hat{Y } = e'X\hat{\beta } = 0& &{}\end{array}$$
]

 (9.9)

 The variance–covariance matrix of the residuals e is [image: 
$$\sigma ^{2}(I - H)$$
]. Note in particular that [image: 
$$\mathop{\mbox{ var}}(e_{i}) =\sigma ^{2}(1 - H_{ii})$$
] is not constant for all i. As a consequence the confidence bands in Figure 8.​5 are not parallel to the regression line, but instead have a minimum width at the mean of the x values.
An unbiased estimator of [image: 
$$\sigma ^{2}$$
]

                
              is [image: 
$$\displaystyle\begin{array}{rcl} s^{2} = \frac{Y '(I - H)Y } {n - p - 1} = \mathsf{MS}_{\mathrm{Res}} = \mathsf{SS}_{\mathrm{Res}}/\mathsf{df}_{\mathrm{Res}}& &{}\end{array}$$
]

 (9.10)

 Its square root, s, sometimes called the standard error of estimate,
                
              is an asymptotically unbiased estimator of [image: 
$$\sigma$$
]. As in the case of simple regression, the sum of the residuals is zero, that is, [image: 
$$\displaystyle\begin{array}{rcl} \sum _{i=1}^{n}e_{ i} = \mathbf{1}'e = 0& &{}\end{array}$$
]

 (9.11)

 where 1′ is a row vector of ones. The proof of this assertion is requested in Exercise 9.1.
Both [image: 
$$\widehat{\beta }$$
] and [image: 
$$\widehat{Y }$$
] are linear combinations of y

                i
              . The y

                i
               are independent because the ε

                i
               are independent. Hence the elementary theorems 
                
              
[image: 
$$\displaystyle\begin{array}{rcl} E(a_{1}y_{1} \pm a_{2}y_{2})& =& a_{1}E(y_{1}) \pm a_{2}E(y_{2}) \mbox{ (3.8)} {}\\ \end{array}$$
]


 and [image: 
$$\displaystyle\begin{array}{rcl} \mathop{\mbox{ var}}(a_{1}y_{1} \pm a_{2}y_{2})& =& a_{1}^{2}\mathop{ \mbox{ var}}(y_{ 1}) + a_{2}^{2}\mathop{ \mbox{ var}}(y_{ 2}) \mbox{ (3.9)} {}\\ \end{array}$$
]


 are applicable. These are where we get Equation (8.​15), the standard error for β
1, the corresponding formula [image: 
$$\displaystyle\begin{array}{rcl} \mathop{\mbox{ var}}(\hat{\beta }) =\sigma ^{2}(X'X)^{-1}& &{}\end{array}$$
]

 (9.12)

 for the estimator of β in Equation (9.4), and formulas (9.24) and (9.25) for tests and confidence intervals about E(Y | X) and for prediction intervals about Y for new values of X.
9.3.1 The Hat Matrix and Leverage
The hat matrix
                  
                

                  
                in Equation (9.6) is called that because premultiplication by H places a hat ‘[image: 
$$\;\widehat{\ }\;$$
]’ on Y: [image: 
$$\hat{Y } = HY$$
]. The i
th diagonal of H is called the leverage
                  
                of the i
th case because it tells how changes in Y

                  i
                 affect the location of the fitted regression line, specifically: [image: 
$$\displaystyle\begin{array}{rcl} \frac{\partial \widehat{Y }_{i}} {\partial Y _{i}} = H_{ii}& &{}\end{array}$$
]

 (9.13)

 If [image: 
$${\bigl (H_{ii}\;>\; 2(p + 1)/n\bigr )}$$
], then the i
th point is called a high leverage
                  
                point. See Section 11.​3.​1 Equation (9.13) shows that changes in the observed Y

                  i
                -value of high leverage points have a large effect on the predicted value [image: 
$$\hat{Y }_{i}$$
], that is, they have a large effect on the location of the fitted regression plane.
The hat matrix
                  
                is used in regression diagnostics, that is, techniques for evaluating how the individual data points affect the regression analysis. Many diagnostics are discussed in Section 11.​3

Frequently these diagonals of H are denoted by h

                  i
                 = H

                  ii
                . They are calculated in R with the command hat(X).
A specific formula for the leverage
                  
                
h

                  i
                 itself is almost simple: [image: 
$$\displaystyle\begin{array}{rcl} h_{i} = X_{i\cdot }(X'X)^{-1}X_{ i\cdot }'\qquad \mbox{ where $X_{i\cdot }$ is the $i^{\mbox{ th}}$ row of $X$}& &{}\end{array}$$
]

 (9.14)

 In an alternate but common notation, the predictor matrix
                  
                does not include the column 1. To avoid excessive confusion, define Z to be all the columns of X except the initial column 1: [image: 
$$\displaystyle\begin{array}{rcl} \mathop{Z}_{n\times p}& =& [X_{1}X_{2}\ldots X_{p}\,] {}\\ \end{array}$$
]


 and let [image: 
$$\displaystyle\begin{array}{rcl} \bar{Z}& =& (\bar{X}_{1}\bar{X}_{2}\ldots \bar{X}_{p}) {}\\ \end{array}$$
]


 In this notation the formula for leverage
                  
                looks worse: [image: 
$$\displaystyle\begin{array}{rcl} h_{i}& =& \frac{1} {n} + (Z_{i\cdot }-\bar{ Z})\left ((Z -\mathbf{1}\bar{Z})'(Z -\mathbf{1}\bar{Z})\right )^{-1}(Z_{ i\cdot }-\bar{ Z})'{}\end{array}$$
]

 (9.15)

 The term [image: 
$$\frac{1} {n}$$
] in Equation (9.15), with the Z matrix which excludes the column 1, is not needed in Equation (9.14), with the X matrix which includes the column 1. In simple regression, with Z = X
1 = x, formula (9.15) simplifies to Equation (8.​19) [image: 
$$\displaystyle\begin{array}{rcl} \qquad h_{i}& =& \frac{1} {n} + \frac{(x_{i} -\bar{ x})_{}^{2}} {\sum \limits _{i=1}^{n}(x_{i} -\bar{ x})^{2}}\qquad \ \ \mbox{ (8.19)} {}\\ \end{array}$$
]





9.3.2 Geometry of Multiple Regression

                
                  
                
              
Several types of pictures go along with multiple regression. We have already looked at the scatterplot matrix,
                  
                drawn with the R command splom(data.frame); for example, see Figure 8.​1 for the splom of the body fat dataset fat.
The picture that goes best with the defining least-squares equations is the multidimensional point cloud.
                  
                It is easiest to illustrate this with Y and two X-variables. See Figures 8.2 and 9.1 for one-X and two-X examples.
A similar construction is in principle possible for more X-variables. Illustrating the projection of four or more dimensions onto a two-dimensional graph is difficult at best.


9.4 Programming
9.4.1 Model Specification

                
                  
                
              
We use several notations for the specification of a regression model to a computer program. How are the statements constructed in each notation, and what are their syntax and their semantics?
For specificity, let us look at a linear regression model with a response variable y and two predictor variables x
1 and x
2. We express this model in several equivalent notations. In the algebraic notation of Section 9.3, we have [image: 
$$\displaystyle\begin{array}{rcl} \mathop{Y }_{\phantom{(}n\times 1\phantom{)}} =\mathop{ X}_{n\times (1+2)}\;\mathop{ \beta } _{(1+2)\times 1} +\mathop{ \epsilon }_{\phantom{(}n\times 1\phantom{)}}& &{}\end{array}$$
]

 (9.16)

 or equivalently [image: 
$$\displaystyle\begin{array}{rcl} y_{i} =\beta _{0} +\beta _{1}X_{i1} +\beta _{2}X_{i2} +\epsilon _{i}\quad \mbox{ for }i = 1,\ldots,n& &{}\end{array}$$
]

 (9.17)

 In R model formula
                  
                notation, we have 
                  
                
[image: 
$$\displaystyle\begin{array}{rcl} \mathtt{y}\ ~\ \mathtt{x1}\ +\ \mathtt{x2}& &{}\end{array}$$
]

 (9.18)

 In SAS model statement notation (with the space character indicating the formulaic sum), we have [image: 
$$\displaystyle\begin{array}{rcl} \mathtt{y}\ =\ \mathtt{x1}\ \ \ \mathtt{x2} & &{}\end{array}$$
]

 (9.19)

 In both computer languages the statement is read, “y is modeled as a linear function of x
1 and x
2.”
                  
                

The four statements (9.16)–(9.19) are equivalent. Both computational specifications remove the redundancy in notation used by the traditional scalar algebra notation. The program knows that the variables (y, x1, and x2) have length n; there is no need to repeat that information. All linear model specifications have regression coefficients, and most have a constant term (we discuss models without a constant term in Section 9.8); there is no need to specify the obvious. There is always an error term because the model does not fit the data exactly; there is no need to specify the error term explicitly. The two pieces of information unknown to the program are 	Which variable is the response and which are the predictors. This is indicated positionally—the response is on the left, and notationally—the “~” or “=” separates the response from the predictors. A separation symbol is needed because the same notation can be generalized to express multiple response variables.

	The relationship between the predictors. R indicates summation explicitly with the “+” and SAS indicates it implicitly by leaving a space between the predictor variable names. Other relationships, for example crossing
                        
                      or nesting
                        
                      (to be discussed beginning in Section 13.​5), are indicated by other algebraic symbols as indicated in Table 13.​18






The interpretation of operator symbols
                  
                

                  
                

                  
                in the model specification
                  
                notation is related to, but not identical to, the interpretation of the same symbols in an ordinary algebra statement.
                  
                

                  
                The model formulas (9.18) and (9.19) mean:
find the coefficients [image: 
$$\hat{\beta }_{0},\hat{\beta }_{1},\hat{\beta }_{2}$$
] that best fit [image: 
$$\displaystyle\begin{array}{rcl} y_{i} =\hat{\beta } _{0} +\hat{\beta } _{1}x_{i1} +\hat{\beta } _{2}x_{i2} +\hat{\epsilon } _{i}& & {}\end{array}$$
]

 (9.20)

 for the observed values (y

                  i
                , x

i1, x

i2) for all i: 1 ≤ i ≤ n.
The “+” and space “ ” in formulas (9.18) and (9.19) do not have the ordinary arithmetic sense of x

i1 + x

i2.
                  
                

                  
                


9.4.2 Printout Idiosyncrasies
The R summary and anova functions do not print the Total line in their ANOVA tables.

SAS PROC GLM uses the name “Type I Sum of Squares” for the sequential ANOVA table.
                  
                See the discussion of sums of squares types in Section 13.​6.​1



9.5 Example—Albuquerque Home Price Data
9.5.1 Study Objectives
Realtors can use a multiple regression model to justify a house selling price based on a list of desirable features the house possesses. Such data are commonly compiled by local boards of realtors. We consider a data file containing a random sample of 117 home sales in Albuquerque, New Mexico during the period February 15 through April 30, 1993, taken from Albuquerque Board of Realtors (1993).

9.5.2 Data Description
We use a subset of five of the eight variables for which data are provided, and 107 of the 117 houses that have information on all five of these variables. 
                      price:
                    Selling price in $100’s



                      sqft:
                    Square feet of living space



                      custom:
                    Whether the house was built with custom features (1) or not (0)



                      corner:
                    Whether the house sits on a corner lot (1) or not (0)



                      taxes:
                    Annual taxes in $





We investigate models of price as a function of some or all of the candidate predictors sqft, custom, corner, and taxes. This example assumes that taxes potentially determine price. In some real estate contexts the causality could work in the opposite direction: selling prices can affect subsequent home appraisals and hence tax burden.

                
                  
                
              

9.5.3 Data Input
The data are accessed with data(houseprice) and looked at initially with the scatterplot matrices
                  
                in Figures 9.3 and 9.4. Two of the four candidate predictors, custom and corner, are dichotomous
                  
                variables, and the panels involving them in Figure 9.3 are wasteful of space and not very informative. Figure 9.4, with separate superpanels for the two values of corner and separate plot symbols for the two values of custom, displays the information much more efficiently. We learn from these figures that custom houses tend to have higher prices than regular houses, and corner houses have different patterns of relationships between price and the continuous predictors than middle houses.[image: A77776_2_En_9_Fig3_HTML.gif]
Fig. 9.3House-price data. The discreteness of variables customf and cornerf decreases the informativeness of this splom, particularly the panel for this pair of variables. Figure 9.4 is a preferred splom presentation of these data.




                                [image: A77776_2_En_9_Fig4_HTML.gif]
Fig. 9.4Albuquerque house-price data. Custom houses go for higher prices than regular houses. Corner houses have a different pattern than middle houses.




                            
Figure 9.4 suggests that price is directly related to all four candidate predictors.
                  
                We proceed with the analysis by regressing price on the four variables in Table 9.2. In this Table we examine the signs of the regression coefficients and the magnitudes of their p-values. We see that price is strongly positively associated with sqft, taxes and custom (as opposed to regular) houses. Such conclusions are consistent with common knowledge of house valuation. The predictor corner has a marginally significant negative coefficient. Hence there is moderate evidence that, on average, corner houses tend to be lower priced than middle houses.Table 9.2Analysis of variance table for house-price data.


	
                            [image: A77776_2_En_9_Figb_HTML.gif]
                          
	 



                            
The magnitudes of the regression coefficients also convey useful information. For example, on average, each additional square foot of living space corresponds to a 0. 2076 × $100 = $20. 76 increase in price, and on average custom houses sell for 156. 81481 × $100 = $15, 681. 48 more than regular houses. The R
2 = 0. 8280 says that in the population of houses from which data(houseprice) is a random sample, 82. 8% of the variability in price is accounted for by these four predictors.


9.6 Partial F-Tests

              
                
              
            

              
                
              
            

              
                
              
            

              
                
              
            
Sometimes we wish to examine whether two or more predictor variables acting together have a significant impact on the response variable. For example, suppose we consider the house-price data of Section 9.5 with four candidate predictors, sqft, custom, corner, and taxes, and wish to examine if custom and corner together have a significant impact on price, above and beyond the impacts of sqft and taxes. R (in Table 9.3) approaches this by direct comparison of two models. The full model

                
              contains all predictors under consideration. The reduced model

                
              contains all predictors apart from the ones we test in order to see if then can be eliminated from the model. Partial F

                
              refers to the fact that we are simultaneously testing part of the model’s predictors, not all predictors but perhaps more than just one of them. The idea behind this test is apparent from Table 9.3. The F-test examines whether the reduction in residual sum of squares as a result of fitting the more elaborate model is a significant reduction. This assessment is performed by measuring the extra sum of squares

                
              , defined asTable 9.3Partial F-tests of H
0: [image: 
$$\beta _{\mbox{ custom}}$$
] = [image: 
$$\beta _{\mbox{ corner}}$$
] = 0 using the R anova() function with two linear models as arguments.


	
                          [image: A77776_2_En_9_Figc_HTML.gif]
                        
	 



                        

[image: 
$$\displaystyle\begin{array}{rcl} \mbox{ (residual SS from reduced model) $-$ (residual SS from full model)}& &{}\end{array}$$
]

 (9.21)

 against the residual sum of squares from the full model. The degrees of freedom associated with the extra sum of squares equals the number of parameters being tested for possible elimination.
The general form of the test is [image: 
$$\displaystyle\begin{array}{rcl} F = \frac{(\mbox{ extra SS })/(\mbox{ df associated with extra SS})} {(\mbox{ full model residual SS})/(\mbox{ df associated with full model residual SS})}\qquad & &{}\end{array}$$
]

 (9.22)



The strategy of this approach is used whenever one wishes to compare the fits of two linear models, one of which has the same terms as the other plus at least one more term.
For testing the hypothesis that the population regression coefficients of custom and corner are both equal to 0, we see that the F-statistic is 8.82 on 2 and 102 degrees of freedom. There are two numerator degrees of freedom
                
              because the null hypothesis involves constraints on two model parameters. The very small p-value strongly suggests that this null hypothesis is false. We conclude that at least one of custom and corner is needed in the model.
The preceding discussion assumes that sqft and taxes were already in the model. It is also possible to test the combined effect on price of custom and corner compared with no other predictors, or exactly one of the predictors sqft and taxes. However, we do not pursue these possibilities here.
                
              


9.7 Polynomial Models

              
                
              
            
If the relationship between a response Y and an explanatory variable X is believed to be nonlinear, it is sometimes possible to model the relationship by adding an X
2-term to the model in addition to an X-term. For example, if Y is product demand and X is advertising expenditure on the product, an analyst might feel that beyond some value of X there is “diminishing marginal returns” on this expenditure. Then the analyst would model Y as a function of X, X
2, and possibly other predictors, and anticipate a significant negative coefficient for X
2. Occasionally a need is encountered for higher-order polynomial terms.
An example from Hand et al. (1994), original reference Williams (1959), is data(hardness) which we first encountered in Exercise 4.5. In this section we investigate the modeling of hardness as a quadratic function of density. We pursue this analysis in Exercise 11.2 from another angle, a transformation of the response variable hardness.
Hardness of wood is more difficult to measure than density. Modeling hardness in terms of density is therefore desirable. These data come from a sample of Australian Janka timbers. The Janka hardness test measures the resistance of a sample of wood to denting and wear. A quadratic model
                
              fits these data better than a linear model. An additional virtue of the quadratic model is that its intercept term differs insignificantly from zero; this is not true of a model for these data containing only a linear term. (If wood has zero hardness, it certainly has zero density.)
The fitted quadratic model
                
              in Table 9.4 is [image: 
$$\displaystyle\begin{array}{rcl} \mathtt{density} = -118.007 + 9.4340\ \mathtt{hardness} + 0.5091\ \mathtt{hardness}^{2}& & {}\\ \end{array}$$
]



Table 9.4Quadratic regression of hardness data. The quadratic term, with p=.0027, is very important in explaining the curvature of the observations. See Figure 9.5 to compare this fit with the linear fit. Compare the regression coefficients here with the regression coefficients in Table 9.5 where we use the orthogonal quadratic polynomial, rather than the simple square, for the quadratic regressor.


	
                          [image: A77776_2_En_9_Figd_HTML.gif]
                        
	 




The regression coefficient for the quadratic term is significantly greater than zero, indicating that the plot is a parabola opening upwards as shown in Figure 9.5. The p-value for the quadratic regression coefficient is identical to the p-value for the quadratic term in the ANOVA table because both tests are for the marginal effect of the quadratic term assuming the linear term is already in the model. The two p-values for the linear term differ because they are testing the linear coefficient in two different models. The p-value for linear regression coefficient assumes the presence of a quadratic term in the model, but the linear p-value in the sequential ANOVA table addresses a model with only a linear component.[image: A77776_2_En_9_Fig5_HTML.gif]
Fig. 9.5Linear [image: 
$$y \sim \ x$$
] and quadratic [image: 
$$y \sim \ x + x^{2}$$
] fits of y=hardness to x=density. The quadratic curve fits much better as can be seen from the much smaller squares (leading to smaller residual sum of squares) at the left and right ends of the density range in the quadratic fit. See Table 9.4 for the numerical comparison.




                        
When fitting a truly quadratic model, it is necessary to include the linear term in the model even if its coefficient does not significantly differ from zero unless there is subject area theory stating that the relationship between the response and predictor lacks a linear component.
                
              

The regression coefficients of the x
2 term are difficult to interpret. An interpretation should be done with the coefficients of the orthogonal polynomials shown in Table 9.5, not the simple polynomials of Table 9.4. See Section 10.​4 for further discussion.Table 9.5Quadratic regression of hardness data with orthogonal polynomials. The quadratic term, with p=.0027, is very important in explaining the curvature of the observations. See Figure 9.5 to compare this fit with the linear fit. In this fit with the orthogonal polynomial for the quadratic term, the regression coefficient for the linear term is identical to the regression coefficient in the simple linear regression. Compare to the very different regression coefficients in Table 9.4. The ANOVA tables are identical.


	
                          [image: A77776_2_En_9_Fige_HTML.gif]
                        
	 



                        

              
                
              
              
                
              
            

              
                
              
              
                
              
            

              
                
              
            

9.8 Models Without a Constant Term

              
                
              
              
                
              
            
Sometimes it is desired that the statistical model for a response not contain a constant (i.e., vertical intercept) term because the response is necessarily equal to zero if all predictors are zero. An example is the modeling of the body fat data discussed in Section 9.1. Obviously, if a “subject” has zero measurements for abdomin and biceps, then the response bodyfat is necessarily zero also. Similarly, if we wish to model the volume of trees in a forest as a function of trees’ diameters and heights, a “tree” having zero diameter and height must have no volume.
An advantage to explicitly recognizing the zero intercept constraint is that a degree of freedom that would be used to estimate the intercept is instead used to estimate the model residual. This results in slightly increased power of tests and decreased sizes of interval estimates of model parameters.
Figure 9.6 and Table 9.6 are for regressions of bodyfat on biceps, both with and without a constraint that the regression pass through the origin. Note the appreciably smaller slope of the no-intercept regression and that the no-intercept model has 46 df for residual as compared with 45 df for the unconstrained model. 
                
              

                
              
[image: A77776_2_En_9_Fig6_HTML.gif]
Fig. 9.6Regressions with and without a constant term for a portion of the body fat data. See Table 9.6. The left panel is limited to the range of the data. The right panel extends the range to include both intercepts. The dotted line through the origin at (0,0) makes an unwarranted extrapolation outside the range of the data.




Table 9.6Body fat data: Regressions of bodyfat on biceps, with an intercept term (here) and without an intercept term (in Table 9.7). See Figure 9.6. As compared with the intercept model, the no-intercept model has larger values of both the regression sum of squares and the total sum of squares, and hence also a larger value of R
2.


	
                          [image: A77776_2_En_9_Figf_HTML.gif]
                        
	 



Table 9.7Body fat data: Regressions of bodyfat on biceps, without an intercept term. See Table 9.6 for the model with an intercept term. See Figure 9.6. R uses the notation - 1 in the formula to indicate that the column of 1 is to be suppressed from the dummy variable matrix. As compared with the intercept model, the no-intercept model has larger values of both the regression sum of squares and the total sum of squares, and hence also a larger value of R
2. The no-intercept model has a very high regression sum of squares and corresponding F-value because it includes the contribution from the constant term.


	
                          [image: A77776_2_En_9_Figg_HTML.gif]
                        
	 





9.9 Prediction

              
                
              
              
                
              
            
Generalizing the discussion in Section 8.​3.​5 for simple regression, the multiple regression model equation, with regression coefficients estimated by the least-squares analysis, is commonly used for two distinct but related problems.
1.Find a confidence interval on the conditional mean of the population of Y | x. That is, estimate a range of mean E(Y | x)-values that (with high confidence) bracket the true mean for the specified values of the predictors x.

 

2.Find a prediction interval for a new observed response Y
0 from these values of the predictors x; i.e., an interval within which a particular new observation will fall with a certain probability.

 




We continue the analysis of data(fat) to illustrate the distinction between these two problems. Using R we continue with fat2.lm displayed in Table 9.1. For specificity, we work with x
1 = abdomin = 93 and x
2 = biceps = 33.
The algebraic setup begins from the model in Equation (9.1), from which it follows that [image: 
$$\displaystyle\begin{array}{rcl} s_{e}^{2} = \frac{Y 'Y -\hat{\beta }'X'Y } {n - p - 1} = \frac{(Y -\hat{ Y })'(Y -\hat{ Y })} {n - p - 1} & & {}\\ \end{array}$$
]


 Let x
0 = (93 33) denote the vector of predictor values for which we wish to construct these two intervals. Define [image: 
$$\displaystyle\begin{array}{rcl} h_{0} = x_{0}(X'X)^{-1}x'_{ 0}& &{}\end{array}$$
]

 (9.23)

 Let [image: 
$$t_{\mbox{ $ \frac{\alpha }{ 2} $},n-p-1}$$
] denote the [image: 
$$100(1 - \frac{\alpha } {2})$$
] percentage point of the t distribution with n − p − 1 degrees of freedom. The expected response E(y | x
0) (the center of the confidence interval) and the predicted response [image: 
$$\hat{y}_{x_{0}}$$
] for a new observation (the center of the prediction interval) are both equal to [image: 
$$x_{0}'\hat{\beta }$$
]. Then the 100(1 −α)% confidence interval is [image: 
$$\displaystyle\begin{array}{rcl} x_{0}'\hat{\beta } \pm t_{\mbox{ $ \frac{\alpha }{ 2} $},n-p-1}\,s_{e}\sqrt{h_{0}}& &{}\end{array}$$
]

 (9.24)

 and the 100(1 −α)% prediction interval is [image: 
$$\displaystyle\begin{array}{rcl} x_{0}'\hat{\beta } \pm t_{\mbox{ $ \frac{\alpha }{ 2} $},n-p-1}\,s_{e}\sqrt{1 + h_{0}}& &{}\end{array}$$
]

 (9.25)



The prediction interval is wider than the confidence interval because we are predicting one particular y corresponding to x
0, but estimating with confidence the mean E(y | x
0) of all possible y’s that could arise from x
0. A particular y could be much smaller or larger than the mean, and hence there is more uncertainty about y than about the mean. This is captured in the distinction between the two preceding formulas: the “1+” inside the square root. The “1+” arises from the fact that we must predict the ε
0 part
                
              of the model, but in the estimation problem, we estimate that ε
0 is zero. As a result, the prediction interval for a given set of explanatory variables is always wider than the corresponding confidence interval.
The confidence and prediction intervals for this example are shown in Table 9.8. The confidence interval (17.0, 19.9) is for the mean percentage body fat of a population of individuals each having abdomin circumference 93 cm and biceps circumference 33 cm. The prediction interval (8.5, 28.5) is for one particular individual with this combination of abdomin and biceps. Observe that the prediction interval is wider than the confidence interval. This is because a single person can have atypically low or high body fat, but “many” people includes those with both atypically low and high body-fat percentages in comparison to their abdomin and biceps, and the lows and highs tend to cancel out when averaging. See Table 8.​8 for an illustration of this in the more familiar setting of estimation of a sample mean.
                
              

                
              
Table 9.895% Confidence and prediction intervals for the body-fat example. See Tables 9.1 and 13.27 for the ANOVA table and the regression coefficients. The predict function produces [image: 
$$s_{e}\sqrt{h_{0}}$$
]=se.fit, s

                        e
                      =residual.scale and the confidence and prediction intervals.
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9.10 Example—Longley Data

              
                
              
              
                
              
            
9.10.1 Study Objectives
The Longley data is a classic small set containing 16 years of annual macroeconomic data that Longley (1967) used to illustrate difficulties arising in computations involving highly intercorrelated variables. R does accurately calculate the regression coefficients for these data. Less numerically sophisticated statistical software packages, including most in existence at the time Longley wrote his article, produce incorrect analyses because the high intercorrelation, or ill-conditioning
                  
                of the data, is a computational challenge for the numerical solution of linear equations and related matrix operations. Please see the computational discussion in Section I.4.7 for details.
We use data(longley), distributed with R, a subset of all variables in Longley’s original data set. Our intent here is to develop a parsimonious
                  
                model to explain the response variable Employed as a function of the remaining variables as candidate predictors. The extreme collinearity arises in this data set because all of its economic variables tend to increase as time progresses. We acknowledge that these are really time series data, and if more than 16 years were involved, it would be appropriate to use time series techniques such as those in Chapter 18 for a proper analysis. We use this example because it is now a classical dataset for investigating a set of poorly conditioned linear equations. Our intention in this section is to analyze these data using multiple regression, demonstrating ways to bypass or confront the difficulties collinearity presents for regression modeling. In contrast, time series analyses specifically seek to model the interdependence caused by time.

9.10.2 Data Description

                
                      GNP.deflator:
                    GNP adjusted for inflation based on year 1954 = 100



                      GNP:
                    Gross National Product, 1964 Economic Report of the President



                      Unemployed:
                    1964 Economic Report of the President



                      Armed.Forces:
                    Number serving in the U.S. Armed Forces



                      Population:
                    Noninstitutional, aged at least 14



                      Year:
                    1947 through 1962



                      Employed:
                    Total employment, U.S. Department of Labor, March 1963




              

9.10.3 Discussion
Figure 9.7 contains a scatterplot matrix of the Longley data. Here the response variable Employed appears in the top (last) row and last column. (In general, for ease of interpretation, response variables should appear in this way or in the bottom (first) row and first column. Remember from Section 4.​7 and Figure 4.​12 that we strongly recommend that sploms have the main diagonal in the SW–NE direction.)
                  
                
                                [image: A77776_2_En_9_Fig7_HTML.gif]
Fig. 9.7Longley data splom. Notice the high positive correlations of four predictors (including Year) with one another and with the response variable Employed.





We see that Employed is highly positively correlated with four of the six predictors and mildly positively correlated with the others. In addition, the predictors (including Year) that are highly correlated with Employed are also highly correlated with one another. This suggests that these four predictors carry redundant information and therefore some of them are unnecessary for modeling the response.
Consider the listing in Table 9.9 for a model containing all six candidate predictors. The proportion of variability in the response Employed that is collectively explained by all six predictors is given by R
2, the proportion of the Sum of Squares column not in the Residuals row: more than 0.99. So the predictors can be used to adequately explain Employed. In this model, three predictors that seem to be closely correlated with the response Employed in Figure 9.7, Population, GNP, and GNP.deflator, are not statistically significant in Table 9.9. We continue to discuss the Longley data, focusing on the selection of an appropriate subset of the predictors, in Sections 9.11 and 9.12.Table 9.9Longley data regression using all six original predictors.
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9.11 Collinearity
Collinearity, also called multicollinearity, is a condition where the model’s predictors variables are highly intercorrelated. A consequence of this situation is the inability to estimate the model’s regression coefficients with acceptable precision. Therefore, models with this problem are not considered useful. It is unacceptable to reach a final model that has this condition to an appreciable extent.
Collinearity arises when investigators include predictors carrying redundant information in the model. A symptom is a model with a high R
2, showing that collectively the predictors bear heavily on the response, but paradoxically, few or none of the predictors have regression coefficients significantly different from zero.
Consider the case of a single response Y and two predictors X
1 and X
2. The fitted model plots as a plane in the 3-dimensional space of (Y, X
1, X
2). A near-collinear situation exists if the correlation between X
1 and X
2 is close to ± 1. Geometrically, this occurs when the data points congregate close to a (2-dimensional) straight line when plotted in the 3-dimensional space. When this happens, the points can be fitted fairly well by any plane containing this straight line. Since each of these many planes is a candidate for the best model, the model decided upon as being the best will be similar to other model candidates. Therefore, declaring any model to be best will be a tentative decision. This tentativeness is expressed by large standard errors of the estimated regression coefficients that comprise the coefficients of the plane corresponding to the best model.
Figure 9.8, based on a portion of the Longley data introduced in Section 9.10, illustrates these ideas. Here the variables GNP and Year are almost perfectly correlated and so the scattering of points falls close to a line in 3-dimensional space. Many planes fit this line approximately equally well. The uncertainty about the best fitting of these many planes causes the coefficients of the estimated plane, the regression coefficients, to have large standard errors.[image: A77776_2_En_9_Fig8_HTML.gif]
Fig. 9.8The two X-variables, Year and GNP, are highly collinear. See model
longley2.lm <- lm(Employed ~ Year + GNP, data=longley)
in file HHscriptnames(9). The response variable Employed is essentially on a straight line in the three-dimensional space of the figure. The specific plane displayed is almost arbitrary. Any plane that goes through the straight line of the observed points on the plane we see would work just as well.




                        

              
                
              
            
When there are more than two predictors, the geometric argument extends to discussions of hyperplanes. The consequence is again unacceptably large standard errors of regression coefficients.
Although collinearity limits our ability to model the relationship between the predictors and the response accurately, it does not necessarily impede our ability to use the predictors to predict the response. In the context of the example associated with Figure 9.8, if we want to predict the response for values of the predictors near the straight line in 3-dimensional space, many planes that are good fits to this straight line will yield roughly the same prediction.
A simple diagnostic of collinearity is the variance inflation factor,
                
              VIF,
                
              one for each regression coefficient (other than the intercept). Since the condition of collinearity involves the predictors but not the response, this measure is a function of the X’s but not of Y. The VIF for predictor i is [image: 
$$\displaystyle{ \mbox{ VIF}_{i} = 1/(1 - R_{i}^{2}) }$$
]

 (9.26)

 where R

                i
              
2 is the R
2 from a regression of predictor i against the remaining predictors. If R

                i
              
2 is close to 1, this means that predictor i is well explained by a linear function of the remaining predictors, and, therefore, the presence of predictor i in the model is redundant. Values of VIF exceeding 5 are considered evidence of collinearity: The information carried by a predictor having such a VIF is contained in a subset of the remaining predictors. If, however, all of a model’s regression coefficients differ significantly from 0 (p-value < .05), a somewhat larger VIF may be tolerable.
VIF is an imperfect measure of collinearity. Occasionally the condition can be attributable to more complicated relationships among the predictors than VIF can detect.
The best approach for alleviating collinearity is to reduce the set of predictors to a noncollinear subset. Methods for accomplishing this are presented in Section 9.12. An ad hoc (manual) procedure, presented in Section 9.12.1, involves eliminating predictors one at a time, at each stage deleting the predictor having the highest VIF. If two predictors are almost tied for highest, then subject area information should be used to choose between them. Proceed until all remaining predictors have VIF ≤ 5. Other approaches (not discussed in this book) include ridge regression and regression on principal components Gunst and Mason (1980).
For the regression analysis of the Longley data, evidence of collinearity appears in Table 9.9 in the variance inflation factors (VIF) for the six predictors. Five of these exceed 33. The next section discusses an approach for dealing with multicollinearity.
                
              

Collinearity often arises in polynomial regression models discussed
                
              in Section 9.7 because polynomials can be approximated by linear functions within a restricted domain. To avoid both collinearity in polynomial models and numerical instability caused by working with variables of greatly differing orders of magnitude, it is recommended to recenter the response variable to have mean = 0 prior to initiating a polynomial modeling.
                
              


9.12 Variable Selection

              
                
              
            
In building a regression model the analyst should consider for use any explanatory variable that is likely to bear upon the response while avoiding the use of two explanatory variables that carry essentially the same information. For example, in modeling the monthly cost of energy needed to heat a 2000-square-foot home, one should avoid using both the mean monthly exterior temperature and the heating degree days (a measure used by heating fuel suppliers) in the same model. The use of redundant explanatory variables is likely to lead to a model with unacceptable collinearity having large standard errors for the predictor regression coefficients.
When subject area theory does not suggest a parsimonious model (i.e.,
                
              one with relatively few predictors), it is tempting to construct a model using all possibly relevant predictors for which data are available. However, doing so is again likely to result in a collinearity
                
              problem. In such circumstances, how can the analyst decide on an appropriate subset of the candidate predictors for a regression model?
Stepwise regression
                
              is a tool for answering this question. But this mechanical technique should not be used in order to avoid careful thought about potentially useful predictor variables. Careless use of stepwise regression can, to some extent, distort the significance and confidence levels of inferences in the ultimately specified model, potentially leading to erroneous conclusions. In addition, a model that makes reasonable subject area sense to the client is much preferred to an equally well fitting one that is less intuitive and harder to understand and explain.
In our experience, a careful systematic approach can often be used to develop a more interpretable model than one produced by a mechanical stepwise algorithm. The starting point is a scatterplot matrix that, along with examination of variance inflation factors, can be used to identify redundant predictors. If two predictors are seen to be highly correlated, we prefer to avoid using the one that has a less obvious subject matter connection to the response variable. An algorithm cannot make such a judgment. Inspection of sploms
                
              invite the analyst to consider whether an original variable should be transformed before inclusion in the model. Nevertheless, stepwise
                
              approaches to model selection continue to be commonly used, particularly when there are a large number of potential predictors and the analyst has minimal feel for which variables should be or need not be included in the model.
We discuss in turn two systematic methods for model selection, a manual approach and an automated approach, and apply both methods to the Longley data.
9.12.1 Manual Use of the Stepwise Philosophy
The first approach involves manual inspections of the VIFs,
                  
                the p-values associated with the t-tests on the regression coefficients, and any available subject matter information to eliminate variables one at a time until a final model is reached with all predictors significant and all VIFs under 5. This approach is viable if the number of predictors is small as in this example. It would be too cumbersome in a situation with more than 12 to 15 predictors.
The three largest VIFs
                  
                belong to GNP, Year, and Population. The splom implies that they carry almost identical information. We begin by removing one of them from the model. We choose to eliminate Population because the t-test that its regression coefficient is zero has a larger p-value than the tests for either GNP or Year.
The analysis with all predictors except population appears in Table 9.10.Table 9.10Longley data regression. Best five-predictor model after eliminating one predictor using the manual stepwise approach.
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The outstanding feature of this model is the high p-value associated with variable GNP.deflator. Its VIF
                  
                is well in excess of 5. We proceed with an analysis eliminating GNP.deflator in Table 9.11.Table 9.11Longley data regression. Best four-predictor model after eliminating two predictors using the manual stepwise approach.
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All four predictors in this model have significant regression coefficients. However, two of the VIFs are still large, and one of the predictors corresponding to them must be eliminated. We choose to eliminate GNP because its p-value, while small, is larger than those of the three other remaining predictors.
The results of the analysis with the remaining predictors Unemployed, Year, and Armed.Forces are in Table 9.12.Table 9.12Longley data regression. Best three-predictor model after eliminating three predictors using the manual stepwise approach.
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This is our tentative final model. The collinearity has been eliminated (all VIFs
                  
                are below 5), and all regression coefficients differ significantly from zero. In addition, R
2 = 0. 993, so these three predictors account for virtually all of the variability in Employed. 
                  
                

                  
                


9.12.2 Automated Stepwise Regression

                
                  
                
              
The second approach to model selection is stepwise regression. This automated approach is recommended when the number of predictors is so large that the manual approach becomes unacceptably laborious. We illustrate here how it is used to reach the same model that we found with the manual procedure. A stepwise approach that examines all subsets of predictors is viable if the number of predictors p is less than 10 to 12. If p > 12, then forward selection or backward elimination is preferred.
The three basic methods for automated stepwise regression are forward selection:

                          
                          
                        Predictors are added to the model one at a time until a stopping rule is satisfied.


backward elimination:

                          
                          
                        All predictors are initially placed in the model. Predictors are removed from the model one at a time until a stopping rule is satisfied.


all subsets:

                          
                          
                        All 2
                          p
                         − 1 possible models, where p is the number of predictors, are attempted and the best is identified. This method is viable only for “small” values of p. Efficient algorithms exist that avoid actually examining every such model.





The literature contains many hybrids and refinements of these basic methods.
Each of the automated stepwise methods uses a criterion for choosing the next step or stopping the algorithm.
Such criteria may relate to appreciable [image: 
$$R_{\mbox{ adj}}^{2}$$
] or F-statistic improvement or detriment, substantial mean square error decrease or increase, or size of change in Daniel–Mallows’ C

                  p
                

                  
                

                  
                

                  
                

                  
                statistic discussed below. Another possibility is to look, at each step, at the p-value for the variables already in the model and for the potential next variable to be brought in to the model. If the largest p-value of the variables already in the model is larger than the threshold, then remove it. If the smallest p-value of the potential variables is larger than the threshold, then stop. Otherwise, bring in a new variable and repeat the process.
Computer algorithms allow the option of accepting or overriding default criterion values or thresholds for appreciable change.
Each of the automated stepwise methods uses one or more criteria for choosing among competing models. Here is a list of possible criteria.

                	
p Models containing fewer predictors are easier to interpret and understand. It is desirable that the number of predictors p be as small as possible.

	
[image: 
$$\hat{\sigma }^{2}$$
] We also require that the predictors account for most of the variability in the response. Equivalently, we wish that the residual mean square,
                        
                      MSE = [image: 
$$\hat{\sigma }^{2}$$
], be as small as possible,
                        
                      preferably not much larger than for the model containing all candidate predictors. This criterion is easier to meet with more predictors rather than few; hence it asks that the number of predictors p be as large as possible and competes with the goal of minimizing p.




              
The above criteria address one of the two competing objectives at a time. Other criteria jointly address the two objectives.

                	
[image: 
$$R_{\mbox{ adj}}^{2}$$
]

                        
                      Unadjusted R
2 is not used as a model selection criterion because it necessarily increases as the number of predictors increases. A model can have R
2 close to 1 but be unacceptable due to severe collinearity. Instead we use [image: 
$$R_{\mbox{ adj}}^{2}$$
],
                        
                        
                      which is R
2 adjusted downward for the number of predictors, [image: 
$$\displaystyle{ R_{\mbox{ adj}}^{2} = 1 -\left ( \frac{n - 1} {n - p - 1}\right )(1 - R^{2}) }$$
]

 (9.27)

 which increases as R
2 increases but provides a penalty for an excessive number of predictors p. Models with higher [image: 
$$R_{\mbox{ adj}}^{2}$$
] are preferred to ones with lower [image: 
$$R_{\mbox{ adj}}^{2}$$
].
                        
                        
                      


	
C

                        p
                       
                        
                      

                        
                      Daniel–Mallows’ C

                        p
                       statistic is another criterion that addresses both the fit of the model and the number of predictors used. Consistent with customary notation, in the context of the C

                        p
                       statistic but nowhere else in this chapter, p is the number of regression coefficient parameters, equal to the number of predictors plus 1. The original definition is [image: 
$$\displaystyle{ C_{p} = (\mathsf{SS}_{\mathrm{Res}}/\hat{\sigma }_{\mbox{ full}}^{2}) + 2p - n }$$
]

 (9.28)

 where [image: 
$$\mathsf{SS}_{\mathrm{Res}}$$
] is the residual sum of squares for the reduced model under discussion (fewer X-variables than the full model) and the [image: 
$$\hat{\sigma }_{\mbox{ full}}^{2}$$
] is the error mean square for the full model containing all candidate predictors. If the extra X-variables are noise, rather than useful, then the ratio [image: 
$$\mathsf{SS}_{\mathrm{Res}}/\hat{\sigma }_{\mbox{ full}}^{2} \approx ((n - p)\sigma ^{2})/\sigma _{\mbox{ full}}^{2} \approx n - p$$
]. If the extra X-variables are useful, then the numerator [image: 
$$\sigma ^{2} \gg \sigma _{\mbox{ full}}^{2}$$
] and the ratio will be much larger than n − p. The extra terms 2p − n make the entire C

                        p
                       approximate p when the extra X-variables are not needed.
A desirable model has C

                        p
                       ≈ p for a small number of parameters p. (If p
max denotes p for a model containing all candidate predictors, then necessarily [image: 
$$C_{p_{\mbox{ max}}} = p_{\mbox{ max}}$$
], but such a model is almost never acceptable.) C

                        p
                       results are often conveyed with a C

                        p
                       plot, that is, a plot of C

                        p
                       vs p, with each point labeled with an identifier for its model and the diagonal line having equation C

                        p
                       = p added to the plot. Desirable models are those close to or under this diagonal line.
                        
                      


	
AIC The Akaike information criterion is proportional to the C

                        p
                       statistic. The AIC is scaled in sum of squares units.
                        
                      

                        
                      

                        
                      


	
F At each step we can look at the p-value associated with the F-statistic for the variables already in the model and for the potential next variable to be brought in to the model. If the largest p-value of the variables already in the model is larger than the threshold, then remove it. If the smallest p-value of the potential variables is larger than the threshold, then stop. Otherwise, bring in a new variable and repeat the process.




              

                
                  
                
              

9.12.3 Automated Stepwise Modeling of the Longley Data
Table 9.13 contains the results of an R stepwise regression analysis considering all subsets of the predictors, with printouts of the properties of two models of each size having smallest residual sum of squares among models having C

                  p
                 < 10. Figure 9.9 is a plot of the C

                  p
                -values
                  
                for all models with C

                  p
                 < 10. The acronymic plot symbols in Figure 9.9 are decoded in Table 9.13. According to Table 9.13, the best parsimonious model is the one with the four predictors GNP, Unemployed, Armed.Forces, and Year displayed in Table 9.11. This model has C

                  p
                 close to p, and a smaller AIC and larger adjusted R
2 than any of the other models in Table 9.13. Unlike the model we selected with our manual approach, this one includes the predictor GNP. The algorithm underlying Table 9.13 suggests inclusion of GNP despite its high correlation with Year and high VIF shown in Table 9.11.[image: A77776_2_En_9_Fig9_HTML.gif]
Fig. 9.9
C

                          p
                         Plot for Longley data. See Table 9.13 for interpretations of the acronyms used to label points. The overplotting occurs because, as seen in Table 9.13, two models have almost identical values of C

                          p
                        .




                                Table 9.13Longley data regression. Model 7 with the four predictors GNP, Unemployed, Armed.Forces and Year is competitive with respect to C

                          p
                         and other criteria. This model has the largest adjusted R
2 and the smallest C

                          p
                        . This is the same model we found in Table 9.11.
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Which model is preferred, the one in Table 9.11 containing four predictors including GNP or the three predictor model in Table 9.12 that excludes GNP? Our answer to this question demonstrates our preference for the manual approach. The coefficient of GNP in Table 9.11 is negative. This model says that holding Unemployed, Armed.Forces and Year constant, GNP and Employed are negatively associated. This statement conflicts with our expectation that this association is positive, and is a strong argument against the four-predictor model in Table 9.11. 
                  
                


                
                  
                
                
                  
                
              


9.13 Residual Plots

              
                
              
              
                
              
            

Partial residual plots and added variable plots are visual aids for interpreting relationships between variables used in regression. They can serve as additional components of our manual approach for variable selection.
Figure 9.10 shows four different types of plots. 	Row 1 shows the response variable Y =Employed against each of the six predictors X

                      j
                    .

	Row 2 shows the ordinary residuals [image: 
$$e = Y -\hat{ Y }$$
] from the regression on all six variables against each of the six predictors.

	Row 3 shows the “partial residual plots”, the partial residuals e

                      j
                     for each predictor against that predictor. See Section 9.13.1 for construction of the partial residuals and Section 9.13.2 for construction of the partial residual plots.

	Row 4 shows the “added variable plots”, the partial residuals e

                      j
                     against the partial residuals [image: 
$$X_{j\mid 1,2,\ldots,j-1,j+1,\ldots,p}$$
] of X

                      j
                     regressed on the other five predictors. See Section 9.13.3 for the definition of partial correlation, and Section 9.13.4 for construction of the [image: 
$$X_{j\mid 1,2,\ldots,j-1,j+1,\ldots,p}$$
] and the added variable plots.




[image: A77776_2_En_9_Fig10_HTML.gif]
Fig. 9.10Four types of plots for the regression of the Longley data against all six potential predictors: Response variable Y against each X

                        j
                      , residuals e against each X

                        j
                      , partial residuals plots of e

                        j
                       against each X

                        j
                      , added variable plots of e

                        j
                       against the residuals of each X

                        j
                       adjusted for the other X columns. The slopes shown in the panels of both bottom rows are equal to the regression coefficients from the regression shown in Table 9.9.





We discuss the interpretation of the all four types of plots in Section 9.13.5. We recommend the discussions of partial residual plots and added variable plots in Weisberg (1985) and Hamilton (1992).
9.13.1 Partial Residuals

                
                  
                
              
The partial residuals
                  
                
e

                  j
                 for variable X

                  j
                 in a model with p predictor variables X

                  j
                 are defined [image: 
$$\displaystyle\begin{array}{rcl} e^{j} = Y -\hat{ Y }_{ 1,2,\ldots,j-1,j+1,\ldots,p}& &{}\end{array}$$
]

 (9.29)

 and calculated with [image: 
$$\displaystyle\begin{array}{rcl} e^{j} = X_{ j}\hat{\beta }_{j} + e& &{}\end{array}$$
]

 (9.30)



or equivalently [image: 
$$\displaystyle\begin{array}{rcl} e_{i}^{j} = X_{ ij}\hat{\beta }_{j} + e_{i}\quad \mbox{ for $i = 1,\ldots,n$ }& &{}\end{array}$$
]

 (9.31)

 where e = (e

                  i
                ) are the ordinary residuals from the model with all p predictors [image: 
$$\displaystyle\begin{array}{rcl} e = Y -\hat{ Y }_{1,2,\ldots,p}& &{}\end{array}$$
]

 (9.32)

 The partial residuals are interpreted as the additional information available for X

                  j
                 to pick up after all X except X

                  j
                 have been included in the model.
                  
                


9.13.2 Partial Residual Plots
Partial residual plots are the set of plots of e

                  j
                 against X

                  j
                 for all j. Each panel’s slope has exactly the numerical value of the corresponding regression coefficient.
We show the partial residual plots for the Longley data in Row 3 of Figure 9.10.

9.13.3 Partial Correlation

                
                  
                
              
The partial correlation r(X
1, X
2 | X
3, X
4, X
5) between X
1 and X
2, after correction for the effect of X
3, X
4, X
5, is the correlation coefficient between X
1 and X
2 after the (linear) effects of X
3, X
4, X
5 have been removed from both X
1 and X
2. When X
1 through X
5 are multivariate data, we can compute the sample partial correlation coefficient as follows: 	Regress X
1 on X
3, X
4, X
5. Get the residuals E
1.

	Regress X
2 on X
3, X
4, X
5. Get the residuals E
2.

	Find the (usual) correlation coefficient between E
1 and E
2. This turns out to be r(X
1, X
2 | X
3, X
4, X
5).





In R, we use
 partial.corr(cbind(X1,X2),
             cbind(X3,X4,X5))
using the function partial.corr defined in the HH package.
                  
                


9.13.4 Added Variable Plots
The added variable plots are the set of plots of E
1 = e

                  j
                 against [image: 
$$E_{2} = X_{j\mid 1,2,\ldots,j-1,j+1,\ldots,p}$$
] for all j. We define [image: 
$$\hat{X}_{1,2,\ldots,j-1,j+1,\ldots,p}$$
] to be the predicted value of X

                  j
                 after regressing X

                  j
                 against all the other X-variables in the model. We define the residual [image: 
$$\displaystyle\begin{array}{rcl} X_{j\mid 1,2,\ldots,j-1,j+1,\ldots,p} = X_{j} -\hat{ X}_{1,2,\ldots,j-1,j+1,\ldots,p}& &{}\end{array}$$
]

 (9.33)

 to be the additional information in X

                  j
                 after removing the information provided by all the other X in the model. Thus the added variable plots are the plots of the E
1 and E
2 defined by regressing Y and X

                  j
                 against all the other X-variables. Each panel’s slope has exactly the numerical value of the corresponding regression coefficient.
We show the added variable plots for the Longley data in Row 4 of Figure 9.10.
                  
                


9.13.5 Interpretation of Residual Plots
9.13.5.1 Response Variable Against Each of the Predictors
Row 1 of Figure 9.10, the plots of the response variable Y =Employed against each of the six predictors X

                    j
                  , is almost identical to the top row of the splom in Figure 9.7. The only difference is the explicit one-x regression line in Figure 9.10. If there is no visible slope in any of these panels, then we can effectively eliminate that x-variable from further consideration as a potential explanatory variable. This row is essentially the same as the first step of a stepwise-forward procedure. In this example, we cannot eliminate any of the potential predictors at this stage.

9.13.5.2 Residuals Against Each of the Predictors
Row 2 of Figure 9.10, the plots of the ordinary residuals [image: 
$$e = Y -\hat{ Y }$$
] (from the complete regression of the response on all six potential predictors X

                    j
                  ), against each of the X

                    j
                   shows horizontal slopes. This is by construction, as the least-squares residuals are orthogonal to all X-variables. In this example, we see no structure in the plots. The types of structure we look for are Curvature.Plot the residuals from the quadratic fit in the left side of Figure 9.5 against the predictor density and note that the residuals are predominantly above the y = 0 axis at the left and right ends of the range and predominantly below the axis in the middle of the range. Curvature in the residual plots often suggests that additional predictors, possibly powers of existing predictors, are needed in the model.


Nonuniformity of variance.The life.exp ~ ppl.per.tv panel of Figure 4.​14 shows high variability in life.exp for low values of ppl.per.tv and very low variability for high values of ppl.per.tv. Nonuniformity of variance in the residual plots often suggests power transformations of one or more of the variables. Transformations of both the response and predictor variables need to be considered.


Bunching or granularity.

                            
                          

                            
                          See the residuals ~ lime panel of Figure 11.​11 where we see that lime has only two levels and there are different variances for each.






9.13.5.3 Partial Residuals

                  
                    
                  
                
Both Rows 3 and 4 use the partial residuals of the response as the y-variable of each plot. Since “partial” means “adjusted for all the other x-variables”, each column of Rows 3 and 4 is different. Column 1 is adjusted for [image: 
$$X_{2},X_{3},\ldots,X_{6}$$
]. Column 2 is adjusted for X
1, [image: 
$$X_{3},\ldots,X_{6}$$
]. Similarly through Column 6, which is adjusted for [image: 
$$X_{1},\ldots,X_{5}$$
].
In Row 3, the partial residual plots, the x-variables are the observed x-variables X

                    j
                  .
In Row 4, the added residual plots, the x-variables
                    
                  are the adjusted-x variables, that is, “adjusted for all the other x-variables”. Thus the x-variable in Column 1 of Row 4 is [image: 
$$X_{1\mid 2,\ldots,6}$$
], that is, X
1 adjusted for [image: 
$$X_{2},\ldots,X_{6}$$
].
In both Rows 3 and 4 the slope of the two-dimensional least-squares line in panel j is exactly the value of the regression coefficient β

                    j
                   for the complete regression of Y on all the X-variables in the model.
                    
                  


9.13.5.4 Partial Residual Plots
In Row 3, the partial residuals e

                    j
                   are plotted against the observed x-variables X

                    j
                  . Since the partial residuals e

                    j
                   are specific to each X

                    j
                  , the values for the y-range are unique to each panel. The x-range of the x-variables in Row 3 is the same as it is in Rows 1 and 2 of this display.
We look for the tightness of the points in each plot around their least-squares line. High variability around the two-dimensional least-squares line indicates low significance for the corresponding regression coefficient. Low variability around the least-squares line indicates a significant regression coefficient.
In Row 3 of Figure 9.10, we see that Columns 1 (GNP.deflator) and 5 (Population) have high variability around their least-squares lines. This is a reflection of the high p-value that we see for those regression coefficients in Table 9.9. The remaining four columns all look like their points are tightly placed against their least-squares lines, an indication of possible significance. Note that Column 2 (GNP) looks tight, even though its p-value is the nonsignificant 0.3127. We really do need the tabular results to completely understand what the graph is showing us.
                    
                  


9.13.5.5 Added Variable Plots

                  
                    
                  
                
In Row 4, the partial residuals e

                    j
                   are plotted against the adjusted x-variables [image: 
$$X_{j\mid 1,2,\ldots,j-1,j+1,\ldots,p}$$
]. In Row 4, both the x- and y-variables in each column have been adjusted for all the other X-variables. Therefore, both the x- and y-ranges are unique to each panel. The partial residuals, the y-variables in the added variable plots, are identical to the y-variables in the partial residual plots; hence the y-ranges are identical for corresponding columns of Rows 3 and 4.
We look at the slope of the two-dimensional least-squares line in each plot. A nearly horizontal line indicates low significance for the corresponding regression coefficient. A nonzero slope indicates a significant regression coefficient.
The three x-variables with significant regression coefficients in Table 9.9 have visible nonzero slopes to their least-squares lines in Row 4 of Figure 9.10. The three x-variables with nonsignificant regression coefficients have almost horizontal least-squares lines.
                    
                  




9.14 Example—U.S. Air Pollution Data
Exercise 4.2 introduces the data set data(usair) on causes of air pollution in U.S. cities. A scatterplot matrix of these data appears in Figure 9.11. Here we seek to develop a model to explain the response SO2, SO2 content of air, using a subset of six available explanatory variables.[image: A77776_2_En_9_Fig11_HTML.gif]
Fig. 9.11Scatterplot matrices for air pollution data with the original scaling.




                        
In Figure 9.11 we see that the three variables SO2, mfgfirms, and popn are all pushed against their minimum value with a long tail toward the maximum value. This pattern suggests a log transformation
                
              to bring these three distributions close to symmetry. Following these transformations, Figure 9.12 shows the new response variable lnSO2 and the revised list of six potential explanatory variables.[image: A77776_2_En_9_Fig12_HTML.gif]
Fig. 9.12Scatterplot matrices for air pollution data with improved symmetry after a log transformation of the three variables: SO2, mfgfirms, popn.




                        

              
                
              
            

              
                
              
            
For pedagogical purposes we approach this problem in two different ways. We first use the automated stepwise regression approach and then consider the manual approach.

              
                
              
              
                
              
              
                
                
              
              
                
              
            
We illustrate the automated approach with the leaps::regsubsets function in R, using the exhaustive method that considers all subsets. In this problem there are only a small number, 26 − 1 = 31, of subsets to consider, so this method is viable. We request the best two subsets for each possible value of the number of included explanatory variables. The tabular and graphical results of the stepwise analysis are displayed in Table 9.14 and Figure 9.13. The model with the four predictors temp, lnmfg, wind, and precip seems best. It has C

                p
               ≈ p, the smallest AIC of contenders, the largest [image: 
$$R_{\mbox{ adj}}^{2}$$
], and one of the smallest values of [image: 
$$\mathsf{SS}_{\mathrm{Res}}$$
].[image: A77776_2_En_9_Fig13_HTML.gif]
Fig. 9.13
C

                        p
                       plot. Model “lnm-p-t-w” (lnmfg, precip, temp, wind) has the smallest C

                        p
                       value and the largest [image: 
$$R_{\mbox{ adj}}^{2}$$
]. See also Table 9.14.




Table 9.14Stepwise regression analysis of U.S. air pollution data. See also Figure 9.13.


	
                          [image: A77776_2_En_9_Fign_HTML.gif]
                        
	 



                        
In Table 9.15 we look at the detail for the selected model. We observe that all VIFs are small and the p-values are below 0.01 for all model coefficients. The signs of the estimated coefficients are reasonable or defensible. United States cities with high average annual temperature are located in the Sunbelt and tend to have less pollution-causing heavy industry than colder temperature cities well north of the Sunbelt. We are not surprised that greater amounts of manufacturing are associated with more pollution or that wind dissipates pollution.Table 9.15Fit of recommended model for U.S. air pollution data.


	
                          [image: A77776_2_En_9_Figo_HTML.gif]
                        
	 



                        
We can arrive at the same model without a formal stepwise approach. We notice from Figure 9.12 that lnmfg and lnpopn are highly correlated, so it would be redundant to include both in the model. The variables precip and raindays seem quite similar, so again, it is unlikely that both are needed. Inspection of the C

                p
               plot in Figure 9.13 indicates that the model with temp, lnmfg, wind, and precip has C

                p
               close to p and only one member of each pair of similar predictors.

              
                
              
            

9.15 Exercises

              
                
                
              
            
We recommend that for all exercises involving a data set, you begin by examining a scatterplot matrix of the variables.

9.1. Use matrix algebra to prove the assertion in Equation (9.11) that the sum of the calculated residuals is also zero in multiple regression. We proved the assertion for simple linear regression in Exercise 8.9.

              
                
              
              
                
              
            
Hint: Write the vector of residuals as e = (I − H)Y, verify that X = HX, and use the fact that in a model with a nonzero intercept coefficient, as in Equation (9.1) and following, the first column of X is a column of ones.

9.2. Davies and Goldsmith (1972), reprinted in Hand et al. (1994), investigated the relationship between the abrasion loss of samples of rubber (in grams per hour) as a function of hardness and tensile strength (kg/cm2). Higher values of hardness indicate harder rubber. The data are accessed as data(abrasion).
a.Produce a scatterplot matrix of these data. Based on this plot, does it appear that strength would be helpful in explaining abrasion?

 

b.Calculate the fitted regression equation.

 

c.Find a 95% prediction interval for the abrasion corresponding to a new rubber sample having hardness 60 and strength 200.

 





9.3. Narula and Wellington (1977) provide data on the sale price of 28 houses in Erie, Pennsylvania, in the early 1970s, along with 11 possible predictors of these prices. The data are accessed as data(hpErie). The variables are: 
                    price:
                  price in $100’s



                    taxes:
                  taxes in dollars



                    bathrm:
                  number of bathrooms



                    lotsize:
                  lot size in square feet



                    sqfeet:
                  square footage of living space



                    garage:
                  number of cars for which there is garage space



                    rooms:
                  number of rooms



                    bedrm:
                  number of bedrooms



                    age:
                  age in years



                    type:
                  type of house brick, brick and frame, aluminum and frame, frame



                    style:
                  2 story, 1.5 story, ranch



                    fireplac:
                  number of fireplaces





In parts a–d, exclude factors type and style from the analysis. a.Produce a scatterplot matrix for these data. Notice that two houses had a sale price much higher than the others.

 

b.Use a stepwise regression technique to formulate a parsimonious model for sale price. Do the arithmetic signs of your model’s regression coefficients make economic sense?

 

c.Redo part a with the two large-priced houses excluded. Compare your answer with that of part a.

 

d.Add a new variable sqfeetsq (defined as the square of sqfeet) to the list of variables. Perform the stepwise regression allowing for this new variable. Does its presence change the preferred model?

 

e.For the model you found in part d, provide plots of the residuals vs the fitted response for each of the 12 combinations of type and style. Use Figure 13.​1 and its code included in HHscriptnames(13) as a template for constructing these plots. Based on these plots, does it appear that including either of the variables type or style would contribute to the model fit?

 





                            9.4. World Almanac and Book of Facts (2001) lists the winning times for the men’s 1500-meter sprint event for the Olympics from years 1900 through 2000. The data are accessed as data(sprint).
a.Plot the data.

 

b.Use linear regression to fit the winning times to the year, producing a plot of the residuals vs the fitted values.

 

c.The residual plot suggests that an additional predictor should be added to the model. Refit this expanded model and compare it with the model you found in part b.

 

d.Interpret the sign of the coefficient of this additional predictor.

 





9.5. A company wished to model the number of minutes required to unload shipments of drums of chemicals at its warehouse as a function of the number of drums and the total shipment weight in hundreds of pounds. The data from 20 consecutive shipments, from Neter et al. (1996), are accessed as data(shipment).
a.Regress minutes on drums and weight, storing the residuals.

 

b.Interpret the regression coefficients of drum and weight.

 

c.Provide and discuss plots of the residuals against the fitted values and both predictors, and a normality plot.

 

d.Provide a 90% prediction interval for the time it would take to unload a new shipment of 10 drums weighing 1000 pounds.

 





9.6. The dataset data(uscrime) is introduced in Exercise 4.3. Use a stepwise regression approach to develop a model to explain R. Your solution should not have a collinearity problem, all predictor regression coefficients should be significantly different from zero and have an arithmetic sign consistent with common knowledge of the model variables, and no standard residual plots should display a problem.

9.7. It is desired to model the manhours needed to operate living quarters for U.S. Navy bachelor officers. Candidate explanatory variables are listed below. The data in data(manhours) are from Freund and Littell (1991) and Myers (1990), and originally from Navy (1979). Perform a thorough regression analysis, including relevant plots. Note that at least initially, there is a minor collinearity problem to be addressed. Show that, no matter how the collinearity is addressed, the predictions are similar. Only the interpretation of the effects of the x-variables is affected. 
                    manhours:
                  monthly manhours needed to operate the establishment



                    occupanc:
                  average daily occupancy



                    checkins:
                  average monthly number of check-ins



                    svcdesk:
                  weekly hours of service desk operation



                    common:
                  common use area, in square feet



                    wings:
                  number of building wings



                    berthing:
                  operational berthing capacity



                    rooms:
                  number of rooms






9.16 9.A Appendix: Computation for Regression Analysis

              regr2.plot
            
The regr2.plot function does the same type of plot for bivariate regression, one y-variable and two x-variables. The function is based on the persp perspective plotting function in R. We designed the regr2.plot function with options to display grids for the base plane and the two back planes in addition to the observed points and the regression plane and the fitted points. We turned off the default plot of the 3-dimensional box. The function regr2.plot uses the functions defined in our function persp.hh.s.
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Any analysis of variance model (for example, anything in Chapters 6, 12, 13, or 14) can be expressed as a regression with dummy
              
            variables. The dummy variables are usually based on a set of contrasts
              
            . The algebra of individual contrast vectors is discussed in Section 6.​9 Many software procedures and functions make explicit use of this form of expression. Here we explore this equivalence of different representations of the contrasts associated with a factor.
              
            The notation in Chapter 10 is that used in Sections I.4.2, 9.3, and 9.4.1.
Section 10.1 introduces dummy variables. Section 10.3 looks at the equivalence of different sets of dummy variable codings
              
            for factors. Section 13.​5 shows how the R and SAS languages express the dummy variable coding schemes. Table 13.​18 shows the notation for applying them to describe models with two or more factors.
10.1 Dummy (Indicator) Variables

              
                
              
            
Dummy variables, also called indicator variables, are a way to incorporate qualitative predictors into a regression model. If we have a qualitative predictor
                
              
A with a distinct values, we will need a − 1 distinct dummy variables to code it. For example, suppose we believe that the gender of the subject may impact the response. We could define X
female = 1 if the subject is female and X
female = 0 if the subject is male. Then we interpret the estimated regression coefficient
                
              
[image: 
$$\hat{\beta }_{\mbox{ female}}$$
] as the estimated average amount by which responses for females exceed responses for males, assuming the values of all other predictors are unchanged. If [image: 
$$\hat{\beta }_{\mbox{ female}} > 0$$
], then on average females will tend to have a higher response than males; if [image: 
$$\hat{\beta }_{\mbox{ female}} < 0$$
], then the average male response will exceed the average female response. There are g = 2 levels to the classification variable gender, hence we defined g − 1 = 1 dummy variable to code that information. We pursue this example in Section 10.2.
As another example, suppose one of the predictor variables
                
              in a model is the nominal variable ResidenceLocation, which can take one of r = 3 values: urban, suburban, or rural. If a qualitative predictor has r categories, we must assign r − 1 dummy variables to represent it adequately. Otherwise, we may be imposing an unwarranted implicit constraint. It would be incorrect to code
                
              this with a single numeric variable X
RL = 0 for urban, 1 for suburban, and 2 for rural, as that would imply that the difference between average urban and suburban responses must equal the difference between average suburban and rural responses, which is probably not justifiable.
One correct coding is to let X
RLu = 1 if urban and 0 otherwise and let X
RLs = 1 if suburban and 0 otherwise. Then the coefficient [image: 
$$\hat{\beta }_{\mbox{ RLu}}$$
] of X
RLu is interpreted as the average difference between urban and rural response, and the coefficient [image: 
$$\hat{\beta }_{\mbox{ RLs}}$$
] of X
RLs is interpreted as the average difference between suburban and rural response. The difference between the coefficients [image: 
$$\hat{\beta }_{\mbox{ RLu}}$$
] and [image: 
$$\hat{\beta }_{\mbox{ RLs}}$$
] is the average difference between the urban and suburban response. Here we used rural as the reference response. The results of the analysis would have been the same had we used either urban or suburban as the reference response. See Section 10.3 for the justification of this statement. See Exercise 10.3 to apply the justification to this example.
This type of coding is done automatically in R’s linear modeling functions (lm and aov when variables have been defined as factors with the factor() function.
The PROC ANOVA and PROC GLM in SAS require use of the CLASSES command within the PROC specification. SAS’s PROC REG requires explicit coding
                
              to construct the dummy variables in the DATA step.
Any pair of independent linear
                
              combinations of X
RLu and X
RLs would be equally as valid. R gives the user choice with the contrasts()

                
              and related functions. SAS gives the user choice with the estimate and test statements on the PROC ANOVA and PROC GLM commands.

10.2 Example—Height and Weight
10.2.1 Study Objectives
In the fall of 1998, one of us (RMH) collected the height, weight, and age of the 39 students in one of his classes. The data appear in file data(htwt). While this example does give information on the comparative height distributions of men and women, the primary intent then, and now, is to use this example to illustrate how the techniques of statistics give us terminology and notation for discussing ordinary observations.

10.2.2 Data Description

                
                      feet:
                    height in feet rounded down to an integer



                      inches:
                    inches to be added to the height in feet



                      lbs:
                    weight in pounds



                      months:
                    age in months



                      sex:
                    
m or f




                      meters:
                    height in meters




              

10.2.3 Data Problems
From the stem-and-leaf
                  
                in Table 10.1 we see that even in this small dataset, collected with some amount of care, there are data problems. There are 39 observations, yet only 38 made it to the stem-and-leaf and one of those has a missing value. Further investigation of the data file shows that one student reported her height in meters and another didn’t indicate sex. For the remaining figures and tables in this chapter we converted meters to inches for the one. For the other we had the good fortune to have access to the sample population at the next class meeting and were able to fill in the missing value (m in this case) by checking the data forms directly with the students. We were lucky in this example that the data file was investigated soon enough after collection that the data anomalies could be resolved. That is not always possible. We describe techniques for dealing with missing data
                  
                  
                

                  
                in Section 2.​4
Table 10.1Stem-and-leaf of Heights from class observation. We used this display to detect the two missing values. Note that this is an edited version of the output. We placed the two distributions adjacent to each other and added additional lines to the high end of the female distribution and to the low end of the male distribution to make the two stem-and-leaf displays align correctly.


	
                            [image: A77776_2_En_10_Figa_HTML.gif]
                          
	 




We show a splom
                  
                of the completed data in Figure 10.1. The age range in our class was 18–28 for women and 19–24 for men. There is no visible relation between age and either height or weight. There is a clear difference in height ranges between men and women and a visible, but less strong, difference in weight ranges. We investigate this further by expanding the lbs ~ ht panel in Figure 10.2.
                  
                
[image: A77776_2_En_10_Fig1_HTML.gif]
Fig. 10.1Scatterplot matrix of completed height and weight data from example collected in class.




[image: A77776_2_En_10_Fig2_HTML.gif]
Fig. 10.2Expansion of lbs ~ ht panel of Figure 10.1. There is visibly less overlap in the range for the heights of men and women than for their weights.






10.2.4 Three Variants on the Analysis
Table 10.2 uses the techniques of Chapter 6 to compare the means of two distributions. The specific features that we will look at are the various values in the ANOVA table and the mean heights for each of the groups. We will follow by using regression on two different sets of dummy variables to duplicate those numbers.
                  
                
Table 10.2One-way analysis of variance of heights from class observation.


	
                            [image: A77776_2_En_10_Figb_HTML.gif]
                          
	 




We initially use the g − 1 = 1 dummy variable X
female with the (1, 0) coding scheme suggested above, with value 1 for females and value 0 for males. We display the results of an ordinary linear regression of height on the dummy variable X
female in Table 10.3. The estimated intercept [image: 
$$\hat{\beta }_{0} = 69.9375$$
] is the mean height for males. The estimated regression coefficient for the X
female predictor, [image: 
$$\hat{\beta }_{\mbox{ female}} = -5.4701$$
], is the increment to the intercept that produces the mean height for females. The ANOVA table in Table 10.3 is identical to the ANOVA table in Table 10.2.
                  
                
Table 10.3Regression analysis of heights from class observation on the dummy variable coding sex as female=1 for female and female=0 for male.


	
                            [image: A77776_2_En_10_Figc_HTML.gif]
                          
	 




There are many other dummy variable coding
                  
                schemes that we could use to get exactly the same ANOVA table and the same estimated mean heights for the two groups. We show another in Table 10.4. In this coding
                  
                , the dummy
                  
                variable X
treat has the value 1 for females and the value − 1 for males. The estimated intercept [image: 
$$\hat{\beta }_{0} = 67.2024$$
] is the average of the mean heights for females and males. The estimated regression coefficient
                  
                for the X
treat predictor, [image: 
$$\hat{\beta }_{\mbox{ treat}} = -2.7351$$
], is the amount that added to the intercept produces the mean height for females and subtracted from the intercept produces the mean height for males. The ANOVA table in Table 10.4 is also identical to the ANOVA table in Table 10.2.Table 10.4Regression analysis of heights from class observation on the dummy variable coding sex as treat=1 for female and treat= − 1 for male.
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10.3 Equivalence of Linear Independent X-Variables (such as Contrasts) for Regression

              
                
              
            
It is not an accident that the ANOVA tables in Tables 10.2, 10.3, and 10.4 are identical. We explore here why that is the case.
Please review the definition of linear dependence
                
              in Section I.4.2.
The [image: 
$$\mathop{X}\limits _{n\times c}$$
] matrix in the linear regression presentation of the one-way analysis of variance model with one factor with a categories must have a leading column of ones X
0 = 1 for the intercept and at least a − 1 additional columns, for a total of c ≥ a columns. The entire X matrix can be summarized by a contrast matrix

                
              
[image: 
$$\mathop{W}\limits _{a\times c}$$
] consisting of a unique rows, one for each level of the factor.
We explore the relationship between several different contrast matrices W in the case a = 4. The principles work for any value a. The matrix X of dummy variables itself consists of n

                i
               copies of the i
th row of W (where [image: 
$$n =\sum _{ i=1}^{a}n_{i})$$
]: [image: 
$$\displaystyle\begin{array}{rcl} \mathop{X}_{n\times c} =\mathop{ \left (\begin{array}{l} \mbox{ $n_{1}$}\{(1\,0\,0\,0) \\ \mbox{ $n_{2}$}\{(0\,1\,0\,0) \\ \mbox{ $n_{3}$}\{(0\,0\,1\,0) \\ \mbox{ $n_{4}$}\{(0\,0\,0\,1) \end{array} \right )}_{n\times 4}\mathop{ W}_{4\times c} =\mathop{ N}_{n\times 4}\;\;\mathop{ W}_{4\times c}& &{}\end{array}$$
]

 (10.1)



Any contrast matrix W with a = 4 rows and with rank 4 (which means it must have at least 4 columns) is equivalent for linear regression in the senses that
1.Any two such matrices W
1 and W
2 with dimensions (4 × c
1) and (4 × c
2) where c

                        i
                       ≥ 4 are related by postmultiplication of the first matrix by a full-rank matrix [image: 
$$\mathop{A}_{c_{1}\times c_{2}}$$
], that is, [image: 
$$\displaystyle\begin{array}{rcl} \mathop{W_{1}} _{4\times c_{1}}\mathop{ A_{\phantom{1}}} _{c_{1}\times c_{2}} =\mathop{ W_{2}} _{4\times c_{2}}& & {}\\ \end{array}$$
]


 Equivalently, any two such dummy variables matrices X
1 and X
2 with dimensions (n × c
1) and (n × c
2) are similarly related by [image: 
$$\displaystyle\begin{array}{rcl} \mathop{X_{1}} _{n\times c_{1}}\mathop{ A_{\phantom{1}}} _{c_{1}\times c_{2}} =\mathop{ X_{2}} _{n\times c_{2}}& & {}\\ \end{array}$$
]




Examples (R code for all the contrast types in these examples is included in file HHscriptnames(10)):
1a.A simple overparameterized matrix
                                
                              (5 columns with rank=4) (this is the SAS default): [image: 
$$\displaystyle\begin{array}{rcl} \mathop{W_{\mbox{ simple}}} _{4\times (1+4)} = \left (\begin{array}{r rrrr} 1&1&0&0&0\\ 1 &0 &1 &0 &0 \\ 1&0&0&1&0\\ 1 &0 &0 &0 &1\\ \end{array} \right )& & {}\\ \end{array}$$
]





 

1b.Treatment contrasts (4 columns with rank=4) (R contr.treatment. This is the R default for factors. These are not ‘contrasts’ as defined in the standard theory for linear models as they are not orthogonal to the intercept.): [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{cccc} \mathop{W_{\mbox{ simple}}}\limits _{4\times (1+4)} & \mathop{ A_{{ \phantom{4}}}}\limits _{(1+4)\times (1+3)} & =& \mathop{W_{\mbox{ treatment}}}\limits _{4\times (1+3)}\\ \\ \left (\begin{array}{r rrrr} 1&1&0&0&0\\ 1 &0 &1 &0 &0 \\ 1&0&0&1&0\\ 1 &0 &0 &0 &1\\ \end{array} \right )&\left (\begin{array}{r rrrr} 1&0&0&0\\ 0 &0 &0 &0 \\ 0&1&0&0\\ 0 &0 &1 &0 \\ 0&0&0&1\\ \end{array} \right )& =&\left (\begin{array}{r rrrr} 1&0&0&0\\ 1 &1 &0 &0 \\ 1&0&1&0\\ 1 &0 &0 &1\\ \end{array} \right ) \end{array} & & {}\\ \end{array}$$
]





 

1c.

                                
                              Helmert contrasts (4 columns with rank=4) (R contr.helmert ): [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{cccc} \mathop{W_{\mbox{ simple}}}\limits _{4\times (1+4)} & \mathop{ A_{{ \phantom{4}}}}\limits _{(1+4)\times (1+3)} & =& \mathop{W_{\mathtt{helmert}}}\limits _{4\times (1+3)}\\ \\ \left (\begin{array}{r rrrr} 1&1&0&0&0\\ 1 &0 &1 &0 &0 \\ 1&0&0&1&0\\ 1 &0 &0 &0 &1\\ \end{array} \right )&\left (\begin{array}{r rrrr} 1& 1& 1& 1\\ 0 & - 2 & - 2 & - 2 \\ 0& 0& - 2& - 2\\ 0 & - 1 & 1 & - 2 \\ 0& - 1& - 1& 2\\ \end{array} \right )& =&\left (\begin{array}{r rrrr} 1& - 1& - 1& - 1\\ 1 & 1 & - 1 & - 1 \\ 1& 0& 2& - 1\\ 1 & 0 & 0 & 3\\ \end{array} \right ) \end{array} & & {}\\ \end{array}$$
]





 

1d.

                                
                              Sum contrasts (4 columns with rank=4) (R contr.sum ): [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{cccc} \mathop{W_{\mbox{ simple}}}\limits _{4\times (1+4)} & \mathop{ A_{{ \phantom{4}}}}\limits _{(1+4)\times (1+3)} & =& \mathop{W_{\mathtt{sum}}}\limits _{4\times (1+3)}\\ \\ \left (\begin{array}{r rrrr} 1&1&0&0&0\\ 1 &0 &1 &0 &0 \\ 1&0&0&1&0\\ 1 &0 &0 &0 &1\\ \end{array} \right )&\left (\begin{array}{r rrrr} 1& 0& 0& 0\\ 0 & 1 & 0 & 0 \\ 0& 0& 1& 0\\ 0 & 0 & 0 & 1 \\ 0& - 1& - 1& - 1\\ \end{array} \right )& =&\left (\begin{array}{r rrrr} 1& 1& 0& 0\\ 1 & 0 & 1 & 0 \\ 1& 0& 0& 1\\ 1 & - 1 & - 1 & - 1\\ \end{array} \right ) \end{array} & & {}\\ \end{array}$$
]





 

1e.

                                
                              Polynomial contrasts (4 columns with rank=4) (R contr.poly. This is the R default for ordered factors.): [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{cccc} \mathop{W_{\mbox{ simple}}}\limits _{4\times (1+4)} & \mathop{ A_{{ \phantom{4}}}}\limits _{(1+4)\times (1+3)} & =&\mathop{W_{\mathtt{polynomial}}}\limits _{4\times (1+3)}\\ \\ \left (\begin{array}{r rrrr} 1&1&0&0&0\\ 1 &0 &1 &0 &0 \\ 1&0&0&1&0\\ 1 &0 &0 &0 &1\\ \end{array} \right )&\left (\begin{array}{r rrrr} 0.8& 0.0000& 0.0& 0.0000\\ 0.2 & - 0.6708 & 0.5 & - 0.2236 \\ 0.2& - 0.2236& - 0.5& 0.6708\\ 0.2 & 0.2236 & - 0.5 & - 0.6708 \\ 0.2& 0.6708& 0.5& 0.2236\\ \end{array} \right )& =& \\ \\ &\multicolumn{3}{r} {\left (\begin{array}{r rrrr} 1& - 0.6708& 0.5& - 0.2236\\ 1 & - 0.2236 & - 0.5 & 0.6708 \\ 1& 0.2236& - 0.5& - 0.6708\\ 1 & 0.6708 & 0.5 & 0.2236\\ \end{array} \right )}\end{array}& & {}\\ \end{array}$$
]





 





 

2.The hat matrices are the same. [image: 
$$\displaystyle\begin{array}{rcl} H_{1} = (X_{1}^{\phantom{'}}(X_{ 1}'X_{1}^{\phantom{'}})^{-1}X_{ 1}') = (X_{2}^{\phantom{'}}(X_{ 2}'X_{2}^{\phantom{'}})^{-1}X_{ 2}') = H_{2}& & {}\\ \end{array}$$
]


 An equivalent statement is that both X matrices span the same column space.
                        
                      


 




Proof.
For the special case that c = a, hence the X′X and A matrices are invertible: [image: 
$$\displaystyle\begin{array}{rcl} H_{2}& =& {}\\ X_{2}^{\phantom{'}}(X_{ 2}'X_{2}^{\phantom{'}})^{-1}X_{ 2}'& =& {}\\ (X_{1}^{\phantom{'}}A^{\phantom{'}}){\bigl ((X_{ 1}^{\phantom{'}}A^{\phantom{'}})'(X_{ 1}^{\phantom{'}}A^{\phantom{'}})\bigr )}^{-1}(X_{ 1}^{\phantom{'}}A^{\phantom{'}})'& =& {}\\ (X_{1}^{\phantom{'}}A^{\phantom{'}})(A'X_{ 1}'X_{1}^{\phantom{'}}A^{\phantom{'}})^{-1}(A'X_{ 1}')& =& {}\\ X_{1}^{\phantom{'}}(X_{ 1}'X_{1}^{\phantom{'}})^{-1}X_{ 1}'& =& {}\\ H_{1}& & {}\\ \end{array}$$
]





When c > a, the step from line 4 to line 5 involves matrix algebra manipulations that we do not discuss here. Effectively, we are dropping any redundant columns.

              3.The predicted values are the same. [image: 
$$\displaystyle\begin{array}{rcl} \hat{Y } = H_{1}Y = H_{2}Y & & {}\\ \end{array}$$
]





 

4.The regression coefficients
                        
                      are related by premultiplication of the second set of coefficients by the same matrix A, [image: 
$$\displaystyle\begin{array}{rcl} \beta _{1} = A\beta _{2}& & {}\\ \end{array}$$
]





 



            
Proof.

                [image: 
$$\displaystyle\begin{array}{rcl} E(Y ) = X_{2}\beta _{2} = (X_{1}A)\beta _{2} = X_{1}(A\beta _{2}) = X_{1}\beta _{1}& & {}\\ \end{array}$$
]



              


              5.The ANOVA (analysis of variance) table is the same: [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{l c lcccc}\hline \\\hline \\ \mbox{ Source} &&\multicolumn{5}{c} {\mbox{ Sum of Squares}} \\\hline \\ \mbox{ Regression}&&\mathsf{SS}_{ \mathrm{Reg}} & =& Y 'H_{1}Y & =& Y 'H_{2}Y \\ \mbox{ Residual} &&\mathsf{SS}_{\mathrm{Res}} & =&Y '(I - H_{1})Y & =&Y '(I - H_{2})Y \\\hline \\ \end{array} & & {}\\ \end{array}$$
]





 



            
Exercise 10.1 gives you the opportunity to explore the equivalence of the two coding
                
              schemes in Section 10.2.
As a consequence of the equivalence up to multiplication by a matrix A, the regression coefficients
                
              in regression analyses with factors (which means most experiments) are uninterpretable unless the definitions of the dummy variables
                
              have been provided.

10.4 Polynomial Contrasts and Orthogonal Polynomials

              
                
              
              
                
              
              
                
              
            
Ott (1993) reports an experiment that uses an abrasives testing machine to test the wear of a new experimental fabric. The machine was run at six different speeds (measured in revolutions per minute). Forty-eight identical square pieces of fabric were prepared, 8 of which were randomly assigned to each of the 6 machine speeds. Each square was tested for a three-minute period at the appropriate machine setting. The order of testing was appropriately randomized. For each square, the amount of wear was measured and recorded. The data from file data(fabricwear) are displayed in Figure 10.3. The initial ANOVA is in Table 10.5.[image: A77776_2_En_10_Fig3_HTML.gif]
Fig. 10.3Fabric wear as a function of speed. We see constant variance and a curved uphill trend. There is one outlier




Table 10.5ANOVA and means for wear as a function of speed.


	
                          [image: A77776_2_En_10_Fige_HTML.gif]
                        
	 



                        
From Figure 10.3 we see that the assumption in Equation (6.​3) of approximately constant variance across groups is satisfied by this dataset, hence ANOVA is an appropriate technique for investigating the data. We also note one outlier at speed=200. We will return to that data point later.
The ANOVA table in Table 10.5 shows that speed is significant. From the table of means we see that the means increase with speed and the increase is also faster as speed increases. Figure 10.3 shows the same and suggests that the means are increasing as a quadratic polynomial in speed.
There are several essentially identical ways to check this supposition. We start with the easiest to do and then expand by illustrating the arithmetic behind it. When we defined speed as a factor in Table 10.5, we actually did something more specific, we declared it to be an ordered factor

                
              . This means that the dummy variables are the orthogonal polynomials for six levels. We display the orthogonal polynomials in Figure 10.4 and Table 10.6. See the discussion in Section I.4 for an overview of orthogonal
                
              polynomials and their construction.
                
              

                
              
[image: A77776_2_En_10_Fig4_HTML.gif]
Fig. 10.4Orthogonal polynomials for speed.




Table 10.6Orthogonal polynomials for speed. The slightly complex algorithm shown here for scaling the orthogonal polynomials, with attention paid to computational precision by use of the zapsmall function, is necessary for factors with an odd number of levels.
                        
                      See Appendix G for further discussion on the numerical issues.


	
                          [image: A77776_2_En_10_Figf_HTML.gif]
                        
	 





              
                
              
              
                
              
            
From the panels in Figure 10.4 we see that the linear polynomial plots as a straight line against the speed. The quadratic polynomial plots as a discretization
                
              of a parabola. The higher-order polynomials are rougher discretizations
                
              of their functions. In Table 10.6 we see that the orthogonal polynomials are scaled so their cross product is the identity matrix, that is, it is a diagonal matrix with 1s on the diagonal. Compare this (in Exercise 10.2) to a matrix of the simple powers of the integers (1, 2, 3, 4, 5, 6). The columns of the simple powers span the same linear space as the orthogonal properties. Because they are not orthogonal (their cross product is not diagonal), their plots are harder to interpret and they may show numerical difficulties when used as predictor variables
                
              in a regression. See Appendix G for further discussion on the numerical issues.
In Table 10.7 we show two variants of an expanded display of the ANOVA from Table 10.5. The top of the table shows the regression coefficients for the regression against the orthogonal polynomials used as the dummy variables. Here we see that the linear and quadratic terms are highly significant. The cubic term is not significant. Based on our reading of the graph, and the comparison of the p-value for the quartic term to that of the quadratic term, we will interpret the quartic term as not significant and do all continuing work with the quadratic model.Table 10.7Regression coefficients on dummy variables, and partitioned ANOVA table.


	
                          [image: A77776_2_En_10_Figg_HTML.gif]
                        
	 



                        
In the bottom of Table 10.7 we show the partitioned ANOVA table with the linear, quadratic, and cubic terms isolated. By dint of the orthogonality the F-values are the square of the t-values for the coefficients (36. 35802 = 1321. 903) and the p-values are identical.
What happens when we redo the analysis without the outlier noted in Figure 10.3? The residual mean square goes down by a factor of 4; consequently, all the t-values go up. While the p-values for the cubic and quartic terms now show significance at.0001, we will continue to exclude them from our recommended model because the p-values for the linear and quadratic terms are orders of magnitude smaller ([image: 
$$< \mbox{ 10}^{-16}$$
]). See Exercise 10.8. 
                
              

10.4.1 Specification and Interpretation of Interaction Terms

                
                  
                
              
Example—consider a model [image: 
$$\displaystyle\begin{array}{rcl} E(Y ) =\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\beta _{3}X_{3} +\beta _{4}X_{4} +\beta _{34}X_{3}X_{4}& & {}\\ \end{array}$$
]


 to “explain” determinants of annual salary Y in dollars for workers in some population. Here X
1 is age in years, X
2 is gender (1 if female, 0 if male), X
3 is race (1 if white, 0 if nonwhite), and X
4 is number of years of schooling. (Discussion: What other variables might such a model include to explain salary?)
The existence of the interaction terms allows for the possibility that the degree of enhancement of education on schooling differs for whites and nonwhites.
Consider a white and a nonwhite of the same age and gender and having the same amount of schooling. Then: 	
β
4 is the expected increase in annual salary for a nonwhite attributable to an additional year of schooling.

	
β
4 +β
34 is the expected increase in annual salary for a white attributable to an additional year of schooling.

	
β
34 is the expected amount by which a white’s salary increase as a result of an additional year of schooling exceeds a nonwhite’s salary increase as a result of an additional year of schooling.





Also, still assuming the same age and gender, 	
β
3 +β
34
X
4 is the difference between white and nonwhite expected salary.

	
β
3 is the component of this difference that does not depend on years of schooling and is attributable only to difference in race.





We examine this model further in Exercise 10.7.
                  
                

                  
                



10.5 Analysis Using a Concomitant Variable (Analysis of Covariance—ANCOVA)

              
                
              
              
                
              
              
                
              
              
                
              
              
                
              
              
                
              
              
                
              
            
In some situations where we seek to compare the differences in the means of a continuous response variable across levels of a factor A, we have available a second continuous variable that can be used to improve our ability to distinguish among the levels. Historically this extended model has been called the analysis of covariance model because the second variable varies along with the first. To avoid confusion with the concept of covariance introduced in Chapter 3, we prefer to call this approach analysis using a concomitant variable. Nevertheless we will retain use of the term covariate
                
              as a shorthand term for concomitant variable
                
              and the acronym ANCOVA as an abbreviation for this method.
If X

                ij
               denotes the j
th observation of the covariate at the i
th level of factor A, our original ANOVA model in Equation (6.​1) generalizes to [image: 
$$\displaystyle\begin{array}{rcl} & & Y _{ij} =\mu +\alpha _{i} +\beta (X_{ij} -\bar{\bar{ X}}) +\epsilon _{ij}\qquad \\ & & \quad \quad \mbox{ for}\quad i = 1,\ldots,a\quad \mbox{ and}\quad j = 1,\ldots,n_{i}{}\end{array}$$
]

 (10.2)

 where [image: 
$$\bar{\bar{X}}$$
] is the grand mean of the X

                ij
              ’s and all other terms are as defined in Equation (6.​1). The model in Equation (10.2) has separate intercepts α

                i
               for each level of A but retains a common slope. The differences between the intercepts α

                i
               are identical to the vertical differences between the parallel lines (to be illustrated in Figure 10.8). Equation (10.2) is the classical ANCOVA model.
The logic of this approach is that if X

                ij
               is related to Y

                ij
               then the ε’s of the model in Equation (10.2) will be measured from a different regression line for each level of A rather than from a different horizontal line as in model (6.​1). This will give the ε’s less variability than those of Equation (6.​1), thereby sharpening our inferences on the α

                i
              ’s. The α

                i
              ’s estimated from Equation (10.2) are said to be adjusted for the covariate.
                
              

                
              Quite frequently the range of observed X

                ij
               differs for each level of A

                i
               and therefore the [image: 
$$\bar{Y }_{i}$$
] means from Equation (6.​1) reflect the difference in the X-values more than the differences attributable to the change in levels of A.
The next level of generalization allows the slopes to differ, i.e., replace the common β in Equation (10.2) with β

                i
              : [image: 
$$\displaystyle\begin{array}{rcl} & & Y _{ij} =\mu +\alpha _{i} +\beta _{i}(X_{ij} -\bar{\bar{ X}}) +\epsilon _{ij}\qquad \\ & & \quad \quad \mbox{ for}\quad i = 1,\ldots,a\quad \mbox{ and}\quad j = 1,\ldots,n_{i}{}\end{array}$$
]

 (10.3)



We illustrate models Equations (10.2) and (10.3) in Section 10.6. In Section 10.6.5 we will use the model in Equation (10.3) to test the assumption that the lines are parallel. Formally, we will test whether the lines have the same slope [image: 
$$\displaystyle\begin{array}{rcl} H_{0}: \beta _{1} =\beta _{2} =\beta _{3}& & \\ H_{1}: \mbox{ Not all $\beta _{i}$ are identical}& &{}\end{array}$$
]

 (10.4)

 or the same intercept [image: 
$$\displaystyle\begin{array}{rcl} H_{0}: \alpha _{1} =\alpha _{2} =\alpha _{3}& & \\ H_{1}: \mbox{ Not all $\alpha _{i}$ are identical}& &{}\end{array}$$
]

 (10.5)



or both (in which case the lines coincide). We illustrate each model by an appropriate graph. We construct a single meta-graph in Figure 10.12 to illustrate the comparison of all the models we consider.
These ideas can be extended to situations with more than one covariate
                
              variable and to more complicated experimental designs such as those discussed in Chapters 12 through 14.

10.6 Example—Hot Dog Data
10.6.1 Study Objectives
Hot dogs based on poultry are said to be healthier than ones made from either meat (beef and pork) or all beef. A basis for this claim may be the lower-calorie (fat) content of poultry hot dogs. Is this advantage of poultry hot dogs offset by a higher sodium content than meat hot dogs?
Researchers for Consumer Reports analyzed three types of hot dog: beef, poultry, and meat (mostly pork and beef, but up to 15% poultry meat). The data in file data(hotdog) come from Consumer Reports (1986) and were later used by Moore and McCabe (1989).

10.6.2 Data Description

                
                      Type:
                    Type of hot dog (beef, meat, or poultry)



                      Calories:
                    Calories per hot dog



                      Sodium:
                    Milligrams of sodium per hot dog




              

10.6.3 One-Way ANOVA

                
                  
                
              
We start by comparing the Sodium content of the three hot dog Types by the methods of Chapter 6 in Figure 10.5 and in Table 10.8. We see that the three Types have similar Sodium content.[image: A77776_2_En_10_Fig5_HTML.gif]
Fig. 10.5Boxplots comparing the Sodium content of three Types of hot dogs. See Table 10.8.




                                Table 10.8Hot dog ANOVA and means. This is the one-way ANOVA of Chapter 6. See Figures 10.5 and 10.6.


	
                            [image: A77776_2_En_10_Figh_HTML.gif]
                          
	 



                            
Figure 10.6

                  
                  
                shows the response Sodium plotted against the covariate Calories by Type. Within each panel we plot a horizontal line at the mean of the Sodium values for that Type. The analysis of variance
                  
                in Table 10.8 compares the vertical distance between these horizontal lines. It ignores the most evident feature of this plot, that the three Types have very different fat contents with Poultry low, Beef intermediate, and Meat high. We wish to see if knowledge about Calories affects our understanding about Sodium.
                  
                
[image: A77776_2_En_10_Fig6_HTML.gif]
Fig. 10.6
Sodium ∼  Type, x=Calories. Horizontal lines at Sodium means for each Type. Y

                          ij
                         = μ +α

                          i
                         +ε

                          ij
                        . See Table 10.8. The intent of the notation is twofold: The arithmetic of the analysis is based on the one-way ANOVA of Sodium ∼  Type. The graph is more complex. The points in the graph show y=Sodium plotted against x=Calories separately for each level of Type. The horizontal line in each panel is the mean of the levels of Sodium at each level of Type.






10.6.4 Concomitant Explanatory Variable—ANCOVA

                
                  
                
              
It is possible that our finding of similar Sodium content is attributable in part to a need to add sodium to enhance the flavor of higher-fat hot dogs. The Calories information can be incorporated into the analysis by adding Calories to the model as a concomitant explanatory variable. Then in this revised model, comparisons between the mean Sodium contents of the three Types will have been adjusted for differing Calories contents. In this way, comparisons between the three Types will be made on the basis that each Type has the mean Calories content of all Types.
We illustrate this revised analysis in two steps. Initially, in Figure 10.7 and Table 10.9, we show the regression (Chapter 8) of Sodium on Calories ignoring the Types. The common regression line makes some sense in the Superpose panel but very clearly has the wrong slope and wrong intercept in all three of the individual panels.[image: A77776_2_En_10_Fig7_HTML.gif]
Fig. 10.7
Sodium ∼  Calories, groups=Type. Common regression line that ignores Type. [image: 
$$Y _{ij} =\mu +\beta (X_{ij} -\bar{\bar{ X}}) +\epsilon _{ij}$$
]. See Table 10.9. The intent of the notation is twofold: The arithmetic of the analysis is based on the simple linear regression of Sodium ∼  Calories. The graph is more complex. The points in the graph show y=Sodium plotted against x=Calories separately for each level of Type. The common regression line in all panels ignores Type.




                                Table 10.9Hot dog ANCOVA with a common regression line that ignores Type. See Figure 10.7.


	
                            [image: A77776_2_En_10_Figi_HTML.gif]
                          
	 



                            
Figure 10.8 and Table 10.10 show parallel regression lines for each type. They have separate intercepts and a common slope. This model is the standard analysis of covariance model. We are interested in the vertical distance between the parallel lines. Equivalently, we are interested in the distance between the intercepts. We see from the F = 37. 07433 with [image: 
$$p = 1.3\mbox{ 10}^{-10}$$
] in the first part of Table 10.10 that the vertical distance is significant.[image: A77776_2_En_10_Fig8_HTML.gif]
Fig. 10.8
Sodium ∼  Calories + Type. Parallel lines. [image: 
$$Y _{ij} =\mu +\alpha _{i} +\beta (X_{ij} -\bar{\bar{ X}}) +\epsilon _{ij}$$
]. See Table 10.10. This illustrates the standard ANCOVA model.




Table 10.10Hot dog ANCOVA with parallel lines and separate intercepts. See Figure 10.8.


	
                            [image: A77776_2_En_10_Figj_HTML.gif]
                          
	 



                            
The original preliminary conclusion based on Table 10.8 was misleading because it left out the critical dependence of y=Sodium on the x=Calories variable.
It is possible (see Exercise 10.5 for an example) for the covariate
                  
                to be significant and not the grouping factor. In this example both are significant.
We construct Figure 10.9 and Table 10.11 to show the means for the response Sodium adjusted for the covariate Calories.
                  
                The adjustment maintains the same vertical distance between the fitted lines that we observe in Figure 10.8. From the ANOVA table in Table 10.11 we see that the adjusted means have the same residual sum of squares as the unadjusted means. The residual degrees of freedom are wrong because the analysis doesn’t know that the effect of the Calories variable has already been removed. The Type sum of squares is not what we anticipated because we did not adjust the Type dummy variables
                  
                for the covariate
                  
                ; we only adjusted
                  
                the response variable.
                  
                

                  
                

                  
                
[image: A77776_2_En_10_Fig9_HTML.gif]
Fig. 10.9
Sodium.Calories ∼  Type, x=Calories. Horizontal lines after adjustment for the covariate. [image: 
$$\left (Y _{ij}\vert X_{ij}\right ) =\mu +\alpha _{i} +\epsilon _{ij}$$
]. See Table 10.11. The vertical distance from each point to its line is identical in this figure to the vertical distances shown in Figure 10.8.




Table 10.11Horizontal lines after adjustment for the covariate. See Figure 10.9.


	
                            [image: A77776_2_En_10_Figk_HTML.gif]
                          
	 





                
                  
                
              
Now that we have shown the factor Type to be important, we show in Table 10.12 and Figure 10.10 the results of multiple comparisons analysis using the Tukey procedure. These show that Meat and Beef are indistinguishable and that Poultry differs from both Meat and Beef.[image: A77776_2_En_10_Fig10_HTML.gif]
Fig. 10.10Multiple comparisons by Tukey’s method of the ANCOVA model in Figure 10.8 and Table 10.10 comparing the mean Sodium content of three Types of hot dogs adjusted for Calories. See also Figures 10.8 and 10.9 and Table 10.12.




                                Table 10.12Multiple comparisons by Tukey’s method of the ANCOVA model in Figure 10.8 and Table 10.10 comparing the mean Sodium content of three Types of hot dogs adjusted for Calories. See also Figure 10.10.


	
                            [image: A77776_2_En_10_Figl_HTML.gif]
                          
	 



                            

10.6.5 Tests of Equality of Regression Lines
In Section 10.6.4 we assume the constant slope model (10.2) and test whether the intercepts differed by testing (10.5) about α

                  i
                . We can also work with the separate slope model (10.3) and test (10.4) about β

                  i
                .
Figure 10.11 and Table 10.13 show separate regression lines for each group. These have separate intercepts and slopes. The F-test of Calories:Type in Table 10.13 having p-value =.185 addresses the null hypothesis that the regression lines for predicting Sodium from Calories are parallel.[image: A77776_2_En_10_Fig11_HTML.gif]
Fig. 10.11
Sodium ∼  Calories * Type. Separate regression lines. [image: 
$$Y _{ij} =\mu +\alpha _{i} +\beta _{i}(X_{ij} -\bar{\bar{ X}}) +\epsilon _{ij}$$
]. See Table 10.13.




                                Table 10.13Hot dog ANCOVA with separate regression lines (slopes and intercepts). See Figure 10.11.


	
                            [image: A77776_2_En_10_Figm_HTML.gif]
                          
	 



                            
Observe in Figure 10.11 that the slopes of the lines for the regressions of Sodium on Calories appear to differ for the three Types of hot dog. This null hypothesis is expressed as two equalities in Equation (10.4) and is tested in Table 10.13 using the two degree-of-freedom sum of squares for the interaction Calories:Type. The p-value for this test, 0.185, implies that the null hypothesis cannot be rejected and therefore that the three slopes are homogeneous. Any difference among them is too small to detect with the sample sizes in this data set.
Conditional on the homogeneity of the three slopes, the two degree-of-freedom sum of squares for Type in Table 10.10 tests the hypothesis that the three regression lines have a common intercept, a null hypothesis expressed in Equation (10.5). The zero p-value for this test implies that the intercepts are not identical.


10.7 
                            ancovaplot Function

              
                
                
              
            
The ANCOVA plot has been calculated with the ancovaplot function, one of the functions that we provide in the HH package. The ancovaplot function constructs the appropriate trellis graphics commands for the plot. The specific feature that requires a separate function is its handling of the x= and groups= arguments respectively for the one-way ANOVA and the simple regression models. The result of the function is an ancovaplot object, which is essentially an ordinary trellis object with a different class. We have provided methods for ancova and related functions that will operate directly on the ancovaplot object.
                
                
              

The four basic options are shown in Table 10.14. Output from each is shown in Figures 10.7, 10.6, 10.8, and 10.11 and Tables 10.9, 10.8, 10.10, and 10.13. Figure 10.12 shows the graphs from all four in a single coordinated display.[image: A77776_2_En_10_Fig12_HTML.gif]
Fig. 10.12Four models for the hot dog data, arranged in two columns corresponding to the two possibilities for the intercept in the model and three rows corresponding to the three possibilities for the slope in the model. The models are often described as [image: 
$$\begin{array}{l|ll} &\mbox{ Constant intercept $\alpha $}&\mbox{ Variable intercept $\alpha $} \\\hline \\ \mbox{Variable slope $\beta $} & &\mbox{ Analysis of covariance with interaction} \\ & &\mbox{ of the factor and the covariate.} \\ \mbox{ Constant slope $\beta $}&\mbox{ Linear regression,} &\mbox{ Standard analysis of covariance with} \\ &\mbox{ ignoring the factor.} &\mbox{ constant slope and variable intercept.} \\ \mbox{ Zero slope $\beta = 0$} & &\mbox{ Analysis of variance, ignoring the} \\ & &\mbox{ covariate.} \\\hline \end{array}$$
]





Table 10.14Four ways to use the ancovaplot function. See Figure 10.12 for a coordinated placement of all four of these plots on the same page.


	
                          [image: A77776_2_En_10_Fign_HTML.gif]
                        
	 



                        

10.8 Exercises
We recommend that for all exercises involving a data set, you begin by examining a scatterplot matrix of the variables.

10.1. Demonstrate that the two coding
                
              schemes [image: 
$$\displaystyle\begin{array}{rcl} W_{\mbox{ female}} ={ 1\phantom{0}\phantom{0}1\choose 1\phantom{0}\phantom{0}0}& \quad \mbox{ and}\quad & W_{\mbox{ treat}} ={ 11\choose 1\phantom{0}-1} {}\\ \end{array}$$
]


 in Section 10.2 are equivalent for regression in the sense of Section 10.3 by finding the A matrix that relates them.

10.2. Demonstrate that the orthogonal polynomials
                
              in Table 10.6 span the same column space as the matrix whose columns are the simple polynomials x = (1, 2, 3, 4, 5, 6),  x
2,  x
3,  x
4,  x
5. Plot the columns of the matrix and compare the plot to Figure 10.4.

              
                
                
              
              
                
              
            

                            10.3. Demonstrate that the two coding
                
              schemes for the ResidenceLocation example in Section 10.1 are equivalent by defining the corresponding W variables and finding the A matrix that relates them.

10.4. We first investigated the dataset data(water) in Exercise 4.4.
a.Plot mortality vs calcium, using separate plot symbols for each value of derbynor. Does it appear from this plot that derbynor would contribute to explaining the variation in mortality?

 

b.Perform separate regressions of mortality on calcium for each value of derbynor. Compare these to the estimated coefficients in a multiple regression of mortality on both calcium and derbynor.

 

c.Interpret the regression coefficients in the multiple regression in terms of the model variables.

 

d.Suggest the public health conclusions of your analysis.

 





10.5. Do an analysis of covariance
                
              with model (10.2) of the simple dataset

	
                          y
                        
	
                          x
                        
	
                          a
                        

	1
	1
	1

	2
	2
	1

	3
	3
	2

	4
	4
	2

	5
	5
	3

	6
	6
	3



 Show that covariate
                
              
x is significant and the grouping factor a is not.

10.6. The Erie house-price data data(hpErie) is introduced in Exercise 9.3. That exercise invites examination of the impact of two high-priced houses by comparing analyses with these houses included or omitted. Revisit these data, adding a dummy variable
                
              
highprice defined as 1 if one of the two high-priced houses and 0 otherwise. Perform a stepwise regression analysis including this new variable and compare your results with those in Exercise 9.3.

10.7. Reconsider the salary model in Section 10.4.1.
a.Interpret, in terms of the model variables salary, age, gender, etc., the finding that β
2 is significantly less than zero.

 

b.Write the null hypothesis in terms of the β

                        j
                      ’s:

E(Y ) for whites with 12 years of schooling is the same as E(Y ) for nonwhites with 16 years of schooling.

 

c.Write the null hypothesis in terms of the β

                        j
                      ’s:

E(Y ) increases at the rate of $2,000 per year of schooling for whites and at the rate of $2,500 per year of schooling for nonwhites.

 

d.If the gender and race are interpreted as factors, rather than as arbitrarily coded dummy variables, then the generated dummy variables differ from the 0 and 1 coding used in Section 10.4.1. Therefore, the estimated [image: 
$$\hat{\beta }_{j}$$
] will differ. Explain why the t-tests and the F-test will remain the same.

 





10.8. Rerun the polynomial contrasts
                
              for the data(fabricwear) example in Table 10.7 without the outlier noted in Figure 10.3.
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11. Multiple Regression—Regression Diagnostics

Richard M. Heiberger1  and Burt Holland1
(1)Department of Statistics, Temple University, Philadelphia, PA, USA

 



            
              
              
            
          
In Chapter 9 we show how to set up and produce an initial analysis of a regression model with several predictors. In this chapter we discuss ways to investigate whether the model assumptions are met and, when the assumptions are not met, ways to revise the model to better conform with the assumptions. We also examine ways to assess the effect on model performance of individual predictors or individual cases
              
            (observations).
11.1 Example—Rent Data
11.1.1 Study Objectives
Alfalfa is a high-protein crop that is suitable as food for dairy cows. There are two research questions to ask the data in file data(rent) (from file (alr162) in Weisberg (1985)). It is thought that rent for land planted to alfalfa relative to rent for other agricultural purposes would be higher in areas with a high density of dairy cows and rents would be lower in counties where liming is required, since that would mean additional expense.

11.1.2 Data Description
The data displayed in the scatterplot matrices (sploms) in Figure 11.1 were collected to study the variation in rent paid in 1977 for agricultural land planted to alfalfa. The unit of analysis is a county in Minnesota; the 67 counties with appreciable rented farmland are included. Note that we automatically conditioned the splom on the factor lime. The original data include: 
                      rnt.alf:
                    average rent per acre planted to alfalfa



                      rnt.till:
                    average rent paid for all tillable land



                      cow.dens:
                    density of dairy cows (number per square mile)



                      prop.past:
                    proportion of farmland used as pasture



                      lime:
                    “lime” if liming is required to grow alfalfa; “no.lime” otherwise(Lime is a calcium oxide compound that is spread on a field as a fertilizer.)




[image: A77776_2_En_11_Fig1_HTML.gif]
Fig. 11.1Scatterplot matrices of all variables conditioned on lime.





We added one more variable 
                      alf.till:
                    the ratio of rnt.alf to rnt.till






to investigate the relative rent question.

                
                  
                
              

11.1.3 Rent Levels
It is immediately clear from the sploms
                  
                in Figure 11.1 that lime is very important in the distribution of cow.dens and prop.past as neither has any large values in the lime splom. The ratio alf.till is slightly higher in the no.lime splom.

                                lime does not seem to have an effect on either of the rent variables rent.alf or rent.till, as their panels have similar distributions in both sploms. The regression analysis of rent.alf in Table 11.1 supports that impression as lime has a very low t-value. prop.past also has a very low t-value.Table 11.1
rent.alf regressed against all other observed variables.


	
                            [image: A77776_2_En_11_Figa_HTML.gif]
                          
	 



                            

                
                  
                
                
                  
                
              
We therefore look at a simpler model, without the prop.past predictor but with the cow.dens:lime interaction, in Figure 11.2 and Table 11.2. Although the regression analysis shows the lime coefficient as not significant, it shows the interaction of lime with cow density to be on the edge of significance (p = . 055). We left both in the model because there appears to be much higher variability in the residuals for high values of rnt.till and lower variability in the residuals for low values of cow.dens in the no.lime counties as indicated in Figure 11.3.[image: A77776_2_En_11_Fig2_HTML.gif]
Fig. 11.2Scatterplot matrices of rnt.alf with 2 X-variables, conditioned on lime.




                                [image: A77776_2_En_11_Fig3_HTML.gif]
Fig. 11.3Residuals from rnt.alf ~ rnt.till + cow.dens*lime (in Table 11.2 and Figure 11.2) plotted against the X-variables conditioned on lime.




                                Table 11.2
rent.alf regressed against all variables except prop.past, and including the interaction of cow density with lime.


	
                            [image: A77776_2_En_11_Figb_HTML.gif]
                          
	 



                            
Our conclusion from this portion of the analysis is that rent for alfalfa is related to rent for tillage and to cow density. The relationship with cow density may depend on the need for lime. We need to investigate the variability of the residuals.

                
                  
                
              

                
                  
                
                
                  
                
              

11.1.4 Alfalfa Rent Relative to Other Rent
Returning to the sploms
                  
                in Figure 11.1, we see that that lime puts an upper bound on the alf.till ratio. The ratio does seem to go up with cow density and seems to have a variance relation with proportion in pasture. In Table 11.3, a regression of the alf.till ratio against the non-rent variables, we see that we can drop the prop.past variable.Table 11.3
alf.till ratio regressed against cow density | lime and proportion in pasture.


	
                            [image: A77776_2_En_11_Figc_HTML.gif]
                          
	 



                            

                
                  
                
                
                  
                
              
We continue with Table 11.4 and Figure 11.4, which show an ordinary analysis of covariance with model [image: 
$$\displaystyle\begin{array}{rcl} \mathtt{alf.till}\ \tilde{}\ \mathtt{cow.dens{\ast}lime}& &{}\end{array}$$
]

 (11.1)

 The ANOVA table in Table 11.4 shows the interaction
                  
                is not quite significant.[image: A77776_2_En_11_Fig4_HTML.gif]
Fig. 11.4ANCOVA rnt.alf/rnt.till ~ cow.dens | lime. See Table 11.4.




                                Table 11.4
alf.till ratio regressed against cow density | lime. See Figure 11.4.


	
                            [image: A77776_2_En_11_Figd_HTML.gif]
                          
	 



                            

                
                  
                
              
We choose to investigate individual points by looking at plots of the residuals in Figure 11.5 (with the QQ-plot expanded in Figure 11.9) and the regression diagnostics in Figure 11.6.
                  
                  
                These show the three points (19, 33, 60) in the no.lime group and the single point (49) in the lime group as being potentially influential.
                  
                Figure 11.6, produced with our functions lm.case.s and plot.case.s, includes boundaries for the standard recommended thresholds for the various diagnostic measures discussed in Section 11.3.[image: A77776_2_En_11_Fig5_HTML.gif]
Fig. 11.5Residuals from ANCOVA (rnt.alf/rnt.till) ~ cow.dens | lime. See Table 11.4 and Figure 11.4. The structure of the panels in this figure is discussed in Section 8.​4 The figure itself is similar to Figure 8.​6





                                [image: A77776_2_En_11_Fig6_HTML.gif]
Fig. 11.6Diagnostics from ANCOVA (rnt.alf/rnt.till) ~ cow.dens | lime. The model is displayed in Table 11.4 and Figure 11.4. Each of the statistics in these panels is discussed in Section 11.3 and shown enlarged in Figures 11.12–11.17. To work around the problem that identification in the graph’s x-axis of noteworthy cases often suffers from overprinting, the plot.case function returns and prints a list of noteworthy cases. We show the list in Table 11.5.




                            
We locate the potentially influential
                  
                points in Figure 11.7 and see them as the three counties with the highest ratios and the one lime county with an unusually high cow density. In Section 11.3 we will discuss the statistics displayed in Figures 11.5 and 11.6 as well as their interpretation.[image: A77776_2_En_11_Fig7_HTML.gif]
Fig. 11.7Identified points in ANCOVA (rnt.alf/rnt.till) ~ cow.dens | lime.




                            

                
                  
                
              

                
                  
                
              
We redo the analysis without these four points in Table 11.6 and Figure 11.8. After isolating these four counties we see significantly different slopes in the no.lime and lime counties.[image: A77776_2_En_11_Fig8_HTML.gif]
Fig. 11.8Repeat of Figure 11.4 with four counties removed from ANCOVA ancovaplot(alf.till ~ lime * cow.dens, data=rent[-c(19, 33, 60, 49),]). See Table 11.6. Compare to Figure 11.4.




                                Table 11.5Case diagnostics for model in Table 11.4. The diagnostics are plotted in Figure 11.6. The case numbers for the noteworthy cases are listed here.


	
                            [image: A77776_2_En_11_Fige_HTML.gif]
                          
	 



                                Table 11.6ANCOVA of alf.till ratio regressed against cow density and lime with four removed observations. See Figure 11.8. Compare to Table 11.4.


	
                            [image: A77776_2_En_11_Figf_HTML.gif]
                          
	 



                            

                
                  
                
              
Our conclusion at this step is that for most counties, there is a linear relationship of the rent ratio to the cow density, with the slope depending on the need for lime. The three no.lime counties and the one lime county need additional investigation.

                
                  
                  
                
              

                
                  
                
              

                
                  
                
              


11.2 Checks on Model Assumptions
We assume in Section 9.​3 that the model error terms [image: 
$$\epsilon _{i} \sim \mbox{ NID}(0,\sigma ^{2})$$
] (Normal Independently Distributed
                
              ), that is that they have the same variance σ
2 for all cases, are mutually uncorrelated or independent, and are normally distributed. In order for the conclusions from our analyses to be valid, these assumptions must be true. Therefore, we discuss ways to verify the assumptions and then suggest some remedies when assumptions are not met.
11.2.1 Scatterplot Matrix

                
                  
                
              
We previously mentioned the importance of routinely producing scatterplot matrices as part of analyses involving several variables. We produced many such plots in our discussion in Section 11.1. Here we focus on the rows of the scatterplot matrix that correspond to the response variables. The panels in these rows, the plots of the response y vs each of the explanatory variables x

                  j
                , should each be approximately linear. In Section 11.1.3 the response is shown in the rnt.alf row in Figure 11.1 and in Figure 11.2. In Section 11.1.4 the response is the alf.till row in Figure 11.1 and in Figure 11.4. If the plot of y against any explanatory variable suggests curvature in the relationship, the analyst should consider transforming
                  
                either the response variable or that explanatory variable so that following transformation the plot of y vs the transformed x

                  j
                 is close to linear. A successful transformation suggests the use of this transformed predictor rather than the original in the regression model. Exercise 11.5 explores this idea.

11.2.2 Residual Plots

                
                  
                
              
Before a model can be accepted for use in explanation or prediction, the analyst should produce and examine plots involving the residuals calculated from the fit of the model to the data. The residuals e

                  i
                 should be plotted vs each of the following, one plot point per case:

                	the fitted values of the response [image: 
$$\hat{y}_{i}$$
]


	each of the model’s explanatory variables x

                        j
                      


	possibly other variables under consideration for the model but not yet a part of it

	time, if the data are time-ordered




              
In addition, the partial residuals (see Section 9.​13.​1) should be plotted against the corresponding predictors and against the residuals from regressing each predictor against the other predictors (added variable plots
                  
                ; see Section 9.​13.​4). Ideally, each of these plots should exhibit no systematic character and have random scatter about the horizontal line at 0, the mean of the e

                  i
                .
In order to check for normality, the analyst should produce a normal probability plot
                  
                of the residuals. If there is doubt that this plot confirms normality, the analyst can request the p-value from an all-purpose test of normality having good power against a variety of alternatives, such as the Shapiro–Wilk
                  
                

                  
                test mentioned in Section 5.​7

If a residual plot suggests that an assumption is not met, the analyst must seek a remedy following which the assumption is met.

                
                  
                
              
We show in Figure 11.9 the normal probability plot
                  
                for the rent ratio alf.till analysis in Table 11.4 and Figure 11.4. It does not look normal. Compare this plot to Figure 11.10, which shows probability plots of six normal and six non-normal variables.[image: A77776_2_En_11_Fig9_HTML.gif]
Fig. 11.9Normal plot of residuals from ANCOVA rnt.alf/rnt.till ~ cow.dens | lime. See Table 11.4 and Figure 11.4. The results do not look normal. We ran the Shapiro-Wilk normality test with statistic W=0.8969 and p = 4 10−5. We identified the four most extreme points. Three of them are the three no.lime counties that we had previously identified.




                                [image: A77776_2_En_11_Fig10_HTML.gif]
Fig. 11.10Normal plot of six randomly generated normal variables and six randomly generated nonnormal variables. These plots are placed here to help you calibrate your eye to what normal and nonnormal distributions look like when plotted against the normal quantiles. t: long left and right tails as indicated by points below the diagonal on the left and above the diagonal on the right. Chi-square: short left and long right tails. Poisson: discrete appearance and long tail on the right. Uniform: short tails on left and right as indicated by points above the diagonal line on the left and below the diagonal line on the right. F: short tail on the left and long tail on the right. Binomial: discrete positions on the y-axis, with short tail on the left; this example with p = . 2 is not symmetric and we see more points on the left.




                            
From the cow.dens column, we again see similar behavior in Rows 1 and 3. We also note the higher variability in Y for the higher densities. We get a sense of why we see that difference in variability from the interaction lime:cow.dens column. Here we see, most clearly in the partial residuals plot in Row 3, that the high variability is observed when the interaction variable is negative, corresponding to the no.lime counties.
                  
                

Figure 11.11 shows several plots of the residuals and partial residuals
                  
                from the model in Table 11.4 and Figure 11.4. From the lime column, we see that the ratio alf.till is higher for lime= − 1 (no lime) than for lime=1 (lime). The pattern is similar in the observed variable plots in Row 1 and the partial residuals plots in Row 3, suggesting that the lime effect is independent of the other variables.[image: A77776_2_En_11_Fig11_HTML.gif]
Fig. 11.11Row 1 (at the top) shows the response variable alf.till against each of the three predictors. Row 2 shows the ordinary residuals [image: 
$$e = Y -\hat{ Y }$$
] from the regression on all three variables against each of the three predictors. Row 3 shows the “partial residuals plots”, the partial residuals for each predictor against that predictor. Row 4 shows the “added variable plots”, the partial residuals against the residuals of X

                          j
                         regressed on the other two predictors. The slope for both rows 3 and 4, the partial residuals and the added variables, is exactly the regression coefficient for that term.




                            

                
                  
                
              

                
                  
                
                
                  
                
              

                
                  
                
                
                  
                
                
                  
                
                
                  
                
                
                  
                
                
                  
                
                
                  
                
                
                  
                
                
                  
                
              


11.3 Case Statistics
Many of the diagnostics discussed in this chapter fall under the heading case statistics, i.e., they have a value for each of the n cases in the data set. If a case statistic has a value that is unusual, based on thresholds we discuss, the analyst should scrutinize the case. One action the analyst might take is to delete the case. This is justified if the analyst determines the case is not a member of the same population as the other cases in the data set. But deletion is just one possibility. Another is to determine that the flagged case is unusual in ways apart from those available in its information in the present data set, and this may suggest a need to add one or more additional predictors to the model.
There are many case statistics used in regression diagnostics. The concepts are complex and the notation more so. We summarize the notation in Table 11.7. We discuss each of the formulas and illustrate them with the diagnostic plots for the rent data that we originally showed in Figure 11.6. We reproduce each of the panels in that figure as a standalone plot here as part of the discussion.Table 11.7Regression Diagnostics Formulas


	Name
	Notation and definition
	Sequenced calculation formulas
	Description

	Observed response variable
	
                          [image: 
$$\mathop{Y }_{n\times 1}$$
]
                        
	 	 
	Observed predictor variables
	
                          [image: 
$$\mathop{X}_{n\times (1+p)}$$
]
                        
	
                          [image: 
$$X = [\mathbf{1\,}X_{1}X_{2}\ldots X_{p}]$$
]
                        
	 
	Fitted value
	
                          [image: 
$$\hat{Y } = \left (\hat{Y }_{i}\right )$$
]
                        
	
                          [image: 
$$X\hat{\beta }$$
]
                        
	 
	Residual
	
                          e
                          
                            i
                          
                        
	
                          [image: 
$$Y _{i} -\hat{ Y }_{i}$$
]
                        
	 
	Standard deviation
	
                          [image: 
$$s = \sqrt{\mathsf{MSE } _{\mathrm{}}} = \sqrt{\mathop{\mbox{ var} }(Y _{i } \vert X)}$$
]
                        
	
                          [image: 
$$\sqrt{\sum e_{i }^{2 }/(n - p - 1)}$$
]
                        
	All n observations

	Leverage
	
                          [image: 
$$h_{i} = h_{ii} = \frac{\partial \hat{y}_{i}} {\partial y_{i}}$$
]
                        
	
                          [image: 
$$\mathop{\mbox{ diag}}\left (X(X'X)^{-1}X'\right )$$
]
                        
	 
	Variance of e

                            i
                          

	
                          [image: 
$$\mathop{\mbox{ var}}(e_{i})$$
]
                        
	
                          [image: 
$$s^{2}(1 - h_{i})$$
]
                        
	
                          [image: 
$$Y _{i} =\hat{ Y }_{i} + e_{i}$$
]
                        

	Variance of [image: 
$$\hat{Y }_{i}$$
]

	
                          [image: 
$$\mathop{\mbox{ var}}(\hat{Y }_{i})$$
]
                        
	
                          [image: 
$$s^{2}h_{i}$$
]
                        
	
                          [image: 
$$\mathop{\mbox{ var}}(Y _{i}) =\mathop{ \mbox{ var}}(\hat{Y }_{i}) +\mathop{ \mbox{ var}}(e_{i})$$
]
                        

	Standardized residual
	
                          [image: 
$$e_{i}^{{\ast}}$$
]
                        
	
                          [image: 
$$e_{i}/(s\sqrt{1 - h_{i}})$$
]
                        
	
[image: 
$$e_{i}/(\sigma \sqrt{1 - h_{i}}) \sim N(0,1)$$
] when H
0 is true

	Data with i
th row deleted
	
                          [image: 
$$\mathop{X_{(i)}} _{(n-1)\times (1+p)}$$
]
                        
	
                          [image: 
$$X_{[(1,2,\ldots,i-1,i+1,\ldots,n),(0,1,\ldots \,p)]}$$
]
                        
	 
	Deleted regression coefficients
	
                          [image: 
$$\hat{\beta }_{(i)} = (X_{(i)}'X_{(i)}^{\phantom{'}})^{-1}X_{(i)}'Y _{(i)}^{\phantom{'}}$$
]
                        
	See description in Section 11.3.6.
	Estimation of β based on n − 1 observations, all except i. The definition isn’t efficient. Use the algorithm in Section 11.3.6.

	Deleted standard deviation
	
                          [image: 
$$s_{(i)} = \sqrt{\mathsf{MSE } _{\mathrm{}}{} _{(i)}}$$
]
                        
	
                          [image: 
$$\sqrt{{\bigl ((n - p)s^{2 } - e_{i }^{2 }/(1 - h_{i } )\bigr )}/(n - p - 1)}$$
]
                        
	
n − 1 observations, all except i.

	Deleted predicted value
	
                          [image: 
$$\hat{Y }_{(i)}$$
]
                        
	
                          [image: 
$$X_{[i,(0,\ldots \,p)]}\hat{\beta }_{(i)}$$
]
                        
	Prediction Y

                            i
                           based on the remaining n − 1 observations

	Studentized deleted residual
	
                          t
                          
                            i
                          
                        
	
                          [image: 
$$e_{i}/\left (s_{(i)}\sqrt{1 - h_{i}}\right )$$
]
                        
	
[image: 
$$t_{i} \sim t_{n-p-2}$$
] when H
0 is true

	Cook’s distance
	
                          [image: 
$$D_{i} = \left (\hat{Y } -\hat{ Y }_{(i)}\right )'\left (\hat{Y } -\hat{ Y }_{(i)}\right )/(p\,s^{2})$$
]
                        
	
                          [image: 
$$\frac{e_{i}^{2}} {p\,\mathsf{MSE}_{\mathrm{}}}\left ( \frac{h_{i}} {(1 - h_{i})^{2}}\right )$$
]
                        
	 
	 	
                          [image: 
$$\ \ \ = \left (\hat{\beta }-\hat{\beta }_{(i)}\right )'X'X\left (\hat{\beta }-\hat{\beta }_{(i)}\right )/(p\,s^{2})$$
]
                        
	 	 
	Inverse of crossproduct of X

	
C = (c

                            ij
                          )
	(X′X)−1

	 
	Covariance of coefficients
	
                          s
                          2
                          C
                        
	
                          [image: 
$$s^{2}(X'X)^{-1}$$
]
                        
	Estimated covariance matrix of regression coefficients

	
                          [image: 
$$\mathsf{DFBETAS}_{\mathrm{}}$$
]
                        
	
                          [image: 
$$\mathsf{DFBETAS}_{\mathrm{}}{}_{ik} = (\hat{\beta }_{k} -\hat{\beta }_{k(i)})/(s_{(i)}\,\sqrt{c_{kk}})$$
]
                        
	 	Standardized [image: 
$$\varDelta \hat{\beta }_{k}$$
] when observation i is deleted

	
                          [image: 
$$\mathsf{DFFITS}_{\mathrm{}}$$
]
                        
	
                          [image: 
$$\mathsf{DFFITS}_{\mathrm{}}{}_{i} = (\hat{Y }_{i} -\hat{ Y }_{i(i)})/(s_{(i)}\,\sqrt{h_{i}})$$
]
                        
	
                          [image: 
$$\left ( \frac{n - p - 1} {\mathsf{SSE}_{\mathrm{}}\,(1 - h_{i}) - e_{i}^{2}}\right )^{\frac{1} {2} }\left ( \frac{h_{i}} {1 - h_{i}}\right )^{\frac{1} {2} }$$
]
                        
	Standardized [image: 
$$\varDelta \hat{Y }_{i}$$
] when observation i is deleted




                        
We focus on five distinct case statistics, each having a different function and interpretation. (One of these, [image: 
$$\mathsf{DFBETAS}_{\mathrm{}}$$
], is a vector with a distinct value for each regression coefficient including the intercept coefficient.) For small data sets the analyst may choose to display each of these case statistics for all cases. For larger data sets we suggest that the analyst display only those values of the case statistics that exceed a threshold, or flag, indicating that the case is unusual in some way. Recommended thresholds are mentioned in the following sections.

              Leverage

                        
                      measures how unusual a case is with respect to the values of its predictors, i.e., whether the values of a case’s predictors are an outlying point in the p-dimensional space of predictors. Unlike the other case statistics, leverage does not involve the response variable.


Studentized deleted residuals

                        
                      suggest how unusual cases are with respect to the case’s value of the response variable.


Cook’s distance

                        
                      

                        
                      is a combined measure of the unusualness of a case’s predictors and response. It sometimes happens that a case is flagged by Cook’s distance but not quite flagged by leverage or Studentized deleted residuals.



                    [image: 
$$\mathsf{DFFITS}_{\mathrm{}}$$
]
                  

                        
                      indicates the extent to which deletion of the case impacts predictions made by the model.



                    [image: 
$$\mathsf{DFBETAS}_{\mathrm{}}$$
]
                  

                        
                      (one for each regression coefficient) show the extent to which deletion of a case would perturb that regression coefficient.




            
In the following sections we discuss these statistics in turn, presenting two formulas for each of them. The first, the definitional formula, is intended to be intuitive. It is used to explain to the reader what the formula measures and why it is helpful to view it in an analysis. It is also inefficient and should not be used as a computational formula. The second formula, the computational formula, is an order of magnitude more efficient for computation. It is not intuitive. We leave for Exercise 11.8 the proofs that the two sets of formulas are equivalent.
11.3.1 Leverage

                
                  
                
              
The calculation of leverages
                  
                is briefly addressed in 9.3.1. Leverages measure how unusual a case is with respect to its set of predictors. Unlike other measures in this chapter, leverages do not involve the response variable. The leverage h

                  ii
                 of case i, usually abbreviated to h

                  i
                , is the i
th diagonal entry of the hat matrix

                  
                
                                H = X(X′X)−1
X′. This matrix has come to be called the hat matrix because in matrix notation the predicted response is [image: 
$$\hat{Y } = X(X'X)^{-1}X'Y = HY$$
], i.e., H transforms Y to [image: 
$$\hat{Y }$$
] by placing a “hat” on the Y. It can be shown (see Exercise 11.9) that all leverages satisfy [image: 
$$\frac{1} {n} \leq h_{i} \leq 1$$
]. If a model contains p predictors, an excessively large leverage is one for which [image: 
$$\displaystyle\begin{array}{rcl} h_{i}> \frac{2(p + 1)} {n} \quad \mbox{ or}\quad h_{i}> \frac{3(p + 1)} {n} & &{}\end{array}$$
]

 (11.2)

 These suggested rules derive from the fact that the average of all n leverages is [image: 
$$\frac{p+1} {n}$$
], so they are based on exceeding 2 or 3 times this average. A case that is flagged because its leverage exceeds one or both of these thresholds has a value for at least one predictor that is unusual compared to values of such predictors for other cases. We can show that [image: 
$$\displaystyle\begin{array}{rcl} h_{ii} = \frac{\partial \hat{y}_{i}} {\partial y_{i}}\quad \mbox{ and}\quad h_{ij} = \frac{\partial \hat{y}_{i}} {\partial y_{j}}& & {}\\ \end{array}$$
]


 The leverage h

                  i
                 of case i is geometrically interpreted as the generalized (Mahalanobis) distance of X

i⋅  (the i
th row of X) from the (p + 1)-dimensional centroid of all n rows of X.
More complicated forms of leverage have been devised to diagnose a group of cases that when considered together are unusual but when considered individually are not unusual.
Figure 11.12 displays the leverages for each case of the fit of the rent data using Model (11.1). This figure includes horizontal dotted lines demarking the two leverage thresholds given above. We observe that county 49 exceeds both thresholds, telling us that this county (requiring lime) has an unusually large cow.dens.
                  
                
[image: A77776_2_En_11_Fig12_HTML.gif]
Fig. 11.12Leverage for Model (11.1) for rent data.






                
                  
                
              

11.3.2 Deleted Standard Deviation

                
                  
                
              
The deleted standard deviation s
(i) is defined to be the value of s calculated from the same regression model using all cases except case i. Because the primary use of the s
(i) is in the definition of the Studentized deleted residuals, there are no standard rules for interpreting these values themselves.
We compare the s
(i) values to two thresholds,. 95s and 1. 05s. If deletion of an observation shifts the estimated standard deviation by 5% in either direction, we note it on the graph and choose to investigate the observation.
Figure 11.13 shows the deleted standard deviations for the rent data. We see two observations, 19 and 33, that are below our lower threshold.
                  
                
[image: A77776_2_En_11_Fig13_HTML.gif]
Fig. 11.13Deleted standard deviations for Model (11.1) for rent data.






11.3.3 Standardized and Studentized Deleted Residuals

                
                  
                
                
                  
                
              
The standardized and Studentized residuals help to assess the effect of each individual case on the calculated regression relationship. For case i the standardized residual [image: 
$$\displaystyle\begin{array}{rcl} e_{i}^{{\ast}} = e_{ i}/\sqrt{\widehat{\mathop{\mbox{ var} }}(e_{i } )}& &{}\end{array}$$
]

 (11.3)

 is the calculated residual, e

                  i
                , standardized by dividing by its estimated standard error [image: 
$$\displaystyle\begin{array}{rcl} \sqrt{ \widehat{\mathop{\mbox{ var}}}(e_{i})} = s\sqrt{1 - h_{i}}& &{}\end{array}$$
]

 (11.4)

 Note that because this standard error depends on i, it differs slightly from case to case. The standardized residual is also called the internally standardized residual

                  
                because the calculation of s includes case i.
                  
                

The Studentized deleted residual, also called the externally standardized residual, for case i is calculated from the regular residuals, the deleted standard deviations, and the hat diagonals. [image: 
$$\displaystyle\begin{array}{rcl} t_{i} = \frac{e_{i}} {s_{(i)}\sqrt{1 - h_{i}}}& &{}\end{array}$$
]

 (11.5)

 As implied by this notation, t

                  i
                 has a Student’s t distribution with n − p − 1 degrees of freedom. Considering the t distribution with moderate degrees of freedom, we say that case i’s response value is “unusual” (the actual response differs “appreciably” from the predicted response) if its absolute Studentized deleted residual exceeds 2 or 3. Such a case may be termed an outlier.
                  
                We recommend a threshold of 2 for small data sets and 3 for large data. The reason for this recommendation is that for a large data set, 2 is the approximate 97. 5th percentile of the t distribution so that when the model assumptions are satisfied for all cases, approximately 5% of these residuals will exceed 2 by chance alone.
We prefer the use of Studentized deleted residuals rather than standardized residuals because the former are interpretable as t statistics but the latter are not. A reason is that the numerator and denominator of t

                  i
                 are statistically independent, but the numerator and denominator of the standardized residuals [image: 
$$e_{i}^{{\ast}}$$
] are not independent.
It can be shown (see Exercise 11.8c) that the Studentized deleted residual defined intuitively in Equation (11.5) can be calculated more efficiently by the computational formula [image: 
$$\displaystyle\begin{array}{rcl} t_{i} = e_{i}\left ( \frac{n - p - 1} {\mathsf{SSE}_{\mathrm{}}\,(1 - h_{i}) - e_{i}^{2}}\right )^{\frac{1} {2} }& &{}\end{array}$$
]

 (11.6)

 where [image: 
$$\mathsf{SSE}_{\mathrm{}}$$
] is the error sum of squares under the full model having n cases. All terms in this expression are available from a single fitting with the n cases. Therefore, in calculating the nt

                  i
                ’s it is not necessary to refit the model n times corresponding to deleting each case in turn.
For our modeling of the rent data in Table 11.4, Figure 11.14 displays the Studentized (deleted) residuals for each case. We see that counties 19 and 33 both exceed the threshold 3, indicating that these counties have unusually large values of alf.till.
                  
                

                  
                
[image: A77776_2_En_11_Fig14_HTML.gif]
Fig. 11.14Studentized deleted residuals for Model (11.1) for rent data.






11.3.4 Cook’s Distance

                
                  
                
                
                  
                
              
While leverage
                  
                addresses the unusualness of a case’s predictor variables, and Studentized deleted residuals address (primarily) the unusualness of a case’s response variable, the Cook’s distance D

                  i
                 of a case assesses the unusualness of both its response and predictors. The Cook’s distance D

                  i
                 for case i can be interpreted in two ways.
Let [image: 
$$\hat{Y }$$
] be the n-vector of fitted values using all n cases and [image: 
$$\hat{Y }_{(i)}$$
] be the n-vector of fitted values when case i is not used in fitting. Then [image: 
$$\displaystyle\begin{array}{rcl} D_{i} = \frac{\left (\hat{Y } -\hat{ Y }_{(i)}\right )'\left (\hat{Y } -\hat{ Y }_{(i)}\right )} {p\,\mathsf{MSE}_{\mathrm{}}} & &{}\end{array}$$
]

 (11.7)

 This illustrates the interpretation that Cook’s distance for case i measures the change in the vector of predicted values when case i is omitted.
Let [image: 
$$\hat{\beta }_{(i)}$$
] be the vector of estimated regression coefficients estimated without case i. Then [image: 
$$\displaystyle\begin{array}{rcl} D_{i} = \frac{\left (\hat{\beta }-\hat{\beta }_{(i)}\right )'X'X\left (\hat{\beta }-\hat{\beta }_{(i)}\right )} {p\,\mathsf{MSE}_{\mathrm{}}} & &{}\end{array}$$
]

 (11.8)

 This representation shows that D

                  i
                 measures the change in the vector of estimated regression coefficients when case i is omitted.
As with the Studentized deleted residual,
                  
                the n Cook’s distances can be calculated without running n regressions omitting each case in turn. It can be shown that [image: 
$$\displaystyle\begin{array}{rcl} D_{i} = \frac{e_{i}^{2}} {p\,\mathsf{MSE}_{\mathrm{}}}\left ( \frac{h_{i}} {(1 - h_{i})^{2}}\right )& &{}\end{array}$$
]

 (11.9)

 From this formula it is apparent that a case with a large Cook’s distance has either a large residual, a large leverage, or some combination of these two.
We recommend that a case be regarded as unusual if its Cook’s distance exceeds 1. This threshold for what constitutes an unusually large value of Cook’s distance D

                  i
                 follows the recommendation of Weisberg (1985) (page 120).
Since for most F distributions the 50% point is near 1, a value of D

                  i
                 = 1 will move the estimate to the edge of about a 50% confidence region, a potentially important change. If the largest D

                  i
                 is substantially less than 1, deletion of a case will not change the estimate of β by much. To investigate the influence
                  
                of a case more closely, the analyst should delete the large D

                  i
                 case and recompute the analysis to see exactly what aspects of it have changed.
There are also arguments, for example in Fox (1991), for a much smaller threshold 4∕(n − p − 1) or 4∕n that decreases with increasing sample size. We are unconvinced by these arguments.
Figure 11.15 displays the Cook’s distances for the rent data. Counties 5, 19, 32, 33, 49, 60, and 66 have much larger Cook’s distances than the other counties, but none of these 7 counties approaches the threshold of 1 that would flag a county as unusual. Therefore, Cook’s distance flags no data points fitted by alf.till ~ lime*cow.dens.
                  
                
[image: A77776_2_En_11_Fig15_HTML.gif]
Fig. 11.15Cook’s distances for Model (11.1) for rent data.






11.3.5 DFFITS

                
                  
                
              

[image: 
$$\mathsf{DFFITS}_{\mathrm{}}$$
], shown in Figure 11.16, is an abbreviation for “difference in fits”. [image: 
$$\mathsf{DFFITS}_{\mathrm{}}$$
]

                  i
                 is a standardized measure of the amount by which predicted value [image: 
$$\hat{Y }_{i}$$
] for case i changes when the data on this case is deleted from the data set. A flag for a case with large [image: 
$$\mathsf{DFFITS}_{\mathrm{}}$$
] is one having absolute value greater than [image: 
$$2\sqrt{p/n}$$
].[image: A77776_2_En_11_Fig16_HTML.gif]
Fig. 11.16
[image: 
$$\mathsf{DFFITS}_{\mathrm{}}$$
] for Model (11.1) for rent data.




                            

                
                  
                
              
The interpretation of [image: 
$$\mathsf{DFFITS}_{\mathrm{}}$$
]

                  i
                 is apparent from the formula [image: 
$$\displaystyle\begin{array}{rcl} \mathsf{DFFITS}_{\mathrm{}}{}_{i} = \frac{\hat{Y }_{i} -\hat{ Y }_{i(i)}} {\sqrt{\mathsf{MSE } _{\mathrm{}}{} _{(i) } \,h_{i}}}& &{}\end{array}$$
]

 (11.10)

 where, as before, an (i) in a subscript means that the quantity is calculated with case i omitted from the data. As is seen from [image: 
$$\displaystyle\begin{array}{rcl} \mathsf{DFFITS}_{\mathrm{}}{}_{i} = \left ( \frac{n - p - 1} {\mathsf{SSE}_{\mathrm{}}\,(1 - h_{i}) - e_{i}^{2}}\right )^{\frac{1} {2} }\left ( \frac{h_{i}} {1 - h_{i}}\right )^{\frac{1} {2} }& &{}\end{array}$$
]

 (11.11)

 [image: 
$$\mathsf{DFFITS}_{\mathrm{}}{}_{i}$$
] can be calculated from the output of the regression using all n cases. 
                  
                


11.3.6 DFBETAS

                
                  
                
              

[image: 
$$\mathsf{DFBETAS}_{\mathrm{}}{}_{ik}$$
] is a standardized measure of the amount by which the k
th regression coefficient changes if the i
th observation is omitted from the data set. A case is considered to have a large such measure if its absolute [image: 
$$\mathsf{DFBETAS}_{\mathrm{}}$$
] is greater than [image: 
$$2/\sqrt{n}$$
]. Since a regression analysis has np [image: 
$$\mathsf{DFBETAS}_{\mathrm{}}$$
] in all, a request for [image: 
$$\mathsf{DFBETAS}_{\mathrm{}}$$
] in a large complicated regression analysis will generate a lot of output.

[image: 
$$\mathsf{DFBETAS}_{\mathrm{}}{}_{ik}$$
] is defined by [image: 
$$\displaystyle\begin{array}{rcl} \mathsf{DFBETAS}_{\mathrm{}}{}_{ik} = \frac{\hat{\beta }_{k} -\hat{\beta }_{k(i)}} {\sqrt{\mathsf{MSE } _{\mathrm{}}{} _{(i) } \,c_{kk}}}& & {}\\ \end{array}$$
]


 for [image: 
$$k = 0,1,\ldots,p$$
], where c

                  kk
                 is the k
th diagonal entry in (X′X)−1. The terms [image: 
$$\hat{\beta }_{k(i)}$$
] are called the deleted regression coefficients.
An efficient calculation algorithm is
1.Let [image: 
$$\hat{\beta }$$
] be the regression coefficients from regressing y on x.

 

2.Let X be the matrix of predictors including the column 1.

 

3.Factor X = QR. See Section I.4.7 for details.

 

4.Multiply the i
th row of Q by [image: 
$$z_{i} = e_{i}/(1 - h_{i})$$
]. Call the result Q

                          z
                        .

 

5.Solve [image: 
$$R\:\varDelta b = Q'_{z}$$
] for Δ b.

 

6.Then [image: 
$$\hat{\beta }_{(i)} =\hat{\beta } -\varDelta b_{i}$$
], where Δ b

                          i
                         is the i
th column of Δ b.

 




This algorithm is efficient because it does the hard work of solving a linear system only once, when it factors X = QR to construct the orthogonal matrix Q and the triangular matrix R. The backsolve in step 5 is not hard work because it is working with a triangular system. All the remaining steps are simple linear adjustments to the original solution.
Another efficient algorithm, shown in Table 11.8, is essentially the same although with the steps in a different order. This is the algorithm used by R in function stats:::dfbetas.lm.Table 11.8
R’s algorithm for dfbetas. The function chol2inv inverts a symmetric, positive definite square matrix from its Choleski decomposition. Equivalently, it computes (X′X)−1 from the (R part) of the QR decomposition of X. The value infl$sigma is a vector whose i
th element contains the estimate of the residual standard deviation obtained when the i
th case is dropped from the regression. The value returned by the stats:::dfbeta function is the changes in the coefficients which result from dropping each case. Function stats:::dfbeta does the scaling.


	
                            [image: A77776_2_En_11_Figg_HTML.gif]
                          
	 



                            

                
                  
                
              
Figure 11.17 gives one [image: 
$$\mathsf{DFBETAS}_{\mathrm{}}$$
] plot for each predictor in the model in Table 11.4. We do not ordinarily interpret [image: 
$$\mathsf{DFBETAS}_{\mathrm{}}$$
] for the intercept term. Figure 11.6 shows that cases 5 and 19 impact the regression coefficient of lime, cases 33 and 49 impact the regression coefficient of cow.dens, and that these four counties plus county 32 are primarily responsible for the difference in slopes of the two regression lines in Figure 11.4.
                  
                
[image: A77776_2_En_11_Fig17_HTML.gif]
Fig. 11.17
[image: 
$$\mathsf{DFBETAS}_{\mathrm{}}$$
] for all four predictors in Model (11.1) for the rent data: the column of 1s for the intercept, the factor lime, the covariate cow.dens, and the interaction lime:cow.dens.






                
                  
                
              

11.3.7 Residuals vs Leverage
We show R’s standard set of regression diagnostic plots in Figure 11.18. The first three are essentially the same as the first three included in our Figure 11.5 constructed with lmplot from the HH package. R by default fits a smooth curve through both the plots of Residuals vs Fitted and [image: 
$$\sqrt{ \vert Residuals\vert }$$
] vs Fitted. The fourth standard R plot, shown enlarged in Figure 11.19, shows the Residuals plotted against the leverage and includes contours of Cook’s distance.[image: A77776_2_En_11_Fig18_HTML.gif]
Fig. 11.18Standard R plot of a linear model: plot(rent.lm12m). The first three panels were discussed in Figure 11.5. The fourth is discussed in Figure 11.19. R by default fits a smooth curve to the points in these plots. The three largest residuals are indicated. “Largest” means larger than the others. There is no statistical significance associated with an identified point.




                                [image: A77776_2_En_11_Fig19_HTML.gif]
Fig. 11.19This is a repeat of the fourth panel of Figure 11.18 with the smooth curve suppressed. The “Residuals vs Leverage” plot shows the standardized residuals e
∗ against the leverage h

                          i
                         along with contours of Cook’s distance. Cook’s distance, a combined measure of the “unusualness” of a case’s predictors and response, is discussed in Section 11.3.4. The contours of constant Cook’s distance c are calculated as [image: 
$$\sqrt{c\,p\,(1 - h_{i } )/h_{i}}$$
], where p is the number of estimated regression coefficients (p = 2 for simple linear regression). By default, contours are plotted for the two c-values 0.5 and 1. Note on the graph that the contour lines are closer to the 0-residual horizontal line for higher leverage values (corresponding to points farther away from [image: 
$$\bar{x}$$
]) than for lower leverage values.




                            

                
                  
                  
                
                
                  
                
              

                
                  
                  
                
                
                  
                
                
                  
                
              

11.3.8 Calculation of Regression Diagnostics
Regression diagnostics are calculated from the matrix formulation of the equations in the “Sequenced calculation formulas” column of Table 11.7.
In R see the documentation for the functions dfbetas, lm.influence, and plot.lm. See also our functions lm.case and plot.case in the HH package.
Regression diagnostics in SAS are computed by adding the option
                  
                
                                INFLUENCE

                  
                to the MODEL statement in PROC REG.


11.4 Exercises
We recommend that for all exercises involving a data set, you begin by examining a scatterplot matrix of the variables.

11.1. Data from Brooks et al. (1988), reprinted in Hand et al. (1994), relate the number of monthly man-hours associated with the anesthesiology service for 12 U.S. Naval hospitals to the number of surgical cases, the eligible population per thousand, and the number of operating rooms. The data appear in the file data(hospital).
a.Construct and examine a scatterplot matrix of these data. Does it appear that multicollinearity
                        
                      will be a problem?

 

b.Fit the response to all three predictors, calculating the VIFs.
                        
                      Based on the analysis thus far, which predictor is the best candidate for removal? Why?

 

c.Fit the response with the predictor in part (b) removed.

 

d.Calculate the Studentized residuals, leverages, and Cook’s distances for the model in part (c). Based on these calculations, what action would you recommend?

 





11.2. We previously encountered the dataset data(hardness) in Section 9.​7 and Exercise 4.5. Since density is easily measured but hardness is not, it is desired to model hardness as a function of density.
a.Construct a histogram of hardness and confirm that a transformation is required in order to use this chapter’s regression modeling procedures.

 

b.Regress the transformation of hardness you chose based on either part (a) or Exercise 4.5. For this regression, produce a scatterplot of the residuals vs the fitted values and of the residuals vs density. Conclude from these plots that a quadratic regression is appropriate.

 

c.We illustrate a linear and a quadratic fit of the hardness data in Figure 9.​5 and Table 9.​4 Produce residual plots and regression diagnostics for both models.

 





11.3. The dataset data(concord) is described in Exercise 4.6. Use multiple regression analysis to model water81 as a function of a subset of the five candidate predictors. Consider transforming variables to assure that the assumption of regression analysis are well satisfied. Carefully interpret, in terms of the original model variables, all regression coefficients in your final model.

11.4. Creatine clearance is an important but difficult to measure indicator of kidney function. It is desired to estimate clearance from more readily measured variables. Neter et al. (1996) discuss data, originally from Shih and Weisberg (1986), relating clearance to serum clearance concentration, age, and weight. The datafile is data(kidney).
a.Regress clearance on each of the three individual predictors. Investigate the adequacy of this model.

 

b.Improve on the model in part (a) by adding to the set of candidate predictors the squares and pairwise products of the three original predictors. Conclude that the addition of one of these six new candidates improves the original model.

 

c.Investigate the adequacy of this model.

 

d.Carefully interpret each of the four estimated regression coefficients in terms of the model variables.

 





11.5. Heavenrich et al. (1991) provide data on the gasoline mileage (MPG) of 82 makes and models of automobiles as well as 4 potential predictors of MPG. The data appear in data(mileage). The potential predictors are 
                    WT:
                  vehicle weight in 100 lbs



                    HP:
                  engine horsepower



                    SP:
                  top speed in mph



                    VOL:
                  cubic feet of cab space





We wish to use them to model MPG.
a.Produce a scatterplot matrix and comment on the plots of MPG vs HP and of HP vs SP.

 

b.Regress MPG on WT, HP, and SP. Are the signs of the estimated regression coefficients as expected? Explain what is causing the anomaly.

 

c.First regress MPG on WT and SP and then regress MPG on WT and HP. Which of these two regressions is preferred?

 

d.For the model you prefer in part (c), produce a normal plot of the residuals and a plot of the residuals vs the fitted values. What do you conclude?

 

e.Regress the log of MPG on WT and SP and also the log of MPG on the log of WT and SP. Produce residual plots and normal probability plots from both of these runs. Based on the numerical output and plots, explain which model is preferred.

 

f.For the preferred model, produce case diagnostics. For each flagged case, indicate what is unusual about it.

 





11.6. Neter et al. (1996) discuss a dataset relating the amount of life insurance carried in thousands of dollars (lifeins) to average annual income in thousands of dollars (anninc) and risk aversion score (riskaver), for 18 managers, where higher scores connote greater risk aversion. The data are contained in the file data(lifeins).
a.Produce a scatterplot matrix. Which of anninc and riskaver appears to be more closely related to lifeins?

 

b.Regress lifeins on anninc and riskaver, storing the residuals.

 

c.From a scatterplot of these residuals vs anninc, conclude that the relationship between lifeins and anninc is nonlinear. Define the square of average annual income, annincsq = anninc
2. Regress lifeins on the three predictors anninc, annincsq, and riskaver. Plot the residuals from this run against anninc. Based on this plot, discuss whether addition of the curvature term seems worthwhile.

 

d.Identify cases (managers) whose values indicate either high influence or high leverage. Also note whether these cases have high values of any of the measures Cook’s distance, [image: 
$$\mathsf{DFFITS}_{\mathrm{}}$$
], or [image: 
$$\mathsf{DFBETAS}_{\mathrm{}}$$
]. If so, interpret such high values in terms of the model variables.

 





11.7. Refer to data(hpErie), previously considered in Exercise 9.3.
a.Rerun the regression for the final model you found in Exercise 9.3b, this time requesting a complete set of regression diagnostics.

 

b.Closely examine the values of the diagnostics for the two high-priced houses that are the focus of Exercise 9.3c. Would you recommend both of these houses or just one of them for special scrutiny?

 





11.8. Prove the equivalence of the intuitive and computational formulas for the following case statistics:

              a.
[image: 
$$\mathsf{DFFITS}_{\mathrm{}}$$
] in Equations (11.10) and (11.11)

 

b.Cook’s distance in either intuitive Equation (11.7) or (11.8), and computational Equation (11.9)

 

c.Studentized deleted residual in Equations (11.5) and (11.6)

 



            

11.9. Explore the diagonals of the hat matrix H = X(X′X)−1
X′.
                
              
a.Prove that all leverages satisfy [image: 
$$\frac{1} {n} \leq h_{i} \leq 1$$
]. Since H is a projection matrix, show that the upper bound on the diagonals is 1. Since the column X
0 = 1 is included in the X matrix, show that the lower bound on the diagonals is [image: 
$$\frac{1} {n}$$
].

 

b.Show that the average leverage [image: 
$$\displaystyle\begin{array}{rcl} \frac{\sum _{i}h_{i}} {n} \equiv (p + 1)/n& & {}\\ \end{array}$$
]
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12. Two-Way Analysis of Variance
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(1)Department of Statistics, Temple University, Philadelphia, PA, USA

 


In Chapter 6 we consider situations where a response variable is measured on groups of observations classified by a single factor and look at ways to compare the changes in the mean of the response variable attributable to the various levels of this factor. Here we extend this to situations where there are two factors. In Chapters 13 and 14 we will discuss instances where there are more than two factors.

            
              
            
          
12.1 Example—Display Panel Data
12.1.1 Study Objectives
An air traffic controller must be able to respond quickly to an emergency condition indicated on her display panel. It was desired to compare three types of display panel. Each panel was tested under four simulated emergency situations. Two well-trained controllers were assigned to each of the 12 combinations of emergency condition and display panel type; 24 controllers in all. The data in data(display) are from Bowerman and O’Connell (1990). It is clear that the type of display panel is a fixed factor, but unclear from this reference whether emergency situation is a fixed or random factor (review these concepts in Sections 6.​2 and 6.​4). That is, do these four situations represent the totality of incidents to which air traffic controllers might be exposed, or are they four of far more situations? In the former case, emergency situation is a fixed factor; in the latter case, emergency situation is a random factor.

12.1.2 Data Description
The data in data(display) is structured as 24 rows with four variables. time:the response variable, time in seconds


panel:factor with three levels indicating the panel being tested


emergenc:factor describing four simulated emergencies


panel.ordered:repeat of the panel factor with the levels reordered to match the order of the response means.






12.1.3 Analysis Goals
We seek to determine whether the three panels afford significantly different display times and whether such conclusions are consistent across different types of emergency.
Exhibited here are graphs and tables that will aid in answering these questions. Discussion of this output is deferred until Section 12.11.
Figure 12.1 shows plots for assessing interaction
                  
                 between panel and emergenc as well as boxplots for examining the main effects of these factors. The concept of interaction is introduced in Section 12.2. The structure of the interaction plot in Figure 12.1 is discussed in Section 12.4.[image: A77776_2_En_12_Fig1_HTML.gif]
Fig. 12.1Interaction plot for display panel experiment. The nearly parallel traces suggest the absence of interaction between panel and emergenc. Note that we reordered the emergencies and the panels by average time in order to simplify the appearance of the plot. The structure of the interaction plot is discussed in Section 12.4.




                            
Table 12.1 shows the aov and anova statements assuming that emergenc is a fixed factor. Table 12.2 and Figures 12.2 and 12.3 show the panel means and the results of the multiple comparisons by the Tukey method.
                  
                 As will be explained in Section 12.11, the conclusion derived from this table is that there is a significant difference in response times for the three panels. Panel 3 affords a significantly longer response time than panels 1 or 2; response times for panels 1 and 2 do not differ significantly.
[image: A77776_2_En_12_Fig2_HTML.gif]
Fig. 12.2MMC plot of pairwise comparisons of panel means by the Tukey method. The top panel shows the panel means along the y-axis and the confidence intervals for the differences along the x axis. The Tiebreaker plot in the bottom panel shows the contrasts equally spaced along the y-axis and in the same sequence as the top panel. The heights displayed as the y-axis tick labels in the Tiebreaker panel are the actual heights along the y-axis for the contrasts in the MMC panel. These heights are the weighted averages of the means being compared by the contrasts. The Tiebreaker panel is not needed in this example.




                                [image: A77776_2_En_12_Fig3_HTML.gif]
Fig. 12.3Confidence intervals on each of the panel means.




Table 12.1Display panel data: ANOVA table with test of panel appropriate if emergenc is fixed. The test of panel is from the “both factors fixed” column of Table 12.8. That is, all sums of squares are compared to the Residuals line of the ANOVA table. The listing is continued in Table 12.2.


	
                            [image: A77776_2_En_12_Figa_HTML.gif]
                          
	 



Table 12.2Display panel data: ANOVA table with test of panel appropriate if emergenc is fixed. Multiple comparisons of panel by Tukey method. The standard deviation for the comparison is based on the Residuals line of the ANOVA table in Table 12.1. We show plots of the multiple comparisons in Figures 12.3 and 12.2.
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Table 12.3 shows the aov and summary statements assuming that emergenc is a random factor.Table 12.3Display panel data: ANOVA table with test of panel appropriate if emergenc is random. In this example, the test is from the “A fixed, B random” column of Table 12.8 with panel taking the role of A. That is, the sum of squares for panel is compared to the panel:emergenc interaction line of the ANOVA table.
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12.2 Statistical Model

              
                
              
            
To model an experiment with two factors, we begin by calling the factors A and B, where A has a levels and B has b levels. We use n

                ij
               to denote the number of observations taken from cell (i, j), i.e., the treatment combination corresponding to level i of A and level j of B, [image: 
$$i = 1,\ldots,a$$
] and [image: 
$$j = 1,\ldots,b$$
]. Our discussion in this chapter is confined to the case where the n

                ij
               are equal for all i, j, and sometimes n

                ij
               = 1. We extend the notation of Equation (6.​1) by replacing the singly indexed symbol α

                i
               with a doubly indexed set of symbols [image: 
$$\alpha _{i} +\beta _{j} + (\alpha \beta )_{ij}$$
] and model the k
th observation at the i
th level of A, j
th level of B, as [image: 
$$\displaystyle{ Y _{ijk} =\mu +\alpha _{i} +\beta _{j} + (\alpha \beta )_{ij} +\epsilon _{ijk} =\mu _{ij} +\epsilon _{ijk} }$$
]

 (12.1)

 for 1 ≤ i ≤ a, 1 ≤ j ≤ b, and 1 ≤ k ≤ n

                ij
              . The expectations for the cell means are denoted [image: 
$$\displaystyle{ E(Y _{ijk}) =\mu _{ij} =\mu +\alpha _{i} +\beta _{j} + (\alpha \beta )_{ij} }$$
]

 (12.2)

 We assume the errors [image: 
$$\epsilon _{ijk} \sim \mbox{ NID}(0,\sigma ^{2})$$
],
                
               that is they are assumed to be normally independently distributed with a common variance [image: 
$$\sigma ^{2}$$
]. The parameter μ represents the grand mean of all ab populations.
Each of the factors A and B can be either fixed or random.
                
               If A is fixed, then we assume that [image: 
$$\sum _{i}\alpha _{i} = 0$$
]. If A is random, we assume that each [image: 
$$\alpha _{i} \sim N(0,\sigma _{A}^{2})$$
]. Similarly, if B is fixed, then we assume that [image: 
$$\sum _{j}\beta _{j} = 0$$
] and if B is random, we assume that each [image: 
$$\beta _{j} \sim N(0,\sigma _{B}^{2})$$
].
The term (α β)
                ij
               models the possibility of interaction between the two factors. If A and B are both fixed factors, then the sum of (α β)
                ij
               over either i or j is zero. If both factors are random, then [image: 
$$(\alpha \beta )_{ij} \sim N(0,\sigma _{AB}^{2})$$
]. In the case of a mixed model, where for concreteness we have A fixed and B random, [image: 
$$(\alpha \beta )_{ij} \sim N(0, \frac{a-1} {a} \,\sigma _{AB}^{2})$$
] subject to [image: 
$$\sum _{i}(\alpha \beta )_{ij} = 0$$
] for each [image: 
$$j = 1,\ldots,b$$
].
Factors A and B are said to interact if the difference in response between two levels of A differs according to the level of B. Equivalently, there is interaction

                
               between factors A and B if the difference in response between two levels of B differs according to the level of A. Graphically, the traces for each level of factor A across levels of B are parallel if there is no interaction, and are not parallel when there is interaction. Equivalently, the traces for each level of B across levels of A are parallel if there is no interaction. In Figure 12.1 we see essentially parallel traces, consistent with the non-significance of the test of the interaction in Table 12.1. In Figure 12.12 we will see nonparallel, actually crossing, traces consistent with the significance of the interaction in Table 12.12. 
                
              


12.3 Main Effects and Interactions
As in one-way ANOVA, we are interested in comparing the means of observations in each cell

                
              , that is for each treatment combination

                
               (combination of factor levels), in the design, and for combinations of cells. We work with the cell means

                
               [image: 
$$\displaystyle{ \bar{Y }_{ij} =\sum _{k}Y _{ijk}\big/n_{ij} }$$
]

 (12.3)

 and the marginal means

                
              . The marginal means
                
               for the rows are calculated by averaging the cell means in each row over the columns. The marginal means for the columns are calculated by averaging the cell means in each column over the rows: [image: 
$$\displaystyle\begin{array}{rcl} \bar{Y }_{i.} =\sum _{j}\bar{Y }_{ij}\big/b& &{}\end{array}$$
]

 (12.4)

 [image: 
$$\displaystyle\begin{array}{rcl} \bar{Y }_{.j} =\sum _{i}\bar{Y }_{ij}\big/a& &{}\end{array}$$
]

 (12.5)

 where [image: 
$$n_{i.} =\sum _{j}n_{ij}$$
], [image: 
$$n_{.j} =\sum _{i}n_{ij}$$
], and [image: 
$$n_{..} =\sum _{ij}n_{ij}$$
]. Marginal means get their name because they are often displayed on the margins of a two-way table of cell means, as in Table 12.4. We also use the grand mean

                
              : [image: 
$$\displaystyle{ \bar{Y }_{..} =\sum _{i}n_{i.}\bar{Y }_{i.}\Big/n_{..} =\sum _{j}n_{.j}\bar{Y }_{.j}\Big/n_{..} =\sum _{ijk}Y _{ijk}\Big/n_{..} }$$
]

 (12.6)


Table 12.4Table of means for the rhizobium clover experiment of Section 12.14. Means from Table 12.12 have been arranged in a two-way table to display the cell means in the body of the table, the marginal means on the margins of the table, and the grand mean as the margin of the marginal means. clover and clover+alfalfa are the two levels of the factor comb. The left side of the table shows the means symbolically using [image: 
$$\bar{Y }_{ij}$$
] notation. The right side show the numerical values from Table 12.12.
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When more than one factor is present, there are three principal types of comparisons that we will investigate. 
                    Main effects
                    
                      
                    
                  are comparisons of the marginal means for one of the factors, for example, [image: 
$$\bar{Y }_{1.} -\bar{ Y }_{2.}$$
]. It is usually valid to compare main effects only when there is no interaction.



                    Interactions
                    
                      
                    
                  (or interaction effects) are comparisons of the cell means across levels of both factors, for example, [image: 
$$(\bar{Y }_{13} -\bar{ Y }_{23}) - (\bar{Y }_{14} -\bar{ Y }_{24})$$
]. When interaction is present, that is when differences in the cell means across rows depend on the column or equivalently, when comparisons of the form indicated here are significantly different from 0, we usually must use simple effects, not main effects, to discuss the factors.



                    Simple effects
                    
                      
                    
                  are separate comparisons of the cell means across levels of one factor for some or all levels of the other factor, for example, [image: 
$$\bar{Y }_{13} -\bar{ Y }_{23}$$
]. See Section 13.​3






The analyst should be alert to the possibility that interaction is present. The nature of the analysis when interaction exists is different from that when interaction is absent.
Without interaction, the analysis proceeds similarly to the procedures for one-way analysis. The marginal means are calculated and compared, perhaps by using one of the multiple comparisons techniques discussed in Sections 6.​3, 7.1.3, or 7.1.4.1. The advantage of the two-way analysis in this case is in the efficiency
                
              , hence increased power, of the comparisons. Because we use the same residual sum of squares for the denominator of both F-tests (for the rows and for the columns), we can run the combined experiment to test the effect of both factors for less expense than if we were to run two separate experiments.
When interaction between two factors is present, it is not appropriate to compare the main effects, the levels of one of these factors averaged over the levels of the other factor. It is possible, for example, that the mean of Y increases over factor B for level 1 of factor A and decreases over factor B for level 2 of factor A. Averaging over the levels of factor A would mask that behavior of the response.
We explore main effects, interactions, and simple effects with the rhizobium data in Section 12.14.

12.4 Two-Way Interaction Plot

              
                
              
              
                
                
              
            
The two-way interaction
                
               plot, first shown in Figure 12.1 and used throughout the remainder of this book, shows all main effects and two-way interactions for designs with two or more factors. We construct it using the interaction2wt function in the HH package by analogy with the splom
                
               (scatterplot matrix) function in the lattice package. The rows and columns of the two-way interaction plot are defined by the Cartesian
                
               product of the factors.

              1.Each main diagonal panel shows a boxplot for the marginal effect of a factor.

 

2.Each off-diagonal panel is a standard interaction plot of the factors defining its position in the array. Each point in the panel is the mean of the response variable conditional on the values of the two factors. Each line in the panel connects the cell means for a constant level of the trace

                        
                       factor. Each vertically aligned set of points in the panel shows the cell means for a constant value of the x-factor
                        
                      .

 

3.Panels in mirror-image positions interchange the trace- and x-factors. This duplication is helpful rather than redundant because one of the orientations is frequently much easier to interpret than the other.

 

4.The rows are labeled with a key that shows the line type and color for the trace factor by which the row is defined.

 

5.Each box in the boxplot panels has the same color, and optionally the same line type, as the corresponding traces in its row.

 

6.The columns are labeled by the x-factor.

 



            

              
                
              
              
                
                
              
              
                
              
            

12.5 Sums of Squares in the Two-Way ANOVA Table
Table 12.5 presents the structure of the analysis of variance table for a balanced two-way ANOVA with a levels of the A factor, b levels of the B factor, and n observations at each of the ab AB-treatment combinations, analogous to Table 6.​2 for one-way ANOVA.
                
               If the test F
AB shows that AB interaction is present, the F-tests on A and B are not interpretable.Table 12.5Two-way ANOVA structure with both factors representing fixed effects.
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If the AB interaction is not significant, then the form of the tests for the main effects A and B depends on whether the factors A and B are fixed or random
                
               factors. See the discussion in Section 12.10 where Table 12.8 lists the expected mean squares
                
               and F-tests under various assumptions.
Table 12.5 shows the F-statistics and their p-values for tests on the main effects A and B under the assumption that both factors represent fixed effects. Most ANOVA programs calculate these values by default whether or not they are appropriate.

12.6 Treatment and Blocking Factors

              
                
              
            

Treatment factors are those for which we wish to determine if there is an effect. Blocking factors are those for which we believe there is an effect. We wish to prevent a presumed blocking effect from interfering with our measurement of the treatment effect.
An experiment with two factors may have either two treatment
                
               factors or one treatment factor and one blocking factor
                
              . The primary objective of a factorial experiment is comparisons of the levels of treatment factors. By contrast, a blocking factor is set up in order to enhance one’s ability to distinguish between the levels of treatment factors. The term block

                
               was chosen by analogy to two of the dictionary definitions: a rectangular section of land bounded on each side by consecutive streets; or a set of similar items sold or handled as a unit, such as shares of stock.
We are not interested in comparing the blocks, i.e., the levels of a blocking factor. In a well-designed experiment, we anticipate that the response differs across the levels of a blocking factor because if the levels of this factor cover a variety of experimental conditions, this broadens the scope of our inferences about treatment differences. Multiple comparisons across blocks are not meaningful because we know in advance that the blocks are different. In general, blocking is advisable and successful as an experimental and analytical technique if the experimental units can reasonably be grouped into blocks such that the units within every block are homogeneous, while the units in any given block are different from those in any other block. By homogeneous units, we mean that they will tend to respond alike if treated alike. Usually, there is no interaction between blocking and treatment factors; otherwise blocking will not have accomplished its objective and the analysis will be much less able to detect significant differences than if blocking were properly done.
Blocking is the natural extension to three or more treatments of the matched pairs design introduced in Section 5.​5 The F-test of the treatment effect against the residual is the generalization of the paired t-test. It is exactly true that a blocked design with two levels of the treatment factor and with many blocks of size two is identical to the matched pairs design.
For example, in an experiment on tire wear, the location of the tire on the car (say, Right Front) is a treatment effect and the specific car (of the many used in the experiment) is a blocking effect.
                
              


12.7 Fixed and Random Effects

              
                
              
              
                
              
            
As mentioned in Sections 6.​2 and 6.​4, treatment factors may be regarded as either fixed or random. The levels of a fixed factor are the only levels of interest in the experiment, and we wish to see if the response is homogeneous across these levels. The levels of a random factor are a random sample from some large population of levels, and we are interested in assessing whether the variance of responses over this population of levels is essentially zero. Block factors
                
               are almost always regarded as random.
The levels of a treatment factor can be either categorical or quantitative. For example, in an experiment where the fertilizer treatment has four levels, the experimental levels of fertilizer could be four different fertilizer compounds, or four different applications per acre of one fertilizer compound. When the levels are quantitative, it is usually preferable to regard the factor as a single degree-of-freedom predictor variable.
                
              

                
              


12.8 Randomized Complete Block Designs

              
                
              
              
                
              
            
A randomized complete block design (RCBD) has one treatment factor involving t treatment levels and one blocking factor having b levels. The b blocks each contain experimental units arranged according to the principles discussed in Section 12.6. That is, experimental units in the same block are expected to respond alike if treated alike, while the blocks should reflect a variety of experimental conditions to broaden the scope of conclusions to be drawn from inferences about the treatments. It is assumed that blocks and treatments do not interact. This assumption permits us to compare the treatment levels when each block contains exactly t experimental units, i.e., there is no replication of treatments within any block. If there are n > 1 observations on each treatment within each block, then additional degrees of freedom are available for comparing treatments. We outline the effect of larger sample size, which usually means more degrees of freedom in the denominator of statistical tests, in Section 3.​10 In summary, more degrees of freedom move us up the t-table or F-table or χ
2-table and the critical value gets smaller.
The model for the RCBD with one observation on each treatment in each block is [image: 
$$\displaystyle{ y_{ij} =\mu +\tau _{i} +\rho _{j} +\epsilon _{ij} }$$
]

 (12.7)

 where μ represents the overall mean, τ

                i
               is the differential effect of treatment level i, ρ

                j
               is the differential effect of block j, and the ε’s are random [image: 
$$N(0,\sigma ^{2})$$
] residuals. We further define [image: 
$$\displaystyle\begin{array}{rcl} \bar{y}_{i} =\sum _{i}y_{ij}/b,\ \bar{y}_{j} =\sum _{j}y_{ij}/t,\ \mathrm{and}\ \bar{\bar{y}}_{..} =\sum _{i}\sum _{j}y_{ij}/bt& &{}\end{array}$$
]

 (12.8)



The setup of the ANOVA table for an RCBD with n = 1 is shown in Table 12.6. Some ANOVA programs also display an F-statistic and p-value for blocks, but it is inappropriate to interpret these since the experiment is designed in such a way that responses will differ across blocks and artificially force high F values for blocks. We could do efficiency of blocking calculations. See, for example, Cochran and Cox (1957) (Section 4.37).Table 12.6ANOVA table structure for a randomized complete block design with no replication.
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12.9 Example—The Blood Plasma Data
12.9.1 Study Objectives
The dataset data(plasma) comes from Anderson et al. (1981) and is reproduced in Hand et al. (1994). The data are measurements on plasma citrate concentrations in micromols/liter obtained from 10 subjects at 8 am, 11 am, 2 pm, 5 pm, and 8 pm. To what extent is there a normal profile for the level in the human body during the day?
This experiment is viewed as an RCBD with treatment factor time and blocking factor id. It is desirable here that the subjects (blocks) be as unlike as possible in order to broaden the scope of the conclusion about normal profiles as much as possible. The no-interaction assumption amounts to assuming that the daily response profile is constant across subjects.

12.9.2 Data Description
The data in data(plasma) is structured as 50 rows with three variables. plasma:the response variable, plasma citrate concentrations in micromols/liter


time:factor with five values: 8 am, 11 am, 2 pm, 5 pm, and 8 pm


id:factor with 10 levels, one per subject






12.9.3 Analysis
We begin our analysis with the interaction plots in Figure 12.4. There seem to be anomalies for id=3 at 8 pm and for id=6 at 11 am, but otherwise both sets of traces look reasonably parallel.[image: A77776_2_En_12_Fig4_HTML.gif]
Fig. 12.4Interaction Plot for Plasma Citrate. The id factor has been sorted by median plasma value. The time factor must be displayed in chronological order.





We proceed with an additive model in Table 12.7 and discover that the ratio of the id stratum Residual Mean Square to the Within stratum Residual Mean Square (1177∕147. 5 = 7. 98) is large (had this been a valid test, which it is not because id is a blocking factor, it would have been F = 7. 98), confirming our decision to block on patients. This is not a hypothesis test, because we know at the beginning of our analysis that patients are different from each other.Table 12.7ANOVA Table for Plasma Citrate Experiment
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The test of differences due to time rejects the null hypothesis that the response at all times is the same. Since there appears to be no interaction, we can act as if there is a single pattern that applies to everyone.
                  
                 We investigate the time pattern with the MMC plot in Figure 12.5. The only significant single contrast is between the low at 5PM and the high at 11AM. The low at 5PM is clearly visible in the plasma ~ time | id panel of Figure 12.4. The high at 11AM is hinted at in Figure 12.4.[image: A77776_2_En_12_Fig5_HTML.gif]
Fig. 12.5MMC plot and Tiebreaker plot of time in the plasma data. The low at 5PM is clearly visible in the plasma ~ time | id panel of Figure 12.4. The high at 11AM is hinted at in Figure 12.4. The Tiebreaker plot in the bottom panel is imperative for this example. The means at many of the levels of time are very close and therefore their labels are overprinted. As a consequence, the heights of the contrasts are similar and their labels are also overprinted. The Tiebreaker plot shows the contrasts equally spaced along the y-axis and in the same sequence as the top panel. The heights displayed as the y-axis tick labels in the Tiebreaker panel are the actual heights along the y-axis for the contrasts in the MMC panel.







12.10 Random Effects Models and Mixed Models

              
                
              
              
                
              
            
In Section 6.​4, we compare two analyses of the same data assuming the single factor is fixed or random. There we indicate that a table of expected mean squares
                
               may be used to formulate the correct mean square ratio to test the hypothesis of interest. We also show that in the single factor case, while the same ratio is used in both the fixed and random cases, the hypothesis tested about the factor differs in the two cases.
When we have two or more factors and interactions, the test statistics as well as the hypotheses depend on whether the factors are fixed or random. The formulas for standard errors for comparing the levels of fixed factors also depend on whether the other factor(s) are fixed or random.
Table 12.8 is an algebraically derived table of expected mean squares for an experiment with two possibly interacting factors A and B and equal sample sizes n

                ij
               = n ≥ 2 at each of the ab treatment combinations under each of three assumptions: the fixed model where both factors are fixed, the mixed model where one factor is fixed and the other factor is random, and the random model where both factors are random. Each entry in the table is derived by evaluating, for example (using the notation of Table 12.5), the statement [image: 
$$\displaystyle\begin{array}{rcl} E(\mathsf{MS}_{\mathrm{A}}) + E\left (bn\sum (\bar{Y }_{i.} -\bar{ Y }_{..})^{2}\right )/(a - 1)& & {}\\ \end{array}$$
]


 where we model Y

                ijk
               and E(Y

                ijk
              ) by Equations 12.1 and 12.2.

              
                
              
              Table 12.8Expected mean squares in two-way analysis of variance. Compare to Tables 6.4, 12.5, and 13.11. See Section 12.10 for the discussion on when to use each of the columns.
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From the lineups of the expected mean squares,
                
               we see that for testing the A main effect, the appropriate denominator mean square is the Residual mean square when factor B is fixed (from the “Both factors fixed” column, EMS(A) = [image: 
$$\sigma ^{2} + nb\kappa _{A}^{2}$$
] and EMS(Residual) = [image: 
$$\sigma ^{2}$$
]).
The appropriate denominator mean square for testing the A main effect is the AB-interaction mean square when B is random (from the other two columns EMS(A) = [image: 
$$\sigma ^{2} + n\sigma _{AB}^{2} + nb\,f(A)$$
] and EMS(AB) = [image: 
$$\sigma ^{2} + n\sigma _{AB}^{2}$$
], where f(A) = κ

                A
              
2 when A is fixed and [image: 
$$f(A) =\sigma _{ A}^{2}$$
] when A is random). The ratio of these mean squares is appropriate for testing equality of the levels of factor A because the corresponding ratio of these expected mean squares exceeds one if and only if [image: 
$$\sigma _{A}^{2} > 0$$
] or [image: 
$$\kappa _{A}^{2} > 0$$
]. Use of the Residual mean square as the denominator of the F-test would be inappropriate because such a ratio would exceed one if there is an AB interaction effect.
The conclusions for testing the B main effect follow from interchanging “A” and “B” in the previous sentence.
                
              

                
              


12.11 Example—Display Panel Data—Continued
In Section 12.1 we introduced the display panel example illustrating a two-way analysis of variance. We continue here with the analysis by discussing Figures 12.1–12.3 and Tables 12.1–12.3.
In Figure 12.1 we display two-way interaction plots
                
               and boxplots for the factors panel and emergenc. The two interaction plots in the off-diagonal panels contain equivalent information, but in general, one of them is more readily interpretable than the other. In this instance, the close-to-parallel traces suggest the absence of interaction between panel and emergenc. This is anticipated because emergenc is a block factor and confirmed by the large p-value for the interaction test in Table 12.1.
                
               One set of boxplots in Figure 12.1 evinces a greater response time with panel 3 than with either panel 1 or panel 2. The other set of boxplots shows substantial differences in the response times of the four emergencies; this is anticipated since emergenc is regarded as a blocking factor and differences in response across blocks are expected by design.
The simplest ANOVA specification in Table 12.1 assumes all factors are fixed. We see that when emergenc is a fixed factor, the F-statistic for panel is 20.09 on 2 and 12 degrees of freedom. The small corresponding p-value suggests that response time varies with the type of panel.
If emergenc is a random factor, as in Table 12.3, the pattern of expected mean squares in Table 12.8 indicates that the appropriate denominator mean square for testing panel is the interaction mean square. This test is specified by placing emergenc/panel inside the Error() function in the model formula. We see that panel is tested with F = 24. 15 on 2 and 6 degrees of freedom.
The F-statistic for panel corresponds to a small p-value under either assumption on emergenc. Therefore, in this example, we reach the same conclusion under both assumptions: that response time differs across panels. However, since in general the F-statistic differs in the two cases, the ultimate conclusion concerning a fixed factor may depend crucially on our assumption concerning the other factor. If emergenc is a fixed factor, the conclusions regarding panels applies to these four emergencies only. If emergenc is a random factor, the panel conclusions apply to the entire population of emergencies from which these four emergencies are assumed to be a random sample.
The F-test for interaction between panel and emergenc when emergenc is a random factor is the same test as when emergenc is a fixed factor.
Since panel is a fixed factor, an appropriate follow-up is a Tukey test
                
               to compare the response time for each display panel. This is shown in Table 12.2 for the case where emergenc is fixed. The means are in the estimate column of the $none section. We find that both display panel 1 and display panel 2 have significantly shorter response times than display panel 3, but panels 1 and 2 are not significantly different. Therefore, we conclude that display panel 3 can safely be eliminated from further consideration. The absence of interaction tells us that these conclusions are consistent over emergencies. If interaction had existed in this experiment, one would have concluded that the optimal panel differs according to the type of emergency. Then one would need to make separate panel recommendations for each emergency type. Since we will normally select just one panel type for the entire facility, and since we have no control over emergencies, the decision process would become more difficult.
The confidence intervals in the $mca section of Table 12.2 and in both panels Figure 12.2 display the differences between all pairs of panel means using the two-sided Tukey
                
               multiple comparisons procedure introduced in Section 6.​3 The $mca (the term mca stands for multiple comparisons analysis) section of Table 12.2 shows the results of the [image: 
$${3\choose 2} = 3$$
] pairwise tests. The negative lower bound and positive upper bound for the 1-2 comparison indicates that the confidence interval for the difference between the corresponding population means ([image: 
$$\bar{y}_{1} = 20.250$$
] and [image: 
$$\bar{y}_{2} = 18.250$$
]) includes zero, hence the difference is not significant. The comparisons between [image: 
$$\bar{y}_{3} = 25.625$$
] and the other two panel means have positive lower and upper bounds, hence these confidence intervals exclude zero. This indicates that the population mean of panel 3 is significantly different from both other population means.
Figure 12.2 provides two confidence interval displays for pairwise comparisons of the population means of the three panels. Both contain the confidence intervals on each pairwise difference taken directly from the $mca section of Table 12.2. A pairwise difference of means is significantly different from zero; equivalently, the two means differ significantly if the confidence interval for the pairwise difference excludes zero. If this confidence interval includes zero, then conclude that the two population means do not significantly differ. Thus the “1–2” interval says that these two panel means are indistinguishable. The “1–3” and “2–3” intervals says that the mean of panel 3 differs from the means of the other two panels. The top panel is an MMC plot (see Chapter 7) with the contrasts displayed on the isomeans grid as a background that shows the individual panel means. The bottom panel uses equal vertical spacing between contrasts.
The $none (the term none indicating no contrasts) section of Table 12.2 shows the results for the individual group means. Figure 12.3 contains simultaneous confidence intervals for the three population means, where the confidence coefficient, here 95%, is the probability that each interval contains its respective population mean. If two of these confidence intervals overlap, then the corresponding population means are not significantly different. Since panels 1 and 2 have overlapping intervals, these two panel means are not distinguishable. If a pair of these confidence intervals does not overlap, then the corresponding population means are declared to differ significantly. Since the panel 3 interval does not overlap the other two, we conclude that the mean of panel 3 differs from the means of the other two panels.

12.12 Studentized Range Distribution

              
                
              
            
The tabled values of the Studentized Range Distribution (see Section J.1.10) of a set of a means are scaled for the random variable [image: 
$$Q = (\bar{y}_{(a)} -\bar{ y}_{(1)})/s_{\bar{y}}$$
]. The denominator is the standard error of a single [image: 
$$\bar{y}$$
]. The estimated quantile (critical point) shown in Table 12.2 and used in Figure 12.2 is 2.668. This is not the Studentized range
                
               tabular value q
. 05 but instead [image: 
$$q_{.05}/\sqrt{2}$$
]. Details of the R calculation can be followed in file HHscriptnames(12). The equivalent SAS code reports the Studentized range q
. 05.
We use the tabled values in two places in the MMC display. In Table 12.2, q
. 05 = 3. 77278, the Estimated Quantile is [image: 
$$\frac{q_{.05}} {\sqrt{2}} = 2.668$$
], [image: 
$$\mathsf{MS}_{\mathrm{Res}} = 5.791667$$
] (from Table 12.1), and m = 8.
In the $none section of Table 12.2 we show the sample means [image: 
$$\bar{y}_{i}$$
] in the estimate column and the standard error [image: 
$$s_{\bar{y}}$$
] of an individual [image: 
$$\bar{y}$$
] in the stderr column. We must adjust the Q value by dividing by [image: 
$$\sqrt{2}$$
]. The formula for the simultaneous 95% confidence intervals on individual means is [image: 
$$\displaystyle\begin{array}{rcl} \mu _{i}: \;\;\;\;\;\;\bar{Y }_{i} \pm \frac{q_{.05}} {\sqrt{2}} \sqrt{\frac{\mathsf{MS } _{\mathrm{Res } } } {m}} & &{}\end{array}$$
]

 (12.9)

 where q
. 05 is the 95th percentile of the Studentized range distribution
                
               and m is the common sample size used in calculating each sample mean. The “minimum significant difference” in this table is the “±” part of formula (12.9), [image: 
$$\displaystyle{ \frac{q_{.05}} {\sqrt{2}} \sqrt{\frac{\mathsf{MS } _{\mathrm{Res } } } {m}} = 2.27 }$$
]

 (12.10)



In the $mca section of Table 12.2 we show the differences [image: 
$$\bar{y}_{i} -\bar{ y}_{j}$$
] in the estimate column and the standard error [image: 
$$\sqrt{ 2}s_{\bar{y}}$$
] of the difference in the stderr column. Again we must adjust the Q value by dividing by [image: 
$$\sqrt{2}$$
]. The formula for the simultaneous 95% confidence intervals on pairwise mean differences shown in Figure 12.2 is [image: 
$$\displaystyle\begin{array}{rcl} \mu _{i} -\mu _{j}: & & \;\;\;\;\bar{Y }_{i} -\bar{Y }_{i'}\: \pm \:\frac{q_{.05}} {\sqrt{2}} \sqrt{2\frac{\mathsf{MS } _{\mathrm{Res } } } {m}} \ \ =\ \ \bar{Y }_{i} -\bar{Y }_{i'}\: \pm \: q_{.05}\sqrt{\phantom{2}\frac{\mathsf{MS } _{\mathrm{Res } } } {m}} \;\;\;\;\;\;\;{}\end{array}$$
]

 (12.11)

 The “minimum significant difference” in this table is the “±” part of formula (12.11), [image: 
$$\displaystyle{ q_{.05}\sqrt{\frac{\mathsf{MS } _{\mathrm{Res } } } {m}} = 3.21 }$$
]

 (12.12)




12.13 Introduction to Nesting

              
                
              
            
In the previous examples the two factors have a crossed relationship. Saying that factors A and B are crossed indicates that each level of A may be observed in a treatment combination with any level of B. Alternatively, two factors may have a nested or hierarchical relationship.
                
               When B is nested within A, the levels of B are similar but not identical for different levels of A.
12.13.1 Example—Workstation Data
A small electronics firm wishes to compare three methods for assembling an electronic device. For this purpose, the plant has available six different workstations. The study is conducted by randomly assigning s = 2 workstations to each of the m = 3 assembly methods. At each workstation–method combination w = 5 randomly selected production workers will assemble the device for one hour using the appropriate assembly method. The response is the number of devices produced in one hour. The data from Bowerman and O’Connell (1990) (p. 890) are accessible as data(workstation) and are displayed in Figure 12.6.[image: A77776_2_En_12_Fig6_HTML.gif]
Fig. 12.6Boxplot of workstation data. The significance of method and station within method are confirmed in Table 12.10.




                            

12.13.2 Data Description
The data in data(plasma) is structured as 30 rows with three variables. method:factor with three levels describing the assembly methods


station:factor with two levels describing the workstations


devices:response variable, number of devices produced in one hour.






12.13.3 Analysis Goals
Note that the workstations assigned to any assembly method are different from those assigned to any other method. As a consequence, the factors (which we call station and method) are not crossed with one another, and an analysis using a model we have previously studied would be incorrect. The factor station is said to be nested within the factor method because each workstation is associated with exactly one of the methods.
Our analysis assumes that station is a fixed factor. If instead station were assumed to be a random factor, the code would have to be modified to force station to be tested against the station within method mean square instead of against the Residuals mean square. The procedures for doing so are demonstrated in the data analysis in Section 13.​4

The basic structure of the ANOVA table is in Table 12.9. In R, we use the formula [image: 
$$\displaystyle\begin{array}{rcl} \mathtt{devices\ ~\ method\ /\ station}& & {}\\ \end{array} $$
]


 to indicate that station is nested within method. The analysis is in Table 12.10.Table 12.9Basic structure of the ANOVA table for a nested design with m = 3, s = 2, and w = 5.
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                                Table 12.10Workstation data. ANOVA table and means.
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We conclude that when using at least one of the three methods, the two workstations for that method produced a significantly different number of devices. We also conclude that the three methods produced significantly different numbers of devices.
In this example there is balanced sampling. That is, each method has the same number of workstations and each workstation has the same number of workers. Without much additional difficulty, the above nested factorial analysis can be extended to situations with unbalanced sampling.
                  
                 (In contrast, when one has unbalanced sampling and crossed factors, the analysis is considerably more difficult than with balanced sampling.) 
                  
                



12.14 Example—The Rhizobium Data

              
                
              
            
12.14.1 Study Objectives
Erdman (1946) discusses experiments to determine if antibiosis occurs between Rhizobium Meliloti and Rhizobium Trifolii. Rhizobium is a bacteria, growing on the roots of clover and alfalfa, that fixes nitrogen from the atmosphere into a chemical form the plants can use. The research question for Erdman was whether there was an interaction between the two types of bacteria, one specialized for alfalfa plants and the other for clover plants. If there was an interaction, it would indicate that clover bacteria mixed with alfalfa bacteria changed the nitrogen fixing response of alfalfa to alfalfa bacteria or of clover to clover bacteria. The biology of the experiment says that interaction indicates antibiosis or antagonism of the two types of rhizobium. That is, the goal was to test whether the two types of rhizobium kill each other off. If they do, then there will be less functioning bacteria in the root nodules and consequently nitrogen fixation will be slower.
Erdman ran two sets of experiments in parallel. In one the response variable was the nitrogen content in clover plants, in the other the nitrogen content in alfalfa plants. The treatments were combinations of bacterial cultures in which the plants were grown. As a historical note, beginning with Steel and Torrie (1960), the one-way analysis of the clover plus alfalfa combination of the Clover experiment has been frequently used as an example to illustrate multiple comparisons procedures. Here we examine the complete data from two related two-way experiments.

12.14.2 Data Description
Both experiments are two-way factorial experiments with two treatment factors:

                
                      strain:
                    one of six rhizobium cultures, five pure strains and one a mixture of all five strains. Five strains of alfalfa rhizobium were used for the alfalfa plants and five strains of clover rhizobium were used for the clover plants.



                      comb:
                    a factor at two levels. At one level the rhizobium cultures consisted of only strains specialized for the host plant. At the other level each of the six cultures was combined with a mixture of rhizobium strains specialized for the other plant.




              

12.14.3 First Rhizobium Experiment: Alfalfa Plants
Five observations on the response variable, nitrogen content, were taken at each of the 12 strain*comb treatment combinations. Primary interest was in the differences in responses to the six rhizobium treatments. Erdman originally analyzed the response variable “milligrams of nitrogen per 20 plants”. After studying his analysis and his discussion we choose to analyze a related response variable, “milligrams of nitrogen per gram of dry plant weight”. We give the original analysis as Exercise 12.1.

12.14.4 Second Rhizobium Experiment: Clover Plants
Five observations on the response variable, nitrogen content, were taken at each of the 12 strain*comb treatment combinations. Primary interest was in the differences in responses to the six rhizobium treatments. Erdman originally analyzed the response variable “milligrams of nitrogen per 10 plants”. After studying his analysis and his discussion, we choose to analyze a related response variable, “milligrams of nitrogen per gram of dry plant weight”. We give the original analysis as Exercise 12.2.

12.14.5 Initial Plots
Datasets data(rhiz.alfalfa) and data(rhiz.clover) contain the complete data for both experiments. The alfalfa data is plotted in Figure 12.7. The clover data is plotted in Figure 12.8. Erdman’s response variable is shown as nitro in both figures. Our response variable is shown as Npg. The single most evident feature from the clover boxplots is the large response to the pure culture 3DOk5. This observation is the one that caused us to consider the alternate response variable. There were fewer plants, hence larger plants, for this strain. We posit that the reported values were scaled up, that is reported as grams per 10 plants. We hope that analyzing the ratio, milligrams of nitrogen per gram of plants, rather than the reported rate, milligrams per 10 plants, will adjust for the outliers. Nothing in the alfalfa plots is as clear.[image: A77776_2_En_12_Fig7_HTML.gif]
Fig. 12.7Boxplot of alfalfa data. The Npg response variable has the least variability. We shall continue our analysis with Npg.




                                [image: A77776_2_En_12_Fig8_HTML.gif]
Fig. 12.8Boxplot of clover data. The Npg response variable has the least variability. We shall continue our analysis with Npg. The large variability in the 3DOk5 strain is visible in all three response variables.




                            
As a graphical
                  
                

                  
                  
                 aside, we looked at four different layouts for these plots. In Figures 12.7 and 12.8 we show vertical boxplots
                  
                 by strain conditioned on comb. We also looked at vertical boxplots by comb conditioned on strain and horizontal boxplots with both conditionings. We chose this one because we have a preference for the response variable on the vertical axis and because we believe the patterns are easier to see when this example is conditioned on the factor comb.
                  
                  
                 The other three layouts for the data in Figure 12.8 can be viewed by running the code in file HHscriptnames(12). Also see the discussion in Section 13.A.

12.14.6 Alfalfa Analysis
The ANOVA table and table of means for the alfalfa experiment are in Table 12.11. Since there was no interaction with the combination of clover strains of bacteria (strain:comb interaction p-value =.53 in Table 12.11), there is no evidence of antibiosis or antagonism.
Table 12.11ANOVA table and table of means for alfalfa experiment. See Figure 12.7.
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Since only the strain main effect is significant, we confine our investigation to differences among the means for strain. Figures 12.9, 12.10, and 12.11 display the results of the Tukey
                  
                 multiple comparison procedure for comparing strain mean differences. Since strain has 6 levels, we simultaneously examine all [image: 
$${6\choose 2} = 15$$
] pairwise mean differences. Any mean difference having a confidence interval in Figure 12.10 that doesn’t include 0 is declared a significantly differing pair. There are three such confidence intervals, therefore we conclude that a.composite has a significantly higher mean response than each of 3DOa1, 3DOa7, and 3DOa10; these were the only significant differences detected. The inference is that any of the three treatments with high response (3DOa12, 3DOa15, or a.composite) should be used.[image: A77776_2_En_12_Fig9_HTML.gif]
Fig. 12.9Means for alfalfa experiment. Dots that appear over a common horizontal line correspond to population means that do not differ significantly according to the Tukey multiple comparisons procedure with simultaneous 95% confidence intervals. Compare this figure to Figure 12.10.




                                [image: A77776_2_En_12_Fig10_HTML.gif]
Fig. 12.10Mean–mean multiple comparisons plot and Tiebreaker plot showing Tukey contrasts for alfalfa data. The MMC panel shows informative overprinting. Note that 3DOa1, 3DOa10, and 3DOa7 have almost identical means. Consequently (i) their means overprint on the left axis, (ii) their differences overprint on the right axis, and (iii) their contrasts are displayed at the same vertical position in the MMC panel. Most of the overprinting contrasts cross zero and are not significant. Their details are displayed in the Tiebreaker panel. The only significant contrasts (the red solid lines) are on the right corner of the isomeans grid. All three are contrasts of a.comp with the three almost identical means of the lower three strains. Again the details are clear in the Tiebreaker panel. The MMC panel displays the contrasts at heights constructed as the average of the two means being compared. The Tiebreaker panel shows the contrasts in the same data-dependent vertical order as the MMC panel. The Tiebreaker panel breaks the ties in the MMC panel by placing the confidence intervals at equally spaced vertical positions. See also Figure 12.11 where we have constructed a set of orthogonal contrasts
                          
                         to capture and illustrate the relationships among the levels.




                                [image: A77776_2_En_12_Fig11_HTML.gif]
Fig. 12.11MMC plot and Tiebreaker plot of an orthogonal set of Tukey contrasts for alfalfa data. There are six strains, hence five independent comparisons. This orthogonal set has been chosen to summarize the information in Figure 12.10 and show that only one comparison is significantly different from 0. We see now that the three strains with low means are indistinguishable, that the two intermediate strains are indistinguishable, and that these two clusters are not significantly different from each other. The only significant comparison is from the mean of the composite to the mean of the cluster of three strains with low means. The MMC panel shows the same overprinting discussed in the caption to Figure 12.10. The Tiebreaker panel shows clearly the single significant comparison of the composite mean to the mean of the cluster of three strains with low means.




                            
Equivalent information is contained in Figure 12.9, where two population means are declared significantly different if their corresponding sample means are not underlined by the same line. (Such an underlining display may be used only when all samples have the same size, as is the case here.)
Figure 12.10 is very busy because it shows 15 pairwise contrasts for only 5 degrees of freedom. In Figure 12.11 we provide a graphical summary of our conclusions by constructing an orthogonal basis
                  
                 for the contrasts. We believe the orthogonal contrasts in Figure 12.11 are easier to use in expository settings. The detail of Figure 12.10 is needed to help us construct a useful and meaningful set of orthogonal contrasts. We see that the single comparison between a.composite and the average of the three strains with low means (3DOa1, 3DOa7, and 3DOa10) is the only significant effect.

                
                  
                
                
                  
                
                
                  
                
              

                
                  
                
              
Figure 12.10 and 12.11 each have two panels. The MMC (mean–mean multiple comparisons) panel shows the MMC plot discussed in Chapter 7. There is severe overprinting of the confidence intervals and their labeling because so many of the means and estimates of their differences have almost identical values. The overprinting is itself information on similarity of level means. Nonetheless we need a tiebreaker that will return legibility to the plot. We provide the tiebreaker in the Tiebreaker panel, an ordinary multiple comparisons plot of the individual contrasts placed at equally spaced vertical positions, sorted to be in the same data-dependent order that is used in the MMC panel. This sort order is based on the values of the level means. The standard sort order used by both R (see for example Table 6.​3) and SAS is based on the names of the levels.

12.14.7 Clover Analysis
The ANOVA table and table of means for the clover experiment are shown in Table 12.12. In this experiment the strain:comb interaction effect is significant and the comb main effect is not significant.Table 12.12ANOVA table and table of means for clover experiment. See Figure 12.8.
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The significance of the strain:comb in Table 12.12 (p-value < . 01) implies that we can’t immediately, if at all, interpret the main effect of strain. Main effect comparisons of the levels of comb and strain are inappropriate because the difference in response to two levels of strain will differ according to the level of comb. From the table of means in Table 12.12 and the interaction plots in Figure 12.12 we discover, again, that strain 3DOk5 is the anomaly. The interaction is made evident by the lack of parallel profiles in both interaction plot panels. The three points marked as outliers in both boxplot panels are the points that drive much of the remaining analysis. We show the simple effects in Figure 12.13.[image: A77776_2_En_12_Fig12_HTML.gif]
Fig. 12.12Interaction plot for clover experiment. The three points marked as outliers in clover 3DOk5 are the points that drive much of the remaining analysis. We show the simple effects for this interaction in Figure 12.13.




                                [image: A77776_2_En_12_Fig13_HTML.gif]
Fig. 12.13Simple effects plot for the clover experiment interaction in Figure 12.12. It is now even more clear that the clover 3DOk5 points differ from the others.




                            

                
                  
                
              
Once we decide that main effects are not meaningful in the presence of strong interaction, we must look at the behavior separately for each level of the comb factor. We continue to do so in the context of a single analysis because we are still able to use the residual term constructed from all levels of comb. This residual term has 48 degrees of freedom. Had we been forced to run separate analyses each would have had a residual with much fewer degrees of freedom. Recall from Section 3.​10 that tests are more powerful when the denominator has higher degrees of freedom.
We therefore repartition the sums of squares in Table 12.13 and look separately at the simple effect
                  
                 of strain within each of the levels of comb. The notation in Table 12.13 is the mechanics by which the 10 degrees of freedom are separated into two meaningful groups of 5 degrees of freedom. The differences in the clover strains of rhizobium alone are significant. The differences with the combination clover and alfalfa strains of rhizobium are not. Therefore, we examine only the simple effects within the clover strains. These simple effects are the differences between pairs of means of strain within the clover level of the factor comb. We examine and report on those such differences that are statistically significant. Since the simple effect
                  
                 for strain within the clover+alfalfa level of comb is not significant, we do not look further at those means.Table 12.13ANOVA table showing simple effects for strain in clover experiment. We partitioned the sums of squares for the nesting with the split argument to the summary function. We needed to display the names of the individual regression coefficients in order to determine which belonged to each of the levels of comb. In this example the comb and strain effects are orthogonal, hence the partitioning is valid. The individual degrees of freedom are usually not interpretable.
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Erdman’s interpretation of the analysis shows that bacteria strain 3DOk5 showed antibiosis with the alfalfa bacteria strains. With 3DOk5 the response was strong alone and suppressed when combined with the alfalfa bacteria culture.

                
                  
                
                
                  
                
              

                
                  
                
              

                
                  
                
              

                
                  
                
                
                  
                
                
                  
                
              

                
                  
                
                
                  
                
                
                  
                
                
                  
                
              

                
                  
                
                
                  
                
                
                  
                
              
Table 12.14 shows the dummy variables and Table 12.15 shows the regression coefficients for the simple effects of strain in the clover experiment displayed in Table 12.13. The names for the columns of the dummy variables generated by the program are excessively long and would force the matrix of dummy variables to occupy many pages just to accommodate the column names. Therefore, we abbreviated them. We see the nesting
                  
                 structure in the dummy variables as the cmb
n columns for pure strains and the cm+
n columns for combination strains are identical in structure. Only the cmb
n regression coefficients are significant. The dummy variables are constructed from the default treatment contrasts.Table 12.14Dummy variables for simple effects of strain in clover experiment. These dummy variables are based on the treatment contrasts. The sums of squares from these dummy variables are displayed in Table 12.13. The regression coefficients are in Table 12.15. The dummy variables and regression coefficients have been reordered to place the within-clover values together and the within-clover+alfalfa values together.
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                                Table 12.15Regression coefficients for simple effects of strain in clover experiment. The contrasts and dummy variables are displayed in Table 12.14. The dummy variables and regression coefficients have been reordered to place the within-clover values together and the within-clover+alfalfa values together.
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Since there is interaction in the clover experiment, we must look at the multiple comparisons for the simple effects
                  
                 of strain at each value of comb.
Figure 12.14 shows the simple effects for comb="clover". The only strongly significant contrasts are the ones centered on the upper right isomeans grid line (clover.3DOk5) comparing 3DOk5 to the rest of the strains. There is one other borderline significant contrast. The Tiebreaker panel makes it slightly easier to identify the names of the contrasts. The set of orthogonal contrasts in Figure 12.15 shows that the single contrast comparing 3DOk5 to the others carries almost all the significance in Figure 12.15.[image: A77776_2_En_12_Fig14_HTML.gif]
Fig. 12.14MMC plot and Tiebreaker plot of Tukey simple effect contrasts for comb="clover" data. It is visually quite clear that the strain 3DOk5 differs from the rest (very strongly for the bottom three strains and less so for the middle two strains.) There is also one marginally significant contrast between the second largest mean and the smallest mean. We illustrate this observation in Figure 12.15 with an appropriately chosen set of orthogonal contrasts. The Tiebreaker plot in the bottom panel is imperative for this example. The means at many of the levels of cs are very close and therefore their labels are overprinted. The Tiebreaker plot shows the contrasts equally spaced along the y-axis and in the same sequence as the top panel.




                                [image: A77776_2_En_12_Fig15_HTML.gif]
Fig. 12.15MMC plot and Tiebreaker plot of an orthogonal basis set of Tukey simple effect contrasts for comb="clover" data. We summarize the conclusions from Figure 12.14. The strongest contrast compares 3DOk5 to the rest. There is one other marginally significant contrast. Two contrasts show that the three strains with the lowest means are indistinguishable. The Tiebreaker plot in the bottom panel is imperative for this example. The means at many of the levels of cs are very close and therefore their labels are overprinted. The Tiebreaker plot shows the contrasts equally spaced along the y-axis and in the same sequence as the top panel.




                            
Figure 12.16 shows that there are no significant contrasts in the simple effects
                  
                 for comb="clover+alfalfa". We forced Figure 12.16 to be on the same scale as Figure 12.14.[image: A77776_2_En_12_Fig16_HTML.gif]
Fig. 12.16MMC plot and Tiebreaker plot of Tukey simple effect contrasts for comb="clover+alfalfa" data. This plot is on the same scale as Figure 12.14. This common scale emphasizes the disparity between 3DOk5 in comb="clover" and any values of strain in comb="clover+alfalfa". None of the simple effects for strain within the clover+alfalfa level of comb are significant. The Tiebreaker plot in the bottom panel is imperative for this example as all the means are almost identical and therefore their labels are overprinted.




                            


12.15 Models Without Interaction

              
                
                
              
            
Experiments with two factors are normally designed with a large enough sample size to investigate the possibility that the factors interact. When the analyst has previous experience with these factors, or subject area knowledge that the factors are unlikely to interact, it is possible to set up the model without an interaction term:
The residual portion of this no-interaction model includes the (a − 1)(b − 1) degrees of freedom that would otherwise have been attributable to the AB interaction. If the no-interaction assumption is correct, the no-interaction model provides a more precise estimate of the residual than a model incorporating interaction and this in turn implies more power for tests involving the individual main effects or the means of their levels. With this model, comparisons among the levels of factor A or among the levels of factor B are undertaken in much the same way as in a one-way experiment, but using this model’s residual sum of squares and degrees of freedom.
When we initially posit a model containing the two-factor interaction, it may happen that the analysis of variance test for interaction leads to non-rejection of the no-interaction hypothesis. If the evidence for no interaction is sufficiently strong (a large p-value for this test and/or no strong subject area feeling about the existence of interaction), the analyst may feel comfortable about reverting to the no-interaction model and proceeding with the analysis as above. This amounts to pooling
                
               a nonsignificant interaction sum of squares with the previous residual sum of squares (calculated under the now rejected assumption of an interaction) to produce a revised residual mean square (under the assumption of no interaction). This combined or pooled estimate is justified because in the absence of interaction, the interaction mean square estimates the same quantity, the residual variance, as does the residual mean square. The pooled estimate of the residual variance is an improvement over the individual estimates because it is constructed with additional degrees of freedom. Therefore, the pooled estimate provides more powerful inferences on the level means of the two factors than would a residual mean square in a model including interaction. See Section 5.​4.​2 for further discussion of pooling.
                
              


12.16 Example—Animal Feed Data
12.16.1 Study Objectives
A manufacturer of animal feed investigated the influence on the amount of vitamin A retained in feed. The manufacturer considered 15 treatment combinations formed from 5 amounts of feed supplement and 3 levels of temperature at which the supplements were added to the feed. Two samples were selected at each treatment combination. The data from Anderson and McLean (1974), accessible as data(feed), are said to be on transformed scales that this reference does not specify. The response variable is retained and the two factors are temp and supp.

12.16.2 Analysis
The data is displayed in the interaction plot in Figure 12.17. The profiles in the interaction plot are sufficiently close to parallel to suggest that there is no interaction between temp and supp.[image: A77776_2_En_12_Fig17_HTML.gif]
Fig. 12.17Feed data interaction plots.




                            

                
                  
                
              

                
                  
                
              
Initially, in Table 12.16, we fit an interaction model leading to an interaction p-value of 0.43, confirming our impression from the interaction plot that temp and supp do not interact. It is not unreasonable to conclude that temperature affects each concentration of feed supplement in roughly the same way. Therefore, we abandon the assumption of interaction and move to a no-interaction model.Table 12.16Feed data: ANOVA table for model with interaction. The interaction is not significant.


	
                            [image: A77776_2_En_12_Figp_HTML.gif]
                          
	 



                            
The fit of the no-interaction model in Table 12.17 suggests that both temp and supp impact significantly on retained. Since both of these factors have quantitative levels, our analysis of the nature of the mean differences involves modeling the response retained as polynomial functions of both temperature and the amount of supplement. The method for accomplishing such modeling was introduced in Section 10.​4

                  
                  
                
Table 12.17Feed data: ANOVA with main effects and their polynomial contrasts.


	
                            [image: A77776_2_En_12_Figq_HTML.gif]
                          
	 




The interaction plot in Figure 12.17 suggests that the response to changes in the level of supp is quadratic in nature and that possibly the response to changes in the level of temp is quadratic as well. Therefore, for both of these factors we calculated the one degree-of-freedom tests on the linear and quadratic contrasts
                  
                 among the factor levels, and show the results in Table 12.17. Since the p-values for both quadratic contrasts are close to 0, there is strong evidence that the response of vitamin A retention is a quadratic function of both temperature and amount of feed supplement.
We show the MMC plot for supplement in Figure 12.18 for all pairwise contrasts and in Figure 12.19 for the orthogonal contrasts. The Tiebreaker panel is needed because two of the supplement means are identical. The MMC plot of the orthogonal polynomial contrasts shows the linear and quadratic effects are significant.[image: A77776_2_En_12_Fig18_HTML.gif]
Fig. 12.18Feed data MMC plot for pairwise contrasts of supplement. The means of retained at levels of feed 6 and 10 are identical. We need the Tiebreaker panel to distinguish them. Since Table 12.17 shows that the polynomial contrasts are very significant, we show the MMC plot for orthogonal polynomial contrasts in Figure 12.19.




                                [image: A77776_2_En_12_Fig19_HTML.gif]
Fig. 12.19Feed data MMC plot for orthogonal polynomial contrasts of supplement. As indicated in the ANOVA table, the linear and quadratic contrasts are significant and the cubic and quartic are not. We show the Tiebreaker panel even though it is not really needed in this example.




                            
Our findings implies that for maximum vitamin A retention we should recommend intermediate amounts of temp and supp, perhaps in the vicinity of temp=80 and supp=6. An enlargement of this experiment could more accurately determine the optimal values.
If the analyst had been told, prior to the design of the experiment, that the primary goal was to determine the optimizing combination of the inputs temp and supp, the analyst would have considered using a response surface design

                  
                , the most efficient design for this purpose. A brief introduction to such designs is contained in Montgomery (2001).


12.17 Exercises

12.1. Do the original Erdman alfalfa analysis of Section 12.14.3 with nitro as the response variable. Use the data accessible as data(rhiz.alfalfa).

12.2. Do the original Erdman clover analysis of Section 12.14.4 with nitro as the response variable. Use the data accessible as data(rhiz.clover).

12.3. Analyze the two factor experiment with data accessible as data(testing). This is a 3 × 3 design with 4 observations per treatment combination. The factors are breaker at levels 1 to 3 and Gauger at levels 1 to 3. The observations are strengths of cement. The cement is “gauged” or mixed with water and worked by three different gaugers before casting it into cubes. Three testers or “breakers” later tested the cubes for compressive strength, measured in pounds per square inch. Each gauger gauged 12 cubes, which were divided into 3 sets of 4, and each breaker tested one set of 4 cubes from each gauger. Breakers and gaugers are fixed in this experiment. Breakers and gaugers are people, not machines. Are there differences in the strength of the cement that depend on the handling by the breakers and gaugers?
We got the data from Hand et al. (1994). The data originally appeared in Davies and Goldsmith (1972). There the data were coded
                
               by. 1(X − 1000) before analysis.
The term coded data

                
               means that they have been centered and scaled to make the numerical values easier to work with by hand. The F-tests in the ANOVA table and the t-tests for regression coefficients with coded data
                
               are identical to the tests for the original data.

              
                
              
            

              
                
              
            

12.4. An agronomist compared five different sources of nitrogen fertilizer and a control (no fertilization) on the yield of barley. A randomized block design was used with four types of soil as the blocks. Each soil type was randomly divided into six plots, and the six treatments were randomly assigned to plots within each type. The treatments were, respectively, (NH4)SO4, NH4NO3, CO(NH2)2, Ca(NO3)2, NaNO3, and control. The data, taken from Peterson (1985), are accessible as data(barleyp).
a.Plot the data. Does it appear from the plot that yield is related to treatment? Does it appear from the plot that blocking was successful?

 

b.Set up the two-way analysis of variance table for these data and explain what you conclude from it.

 

c.Use the Dunnett procedure, introduced in Section 7.​1.​3, to compare the five fertilizers with the control. Report your findings to the agronomist.

 





12.5. A chemist compared the abilities of three chemicals used on plywood panels to retard the spread of fire. Twelve panels were obtained, and each chemical was randomly sprayed on four of these twelve panels. Two pieces were cut from each panel and the time was measured for each piece to be completely consumed by a standard flame. (Thus Panel is nested within Chemical and Sample is nested within Panel.) The data, from Peterson (1985), are accessible as data(retard). Carefully noting the relationship between the factors chemical and panel, and considering whether these factors are fixed or random, set up an analysis of variance and followup analysis of chemical means in order to make a recommendation of the best chemical for retarding the spread of plywood fires.

12.6. The judging of the ice skating events at the 2002 Winter Olympics in Salt Lake City was very controversial. The data, accessible as data(skateslc), are taken from Olympic Committee (2001). The dataset contains the scores on both technique and presentation of the five leading skaters, assigned by each of nine judges. We have recoded the data with 10(X − 5). Perform a two-way analysis of variance where the response is the total of both scores. Do further analysis and comment on the consistency of the nine judges across skaters.

12.7. Box and Cox (1964), reprinted in Hand et al. (1994), present the results of a 3 × 4 factorial experiment with four replications per treatment combination to illustrate the importance of investigating the normality assumption underlying analyses of variance. The original response variable is the survival time, survtime of each of four antidotes, treatment to each of three poisons. The data are accessible as data(animal).
a.Perform a two-way analysis of variance using survtime as the response, taking care to save the calculated cell residuals.

 

b.Produce a normal probability plot (described in Chapter 5) of the cell residuals and use it to conclude that the residuals are not normally distributed.

 

c.Redo the two-way analysis of variance with a reciprocal transformation of the response variable survtime, and again save the cell residuals. From a normal probability plot of these cell residuals, conclude that these new residuals are normally distributed and hence the transformation was successful.

 

d.Report your findings to the antidote researchers.

 





12.8. An experiment was constructed to compare the effects on etchings of wafers of four etching compounds and heat treatment by each of three furnaces. The experiment was reported in Johnson and Leone (1967) and the data are accessible as data(furnace). Viewing furnace as a random factor and allowing for the possibility of interaction, provide a thorough analyses of these data.

12.9. Anemia, caused by iron deficiency in the blood, is common in some countries. It was hypothesized that food cooked in iron pots would gain iron content from the pot and, hence when eaten, contribute to alleviation of iron deficiency. Research performed by Adish et al. (1999) compares the iron content (mg/100g) of three types of (traditional Ethiopian) food when cooked in pots of aluminum, clay, or iron. The data, accessible as data(ironpot), give the Iron content in mg/100g of food, the type of Pot, and the type of Food. Perform a two-way analysis of variance and provide interaction plots.
                
               Based on your analysis, is the hypothesis supported? Does your conclusion apply to all Foods studied?

12.10. To check the consistency of new car fuel efficiency, the miles per gallon of gasoline consumed was recorded for each of 5 cars of the same year and brand, on each of 10 randomly selected days. The investigation was reported in Johnson and Leone (1967) and the data are accessible as data(mpg). Viewing car as a random treatment factor and day as a random blocking factor, analyze the data and carefully state your conclusions. Suggest ways to elaborate on and improve this experiment.

12.11. Williams (1959), originally in Sulzberger (1953), examined the effects of temperature on the strength of wood, plywood, and glued joints. The data are accessible as data(hooppine). The studied wood came from hoop pine trees. The response is compressive strength parallel to the grain, and the treatment factor is temperature in degrees C. An available covariate is the moisture content of the wood, and tree is a blocking factor. a.Fit a full model where both strength and moisture are adjusted for the blocking factor tree, allowing for the possibility that temp interacts with moisture.

 

b.Conclude that the interaction term can be deleted from this model. Reanalyze without this term. Carefully state your conclusions.

 

c.Investigate the nature of the relationship between strength and temp. Conclude that a linear fit will suffice.

 

d.Provide plots illustrating the conclusion from part a and the final model in parts b and c.

 





12.A Appendix: Computation for the Analysis of Variance

                
                  
                  
                
              
When there is more than a single factor, the discussion in this chapter is usually limited to the case where the sample size n

                  ij
                 is the same for each cell. The programs we use for the computation do not usually have this limitation. We will discuss more general cases in Chapters 13 and 14.
With R we will be using aov for the calculations and anova and related commands for the display of the results. aov can be used with equal or unequal cell sizes. Model (12.1) [image: 
$$\displaystyle\begin{array}{rcl} Y _{ijk} =\mu +\alpha _{i} +\beta _{j} + (\alpha \beta )_{ij} +\epsilon _{ijk} =\mu _{ij} +\epsilon _{ijk} (12.1)& & {}\\ \end{array}$$
]


 is denoted in R either by the formula

                   Y ~ A + B + A:B 
              
which uses the operator + to indicate the sum of two terms and the operator : to indicate the interaction of two factors, or by the formula

                   Y ~ A * B
              
which uses the operator * to denote the crossing
                  
                 of two factors. The operator ~ is read as “is modeled by”. The second formula is syntactically expanded by the program to the first formula before it is evaluated. We usually prefer the more compact notation Y ~ A * B because it more closely captures the English statement, “Y is modeled by the crossing of factors A and B.”
With SAS we use PROC ANOVA and PROC GLM. PROC ANOVA is limited to the equal sample size cases (actually, to balanced designs; see the SAS documentation for details). Where there are at least two factors and unequal cell sizes [that is, the n

                  ij
                 are not constrained to be equal and some cells may be empty (with n

                  ij
                 = 0)] PROC GLM should be used. PROC ANOVA may not give sensible answers in such cases. Model (12.1) is denoted in SAS either by the expression

                   Y = A   B   A*B 
              
which uses a space to indicate the sum of two terms and the operator * to indicate the interaction term, or by the expression

                   Y = A | B
              
which uses the operator | to denote the crossing
                  
                 of two factors. The operator = is read as “is modeled by”. The second expression is syntactically expanded by the program to the first expression before it is evaluated. We usually prefer the more compact notation Y = A | B because it more closely captures the English statement, “Y is modeled by the crossing of factors A and B.”
The intercept term μ and the error term ε

                  ijk
                 are assumed in both statistical languages. The existence of the subscripts is implied and the actual values are specified by the data values.
                  
                  
                

                  
                

The formula language also includes a notation for nesting of factors. We introduce nesting in Section 12.13 and say more in Section 13.​5, especially in Tables 13.18 and 13.21. In R use the formula

                   Y ~ A + A:B 
              
or the formula (which will be expanded to the first formula)

                   Y ~ A / B
              
which uses the / to indicate that A is an outer factor and B is nested within A.

SAS doesn’t have the equivalent of the second formula. In SAS, use either the equivalent of the first formula

                   Y = A   A*B 
              
or an alternative notation

                   Y = A   B(A) 
              
which uses the parenthesis notation to indicate that B is nested within A.
Note that the A:B notation (or A*B in SAS) tells about the relation of the levels of the factors, not the degrees of freedom. Degrees of freedom depend on the linear dependencies with earlier terms in the model formula.
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13. Design of Experiments—Factorial Designs
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Designs are often described by the number of factors. Chapter 6, “One-Way Analysis of Variance”, discusses designs with one factor. Chapter 12, “Two-Way Analysis of Variance”, discusses designs with two factors. More generally, we speak of “three-way” or “higher-way” designs
              
             and talk about main effects (one factor), two-way interactions (two factors), three-way interactions, four-way interactions, and so forth. Factors can have crossed or nested relationships. A factor can be fixed or random. When interaction is significant, its nature must be carefully investigated. If higher-order interactions, meaning those involving more than two factors, can be assumed to be negligible, it is often possible to design experiments that require observations on only a fraction of all possible treatment combinations.
Section 13.1 discusses a three-way ANOVA design with a covariate and polynomial contrasts. Section 13.2 introduces Latin squares. Section 13.3 introduces simple effects for interaction analyses. Section 13.4 discusses a nested factorial experiment with both crossed and nesting relationships among the factors. Section 13.6.1 discusses the SAS terminology for types of sums of squares used in sequential and conditional ANOVA tables. Related topics are discussed in Chapter 14

13.1 A Three-Way ANOVA—Muscle Data
Cochran and Cox (1957) report on an experiment to assess the effect of electrical stimulation to prevent the atrophy of muscle tissue in rats. The dataset is available as data(cc176). The response wt.d is the weight of the treated muscle. There were three fixed factors: the number of treatments daily, n.treat, 1, 3, or 6; the duration of treatments in minutes, 1, 2, 3, or 5; and the four types of current used. A concomitant variable, the weight of corresponding muscle on the opposite untreated side of the rat, wt.n, was also made available. There were two replications of the entire experiment.
The analysis is constructed with code in HHscriptnames(13). The data are plotted in Figure 13.1. The ANCOVA
                
               and adjusted means are in Table 13.1. Also included in Table 13.1 is a partitioning of the 2 degrees of freedom for n.treats into linear and quadratic components, taking account of the unequal spacing of the quantitative levels of n.treats.[image: A77776_2_En_13_Fig1_HTML.gif]
Fig. 13.1Muscle data. The response variable wt.d is plotted against the covariate wt.n within each current×n.treats experimental condition. The plotting symbol is the duration of the treatment in minutes. The ANCOVA
                        
                       and adjusted means are in Table 13.1. We also plotted the common regression line (ignoring experimental conditions) of the response against the covariate. The presence of a covariate wt.n effect is evident from the graph by noting that the points in all panels approximate the uphill slope of the regression slope. The absence of a minutes effect is evident since there is no systematic pattern among the plotting symbols.




Table 13.1Muscle data. ANCOVA and adjusted means. The covariate wt.n, the linear effect of n.treats, and the current are the significant treatment effects. We show the calculation of y.adj, the response variable adjusted for the covariate, and the adjusted means.


[image: A77776_2_En_13_Figa_HTML.gif]




              
                
              
            

              
                
              
            
Table 13.1 suggests that after adjusting for the concomitant variable wt.n, there are no significant interactions and the effect of minutes is not significant. This table shows that n.treat contributes significantly to explaining wt.d, p−value = . 0000036. The visible upward trend in all panels of Figure 13.1 suggests that response wt.d increases linearly with n.treats and differs according to the type of current used. The response variable y.adj in Figure 13.2 is constructed by adjusting the response wt.d for the covariable wt.n. We see in both Figures 13.1 and 13.2 a larger response when current is 25 cycle than when current is at one of its other three levels. Inclusion of wt.n reinforces these conclusions. The parallel traces in Figure 13.2 correspond to the absence of interaction between n.treat and current, a finding also suggested by the large p-value for this interaction in Table 13.1.[image: A77776_2_En_13_Fig2_HTML.gif]
Fig. 13.2Muscle data. Two-way interactions of significant main effects from the ANCOVA in Table 13.1. The adjusted response y.adj increases linearly with n.treats and differs according to the type of current used.






              
                
              
            

              
                
              
            
In Table 13.2 we display a microplot
                
               of horizontal boxplots that compares the distributions of responses for each level of the factor current. This is the same set of boxplots that appears in the y.adj [image: 
$$\sim$$
] current | current panel of Figure 13.2.Table 13.2Muscle data: Distribution statistics and boxplots for adjusted weights. The statistics show only a few values. The boxplot shows the entire distribution.


[image: A77776_2_En_13_Figb_HTML.gif]



Boxplots capture comparative information better than numbers. They don’t have to take much space, therefore they can fit into tables of numbers and satisfy both the convention (perhaps mandated) of displaying numbers and the legibility ofdisplaying graphs. We call the plots microplots

                
               when they are deliberately sized to fit into a table of numbers without interfering with the overall layout. When small plots are placed into a table of numbers, they can carry the same or more information per cm2 as the numbers themselves.
A display comparable to Figure 13.3 could be used to determine the nature of a 3-way interaction. Such an interaction does not exist in this example.[image: A77776_2_En_13_Fig3_HTML.gif]
Fig. 13.3Muscle data. Three-way interactions of all effects. One of the (3! = 6) possible orderings. The three-way interaction is not significant in this example. If there were a significant three-way interaction, the patterns in boxplots in adjacent rows and columns would not be the same. For example, we note a hint of a difference in the y.adj 
                        ~
                       minutes behavior across panels. It has a negative slope in the galvanic 
                        ~
                       3 panel and a positive slope in the faradic 
                        ~
                       3 panel, but a positive slope in the galvanic 
                        ~
                       6 panel and a negative slope in the faradic 
                        ~
                       6 panel. The ANOVA table tells us these differences in slope are not significant. These boxplots are all based on samples of size 2. Such boxplots are a well-defined but uncustomary way to display such a sample.






              
                
              
            
Figure 13.4 shows four different models for the relationship between the response wt.d and the covariate wt.n. The figure is similar to Figure 10.​12 which showed four sets of panels for the simpler dataset with only one factor. The overall conclusion is that the relation between wt.d and wt.n differs according to the levels of current and n.treat. More detail appears in the caption of this figure.[image: A77776_2_En_13_Fig4_HTML.gif]
Fig. 13.4Muscle data. ANCOVA plots with four different models. Panel a ignores wt.n and shows the average value of wt.d. Panel b fits a common regression of wt.d on wt.n on all combinations of n.treat and current and differs from Figure 13.1 only in its choice of plot symbol. Panel c,d allows for different intercepts but forces common slopes. The difference in intercepts corresponds to the small p-value for wt.n in Table 13.1. Panel e shows distinct regressions of wt.d on wt.n for each combination of current and n.treat. It suggests that the relationship between wt.d and wt.n differs according to the levels of n.treat and current. The term n.c in the title for the graphs is an abbreviation for the interaction (n.treats*current).






              
                
              
            

              
                
              
            
Figure 13.5 is a Tukey procedure
                
               MMC
                
               plot examining the six pairwise differences among the four levels of current. As summarized in the caption of this figure, four of these six differences are declared statistically significant. Inspection of Figure 13.5 and the means of the levels of current in Table 13.1 reveals that 25.cycle and 60.cycle current, indistinguishable from each other, correspond to significantly greater treated muscle weight wt.d than either galvanic or faradic current.[image: A77776_2_En_13_Fig5_HTML.gif]
Fig. 13.5Muscle data. MMC plot for the analysis in Table 13.3. The top panel shows the Tukey 95% intervals for all pairwise contrasts of treatment means wt.d adjusted for wt.n at the four levels of current. The Tukey procedure leads to the conclusions illustrated by the orthogonal contrasts in the bottom panel. The adjusted treatment means of both of 25.cycle and 60.cycle exceed both of galvanic and faradic; 25.cycle is indistinguishable from 60.cycle; and galvanic is indistinguishable from faradic. The Tiebreaker plot is not needed in this example.




Table 13.3Muscle data. ANCOVA with the simpler model using only the significant terms from Table 13.1 plus an additional interaction. We show the MMC plot for the current effect in Figure 13.5.


[image: A77776_2_En_13_Figc_HTML.gif]




              
                
              
              
                
              
            

13.2 Latin Square Designs

              
                
              
            
This design is useful when we have three factors having the same number, say r, of levels and the factors do not interact. Although there are r
3 treatment combinations, the Latin Square design permits us to run the experiment with a carefully chosen subset of r
2 of them while retaining the ability to conduct tests on all main effects. A Latin square is a square array of r Latin letters [image: 
$$A,B,C,\ldots$$
] such that each letter appears exactly once in each row and once in each column. Typically, the treatment factor is associated with these letters, and both row and column are blocking type factors. For example, if an experiment is run at r selected times of day on each of r days, then each row could represent one of the days, and each column one of the selected times. As another example, displayed in Table 13.4, if we have four cars available to compare the wear of four brands of tire, the rows of the square could represent the wheel position on the car, the columns represent the selected car, and the letters the tire brands.Table 13.4Sample 4 × 4 Latin square design. The rows represent tire positions: LF is Left-Front, RF is Right-Front, LR is Left-Rear, and RR is Right-Rear.


[image: A77776_2_En_13_Figd_HTML.gif]




              
                
              
            
The basic structure of the ANOVA table is in Table 13.5. Since we are using the Row and Columns factors as blocks, there is no test for those terms in the table. The only test we are justified in making is the test of the Treatment. The purpose of including the Row and Column factors is to pick up some of the Total Sum of Squares and thereby reduce the size of the residual mean square.Table 13.5Sample ANOVA for 4 × 4 Latin square design.


[image: A77776_2_En_13_Fige_HTML.gif]




              
                
              
            
The arithmetic of the Latin square design depends on the assumption of no interaction between Row, Column, and Treatment. The arithmetic of the interaction of Row and Column gives (r − 1)2 df to the interaction and 0 df for an error term. By assuming no interaction, we gain the ability to split the (r − 1)2 df into two components: Treatment with r − 1 df and Error with (r − 1)2 − (r − 1) = (r − 1)(r − 2) df. If the no-interaction assumptions hold, this is a very efficient design.
Almost always, 5 ≤ r ≤ 8, for if r < 5 there are too few df for error, and one is unlikely to encounter situations where one has three factors each having r > 8 levels, two of which are blocking factors. However, it is possible to run an experiment containing several 3 × 3 squares or several 4 × 4 squares, each of which is considered a block, in order to achieve sufficient error df.
Catalogs of Latin squares appear in Cochran and Cox (1957) and elsewhere. In practice, one selects a square from a catalog and randomizes it by randomly assigning levels of one of the blocking factors to the rows of the square, randomly assigning levels of the other blocking factor to the columns of the square, and then randomly assigning treatment levels to the letters.
13.2.1 Example—Latin Square
The dataset data(tires), from Hicks and Turner (1999, page 115), is displayed in Table 13.6 alongside the original Latin square. A boxplot of the data is in Figure 13.6.Table 13.6Latin square of tire wear experiment. The Latin square from Table 13.4 is repeated here. On the left with letters and on the right with the observed response values.


[image: A77776_2_En_13_Figf_HTML.gif]


[image: A77776_2_En_13_Fig6_HTML.gif]
Fig. 13.6Tires data. Boxplots of the response variables wear against the three factors.






                
                  
                
              

                
                  
                
                
                  
                
              

                
                  
                
                
                  
                
              
An initial ANOVA run in Table 13.7 revealed significant differences among cars and brands, but not among positions. Here r = 4, allowing just 6 df for estimating error. Hence the denominator df of the F-tests is also 6, which as discussed in Section 5.​4.​4 implies that these tests have little power. Nevertheless, the differences in this example among cars and brands are large enough for the F-tests to detect them.Table 13.7Latin square design. tires data. Differences in the blocks car are large, justifying blocking. Differences in brand are significant. We investigate further in Table 13.8.


[image: A77776_2_En_13_Figg_HTML.gif]


Table 13.8Continuation of analysis in Table 13.7. Latin square design. tires data. Brand 1 shows significantly greater mean wear than brand 3 or brand 4.


[image: A77776_2_En_13_Figh_HTML.gif]




                
                  
                
                
                  
                
              
To learn about the nature of the brand differences, we reran with a request for Tukey multiple comparisons tests on the brand means (Tables 13.7 and 13.8 and Figure 13.7). We find that brand 1 had significantly greater wear than brands 3 and 4, but the improvement in wear of brand 1 over brand 2 was not significant. We also see that cars 1, 2, and 3 all had significantly greater wear than car 4; no significant difference in tire wear was detected among cars 1, 2, and 3.[image: A77776_2_En_13_Fig7_HTML.gif]
Fig. 13.7Tires data. The top panel shows the Tukey 95% intervals for all pairwise contrasts of wear means at the four levels of brand. The Tukey procedure leads to the conclusions illustrated by the orthogonal contrasts in the bottom panel. Brand 1 shows significantly greater mean wear than brand 3 or brand 4. The Tiebreaker plot is not needed in this example.






                
                  
                
                
                  
                
              
In this example the primary interest is studying the differences between brands of tires. Both car and position are blocking factors. We assume different cars will have different effects on tires because each person who owns a car drives different routes and puts the car through different wear patterns. We know there are differences in position on the car. Front tires are used for steering, rear tires just follow. In some cars only the front tires get power directly from the engine. In other cars only the rear tires, and in 4-wheel drive vehicles both front and rear tires get power. The goal of the Latin square experiment is to reduce the residual sum of squares by absorbing some of the variation into known blocking factors. This makes the comparisons of interest, those on brand, more precise because they can be made with a smaller standard deviation (based on the residual mean square).
The results of the F-test on a blocking factor are not ordinarily presented in the discussion because block differences are expected, and multiple comparisons on block means are not usually performed. Nevertheless, when blocks are significant, it is an indication that the blocking was worthwhile. Most experimental design texts contain formulas for the efficiency attributable to blocking in Latin square, randomized complete block, and other experimental designs; see, for example, Cochran and Cox (1957) (Section 4.37).
We continue with this example in Exercise 13.6 where we use dummy variables to illustrate the linear dependence of the treatment (brand) sum of squares on the interaction of the two blocking factors.
                  
                



13.3 Simple Effects for Interaction Analyses

              
                
              
            
When a low p-value for an interaction term in an ANOVA table leads the analyst to believes that interaction exists, it is necessary to study the nature of the interaction.
                
              

We re-emphasize that in this situation, tests of the main effects of the factors comprising the interaction are inappropriate. Instead we seek to analyze the simple effects, which we now define. An analysis of simple effects, along with interaction plots of cell means which we’ve previously discussed, are the correct tools for investigating interaction. We note which simple effects are appreciable, either by examining confidence intervals on the simple effects or by testing whether the simple effects are zero. Since such activities involve simultaneous inferences, it is desirable to give attention to use either simultaneous confidence levels or a familywise error rate for simultaneous tests. The importance of studying individual simple effects rather than the overall interaction effect is comparable to the ecological fallacy
                
               introduced in Section 4.​2 and the cautions resulting from Simpson’s paradox,
                
               discussed in Section 15.​3

We confine attention here to the case of two factors, say A and B, at a and b levels, respectively. Continuing with the notation of Equation (12.​1), let μ

                ij
               denote the mean response of the treatment combination where A is at its i
th level and B is at its j
th level. Then a simple effect for B is a pairwise comparison of levels of B at a particular level of A, for example, μ
12 −μ
13. Similarly, a simple effect for A is a pairwise comparison of levels of A at a particular level of B, such as μ
32 −μ
12.
This assumes that the levels of a factor for which we are calculating simple effects are qualitative in nature. If instead the levels of factor B are quantitative, then a different analysis is called for, namely, a comparison of comparable polynomial contrasts of the cell means at each level of factor A. This analysis is superior to performing a separate one-way analyses comparing the levels of B because we are pooling the information from all levels of A to estimate the common error variance. This enables us to compare the levels of B with maximum available power.
In experiments with three or more factors, there is a potential for 3-factor interaction. If there are three factors (A, B, C) that interact, this may be interpreted as saying that the nature of the AB interaction varies according to the particular level of factor C. An analysis of such an interaction is more complicated than is the case for two interacting factors.
13.3.1 Example—The filmcoat Data
We illustrate the use of simple effects in analyzing interaction with the dataset data(filmcoat) from Iman (1994, pp. 768–778).

13.3.2 Study Objectives
Chemical vapor deposition is a process used in the semiconductor industry to deposit thin films of silicon dioxide and photoresist on substrates of wafers as they are manufactured. The films must be as thin as possible and have a uniform thickness, which is measured by a process called infrared interference.
A process engineer evaluated a low-pressure chemical vapor deposition (LPCVD) process that reduces costs and increases productivity. The engineer set up an experiment to study the effect of chamber temperature and pressure on film thickness. Three temperatures and three pressures were selected to represent the low, medium, and high levels of operating conditions for both factors. The experiment was conducted by randomly selecting one of the temperature–pressure combinations and determining the thickness of the film coating after processing is completed. This experiment was repeated three times with each temperature–pressure combination. The engineer wanted to determine the joint effect of temperature and pressure on the mean film thickness. The response was thickness (in Ångström units) of film coatings applied to wafers.

13.3.3 Data Description

                
                      temprt:
                    temperature: low, medium, and high levels



                      pressure:
                    pressure: low, medium, and high levels



                      coat:
                    thickness of film coat




              
The data are displayed in Table 13.9 and Figure 13.8. The table of means and ANOVA table are in Table 13.10. The plots of the means and interactions are in Figure 13.9.
Table 13.9
filmcoat data. Thickness of film coat at various settings of temperature and pressure.


[image: A77776_2_En_13_Figi_HTML.gif]


[image: A77776_2_En_13_Fig8_HTML.gif]
Fig. 13.8a Filmcoat data. Each box is based on three data points. The interaction between temperature and pressure is very visible in the t.high 
                          ~
                         p.med panel. Along the top two rows of the plot, the boxes move up from left to right. In the bottom row, the second box is below the other two.




[image: A77776_2_En_13_Fig9_HTML.gif]
Fig. 13.9Simple effects plot for filmcoat data. At medium pressure, mean coat is minimized at high temprt. No other firm conclusions can be drawn because many of the simultaneous confidence intervals in Figures 13.10 and 13.11 overlap zero. We saw in Section 13.3 that main effects are not defined in the presence of interaction. The simple effects plot here shows individual boxplots for each level of pressure conditioned on the level of temperature in the lower left panel. The plot shows individual boxplots for each level of temperature conditioned on the level of pressure in the upper right panel.




[image: A77776_2_En_13_Fig10_HTML.gif]
Fig. 13.10Simultaneous 95% simulation-based confidence intervals for the filmcoat data: Simple effects of temperature at each level of pressure. The Tiebreaker plots in the bottom panels are imperative for this example.




Table 13.10Means and ANOVA table for filmcoat data. The moderately significant interaction between pressure and temperature requires that we examine simple effects rather than main effects.


[image: A77776_2_En_13_Figj_HTML.gif]




                
                  
                
                
                  
                
              

                
                  
                
              
We observe that the temprt× pressure interaction is moderately significant. Therefore, conclusions about which level of temprt tends to minimize coat depend on the level of pressure. This statement is supported by Figure 13.9, which suggests that for low and high pressure, the response coat is minimized at medium temprt while for medium pressure, coat is minimized at high temprt.In addition, it is suggested that for low and medium temprt, coat is minimized at low pressure while for high temprt, coat is minimized at medium pressure.

13.3.4 Data Analysis
These informal visual impressions are formally investigated by examining the simultaneous confidence intervals on the simple effects displayed in Figures 13.10 and 13.11. Control of the simultaneous confidence level at 95% within each of the two sets of nine intervals is maintained by using simulation-generated critical points for this procedure as recommended by Edwards and Berry (1987). These simultaneous confidence intervals are produced in R with the glht function in the multcomp package. The simultaneous confidence of the collection of all 18 confidence intervals is closer to 90%.[image: A77776_2_En_13_Fig11_HTML.gif]
Fig. 13.11Simultaneous 95% simulation-based confidence intervals for the filmcoat data: Simple effects of pressure at each level of temperature. The Tiebreaker plots in the bottom panels are imperative for this example.





We examine which of these intervals excludes zero and for those that do, whether the interval lies above or below zero. In Figure 13.10, we see that at medium pressure, 	the confidence interval on mean coat at low temprt minus mean coat at high temprt lies entirely above zero,

	the confidence interval on mean coat at medium temprt minus mean coat at high temprt is closer to zero, but is also entirely above zero.





From these two statements we can conclude that at medium pressure, mean coat is minimized at high temprt. This is the only firm conclusion we can draw about coat minimization because many of the other intervals in these two figures overlap zero, indicating nonsignificant differences of means. We are unable to formally confirm our other graphical impressions that for low and high pressure, the response coat is minimized at medium temprt. Nor are we able to confirm our initial graphical impressions about levels of pressure that minimize coat at each level of temprt.
In summary, while we can make some confident assertions about differences in coating between some of the combinations of temperature and pressure, it is not possible to infer from these data an overall recommendation of the optimal combination of temperature and pressure. It is possible that a larger experiment would have led to such a conclusion.
                  
                


                
                  
                
              

                
                  
                
              


13.4 Nested Factorial Experiment

              
                
              
              
                
              
            
Thus far we have considered situations where the relationships among the factors are either completely crossed or completely nested. It is also possible to have an experiment with three or more factors having both crossed and nesting relationships. Such an arrangement is called a nested factorial experiment.
13.4.1 Example—Gunload Data
We illustrate one possible arrangement with an example taken from Hicks and Turner (1999). It was desired to improve the number of rounds per minute that could be fired from a large naval gun. There are two levels of loading method, 1=new and 2=old, and three groups defining the physiques of the loaders, 1=slight, 2=average, 3=heavy. From each of these groups the experimenter selected three equal sized teams of men. Thus there are three teams of men having slight build, three teams of men having average build, and three teams of men having heavy build. Using both of the two methods, each of the nine teams fired the gun on two separate occasions. It is seen that team is nested within group, and that method is crossed with both group and team within group. The factors method and group are fixed, while team is a random factor. The data are contained in the dataset data(gunload). We display the data in Figure 13.12.[image: A77776_2_En_13_Fig12_HTML.gif]
Fig. 13.12Boxplot of gunload data. The response rounds is higher for the new method than the old method and does not appear to differ across the three physique groups. These findings are consistent with the small p-value for method and the large p-value for group in Table 13.13.






                
                  
                
              
If all three factors were fixed factors, then the residual mean square would serve as the denominator for all analysis of variance table F-tests on main effects and interactions. When at least one factor is random
                  
                , the F-test denominators are sometimes another mean square in the ANOVA table. As with our use of Table 12.​8 to determine the correct denominator for an analysis with two crossed factors where one or both could be random factors, we construct Table 13.11 to aid in our analysis of the gunload data. The table is constructed by writing the sums of squares as quadratic forms in the Y

                  ijkl
                 defined in Equation (13.1), and using Equation (I.6) in Appendix I for finding the expected values of these quadratic forms. Then as with Table 12.​8, the ANOVA F-test of any effect uses as the denominator the mean square having expectation identical to the expected mean square
                  
                 of the effect, apart from the term for the effect itself.
In Table 13.11, we have three factors, which we call M, G, and T for easy association with method, group, and team in the gunload example. We use the corresponding Greek letters [image: 
$$\theta$$
] (for meTHod), γ, and τ for the population effects. Here T is nested within G, and M is crossed with both G and T. In this table, the factors M, G, and T have m, g, and t levels, respectively, and the common number of replications of each treatment combination is n. In the gunload example, there are n = 2 occasions.Table 13.11Expected mean squares for a three-factor nested factorial ANOVA. See also Tables 6.​4 and 12.​8.


[image: A77776_2_En_13_Figk_HTML.gif]



The statistical model
                  
                 associated with this analysis may be written as [image: 
$$\displaystyle\begin{array}{rcl} Y _{ijkl} =\mu +\gamma _{i} +\tau _{j(i)} +\theta _{k} + (\gamma \theta )_{ik} + (\tau \theta )_{jk(i)} +\epsilon _{ijkl}& &{}\end{array}$$
]

 (13.1)

 Here γ

                  i
                 is the effect of group level i, τ

j(i) is the effect of level j of team nested within level i of group, [image: 
$$\theta _{k}$$
] represents level k of method, [image: 
$$(\gamma \theta )_{ik}$$
] represents the interaction of group and method, [image: 
$$(\tau \theta )_{jk(i)}$$
] represents the interaction of team and method within group level i, and ε

                  ijkl
                 is the residual error.
For ease of presentation, we use the convention that [image: 
$$\displaystyle\begin{array}{rcl} \sigma _{A}^{2}& =& \frac{\sum _{i}\alpha _{i}^{2}} {a - 1}\quad \mbox{ if A is a fixed factor } {}\\ \end{array}$$
]




and [image: 
$$\displaystyle\begin{array}{rcl} \sigma _{AB}^{2}& =& \frac{\sum _{ij}(\alpha \beta )_{ij}^{2}} {(a - 1)(b - 1)}\quad \mbox{ if A and B are both fixed factors. } {}\\ \end{array}$$
]


 We use the indicator function [image: 
$$I_{A}^{\phantom{'}}$$
] defined as 1 if A is a random factor or 0 if A is a fixed factor. (This is not the same convention we used in Table 6.​4 There we used the notation [image: 
$$\sigma _{A}^{2}$$
] for random effects and κ

                  A
                
2 for fixed effects.)
We illustrate the use of Table 13.11 by considering the test of the main effect for group, factor G. Since in this example method is fixed and team is random, we have [image: 
$$I_{M}^{\phantom{'}} = 0$$
] and [image: 
$$I_{T}^{\phantom{'}} = 1$$
]. Therefore, the expected value of the mean square
                  
                 for G is [image: 
$$\displaystyle\begin{array}{rcl} \sigma ^{2} + nm\sigma _{ T}^{2} + nmt\sigma _{ G}^{2}& &{}\end{array}$$
]

 (13.2)

 and the expected value of the mean square
                  
                 for T nested in G is [image: 
$$\displaystyle\begin{array}{rcl} \sigma ^{2} + nm\sigma _{ T}^{2}\phantom{ + nmt\sigma _{ G}^{2}}& &{}\end{array}$$
]

 (13.3)

 The ratio of these mean squares is appropriate for testing equality of the levels of group, factor G, because the corresponding ratio of these expected mean squares exceeds one if and only if [image: 
$$\sigma _{G}^{2}> 0$$
]. Use of the residual mean square as the denominator of the F-test would be inappropriate because such a ratio would exceed one if there is a G effect, a T (team) effect, or both effects.
Note that if instead method were a random factor and team were a fixed factor, the pattern of expected mean squares would be quite different from those in Table 13.11, with different denominators appropriate for some of the ANOVA F-tests.
The model specifications
                  
                 for the sums of squares in the gunload example are shown for both R and SAS in Table 13.12. Discussion of the operators in this table appears in Section 13.5 and Table 13.18.Table 13.12Nested factorial model specifications in R and SAS. Specifications for the sums of squares for the gunload example are shown here. The tests are specified separately. In Table 13.13 we show use of the Error function in R.


[image: A77776_2_En_13_Figl_HTML.gif]


Table 13.13Gunload data. The F-tests that appear without the Error function are incorrect. Here we produce correct tests by using the Error function to override the default choice of denominators of F-tests.


[image: A77776_2_En_13_Figm_HTML.gif]




                
                  
                
              

                
                  
                
              
We overrode the default choices of the denominator mean squares for the F-tests for method, group, and method*group. These new choices are necessitated by the facts that one of the factors is random and there are both mixing and crossing of factors. Our conclusions here are that after correcting for both loaders’ physiques and other person-to-person differences, the two methods have significantly different loading speeds. The new method averaged 23.59 rounds per minute compared with 15.08 rounds per minute for the old method. The analysis also shows a secondary finding that loading times do not differ significantly across physique groups.

13.4.2 Example—Turkey Data (Continued)
We continue the discussion of the turkey data data(turkey) from Section 6.​8

Contrasts
                  
                 of the form used in Table 6.​8 are so important in the design of experiments and in their analysis that we have a simple terminology and notation to describe them. In this experiment there are three distinct factors, one with two levels and two with three levels: 
                      trt.vs.control:
                    with levels control and treatment




                      additive:
                    with levels control, A, and B




                      amount:
                    with levels 0, 1, and 2






occurring in the pattern shown in Table 13.14. The algebraic formula describing the model is [image: 
$$\displaystyle\begin{array}{rcl} Y _{mijk} =\mu +\tau _{m} +\alpha _{i} +\beta _{j} + (\alpha \beta )_{ij} +\epsilon _{ijk} =\mu _{ij} +\epsilon _{mijk}& &{}\end{array}$$
]

 (13.4)

 Several issues are raised here to be discussed. How do these factors relate to each other? How does describing a design in terms of the factors specify the analysis?Table 13.14Factor structure for turkey data.


[image: A77776_2_En_13_Fign_HTML.gif]



Factors can be related in several ways (see Table 13.18). In the turkey example, we illustrate two relations: crossing
                  
                 and nesting.
                  
                 crossing:

                          
                         Every level of additive appears at every level of amount. In this example, Additive A appears at Amounts 1 and 2, as does Additive B.


nesting:

                          
                         Some Additive–Amount combinations (A1, A2, B1, B2) appear in only the treatment level of trt.vs.control. Other Additive–Amount combinations (control-0) appear in only the control level of trt.vs.control. The factors additive and amount are then said to be nested within the factor trt.vs.control.





When we add these factors to the dataset, for example with commands in Table 13.15, we can write a much simpler model formula that automatically produces the easily readable ANOVA table in Table 13.16. Notice that the four 1-degree-of-freedom sums of squares in Table 13.16 are a decomposition of the 4-degree-of-freedom sum of squares in Table 6.​7 The significance of the corresponding F-test in Table 6.​7 is a rationale for producing and interpreting Table 13.16. We illustrate the structure with the table of means in Table 13.17 and the boxplots in Figure 13.13. See the discussion on orientation of boxplots in Section 13.A.Table 13.15
R commands to create factors for the turkey data introduced in Section 6.​8



[image: A77776_2_En_13_Figo_HTML.gif]


Table 13.16ANOVA for turkey data with the crossing of the additive and amount factors nested within the trt.vs.control factor. Interaction is borderline nonsignificant. The main effects of additive and amount nested within trt.vs.control are significant.


[image: A77776_2_En_13_Figp_HTML.gif]


Table 13.17Means for turkey data.


[image: A77776_2_En_13_Figq_HTML.gif]


[image: A77776_2_En_13_Fig13_HTML.gif]
Fig. 13.13Turkey data with factor structure. The main effect for amount is visible as the consistent increase in wt.gain as amount goes from 1 to 2. The main effect for additive is visible as the consistent increase in wt.gain as additive goes from A to B. The hint of borderline nonsignificant Interaction is seen as the different slope connecting the median dots in the A row and the B row of the display. This figure shows the boxplots in vertical orientation. Figure 13.17 shows the same boxplots in horizontal orientation. We discuss orientation in Section 13.A.





In the turkey example there does not seem to be serious interaction (p ≈ . 06). In other situations the interaction dominates the analysis. An example with prominent interaction is the analysis of the Rhizobium clover data in Section 12.​14.​7

                  
                

                  
                


                
                  
                  
                
              


13.5 Specification of Model Formulas

              
                
              
            
Dummy variables
                
               (discussed in Section 10.​1), and the contrasts they code for, are so important that all statistical languages have constructs for describing them and the relations between them. The model specification operators in R and SAS are detailed in Table 13.18.Table 13.18Model specification operators. In R, the two notations a:b and b%in%a are equivalent.
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Let us explore the meaning of the concepts of crossed and nested factors with a set of simple examples using the data in Table 13.19. The dataset data(abc) has two factors, A with three levels and B with four levels. Tables 13.20 and 13.21 show visual interpretations of the structure of the dataset with several different assumptions about the relation of the factors.Table 13.19Sample data used to explore concepts of crossed and nested factors. Factor A has three levels and factor B has four levels. The interaction AB has 12 levels named by crossing the level names of A and B. The nested factor BwA (B within A) has 12 levels named without reference to factor A.


[image: A77776_2_En_13_Figs_HTML.gif]


Table 13.20Rearrangements of abc data to show different assumptions about the relation of the factors: data, one factor, two factors crossed.


[image: A77776_2_En_13_Figt_HTML.gif]


Table 13.21Rearrangements of abc data to show different assumptions about the relation of the factors: two factors nested, two factors doubly indexed.


[image: A77776_2_En_13_Figu_HTML.gif]



We show the model formula specifications, the generated dummy variables,
                
               the ANOVA tables, and the estimated a

                i
              , b

                j
              , (ab)
                ij
              , and b

j(i) values for several differently structured models. Table 13.22 contains the complete R input for these models. We recommend that you read these examples closely and experiment with them on your computer.Table 13.22Specification of several models using one or both variables in the abc dataset.
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The simplest set of dummy variables
                
               (that is, easiest to understand) is the set of treatment contrasts. The most frequently used is the set of sum contrasts.
                
               We show both in Table 13.23.
                
               Table 13.23These dummy variables are constructed for a fit of the form [image: 
$$\hat{y}_{i} = m + a_{i}$$
] to a model of the form y

                        ij
                       = μ +α

                        i
                       +ε

                        ij
                      . With treatment contrasts, m is an estimate of μ +α

                        r
                      , a

                        s
                       is an estimate of α

                        s
                       −α

                        r
                      , and a

                        t
                       is an estimate of α

                        t
                       −α

                        r
                      . With sum contrasts, m is an estimate of μ, a
1 is an estimate of α

                        r
                      , and a
2 is an estimate of α

                        s
                      . There is no need for an a
3 because of the constraint on the parameters α

                        t
                       = −(α

                        r
                       +α

                        s
                      ).
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13.5.1 Crossing of Two Factors


                  
                

                  
                 We provide a detailed discussion here of just one model, the crossing of two factors. The dummy variables
                  
                

                  
                 for interaction in the crossing model [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ Algebra:}& \ \ & y_{i} =\mu +\alpha _{i} +\beta _{j} + (\alpha \beta )_{ij} +\epsilon _{ij} {}\\  \mathsf{R}:& \ \ & \mathtt{Y}\ ~\ \ \ \ \ \mathtt{A}\ +\ \mathtt{B}\ +\ \mathtt{A:B} {}\\ \mathsf{SAS}:& \ \ & \mathtt{Y}\ =\ \ \ \ \ \mathtt{A}\ \ \ \mathtt{B}\ \ \ \mathtt{A*B} {}\\ \end{array}$$
]


 are constructed as the outer product of the rows of the dummy variables
                  
                 for each of the main effects. We illustrate in Table 13.24 with the sum contrasts.
                  
                

                  
                 Table 13.24Dummy variables for the interaction (α β)
                          ij
                         constructed as the outer product of the rows of the dummy variables for the two main effects A and B. We continue with the data of Table 13.19 and the sum contrasts
                          
                         defined in the right side of Table 13.23. For example, in row r.z the value in column A1:B1 is the product of the 1 in column A1 and the − 1 in column B1. There are two degrees of freedom, hence two dummy variables for the A effect. There are three dummy variables for the B effect. Therefore, there are 2 × 3 dummy variables for the A:B interaction.
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13.5.2 Example—Dummy Variables for Crossed Factors Nested Within Another Factor—Turkey Data (Continued Again)


                  
                 A model formula specifies a set of dummy variables. Just as in one-way analysis of variance, we control the structure of the dummy variables with the contrast matrix assigned to each factor. Let us look at the dummy variables generated for us by the model formula [image: 
$$\displaystyle\begin{array}{rcl} \mathtt{wt.gain}\ ~\ \mathtt{trt.vs.control}\ /\ \mathtt{(additive*amount)}& & {}\\ \end{array}$$
]


 We do so in R by adding the argument x=TRUE to the aov statement in Table 13.16 and then displaying the x component of the resulting aov object in Table 13.25.
                  
                
Table 13.25Regression coefficients and dummy variables for turkey data. This table is a continuation of Tables 13.15 and 13.16.


[image: A77776_2_En_13_Figy_HTML.gif]



There are some complications in the display in Table 13.25. The generation of the x matrix of dummy variables doesn’t know about the actual degrees of freedom for each effect. It assumes the maximum possible if all implied cells were observed (in this example there are 2 × 3 × 3 = 18 cells implied by the complete crossing of trt.vs.control, additive, and amount). Only five of those implied cells actually have observations. The match and the relabeling are used to find just the ones that matter in this example and to give them more reasonable names. See Exercise 13.10 for guidance on discovering how the match function is used.
The predicted value for an observation i is calculated, as with any linear model, as the inner product of the regression coefficients with the dummy variables in row i. In this example, we predict the weight gain for observation 7 as
                  
                 [image: 
$$\displaystyle\begin{array}{rcl} \hat{y}_{7} = (\begin{array}{rrrrr} 1& - 1&1&1&1 \end{array} )\left (\begin{array}{r} 6.5300\\ - 0.6867 \\ - 0.9750\\ - 0.9667 \\ 0.2250 \end{array} \right ) = 5.5& & {}\\ \end{array}$$
]






13.6 Sequential and Conditional Tests

              
                
              
              
                
              
            
When there are two or more predictors in a model, they are usually not orthogonal to each other. Therefore, the interpretation given to the relative importance of each predictor depends on the order in which they enter the model. One of the important goals of designed experiments is the choice of combinations of levels for factors that will make the dummy variables
                
               for each factor or interaction orthogonal to the others. Most of the examples in this book in Chapters 12, 13, and 14 have orthogonal effects.
When the data for an example have continuous predictors or covariates, or are classified by factors with unequal numbers of observations per cell, the effects are usually not orthogonal. Most of the examples in Chapters 9, 10, and 11 have continuous predictor variables and therefore do not have orthogonal effects.
When effects are not orthogonal, the sequence in which they are entered into the model affects the interpretation of the effects. See Sections 9.​6 (Partial F-Tests) and 9.13 (Residual Plots) for techniques used to investigate the relative importance of the predictors.
The sequential
                
               ANOVA table depends on the order in which the effects are entered into the model. Each row of the table is calculated under the assumption that all effects in higher rows have already been included and that all effects in lower rows have not. R normally prints the sequential ANOVA table. SAS calls the sequential ANOVA table the table of Type I sums of squares.
                
              

There are several types of conditional ANOVA tables. One of the most frequently used is Yates’
                
               weighted
                
               squares of mean, what SAS calls Type III sums of squares,
                
               in which each row of the table is calculated under the assumption that all other rows—both higher and lower in their placement in the ANOVA table—have already been included. We, and many others, have difficulty with Type III sums of squares when used with designed experiments because they violate the principle of marginality
                
              

                
               that says it is usually not meaningful to test, estimate, or interpret main effects of explanatory variables when the variables interact. The principle was stated by Nelder (1977)
                
               and strongly supported by Venables (1998).
                
              

Another method, Yates’
                
               Method of Fitting Constants,
                
              

                
               what SAS calls Type II sums of squares,
                
               makes different assumptions for each class of effect. ANOVA table rows for main effects assume all other main effects are already included in the model. ANOVA table rows for two-way interactions assume all main effects and other two-way interactions are in the model. Higher-order interactions assume all lower-order effects and interactions are already in the model, hence are consistent with the marginality principle.
13.6.1 
SAS Terminology for Conditional Sums of Squares

                
                  
                
                
                  
                
                
                  
                
                
                  
                
              
The terminologies Type I, Type II, and Type III sum of squares originated by SAS have become so widely known that they are used nowadays even outside the context of interpreting SAS listing files. In order that readers be able to request and interpret SAS analysis of variance presentations, we provide here more details on these types in two contexts, the context of designed experiments having two factors and the context of regression analysis with continuous predictor variables.
Suppose the response is Y, the two factors are A and B, and the SAS model statement reads [image: 
$$\displaystyle\begin{array}{rcl} \mathtt{Model}\ \mathtt{Y}\ =\ \mathtt{A}\ \mathtt{B}\ \mathtt{A*B;}& & {}\\ \end{array}$$
]


 Since no particular types of sums of squares were requested, SAS provides by default Types I and III. If the user wishes to override the default, particular types can be requested as illustrated here: [image: 
$$\displaystyle\begin{array}{rcl} \mathtt{Model}\ \mathtt{Y}\ =\ \mathtt{A}\ \mathtt{B}\ \mathtt{A*B}\ /\mathtt{ss1\ ss2;}& & {}\\ \end{array}$$
]


 The sequential (Type I) sum of squares for each effect is the portion of model sum of squares attributable to that effect above and beyond what is attributable to all effects listed prior to it in the expanded model statement. It is conditional on all the previous terms already being in the model. Thus in the illustration, the Type I sum of squares for B is the marginal contribution of factor B conditional on factor A already being in the model. Use of this sum of squares is appropriate if a model containing factor A without factor B makes sense, but a model containing factor B makes no sense unless the model already includes factor A.
For each main effect in the model statement, the Type II sum of squares is the marginal contribution of that effect beyond the sum of squares attributable to all other main effects in the model statement. The Type II sum of squares for A*B is the portion of model sum of squares attributable to this interaction after the main effects A and B are already in the model. Yates (1934) gave the name method of fitting constants

                  
                 to what is now called Type II sums of squares. In the absence of interaction, this method produces the maximum power tests for the main effects.
Note that while the Type I sums of squares for A, B and A*B add up to the model sum of squares, the Type II sums of squares for these three effects are not in general an orthogonal partitioning of the model sum of squares and hence do not in general sum to the model sum of squares. An exception occurs when the data are balanced (for example, each of the ab cells contain the same number of observations); in this case the Type I and Type II sums of squares coincide.
Type III sums of squares can be used with the above model statement provided that each of the ab cells contains at least one observation. The Type III sum of squares for any effect, including A*B, is adjusted for all other effects in the model. If the sampling is balanced, the Type III sums of squares for main effects coincide with the sums of squares for Type I and Type II. The Type III partitioning provides what is known as the Yates’ weighted squares of means
                  
                 analysis of unbalanced data; see Searle (1971).
Type IV
                  
                 sums of squares coincide with Type III sums of squares when all cells contain observations. This partitioning is used when some cells are empty, a situation we do not pursue in this text. The Type IV sum of squares
                  
                 partitioning is not unique, a feature that makes many analysts uncomfortable with their use.
The nomenclature Type I and Type III (as well as Type II and Type IV) was originated by SAS in Goodnight (1978) and summarized in SAS Institute, Inc. (1999).
                  
                


13.6.2 Example—Application to Clover Data
In Table 12.​12 we showed the two-way ANOVA table for the clover data. The data in data(rhiz.clover) is balanced. As a consequence all three forms of conditional sums of squares give exactly the same results (as long as proper contrasts (with columns orthogonal to the constant column) are used for all factors. The treatment contrasts (the default) are not proper contrasts and may show strange results).
In Table 13.26 we illustrate the three conditional sets of sums of squares using an unbalanced dataset, constructed by deleting two observations from the balanced clover data. The data are displayed in Figure 13.14.[image: A77776_2_En_13_Fig14_HTML.gif]
Fig. 13.14Full clover dataset on top. Two observations removed on the bottom.




Table 13.26Display of conditional sums of squares (Sequential/Type I, Method of Fitting Constants/Type II, and Weighted Squares of Means/Type III) for an unbalanced dataset. The car::Anova function requires contrasts orthogonal to the constant column. Compare the Sum Sq values for strain and comb. The left column shows the model formula Npg 
                          ~
                         strain * comb and the right column shows Npg 
                          ~
                         comb * strain. The main effects in the sequential tables (using anova) depend on the order. The main effects in the method of fitting constants tables car::Anova(type=2) do not depend on order and are the same as the second position of the sequential tables. The main effects in the weighted squares of means tables car::Anova(type=3) do not depend on order; they violate the principal of marginality because they are conditional on taking out the interaction effect first. The Residuals and interaction comb:strain sums of squares are identical in all six tables.


[image: A77776_2_En_13_Figz_HTML.gif]




                
                  
                
              

13.6.3 Example—Application to Body Fat Data
We revisit in Table 13.27 the analysis begun in Section 9.​2 of a portion of the body fat data data(fat) using the two predictors abdomin and biceps of the response bodyfat.Table 13.27
                                                car::Anova from the car package display for two-X regression of bodyfat. The sequential sums of squares (Type I sums of squares) correspond to the display in Table 9.​1 The sequential sums of squares are an orthogonal partitioning of the model sum of squares. The weighted squares of means (Type III sums of squares) is not an orthogonal partitioning. The sum of the two values for abdomin and biceps is not equal to the model sum of squares.
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The F-value 54.92 applies to the composite hypothesis H
0: β
1 = β
2 = 0 against the alternative that at least one β

                  i
                 is nonzero, where the β

                  i
                 are the coefficients of the two predictors. The corresponding small p-value indicates that either abdomin or biceps or both are linearly related to bodyfat. The R
2 = 0. 714 tells us that 71.4% of the variability in these subjects’ bodyfat is accounted for by their abdomin and biceps measurements. The remaining 28.6% of bodyfat variability is explained by other measurable variables not presently in the model as well as the random error component of the model in Equation (9.​1).
The Type I sums of squares are sequential in that the sum of squares 2440.5 for the first listed predictor, abdomin, is calculated assuming that this is the only predictor in the model, while the sum of squares 209.32 for the second listed predictor, biceps, is calculated assuming that the first listed predictor is already in the model. In general, the top to bottom ordering of sources of variation in the Type I sum of squares table is the same as the ordering of these sources in the Model statement.
Each predictor’s Type III sum of squares is calculated assuming that all other predictors are already in the model. Thus the Type III sum of squares for abdomin, 1823.02, is conditional in the sense that it is calculated under the assumption that the model already contains the other predictor biceps. In general, any entry in a Type III sum of squares table is conditioned on the existence in the model of all sources above it in this table.
The parameter estimates in both Table 9.​1 and Table 13.27 are based on this same “last-in” rule, corresponding to the Type III sums of squares. The Type III F-value for abdomin, 75.57, is the square of the t-value for abdomin, 8.69, in the Parameter section of Table 13.27 and in Table 9.​1 This corresponds to the interpretation of the t-tests for the regression coefficients, each of which measures the marginal contribution of its predictor variable conditional on all the other predictor variables already being in the model.
In this context, it is preferable to work with the Type I analysis if the investigator believes that a model containing biceps makes no sense unless abdomin is already in the model. Otherwise, with continuous predictor variables, the Type III approach is preferred. In this example, each predictor has a statistically significant impact on bodyfat after the other predictor has already been included in the model. In general, it is possible for one predictor to have an insignificant additional impact on the response when other more prominent predictors are already in the model. See Section 9.​11 on collinearity for a discussion of this issue.
                  
                

                  
                

                  
                

                  
                



13.7 Exercises

13.1. Consider an experiment to determine which of the four types of valve used in an artificial heart maximizes blood pressure control as measured by maximum flow gradient (mm Hg). Flow was maintained at each of the same six pulse rates for each valve type. Two runs were made for each valve type. The order of the eight runs at the four valve types was randomized. Note that run is a random factor, nested within valve. The dataset data(heartvalve) comes from Anderson and McLean (1974). Perform a thorough analysis including plots of the data.

13.2. An experiment reported in Lewin and Shakun (1976) investigated whether an Octel filter (type=2) or a standard filter (type=1) provided superior suppression of noise produced by automobile exhaust systems. The experiment considered three vehicle sizes coded 1 small, 2 medium, 3 large; and both the right 1 and left 2 side of cars. The dataset is available as data(filter). Perform a thorough analysis leading to a recommendation of which filter to use under the various experimental conditions.

13.3. An experiment explored the abilities of six commercial laboratories to accurately measure the percentage fat content in samples of powdered eggs. A pair of samples from a single can was sent to each lab. The labs were told that the samples were of two types, but in fact they were from the same can. Each lab assigned two technicians to analyze each type. The dataset from Bliss (1967) is data(eggs). Analyze the data in order to recommend which lab(s) have superior or inferior abilities to ascertain the fat content of powdered eggs.

13.4. Box and Cox (1964), reprinted in Hand et al. (1994), reported the results of a 33 factorial experiment. The dataset is data(wool). The response is the cycles under tension to failure of worsted yarn. The three factors are length of test specimen (250, 300, 350 mm), amplitude of loading cycle (8, 9, 10 mm), and load (40, 45, 50 g). The levels of all three factors are coded as − 1, 0, 1 in the data file. The authors recommend a preliminary log transformation of the response. Perform an analysis to determine the influences of the factors on the response. This dataset is from the paper defining the Box–Cox transformation. 
                
              


13.5. A 5×3×4 factorial experiment is designed to compare the wear resistance of vulcanized rubber Davies (1954, p. 192). The three factors are filler:5 qualities


pretreatment:3 methods


raw:4 qualities





There is only one replicate; thus the assumption must be made that the three-factor interaction is negligible and the three-factor sum of squares can be used for the error term.
The data are available as data(vulcan). The graph of the main effects and two-way interactions is in Figure 13.15. The simple effects of filler and raw are in Figure 13.16.[image: A77776_2_En_13_Fig15_HTML.gif]
Fig. 13.15Main effects and two-way interactions for wear resistance of vulcanized rubber.




[image: A77776_2_En_13_Fig16_HTML.gif]
Fig. 13.16Main effects and simple effects of filler and raw for wear resistance of vulcanized rubber.






              
                
              
            

              
                
              
              
                
              
            

              a.Determine from the ANOVA table whether any of the main effects or two-way interactions are significant.

 

b.Why can’t we test the three-way interaction?

 

c.From the figures and tables of means, determine if any levels of any factors can be eliminated from further consideration. Assume that we are looking for big numbers for the best wear resistance.

 

d.Of the treatment combinations that are left for consideration, are any clearly dominant? Would we need to make a conditional recommendation to the client?

 



            

13.6. Continue the Latin square
                
               example using the dataset data(tires) in Section 13.2. The treatment sum of squares with 3 degrees of freedom is linearly dependent on the Row×Column interaction with (r − 1) × (c − 1) degrees of freedom. Demonstrate the dependency by showing that each of the dummy variables for brand has a zero residual when regressed on the dummy variables for car*position.
You may use chunk 39 of file HHscriptnames(13), reproduced in Table 13.28, as a starting point. Explain why the residual sum of squares in tr1.lm (and the analogous tr2.lm and tr3.lm) is 0.Table 13.28Chunk 39 of file HHscriptnames(13) to be used as starting point for Exercise 13.6.


[image: A77776_2_En_13_Figab_HTML.gif]




13.7. Peterson (1985) discusses an experiment to assess the effects on strengths of spot welds (psi ×10−3) created by robots on automobile assembly lines. On each of two assembly lines (blocks) there were three fixed treatment factors: maker at two levels, rod diameters at three levels (30 mm, 60 mm, 90 mm), and chromium content at three levels (1%, 1.5%, 2%). The 18 treatment combinations were randomly assigned to 18 robots on each assembly line. The dataset is data(weld). Analyze the data, including
a.a discussion of interaction among the treatment factors.

 

b.a recommendation of the combination of the treatment factors for maximizing strength. Explain how you know that your recommendation for diameter is distinctly better than the next-best choice of diameter.

 





13.8. Peterson (1985) describes an investigation to compare the abilities of seven washday products to remove dirt in cloth: 	liquid detergent

	granular detergent

	detergent flakes

	liquid detergent plus phosphate

	granular detergent plus phosphate

	detergent flakes with phosphate

	soap





Each of these seven products was assigned to three bedsheets soiled in a standard way, and the amount of dirt removed (mg) from each bedsheet was recorded. The data is in data(washday). Analyze these data.
a.Perform a one-way analysis of variance to assess whether the mean amount of dirt removed is the same for all seven products.

 

b.Partition the 6 degrees of freedom sum of squares for product into 6 mutually orthogonal 1 degree-of-freedom sums of squares, each of which has an interpretation based on the similarities and differences among the products.

 

c.Estimate each of the six corresponding contrasts.

 

d.The six levels (hence five contrasts) within detergent can be specified as the crossing of three levels of form (liquid, granular, flakes) and two levels of ingredient (none, phosphate). Rewrite the model as a crossing of form and phosphate nested within soap.vs.detergent.

 

e.Assuming that the costs per wash are roughly the same for all seven products, provide recommendations for consumers.

 





13.9. Neter et al. (1996) describe an experiment to compare the work of market research firms. The dataset is data(market). It was desired to evaluate the effects on quality of work performed by 48 firms of the factors of the three crossed factors fee level (feelevel), scope, and supervision. Fee level has three levels (1 = high, 2 = average, 3 = low), scope has two levels (1 = all performed in-house; 2 = some contracted out), and supervision has two levels (1 = local supervisors, 2 = traveling supervisors). Construct an analysis of variance table. Produce and interpret interaction plots for any interaction found significant in the table. Compare the means of the levels of any factors not involved in a significant interaction.

              13.10.
            
In Table 13.25 we use the R match function to identify which of the implied dummy variables in a nested design are actually used. The complete command using the match function is
match(dimnames(coef(summary.lm(turkey3.aov)))[[1]],
      dimnames(turkey3.aov$x)[[2]])
Study the command by picking up pieces of it and dropping them into the Console window. For example, assuming you have already defined all the variables by running the R statements leading up to Table 13.25, open file HHscriptnames(13) in your editor and highlight and run the pieces of code corresponding to the lines in Table 13.29.Table 13.29Isolated code fragments to be run one line at a time to help learn what the complete statement is doing. See Exercise 13.10 for more detail.


[image: A77776_2_En_13_Figac_HTML.gif]




13.11. It is desired to compare a response variable dimvar, dimensional variability, of a component produced by each of three machines. Each machine is comprised of two spindles, and four components are selected at random from each spindle. This example is attributable to Montgomery (2001), and the dataset is data(spindle). Perform an analysis to determine the effects of spindle and machine on dimvar, assuming that both factors are fixed.

13.12. In an experiment reported by Montgomery (2001), the response variable is a measure of surface finish of a metal part. Each part is produced by one of four machines, a fixed factor. Three operators are assigned to produce parts on each machine. The operators are selected at random and a total of 12 different operators are chosen for the 4 machines. Analyze the data in data(surface) to determine the effects on surface of machine and operator.
                
              


13.A Appendix: Orientation for Boxplots

                
                  
                  
                
              


                  
                

                  
                 We display the boxplots for the turkey data in two orientations in Figures 13.13 and 13.17. We prefer the vertical orientation for the values of the response variable because it accords with how we have been trained to think of functions—levels of the independent variable along the abscissa and the response variable along the ordinate. Most of the graphs in this book are oriented with the response variable in the vertical direction.[image: A77776_2_En_13_Fig17_HTML.gif]
Fig. 13.17Turkey data with factor structure. This figure is essentially the same as Figure 13.13, but with horizontal boxplots instead of vertical boxplots.






                
                  
                  
                
              
We chose to display Figures 12.​7, and 12.​8 in vertical orientation. In Section 12.​14.​5 we discuss three other options for varying the horizontal and vertical orientation and varying the conditioning variable. One of our concerns was legibility of the labels when there are too many long labels on the abscissa. Code chunks for viewing the options are included in file HHscriptnames(12).
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14. Design of Experiments—Complex Designs
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In this chapter we introduce some additional topics in experimental design beyond those discussed in Chapters 6, 12, and 13. The principle of confounding
              
             is used to design efficient experiments having many factors but using only a small subset of all possible treatment combinations. Split plot designs
              
             involve placing a restriction on the randomization of treatments to experimental units in order to achieve more precision for comparisons involving levels of one factor in exchange for reduced precision for comparisons involving levels of another factor. We illustrate crossover designs
              
             that allow for the estimation of treatment effects that can linger across time periods. We show how to test for interaction in two-way designs having exactly one observation at each treatment combination. We show how to extend ANCOVA
              
             to designs with blocking factors.
14.1 Confounding


                
               In order to understand the following sections on fractional factorial designs
                
               and split plot designs
                
              , one must become familiar with the concept of confounding of factors.
Two effects (main effects or interactions) are said to be confounded if they cannot be independently estimated. (English language equivalents of the statistics term confounded include intermixed, intertwined, and confused.) Two completely confounded effects are said to be aliases of one another. Each such effect is referred to as an alias
                
               of the other effect or is said to be aliased with the other effect. The whole plot
                
               effect (indexing on the physical location of the plot) and the treatment effect (indexing on the level of the treatment assigned to the whole plot
                
              ) in a split plot design
                
               (see Sections 14.2 and 14.3) are completely confounded. Effects can also be partially confounded. See a design of experiments text (Cochran and Cox, 1957, for example) for a more complete discussion of confounding.
If the analyst must be able to estimate separately the effects of both of the two factors or interactions, it is essential that these factors not be confounded. On the other hand, if the effects of some interactions can be assumed to be negligible, an effective design strategy may be to confound such negligible interactions with nonnegligible factors or interactions. By doing so, the analyst strives to be able to estimate all effects of interest with a much smaller experiment than would be required without using confounding. The fractional factorial designs
                
               in Section 14.4 illustrate confounding of interactions with blocks.
To illustrate the importance of avoiding the confounding of nonnegligible factors, let’s return to the turkey data data(turkey) analysis in Section 13.​4.​2 In that experiment there were five groups of six turkeys per group. The turkeys in each group were fed one of five diets, a control diet and four experimental diets A1 A2 B1 B2. The naming convention for the experimental diets refers to four combinations of the two factors additive, with levels A or B, and amount, with levels 1 or 2. Both of these factors were a priori believed likely to impact on the response, wt.gain. Suppose instead that a novice investigator without training in statistics fed 12 turkeys diet A1 and 12 other turkeys diet B2. If the novice then subtracts the mean weight gain on A1 from the mean weight gain on B2, there is no way to tell whether the result is attributable to the difference between amounts 2 and 1, the difference between diets B and A, or some combination of these two factors. In this poorly designed experiment, additive and amount are confounded. With the correctly designed experiment, it is possible to estimate separately the effects of additive and amount, as well as the interaction between these factors.
As another illustration of confounding, consider an experiment involving three factors A, B, C each having two levels, where blocks of homogeneous experimental units are of size at most 4, so that we can examine just four treatment combinations (t.c.’s) in any block. Also suppose that we are able to assume that all interactions are negligible, i.e., the response is additive with respect to the three factors.
A word on notation. For each factor we arbitrarily designate one of the levels as the upper, or 1 level, and the other level as the lower, or 0 level. A t.c. may be written by listing the lowercase letters of all factors observed at their 1 level. Thus if there are four factors A, B, C, D, the t.c. bd is that with factors A and C at their lower levels and factors B and D at their upper levels. The t.c. where all factors are at their lower level is denoted (1).
Returning to our three-factor experiment, suppose we run just the four t.c.’s a, b, c, and abc in any block. Then we can estimate the A main effect
                
               as [image: 
$$\frac{1} {2}(abc + a - b - c)$$
], and the other two main effects similarly. In this setup, we say that factor A is confounded
                
               with the BC interaction because BC would be estimated with this same estimate. Since we are assuming that this interaction is negligible, we are estimating only the A main effect. Similarly, the estimate of the B main effect would be confounded with the negligible AC interaction.
In this way we can estimate all main effects with just four observations. However, no degrees of freedom are available to estimate the residual sum of squares needed to produce confidence intervals and conduct tests. This can be handled by replicating runs of the above four t.c.’s or their mirror image ab, bc, ac, and (1), in additional blocks. The set of four t.c.’s run in each block is called a fractional replicate

                
               of the set of all possible treatment combinations. In Section 14.4 we study fractional factorial designs,
                
               where an entire experiment consists of one large fractional replicate, usually arranged in blocks consisting of smaller fractional replicates.
                
              

In more complicated designs it is common for main effects and interactions to have several aliases.
                
               A design may be described by providing an equation that specifies its aliasing
                
               structure.

14.2 Split Plot Designs

              
                
              
            
This design involves placing a restriction on the randomization of treatments to experimental units. Sometimes it is easiest to administer an experiment by applying one treatment factor to groups of experimental units,
                
               called plots,
                
               and another treatment factor to the individual experimental units, referred to as subplots.
                
               Designs with such a restriction on the randomization are called split plot designs. This design strategy is especially useful if the experimenter wants to gain greater precision for inferences involving the treatment applied to subplots, the subplot treatment, at the expense of lower precision for inferences on the treatment applied to whole plots, the whole plot
                
               treatment. We confine our attention to the simple case of one blocking factor and two fixed treatment factors. However, the principles behind this restricted randomization approach can be applied to other design types such as ones without blocks, or Latin squares,
                
               factors that are random rather than fixed, and situations involving more than two treatment factors. The terminology split-split plot refers to the possibility of further splitting the plot into sub-subplots
                
               within subplots to accommodate three or more treatment factors.
We model this experiment as follows, where Y

                ijk
               is the yield of the observation in block i receiving level j of fixed treatment A, and level k of fixed treatment B. Let the number of blocks be r, the number of levels of A be a, and the number of levels of B be b. [image: 
$$\displaystyle{ Y _{ijk} =\mu +\rho _{i} +\alpha _{j} +\eta _{ij} +\beta _{k} + (\alpha \beta )_{jk} +\epsilon _{ijk} =\mu _{ijk} +\epsilon _{ijk} }$$
]

 (14.1)

 
                
               where 1 ≤ i ≤ r, 1 ≤ j ≤ a, and 1 ≤ k ≤ b. Note that this model contains two random error components, [image: 
$$\eta _{ij} \sim N(0,\sigma _{\eta }^{2})$$
] and [image: 
$$\epsilon _{ijk} \sim N(0,\sigma _{\epsilon }^{2})$$
], the first associated with the plots and the second associated with the subplots. If (as expected) [image: 
$$\sigma _{\epsilon }^{2} <\sigma _{ \eta }^{2}$$
], then comparisons of the levels of B will be performed with greater precision at the cost of less precision for comparisons of the levels of A. Also note that within each block, treatment A is completely confounded with whole plots.
Although the example below is an agricultural experiment, split plot designs are widely used in other application areas including industry, clinical trials, and the social sciences. The agricultural terminologies plot and subplot are usually retained when working in other application areas. The terminology “repeated measures” is used in the social sciences for similar designs.

14.3 Example—Yates Oat Data
This example comes from Yates (1937). We are interested in examining the effects of nitrogen fertilizer and seed variety on the yield of an oat crop. A total of 72 experimental units are arranged in 6 blocks of size 12. Each block is randomly subdivided into three plots, and each plot is further randomly subdivided into four subplots. In each block, the three varieties of seed are randomly assigned to the three plots. Then within each plot, the four levels of nitrogen are randomly assigned to the four subplots. Thus the randomization proceeds in two stages. By assigning varieties to plots and nitrogen to subplots it is implicit that there is more interest in the comparison of nitrogen levels than the comparison of varieties. The nitrogen levels are equally spaced amounts of a single fertilizer, 0,.2,.4, and.6.
The data are available as data(oats). Note that this dataset contains six variables: those for yield, blocks, variety, plots, nitrogen, and subplots.
The design layout for this example is in Table 14.1. The physical locations of the blocks, plots, and subplots are indicated positionally. The random assignment of variety to whole plots is visible since each column within a block contains only one level of variety. The random assignment of nitrogen to subplots is made visible since each column within a block contains all four levels of nitrogen.Table 14.1Experimental layout for oat yield data with display of randomization scheme. Within each block, the variety factor is randomly assigned to an entire plot. Within each block/plot, the nitrogen factor is randomly assigned to the subplots.


[image: A77776_2_En_14_Figa_HTML.gif]



Here we have two fixed factors bearing a crossed
                
               relationship. In this situation the restricted randomization requires that the plot factor variety must be tested with denominator mean square for plots(blocks) or “whole plot error”
                
               as in Tables 14.2 and 14.3. This specification usually requires a statement to override of the default choice of the denominator of the F-test.Table 14.2Correct analysis for oats split plot design. The ANOVA table was constructed by specifying the denominators for the appropriate F-tests in the Error formula.


[image: A77776_2_En_14_Figb_HTML.gif]


Table 14.3Table of means and effects for oats split plot. The stats package in R (as of version 3.2.2) provides standard errors for effects, but not for means, in multi-strata designs.


[image: A77776_2_En_14_Figc_HTML.gif]



Testing variety against the residual mean square is incorrect in this example because that test assumes an unrestricted randomization. Table 14.4 is therefore not correct.Table 14.4Incorrect specification for oats split plot design that ignores the split plot. The test for variety is incorrectly tested against the 45-df Residual and incorrectly shows as significant. The nitrogen and interaction tests are correct. We placed the model formula inside the terms function, and used the keep.order=TRUE argument, to force the ANOVA table to display the terms in the specified order. We are using the same order as appears in the split plot analysis. We do need this specification in order to calculate the multiple comparisons of the nitrogen (more generally, the subplot) effects using glht and mmc.
                        
                       See Table 14.7 and Figure 14.2 for the details.


[image: A77776_2_En_14_Figd_HTML.gif]



The interaction plot of the two treatment variables is in Figure 14.1. The correct tabular analyses support the visual impressions from this figure: 	The factors variety and nitrogen do not interact.

	The mean Yield increases linearly as the amount of nitrogen increases. nitrogen linear has a small p-value; the p-value of nitrogen quadratic is large.

	The mean Yield does not differ significantly across the three levels of variety.




[image: A77776_2_En_14_Fig1_HTML.gif]
Fig. 14.1Interaction plot for Yates split plot on oats. The linear effect of nitrogen level is clearly visible in both right-hand panels. The lack of effect of variety, confirmed in Table 14.2, is also visible.






              
                
              
            

              
                
              
            

              
                
              
            

              
                
              
            

              
                
              
              
                
              
            
14.3.1 Alternate Specification
Our presentation of the Yates oat data in Table 14.1 and our emphasis in the analysis in Table  14.2 show five distinct factors in the split plot design. We believe this is the best way to illustrate the concepts of restricted randomization, of different precisions for different comparisons, and the logistics and practical details of running an experiment. Many texts and examples show only three factors by suppressing the explicit identification of the plots and subplots.
The arithmetic of the analysis and the interpretation of the results are identical whether or not the structure is made explicit with the extra factors. The two ANOVA tables generated by the statements in Tables 14.2 and 14.5 are identical. The specification in Table 14.5 leads the reader to ask nonsense questions like “how can nitrogen be crossed with variety and nested within variety at the same time?” The specification in Table 14.2, by explicitly naming the random plots and subplots factors and explicitly showing the random assignment of the fixed variety and nitrogen factors to the random factors, makes the distinction clear. The plot structure shows the subplots nested in the plots. The treatment structure shows the variety crossed with the nitrogen. They are different factors. We are therefore not surprised that they have different relationships.
Table 14.5Alternate specifications of design. The hypothesis tests in the ANOVA table here are identical to the tests in Table 14.2. The use of the same factor names in the specification of both the treatment model and the Error model can lead to confusion for the person reading the model specification and the ANOVA table.


[image: A77776_2_En_14_Fige_HTML.gif]



The ANOVA table and interpretation of the analysis are identical with either specification. The logic behind the EMS
                  
                 (expected mean squares)
                  
                 calculations is displayed when the plots and subplots factors are visible. The statistical justification for the appropriate F-tests is cryptic at best when the plots and subplots factors are suppressed. We further explore the equivalence of these two formulations in Exercise 14.7.
The common practice of suppressing the structure is a legitimate response to the computing technology at the time (1930s) when the split plot design was invented. The calculation of the analysis with 3 explicit factors costs O(263) multiplications. It costs O(723) multiplications [that is, [image: 
$$(72/26)^{3} \approx 21$$
] times as many] with 5 explicit factors. (The “big O” notation is defined in Appendix Section I.4.1 in the “operation count” discussion.) When ANOVA analyses were routinely performed with handcrank-operated calculating equipment, the time savings was well worth the ambiguity in notation.

14.3.2 Polynomial Effects for Nitrogen

                
                  
                
              
Note that, as anticipated, the mean square for comparing the levels of the whole plot factor variety, 601, is greater than the mean square for comparing the levels of the levels of the subplot factor nitrogen, 177. There is no evidence of interaction between variety and nitrogen. The large p-value for variety suggests that the three varieties do not differ significantly, but the small p-value for the subplot factor, nitrogen, tells us yield is significantly affected by the amount of nitrogen used.
We further investigate the nature of the relationship between nitrogen and yield by decomposing the 3-df sum of squares for nitrogen into orthogonal contrasts
                  
                  
                 for linear, quadratic, and cubic effects. In R we use the polynomial contrast function cont.poly to assign the contrasts to the nitrogen factor. See Table 14.6 for details. (In SAS we explicitly define the contrasts in contrast statements.) Since only the linear contrast is significant (p-value < .01) we conclude that yield increases linearly with nitrogen. This finding suggests a need for further experimentation to determine the amount of nitrogen that should be used to maximize yield.
                  
                
                                Table 14.6Continuation of the split plot analysis from Table 14.2. The 3-df nitrogen effect is partitioned into polynomial contrasts. The linear effect carries almost the entire sum of squares and is the only significant contrast.


[image: A77776_2_En_14_Figf_HTML.gif]



Response surface methodology
                  
                 is the experimental design technique used to determine the combination of inputs that maximizes or minimizes output. We do not pursue this further but recommend the interested reader consult either Montgomery (2001) or Box et al. (1978).

                
                  
                
                
                  
                  
                
              
We calculate the MMC for the nitrogen effect in Table 14.7 using the ANOVA from Table 14.4. The subplot tests in Table 14.4 are correct
                  
                . The multiple comparisons plots for nitrogen are in Figure 14.2. The linear contrast appears to be carrying all the significance.[image: A77776_2_En_14_Fig2_HTML.gif]
Fig. 14.2MMC plot of nitrogen effect in oats split plot design. Calculations are shown in Table 14.7. The 45∘ isomeans grid lines (and the nitrogen means they reflect) are approximately equally spaced. This suggests that the linear contrast may be carrying all the significance. The polynomial contrasts displayed in the right panel agree. The contrasts in the right panel are all in the vertical center of the plot. This frequently happens with contrasts that have approximately equal weights for both high and low means. The Tiebreaker plot isn’t needed in this example.




Table 14.7MMC of nitrogen effect in oats split plot design calculated using the ANOVA from Table 14.4. The subplot tests in Table 14.4 are correct
                          
                        . Pairwise contrasts, observed means, and polynomial contrasts are shown in Figure 14.2.


[image: A77776_2_En_14_Figg_HTML.gif]





14.4 Introduction to Fractional Factorial Designs

              
                
              
            
The idea behind fractional factorial designs is to substantially reduce the number of experimental units

                
               (e.u.’s) required for the experiment by purposely confounding
                
               (see Section 14.1) all effects of interest with only effects that are not of interest and that can be assumed negligible. One is almost always able to assume that high-order interactions are negligible. This strategy permits estimation of main effects and low-order interactions while experimenting on only a small proportion of all possible treatment combinations

                
               (t.c.’s). The resulting experimental plan is called a fractional replicate

                
              . Implementation of this class of designs involves carefully selecting a fractional replicate subset of the possible t.c.’s so as to purposely confound high-order factor interactions with one another (and with blocks, if any), while maintaining the unconfoundedness of main effects and of lower-order interactions of interest.
Since it is frequently the case that there are more t.c.’s to be run than there are homogeneous experimental units (e.u.’s), a blocking scheme is usually part of this type of design. A fractional replicate of the complete experiment is run within each homogeneous block. The assignment of t.c.’s to e.u.’s purposely confounds higher-order interactions of the treatment factors with the block effects.
Note that the r × r Latin square design
                
               in Section 13.​2 is a special case of fractional replication, a [image: 
$$\frac{1} {r}$$
] replicate of an r
3 experiment.
Our discussion will be limited to the situation where there are n factors each at 2 levels and only 2
                k
               e.u.’s are available, k < n; this is referred to as a [image: 
$$1/(2^{n-k})$$
] fractional replication. The design is called a [image: 
$$2^{n-(n-k)}$$
] design. Fractional factorial designs exist when all factors have a common number of levels greater than 2, or the factors have varying numbers of levels, for example three factors with 2 levels each and four factors each having 3 levels. The need to consider a situation with many 2-level factors is not uncommon, for the 2 levels can be the presence or absence of a particular condition.
14.4.1 Example—28−2 Design
Suppose we have 8 factors (denoted by the letters A through H), each with 2 levels, and we have enough experimental units to run 26 = 32 of the 28 = 128 possible t.c.’s. Further assume that the maximum sized set of homogeneous experimental units is 24 = 16, so that the 64 selected t.c.’s will be arranged in 4 blocks, each containing 16 e.u.’s. Table 14.8 is an experimental layout for the [image: 
$$2^{8-2} = (2^{8})/4 = 64$$
] design, prior to randomization.Table 14.8Experimental layout for the [image: 
$$2^{8-2} = (2^{8})/4 = 64$$
] design, prior to randomization. This design follows from a permutation of the factor labels in Plan 6A.16 of Cochran and Cox (1957). This design specification is available as data(Design_2.8_2).


	Block 1
	Block 2
	Block 3
	Block 4

	(1)
	ab
	ce
	de

	ach
	bch
	aeh
	acdeh

	aef
	bef
	acf
	adf

	cefh
	abcefh
	fh
	cdfh

	bdh
	adh
	bcdeh
	beh

	abcd
	cd
	abde
	abce

	abdefh     
	defh
	abcdfh
	abfh

	bcdef
	acdef
	bdf
	bcf

	beg
	aeg
	bcg
	bdg

	abcegh
	cegh
	abgh
	abcdgh

	abfg
	fg
	abcefg
	abdefg

	bcfgh
	acfgh
	befgh
	bcdefgh

	degh
	abdegh     
	cdgh
	gh

	acdeg
	bcdeg
	adg
	acg

	adfgh
	bdfgh
	acdefgh     
	aefgh

	cdfg
	abcdfg
	defg
	cefg






                
                  
                
              
The treatment combinations have been very carefully chosen so that, provided one can assume that all 3-factor and higher-order interactions are negligible, one can “cleanly” estimate all main effects and 2-factor interactions with a sufficient number of error df to assure tests of reasonable power. Blocks, all main effects, and all two-factor interactions are confounded
                  
                 only with three-factor and higher interactions. This property makes the 28−2 a Resolution V design, and it is often denoted as 2
                  V
                
8−2.
                  
                 The basic form of the ANOVA table for the 28−2 design in Table 14.8 is in Table 14.9. Estimates are not available for interaction effects that are confounded
                  
                 with blocks.Table 14.9ANOVA table for the [image: 
$$2^{8-2} = (2^{8})/4$$
] design from Table 14.8. The main effects and 2-factor interactions are unconfounded with blocks.


	Source
	df
	 	Comments

	Blocks
	3
	 	Blocks are aliased with acf, bdg, and cdh

	Main effects
	8
	 	Unconfounded

	2-factor interactions    
	28
	 	
[image: 
$${8\choose 2}$$
] terms, unconfounded

	Residuals
	24
	 	Aliased with 3-factor and higher interactions

	Total
	63
	 	 





                
                  
                
                
                  
                
                
                  
                
              
If instead we had been required to maintain a maximum block size of 8, an additional 4 degrees of freedom would go to the blocks. It would have been necessary to completely confound 2 of the 28 2-factor interactions with blocks, and 2 Residuals df would have moved to blocks leaving only 22 for the Residuals.
The analysis of such data is very straightforward as shown in Table 14.10. We need to ensure that the model statement declares only blocks, the 8 main effects, and the 28 interactions.Table 14.10Specification and analysis of a [image: 
$$2^{8-2} = (2^{8})/4$$
] fractional factorial design. The code shows the specification of the dummy variables for the design in R282 and specification of the analysis using the model formula shown in the aov statement. The displayed formula generates the dummy variables for the complete set of main effects and all 2-factor interactions.


[image: A77776_2_En_14_Figh_HTML.gif]




                
                  
                
              

14.4.2 Example—25−1 Design
Five factors involved in a manufacturing process for an integrated circuit were investigated. For brevity we refer to the five factors as A, B, C, D, E. Resources were available to examine only 16 of the 25 treatment combinations. A particular half-replicate of the complete experiment was used such that all main effects are confounded
                  
                 with four-factor interactions and all two-factor interactions are confounded
                  
                 with three-factor interactions. Based on experience with these factors, the investigator was very confident that only factors A, B, C, and the AB interaction were likely to have an appreciable effect on the process yield. This is confirmed by examining the interaction plot in Figure 14.3 or the means in Table 14.11. The output in Table 14.11 also contains two tables of means demonstrating that the D main effect and AC interaction are not significant. The data from Montgomery (2001) is in data(circuit). We find that there is a significantly higher yield at the higher level of each of A, B, C than at their respective lower levels, and that the simple effect of B at the higher level of A is significantly greater than the simple effect of B at the lower level of A.
                  
                
                                [image: A77776_2_En_14_Fig3_HTML.gif]
Fig. 14.3Interaction plot for circuit 25−1 design. All three main effects are visibly significant, as is the A × B interaction. The traces in the A × C and B × C panels are parallel, hence not significant.




Table 14.11Analysis of [image: 
$$2^{5-1} = (2^{5})/2$$
] fractional factorial design.


[image: A77776_2_En_14_Figi_HTML.gif]




                
                  
                
              

                
                  
                
              


14.5 Introduction to Crossover Designs

              
                
              
            
This is a subclass of repeated measures designs,
                
               used when one applies two or more treatments to each of several subjects over the course of two or more periods, and needs to account for the possibility that a carryover

                
               or residual

                
               effect of a treatment lingers into the following period (and possibly beyond it). Thus a subject’s response may be attributable to both the treatment given in the period and the treatment administered in the preceding period. One seeks to be able to provide unconfounded estimates of both the direct
                
               and residual effects. These designs are also referred to as changeover
                
               or residual effects designs.
                
              

The possible existence of residual effects is easy to imagine in medical or agricultural experiments. It also must be accounted for in meteorological experiments involving cloud seeding intended to induce precipitation.
Intuitively, a “good” design is one in which
1.Each treatment occurs equally often on each subject.

 

2.Each treatment occurs equally often in each period.

 

3.Each treatment follows each other treatment the same number of times.

 




But the available numbers of treatments, subjects, and periods often make it impossible to satisfy all three criteria. As a simple example, suppose we have two treatments, say A and B, to compare in three periods on two experimental animals. Consider the following two designs:
	 	Design 1
	 	Design 2

	Period  
	Animal 1 
	Animal 2 
	 	Animal 1 
	Animal 2

	1
	A
	B
	 	A
	B

	2
	B
	A
	 	B
	A

	3
	A
	B
	 	B
	A



Which design is preferred?
It turns out that both the direct and residual treatment effects can be estimated much more precisely in Design 2 than in Design 1. Design 1 has the deficiency that each treatment is always preceded by the other treatment, never by itself. Only Design 2 satisfies the third of the above intuitive criteria. This design is a member of a class of crossover designs constructed as a Latin square
                
               with the last row repeated once. This class has the property that the estimation of direct and residual treatment effects are orthogonal to one another.
14.5.1 Example—Two Latin Squares


                  
                 This design, from Cochran and Cox (1957) and Heiberger (1989) uses two 3 × 3 Latin
                  
                 squares to estimate the residual effects as well as the direct effects of milk yields resulting from three treatments to dairy cows. The design and data from data(cc135) are in Table 14.12 and Figure 14.4.[image: A77776_2_En_14_Fig4_HTML.gif]
Fig. 14.4Each panel shows the observations per period for one cow. In all treatment plans yield goes down over time. Note that cows 3 and 6 who start with full.grain have the highest initial yield. The drop in yield from anything else to full.grain is smaller than the drop to either of the other treatments.




Table 14.12Two 3 × 3 Latin squares for crossover design with display of the residual effect. The factor nores is an indicator for observations that do not have a residual effect because there is no preceding treatment. The residual treatment factor restreat has the value of the treatment treat for the preceding period with the same square and sequence.


[image: A77776_2_En_14_Figj_HTML.gif]




                
                  
                
              

                
                  
                
              
We specify the design as if the residual effects are attributable to another factor. The residual effects restreat are explicitly set to the value of the direct effects treat in the preceding period. A new dummy variable nores is set to 0 for the first period (in which there are no residual treatments), and to 1 for the remaining periods (in which it is meaningful to speak about residual effects from the previous period). The new variable nores is confounded with one degree of freedom of period. restreat is nested in nores. The arithmetic does not need the identification of the nores dummy variable. The analysis is easier to follow if nores is explicitly identified.
The analysis specification statements includes two sets of aov statements, with different orderings for the direct effects treat and residual effects res.treat. The ANOVA table edited from the output is in Table 14.13.Table 14.13

                          
                         Latin Square for Residual Effects design cc135. The braced expressions are two different partitionings of the same 4 df for the combined treat + res.treat effects. This ANOVA table is manually constructed from the output of the programs.


[image: A77776_2_En_14_Figk_HTML.gif]



The direct and residual effects are not orthogonal to each other. Their sum is partitioned in two different ways in Table 14.13. The additional sum of squares for the residual effects after accounting for the direct effects, for which we use the first model statement and the results of which are reflected in the first set of braced lines in the ANOVA table, tells us whether there are longer-term differences that need to be accounted for. The additional sum of squares for the direct effects after accounting for the residual effects, for which we use the second model statement and the results of which are reflected in the second set of braced lines in the ANOVA table, tells us whether the single period effects are themselves important. Since the residual effects after the direct effects are borderline significant with p = . 06, we conclude that isolating the residual effect is important. Had we not done so the power for detecting the direct effects would have been reduced because the res.treat sum of squares would have been left in the residual. It would have inflated the residual, hence decreased the F-value and increased the p-value for the direct effects. We can approximate this effect by calculating [image: 
$$\mathsf{MS}_{\mathrm{resid(approx)}} = (616 + 199)/(2 + 4) = 136$$
] and [image: 
$$\mathsf{F}_{\mathrm{approx}} = 1138/136 = 8.36$$
] on 2 and 6 df with p = . 018. This is an approximation because that isn’t how the experiment was done.

                
                  
                
                
                  
                
              

                
                  
                
              
The boxplots of the adjusted treatments and adjusted residual treatments are in Figure 14.5.
                  
                

                  
                
[image: A77776_2_En_14_Fig5_HTML.gif]
Fig. 14.5Boxplots for residual effects design, treatments and residual treatments, each adjusted for the blocking factors and for each other. From the left panel, we see that the full.grain treatment is much better than the other two. From the right panel, we see that the residual effect of the full.grain treatment is much stronger than the others. This is the explanation for the reduced drop in yield we commented on in Figure 14.4.







14.6 ANCOVA with Blocks: Example—Apple Tree Data

              
                
              
            
In Section 10.​5 we studied the analysis using a concomitant variable (covariate) in an experiment having only one factor. In this example we demonstrate the use of this technique when there are two factors.
In Section 10.​6 we showed a composite figure with four distinct models for an ANCOVA design with one covariate and one treatment factor. All four models were displayed together in Figure 10.​12 In this section we have a more complex design, with a block factor in addition to the covariate and treatment factor. We therefore have a more complex composite figure with six models in Figure 14.6.[image: A77776_2_En_14_Fig6_HTML.gif]
Fig. 14.6Several models for yield. See the text for the discussion of the models in each row. The concluding model is illustrated in the bottom row. Treatment 6 is significantly lower on the vertical axis than the other treatments. The color in each panel represents the treatment. The plotting symbol in the top two rows indicates the block. The plotting symbol in the bottom four rows indicates the treatment (and is intentionally redundant with the column number and color). The left strip shows the row number and an abbreviated model name. The full model formulas are shown in Table 14.14. All six rows are on the same y-scale. Row 1 has a wider y-range in the y-scale because its response variable is yield which reflects the block effect. Rows 2–6 show yield.block, the yield adjusted for blocks. The bottom two rows have the same vertical distances between the fitted line and the points. The bottom two rows are magnified in Figure 14.8.





14.6.1 Study Objectives
Pearce (1983), later reprinted in Hand et al. (1994), describes a randomized block experiment to determine the effects of six ground cover treatments on the yield of apple trees. A concomitant variable, the volume of crop during the four years prior to treatment, is available. Perform the analysis both using and ignoring the concomitant variable. Provide recommendations as to treatment.

14.6.2 Data Description
The data are accessed with data(apple). The variables are 
                      treat:
                    ground cover treatments. Treatments 1–5 are experimental treatments; Treatment 6 is a control



                      block:
                    four randomized blocks



                      yield:
                    pounds over a four-year period following treatment



                      pre:
                    volume of crop over a four-year period prior to treatment






14.6.3 Data Analysis
The strategy is to begin with the most complex model and then progress toward simpler ones. This systematic approach assures that the ultimately selected model will include all significant effects but be no more complex than necessary. The ancova plots for the full set of models we will use are in Figure 14.6. The index to the ANOVA tables for each of these models is in Table 14.14. We will discuss each of the models.Table 14.14Index to analysis of covariance models for the apple data in Section 14.6.


	Model
	Model Name
	 	Model
	 	ANOVA

	Number
	Abbreviated
	 	 	 	Table

	1
	y
	
                            ~
                          
	b+p*t
	 	
                            yield
                          
	
                            ~
                          
	
                            block
                          
	
                            +
                          
	
                            pre
                          
	
                            *
                          
	
                            treat
                          
	 	
                            14.15
                          

	2
	y.b
	
                            ~
                          
	p.b*t
	 	
                            yield.block
                          
	
                            ~
                          
	 	 	
                            pre.block
                          
	
                            *
                          
	
                            treat
                          
	 	
                            14.16
                          

	2q
	 	 	 	 	
                            yield.block
                          
	
                            ~
                          
	 	 	
                            pre.block
                          
	
                            +
                          
	
                            treat
                          
	 	
                            14.17
                          

	 	 	 	 	 	 	 	 	
                            +
                          
	
                            (pre:treat).block
                          
	 	 
	3
	y.b
	
                            ~
                          
	p.b
	 	
                            yield.block
                          
	
                            ~
                          
	 	 	
                            pre.block
                          
	 	 	 	
                            14.18
                          

	4
	y.b
	
                            ~
                          
	t
	 	
                            yield.block
                          
	
                            ~
                          
	 	 	 	 	
                            treat
                          
	 	
                            14.19
                          

	5
	y.b
	
                            ~
                          
	p.b+t
	 	
                            yield.block
                          
	
                            ~
                          
	 	 	
                            pre.block
                          
	
                            +
                          
	
                            treat
                          
	 	
                            14.20
                          

	5b
	y
	
                            ~
                          
	b+p+t
	 	
                            yield
                          
	
                            ~
                          
	
                            block
                          
	
                            +
                          
	
                            pre
                          
	
                            +
                          
	
                            treat
                          
	 	
                            14.21
                          

	5c
	y.b
	
                            ~
                          
	b+p.b+t
	 	
                            yield.block
                          
	
                            ~
                          
	
                            block
                          
	
                            +
                          
	
                            pre.block
                          
	
                            +
                          
	
                            treat
                          
	 	
                            14.22
                          

	6
	y.b.p
	
                            ~
                          
	t
	 	
                            yield.block.pre
                          
	
                            ~
                          
	 	 	 	 	
                            treat
                          
	 	
                            14.23
                          






                
                  
                
              

14.6.4 Model 1:  yield ~
block + pre * treat

Model 1 allows for the possibility that the covariate pre and the treatment factor treat interact. This model allows for differing slopes in the simple regressions of yield on pre across the levels of treat. We draw two conclusions from the ANOVA of Model 1.

                1.The ANOVA table for Model 1 in Table 14.15 shows that most of the sum of squares for the data is attributable to the blocking factor ([image: 
$$\mathsf{SS}_{\mathrm{block}}/\mathsf{SS}_{\mathrm{Total}} = 47852/72034 = 66\%$$
]). Note that we can discuss the proportion of total sum of squares for the blocking factor block, but not the F- and p-values—even though the program calculated and printed them in the ANOVA table (most ANOVA programs print these values). We assumed that blocks are important for this study and designed the study by stratifying the sample within blocks. Because the study was designed under the assumption that blocks are important, there is no testable hypothesis about blocks. We do have the right to calculate an estimate of the efficiency of the blocking. Most experimental design texts contain formulas for the efficiency
                          
                         attributable to blocking in Latin Square,
                          
                         Randomized Complete Block,
                          
                         and other experimental designs. See, for example, Cochran and Cox (1957) (Section 4.37).Table 14.15Analysis of variance for apple data. Model 1 ‘y~b+p*t‘, full model with blocks and interaction of covariate and treatment. The interaction between the treatment and the covariate (pre:treat) is not significant. The model specifies separate lines in each panel of row 1 in Figure 14.6. The lines in row 1 are dominated by the block differences (block “d” is always at the top).


[image: A77776_2_En_14_Figl_HTML.gif]





                          
                         We investigate the block factor in Figure 14.7. The left column of panels indicates that the means of both yield and pre are heterogeneous across blocks. Therefore, in subsequent analysis we adjust both yield and pre for blocks. For example, the quantity yield.block in Table 14.14 represents yield adjusted for blocks. This is the original data vector of yields minus the vector of least-squares estimates of block effects. [image: 
$$ \displaystyle\begin{array}{rcl} \mathtt{yield.block}_{ij} = Y _{ij} -\hat{\beta }_{i},& & {}\\ \end{array} $$
]



[image: A77776_2_En_14_Fig7_HTML.gif]
Fig. 14.7Apple yield and pre by block. In the left column the block effect is visible. In the right column, in which we have adjusted the data for the block effect, we see that the data appear more homogeneous.





where [image: 
$$\hat{\beta }_{i}$$
] is the least-squares estimate of the effect of block i in the simple one-way ANOVA model [image: 
$$\displaystyle\begin{array}{rcl} Y _{ij} =\mu +\beta _{i} +\epsilon _{ij}& & {}\\ \end{array}$$
]


 Comparable definitions apply to pre.block and yield.block.pre. These adjustments are in the same sense used in several places in Section 9.​13, and allow us to focus our attention on the remaining variables in the model. From the right column of panels of Figure 14.7 we see that the adjusted values are more homogeneous. The adjusted response variable (in Model 2, with ANOVA table in Table 14.16) has the same sums of squares for the treatment and covariate effects as the unadjusted response variable in Table 14.15.Table 14.16Analysis of variance for apple data. Model 2 ‘y.b~p.b*t‘, model with response yield and covariate pre adjusted for blocks, and with interaction of adjusted covariate and treatment. There are separate lines in each panel. The block effect shows as zero because the block variation has been removed. The covariate and treatment sums of squares are identical to those terms in Table 14.15. The interaction dummy variables are not correctly adjusted by this procedure. The linear space spanned by the crossing of pre.block and treat is not the same as the linear space specified by adjusting the dummy variables of the crossing of block and treat for block. Hence the interaction sums of squares is incorrect.


[image: A77776_2_En_14_Figm_HTML.gif]



The heterogeneity of responses across blocks is also visible in Row 1 of Figure 14.6 where we display separate regressions of yield on pre for each of the 6 levels of treat. The plotting characters a,b,c,d represent blocks 1–4. We see that block 4 (“d”) has a consistently higher yield than the other 3 blocks.

 

2.Since the ANOVA table shows p = . 152 for the interaction pre:treat we conclude that the slopes do not significantly differ. We will show the model without interaction in Section 14.6.8.

 



              

14.6.5 Model 2:  yield.block ~
pre.block * treat

In Model 2 (row 2 in Figure 14.6), we have removed the block effect. The range of the observations in the y-direction is reduced and the highly visible block effect (with “d” at the top) is gone. The regression lines in each panel, repeated in the Superpose panel, are similar. We will eventually drop the interaction term in Model 5 (row 5 of in Figure 14.6) and note that the fits are similar. First we must look at the ANOVA table for Model 2. We do so twice, naively and incorrectly in Table 14.16 and more sophisticatedly and correctly in Table 14.17. Table 14.16 naively constructs the interaction dummy variables by crossing the covariate adjusted for blocks with the dummy variables for treatment. This does not span the same subspace as the construction in Table 14.17, where we take the dummy variables for the interaction from Table 14.15 and adjust them for blocks. See Exercise 14.8 for further details.Table 14.17Analysis of variance for apple data. Model 2q ‘y.b~p.b*t‘ has adjusted the response yield, the covariate pre, and the dummy variables for interaction of adjusted covariate and treatment for blocks. There are separate lines in each panel. The interaction dummy variables are correctly adjusted by this procedure. Hence the interaction sums of squares is correct and matches the interaction sum of squares for Model 1 in Table 14.15. The degrees of freedom for the Residuals is incorrect. It includes the degrees of freedom that belong to the block term.


[image: A77776_2_En_14_Fign_HTML.gif]




                
                  
                
              

                
                  
                
                
                  
                
              

14.6.6 Model 3:  yield.block ~
pre.block

Model 3 is linear regression of the adjusted yield.block by the adjusted covariate pre.block and ignoring the treat factor. The points are plotted in panels by treatment in row 3 of Figure 14.6 even though treatment is not included in the construction of the common line nor in the ANOVA table in Table 14.18. This line is not a good fit to the points in most of these panels, suggesting that treat cannot be ignored as an explanatory variable.Table 14.18Analysis of variance for apple data. Model 3 ‘y.b~p.b‘, simple linear regression model with yield and pre adjusted for blocks, and ignoring treatment. There is one common regression line in all panels. The degrees of freedom for the Residuals is incorrect. It includes the degrees of freedom that belong to the block term.


[image: A77776_2_En_14_Figo_HTML.gif]




                
                  
                
              

                
                  
                
              

14.6.7 Model 4:  yield.block ~
treat

Model 4 is one-way analysis of variance of the adjusted yield.block by the treatment. The covariate is ignored. The ANOVA table in Table 14.19. We can see in the figure that most of the points are not close to the horizontal lines in any of the panels.Table 14.19Analysis of variance for apple data. Model 4 ‘y.b~t‘, one-way ANOVA of yield adjusted for blocks by treatment, and ignoring covariate. Separate horizontal lines in each panel.


[image: A77776_2_En_14_Figp_HTML.gif]




14.6.8 Model 5:  yield.block ~
pre.block + treat

Model 5, yield.block ~ pre.block + treat, in row 5 of Figure 14.6, with ANOVA in Tables 14.20, 14.21, and  14.22, forces parallel regression lines with possibly differing intercepts for the adjusted response against the adjusted covariate and the treatment. The value p = 0. 0417 for treat tells us that there is a significant difference at α = . 05 in the treat adjusted means. Stepping forward for a moment, to be justified by the time we get there, the intercepts of the parallel regression lines in rows 5 and 6 of Figure 14.6 are significantly different.Table 14.20Analysis of variance for apple data. Model 5 ‘y.b~p.b+t‘, model with response yield and covariate pre adjusted for blocks, and with no interaction of adjusted covariate and treatment. Separate parallel lines in each panel. There is no block term in this model, hence the Residuals line includes the degrees of freedom that should be in the block effect.


[image: A77776_2_En_14_Figq_HTML.gif]


Table 14.21Analysis of variance for apple data. Model 5b ‘y~b+p+t‘, model with original unadjusted response yield and covariate pre, and with no interaction of covariate and treatment. Separate parallel lines in each panel. This table gives the full analysis of this model and shows the correct degrees of freedom for the Residuals. The pre.block and treat sums of squares in Table 14.20 match the sums of squares here.


[image: A77776_2_En_14_Figr_HTML.gif]


Table 14.22Analysis of variance for apple data. Model 5c ‘y.b~b+p.b+t‘, model with response yield and covariate pre adjusted for blocks, and with no interaction of adjusted covariate and treatment. Separate parallel lines in each panel. The block effect has been removed from both response and covariate and therefore shows with a 0 sum of squares in the ANOVA table. Placing the block term in the model gets the correct degrees of freedom for the Residuals.


[image: A77776_2_En_14_Figs_HTML.gif]



Model 5b, yield ~ block + pre + treat, gives the same regression coefficients, fitted values, and residuals as model 5. The ANOVA tables for Models 5 and 5b show different degrees of freedom for the residuals, as Model 5 does not account for the prior adjustment for the blocking factor.
Model 5c, yield.block ~ block + pre.block + treat, gives the same regression coefficients, fitted values, and residuals as Models 5 and 5b. The ANOVA tables for Model 5c shows the correct degrees of freedom for the residuals. Model 5c does account for the prior adjustment for the blocking factor by including the block factor in the model equation solely to absorb the degrees of freedom.

                
                  
                
              

                
                  
                
              

                
                  
                
              
In Model 5, the sum of squares for treat after adjustment
                  
                 for the covariate pre is deemed significant. In Model 4, the effect of treat is assessed prior to consideration of pre and found to be not significant. Therefore, taking account of the available covariate pre has enabled us to detect differences in the adjusted mean yield at the levels of treat. Without the presence of this covariate, we would not have detected treat differences.
If the covariate pre had not been available for this analysis, the sums of squares for block and for treat would be identical to those in the anova table for Model 4. But without pre in the model, the corresponding terms in the anova table would have lower F statistics and higher p-values than those in Table 14.16 because the sum of squares for pre, that should have been assigned to a term for pre, would instead remain as a large component of the sum of squares for Residuals.
The finding of a significant difference for the treatment in Model 5 (row 5 of Figure 14.6) means that we can interpret the difference in intercepts among the panels of row 5, or equivalently the vertical difference between the regression lines at any specified value of the adjusted covariate.

14.6.9 Model 6:  yield.block.pre ~
treat

We have one more step. Most people have trouble seeing vertical distances between nonhorizontal parallel lines. Therefore, we use Row 6 of Figure 14.6 to make the lines horizontal and retain the same vertical differences. We do so by making an additional adjustment to the response variable, subtracting out the effect of the covariate pre.block from the response variable yield.block. Details are in Table 14.23.Table 14.23Analysis of variance for apple data. Model 6 ‘y.b.p~t‘, model with response yield adjusted for both blocks and the covariate pre, Separate horizontal lines in each panel. The vertical distance between these horizontal lines is identical to the vertical distance between the parallel lines in Model 5. The degrees of freedom for the Residuals is incorrect. It includes the degrees of freedom that belong to the block and pre terms.


[image: A77776_2_En_14_Figt_HTML.gif]



Row 6 (Model 6, yield.block.pre ~ treat) of Figure 14.6 adjusts yield for both treat and pre. The differences in the y-coordinate of the fitted horizontal lines drawn at adjusted the yield means for each treat level displays the extent of the effect of treat on yield after accounting for both block and pre. The difference in intercepts of the horizontal regression lines in Row 6 is identical to the difference in intercepts in Row 5. The ANOVA table for Model 6 is in Table 14.23.
The plot of Model 6 is constructed from the plot of Model 5 by vertically shifting the points and the regression lines about a fixed point at the mean of the covariate. We redraw the treatment panels of rows 5 and 6 from Figure 14.6 as Figure 14.8 to illustrate the shift. The lengths of the residual lines from the points to the fitted line are identical in rows 5 and 6. 
                  
                
[image: A77776_2_En_14_Fig8_HTML.gif]
Fig. 14.8Vertical difference between points and the parallel lines from rows 5 and 6 of Figure 14.6. It is easily seen in the bottom row that the control treatment 6 has a lower adjusted mean than the others. The light gray vertical reference line is at the mean of the adjusted pre values. The vertical reference line indicates the fulcrum of the vertical shifting of the points and parallel regression lines. The lengths of the residual lines from the points to the fitted line are identical in rows 5 and 6.






                
                  
                
              

                
                  
                
              

14.6.10 Multiple Comparisons


                  
                 Now that we have detected treat differences, we wish to investigate their nature. Since level 6 of treat has been designated as a control, we follow up the finding of significant treat with Dunnett’s
                  
                 multiple comparison procedure to simultaneously compare the mean adjusted yield of treat levels 1 through 5 with the mean adjusted yield of treat level 6. We illustrate the multiple comparisons in Figure 14.9 with the mean–mean display including the Tiebreaker panel and in Table 14.24. These displays tell us that the adjusted mean yield of treat level 5 is significantly greater than the adjusted mean yield of the control (treat level 6). No other significant differences with treat level 6 are uncovered.[image: A77776_2_En_14_Fig9_HTML.gif]
Fig. 14.9Multiple comparisons of Treatments for Model 5 (yield ~
block + pre + treat) by Dunnett’s method. The comparison of treatment 5 with the control treatment 6 is the only significant comparison. The means for treatments 1 and 4 are very close; therefore the contrasts 4-6 and 1-6 are almost collinear in the MMC panel. We need the Tiebreaker panel to distinguish them.




Table 14.24Multiple comparisons of Treatments for Model 5 (yield ~
block + pre + treat) by Dunnett’s method. The comparison of treatment 5 with the control treatment 6 is the only significant comparison. The output section labeled $mca is the set of contrasts comparing the means of the experimental treatments 1–5 to the mean of the control treatment 6. The section labeled none (meaning no contrasts) are the means for each individual treatment.


[image: A77776_2_En_14_Figu_HTML.gif]




                
                  
                
              

                
                  
                
                
                  
                
              


14.7 Example—testscore

The example in Section 14.6 was modeled with one covariate. This example requires two covariates.
14.7.1 Study Objectives
The dataset data(testscore) from Johnson and Tsao (1945), also reprinted in Anderson and Bancroft (1952), discuss the modeling of a final test score using four factors and two concomitant variables. Their goal was to explain the response variable final score by using the information in the factors and continuous variables. As a secondary goal they used this paper to illustrate the advantages of using concomitant variables
                  
                 (covariates) to increase the sensitivity of their experiment and the precision with which estimates and predictions can be made.

14.7.2 Data Description

                
                      final:
                    response variable: final test score



                      sex:
                    male=1, female=0



scholastic standing:good=1, average=2, poor=3



                      order:
                    order on a battery of standardized tests: high=1, medium=2, low=3



                      grade:
                    10, 11, 12



                      initial:
                    initial test score



                      mental.age:
                    mental age




              
Note that this was not a longitudinal study
                  
                : Different students were assessed at each grade level.
The study has no replication. The original authors used the four-way interaction as their initial error term. They found that all of the three-way interactions and some of the two-way interactions were not significant, so they continued by pooling all the nonsignificant interactions. Our analysis begins by assuming that the four-way and all three-way interactions are negligible. We proceed to investigate the two-way interactions and main effects, both with and without adjustment for the continuous variables.

14.7.3 Analysis—Plots
The goal of the analysis is to explain the variability in the final scores based on the initial score, the covariates, and the factors. We start the analysis by looking at the scatterplot matrix of the data in Figure 14.10. Two things are immediately visible. First, the plots of the factor levels against each other form simple lattices.
                  
                 This reflects the design of the study in which the factors were chosen to be balanced. Second, we see that the response variable final is positively correlated with the two continuous variables initial and mental.age and negatively correlated with two of the factors standing and order. When we look closer at the factors, we discover that they are coded with high scores first. Therefore, the visual negative correlation is an artifact of the coding. We recode both standing and order to place the low scores first and thereby have all variables coded in a consistent direction.[image: A77776_2_En_14_Fig10_HTML.gif]
Fig. 14.10
testscore data, original ordering of variables and factor levels. The plots of the factor levels against each other form simple lattices. This reflects the design of the study in which the factors were chosen to be balanced. The response variable final is positively correlated with the two continuous variables initial and mental.age and negatively correlated with two of the factors standing and order.





We redraw the plot with the recoded variables in Figure 14.11. While here, we also changed the order of the variables, placing all the continuous variables together and all the factors together. There is now a clear display of the positive correlations among all continuous variables and ordered factors. We would display Figure 14.11 rather than Figure 14.10 in our final report.[image: A77776_2_En_14_Fig11_HTML.gif]
Fig. 14.11
testscore data, revised ordering of variables and factor levels. The continuous variables are collected together in the lower left. We recoded both standing and order to place the low scores first. Now the response variable final is positively correlated with all covariates and factors. This is the only splom we would show the client.






                
                  
                
              

                
                  
                
              

14.7.4 Analysis—ANOVA
In an analysis with both factors and continuous concomitant variables, it is necessary to determine the contribution of each. We therefore fit four different models,
1.factors only,

 

2.continuous first: fitting factors after continuous predictors,

 

3.continuous second: fitting continuous predictors after factors,

 

4.continuous only.

 




These four models are summarized in Table 14.25. The full analyses can be reproduced with the code in file HHscriptnames(14). The first thing to notice is the residual mean square s
2 for the models. The reduction in sum of squares from “factors only” to both factors and continuous (observed in either column “continuous first” or “continuous second”) has an [image: 
$$F_{2,26} = ((97.704 - 28.057)/2)/1.0791 = 32.27$$
] with [image: 
$$p = 10^{-7}$$
]. The reduction from continuous only to both has [image: 
$$F_{25,26} = ((131.291 - 28.057)/25)/1.0791 = 3.827$$
] with p = 0. 0006.Table 14.25Comparison of sequential p-values for four different models of the testscore data. In each of the models, the response variable is the final score.


	 	 	Factors
	 	Continuous
	 	Continuous
	 	Continuous

	 	 	only
	 	first
	 	second
	 	only

	 	 	
                            testscore1
                          
	 	
                            testscore2
                          
	 	
                            testscore3s
                          
	 	
                            testscore4
                          

	 	 	Df
	Pr(F)
	 	Df
	Pr(F)
	 	Df
	Pr(F)
	 	Df
	Pr(F)

	initial
	 	 	 	 	1
	0.0000
	 	 	 	 	1
	0.0000

	mental.age
	 	 	 	 	1
	0.0132
	 	 	 	 	1
	0.0914

	sex
	 	1
	0.0069
	 	1
	0.2522
	 	1
	0.0000
	 	 	 
	grade
	 	2
	0.0010
	 	2
	0.0029
	 	2
	0.0000
	 	 	 
	standing
	 	2
	0.0000
	 	2
	0.0005
	 	2
	0.0000
	 	 	 
	order
	 	2
	0.0000
	 	2
	0.0000
	 	2
	0.0000
	 	 	 
	sex:grade
	 	2
	0.0184
	 	2
	0.6567
	 	2
	0.0000
	 	 	 
	sex:standing
	 	2
	0.7728
	 	2
	0.7506
	 	2
	0.4427
	 	 	 
	sex:order
	 	2
	0.6719
	 	2
	0.0792
	 	2
	0.2885
	 	 	 
	grade:standing
	 	4
	0.0519
	 	4
	0.1519
	 	4
	0.0001
	 	 	 
	grade:order
	 	4
	0.8250
	 	4
	0.1319
	 	4
	0.3304
	 	 	 
	standing:order
	 	4
	0.6085
	 	4
	0.2426
	 	4
	0.0952
	 	 	 
	initial
	 	 	 	 	 	 	 	1
	0.0000
	 	 	 
	mental.age
	 	 	 	 	 	 	 	1
	0.1066
	 	 	 
	Residuals Df
	 	28
	 	 	26
	 	 	26
	 	 	51
	 
	Residuals Mean Sq
	 	 	3.4894
	 	 	1.0791
	 	 	1.0791
	 	 	2.5743

	Residuals Sum Sq
	 	 	97.704
	 	 	28.057
	 	 	28.057
	 	 	131.291

	Total Sum Sq
	 	53
	1607.333
	 	53
	1607.333
	 	53
	1607.333
	 	53
	1607.333






                
                  
                
              
We look further at a follow-up set of listings for the continuous-variables-first analysis in Table 14.26. We see that the initial score all by itself has [image: 
$$R^{2} = 1468.423/1607.333 \approx 0.9$$
]. We determined from the results of testscore2.aov in Table 14.25 that none of the two-way interactions (with the possible exception of sex:order) is significant; therefore, we dropped them. We also see the main effect sex is not significant as the first factor; therefore, we moved it last. In the ANOVA testscore5.aov we see that grade is the least important of the main effects, so we moved it to next-to-last. In the ANOVA testscore6.aov we see that we don’t need grade at all. This brings us to the ANOVA testscore7.aov with three significant main effects after adjusting for the covariates.Table 14.26Continuous variables first, and further refinements.


[image: A77776_2_En_14_Figv_HTML.gif]




                
                  
                
              
Let us plot the information in ANOVA table testscore7.aov. As is usual with analysis of covariance, we are interested in the difference between the intercepts for each of the groups assuming parallel planes defined by the coefficients of the covariates. In the testscore7.aov setting we have 2 covariates and 18 groups with model [image: 
$$\displaystyle\begin{array}{rcl} Y _{ijk\ell} =\hat{\mu } _{ijk} +\hat{\beta } _{1}X_{1,ijk\ell} +\hat{\beta } _{2}X_{2,ijk\ell} +\hat{\epsilon } _{ijk\ell}& & {}\\ \end{array}$$
]


 We move the X terms to the other side to get final.adj, the final scores adjusted for the covariates X
1=initial and X
2=mental.age. [image: 
$$\displaystyle\begin{array}{rcl} \mathsf{\hat{Y}}_{\mathrm{adj}} =\hat{ Y }_{ijk\ell} -\hat{\beta }_{1}X_{1,ijk\ell} -\hat{\beta }_{2}X_{2,ijk\ell} =\hat{\mu } _{ijk} +\hat{\epsilon } _{ijk\ell}& & {}\\ \end{array}$$
]


 We plot the initial variable (X
1), the observed final variable (Y ), and the adjusted final.adj ([image: 
$$\mathsf{\hat{Y}}_{\mathrm{adj}}$$
]) in Figure 14.12. The standard error of the difference of two observations in the plot is approximately [image: 
$$\sqrt{(2)(1.324)/3} \approx 0.94$$
]. Therefore, the visible differences in the plot are significant. We repeat the Adjusted panel of Figure 14.12 with greater magnification as the top panel of Figure 14.13. We can easily see all three main effects of the factors standing, order, and sex in the top panel of Figure  14.13. We can also see the hint of interaction between sex and order in the reversal of direction in the medium panel: the male scores go up from poor to good and the female scores go down from poor to good.[image: A77776_2_En_14_Fig12_HTML.gif]
Fig. 14.12
testscore data, initial scores, final scores, and final scores adjusted for the covariates using model testscore7.aov. All panels are on the same scale. The plotting position of the standing variable have been jittered to avoid overstriking of the points. The initial scores are responsible for most of the variability. The adjusted scores still show the effects of the three factors standing, order, sex. Figure 14.13 shows the adjusted scores at greater magnification.




[image: A77776_2_En_14_Fig13_HTML.gif]
Fig. 14.13
testscore data, The final.adj panel has identical content to the third panel in Figure 14.12, but on a larger vertical scale. The Prediction panel here contains the same information as Table 14.27 displayed on the same scale as the final scores adjusted for the covariates.






                
                  
                
              

14.7.5 Summary of ANOVA
We conclude the search for a model with our final model, testscore7.aov. We find three main effects: standing, order, and sex after accounting for the two covariates: initial and mental.age. These are the same variables the original authors found.
The original investigation of this data used the analysis to predict final scores given the variables in the data description.
Table 14.27 and Figure 14.13 contain predictions for the final test score for the average values of the two covariates and for all possible values of the three factors we retained.
Table 14.27Predictions of final score for each of the categories using model testscore7.aov.


[image: A77776_2_En_14_Figw_HTML.gif]





14.8 The Tukey One Degree of Freedom for Nonadditivity

              
                
              
              
                
              
            
What can we do when linearity cannot be assumed and there are not enough observations to study interaction? We construct a single degree of freedom variable that represents the linear by linear component of interaction.
14.8.1 Example—Crash Data—Study Objectives
Does the tendency of teenage drivers to be involved in automobile accidents increase dramatically with the number of passengers in the car? Believing this to be so, legislators in several states require that junior license holders be prohibited from driving with more than one passenger. Williams (2001) presents the data data(crash).

14.8.2 Data Description

                
                      crashrate:
                    crashes per 10,000 trips



                      agerange:
                    driver age: 16–17, 18–19, 30–59



                      passengers:
                    number of passengers: 0, 1, 2, 3+




              

                
                  
                
              

                
                  
                
              

14.8.3 Data Analysis
The original author displayed the data in the barplot
                  
                

                  
                  
                 format of Figure 14.14. We see several difficulties with barplots used in this situation:[image: A77776_2_En_14_Fig14_HTML.gif]
Fig. 14.14Barplot of crash data.




1.There are two factors, driver age and passenger presence. They are not treated symmetrically.

 

2.The marginal main effects of the factors are not displayed.

 

3.The response variable is a rate. Barplots were designed for counts and don’t make much sense for rates.

 

4.The majority of the plotting surface is used to display the region where the data doesn’t appear.

 

5.The symmetry in uncertainty is hidden by the asymmetry between the heavy bar below each observed value and the empty region above.

 

6.Superimposed error bars (not shown here) on a barplot add to the asymmetry.

 




We prefer the interaction plot format of Figure 14.15 to display both the main effects of each factor and the interactions between the two factors. Figure 14.15 addresses all the difficulties noted above for barplots. As usual, when we present an interaction plot we show two versions, interchanging the trace- and x-factors between them. In this example the traces in the lower right panel match the heights of the bars in each panel of Figure 14.14. We find the lack of parallelism in the traces in the same panel to be more compelling than the same information spread across several panels.[image: A77776_2_En_14_Fig15_HTML.gif]
Fig. 14.15Interaction plot of crash data. The lines in lower right panel trace the age of the driver. These lines show the same information as the heights of the bars in Figure 14.14. The lines in the upper left panel trace the number of passengers. The boxplots on the main diagonal show wide disparity in variance.





Table 14.28 contains an initial analysis of variance. It suggests that the number of passengers does not impact significantly on crashrate. The figures show completely different means and variances for different levels of passengers, implying that some type of interaction is present. The usual way of investigating interaction can’t be used for this example because there is only one observation for each combination of agerange and passengers. The entire residual sum of squares has only 6 degrees of freedom. If all of them are used to estimate the interaction, then none are left for the residual, and testing becomes impossible.Table 14.28ANOVA for crash data.


[image: A77776_2_En_14_Figx_HTML.gif]



The Tukey One Degree of Freedom for Nonadditivity

                  
                 (ODOFFNA)
                  
                 Tukey (1949) and Hoaglin et al. (1983) is the proper response to this impasse. Tukey constructs the comparison values,
                  
                 the linear-by-linear component of the interaction. He identifies it as one of the degrees of freedom in the residual and tests it for significance against the remaining degrees of freedom in the residual. There are several possible options for dealing with a significant ODOFFNA: Find an outlier, transform the data, regress on the comparison value.
We construct the comparison value
                  
                 by partitioning the data into four components. We augment the r × c table with a column of row margins r

                  i
                
0 = 0 and a row of column margins c

                  j
                
0 = 0 and a summary number in the last row–last column [image: 
$$\hat{\mu }^{0} = 0$$
]. The table at the right symbolically indicates the four sections of the augmented table. Note that each value of the table has been partitioned into four pieces, one in each section of the augmented table. We can trivially reconstruct the original table with [image: 
$$Y _{ij} =\hat{\mu } ^{0} + r_{i}^{0} + c_{j}^{0} + Y _{ij}$$
].

                [image: A77776_2_En_14_Figy_HTML.gif]

              
In the second display of the table, we find the row means r

                  i
                
1 for each of the rows of the first table and place them in the column of row margins. We also subtract the row means from each value of the original table. Now the reconstruction of the original table with [image: 
$$Y _{ij} =\hat{\mu } ^{0} + r_{i}^{1} + c_{j}^{0} + e_{ij}^{1}$$
] is still possible, but is no longer trivial.

                [image: A77776_2_En_14_Figz_HTML.gif]

              
In the third display of the table, we find the column means c

                  j
                 for each of the columns of the second table and place them in the row of column margins. We also subtract these column means from each value of the body of the second table. Now the reconstruction of the original table with [image: 
$$Y _{ij} =\hat{\mu } +r_{i} + c_{j} + e_{ij}$$
] is meaningful. For example, the entry 1.60 in the upper-left corner of the original table is calculated with components in the final table: [image: 
$$1.770 + 1.605 -.740 - 1.035$$
].

                [image: A77776_2_En_14_Figaa_HTML.gif]

              
This process is called row and column polishing by means. The notation was introduced by Tukey with medians and is described in the “Median Polish” chapter of Hoaglin et al. (1983). Median polish
                  
                 is an iterative technique that usually takes at least two cycles. The analogous mean polish
                  
                 illustrated here uniquely converges on just the one cycle illustrated here. Medians are resistant to outliers whereas means are not. The advantage of means is that they correspond to least-squares fits.
We construct the comparison value
                  
                 by recombining the components

                [image: A77776_2_En_14_Figab_HTML.gif]

              
We then compute the ANOVA table (in Table 14.29) with the comparison value
                  
                 as a covariate.Table 14.29ANOVA with the comparison value as a covariate. See also Figure 14.16. The regression coefficient for the comparison value is 1.5516.


[image: A77776_2_En_14_Figac_HTML.gif]




                
                  
                
                
                  
                
              
The regression coefficient of the comparison value,
                  
                 in this example [image: 
$$\hat{\beta }_{\mbox{ cv}} = 1.5516$$
], is identical to the regression of the residuals from the first ANOVA against the comparison value as illustrated in Figure 14.16. Tukey calls this the diagnostic plot.
                  
                
[image: A77776_2_En_14_Fig16_HTML.gif]
Fig. 14.16Diagnostic plot for crash data. See also Table 14.29. The data follow the regression line. Therefore, the slope of 1.5516 suggests a power transformation of [image: 
$$1 - 1.5516 = -.5516$$
].






                
                  
                  
                
                
                  
                
              
There are several things to do with this plot. If most of the points lie in a horizontal band, then the ones that don’t are potential outliers and need to be carefully investigated. If there is a clear nonhorizontal line, then the slope of the line gives a hint as to an appropriate transformation. When the slope is [image: 
$$\hat{\beta }_{\mbox{ cv}}$$
], then an appropriate power transformation that will stabilize
                  
                 the variance of the groups is given by [image: 
$$k = 1 -\hat{\beta }_{\mbox{ cv}}$$
]. In this example, the suggested power is [image: 
$$1 - 1.5516 = -.5516$$
]. As with the Box–Cox transformations
                  
                 in Section 4.​8, we usually look at graphs of the transformed values to help make the decision. We show in Figure 14.17 the data distributions and interaction plots for four power transformations: the original scale (k = 1), and powers [image: 
$$k = (0,-.5,-1)$$
].[image: A77776_2_En_14_Fig17_HTML.gif]
Fig. 14.17Main effect and interaction plots of the crash data with several different power transformations. The [image: 
$$k = -.5$$
] and [image: 
$$k = -1$$
] plots look similar. Since it is easy to explain the reciprocal—it is measured in units of trips per crash—we select the reciprocal for further analysis and display in Table 14.30. Panel a is identical to Figure 14.15. Figure 14.18 is an enlarged version of panel d. The cover illustration of the first edition is based on panel d.




Table 14.30ANOVA of the reciprocal of crash rate. The passengers effect is not shown as significant and the single degree of freedom for the linear by linear component of the interaction isn’t shown at all.


[image: A77776_2_En_14_Figad_HTML.gif]




                
                  
                
                
                  
                
                
                  
                  
                
              

                
                  
                
              

                
                  
                
              


                  
                  
                We see in Figure 14.17 that our transformation has accomplished several of its purposes. Moving from panel a to b to c to d, we see that the variance has been stabilized
                  
                . In panel a, the boxplots show strong changes in height; in panels c and d, the boxes are almost the same height. In panel a, the lines in the subpanel tracing passengers are not parallel and the lines in the subpanel tracing agerange are uphill or nearly horizontal. In panels c and d, the lines in the subpanel tracing passengers are parallel and downward sloping. The lines tracing agerange are uphill and parallel for the two teenage classifications and downhill for the adults.
The simplistic ANOVA table for the reciprocal displayed in Table 14.30 correctly shows agerange as significant, but it also shows passengers as not significant. We still need more work to make an ANOVA table of the reciprocal crashrate show the interaction between agerange and passengers, an interaction that we can see in Figures 14.15 and 14.18.[image: A77776_2_En_14_Fig18_HTML.gif]
Fig. 14.18Interaction plot of reciprocal crash data. The message is best seen in the bottom row. The boxplots in the lower-left panel show a difference in the small number of trips per crash for teens compared to the larger number of trips per crash for the adults. The lines in the lower-right panel show that adults increase the number of trips per crash with more passengers, meaning that they drive more safely with more passengers. But teens decrease the number of trips per crash with more passengers, meaning that they drive less safely with more passengers. This figure is identical to panel d in Figure 14.17.





We choose the reciprocal over the reciprocal square root for the presentation of the analysis to the client even though both produce similar graphs. The reciprocal is measured in units of Trips per Crash, units that are easily interpreted. The reciprocal square root, in units of Square Root of Trips per Crash, is not easily interpreted. We use the reciprocal, not the negative reciprocal, when we present the results to the client. We do not need to maintain for the client the monotonicity of the series of transformations that we need when we compare several powers chosen from the ladder of powers.
                  
                

The transformation of the crash rate to the reciprocal scale of trips per crash also works in the barplot format of Figure 14.19. The downhill and parallel pattern for the teens is evident. This contrasts sharply with the larger values and uphill pattern of the adults.[image: A77776_2_En_14_Fig19_HTML.gif]
Fig. 14.19Barplot of reciprocal crash data. The values displayed here are identical to the traces in the lower-right panel of Figure 14.18. Again we see that adults increase the number of trips per crash with more passengers, meaning that they drive more safely with more passengers. But teens decrease the number of trips per crash with more passengers, meaning that they drive less safely with more passengers.






                
                  
                
              
Now that we can see the different behavior for the passengers conditional on the agerange, let us make the ANOVA table show it. We do so by isolating the linear contrast for passengers and nesting it in the agerange. We combine the two teenage groups, which show a parallel upward trend over passengers. The resulting ANOVA table is in Table 14.31. The p-values in Table 14.31 are comparable to those in Table 14.29. Instead of an overall passenger effect, we are now looking at the linear contrast of passenger within the ageranges.Table 14.31ANOVA of the reciprocal of crash rate with linear effect of number of passengers nested within age range. We are partitioning the previous passenger + residual effects into the agerange/passenger effect plus a redefined residual. We see that the passengers within age range is highly significant for both age ranges, teens and adults.


[image: A77776_2_En_14_Figae_HTML.gif]



What actually did we do in Table 14.31 that we were unable to do in Table 14.30? The basic idea of the ODOFFNA is to look at the linear by linear component of the interaction. There aren’t enough degrees of freedom with only one observation per cell to do more than that. From the graph in Figure 14.17d we see that the two teenage groups show a clear uphill trend and the adults a clear downhill trend. When we combine those two effects by averaging over the ages, we lose the distinction between age groups. We therefore isolated just one degree of freedom of the passengers effect, the linear component. We nested the linear effect within the ageranges and easily see in Table 14.31 that the teens and adults have strong, and opposite, linear components of the passengers effect.
In summary, adults have many more trips between crashes than teenagers. Adults have fewer crashes as the number of passengers increases. Teens have more crashes as the number of passengers increases.

14.8.4 Theory
The heart of the analysis in Section 14.8.1 involves partitioning the residual sum of squares in Table 14.28 into two components in Table 14.29. The sum of squares for one of these components involves the vector of comparison values, the linear-by-linear effect constructed in Section 14.8.1. By construction, the vector of comparison values is orthogonal to the dummy variables
                  
                 for the row and column effects. Hence, it must be in the space of the interaction of the row and column effects. In this section we outline the theory justifying that the statistic for testing nonadditivity in Table 14.29, the ratio of nonadditivity mean square to remaining residual mean square, has an F-distribution under the null hypothesis of nonadditivity.
If in the model in Equation (12.​1) we have n

                  ij
                 = 1 for all i and j, that is, there is exactly one observation at each treatment combination, then no degrees of freedom are available to estimate the interactions (α β)
                  ij
                 as we would have if there were at least two observations at each treatment combination. However, for this situation Tukey (1949) developed a test for the special case of multiplicative interaction, that is, a test of [image: 
$$\displaystyle\begin{array}{rcl} H_{0}: \theta = 0\quad \mbox{ vs}\quad H_{1}: \theta \neq 0& &{}\end{array}$$
]

 (14.2)

 in the model [image: 
$$\displaystyle\begin{array}{rcl} Y _{ij} =\mu +\alpha _{i} +\beta _{j} +\theta \alpha _{i}\beta _{j} +\epsilon _{ij}\quad \quad \mbox{ for}\quad i = 1,\ldots,a\quad \mbox{ and}\quad j = 1,\ldots,n_{i}& & {}\\ \end{array}$$
]


 where [image: 
$$\sum _{i}\alpha _{i} = 0$$
], and [image: 
$$\sum _{j}\beta _{j} = 0$$
]. In this situation, unbiased estimators are [image: 
$$\displaystyle\begin{array}{rcl} \hat{\alpha }_{i}& =& \bar{Y }_{i.} -\bar{\bar{ Y }}_{..} {}\\ \hat{\beta }_{j}& =& \bar{Y }_{.j} -\bar{\bar{ Y }}_{..} {}\\ \hat{\theta }\alpha _{i}\beta _{j}& =& Y _{ij} -\bar{ Y }_{i.} -\bar{ Y }_{.j} +\bar{\bar{ Y }}_{..} {}\\ \end{array}$$
]


 Therefore a reasonable estimator of [image: 
$$\theta$$
] is [image: 
$$\displaystyle\begin{array}{rcl} \hat{\theta }= \frac{\sum _{i,j}(\bar{Y }_{i.} -\bar{\bar{ Y }}_{..})(\bar{Y }_{.j} -\bar{\bar{ Y }}_{..})(Y _{ij} -\bar{ Y }_{i.} -\bar{ Y }_{.j} +\bar{\bar{ Y }}_{..})} {\sum _{i,j}(\bar{Y }_{.j} -\bar{\bar{ Y }}_{..})^{2}(\bar{Y }_{.j} -\bar{\bar{ Y }}_{..})^{2}} & & {}\\ \end{array}$$
]


 Since the numerator estimates [image: 
$$\displaystyle\begin{array}{rcl} \sum _{i,j}\alpha _{i}\beta _{j}(\theta \alpha _{i}\beta _{j}) =\theta \sum _{i,j}\alpha _{i}^{2}\beta _{ j}^{2}& & {}\\ \end{array}$$
]


 and the denominator estimates [image: 
$$\displaystyle\begin{array}{rcl} \sum _{i,j}\alpha _{i}^{2}\beta _{ j}^{2}& & {}\\ \end{array}$$
]


 it follows that [image: 
$$\displaystyle\begin{array}{rcl} \hat{\theta }= \frac{\sum _{i,j}(\bar{Y }_{i.} -\bar{\bar{ Y }}_{..})(\bar{Y }_{.j} -\bar{\bar{ Y }}_{..})(Y _{ij})} {\sum _{i,j}(\bar{Y }_{.j} -\bar{\bar{ Y }}_{..})^{2}(\bar{Y }_{.j} -\bar{\bar{ Y }}_{..})^{2}} & & {}\\ \end{array}$$
]


 From this it can be shown that if [image: 
$$\theta = 0$$
], [image: 
$$\displaystyle\begin{array}{rcl} \mathsf{S}_{\mathrm{N}} = \frac{\sum _{i,j}(\bar{Y }_{i.} -\bar{\bar{ Y }}_{..})(\bar{Y }_{.j} -\bar{\bar{ Y }}_{..})(Y _{ij})^{2}} {\sum _{i,j}(\bar{Y }_{.j} -\bar{\bar{ Y }}_{..})^{2}(\bar{Y }_{.j} -\bar{\bar{ Y }}_{..})^{2}} & &{}\end{array}$$
]

 (14.3)

 has a χ
2 distribution with 1 df, and if [image: 
$$\theta \neq 0$$
], (14.3) has a noncentral χ
2 distribution. Tukey (1949) showed that if [image: 
$$\mathsf{SS}_{\mathrm{Res}}$$
] denotes the usual residual Sum of Squares with [image: 
$$(a - 1)(b - 1)$$
] df, then [image: 
$$\displaystyle\begin{array}{rcl} \frac{\mathsf{S}_{\mathrm{N}}} {{\biggl (\frac{\mathsf{SS}_{\mathrm{Res}} -\mathsf{S}_{\mathrm{N}}} {ab - a - b} \biggr )}}& &{}\end{array}$$
]

 (14.4)

 has an F distribution with 1 and [image: 
$$ab - a - b$$
] degrees of freedom if the null hypothesis in Equation (14.2) is true and a noncentral F distribution otherwise. Therefore, the test of the no-multiplicative-interaction hypothesis is given by Equation (14.4).
Experience with this test has shown that it is sensitive to the presence of other forms of interaction.
                  
                

                  
                



14.9 Exercises

14.1. Peterson (1985) reports an experiment to determine the effect of the annealing (heating to be followed by slow cooling) temperature on the strength of three metal alloys. Four temperatures were used: 675, 700, 725, and 750 degrees Fahrenheit. It was only possible to make one run per day in each of the four ovens available for the experiment, but all three alloys were accommodated in each oven run. The experimenter regarded this as a split plot design with days as blocks and ovens as plots. The data are in data(anneal). Perform a complete analysis including data plots and an investigation of the borderline significant interaction.

14.2. Peterson (1985) discusses an experiment to compare the yield in kg/plot of four varieties of beans (New Era, Big Green, Little Gem, and Red Lake), also taking into account 3 spacings between rows, 20, 40, and 60 cm. A randomized block design was used, with four blocks. The data are in data(bean). Analyze the data including an investigation of the simple effects of variety at each level of spacing.

14.3. Barnett and Mead (1956), also in Johnson and Leone (1967), discuss an experiment to determine the efficiency of radioactivity decontamination. The response is a measure (alpha activity) of remaining contamination, modeled by these four 2-level factors: B:added barium chloride


A:added aluminum sulfate


C:added carbon


P:final pH





The maximum possible block size consisted of eight plots, but four blocks were used. The four-factor interaction was confounded with blocks, so that an even number of the four factors were at their upper levels in blocks 1 and 3, and an odd number of the four factors were at their upper levels in blocks 2 and 4. The experimental layout is implicit in data(radioact). Assuming that all three-factor interactions are negligible and that treatments do not interact with blocks, perform an analysis of variance and produce estimated contrasts to determine which factors and two-factor interactions contribute most to the remaining contamination. Produce a written recommendation for the client.

14.4. Neter et al. (1996) describe an experiment to examine the effect of two irrigation methods and two fertilizers on the yield of wheat. The data are in data(wheat). Five fields were available to conduct this experiment. Each field was divided into two Plots to which the two irrigation methods were randomly assigned. Each Plot was subdivided into two Subplots to which the fertilizers were randomly assigned. Perform a complete analysis. Produce a written recommendation for the farmer. (The Plot and Subplot factors were not in our source. We added them to the dataset to be consistent with our emphasis in Section 14.3 on the importance of distinguishing between the plot structure of the experimental material and the assigned treatments.)

14.5. In Section 14.3 it is stated that use of the split plot design resulted in increased precision for inferences involving the subplot factor nitrogen at the cost of reduced precision for the whole plot factor variety. Demonstrate this by reanalyzing the data under the assumption that the experimental design was a completely random one, with no randomization restrictions. That is, compare the F-tests for nitrogen and for variety under both design assumptions.

14.6. 
                
               Fouts (1973) reports on an experiment in which times in minutes were recorded for each of 4 chimpanzees to learn each of 10 signs of American Sign Language. The data are in data(chimp).

              a.Use the Tukey one-degree-of-freedom test to check whether there is interaction between sign and chimpanzee.

 

b.Is there evidence that the signs differ in the time required for the chimps to securely learn them? Discuss.

 



            

              14.7.
            
In Section 14.3.1 we note that the three-factor representation of the split plot design gives the same ANOVA table as the more complete five-factor representation. In this exercise we ask you to verify that statement by looking at the column space spanned by the various dummy variables
                
               implicitly defined by the model formula. Review the definitions of column space and orthogonal bases in Appendix Section I.4. We continue with the example in Section 14.3. The R code for this exercise is in chunk 53 of file HHscriptnames(14).

              a.The whole plot column space is defined by the

                          plots %in% blocks
                    
dummy variables generated by the alternate residuals formula: orthogonal contrasts are critical.
data(yatesppl)
yatesppl.resida.aov <-
   aov(y ~ blocks/plots,
      data=yatesppl, x=TRUE,
      contrasts=list(blocks=contr.helmert,
                     plots=contr.helmert))
summary(yatesppl.resida.aov)
t(yatesppl.resida.aov$x)

 

b.This is the same column space defined by the

                          variety + blocks:variety
                    
dummy variables generated by the computational shortcut
yatesppl.short.aov <-
  aov(terms(y ~ blocks + variety + blocks*variety +
            nitrogen + variety*nitrogen,
            keep.order=TRUE),
            ## try it without keep.order=TRUE
      data=yatesppl, x=TRUE)
summary(yatesppl.short.aov)
t(yatesppl.short.aov$x)

 

c.We illustrate this by regressing the response variable y on the

                          variety + blocks:variety
                    
dummy variables:
## project y onto blocks/plots dummy variables
plots.aov <-
  lm(y ~ yatesppl.resida.aov$x[,7:18], data=yatesppl)
summary.aov(plots.aov)
y.bp <- predict(plots.aov)
variety.aov <-
  aov(y.bp ~ blocks*variety, data=yatesppl)
summary(variety.aov)
and seeing that we reproduce the

                          plots %in% blocks
                    
stratum of the ANOVA table
Error: plots %in% blocks
          Df Sum of Sq  Mean Sq F Value     Pr(F)
  variety  2  1786.361 893.1806 1.48534 0.2723869
Residuals 10  6013.306 601.3306
obtained from the complete five-factor specification.
## split plot analysis
yatesppl.anova <-
  aov(y ~ variety*nitrogen +
          Error(blocks/plots/subplots),
      data=yatesppl)
summary(yatesppl.anova)

 



            

14.8. 
                
               Tables 14.16 and 14.17 show two different analyses for Model 2 yield.block ~ pre.block * treat. Confirm that the difference between them is in the choice of dummy variables for the pre.block:treat interaction term. Do so by constructing both sets of dummy variables and regressing one against the other. The residuals are nonzero. File HHscriptnames(14) contains code for both sets of dummy variables.
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In this chapter we discuss bivariate
              
             discrete distributions.
              
             Bivariate means that there are two factors
              
             (categorical variables)
              
             defining cells.
              
             The response values are frequencies, that is, counts or instances of observations, at each cell.
It is convenient to arrange such data in a contingency
              
             table, that is, a table with r rows representing the possible values of one categorical variable and c columns representing the possible values of the other categorical variable. Each of the rc cells of the table contains an integer, the number of observations having the levels of the two variables specified by the cell location. We give extra attention to the special case where r = c = 2, that is, a 2 × 2 contingency table.
This data type is different from situations with two categorical variables (factors) described in Chapters 12 through 14. In those chapters the response variables are one or more continuous measurements at each cell.
We introduce a relatively new form of graph, the mosaic plot, which along with related plots we access through the R package vcd “Visualizing Categorical Data”. In simplest terms, a mosaic plot consists of a tiling of rectangles (hence the name) where the height, width, and area (product of height and width) are each interpretable.
15.1 Two-Dimensional Contingency Tables—Chi-Square Analysis

              
                
              
            
15.1.1 Example—Drunkenness Data
Table 15.1 shows the number of persons convicted of drunkenness in two London courts during the first six months of 1970. The data come from Cook (1971), later reprinted in Hand et al. (1994). The dataset is accessed as data(drunk). There are two rows, males and females. The five columns are five age categories. The question of interest is whether the age distribution of convicted offenders is the same for both genders, or equivalently, as illustrated in the bar chart of Figure 15.1, if the proportion of female offenders is the same for all age categories.[image: A77776_2_En_15_Fig1_HTML.gif]
Fig. 15.1Proportion female for drunkenness data.




Table 15.1Persons convicted of drunkenness in two London courts during the first six months of 1970.


	Age group
	0–29
	 30–39
	 40–49
	 50–59
	  ≥ 60

	Number of males
	185
	207
	260
	180
	71

	Number of females
	4
	13
	10
	7
	10





We show the mosaic plot of the same data in Figure 15.2.[image: A77776_2_En_15_Fig2_HTML.gif]
Fig. 15.2Mosaic plot of the drunkenness data. The widths of the sets of tiles for each age group are proportional to the counts of all persons in that age groups. The heights of the bottom set of tiles (females) are the same as the heights of the bars in Figure 15.1 and are the proportions female within each age group. The area of each tile is proportional to the count of individuals of that sex and age group.





The tabular display from the chi-square analysis (to be described in Section  15.1.2) is in Table 15.2.
                  
                
                                Table 15.2Chi-square analysis of Drunkenness Data.


[image: A77776_2_En_15_Figa_HTML.gif]



The p-value.0042 for the chi-square test strongly suggests an association between age and gender of convicted offenders, that is, the proportion of females in each age group is not identical. From the “Cell Chi-square” values in Table 15.2 and their square roots displayed in Figure 15.3, it seems that only 1 of the 10 cells contributes appreciably to total chi-square. The cell for female offenders aged at least 60 contributes 10.34, or 68%, of the total chi-square value 15.25. We observe 10 female offenders aged at least 60, but under the null hypothesis of independence we expect only 3.8 offenders. No other cell is suggestive of dependence.
                  
                
[image: A77776_2_En_15_Fig3_HTML.gif]
Fig. 15.3Cell chi-deviations (residuals from Table 15.2, also the signed square root of the cell chi-square values [image: 
$$\chi _{ij} = (n_{ij} - e_{ij})/\sqrt{e_{ij}}\,$$
]) for drunkenness data. The signed heights of these bars are the same as the signed heights of the bars in the association plot in Figure 15.4.




[image: A77776_2_En_15_Fig4_HTML.gif]
Fig. 15.4Association plot for the drunk dataset. The heights of the rectangles are proportional to the cell residual values [image: 
$$\chi _{ij} = (n_{ij} - e_{ij})/\sqrt{e_{ij}}$$
] (the same heights as in Figure 15.3), the widths of the rectangles are proportional to the square root of the cell expected values [image: 
$$\sqrt{e_{ ij}}\,$$
], and therefore the areas are proportional to the difference in observed and expected frequencies n

                          ij
                         − e

                          ij
                        .





We must be careful not to overinterpret this finding as meaning that older females have a greater tendency toward this crime than older males. We believe that the finding may be an artifact of the demographic distribution. The population proportion of females under the age of 60 is roughly 50%. This proportion tends to increase after age 60 because of higher male mortality beginning at approximately that age. Therefore, it is possible that this study could have been improved by adjusting the responses to a per capita basis.

15.1.2 Chi-Square Analysis
When we work with two-dimensional tables, such as this example, we often want to test whether the row and column classifications are independent,
                  
                 that is, whether the probability of an entry’s being in a particular row is independent of the entry’s column.
When r = 2, the test is essentially asking whether the proportion of data in Row 1 is homogeneous across the c columns, i.e., whether c binomial populations have the same (unspecified) proportion parameter. Therefore, this is a generalization of the inferences comparing c = 2 population proportions discussed in Chapter 5 to c ≥ 2 population proportions.
If the total number of observations n is sufficiently large and if none of the rc expected cell frequencies is less than somewhere between 3 and 5, the chi-square distribution
                  
                 may be used to test the hypothesis of independence. The logical idea behind this test is to compare, in each of the cells, The test statistic is a function of the aggregate discrepancy between the n

                  ij
                ’s and e

                  ij
                ’s.	
                            n
                            
                              ij
                            
                          
	the observed frequency in the cell in row i and column j


	with

	
                            e
                            
                              ij
                            
                          
	the expected frequency calculated under the assumption

	 	that the independence null hypothesis is true.





Define [image: 
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{lcll} n_{i.} & =&\sum _{j}n_{ij} &\text{the row totals} \\ n_{.j} & =&\sum _{i}n_{ij} &\text{the column totals} \\ n = n_{..}& =&\sum _{i,j}n_{ij}&\text{the grand total}\end{array} \right .& &{}\end{array}$$
]

 (15.1)

 Under the null hypothesis of independence between rows and columns, the expected frequency for the cell in row i and column j is [image: 
$$\displaystyle\begin{array}{rcl} e_{ij} = \frac{n_{i.}\,n_{.j}} {n} & &{}\end{array}$$
]

 (15.2)

 The cell residuals, also called chi-deviations or scaled deviations,
                  
                 [image: 
$$\displaystyle\begin{array}{rcl} \chi _{ij} = \frac{n_{ij} - e_{ij}} {\sqrt{e_{ij}}} & &{}\end{array}$$
]

 (15.3)

 are displayed in Figure 15.3. The squares, the cell chi-square values χ

                  ij
                
2, are displayed in Figure 15.3 and also displayed in Table 15.2.
The assoc function in the vcd package provides an alternative plot of the chi-deviations. In Figure 15.4 we see the association plot for the drunk dataset. The heights of the rectangles are proportional to the cell residual values χ

                  ij
                , the widths of the rectangles are proportional to the square root of the cell expected values [image: 
$$\sqrt{e_{ ij}}$$
], and therefore the areas are proportional to the difference in observed and expected frequencies n

                  ij
                 − e

                  ij
                .
                  
                

The test statistic is the sum of the scaled deviations squared [image: 
$$\displaystyle\begin{array}{rcl} \hat{\chi }^{2} =\sum _{ ij}\frac{(n_{ij} - e_{ij})^{2}} {e_{ij}} & &{}\end{array}$$
]

 (15.4)

 where the sum is taken over all rows and columns. If the null hypothesis is true, [image: 
$$\hat{\chi }^{2}$$
] has, approximately, a chi-square distribution with (r − 1)(c − 1) degrees of freedom, and the p-value is [image: 
$$1 -\mathcal{F}_{\chi ^{2}}(\hat{\chi }^{2}\mid (r - 1)(c - 1))$$
], the chi-square tail probability associated with [image: 
$$\hat{\chi }^{2}$$
]. Most authorities agree that the chi-square approximation is good if almost all e

                  ij
                 are at least 5 and none is less than 3. The degrees-of-freedom formula derives from the fact that if all marginal totals are given, knowledge of (r − 1)(c − 1) interior values uniquely determines the remaining r + c − 1 interior values.
Apart from the degrees-of-freedom calculation, the form of this test, comparing observed and expected frequencies, is identical to the goodness-of-fit test
                  
                 described in Section 5.​7.​1 This methodology can be extended to contingency tables having more than two dimensions.
Further analysis is required to assess the nature of any lack of independence that is suggested by the chi-square test. One approach to this is discussed in the next paragraph. Another is a multivariate display technique called correspondence analysis. See Greenacre (1984) for an introduction to this topic.
The chi-square test of independence
                  
                , shown in Table 15.2, is the default display from chisq.test. The result of the test also contains each cell’s observed value n

                  ij
                , expected value e

                  ij
                , residual (square root of its contribution to the chi-square statistic) χ

                  ij
                .
Cells with a sizeable cell chi-square value have an appreciable discrepancy between their observed and expected frequency. Scrutiny of such cells leads to interpretation of the nature of the dependence between rows and columns. A cell chi-square is calculated as (n − e)2∕e, where n and e are, respectively, the cell’s observed frequency and expected frequency under the null hypothesis. Under the model that observations are randomly assigned to cells with a Poisson distribution, the variance of n is also e. Hence (n − e)2∕e has the form [image: 
$$\displaystyle\begin{array}{rcl} \frac{(n - E(n))^{2}} {\mathop{\mbox{ var}}(n)} & & {}\\ \end{array}$$
]


 and, using the normal approximation, we interpret it as approximately a one-df chi-square statistic. Since the 95th and 99th percentiles of this chi-square distribution are 3.84 and 6.63, we recommend reporting the discrepancy between the observed and expected frequency for all cells with cell chi-square exceeding the higher value. Also, consideration should be given to reporting cells having chi-square between 3.84 and 6.63 when the discrepancy between the cell’s observed and expected frequency can be meaningfully interpreted.
                  
                



15.2 Two-Dimensional Contingency Tables—Fisher’s Exact Test

              
                
              
              
                
              
            
An alternative to the approximate chi-square statistic discussed above is Fisher’s exact test, which uses the exact hypergeometric
                
               distribution probabilities calculated for all tables at least as extreme in the alternative hypothesis direction as the existing table. Since it is exact, this procedure, when available, is preferable to the chi-square test, but it is extremely computer intensive for all but the smallest tables, even by contemporary standards.
Fisher’s exact test is available in R as fisher.test(x), where x is a two-dimensional contingency table in matrix form. For tables larger than 2 × 2, only the two-sided test is available.
15.2.1 Example—Do Juvenile Delinquents Eschew Wearing Eyeglasses?
Weindling et al. (1986) discuss a small study of juvenile delinquent boys and a control group of nondelinquents. The data in Table 15.3 also appear in Hand et al. (1994). All of these subjects failed a vision test. The boys were also classified according to whether or not they wore glasses.Table 15.3Wearing prescribed glasses and juvenile delinquency.


	 	Juvenile delinquents
	 Nondelinquents

	Wears glasses
	1
	5

	Doesn’t wear glasses
	8
	2





Clearly, the data set is much too small to use the chi-square analysis of the previous section. Therefore, we request an analysis using Fisher’s exact test, shown in Table 15.4. We are interested in the two-sided p-value,.0350. Since this falls between the two thresholds.01 and.05, we can say there is suggestive but inconclusive evidence that a smaller proportion of delinquents than nondelinquents wear glasses.
                  
                

                  
                

                  
                
Table 15.4Fisher’s exact test of glasses data. Is the proportion of delinquents who wear glasses the same as the proportion of nondelinquents who wear glasses Fisher’s exact test for glasses data. The p-value for the two-sided exact test is.035. Compare this to p = . 0134 from the (uncorrected) chi-square approximation that R warns might be incorrect.


[image: A77776_2_En_15_Figb_HTML.gif]


Table 15.5All possible 2×2 tables with the same margins as the observed glasses table. In these tables glasses denotes “wears glasses” and del denotes “delinquent.” We show the probabilities of each under the assumption of a hypergeometric distribution for the [1,1] position and the common row and column cell margins. The observed table 1 is marked with “∗” and the more extreme tables in the same tail 0 and opposite tail 6 are marked “ < ”. The mosaic plots of each of the tables are shown in Figure 15.5. The probabilities of each of the tables are graphed in Figure 15.6.


[image: A77776_2_En_15_Figc_HTML.gif]


[image: A77776_2_En_15_Fig5_HTML.gif]
Fig. 15.5All possible 2×2 tables with the same margins as the observed glasses table. The numerical values corresponding to this figure are in Table 15.5. The observed table is Table 1. In each table we are comparing the proportion of glasses within delinq to the proportion of glasses within non.del. The widths of each bar are proportional to the count of people in that category of delinquent. The heights are percents of wearer within that category of delinquent and therefore add up to 100% in each column.




[image: A77776_2_En_15_Fig6_HTML.gif]
Fig. 15.6Probabilities for all possible 2×2 tables with the same margins as the observed glasses table.






                
                  
                
              

                
                  
                
              
The calculation of the p-values for Fisher’s exact test utilizes the hypergeometric probability distribution
                  
                 discussed in Appendix J to calculate the probability of obtaining the observed table and “more extreme” tables assuming that the table’s marginal totals are fixed. We illustrate the calculations in Table 15.5. The observed table is shown in Column 1. The remaining columns, indexed by the [1,1] cell count, show all possible tables with the same row and column margins. The probability of observing the counts in Table 15.3 (identical to Column 1, marked “∗”, in Table 15.5) given this table’s marginal totals is [image: 
$$\displaystyle\begin{array}{rcl} \frac{{9\choose 1}{7\choose 5}} {{16\choose 6}} = 0.0236& & {}\\ \end{array}$$
]


 The one-sided p-value is the sum of this probability and the probability, 0.0009, of the more extreme table 0 on the same tail of the distribution.
Table 6, the more extreme on the opposite tail of the distribution, has probability [image: 
$$\displaystyle\begin{array}{rcl} \frac{{9\choose 6}{7\choose 0}} {{16\choose 6}} = 0.0105& & {}\\ \end{array}$$
]


 The two-sided p-value is the sum of the probabilities of the observed table and both more extreme tables, 0.0236 + 0.0009 + 0.0105 = 0.0350.
                  
                 The R code for the probability calculations is included in file HHscriptnames(15).


15.3 Simpson’s Paradox

              
                
              
            
Simpson’s paradox, a counterintuitive situation, occurs when the presence of a third variable is unexpectedly responsible for a change, or even reversal, of the relationship between two categorical variables. The following example taken from Blyth (1972), with dataset data(blyth), illustrates this phenomenon.
The data, including the margin summed over location, are shown in Table 15.6 and Figure 15.7. A medical researcher selected 11,000 human subjects at location A and 10,100 subjects at location B. At A, 1,000 of the subjects were randomly assigned to the standard treatment (standard) and the remaining 10,000 subjects were assigned to a new treatment (new). At B, 10,000 of the subjects were randomly assigned to standard and the remaining 100 subjects were assigned to new. Eventually, each subject was classified as not-survived (not) or survived (survive).
                
              
Table 15.6Blyth’s data illustrating Simpson’s Paradox. Within each location (A and B), the new treatment has a higher survival rate than standard treatment. Summed over locations (A&B combined), new has a lower survival rate than standard. We show several different style graphs of the Counts and Proportions for this dataset in Figure 15.7.
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[image: A77776_2_En_15_Figd_HTML.gif]
Fig. 15.7Blyth’s data illustrating Simpson’s paradox. Within each location (A and B), the new treatment has a higher survival rate than standard treatment. Summed over locations, new has a lower survival rate than standard. We note that the combined location information is almost the same as the B–standard and A–new information. The great disparity in counts among the four Location–Treatment groups makes it difficult to see the survival rates in the stacked bar chart in Panel a. The rates are easier to see in the stacked bar chart of percents in Panel b. They are less easy to see in the bar chart of only survive rates in Panel c—these bars are identical to the bottom bars in Panel b, but the visual sense of proportion is missing. The mosaic plot in Panel d shows three summaries: Counts of treatment assignments—as widths of each set of bars, Percents surviving conditional on Location–Treatment—as the relative heights of the bars in each Location–Treatment combination, and Counts of each Location–Treatment combination—as areas of each rectangle. In Panel e, the Likert plot of Counts, we again can barely see the B–new bars. In Panel f, the Likert plot of Percents, we print the observation counts for the Location–Treatment combinations above the bars. In the Likert plots (diverging stacked barcharts), the not survive values are shown diverging down from zero. In the other plots, the vertical range is from 0% to 100% and the not survive values are stacked above the survive values.




              
                
              
            
Table 15.6. The intent is to show for each Location that the percentage surviving with the new Treatment is larger than with the standard treatment, but that the reverse is true when the two Locations are combined. This portrayal fails for these data because it is not possible to distinguish the very small counts 5, 50, and 95 in three of the eight cells in Table 15.6 when they are displayed on a common numerical scale with counts ranging from 950 to 9,005 in the table’s other cells.
The paradox is better communicated by Figure 15.7 panels b,c,d,f which graph the percentages themselves. We observe that in Location A, the percent surviving following the new Treatment was 10% as compared to 5% with the standard treatment. In Location B, the new Treatment improved the survival percentage to 95% from 50% for the standard Treatment. It seems that the new Treatment was very successful. Now look at the summary results for both Locations combined. The survival rate for the standard Treatment is 46%, but it is only 11% for the new Treatment. The combined results suggest that the new Treatment is a disaster!
The substantive reason for this finding is that the subjects in Location A were much less healthy than those in B and the new Treatment was given mostly to subjects in A, where it could not be expected to fare as well as with subjects in B. That is, the factors Treatment and Location are not independent. When this is so, it can happen as here that [image: 
$$\displaystyle\begin{array}{rcl} P(\mathtt{survive}\mid \mathtt{new})& <& P(\mathtt{survive}\mid \mathtt{standard}) {}\\ \mbox{ while both}& & {}\\ P(\mathtt{survive}\mid \mathtt{new}\cap A)& \geq & P(\mathtt{survive}\mid \mathtt{standard}\cap A) {}\\ \mbox{ and}& & {}\\ P(\mathtt{survive}\mid \mathtt{new}\cap B)& \geq & P(\mathtt{survive}\mid \mathtt{standard}\cap B) {}\\ \end{array}$$
]


 corresponding to. 11 < . 46 but. 10 > . 05 and. 95 > . 50 in this example.
The Percent panels b,c,d,f of Figure 15.7 display the disparity better than the Count panels a,e because they transform the observed data from the scale reported by the client to the proportion scale, a scale in which the reversal is visible. In the proportion scale, most strongly in the mosaic plot in Panel d, we can easily see that the combined location information is almost the same as the B–standard and A–new information. In retrospect we can also see the same information in the Count panels. We can explain it by noting that there is almost no data in the A–standard and B–new cells; hence the combined information really is just the B–standard and A–new information plus a little noise.
When analyzing contingency table data, we should be alert to the possibility illustrated in this example that results for tables individually can differ from those when these tables are combined.
What is the resolution in situations such as this where individual results contradict combined results? Almost always, the individual results have more credence because combining such individuals cannot be adequately justified. In Blyth’s example, the disparity between individual and combined results could have been attributable to different baseline health status of the patients at the two locations. Or it could be an artifact of the radically different treatment allocation patterns at the two locations.
Simpson’s paradox is the discrete analogue of the ecological fallacy
                
               discussed in Section 4.​2 It is also related to the need to examine simple effects in the presence of interaction of qualitative factors, discussed in Chapters 12 to 14, since both problems refer to the importance of distinguishing overall conclusions from conclusions
                
               for subgroups.

15.4 Relative Risk and Odds Ratios

              
                
              
              
                
              
              
                
              
            
Analysis of data arranged in a 2 × 2 table is equivalent to comparing two proportions. However, analyzing the difference p
1 − p
2 via a CI or test as outlined in Chapter 5 is often not an appropriate way to compare them. Instead a measure of relative difference is appropriate. Consider two cases, the first with p
1 = . 02 and p
2 = . 07 and the second with p
1 = . 50 and p
2 = . 55. In both cases, p
2 − p
1 = . 05. However, in the first case, p
2 is 250% more than p
1, but in the second case p
2 is only 10% more than p
1, and from this point of view it is inadequate to merely consider differences of proportions, particularly proportions close to either 0 or 1.
We discuss two additional measures for comparing two proportions. The first, the relative risk, is simply the ratio of the two proportions, [image: 
$$\hat{p}_{1}/\hat{p}_{2}$$
].
The odds ratio

                
               is a widely used measure of relative difference. It is more informative than a chi-square test for a 2 × 2 table because it measures the magnitude of difference between two proportions. Unlike the chi-square test, the odds ratio is minimally affected by the size of the sample.
Based on the definition of odds in Equation (3.​2), if [image: 
$$\hat{p}$$
] is an estimated probability of success, the estimated odds in favor of success are [image: 
$$\hat{\omega }= \hat{p}/(1 -\hat{ p})$$
]. For comparing two estimated proportions, [image: 
$$\hat{p}_{1}$$
] and [image: 
$$\hat{p}_{2}$$
] in a 2 × 2 contingency table, the estimated ratio of two odds, the odds ratio, is [image: 
$$\displaystyle\begin{array}{rcl} \hat{\varPsi }=\hat{\omega } _{2}/\hat{\omega }_{1}& &{}\end{array}$$
]

 (15.5)

 A quick way to hand-calculate the estimated odds ratio is [image: 
$$\hat{\varPsi }= (n_{11}n_{22})/(n_{21}n_{12})$$
], and for this reason the odds ratio is also known as the cross-product ratio.
                
              

If the odds ratio exceeds 1 so does the relative risk, and conversely.
15.4.1 Glasses (Again)
For example, reconsider the data of Section 15.2.1. The relative risk is [image: 
$$\displaystyle\begin{array}{rcl} \frac{\left ( \frac{8} {10}\right )} {\left (\frac{1} {6}\right )} = 4.8& & {}\\ \end{array}$$
]


 This says that based on these data, nonwearers of glasses are four times more likely to become delinquent than wearers of glasses.
The odds ratio is [image: 
$$\displaystyle\begin{array}{rcl} \hat{\varPsi }= \frac{\left ( \frac{\frac{5} {7}} {1 -\frac{5} {7}}\right )} {\left ( \frac{\frac{1} {9}} {1 -\frac{1} {9}}\right )} = 20& & {}\\ \end{array}$$
]


 This means that the odds that a nondelinquent wears glasses are estimated to be 20 times the odds that a delinquent wears glasses. Alternatively, the odds that a delinquent wears glasses are estimated as 1/20 times the odds that a nondelinquent wears glasses. If this ratio had been maintained for a larger sample, an implication might have been that police needn’t pay much attention to boys wearing glasses.
Often investigators report the log of the odds ratio since the change in the reference group simply reverses the sign of the log odds: [image: 
$$\ln (20) = 2.996$$
] and [image: 
$$\ln {\bigl ( \frac{1} {20}\bigr )} = -2.996.$$
]


15.4.2 Large Sample Approximations
A useful property of both the odds ratio and the relative risk is that for large sample sizes, the log of the estimated odds ratio and the log of the estimated relative risk are approximately normally distributed.
15.4.2.1 Odds Ratio
From Agresti (1990) Equation (3.​15) we find the log of the estimated odds ratio is approximately normally distributed [image: 
$$\displaystyle\begin{array}{rcl} \ln (\hat{\varPsi }) \sim N\left (\ln (\varPsi ),\,\sigma _{\ln (\hat{\varPsi })}^{2}\right )& &{}\end{array}$$
]

 (15.6)

 with mean equal to the log of the population odds ratio and estimated variance [image: 
$$\displaystyle\begin{array}{rcl} \hat{\sigma }_{\ln (\hat{\varPsi })}^{2} = \frac{1} {n_{11}} + \frac{1} {n_{12}} + \frac{1} {n_{21}} + \frac{1} {n_{22}}& &{}\end{array}$$
]

 (15.7)

 These facts lead to large sample confidence intervals and hypothesis tests for odds ratios. A test of [image: 
$$H_{0}: \ln (\varPsi ) = 0$$
], or equivalently, Ψ = 1, is based on [image: 
$$\displaystyle\begin{array}{rcl} z_{\mbox{ calc}} = \frac{\ln (\hat{\varPsi })} {\sqrt{ \frac{1} {n_{11}} + \frac{1} {n_{12}} + \frac{1} {n_{21}} + \frac{1} {n_{22}}} } & & {}\\ \end{array}$$
]


 An approximate 100(1 −α)% confidence interval on [image: 
$$\ln (\varPsi )$$
] is [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ CI}{\bigl (\ln (\varPsi )\bigr )} =\ln (\hat{\varPsi }) \pm z_{\mbox{ $ \frac{\alpha }{ 2} $}}\,\sqrt{ \frac{1} {n_{11}} + \frac{1} {n_{12}} + \frac{1} {n_{21}} + \frac{1} {n_{22}}} = (L,U)& &{}\end{array}$$
]

 (15.8)

 If we denote this interval by (L, U), the approximate confidence interval on the odds ratio Ψ
21 is (e

                    L
                  , e

                    U
                  ).

15.4.2.2 Relative Risk
From Agresti (1990) Equation (3.​18) we find the log of the estimated relative risk is approximately normally distributed [image: 
$$\displaystyle\begin{array}{rcl} \ln (\hat{p}_{1}/\hat{p}_{2}) \sim N\left (\ln (p_{1}/p_{2}),\,\sigma _{\ln (\hat{p}_{1}/\hat{p}_{2})}^{2}\right )& &{}\end{array}$$
]

 (15.9)

 with mean equal to the log of the population relative risk and estimated variance [image: 
$$\displaystyle\begin{array}{rcl} \hat{\sigma }_{\ln (\hat{p}_{1}/\hat{p}_{2})}^{2} = \sqrt{\frac{1 - p_{1 } } {p_{1}\,n_{1}} + \frac{1 - p_{2}} {p_{2}\,n_{2}}} & &{}\end{array}$$
]

 (15.10)

 These facts lead to large sample confidence intervals and hypothesis tests for relative risks. A test of [image: 
$$H_{0}: \ln (\hat{p}_{1}/\hat{p}_{2}) = 0$$
], or equivalently, [image: 
$$\hat{p}_{1}/\hat{p}_{2} = 1$$
], is based on [image: 
$$\displaystyle\begin{array}{rcl} z_{\mbox{ calc}} = \frac{\ln (\hat{p}_{1}/\hat{p}_{2})} {\sqrt{\frac{1-p_{1 } } {p_{1}n_{1}} + \frac{1-p_{2}} {p_{2}n_{2}}} } & & {}\\ \end{array}$$
]


 An approximate 100(1 −α)% confidence interval on [image: 
$$\ln (\hat{p}_{1}/\hat{p}_{2})$$
] is [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ CI}{\bigl (\ln (\hat{p}_{1}/\hat{p}_{2})\bigr )} =\ln (\hat{p}_{1}/\hat{p}_{2}) \pm z_{\mbox{ $ \frac{\alpha }{ 2} $}}\,\sqrt{\frac{1 - p_{1 } } {p_{1}n_{1}} + \frac{1 - p_{2}} {p_{2}n_{2}}} = (L,U)& &{}\end{array}$$
]

 (15.11)

 If we denote this interval by (L, U), the approximate confidence interval on the relative risk Ψ
21 is (e

                    L
                  , e

                    U
                  ).


15.4.3 Example—Treating Cardiac Arrest with Therapeutic Hypothermia
Holzer (2002) supervised a multicenter trial of patients who were randomly assigned to receive or not receive therapeutic hypothermia (lowered body temperature) to assist in recovery following resuscitation from cardiac arrest. Six months after cardiac arrest, patients were classified as having a favorable neurologic outcome or not. Of the 136 patients treated with hypothermia, 75 had a favorable neurological outcome. Of the 137 patients not treated with hypothermia, 54 had a favorable neurological outcome (see Table 15.7 and Figure 15.8 for the counts and Figure 15.9 for the odds and log of the odds). All patients received standard treatment for cardiac arrest apart from hypothermia and the treatment was blinded from the assessors of the outcome.Table 15.7Results of therapeutic hypothermia investigation Holzer (2002).


[image: A77776_2_En_15_Figf_HTML.gif]



For a patient who receives the therapeutic hypothermia treatment, the estimated odds in favor of a favorable neurologic outcome are [image: 
$$\displaystyle\begin{array}{rcl} \hat{\omega }_{2} = \left ( \frac{ \frac{75} {136}} {1 - \frac{75} {136}}\right ) \approx 1.23& & {}\\ \end{array}$$
]


 For a patient who does not receive this treatment, the estimated odds in favor of a favorable neurological outcome are [image: 
$$\displaystyle\begin{array}{rcl} \hat{\omega }_{1} = \left ( \frac{ \frac{54} {137}} {1 - \frac{54} {137}}\right ) \approx 0.65& & {}\\ \end{array}$$
]


 The odds and log odds are plotted in Figure 15.9.
The estimated odds ratio is [image: 
$$\displaystyle\begin{array}{rcl} \hat{\varPsi }= \frac{\hat{\omega }_{2}} {\hat{\omega }_{1}} = \frac{(75)(83)} {(54)(61)} \approx 1.8898& & {}\\ \end{array}$$
]


 The reader can verify that the estimated standard deviation of the [image: 
$$\log$$
] of the odds ratio is 0.246, and that this leads to an approximate 95% confidence interval (1. 168, 3. 058) for the population odds ratio.
[image: A77776_2_En_15_Fig8_HTML.gif]
Fig. 15.8mosaic(Outcome ~ Treatment)
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Fig. 15.9Barchart of odds and barchart of logit.



For the hypothermia example with α = . 05, we have [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ CI}{\bigl (\ln (\varPsi )\bigr )} =\ln (1.8898) \pm 1.96\,\sqrt{ \frac{1} {75} + \frac{1} {54} + \frac{1} {61} + \frac{1} {83}} \approx (0.1552,1.1177)& & {}\\ \end{array}$$
]


 We therefore have an approximate confidence interval on the odds ratio of [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ CI}(\varPsi ) \approx (1.168,3.058)& & {}\\ \end{array}$$
]




This means that the odds of a favorable neurological outcome for a patient receiving the therapeutic hypothermia treatment are estimated to be between 1.17 and 3.06 times the odds of a favorable neurological outcome for a patient not receiving this particular treatment. Further, the calculated z-statistic for a test of the one-sided alternative hypothesis that the population odds ratio exceeds 1 is 2.592, with corresponding p-value less than 0.01. Therefore, there is strong evidence that the therapeutic hypothermia treatment improves probability of a successful neurological outcome.
For fixed probability of favorable outcome for control patients of 54∕137 = . 3942, corresponding to fixed odds of favorable outcome of. 3942∕. 6058 = . 6506, the point estimate for the odds of favorable outcome for treated patients is given by 1. 8898×. 6506 = 1. 2295, and an estimated confidence interval for the odds by (1.168×.6506, 3.058×.6506) = (0.7599, 1.9895). The corresponding point and interval estimates for the probabilities of outcome for treated are 	estimate
	 	                        favorable

	point
	 	1.2295/2.2295
	=
	0.5515

	interval
	 	(0.7599/1.7599, 1.9895/2.9895)
	=
	(0.4318, 0.6655)



 The point estimate of the probability of favorable outcome for treated is exactly the observed proportion 75/136=0.5515, and the confidence interval of the proportion of favorable outcomes excludes the observed proportion for the control group.
We can extend
                  
                  
                 this discussion by assuming any fixed probability of favorable outcome for treatment and then calculating the confidence interval for the probability of favorable outcome for control. We do so in Figure 15.10 for the set of fixed probabilities [image: 
$$p_{1} = (0,.05,\ldots,1)$$
].
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Fig. 15.10Confidence intervals for P(favorable | treated) in the hypothermia example given the odds ratio. The confidence intervals are calculated from an assumed P(favorable | control) and the given odds ratio using the odds ratio formula in Equation 15.8. Details for P(favorable | control) = 54∕137 = . 3942 and P(not.favorable | control) =.6058, corresponding to given odds of favorable outcome of. 3942∕. 6058 = . 6506, are shown in Section 15.4.3. Symmetrically, we can assume any fixed probability of favorable outcome for control and then calculate the confidence interval for the probability of favorable outcome for treatment.





15.5 Retrospective and Prospective Studies

              
                
              
              
                
              
            
Consider two possible experiments to assess whether vitamin C supplementation prevents occurrences of the common cold.
In the first experiment we select 100 people who have had a cold during the past two months and 100 people who have not had a cold during the past two months. We then ask these people whether or not they have taken a daily vitamin C supplement during this period. In the second experiment we select 200 volunteers, assigning them to take no vitamin C supplementation apart from that offered by the study. We randomly assign 100 of these subjects to receive the study’s vitamin C supplement and the other 100 subjects to receive a placebo,
                
               indistinguishable by these subjects from vitamin C. Then, two months later, we ask the subjects whether or not they have had a cold since the experiment began.
The first experiment is an example of a retrospective study, also called a case–control study.
                
               Subjects having a condition are called cases,
                
               subjects not having a condition are termed controls,
                
               and subjects are cross-classified with a risk factor
                
               (present or absent). In the above example, the risk factor is presence or absence of vitamin C supplementation. In retrospective studies, the subjects are selected after the events in question have already occurred, in this case having contracted one or more colds. Such studies are common in medical research because they generally assure a larger number of subjects than prospective studies.
The second experiment is an example of a prospective study, also known as a cohort study.
                
               Samples are taken from a population of subjects classified according to two risk factors (events) defined prior to initiating sampling, in this case assignment to vitamin C or placebo.
                
               Such studies often require that subjects be followed for a period of time until the subjects are determined to have a condition or not.
In the cold example, the analysis of the retrospective study can be done immediately, but analysis of the prospective study must wait two months to see if colds develop. Prospective studies often run over a long time period; 5 to 10 years is not unusual. It is not uncommon for subjects to withdraw or be lost to the study. For this reason, it is more difficult to obtain sizeable samples from prospective studies than from retrospective ones. Prospective studies are more informative than retrospective studies. Investigators have more control over the risk factor in prospective studies than in retrospective studies. In prospective studies investigators are often able to obtain information on important confounding
                
               variables that bear on the response. Such information is usually unavailable in retrospective studies. The experiment discussed in Section 15.4.3 is an example of a prospective study.
Odds ratios
                
               are particularly important in the analysis of experiments involving retrospective studies. In a retrospective study it is unlikely that the cases can be considered a random sample of all persons afflicted with the condition. In the context of our example, we cannot be sure that the 100 selected people with colds are representative of all people with colds. Therefore, in such a study we cannot estimate the proportion of people having the risk factor who have the condition, or the proportion of people without the risk factor who have the condition. Nevertheless, in a retrospective study we are able to measure the odds ratio and we can claim that the sample odds ratio estimates the population odds ratio.
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Fig. 15.11Mosaic plot of the salk dataset. Within each age group we see that the observed proportion of non-paralysis (blue height as a fraction of total height for the bars) for the Vaccinated group is greater than or equal to the proportion of non-paralysis for the Not.Vaccinated group. The bar widths are proportional to the number of people in that age–vaccination grouping. See discussion in Section 15.7.




15.6 Mantel–Haenszel Test

              
                
              
              
                
              
              
                
              
            
Analysts are often called on to interpret k 2×2 contingency tables, related to one another by the fact that each table has the same row and column categories. The k tables usually represent the k levels of a third (categorical) factor in addition to the two-level factors specified by rows and columns. For example, we look in Table 15.8 and Figure 15.11 at data studying the effectiveness of the Salk vaccine for polio protection for k = 6 different age groups. Each of the k = 6 2×2 tables in the “Observed” column shows the response (paralysis or no.paralysis) for subjects who were or were not vaccinated (vac or no.vac). The complete discussion of the dataset and the table are in Section 15.7.Table 15.8Detail for calculation of the Cochran–Mantel–Haenszel test of the polio example. See the discussion in Section 15.7, where we find that the Mantel–Haenszel chi-square test without the continuity correction is 16.54.


	
                          Age
                        
	 	 	 	 	 	 	 	 	 	 	 	 	 	
                          [1,1] position for
                        

	
                          Group
                        
	
                          Vaccination
                        
	 	
                          Observed
                        
	 	
                          Expected
                        
	 	prob
	 	
                          Chi-Square
                        
	 	
                          Mantel–Haenszel test
                        

	 	 	 	no.par
	par
	 	no.par
	par
	 	no.par
	 	chisq
	p.chisq
	 	O
	E
	O−E
	var
	n
	dev
	mh

	
                          0–4
                        
	 no.vac
	 	10
	24
	 	15. 00
	19. 00
	 	0. 294
	 	5. 965
	0. 015
	 	10
	15. 00
	− 5. 00
	4. 25
	68
	− 2. 42
	5. 88

	 	 vac
	 	20
	14
	 	15. 00
	19. 00
	 	0. 588
	 	 	 	 	 	 	 	 	 	 	 
	
                          5–9
                        
	 no.vac
	 	3
	15
	 	7. 20
	10. 80
	 	0. 167
	 	6. 806
	0. 009
	 	3
	7. 20
	− 4. 20
	2. 65
	45
	− 2. 58
	6. 65

	 	 vac
	 	15
	12
	 	10. 80
	16. 20
	 	0. 556
	 	 	 	 	 	 	 	 	 	 	 
	
                          10–14
                        
	 no.vac
	 	3
	2
	 	3. 00
	2. 00
	 	0. 600
	 	0. 000
	1. 000
	 	3
	3. 00
	0. 00
	0. 67
	10
	0. 00
	0. 00

	 	 vac
	 	3
	2
	 	3. 00
	2. 00
	 	0. 600
	 	 	 	 	 	 	 	 	 	 	 
	
                          15–19
                        
	 no.vac
	 	1
	6
	 	3. 11
	3. 89
	 	0. 143
	 	4. 219
	0. 040
	 	1
	3. 11
	− 2. 11
	1. 12
	18
	− 2. 00
	3. 99

	 	 vac
	 	7
	4
	 	4. 89
	6. 11
	 	0. 636
	 	 	 	 	 	 	 	 	 	 	 
	
                          20–39
                        
	 no.vac
	 	7
	5
	 	8. 44
	3. 56
	 	0. 583
	 	1. 501
	0. 221
	 	7
	8. 44
	− 1. 44
	1. 44
	27
	− 1. 20
	1. 45

	 	 vac
	 	12
	3
	 	10. 56
	4. 44
	 	0. 800
	 	 	 	 	 	 	 	 	 	 	 
	
                          40+
                        
	 no.vac
	 	3
	2
	 	3. 33
	1. 67
	 	0. 600
	 	0. 600
	0. 439
	 	3
	3. 33
	− 0. 33
	0. 22
	6
	− 0. 71
	0. 50

	 	 vac
	 	1
	0
	 	0. 67
	0. 73
	 	1. 000
	 	 	 	 	 	 	 	 	 	 	 




In earlier sections of this chapter we consider procedures for testing independence of the row and column categories for individual tables. We are now interested in testing the hypothesis that all k tables show the same pattern of relation of the rows to the columns: Either all tables show independence of rows and columns or all show the same dependency structure.
The Mantel–Haenszel test, also referred to as the Cochran–Mantel–Haenszel test,
                
               tests the hypothesis that row vs column independence holds simultaneously in each table. It is designed to be sensitive to an overall consistent pattern. It has low power for detecting association when patterns of association for some strata are in the opposite direction of other strata.

              
                
              
            
Let us now look at the algebra of the test statistic. Since we now have k 2 × 2 tables, we require a third subscript on the n’s. Let the k
th table be [image: 
$$\displaystyle\begin{array}{rcl} \begin{array}{|cc|c|} \hline n_{11k}&n_{12k}&n_{1.k} \\ n_{21k} &n_{22k}&n_{2.k} \\ \hline n_{.1k} & n_{.2k} & n_{..k} \\ \hline \end{array} & & {}\\ \end{array}$$
]


 Also define [image: 
$$\displaystyle\begin{array}{rcl} e_{ijk} = \frac{(n_{i.k})\;(n_{.jk})} {n_{..k}} & & {}\\ \end{array}$$
]




to be the expected (i, j) cell count under independence in table k, and [image: 
$$\displaystyle\begin{array}{rcl} V (n_{11k}) = \frac{n_{1.k}\;\,n_{2.k}\;\,n_{.1k}\;\,n_{.2k}} {n_{..k}^{2}\;\,(n_{..k} - 1)} = \frac{e_{11k}\;\,e_{22k}} {(n_{..k} - 1)}& & {}\\ \end{array}$$
]


 to be the estimated variance of n
11k
 under the assumption of a hypergeometric distribution of a 2×2 table with fixed margins. Then we make a normal approximation and work with [image: 
$$\displaystyle\begin{array}{rcl} n_{11k} \sim N{\bigl (e_{11k},V (n_{11k})\bigr )}& & {}\\ \end{array}$$
]


 The sum [image: 
$$\sum _{k}n_{11k}$$
] is also approximately normal with mean [image: 
$$\sum _{k}e_{11k}$$
] and variance [image: 
$$\sum _{k}V (n_{11k})$$
]. We therefore use as the test statistic the quantity [image: 
$$\displaystyle\begin{array}{rcl} M^{2} = \frac{\left [\,\sum \limits _{k}n_{11k} -\sum \limits _{k}e_{11k}\right ]^{2}} {\sum \limits _{k}V (n_{11k})} & &{}\end{array}$$
]

 (15.12)

 and the p-value of the test is [image: 
$$1 -\mathcal{F}_{\chi ^{2}}(M^{2}\mid 1)$$
], the corresponding tail percentage of the chi-square distribution with 1 df.
Sometimes we will wish to use a variant of M
2 with a continuity correction and then we use [image: 
$$\displaystyle\begin{array}{rcl} M^{2} = \frac{\left [\,\left \vert \sum \limits _{k}n_{11k} -\sum \limits _{k}e_{11k}\right \vert -.5\right ]^{2}} {\sum \limits _{k}V (n_{11k})} & &{}\end{array}$$
]

 (15.13)



Inspecting the form of M
2 tells us that significance can occur under either of two conditions:
1.Most or all tables must have the observed (1, 1) cell count at least as large as expected under the null hypothesis.

 

2.Most or all tables must have the observed (1, 1) cell count at most as small as expected under the null hypothesis.

 




Equivalently, most or all of the tables must have an odds ratio either
1.at least 1, or

 

2.at most 1.

 




Note that M
2 is not the same as the chi-square statistic one gets from the 2 × 2 table formed as the sum of the k tables.

15.7 Example—Salk Polio Vaccine
Chin et al. (1961), also in Agresti (1990), discuss 174 polio cases classified by age of subject, whether or not the subject received the Salk polio vaccine, and whether the subject was ultimately paralyzed by polio. The dataset is in data(salk). We wish to learn if symptom status (paralysis or not) is independent of vaccination status after controlling for age.
Each of the k=6 “Observed” subtables in Table 15.8, one for each of k=6 age ranges, shows two estimated probabilities of no paralysis, for subjects without vaccine and subjects with vaccine. In the “0–4” subtable, for example, we see [image: 
$$p_{\mbox{ no.vac}}(\mbox{ no.par})$$
]=.294 and [image: 
$$p_{\mbox{ vac}}(\mbox{ no.par})$$
]=.588. In all cases the observed proportion with vaccine is higher. The “chi-square” column shows the ordinary contingency table chi-square for each subtable. The four subtables with older subjects do not have many observations and do not strongly support the conclusion that vaccine is better. The Cochran–Mantel–Haenszel test provides a way of combining the information, properly weighted, from all six subtables to get a stronger conclusion. The “O”, “E”, and “O−E” columns show the [1,1] or [no.vac,no.par] position from the “Observed” and “Expected” tables. “O−E” is the weighted difference of the row probabilities [image: 
$$\mbox{ O$_{i}-$E$_{i}$} = w_{i}(p_{\mbox{ no.vac}}(\mbox{ no.par}) - p_{\mbox{ vac}}(\mbox{ no.par}))$$
] [with weights w

                i
               = 1∕(1∕n
1 + 1∕n
2) for the i
th subtable, where n

                j
               is the total count on the j
th row]. While we choose to focus on the counts of the [1,1] cells, an identical conclusion would be reached if the focus were on any of the three other cells of the 2 × 2 table.
[image: A77776_2_En_15_Fig12_HTML.gif]
Fig. 15.12Standardized deviations for individual table Mantel–Haenszel values.



The “var” column shows the variance of “O−E” under the assumption of the hypergeometric distribution for O
                i
               assuming both row and column margins of the i
th table are fixed. The “dev” column is a standardized deviation, (O−E)/[image: 
$$\sqrt{\mathop{\mbox{ var}}}$$
], and the “mh” column is the squared standardized deviation. We plot the standardized deviations in Figure 15.12. The squared standardized deviation is the Mantel–Haenszel statistic for the subtable. The MH statistic for a subtable is very close to the chi-square statistic.
The Cochran–Mantel–Haenszel (CMH) test for the set of all k=6 subtables is constructed as a weighted combination of the same components used for the subtable statistics. Since each “O−E” is a random variable with mean and variance, we use Equations (3.​8) and (3.​9) to combine them. The CMH statistic is constructed from the sum of the “O−E” for the subtables, divided by the standard deviation of the sum, which is the square root of the sum of the variances: [image: 
$$\sum (\mbox{ O$-$E})/\sqrt{\sum (\mathop{\mbox{ var} })}$$
]. Then the whole is squared. Thus the CMH statistic for this example is [image: 
$$\displaystyle\begin{array}{rcl} \frac{{\bigl (\sum (\mbox{ O$-$E})\bigr )}^{2}} {\sum (\mathop{\mbox{ var}})} = \frac{(-5 - 4.20 - 0 - 2.11 - 1.44 -.33)^{2}} {(4.25 + 2.65 +.67 + 1.12 + 1.44 +.22)} = 16.54& & {}\\ \end{array}$$
]




For each of the age ranges with a sufficiently large sample, Fisher’s exact test
                
               performed on the 2 × 2 tables, shown in Table 15.9, detects a positive association between symptom and vaccination status: Persons vaccinated had a significantly lower incidence of paralysis than persons not vaccinated. In addition, each of the six 2 × 2 tables has an odds ratio [image: 
$${\bigl ((\mathrm{no.par/par})_{\mathrm{no.vac}}\bigr )}/{\bigl ((\mathrm{no.par/par})_{\mathrm{vac}}\bigr )}$$
] of at most 1. Therefore, the Mantel–Haenszel test can be used. The Mantel–Haenszel test statistic has value 16.54, which is highly significant. This means that the relationship between symptom and vaccination status is consistent over all age ranges.
                
              
Table 15.9Run Fisher’s exact test on each of the 2 × 2 tables in the “Observed” column of Table 15.8. Each of the six 2 × 2 tables has an odds ratio of at most 1. Therefore, the Mantel–Haenszel test can be used.


[image: A77776_2_En_15_Figg_HTML.gif]




15.8 Example—Adverse Experiences
Evaluation of adverse experience data is a critical aspect of all clinical trials. This dotplot of incidence and relative risk, and the specific example, are taken from Amit et al. (2008). We proposed graphics for exploratory data analysis or signal identification, and for adverse experiences (AEs, also read as adverse events) that may result from a compound’s mechanism of action or events that are of special interest to regulators.
Figure 15.13 is a two-panel display of the AEs most frequently occurring in the active arm of the study. The first panel displays their incidence by treatment group, with different symbols for each group. The second panel displays the relative risk of an event on the active arm relative to the placebo arm, with 95% confidence intervals (as defined in Equation 15.11) for a 2×2 table. The panels have the same vertical coordinates and different horizontal coordinates. R code for the construction of this plot is available as the AEdotplot function in the HH package.
If the display is not for regulatory purposes, intervals showing ± 1 s.e. may be preferred. If confidence intervals are presented, multiple comparison issues should be given consideration, particularly if there is interest in assessing the statistical significance of differences of the relative risk for so many types of events. However, the primary goal of this display is to highlight potential signals by providing an estimate of treatment effect and the precision of that estimate. The criteria for including specific AEs in the display should be carefully considered. In Figure 15.13, the criterion used was that AEs have at least 2% incidence in the active arm.
[image: A77776_2_En_15_Fig13_HTML.gif]
Fig. 15.13Adverse Events dotplot for the clinical trial discussed in Amit et al. (2008). The left panel shows the observed percents of patients who reported each adverse event. The center panel shows the relative risk of Drug B relative to Drug A with 95% confidence intervals for a 2×2 table. By default, the AEs are ordered by relative risk so that events with the largest increases in risk for the active treatment are prominent at the top of the display.



The graphical presentation of this form of data has a very strong impact. The AEs are ordered by relative risk so that events with the largest increases in risk for the active treatment are prominent at the top of the display. Unlike with a table, it is immediately obvious to the reader which are the most serious AEs. This could be reversed to put the largest increases at the bottom, or the order could be defined by the actual risk in one of the treatment arms rather than the relative risk. Depending on the desired message, other sorting options include: magnitude of relative risk, incidence of event in a given treatment arm, or total incidence of events across all arms. We do not recommend ordering alphabetically by preferred term, which is the likely default with routine programming, because that makes it more difficult to see the crucial information of relative importance of the AEs.

15.9 Ordered Categorical Scales, Including Rating Scales

              
                
              
              
                
              
              
                
              
            
Ordered Categorical Scales, including Rating scales such as Likert scales,
                
              

                
               are very common in marketing research, customer satisfaction studies, psychometrics, opinion surveys, population studies, and numerous other fields. We recommend diverging stacked bar charts as 
                
              

                
              

                
               the primary graphical display technique for Likert and related scales. We also show other applications where diverging stacked bar charts are useful. Many examples of plots of Likert scales are given. We discuss the perceptual issues in constructing these graphs.
An ordered categorical scale is an ordered list of mutually exclusive terms. Ordered categorical scales are used, for example, in questionnaires where each respondent is asked to choose one of the terms as a response to each of a series of questions. The usual summary is a table that shows the number of respondents who chose each term for each question. The summary table is a special case of a contingency table where the rows are individual questions and the columns are the ordered set of potential responses.
A rating scale is a form of psychometric scale commonly used in
                
              

                
               questionnaires. The most familiar rating scale is the Likert scale (Likert, 1932), which consists of a discrete number of choices per question among the sequence: “strongly disagree”, “disagree”, “no opinion”, “agree”, “strongly agree”. Likert-type scales may use other sequences of bipolar adjectives: “not important” to “very important”; “evil” to “good”. These scales sometimes have an odd number of levels, permitting a neutral choice. Sometimes they have an even number of levels, forcing the respondent to make a directional choice. Some ordered categorical scales are uni-directional—age ranges or population quantiles, for example—for which negative and neutral interpretations are not meaningful.
For concreteness we present in Section 15.9.1 a dataset from a survey for which a natural display is a coordinated set of diverging stacked bar charts. We introduce the dataset by showing and discussing a multi-panel plot of the entire dataset. Then we move to the construction and interpretation of individual panels.
15.9.1 Display of Professional Challenges Dataset
Our primary data example is from an Amstat News article (Luo and Keyes, 2005) reporting on survey responses to a question on job satisfaction. A total of 565 respondents replied to the survey. Each person answered one of five levels of agreement or disagreement with the question “Is your job professionally challenging?” The respondents were partitioned into nonoverlapping subsets by several different criteria. For each of the criteria, the original authors were interested in comparing the percent agreement by that criterion’s groups.
[image: A77776_2_En_15_Fig14_HTML.gif]
Fig. 15.14Survey responses to a question on job satisfaction (Luo and Keyes, 2005). A total of 565 respondents replied to the survey. Each person answered one of five levels of agreement or disagreement with the question “Is your job professionally challenging?” Each panel of the plot shows a breakdown of the respondents into categories defined by the criterion listed in its left strip label.



In Figure 15.14, we show the complete results of the survey as a coordinated set of diverging stacked bar charts. In this section we concentrate on the appearance of the plot for its function of representing the meaning of the dataset.
There are six panels in the plot. The top panel shows “All Survey Respondents”. The remaining panels show different partitions of the 565 respondents. In the second panel from the top, for example, the criterion name “Employment sector” is in the left strip label. The respondents self-identify to one of the five employment groups named in the left tick labels. The number of people in each group is indicated as the right-tick label. Each stacked bar is 100% wide. Each is partitioned by the percent of that employment group who have selected the agreement level indicated in the legend below the body of the plot. The legend is ordered by the values of the labels. Darker colors indicate stronger agreement. Gray indicates the neutral position, in this example, “No Opinion”. The bar for the neutral position is split, half to the left side of the vertical zero reference line and half to the right side. The reference line is placed behind the bars to prevent it from artificially splitting the neutral bar into two pieces. The default color palette has red on the left for disagreement and blue on the right for agreement. See Section 15.9.2 for a discussion of color palettes.
The intent of this plot is to compare percents within subgroups of the survey population; consequently we made all bars have equal vertical thickness. The panel heights are proportional to the number of bars in the panel. The x-axis labels are displayed with positive numbers on both sides. The bars within each panel have been sorted by the percent agreeing (totaled over all levels of agreement). We usually prefer horizontal bars, as shown here, because the group labels and the names of the groups are easier to read when they are displayed horizontally on the y-axis.

15.9.2 Single-Panel Displays
In this section, we look at the data for just the Employment panel of the full plot in Figure 15.14. Table 15.10 shows the respondents divided into five employment categories and the counts for each agreement level within each employment category. Table 15.10The respondents have been divided into five employment categories. The rows (employment categories) are displayed in the original order: alphabetical plus other. Columns are displayed sequentially, with disagreement to the left and agreement to the right.


	 	Strongly
	 	No
	 	Strongly

	 	Disagree
	Disagree
	Opinion
	Agree
	Agree

	
                            Employment Sector
                          
	 	 	 	 	 
	Academic (nonstudent)
	0
	5
	8
	78
	162

	Business and industry
	0
	11
	5
	88
	72

	Federal, state, an local government
	2
	3
	5
	34
	27

	Private consultant/self-employed
	0
	0
	2
	15
	11

	Other (including retired, students,
	2
	2
	5
	15
	10

	    not employed, etc.)
	 	 	 	 	 




Diverging stacked bar charts are easily constructed from Likert scale data. Each row of the table is mapped to a stacked bar in a bar chart. Usually the bars are horizontal. The counts (or percentages) of respondents on each row who agree with the statement are shown to the right of the zero line in one color; the counts (or percentages) who disagree are shown to the left in a different color. Agreement levels are coded from light (for closer to neutral) to dark (for more distant from neutral). The counts (or percentages) for respondents who neither agree nor disagree are split down the middle and are shown in a neutral color. The neutral category is omitted when the scale has an even number of choices. Our default color palette
                  
                 is the (Red–Blue) palette constructed by the diverge_hcl function in the colorspace package in R. The colors in the diverging palettes have equal intensity for equal distances from the center. The base colors Red and Blue have been chosen to avoid ambiguity for those with the most prevalent forms of color vision deficiencies.
It is difficult to compare lengths without a common baseline;
                  
                 see pages 54–57 of Robbins (2013) and the reference therein to Cleveland and McGill (1984). We are primarily interested in the total count (or percent) to the right or left of the zero line; the breakdown into strongly or not is of lesser interest so that the primary comparisons do have a common baseline of zero.
[image: A77776_2_En_15_Fig15_HTML.gif]
Fig. 15.15This plot is a direct translation of the numerical values in Table 15.10 to graphical form. Blue is agree, red is disagree, gray is no opinion. The strongest message in this presentation is that the sample has a very large percentage of academics.



[image: A77776_2_En_15_Fig16_HTML.gif]
Fig. 15.16In this variant of the plot, we display the row percents. We don’t want to lose information about the uneven selection of respondents from the employment sectors so we display the counts as the right axis labels. Now we see that “Academic (nonstudent)” stands out as the largest percentage of dark blue on the graph.



Figure 15.15 shows a direct translation of the counts in Table 15.10 to a plot. The strongest message in this presentation is that the sample has a very large percentage of academics. It is harder to compare relative proportions in the employment categories because the total counts in each row are quite disparate.
Figure 15.16 displays the percents within each row. Now it is easy to see that a large majority of the people in all employment categories have a positive answer to the survey question. We don’t want to lose the disparity in row totals, so we use the row count totals as the right-axis tick labels.
For plots such as Figure 15.16 with a single panel, and also for multiple-panel plots where the rows are distinct in each panel, we can still do better. Figure 15.17 shows the same scaling as Figure 15.16, but this time the row order is data-dependent. Rows are now ordered by the total percent of positive responses. This allows the reader to recognize groupings among rows (in this example, groupings of employment categories) that show similar responses.

15.9.3 Multiple-Panel Displays
Our illustration in Figures 15.15–15.17 is a single panel. It displays information on a single question for a partition of the respondents into several groups based on employment. Figure 15.14 is a multiple-panel display containing Figure 15.17 combined with other partitions of the same set of respondents.
[image: A77776_2_En_15_Fig17_HTML.gif]
Fig. 15.17In our third presentation of the same table, we now sort the rows of the table by the total percent agree (dark blue + light blue + [image: 
$$\frac{1} {2}$$
] gray). Data-dependent ordering is usually more meaningful than alphabetical ordering for unordered categories.



15.9.3.1 One Question with Multiple Subsets of the Sample
Figure 15.14 shows responses to the same question for the same population of respondents partitioned into several series of groups based on additional characteristics.
The partitions have different numbers of groups. In order to retain the same vertical spacing between parallel bars, the vertical space allocated for the panels must differ. The different panels have been labeled by the name of the partitioning characteristic. In this example the panels are identified by a left strip label. Within each panel the bars have been sorted by the total percent of positive responses.

15.9.3.2 One or More Subpopulations with Multiple Questions
Figure 15.18 is differently structured. The data are the responses to a survey sponsored by the New Zealand Ministry
                    
                   of Research Science and Technology (New Zealand Ministry of Research Science and Technology, 2006). Here we have two different sets of questions that have been asked of the same set of respondents. Sometimes the respondents can be subdivided. If we had the data separately for the Male and Female subsets, we could have a plot similar to Figure 15.18 but with two columns of panels, left and right, one for each subset.
[image: A77776_2_En_15_Fig18_HTML.gif]
Fig. 15.18Two sets of questions have been asked of all respondents. Each set is presented in its own panel.






15.9.3.3 Common Structure at Multiple Times—Population Pyramids
Population pyramids
                    
                   are used in demographic studies and in epidemiological studies. The pyramid is a pair of back-to-back bar charts, one for males and one for females. We display the population pyramid as a Likert-type scale with two levels, male and female, for each age range. Figure 15.19 shows five pyramids at ten-year intervals years 1939–1979, with the y-labels on both the left and right axes. A shiny app that cycles through all years 1900–1979 is available by entering

                  shiny::runApp(system.file("shiny/PopulationPyramid",
                

                                            package="HH"))
                
The data is from the USAage dataset in the latticeExtra package.
[image: A77776_2_En_15_Fig19_HTML.gif]
Fig. 15.19Five population pyramids at ten-year intervals years 1939–1979. We can see the baby boom start at the bottom of the population graph for 1949 and work its way up over time. We have placed the age tick labels on both the left and right axes of the set of panels.






15.10 Exercises

15.1. Hand et al. (1994) revisit a dataset attributed to Karl Pearson, data(crime), that examines the relationship between type of crime committed and whether the perpetrator was a drinker or abstainer. Investigate whether these two classifications are independent, and if they are not, discuss the nature of the dependence.

15.2. Senie et al. (1981), also in Hand et al. (1994), investigate whether the frequency of breast self-examination is related to age group. The data appear accessed as data(selfexam). Do you agree that there is a relationship? If so, describe it.

15.3. Sokal and Rohlf (1981), later in Hand et al. (1994), concern an experiment to determine the preference of invading ant colonies on two species of acacia tree. A total of 28 trees were made available for the study, 15 of species A and 13 of species B. Initially each tree was treated with insecticide to remove all existing colonies. Then 16 ant colonies were invited to invade any of the trees they chose. By construction, the 2 × 2 data, in data(acacia), have both margins fixed. Use Fisher’s exact test
                
               to determine if the ants have a significant preference for one species over the other.

15.4. Fleiss (1981) presents the dataset in data(mortality) concerning mortality following 37,840 live births to nonwhite mothers in New York City in 1974. In the file, rows are birth weights, ≤ 2500 grams or > 2500 grams, and columns are outcomes one year after birth, dead or alive. 2500 grams is 5.5 pounds. Construct and carefully interpret the sample odds ratio for these data and construct a 95% confidence interval for the population odds ratio.

15.5. Wynder et al. (1958), later in Fleiss (1981), report a retrospective study
                
               of factors associated with cancer of the oral cavity. In this study there were 34 women with this cancer and 214 women, matched by age, without it. It was found that 24% of the cases but 66% of the controls were nonsmokers. The dataset is available as data(oral). Construct and carefully interpret the sample odds ratio
                
               for these data and then construct a 95% confidence interval on the population odds ratio.

15.6. Braungart (1971) refers to data(political), also found in Bishop et al. (1975), in which 271 college students of the 1960s who admitted to extreme political leanings were cross classified according to the style of parental decision making they received, authoritarian or democratic, and their political leaning, left or right. Construct and carefully interpret the sample odds ratio
                
               for these data and also construct a 95% confidence interval on the population odds ratio.

              15.7.
            
Westbrooke (1998) discusses claims that Maori are underrepresented on juries in districts in New Zealand. Jury pool composition data for the Rotorua and Nelson districts are shown in Table 15.11, and accessed as data(jury), along with totals for these two districts combined.
                
              
                            Table 15.11Jury pool composition data for the Rotorua and Nelson districts.


	 	 	Rotorua
	 	Nelson
	 	Combined

	 	 	  Maori
	Non-Maori
	 	  Maori
	Non-Maori
	 	  Maori
	Non-Maori

	Jury pool
	 	79
	258
	 	1
	56
	 	80
	314

	Others
	 	8,810
	23,751
	 	1,328
	32,602
	 	10,138
	56,353





From this table it is easy to verify the following: 	The population of Rotorua is 27.0% Maori, but this district’s jury pool is only 23.4% Maori.

	The population of Nelson is 3.9% Maori, but this district’s jury pool is only 1.7% Maori.

	However, the combined population of these two districts is 15.3% Maori, but the combined jury pools of these districts is 20.3% Maori.





Discuss whether Maori are indeed underrepresented on the juries of these two districts.

15.8. Brochard et al. (1995) report a prospective study of patients with chronic obstructive pulmonary disease, assessing the effect of noninvasive ventilation therapy on reducing the need for subsequent invasive intubation. A total of 85 patients were recruited at five centers. The data are in Table 15.12 and dataset data(intubate). The data in the file are arranged differently than in the table: The first column is the center number; the second column entries are yes if received ventilation therapy and no if didn’t receive this therapy; the third column entries are yes if required invasive intubation and no if didn’t require invasive intubation; and the entries in column 4 are the number of patients in the categories specified in columns 1–3.
Compute the odds ratio at each center. Use the Mantel–Haenszel test to produce a carefully stated conclusion of the combined data.
                
              

                
               Table 15.12Chronic Obstructive Pulmonary Disease.


	 	 	Center

	 	 	1
	 	2
	 	3
	 	4
	 	5

	Ventilation
	 	invasive
	not
	 	invasive
	not
	 	invasive
	not
	 	invasive
	not
	 	invasive
	not

	therapy
	 	intubation
	inv
	 	intubation
	inv
	 	intubation
	inv
	 	intubation
	inv
	 	intubation
	inv

	ventilation
	 	3
	6
	 	2
	3
	 	1
	7
	 	0
	5
	 	5
	11

	not vent
	 	9
	0
	 	5
	1
	 	4
	5
	 	3
	1
	 	10
	4
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16. Nonparametrics
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16.1 Introduction

              
                
              
            
Most of the statistical procedures we’ve introduced in the previous 15 chapters require an assumption about the form of a probability distribution, often the Normal distribution. When such assumptions are unjustified, the consequences of the procedure are dubious at best. In situations where distributional assumptions cannot be justified, even after a well-chosen data transformation, the analyst should consider another approach.

Nonparametric statistical procedures are ones that do not require the assumption of a specific probability distribution. (In contrast, procedures that do make distributional assumptions are referred to as parametric procedures.) In exchange for not requiring a detailed distributional assumption, nonparametric testing procedures have less power,
                
               and nonparametric confidence intervals are wider than their parametric analogues in the same problem situation using the same error control. In addition, the parameter(s) of interest in a nonparametric procedure may not be identical to those of corresponding parametric procedures. For example, we may use a nonparametric procedure for comparing two population medians as a substitute for a parametric procedure for comparing two means. For these reasons, parametric procedures are preferred if their assumptions are reasonably well met.
In the previous chapters we have discussed a number of procedures for inferring about one or more population means. Those procedures required assumptions that underlying populations are normally distributed, at least approximately, and that when inferring about the means of two or more populations, these populations have a common variance. Often transformations
                
               such as those discussed in Chapter 4 can be used to make such assumptions tenable once the transformations have been applied. Sometimes this is not possible, for example, when the data contain outliers
                
               whose elimination cannot be justified. In such instances, a nonparametric approach may be considered. Our discussion here is limited to hypothesis tests. Analogous confidence interval estimates cannot be described succinctly and are discussed in Lehmann (1998) and Desu and Raghavarao (2003).
Many nonparametric procedures use statistics based on ranks

                
               of the data rather than the data themselves. Such procedures require only that the data be on at least an ordered
                
                
               scale. In contrast, parametric procedures generally carry the more stringent requirement that the data be measured on an interval
                
                
               or ratio
                
                
               scale. The various scale types are defined in Section 2.​1

We’ve actually encountered some nonparametric procedures in earlier chapters. For example, the two-sample Kolmogorov–Smirnov goodness-of-fit test
                
               discussed in Section 5.​9 does not require that we specify the natures of the two populations being sampled. In this chapter we introduce some additional commonly used nonparametric procedures. Our examples include checks of the assumptions of competing parametric procedures and comparisons of the nonparametric and parametric results.

16.2 Sign Test for the Location of a Single Population

              
                
              
            
The example in Section 5.​2.​1 discusses a parametric approach to a problem involving data(vocab), concerning whether μ = 10 is consistent with a random sample of 54 test scores. Since Figure 5.​3 shows that the sample had one high outlier,
                
               there was at least some doubt that the assumptions underlying the parametric analysis were correct.
The nonparametric approach here is the sign test to assess the hypothesis that the population median equals 10. If the population is not symmetric so that its mean and median are not identical, then the analogy between the nonparametric and parametric inferences is imperfect. We look again at the data in Table 16.1.Table 16.1
                      [image: 
$$p = P(X \geq 49) = P(X \geq 48.5) = 1 -\mathcal{F}_{\mbox{ Bi}}(48.5\mid 50,\,.5) \approx 4\mbox{ 10}^{-14}$$
]
                    


[image: A77776_2_En_16_Figa_HTML.gif]




              
                
              
              
                
              
            
The logic of this nonparametric test stems from the insight that if the population median η is indeed 10, we would expect half of the sample values not exactly equal to 10 to fall on either side of 10. If appreciably more than half exceed 10, this suggests that the median exceeds 10. Let n be the number of sample items different from 10 and m be the number of these exceeding 10. The formal test of [image: 
$$\displaystyle\begin{array}{rcl} & & \ \ \ H_{0}: \eta = 10 {}\\ & & \mbox{ vs} {}\\ & & \ \ \ H_{1}: \eta > 10 {}\\ \end{array}$$
]


 is based on the distribution of a binomial
                
               random variable X with n trials and success probability. 5. The test has p-value = P(X ≥ m). The two-sided test, with the same null hypothesis but having alternative hypothesis [image: 
$$\displaystyle\begin{array}{rcl} H_{1}: \eta \neq 10& & {}\\ \end{array}$$
]


 has p-value [image: 
$$2P{\bigl (X \geq \max (n - m,m)\bigr )}$$
].
This test is called the sign test because it is based on the arithmetic signs of the differences between the data and the null hypothesized median. Some authors refer to it as the binomial test.
                
              


              
                
              
            
In data(vocab), 4 of the 54 scores equalled the null value η=10, and n=50 scores were not exactly equal to the null value of η=10. We observed m=49 scores that exceeded 10 and n − m=1 score less than 10. If the null were true, then X comes from the distribution Bin([image: 
$$n = 50,p =.5$$
]) with discrete density shown in Figure 16.1. The one-sided p-value is the probability of observing 49 or more (that is, 49 or 50) larger scores from this distribution. This probability is the sum of the probabilities for the bars at 49 and 50. Therefore, the one-sided p-value is
                
               [image: 
$$\displaystyle\begin{array}{rcl} P(X \geq 49) = 1 -\mathcal{F}_{\mbox{ Bi}}(48\mid 50,\,.5)& & {}\\ \end{array}$$
]


 using the binomial distribution with n = 50 and p = . 5. This number p ≈ 410−14 is calculated in R by [image: 
$$\displaystyle\begin{array}{rcl} \mathtt{pbinom(48.5,\ 50,\ .5,\ lower.tail = FALSE)}& & {}\\ \end{array}$$
]


 p ≈ 410−14 is overwhelming evidence that the population median η exceeds 10, consistent with the strong parametrically based conclusion in Section 5.​2.​1 that the population mean μ exceeds 10.[image: A77776_2_En_16_Fig1_HTML.gif]
Fig. 16.1Panel a shows the Bin([image: 
$$n = 50,p =.5$$
]) discrete density. Panel b shows the same discrete density on a log scale. Panel c magnifies (and truncates) the probability scale to emphasize that there are nonzero values at x = 49 and x = 50. The p-value for the sign test is the probability that a random selection from this distribution would yield the observed x = 49 or the larger x = 50. From the graph we see that this is the very small number p ≈ 410−14.





The procedure we just developed is an example of an exact test

                
               or of a randomization test

                
              . In this form of testing procedure, a discrete model for the distribution of the observed statistic under the null hypothesis is postulated. Then the probability of obtaining the observed value (or larger) from that model is calculated and used as the p-value of the test.

16.3 Comparing the Locations of Paired Populations
Just as the parametric paired t-test is equivalent to a one-sample t-test on the pair differences, the locations of paired populations can be compared by inferring about the median of the population consisting of the differences (in a consistent direction) between the two individual populations.
16.3.1 Sign Test
Exercise 5.13 requests a comparison of the population means of pre- and post-treatment measurements based on a random sample of 48 patients. However, the density and histogram plots
                  
                 of the post-treatment measurements in Figure 16.2 show a number of both low and high outliers,
                  
                 suggesting that the post population may not be close to normally distributed, and calling into question the validity of an analysis based on a two-sample t-test. Therefore, a nonparametric approach should be considered.[image: A77776_2_En_16_Fig2_HTML.gif]
Fig. 16.2We show the density plot of the Post and Pre scores, and their difference (Post-Pre), in the top set of panels. We show the histogram of the same variables in the bottom panels. The individual jittered points in the density plots may be thought of as a vertical view of the histogram. Both graphical displays show that the data does not appear to be normally distributed. The Post scores have outliers are well outside the vicinity of the bulk of the data. The Pre scores have a relatively flat distribution. Post scores are generally smaller than Pre scores. The (Post-Pre) differences are predominantly negative.





We show the sign test for paired observations in Table 16.2. Analogous to Section 16.2, let n be the number of pairs of observations, excluding tied pairs. For testing against the one-sided alternative hypothesis that the post-treatment median is less than the pretreatment median, let m be the number of sample pairs where the post-treatment measurement is less than the pretreatment measurement. Then for binomially distributed X with n trials and success probability 0.5, the p-value is P(X ≤ m). For these data, [image: 
$$n = 46,m = 15$$
] and we use R to calculate p = pbinom(15,46,.5) ≈ . 0129. This p-value indicates moderate evidence that in the population of patients from which this sample was selected, the median post-treatment angle is less than the median pretreatment angle. For the analogous parametric paired t-test
                  
                 requested in Exercise 5.13, the p-value is considerably less than 0.01. Because we question the validity of the t-test, we believe the p-value from the t-test
                  
                 is way too small.
                  
                 Table 16.2Sign test applied to relative rotation angle data. The conclusion of the test is that the median post-treatment angle is less than the median pretreatment angle.


[image: A77776_2_En_16_Figb_HTML.gif]




                
                  
                
              

                
                  
                
              

16.3.2 Wilcoxon Signed-Ranks Test

                
                  
                
                
                  
                
                
                  
                
              
The sign test in Section 16.3.1 uses the arithmetic sign of differences between members of each pair but ignores the magnitude of these differences. Such information can be crucial, particularly if the samples contain outlying
                  
                 values. The Wilcoxon signed-ranks test uses information on the magnitude of the differences and therefore is more sensitive than the sign test. The Wilcoxon test assumes an interval or ratio measurement scale involving continuous variables. If the data are ordinal but not interval, the Wilcoxon test cannot be used.
The construction of the signed-rank test for data(har1) is depicted in Table 16.3. For testing hypotheses involving the difference between the medians of two populations, say the X = har1$Pre population and Y = har1$Post population, let D

                  i
                 = X

                  i
                 − Y

                  i
                 = har$diff be the observed difference for the i
th pair. Let n = 46 be the number of such differences that are not zero; hereafter ignore any zero differences. Rank the n nonzero absolute differences ( | D

                  i
                 | , i = 1, …, n) = har$abs in ascending order from 1 to n and store the ranks in har$rank. (If there are ties, assign the average rank. For example, if the first and second largest absolute differences are both equal to.3, assign rank 1.5 to both absolute differences.) Copy the ranks for the positive differences into har$prnk. Then the test statistic is the sum of the ranks in har$prnk. The idea here is that if the population medians are equal, we expect half of the differences to be positive and so the test statistic should be approximately one half the sum of the ranks of the nonzero differences, or n(n + 1)∕4, where n is now the number of nonzero differences. A test statistic much different from this value suggests that the difference between the population medians is nonzero. The signed rank distribution is discussed in Section J.3.7. We usually show the normal approximation. The variance is related to the variance of the discrete uniform distribution (see Appendix J.3.1). We outline the calculation of the variance in Exercise 16.6.Table 16.3Detail for construction of the Wilcoxon signed-ranks test applied to relative rotation angle data. The diff column contains the differences Pre - Post. The abs column contains the absolute value of the differences. NA values were assigned to the 0-valued differences. This has the effect of placing them last in the sort order. Only nonzero differences are used in the test. In this example with 48 observations, there are n = 46 nonzero differences. The rank column contains the ranks of the absolute differences. The prnk column contains the same ranks, but only for rows that have positive differences. The test statistic in Tables 16.5 and 16.4 is the sum of the prnk column.


[image: A77776_2_En_16_Figc_HTML.gif]


Table 16.4The sum of the positive ranks from Table 16.3 is first calculated. Then we construct the normal approximation. These values match the values in Table 16.5.


[image: A77776_2_En_16_Figd_HTML.gif]


                                Table 16.5Wilcoxon signed-ranks test applied to relative rotation angle data. The conclusion of the test is that the median post-treatment angle is less than the median pretreatment angle.


[image: A77776_2_En_16_Fige_HTML.gif]




                
                  
                
              

                
                  
                
              
Figure 16.3 shows the differences and the ranks of the absolute values of these differences used in a Wilcoxon signed-ranks test for the data in data(har1). The positive differences (between the pre- and post-treatment angles) in this example generally have larger absolute values than the negative differences. The magnitudes of these differences is relevant to the test result—a large positive difference is greater evidence that pre exceeds post than a small positive difference. These magnitudes are ignored by the sign test but accounted for by the Wilcoxon signed-ranks test.[image: A77776_2_En_16_Fig3_HTML.gif]
Fig. 16.3The differences and ranks from Table 16.3 used in the Wilcoxon test of data(har1). Observe that the positive differences between pre- and post-treatment angles tend to have larger magnitudes than the negative differences. The Wilcoxon test, which takes account of these magnitudes, has more power than the sign test, which ignores the magnitudes. The test statistic is the sum of the ranks for positive differences (the sum of the displayed numbers in the upper-right quadrant).






                
                  
                
              
Assuming one-sided alternative hypothesis as in Section 16.2, this test is run in R with
   wilcox.test(X, Y, alternative="greater",
               paired=TRUE, exact=TRUE)
If restrictive conditions are met, R calculates the p-value based on the exact distribution of the test statistic. These conditions are n < 50 and no tied ranks. Otherwise, as in the analysis of the data(har1) dataset, the p-value is based on a normal approximation. The results of the wilcox.test command applied to data(har1) are shown in Table 16.5.

The fact that the p-value for the Wilcoxon test is much less than that of the sign test for the same data demonstrates that the signed-ranks test is more powerful than the sign test.
                  
                


                
                  
                
              


16.4 Mann–Whitney Test for Two Independent Samples

              
                
              
            
Some authors refer to this test as the Wilcoxon–Mann–Whitney test because Frank Wilcoxon
                
               initiated its development. It is analogous to the parametric two-sample t-test
                
               but compares medians rather than means. We wish to compare the medians of two populations based on independent random samples from each. It is assumed that the measurement scale is at least ordinal. Combine the two samples and then rank the resulting observations in ascending order. As in Section 16.3.2, if there are tied observations, each should be assigned the average rank. The test statistic T is the sum of the ranks of the smaller sample. Assume the smaller sample is assigned index 1 and the larger sample index 2. Denoting the observed value of T as [image: 
$$t_{\mbox{ calc}}$$
], the p-value depends on the form of the alternative hypothesis. If the alternative hypothesis is η
1 > η
2, then p-value [image: 
$$= P(T > t_{\mbox{ calc}})$$
]. For the alternative η
1 < η
2, the p-value is [image: 
$$= P(T < t_{\mbox{ calc}})$$
]. For the two-sided alternative, p-value [image: 
$$= 2\min {\bigl (P(T > t_{\mbox{ calc}}),\:P(T < t_{\mbox{ calc}})\bigr )}$$
].
The data in data(balance), taken from Teasdale et al. (1993), illustrate this test. These authors sought to compare the forward/backward sway in mm of 9 elderly and 8 young subjects who took part in an investigation of their reaction times. We see in Figure 16.4 that one of the elderly measurements is an extreme outlier,
                
               and if it is retained in the analysis the two-sample t-test is invalid. The alternative hypothesis is that the median sway of elderly subjects exceeds the median sway of young subjects. The R analysis uses wilcox.test as in Section 16.3.2.
                
               [image: A77776_2_En_16_Fig4_HTML.gif]
Fig. 16.4Balance data. The extreme outlier in the age=="old" group makes the two-sample t-test invalid. See Table 16.6.






              
                
              
            
In Table 16.6 we list the two samples and their ranks after they are combined. The analysis with the R function wilcox.test is in Table 16.7 and “by hand” with R in Table 16.8. The Wilcoxon distribution is described in Section J.3.8. We conclude that there is moderate evidence that, on average, elderly subjects have greater sway than young subjects.
Table 16.6Mann–Whitney test applied to balance data. See Figure 16.4.


	old
	 	young

	sway
	ranks
	 	sway
	ranks
	 
	19
	6.5
	 	25
	13.5
	 
	30
	16.0
	 	21
	9.5
	 
	20
	8.0
	 	17
	4.5
	 
	19
	6.5
	 	15
	3.0
	 
	29
	15.0
	 	14
	1.5
	 
	25
	13.5
	 	14
	1.5
	 
	21
	9.5
	 	22
	11.0
	 
	24
	12.0
	 	17
	4.5
	 
	50
	17.0
	 	 	 	 
	 	 	 	 	49.0
	= rank sum, smaller sample




Table 16.7Mann–Whitney test applied to balance data by R. R does not compute the exact test when some of the ranks are tied. The ranks are plotted in Figure 16.5.


[image: A77776_2_En_16_Figf_HTML.gif]


Table 16.8Mann–Whitney test applied “by hand” to balance data.


[image: A77776_2_En_16_Figg_HTML.gif]


[image: A77776_2_En_16_Fig5_HTML.gif]
Fig. 16.5Balance data. The plot of the ranks shows a distinct difference in the medians ranks of the two age groups.






              
                
              
            

              
                
              
            

              
                
              
            

              
                
              
            

16.5 Kruskal–Wallis Test for Comparing the Locations of at Least Three Populations

              
                
              
            
This test is the nonparametric analogue of the F-test
                
               for equality of the means of several populations. A natural generalization of the Mann–Whitney test,
                
               it tests the null hypothesis that all k populations have a common median. It is assumed that the measurement scale is at least ordered
                
                
               and that the k random samples are mutually independent.
Suppose n

                i
               is the size of the sample from population i and n
⋅  = ∑

                i
              
n

                i
              . Rank all n
⋅  observations from 1 to n
⋅  and let R

                i
               be the sum of the ranks
                
               from sample i. As usual, in case of ties, assign average ranks to the tied values. The test statistic is [image: 
$$\displaystyle\begin{array}{rcl} T = \frac{12} {n_{\cdot }(n_{\cdot } + 1)}\sum _{i=1}^{k}\frac{\left [R_{i} - n_{i}(n_{\cdot } + 1)/2\right ]^{2}} {n_{i}} & &{}\end{array}$$
]

 (16.1)



The idea behind this formula is that if the null hypothesis is exactly true, the expected sum of the ranks of sample i is [image: 
$$E(R_{i}) = n_{i}(n_{\cdot } + 1)/2$$
].
This test is conducted in R with the command

              kruskal.test(y ~
               g, dataframe)
            
where y is the numeric vector of sample observations and g is the same sized factor indicating the population number from which the observation came. As usual dataframe is the data.frame containing the observations.
Exercise 6.2 refers to an experiment comparing the pulse rates of workers while performing six different tasks data(pulse). From Figure 16.6 we see that the normality assumption required for a standard one-way analysis of variance is somewhat questionable as most tasks seem to show a uniform distribution of pulses. We therefore investigate the data analysis via the Kruskal–Wallis test.[image: A77776_2_En_16_Fig6_HTML.gif]
Fig. 16.6Pulse data. The uniform distributions within the groups make the one-way ANOVA inappropriate. See Table 16.9.






              
                
              
            
Table 16.9 shows the chi-square approximation to the distribution of the Kruskal–Wallis statistic yields a p-value of.007. This is not too dissimilar from the one-way ANOVA p-value of.0015. We conclude, unsurprisingly, that the pulse rate of workers differs according to the task performed immediately prior to the pulse reading.
                
               Table 16.9Kruskal–Wallis rank sum test applied to pulse rate data by R.


[image: A77776_2_En_16_Figh_HTML.gif]




16.6 Exercises

              
                
              
            

16.1. A study of Darwin (1876), discussed in Hand et al. (1994) with the data in data(darwin), compared the ultimate heights of plants grown from otherwise comparable seedlings that were either cross-fertilized or self-fertilized. Compare the heights using the Wilcoxon signed-ranks procedure. Would a paired t-test have been appropriate?

16.2. High levels of carbon monoxide transfer are a risk factor for contracting pneumonia. Ellis et al. (1987), also in Hand et al. (1994), studied the levels of carbon monoxide transfer in 7 chicken pox patients who were smokers. They were measured upon hospital admission and one week later. The data are in the file data(pox).
a.Verify the inappropriateness of a paired t-test for these data. Discuss your reasoning.

 

b.Analyze using the Wilcoxon signed-ranks procedure.
                        
                      


 





16.3. Simpson et al. (1975), also in Chambers et al. (1983), studied the amount of rainfall (measured in acre-feet) following cloudseeding. They seeded 26 clouds with silver nitrate and 26 clouds with a placebo seeding (that is, the airplane went up but didn’t release the silver nitrate). The data are contained in the file data(seeding). Assume these data represent independent random samples.
a.Use the Mann–Whitney test to assess whether cloudseeding impacted rainfall.

 

b.Construct the ladder of powers graph (see Figure 4.​19) to find a power transformation that makes the histograms of post-transformed samples symmetric and bell-shaped. Redo part a using the two-sample t-test instead of the Mann–Whitney test.

 

c.Discuss which of these procedures is preferred.

 





16.4. VanVliet and Gupta (1973), later cited by Hand et al. (1994), compared the birthweights in kg of 50 infants having severe idiopathic respiratory distress syndrome. Twenty-seven (27) of these infants subsequently died and the remainder lived. The data appear in the file data(distress). Perform a nonparametric test to address whether deaths from this cause are associated with low birthweight.

16.5. Exercise 6.8 requested a comparison of the mean disintegration times of four types of pharmaceutical tablets. The data are in file data(tablet1). Compare the results of a Kruskal–Wallis test with the conclusion of the F-test for that exercise.

16.6. Calculate the variance of the null distribution for the Wilcoxon signed-ranks statistic, assuming no ties. The set of all signed ranks, not just the positive values, in the null distribution consists of the integers { − n to − 1, 1 to n}. This has mean 0 and variance proportional to the ∑ i
2. The variance of just the positive values is 1/4 times the variance of all of them. The mean of just the positive signed ranks is proportional to ∑ i.
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17. Logistic Regression
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Logistic regression is a technique similar to multiple regression with the new feature that the predicted response is a probability. Logistic regression is appropriate in the often-encountered situation where we wish to model a dependent variable which is either 
 dichotomous
                    
                  :The dependent variable can assume only the two possible values 0 and 1 (often as a coding of a two-valued categorical variable such as Male/Female or Treatment/Control).



 sample proportion
                    
                  :The dependent variable is a probability and hence confined to the interval (0, 1).





The methodology of ordinary multiple regression analysis cannot cope with these situations because ordinary regression assumes that the dependent variable is continuous on the infinite interval (−∞, ∞). When this assumption on the dependent variable is not met, we must employ a suitable transformation
              
            —a link

              
             function—to change its range. One such transformation (shown in Equation (17.1) and Figure 17.1) from the closed interval [0, 1] to the set of all real numbers is the logarithm of the odds
              
            , known as the logit
              
             transformation [image: 
$$ \displaystyle\begin{array}{rcl} y =\mathop{ \mbox{ logit}}(p) =\ln \left( \frac{p} {1 - p}\right)& &{}\end{array} $$
]

 (17.1)

 The logit transformation is the key to logistic regression. R functions for the logit and its inverse [image: 
$$ \displaystyle\begin{array}{rcl} p =\mathop{ \mbox{ antilogit}}(y) = \frac{e^{y}} {1 + e^{y}}& &{}\end{array} $$
]

 (17.2)

 are defined in the HH package.
              
            
[image: A77776_2_En_17_Fig1_HTML.gif]
Fig. 17.1Left panel: [image: 
$$ y =\mathop{ \mbox{ logit}}(p) $$
]. Right panel: [image: 
$$ p =\mathop{ \mbox{ antilogit}}(y) $$
].





The model for logistic regression is [image: 
$$ \displaystyle\begin{array}{rcl} \mathop{\mbox{ logit}}(p) = X\beta +\epsilon & &{}\end{array} $$
]

 (17.3)




            
              
            
          
where
	
                      p
                    
	The response is either a binary 0/1 variable indicating

	 	failure/success or a number in the range [0, 1] indicating

	 	an observed proportion of successes.

	
                      X
                    
	matrix of predictor variables.

	
                      β
                    
	vector of regression coefficients.

	
                      ε
                    
	vector of discrepancies assumed to have a binomial distribution.



In the special case of a single continuous predictor, model (17.3) specializes to [image: 
$$ \displaystyle\begin{array}{rcl} \mathop{\mbox{ logit}}(p) =\beta _{0} +\beta _{1}x +\epsilon & &{}\end{array} $$
]

 (17.4)



Logistic regression is a special case of a generalized linear model. There are two components to the generalization.
1.In ordinary linear models, the response variable is assumed to be linearly related to the predictor models. In generalized linear models a function (the link function
                      
                    ) of the response variable is assumed to be linearly related to the predictor models. In logistic models we usually use the logit function.

 

2.In ordinary linear models, the variance of the residuals is assumed to be normal. In glm

                      
                     (generalized linear models)
                      
                    , the variance function is usually something else. With logistic models the variance function is assumed to be binomial.

 




Probit regression
              
             is another type of generalized linear model. Instead of using the logit link function, probit regression uses the inverse of the normal c.d.f., Φ
−1, defined in Section 3.​9, to map from (0, 1) to the set of all real numbers. As with logistic regression, the variance function for probit models is usually assumed to be binomial. Probit regression and logistic regression give very similar results unless many of the estimated probabilities are close to either 0 or 1.
The predictor variables in logistic regression are the same types of continuous variables and factors that we use in ordinary multiple regression. All the familiar operations on the predictor variables (nesting, crossing, polynomial powers) are also appropriate with generalized linear models.
17.1 Example—The Space Shuttle Challenger Disaster

              
                
              
            
17.1.1 Study Objectives
The NASA space shuttle has two booster rockets, each of which has three joints sealed with O-rings. A warm O-ring quickly recovers its shape after a compression is removed, but a cold one will not. An inability of an O-ring to recover its shape can allow a gas leak, which may lead to disaster. On January 28, 1986, the Space Shuttle Challenger exploded during the launch.
The coldest previous launch temperature was 53 degrees Fahrenheit. The temperature forecast for time of launch of Challenger on the morning of January 28, 1986, was 31 degrees Fahrenheit. On the evening of January 27, a teleconference was held among people at Morton Thiokol, Marshall Space Flight Center, and Kennedy Space Center. There was a substantial discussion among engineers over whether the flight should be cancelled. No statistician was present for any of these discussions.

17.1.2 Data Description
The input dataset in data(spacshu) from Dalal et al. (1989) contains two columns. 
                      tempF:
                    temperature in degrees Fahrenheit at the time of launch



                      damage:
                    1 if an O-ring was damaged and 0 otherwise





Each launch has six cases, one for each O-ring. There are a total of 23 × 6 = 138 cases (the O-rings for one flight were lost at sea).

17.1.3 Graphical Display


                  
                  
                 The five panels in Figures 17.2 and 17.3 show the relationship between number of damaged O-rings and launch temperature for space shuttle flights prior to the Challenger disaster. They clearly suggest a temperature effect. Logit regression can be used to model the probability of O-ring damage as a function of launch temperature, and hence estimate the probability that any one particular O-ring is damaged at launch temperature 31∘F. [image: A77776_2_En_17_Fig2_HTML.gif]
Fig. 17.2Panel a. Original data. Panel b. Sectioned fit. (The panel naming continues through Figures 17.3, 17.4, and 17.6.)




[image: A77776_2_En_17_Fig3_HTML.gif]
Fig. 17.3Panel c. Sectioned fit with appropriate temperature scale. Panel d. Logit fit with 95% prediction band focusing on estimating probability of damage in one ring on the next launch. Panel e. Logit fit with 95% prediction band focusing on estimating number of damaged rings in the next launch.






                
                  
                  
                
              
The logistic curves in Figures 17.3d and 17.3e decrease as the predictor variable tempF increases. This behavior differs from that displayed in Figure 17.1b because the logistic regression coefficient of tempF is negative. Models with a single predictor and a positive logistic regression coefficient have logit fits resembling Figure 17.1b.
The dataset data(spacshu) from Dalal et al. (1989) includes one observation for each O-ring. Figure 17.2a shows the observed data, jittered
                  
                 (by adding random noise to break ties) so multiple O-rings at the same launch (hence same temperature) are visible. Note that the tempF scale includes only the observed temperatures. Figure 17.2b shows a simplistic model fit to the data. Within each 5-degree interval we have calculated the proportion of O-rings that were damaged. We see a strong indication that the proportion of damaged rings goes up as the temperature goes down. The graph suggests that the probability of damage will be high when the temperature reaches 31∘F. There are several limitations to this inference. First, the graph doesn’t extend to 31∘F. Second, the model doesn’t extend to 31∘F.
Figure 17.3 extends the axes to include the temperature of the launch day in question. It is easier to see the suggested inference of high probability of damage even in panel c. We need a different model than simply averaging over a 5-degree range to clarify the impression. Panels d and e show the prediction bands
                  
                  
                 for estimating probabilities of damage to individual O-rings (• in panel d) and for estimating the number of O-rings damaged per flight (× in panel e). Note this is an extrapolation. The fitted response values and their standard errors are calculated in Table 17.1
Table 17.1Logistic regression of Challenger data.


[image: A77776_2_En_17_Figa_HTML.gif]



Figure 17.3d shows confidence bands
                  
                  
                 for the number of damaged O-rings. The shape of the prediction bands
                  
                  
                 in panels d and e are the same because the expected number of damaged rings is the constant 6 (the number of O-rings on a shuttle) times the probability of damage to an individual ring.
At the January 28, 1986, teleconference, they displayed not Figure 17.3, but Figure 17.4, a figure showing only those launches with at least one damaged O-ring. Figure 17.4 is essentially just the top of our Figure 17.2a, the portion with damage=1. One cannot tell from such a chart that there is a temperature/damage relationship. Information about temperatures for launches without damage is highly relevant. Tragically, the assembled engineers did not realize the vital importance of seeing the number of launches without damage. They okayed the launch on January 28. [image: A77776_2_En_17_Fig4_HTML.gif]
Fig. 17.4Panel f. Observed damaged O-rings, without the information about total number of rings.






                
                  
                  
                
              

17.1.4 Numerical Display
We show in Table 17.1 a logistic regression analysis of these data to the model [image: 
$$ \displaystyle\begin{array}{rcl} \mathop{\mbox{ logit}}(p) =\beta _{0} +\beta _{\mathtt{tempF}}\,\mathtt{tempF}+\epsilon & &{}\end{array} $$
]

 (17.5)

 where p = P(damage). Discussion of the terminology used in this table appears in Section 17.2.
The fitted equation is [image: 
$$ \mathop{\mbox{ logit}}(\hat{p}) = 5.085 -.1156\ \mathtt{tempF} $$
]. A test of hypothesis that the coefficient of tempF is zero is the 1 d.f. χ
2 statistic 6.144 with corresponding p-value.0132. This p-value suggests that there is a moderately significant relationship between temp and damage. Inserting tempF=31 gives [image: 
$$ \mathop{\mbox{ logit}}(\hat{p}) = 1.5014 \Rightarrow \hat{ p} =.8178. $$
] If the six O-rings on a Space Shuttle fail independently of one another (a roughly true assumption), we could have expected 6 ×. 8178 = 4. 9 failures of the six O-rings for the launch. This analysis could have been performed prior to launch!
The interpretation of logistic regression coefficients is less straightforward than interpretations of linear regression coefficients. In this problem, an increase in launch temperature of 1∘F multiplies the expected odds in favor of O-ring failure by [image: 
$$ e^{-0.1156} = 0.8908 $$
]. Equivalently, each 1∘F decrease in launch temperature corresponds to multiplication of the expected odds of O-ring failure by e
0. 1156 = 1. 1225. In this problem the intercept coefficient 5.085 is not readily interpretable because tempF = 0 is not a feasible launch temperature.
We must study Table 17.1 together with the logit.p ~ tempF plot in Figure 17.5a. The model says that logit.p=[image: 
$$ \mathop{\mbox{ logit}}(p) $$
] is linearly related to temperature tempF. The slope [image: 
$$ \beta _{\mathtt{tempF}} = -0.1156 $$
] and intercept β
0 = 5. 0848 describe the straight line in Figure 17.5a. [image: A77776_2_En_17_Fig5_HTML.gif]
Fig. 17.5Observed damage and estimated proportion of damaged O-rings in three scales plotted against temperature. Panel a shows the logit scale, where we see the linear relationship that [image: 
$$ \mathop{\mbox{ logit}}(p) $$
] is proportional to temperature. Panel b shows the odds scale, where we see the tendency for the odds in favor of damage to go up as temperature goes down. Panel c shows the probability scale, where we see the tendency for the probability of damage to go up as temperature goes down.





Table 17.2 compares the three scales used in logistic regression analysis. Figure 17.5 shows the predicted probability of failure on each scale. Logits are hard to interpret as they are not in a scale that we are comfortable thinking about. Two alternate transformations are the odds ratio in the odds scale panel, and the probability in the probability scale panel. Table 17.2Three scales used in logistic regression.


	probabilities
	
                            [image: 
$$ \hat{p} $$
]
                          
	
                            p.hat <- predict(spacshu.bin.glm
                          

	 	 	
                                             type="response")
                          

	odds
	
                            [image: 
$$ \frac{\hat{p}} {1 -\hat{ p}} $$
]
                          
	
                            odds.hat <- p.hat/(1-p.hat)
                          

	logit
	
                            [image: 
$$ \mathop{\mbox{ logit}}\hat{p} =\log \left ( \frac{\hat{p}} {1 -\hat{ p}}\right ) $$
]
                          
	
                            logit.p.hat <- log(odds.hat)
                          






                
                  
                
                
                  
                
                
                  
                
              

                
                  
                
                
                  
                
              
The calculations for the 95% prediction bands
                  
                  
                 based on the linear model for the [image: 
$$ \mathop{\mbox{ logit}}(p) $$
] are shown in the proportion scale and the logit scale in Table 17.3. The bands are displayed in the proportion scale in Figure 17.3d and in the logit scale in Figure 17.6g. Table 17.3Details of logistic regression of Challenger data. The top table is in the link scale where the model is linear. The bottom table is in the response scale where the units are more easily interpreted; they are probabilities in this example.


[image: A77776_2_En_17_Figb_HTML.gif]


[image: A77776_2_En_17_Fig6_HTML.gif]
Fig. 17.6Panel g. Logit fit on logit scale with 95% prediction band.





Lavine (1991) disagreed with the analysis in Dalal et al. (1989), stating that the 31∘F temperature at Challenger’s launch is too far below the lowest previously observed launch temperature, 53∘F, to assume that the logistic relationship persisted for the Challenger launch. He claimed that without additional engineering input, one can only say that the probability of O-ring failure at 31∘F is greater than or equal to the probability of O-ring failure at 53∘F. We agree that the extrapolation from 53∘F to 31∘F is too great for anyone to be highly confident in our [image: 
$$ \hat{p} =.8178 $$
] estimate of the failure probability at 31∘F.


17.2 Estimation
The computations for calculating the parameter estimates [image: 
$$ \hat{\beta } $$
] are usually done by the method of maximum likelihood with an iterative computer program. The likelihood is defined algebraically as the joint probability of the observations viewed as a function of the parameters conditional on the data.
Let us use the notation that the i
th case, for i: 1, …, n, consists of a single response value y

                i
               and a single predictor variable x

                i
              . The likelihood with a single predictor variable is written as [image: 
$$ \displaystyle\begin{array}{rcl} L(\beta \vert y;x)& =& L\Big((\beta _{0},\beta _{1}) |(y_{1},\ldots,y_{n})\,;(x_{1},\ldots,x_{n})\Big) \\ & =& \prod _{i=1}^{n}f\Big(y_{ i} |x_{i}\,;\beta _{0},\beta _{1}\Big) \\ & =& \prod _{i=1}^{n}p_{ i}^{y_{i} }(1 - p_{i})^{1-y_{i} } {}\end{array} $$
]

 (17.6)

 where [image: 
$$ \displaystyle\begin{array}{rcl} p_{i} = \frac{\exp (\beta _{0} +\beta _{1}x_{i})} {1 +\exp (\beta _{0} +\beta _{1}x_{i})} =\mathop{ \mbox{ antilogit}}(\beta _{0} +\beta _{1}x_{i})& &{}\end{array} $$
]

 (17.7)

 or equivalently, [image: 
$$ \displaystyle\begin{array}{rcl} \mathop{\mbox{ logit}}(p_{i}) =\log \left ( \frac{p_{i}} {1 - p_{i}}\right ) =\beta _{0} +\beta _{1}x_{i}& &{}\end{array} $$
]

 (17.8)

 The logistic link
                
               function appears in the likelihood equation with the expression of p as the antilogit of the linear function of the predictor x-variables.
In general, the terminology link

                
               function refers to the transformation of the response variable such that the transformed response achieves an approximate linear relationship with explanatory variables. After selecting a link function, it is also necessary to specify a variance
                
               function, usually by accepting the software’s default choice. A binomial variance is the usual choice with logistic or probit links. A Poisson variance is associated with a logarithmic link
                
               function. See McCullagh and Nelder (1983) and the software help files for more details.
The binomial error function appears in the likelihood expression (17.6) as the product of Bernoulli
                
               (binomial with n = 1) terms, one for each of the n observations. The binomial distribution is thus involved in the likelihood equations for estimating the β coefficients.
The log of the likelihood, called the loglikelihood, is written as [image: 
$$ \displaystyle\begin{array}{rcl} \ell(\beta \vert y;x)& =& \log {\left(L(\beta \vert y;x)\right)} \\ & =& \sum _{i=1}^{n}{\left (y_{ i}\log (p_{i}) + (1 - y_{i})\log (1 - p_{i})\right)}{}\end{array} $$
]

 (17.9)

 We estimate the parameters β by differentiating the log of the likelihood with respect to the vector of parameters β, setting the derivatives to 0, and solving for β. Substitute Equation 17.7 into Equation 17.9 and differentiate with respect to β
0 and β
1 to get: [image: 
$$ \displaystyle{ \begin{array}{lclcl@{}} \frac{\partial } {\partial \beta _{0}}\,\ell(\beta \vert y;X)& =&\sum _{i=1}^{n}(y_{ i} - p_{i}) & =&0 \\ \frac{\partial } {\partial \beta _{1}}\,\ell(\beta \vert y;X)& =&\sum _{i=1}^{n}x_{ i}(y_{i} - p_{i})& =&0 \end{array} } $$
]

 (17.10)



Exercise 17.1 gives you an opportunity to follow the steps in detail.
Logistic regression is a special case of a generalized linear model,

                
               hence the model specification is easily interpreted.

              
glm:The statement in Table 17.1

    spacshu.bin.glm <- glm(damage ~ tempF, data=spacshu,
                           family=binomial)
says that the logit of the expected value of the response variable damage is to be modeled by a linear function of the predictor variable tempF, that is, [image: 
$$ \displaystyle\begin{array}{rcl} \mathop{\mbox{ logit}}(E(\hat{p}_{j})) =\log \left ( \frac{E(\hat{p}_{j})} {1 - E(\hat{p}_{j})}\right ) =\beta _{0} +\beta _{x}x& & {}\\ \end{array} $$
]


 The family=binomial argument says that the error term has a binomial distribution and that the link function is the logit. The logit is the default link for the binomial family; we could have specified the link explicitly with
    spacshu.bin.glm <- glm(damage ~ tempF, data=spacshu,
                           family=binomial(link=logit))

R places the results of the fitting process into a "glm" object (for this example called spacshu.bin.glm) that we can look at.




            
Two principal functions are used to display textual information about the object. 
anova:The anova function
    anova(spacshu.bin.glm, test="Chi")
displays the analysis of deviance table,
                        
                      

                        
                       an analogue to the analysis of variance table in ordinary linear models. Table 17.1 is consistent with what we see in Figure 17.5. There is a clearly visible effect in the figure. The ANOVA table shows the linear dependence on tempF has p-value 0.013, highly significant at α = . 05. The table is interpreted similarly to an ordinary analysis of variance table. The deviance for tempF is twice the drop in the loglikelihood from the model without the tempF term to the model with the tempF term, [image: 
$$ 6.144035 = 66.54037 - 60.39634 $$
], with degrees of freedom the difference in the number of parameters in the two models, [image: 
$$ 1 = 137 - 136 $$
]. We use the χ
2 table, hence [image: 
$$ 1 -\mathcal{F}_{\chi ^{2}}(6.144035\mid 1) = 0.01318561 $$
].
Deviance
                        
                       is very general concept. The formula for deviance specializes to variance for the normal error function with the identity link function. In this, and in many other ways, least squares is a special case of maximum likelihood.



summary:The summary function
    summary(spacshu.bin.glm)
shows the table of regression coefficients. It is less helpful than the deviance table in situations with only a single predictor variable. In this example it says that the t-value for tempF is − 0. 1155985. This number does not have an exact t-distribution, which is why no p-value is associated with it. Since | −2. 46 | > 2, it appears to be significant, but we must look at the chi-square value in the analysis of deviance table
                        
                       to make a valid inference.






17.3 Example—Budworm Data
An experiment discussed in Collett (1991) and Venables and Ripley (1997) was performed to model the dose–response of a particular insecticide required to kill or incapacitate budworms, insects that attack tobacco plants. A potential additional factor was the budworm’s sex. In particular, it was desired to estimate the lethal dose proportions LD25, LD50
                
              , LD75. LD50, lethal dose 50, is an abbreviation for the dose that is lethal for 50% of the budworms. Twenty moths of each sex were exposed to each of seven experimental doses. The data, accessible as data(budworm), present ldose, the log2 of dose, along with the number of moths of each sex that were killed after three days of exposure. We show the observed data in Figure 17.7. For each dose of insecticide, male budworms have higher mortality than females. [image: A77776_2_En_17_Fig7_HTML.gif]
Fig. 17.7Observed number (out of 20) of dead Male and Female budworms as a function of log(dose). The goal of the study is the prediction of the proportion dead, so we included a right axis with the data rescaled values to proportion. The horizontal reference lines are placed at the limits proportion=0 and proportion=1. The dashed lines connecting the observed values are a visual aid to the reader of the graph.





We model the data with a logistic regression calculated as a generalized linear model with a binomial error term and a logit link function. Table 17.4 shows two models, with and without an interaction term. The p-value of the interaction is high, so we will continue with the no-interaction model. Table 17.4Logisitic regression of the budworm data with and without an interaction term. The p-value shows that we not need the interaction term, and we do need both the other terms.


[image: A77776_2_En_17_Figc_HTML.gif]



We read the predicted LD50 (on log2 scale) by placing a horizontal line at prob=.5 on the prob ~ log.dose panel of Figure 17.8. For each dose of insecticide, male budworms have higher mortality than females. We look at the log.dose coordinate of the intersection of the horizontal line with the fitted lines and find that the LD50 is slightly over 2 for males and slightly over 3 for females. Calculations for the LD50, as well as ones for LD25 and LD75, using the MASS function dose.p are illustrated in Table 17.5. [image: A77776_2_En_17_Fig8_HTML.gif]
Fig. 17.8Budworm data with LD25, LD50, LD75 from logistic regression. The horizontal reference lines at probabilities.25,.50, and.75 are used to find the LD values. For example, the horizontal line at p=.50 intersects the fitted Male curve at log dose=2.229. Thus the LD50 for Male is 2.229. Similarly the horizontal line at p=.50 intersects the fitted Female curve at log dose=3.264. Thus the LD50 for Female is 3.264.




Table 17.5Budworm data with LD25, LD50, LD75 from logistic regression. See also Figure 17.8.


[image: A77776_2_En_17_Figd_HTML.gif]




              
                
              
            
Figure 17.9 shows the relationship of predicted probability of kill, odds, and logit to the observed data. The logit ~ log.dose panel shows the assumed linear relationship of [image: 
$$ \mathop{\mbox{ logit}}(p) =\log (p/(1 - p)) $$
]. [image: A77776_2_En_17_Fig9_HTML.gif]
Fig. 17.9Predicted probabilities of kill, and the odds and logit=log(odds), as a function of log(dose). A constant difference in the logit scale, seen as parallel lines in the logit ~ log.dose panel, corresponds to a constant ratio in the odds. The logit scale plot of this example, with one continuous covariate and one factor, is analogous to the analysis of covariance for continuous response and normally distributed error term as seen in Figure 10.​8 The panels on the left for odds and logit have missing symbols where the transformation created infinite values [image: 
$$ {\left(\mathop{\mbox{ odds}}(1) = \infty,\;\mathop{\mbox{ logit}}(0) = -\infty,\;\mathop{\mbox{ logit}}(1) = \infty \right )} $$
]. In the panels on the right we placed partial symbols on the edge of the panel to indicate that there is an observation and that it is off the scale. The p.hat ~ log.dose is the same on both sides and is the same as Figure 17.8.






              
                
              
              
                
              
            

17.4 Example—Lymph Nodes

              
                
              
            
These data come from Brown (1980). The problem is outlined in this reference as follows:
When a patient is diagnosed as having cancer of the prostate, an important question in deciding on treatment strategy for the patient is whether or not the cancer
                
               has spread to the neighboring lymph nodes. The question is so critical in prognosis and treatment that it is customary to operate on the patient for the sole purpose of examining the nodes and removing tissue samples to examine under the microscope for evidence of cancer. However, certain variables that can be measured without surgery are predictive of the nodal involvement; and the purpose of the study presented here was to examine the data for 53 prostate cancer patients receiving surgery, to determine which of five preoperative variables are predictive of nodal involvement, and how accurately the prediction can be made.
In particular, the medical investigator was interested in whether or not an elevated level of acid phosphatase
                
               in the blood serum would be of added value in the prediction of whether or not the lymph nodes were affected, given the other four more generally used variables.
17.4.1 Data
The variables accessed as data(lymph) are described in Table 17.6. The data are displayed in Figure 17.10, constructed as a plot of the two continuous x-variables conditioned on the three 2-level factors and with the plotting symbol chosen to reflect the 2-level response variable. The investigator wants to know if the predicted proportion of nodes (symbol “1”) in each panel (that is, conditional on grade, stage, X-ray, and age) is affected by the additional information on acid phosphatase. Table 17.6Lymph Data from Brown (1980)


	
                            Response Variable
                          

	
                            nodes
                          
	1 indicates nodal involvement found at surgery,

	 	0 no nodal involvement

	
                            Predictor Variables
                          

	
                            X.ray
                          
	1 is serious, 0 is less serious

	
                            stage
                          
	measure of size and location of tumor,

	 	1 is serious, 0 is less serious

	
                            grade
                          
	pathology reading of a biopsy, 1 is serious, 0 is less serious

	
                            age
                          
	at diagnosis

	
                            acid.ph
                          
	level of serum acid phosphatase




[image: A77776_2_En_17_Fig10_HTML.gif]
Fig. 17.10Much of the relation between variables is visible in this set of panels conditioned on three factors, with the plotting symbol representing a fourth factor. The top row with X-ray=1 has a higher proportion of nodes=1. The right two columns with stage=1 have a higher proportion of nodes=1.





Our first impression from Figure 17.10 is that age seems not to make a difference. Therefore, our subsequent analysis considers only the three remaining factors and one continuous predictor.

17.4.2 Data Analysis
In Table 17.7 we model the logit transformation of nodes as a function of X.ray, stage, grade, and acid.ph. Figure 17.11 contains plots of jittered nodes vs acid.ph along with the model’s predicted probability of nodal involvement partitioned according to the 8 = 23 combinations of the factors X.ray, stage, and grade. The predicted relationship is plausible in 5 of these 8 panels, where there is a visible tendency for the nodes=1 points to be farther to the right, that is to have higher acid.ph scores, than the nodes=0 cases. Two of the panels have only nodes=1 cases and can’t be used for this comparison. In only one panel (X.ray=0, grade=0, stage=1) is there a balanced overlap of ranges. This suggests that acid.ph is positively associated with nodes and therefore may be a useful additional predictor. Table 17.7Logistic regression with three factors and one continuous predictor. See also Figures 17.11 and 17.12.


[image: A77776_2_En_17_Fige_HTML.gif]


[image: A77776_2_En_17_Fig11_HTML.gif]
Fig. 17.11Jittered and predicted nodes vs acid.ph for each combination of values of stage, grade, and X.ray. The asymptotes for fit at nodes=0 and nodes=1 are indicated with a gray dotted line. The significant terms in Table 17.7 are visible here. The fitted line is higher and to the right in the X-ray=1 than in the X-ray=0 panels. The fitted line is higher and to the right in the stage=1 panels than in the stage=0 panels. All panels show higher fitted values for higher acid.ph values. We can even see the small effect of grade in each pair of panels at the same X-ray and stage. All eight fitted lines shown here are displayed together in the first column and p.hat row of Figure 17.12.





The p-value for acid.ph in Table 17.7, 0.075, indicates that acid.ph is a borderline predictor of the presence of nodes. A tentative interpretation is that acid.ph is a potential predictor for some but not all combinations of X.ray, stage, and grade. In this same table, the p-value for grade is 0.45, suggesting that this factor can be dropped from the model. However, we choose to retain gradea because a rerun of the model without grade actually increases the p-value of acid.ph. Investigation of this issue is requested in Exercise 17.10.
Figure 17.12 shows the predicted probability of nodal involvement as a function of acid.ph, and the transformation of these predicted probabilities to predicted odds and predicted logits for the additive model in Table 17.7, conditioned on the levels of X.ray, stage, and grade. Figure 17.12 uses different plot symbols for the two levels of stage. The left column shows all (2 × 2 × 2) = eight groups. A separate line is shown for predictions for each of the 8 = 23 combinations of the three factors X.ray, stage, and grade. In the logit.p.hat ~ acid.ph panels there are 8 parallel lines, one for each value of acid.ph*X.ray*nodes. The right two columns partition the lines into separate sets of panels for each level of X.ray. The logit.p.hat ~ acid.ph plots in the top panels in this figure suggest that there is positive association between nodal involvement and acid.ph. The intercepts in the right two columns and the top row show the clear distinction attributable to the level of X-ray. Within the X-ray=0 and X-ray=1 columns, the stage=1 lines are both higher than the stage=2 lines. Within each of the panels the grade=1 line is higher than the grade=0 line. The distinctions easily seen in the top row with the logit scale are reflected in the odds.hat and p.hat rows. [image: A77776_2_En_17_Fig12_HTML.gif]
Fig. 17.12Plot of p.hat, odds(p.hat), logit(p.hat) for the model nodes ~ acid.ph | X.ray + stage + grade, with plotting symbol indicating stage and placed at the predicted values for the observed acid.ph. The left column shows the fit for both values of X.ray. The right columns are the same fitted values with the illustration conditioned on the value of X.ray. The panel in the p.hat row and the X-ray:both column shows the eight fitted lines from Figure 17.11.






17.4.3 Additional Techniques
In the remainder of this section we consider a simpler logistic regression model for nodes primarily to further illustrate the variety of modeling and plotting techniques available to analysts. We model the probability of nodal involvement as a function of just acid.ph and X.ray, initially requiring constant slope and allowing for the possibility that the intercept in logistic relationship between nodes and acid.ph differs according to whether X.ray = 0 or 1.
Figure 17.13 shows nodes as a function of acid.ph separately for each value of X.ray. Except for the single point with acid.ph=187, to be investigated later, the illustration shows clearly that high acid.ph predicts nodes=1 for X.ray=1, and that high acid.ph doesn’t help very much for X.ray=0. [image: A77776_2_En_17_Fig13_HTML.gif]
Fig. 17.13
xyplot(nodes.j ~ acid.ph | X.ray). The observed nodes are jittered to break the ties. The dashed lines indicate the location of the actual 0 and 1 values.





We can get a sense of this interpretation in Figure 17.14 by partitioning the x-axis (acid.ph) into sections 20 units wide and plotting the proportion of 1s in each section. The line segments plotted in each x-section mostly represent increasing proportions of 1s as acid.ph goes up. Compare this to the logistic regression technique in Table 17.8 and Figure 17.15 which uses a continuous x-axis, thus no segmentation, and forces the fit to be monotone increasing. [image: A77776_2_En_17_Fig14_HTML.gif]
Fig. 17.14Figure 17.13 plus proportion of 1s in sections 20 units wide.




Table 17.8Logistic regression with one factor and one continuous predictor. See also Figure 17.15.


[image: A77776_2_En_17_Figf_HTML.gif]


[image: A77776_2_En_17_Fig15_HTML.gif]
Fig. 17.15Figure 17.13 plus fitted logistic curve for the simple model glm(nodes ~ X.ray + acid.ph, data=lymph, family=binomial).






                
                  
                
              
In Figure 17.15 with logistic regression we model the data in Figure 17.13 by fitting a linear model with x=acid.ph to the logit of the response variable [image: 
$$ \displaystyle\begin{array}{rcl} \mathop{\mbox{ logit}}(E(\hat{p}_{j})) =\log \left ( \frac{E(\hat{p}_{j})} {1 - E(\hat{p}_{j})}\right ) =\beta _{0} +\beta _{j} +\beta _{x}x& & {}\\ \end{array} $$
]


 with the error distribution assumed to be binomial with [image: 
$$ \displaystyle\begin{array}{rcl} p_{j} = P(\mathtt{nodes} = 1\mid \mathtt{X.ray} = j)& &{}\end{array} $$
]

 (17.11)

 The model in Equation (17.11) is structurally similar to an ANCOVA model, with common slope β

                  x
                 and with different intercepts. β
0 is the reference intercept and β

                  j
                 is the offset of the intercept for group j. The ANOVA table and plot for this model are in Table 17.8 and Figure 17.15. We see the appropriateness of this model in the logit.p.hat ~ acid.ph panel of Figure 17.16 and, even more strikingly, in the logit.p.hat ~ acid.ph panels of Figure 17.12. [image: A77776_2_En_17_Fig16_HTML.gif]
Fig. 17.16Three scalings of fit to nodes ~ acid.ph | X.ray with the responses at both values of X.ray superposed on the same plot. The parallel lines in the logit.p.hat panel show the analogy with ANCOVA.





The results of fitting the model to the data of Figure 17.13 are displayed in Figures 17.15 (just the probability scale) and 17.16 (with the probability, odds, and logit scales). Note that the farther right we move in each panel, the higher the proportion of dots that appear in nodes=1 and therefore the higher the predicted probability that a case will have nodes=1.

                
                  
                
              

                
                  
                
              
Figure 17.14 displays partitioned fits by value of X.ray, suggesting that forcing a common slope (in the logit scale) might not be the best two-variable model for these data. Let us try adding the interaction of X.ray and acid.ph. We see in Table 17.9 that the X.ray:acid.ph interaction has a p-value of.0605. The fitted curves for this model are shown in the probability scale in Figure 17.17. The transformation to odds and logit scales is shown in Figure 17.18. Note the completely different appearance of the curve for the X.ray=1 group when it is not constrained to be parallel to the X.ray=0 curve in the logit scale. Table 17.9Logistic regression with interaction of X.ray and acid.ph. See also Figure 17.17.


[image: A77776_2_En_17_Figg_HTML.gif]


[image: A77776_2_En_17_Fig17_HTML.gif]
Fig. 17.17Figure 17.13 plus fitted logistic curves for the interaction model glm(nodes ~ X.ray * acid.ph, data=lymph, family=binomial).




[image: A77776_2_En_17_Fig18_HTML.gif]
Fig. 17.18Three scalings of fit to nodes ~ X.ray * acid.ph with the responses at both values of X.ray superposed on the same plot. The non-parallel lines in the logit.p.hat panel show the analogy with interaction in the ANCOVA setting. Two of the points in the odds.hat panel are beyond the limits we chose for the display. Their values in the odds.hat scale are 1256 and 3472.





Figure 17.17 displays the overlay of the (nodes ~ acid.ph | X.ray) from Figure 17.13 and the fitted values from the model lymph1Xa.glm from Table 17.9. Figure 17.17 actually displays the entire fitted line for the p.hat panels, not just the specific points corresponding to the observed data. Compare this to Figure 17.15.
Each panel of Figure 17.17 is constructed as the superposition of the subpanels for observed data (nodes ~ acid.ph | X.ray) and for predicted probability (p.hat ~ acid.ph | X.ray) from Table 17.9. We see that the probability of nodal involvement as a function of acid.ph depends on the level of X.ray.
When we look at Figure 17.16 we see that the logit.p.hat ~ acid.ph panel shows two distinct parallel lines. These parallel lines correspond to the predicted probabilities for the two levels of X.ray.
Remembering that [image: 
$$ \mathop{\mbox{ logit}}(\hat{p}) =\log (\mathop{\mbox{ odds}}(\hat{p})) $$
], we see that the parallel lines have common slope (0.01685 logit.p.hat units per acid.ph) and different intercepts 2.116 units apart. Translating the difference in intercepts back to odds ratios, we find the odds ratio attributable to X.ray is e
2. 116 = 8. 298, and we can see from the (odds.hat ~ acid.ph) panel of Figure 17.16 that the X.ray=1 line is about 8 times higher than the X.ray=0 line.

17.4.4 Diagnostics
All the usual diagnostic calculations, statistics, and graphs developed for linear regression are used with logit regression to help determine goodness of fit. Details are discussed in Hosmer and Lemeshow (2000).
One of the most important diagnostics
                  
                  
                 for this dataset is the comparison of the graphs in Figures 17.15 and 17.17 where we note that the outlier for acid.ph=187 is a critical point. In Figure 17.14, with the sectioned fit, we see that that single point in the X.ray=0 panel flattens the logistic curve for both levels of X.ray. Compare the similar curves for both levels of X.ray in Figures 17.15 and 17.16 without the interaction term to the very different curves in Figures 17.17 and 17.18 with the interaction term.


17.5 Numerical Printout
We calculate the fitted values from a logistic regression model in the three scales (probability, odds, and logit) defined in Table 17.2 and plot them against the continuous predictor variables. The fit in lymph1.glm is calculated in Table 17.8 and illustrated in Figures 17.15 and 17.16. The logit.p.hat ~ acid.ph panel in Figure 17.16 shows the straight-line fit of [image: 
$$ \mathop{\mbox{ logit}}\hat{p} $$
] to acid.ph. There are two parallel lines in the panel, one for each value of the factor X.ray. The slope is given by the coefficient β

                acid.ph
              . The difference in intercepts is given by the coefficient β

                X.ray1
               (note the dependence on the dummy variable coding scheme). The fitted curves in the p.hat ~ acid.ph panel are the same, now transformed to the probability scale. The p.hat ~ acid.ph panel of Figure 17.16 consists of the curves in both panels of Figure 17.15. Figure 17.15 overlays the logit.p.hat ~ acid.ph panels on the nodes ~ acid.ph panels of Figure 17.13.
The more complete model with all three factors in Figure 17.11 is calculated in Table 17.7.

17.6 Graphics

              
                
              
            
The datasets for this chapter are displayed with several types of graphs. Most of the graphs are constructed with multiple panels to display several variables in a coordinated fashion.
17.6.1 Conditioned Scatterplots
The initial display of the lymph dataset in Figure 17.10 is a scatterplot of the two continuous variables age on the y-axis and acid.ph on the x-axis, conditioned on the three binary-valued x-factors and using the binary-valued nodes-variable as the plotting character. All eight panels of the display are scaled alike in order to help the eye distinguish the important features. Common scaling is critical for making comparisons.
Figure 17.11 is similarly constructed, although in this case with age suppressed and with nodes on the y-axis. This graph presents the same view of the data, with important differences. We have jittered the nodes variable to counter the overprinting. Also, in Figure 17.11, we have overlaid the observed data with the predicted probabilities from the logistic model. By doing so we get an immediate sense of how the predictions are affected by the values of the conditioning factors and can see directly in each panel that higher acid.ph values correspond to higher predicted probabilities and to a higher proportion of points with observed response nodes=1.
The displays of the simplified models using only the single factor X.ray in Figures 17.13–17.18 are constructed similar to Figure 17.11. In these simpler models there are only two panels rather than eight.
Figure 17.12 shows two sets of conditioned scatterplots. The right two columns are conditioned on the level of X.ray. The left column is marginal to the right two columns. Each of the left column’s panels shows the sum of the corresponding panels in the right two columns.

17.6.2 Common Scaling in Comparable Plots


                  
                  
                

                  
                 Let us illustrate the importance of common scaling by looking in Figure 17.19 at the predictions of Figure 17.11 in the logit scale both with common scaling and with idiosyncratic scaling. In the logit scale all eight lines have identical slope. With common scaling we see the parallelism. We also see the outlier at X.ray=0 and acid.ph=187. With idiosyncratic scaling we see two unrelated parallel structures, and worse, we think the distant points at X.ray=1 and acid.ph ≈ 130 are as far out as the real outlier at X.ray=0 and acid.ph=187. Only when the viewer looks very closely at the printed scale, a requirement that indicates a poorly designed graphic, is it possible to see the major message in this idiosyncratically scaled pair of graphs. [image: A77776_2_En_17_Fig19_HTML.gif]
Fig. 17.19Two views of the logit.p.hat row and the X-ray: 0 and X-ray: 1 columns of Figure 17.12. The top two panels with common scaling make it easy to see the effect of the X.ray level on the logit. With a common scale we see that the X.ray=0 predictions are mostly to the left of and below the X.ray=0 observations. The bottom two panels, with idiosyncratic scaling for each panel, hinder the ability of the reader to understand the effect of X.ray level. With separate scales, each set of points is individually centered in its own plotting window, and the ability to compare them visually is lost.






17.6.3 Functions of Predicted Values
Figures 17.15 and 17.16 show the predicted values for the simplest of the logistic regression models for the lymph dataset. The observed x=acid.ph are the same in both graphs. The panels in Figure 17.15 are conditioned on the level of X.ray. Each panel in Figure 17.16 shows both levels of X.ray and a different transformation of the predicted probability. Figure 17.15 superposes the predicted p.hat values in the probability scale onto the jittered nodes.j data first shown in Figure 17.13. The variable [image: 
$$ \hat{p} $$
]=p.hat is in the same scale (0 to 1) as the observed data. In this scale, the S-shaped logistic curve is apparent. The p.hat panel of Figure 17.16 shows only the predicted probability of success and does not show the observed node values.
The odds transformation [image: 
$$ \frac{\hat{p}} {1-\hat{p}} $$
]=odds.hat in the odds.hat panel of Figure 17.16 shows that the predicted odds for the two groups have a constant ratio. Constant ratios are difficult to see in a graph. The third transformation, the logit transformation [image: 
$$ \mathop{\mbox{ logit}}(\hat{p}) =\log ( \frac{\hat{p}} {1-\hat{p}}) $$
]=logit.p.hat, most clearly shows the model assumptions: The two lines for the two groups are parallel. A constant difference in the log(odds) corresponds to a constant ratio in the odds. 
                  
                



17.7 Model Specification

              
                
              
            
Logistic regression is a special case of generalized linear modeling; hence the programming constructs developed for ordinary linear models can be used.
The ANOVA tables and predicted values will agree across programs. The regression coefficients and their standard deviations depend on the choice of coding schemes for the factors. R and S-Plus use the treatment contrasts
                
               (defined in Section 10.​3) with argument base=1 as the default (In R notation, contr.treatment(k, base=1)). SAS uses the treatment contrasts with base=k for a k-level factor. In R notation, SAS uses contr.treatment(k, base=k).
17.7.1 Fitting Models When the Response Is Dichotomous

                
                  
                
              
The response variable nodes in the lymph dataset is dichotomous, that is, it can take only the two values 0 or 1.
17.7.1.1 
R and S-Plus

The basic R and S-Plus statements for estimating logistic models with dichotomous response variables as in the example in Table 17.7 and Figures 17.11 and 17.12, are a special case of generalized linear models,
    lymph3.glm <- glm(nodes ~ X.ray + stage + grade + acid.ph,
                      data=lymph, family=binomial)
    anova(lymph3.glm, test="Chisq")
    summary(lymph3.glm)
The user needs to use ordinary data management statements to arrange for the appropriate subjects and variables to appear in the data.frames. Graphical display of the results also requires data management statements to select columns of the data and to construct the transformations of the predicted values.

17.7.1.2 
                  SAS
                
The basic SAS statements for estimating logistic models with dichotomous response variables as in the example in Table 17.7 and Figure 17.11, use PROC LOGISTIC
    proc logistic data=lymph descending;
        title "lymph 3" ;
        model Y = X_ray  stage  grade  acid_ph ;
        output out=probs3 predicted=prob xbeta=logit;
    run;
The user needs to use ordinary DATA step data management statements to arrange for the appropriate subjects and variables to appear in the datasets. Graphical display of the results also requires data management statements to select columns of the data and to construct the transformations of the predicted values. SAS PROC LOGISTIC doesn’t accept the nesting and crossing statements of PROC GLM. For more complex models we will need to construct interaction variables acidXry0 and acidXry1 in an extra DATA step. The descending option is needed to make PROC LOGISTIC model P(nodes = 1). The default is to model P(nodes = 0).


17.7.2 Fitting Models When the Response Is a Sample Proportion

                
                  
                  
                
              
The examples in Sections 17.1 and 17.4 both have dichotomous
                  
                 (0 or 1) responses. As illustrated in Section 17.3, responses for logistic regression models can also be proportions. Models with a proportion-valued response variable are requested in Exercises 17.8 and 17.9. Specifying such models differs slightly from specifications of models with dichotomous responses.
Suppose the total number of observations is in a column named n.total for R or S-Plus (or n_total for SAS), and the number of observations having the attribute under study is in a column named n.attribute (or n_attribute for SAS). Further assume there are two explanatory variables X1 and X2; extension to situations with more than two explanatory variables will be obvious.

R and S-Plus use a syntax based on the odds ratio
                  
                 and SAS uses a syntax based on the proportion
                  
                 for this type of problem.
17.7.2.1 
R and S-Plus


glm() uses the symbolic representation of the odds ratio


                        cbind(n.attribute, n.total-n.attribute)
                
for the response in the model formula. Here is the entire model formula
     glm(cbind(n.attribute, n.total-n.attribute) ~ X1 + X2,
         family=binomial)

17.7.2.2 
                  SAS
                

PROC GENMOD uses the symbolic representation of the proportion


                        n_attribute/n_total
                
for the response in the model statement. Here is the entire model statement
     MODEL n_attribute/n_total = X1  X2 / dist=binomial;



17.8 LogXact


                
               The model estimates shown in Section 17.2 and confidence limits and p-values in computer listings throughout this chapter are based on maximum likelihood estimation, and asymptotic (large-sample) standard errors and normality. LogXact
© Cytel Software Corporation (2004) is a software package that uses algorithms from Mehta et al. (2000) to perform exact, rather than asymptotic, estimation and inference for logistic regression models. Documentation for LogXact states that its exact results sometimes differ appreciably from the asymptotic results provided by R, S-Plus, or SAS. We recommend that readers who work extensively with logistic regression models become familiar with this package.

17.9 Exercises
We recommend that for all exercises involving a data set, you begin by examining a scatterplot matrix of the variables.

17.1. In Equations (17.6) and (17.9) we show the likelihood and loglikelihood equations for the logistic regression model (17.4). For the dataset

              [image: 
$$ \displaystyle{\begin{array}{rr} \hline \hline x&\quad y \\ \hline 1& 1\\ 2 & 0 \\ 3& 1\\ 4 & 0 \\ \hline \end{array} } $$
]



            
estimate the parameters β
0 and β
1. This problem is almost doable by hand. The derivatives in Equation (17.10) are tedious (remember to substitute the data values for x and y and to take the derivatives with respect to β

                j
              ). Once you have simplified the derivatives (an easy task), you have two nasty fractions in β
0 and β
1 to set equal to zero and solve simultaneously (a hard task). Verify that you have done the algebra and arithmetic correctly by comparing the results to a computer program. You can also substitute these answers into your simultaneous equations and verify that they are both satisfied.
Computer programs usually use iterative techniques rather than the brute-force technique suggested here.

17.2. Complete the analysis of the data in Exercise 17.1. Plot the data and the analysis and interpret the numerical values and the graph.

17.3. Mendenhall et al. (1989), subsequently discussed in several other places, studied the effect of radiotherapy on the absence (response = 1) or presence (response = 0) of tongue carcinoma three years after the completion of radiotherapy. The explanatory variable days is the number of days across which the fixed total dose of radiotherapy was administered. The data is accessed as data(tongue). a.Use logistic regression to model response as a function of days. Is the coefficient of days significantly different from 0? Estimate the change in the odds of response resulting from one additional day of radiotherapy.

 

b.Produce a plot of the fitted equation with 95% prediction bands analogous to Figure 17.3d.

 

c.The negative arithmetic sign of the coefficient of days may at first glance seem counterintuitive. Offer a possible explanation for this result.

 





17.4. Dataset data(icu), from Hosmer and Lemeshow (2000), presents the ICU data, a selection of cases from a larger study of survival in an intensive care unit. The major goal of the study was to develop a logistic regression model to predict the probability of survival to hospital discharge of these patients. The code sheet for the data is in Table 17.10. We will initially look at just two variables, AGE and SEX. There are a few young males and no young females who did not survive, suggesting that SEX might be an important indicator. a.Plot the response variable STA (survival status) against the continuous variable AGE conditioned on SEX.

 

b.Fit a logistic regression model to STA with predictor variables AGE and SEX.

 

c.Plot the logistic fit of STA against AGE conditioned on SEX, comparable in style to Figure 17.17.

 

d.Interpret your results.

 



Table 17.10Code Sheet for the ICU Study. This is Table 1.5 from Hosmer and Lemeshow (2000).


	Variable
	Description
	Codes/Values
	Name

	1
	Identification Code
	ID Number
	ID

	2
	Vital Status
	0 = Lived, 1 = Died
	STA

	3
	Age
	Years
	AGE

	4
	Sex
	0 = Male, 1 = Female
	SEX

	5
	Race
	1 = White, 2 = Black, 3 = Other
	RACE

	6
	Service at ICU
	0 = Medical, 1 = Surgical
	SER

	 	Admission
	 	 
	7
	Cancer Part of
	0 = No, 1 = Yes
	CAN

	 	Present Problem
	 	 
	8
	History of Chronic
	0 = No, 1 = Yes
	CRN

	 	Renal Failure
	 	 
	9
	Infection Probable
	0 = No, 1 = Yes
	INF

	 	at ICU Admission
	 	 
	10
	CPR Prior to ICU
	0 = No, 1 = Yes
	CPR

	 	Admission
	 	 
	11
	Systolic Blood Pressure
	mm Hg
	SYS

	 	at ICU Admission
	 	 
	12
	Heart Rate
	Beats/min
	HRA

	 	at ICU Admission
	 	 
	13
	Previous Admission to
	0 = No, 1 = Yes
	PRE

	 	an ICU Within 6 Months
	 	 
	14
	Type of Admission
	0 = Elective, 1 = Emergency
	TYP

	15
	Long Bone, Multiple,
	0 = No, 1 = Yes
	FRA

	 	Neck, Single Area, or
	 	 
	 	Hip Fracture
	 	 
	16
	PO2 from Initial
	0 = > 60, 1 = ≤ 60
	PO2

	 	Blood Gases
	 	 
	17
	PH from Initial
	0 = ≥ 7.25, 1 = < 7.25
	PH

	 	Blood Gases
	 	 
	18
	PCO2 from Initial
	0 = ≤ 45, 1 > 45
	PCO

	 	Blood Gases
	 	 
	19
	Bicarbonate from
	0 = ≥ 18, 1 < 18
	BIC

	 	Initial Blood Gases
	 	 
	20
	Creatinine from
	0 = ≤ 2.0, 1 = > 2.0
	CRE

	 	Initial Blood Gases
	 	 
	21
	Level of Consciousness
	0 = No Coma or Deep Stupor,
	LOC

	 	at ICU Admission
	1 = Deep Stupor, 2 = Coma
	 





17.5. For the same dataset data(icu) used in Exercise 17.4, we will also look at CPR status. Did the patient receive CPR prior to being admitted?
a.Plot the response variable STA (survival status) against the continuous variable AGE conditioned on CPR.

 

b.Fit a logistic regression model to STA with predictor variables AGE and CPR.

 

c.Plot the logistic fit of STA against AGE conditioned on CPR, comparable in style to Figure 17.17.

 

d.Interpret your results.

 





17.6. The dataset data(esr) from Collett (1991) deals with the relationship between erythrocyte sedimentation rate (ESR) and two other blood chemistry measures, fibrin, the level of plasma fibrinogen (g/liter), and gamma globulin level (g/liter). ESR is the settlement rate of red blood cells from suspension in blood. Healthy individuals have ESR below 20 mm/hr. In this analysis the variable ESR is dichotomized
                
               to be 1 if ESR < 20 and 0 if ESR ≥ 20. Use logistic regression to determine if fibrin or globulin impact on ESR.

17.7. Lee (1980) describes an investigation to determine if any of six prognostic variables can be used to predict whether a patient will respond to a treatment for acute myeloblastic leukemia. The dataset data(leukemia) contains the prognostic variables in columns 1–6 and response = 1 if responds to treatment and 0 if doesn’t respond to treatment in column 7. (This data file also contains variables in columns 8–9 that are to be ignored in this exercise.) The prognostic variables are 
                    age:
                  in years



                    smear:
                  smear differential (%)



                    infiltrate:
                  absolute infiltrate (%)



                    labeling:
                  labeling index (%)



                    blasts:
                  absolute blasts ( × 103)



                    temp:
                  temperature (× 10 degrees F)






              a.Construct scatterplot matrices of the prognostic variables conditioned on the two values of response. Which prognostic variables seem most closely associated with response?

 

b.Justify a log transformation of blasts.

 

c.Find a good-fitting model to explain response. Interpret all estimated logistic regression coefficients.

 



            

              17.8.
            
Higgens and Koch (1977), later reprinted in Hand et al. (1994), discuss a study of workers in the U.S. cotton industry to discover factors that relate to contraction of the lung
                
               disease byssinosis
                
              . In the dataset data(byss) the columns are

              
                    yes:
                  number suffering from byssinosis



                    no:
                  number not suffering from byssinosis



                    dust:
                  dustiness of workplace, 1 = high, 2 = medium, 3 = low



                    race:
                  1 = white, 2 = other



                    sex:
                  1 = male, 2 = female



                    smoker:
                  1 = yes, 2 = no



                    emp.length:
                  length of employment:
1 = “ < 10 years”, 2 = “10–20 years”, 3 = “ > 20 years”




            

              a.Fit a logistic model to explain what factors affect the probability of contracting byssinosis. Since the response variable involves the counts in the two response categories rather than a dichotomous indicator, you will need to use model syntax similar to that described in Section 17.7.2. Look at the main effects and the two-way interactions.

 

b.Produce a plot showing all the significant main effects and interactions. One such plot is a multipanel display of the observed proportion of byssinosis sufferers against each of the significant effects.

 

c.Carefully state all conclusions.

 



            

17.9. Murray et al. (1981), also in Hand et al. (1994), report on a survey that explored factors affecting the pattern of psychotropic drug consumption. The columns of the dataset data(psycho) are 
                    sex:
                  0 = male, 1 = female






              age.group
            

              mean.age
            

              
                    GHQ:
                  General Health Questionnaire, 0 = low, 1 = high



                    taking:
                  number taking psychotropic drugs



                    total:
                  total number




            

              a.Use logistic regression to model the proportion taking psychotropic drugs as a function of those explanatory variables among sex, agegroup, and GHQ and their interactions that are significant. Since the response variable is a sample proportion, not a dichotomous indicator, you will have to fit models using the syntax described in Section 17.7.2.

 

b.Produce a plot showing all the significant main effects and interactions. One such plot is a multipanel display of the observed proportion of byssinosis sufferers against the significant effects.

 

c.Interpret the logistic regression coefficients of all main effects.

 



            

17.10. Table 17.7 shows a p-value of 0.45 for the test that the coefficient of grade is zero.
a.Fit the model logit.p.hat ~ X.ray + stage + acid.ph.

 

b.Account for the difference between the p-values in Table 17.7 and in part 17.10a by fitting and interpreting a model containing the term acid.ph %in% grade.
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18. Time Series Analysis
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18.1 Introduction
Time series analysis is the technique used to study observations that are measured over time. Examples include natural phenomena (temperature, humidity, wind speed) and business variables (price of commodities, stock market indices) that are measured at regular intervals (hourly, daily).
Like regression analysis, time series analysis seeks to model a response variable as a function of one or more explanatory variables. Time series analysis differs from other forms of regression analysis in one fundamental way. Previously we have assumed the observations are uncorrelated with each other, except perhaps through their dependency on the explanatory variables. Thus, in regression, we would model [image: 
$$ \displaystyle\begin{array}{rcl} Y = X\beta +\epsilon & & {}\\ \end{array} $$
]


 and make the assumption that [image: 
$$ \mathop{\mbox{ corr}}(\epsilon _{i},\epsilon _{j}) = 0 $$
]. In time series analysis we do not make the assumption of independence. Instead we make an explicit assumption of dependence and the task of the analysis is to model the dependence.
Conventionally, the notation used to denote a time series is [image: 
$$ X_{t},t = 1,2,\ldots,n $$
]. In this chapter we assume that the successive times at which observations are taken are equally spaced apart, for example, monthly, quarterly, or annual observations. (Extensions to non-equally spaced observations are in the zoo package in R.) Initially, we also assume that X

                t
               is a stationary

                
               zero-mean time series. (A time series is said to be stationary if the distribution of [image: 
$$ \{X_{t},\ldots,X_{t+n}\} $$
] is the same as that of [image: 
$$ \{X_{t+k},\ldots,X_{t+n+k}\} $$
] for any choice of t, n, and k. ) This means that as time passes, the series does not drift away from its mean value. Often when stationarity is absent it can be achieved by analyzing differences between successive terms of the time series rather than the original time series itself.
The term lag

                
               is used to describe earlier observations in a sequence. We indicate lagged observations with the backshift

                
               operator B, defined to mean [image: 
$$ \displaystyle{BX_{t} = B^{1}X_{ t} = X_{t-1}} $$
]


 and by extension [image: 
$$ \displaystyle{B^{2}X_{ t} = B(BX_{t}) = BX_{t-1} = X_{t-2}} $$
]


 Often B is used as the argument of a 
                
              polynomial function. For example, if [image: 
$$ \displaystyle{\psi (B) = 3B^{2} - 4B + 2} $$
]


 then [image: 
$$ \displaystyle{\psi (B)X_{t} = 3X_{t-2} - 4X_{t-1} + 2X_{t}} $$
]




There is a distinction between the residual error ε in regression analysis and [image: 
$$ \varepsilon $$
]

                
               components of time series models. A time series [image: 
$$ X_{t},t = 1,2,\ldots,n $$
], is a special case of a large class of models known as stochastic processes.
                
               Random variables [image: 
$$ \varepsilon _{t},\varepsilon _{t-1},\ldots $$
] are random shocks

                
               to the process. This shock concept is distinct from regression residuals ε that represent the inability of model predictors to completely explain the response. In some time series models a linear combination of lagged [image: 
$$ \varepsilon $$
]’s, [image: 
$$ \sum \theta _{k}\varepsilon _{t-k} $$
], can be viewed as an error concept analogous to ε in regression.
The ARIMA
                
               class of models discussed in this chapter can be fit to most regular time series that exhibit systematic behavior with random perturbations that are small compared to the systematic components. They are not appropriate for modeling time series having irregular cyclical behavior (such as the business cycle when modeling Gross National Product) or irregular sizeable shocks (such as federal spending for relief from natural disasters such as major hurricanes, floods, earthquakes, etc.).
Standard time-related data manipulations are easier when the time parameter is built into the data object. Fundamental operations like comparisons of two series or merging two series (ts.union or ts.intersect) are easily specified and the program automatically aligns the time parameter. Table 18.1 illustrates the two alignment options. Table 18.1Alignment of time series with the (ts.union or ts.intersect) functions.
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18.2 The ARIMA Approach to Time Series Modeling

              
                
              
            
In this chapter we introduce the Box–Jenkins
                
              

                
              

                
               ARIMA approach to time series modeling Box and Jenkins (1976). This methodology involves two primary types of dependence structures, autoregression and moving averages, as well as the concept of differencing. We assume throughout that the independent random shocks [image: 
$$ \varepsilon _{t} $$
] are distributed with mean 0 and a common variance σ
2.
18.2.1 AutoRegression (AR)


                  
                 The equation describing the first-order autoregression model AR(1) is [image: 
$$ \displaystyle\begin{array}{rcl} X_{t} =\phi X_{t-1} +\varepsilon _{t}& &{}\end{array} $$
]

 (18.1)

 Each observation X

                  t
                 is correlated with the preceding observation (at lag=1) X

t−1 and, to a lesser extent, with all earlier observations. In the AR(1) model, each observation X

                  t
                 has correlation ϕ with the preceding (at lag=1) observation X

t−1. The correlation of X

                  t
                 with X

t−k
 is [image: 
$$ \displaystyle{ \mathop{\mbox{ corr}}(X_{t},X_{t-k}) =\phi ^{k},\quad \mbox{ $k = 1,2,\ldots $ } } $$
]

 (18.2)

 That is, the correlation decreases exponentially with the length of lag. For example, [image: 
$$ \displaystyle\begin{array}{rcl} \mathop{\mbox{ corr}}(X_{t},X_{t-1})& =& \mathop{\mbox{ corr}}(\phi X_{t-1} +\varepsilon _{t},\,X_{t-1}) {}\\ & =& \phi {}\\ \end{array} $$
]


 and [image: 
$$ \displaystyle\begin{array}{rcl} \mathop{\mbox{ corr}}(X_{t},X_{t-2})& =& \mathop{\mbox{ corr}}(\phi X_{t-1} +\varepsilon _{t},\,X_{t-2}) {}\\ & =& \mathop{\mbox{ corr}}(\phi (\phi X_{t-2} +\varepsilon _{t-1}) +\varepsilon _{t},\,X_{t-2}) {}\\ & =& \phi ^{2}\mathop{ \mbox{ corr}}(X_{ t-2},\,X_{t-2}) +\mathop{ \mbox{ corr}}(\phi \varepsilon _{t-1} +\varepsilon _{t},\,X_{t-2}) {}\\ & =& \phi ^{2} + 0 {}\\ \end{array} $$
]




The AR(1) model is further discussed in Section 18.5.2.
With p-order lags, the autoregression equation is written as [image: 
$$ \displaystyle\begin{array}{rcl} \varPhi _{p}(B)X_{t} =\varepsilon _{t}& &{}\end{array} $$
]

 (18.3)

 where [image: 
$$ \displaystyle\begin{array}{rcl} \varPhi _{p}(B) =\phi (B) = 1 -\phi _{1}B -\ldots -\phi _{p}B^{p}& & {}\\ \end{array} $$
]


 is a p
th-degree polynomial. This model is referred to as AR(p). The AR(1) model in Equation (18.1) is the special case where [image: 
$$ \varPhi _{p}(B) =\varPhi _{1}(B) = 1 -\phi B. $$
]


18.2.2 Moving Average (MA)


                  
                 The equation describing the first-order moving average model MA(1) is [image: 
$$ \displaystyle\begin{array}{rcl} X_{t} =\varepsilon _{t} -\theta \varepsilon _{t-1}& &{}\end{array} $$
]

 (18.4)

 This model is called “moving average” because the right-hand side is a weighted moving average of the independent random shock [image: 
$$ \varepsilon _{t} $$
] at two adjacent time periods.
Each observation X

                  t
                 in the MA(1) model is correlated with the preceding observation X

t−1 and is uncorrelated with earlier observations. For example, [image: 
$$ \displaystyle\begin{array}{rcl} \mathop{\mbox{ corr}}(X_{t},X_{t-1})& =& -\theta /(1 +\theta ^{2}) {}\\ \end{array} $$
]


 and [image: 
$$ \displaystyle\begin{array}{rcl} \mathop{\mbox{ corr}}(X_{t},X_{t-2})& =& \mathop{\mbox{ corr}}(\varepsilon _{t} -\theta \varepsilon _{t-1},\,\varepsilon _{t-2} -\theta \varepsilon _{t-3}) {}\\ & =& 0 {}\\ \end{array} $$
]


 With q-order lags, the equation is written as [image: 
$$ \displaystyle\begin{array}{rcl} X_{t} =\varTheta _{q}(B)\varepsilon _{t}& &{}\end{array} $$
]

 (18.5)

 where [image: 
$$ \displaystyle\begin{array}{rcl} \varTheta _{q}(B) =\theta (B) = 1 -\theta _{1}B -\ldots -\theta _{q}B^{q}& & {}\\ \end{array} $$
]


 is a q
th-degree polynomial. This model is denoted MA(q). The MA(1) model in Equation (18.4) is the special case where [image: 
$$ \varTheta _{q}(B) =\varTheta _{1}(B) = 1 -\theta B $$
]. The MA(1) model is further discussed in Section 18.5.3.

18.2.3 Differencing


                  
                 Differencing of order 1 is defined by [image: 
$$ \displaystyle\begin{array}{rcl} \nabla X_{t} = (1 - B)X_{t} = X_{t} - X_{t-1}& &{}\end{array} $$
]

 (18.6)

 Simple models are written for the differenced data, for example, [image: 
$$ \displaystyle\begin{array}{rcl} \nabla X_{t} =\varepsilon _{t} -\theta \varepsilon _{t-1}& &{}\end{array} $$
]

 (18.7)

 or, equivalently [image: 
$$ \displaystyle\begin{array}{rcl} X_{t} - X_{t-1} =\varepsilon _{t} -\theta \varepsilon _{t-1}& & {}\\ \end{array} $$
]


 Model (18.7) is structurally the same as Model (18.4) in that it has the same right-hand side. The left-hand sides differ. Model (18.7) uses the differenced time series ∇X

                  t
                 as its response variable where Model (18.4) used the observed variable X

                  t
                . Differencing removes nonstationarity in the mean. More complicated models involving higher-order differencing are denoted by a polynomial [image: 
$$ \displaystyle\begin{array}{rcl} \nabla ^{d}(B) = (1 - B)^{d}& & {}\\ \end{array} $$
]


 The interpretation is [image: 
$$ \displaystyle\begin{array}{rcl} \nabla ^{1}(B)X_{ t} = X_{t} - X_{t-1}& & {}\\ \end{array} $$
]





18.2.4 Autoregressive Integrated Moving Average (ARIMA)

                
                  
                
              
We work with both AR(p) and MA(q) with lags greater than or equal to 1, and with a combined situation called ARIMA(p, d, q) (autoregressive integrated moving average). The term integrated means that we use the AR and MA techniques on differenced data. The general form of the ARIMA(p, d, q) model is [image: 
$$ \displaystyle\begin{array}{rcl} \varPhi _{p}\left (B\right )\nabla ^{d}X_{ t} =\varTheta _{q}\left (B\right )\varepsilon _{t}& &{}\end{array} $$
]

 (18.8)

 where [image: 
$$ \varepsilon _{t} $$
] is a random shock with mean zero and [image: 
$$ \mathop{\mbox{ var}}\left (\varepsilon _{t}\right ) =\sigma _{ \varepsilon }^{2} $$
].
There are many important special cases. ARIMA(1,0,0) = AR(1)model is in Equation (18.1).


ARIMA(0,0,1) = MA(1)model is in Equation (18.4).


ARIMA(0,1,0)is the first difference model in Equation (18.6).


ARIMA(0,1,1)model is shown in Equation (18.7).


ARIMA(1,1,1)model looks like [image: 
$$ \displaystyle\begin{array}{rcl} \varPhi _{1}(B)\nabla X_{t}& =& \varTheta _{1}(B)\varepsilon _{t} {}\\ (1 -\phi B)(1 - B)X_{t}& =& (1 -\theta B)\varepsilon _{t} {}\\ (1 - (1+\phi )B +\phi B^{2})X_{ t}& =& (1 -\theta B)\varepsilon _{t} {}\\ X_{t} - (1+\phi )X_{t-1} +\phi X_{t-2}& =& \varepsilon _{t} -\theta \varepsilon _{t-1} {}\\ \end{array} $$
]






ARIMA(p, 0, q)with d = 0, hence no differencing, is also called an ARMA(p, q)
                          
                         model (autoregressive moving average)).







18.3 Autocorrelation

              
                
              
            
Two principal tools for studying time series are the autocorrelation function (ACF) and the partial autocorrelation function (PACF). The ACF assists in the diagnosis of MA models. The PACF is used in the diagnosis of AR models.
18.3.1 Autocorrelation Function (ACF)

                
                  
                
              
The defining equation for the lag-k autocorrelation coefficient ρ

                  k
                 is [image: 
$$ \displaystyle\begin{array}{rcl} \rho _{k} =\mathop{ \mbox{ acf}}(k) =\mathop{ \mbox{ corr}}(X_{t},X_{t-k})& & {}\\ \end{array} $$
]


 The discrete function {ρ

                  k
                } indexed by the lag k is called the autocorrelation function of the series Z. The sample estimators {r

                  k
                } are defined by [image: 
$$ \displaystyle\begin{array}{rcl} \begin{array}{lcll} \bar{X} & =& \frac{1} {n}\sum \limits _{t=1}^{n}X_{ t} \\ c_{k} & =& \frac{1} {n}\sum \limits _{t=k+1}^{n}(X_{ t} -\bar{ X})(X_{t-k} -\bar{ X})&\mathrm{autocovariance} \\ r_{k}& =&c_{k}/c_{0} & \mathrm{autocorrelation}\end{array} & & {}\\ \end{array} $$
]


 Note that the division is always by n.
The ACF for a time series [image: 
$$ z = (x_{1},\ldots,x_{n}) $$
] is calculated in R by [image: 
$$ \displaystyle\begin{array}{rcl} \mathtt{acf(z)}& & {}\\ \end{array} $$
]





18.3.2 Partial Autocorrelation Function (PACF)

                
                  
                
              
The defining equation for the PACF is [image: 
$$ \displaystyle\begin{array}{rcl} \phi _{kk} =\mathop{ \mbox{ pacf}}(k) =\mathop{ \mbox{ corr}}(X_{t},X_{t-k}\mid X_{t-1},X_{t-2},\ldots,X_{t-(k-1)})& & {}\\ \end{array} $$
]


 The sample estimators are defined by solving the Yule–Walker equations that hold for an AR(p) process (see Box and Jenkins (1976) for details). An illustrative (but not practical) estimator is shown in the R function in Table 18.2. The PACF is calculated in R by [image: 
$$ \displaystyle\begin{array}{rcl} \mathtt{acf(z,\ type="partial")}& & {}\\ \end{array} $$
]


 Note that ρ
1 = ϕ
11, that is [image: 
$$ \mathop{\mbox{ pacf}}(1) =\mathop{ \mbox{ acf}}(1) $$
], in mathematics notation. In R notation, the same statement is
[image: 
$$ \displaystyle\begin{array}{rcl} \mathtt{acf(x)[\textquotedblright 1\textquotedblright ]\$acf\ ==\ acf(x,\ type = \textquotedblright partial\textquotedblright )[\textquotedblright 1\textquotedblright ]\$acf}& & {}\\ \end{array} $$
]


 for a numeric vector x. Table 18.2Illustrative definition of the PACF. Do NOT use in actual calculations!
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18.4 Analysis Steps
There are three main steps in time series analysis using the ARIMA models of the Box–Jenkins approach. Identification
                      
                    :choice of the proper transformations to apply to the time series, consisting of variance-stabilizing transformations and of differencing. Determining the number of model parameters: d, the order of differencing; p, the number of autoregressive parameters; and q, the number of moving average parameters.


Estimation
                      
                    :estimation of the parameters of the identified model, usually by maximum likelihood.


Diagnostics
                      
                      
                    :verification that the estimated model and parameters do indeed capture the essence of the behavior of the data.





We offer these recommendations for interpreting sequence plots, ACF plots, and PACF plots. They are based on the Box–Jenkins methodology described in the texts by Box and Jenkins (1976) and Wei (1990).

              1.Trends in the sequence plot must be removed by differencing. This is required before attempting to interpret the ACF and PACF plots. The interpretation below of ACF and PACF plots depends on stationarity.

 

2.No correlation—white noise
The ACF and PACF are negligible at all lags.

 

3.AR(p)
The ACF decays slowly.
The PACF cuts off at lag p.

 

4.MA(q)
The ACF cuts off at lag q.
The PACF decays slowly.

 

5.ARMA(p, q)
The ACF decays slowly from lag max(q − p, 0) on.
The PACF decays slowly from lag max(p − q, 0) on.
The orders p and q usually can’t be read directly from these plots. Looking at the ACF and PACF plots for models with larger values of p and q can be helpful. The ESACF (extended sample autocorrelation function) (see, for example, Wei (1990), p. 128) can also be helpful.

 



            
Several additional tools are used to identify well-fitting models.

              	The Akaike information criterion
                        
                      
 (AIC) for a particular model is defined as [image: 
$$ -2(\ln L) + 2m $$
], where L is the model’s loglikelihood and m is the number of parameters needed to estimate the model. Like the C

                      p
                     statistic used to decide among multiple regression models, introduced in Equation (9.​28), the AIC is the sum of a goodness-of-fit component and a penalty for lack of simplicity. Low values of AIC are preferred to large values.

	The portmanteau goodness-of-fit test

                      
                      
                    

                      
                     for a particular model at lag ℓ is actually a collection of tests, one for each [image: 
$$ k = 1,2,\ldots,\ell $$
]. Each of these individual tests is a test of the negligibility of the autocorrelations of the model residuals up to and including lag ℓ. In a well-fitting model, these hypotheses should be retained because such a model should have negligible autocorrelations. Therefore, for well-fitting models the p-values of these tests should not be small.

	The highest-order AR and MA parameters of well-fitting models are significantly different from zero, indicating that the corresponding model terms and terms of lower order are needed. Such significance is suggested by a corresponding t statistic that exceeds 2 in absolute value. For example, a model with p = 2 must have ϕ
2 significantly different from zero, but it is not essential that ϕ
1 be significantly nonzero.

	A well-fitting model has an estimated residual variance [image: 
$$ \hat{\sigma }^{2} $$
] at least as small as those of competing models. The estimated residual variance and the AIC carry similar information. The AIC is usually preferred to the residual variance because the AIC includes a penalty for lack of simplicity and the residual variance does not.




            
In most situations these diagnostics will point to the same uniquely best model or subset of equivalently well-fitting models.

18.5 Some Algebraic Development, Including Forecasting
Usually, the ultimate purpose of finding a well-fitting time series model is the production of forecasts and forecast intervals h periods beyond the final observation of the existing series. While we have shown how to produce forecasts and intervals in R, here we provide a brief introduction to the algebra behind such forecasts. The algebra is intractable by hand for all but a few special cases.
18.5.1 The General ARIMA Model
The time series model for a 0-mean time series X

                  t
                , with E(X

                  t
                ) = 0 and [image: 
$$ \mathop{\mbox{ var}}(X_{t}) =\sigma ^{2} $$
], is [image: 
$$ \displaystyle{ \phi (B)\nabla ^{d}X_{ t} =\theta (B)\,\varepsilon _{t} } $$
]

 (18.9)

 One way to rewrite (18.9) is [image: 
$$ \displaystyle\begin{array}{rcl} \varepsilon _{t} =\theta ^{-1}(B)\phi (B)\nabla ^{d}X_{ t}& & {}\\ \end{array} $$
]


 Once the coefficients of ϕ and θ have been estimated by maximum likelihood, the fitted model is expressed in terms of the calculated residuals as [image: 
$$ \displaystyle\begin{array}{rcl} \hat{\varepsilon }_{t} = \hat{\theta }^{-1}(B)\hat{\phi }(B)\nabla ^{d}X_{ t}& & {}\\ \end{array} $$
]


 where [image: 
$$ \hat{\theta }(\cdot ) $$
] and [image: 
$$ \hat{\phi }(\cdot ) $$
] are the polynomials in B after the coefficient estimates have been substituted into θ(⋅ ) and [image: 
$$ \phi (\cdot ) $$
].
The calculated residuals [image: 
$$ \hat{\varepsilon }_{t} $$
] will be used in many subsequent calculations.
The model (18.9) can also be rewritten as [image: 
$$ \displaystyle\begin{array}{rcl} \begin{array}{lcl} X_{t}& = &\phi ^{-1}(B)\nabla ^{-d}\,\theta (B)\,\varepsilon _{t} \\ &\stackrel{\mathrm{def}}{=}&\psi (B)\,\varepsilon _{t} \\ & = &(1 +\psi _{1}B+\ldots \,)\,\varepsilon _{t} \\ & = &\varepsilon _{t} +\psi _{1}\varepsilon _{t-1} +\ldots +\psi _{k}\varepsilon _{t-k}+\ldots \end{array} & & {}\\ \end{array} $$
]


 where ψ(B) may have an infinite number of terms. The number of terms is finite with purely MA models (where ψ = θ) and infinite when there are AR or differencing factors. In order that the model be stationary and invertible (that is, explicitly solvable for X

                  t
                ), it is required that the roots of both polynomials [image: 
$$ \phi \left (B\right ) $$
] and [image: 
$$ \psi \left (B\right ) $$
] lie outside the unit circle. In addition [image: 
$$ \phi \left (B\right ) $$
] and [image: 
$$ \theta \left (B\right ) $$
] must have no roots in common. If the polynomials have common roots, these roots can be factored out.
The nonzero-mean case is essentially the same. Let the nonzero-mean time series be [image: 
$$ Y _{t} = X_{t}+\mu $$
]. We can subtract the mean from the observed Y

                  t
                -values to construct a 0-mean times series [image: 
$$ X_{t} = Y _{t}-\mu $$
] and then proceed.
When we use the model for forecasting
                  
                 h steps ahead, we use the equation [image: 
$$ \displaystyle\begin{array}{rcl} \hat{X}_{t+h} = E(X_{t+h}\vert X_{t},X_{t-1},\ldots \,) = (\psi _{h} +\psi _{h+1}B+\ldots \,)\,\varepsilon _{t}& & {}\\ \end{array} $$
]


 with forecast error [image: 
$$ \displaystyle\begin{array}{rcl} e_{t+h} = X_{t+h} -\hat{ X}_{t+h} =\varepsilon _{t+h} +\psi _{1}\varepsilon _{t+h-1} +\ldots +\psi _{h-1}\varepsilon _{t+1}& & {}\\ \end{array} $$
]


 and with variance of the forecast error [image: 
$$ \displaystyle\begin{array}{rcl} \mathop{\mbox{ var}}(e_{t+h}) =\sigma ^{2}(1 +\psi _{ 1}^{2} +\psi _{ 2}^{2} +\ldots +\psi _{ h-1}^{2})& & {}\\ \end{array} $$
]


 The forecast error for h-step ahead forecasts, and its variance, have exactly h terms. The [image: 
$$ \varepsilon _{t} $$
] are uncorrelated. The forecast errors are correlated.
Probability limits for the forecasts are calculated as [image: 
$$ \displaystyle\begin{array}{rcl} \hat{X}_{t+h} \pm \, z_{\alpha /2}\,\hat{\sigma }\sqrt{1 +\psi _{ 1 }^{2 } +\psi _{ 2 }^{2 } +\ldots +\psi _{h-1 }^{2}}& & {}\\ \end{array} $$
]





18.5.2 Special Case—The AR(1) Model
Starting from [image: 
$$ X_{2} =\phi X_{1} +\varepsilon _{2} $$
], incrementing the subscripts on X

                  t
                , and then back-substituting [for example, [image: 
$$ X_{3} =\phi (\phi X_{1} +\varepsilon _{2}) +\varepsilon _{3} $$
]], we eventually get [image: 
$$ \displaystyle\begin{array}{rcl} X_{t+h} =\phi ^{h}X_{ t} +\phi ^{h-1}\varepsilon _{ t+1} +\ldots +\phi \varepsilon _{t+h-1} +\varepsilon _{t+h}& & {}\\ \end{array} $$
]


 As a consequence, we take [image: 
$$ \hat{X}_{t+h} =\hat{\phi } ^{h}X_{t} $$
]. Further, [image: 
$$ \displaystyle\begin{array}{rcl} \begin{array}{lcl} \mathop{\mbox{ var}}(X_{t+h})& =&\sigma ^{2}(1 +\phi ^{2} +\phi ^{4} +\ldots +\phi ^{2(h-1)})\\ \\ & =&\sigma ^{2}\left (\frac{1 -\phi ^{2h}} {1 -\phi ^{2}} \right ) \end{array} & & {}\\ \end{array} $$
]


 A 100(1 −α)% prediction interval for X

t+h
 is [image: 
$$ \displaystyle\begin{array}{rcl} \hat{X}_{t+h} \pm z_{\alpha /2}\hat{\sigma }\sqrt{\frac{1 -\hat{\phi } ^{2h } } {1 -\hat{\phi }^{2}}} & & {}\\ \end{array} $$
]





18.5.3 Special Case—The MA(1) Model
Here we have [image: 
$$ X_{t+1} =\varepsilon _{t+1} -\theta _{1}\varepsilon _{t} $$
], and the general formulas simplify to

[image: 
$$ \displaystyle\begin{array}{rcl} \begin{array}{lclcl} \hat{X}_{t+1} & =& -\theta _{1}\hat{\varepsilon }_{t} &&\mbox{ for }h = 1 \\ \hat{X}_{t+h} & =&0 &&\mbox{ for }h> 1 \\ \mathop{\mbox{ var}}(\hat{X}_{t+1}) & =&\sigma ^{2} & & \mbox{ for }h = 1 \\ \mathop{\mbox{ var}}(\hat{X}_{t+h})& =&\sigma ^{2}(1 +\theta _{ 1}^{2})&&\mbox{ for }h> 1\\ \end{array} & & {}\\ \end{array} $$
]


 In the MA(q) models the [image: 
$$ \hat{\varepsilon }_{t+j} $$
]-values are known for past observations (those for which j ≤ 0), hence they appear in the prediction equations. A 100(1 −α)% prediction interval for X

t+h
 is [image: 
$$ \displaystyle\begin{array}{rcl} \begin{array}{lclcl} \hat{X}_{t+1} & \pm &z_{\alpha /2}\hat{\sigma } & & \mbox{ for }h = 1 \\ \hat{X}_{t+h}&\pm &z_{\alpha /2}\hat{\sigma }\sqrt{1 +\theta _{ 1 }^{2}} & & \mbox{ for }h> 1\\ \end{array} & & {}\\ \end{array} $$
]






18.6 Graphical Displays for Time Series Analysis


                
                
               We present a number of graphical displays to facilitate the identification and model checking steps of ARIMA(p, d, q) modeling. Much of this material previously appeared in Heiberger and Teles (2002). We discuss an extension of these displays to model time series with seasonal components in Section 18.8. A general discussion of the features of these graphs appears in Section 18.A of this chapter’s appendix.
Table 18.3 summarizes the nine achievable models formed by possible combinations of the number of AR parameters (p = 0, 1, 2) and MA parameters (q = 0, 1, 2). The appearance of the left-hand and right-hand side of the model equations is shown for each value of (p, 0, q). Table 18.33 × 3 layout for the ARIMA(p, 0, q) models. All the time series diagnostic plots and summary tabular data are constructed on this pattern. The rows give the number of AR parameters (p = 0, 1, 2) and the corresponding left-hand side of the model equation. The columns give the number of MA parameters (q = 0, 1, 2) and the corresponding right-hand side of the model equation. For example, the (1, 1) cell of the array shows the information for the ARIMA(1, 0, 1) model: [image: 
$$ X_{t} -\phi _{1}X_{t-1} =\varepsilon _{t} -\theta _{1}\varepsilon _{t-1} $$
] In all the displays we show, the differencing parameter d (d = 0 in this example) and the seasonal parameters (P, D, Q)
                        s
                       (if any) are held constant.
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Figures 18.1 and 18.3 are examples of coordinated plots useful for identifying an ARIMA time series model. [image: A77776_2_En_18_Fig1_HTML.gif]
Fig. 18.1Coordinated time series plot and ACF/PACF plots for the elnino time series: y

                        t
                      . The response variable on the time series plot is the monthly value of the southern oscillation.





Figure 18.1 contains a plot of the original time series along with its autocorrelation function and partial autocorrelation function. (Figure 18.2 is comparable to Figure 18.1 but for a differenced time series.) [image: A77776_2_En_18_Fig2_HTML.gif]
Fig. 18.2Coordinated time series and ACF/PACF plots for the differenced elnino time series: ∇y

                        t
                      .





The set of plots in Figure 18.3 consists of the residual ACF and PACF, the portmanteau goodness-of-fit test statistic (GOF), the standardized residuals, and the Akaike information criterion (AIC). The panels in the first four sets of plots are indexed by the number of ARMA parameters p and q. The AIC plot uses p and q as plotting variables. The orders of differencing and the orders of the autoregressive and moving average operators have been limited to 0 ≤ p, d, q, ≤ 2. While this limitation is usually reasonable in practice, it is not inherent in the software. [image: A77776_2_En_18_Fig3_HTML.gif]
Fig. 18.3Diagnostic plots for the set of models ARIMA(p,1,q) fit to the elnino data by maximum likelihood. Each set of nine panels is systematically structured in a 3×3 array with rows indexed by the number of AR parameters p and columns by the number of MA parameters q. All nine panels in a set are scaled identically. The AIC has been plotted as a pair of interaction plots: AIC plotted against q using line types defined by p; and AIC plotted against p, using line types defined by q.





Each set of nine panels is systematically structured in a 3×3 array indexed by the number of AR parameters p and MA parameters q. All nine panels in a set are scaled identically. Thus the reader can scan a row or column of the array of panels and see the effect of adding one more parameter to either the AR or MA side of the model.
                
              

The graphics are used to analyze the monthly El Nino data in file data(elnino) from NIST (2005). The El Nino effect is thought to be a driver of world-wide weather. The southern oscillation is a predictor of El Nino. It is defined as the sea level barometric pressure at Tahiti minus the sea level barometric pressure at the Darwin Islands. Repeated southern oscillation values below − 1 essentially defines an El Nino. Figures 18.1 and 18.2 show the reported data y

                t
              =elnino and the first differences [image: 
$$ \nabla y_{t}\mathop{ =}\limits ^{\mbox{ def}}y_{t} - y_{t-1} $$
]. The horizontal dashed lines on the ACF and PACF plots are the critical values for α = . 05 tests of the hypothesis, at each individual lag k, that the correlation coefficient is zero. Spikes on these plots that fall outside these horizontal boundaries suggest the possibility of a nonzero correlation.
Figure 18.1 suggests that successive months’ southern oscillations are positively associated: [image: 
$$ \mathop{\mbox{ corr}}(y_{t},y_{t-1}) \approx 0.65 $$
]. To address the positive association between successive months we analyze first differences in Figure 18.2; this Figure does not suggest a need for additional differencing and its ACF and PACF for the first differences shows systematic behavior: the ACF cuts off at lag 1 and the PACF decays slowly. This suggests an ARIMA(0,1,1) model for the original series.
Since the ACF and PACF show systematic behavior, we proceed to Figure 18.3, a collection of five sets of coordinated plots on a single page designed to facilitate identifying the best ARIMA(p, 1, q) model based on fits of the nine models with 0 ≤ p, q ≤ 2. For each of these nine models, Figure 18.3 shows the ACF and PACF plots of the standardized residuals, a plot of the p-values of portmanteau goodness-of-fit tests at various lags, the Akaike information criterion arranged in the form of a pair of interaction plots, and the standardized residuals themselves. While in theory it is possible for p or q to exceed 2 (and the software permits larger values of p and/or q), this is unlikely to occur in practice provided that the data have been properly differenced and that any seasonal effects have been addressed.

              
                
                
              
            
Figure 18.3 confirms the choice [image: 
$$ p = 0,\;q = 1 $$
]. For this parsimonious model, 	The ACF and PACF plots stay within the thresholds of significance.

	All p-values for the goodness-of-fit test exceed 0.05.

	The Akaike criterion is only slightly above that for all less parsimonious models.






              
                
                
              
            
Table 18.4 provides additional support for the ARIMA(0,1,1) model. The maximum likelihood estimate of the ARIMA parameters coef shows the MA(1) parameter to be 0.53. As this number is not close to 1, no further differencing is needed. The standardized value (denoted t.coef) of the MA(1) parameter is 13.2. This number greatly exceeds the usual critical value | 2 | . Table 18.4Estimation results for ARIMA(p, 1, q) models fit to the elnino data.


[image: A77776_2_En_18_Figd_HTML.gif]




18.7 Models with Seasonal Components


                
               One of the strengths of the Box–Jenkins method is its handling of seasonal parameters. Time series frequently show seasonal patterns in their correlation structure. Most economic series have annual, quarterly, monthly, or weekly patterns as well as daily patterns. For example, retail sales figures often shows a surge in activity in December; power consumption figures show seasonal patterns as heating is used in the winter months and air conditioning in the summer months, and a weekly pattern where weekday consumption differs systematically from weekend consumption.
18.7.1 Multiplicative Seasonal ARIMA Models
Seasonal parameters are handled similarly to the nonseasonal parameters, with the subscripts varying by increments of the season. With monthly data, an annual season s = 12 is denoted by using 12-month lags, that is, X

                  t
                 and X

t−12. We use uppercase Greek letters Φ and Θ to denote autoregressive and moving average polynomials, respectively, in the seasonal backshift operator B

                  s
                . The polynomials in the backshift B

                  s
                 are denoted Φ(B

                  s
                ) and Θ(B

                  s
                ), and the differences are [image: 
$$ \nabla _{s} = 1 - B^{s} $$
].
The seasonal portion of a seasonal model is denoted ARIMA(P, D, Q)
                  s
                 (with, for example, the seasonal s = 12 used for annual seasons when the underlying data is monthly, and s = 7 for weekly seasons when the underlying data is daily), where 	is the number of lags in the seasonal AR portion of the model, equivalently the order of the polynomial [image: 
$$ \displaystyle\begin{array}{rcl} \varPhi (B^{s}) = 1 -\varPhi _{ 1}B^{s} -\ldots -\varPhi _{ P}B^{sP}& & {}\\ \end{array} $$
]





	is the number of lags in the seasonal MA portion of the model, equivalently the order of the polynomial [image: 
$$ \displaystyle\begin{array}{rcl} \varTheta (B^{s}) = 1 -\varTheta _{ 1}B^{s} -\ldots -\varTheta _{ Q}B^{sQ}& & {}\\ \end{array} $$
]





	is the number of seasonal differences prior to the AR and MA modeling, equivalently the power of the differencing binomial [image: 
$$ \displaystyle\begin{array}{rcl} \nabla _{s}^{D} = (1 - B^{s})^{D}& & {}\\ \end{array} $$
]









The general multiplicative seasonal model, denoted [image: 
$$ \displaystyle\begin{array}{rcl} \mbox{ ARIMA}(p,d,q) \times (P,D,Q)_{s}& & {}\\ \end{array} $$
]


 is given by [image: 
$$ \displaystyle\begin{array}{rcl} \varPhi \left (B^{s}\right )\phi \left (B\right )\nabla _{ s}^{D}\nabla ^{d}X_{ t} =\varTheta \left (B^{s}\right )\theta \left (B\right )\varepsilon _{ t}& &{}\end{array} $$
]

 (18.10)



For various technical reasons, the roots of the seasonal polynomials Φ(B) and Ψ(B) must satisfy certain conditions that parallel the restrictions on ϕ(B) and ψ(B) mentioned in Section 18.5.1. The roots of Φ(B) and Ψ(B) must lie outside the unit circle to assure that the model is stationary and invertible (solvable for X(t)). In addition, Φ(B) and Ψ(B) must have no common roots. If these polynomials have common roots, these roots can be factored out.

18.7.2 Example—co2 ARIMA(0, 1, 1) × (0, 1, 1)12 Model
The final model for the co2 example discussed in Section 18.8 is written as
ARIMA(0, 1, 1) × (0, 1, 1)12 model for X

                  t
                : [image: 
$$ \displaystyle\begin{array}{rcl} \nabla _{12}\nabla X_{t}& =& \left (1 -\theta _{1}B\right )\left (1 -\varTheta _{1}B^{12}\right )\varepsilon _{ t}{}\end{array} $$
]

 (18.11)

 which expands to [image: 
$$ \displaystyle\begin{array}{rcl} X_{t} - X_{t-1} - X_{t-12} + X_{t-13}& =& \varepsilon _{t} -\theta _{1}\varepsilon _{t-1} -\varTheta _{1}\varepsilon _{t-12} +\theta _{1}\varTheta _{1}\varepsilon _{t-13} {}\\ \end{array} $$
]





18.7.3 Determining the Seasonal AR and MA Parameters
The procedure for determining the order P and Q of the seasonal parameters is comparable to the recommendations given in Section 18.4 for determining the order p and q of the nonseasonal parameters. As before, we work with the ACF and PACF for an appropriately differenced model. The distinction is that in examining the behavior of the ACF and PACF for seasonality, we examine only the values at seasonal intervals. For example, for monthly data with annual season (s = 12), these plots are examined at [image: 
$$ t = 12,24,36,\ldots = 12 \times (1,2,3,\ldots ) $$
], ignoring values at other times. We then visualize the cutoff or decay behavior where lag now refers to seasonal intervals. If the ACF decays slowly at [image: 
$$ t = 12,24,36,\ldots = 12 \times (1,2,3,\ldots ) $$
] and the PACF cuts off at [image: 
$$ t = 24 = 12 \times 2 $$
], then P = 2 and Q = 0. If the PACF decays slowly at [image: 
$$ t = 12,24,36,\ldots = 12 \times (1,2,3,\ldots ) $$
] and the ACF cuts off at t = 12 × 1, then P = 0 and Q = 1.

                
                  
                
              


18.8 Example of a Seasonal Model—The Monthly co2 Data

              
                
                
              
            
We extend the graphical displays discussed in Section 18.6 to the identification and model checking steps of ARIMA(p, d, q) × (P, D, Q)
                s
               modeling. These graphs also first appeared in Heiberger and Teles (2002). A general discussion of the features of these graphs is deferred to Section 18.A.
The graphics are illustrated with one of the time series datasets distributed in the R package datasets, the Mauna Loa Carbon Dioxide Concentration series collected by the Scripps Institute of Oceanography, in La Jolla, California. The source is the climatology database maintained by the Oak Ridge National Laboratory Peterson (1990). These data represent monthly CO2 concentrations in parts per million (ppm) from January 1959 to December 1990. Missing values have been filled in by linear interpolation.
Figures 18.4 through 18.7 are structured presentations of the plots of the series itself, of the ACF, and of the PACF. We show a magnified section of the plot for a five-year interval in Figure 18.5 Figure 18.4 displays the raw data series while Figure 18.6 displays the differenced series (monthly) and Figure 18.7 displays the twice-differenced series (monthly and annually). [image: A77776_2_En_18_Fig4_HTML.gif]
Fig. 18.4Coordinated time series plot and ACF/PACF plots for the Mauna Loa CO2 time series: X

                        t
                      . The response variable on the time series plot is concentration in parts per million. We show a magnified section of the time series plot in Figure 18.5.




[image: A77776_2_En_18_Fig5_HTML.gif]
Fig. 18.5Time series plot for 10 years of the Mauna Loa CO2 time series: X

                        t
                      . The data from 1959 to 1997 is shown in Figure 18.4.




[image: A77776_2_En_18_Fig6_HTML.gif]
Fig. 18.6Coordinated time series plot and ACF/PACF plots for the differenced Mauna Loa CO2 time series: ∇X

                        t
                      .




[image: A77776_2_En_18_Fig7_HTML.gif]
Fig. 18.7Coordinated time series plot and ACF/PACF plots for the twice-differenced Mauna Loa CO2 time series: [image: 
$$ \nabla _{12}\nabla X_{t} $$
].





18.8.1 Identification of the Model
Figure 18.4 is the plot of the observed data. The plot of the series itself shows a strong upward trend and a systematic labeling, with peaks occurring in the spring months and troughs in the autumn months. It is clear that the mean of this series is not constant over time. Both the ACF and PACF show systematic behavior. The ACF exhibits large values and a very slow decay with an annual periodicity. The PACF has large values and an annual periodicity. The conclusion is that the series is nonstationary, that is, it does not have a constant mean, and its autocorrelation function is time-dependent, implying that it shows nonrandom time-dependent behavior. Monthly differencing is required to model the nonstationarity, and annual differencing is necessary to remove the periodicity.
The time series and ACF and PACF plots for the differenced series ∇X

                  t
                 in Figure 18.6 also show systematic annual behavior. The time series plot shows August/September troughs. The ACF exhibits a very slow decay at the seasonal lags, lags that are multiples of the seasonal period s = 12 months. This confirms that seasonal differencing with period 12 is required.
Figure 18.7 shows the time series (and the ACF and PACF) after non-seasonal and seasonal differencing [image: 
$$ \nabla _{12}\nabla X_{t} $$
]. There are no longer systematic components visible in the plot of the differences. The differenced series is stationary and it becomes possible to identify a model for the series, that is, to look for the AR and MA parameters that best fit the twice-differenced data.
The nonseasonal component of the model of X

                  t
                 is identified by looking at the first few monthly lags of the sample ACF and PACF of [image: 
$$ \nabla _{12}\nabla X_{t} $$
] in Figure 18.7. The ACF seems to cut off after lag 1 and the PACF shows an exponential decay. The same type of behavior is seen at the seasonal lags, i.e., the ACF cuts off after lag 12 and the PACF shows an exponential decay at lags 12, 24, 36, …. These characteristics of the ACF and PACF suggest the ARIMA(0, 1, 1) × (0, 1, 1)12 model for X

                  t
                : [image: 
$$ \displaystyle\begin{array}{rcl} \nabla _{12}\nabla X_{t}& =& \left (1 -\theta _{1}B\right )\left (1 -\varTheta _{1}B^{12}\right )\varepsilon _{ t}{}\end{array} $$
]

 (18.12)



A closer look at the ACF in Figure 18.7 indicates that it too may show an exponential decay in the first lags, suggesting that the ARIMA(1, 1, 1) × (0, 1, 1)12 model [image: 
$$ \displaystyle\begin{array}{rcl} (1 -\phi _{1}B)\nabla _{12}\nabla X_{t}& =& \left (1 -\theta _{1}B\right )\left (1 -\varTheta _{1}B^{12}\right )\varepsilon _{ t}{}\end{array} $$
]

 (18.13)

 might also be appropriate.

18.8.2 Parameter Estimation and Diagnostic Checking

                
                  
                  
                
              
In general, when analyzing seasonal time series data, initial guesses of at least some of the parameters p, q, P, Q may be provided from inspections of coordinated plots of original and differenced data such as Figures 18.4–18.7. Figures 18.8 and 18.9 each simultaneously consider nine models produced with the user function arma.loop described in Section 18.A.4. Figures in this class can be used to suggest seasonal parameters P and Q for a given set of nonseasonal and differencing parameters p, q, d, D, or to suggest nonseasonal parameters p and q for a given set of seasonal and differencing parameters P, Q, d, D. Alternating consideration of figures of both of these types can be used to settle on a final model. [image: A77776_2_En_18_Fig8_HTML.gif]
Fig. 18.8Diagnostic plots for the set of models ARIMA(p, 1, q) × (0, 1, 0)12 fit to the CO2 data by maximum likelihood. Each set of nine panels is systematically structured in a 3×3 array with rows indexed by the number of AR parameters p and columns by the number of MA parameters q. All nine panels in a set are scaled identically. The AIC is plotted as a pair of interaction plots: AIC plotted against q using line types defined by p; and AIC plotted against p, using line types defined by q.





Continuing with the co2 data, Figure 18.8 displays a set of diagnostic plots for several models without a seasonal component, the ARIMA(p, 1, q) × (0, 1, 0)12 models with 0 ≤ p, q ≤ 2, that have been fit to the series [image: 
$$ \nabla _{12}\nabla X_{t} $$
].
Since the co2 data exhibit a seasonal behavior, Figure 18.8 is expected to confirm that seasonal parameters are required in the model of [image: 
$$ \nabla _{12}\nabla X_{t} $$
]. All the residual ACF plots show a significant spike at lag=12 months, and all the GOF plots show a break at the same lag=12 months.
The residual ACF, PACF, and GOF plots in Figure 18.8 clearly confirm that seasonal parameters are necessary. The cutoff after the spike at lag=12 of the residual ACF, and the exponential decay of the residual PACF at the seasonal lags (those that are multiples of 12 months), show that a seasonal MA parameter is necessary. This agrees with the identification of candidate models (18.11) and (18.13).
Next consider the ARIMA(p, 1, q) × (0, 1, 1)12 models with 0 ≤ p, q ≤ 2. The diagnostic plots for models including the seasonal MA parameter are in Figure 18.9. The q = 0 column of the residual ACF and GOF plots shows poor fits. The q = 1 column appears better than the q = 2 column. All three GOF plots for q = 1 are similar. The AIC plots show almost identical values when q = 1. This is seen as three almost coincident points at q = 1 in the “aic ∼ ma | ar” plot and as a horizontal line for q = 1 over all three values of p in the “aic ∼ ar | ma” plot. The conclusion is that one nonseasonal MA parameter is necessary. [image: A77776_2_En_18_Fig9_HTML.gif]
Fig. 18.9Diagnostic plots for the set of models ARIMA(p, 1, q) × (0, 1, 1)12 fit to the CO2 data by maximum likelihood.





Table 18.5 shows the AIC, the estimates of [image: 
$$ \sigma _{\varepsilon }^{2} $$
], and the estimates of the ARMA parameters with their t-statistics for the set of ARIMA(p, 1, q) × (0, 1, 1)12 models. From the t.coef section of Table 18.5, the t statistics for both AR parameters in the ARIMA(2, 1, 1) × (0, 1, 1)12 model are not significant and this model can be rejected. The t-statistic for the AR(1) parameter in the ARIMA(1, 1, 1) × (0, 1, 1)12 model is marginally significant, leading us to consider both the models ARIMA(0, 1, 1) × (0, 1, 1)12 and ARIMA(1, 1, 1) × (0, 1, 1)12 for X

                  t
                . A different criterion is needed to distinguish between them. Both models are consistent with the analysis at the identification stage. Table 18.5Estimation results for ARIMA(p, 1, q) × (0, 1, 1)12 models fit to the CO2 data.


[image: A77776_2_En_18_Fige_HTML.gif]



The detailed display of the estimation results for the ARIMA(0, 1, 1) × (0, 1, 1)12 model is shown in Table 18.6 (as displayed by the new print method for arima objects). A similar display for the ARIMA(1, 1, 1) × (0, 1, 1)12 model in Table 18.7 shows that the AR(1) and MA(1) parameters are highly correlated ([image: 
$$ r = -.0167184/\sqrt{.02040605 \times.0152966} = -0.9463 $$
]). The ARIMA(1, 1, 1) × (0, 1, 1)12 models can be discarded from further consideration. Table 18.6Estimation results for ARIMA(0, 1, 1) × (0, 1, 1)12 models fit to the CO2 data.


[image: A77776_2_En_18_Figf_HTML.gif]


Table 18.7Estimation results for ARIMA(1, 1, 1) × (0, 1, 1)12 models fit to the CO2 data.


[image: A77776_2_En_18_Figg_HTML.gif]



The final step is the verification of the adequacy of the ARIMA(0, 1, 1) × (0, 1, 1)12 model. The residual ACF and PACF plots exhibit no significant spikes and all the GOF p-values are also not significant, showing that the residuals are approximately white noise. The AIC values have dropped from 310 in Figure 18.8 to 136 in Figure 18.9. The standardized residuals in Figure 18.9 are not inconsistent with the normal distribution. The ARIMA(0, 1, 1) × (0, 1, 1)12 model seems to be appropriate for X

                  t
                 and the estimated model is [image: 
$$ \displaystyle\begin{array}{rcl} \nabla _{12}\nabla X_{t}& =& \left (1 -\hat{\theta }_{1}B\right )\left (1 -\hat{\varTheta }_{1}B^{12}\right )\hat{\varepsilon }_{ t} \\ & =& (1 - 0.36338\,B)(1 - 0.85806\,B^{12})\,\hat{\varepsilon }_{ t} \\ \hat{\sigma }_{\varepsilon }^{2}& =& 0.080299 {}\end{array} $$
]

 (18.14)




18.8.3 Forecasting


                  
                 The final plot in Figure 18.10 shows the last year of observed data and the forecasts, with their 95% forecast limits, obtained from the fitted model for the following year, i.e., for the months January through December 1998. [image: A77776_2_En_18_Fig10_HTML.gif]
Fig. 18.10CO2—1997 observed, 1998 forecast + 95% CI.







18.9 Exercises
Many of the time series exercises ask you to construct and/or interpret plots of the time series itself, of the ACF and PACF, and of the diagnostics from a 3 × 3 set of ARIMA models. For Exercises 18.1, 18.2, and 18.3, go through this set of steps:

              a.Describe the plot of the data and the ACF and PACF plots. Comment on whether you see anything systematic in the plot of the data. Are there spikes in the ACF and PACF plots. At which lags do they appear and what do they suggest? Do the ACF and PACF plots show any indication of a seasonal effect?

 

b.We chose to investigate a family of ARIMA(p, 0, q) models, with 0 ≤ p, q ≤ 2. Study the figures showing the diagnostic plots and the tables listing the parameter estimates. Describe each of the four sections of the diagnostic plot. What characteristics of each suggest a final model? Does the σ
2 (sigma2) section in the tables also suggest the same final model? Note for these three exercises, all of which are stationary and have zero mean, that the (0, 0) panels of the ACF, PACF, and standardized residuals plots are essentially the same as the ACF, PACF, and time series plot of the data.

 

c.We printed the detail for the ARIMA(1, 0, 1) model. Compare the ARIMA(1, 0, 1) model to a simpler model with the closest σ
2. How do the AIC and the σ
2 compare? Would you recommend the simpler model? Why or why not?

 



            

18.1. Figure 18.11 shows the sequence, ACF, and PACF plots for a mystery time series X data(tser.mystery.X). Figure 18.12 and Table 18.8 show the diagnostics and estimated coefficients obtained by fitting the 3 × 3 set of ARIMA(p, 0, q) models to the series. Table 18.9 shows the detail for the ARIMA(1, 0, 1) model. Study the graphs and tables and explain why and how they indicate that one of these models seems better suited to explain the data than the others. [image: A77776_2_En_18_Fig11_HTML.gif]
Fig. 18.11Mystery time series X.




[image: A77776_2_En_18_Fig12_HTML.gif]
Fig. 18.12Mystery time series X.




Table 18.8Mystery time series X.


[image: A77776_2_En_18_Figh_HTML.gif]


Table 18.9Mystery time series X.


[image: A77776_2_En_18_Figi_HTML.gif]




18.2. Figure 18.13 shows the sequence, ACF, and PACF plots for a mystery time series Y data(tser.mystery.Y). Figure 18.14 and Table 18.10 show the diagnostics and estimated coefficients obtained by fitting the 3 × 3 set of ARIMA(p, 0, q) models to the series. Table 18.11 shows the detail for the ARIMA(1, 0, 1) model. Study the graphs and tables and explain why and how they indicate that one of these models seems better suited to explain the data than the others. [image: A77776_2_En_18_Fig13_HTML.gif]
Fig. 18.13Mystery time series Y.




[image: A77776_2_En_18_Fig14_HTML.gif]
Fig. 18.14Mystery time series Y.




Table 18.10Mystery time series Y.


[image: A77776_2_En_18_Figj_HTML.gif]


Table 18.11Mystery time series Y.


[image: A77776_2_En_18_Figk_HTML.gif]




18.3. Figure 18.15 shows the sequence, ACF, and PACF plots for a mystery time series Z data(tser.mystery.Z). Figure 18.16 and Table 18.12 show the diagnostics and estimated coefficients obtained by fitting the 3 × 3 set of ARIMA(p, 0, q) models to the series. Table 18.13 shows the detail for the ARIMA(1, 0, 1) model. Study the graphs and tables and explain why and how they indicate that one of these models seems better suited to explain the data than the others. [image: A77776_2_En_18_Fig15_HTML.gif]
Fig. 18.15Mystery time series Z.




[image: A77776_2_En_18_Fig16_HTML.gif]
Fig. 18.16Mystery time series Z.




Table 18.12Mystery time series Z.


[image: A77776_2_En_18_Figl_HTML.gif]


Table 18.13Mystery time series Z.


[image: A77776_2_En_18_Figm_HTML.gif]




18.4. The product data data(product) (originally from Nicholls (1979) and reproduced in Hand et al. (1994)) graphed in Figure 18.17 are the weekly sales of a plastic container used for the packaging of drugs in the United States. First differences were taken to produce the y

                t
              , shown in Figure 18.18. The AR(1) model converged with AIC=2919, a larger number than for nonconverging models with more terms. The nonconverging models shown in Figure 18.19 and Table 18.14 showed high correlation between the estimates of the AR and MA coefficients. [image: A77776_2_En_18_Fig17_HTML.gif]
Fig. 18.17Coordinated time series plot and ACF/PACF plots for the product time series: y

                        t
                      . The response variable on the time series plot is weekly sales of the product.




[image: A77776_2_En_18_Fig18_HTML.gif]
Fig. 18.18Coordinated time series and ACF/PACF plots for the differenced product time series: ∇y

                        t
                      .




[image: A77776_2_En_18_Fig19_HTML.gif]
Fig. 18.19Diagnostic plots for the set of models ARIMA(p,1,q) fit to the Product data by maximum likelihood. Each set of nine panels is systematically structured in a 3×3 array with rows indexed by the number of AR parameters p and columns by the number of MA parameters q. All nine panels in a set are scaled identically. The AIC has been plotted as a pair of interaction plots: AIC plotted against q using line types defined by p; and AIC plotted against p, using line types defined by q.




Table 18.14Estimation results for ARIMA(p, 1, q) models fit to the product data.


[image: A77776_2_En_18_Fign_HTML.gif]




              a.Discuss why the above-mentioned findings and other results in Table 18.14 imply that an ARIMA(p, 1, q) nonseasonal model is inappropriate for these data.

 

b.The peaks in the ACF and PACF plots of Figure 18.18 at 4 and 8 weeks suggest that there might be a monthly effect in this data. Examine and discuss the set of ARIMA(p, 1, q) × (1, 0, 0)4 models for these data.

 



            

18.5. Figures 18.20, 18.21, and 18.22 and Tables 18.15 and 18.16 show the mean monthly air temperature in degrees Fahrenheit from January 1920 to December 1939 at Nottingham. R users can use the nottem data in the pkgdatasets package. We first got the data from Venables and Ripley (1997). The original source is “Meteorology of Nottingham” in City Engineer and Surveyor. We show the original series, the seasonally differenced series, the diagnostic display from the series of models ARIMA(p, 0, q) × (2, 1, 0)12, and numerical results from the set of all nine models table and detail on the recommended model ARIMA(1, 0, 0) × (2, 1, 0)12.
a.What are the most evident features of the plot of the original data?

 

b.Compare the plot of the seasonally differenced data to the original plot. What structure was captured by the differencing? What remains?

 

c.Compare the recommended model ARIMA(1, 0, 0) × (2, 1, 0)12 to the next most likely model ARIMA(2, 0, 0) × (2, 1, 0)12. Do you agree that the ar(2) term is not needed? Why?
                        
                        
                      


 



[image: A77776_2_En_18_Fig20_HTML.gif]
Fig. 18.20Mean monthly air temperature in degrees Fahrenheit from January 1920 to December 1939 at Nottingham.




[image: A77776_2_En_18_Fig21_HTML.gif]
Fig. 18.21Seasonal differences of mean monthly air temperature in degrees Fahrenheit from January 1920 to December 1939 at Nottingham.




[image: A77776_2_En_18_Fig22_HTML.gif]
Fig. 18.22Mean monthly air temperature in degrees Fahrenheit from January 1920 to December 1939 at Nottingham Castle.




Table 18.15Nottingham temperature—models ARIMA(p, 0, q) × (2, 1, 0)12.


[image: A77776_2_En_18_Figo_HTML.gif]


Table 18.16Nottingham temperature—recommended model ARIMA(1, 0, 0) × (2, 1, 0)12.


[image: A77776_2_En_18_Figp_HTML.gif]




18.6. We have a time series of size n = 100 for which we have determined that we have an ARIMA(1,0,0) model and have estimated [image: 
$$ \hat{\mu }= 15 $$
], [image: 
$$ \hat{\phi }=.2 $$
], and [image: 
$$ \hat{\sigma }^{2} = 3 $$
]. The last few observations in the series are [image: 
$$ \displaystyle\begin{array}{rcl} \begin{array}{r r r r r}\hline \hline t&\phantom{0}97&\phantom{0}98&\phantom{0}99&100\\ X_{ t}& 13& 15& 18& 17\\ \hline \end{array} & & {}\\ \end{array} $$
]


 Forecast, with 95% forecast intervals, the values [image: 
$$ \hat{X}_{101} $$
] and [image: 
$$ \hat{X}_{102} $$
].

18.7. We have a nonseasonal time series in the dataset data(tsq) covering 100 periods. The time series and its ACF and PACF plots are displayed in Figure 18.23. Table 18.17 contains the R output from a 3 × 3 set of ARIMA models fit to the data. The tsdiagplot for these data is in Figure 18.24. Use this information to answer the following questions:
a.Recommend the (p, 0, q) order for an ARIMA modeling of these data.

 

b.Write out the equation for the best-fitting model following your recommendation in part (a).

 

c.Use your model and the coefficient information in the R output to produce forecasts and 95% forecast intervals for the value of this series in periods 101 and 102.

 



[image: A77776_2_En_18_Fig23_HTML.gif]
Fig. 18.23Time series and its ACF and PACF plots for Exercise 18.7.




Table 18.17Three by three set of ARIMA models for Exercise 18.7.


[image: A77776_2_En_18_Figq_HTML.gif]


[image: A77776_2_En_18_Fig24_HTML.gif]
Fig. 18.24Diagnostic plots for the 3 × 3 set of ARIMA models in Exercise 18.7.






18.8. Figure 18.25 contains time series, ACF, and PACF plots for monthly data on the thickness of the ozone layer (measured in Dobson units) at Arosa, Switzerland, from September 1931 through November 1953. Note the labeling of the months of the year (J = January, June, or July, F = February, etc.) at the plot points. The data in the dataset data(ozone) are from Andrews and Herzberg (1985), Table 12.​1
a.Comment on the seasonal nature of the time series plot and discuss how this is consistent with what you see in the ACF plot.

 

b.Notice that the variability of the series appears to increase, at least temporarily, in the early 1940s and around 1952 to 1953. For each of these periods, identify historical events that potentially impacted on the atmosphere to produce this increased variability.

 



[image: A77776_2_En_18_Fig25_HTML.gif]
Fig. 18.25Thickness of the ozone layer (measured in Dobson units) at Arosa, Switzerland, from September 1931 through November 1953.






18.9. n = 100 and [image: 
$$ \bar{Z} = 25 $$
]. See Figure 18.26. [image: A77776_2_En_18_Figr_HTML.gif]

[image: A77776_2_En_18_Fig26_HTML.gif]
Fig. 18.26ACF and PACF for Exercise 18.9, n = 100 and [image: 
$$ \bar{Z} = 25 $$
]. The same information is presented in both tabular and graphical form.






              a.Identify a tentative underlying model in explicit form and justify your model.

 

b.Propose possible preliminary parameter estimates for your model.

 

c.Assume the residual sum of squares from the fitting of your model is 256, and [image: 
$$ Z_{98} = 24,Z_{99} = 26,Z_{100} = 25 $$
]. Compute your forecasts for Z
101 and Z
102 and their 95% forecast intervals.

 



            

18.10. n = 100 and [image: 
$$ \bar{Z} = 60 $$
]. Identify a tentative underlying model in explicit form and justify your model. See Figure 18.27. [image: A77776_2_En_18_Figs_HTML.gif]

[image: A77776_2_En_18_Fig27_HTML.gif]
Fig. 18.27ACF and PACF for Exercise 18.10, n = 100 and [image: 
$$ \bar{Z} = 60 $$
]. The same information is presented in both tabular and graphical form.






18.11. n = 100 and [image: 
$$ \bar{Z} = 55 $$
]. Identify a tentative underlying model in explicit form and justify your model. See Figure 18.28. [image: A77776_2_En_18_Figt_HTML.gif]

[image: A77776_2_En_18_Fig28_HTML.gif]
Fig. 18.28ACF and PACF for Exercise 18.11, n = 100 and [image: 
$$ \bar{Z} = 55 $$
]. The same information is presented in both tabular and graphical form.






18.12. Time series data differs from any other data type we have discussed in one important characteristic: The observations are not independent. What are the implications of that difference for modeling time series data? Be sure to discuss implications for each of
a.Modeling

 

b.Estimation

 

c.Prediction

 





18.13. Figure 18.29 shows the “United States of America Monthly Employment Figures for Males Aged 16–19 Years from 1948 to 1981”. Dataset data(employM16) is Table T.65.1 from Andrews and Herzberg (1985). What are the features of this plot that you would try to capture in a time series model? Comment on [image: A77776_2_En_18_Fig29_HTML.gif]
Fig. 18.29United States of America Monthly Employment Figures for Males Aged 16–19 Years from 1948 to 1981, for use with Exercise 18.13.






              a.Seasonality

 

b.Trend

 

c.Aberrations

 



            

18.A Appendix: Construction of Time Series Graphs

                
                  
                  
                
              
This section discusses the technical aspects of the construction of the set of plots used to check the validity of the proposed model. The interpretation of the plots, and the discussion of how to use them to help identify the model that best fits the data, appear in Sections 18.6 and 18.8.
The graphical display techniques demonstrated in Sections 18.6 and 18.8 were developed by Heiberger and Teles (2002). The R functions from the HH package used to produce these displays are described in help files? tsacfplots and ?tsdiagplot.
The set of plots in Figure 18.8 consists of the residual ACF and PACF, the portmanteau goodness-of-fit test statistic (GOF), the standardized residuals, and the Akaike information criterion (AIC). The panels in the first four sets of plots are indexed by the number of nonseasonal ARMA parameters p and q for fixed values of the seasonal parameters P and Q. The AIC plot uses p and q as plotting variables. The orders of differencing and the orders of the autoregressive and moving average operators (both seasonal and nonseasonal) have been limited to 0 ≤ p, d, q, P, D, Q ≤ 2. While this limitation is usually reasonable in practice, it is not inherent in the software.
Each set of nine panels is systematically structured in a 3×3 array indexed by the number of AR parameters and MA parameters. All nine panels in a set are scaled identically. Thus the reader can scan a row or column of the array of panels and see the effect of adding one more parameter to either the AR or MA side of the model.
Traditionally (that is, as constructed by the standard R tsdiag), the plots coordinated in Figure 18.8 are shown on nine separate pages, one page for each model. The standard display shows the standardized residuals, the residual ACF and PACF plots, and the portmanteau goodness-of-fit test. The nine sets of plots, each associated with a different model, will not necessarily be scaled alike. Even the GOF and ACF/PACF plots for the same model may have different lag scales.
Labeling the axis in months and putting the residual ACF and PACF plots and the GOF plot on the same set of lags make it easy to compare the plots for different models. In this example it is easy to see that something is happening at lag=12 months. The AIC plots for all the models in Figure 18.8 are similar, with AIC ≈ 315. The AIC has been plotted as a pair of interaction plots: AIC plotted against q, the number of nonseasonal MA parameters, using line types defined by p, the number of nonseasonal AR parameters; and AIC plotted against p, using line types defined by q. These plots enable us to study the magnitudes of the differences in AIC of competing models.
18.A.1 Characteristics of This Presentation of the Time Series Plot

                  
                    
                    
                  
                  	Individual points are identified with a letter indicating the position of each observation according to the frequency of collection of the data. The user can control the choice of plotting characters. The default characters used are dependent on the frequency of collection of the data. For example, when the frequency is 12, the default plotting characters are the month abbreviations J,F,M,A,M,J,J,A,S,O,N,D. Otherwise they are chosen from the beginning of the lower case alphabet letters().

	The plotting characters are an explicit argument and can be chosen by the user (with pch.seq), or suppressed entirely with type="l".

	Color is often very helpful with the time series plots.
Color plots show the seasonal pattern more strongly than the black and white. Figure 18.4 has a clear pattern of gold-May and red-April along its top and green-October along the bottom. The first differences in Figure 18.6 show a clear pattern of blue-August along the bottom and color-coded June–July–August–September below the axis. Figure 18.7 shows random behavior in colors.




                

18.A.2 Characteristics of This Presentation of the Sample ACF and PACF Plots

                  
                    
                    
                  
                

                  	The axes are coordinated and have the same scale.

	Lags are indicated in appropriate units (for example, months for monthly series).

	The ACF and PACF plots consistently both show, or do not show (at the user’s option), the spike for correlation=1 at lag=0.

	The default tick marks are related to the frequency of collection of the data. The user has control over tick mark location.

	Most of the plotting surface is occupied by the body of the plot, and the amount of surface used for labeling is minimized.




                
We point out that the individual plots are accessible to the user. They can be placed on their own pages or displayed with other relative spacings. For details, see the function HH:::print.tsacfplots.

18.A.3 Construction of Graphical Displays

                  
                    
                    
                  
                
This section shows how to construct the two display types presented in this chapter. For brevity, only Figures 18.7 and 18.9 are described.
Figure 18.7, a single display with subgraphs, is constructed with the single command: [image: 
$$ \displaystyle\begin{array}{rcl} \mathtt{tsacfplots(diff(diff(co2,1),\ 12))} \end{array} $$
]


 The figure uses the majority of the plotting surface to display the time series itself and a minority of the plotting surface to display the ACF and PACF plots drawn to the same scale.
All models in the family of ARIMA models under investigation are fit with a single command specified in standard R time series model notation:

                       ddco2.loopPQ <-
                

                            arma.loop(co2,
                

                                      order=c(2,1,2),
                

                                      seasonal=list(order=c(0,1,1), period=12))
                
Figure 18.9 plots the family of models, again as a single display with coordinated sets of subgraphs, with another single command: [image: 
$$ \displaystyle\begin{array}{rcl} \mathtt{tsdiagplot(armas=co2.loop)}& & {}\\ \end{array} $$
]


 The series of plots in each set of subgraphs is displayed in the same systematic order. All plots of the same form are displayed to the same scale.
Fine control of plotting options and labeling is possible with optional arguments to the tsacfplots and tsdiagplot functions. Each of the individual subgraphs is also directly accessible to the user.
Formal and systematic display of a series of models makes it easy to recognize the structural differences in the series of models and to compare them.
                    
                    
                  


18.A.4 Functions in the HH package for R

Several functions are provided and described here in terms of their role in the modeling. In addition to these functions, there are unexported functions that the primary functions call to do much of the work.

                  Primary Functions in the HH Package 
tsacfplots:Provides a single display (of the form of Figure 18.7) with the times series plot central and both the ACF and PACF plots on the same scale. It does so by calling seqplot (equivalent to ts.plot but with much finer control of labeling options) for the time series plot and then acf.pacf.plot for the coordinated ACF and PACF plots. These in turn are constructed by the R routine acf.



arma.loop:Takes a time series and a model statement of the form [image: 
$$ \displaystyle\begin{array}{rcl} (p_{\max },d,q_{\max }) \times (P,D,Q)_{\mathtt{period}}& & {}\\ \end{array} $$
]


 It then loops through the family of models indexed by the model parameters 1:p
max and 1:q
max, with d, P, D, Q held constant. Results are stored in a list indexed by the values of p and q.

arma.loop also permits the model statement (note that order matters) [image: 
$$ \displaystyle\begin{array}{rcl} (P_{\max },D,Q_{\max })_{\mathtt{period}} \times (p,d,q)& & {}\\ \end{array} $$
]


 and then loops through the family of models indexed by the model parameters 1:P
max and 1:Q
max, with p, d, q, D held constant. Results are stored in a list indexed by the values of P and Q.



diag.arma.loop:Produces an indexed list of the arima.diag results for each model in the result of the arma.loop. Diagnostics are calculated on the boundary values of the parameters p and q, and in particular for those functions defined in the special case (p, d, q) = (0, 0, 0).



tsdiagplot:Takes a time series and a model statement and calls all the diagnostic plot routines. It makes sensible default choices for all the arguments and produces a graph similar to Figure 18.9.
For printouts of any of the numerical tables, or finer control over the layout and labeling of the plots, the user should study the more detailed illustrations of function use in the demo("tsamstat").







Print Methods
                          
print.arma.loop and summary.arma.loop:Produce tables similar to Table 18.5 from the result of the arma.loop function.




                        


Individual Plot Functions Each of the subgraphs in tsacfplots and tsdiagplot is directly accessible to the users. Each is fully parameterized. 
tsacfplots:Figures 18.4 and 18.7.

                                  	
                                                seqplot
                                            
	Time series

	
                                                acf.pacf.plot
                                            
	Coordinated ACF and PACF




                                



tsdiagplot:Figures 18.8 and 18.9.

                                  	
                                                acfplot
                                            
	ACF and PACF of residuals

	
                                                residplot
                                            
	Standardized residuals

	
                                                gofplot
                                            
	Portmanteau goodness-of-fit statistic (GOF)

	
                                                aicsigplot
                                            
	Interaction plot of AIC or σ
2





                                



seqplotForecast:Figure 18.10. Data, forecasts, and confidence bands.







Additional functions Not for direct use by users. 
rearrange.diag.arma.loop:Rearranges the list of diagnostics indexed by model into a list of matrices of diagnostics, each matrix indexed by the models. The sole purpose of this rearrangement is for plotting.
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                Appendix A
                R
              

                
                  
                
                R
                 (R Core Team, 
                2015
                ) is the
                lingua franca
                of data analysis and graphics. In this book we will learn the fundamentals of the language and immediately use it for the statistical analysis of data. We will graph both the data and the results of the analyses. We will work with the basic statistical tools (regression, analysis of variance, and contingency tables) and some more specialized tools. Many of our examples use the additional functions we have provided in the
                HH
                package (Appendix B) (Heiberger, 
                2015
                ). The
                R
                 code for all tables and graphs in the book is included in the
                HH
                package.
              

                In later appendices we will also look at the
                Rcmdr
                menu system (Appendix C),
                RExcel
                 integration of
                R
                 with
                Excel
                 (Appendix D), and the
                shiny
                
                  
                
                package for integration of
                R
                 with interactive html web pages (Appendix E).
              

                  A.1 Installing
                  R
                  —Initial Installation
                

                  R
                   is an open-source publicly licensed software system.
                  R
                   is free under the GPL (Gnu Public License).
                  
                    
                  
                  
                    
                  
                

                  R
                   is available for download on
                  Windows
                  ,
                  Macintosh OSX
                  , and
                  Linux
                  computer systems. Start at
                  
                      http://www.R-project.org
                    
                  . Click on “download R” in the “Getting Started” box, pick a mirror near you, and download and install the most recent release of R for your operating system.
                

                  Once
                  R
                   is running, you will download several necessary contributed packages. You get them from a running
                  R
                   session while connected to the internet. This
                  install.packages
                  statement will install all the packages listed and additional packages that these specified packages need.
                  
                    
                  
                

                    A.1.1 Packages Needed for This Book—
                    Macintosh
                    and
                    Linux
                  

                    
                      
                    
                    
                      
                    
                    
                      
                    
                  

                    Start
                    R
                    , then enter
                  
install.packages(c("HH","RcmdrPlugin.HH","RcmdrPlugin.mosaic",
                   "fortunes","ggplot2","shiny","gridExtra",
                   "gridBase","Rmpfr","png","XLConnect",
                   "matrixcalc", "sem", "relimp", "lmtest",
                   "markdown", "knitr", "effects", "aplpack",
                   "RODBC", "TeachingDemos",
                   "gridGraphics", "gridSVG"),
                 dependencies=TRUE)
## This is the sufficient list (as of 16 August 2015) of packages
## needed in order to install the HH package.  Should
## additional dependencies be declared by any of these packages
## after that date, the first use of "library(HH)" after the
## installation might ask for permission to install some more
## packages.

                    The
                    install.packages
                    command might tell you that it can’t write in a system directory and will then ask for permission to create a personal library.
                    
                      
                    
                    
                      
                    
                    The question might be in a message box that is behind other windows. Should the installation seem to freeze, find the message box and respond “yes” and accept its recommend directory. It might ask you for a CRAN mirror. Take the mirror from which you downloaded
                    R
                    .
                  


                    A.1.2 Packages and Other Software Needed for This Book—
                    Windows
                  

                    
                      
                    
                  

                      A.1.2.1
                      RExcel
                    

                      
                        
                      
                      If you are running on a
                      Windows
                       machine and have access to
                      Excel
                      , then we recommend that you also install
                      RExcel
                      . The
                      RExcel
                       software provides a seamless integration of
                      R
                       and
                      Excel
                      . See Appendix D for further information on
                      RExcel
                      , including the download statements and licensing information. See Section 
                      A.1.2.2
                      for information about using
                      Rcmdr
                       with
                      RExcel
                      .
                    


                      A.1.2.2
                      RExcel
                       Users Need to Install
                      Rcmdr
                       as Administrator
                    

                      
                        
                      
                      
                        
                      
                      Should you choose to install
                      RExcel
                       then you need to install
                      Rcmdr
                       as Administrator. Otherwise you can install
                      Rcmdr
                       as an ordinary user.
                    

                      Start
                      R
                       as Administrator (on
                      Windows
                       7 and 8 you need to right-click the
                      R
                       icon and click the “Run as administrator” item). In
                      R
                      , run the following commands (again, you must have started
                      R
                       as Administrator to do this)
                    

                      ## Tell Windows that R should have the same access to the
                    

                      ## outside internet that is granted to Internet Explorer.
                    

                      setInternet2()
                    

                      install.packages("Rcmdr",
                    

                                       dependencies=TRUE)
                    

                      Close
                      R
                       with q("no"). Answer with n if it asks
                    

                      Save workspace image? [y/n/c]:
                    


                      A.1.2.3 Packages Needed for This Book—
                      Windows
                    

                      
                        
                      
                    

                      The remaining packages can be installed as an ordinary user.
                      Rcmdr
                       is one of the dependencies of
                      RcmdrPlugin.HH
                      , so it will be installed by the following statement (unless it was previously installed). Start
                      R
                      , then enter
                    
## Tell Windows that R should have the same access to the
## outside internet that is granted to Internet Explorer.
setInternet2()
install.packages(c("HH","RcmdrPlugin.HH","RcmdrPlugin.mosaic",
                   "fortunes","ggplot2","shiny","gridExtra",
                   "gridBase","Rmpfr","png","XLConnect",
                   "matrixcalc", "sem", "relimp", "lmtest",
                   "markdown", "knitr", "effects", "aplpack",
                   "RODBC", "TeachingDemos",
                   "gridGraphics", "gridSVG"),
                 dependencies=TRUE)
## This is the sufficient list (as of 16 August 2015) of packages
## needed in order to install the HH package.  Should
## additional dependencies be declared by any of these packages
## after that date, the first use of "library(HH)" after the
## installation might ask for permission to install some more
## packages.


                      A.1.2.4
                      Rtools
                    

                      
                        
                      
                    

                      Rtools
                      provides all the standard
                      Unix
                       utilities (
                      C
                      and
                      Fortran
                      compilers, command-line editing tools such as
                      grep, awk, diff,
                      and many others) that are not included with the
                      Windows
                       operating system. These utilities are needed in two circumstances.
                      1.
                              Should you decide to collect your
                              R
                               functions and datasets into a package, you will need
                              Rtools
                              to build the package. See Appendix F for more information.
                            

 

2.
                              Should you need to use the
                              ediff
                              command in
                              Emacs
                               for visual comparison of two different versions of a file (yesterday’s version and today’s after some editing, for example), you will need
                              Rtools
                              . See Section 
                              M.1.2
                              for an example of visual comparison of files.
                            

 



                    

                      You may download
                      Rtools
                      from the
                      Windows
                       download page at CRAN. Please see the references from that page for more details.
                    


                      A.1.2.5
                      Windows
                       Potential Complications: Internet, Firewall, and Proxy
                    

                      
                        
                      
                      
                        
                      
                      
                        
                      
                      
                        
                      
                      When
                      install.packages
                      on a
                      Windows
                       machine gives an
                      Error
                      message that includes the phrase
                      “unable to connect”
                      , then you are probably working behind a company firewall. You will need the
                      R
                       statement
                    

                      setInternet2()
                    

                      before the
                      install.packages
                      statement. This statement tells the firewall to give
                      R
                       the same access to the outside internet that is granted to
                      Internet Explorer
                      .
                    

                      When the
                      install.packages
                      gives a
                      Warning
                      message that says you don’t have write access to one directory, but it will install the packages in a different directory, that is normal and the installation is successful.
                    

                      When the
                      install.packages
                      gives an
                      Error
                      message that says you don’t have write access and doesn’t offer an alternative, then you will have to try the package installation as Administrator. Close
                      R
                      , then reopen
                      R
                       by right-clicking the
                      R
                       icon, and selecting “Run as administrator”.
                    

                      If this still doesn’t allow the installation, then
                      1.
                              Run the
                              R
                               line
                            

                              sessionInfo()
                            

 

2.
                              Run the
                              install.packages
                              lines.
                            

 

3.
                              Highlight and pick up the entire
                              contents
                              of the
                              R
                               console and save it in a text file. Screenshots are usually not helpful.
                              
                                
                              
                            

 

4.
                              Show your text listing to an
                              R
                               expert.
                            

 



                    


A.1.3 Installation Problems—Any Operating System
The most likely source of installation problems is settings (no write access to restricted directories on your machine, or system-wide firewalls to protect against offsite internet problems) that your computer administrator has placed on your machine.
Check the FAQ (Frequently Asked Questions) files linked to at

                    
                        http://cran.r-project.org/faqs.html
                      
                    .
                  

                    For Windows, see also Section 
                    A.1.2.5
                    .
                  

                    If outside help is needed, then save the
                    contents
                    of the
                    R
                     console window to show to your outside expert. In addition to the lines and results leading to the problem, including ALL messages that
                    R
                     produces, you must include the line (and its results)
                  

                    sessionInfo()
                  

                    in the material you show the expert.
                    
                      
                    
                  

                    Screenshots are not a good way to capture information. The informative way to get the contents of the console window is by highlighting the entire window (including the off-screen part) and saving it in a text file. Show your text listing to an
                    R
                     expert.
                  


                    A.1.4
                    XLConnect
                    : All Operating Systems
                  

                    
                      
                    
                    The
                    XLConnect
                    package lets you read MS
                    Excel
                     files directly from
                    R
                     on any operating system. You may use an
                    R
                     statement similar to the following
                  
library(XLConnect)
WB <-  ## pathname of file with some additional information
  loadWorkbook(
## "c:/Users/rmh/MyWorkbook.xlsx"  ## rmh pathname in Windows
    "~/MyWorkbook.xlsx"            ## rmh pathname in Macintosh
  )
mydata <- readWorksheet(WB, sheet="Sheet1", region="A1:D11")

                    If you get an error from library(
                    XLConnect
                    ) of the form
                  

                    Error:.onLoad failed in loadNamespace() for ’rJava’
                  

                    then you need to install
                    java
                    on your machine from
                    http://​java.​com
                    . The
                    java
                    installer will ask you if you want to install
                    ask
                    as your default search provider. You may deselect both checkboxes to retain your preferred search provider.
                  



                  A.2 Installing
                  R
                  —Updating
                

                  R
                   is under constant development with new releases every few months. At this writing (August 2015) the current release is R-3.2.2 (2015-08-14).
                

                  See the FAQ for general update information, and in addition the
                  Windows
                   FAQ or
                  MacOs X
                  FAQ for those operating systems. Links to all three FAQs are available at
                  
                      http://cran.r-project.org/faqs.html
                    
                  . The FAQ files are included in the documentation placed on your machine during installation.
                

                  The
                  update.packages
                  mechanism works for packages on CRAN. It does not work for packages downloaded from elsewhere. Specifically,
                  Windows
                   users with
                  RExcel
                   installed will need to update the
                  RExcel
                   packages by reinstalling them as described in Section 
                  D.1.2
                  .
                


                  A.3 Using
                  R
                

                    A.3.1 Starting the
                    R
                     Console
                  

                    
                      
                    
                    In this book our primary access to the
                    R
                     language is from the command line. On most computer systems clicking the
                    R
                     icon
                    [image: A77776_2_En_BookBackmatter_Figbn_HTML.gif]

                    on the desktop will start an
                    R
                     session in a console window. Other options are to begin within an
                    Emacs
                    window with
                    M-x R
                    , to start an
                    R-Studio
                    session, to start
                    R
                     at the
                    Unix
                    or
                    MS-DOS
                    command line prompt, or to start
                    R
                     through one of several other
                    R
                    -aware editors.
                  

                    With any of these, the
                    R
                     offers a prompt “> ”, the user types a command,
                    R
                     responds to the user’s command and then offers another prompt “> ”. A very simple command-line interaction is shown in Table 
                    A.1
                    .
                    Table A.1Very simple command-line interaction.


[image: A77776_2_En_BookBackmatter_Figaaa_HTML.gif]


                  


                    A.3.2 Making the Functions in the
                    HH
                     Package Available to the Current Session
                  

                    
                      
                    
                    At the
                    R
                     prompt, enter
                  

                    library(HH)
                  

                    This will load the
                    HH
                     package and several others. All
                    HH
                     functions are now available to you at the command line.
                  


                    A.3.3 Access
                    HH
                     Datasets
                  

                    All
                    HH
                     datasets are accessed with the
                    R
                     
                    data()
                    function. The first six observations are displayed with the
                    head()
                    function, for example
                  

                    data(fat)
                  

                    head(fat)
                  


                    A.3.4 Learning the
                    R
                     Language
                  

                    R
                     is a dialect of the
                    S
                    language. The easiest way to learn it is from the manuals that are distributed with
                    R
                     in the
                    doc/manual
                    directory; you can find the pathname with the
                    R
                     call
                  
system.file("../../doc/manual")
or
WindowsPath(system.file("../../doc/manual"))

                    Open the
                    manual
                    directory with your computer’s tools, and then read the
                    pdf
                    or
                    html
                    files. Start with the
                    R-intro
                    and the
                    R-FAQ
                    files. With the
                    Windows
                     
                    Rgui
                    , you can access the manuals from the menu item
                    Help > Manuals (in PDF)
                    . From the
                    Macintosh
                     
                    R.app
                    , you can access the manuals from the menu item
                    R Help
                    .
                  
A Note on Notation: Slashes

                      
                        
                      
                      
                        
                      
                      
                        
                      
                      Inside
                      R
                      , on any computer system, pathnames always use only the forward slashes “/”.
                    

                      In
                      Linux
                      and
                      Macintosh
                      , operating system pathnames use only the forward slashes “/”.
                    

                      In
                      Windows
                      , operating system pathnames—at the
                      MS-DOS
                      prompt shell CMD, in the
                      Windows
                       icon
                      Properties
                      windows, and in the
                      Windows Explorer
                      filename entry bar—are written with backslashes “
                      \
                      ”. The
                      HH
                      package provides a convenience function
                      WindowsPath
                      
                        
                      
                      to convert pathnames from the forward slash notation to the backslash notation.
                    



                    A.3.5 Duplicating All
                    HH
                     Examples
                  

                    Script files containing
                    R
                     code for all examples in the book are available for you to use to duplicate the examples (table and figures) in the book, or to use as templates for your own analyses. You may open these files in an
                    R
                    -aware editor.
                  

                    See the discussion in Section 
                    B.2
                    for more details.
                  

                      A.3.5.1
                      Linux
                      and
                      Macintosh
                    

                      
                        
                      
                      
                        
                      
                    
The script files for the second edition of this book are in the directory
HHscriptnames()
The script files for the first edition of this book are in the directory
HHscriptnames(edition=1)


                      A.3.5.2
                      Windows
                      .
                    

                      
                        
                      
                      
                        
                      
                      
                        
                      
                    
The script files for the second edition of this book are in the directory
WindowsPath(HHscriptnames())
The script files for the first edition of this book are in the directory
WindowsPath(HHscriptnames(edition=1))



                    A.3.6 Learning the Functions in
                    R
                  

                    Help on any function is available. For example, to learn about the
                    ancovaplot
                    function, type
                  

                    ancovaplot
                  

                    To see a function in action, you can run the examples on the help page. You can do them one at a time by manually copying the code from the example section of a help page and pasting it into the
                    R
                     console. You can do them all together with the
                    example
                    function, for example
                  

                    example("ancovaplot")
                  
Some functions have demonstration scripts available, for example,

                    demo("ancova")
                  
The list of demos available for a specific package is available by giving the package name

                    demo(package="HH")
                  
The list of all demos available for currently loaded packages is available by

                    demo()
                  

                    See?
                    demo
                    for more information on the
                    demo
                    function.
                  

                    The
                    demo
                    and
                    example
                    functions have optional arguments
                    ask=FALSE
                    and
                    echo=TRUE
                    . The default value
                    ask=TRUE
                    means the user has to press the
                    ENTER
                    key every time a new picture is ready to be drawn. The default
                    echo=FALSE
                    often has the effect that only the last of a series of
                    lattice
                    or
                    ggplot2
                    graphs will be displayed. See FAQ 7.22:
                    
                      
                    
                  

                    7.22 Why do lattice/trellis graphics not work?

                        The most likely reason is that you forgot to tell R to display the graph.
                        lattice
                        functions such as
                        xyplot()
                        create a graph object, but do not display it (the same is true of
                        ggplot2
                        graphics, and
                        trellis
                        graphics in
                        S-Plus
                        ). The
                        print()
                        method for the graph object produces the actual display. When you use these functions interactively at the command line, the result is automatically printed, but in
                        source()
                        or inside your own functions you will need an explicit
                        print()
                        statement.
                      


                  


                    A.3.7 Learning the
                    lattice
                    Functions in
                    R
                  

                    
                      
                    
                    
                      
                    
                  

                    One of the best places to learn the
                    lattice
                    functions is the original
                    trellis
                    documentation: the
                    S-Plus
                     Users Manual (Becker et al., 
                    1996a
                    ) and a descriptive paper with examples (Becker et al., 
                    1996b
                    ). Both are available for download.
                  

A.3.8 Graphs in an Interactive Session
We frequently find during an interactive session that we wish to back up and compare our current graph with previous graphs.

                    For
                    R
                     on the
                    Macintosh
                     using the
                    quartz
                    device, the most recent 16 figures are available by
                    Command-leftarrow
                    and
                    Command-rightarrow
                    .
                  

                    For
                    R
                     on
                    Windows
                     using the
                    windows
                    device, previous graphs are available if you turn on the graphical history of your device. This can be done with the mouse (by clicking
                    History > Recording
                    on the device menu) or by entering the
                    R
                     command
                  

                    options(graphics.record = TRUE)
                  

                    You can now navigate between graphs with the
                    PgUp
                    and
                    PgDn
                    keys.
                  



                  A.4
                  S
                  /
                  R
                  Language Style
                

                  
                    
                  
                  S
                  is a language.
                  R
                  is a dialect of
                  S
                  . Languages have standard styles in which they are written. When a language is displayed without paying attention to the style, it looks unattractive and may be illegible. It may also give valid statements that are not what the author intended. Read what you turn in before turning it in.
                
The basic style conventions are simple. They are also self-evident after they have been pointed out. Look at the examples in the book’s code files in the directory

                  HHscriptnames()
                

                  and in the
                  R
                   manuals.
                

                  1.
                          Use the courier font
                          
                            
                          
                          for computer listings.
                        

                          This is courier.
                        
This is Times Roman.

                          Notice that displaying program output in a font other than one for which it was designed destroys the alignment and makes the output illegible. We illustrate the illegibility of improper font choice in Table 
                          A.2
                          by displaying the first few lines of the
                          data(tv)
                          dataset from Chapter 
                          4
                          in both correct and incorrect fonts.
                          
                            
                          
                          Table A.2Correct and incorrect alignment of computer listings. The columns in the correct example are properly aligned. The concept of columns isn’t even visible in the incorrect example.


[image: A77776_2_En_BookBackmatter_Figccc_HTML.gif]


                        

 

2.Use sensible spacing to distinguish the words and symbols visually. This convention allows people to read the program.

                          [image: A77776_2_En_BookBackmatter_Figccd_HTML.gif]

                        

 

3.
                          Use sensible indentation
                          
                            
                          
                          to display the structure of long statements. Additional arguments on continuation lines are most easily parsed by people when they are aligned with the parentheses that define their depth in the set of nested parentheses.
                        

                          [image: A77776_2_En_BookBackmatter_Figaae_HTML.gif]

                        

                          Use Emacs
                          
                            
                          
                          (or other
                          R
                          -aware editor) to help with indentation. For example, open up a new file
                          tmp.r
                          in Emacs (or another editor) and type the above bad example—in two lines with the indentation exactly as displayed. Emacs in
                          ESS[S]
                          mode and other
                          R
                          -aware editors will automatically indent it correctly.
                        

 

4.Use a page width in the Commands window that your word processor and printer supports. We recommend

                          options(width=80)
                        

                          if you work with the natural width of 8.5in×11in paper (“letter” paper in the US. The rest of the world uses “A4” paper at 210cm×297cm) with 10-pt type. If you use a word processor that insists on folding lines at some shorter width (72 characters is a common—and inappropriate—default folding width), you must either take control of your word processor, or tell
                          R
                           to use a shorter width. Table 
                          A.3
                          shows a fragment from an
                          anova
                          output with two different width settings for the word processor.
                          
                            
                          
                          
                            
                          
                          Table A.3Legible and illegible printings of the same table. The illegible table was inappropriately folded by an out-of-control word processor. You, the user, must take control of folding widths.


[image: A77776_2_En_BookBackmatter_Figaaf_HTML.gif]


                        

 

5.
                          Reserved names.
                          R
                           has functions with the single-letter names
                          c
                          ,
                          s
                          , and
                          t
                          .
                          R
                           also has many functions whose names are commonly used statistical terms, for example:
                          mean
                          ,
                          median
                          ,
                          resid
                          ,
                          fitted
                          ,
                          data
                          . If you inadvertently name an object with one of the names used by the system, your object might mask the system object and strange errors would ensue. Do not use system names for your variables. You can check with the statement
                        

                          conflicts(detail=TRUE)
                        

 



                


                  A.5 Getting Help While Learning and Using
                  R
                

                  Although this section is written in terms of the
                  R
                   email list, its recommendations apply to all situations, in particular, to getting help from your instructor while reading this book and learning
                  R
                  .
                

                  R
                   has an email help list. The archives are available and can be searched. Queries sent to the help list will be forwarded to several thousand people world-wide and will be archived. For basic information on the list, read the note that is appended to the bottom of EVERY email on the R-help list, and follow its links:
                
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more,

                  see 
                  https://​stat.​ethz.​ch/​mailman/​listinfo/​r-help
                
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html and
provide commented, minimal, self-contained, reproducible code.
R-help is a plain text email list. Posting in HTML mangles your code, making it hard to read. Please send your question in plain text and make the code reproducible. There are two helpful sites on reproducible code

                  http://​adv-r.​had.​co.​nz/​Reproducibility.​html
                

                  http://​stackoverflow.​com/​questions/​5963269/​how-to-make-a-great-r-reproducible-example
                

                  When outside help is needed, save the
                  contents
                  of the
                  R
                   console window to show to your outside expert. In addition to the lines and results leading to the problem, including ALL messages that
                  R
                   produces, you must include the line (and its results)
                

                  sessionInfo()
                
in the material you show the expert.

                  Screenshots
                  
                    
                  
                  are not a good way to capture information. The informative way to get the contents of the console window is by highlighting the text of the entire window (including the off-screen part) and saving it in a text file. Show your text listing to an
                  R
                   expert.
                


                  A.6
                  R
                   Inexplicable Error Messages—Some Debugging Hints
                

                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  In general, weird and inexplicable errors mean that there are masked function names. That’s the easy part. The trick is to find which name. The name conflict
                  
                    
                  
                  is frequently inside a function that has been called by the function that you called directly. The general method, which we usually won’t need, is to trace the action of the function you called, and all the functions it called in turn. See
                  ?trace
                  ,
                  ?recover
                  ,
                  ?browser
                  , and
                  ?debugger
                  for help
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  on using these functions.
                

                  One method we will use is to find all occurrences of our names that might mask system functions.
                  R
                   provides two functions that help us. See
                  ?find
                  
                    
                  
                  and
                  ?conflicts
                  
                    
                  
                  for further detail.
                  
                        find:
                      
                          Returns a vector of names, or positions of databases and/or frames that contain an object.
                          	This example is problem because the user has used a standard function name “data” for a different purpose
> args(data)
function (..., list = character(), package = NULL,
    lib.loc = NULL, verbose = getOption("verbose"),
    envir = .GlobalEnv)
NULL
> data <- data.frame(a=1:3, b=4:6)
> data
  a b
1 1 4
2 2 5
3 3 6
> args(data)
NULL
> find("data")
[1] ".GlobalEnv"    "package:utils"
> rm(data)
> args(data)
function (..., list = character(), package = NULL,
    lib.loc = NULL, verbose = getOption("verbose"),
    envir = .GlobalEnv)
NULL
>




                        



                        conflicts:
                      
                          This function checks a specified portion of the search list for items that appear more than once.
                          	The only items we need to worry about are the ones that appear in our working directory.
> data <- data.frame(a=1:3, b=4:6)
> conflicts(detail=TRUE)
$.GlobalEnv
[1] "data"
$‘package:utils‘
[1] "data"
$‘package:methods‘
[1] "body<-"    "kronecker"
$‘package:base‘
[1] "body<-"    "kronecker"
> rm(data)




                        




                

                  Once we have found those names we must assign their value to some other variable name and then remove them from the working directory. In the above example, we have used the system name
                  "data"
                  for one of our variable names. We must assign the value to a name without conflict, and then remove the conflicting name.
                
> data <- data.frame(a=1:3, b=4:6)
> find("data")
[1] ".GlobalEnv"    "package:utils"
> CountingData <- data
> rm(data)
> find("data")
[1] "package:utils"
>



                Appendix B
                HH
              

                Every
                
                  
                
                graph and table in this book is an example of the types of graphs and analytic tables that readers can produce for their own data using functions in either base
                R
                 or the
                HH
                 package (Heiberger, 
                2015
                ). Please see Section 
                A.1
                for details on installing
                HH
                 and additional packages.
              

                When you see a graph or table you need, open the script file for that chapter and use the code there on your data. For example, the MMC plot (Mean–mean Multiple Comparisons plot) is described in Chapter 
                7
                , and the first MMC plot in that Chapter is Figure 
                7.​3
                Therefore you can enter at the
                R
                 prompt:
              

                HHscriptnames(7)
              

                
                  
                
                and discover the pathname for the script file. Open that file in your favorite
                R
                -aware editor. Start at the top and enter chunks (that is what a set of code lines is called in these files which were created directly from the manuscript using the
                R
                 function
                Stangle
                ) from the top until the figure you are looking for appears. That gives the sequence of code you will need to apply to your own data and model.
              

                  B.1 Contents of the
                  HH
                   Package
                

                  The
                  HH
                  package contains several types of items.
                  1.
                          Functions for the types of graphs illustrated in the book. Most of the graphical functions in
                          HH
                           are built on the
                          trellis
                          objects in the
                          lattice
                          package.
                        

 

2.
                          R
                           scripts for all figures and tables in the book.
                        

 

3.
                          R
                           data objects for all datasets used in the book that are not part of base
                          R
                          .
                        

 

4.
                          Additional
                          R
                           functions, some analysis and some utility, that I like to use.
                        

 



                


                  B.2
                  R
                   Scripts for all Figures and Tables in the Book
                

                  Files containing
                  R
                   scripts for all figures and tables in the book, both Second and First Editions, are included with the
                  HH
                   package. The details of pathnames to the script files differ by computer operating systems, and often by individual computer.
                

                  To duplicate the figures and tables in the book, open the appropriate script file in an
                  R
                  -aware editor. Highlight and send over to the
                  R
                   console one chunk at a time. Each script file is consistent within itself. Code chunks later in a script will frequently depend on the earlier chunks within the same script having already been executed.
                

                  Second Edition:
                  The
                  R
                   function
                  HHscriptnames
                  displays the full
                  
                    
                  
                  pathnames of Second Edition script files for your computer. For example,
                  HHscriptnames(7)
                  displays the full pathname for Chapter
                  7
                  . The pathname for Chapter
                  7
                   relative to the
                  HH
                  package is
                  HH/scripts/hh2/mcomp.r.
                  Valid values for the
                  chapternumbers
                  argument for the Second Edition are
                  c(1:18, LETTERS[1:15])
                  .
                

                  First Edition:
                  First Edition script file pathnames are similar, for example, the relative path for Chapter
                  7
                   is
                  HH/scripts/hh1/Ch07-mcomp.r.
                  The full pathnames of First Edition files for your computer are displayed by the
                  R
                   statement
                  HHscriptnames(7, edition=1)
                  . Valid values for the
                  chapternumbers
                  argument for the First Edition are
                  c(1:18)
                  .
                
The next few subsections show sample full pathnames of Second Edition script filenames for several different operating systems.
B.2.1 Macintosh
On Macintosh the full pathname will appear as something like

                    [image: A77776_2_En_BookBackmatter_Figaag_HTML.gif]

                  

B.2.2 Linux
On Linux, the full pathname will appear something like

                    [image: A77776_2_En_BookBackmatter_Figaah_HTML.gif]

                  

B.2.3 Windows
On Windows the full pathname will appear as something like

                    [image: A77776_2_En_BookBackmatter_Figaai_HTML.gif]

                  
You might prefer it to appear with Windows-style path separators (with the escaped backslash that looks like a double backslash)

                    [image: A77776_2_En_BookBackmatter_Figaaj_HTML.gif]

                  
or unquoted and with the single backslash

                    [image: A77776_2_En_BookBackmatter_Figaak_HTML.gif]

                  
Some of these variants will work with Windows Explorer (depending on which version of Windows) or your favorite editor, and some won’t.



                  B.3 Functions in the
                  HH
                   Package
                

                  There are many functions in the
                  HH
                   package, and in the rest of
                  R
                  , that you will need to learn about. The easiest way is to use the documentation that is included with R. For example, to learn about the linear regression function
                  lm
                  (for “Linear Model”), just ask
                  R
                   with the simple “?” command:
                

                  ?lm
                
and a window will open with the description. Try it now.


                  B.4
                  HH
                  and
                  S+
                

                  Package version HH_2.1-29 of 2009-05-27 (Heiberger, 
                  2009
                  ) is still available at CSAN. This version of the package is appropriate for the First Edition of the book. It includes very little of the material developed after the publication of the First Edition. Once I started using the features of
                  R
                  ’s
                  latticeExtra
                  
                    
                  
                  package it no longer made sense to continue compatibility with
                  S-Plus
                  .
                  HH_2.1-29
                  doesn’t have
                  data();
                  instead it has a
                  datasets
                  subdirectory.
                


Appendix C Rcmdr: R Commander

                The
                
                  
                
                R
                 Commander, released as the package
                Rcmdr
                (Fox, 
                2005
                ; John Fox et al., 
                2015
                ), is a platform-independent basic-statistics GUI (graphical user interface) for
                R
                , based on the
                tcltk
                package (part of
                R
                ).
              

                We illustrate how to use it by reconstructing the two panels of Figure 
                9.​5
                directly from the
                Rcmdr
                menu. We load
                Rcmdr
                indirectly by explicitly loading our package
                RcmdrPlugin.HH
                (Heiberger and with contributions from Burt Holland, 
                2015
                ). We then use the menu to bring in the
                hardness
                dataset, compute the quadratic model, display the squared residuals for the quadratic model (duplicating the left panel of Figure 
                9.​5
                ), display the squared residuals for the linear model (duplicating the right panel of Figure 
                9.​5
                ). The linear model was fit implicitly and its summary is not automatically printed. We show the summary of the quadratic model.
              

                Figures 
                C.1
                –
                C.14
                illustrate all the steps summarized above.
                [image: A77776_2_En_BookBackmatter_Figa_HTML.gif]
Fig. C.1
                        From the *R* buffer (or the
                        R
                         Console) enter
                        library(RcmdrPlugin.HH)
                        . This also loads
                        HH
                        and
                        Rcmdr
                        and several other packages. It also open the
                        Rcmdr
                        window shown in Figure 
                        C.2
                        .
                      




                [image: A77776_2_En_BookBackmatter_Figb_HTML.gif]
Fig. C.2
                        The
                        Rcmdr
                        window as it appears when first opened. It shows a menu bar, a tool bar, and three subwindows.
                      




                [image: A77776_2_En_BookBackmatter_Figc_HTML.gif]
Fig. C.3
                        We bring in a dataset by clicking on the
                        Data
                        menu sequence to open Figure 
                        C.4
                        .
                      




                [image: A77776_2_En_BookBackmatter_Figd_HTML.gif]
Fig. C.4
                        In this menu box we click on the
                        HH
                        package and within it, on the
                        hardness
                        data.
                      




                [image: A77776_2_En_BookBackmatter_Fige_HTML.gif]
Fig. C.5
                        The
                        Data set:
                        item in the tool bar now shows
                        hardness
                        as the active dataset. The
                        R Script
                        subwindow show the
                        R
                         command that was generated by the menu sequence. The
                        Output
                        subwindow shows the transcript of the
                        R
                         session where the command was executed. The
                        Messages
                        subwindow give information on the dataset that was opened.
                      




                [image: A77776_2_En_BookBackmatter_Figf_HTML.gif]
Fig. C.6
                        From the
                        Statistics
                        menu we open the
                        Linear model
                        menu box in Figure 
                        C.7
                        .
                      




                [image: A77776_2_En_BookBackmatter_Figg_HTML.gif]
Fig. C.7Specify the linear model. The user can enter the model by typing or by clicking on the menu items.




                [image: A77776_2_En_BookBackmatter_Figh_HTML.gif]
Fig. C.8
                        The
                        Linear model
                        menu item wrote the
                        R
                         commands shown in the
                        R Script
                        subwindow and executed them in the
                        Output
                        window. The model is stored in the
                        R
                         
                        "lm"
                        object named
                        LinearModel.1.
                        The
                        Model:
                        item in the tool bar now shows
                        LinearModel.1
                        as the active model.
                      




                [image: A77776_2_En_BookBackmatter_Figi_HTML.gif]
Fig. C.9
                        Use the
                        Graphs
                        menu to get to the
                        Squared Residuals…(HH)
                        menu box in Figure 
                        C.10
                        .
                      




                [image: A77776_2_En_BookBackmatter_Figj_HTML.gif]
Fig. C.10
                        Specify the
                        x-variable
                        , the
                        y-variable
                        , and the active model
                        (LinearModel.1)
                        to get Figure 
                        C.11
                        .
                      




                [image: A77776_2_En_BookBackmatter_Figk_HTML.gif]
Fig. C.11
                        This is the squared residuals for the quadratic model (duplicating the right panel of Figure 
                        9.​5
                        ).
                      




                [image: A77776_2_En_BookBackmatter_Figl_HTML.gif]
Fig. C.12
                        We repeated Figure 
                        C.9
                        to get the menu box again. This time we took the default linear model to get Figure 
                        C.13
                        .
                      




                [image: A77776_2_En_BookBackmatter_Figm_HTML.gif]
Fig. C.13
                        This is the squared residuals for the linear model (duplicating the left panel of Figure 
                        9.​5
                        ).
                      




                [image: A77776_2_En_BookBackmatter_Fign_HTML.gif]
Fig. C.14
                        The
                        Rcmdr
                        window now shows the summary for the quadratic regression and the specifications for the two graphs in Figures 
                        C.11
                        and 
                        C.13
                        .
                      




              


                Appendix D
                RExcel
                : Embedding
                R
                 inside
                Excel
                 on 
                Windows
              

                
                  
                
                
                  
                
                If you are running on a
                Windows
                 machine and have access to MS
                Excel
                , then we recommend that you install
                RExcel
                 (Baier and Neuwirth, 
                2007
                ; Neuwirth, 
                2014
                ).
                RExcel
                 is free of charge for “single user non-commercial use” with 32-bit
                Excel
                . Any other use will require a license. Please see the license at
                
                    rcom.univie.ac.at
                  
                for details.
              

                RExcel
                 seamlessly integrates the entire set of
                R
                ’s statistical and graphical methods into
                Excel
                , allowing students to focus on statistical methods and concepts and minimizing the distraction of learning a new programming language. Data can be transferred between
                R
                 and
                Excel
                 “the
                Excel
                 way” by selecting worksheet ranges and using
                Excel
                 menus.
                RExcel
                 has embedded the
                Rcmdr
                 menu into the
                Excel
                 ribbon. Thus
                R
                ’s basic statistical functions and selected advanced methods are available from an
                Excel
                 menu. Almost all R functions can be used as worksheet functions in Excel. Results of the computations and statistical graphics can be returned back into
                Excel
                 worksheet ranges.
                RExcel
                 allows the use of
                Excel
                 scroll bars and check boxes to create and animate R graphics as an interactive analysis tool.
              

                See Heiberger and Neuwirth (
                2009
                ) for the book
                R through Excel: A Spreadsheet Interface for Statistics, Data Analysis, and Graphics
                . This book is designed as a computational supplement for any Statistics course.
              

                RExcel
                 works with
                Excel
                 only on
                Windows
                .
                Excel
                 on the
                Macintosh
                uses a completely different interprocess communications system.
              

                  D.1 Installing
                  RExcel
                   for
                  Windows
                

                  You must have MS
                  Excel
                   (2007, 2010, or 2013) installed on your
                  Windows
                   machine. You need to purchase
                  Excel
                   separately. Excel 2013 is the current version (in early 2015).
                  RExcel
                   is free of charge for “single user non-commercial use” with 32-bit
                  Excel
                  . Any other use will require a license.
                

                    D.1.1 Install
                    R
                  

                    Begin by installing
                    R
                     and the necessary packages as described in Section 
                    A.1
                    .
                  


                    D.1.2 Install Two
                    R
                     Packages Needed by
                    RExcel
                  

                    You will also need two more
                    R
                     packages that must be installed as computer Administrator.
                  

                    Start R as Administrator (on
                    Windows
                     7 and 8 you need to right-click the
                    R
                     icon and click the “Run as administrator” item). In
                    R
                    , run the following commands (again, you must have started
                    R
                     as Administrator to do this)
                  
## Tell Windows that R should have the same access to the outside
## internet that is granted to Internet Explorer.
setInternet2()
install.packages(c("rscproxy","rcom"),
                 repos="http://rcom.univie.ac.at/download",
                 type="binary",
                 lib=.Library)
library(rcom)
comRegisterRegistry()

                    Close
                    R
                     with q("no"). If it asks
                  

                    Save workspace image? [y/n/c]:
                  
answer with n.


                    D.1.3 Install
                    RExcel
                     and Related Software
                  

                    Go to
                    
                        http://rcom.univie.ac.at
                      
                    and click on the
                    Download
                    tab. Download and execute the following four files (or newer releases if available)
                    	statconnDCOM3.6-0B2_Noncommercial

	RExcel 3.2.15

	RthroughExcelWorkbooksInstaller_1.2-10.exe

	
                          SWord 1.0-1B1 Noncommercial
                          SWord
                          (Baier, 
                          2014
                          ) is an add-in package for
                          MSword
                          that makes it possible to embed
                          R
                           code in a
                          MSword
                          document. The
                          R
                           code will be automatically executed and the output from the
                          R
                           code will be included within the
                          MSword
                          document.
                          SWord
                          is free for non-commercial use. Any other use will require a license.
                          SWord
                          is a separate program from
                          RExcel
                           and is not required for
                          RExcel
                          .
                        




                  

                    These installer.exe files will ask for administrator approval, as they write in the
                    Program Files
                    directory and write to the
                    Windows
                     registry as part of the installation. Once they are installed, they run in normal user mode.
                  


                    D.1.4 Install
                    Rcmdr
                     to Work with
                    RExcel
                  

                    In order for
                    RExcel
                     to place the
                    Rcmdr
                     menu on the
                    Excel
                     ribbon, it is necessary that
                    Rcmdr
                     be installed in the
                    C:/Program Files/R/R-x.y.z/library
                    directory and not in the
                    C:/Users/rmh/*/R/win-library/x.y
                    directory. If
                    Rcmdr
                    is installed in the user directory, it must be removed before reinstalling it as Administrator. Remove it with the
                    remove.packages
                    function using
                  

                    remove.packages(c("Rcmdr", "RcmdrMisc"))
                  

                    Then see the installation details in Section 
                    A.1.2.2
                    .
                  


                    D.1.5 Additional Information on Installing
                    RExcel
                  

                    Additional
                    RExcel
                     installation information is available in the
                    Wiki
                    page at
                  

                    http://​rcom.​univie.​ac.​at
                  



                  D.2 Using
                  RExcel
                

                    D.2.1 Automatic Recalculation of an
                    R
                     Function
                  

                    RExcel
                     places
                    R
                     inside the
                    Excel
                     automatic recalculation model. Figure 
                    D.1
                    by Heiberger and Neuwirth was originally presented in Robbins et al. (
                    2009
                    ) using
                    Excel
                     2007. We reproduce it here with
                    Excel
                     2013.
                  
[image: A77776_2_En_BookBackmatter_Figo_HTML.gif]
Fig. D.1
                          Any
                          R
                           function can be used in
                          Excel
                           with the
                          RExcel
                           worksheet function
                          RApply
                          . The formula
                          =RApply("pchisq", B1, B2, B3)
                          computes the value of the noncentral distribution function for the quantile-value, the degrees of freedom, and the noncentrality parameter in cells
                          B1
                          ,
                          B2
                          , and
                          B3
                          , respectively, and returns its value into cell
                          B4
                          . When the value of one of the arguments, in this example the noncentrality parameter in cell
                          B3
                          , is changed, the value of the cumulative distribution is automatically updated by
                          Excel
                           to the appropriate new value.
                        





                    D.2.2 Transferring Data To/From
                    R
                     and
                    Excel
                  

                    Datasets can be transferred in either direction to/from
                    Excel
                     from/to
                    R
                    . In Figures 
                    D.2
                    –
                    D.4
                    we bring in a dataset from an
                    Excel
                     worksheet, transfer it to
                    R
                    , and make it the active dataset for use with
                    Rcmdr
                    .
                  

                    The
                    StudentData
                    was collected by Erich Neuwirth for over ten years from students in his classes at the University of Vienna. The
                    StudentData
                    dataset is included with
                    RExcel
                    .
                  
[image: A77776_2_En_BookBackmatter_Figp_HTML.gif]
Fig. D.2
                          Retrieve the
                          StudentData
                          into
                          Excel
                          . From the
                          RExcel
                           Add-In tab, click
                          RthroughExcel Worksheets
                          . This brings up the
                          BookFilesTOC
                          worksheet in Figure 
                          D.3
                          .
                        



[image: A77776_2_En_BookBackmatter_Figq_HTML.gif]
Fig. D.3
                          Click the
                          StudentData
                          button to bring up the
                          StudentData
                          worksheet in Figure 
                          D.4
                          .
                        



[image: A77776_2_En_BookBackmatter_Figr_HTML.gif]
Fig. D.4
                          Highlight the entire region containing data
                          A1:Q1126
                          . Right-click for the menu and select
                          Put R DataFrame
                          . Click
                          OK
                          on the “
                          Put dataframe in R
                          ” Dialog box. This places the dataset name
                          StudentData
                          into the
                          Rcmdr
                          ’s active
                          Dataset
                          box in Figure 
                          D.5
                          .
                        



[image: A77776_2_En_BookBackmatter_Figs_HTML.gif]
Fig. D.5
                          RExcel
                           has placed the
                          Rcmdr
                           menu onto the
                          Excel
                           ribbon. Click the
                          Graphs
                          tab to get the menu and then click
                          XY conditioning plot…(HH)
                          to get the Dialog box in Figure 
                          D.6
                          . The
                          (HH)
                          in the menu item means the function was added to the
                          Rcmdr
                          menu by our
                          RcmdrPlugin.HH
                          package (Heiberger and with contributions from Burt Holland, 
                          2015
                          ).
                        





                    D.2.3 Control of a
                    lattice
                    Plot from an
                    Excel
                    /
                    Rcmdr
                    Menu
                  

                    The example in Figures 
                    D.5
                    –
                    D.8
                    is originally from Heiberger and Neuwirth (
                    2009
                    ) using
                    Excel
                     2007. We reproduce it here with
                    Excel
                     2013. We made it the active dataset for
                    Rcmdr
                     in Figures 
                    D.2
                    –
                    D.4
                    .
                  

                    [image: A77776_2_En_BookBackmatter_Figt_HTML.gif]
Fig. D.6
                            The user fills in the Dialog box to specify the graph in Figure 
                            D.7
                            and generate the
                            R
                             commands displayed in Figure 
                            D.8
                            .
                          




                    [image: A77776_2_En_BookBackmatter_Figu_HTML.gif]
Fig. D.7
                            The graph is displayed.
                            Shoesize
                            is the student’s shoe size in Paris points (2/3 cm).
                            Size
                            is the student’s height in cm.
                            SizeFather
                            and
                            SizeMother
                            are the heights of the student’s parents. Fathers of both male and female students have the same height distribution as the male students. Mothers of both male and female students have the same height distribution as the female students.
                          




                    [image: A77776_2_En_BookBackmatter_Figv_HTML.gif]
Fig. D.8
                            The generated
                            R
                             code is displayed.
                          




                  




                Appendix E Shiny: Web-Based Access to
                R
                 Functions
              

                
                  
                
                Shiny (Chang et al., 
                2015
                ; RStudio, 
                2015
                ) is an
                R
                 package that provides an
                R
                 language interface for writing interactive web applications. Apps built with
                shiny
                place the power of
                R
                 behind an interactive webpage that can be used by non-programmers. A full tutorial and gallery are available at the Shiny web site.
              

                We have animated several of the graphs in the
                HH
                package using
                shiny
                .
              

                [image: A77776_2_En_BookBackmatter_Figw_HTML.gif]
Fig. E.1
                        This is an interactive version of Figure 
                        3.​20
                        constructed with the
                        shiny
                        package. Adjusting the
                        n
                        slider at the bottom right can produce all three columns of Figure 
                        3.​20
                        . Clicking the
                        [image: $$\blacktriangleright $$]
                        button below the slider will dynamically move through all values of
                        n
                        from 1 through 150, including the three that are displayed in Figure 
                        3.​20
                        . There are additional controls on the
                        Normal and t
                        ,
                        Display Options
                        , and
                        Fonts
                        tabs that will show the
                        power
                        and
                        beta
                        panels.
                      




              

                  E.1
                  NTplot
                

                  The
                  NTplot
                  function shows significance levels and power for the normal or
                  t
                  -distributions. Figure 
                  E.1
                  , an interactive version of the top panel of the middle section of Figure 
                  3.​20
                  , is specified with
                
NTplot(mean0=8, mean1=8.411, sd=2, n=64, cex.prob=1.3,
      shiny=TRUE)


                  E.2
                  bivariateNormal
                

                  Figure 
                  E.2
                  is an interactive version of Figure 
                  3.​9
                  showing the bivariate normal density in 3D space with various correlations and various viewpoints.
                
shiny::runApp(system.file("shiny/bivariateNormal",
                          package="HH"))
[image: A77776_2_En_BookBackmatter_Figx_HTML.gif]
Fig. E.2
                        This is an interactive version of Figure 
                        3.​9
                        constructed with the
                        shiny
                        package. Adjusting the
                        rho
                        slider changes the correlation between
                        x
                        and
                        y
                        . Adjusting the
                        angle in degrees
                        slider rotates the figure through all the viewpoint angles shown in Figure 
                        3.​10
                        Both sliders can be made dynamic by clicking their
                        [image: $$\blacktriangleright $$]
                        buttons.
                      





                  E.3
                  bivariateNormalScatterplot
                

                  Figure 
                  E.3
                  is a dynamic version of Figure 
                  3.​8
                  specified with
                
shiny::runApp(system.file("shiny/bivariateNormalScatterplot",
                          package="HH"))

                  [image: A77776_2_En_BookBackmatter_Figy_HTML.gif]
Fig. E.3
                          This is an interactive version of Figure 
                          3.​8
                          constructed with the
                          shiny
                          package. Adjusting the
                          rho
                          slider changes the correlation between
                          x
                          and
                          y
                          . By clicking the
                          [image: $$\blacktriangleright $$]
                          button, the figure will transition through the panels of Figure 
                          3.​8
                          .
                        




                


                  E.4
                  PopulationPyramid
                

                  Figure 
                  E.4
                  is an interactive version of Figure 
                  15.​19
                  showing the population pyramid for the United States annually for the years 1900–1979 specified with
                
shiny::runApp(system.file("shiny/PopulationPyramid",
              package="HH"))
[image: A77776_2_En_BookBackmatter_Figz_HTML.gif]
Fig. E.4
                        This is an interactive version of Figure 
                        15.​19
                        constructed with the
                        shiny
                        package. Adjusting the
                        Year
                        slider changes the year in the range 1900–1970. By clicking the
                        [image: $$\blacktriangleright $$]
                        button, the figure will dynamically transition through the panels of Figure 
                        15.​19
                        .
                      




                  
                    
                  
                



                Appendix F
                R
                Packages
              

                
                  
                
              

                The
                R
                 program as supplied by R-Core on the CRAN (Comprehensive
                R
                 Archive Network) page (CRAN, 
                2015
                )
                
                  
                
                consists of the base program and about 30 required and recommended packages. Everything else is a contributed package. There are about 6500 contributed packages (April 2015). Our
                HH
                is a contributed package.
              
F.1 What Is a Package?

                  R
                   packages are extensions to
                  R
                  .
                

                  Each package is a collection of functions and datasets designed to work together for a specific purpose. The
                  HH
                  package is designed to provide computing support for the techniques discussed in this book. The
                  lattice
                  package (a recommended package) is designed to provide
                  xyplot
                  and related graphics functions. Most of the graphics functions in
                  HH
                  are built on the functions in
                  lattice
                  .
                

                  Packages consist at a minimum of functions written in
                  R
                  , datasets that can be brought into the
                  R
                   working directory, and documentation for all functions and datasets. Some packages include subroutines written in
                  Fortran
                   or
                  C
                  .
                


                  F.2 Installing and Loading
                  R
                   Packages
                

                  
                    
                  
                  
                    
                  
                

                  The base and recommended packages are installed on your computer when you download and install
                  R
                   itself. All other packages must be explicitly installed (downloaded from CRAN and placed into an
                  R
                  -determined location on your computer).
                
The packages available at CRAN are most easily installed into your computer with a command of the form

                  install.packages
                  ("MyPackage")
                

                  The
                  R
                   GUIs usually have a menu item that constructs this statement for you.
                

                  The functions in an installed package are not automatically available when you start an
                  R
                   session. It is necessary to load them into the current session, usually with the
                  library
                  function. Most examples in this book require you to enter
                

                  library(HH)
                

                  (once per R session) before doing anything else. The
                  HH
                  package loads
                  lattice
                  and several additional packages.
                

                  The list of
                  R
                   packages installed on your computer is seen with the
                  R
                   command
                

                  library()
                

                  The list of
                  R
                   packages loaded into your current
                  R
                   session is seen with the
                  R
                   command
                

                  search()
                

F.3 Where Are the Packages on Your Computer?

                  Once a package has been installed on your computer it is kept in a directory (called a “library” in
                  R
                   terminology). The base and recommended packages are stored under
                  R
                   itself in directory
                

                  system.file("..")
                
Files inside the installed packages are in an internal format and cannot be read by an editor directly from the file system.
Contributed packages will usually be installed in a directory in your user space.
In Windows that might be something like

                  C:/Users/yourloginname/Documents/R/win-library/3.2
                
or

                  C:/Users/yourloginname/AppData/Roaming/R/win-library/3.2
                
On Macintosh it will be something like

                  /Users/yourloginname/Library/R/3.2/library
                
You can find out where the installed packages are stored by loading one and then entering

                  searchpaths()
                

                  (
                  searchpaths()
                  is similar to
                  search()
                  but with the full pathname included in the output, not just the package name). For example,
                

                  library(HH)
                

                  searchpaths()
                


                  F.4 Structure of an
                  R
                   Package
                

                  The package developer writes individual source files. The
                  R
                   build system (see the
                  Writing R Extensions
                  manual) has procedures for checking coherency and then for building the source package and the binaries.
                

                  The packages at CRAN are available in three formats. The source packages (what the package designer wrote and what you should read when you want to read the code) are stored as
                  packagename.tar.gz
                  files. The binary packages for
                  Windows
                   are stored as
                  packagename.zip
                  files. The binary packages for
                  Macintosh
                   are stored as
                  packagename.tgz
                  files.
                

F.5 Writing and Building Your Own Package

                  
                    
                  
                  
                    
                  
                
At some point in your analysis project you will have accumulated several of your own functions that you quite frequently use. At that point it will be time to collect them into a package.

                  We do not say much here about designing and writing functions in this book. Begin with
                  An Introduction to R
                  in file
                

                  system.file("../../doc/manual/R-intro.pdf")
                
It includes a chapter “Writing your own functions”.

                  Nor do we say much here about building a package. The official reference is the
                  Writing R Extensions
                  manual that also comes with
                  R
                   in file
                

                  system.file("../../doc/manual/R-exts.pdf")
                
When you are ready, begin by looking at the help file

                  ?package.skeleton
                
to see how the pieces fit together.
It will help to have someone work with you the first time you build a package. You build the package with the operating system command

                  R CMD check YourPackageName
                
and then install it on your own machine with the command

                  R CMD INSTALL --build YourPackageName
                

                  The checking process is very thorough, and gets more thorough at every release of 
                  R
                  . Understanding how to respond to the messages from the
                  check
                  is the specific place where it will help to have someone already familiar with package building.
                


                  F.6 Building Your Own Package with
                  Windows
                

                  
                    
                  
                  
                    
                  
                  The MS
                  Windows
                   operating system does not include many programs that are central to building
                  R
                   packages. You will need to download and install the most recent
                  Rtools
                  from CRAN. See Section 
                  A.1.2.4
                  for download information.
                

                  You will need to include
                  Rtools
                  in your
                  PATH
                  environment variable to enable the
                  R CMD check
                  packagename command to work. See “Appendix D The Windows toolset” in
                  R Installation and Administration
                  manual at
                

                  system.file("../../doc/manual/R-admin.pdf")
                


Appendix G Computational Precision and Floating-Point Arithmetic

                
                  
                
                
                  
                
                
                  
                
                Computers use
                floating point
                arithmetic. The floating point system is not identical to the real-number system that we (teachers and students) know well, having studied it from kindergarten onward. In this section we show several examples to illustrate and emphasize the distinction.
              
The principal characteristic of real numbers is that we can have as many digits as we wish. The principal characteristic of floating point numbers is that we are limited in the number of digits that we can work with. In double-precision IEEE 754 arithmetic, we are limited to exactly 53 binary digits (approximately 16 decimal digits)

                The consequences of the use of floating point numbers are pervasive, and present even with numbers we normally think of as far from the boundaries. For detailed information please see FAQ 7.31
                
                  
                
                in file
              

                system.file("../../doc/FAQ")
              

                The help menus in
                Rgui
                in
                Windows
                 and
                R.app
                on
                Macintosh
                have direct links to the FAQ file.
              
G.1 Examples
Let us start by looking at two simple examples that require basic familiarity with floating point arithmetic.

                  1.Why is.9 not recognized to be the same as (.3 +.6)?

                          Table 
                          G.1
                          shows that. 9 is not perceived to have the same value as. 3 +. 6, when calculated in floating point (that is, when calculated by a computer). The difference between the two values is not 0, but is instead a number on the order of machine epsilon
                          
                            
                          
                          
                            
                          
                          (the smallest number
                          ε
                          such that 1 +
                          ε
                           > 1). In
                          R
                          , the standard mathematical comparison operators recognize the difference. There is a function
                          all.equal
                          which tests for
                          near equality
                          .
                          See?all.equal
                          for details.
                          Table G.1
                                  Calculations showing that the floating point numbers. 9 and. 3 +. 6 are not stored the same inside the computer.
                                  R
                                   comparison operators recognize the numbers as different.
                                


[image: A77776_2_En_BookBackmatter_Figaal_HTML.gif]


                          Table G.2
                                  [image: $$\left (\sqrt{2\,}\right )^{2}\neq 2$$]
                                  in floating point arithmetic inside the computer.
                                


[image: A77776_2_En_BookBackmatter_Figaam_HTML.gif]


                        

 

2.
                          Why is
                          [image: $$\left (\sqrt{2\,}\right )^{2}$$]
                          not recognized to be the same as 2?
                        

                          Table 
                          G.2
                          shows that the difference between the two values
                          [image: $$\left (\sqrt{2\,}\right )^{2}$$]
                          and 2 is not 0, but is instead a number on the order of machine epsilon (the smallest number
                          ε
                          such that 1 +
                          ε
                           > 1).
                        

 



                

                  We will pursue these examples further in Section 
                  G.7
                  , but first we need to introduce floating point numbers—the number system used inside the computer.
                

G.2 Floating Point Numbers in the IEEE 754 Floating-Point Standard

                  The number system we are most familiar with is the infinite-precision base-10 system. Any number can be represented as the infinite sum
                  [image: $$\displaystyle\begin{array}{rcl} \pm \;(a_{0} \times 10^{0} + a_{ 1} \times 10^{-1} + a_{ 2} \times 10^{-2}+\ldots ) \times 10^{p}& & {}\\ \end{array}$$]



                  where
                  p
                  can be any positive integer, and the values
                  a
                  
                    i
                  
                  are digits selected from decimal digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. For example, the decimal number 3.3125 is expressed as
                  [image: $$\displaystyle\begin{array}{rcl} 3.3125& =& (3 \times 10^{0} + 3 \times 10^{-1} + 1 \times 10^{-2} + 2 \times 10^{-3} + 5 \times 10^{-4}) \times 10^{0} {}\\ & =& 3.3125 \times 1 {}\\ \end{array}$$]



                  In this example, there are 4 decimal digits after the radix point. There is no limit to the number of digits that could have been specified. For decimal numbers the term
                  decimal point
                  is usually used in preference to the more general term
                  radix point
                  .
                

                  Floating point arithmetic in computers uses a finite-precision base-2 (binary) system for representation of numbers. Most computers today use the 53-bit IEEE 754 system, with numbers represented by the finite sum
                  [image: $$\displaystyle\begin{array}{rcl} \pm \;(a_{0} \times 2^{0} + a_{ 1} \times 2^{-1} + a_{ 2} \times 2^{-2} +\ldots +a_{ 52} \times 2^{-}52) \times 2^{p}& & {}\\ \end{array}$$]



                  where
                  p
                  is an integer in the range − 1022 to 1023 (expressed as decimal numbers), the values
                  a
                  
                    i
                  
                  are digits selected from {0, 1}, and the subscripts and powers
                  i
                  are decimal numbers selected from {
                  [image: $$0,1,\ldots,52$$]
                  }. The decimal number 3.125
                  10
                  is 11.0101
                  2
                  in binary.
                  [image: $$\displaystyle\begin{array}{rcl} 3.3125_{10} = 11.0101_{2}& =& (1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4} + {}\\ & & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1 \times 2^{-5}) \times 2_{ 10} {}\\ & =& 1.10101_{2} \times 2_{10} {}\\ \end{array}$$]



                  This example (in the normalized form 1. 10101
                  2
                  × 2
                  10
                  ) has five binary digits (bits) after the radix point (binary point in this case). There is a maximum of 52 binary positions after the binary point.
                
Strings of 0 and 1 are hard for people to read. They are usually collected into units of 4 bits (called a byte).

                  The IEEE 754 standard requires the base
                  β
                   = 2 number system with
                  p
                   = 53 base-2 digits. Except for 0, the numbers in internal representation are always
                  normalized
                  with the leading bit always 1. Since it is always 1, there is no need to store it and only 52 bits are actually needed for 53-bit precision. A string of
                  0
                  and
                  1
                  is difficult for humans to read. Therefore every set of 4 bits is represented as a single hexadecimal digit, from the set {
                  0 1 2 3 4 5 6 7 8 9 a b c d e f
                  }, representing the decimal values {0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15}. The 52 stored bits can be displayed with 13 hex digits. Since the base is
                  β
                   = 2, the exponent of an IEEE 754 floating point number must be a power of 2. The double-precision computer numbers contain 64 bits, allocated 52 for the significant, 1 for the sign, and 11 for the exponent. The 11 bits for the exponent can express 2
                  11
                   = 2048 unique values. These are assigned to range from − 2
                  −1022
                  to 2
                  1023
                  , with the remaining 2 exponent values used for special cases (zero and the
                  special quantities
                  NaN
                  and
                  [image: $$\infty $$]
                  ).
                

                  The number 3. 3125
                  10
                  is represented in hexadecimal (base-16) notation as
                  [image: $$\displaystyle\begin{array}{rcl} 3.3125_{10} = 3.50_{16}& =& (1 \times 16^{0} + a_{ 16} \times 16^{-1} + 8_{ 16} \times 16^{-2}) \times 2_{ 10} {}\\ & =& 1.a8_{16} \times 2_{10} {}\\ & =& 1.10101000_{2} \times 2_{10} {}\\ \end{array}$$]



                  There are two hex digits after the radix point (binary point, not hex point because the normalization is by powers of 2
                  10
                  not powers of 16
                  10
                  ).
                

                  The
                  R
                   function
                  sprintf
                  
                    
                  
                  is used to specify the printed format of numbers. The letter a in format
                  sprintf("%+13.13a", x)
                  tells
                  R
                   to print the numbers in hexadecimal notation.
                  
                    
                  
                  The “13”s say to use 13 hexadecimal digits after the binary point.
                  See?sprintf
                  for more detail on the formatting specifications used by the
                  sprintf
                  function. Several numbers, simple decimals, and simple multiples of powers of 1/2 are shown in Table 
                  G.3
                  in both decimal and binary notation.
                  Table G.3
                          Numbers, some simple integers divided by 10, and some fractions constructed as multiples of powers of 1/2. The
                          i
                          ∕10 decimal numbers are stored as repeating binaries in the hexadecimal notation until they run out of digits. There are only 52 bits (binary digits) after the binary point. For decimal input 0.1 we see that the repeating hex digit is “9” until the last position where it is rounded up to “
                          a
                          ”.
                        


[image: A77776_2_En_BookBackmatter_Figaan_HTML.gif]


                

G.3 Multiple Precision Floating Point

                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  The
                  R
                   package
                  Rmpfr
                  allows the construction and use of arbitrary precision floating point numbers. It was designed, and is usually used, for higher-precision arithmetic—situations where the 53-bit double-precision numbers are not precise enough. In this Appendix we use it for lower-precision arithmetic—four or five significant digits. In this way it will be much easier to illustrate how the behavior of floating point numbers differs from the behavior of real numbers.
                

G.4 Binary Format

                  
                    
                  
                

                  It is often easier to see the details of the numerical behavior when numbers are displayed in binary, not in the hex format of
                  sprintf("%+13.13a", x)
                  . The
                  Rmpfr
                  package includes a binary display format for numbers. The
                  formatBin
                  function uses
                  sprintf
                  to construct a hex display format and then modifies it by replacing each hex character with its 4-bit expansion as shown in Table 
                  G.4
                  .
                

                  Optionally (with argument
                  scientific=FALSE
                  ), all binary numbers can be formatted to show aligned radix points. There is also a
                  formatHex
                  function which is essentially a wrapper for
                  sprintf
                  . Both functions are used in the examples in this Appendix. Table 
                  G.5
                  illustrates both functions, including the optional
                  scientific
                  argument, with a 4-bit arithmetic example.
                  Table G.4Four-bit expansions for the sixteen hex digits. We show both lowercase [a:f] and uppercase [A:F] for the hex digits.
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                  Table G.5
                          Integers from 0 to 39 stored as 4-bit
                          mpfr
                          numbers. The numbers from 17 to 39 are rounded to four significant bits. All numbers in the “16” and “24” columns are multiples of 2, and all numbers in the “32” columns are multiples of 4. The numbers are displayed in decimal, hex, binary, and binary with aligned radix points. To interpret the aligned binary numbers, replace the “
                          _
                          ” placeholder character with a zero.
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G.5 Round to Even

                  
                    
                  
                  The IEEE 754 standard calls for “rounding ties to even”. The explanation here is from
                  help(mpfr, package="Rmpfr"):
                

                  The
                  round to nearest
                  ("N") mode, the default here, works as in the IEEE 754 standard: in case the number to be rounded lies exactly in the middle of two representable numbers, it is rounded to the one with the least significant bit set to zero. For example, the number 5/2, which is represented by (
                  10.​1
                  ) in binary, is rounded to (10.0)=2 with a precision of two bits, and not to (11.0)=3. This rule avoids the
                  drift
                  phenomenon mentioned by Knuth in volume 2 of
                  The Art of Computer Programming
                  (Section 4.2.2).
                

G.6 Base-10, 2-Digit Arithmetic

                  
                    
                  
                  
                    
                  
                
Hex numbers are hard to fathom the first time they are seen. We therefore look at a simple example of finite-precision arithmetic with 2 significant decimal digits.

                  Calculate the sum of squares of three numbers in 2-digit base-10 arithmetic. For concreteness, use the example
                  [image: $$\displaystyle\begin{array}{rcl} 2^{2} + 11^{2} + 15^{2}& & {}\\ \end{array}$$]



                  This requires rounding to 2 significant digits at
                  every
                  intermediate step. The steps are easy. Putting your head around the steps is hard.
                

                  We rewrite the expression as a fully parenthesized algebraic expression, so we don’t need to worry about precedence of operators at this step.
                  [image: $$\displaystyle\begin{array}{rcl} ((2^{2}) + (11^{2})) + (15^{2})& & {}\\ \end{array}$$]



                  Now we can evaluate the parenthesized groups from the inside out.
                  [image: $$\displaystyle{\begin{array}{ccccccc l} (&(2^{2})& + & (11^{2}) &)& + & (15^{2}) &\#\#\mbox{ parenthesized expression} \\ (& (4) & + &(121)&)& + &(225)&\#\#\mbox{ square each term} \\ (& 4 & + & 120 &)& + & 220 &\#\#\mbox{ round each term to two significant decimal digits} \\ (& &124& &)& + & 220 &\#\#\mbox{ calculate the intermediate sum} \\ (& &120& &)& + & 220 &\#\#\mbox{ round the intermediate sum to two decimal digits} \\ & & & & &340& &\#\#\mbox{ sum the terms}\\ \\ \multicolumn{8}{l}{\mbox{ Compare this to the full precision arithmetic}} \\ (&(2^{2})& + & (11^{2}) &)& + & (15^{2}) &\#\#\mbox{ parenthesized expression} \\ (& 4 & + & 121 &)& + & 225 &\#\#\mbox{ square each term} \\ (& &125& &)& + & 225 &\#\#\mbox{ calculate the intermediate sum} \\ & & & & &350& &\#\#\mbox{ sum the terms}\end{array} }$$]



                  We see immediately that two-decimal-digit rounding at each stage gives an answer that is not the same as the one from familiar arithmetic with real numbers.
                

G.7 Why Is.9 Not Recognized to Be the Same as (.3 +.6)?

                  We can now continue with the first example from Section 
                  G.1
                  . The floating point binary representation of 0.3 and the floating point representation of 0.6 must be aligned on the binary point before the addition. When the numbers are aligned by shifting the smaller number right one position, the last bit of the smaller number has nowhere to go and is lost. The sum is therefore one bit too small compared to the floating point binary representation of 0.9. Details are in Table 
                  G.6
                  .
                  Table G.6
                          Now let’s add 0.3 and 0.6 in hex:
                           0.3  +0x1.3333333333333p-2 = +0x0.9999999999999p-1 
                          aligned binary (see below)
                           0.6  +0x1.3333333333333p-1 = +0x1.3333333333333p-1 
                           --------------------------   --------------------- 
                           0.9  add of aligned binary   +0x1.cccccccccccccp-1 
                           0.9  convert from decimal    +0x1.ccccccccccccdp-1 
                          We need to align binary points for addition. The shift is calculated by converting hex to binary, shifting one bit to the right to get the same p-1 exponent, regrouping four bits into hex characters, and allowing the last bit to fall off:
                            1.0011 0011 0011... 0011
                          [image: $$\times \ 2^{-2}\ \ \ \rightarrow $$]
                            .1001 1001 1001... 1001 | 1​​​/
                          ×  2
                          −1
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                  G.8 Why Is
                  [image: $$\left (\sqrt{2\,}\right )^{2}$$]
                  Not Recognized to Be the Same as 2?
                

                  We continue with the second example from Section 
                  G.1
                  . The binary representation inside the machine of the two numbers
                  [image: $$\left (\sqrt{2\,}\right )^{2}$$]
                  and 2 is not identical. We see in Table 
                  G.7
                  that they differ by one bit in the 53
                  rd
                  binary digit.
                  Table G.7
                          The binary representation of the two numbers
                          [image: $$\left (\sqrt{2\,}\right )^{2}$$]
                          and 2 is not identical. They differ by one bit in the 53
                          rd
                          binary digit.
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                  G.9
                  zapsmall
                  to Round Small Values to Zero for Display
                

                  
                    
                  
                

                  R
                   provides a function that rounds small values (those close to the machine epsilon) to zero. We use this function for printing of many tables where we wish to interpret numbers close to machine epsilon
                  
                    
                  
                  as if they were zero. See Table 
                  G.8
                  for an example.
                  Table G.8
                          We frequently wish to interpret numbers that are very different in magnitude as if the smaller one is effectively zero. The display function
                          zapsmall
                          provides that capability.
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G.10 Apparent Violation of Elementary Factoring

                  
                    
                  
                  
                    
                  
                  We show a simple example of disastrous cancellation (loss of high-order digits), where the floating point statement
                  [image: $$a^{2} - b^{2}\neq (a + b) \times (a - b)$$]



                  is an inequality, not an equation, for some surprising values of
                  a
                  and
                  b
                  . Table 
                  G.9
                  shows two examples, a decimal example for which the equality holds so we can use our intuition to see what is happening, and a hex example at the boundary of rounding so we can see precisely how the equality fails.
                  Table G.9
                          Two examples comparing
                          a
                          2
                          −
                          b
                          2
                          to (
                          a
                          +
                          b
                          ) × (
                          a
                          −
                          b
                          ). On the top, the numbers are decimal
                          a
                           = 101 and b=102 and the equality holds on a machine using IEEE 754 floating point arithmetic. On the bottom, the numbers are hexadecimal
                          a
                           = 
                          0x8000001
                          and
                          b
                           = 
                          0x8000002
                          and the equality fails to hold on a machine using IEEE 754 floating point arithmetic. The outlined
                          [image: $$\fbox{ 0}$$]
                          in the decimal column for
                          a
                          ^
                          2 with
                          x=+0x8000000
                          would have been a
                          [image: $$\fbox{ 1}$$]
                          if we had 54-bit arithmetic. Since we have only 53 bits available to store numbers, the 54
                          th
                          bit was rounded to 0 by the Round to Even rule (see Section 
                          G.5
                          ). The marker
                          [image: $$\updownarrow $$]
                          in the hex column for
                          a
                          ^
                          2 with
                          x=+0x8000000
                          shows that one more hex digit would be needed to indicate the squared value precisely.
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G.11 Variance Calculations

                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                    
                  
                  Once we understand disastrous cancellation, we can study algorithms
                  
                    
                  
                  
                    
                  
                  for the calculation of variance. Compare the two common formulas for calculating sample variance, the two-pass formula and the disastrous one-pass formula.
                  [image: $$\displaystyle{\begin{array}{lll} \mbox{ Two-pass formula} &\ \ \ \ \ \ \ \ &\mbox{ One-pass formula} \\ \left (\sum _{i=1}^{n}(x_{ i} -\bar{ x})^{2}\right )/(n - 1)&&\left (\left (\sum _{ i=1}^{n}x_{ i}^{2}\right ) - n\bar{x}^{2}\right )/(n - 1)\\ \end{array} }$$]



                

                  Table 
                  G.10
                  shows the calculation of the variance by both formulas. For
                  x
                   = (1, 2, 3),
                  [image: $$\mathop{\mbox{ var}}(x) = 1$$]
                  by both formulas. For
                  x
                   = (
                  k
                  + 1, 
                  k
                  + 2, 
                  k
                  + 3),
                  [image: $$\mathop{\mbox{ var}}(x) = 1$$]
                  by both formulas for
                  k
                   ≤ 10
                  7
                  . For
                  k
                   = 10
                  8
                  , the one-pass formula gives 0. The one-pass formula is often shown in introductory books with the name “machine formula”. The “machine” it is referring to is the desk calculator, not the digital computer. The one-pass formula gives valid answers for numbers with only a few significant figures (about half the number of digits for machine precision), and therefore does not belong in a general algorithm. The name “one-pass” is reflective of the older computation technology where scalars, not the vector, were the fundamental data unit. See Section 
                  G.14
                  where we show the one-pass formula written with an explicit loop on scalars.
                  Table G.10
                          The one-pass formula fails at
                          x
                           = (10
                          8
                          + 1, 10
                          8
                          + 2, 10
                          8
                          + 3) (about half as many significant digits as machine precision). The two-pass formula is stable to the limit of machine precision. The calculated value at the boundary of machine precision for the two-pass formula is the correctly calculated floating point value. Please see Section 
                          G.12
                          and Tables 
                          G.11
                          and 
                          G.12
                          for the explanation.
                        


[image: A77776_2_En_BookBackmatter_Figaau_HTML.gif]


                

                  We can show what is happening in these two algorithms by looking at the binary display of the numbers. We do so in Section 
                  G.12
                  with presentations in Tables 
                  G.11
                  and 
                  G.12
                  . Table 
                  G.11
                  shows what happens for double precision arithmetic (53 significant bits, approximately 16 significant decimal digits). Table 
                  G.12
                  shows the same behavior with 5-bit arithmetic (approximately 1.5 significant decimal digits).
                  Table G.11Variance of numbers at the boundary of 53-bit double precision arithmetic. Column “15” fits within 53 bits and the variance is calculated as 1. Column “16” requires 54 bits for precise representation. With 53-bit floating point arithmetic the variance is calculated as 4. With the extended precision to 54 bits, the variance is calculated as 1.
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G.12 Variance Calculations at the Precision Boundary

                  Table 
                  G.11
                  shows the calculation of the sample variance for three sequential numbers at the boundary of precision of 53-bit floating point numbers. The numbers in column “15” fit within 53 bits and their variance is the variance of
                  k
                  + (1, 2, 3) which is 1. The numbers 10
                  16
                  + (1, 2, 3) in column “16” in Table 
                  G.11
                  require 54 bits for precise representation. They are therefore rounded to 10
                  16
                  +
                  c
                  (0, 2, 4) to fit within the capabilities of 53-bit floating point numbers. The variance of the numbers in column “16” is calculated as the variance of
                  k
                  + (0, 2, 4) which is 4. When we place the numbers into a 54-bit representation (not possible with the standard 53-bit floating point), the calculated variance is the anticipated 1.
                

                  Table 
                  G.12
                  shows the calculation of the sample variance for three sequential numbers at the boundary of precision of 5-bit floating point numbers. The numbers {33, 34, 35} on the left side need six significant bits to be represented precisely. Following the Round to Even rule, they are rounded to {32, 34, 36} in the five-bit representation on the right side. The easiest way to see the rounding is in the
                  scientific=FALSE
                  binary presentation (the last section on both sides of the Table 
                  G.12
                  , repeated in Table 
                  G.13
                  ).
                  Table G.12
                          Numbers with six and five significant bits. The six-bit integers 33 and 35 on the left side cannot be expressed precisely with only five significant bits. They are rounded to 32 and 36 in the five-bit representation on the right side. The variance of the numbers {33, 34, 35} is 1. The variance of the numbers {32, 34, 36} is 4. Please see Section 
                          G.12
                          for the discussion of this table. Please see Table 
                          G.13
                          for additional details.
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                  Table G.13
                          This table focuses on the last displays in Table 
                          G.12
                          . The last three bits in the 6-bit display of 33 (001) show a 1 in the “1” position. The number is rounded to the nearest even number (000) in the “2” digit (with a 0 in the “1” position) and truncated to (00_) in the 5-bit display. The last three bits (011) of 35 are rounded to the nearest even number (100) in the “2” digit and truncated to (10_) In both values, the resulting “2” digit is (0). The last three bits (010) of 34 already have a (0) in the “1” digit and therefore no rounding is needed. The sample variance of {33, 34, 35} is 1. When those numbers are rounded to five-bit binary, they become {32, 34, 36}. The sample variance of {32, 34, 36} is 4.
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                  There is also a third formula, with additional protection against cancellation, called the “corrected two-pass algorithm”.
                  [image: $$\displaystyle\begin{array}{rcl} & y = x -\bar{ x} & {}\\ & \sum (y -\bar{ y})^{2}/(n - 1)& {}\\ \end{array}$$]



                  We define a function in Table 
                  G.14
                  and illustrate its use in a very tight boundary case (the 54-bit column “16” of Table 
                  G.11
                  ) in Table 
                  G.15
                  .
                  Table G.14
                          The corrected two-pass algorithm centers the data by subtracting the mean, and then uses the two-pass algorithm on the centered data. It helps in some boundary conditions, for example the one shown in Table 
                          G.15
                          .
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                  Table G.15
                          vartwo
                          doesn’t work for some problems on the boundary, such as this example at the boundary of 54-bit arithmetic. Summing the numbers effectively required one more significant binary digit. Since there are no more digits available, the data was rounded and the variance is not what our real-number intuition led us to expect.
                          vartwoC
                          does work.
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G.13 Can the Answer to the Calculation be Represented?

                  Chan et al. (
                  1983
                  ) discuss various strategies needed to make sure that the fundamental goal of numerical analysis is achieved:
                
If the input values can be represented by the computer, and if the answer can be represented by the computer, then the calculation should get the right answer.
It is very easy to construct an easy sum-of-squares problem for which naive calculations cannot get the right answer. The programmer’s task is to get the right answer.

                  The Pythagorean Theorem tells us that
                  [image: $$z = \sqrt{x^{2 } + y^{2}}$$]
                  will be an integer for several well known sets of triples {
                  x
                  , 
                  y
                  , 
                  z
                  }. The triple {3, 4, 5} is probably the best known. The triple {3
                  k
                  , 4
                  k
                  , 5
                  k
                  } for any
                  k
                  is also a triple which works. Table 
                  G.16
                  shows an example of
                  k
                  for which naive calculation fails, and for which
                  Mod
                  (modulus), one of
                  R
                  ’s
                  base
                  function, works. The goal is to understand how
                  Mod
                  is written.
                  Table G.16
                          The naive square-root-of-the-sum-of-squares algorithm gets the right answer in two of the three cases shown here.
                          Mod
                          gets the right answer in all three cases.
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                  The problem is that squaring arguments with a large exponent causes floating point overflow, which
                  R
                   interprets as infinite. The repair, shown in the
                  MyMod
                  function in Table 
                  G.17
                  , is to rescale the numbers to a smaller exponent and then take the square root of the sum of squares. At the end the exponent is restored.
                  Table G.17
                          The
                          MyMod
                          function rescales the numbers and gets the right answer in all three cases. Only the third case is shown here.
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G.14 Explicit Loops

                  
                    
                  
                

                  Desk calculator technology had different technical goals than digital computer technology. Entering the data manually multiple times was expensive and to be avoided. Table 
                  G.18
                  shows a scalar version of the one-pass algorithm for calculating sample variance. The explicit loop uses each entered value
                  x[i]
                  twice before going on to the next value. The term
                  one-pass
                  refers to the single entry of the data value for both accumulations
                  [image: $$\left (\sum (x_{i}^{\phantom{2}})\right.$$]
                  and
                  [image: $$\left.\sum (x_{i}^{2})\right )$$]
                  on the scalars in the vector
                  x
                  . Explicit scalar loops are exceedingly slow in
                  R
                   and are normally avoided. When we use vectorized operations (as in statements such as
                  sum(x^2)
                  ) the looping is implicit at the user level and is done at machine speeds inside
                  R
                  .
                

                  We timed the scalar version of the one-pass algorithm along with the vectorized one-pass and two-pass algorithms. The explicitly looped one-pass algorithm
                  varoneScalar
                  is much slower than the vectorized algorithms. The vectorized onepass and twopass algorithms are about equally fast. Only the
                  twopass
                  algorithm gives the correct calculation to the precision of the computer.
                  Table G.18
                          The one-pass formula written as a scalar loop. This made sense for desk calculators because the user keyed in each number exactly once. It is about the most inefficient way to write code for
                          R
                          . In this example it is about 60 times slower than the vectorized algorithms.
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Appendix H Other Statistical Software

                
                  
                
                
                  
                
                
                  
                
                The statistical analyses described in this book can be calculated with other software than
                R
                .
              

                Readers are welcome to work the examples and exercises in this book using other software. All datasets used in either the text or exercises are available in ASCII characters in
                csv
                (comma-separated-values) format in the zip file
              

                
                    http://astro.ocis.temple.edu/~rmh/HH2/HH2datasets.zip
                  
              

                The reader must be aware of several issues when using these datasets.
                1.All data sets.
The first row of the csv file contains variable names. There is one fewer name than columns of data with the convention that the initial unnamed column is the row number or row name. Missing observations are coded NA. Factors are stored as character strings. When converting them back to factors, verify that the factor levels are ordered correctly. Names (row names, column names, level names for factors, and values of character variables) may include blanks and other non-alphanumeric characters.

 

2.Time Series datasets.

                        co2, elnino, employM16, nottem, ozone
                        are stored one row per year in twelve columns named with the month names. Missing observations are coded NA. When converting this back to a time series in any software system, verify that the months are identified as a factor in the correct calendar order. Factor levels may include blanks and other non-alphanumeric characters.
                      

                        product, tser.mystery.X, tser.mystery.Y, tser.mystery.Z, tsq
                        are stored as a single column named
                        x
                        . Read the problem description for any other information.
                      

 

3.Very Long character strings.

                        SFF8121
                        contains very long character strings with embedded newline characters and with embedded commas. It is the only csv file in this set that has been saved with double quotes around all character strings.
                      

 



              

Appendix I Mathematics Preliminaries

                A certain degree of mathematical maturity is a prerequisite for understanding the material in this book. Many chapters in this book require a basic understanding of these areas of mathematics:
                	algebra

	differential calculus

	matrix algebra, with special attention devoted to quadratic forms, eigenvalues and eigenvectors, transformations of coordinate systems, and ellipsoids in matrix notation

	combinations and permutations

	floating point arithmetic




              
This appendix provides a brief review of these topics at a level comparable to the book’s exposition of statistics.
I.1 Algebra Review

                  
                    
                  
                  We begin with some topics in algebra, focusing on the case of two dimensions. The labels
                  x
                  and
                  y
                  are given to the horizontal and vertical dimensions, respectively.
                
I.1.1 Line

                    The general equation of a straight line is given by
                    y
                     = 
                    a
                    +
                    bx
                    , where
                    a
                    and
                    b
                    are constants with
                    [image: $$b\neq \pm \infty $$]
                    . The line in Figure 
                    I.1
                    intersects the
                    y
                    -axis at
                    y
                     = 
                    a
                    and the
                    x
                    -axis at
                    x
                     = −
                    a
                    ∕
                    b
                    , and has slope
                    b
                    .
                  
[image: A77776_2_En_BookBackmatter_Figaa_HTML.gif]
Fig. I.1
                          Straight line
                          y
                           = 2 + 1∕2
                          x
                          with intercepts and slope indicated.
                        




I.1.2 Parabola

                    The general equation of a
                    parabola
                    having a vertical axis is the quadratic equation
                    y
                     = 
                    ax
                    2
                    +
                    bx
                    +
                    c
                    for constants
                    a
                    , 
                    b
                    , 
                    c
                    with
                    a
                    ≠ 0. The graph of the parabola opens upward if
                    a
                     > 0 and attains a minimum when
                    x
                     = −
                    b
                    ∕2
                    a
                    . The graph opens downward if
                    a
                     < 0 and attains a maximum when
                    x
                     = −
                    b
                    ∕2
                    a
                    . The quantity
                    d
                     = 
                    b
                    2
                    − 4
                    ac
                    is called the
                    discriminant
                    . The parabola intersects the horizontal axis at
                    [image: $$\displaystyle\begin{array}{rcl} x = \frac{-b \pm \sqrt{d}} {2a} & &{}\end{array}$$]

 (I.1)


                    The number of intersections, or real roots, is 2, 1, or 0 according to whether
                    d
                     > , = , < 0. The parabola intersects the
                    y
                    -axis at
                    y
                     = 
                    c
                    . Equation (
                    I.1
                    ) is referred to as the quadratic formula for solving the equation
                    ax
                    2
                    +
                    bx
                    +
                    c
                     = 0. We illustrate a parabola opening upward in Figure 
                    I.2
                    .
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Fig. I.2
                          Parabola with
                          x
                          -roots and minimum indicated.
                        




I.1.3 Ellipse

                    The equation
                    [image: $$\displaystyle\begin{array}{rcl} \frac{x^{2}} {a^{2}} + \frac{y^{2}} {b^{2}} = 1& & {}\\ \end{array}$$]



                    represents an
                    ellipse
                    centered at (0, 0) with major and minor axes parallel to the coordinate system. When
                    a
                     > 
                    b
                    , the semimajor axis has length
                    a
                    and the semiminor axis has length
                    b
                    . We graph a sample ellipse, with
                    a
                     = 3 and
                    b
                     = 2, in Figure 
                    I.3
                    .
                  

                    An ellipse centered at (
                    μ
                    
                      x
                    
                    , 
                    μ
                    
                      y
                    
                    ) is obtained by replacing
                    x
                    and
                    y
                    in the above with
                    x
                    −
                    μ
                    
                      x
                    
                    and
                    y
                    −
                    μ
                    
                      y
                    
                    , respectively. Ellipses having axes nonparallel to the coordinate system are important in statistics and will be discussed in Section 
                    I.4.13
                    as an example of the use of matrix notation.
                  

I.1.4 Simultaneous Equations

                    A common algebraic problem is the determination of the solution to two (or more) simultaneous equations. In the case of two linear equations, the number of solutions may be 0, 1, or
                    [image: $$\infty $$]
                    . There are no solutions if the equations are contradictory, such as
                    x
                    +
                    y
                     = 8 and
                    x
                    +
                    y
                     = 9; there are an infinite number of solutions if one equation is indistinct from the other, for example
                    x
                    +
                    y
                     = 8 and 2
                    x
                    + 2
                    y
                     = 16. When there is a unique solution, several approaches exist for finding it. One of these is adding a carefully chosen multiple of one equation to the other equation so as to result in an easily solved new linear equation involving just one variable. For example, suppose the two equations are
                    x
                    +
                    y
                     = 8 and 2
                    x
                    − 3
                    y
                     = 1. Adding three times the first equation to the second yields 5
                    x
                    + 0
                    y
                     = 25, which implies
                    x
                     = 5 and then
                    y
                     = 3. We illustrate in Figure 
                    I.4
                    .
                  
[image: A77776_2_En_BookBackmatter_Figac_HTML.gif]
Fig. I.3
                          Ellipse
                          [image: $$\frac{x^{2}} {3^{2}} + \frac{y^{2}} {2^{2}} = 1$$]
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Fig. I.4Solution of simultaneous equations at the intersection of the two straight lines described by the equations.




I.1.5 Exponential and Logarithm Functions

                    Two additional elementary functions are the exponential function and logarithmic function. The exponential function
                    [image: $$y = c_1e^{c_2x} $$]
                    (where
                    c
                    1
                    ,  
                    c
                    2
                    are nonzero constants) has the property that the rate of change in
                    y
                    in response to a change in
                    x
                    is proportional to the current value of
                    y
                    . The logarithmic function
                    [image: $$y = c\ln (x),\ x > 0$$]
                    is useful in situations when successive changes in
                    x
                    are geometrical (i.e., proportional to the current value of
                    x
                    ). The exponential function and the natural (to the base
                    e
                    ) logarithm are inverse to each other. We illustrate both in Figure 
                    I.5
                    .
                  
[image: A77776_2_En_BookBackmatter_Figae_HTML.gif]
Fig. I.5Exponential and logarithmic functions with derivatives at x=0.




I.1.6 Asymptote

                    An asymptote is a straight line that is gradually approached by a curved line. This concept is used to describe the ultimate behavior of the curved line. For example in Figure 
                    I.6
                    , the graph of
                    [image: $$y = \frac{1} {x}$$]
                    has the horizontal axis as its asymptote as
                    [image: $$x \rightarrow \infty $$]
                    and the vertical axis as its asymptote as
                    [image: $$x \rightarrow 0^{+}$$]
                    .
                  
[image: A77776_2_En_BookBackmatter_Figaf_HTML.gif]
Fig. I.6
                          Asymptotes of the hyperbola
                          y
                           = 1∕
                          x
                          at the horizontal axis as
                          [image: $$x \rightarrow \infty $$]
                          and the vertical axis as
                          [image: $$x \rightarrow 0^{+}$$]
                          .
                        





I.2 Elementary Differential Calculus

                  
                    
                  
                

                  If
                  y
                   = 
                  f
                  (
                  x
                  ) expresses the functional relationship between
                  x
                  and
                  y
                  , the
                  derivative
                  of
                  y
                  with respect to
                  x
                  , denoted
                  [image: $$\frac{dy} {dx}$$]
                  or
                  D
                  
                    x
                  
                  y
                  or
                  f
                  ′(
                  x
                  ), is a new function of
                  x
                  . For each value of
                  x
                  ,
                  f
                  ′(
                  x
                  ) gives the relative amount that
                  y
                  changes in response to a small change in
                  x
                  . For example, if
                  y
                   = 
                  f
                  (
                  x
                  ) = 
                  x
                  2
                  , then it can be shown that
                  f
                  ′(
                  x
                  ) = 2
                  x
                  . When
                  x
                   = 3, a small increase in
                  x
                  will beget a sixfold increase in
                  y
                  because
                  f
                  ′(3) = 2(3) = 6. Graphically,
                  f
                  ′(
                  x
                  0
                  ) is the slope of the straight line tangent to
                  f
                  (
                  x
                  ) at
                  x
                   = 
                  x
                  0
                  .
                

                  If
                  [image: $$f(x) = a_{0} + a_{1}x + a_{2}x^{2} +\ldots +a_{m}x^{m}$$]
                  , an
                  m
                  th
                  -degree polynomial, then
                  [image: $$f'(x) = a_{1} + 2a_{2}x + 3a_{3}x^{2} +\ldots +ma_{m}x^{m-1}$$]
                  . This rule can be used to differentiate (i.e., find the derivative of) many common functions. If
                  f
                  (
                  x
                  ) can be expressed as the product of two functions, say
                  f
                  (
                  x
                  ) = 
                  g
                  (
                  x
                  ) 
                  h
                  (
                  x
                  ), then its derivative is given by the
                  product rule f
                  ′(
                  x
                  ) = 
                  g
                  (
                  x
                  ) 
                  h
                  ′(
                  x
                  ) +
                  g
                  ′(
                  x
                  ) 
                  h
                  (
                  x
                  ). This can be used, for example, to find the derivative of (3
                  x
                  2
                  + 4
                  x
                  + 5)(−8
                  x
                  2
                  + 7
                  x
                  − 6) without first multiplying the quadratics.
                

                  The most important application of
                  f
                  ′(
                  x
                  ) is in finding relative extrema (i.e., maxima or minima) of
                  f
                  (
                  x
                  ). A
                  necessary
                  condition for
                  x
                  0
                  to be an extremum of
                  f
                  (
                  x
                  ) is that
                  f
                  ′(
                  x
                  0
                  ) = 0. This follows from the interpretation of the derivative as a tangent slope. Additional investigation is needed to confirm that such an
                  x
                  0
                  corresponds to either a maximum or minimum, and then to determine which of the two it is. For example, if
                  f
                  (
                  x
                  ) = 
                  x
                  3
                  − 3
                  x
                  , then
                  f
                  ′(
                  x
                  ) = 3
                  x
                  2
                  − 3. Setting
                  f
                  ′(
                  x
                  ) = 0, we find
                  x
                   = ±1.
                  x
                   = 1 corresponds to a local minimum and
                  x
                   = −1 corresponds to a local maximum. As another example, consider
                  f
                  (
                  x
                  ) = 
                  x
                  3
                  . While for this function,
                  f
                  ′(0) = 0,
                  x
                   = 0 is neither a relative minimum nor a relative maximum of
                  f
                  (
                  x
                  ).
                
Example of an Optimization Problem

                    
                      
                    
                    A rectangular cardboard poster is to have 150 square inches for printed matter. It is to have a 3-inch margin at the top and bottom and a 2-inch margin on each side. Find the dimensions of the poster so that the amount of cardboard used is minimized.
                  

Solution I.1.

                    Let the vertical dimension of the printed matter be
                    x
                    . Then for the printed area to be 150, the horizontal dimension of the printed matter is
                    [image: $$\frac{150} {x}$$]
                    . Then allowing for the margins, the vertical and horizontal dimensions of the poster are
                    x
                    + 6 and
                    [image: $$\frac{150} {x} + 4$$]
                    . The product of these dimensions is the area of the poster that we seek to minimize:
                    [image: $$a(x) = 174 + 4x + \frac{900} {x}$$]
                    . Taking the derivative and setting it equal to zero gives
                    a
                    ′(
                    x
                    ) = 4 − 900
                    x
                    −2
                     = 0, which leads to the positive solution
                    x
                     = 15. Thus the minimum-sized poster with required printed area is 21 inches high by 14 inches wide, and its printed area is 15 inches high by 10 inches wide.
                  


I.3 An Application of Differential Calculus

                  
                    
                  
                

                  We introduce Newton’s method for solutions of an equation of the form
                  f
                  (
                  x
                  ) = 0. A common application is the need to solve
                  f
                  ′(
                  x
                  ) = 0 to find extrema, as discussed in Section 
                  I.2
                  . Many equations of this type are readily solvable by successively moving toward isolation of a lone
                  x
                  on one side of the equation, or via a specialized technique such as the quadratic formula. In other situations one must employ one of the number of numerical techniques designed for this purpose, one of which is Newton’s method.
                

                  Newton’s method has the disadvantage of requiring knowledge of the derivative
                  f
                  ′(
                  x
                  ), but it will often converge to a solution within a small number of iterations. As with all procedures for dealing with this problem, one must start with a first approximation
                  x
                  0
                  , and if this is “too far” from the solution
                  x
                  ∗
                  , the procedure may fail to converge.
                

                  The idea behind Newton’s method is not difficult to understand. It is based on the equation of the tangent line to
                  f
                  (
                  x
                  ) at
                  x
                   = 
                  x
                  0
                  . If this tangent line intersects the
                  x
                  -axis at
                  x
                   = 
                  x
                  1
                  , then
                  [image: $$\displaystyle\begin{array}{rcl} f'(x_{0}) = \frac{f(x_{0})} {x_{0} - x_{1}}\ \ \rightarrow \ \ x_{1} = x_{0} -\frac{f(x_{0})} {f'(x_{0})}& & {}\\ \end{array}$$]



                  The iteration then proceeds with
                  [image: $$\displaystyle\begin{array}{rcl} x_{2} = x_{1} -\frac{f(x_{1})} {f'(x_{1})}& & {}\\ \end{array}$$]



                  and so on.
                
An Illustration of Newton’s Method

                    
                      
                    
                    Consider solving
                    f
                    (
                    x
                    ) = 
                    x
                    3
                    −
                    x
                    − 5 = 0,  
                    f
                    ′(
                    x
                    ) = 3
                    x
                    2
                    − 1, and let
                    x
                    0
                     = 2. You can verify with Figure 
                    I.7
                    the following sequence:
                    [image: $$\displaystyle\begin{array}{rcl} \begin{array}{ccl} \hline \\ \hline i & x_{i} &f(x_{i}) \\ \hline 0&2.00000000&1.00\mbox{ 10}^{0} \\ 1 &1.90909091&4.88\mbox{ 10}^{-2} \\ 2 &1.90417486&1.38\mbox{ 10}^{-4} \\ 3 &1.90416086&1.14\mbox{ 10}^{-9} \\ \hline \end{array} & & {}\\ \end{array}$$]



                  

                    [image: A77776_2_En_BookBackmatter_Figag_HTML.gif]
Fig. I.7An illustration of Newton’s Method.




                  


I.4 Topics in Matrix Algebra

                  
                    
                  
                
We next provide an overview of selected topics from matrix algebra that are useful in applied statistics. Not only do matrices (the plural of matrix) allow for a more concise notation than scalar algebra, but they are an indispensable tool for communicating statistical findings. Additional material on matrix algebra is contained in the appendices of most books dealing with regression analysis, linear models, or multivariate analysis.

                  A matrix is a rectangular array consisting of
                  r
                  rows and
                  c
                  columns. A
                  vector
                  is a special type of matrix, having either
                  r
                  or
                  c
                  equal to 1. Data files are often arranged as a matrix, such that each variable is one column and each observation is one row. Systems of linear equations may be succinctly written in matrix notation.
                

                  Multivariate analysis involves probability distributions of random vectors
                  
                    
                  
                  rather than scalar random variables. Each component of a random vector is a scalar random variable. The variances and covariances of the components of a random vector are arranged in a variance–covariance matrix. (Such a symmetric matrix
                  V
                  , also called covariance matrix or dispersion matrix, has the variances on the main diagonal and the covariance between variables
                  i
                  and
                  j
                  in its row
                  i
                  column
                  j
                  position. See Section 
                  3.​3.​5
                  ) The multivariate normal distribution
                  
                    
                  
                  of the random
                  k
                  -vector
                  x
                  with mean vector
                  μ
                  and covariance matrix
                  V
                  , with notation
                  [image: $$\displaystyle\begin{array}{rcl} x \sim N(\mu,V )& &{}\end{array}$$]

 (I.2)


                  and probability density function
                  [image: $$\displaystyle\begin{array}{rcl} f(x) = \frac{1} {(2\pi )^{k/2}\ \vert V \vert ^{1/2}}\;e^{(x-\mu )'V ^{-1}(x-\mu )/2 }& &{}\end{array}$$]

 (I.3)


                  is the most important distribution used in multivariate analysis. We give examples of the bivariate (multivariate with
                  k
                   = 2) normal in Sections 
                  3.​3.​5
                  and 
                  J.4.2
                  .
                

                  Matrices may be used to translate from one coordinate system to another. Orthogonal matrices
                  
                    
                  
                  perform rigid rotations in order to facilitate meaningful interpretation of results.
                
I.4.1 Elementary Operations

                    
                      
                    
                    sum:If two matrices are of the same size, their sum is the new matrix of this size comprised of the element-wise sums. The difference of two matrices of the same size is defined similarly.


transpose:
                            If
                            A
                            is an
                            r
                            ×
                            c
                            matrix, then its
                            transpose
                            , denoted
                            A
                            ′, is the
                            c
                            ×
                            r
                            matrix having columns identical to the rows of
                            A
                            and conversely.
                          


inner product:
                            The
                            inner product
                            of two vectors of the same size, say
                            [image: $$u = (u_{1},u_{2},\ldots,u_{k})'$$]
                            and
                            [image: $$v = (v_{1},v_{2},\ldots,v_{k})'$$]
                            , is written
                            [image: $$u'v = v'u =\sum _{ i=1}^{k}u_{i}v_{i}$$]
                            , i.e., the sum of the products of the corresponding elements of the two vectors. The inner product of a vector with itself yields the sum of squares of the elements of this vector. A vector
                            u
                            is said to be normalized if
                            u
                            ′
                            u
                             = 1, i.e., if its (Euclidean) length equals 1. Two vectors
                            u
                            and
                            v
                            are said to be orthogonal if their inner product is zero:
                            u
                            ′
                            v
                             = 0.
                          


matrix product:
                            The matrix product
                            AB
                            of an
                            r
                            ×
                            c
                            matrix
                            A
                            with an
                            m
                            ×
                            n
                            matrix
                            B
                            is defined when
                            c
                             = 
                            m
                            . The element in row
                            i
                            and column
                            j
                            of
                            AB
                            is calculated as the inner product of the
                            i
                            th
                            row of
                            A
                            and the
                            j
                            th
                            column of
                            B
                            . The condition
                            c
                             = 
                            m
                            assures that the vectors forming the inner products are of the same size. Matrix addition has the mathematical properties of commutativity and associativity. Matrix multiplication has only associativity. When
                            AB
                            is defined,
                            BA
                            may have different dimensions from
                            AB
                            or even be undefined.
                          

                            Matrix multiplication is used when expressing systems of linear equations in matrix notation. Earlier we considered the system
                            x
                            +
                            y
                             = 8 and 2
                            x
                            − 3
                            y
                             = 1. If we define the 2 × 1 vectors
                            [image: $$X ={ x\choose y}$$]
                            and
                            [image: $$c ={ 8\choose 1}$$]
                            and the 2 × 2 matrix
                            [image: $$A ={ 1\,\phantom{0}\phantom{0}1\choose 2\phantom{0} - 3}$$]
                            , then this system can be written
                            AX
                             = 
                            c
                            . In this context, the matrix
                            A
                            is referred to as the
                            coefficient
                            matrix.
                          


transpose:
                            The transpose of the product of two matrices is the product of their transposes in reverse order: (
                            AB
                            )′ = 
                            B
                            ′
                            A
                            ′.
                          


square:A matrix is said to be square if it has the same number of rows as columns.


identity:
                            The
                            n
                            ×
                            n
                            identity matrix has ones on its main diagonal positions (those where the row number equals the column number) and zeros everywhere else. Thus, for example, the 3 × 3 identity matrix is
                            [image: $$\displaystyle\begin{array}{rcl} I_{3} = \left (\begin{array}{*{10}c} 1&0&0\\ 0 &1 &0 \\ 0&0&1\end{array} \right )& & {}\\ \end{array}$$]



                            The identity matrix plays the same role in matrix notation as does the number 1 in scalar notation: If
                            I
                            denotes an identity matrix such that the indicated multiplication is defined, then
                            AI
                             = 
                            A
                            and
                            IA
                             = 
                            A
                            .
                          



                          J
                          
                            n
                          
                          :
                        
                            We define
                            J
                            
                              n
                            
                            to be the
                            n
                            ×
                            n
                            matrix having all entries equal to 1.
                          


symmetric:
                            A square matrix
                            A
                            is said to be a symmetric matrix if
                            A
                             = 
                            A
                            ′. This means that row number
                            i
                            corresponds to column number
                            i
                            for all
                            i
                            . Let
                            a
                            
                              ij
                            
                            denote the element in row
                            i
                            and column
                            j
                            of matrix
                            A
                            . Then if
                            A
                            is square, its
                            trace
                            is the sum of its main diagonal elements:
                            [image: $$\mathop{\mbox{ trace}}(A) =\sum _{i}a_{ii}$$]
                            .
                          


operation count:
                            Numerical analysts count the number of multiplications in an algorithm as an indicator of the costliness of the algorithm. A vector inner product
                            [image: $$\sum _{i=1}^{n}a_{i}b_{i}$$]
                            , for example, takes
                            n
                            multiplications to complete. There are other operations (indexing, adding) that must also be performed. Rather than report them explicitly, we say instead that the amount of computation is proportional to the number of multiplications. We indicate the proportionality by saying the operation count is
                            O
                            (
                            n
                            )
                            
                              
                            
                            (read as “big ‘
                            O
                            ’ of
                            n
                            ”). Similarly, the operation count for matrix multiplication is proportional to
                            n
                            3
                            and is reported as
                            O
                            (
                            n
                            3
                            ).
                          


determinant:
                            The
                            determinant
                            of a square matrix
                            A
                            , denoted | 
                            A
                             | , is a scalar calculated from the elements of
                            A
                            . In the 2 × 2 case where
                            [image: $$\displaystyle\begin{array}{rcl} A = \left (\begin{array}{*{10}c} a_{11} & a_{12} \\ a_{21} & a_{22}\end{array} \right )& & {}\\ \end{array}$$]



                            the determinant is | 
                            A
                             |  = 
                            a
                            11
                            a
                            22
                            −
                            a
                            21
                            a
                            12
                            . If
                            A
                            is a square coefficient matrix of a system of linear equations (thus implying that the system has the same number of equations as unknowns), then the system has a unique solution if and only if | 
                            A
                             | ≠ 0. The determinant has useful mathematical properties, but is totally impractical from a computational standpoint. It is almost never needed as an intermediate calculation. There is almost always a cheaper way to calculate the final answer.
                          


nonsingular:
                            If | 
                            A
                             | ≠ 0, then
                            A
                            is said to be a nonsingular matrix. There is no vector
                            v
                            other than
                            v
                             = 0 such that
                            Av
                             ≡ 0.
                          


inverse:
                            A nonsingular matrix has associated with it a unique
                            inverse
                            , denoted
                            A
                            −1
                            . The inverse has the property that
                            AA
                            −1
                             = 
                            A
                            −1
                            A
                             = 
                            I
                            . The unique solution to a system of linear equations
                            AX
                             = 
                            c
                            is then
                            X
                             = 
                            A
                            −1
                            c
                            . For example, the inverse of
                            [image: $$\displaystyle\begin{array}{rcl} A = \left (\begin{array}{rr} a_{11} & a_{12} \\ a_{21} & a_{22}\end{array} \right )\mathrm{\ \ \ is\ \ \ } \frac{1} {\vert A\vert }\left (\begin{array}{rr} a_{22} & - a_{12} \\ - a_{21} & a_{11}\end{array} \right )& & {}\\ \end{array}$$]



                            provided that | 
                            A
                             | ≠ 0. Note that this is a mathematical identity. It is not to be interpreted as an algorithm
                            
                              
                            
                            for calculation of the inverse. As an algorithm it is very expensive, requiring
                            O
                            (2
                            n
                            3
                            ) arithmetic operations for an
                            n
                            ×
                            n
                            matrix
                            A
                            . An efficient algorithm requires only
                            O
                            (
                            n
                            3
                            ) operations.
                          


singular:
                            If | 
                            A
                             |  = 0, then
                            A
                            is said to be a singular matrix. There exists at least one vector
                            v
                            other than
                            v
                             = 0 such that
                            Av
                             ≡ 0. A singular matrix does not have an inverse.
                          


idempotent:
                            A square matrix
                            A
                            is said to be an idempotent matrix if
                            AA
                             = 
                            A
                            , i.e.,
                            A
                             equals the product of
                            A
                            with itself. A simple example is
                            [image: $$\displaystyle\begin{array}{rcl} \left (\begin{array}{rr}.5& -.5\\ -.5 &.5\end{array} \right )& & {}\\ \end{array}$$]



                          




                  

I.4.2 Linear Independence

                    
                      
                    
                  

                    A matrix
                    X
                    consists of a set of column vectors
                    [image: $$\displaystyle\begin{array}{rcl} \mathop{X}_{n\times (1+p)} = [\mathbf{1}X_{1}X_{2}\ldots X_{p}] = [X_{0}X_{1}X_{2}\ldots X_{p}]& & {}\\ \end{array}$$]



                    The columns are numbered
                    [image: $$0,1,\ldots,p$$]
                    .
                  

                    The matrix
                    X
                    is said to have linearly dependent columns if there exists a nonzero (1 +
                    p
                    )-vector
                    ℓ
                    such that
                    [image: $$\displaystyle\begin{array}{rcl} X\ell = 0& & {}\\ \end{array}$$]



                  

                    or, equivalently,
                    [image: $$\displaystyle\begin{array}{rcl} \mathop{\left (\sum _{j}\ell_{j}X_{j}\right )}_{n\times 1} =\mathop{ \left (0\right )}_{n\times 1}& & {}\\ \end{array}$$]



                    The matrix
                    X
                    is said to have linearly independent columns if no such vector
                    ℓ
                    exists. For example, the matrix
                    [image: $$\displaystyle{ \mathop{X}_{4\times (1+4)} = \left (\begin{array}{r rrrr} 1&1&0&0&0\\ 1 &0 &1 &0 &0 \\ 1&0&0&1&0\\ 1 &0 &0 &0 &1\\ \end{array} \right ) }$$]

 (I.4)


                    has linearly dependent columns because there exists a vector
                    ℓ
                     = (−1 1 1 1 1)′ such that
                    X ℓ
                     = 0.
                  

                    The matrix
                    [image: $$\displaystyle{ \mathop{X_{(,-1)}} _{4\times (1+3)} = \left (\begin{array}{r rrrr} 1&0&0&0\\ 1 &1 &0 &0 \\ 1&0&1&0\\ 1 &0 &0 &1\\ \end{array} \right ) }$$]

 (I.5)


                    has linearly independent columns because there exists no nonzero vector
                    ℓ
                    such that
                    X ℓ
                     = 0.
                  

                    The
                    rank
                    of a matrix is the number of linearly independent columns it contains. Both matrices above,
                    X
                    and
                    X
                    (, −1)
                    in Equations (
                    I.4
                    ) and (
                    I.5
                    ), have rank 4. For any matrix
                    X
                    ,
                    [image: $$\mbox{ rank}(X) = \mbox{ rank}(X'X)$$]
                    . A
                    full-rank
                    matrix is one whose rank is equal to the minimum of its row and column dimensions, that is,
                    [image: $$\displaystyle\begin{array}{rcl} \mbox{ rank}\left (\mathop{A}_{r\times c}\right ) =\min (r,c)& & {}\\ \end{array}$$]



                  

I.4.3 Rank

                    
                      
                    
                  

                    The rank of a matrix
                    A
                    is the maximum number of linearly independent rows (equivalently, the maximum number of linearly independent columns) the matrix has. For example, the matrix
                    [image: $$\displaystyle\begin{array}{rcl} A = \left (\begin{array}{*{10}c} 1&1&2\\ 1 &2 &3 \\ 1&3&4 \end{array} \right )& & {}\\ \end{array}$$]



                    has rank 2 since columns 1 and 2 add to column 3, but any two of the columns are linearly independent of one another (i.e., are not proportional to one another).
                  

I.4.4 Quadratic Forms

                    
                      
                    
                  

                    A
                    quadratic form
                    is a scalar resulting from the matrix product
                    x
                    ′
                    Ax
                    , where
                    x
                    is a
                    k
                    × 1 vector and
                    A
                    is a
                    k
                    ×
                    k
                    symmetric matrix. The matrix
                    A
                    is termed the matrix of the quadratic form. Complicated sums of squares and products as often occur in an
                    analysis of variance
                    can be written as quadratic forms. If
                    x
                    has a standardized multivariate normal distribution
                    [image: $$x \sim N(0,I)$$]
                    [see Equation (
                    I.2
                    )], then
                    x
                    ′
                    Ax
                    has a
                    χ
                    2
                    -distribution with
                    ν
                    degrees of freedom if and only if
                    A
                    is an idempotent matrix with rank
                    ν
                    . For example, the numerator of the usual univariate sample variance,
                    [image: $$\sum _{i=1}^{n}(x_{i} -\bar{x})^{2}$$]
                    , can be written as
                    x
                    ′
                    Ax
                    where
                    [image: $$x = (x_{1},x_{2},\ldots,x_{n})'$$]
                    and
                    [image: $$A = I_{n} - \frac{1} {n}J_{n}$$]
                    . It can be shown that this matrix
                    A
                    has rank
                    n
                    − 1, the degrees of freedom associated with the sample variance.
                  

                    If
                    x
                    is a random vector with expected value
                    μ
                    and covariance matrix
                    V
                    , then the expected value of the quadratic form
                    x
                    ′
                    Ax
                    is
                    [image: $$\displaystyle\begin{array}{rcl} E(x'Ax) =\mu 'A\mu +\mathop{ \mbox{ trace}}(AV )& & {}\\ \end{array}$$]



                    Result (I.6) does not require that
                    x
                    has a multivariate normal distribution.
                  

                    A square symmetric matrix
                    A
                    is said to be a
                    positive definite
                    (abbreviated p.d.) matrix if
                    x
                    ′
                    Ax
                     > 0 for all vectors
                    x
                    other than a vector of zeros. The matrix associated with the quadratic form representation of a sum of squares is always p.d.
                  

I.4.5 Orthogonal Transformations

                    
                      
                    
                  

                    A matrix
                    M
                    is said to be
                    orthogonal
                    if
                    M
                    ′
                    M
                     = 
                    I
                    . An example is
                    [image: $$\displaystyle\begin{array}{rcl} M = \left (\begin{array}{r @{\hspace *{1.5em}} r @{\hspace *{1.5em}} r} 1/\sqrt{3}\hspace{15.00002pt} & 1/\sqrt{2}\hspace{15.00002pt} & 1/\sqrt{6} \\ 1/\sqrt{3}\hspace{15.00002pt} & - 1/\sqrt{2}\hspace{15.00002pt} & 1/\sqrt{6} \\ 1/\sqrt{3}\hspace{15.00002pt} & 0\hspace{15.00002pt} & - 2/\sqrt{6} \end{array} \right )& & {}\\ \end{array}$$]



                    A transformation based on an orthogonal matrix is called an
                    orthogonal transformation
                    . Such transformations are rotations that preserve relative distances:
                    [image: $$y = Mx\ \rightarrow \ y'y = x'M'Mx = x'x$$]
                    . Orthogonal transformations are frequently encountered in statistics. A common use of them is to transform from a correlated set of random variables
                    x
                    to an uncorrelated set
                    y
                    .
                  

                    The columns of an orthogonal matrix are said to be
                    orthonormal
                    . The columns are orthogonal to each other, that is
                    M
                    
                      , 
                      j
                    
                    ′
                    M
                    
                      , 
                      j
                      ′
                    
                     = 0 for
                    j
                    ≠
                    j
                    ′. In addition, the columns have been scaled so that
                    M
                    
                      , 
                      j
                    
                    ′
                    M
                    
                      , 
                      j
                    
                     = 1.
                  

I.4.6 Orthogonal Basis

                    
                      
                    
                  

                    If
                    [image: $$\mbox{ rank}{\Bigl (\mathop{A}\limits _{r\times c}\Bigr )} = p <\min (r,c)$$]
                    and
                    c
                     ≤ 
                    r
                    , then any set of
                    p
                    linearly independent columns of
                    A
                    constitutes a
                    basis
                    for
                    A
                    . The set of all vectors that can be expressed as a linear combination
                    Xv
                    of the columns of
                    A
                    is called the column space of
                    A
                    , denoted
                    [image: $$\mathcal{C}(A)$$]
                    . Therefore,
                    [image: $$\mathcal{C}(A)$$]
                    is completely specified by any basis of
                    A
                    . We say that the columns of the basis
                    span
                    the column space of
                    A
                    .
                  

                    An
                    orthogonal
                    basis for
                    A
                    is a basis for
                    A
                    with the property that any two vectors comprising it are orthogonal. Starting from an arbitrary basis for
                    A
                    , algorithms are available for constructing an orthogonal basis for
                    A
                    . We show one algorithm, the Gram–Schmidt process, in Section 
                    I.4.8
                    .
                  

                    A
                    basis
                    set of column vectors for a matrix
                    X
                    is a set of column vectors
                    U
                    
                      i
                    
                    that span the same linear space as the original columns
                    X
                    
                      i
                    
                    . An orthogonal basis is a set of column vectors that are mutually orthogonal, that is
                    U
                    
                      i
                    
                    ′
                    U
                    
                      j
                    
                     = 0 for
                    i
                    ≠
                    j
                    . An orthonormal basis is an orthogonal basis whose columns have been rescaled to have norm
                    [image: $$\parallel U_{i} \parallel = \sqrt{U_{i } 'U_{i }^{\phantom{'}}} = 1$$]
                    .
                  


                    I.4.7 Matrix Factorization—
                    QR
                  

                    
                      
                    
                    
                      
                    
                  

                    Any rectangular matrix
                    [image: $$\mathop{X}\limits _{n\times m}$$]
                    can be factored into the product of an matrix with orthogonal columns
                    [image: $$\mathop{Q}\limits _{n\times m}$$]
                    and an upper triangular
                    [image: $$\mathop{R}\limits _{m\times m}$$]
                    [image: $$\displaystyle\begin{array}{rcl} \mathop{X}\limits _{n\times m} =\mathop{ Q}\limits _{n\times m}\,\mathop{ R}\limits _{m\times m}& & {}\\ \end{array}$$]



                  

                    The columns of
                    Q
                    span the same column space as the columns of the original matrix
                    X
                    . This means that any linear combination of the columns of
                    X
                    , say
                    Xv
                    , can be constructed as a linear combination of the columns of
                    Q
                    . Specifically, using the associative law,
                    Xv
                     = (
                    QR
                    )
                    v
                     = 
                    Q
                    (
                    Rv
                    ).
                  

                    The numerically efficient
                    R
                     function
                    qr
                    is the computational heart of the linear models and analysis of variance functions. The intermediate matrices
                    Q
                    and
                    R
                    are usually not explicitly produced. If you wish to see them, use the
                    qr.Q
                    and
                    qr.R
                    functions. An example showing the
                    QR
                    factorization using the qr function is in Table 
                    I.1
                    .
                  

                    An expository
                    R
                     function illustrating the construction of the
                    QR
                    factorization is in Section 
                    I.4.8
                    .
                    Table I.1
                            Illustration of
                            QR
                            algorithm to factor
                            X
                            into the product of an orthogonal matrix and an upper triangular matrix.
                          


[image: A77776_2_En_BookBackmatter_Figaad_HTML.gif]


                  

I.4.8 Modified Gram–Schmidt (MGS) Algorithm

                    
                      
                    
                  

                    There are many algorithms available to construct the matrix factorization. We show one, the Modified Gram–Schmidt (MGS) algorithm Bjork (
                    1967
                    ). “Modified” means that the entire presentation is in terms of the columns
                    Q
                    
                      i
                    
                    of the matrix under construction. The MGS algorithm is numerically stable when calculated in finite precision. The original Gram–Schmidt (GS) algorithm, which constructs
                    Q
                    in terms of the columns
                    X
                    
                      i
                    
                    of the original matrix, is not numerically stable and should not be used for computation.
                  

                    Let
                    [image: $$\mathop{X}_{n\times m} = [X_{1}X_{2}\ldots X_{m}]$$]
                    . The results of the factorization will be stored in
                    [image: $$\mathop{Q}_{n\times m}$$]
                    and
                    [image: $$\mathop{R}_{m\times m}$$]
                    . The columns of
                    X
                    and
                    Q
                    and both the rows and columns of
                    R
                    are numbered
                    [image: $$1,\ldots,m$$]
                    .
                  

                    We will construct
                    Q
                    and
                    R
                    in steps.
                    1.
                            Initialize
                            R
                            to 0.
                            [image: $$\displaystyle\begin{array}{rcl} R& \leftarrow &\mathbf{0} {}\\ \end{array}$$]



                          

 

2.
                            Initialize
                            Q
                            to
                            X
                            .
                            [image: $$\displaystyle\begin{array}{rcl} Q& \leftarrow & X {}\\ \end{array}$$]



                          

 

3.
                            Initialize the column counter.
                            [image: $$\displaystyle\begin{array}{rcl} i& \leftarrow & 1 {}\\ \end{array}$$]



                          

 

4.
                            Normalize column
                            Q
                            
                              i
                            
                            .
                            [image: $$\displaystyle\begin{array}{rcl} r_{i,i}& \leftarrow &\sqrt{Q_{i } 'Q_{i }^{\phantom{'}}} {}\\ Q_{i}& \leftarrow & Q_{i}/r_{i,i} {}\\ \end{array}$$]



                            If
                            i
                             = 
                            m
                            , we are done.
                          

 

5.
                            For each of the remaining columns
                            Q
                            
                              j
                            
                            ,
                            [image: $$j = i + 1,\ldots,m$$]
                            , find the component of
                            Q
                            
                              j
                            
                            orthogonal to
                            Q
                            
                              i
                            
                            by
                            [image: $$\displaystyle\begin{array}{rcl} r_{i,j}& \leftarrow & Q_{i}'Q_{j}^{\phantom{'}} {}\\ Q_{j}& \leftarrow & Q_{j} - Q_{i}\,r_{i,j} {}\\ \end{array}$$]



                          

 

6.
                            Update the column counter.
                            [image: $$\displaystyle\begin{array}{rcl} i& \leftarrow & i + 1 {}\\ \end{array}$$]



                          

 

7.Repeat steps 4–6 until completion.

 



                  

                    An
                    R
                     version of this expository algorithm is in Table 
                    I.2
                    . An example using the expository function is in Table 
                    I.3
                    .
                    Table I.2
                            An expository algorithm for the Modified Gram–Schmidt Algorithm. The function is a direct translation of the pseudo-code in Section 
                            I.4.8
                            .
                          


[image: A77776_2_En_BookBackmatter_Figaaad_HTML.gif]


                    Table I.3
                            Illustration of the expository algorithm for the Modified Gram–Schmidt Algorithm shown in Table 
                            I.2
                            . These are the same values (up to multiplication by − 1) as calculated by the qr function in Table 
                            I.1
                            .
                          


[image: A77776_2_En_BookBackmatter_Figaaaf_HTML.gif]


                  

I.4.9 Matrix Factorization—Cholesky

                    
                      
                    
                    Any square positive definite matrix
                    [image: $$\mathop{S}\limits _{m\times m}$$]
                    can be factored into the product of an upper triangle matrix
                    [image: $$\mathop{R}\limits _{n\times m}$$]
                    and its transpose
                    [image: $$\displaystyle\begin{array}{rcl} S& =& R'R {}\\ \end{array}$$]



                  

                    When
                    S
                    has been constructed as the cross product
                    S
                     = 
                    X
                    ′
                    X
                    of a rectangular matrix
                    [image: $$\mathop{X}\limits _{n\times m}$$]
                    , then the upper triangular matrix
                    R
                    is the same matrix we get from the
                    QR
                    factorization.
                    [image: $$\displaystyle\begin{array}{rcl} S = X'X = (QR)'(QR) = R'(Q'Q)R = R'R& & {}\\ \end{array}$$]



                  

                    The numerically efficient
                    R
                     function
                    chol
                    is illustrated in Table 
                    I.4
                    .
                    Table I.4Illustration of Cholesky factorization of a square positive definite matrix into an upper triangular factor and its transpose.


[image: A77776_2_En_BookBackmatter_Figaaag_HTML.gif]


                  

I.4.10 Orthogonal Polynomials

                    
                      
                    
                  

                    Consider the
                    k
                    -vector
                    [image: $$v = (v_{1},v_{2},\ldots,v_{k})'$$]
                    , where
                    [image: $$v_{1} < v_{2} <\ldots < v_{k}$$]
                    . Construct a matrix
                    [image: $$V = [v^{0},v^{1},v^{2},\ldots,v^{k-1}]$$]
                    , where we use the notation
                    [image: $$v^{j} = (v_{1}^{j},v_{2}^{j},\ldots,v_{k}^{j})'$$]
                  

                    An orthogonal basis
                    Q
                    constructed from the matrix
                    V
                    is called a set of orthogonal polynomials. In the analysis of variance and related techniques, we often construct dummy variables for ordered factors from a set of contrasts that are orthogonal polynomials. See Figure 
                    10.​4
                    and the surrounding discussion in Section 
                    10.​4
                    for an illustration.
                  

I.4.11 Projection Matrices

                    
                      
                    
                    Given any matrix
                    [image: $$\mathop{X}\limits _{n\times m} =\mathop{ Q}\limits _{n\times m}\,\mathop{ R}\limits _{m\times m}$$]
                    the matrix
                    [image: $$\mathop{P_{X}}\limits _{n\times n} = X(X'X)^{-1}X' = QQ'$$]
                    is a
                    projection matrix
                    that projects an
                    n
                    -vector
                    y
                    onto the space spanned by the columns of
                    X
                    , that is, the product
                    P
                    
                      X
                    
                    y
                    is in the column space
                    [image: $$\mathcal{C}(X)$$]
                    . If
                    X
                    has
                    m
                    columns and rank
                    r
                     ≤ 
                    m
                    , then the eigenvalues of
                    P
                    
                      X
                    
                    consist of
                    r
                    1s and
                    m
                    −
                    r
                    0s. See Table 
                    I.5
                    .
                    Table I.5Projection of a 3-vector onto the space of its first two coordinates.


[image: A77776_2_En_BookBackmatter_Figaaah_HTML.gif]


                  

I.4.12 Geometry of Matrices

                    
                      
                      
                    
                    
                      
                    
                  

                    We provide some details of the application to two-dimensional geometry. Each two-dimensional vector represents a point; alternatively, a directed line segment from the origin to this point. A 2 × 2 matrix postmultiplied by a vector transforms this point to another point. Consider the orthogonal matrix
                    [image: $$\displaystyle\begin{array}{rcl} M = \left (\begin{array}{rr} \cos (\theta )&\sin (\theta )\\ -\sin (\theta ) &\cos (\theta ) \end{array} \right )& & {}\\ \end{array}$$]



                    and let
                    u
                    be a 2 × 1 vector representing a point in two dimensions. Then
                    v
                     = 
                    Mu
                    produces a new point
                    v
                    which is where
                    u
                    appears in the new coordinate system formed by rotating the old one
                    [image: $$\theta$$]
                    degrees around the origin. See Figure 
                    I.8
                    .
                  

                    If
                    x
                    and
                    y
                    are each two-dimensional vectors and
                    [image: $$\theta$$]
                    is the angle between them, then
                    [image: $$\cos (\theta ) = x'y/\sqrt{x'x\ y'y} =\mathop{ \mbox{ corr}}(x,y),$$]
                    the
                    correlation
                    between these two vectors. Note that if the vectors are orthogonal so that
                    x
                    ′
                    y
                     = 0, then
                    [image: $$\cos (\theta ) = 0$$]
                    and
                    [image: $$\theta = 90^{\circ }$$]
                    .
                  
[image: A77776_2_En_BookBackmatter_Figah_HTML.gif]
Fig. I.8
                          Rotation of a vector
                          u
                          and its coordinate system into
                          v
                          by angle
                          [image: $$\theta$$]
                          .
                        




I.4.13 Eigenvalues and Eigenvectors

                    
                      
                    
                  

                    Next we study the concepts of eigenvectors and eigenvalues of an
                    n
                    ×
                    n
                    symmetric matrix
                    V
                    .
                  

                    If
                    [image: $$V \xi =\lambda \xi$$]
                    , where
                    [image: $$\xi$$]
                    is an
                    n
                    × 1 vector and
                    [image: $$\lambda$$]
                    is a scalar, then
                    [image: $$\lambda$$]
                    is said to be an
                    eigenvalue
                    of
                    V
                    with corresponding
                    eigenvector
                    [image: $$\xi$$]
                    . Without loss of generality, we can take the eigenvector to be normalized. Geometrically, the matrix
                    V
                    transforms its eigenvectors into multiples of themselves. Any two distinct eigenvectors are orthogonal:
                    [image: $$\xi _{i}'\xi _{j}^{\phantom{'}} = 0,\ i\neq j.$$]
                    V
                    can be written as its
                    spectral decomposition
                    [image: $$V =\sum _{i}\lambda _{i}\xi _{i}\xi _{i}^{'}$$]
                    .
                    V
                    can be written as its
                    eigenvalue factorization
                    [image: $$V =\varXi \varLambda \varXi '$$]
                    .
                  

                    A matrix is nonsingular if and only if it has only nonzero eigenvalues. A matrix is positive definite if and only if all of its eigenvalues are positive. The eigenvalues of
                    V
                    −1
                    are the reciprocals of the eigenvalues of
                    V
                    . The determinant of a matrix equals the product of its eigenvalues
                    [image: $$\vert V \vert =\prod \lambda _{i}$$]
                    , and calculating the eigenvalues is normally the most efficient way to calculate the determinant. The trace of a matrix equals the sum of its eigenvalues
                    [image: $$\mathop{\mbox{ trace}}(V ) =\sum \lambda _{i}$$]
                    .
                  

                    Consider the problem of choosing
                    x
                    to maximize
                    x
                    ′
                    Vx
                    subject to
                    x
                    ′
                    x
                     = 1. The maximum value is the largest eigenvalue of
                    V
                    and is attained when
                    x
                    is the eigenvector corresponding to this eigenvalue. Similarly,
                    x
                    ′
                    Vx
                    is minimized (subject to
                    x
                    ′
                    x
                     = 1) at the value of the smallest eigenvalue of
                    V
                    , occurring at the corresponding eigenvector.
                  

                    Here is an example of hand calculation of eigenvalues and eigenvectors. Consider the 2 × 2 matrix
                    [image: $$\displaystyle\begin{array}{rcl} V = \left (\begin{array}{*{10}c} 2&1\\ 1 &1 \end{array} \right )& & {}\\ \end{array}$$]



                    Its 2 eigenvalues are the 2 scalar solutions
                    [image: $$\lambda$$]
                    to the equation
                    [image: $$\vert V -\lambda I\vert = 0$$]
                    . Taking the determinant leads to
                    [image: $$(2-\lambda )(1-\lambda ) - 1 = 0\ \Longrightarrow\ \lambda ^{2} - 3\lambda + 1 = 0\ \Longrightarrow\ \lambda = (3 \pm \sqrt{5})/2,$$]
                    which expands to ≈ 2. 618 or ≈ 0. 382. (Note that we are explicit about the approximation to 3 decimal digits. Our usual practice is
                    not
                    to round answers.) The eigenvector
                    [image: $$\xi ={ \xi _{11}\choose \xi _{21}}$$]
                    corresponding to
                    [image: $$\lambda \approx 2.618$$]
                    is the solution to the equation
                    [image: $$V \xi \approx 2.618\xi$$]
                    . This implies that
                    [image: $$2\xi _{11} +\xi _{21} \approx 2.618\xi _{11}$$]
                    , and coupled with the normalization restriction
                    [image: $$\xi _{11}^{2} +\xi _{ 21}^{2} = 1$$]
                    we find that
                    [image: $$\xi _{11} \approx.8507$$]
                    and
                    [image: $$\xi _{21} \approx.5257$$]
                    . The eigenvector corresponding to the other eigenvalue is found similarly.
                  

                    As a geometric application of eigenvalues, consider the ellipse having equation (
                    x
                    −
                    μ
                    )
                    ′
                    V
                    −1
                    (
                    x
                    −
                    μ
                    ) = 
                    b
                    . In statistics, this ellipse based on the inverse
                    V
                    −1
                    is the form of a confidence ellipse for
                    μ
                    . Let
                    [image: $$\lambda _{1} <\lambda _{2}$$]
                    be the eigenvalues of
                    V
                    with corresponding normalized eigenvectors
                    [image: $$\xi _{1} ={ \xi _{11}\choose \xi _{21}},\ \xi _{2} ={ \xi _{12}\choose \xi _{22}}.$$]
                    Then the semimajor axis of this ellipse has length
                    [image: $$\sqrt{ \lambda _{2}b}$$]
                    and the semiminor axis has length
                    [image: $$\sqrt{\lambda _{1 } b}$$]
                    . The angle between the extension of the semimajor axis and the horizontal axis is
                    [image: $$\arctan \left (\frac{\xi _{12}} {\xi _{22}} \right ).$$]
                  

                    Continuing the example, we calculate the eigenvalues of
                    [image: $$V ={ 2\;\;1\choose 1\;\;1}$$]
                    in Table 
                    I.6
                    and graph the ellipse
                    [image: $$x'V x = x'{2\;\;1\choose 1\;\;1}x = 1$$]
                    in Figure 
                    I.9
                    .
                    Table I.6
                            Eigenvalues and eigenvectors of
                            [image: $$V ={ 2\;\;1\choose 1\;\;1}$$]
                            .
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I.4.14 Singular Value Decomposition

                    
                      
                    
                  

                    Let
                    M
                    be an arbitrary
                    r
                    ×
                    c
                    matrix,
                    U
                    the
                    r
                    ×
                    r
                    matrix containing the eigenvectors of
                    MM
                    ′, and
                    W
                    the
                    c
                    ×
                    c
                    matrix containing the eigenvectors of
                    M
                    ′
                    M
                    . Let
                    Δ
                    be the
                    r
                    ×
                    c
                    matrix having
                    δ
                    
                      ij
                    
                     = 0 (
                    i
                    ≠
                    j
                    ). If
                    r
                     ≥ 
                    c
                    (the usual case in statistical applications), define
                    δ
                    
                      ii
                    
                     = the square root of the eigenvalue of
                    M
                    ′
                    M
                    corresponding to the eigenvector in the
                    i
                    th
                    column of
                    W
                    . If
                    r
                     < 
                    c
                    , define
                    δ
                    
                      ii
                    
                     = the square root of the eigenvalue of
                    MM
                    ′ corresponding to the eigenvector in the
                    i
                    th
                    column of
                    U
                    . Then the
                    singular value decomposition
                    of
                    M
                    is
                    M
                     = 
                    U Δ W
                    . Note that the number of nonzero diagonal values in
                    Δ
                    is
                    [image: $$\min (r,c)$$]
                    . We show a numerical example in standard mathematical notation in Table 
                    I.7
                    . We show the same example calculated with the svd function in Tables 
                    I.8
                    and 
                    I.9
                    .
                  
[image: A77776_2_En_BookBackmatter_Figai_HTML.gif]
Fig. I.9
                          Ellipse
                          [image: $$x'V x = x'{2\;\;1\choose 1\;\;1}x = 1$$]
                          . We show the unit circle with the normalized eigenvectors, the ellipse, and the semimajor and semiminor axes whose lengths are the eigenvalues multiplied by the square root of the eigenvectors.
                        



Table I.7
                          Matrix multiplication of the components of the Singular Value Decomposition of the matrix
                          M
                          in Table 
                          I.9
                          ).
                        


[image: A77776_2_En_BookBackmatter_Figaaaj_HTML.gif]

Table I.8
                          Illustration of singular value decomposition, part I (to be continued in Table 
                          I.9
                          ).
                        


[image: A77776_2_En_BookBackmatter_Figaaak_HTML.gif]

Table I.9
                          Illustration of singular value decomposition, part II (continued from Table 
                          I.8
                          ). Relation between singular value decomposition and Eigenvalue decomposition.
                        


[image: A77776_2_En_BookBackmatter_Figaaal_HTML.gif]


I.4.15 Generalized Inverse

                    
                      
                    
                    For any rectangular matrix
                    [image: $$\mathop{X}\limits _{n\times m} = U\varDelta W'$$]
                    , the Moore–Penrose generalized inverse
                    
                      
                    
                    is defined as
                    [image: $$\displaystyle\begin{array}{rcl} X^{-} = W\varDelta ^{-1}U'& & {}\\ \end{array}$$]



                    Since
                    [image: $$\varDelta =\mathop{ \mbox{ diag}}(\delta _{i})$$]
                    is a diagonal matrix, its inverse is
                    [image: $$\varDelta ^{-1} =\mathop{ \mbox{ diag}}(\delta _{i}^{-1})$$]
                    . The definition is extended to the situation when
                    [image: $$\mbox{ rank}(X) <\min (n,m)$$]
                    by using 0
                    −1
                     = 0. See Table 
                    I.10
                    for an example.
                  

                    When
                    [image: $$\mbox{ rank}(X) = m = n$$]
                    , hence the inverse exists, the generalized inverse is equal to the inverse.
                    Table I.10Illustration of the generalized inverse.
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I.4.16 Solving Linear Equations

                    
                      
                    
                  
There are three cases.

                      I.4.16.1
                      n
                       = 
                      m
                       = rank(
                      X
                      )
                    

                      Given a matrix
                      [image: $$\mathop{X}\limits _{n\times m}$$]
                      and an
                      n
                      -vector
                      y
                      , the solution
                      β
                      of the linear equation
                      [image: $$\displaystyle\begin{array}{rcl} y = X\beta & & {}\\ \end{array}$$]



                      is uniquely defined by
                      [image: $$\displaystyle\begin{array}{rcl} \beta = X^{-1}y& & {}\\ \end{array}$$]



                      when
                      X
                      is invertible, that is when
                      [image: $$n = m = \mbox{ rank}(X)$$]
                      .
                    


                      I.4.16.2
                      n
                       > 
                      m
                       = rank(
                      X
                      )
                    

                      When
                      [image: $$n > m = \mbox{ rank}(X)$$]
                      , the linear equation is said to be overdetermined. Some form of arbitrary constraint is needed to find a solution. The most frequently used technique is least-squares, a technique in which
                      [image: $$\hat{\beta }$$]
                      is chosen to minimize the norm of the residual vector.
                      [image: $$\displaystyle\begin{array}{rcl} \min _{\beta } \parallel y - X\beta \parallel ^{2} =\sum _{ i=1}^{n}\left (y_{ i} -\sum _{j=1}^{m}x_{ ij}\beta _{j}\right )^{2}& & {}\\ \end{array}$$]



                      The solution
                      [image: $$\hat{\beta }$$]
                      is found by solving the related linear equations
                      [image: $$\displaystyle\begin{array}{rcl} X'y = X'X\hat{\beta }& & {}\\ \end{array}$$]



                      The solution is often expressed as
                      [image: $$\displaystyle\begin{array}{rcl} \hat{\beta }= (X'X)^{-1}(X'y) = X^{-}y& & {}\\ \end{array}$$]



                      This is a definition, not an efficient computing algorithm. The primary efficient algorithm in
                      R
                       is the QR algorithm as defined in
                      qr
                      and related functions, including 
                      lm
                      .
                    


                      I.4.16.3
                      m
                       > 
                      p
                       = rank(
                      X
                      )
                    

                      When
                      m
                       > 
                      p
                       = rank(
                      X
                      ), there are an infinite number of solutions to the linear equation. The singular value decomposition
                      X
                       = 
                      U Δ W
                      ′ will have
                      m
                      −
                      p
                      zero values along the diagonal of
                      Δ
                      . Let
                      β
                      0
                      be one solution. Then
                      [image: $$\displaystyle\begin{array}{rcl} \beta _{\gamma } =\beta _{0} + W{\mathbf{0}\choose \gamma }& & {}\\ \end{array}$$]



                      where
                      0
                      is a vector of
                      p
                      zeros and
                      γ
                      is any vector of length
                      m
                      −
                      p
                      , is also a solution.
                    



I.5 Combinations and Permutations
I.5.1 Factorial

                    
                      
                    
                    For a positive integer
                    n
                    , the notation
                    n
                    ! , read “
                    n
                    factorial”, is used to indicate the product of all the integers from 1 through
                    n
                    :
                    [image: $$\displaystyle\begin{array}{rcl} n! = n \times (n - 1) \times \ldots \times 1 = n \times (n - 1)!& & {}\\ \end{array}$$]



                    The factorial of zero, 0! , is separately defined to equal 1.
                  
Thus

                    [image: $$\displaystyle\begin{array}{rcl} \begin{array}{l@{\hspace *{1em}} l@{\hspace *{1em}} c@{\hspace *{1em}} r@{\hspace *{1em}} c@{\hspace *{1em}} l} \hline \hspace{10.00002pt}\\ \hline \hspace{10.00002pt} \\ n \hspace{10.00002pt} &n\hspace{10.00002pt} & =\hspace{10.00002pt} & n\hspace{10.00002pt} & =\hspace{10.00002pt} &n((n - 1)!) \\ \hline 0\hspace{10.00002pt} &0\hspace{10.00002pt} & =\hspace{10.00002pt} & 1\hspace{10.00002pt} & =\hspace{10.00002pt} &1\\ 1 \hspace{10.00002pt}&1\hspace{10.00002pt}&=\hspace{10.00002pt}&1\hspace{10.00002pt}&=\hspace{10.00002pt}&1 \times 1 \\ 2 \hspace{10.00002pt} &2\hspace{10.00002pt} & =\hspace{10.00002pt} & 2\hspace{10.00002pt} & =\hspace{10.00002pt} &2 \times 1\\ 3 \hspace{10.00002pt}&3\hspace{10.00002pt}&=\hspace{10.00002pt}&6\hspace{10.00002pt}&=\hspace{10.00002pt}&3 \times 2 \\ 4 \hspace{10.00002pt} &4\hspace{10.00002pt} & =\hspace{10.00002pt} & 24\hspace{10.00002pt} & =\hspace{10.00002pt} &4 \times 6\\ 5 \hspace{10.00002pt}&5\hspace{10.00002pt}&=\hspace{10.00002pt}&120\hspace{10.00002pt}&=\hspace{10.00002pt}&5 \times 24 \\ \vdots \hspace{10.00002pt} &\vdots \hspace{10.00002pt} & =\hspace{10.00002pt} & \vdots\hspace{10.00002pt} & =\hspace{10.00002pt} &\vdots\\ \hline \hspace{10.00002pt}\end{array} & & {}\\ \end{array}$$]



                  

I.5.2 Permutations

                    
                      
                    
                    The notation
                    
                      n
                    
                    P
                    
                      p
                    
                    , read “
                    n
                    permute
                    p
                    ”, indicates the number of ways to select
                    p
                    distinct items from
                    n
                    possible items where two different orderings of the same
                    p
                    items are considered to be distinct. Equivalently,
                    
                      n
                    
                    P
                    
                      p
                    
                    is the number of distinct ways of
                    arranging p
                    items from
                    n
                    possible items:
                    [image: $$\displaystyle\begin{array}{rcl} _{n}P_{p} = \frac{n!} {(n - p)!}& & {}\\ \end{array}$$]



                    For example,
                    [image: $$\displaystyle\begin{array}{rcl} _{5}P_{3} = \frac{5!} {(5 - 3)!} = \frac{5 \times 4 \times 3 \times 2 \times 1} {2 \times 1} = 5 \times 4 \times 3 = 60& & {}\\ \end{array}$$]



                  

I.5.3 Combinations

                    
                      
                    
                    The notation
                    
                      n
                    
                    C
                    
                      p
                    
                    or
                    [image: $${n\choose p}$$]
                    , read “
                    n
                    choose
                    p
                    ”, indicates the number of ways to select
                    p
                    distinct items from
                    n
                    possible items, where two different orderings of the same
                    p
                    items are considered to be the same selection. Equivalently,
                    
                      n
                    
                    C
                    
                      p
                    
                    is the number of distinct ways of
                    choosing p
                    items from
                    n
                    possible items:
                    [image: $$\displaystyle\begin{array}{rcl}{ n\choose p} = _{n}\!C_{p} = \frac{n!} {p\,! \times (n - p)!} = \frac{_{n}P_{p}} {p\,!} & & {}\\ \end{array}$$]



                    For example,
                    [image: $$\displaystyle\begin{array}{rcl}{ 5\choose 3} = \frac{_{5}C_{3}} {2!} = \frac{5!} {3!(5 - 3)!} = \frac{5 \times 4 \times 3 \times 2 \times 1} {(3 \times 2 \times 1)(2 \times 1)} = \frac{5 \times 4} {2 \times 1} = 10& & {}\\ \end{array}$$]



                  


I.6 Exercises
Exercise I.1.

                    Start from the matrix in Equation (I.6)
                    [image: $$\displaystyle\begin{array}{rcl}A = \left (\begin{array}{*{10}c}1&1&2\\1 &2 &3\\1&3&4 \end{array} \right )& & {}\\\end{array}$$]



                    Give an example of a basis for
                    A
                    .Then give an example of a vector in
                    [image: $$\mathcal{C}(A)$$]
                    and also a vector not in
                    [image: $$\mathcal{C}(A)$$]
                    .Give an example of an orthogonal basis of
                    A
                    ,demonstrating that it is orthogonal.Verify that Equation (I.6) defines a family of solutions to the set of linear equationswith
                    p
                     = rank(
                    X
                    ) < 
                    m
                    .
                  



Appendix J Probability Distributions

                
                  
                
                
                  
                
                We list, with some discussion, several common probability distributions. We illustrate 21 distributions, 20 distributions in the
                R
                 
                stats
                package and one in the
                HH
                package, for which all three functions (
                d*
                for density,
                p*
                for probability, and
                q*
                for quantile) are available. We also include the Studentized Range distribution for which only the
                p*
                and
                q*
                functions are available, and the discrete multinomial and continuous multivariate normal. The
                d*
                functions give the density
                f
                (
                x
                ) for continuous distributions or the discrete density
                f
                (
                i
                ) for discrete distributions. The
                p*
                functions give the cumulative distribution, the probability that an observation is less than or equal to the value
                x
                [image: $$\displaystyle\begin{array}{rcl} F(x) = P(X \leq x)& =& \left \{\begin{array}{ll} \int _{-\infty }^{x}f(x)\;dx&\mbox{ for continuous distributions} \\ \sum _{i=-\infty }^{x}f(i) &\mbox{ for discrete distributions} \end{array} \right.{}\\ \end{array}$$]



                The
                q*
                functions give the quantiles
                F
                −1
                (
                p
                ), that is the inverse of the probability function
                F
                (
                x
                ).
              

                In the example illustrations all three functions (
                d*
                ,
                p*
                , and
                q*
                ) are shown and evaluated at sample
                X
                and for specific values of the parameters. For distributions with finite support, the entire domain of
                x
                is shown. For distributions with infinite support, the domain of
                x
                showing most of the probability is shown.
              

                For the continuous distributions, we show the plot of the density function. The darker color shows the probability (area) to the left of
                x
                , and the lighter color shows the probability (area) to the right of
                x
                .
                d*
                (X) gives the height of the density function at
                X
                ,
                p*
                (X) gives the probability (area) to the left of
                X
                , and
                q*
                (p) recovers
                X
                from the probability
                p
                .
              

                For the discrete distributions, we show the plot of the discrete density function. The darkest color shows the probability at
                X
                , the intermediate color shows the probability strictly left of
                X
                , and the lightest color shows the probability to the right of
                X
                .
                d*(X)
                gives the probability at
                X
                ,
                p*(X)
                gives the probability to the left of and including
                X
                , and
                q*(p)
                recovers
                X
                from the probability
                p
                .
              

                We list the continuous central distributions in Section 
                J.1
                , the continuous noncentral distributions in Section 
                J.2
                , and the discrete distributions in Section 
                J.3
                . Within each section the distributions are ordered alphabetically.
              
J.1 Continuous Central Distributions
J.1.1 Beta

                    
                      
                    
                  

                    [image: A77776_2_En_BookBackmatter_Figaaan_HTML.gif]

                  
>   dbeta(.85, shape1=85.5, shape2=15.5)
[1] 11.22
>   pbeta(.85, shape1=85.5, shape2=15.5)
[1] 0.5131
>   qbeta(0.5131489, shape1=85.5, shape2=15.5)
[1] 0.85

                    This two-parameter distribution is often used to model phenomena restricted to the range (0, 1), for example sample proportions. It is used in Section 
                    5.​1.​2
                    to construct alternative one-sided confidence intervals on a population proportion.
                  

J.1.2 Cauchy

                    
                      
                    
                  

                    [image: A77776_2_En_BookBackmatter_Figaaao_HTML.gif]

                  
>   dcauchy(1.96)
[1] 0.06574
>   pcauchy(1.96)
[1] 0.8498
>   qcauchy(0.8498286)
[1] 1.96

                    The Cauchy distribution is the same as the
                    t
                    -distribution with 1 degree of freedom. It’s special feature is that it does not have a finite population mean.
                  

J.1.3 Chi-Square

                    
                      
                    
                  

                    [image: A77776_2_En_BookBackmatter_Figaaap_HTML.gif]

                  
>   dchisq(18.31, df=10)
[1] 0.01547
>   pchisq(18.31, df=10)
[1] 0.95
>   qchisq(0.9500458, df=10)
[1] 18.31

                    The central
                    χ
                    2
                    distribution with
                    k
                    degrees of freedom is the distribution of the sum of squares of
                    k
                    independent standard normal r.v.’s. If
                    k
                     > 2, a
                    χ
                    2
                    r.v. has a unimodal, positively skewed PDF starting at zero and asymptotically tapering to the horizontal axis for large values. The mean of this distribution is
                    k
                    , and
                    k
                    is also approximately its median if
                    k
                    is large. The r.v. 
                    [image: $$[(n - 1)s^{2}]/\sigma ^{2}$$]
                    , where
                    s
                    2
                    is the variance of a normal sample, has a
                    χ
                    2
                    distribution with
                    n
                    − 1 degrees of freedom.
                  
This distribution is used in inferences about the variance (or s.d.) of a single population and as the approximate distribution of many nonparametric test statistics, including goodness-of-it tests and tests for association in contingency tables.

J.1.4 Exponential

                    
                      
                    
                  

                    [image: A77776_2_En_BookBackmatter_Figaaaq_HTML.gif]

                  
>   dexp(1, rate=.6)
[1] 0.3293
>   pexp(1, rate=.6)
[1] 0.4512
>   qexp(0.4511884, rate=.6)
[1] 1

                    μ
                    is both the mean and standard deviation of this distribution.
                    R
                     parameterizes the exponential distribution with the rate 1∕
                    μ
                    , the reciprocal of the mean
                    μ
                    . Times between successive Poisson events with mean rate of occurrence
                    μ
                    have the exponential distribution. The exponential distribution is the only distribution with the “lack of memory” or “lack of deterioration” property, which states that the probability that an exponential random variable exceeds
                    t
                    1
                    +
                    t
                    2
                    given that it exceeds
                    t
                    1
                    equals the probability that it exceeds
                    t
                    2
                    .
                  

J.1.5 F

                    
                      
                    
                  

                    [image: A77776_2_En_BookBackmatter_Figaaar_HTML.gif]

                  
>   df(3, df1=4, df2=20)
[1] 0.0469
>   pf(3, df1=4, df2=20)
[1] 0.9568
>   qf(0.956799, df1=4, df2=20)
[1] 3

                    The
                    F
                    distribution is related to the
                    χ
                    2
                    distribution. If
                    U
                    
                      i
                    
                    , for
                    i
                     = { 1, 2}, is a
                    χ
                    2
                    r.v. with
                    ν
                    
                      i
                    
                    degrees of freedom, and if
                    U
                    1
                    and
                    U
                    2
                    are independent, then
                    F
                     = 
                    U
                    1
                    ∕
                    U
                    2
                    has an
                    F
                    distribution with
                    ν
                    1
                    and
                    ν
                    2
                    df. This distribution is extensively used in problems involving the comparison of variances of two normal populations or comparisons of means of two or more normal populations.
                  

J.1.6 Gamma

                    [image: A77776_2_En_BookBackmatter_Figaaas_HTML.gif]

                  
>   dgamma(6, shape=3)
[1] 0.04462
>   pgamma(6, shape=3)
[1] 0.938
>   qgamma(0.9380312, shape=3)
[1] 6

                    From?
                    dgamma:
                  
The Gamma distribution with parameters ’shape’ = a and ’scale’ = s has density

                    f
                    (
                    x
                    ) = 1∕(
                    s
                    
                      a
                    
                    Γ
                    (
                    a
                    ))
                    x
                    
                      (
                      a
                      −1)
                    
                    e
                    
                      −(
                      x
                      ∕
                      s
                      )
                    
                  

                    for
                    x
                     ≥ 0,
                    a
                     > 0 and
                    s
                     > 0. (Here
                    Γ
                    (
                    a
                    ) is the function implemented by R’s
                    gamma()
                    and defined in its help. Note that
                    a
                     = 0 corresponds to the trivial distribution with all mass at point 0.)
                  

                    The mean and variance are
                    E
                    (
                    X
                    ) = 
                    a
                    ×
                    s
                    and
                    [image: $$\mathop{\mbox{ Var}}(X) = a \times s^{2}$$]
                    .
                  
The special case of the gamma distribution with shape=1 is the exponential distribution.

J.1.7 Log Normal

                    
                      
                    
                  

                    [image: A77776_2_En_BookBackmatter_Figaaav_HTML.gif]

                  
>   dlnorm(5)
[1] 0.02185
>   plnorm(5)
[1] 0.9462
>   qlnorm(0.9462397)
[1] 5

                    A r.v. 
                    X
                    is said to have a
                    lognormal
                    distribution with parameters
                    μ
                    and
                    [image: $$\sigma$$]
                    if
                    [image: $$Y =\ln (X)$$]
                    is
                    [image: $$N(\mu,\sigma ^{2})$$]
                    ; i.e., if
                    Y
                    is normal, then
                    e
                    
                      Y
                    
                    is lognormal. This is a positively skewed unimodal distribution defined for
                    x
                     > 0. It is commonly used as a good approximation for positively skewed data, such as a distribution of income.
                  

J.1.8 Logistic

                    
                      
                    
                    
                      
                    
                  

                    [image: A77776_2_En_BookBackmatter_Figaaav_HTML.gif]

                  
>   dlogis(2)
[1] 0.105
>   plogis(2)
[1] 0.8808
>   qlogis(0.8807971)
[1] 2

                    From
                    ?dlogis
                    :
                  

                    The Logistic distribution with
                    location=m
                    and
                    scale=s
                    has distribution function
                  

                    [image: $$F(x) = 1/\left (1 +\exp \left (-(x - m)/s\right )\right )$$]
                  
and density

                    [image: $$f(x) = (1/s)\;\exp \left ((x - m)/s\right )\;\left (1 +\exp \left ((x - m)/s\right )\right )^{-2}$$]
                    .
                  

                    It is a long-tailed distribution with mean
                    m
                    and variance (
                    π
                    2
                    ∕3)
                    s
                    2
                    .
                  

                    qlogis(p)
                    is the same as the well known
                    logit
                    function,
                    [image: $$\mathop{\mbox{ logit}}(p) =\log (p/(1 - p))$$]
                    , the log odds function, and
                    plogis(x)
                    has consequently been called the
                    inverse logit
                    .
                  

                    The distribution function is a rescaled hyperbolic tangent,
                    [image: $$\mbox{ plogis}(x) = \left (1 +\tanh (x/2)\right )/2$$]
                    , and it is called a
                    sigmoid function
                    in contexts such as neural networks.
                  

J.1.9 Normal
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>   dnorm(1.645, m=0, s=1)
[1] 0.1031
>   pnorm(1.645, m=0, s=1)
[1] 0.95
>   qnorm(0.95, m=0, s=1)
[1] 1.645

                    This distribution was introduced in Section 
                    3.​4.​2
                    If
                    Z
                    is standard normal
                    N
                    (0, 1), the standard normal density
                    ϕ
                    and cumulative distribution
                    Φ
                    functions are
                    [image: $$\displaystyle\begin{array}{rcl} \phi (z)& =& \frac{1} {\sqrt{2\pi }}\exp \left (\frac{z^{2}} {2} \right ) {}\\ \varPhi (Z)& =& \int _{-\infty }^{Z}\phi (z)\;dz {}\\ \end{array}$$]



                    The general density, for random variable
                    x
                    with mean
                    μ
                    and variance
                    [image: $$\sigma ^{2}$$]
                    , is
                    [image: $$\displaystyle\begin{array}{rcl} f(x\mid \mu,\sigma ^{2}) = \frac{1} {\sigma } \;\phi \left (\frac{x-\mu } {\sigma } \right )& =& \frac{1} {\sqrt{2\pi \sigma ^{2}}}\;\exp \left (\frac{(x-\mu )^{2}} {2\sigma ^{2}} \right ) {}\\ & & {}\\ \end{array}$$]



                    The term
                    probit
                    is an alternate notation for the inverse function
                    Φ
                    −1
                    .
                    [image: $$\displaystyle\begin{array}{rcl} q =\varPhi ^{-1}(p) =\mathop{ \mbox{ probit}}(P)& & {}\\ \end{array}$$]



                    is the inverse function such that
                    p
                     = 
                    Φ
                    (
                    q
                    ).
                  

J.1.10 Studentized Range Distribution
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>   ptukey(4.199, nmeans=4, df=12)
[1] 0.95
>   qtukey(0.95, nmeans=4, df=12)
[1] 4.199

                    This distribution is used in the Tukey multiple comparisons procedure discussed in Section 
                    6.​3
                    Let
                    [image: $$\bar{y}_{(1)}$$]
                    and
                    [image: $$\bar{y}_{(a)}$$]
                    denote the smallest and largest means of samples of size
                    n
                    drawn from
                    a
                    populations having a common variance
                    [image: $$\sigma ^{2}$$]
                    , and let
                    [image: $$s = \sqrt{\mathsf{MS } _{\mathrm{Res }}}$$]
                    be the estimate of
                    [image: $$\sigma$$]
                    calculated from the ANOVA table, for example, Table 
                    6.​2
                    Then the random variable
                    [image: $$\displaystyle\begin{array}{rcl} Q ={ \bar{y}_{(a)} -\bar{y}_{(1)} \over s/\sqrt{n}} & & {}\\ \end{array}$$]



                    has a Studentized range distribution with parameters
                    a
                    and
                    [image: $$\mathsf{df}_{\mathrm{Res}} = a(n - 1)$$]
                    . The Studentized range distribution is defined on the domain
                    [image: $$0 \leq q < \infty $$]
                    .
                    R
                     provides the
                    ptukey
                    and
                    qtukey
                    functions, but not the density function
                    dtukey
                    . We therefore show the cumulative probability function instead of the density for the Studentized range distribution.
                  


                    J.1.11 (Student’s)
                    T
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>   dt(2, df=4)
[1] 0.06629
>   pt(2, df=4)
[1] 0.9419
>   qt(0.9419417, df=4)
[1] 2

                    This distribution was introduced in Section 
                    3.​4.​3
                  

J.1.12 Uniform
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>   dunif(.7)
[1] 1
>   punif(.7)
[1] 0.7
>   qunif(.7)
[1] 0.7

                    All real numbers between
                    a
                    and
                    b
                    are equally likely. The standard case has
                    a
                     = 0 and
                    b
                     = 1. Hypothesis tests work by mapping an appropriate null distribution to the uniform (with the appropriate p* function in
                    R
                    ).
                  

J.1.13 Weibull
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>   dweibull(1.3, shape=4)
[1] 0.5052
>   pweibull(1.3, shape=4)
[1] 0.9425
>   qweibull(0.9425075, shape=4)
[1] 1.3

                    From
                    dweibull
                    :
                  

                    The Weibull distribution with ’shape’ parameter
                    a
                    and ’scale’ parameter
                    b
                    has density given by
                  

                    [image: $$f(x) = (a/b)\;(x/b)^{(a-1)}\;\exp (-(x/b)^{a})$$]
                  

                    for
                    x
                     > 0. The cumulative distribution function is
                    [image: $$F(x) = 1 -\exp (-(x/b)^{a})$$]
                    on
                    x
                     > 0, the mean is
                    E
                    (
                    X
                    ) = 
                    b Γ
                    (1 + 1∕
                    a
                    ), and the
                    [image: $$\mathop{\mbox{ Var}}(X) = b^{2}\;\left (\varGamma (1 + 2/a) -\left (\varGamma (1 + 1/a)\right )^{2}\right )$$]
                    .
                  


J.2 Noncentral Continuous Probability Distributions

                  
                    
                  
                

                  In hypothesis testing, except in special cases such as testing with the normal distribution, one deals with a central distribution when the null hypothesis is true and an analogous noncentral distribution when the null hypothesis is false. Thus calculations of probabilities under the alternative hypothesis, as are required when doing Type II error
                  
                    
                  
                  analysis and when constructing O.C.
                  
                    
                  
                  (beta curves)
                  
                    
                  
                  and power
                  
                    
                  
                  curves, necessitate the use of noncentral distributions.
                

                  The forms of the
                  t
                  , chi-square, and
                  F
                  distributions we’ve considered thus far have all been central distributions. For example, if
                  [image: $$\bar{X}$$]
                  is the mean and
                  s
                  the standard deviation of a random sample of size
                  n
                  from a normal population with mean
                  μ
                  , then
                  [image: $$t = (\bar{x}-\mu )/(s/\sqrt{n})$$]
                  has a central
                  t
                  distribution
                  
                    
                  
                  with
                  n
                  − 1 df. Suppose, however, that the population mean is instead
                  μ
                  1
                  , different from
                  μ
                  . Then
                  t
                  above is said to have a noncentral
                  t
                  
                    
                  
                  distribution with
                  n
                  − 1 df and a
                  noncentrality parameter
                  
                    
                  
                  proportional to
                  [image: $$\left ((\mu -\mu _{1})/\sigma \right )^{2}$$]
                  . (If
                  μ
                   = 
                  μ
                  1
                  , so that the noncentrality parameter is zero, the noncentral
                  t
                  distribution reduces to the central
                  t
                  distribution.)
                

                  A noncentral chi-square
                  
                    
                  
                  (
                  χ
                  2
                  ) r.v. is a sum of squares of independent normal r.v.’s each with s.d. 1 but at least some of which have a nonzero mean. A noncentral
                  F
                  
                    
                  
                  r.v. is the ratio of a noncentral chi-square r.v. to a central chi-square r.v., where the two chi-squares are independent.
                

                  For tests using the
                  t
                  , chi-square, or
                  F
                  distribution, the power
                  
                    
                  
                  of the test (protection against Type II errors
                  
                    
                  
                  ) is an increasing function of the noncentrality parameter.
                  
                    
                  
                
Noncentral distributions are specified with one more parameter than their corresponding central distribution. Consequently, tabulations of their cumulative distribution function appear much less frequently than those for central distributions. Fewer statistical software packages include them. There is no noncentral normal distribution. The distribution under the alternative hypothesis is just an ordinary normal distribution with a shifted mean.

                  The
                  R
                   functions for noncentral
                  t
                  ,
                  
                    
                  
                  chi-square,
                  
                    
                  
                  and
                  F
                  
                    
                  
                  CDFs are the same as those for the corresponding central distribution with the addition of an argument for the noncentrality parameter
                  ncp
                  . The noncentrality parameter
                  
                    
                  
                  defaults to zero (hence to a central distribution) if it is not specified.
                  
                    
                  
                

                  The figures in Sections 
                  J.2.1
                  , 
                  J.2.2
                  , and 
                  J.2.3
                  show the noncentral distribution along with the corresponding central distribution. This way it is possible to see that a positive noncentrality parameter shifts the mode to the right.
                
J.2.1 Chi-Square: Noncentral
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>   dchisq(18.31, df=10, ncp=4)
[1] 0.0408
>   pchisq(18.31, df=10, ncp=4)
[1] 0.7852
>   qchisq(0.7852264, df=10, ncp=4)
[1] 18.31

                    See discussion in Section 
                    14.​8.​2
                    and example in Figure 
                    D.1
                    .
                  


                    J.2.2
                    T
                    : Noncentral
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>   dt(2, df=4, ncp=2)
[1] 0.3082
>   pt(2, df=4, ncp=2)
[1] 0.4557
>   qt(0.455672, df=4, ncp=2)
[1] 2
See examples in Figures  3.24, 5.2, and 5.10.


                    J.2.3
                    F
                    : Noncentral
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>   df(3, df1=4, df2=20, ncp=2)
[1] 0.1062
>   pf(3, df1=4, df2=20, ncp=2)
[1] 0.871
>   qf(0.8710256, df1=4, df2=20, ncp=2)
[1] 3

                    See example in Section 
                    6.​5
                    and discussion in Section 
                    14.​8.​2
                    .
                  


J.3 Discrete Distributions

                  Discrete distributions are defined to have nonzero values on a set of integers.
                  [image: $$\displaystyle\begin{array}{rcl} F(x) = P(X \leq x)& =& \sum _{i=-\infty }^{x}f(i) {}\\ \end{array}$$]



                  The inverse functions (the
                  q*
                  functions in
                  R
                  ) are sensitive to the precision of the numerical representation.
                

                  Computers use finite precision floating point arithmetic, precise to 53 significant binary digits (bits)—approximately 17 decimal digits. They do not use the real number system that we are familiar with. Simple decimal repeating fractions such as these are not stored precisely with finite precision machine arithmetic. All of the individual values in this example are automatically rounded to 53 bits when they are entered into the computer. None of them are exactly represented inside the computer. See Appendix G for more on the floating point arithmetic used in computers. In several of the discrete distribution examples here, it has been necessary to display the
                  p
                  values to 17 decimal digits in order to get the desired answer from the q* functions.
                

                  Here is a simple example, the 6-level discrete uniform (one fair die), to illustrate the problem. In this example, rounding produces several results from the
                  qdiscunif
                  function that are one unit off (either too large or too small).
                

                  [image: $$\begin{array}{ccc cc cc cc} \hline \\ \hline \\ && &&\multicolumn{5}{c} {F(i)} \\ && && && && \mbox{ machine precision,} \\ && && && \mbox{ rounded to} && \mbox{ rounded to 53 bits,} \\ i &&f(i)&&\mbox{ fraction}&&\mbox{ 4 decimal digits}&&\mbox{ $ \approx $ 17 decimal digits} \\ \hline 1&& 1/6 && 1/6 && 0.1667 && 0.16666666666666666 \\ 2 && 1/6 && 2/6 && 0.3333 && 0.33333333333333331 \\ 3 && 1/6 && 3/6 && 0.5000 && 0.50000000000000000 \\ 4 && 1/6 && 4/6 && 0.6667 && 0.66666666666666663 \\ 5 && 1/6 && 5/6 && 0.8333 && 0.83333333333333337 \\ 6 && 1/6 && 6/6 && 1.0000 && 1.00000000000000000 \\ \hline \end{array}$$]
                
> ## this is printing precision, not internal representation
> old.digits <- options(digits=7)
> ddiscunif(1:6, 6)
[1] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
> pdiscunif(1:6, 6)
[1] 0.1666667 0.3333333 0.5000000 0.6666667 0.8333333 1.0000000
> qdiscunif(pdiscunif(1:6, 6), 6)
[1] 1 2 3 4 5 6
> round(pdiscunif(1:6, 6), 4) ## rounded to four decimal digits
[1] 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000
> ## inverse after rounding to four decimal digits
> qdiscunif(round(pdiscunif(1:6, 6), 4), 6)
[1] 1 1 3 4 4 6
> options(old.digits)
J.3.1 Discrete Uniform

                    
                      
                    
                  

                    [image: A77776_2_En_BookBackmatter_Figaaaad_HTML.gif]

                  
>   ddiscunif(6, size=12)
[1] 0.08333
>   pdiscunif(6, size=12)
[1] 0.5
>   qdiscunif(.5, size=12)
[1] 6

                    In the discrete uniform distribution, the integers from 1 to
                    n
                    are equally likely. The population mean is (
                    n
                    + 1)∕2. The population variance is (
                    n
                    2
                    − 1)∕12. The distribution function is
                  

J.3.2 Binomial
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> ## probability of exactly 6 Heads
> dbinom(6, size=15, prob=.4)
[1] 0.2066
> ## probability of 6 or fewer Heads
> ## extra precision is needed
> print(pbinom(6, size=15, prob=.4), digits=17)
[1] 0.60981315570892769
> ## q, the number for which the probability of seeing
> ## q or fewer Heads is 0.60981315570892769
> qbinom(0.60981315570892769, size=15, prob=.4)
[1] 6

                    The binomial distribution was introduced in Section 
                    3.​4.​1
                    If
                    X
                    has a binomial distribution with parameters
                    n
                    (
                    n
                    =
                    size
                    , number of coins tossed simultaneously) and
                    p
                    (
                    p
                    =
                    prob
                    , probability of one coin landing Heads on one toss), then the binomial distribution gives the probability of observing exactly
                    X
                    heads.
                  

J.3.3 Geometric
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>   dgeom(3, prob=.5)
[1] 0.0625
>   pgeom(3, prob=.5)
[1] 0.9375
>   qgeom(0.9375, prob=.5)
[1] 3

                    From
                    ?dgeom
                    :
                  
The geometric distribution with ’prob’ = p has density

                    p
                    (
                    x
                    ) = 
                    p
                    (1 −
                    p
                    )
                    
                      x
                    
                  

                    for
                    x
                     = 0, 1, 2, . . . , 0 < 
                    p
                     ≤ 1.
                  

                    The quantile is defined as the smallest value
                    x
                    such that
                    F
                    (
                    x
                    ) ≥ 
                    p
                    , where
                    F
                    is the distribution function.
                  

J.3.4 Hypergeometric
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>   dhyper(3, m=5, n=6, k=7)
[1] 0.4545
>   print(phyper(3, m=5, n=6, k=7), digits=17)
[1] 0.65151515151515149
>   qhyper(0.65151515151515149, m=5, n=6, k=7)
[1] 3

                    The hypergeometric distribution is used in Chapter 
                    15
                    We sample
                    n
                    items
                    without
                    replacement from a population of
                    N
                    items comprised of
                    M
                    successes and
                    N
                    −
                    M
                    failures. Then the number of successes
                    X
                    observed in the population is said to have a hypergeometric distribution with parameters
                    N
                    , 
                    M
                    , and
                    n
                    .
                  

J.3.5 Negative Binomial
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>   dnbinom(17, size=8.5, prob=.4)
[1] 0.04338
>   print(pnbinom(17, size=8.5, prob=.4), digits=17)
[1] 0.81209497223034977
>   qnbinom(0.81209497223034977, size=8.5, prob=.4)
[1] 17

                    The negative binomial distribution with
                    size
                    =
                    n
                    and
                    prob
                    =
                    p
                    has density
                    [image: $$\displaystyle\begin{array}{rcl} \frac{\varGamma (x + n)} {\varGamma (n)\,x!} \,p^{n}(1 - p)^{x}& & {}\\ \end{array}$$]



                    for
                    [image: $$x = 0,1,2,\ldots$$]
                    ,
                    n
                     > 0, and 0 < 
                    p
                     ≤ 1.
                  

                    This represents the number of failures which occur in a sequence of Bernoulli trials before a target number of successes is reached. The mean is
                    μ
                     = 
                    n
                    (1 −
                    p
                    )∕
                    p
                    and variance is
                    n
                    (1 −
                    p
                    )∕
                    p
                    2
                    .
                  

J.3.6 Poisson
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>   dpois(7, lambda=4)
[1] 0.05954
>   print(ppois(7, lambda=4), digits=17)
[1] 0.94886638420715264
>   qpois(0.94886638420715264, lambda=4)
[1] 7

                    Let the random variable
                    X
                    be the number of occurrences of some event that are observed in a unit of time, volume, area, etc., and let
                    [image: $$\lambda$$]
                    be the mean number of occurrences of the event per unit, assumed to be constant throughout the process that generates the occurrences. Suppose that the occurrence(s) of the event in any one unit are independent of the occurrence(s) of the event in any other nonoverlapping unit. Then
                    X
                    has a Poisson distribution with parameter
                    [image: $$\lambda$$]
                    .
                  

J.3.7 Signed Rank
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>   dsignrank(11, n=5)
[1] 0.0625
>   psignrank(11, n=5)
[1] 0.8438
>   qsignrank(0.84375, n=5)
[1] 11

                    See the discussion in Section 
                    16.​3.​2
                  

J.3.8 Wilcoxon
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>   dwilcox(35, m=4, n=12)
[1] 0.02088
>   print(pwilcox(35, m=4, n=12), digits=17)
[1] 0.9148351648351648
>   qwilcox(0.9148351648351648, m=4, n=12)
[1] 35

                    See Table 
                    16.​7
                    for an example of a rank sum test.
                  


J.4 Multivariate Distributions
J.4.1 Multinomial
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> ## This example is based on ?dmultinom in R
> ## all possible outcomes of Multinom(N = 3, K = 3)
> X <- t(as.matrix(expand.grid(0:3, 0:3)))
> X <- X[, colSums(X) <= 3]
> X <- rbind(X, 3:3 - colSums(X))
> dimnames(X) <- list(letters[1:3], apply(X, 2, paste, collapse=""))
> Y <- round(apply(X, 2, function(x) dmultinom(x, prob = c(1,2,5))), 3)
> rbind(X, Y)
    003   102   201   300   012   111   210   021   120   030
a 0.000 1.000 2.000 3.000 0.000 1.000 2.000 0.000 1.000 0.000
b 0.000 0.000 0.000 0.000 1.000 1.000 1.000 2.000 2.000 3.000
c 3.000 2.000 1.000 0.000 2.000 1.000 0.000 1.000 0.000 0.000
Y 0.244 0.146 0.029 0.002 0.293 0.117 0.012 0.117 0.023 0.016

                    The (discrete)
                    multinomial
                    distribution is a generalization of the binomial distribution to the case of
                    k
                     > 2 categories. Suppose there are
                    n
                    independent trials, each of which can result in just one of
                    k
                    possible categories such that
                    p
                    
                      j
                    
                    is the probability of resulting in the
                    j
                    
                      th
                    
                    of these
                    k
                    categories. (Hence
                    [image: $$p_{1} + p_{2} +\ldots +p_{k} = 1$$]
                    .) Let
                    X
                    
                      j
                    
                    be the number of occurrences in category
                    j
                    . Then the vector (
                    X
                    1
                    , 
                    X
                    2
                    , . . . , 
                    X
                    
                      k
                    
                    ) is said to have a multinomial distribution with parameters
                    [image: $$n,p_{1},p_{2},\ldots,p_{k}$$]
                    . Its PMF is
                    [image: $$\displaystyle\begin{array}{rcl} P(X_{j} = x_{j}\mid j = 1,\ldots,k) = \frac{n!p_{1}^{x_{1}}p_{2}^{x_{2}}\ldots p_{k}^{x_{k}}} {x_{1}!x_{2}!\ldots x_{k}!},\ \ \ x_{1} + x_{2} +\ldots x_{k} = n& & {}\\ \end{array}$$]



                    If a proportion
                    p
                    
                      j
                    
                    of a population of customers prefers product number
                    [image: $$j,j = 1,\ldots,k$$]
                    , among
                    k
                    products, then the multinomial distribution provides the probability of observing any particular configuration of preferences among a random sample of
                    n
                    customers.
                  

J.4.2 Multivariate Normal
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> dmvnorm(c(-1, -1))
[1] 0.05855
> pmvnorm(upper=c(-1, -1))[1]
[1] 0.02517
> qmvnorm(0.02517, mean=c(0,0))$quantile
[1] -1

                    See Sections 
                    3.​3.​5
                    and 
                    I.4
                    for examples.
                  



Appendix K Working Style

                
                  
                
                
                  
                
                Working style in a computer environment depends on two interrelated concepts: which programs you use and how you use them.
              

                For statistical analysis we are recommending
                R
                 as the primary computational tool. There are other very good programs, and it is imperative that you develop a working understanding of several of them. See Appendix H for information on how to use the datasets discussed in this book with other software.
              

                An excellent text editor is an indispensable tool for the statistical analyst. The editor is the single program in which we spend most of our time. We use it for looking at raw data, for writing commands in the statistical languages we use, for reading the output tables produced by our statistical programs, for writing reports, and for reading and writing correspondence about our studies to our clients, consultants, supervisors, and subordinates. We discuss our requirements for a text editor in Section 
                K.1
                . Our personal choice of editor is Emacs (Free Software Foundation, 
                2015
                ), which we discuss in Appendix M. There are other excellent editors which satisfy our requirements.
              

                We discuss in Section 
                K.2
                the types of interaction that are possible with
                R
                . We recommend in Section 
                K.3
                working with files of
                R
                 commands. We discuss in Section 
                K.4
                our recommendations for organization of the files within the operating system’s directory structure.
              
K.1 Text Editor
As we indicated in the Preface on page ix, our goal in teaching statistical languages is to make the student aware of the capabilities of the language for describing data and their analyses. The language is approached through the text editor.

                  We distinguish between the concepts of
                  text editing
                  (discussed in this Appendix) and
                  word processing
                  (discussed in Appendix O). Text editing is moving characters around on the screen with the expectation that they will stay where you put them. This is critical when writing computer programs where the physical placement of lines and characters on the page is part of what the computer program interprets. In the
                  R
                   language the two layouts of the same characters in Table 
                  K.1
                  have completely different interpretations.
                

                  Word processing is moving sentences, paragraphs, sections, figures, and cross-references around. A word processor can be used as a text editor by manually turning off many of the word processing features.
                  Table K.1
                          Two different interpretations of the same characters {“
                          3
                          ”, “
                          +
                          ”, “
                          4
                          ”} that depend on their placement on separate lines. If the first set of input lines were reformatted according to English language paragraph formatting rules it would be interpreted as if it were the second set, which has a completely different meaning. This is the simplest possible example of why we make a distinction between text editing and word processing.
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K.1.1 Requirements for an Editor

                    These are the requirements we place on any text editor that is to be used for interacting with a computing language:
                    1.Permit easy modification of computing instructions and facilitate their resubmission for processing

 

2.Be able to operate on output as well as input

 

3.Be able to cut, paste, and rearrange text; to search documents for strings of text; to work with rectangular regions of text

 

4.
                            Be aware of the language, for example, to illustrate the syntax
                            
                              
                            
                            with appropriate indentation and with color and font highlighting, to detect syntactic errors in input code, and to check the spelling of statistical keywords
                          

 

5.Handle multiple files simultaneously

 

6.Interact cleanly with the presentation documents (reports and correspondence) based on the statistical results

 

7.
                            Check spelling
                            
                              
                            
                            of words in natural languages
                          

 

8.Permit placement of graphics within text.

 

9.Permit placement of mathematical expressions in the text.

 

10.
                            Work with Unicode
                            
                              
                            
                            to give access to all character sets in all human languages.
                          

 



                  

K.1.2 Choice of Editor

                    Our preference for an editor is
                    Emacs
                     with
                    ESS
                    , which we discuss in Appendix M. In Section 
                    M.5
                    we show how
                    Emacs
                     satisfies the requirements in Section 
                    K.1.1
                    .
                  

                    There are many other options for an editor, usually within the context of an Integrated Development Environment (IDE), a software application that provides comprehensive facilities to computer programmers for software development. An IDE normally consists of a source code editor, build-automation tools, and a debugger. For more information on IDEs see Wikipedia (
                    2015
                    ).
                  

                    For an annotated list, with links to their webpages, of other editors and IDEs that work with
                    R
                    , see Grosjean (
                    2012
                    ).
                  

                    We discuss word processors such as MS
                    Word
                     (Microsoft, 
                    2015
                    ) in Section 
                    O.1
                    . In Section 
                    O.1.1
                    we show how MS
                    Word
                     satisfies some of the requirements in Section 
                    K.1
                    .
                  



                  K.2 Types of interaction with
                  R
                

                  1.
                          CLI Command Line Interface: The user types
                          R
                           statements and the system responds with requested output. Examples:
                          R
                           in a shell/terminal/CMD window,
                          R
                           in the
                          *R*
                          buffer in
                          Emacs
                          ,
                          R
                           in the Console window in the
                          Rgui.exe
                          for
                          Windows
                          , the
                          R.app
                          for
                          Macintosh
                          , and the
                          JGR
                          package on all operating systems.
                        

 

2.
                          Menu or Dialog Box: Dropdown lists of command names, often with default settings for arguments. This allows point and click access to many
                          R
                           functions with standard settings of options. The
                          Rcmdr
                          (R Commander) package described in Appendix C is such a system.
                        

 

3.
                          Spreadsheet. The
                          RExcel
                           system described in Appendix D allows access to all
                          R
                           functions from within the automatic recalculation mode of
                          Excel
                           for
                          Windows
                          . The
                          Rcmdr
                           interface is incorporated into the
                          Excel
                           menu ribbon.
                        

 

4.
                          Web-based interface. Technology for embedding
                          R
                           applications within an
                          html
                          page to provide interactive access to
                          R
                           functions for non-programmers. See Appendix E for a discussion of the
                          shiny
                          system.
                        

 

5.
                          Document based interface. The end user writes a document (book, paper, report) in a standard document writing system (LaTeX or
                          Word
                          , for example) with embedded
                          R
                           code. Three examples are
                          Sweave
                          (Leisch and R-core, 
                          2014
                          ),
                          knitr
                          (Xie, 
                          2015
                          ), and
                          SWord
                          (Baier, 
                          2014
                          ). The second edition of HH is written using
                          Sweave
                          (see
                          help(Sweave, package="utils")
                          ). All
                          R
                           code, leading to all graphs and tables in the book, is included in the LaTeX source files for the chapters. The code files for the
                          HH
                          package, located with the
                          HHscriptnames()
                          function, were pulled from the LaTeX files by the
                          Stangle
                          function which is part of the
                          Sweave
                          framework.
                        

 

6.GUI Graphical User Interface: anything other than the command line interface.

 



                

K.3 Script File

                  
                    
                  
                  
                    
                  
                  
                    
                  
                  Our personal working style (and the one we recommend to our readers) is to write a file of commands (a
                  script file
                  with extension
                  .R
                  or
                  .r
                  ) that specify the analysis, run the commands and review the graphs and tables so produced, and then correct and augment the analysis specifications. We construct the command file interactively. Initially we write the code to read the data into the program and to prepare several graphs and the initial tables. If there are errors (in typing or in programming logic), we correct them
                  in the file
                  and rerun the commands. As we progress and gain insight into what the data say, we add to the code to produce additional graphs and tables. When we have finished, we have a file of commands that could be run as a batch job to produce the complete output. We also have a collection of graphs and tables that can be stored in additional files.
                

K.4 Directory Structure
When we have many files, we need to organize them within the directory structure of our computer’s operating system.
K.4.1 Directory Structure of This Book

                    This book is written in LaTeX (Lamport, 
                    1994
                    ). Our organizational structure uses the directory structure
                    
                      
                    
                    provided by the computer’s operating systems. For this book we have a main directory (
                    hh2
                    ) and subdirectories for code (containing
                    .R
                    files), transcripts (
                    .Rout
                    ) files, and figures (
                    .pdf
                    ) files. The main directory contains all the
                    .tex
                    files (one per chapter plus a master file), our LaTeX style file (
                    hh2.sty
                    ), and several other support files. We have a
                    work
                    directory parallel to the
                    hh2
                    directory for experiments with
                    R
                     code, for correspondence with our publisher, and for correspondence with the people who were kind enough to read and comment on drafts of this book.
                  

                    The
                    R
                     functions that we developed for the book, and all datasets used in the book, are collected into the
                    HH
                    package (Heiberger, 
                    2015
                    ) distributed through CRAN.
                  

                    The master copy of the
                    R
                     scripts for all figures and tables in the second edition is included in the
                    *.tex
                    source files for the individual chapters. We use the
                    Sweave
                    
                      
                    
                    functions included in
                    R
                     to execute the code directly from the
                    *.tex
                    files. When we are ready to distribute the code, we pull the
                    R
                     code from the
                    *.tex
                    files with the
                    Stangle
                    
                      
                    
                    function (part of
                    R
                    ’s
                    Sweave
                    system) and place them into the
                    HH
                    package. The script files in the
                    HH
                    package for the book can be located by the package user with the
                    HHscriptnames()
                    function.
                  

                    We hope that readers of our book, and more generally users of
                    R
                    , design and collect their own functions into a personal package (it doesn’t have to be distributed through CRAN). Once you have more than a few functions that are part of your working pattern, maintaining them in a package is much simpler than inventing your own idiosyncratic way of keeping track of what you have. We say a few words about building a package in Appendix F and refer you to the
                    R
                     document
                  

                    system.file("../../doc/manual/R-exts.pdf")
                  
for complete information.

K.4.2 Directory Structure for Users of This Book

                    It is critical to realize that your work is yours. Your work is not part of the computer’s operating system, nor of the installed software. The operating system, the editor,
                    R
                    , and other software are kept in system directories. In order to protect the integrity of the system you will usually not have write access to those locations.
                  

                    You need a home directory, the one where you keep all your personal subdirectories and files. Your operating system automatically creates a
                    HOME
                    directory for you.
                    R
                     can find its name with the command
                    Sys.getenv("HOME")
                    . Everything you do should be in a subdirectory of your home directory.
                  

                    For example, each time we teach a course, we create a directory for that course. For last year’s course based on this book, we used the directory
                    8003.f14
                    directly under the HOME directory. We have a subdirectory of the course directory for the syllabus, for each class session, and for student records. We keep handouts,
                    R
                     scripts, and transcripts of the class
                    R
                     session as files within each class session’s directory.
                  

K.4.3 Other User Directories
We recommend a separate directory for each project. It will make your life much easier a year from now when you try to find something.



Appendix L Writing Style

                
                  
                
                
                  
                
                Reports, including homework exercises, based on computer printout must be typed correctly. We recommend LaTeX
                
                  
                
                (the standard required by many statistics and mathematics journals, and the typesetting package with which we wrote this book). We do accept other word processing software. Whichever software you use, you must use it correctly. We discuss in this appendix some of the fundamentals about good technical writing.
              
L.1 Typographic Style
Specific style issues that you must be aware of are

                  1.
                          Fonts:
                          
                            
                          
                          Computer listings in
                          R
                           (and
                          S-Plus
                           and
                          SAS
                           and many other statistical software systems) are designed for monowidth fonts
                          
                            
                          
                          (such as Courier
                          
                            
                          
                          ) where all characters (including spaces) are equally wide. These listings are unreadable in Times Roman
                          
                            
                          
                          or any other
                          proportional font
                          . English text looks best in a proportional font (where, for example, the letter “M” is wider than the letter “i”) such as Times Roman. Table 
                          L.1
                          shows the difference with simple alphabetic text.
                          Table L.1We placed a vertical rule after four characters on each line in both Courier and Times Roman. The Courier rules are aligned because all characters in Courier are exactly the same width. The Times Roman rules are not aligned because each character in Times Roman has its own width.


[image: A77776_2_En_BookBackmatter_Figaaaao_HTML.gif]


                        

                          Table 
                          L.2
                          shows an example of the issue for computer listings. The Courier rendition is consistent with the design of the output by the program designer. The Times Roman is exactly the same text dropped into an environment that is incorrectly attempting to space it in accordance with English language typesetting rules.
                          In our classes, we return UNREAD any papers that use a proportional font for computer listings.
                          Table L.2
                                  R
                                   output displayed correctly in a monowidth font, and incorrectly in a proportional font. The same text, the output from an
                                  R
                                   
                                  summary.data.frame
                                  call, is displayed in both fonts. The unequal width of the characters in the Times Roman font destroys the vertical alignment that is necessary for interpretation of this listing.
                                


[image: A77776_2_En_BookBackmatter_Figaaaap_HTML.gif]


                        

 

2.
                          Alignment
                          
                            
                          
                          : Numbers in a column are to be aligned on decimal points. Alignment makes it possible to visually compare printed numbers in columns. There are two reasons for getting it wrong. One is carelessness. The other is blind copying from a source that gets it wrong. We show an example of both alignments in Table 
                          L.3
                          .
                          Table L.3Alignment of decimal points in the numbers on the left makes it easy to compare the magnitudes of the numbers. Centering of the numbers on the right, and therefore non-alignment of decimal points, makes it difficult to compare the magnitudes of the numbers.


[image: A77776_2_En_BookBackmatter_Figaaaaq_HTML.gif]


                        

 

3.
                          Minus signs
                          
                            
                          
                          and dashes: There are four distinct concepts that have four different typographical symbols in well-designed fonts. On typewriters all four are usually displayed with the symbol “
                          -
                          ” that appears on the hyphen key (next to the number 0). You are expected to know the difference and to use the symbols correctly.
                        

                          Table 
                          L.4
                          shows an example of the correct usage of all four symbols and the keys in LaTeX and MS Word.
                          Table L.4Correct usage of all four dash-like symbols (- – − —) and the keys to generate them in LaTeX and MS Word.


[image: A77776_2_En_BookBackmatter_Figaaaar_HTML.gif]


                        

                          The misuse of dashes that touches my (rmh) hot button the most is misuse of hyphen when minus is meant, for example
                          	correct
	 	WRONG

	+12.2
	 	+12.2

	− 12. 2
	 	-12.2




                          In this wrong usage, the “+” and “-” are not aligned and consequently the decimal point is not aligned.
                          
                            
                          
                          Table L.5
                                  Intentional misuse of formatting. Never turn in anything that looks like these bad examples. The top section has lines of text that extend beyond the right margin of the page. The middle section is an
                                  R
                                   table that has been arbitrarily folded at 49 mono-spaced letter widths. The bottom section retains the lines, but places them in a proportional font and ignores the alignment of columns.
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4.
                          Right margins and folding:
                          
                            
                          
                          
                            
                          
                          
                            
                          
                          Table 
                          L.5
                          intentionally misuses formatting to illustrate how bad it can look. This usually occurs when the
                          R
                           window width is wider than your word processor is willing to work with. Verify that you picked an
                          options()$width
                          consistent with your word processor. You can make the width narrower in
                          R
                           by using the
                          R
                           command
                        

                          options(width=72)
                        

 

5.
                          Quotation marks:
                          
                            
                          
                          Quotation marks in Times Roman are directional. This is “Times Roman correct” (with a left-sided symbol on the left and a right-sided symbol on the right). This is ”Times Roman incorrect” (with the right-sided symbol on both sides). In the typewriter font recognized by
                          R
                          , quotation marks are vertical, not directional. and are the same on both sides. In typewriter font, this is
                          "typewriter correct"
                          (same non-directional symbol on both sides).
                        

 



                

L.2 Graphical Presentation Style

                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                  
                    
                  
                

                  Graphs designed for someone to read must be legible. Legibility includes the items listed in this section and in Chapter
                  4
                  (some of which are repeated here).
                
L.2.1 Resolution

                    
                      
                    
                  

                    Figure
                    L.1
                    shows the same graph drawn on a vector graphics device (
                    pdf()
                    in this example) and a bitmap device (
                    png()
                    in this example).
                  

                    Vector graphics devices define objects to be drawn in terms of geometrical primitives such as points, lines, curves, and shapes or polygons. Vector graphics can be magnified without pixalation. Current vector graphics formats are
                    pdf, ps,
                    and
                    wmf
                    .
                  

                    By contrast bitmap (or raster) graphics devices define objects in terms of the set of pixels used in one specific magnification. Further magnification gives larger discrete dots and not smooth objects. Current bitmap formats are
                    png, bmp, tif,
                    and
                    gif
                    .
                  

                    Figure
                    L.1
                    panels a and c are drawn with a vector graphics device. They are clear and crisp at any magnification (two magnifications are shown here). Figure
                    L.1
                    panels b and d are drawn with a bitmapped graphics device. Panel b is not clear, and the magified version in panel d is granular and fuzzy.
                  
[image: A77776_2_En_BookBackmatter_Figbp_HTML.gif]
Fig. L.1
                          Panels a and b were drawn with the same command addressed to different devices. Panel a uses the
                          pdf
                          vector device and panel b uses the
                          png
                          bitmap device. Even at low magnification the difference between the two images is clear. The circle glyphs, the text, and the lines are crisp on the vector device. The circle glyphs, the text, and the lines are granular on the bitmap device. Panels c and d are the lower left corners of panels a and b magnified by a scale of 2. The vector display is just as crisp at this magnification. The bitmap display is more granular and fuzzy. Not even the straight lines are clear in panel d.
                        




L.2.2 Aspect Ratio

                    
                      
                    
                  

                    The graphs are initially drawn for the device size they see at the time they are drawn. The
                    aspect ratio
                    (the ratio of the width to height in graphic units) is set at that time. Plotting symbols and text are positioned to look right at that initial magnification with that size device. The graphs in Figure
                    L.1
                    honor the aspect ratio. Both the
                    x
                    and
                    y
                    dimensions are scaled identically in those panels.
                  
Changing the aspect ratio after the graph has been drawn interferes with the message of the graph. It is most evident when both axes use the same units, but is visible even when the units are different.

                    The graph in Figure
                    L.2
                    does not honor the aspect ratio, and the graph becomes very hard to read. The width is stretched to twice its initial size and the height is left at the original height. As a consequence, the circles used as plotting symbols are stretched to ellipses. The font used for the labels is stretched to visually change the shapes of the letters. About half of the zero characters look like circles. The other half look different because the pixel break points are placed differently on the underlying letter shapes.
                  
[image: A77776_2_En_BookBackmatter_Figbq_HTML.gif]
Fig. L.2
                          The figure here is the same plot shown in Figure
                          L.1
                          panel b, this time with its
                          x
                          -dimension stretched. The circular glyphs are now ellipses. The thin numeral “0” are now circles. The vertical straight lines are even fuzzier than before.
                        




                    It is possible to damage the aspect ratio even with a good typographic system (I intentionally did so in Figure
                    L.2
                    using LaTeX). Under normal circumstances in LaTeX the aspect ratio is retained.
                  
It is too easy to damage the aspect ratio with a drag-and-drop editing system by stretching an image at the top, bottom, or sides of an image. It is also easy to maintain the aspect ratio when controlling the size of an image, by stretching only at the corners, and never stretching the top, bottom, or sides of an image.

L.2.3 Other Features

                    Other features to be aware of were discussed and illustrated in Chapter
                    4
                    and are summarized here.
                  

                    1.
                            In scatterplot matrices, a NW–SE main diagonal has a consequence of multiple axes of symmetry that interfere with easy reading. The (SW–NE) main diagonal (the defaul in
                            splom
                            has a single axis of symmetry both within and between panels. See the examples and discussion in Section
                            4.​7
                            for more detail.
                          

 

2.
                            The panels in a scatterplot matrix should be square to emphasize the equivalence of rows and columns. The intention of the scatterplot matrix is the comparison of
                            y ~ x with x ~ y
                            , and maintaining the same scale in both orientations facilitates the comparison of reflected panels. Compare Figures
                            4.​10
                            and
                            4.​11
                            .
                          

 

3.
                            Choice of plotting symbols, open circles, closed circles, other symbols (triangles, squares, etc), letters. See the itemized discussion in Section
                            4.​1
                          

 

4.
                            Choice of colors. See Section
                            4.​10
                            for discussion of color vision.
                          

 

5.
                            Location of ticks and labels inside or outside the panels. In scatterplot matrices, placing ticks and labels inside the main diagonal makes the frees more surface area for the panels themselves. Compare Figures
                            4.​10
                            and
                            4.​11
                            .
                          

 

6.
                            Space between panels. Compare Figures
                            4.​10
                            and
                            4.​11
                            .
                          

 



                  


L.3 English Writing Style

                  
                    
                  
                  1.
                          Check spelling
                          	Select the right homophone (words that sound alike): brake vs break. Both spellings will be accepted by a spell-checking program.

	
                                Learn to spell technical words correctly. The following words seem to be particularly liable to misspelling:
                                	separate: The fourth letter is “a”.

	correlation: The letter “r” is doubled.

	collinear: The letter “l” is doubled.

	stationary: not moving

	stationery: writing paper and envelopes

	symmetric: The letter “m” is doubled.

	asymmetric: The letter “s” is single.

	Tukey: John W. Tukey

	turkey: a bird




                              

	
                                “
                                p
                                -value” is preferred (with
                                p
                                in math italic). “P-value” is not OK (with “P” in uppercase roman).
                              

	Spell people’s names correctly and with proper capitalization (John W. Tukey, Dennis Cook).




                        

 

2.Punctuation.
“.” “:” “,” “;” always touch the preceding character. They always have a space after them.

 



                

L.4 Programming Style and Common Errors

                  
                    
                  
                

                  1.
                          Data entry: Use real variable names. The default variable names “
                          X
                          1
                          ” and “
                          X
                          2
                          ” carry no information. Variable names like “
                          height
                          ” and “
                          weight
                          ” carry information.
                        

 

2.Data entry: probably you don’t need to do that step. Don’t reenter by hand the numbers that you already have in machine-readable form.

 

3.
                          Use
                          dump("varname","")
                          to get ASCII versions of
                          R
                           variables that can be read back into
                          R
                           with no loss (of digits, labeling, attributes). The output from the dump can be copied into email and copied back from email. The output from the simpler print commands will frequently get garbled in email. See Table 
                          L.6
                          for an illustration where the original class of two of the columns is lost when we neglected to use the
                          dump
                          function.
                          Table L.6
                                  We construct a data.frame and then display it twice, once by typing the variable name, the second time by using the
                                  dump
                                  function. When we re-enter the typed text back to
                                  R
                                  , we lose the structure of the data.frame. When we re-enter the
                                  dumped
                                  structure, we retain the original structure.
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4.
                          The
                          R
                           function
                          splom()
                          for scatterplot matrices by default gives easy-to-read plots with a single axis of symmetry over the entire set of square panels. The
                          R
                           
                          pairs()
                          function (for all pairwise two-variable graphs) by default gives many conflicting axes of symmetry and rectangular panels. See Figure 
                          4.​12
                          and the accompanying discussion.
                        

 

5.
                          Analyze the experiment given you. Don’t ignore the block factor. Usually the block sum of squares is removed first, before looking at the treatment effects. In
                          R
                          , this is done by placing the block factor first in the model formula, for example, in Section 
                          12.​9
                          we use
                          aov(plasma
                          ~
                           id + time)
                          so the sequential analysis of variance table will read
                        

                          id
                        

                          time
                        

                          Residuals
                        

                          This way, in non-balanced designs, the sequential sum of squares for the treatment factor (
                          time
                          in this example) is properly adjusted for the blocking factor 
                          id
                          .
                        

 

6.
                          We normally recommend the use of the
                          R
                           command language, not a menu system, when you are learning the techniques. You will get
                          	much better-looking output

	more control

	the ability to reproduce what you did




                        

 

7.
                          When GUI point-and-click operations have been used to construct preliminary graphical (or tabular) views of the data, the commands corresponding to these operations are frequently displayed.
                          Rcmdr
                          for example displays the generated commands in its R
                          Script
                          window (see Figure 
                          C.14
                          for an example). These commands can then be used as components in the construction of more complex commands needed to produce highly customized graphs.
                        

 

8.
                          Store results of an
                          R
                           function call in a variable to permit easy extraction of various displays from the results. For example,
                        

                          [image: A77776_2_En_BookBackmatter_Figbi_HTML.gif]

                        

 

9.
                          Analysis of Variance
                          requires
                          that the classification factor be declared as a factor. Otherwise you will get a nonsense analysis. The wrong degrees of freedom for a treatment effect is usually the indicator that you forgot the
                          factor(treatment)
                          command in
                          R
                          .
                        

 

10.
                          The degrees of freedom for a problem always comes from the
                          Residual
                          or
                          ERROR
                          line of the ANOVA table. In multiple-stratum models, the Residual line in each stratum provides the comparison value (denominator Mean Square and degrees of freedom) for effects in that stratum.
                        

 

11.
                          Please use
                          par(mfrow=c(2,2))
                          (as illustrated above in item 8) for plotting the results of an
                          lm()
                          or
                          aov()
                          . That way the plot uses only one piece of paper, not four.
                        

 

12.
                          All comparable graphs must be on the same scale—on the same axes is often better. See Section 
                          17.​6.​2
                          , especially Figure 
                          17.​19
                          , for an example of comparable scaling in the top panels and noncomparable scaling in the bottom panels. See Figure 
                          4.​9
                          for comparable scaling in Panels a and b and noncomparable scaling in Panels c, d, and e.
                        

 



                

L.5 Presentation of Results

                  
                    
                  
                  
                    
                  
                
This list is designed for our classroom setting. It is more generally applicable.

                  1.
                          Use the minus sign “ − 4” in numbers. We do not accept hyphens “-4”. See Table 
                          L.4
                          .
                          
                            
                          
                        

 

2.
                          For multiple comparisons we can use the
                          MMC
                          (Section 
                          7.​2
                          ) default of Tukey pairwise comparisons. The
                          mmc
                          and
                          mmcplot
                          functions in the
                          HH
                          package are built on the
                          glht
                          function in the
                          multcomp
                          package.
                        

 

3.
                          We don’t do multiple comparisons of blocks. We know there are differences. That is why we chose to use that factor as a block, not as a treatment. See Section 
                          12.​6
                        

 

4.Write an experiment description that tells the reader how to reproduce the experiment.

 

5.
                          Distinguish between “bigger than the others” and “big”. The
                          plot.lm()
                          labels the three biggest points. It doesn’t care if they are significantly big. In Figure 
                          L.3
                          , for example, the
                          qqplot
                          of a regression of random noise, the usual three “largest” residuals are labeled, and none of the labeled residuals are big.
                          
                            
                          
                        

                          [image: A77776_2_En_BookBackmatter_Figbi_HTML.gif]
Fig. L.3
                                  qqplot
                                  of a regression of noise. The usual three “largest” residuals are labeled, and none of the labeled residuals are big.
                                




                        

 

6.
                          summary.lm(...)
                          doesn’t usually provide interesting information in designed experiments.
                          summary.aov(..., split=list())
                          is frequently interesting. The ANOVA table in Table 
                          12.​13
                          , for example, shows the partition of the 10-df “strain nested within combination” into two easily interpretable 5-df sums of squares, “strain within clover” and “strain within clover+alfalfa”. It is easy to interpret these partitioned sums of squares along with the interaction means at the bottom of Table 
                          12.​12
                          and in the upper-left panel of Figure 
                          12.​12
                        

                          Had we used
                          summary.lm
                          we would have gotten information in Table 
                          12.​15
                          on the regression coefficients for the dummy variables, and we would need to see the dummy variables in Table 
                          12.​14
                          for the coefficients themselves to make any sense.
                        

 

7.Always state the conclusions in the context of the problem.

 

8.
                          Please do not turn in impossible or illegal formatting. For example, the line breaks in the middle of words or character strings in Table 
                          L.7
                          are unacceptable.
                          Table L.7
                                  Impossible formatting in
                                  R
                                   output.
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9.Do not turn in lists or tables of data values in homework assignments. We know the data values. In the classroom situation we gave them to you. You may show a few observations to verify that you have read the data correctly. For example:

                          data(gunload)
                        

                          head(gunload)
                        

 

10.On the other hand, plots of the data are very interesting. We usually expect to see appropriate plots of the data (scatterplot matrix, interaction plots, sets of boxplots) and of the analysis.

 

11.We do not want a cover page for homework. This is our personal style. A class-full of essentially empty cover pages weighs too much and wastes paper.

 

12.Use spacing for legibility, for example:

                              abc<--5+3      
                          is hard to read.
                        

                              abc <- -5 + 3  
                          is easy to read.
                        

 

13.When you copy output, particularly by mouse from a document in a monowidth font to one with a default proportionally spaced font, make sure you keep the original spacing and indentation.

 

14.Short, complete answers are best.

 



                



                Appendix M Accessing
                R
                 Through a Powerful Editor —With
                Emacs
                 and
                ESS
                 as the Example
              

                
                  
                
                
                  
                
              

                This Appendix is a discussion of the use of a powerful editor and programming environment. We use
                Emacs
                 terminology and examples because we are most familiar with it—we use
                Emacs
                 with
                ESS
                 as our primary editing environment. One of us (RMH) is a coauthor of
                ESS
                .
              

                Much of the discussion applies with only small changes to use of many of the other high-quality editors. See Grosjean (
                2012
                ) for an annotated list (with links) of other editors that are used in programming
                R
                .
              

                Emacs
                 (Stallman, 
                2015
                ) is a mature, powerful, and easily extensible text editing system freely available under the GNU General Public License for a large number of platforms, including
                Linux
                ,
                Macintosh
                , and
                Windows
                .
                Emacs
                 shares some features with word processors and, more importantly, shares many characteristics with operating systems. Most importantly,
                Emacs
                 can interact with and control other programs either as subprocesses or as cooperating processes.
              

                The name “Emacs” was originally chosen as an acronym for
                Editor MACroS
                . Richard M. Stallman got a MacArthur genius award in 1990 for the development of
                Emacs
                .
                Emacs
                 comes from the Free Software Foundation, also known as the GNU project (GNU is Not Unix).
              

                Emacs
                 provides facilities that go beyond simple insertion and deletion: viewing two or more files at once (see Figures 
                M.1
                and 
                M.2
                ); editing formatted text; visual comparison of two similar files (Figure 
                M.1
                ); and navigation in units of characters, words, lines, sentences, paragraphs, and pages.
                Emacs
                 knows the syntax of each programming language. It can provide automatic indentation of programs. It can highlight with fonts or colors specified syntactic characteristics.
                Emacs
                 is extensible using a dialect of Lisp (Chassell, 
                1999
                ; Graham, 
                1996
                ). This means that new functions, with user interaction, can be written for common and repeated text editing tasks.
              

                ESS
                 (Mächler et al., 
                2015
                ; Rossini et al., 
                2004
                ) extends
                Emacs
                 to provide a functional, easily extensible, and uniform interface for multiple statistical packages. One of us (RMH) is a coauthor of
                ESS
                . Several of the other coauthors are members of R-Core, the primary authors of
                R
                 itself. Currently
                ESS
                 works with
                R
                ,
                S+
                ,
                SAS
                ,
                Stata
                ,
                OpenBUGS/JAGS
                , and
                Julia
                . The online documentation includes an introduction in file
                ESS/ess/doc/intro.pdf
                (an early version of Rossini et al. (
                2004
                )). Online help is available from within
                Emacs
                 and
                ESS
                .
              

                  M.1
                  Emacs
                   Features
                
M.1.1 Text Editing

                    
                      
                    
                    Most programming and documentation tasks fall under the realm of text editing. This work is enhanced by features such as contextual highlighting and recognition of special reserved words appropriate to the programming language in use. In addition, editor behaviors such as folding, outlining, and bookmarks can assist with maneuvering around a file. We discuss in Appendix K the set of capabilities we expect a text editing program to have.
                    Emacs
                     automatically detects mismatched parentheses and other types of common syntax and typing mistakes.
                  

                    Typesetting and word processing, which focus on the presentation of a document, are tasks that are not pure text editing.
                    Emacs
                     shares many features with word processing programs and cooperates with document preparation systems such as LaTeX (discussed in Section N) and
                    html
                    (discussed in Appendix E).
                  

                    We strongly recommend that students in our graduate statistics classes use
                    Emacs
                     as their primary text editor. The primary reason for this recommendation is that
                    Emacs
                     is the first general editor we know of that fully understands the
                    syntax
                    and formatting rules for the statistical language
                    R
                     that we use in our courses. Other editing systems designed to work with
                    R
                     are described and linked to in the webpage provided by Grosjean (
                    2012
                    ).
                    Emacs
                     has many other advantages (listed above), as evidenced by Richard Stallman having won a MacArthur award in 1992 for developing Emacs.
                  

M.1.2 File Comparison

                    Visual file comparisons are one of the most powerful capabilities provided by
                    Emacs
                    .
                    Emacs
                    ’
                    ediff
                    function builds on the standard
                    Unix
                     
                    diff
                    command and is therefore immediately available for
                    Linux
                    and
                    Macintosh
                     users.
                    Windows
                     users must first install
                    Rtools
                    and place
                    Rtools
                    in the
                    PATH
                    (see Section 
                    F.6
                    ).
                  

                    For a simple example, let us compare the current version of our
                    R
                     script for a homework exercise with the first version we started yesterday. Figure 
                    M.1
                    shows the comparison.
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Fig. M.1
                          ediff
                          of two similar files. All mismatches between the two files are detected and highlighted. The
                          ediff
                          control frame shows that we are currently in the third of three detected differences between the two files. The matching sections of the third chunk are highlighted in light pink in the top buffer and light green in the bottom buffer. The mismatching sections of the third chunk are highlighted in darker pink in the top buffer and darker green in the bottom buffer.
                        




M.1.3 Buffers

                    
                      
                      
                    
                  

                    Emacs
                     can work with many multiple files simultaneously. It brings each into a
                    buffer
                    . A buffer is copy of a file within the
                    Emacs
                     editor. Any editing changes made to the contents of a buffer are temporary until the buffer is saved back into the file system. A buffer can hold a file, a directory listing, an interactive session with the operating system, or an interactive instance of another running program.
                    Emacs
                     allows you to open and edit an unlimited number of files and login sessions simultaneously, running each in its own buffer. The files or login sessions can be local or on another computer, anywhere in the world. You can run simultaneous multiple sessions. The size of a buffer is limited only by the size of the computer. One of us (RMH) normally has several buffers visible and frequently has hundreds of open buffers (several chapters, their code files, their transcript files, the console buffer for
                    R
                    , help files, directory listings on remote computers, handouts for classes, and a listing of the currently open buffers).
                  

M.1.4 Shell Mode

                    
                      
                      
                    
                    Emacs
                     includes a
                    shell mode
                    in which a terminal interaction runs inside an
                    Emacs
                     buffer. The Unix terminology for the program that runs an interactive command line session is a “shell”. There are several commonly used shell programs:
                    sh
                    is the original and most fundamental shell program. Other
                    Unix
                     shell programs are
                    csh
                    and
                    bash
                    . The MS-DOS prompt window (
                    c:/Windows/System32/cmd.exe
                    ) is the native shell program in MS
                    Windows
                    . We usually use the sh included in
                    Rtools
                    as our shell under MS
                    Windows
                    .
                  

                    A terminal interaction running inside an
                    Emacs
                     buffer is much more powerful than one run in an ordinary terminal emulator window. The entire live login session inside an
                    Emacs
                     buffer is just another editable buffer (with full search capability). The only distinction is that both you and the computer program you are working with can write to the buffer. This is exceedingly important because it means nothing ever rolls off the top of the screen and gets lost. Just roll it back. The session can be saved to a file and then is subject to automatic backup to protect you from system crash or loss of connection to a remote machine.
                  

M.1.5 Controlling Other Programs

                    A shell running in an
                    Emacs
                     buffer is normally used to run another program (
                    R
                     for example). Frequently we can drop the intermediate step and have
                    Emacs
                     run the other program directly.
                    ESS
                     provides that capability for
                    R
                    . The advantage of running
                    R
                     directly through
                    Emacs
                     is that it becomes possible to design the interactivity that allows a buffer containing
                    R
                     code to send that code directly to the running
                    R
                     process.
                  

                    ESS
                     (see Section 
                    M.2
                    ) builds on shell mode to provide modes for interacting with statistical processes. The terminal interaction can be local (on the same computer on which
                    Emacs
                     is running) or remote (anywhere else).
                  



                  M.2
                  ESS
                

                  
                    
                  
                

                  Figure 
                  M.2
                  is a screenshot showing an interactive
                  Emacs
                   session.
                  Emacs
                   is a powerful program, hence the figure is quite dense. We discuss many of its components in the following subsections.
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Fig. M.2
                        Interaction with
                        R
                         process through
                        Emacs
                         with
                        ESS
                        . An
                        Emacs
                         frame with three buffers is shown on the left. The top buffer shows the
                        R
                         file
                        emacsDemo.R
                        that we are executing one line at a time. The cursor is at the end of the line
                        anova(fat.lm)
                        , with the closing right paren and its matching left paren highlighted together. The middle buffer
                        *R*
                        shows the
                        R
                         process with the printed result from the
                        anova(fat.lm)
                        command. The down arrow
                        [image: A77776_2_En_BookBackmatter_Figbw_HTML.gif]
                        in the left margin shows the beginning of the output from the most recently executed line. The bottom buffer
                        *help[R](lm)*
                        shows the help file from the
                        R
                         command
                        ?lm
                        . In the center is the
                        ESS
                         menu. On the right is the graph drawn by the
                        plot(fat.lm, 2)
                        statement. More detail on this figure is presented in Section 
                        M.2
                        .
                      




                  The discussion here is based on Rossini et al. (
                  2004
                  ).
                  ESS
                   provides:
                
M.2.1 Syntactic Indentation and Color/Font-Based Source Code Highlighting

                    The
                    ESS
                     interface includes a description of the syntax and grammar of each statistical language it knows about. This gives
                    ESS
                     the ability to edit the programming language code, often more smoothly than with editors distributed with the languages. The process of programming code is enhanced as
                    ESS
                     provides the user with a clear presentation of the code with syntax highlighting to denote assignment, reserved words, strings, and comments. The upper-left buffer (labeled
                    emacsDemo.R
                    ) in Figure 
                    M.2
                    contains an
                    R
                     script file. The mode-line for the buffer is in the “mode-line” face indicating that this is the active buffer. The mode-lines for the other, inactive, buffers in this figure are in the lighter-colored “mode-line-inactive” face. We can tell from the ** in the mode-line that the file is still under construction. Those two symbols would be replaced by -- once the file is saved.
                  

                    In order to illustrate syntactic indentation, we show the statement
                    fat.lm <- lm(bodyfat ~ abdomin, data=fat)
                    on two lines in Figure 
                    M.2
                    . When we entered the
                    <RET>
                    character after the comma,
                    Emacs
                     automatically indented the second line of the statement and placed the cursor aligned with the first character after the open paren.
                  

                    The assignment arrow, a keyword in the language, is detected and colored in the “constant” face. Comments indicated by “
                    ##
                    ” are colored in the “comment” face. The cursor, represented by a blinking “|”, is redundantly located by the (11,13) (indicating row and column in the file) in the mode-line. In this snapshot the cursor immediately follows a closing paren “)”, hence both the closing paren and its matching opening paren “(” are highlighted in the
                    paren-match
                    face. Mismatched parens, as in Figure 
                    M.3
                    , are shown in the
                    paren-mismatch
                    face.
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Fig. M.3Mismatched parens are shown in a glaring color to help protect the user from many types of typographical errors.




M.2.2 Partial Code Evaluation

                    Emacs
                    /
                    ESS
                     can send individual lines, entire function definitions, marked regions, and whole edited buffers from the window in which the code is displayed for editing to the statistical language/program for execution.
                    Emacs
                    /
                    ESS
                     sends the code directly to the running program and receives the printed output back from the program in an editable
                    Emacs
                     buffer (the
                    *R*
                    buffer). This is a major improvement over cut-and-paste as it does not require switching buffers or windows.
                  

                    We show this twice in Figure 
                    M.2
                    . The dropdown menu is set to show the various options on which subset of the buffer will be sent over. The menu also shows the key-stroke combinations that can be typed directly and thereby avoid using the menu at all. The cursor is on the line
                    anova(fat.lm)
                    and that line was sent over by this command.
                  

                    The
                    *R*
                    buffer has just received the command (the hooked down arrow
                    [image: A77776_2_En_BookBackmatter_Figbx_HTML.gif]

                    in the left margin shows the beginning of the output from the most recently executed line). The command and its output are displayed. In addition to receiving and executing lines sent over from the script file, the
                    *R*
                    buffer is also an ordinary
                    R
                     console and the user can type directly into the
                    *R*
                    buffer.
                  

                    ESS
                     facilitates the editing of files of
                    R
                     scripts by providing a means for loading and error-checking of small sections of code (as illustrated in Figure 
                    M.2
                    ). This allows for source-level debugging of batch files.
                  

M.2.3 Object Name Completion

                    In addition, for languages in the
                    S
                     family (
                    S
                     developed at Bell Labs,
                    S+
                     from TIBCO, and
                    R
                    )
                    ESS
                     provides object-name completion of user- and system-defined functions and data, and filename completion for files in the computer.
                  

M.2.4 Process Interaction

                    ESS
                     builds on
                    Emacs
                    ’s facilities to interface directly with the running
                    R
                     process. The output of the package goes directly to the editable
                    *R*
                    text buffer in
                    Emacs
                    .
                    Emacs
                     has historically referred to processes under its control as “inferior”, accounting for the name inferior
                    ESS
                     (
                    iESS
                    ) shown in the mode-line of the
                    *R*
                    buffer in Figure 
                    M.2
                    . This mode allows for command-line editing and for recalling and searching the history of previously entered commands. Filename completion, and object-name and function-name completion are available. Transcripts are easily recorded and can be edited into an ideal activity log, which can then be saved.
                    ESS
                     intercepts calls to the internal help system for
                    R
                     and displays the help files inside an
                    Emacs
                     buffer (see the bottom left buffer in Figure 
                    M.2
                    ).
                  

M.2.5 Interacting with Statistical Programs on Remote Computers

                    ESS
                     provides the facility to edit and run programs on remote machines in the same session and with the same simplicity as if they were running on the local machine.
                  

M.2.6 Transcript Editing and Reuse

                    Once a transcript log is generated, perhaps by saving an
                    iESS
                    buffer,
                    transcript
                    mode assists with reuse of part or all of the entered commands. It permits editing and re-evaluating the commands directly from the saved transcript. This is useful for demonstration of techniques as well as for reconstruction of data analyses. There currently exist functions within
                    ESS
                     for “cleaning” transcripts from the
                    R
                    ,
                    S+
                    , and
                    SAS
                     languages back to source code by finding all input lines and isolating them into an input file.
                  

                    By default transcript files (files with extensions
                    *.Rout *.rt *.Sout *.st
                    ) open into read-only buffers. The intent is to protect the history of your analysis sequence. If you need to make them writable, use
                    C-x C-q
                    .
                  


                    M.2.7 Help File Editing (
                    R
                    )
                  

                    ESS
                     also provides an interface for writing help files for
                    R
                     functions and packages (see Appendix F). It provides the ability to view and execute embedded
                    R
                     source code directly from the help file in the same manner as
                    ESS
                     normally handles code from a source file.
                    ESS Help
                    mode provides syntax highlighting and the ability to submit code from the help file to a running
                    R
                     process.
                  



                  M.3 Learning
                  Emacs
                

                  There are several ways to learn
                  Emacs
                  . Whichever you choose, it will give you access to the most comprehensive editing system.
                
M.3.1 GUI (Graphical User Interface)

                    Emacs
                     provides a GUI (graphical user interface) with dropdown menus (shown in Figure 
                    M.2
                    ) or with toolbar icons (not shown here). An excellent guide to menu-based
                    Emacs
                     usage, with the delightful title “
                    Emacs
                     has no learning curve:
                    Emacs
                     and
                    ESS
                    ”, is available in Johnson (
                    2015
                    ). Detailed help on
                    Emacs
                     is available from the Help dropdown menu item.
                  

M.3.2 Keyboard Interface

                    Emacs
                    , in its present incarnation, goes back to 1984. A precursor goes back to 1976. One of us (RMH) started using
                    Emacs
                     about 1990.
                    Emacs
                     was originally designed in a keyboard-only environment, long before mice and multi-windowed “desktop” environments. We still prefer the keyboard as it is faster (once learned) and has more capabilities than the menu-based GUI options. The dropdown menus themselves show the keyboard equivalents. For keyboard-based usage use one or more of
                  

                    1.
                            Tutorial. Enter “
                            C-h t
                            ”. Then read the file and follow the instructions. You are working with your own private copy of the
                            TUTORIAL
                            file, so you can practice the keystrokes as suggested.
                          

 

2.
                            Manual. The manual is online in the hyperlinked Info system. It can be accessed from the menu or by entering “
                            C-h i
                            ” to bring up the
                            Info:
                            buffer.
                          

 

3.
                            Help. You can search within the dropdown Help menu. Or, to find help apropos a topic, for example to answer the question “How do I save my current editing buffer to a file?”, enter “
                            C-h a save
                            RET
                            ” and get a list of all commands with
                            save
                            as part of their name. You probably want the command
                            save-buffer
                            and will see that you can use that command by typing “
                            C-x C-s
                            ” or by using the
                            files
                            pull-down menu.
                          

 

4.
                            Reference Card to
                            Emacs
                             keystroke commands. The
                            Emacs
                             reference card is in the directory accessed by
                            “C-h r C-x d../etc/refcards”
                            . The English card is in file
                            refcard.pdf
                            . Several other languages are also available as files with names
                            **-refcard.pdf
                            . Reference cards for other Free Software Foundation programs are also in the same directory.
                          

 



                  



                  M.4 Nuisances with
                  Windows
                   and
                  Emacs
                

                  
                    
                  
                  When
                  R
                   has been started by an ordinary user, as opposed to Administrator, then installed packages are placed into a personal library.
                  
                    
                  
                  
                    
                  
                  The
                  R
                   GUI under
                  Windows
                   uses the directory
                

                  "C:/Users/loginname/Documents/R/win-library/x.y"
                

                  as the location of your personal library. The *R* buffer inside
                  Emacs
                   uses
                

                  "C:/Users/loginname/AppData/Roaming/R/win-library/x.y"
                

                  as the location of your personal library. The notation
                  x.y
                  must be replaced by the first two digits of your current version of
                  R
                  . For example, with
                  R-3.3.0
                  ,
                  "x.y"
                  would become
                  "3.3"
                  . Neither will automatically see packages that were installed into the directory used by the other. You must tell it about the other directory.
                

                  You can tell the
                  R
                   GUI to use the additional directory with the statement
                

                  .libPaths(
                

                  "C:/Users/loginname/AppData/Roaming/R/win-library/x.y")
                
You can tell *R* to use the additional directory with the statement

                  .libPaths(
                

                  "C:/Users/loginname/Documents/R/win-library/x.y")
                

M.5 Requirements

                  Emacs
                   satisfies the requirements detailed in Section 
                  K.1.1
                  .
                  1.
                          ESS
                           provides full interaction between the commands file, the statistical process, and the transcript.
                        

 

2.
                          The statistical process runs in an
                          Emacs
                           buffer and is therefore fully searchable and editable.
                        

 

3.Cut and paste is standard.

 

4.
                          Emacs
                           comes with modes specialized for all standard computing languages (
                          C
                          ,
                          C++
                          ,
                          Fortran
                          ,
                          VBA
                          ).
                          ESS
                           provides the modes for
                          R
                           and
                          S+
                           (and for
                          SAS
                           and several others). Each mode by default highlights all keywords in its language, is aware of recommended indentation patterns and other formatting issues, and has communication with its associated running program.
                        

 

5.
                          Emacs
                           handles multiple files as part of its basic design.
                        

 

6.
                          Emacs
                           has a LaTeX mode, and therefore provides editing access to the best mathematical typesetting system currently available anywhere.
                        

 

7.
                          Emacs
                           has several text modes.
                        

 

8.
                          Several spell-check programs works with
                          Emacs
                          ; we use
                          ispell
                          .
                        

 

9.
                          Emacs
                           permits embedding of graphics directly into the
                          Emacs
                           buffer.
                        

 

10.Graphics in PDF, PostScript, and bitmap formats can be embedded into LaTeX documents.

 

11.
                          Emacs
                           includes encoding (Unicode) for all human languages. Enter C-H h to display the
                          HELLO
                          file, which lists many languages and characters.
                        

 



                

                  
                    
                  
                  
                    
                  
                


Appendix N LaTeX

                
                  
                
              

                We used LaTeX (Lamport, 
                1994
                ) as the document preparation system for writing this book. LaTeX knows all the intricacies of mathematical typesetting and makes it very easy to include figures and tables into the manuscript. LaTeX is the standard required by many statistics and mathematics journals. LaTeX can adapt to any standard style, such as those used by book publishers and journals, or you can write your own.
              

                The LaTeX document preparation system is written as a collection of macros for Donald Knuth’s TE X program (Knuth, 
                1984
                ). LaTeX adds to TE X a collection of commands that simplify typesetting by letting the user concentrate on the structure of the text.
              

                TE X is a sophisticated program designed to produce high-quality typesetting, especially for mathematical text. The TE X system was developed by Donald E. Knuth at Stanford University. It is now maintained by CTAN, the Comprehensive TE X Archiving Network (Comprehensive TE X Archiving Network, 
                2002
                ). There are several distributions available. We use MikTE X (Schenk, 
                2001
                ) on Windows and MacTE X (The TeX Users Group (TUG), 
                2014
                ) on Macintosh.
              

                The
                latex
                function in
                R
                 (Heiberger and Harrell, 
                1994
                ; Frank E Harrell et al., 
                2014
                ) may be used to prepare formatted typeset tables for a LaTeX document. Several tables in this book (8.1, 9.1, 12.4, 15.5, and 15.8) were prepared in this way.
              
N.1 Organization Using LaTeX
There are several ways to approach LaTeX. The way we used for this book was to write each chapter in its own file, and then combine them into book using the style file provided by our publisher Springer.

N.2 Setting Equations
This is equation 8.1 as we typed it:
\begin{eqnarray*}
y_i = \beta_0 + \beta_1 x_i  + \epsilon_i \cond{for $i=1,
      \dots,n$}
\end{eqnarray*}

                  This is how it appears when typeset:
                  [image: $$\displaystyle\begin{array}{rcl} y_{i} =\beta _{0} +\beta _{1}x_{i} +\epsilon _{i}\quad \mbox{ for $i = 1,\ldots,n$ }& & {}\\ \end{array}$$]



                


                  N.3 Coordination with
                  R
                

                  The Second Edition of this book was written using the
                  Sweave
                  and
                  Stangle
                  functions from the
                  utils
                  package. All
                  R
                   code is included within the LaTeX source for the book.
                  Stangle
                  reads the LaTeX input files, isolates from the input files the actual code that produced the tables and figures, and collects the code into the script files that are included with the
                  HH
                  package. See
                  help(Sweave, package="utils")
                  for details on writing using
                  Sweave
                  .
                

N.4 Global Changes: Specification of Fonts

                  In LaTeX, it is very easy to make global changes to a document style. For example, placing programs and transcripts into a
                  verbatim
                  environment takes care of the font. Should we later decide that we would like a different monowidth font, say “Adobe Courier” instead of the default “Computer Modern Typewriter”, we include the single statement
                  \renewcommand{\ttdefault}{pcr}
                  and then immediately ALL instances of the typewriter font will change. We illustrate in Table 
                  N.1
                  .
                  Table N.1
                          Switching the typewriter font (LaTeX command
                          \tt
                          ) in LaTeX from the default “Computer Modern Typewriter” to “Adobe Courier” and back.
                        


[image: A77776_2_En_BookBackmatter_Figby_HTML.gif]


                

                  Compare this simple change of a single specification in LaTeX to the more labor-intensive way of accomplishing the same task in a visual formatting systems (MS
                  Word
                  , for example). In a visual formatting system, programs and transcripts must be individually highlighted and then explicitly placed into Courier. Changing ALL instances of the typewriter font requires manually highlighting and changing EACH of them individually, one at a time.
                


Appendix O Word Processors and Spreadsheets

                
                  
                
                
                  
                
                
                  
                
                
                  
                
              
Word processing is moving sentences, paragraphs, sections, figures, and cross-references around. Most word processors can be used as a text editor by manually turning off many of the word processing features.
Spreadsheet software is used to operate on tables of numbers.

                Microsoft
                Word
                 and Microsoft
                Excel
                 are the most prevalent word processor and spreadsheet software systems. Most of what we say here applies to all such systems.
              
O.1 Microsoft Word

                  
                    
                  
                

                  Microsoft
                  Word
                   is probably the most prevalent text editor and word processor today.
                

                  MS
                  Word
                   is configured by default as a word processor. It can be used as a text editor by changing those default settings. The most critical features are the font and the paragraph reflow. Courier (or another monowidth font in which all letters are equally wide) should be used for program writing or for summary reports in which your displayed output from
                  R
                   is included. The software output from
                  R
                   is designed to look right (alignment and spacing) with monowidth fonts. It looks terrible, to the point of illegibility, in proportional fonts. See examples in Section 
                  A.4
                  and Appendix 
                  K.4.3
                  . Other word processor features to turn off are spell checking and syntax checking, both of which are designed to make sense with English (or another natural language) but not with programming languages.
                  
                    
                  
                

                  If you are using an editor that thinks it knows more than you, be very sure that the
                  *.r
                  ,
                  *.Rout
                  , and
                  *.rt
                  files are displayed in Courier and fit within the margin settings of the word processor.
                
O.1.1 Editing Requirements

                    MS
                    Word
                     satisfies some of the requirements detailed in Section 
                    K.1.1
                    .
                  

                    1.
                            MS
                            Word
                             can edit the commands file. It does not interact directly with the running statistical process; manual cut-and-paste is required.
                          

 

2.
                            The output from the statistical process is in a window independent of MS
                            Word
                            . The output can be picked up and pasted into an MS
                            Word
                             window.
                          

 

3.Cut and paste is standard.

 

4.
                            When checking is on, MS
                            Word
                             will by default inappropriately check computer programs for English syntax and spelling.
                          

 

5.
                            MS
                            Word
                             handles multiple files as part of its basic design.
                          

 

6.Reports can be written and output text can be embedded into them;

 

7.
                            MS
                            Word
                             has syntax and spell-checking facilities limited to the natural language (English in our case).
                          

 

8.
                            Graphics can be pasted directly into an MS
                            Word
                             document.
                          

 

9.
                            Mathematical formulas can be entered in an MS
                            Word
                             document.
                          

 

10.
                            SWord
                            and other connections between
                            R
                             and MS
                            Word
                            .
                          

 

11.
                            MS
                            Word
                             works with Unicode, providing access to all character sets in all human languages. On the
                            Insert
                            tab, click
                            Symbols
                            and then
                            More Symbols
                            . In the
                            font
                            box, find
                            Arial Unicode MS
                            .
                          

 



                  

                    
                      
                    
                  

O.1.2 SWord

                    
                      
                    
                    SWord
                    (Baier, 
                    2014
                    ) is an add-in package for MS
                    Word
                     that makes it possible to embed
                    R
                     code in an MS
                    Word
                     document. The
                    R
                     code will be automatically executed and the output from the
                    R
                     code will be included within the MS
                    Word
                     document.
                    SWord
                    is free for non-commercial use. Any other use will require a license. Please see Section 
                    D.1.3
                    for installation information.
                  


O.2 Microsoft Excel

                  
                    
                  
                  Microsoft
                  Excel
                   is probably the most prevalent spreadsheet program today.
                

                  We believe MS
                  Excel
                   is well suited for two tasks: as a small-scale database management system and as a way of organizing calculations. We do not recommend
                  Excel
                   for the actual calculations.
                
O.2.1 Database Management

                    R
                     (and
                    S+
                     and
                    SAS
                    ) can read and write
                    Excel
                     files. Since many people within an organization collect and distribute their data in
                    Excel
                     spreadsheets, this is a very important feature.
                  

O.2.2 Organizing Calculations

                    R
                     can be connected directly to
                    Excel
                     on
                    Windows
                     via
                    RExcel
                     (Baier and Neuwirth, 
                    2007
                    ) using
                    DCOM
                    , Microsoft’s protocol for exchanging information across programs. See Appendix D for further details and for download information. Used in this way,
                    Excel
                     can be used similarly to the ways that
                    Emacs
                     and MS
                    Word
                     are used.
                    Excel
                     can be used to control
                    R
                    , for example by putting
                    R
                     commands inside
                    Excel
                     cells and making them subject to automatic recalculation. Or
                    R
                     can be in control, and use
                    Excel
                     as one of its subroutines.
                  

O.2.3 Excel as a Statistical Calculator

                    We believe
                    Excel
                     is usually a poor choice for statistical computations because:
                  

                    1.As of this writing (Excel 2013 for Windows and Excel 2011 for Macintosh) at least some of the built-in statistical functions do not include even basic numerical protection.

                            Table 
                            O.1
                            and Figure 
                            O.1
                            show the calculation of the variance of three numbers by
                            R
                            ’s
                            var
                            function and
                            Excel
                            ’s
                            VAR
                            function. Figure 
                            O.1
                            shows a simple set of variance calculations where
                            Excel
                             reveals an algorithmic error. We show the erroneous number as a hex number in Table 
                            O.2
                            . For comparison, Table 
                            O.1
                            shows the correct calculations by
                            R
                            .
                            
                              
                            
                            
                              
                            
                            
                              
                            
                            
                              
                            
                          

                            [image: A77776_2_En_BookBackmatter_Figbm_HTML.gif]
Fig. O.1
                                    Calculation of the variance by
                                    Excel
                                     for the sequence (10
                                    
                                      k
                                    
                                    ) + 1, (10
                                    
                                      k
                                    
                                    ) + 1, (10
                                    
                                      k
                                    
                                    ) + 1 for several values of
                                    k
                                    . The real-valued result for all values of
                                    k
                                    is exactly 1. The
                                    [image: $$2.833 \times \mbox{ 10}^{22}$$]
                                    value shown for
                                    k
                                     = 27 is the indication of an erroneous algorithm in
                                    Excel
                                    . We see this for
                                    Excel
                                     2013 on
                                    Windows
                                     and
                                    Excel
                                     2011 on
                                    Macintosh
                                    . The floating point result for
                                    k
                                     = 0: 15 is exactly 1 as shown. The correct floating point result for all
                                    k
                                     > = 17 is exactly 0. The floating point value 4 for
                                    k
                                     = 16 is correct. We illustrate the correct floating point behavior in Section 
                                    G.12
                                    . Table 
                                    O.2
                                    shows the hexadecimal display for the erroneous value.
                                  




                            Table O.1
                                    Calculation of the variance by
                                    R
                                     for the sequence (10
                                    
                                      k
                                    
                                    ) + 1, (10
                                    
                                      k
                                    
                                    ) + 1, (10
                                    
                                      k
                                    
                                    ) + 1 for several values of
                                    k
                                    . The real-valued result for all values of
                                    k
                                    is exactly 1.
                                    R
                                     gets the correct floating point variance for all values of
                                    k
                                    . The floating point result for
                                    k
                                     = 0: 15 is exactly 1. The floating point value 4 for
                                    k
                                     = 16 is correct. The floating point result for
                                    k
                                     > = 17 is exactly 0. We illustrate the correct floating point behavior in Section 
                                    G.12
                                    .
                                  


[image: A77776_2_En_BookBackmatter_Figbz_HTML.gif]


                            Table O.2
                                    The first statement shows the hex display of the number
                                    Excel
                                     shows in Figure 
                                    O.1
                                    as the result of
                                    [image: $$\mathop{\mbox{ var}}(\mbox{ 10}^{27} + 1,\mbox{ 10}^{27} + 2,\mbox{ 10}^{27} + 3)$$]
                                    . It is very close to a pretty hex number suggesting that there is a numeric overflow somewhere in the algorithm. The second statement shows the hex display of the three input numbers. They are all identical to machine precision.
                                  


[image: A77776_2_En_BookBackmatter_Figca_HTML.gif]


                          

                            Earlier versions of MS
                            Excel
                             got different wrong answers for the variance of three numbers. Most notably MS Excel 2002 gets the right answer for
                            [image: $$\mbox{ 10}^{7}$$]
                            and the wrong answer for
                            [image: $$\mbox{ 10}^{8}$$]
                            , suggesting that it was using the numerically unstable one-pass algorithm. Later releases got different sets of wrong answers.
                          

 

2.Most add-in packages are not standard and are not powerful. If add-ins are used along with an introductory textbook, they will most likely be limited in capability to the level of the text. They are unlikely to be available on computers in a work situation.

                            RExcel
                             is an exception. It uses
                            R
                             from the Excel interface and therefore has all the power and generality of
                            R
                            .
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AIC
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alias
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time series
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analysis of variance
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> vocab.t <= t.test(vocab§score, mu=10)
> vocab.t
One Sample t-test

data: vocab$score
t = 10.08, df = 53, p-value = 6.372-14
alternative hypothesis: true mean is mot equal to 10
95 percent confidence interval:
12.30 13.44
sample estimates:
mean of x
12.87
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> plasna.aov <- aov(plasma ~ Error(id) + time, data=plasma)
> sumnary (plasma.aov)

Erro:

i
Df Sun Sq Mean Sq F value Pr(>F)
Residuals 9 10593 1177

Error: Within

Dt Sun Sq Mean Sq F value Pr(>F)
time 4 2804 701.0 4.754 0.00349 =
Residuals 36 5308 147.5

0 es? 0.001 ’4x’ 0.01 ’%’ 0.05 *.% 0.1’ 1
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> catalystm.mc <-
+  mmc(catalystat.aov,

+ linfct = mcp(catalyst = "Tukey"),
+ focus. Imat=catalystn. lnat)

> catalystn.mmc
Tukey contrasts
Fit: aov(formula = concent
Estinated Quantile = 2.966
95% family-wise confidence level
$mca

estimate stderr  lower upper height
A-B 1.125 1.138 -2.251228 4.501 56.34
A-C 3.667 1.239 -0.008905 7.342 55.07
B-C  2.542 1.296 -1.302338 6.386 54.50
A-D
BD

catalyst, data = catalystm)

5.775 1.133 2.398772 9.151 54.01
4.650 1.200 1.091143 8.209 53.45
C-D  2.108 1.296 -1.735671 5.952 52.18

estimate stderr lower upper height
A 56.90 0.7590 54.65 §9.15 56.90
B 55.77 0.8485 53.26 58.29 55.77
C 53.23 0.9798 50.33 56.14 53.23
D 51.12 0.8485 48.61 53.64 51.12
$:

estinate stderr lower upper height
A-B 1.125 1.138 -2.251 4.501 56.34
ABD-C  1.367 1.088 -1.860 4.594 53.92
AB-D  5.212 1.022 2.182 8.243 53.73
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> drunk.chisq <- chisq.test (drunk)
> drunk.chisq
Pearson’s Chi-squared test

data: drunk
X-squared = 15.25, df = 4, p-value = 0.004217

> drunk. chisqSobserved
age

sex 0-29 30-39 40-49 50-59 >=60

males 185 207 260 180 71

females 4 13 10 7 10

> drunk. chisqSexpected
age

sex 0-20 30-39 40-49 50-59  >=60

males  180.219 209.78 257.46 178.312 77.237

fomales 8.781 10.22 12.54 8.688 3.763

> drunk.chisqSresiduals  ## cell chi values
age

sex 0-29  30-39 4049 50-59  >=60

males  0.3562 -0.1918 0.1586 0.1264 -0.7096

fomales -1.6135 0.8690 -0.7185 -0.5728 3.2148

> drunk.chisq$residuals™2 ## cell chi-square values
age

sex 0-20  30-39  40-49  50-59  >=60

males  0.12686 0.03679 0.02516 0.01599 0.50357

fomales 2.60344 0.75512 0.51626 0.32814 10.33473
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> model. tables (yatesppl.aov, typ
Tables of means

“means")
Grand mean
104

variety
variety

p 2 3
97.63 104.50 109.79

nitrogen
nitrogen

1 2 3 4
79.39 98.89 114.22 123.39

variety:nitrogen
nitrogen

variety 1 2 3 4
1 71.50 89.67 110.83 118.50
2 80.00 98.50 114.67 124.83
3 86.67 108.50 117.17 126.83

> model. tables(yatesppl.aov, typs
Tables of effects

effects”, se=TRUE)

variety
variety

1 2 3
-6.347 0.528 5.819

nitrogen
nitrogen

1 2 3 4
-24.583 -5.083 10.250 19.417

variety:nitrogen
nitrogen

variety 1 2 3 4
1-1.542 -2.875 2.958 1.458
2 0.083 -0.917 -0.083 0.917
3 1.458 3.792 -2.875 -2.375

Standard errors of effects
variety nitrogen variety:nitrogen

5.008  3.137 5.433

replic. 2 18 6
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> e, (.3+.6)
11 0.9 0.9

> .9 (34 .6)
(1] FALSE

>.9-(3+.6)
1] 1.1te-16

> identical(.9, (.3 + .6))
[1] FALSE

> all.equal(.9, (.3 + .6))
(1] TRUE
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> aovStatementhndhnova(T.C)
> anova(aov(Sodiun. Calories ~ Type, data = hotdog))
Analysis of Variance Table

Response: Sodiun.Calories

Df Sun Sq Mean Sq F value Pr(>F)
Type 2 368463 184232 61.3 2.70-14 wax
Residuals 51 153331 3006

Signif. codes: 0 ’wxx’ 0.001 '+’ 0.01 ’+’ 0.05 *.° 0.1° * 1
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> weightloss.dunnett <-
+ glht(veightloss.aov,

+ linfct=ncp(group=

+ contrMat (table (veightlossSgroup) , base=4)),
+ alternative = "greater")

conf int (veightloss.dunnett)
Simultaneous Confidence Intervals

Multiple Comparisons of Means: User-defined Contrasts

Fit: aov(formula = loss  group, data = weightloss)

Quantile = -2.222
95 family-wise confidence level

Linear Hypotheses:

Estimate lur  upr
A-D<=0278000 1.78949  Inf
B -D<=01.7500 0.75949  Inf
C - D<=01.00000 0.00949  Inf
E - D<= 0290000 1.90949  Inf
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data(batch)

buplot(Calcium ~ Batch, data<batch, groups=Batch,
panel-panel . buplot . superpose, xlabs"Batch")

> batchi.aov <- aov(Calciun ~ Batch, data=batch)

> anova(batchi.aov)
Analysis of Variance Table

Response: Calciun

Dt Sun Sq Mean Sq F value Pr(>F)
Batch 4 0.0070 0.02424  5.54 0.0036 ++
Residuals 20 0.0876 0.00438

Signif. codes: O ’wwx’ 0.001 '++’ 0.01 *+’ 0.05 *.° 0.1° * 1
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a. Design arranged to show the Latin square structure.
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cou 1
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peried 2 BCA CAB
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b. Design and data arranged by observation.

period square sequence cow treat yield nores restreat

1 1 11 A 30 0
1 1 2 2 B 19 0 0
1 1 3 3 C 121 0 0
1 2 14 A 8 0 0
1 2 2 5 B 0 0
1 2 3 6 C 101 0 0
2 1 11 B 21 A
2 1 2 2 ¢ s 1 B
2 1 303 A T2 1 c
2 2 14 Cc o 11 A
2 2 2 5 A 3 1 B
2 2 36 B 6 1 c
3 1 11 oCc 151 B
3 1 2 2 A 3 1 c
3 1 3 3 B 2 1 A
3 2 14 B a6 1 c
3 2 2 5 C 3 1 A
3 2 36 A [ B
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## Look at the contrasts, their generated dummy variables,
## and their regression coefficients.

## Abbreviate their names for presentation.

tmp <- abbreviate(names(coef (rhiz.clover.nest.aov)))

## tap

## contrasts(rhiz.clover$conb)
## contrasts(rhiz.clover$strain)

cnx < aov(Npg ~ comb/strain, data=rhiz.clover, x=TRUE)$x
> dimnames(cox) [[2]] <- tap
> ## cnx

> cnx[seq(1,60,6), c(1,2, 3,5,7,9,11)]
(In) cab+ c:3D05 c:3004 c:3D07 c:3001 cm:.

11 o o 0 o [
6 1 o0 1 0 0 o o
o1 0 0 1 0 o o
6 1 0 o 0 1 [
21 1 0 0 0 0 10
2% 1 0 0 0 0 o 1
a1 11 0 0 0 o o
% 1 1 0 0 0 o o
a1 1 o 0 o [
% 11 0 0 0 o o
51 1 1 0 0 0 [
6 1 1 0 0 0 o o

> cnx[seq(1,60,5), c(4,6,8,10,12)]
€+:3005 c+:3D04 c+:3D07 c+:3D01

1 o 0 0 o o
6 0 0 0 o o
1 0 0 0 o o
16 0 0 0 o o
21 0 0 0 o o
2 0 0 0 o o
31 0 0 0 o o
36 1 0 0 o o
a1 0 1 0 o o
6 0 0 1 o o
51 0 0 0 10
56 0 0 0 o 1
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> c(100, 1e-10)
[1] 10402 1e-10

> zapsmall(c(100, 1e-10))
[ 100 o
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> wilcox. test (balancessway [balanceSage=="young"],
. balanceSsway [balanceSage=="01d"],
+ alternative="less", exact=FALSE)

Wilcoxon rank sum test with continuity correction

data: balance$svay[balanceSage == "young"] and
balance$sway [balancesage == "old")

W = 13, p-value = 0.01494

alternative hypothesis: true location shift is less than 0
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my
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>my

w

> acs

w

This function illustrates the definition of the pact
Do NOT use in actual calculations!

my.pact requires a detrended series, otherwise the answer is
nonsense, as it starts losing precision after the first few lags.

_pact < function(z, k=) {
z <- z - mean(z)

x <~ ts.intersect(z, lag(z,~1)

if (k==1) return(cor(x[,1], x[,21))

for (ki in 2:%) x < tointersect(x, lag(z, k)
nr <= nrow(x)

ne <- neol(x)

r1 <= In(x[,1] " -1 + x[,-¢(1,n0)])$resid
2 <= Im(xl,ne] - -1 + x[,-¢(1,nc)])$resid
cor(r1,x2)

.pact (ozone.subset, 2)
-0.2665

£ (ozone. subset, type="partial", plot=FALSE)Sact(2]
-0.2583
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## dummy variable

> htutb.ln <- lm(ht ~ treat, data=htut)
> sumnary(htutb.ln, corr=FALSE)
Gall:
ln(formula = ht ~ treat, data = htwt)
Residuals:

Min 10 Median 30  Max

938 2202 0.533 2.062 5.062

Coefficients:

Estimate Std. Error ¢ value
(Intercept) ~ 67.202 0.493 136.40
treat 735 0.493  -5.55

Signif. codes: 0 ’wxx’ 0.001 '+’ 0.01

PrGlel)
< 2e-16 wee
2.50-06 *+%

0.05 7.

htwtStreat <- (htutSsex == ") - (htutSsex == "m")

v

Residual standard error: 3.03 on 37 degrees of freedom

Multiple R-squared: 0.454,Adjusted R-squared:

0.44

F-statistic: 30.8 on 1 and 37 DF, p-value: 2.54e-06

> anova(htwtb.1n)
Analysis of Variance Table

Response: ht

Df Sun Sq Mean Sq F value Pr(>F)
treat 1 282 2823 30.8 2.50-06 wex

Residuals 37 339 9.2

Signif. codes: 0 ’wxx’ 0.001 '+’ 0.01

0.05 7.

v

1

1
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> vartwo(xx84[,"15"])
1 mpfr’ number of precision 54 bits
S

> ## urong answer. numbers were shifted one binary position.
> vartwo(xx54[,"16"])

1 mpfr’ number of precision 54 bits

2.5

> ## vartuoC protects against that problem and gets the right answer.
> vartwoC(xx84[,"16"])
1 mpfr’ number of precision 54 bits

SV

> sun(xx64[1:2,"16"])
1 mpfr’ number of precision 54 bits
[1] 20000000000000004

## Adding the first tuo numbers effectively doubled the numbers which
## means the significant bits were shifted one more place to the left.
## The first value vas rounded up. Looking at just the last three bytes
## (uhere the last three bits are guaranteed 0):

8 +0x008p53 + 0x010p53 -> +0x010p53 + 0x010p53 ~> +0x020p53

sun((xx54) [1:3,16"1) ## too high
‘mpfr’ number of precision 54  bits
1] 30000000000000008

> sum((xx54) [3:1,"16"]) ## too low
1 mpfr’ number of precision 54 bits
[1] 30000000000000004

> sun((xx84) [c(1,3,2),"16"]) ## just right
1 'mpfr’ number of precision 54 bits
(1] 30000000000000006
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> stem(vocab$score, scale=2)

The decimal point is at the |

910

10 | 0000

11 | 0000000000000
12 | 0000000
13 | 000000000
14 | 000000000
15 | 0000

16 | 00000
1710

18 |

1910
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> X.loop(["1","1"]]

cal1:
arima(x = x, order = c(1, 0, 1))

Coetficients:
arl  mat intercept
0.430 0.522  -0.263

s.e. 0.111 0.101 0.208

signa*2 estimated as 1.27: log likelihood = -154.3,

aic = 316.7
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> anova(aov(yield.block ~ pre.block + treat, data = apple))
Analysis of Variance Table

Response: yield.block

Dt Sun Sq Mean Sq F value Pr(>F)
pre.block 1 15944 15944  69.76 20-07 #x
treat 5 4353 671  3.81 0.017
Residuals 17 3885 229

Signif. codes: 0 ’wxx’ 0.001 '+ 0.01 '+’ 0.05 *.7 0.1° * 1
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> Y.loop(["1","1"]]

call:
arima(x = x, order = c(1, 0, 1))

Coetficients:
arl  mat intercept
0.419 -0.052 0.032
s.e. 0.210 0.222 0.165

signa*2 estimated as 1.03: log likelihood = -143.6,

aic = 205.3
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## LD25 LDSO LDTS
xp.M <= MASS: :dose.p(budworn.1g0, cf = ¢(2,3), p = 1:3/4)

xp.
Dose  SE

=0.25: 1.197 0.2635
= 0.50: 2.229 0.2260
0.75: 3.262 0.2550

xp.F <- MASS: :dose.p(budvorn. 1g0, of = c(1,3), p = 1:3/4
w.F
Dose  SE
= 0.25: 2.231 0.299
0.50: 3.264 0.2298
= 0.75: 4.296 0.2747
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> longleys.lm <- lm(Eaployed
+ Unemployed + Armed.Forces + Year,
+ data=longley)

> sumnary (longleys. 1m)

ca11:
In(fornula = Eaployed -~ Unemployed + Armed.Forces + Year,
data = longley)

Residuals:
Min 10 Median 3Q  Max
-0.5729 -0.1199 0.0409 0.1398 0.7530

Coetficients:
Estimate Std. Error t value Pr(>It|)
(Intercept) -1.80e+03 6.86e+01 -26.18 5.9e-12 *i*
Unemployed ~-1.47e-02  1.67e-03 -8.79 1.4e-06 *xx
Armed.Forces ~7.72e-03  1.84e=03 -4.20 0.0012 **
Year 9.56e-01 3.55e-02 26,92 4.2e-12 s+

0 xss? 0.001 ’4x’ 0.01 ’%’ 0.05 *.’ 0.1 * 1

Residual standard error: 0.332 on 12 degrees of freedom
Multiple R-squared: 0.993,Adjusted R-squared: 0.991
F-statistic: 555 on 3 and 12 DF, p-value: 3.92e-13

> anova(longleys.1n)
Analysis of Variance Table

Response: Employed
Df Sun Sq Mean Sq F value PrOF)

Unemployed 1 46.7  46.7 424 1.0e-10 sxx
Armed.Forces 1 57.0  57.0 517 3.1e-11 #xx
Year 179.9  79.9 725 4.2e-12 ek
Residuals 12 1.3 0.1

0 kes? 0.001 ’4x’ 0.01 ’%’ 0.05 *.% 0.1’ 1

> vif(longleys.1n)
Unemployed Armed.Forces Yoar
3.318 2.223 3.891
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> ## one sided
> alpha <= .05

> pover <- .80
> beta <= 1-pover

> delta <= 1

>ed <2

> ## Approximation using fornula assuming normal is appropriate
> sd°2+(quorn(1-alpha) + quorm(i-beta))"2 / delta2

(1] 24.73

> w8 (1] 24.73

> ## n is slightly smaller with the normal assumption.
>
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> anova(aov(yield.block = block + pre.block + treat, data=apple))
Analysis of Variance Table

Response: yield.block
Df Sun Sq Mean Sq F value Pr(>F)

block 3 o 0 0.00 1.000
pre.block 1 15944 15944  57.45 2.60-06 #as
treat 5 433 &71  3.14  0.082 *

Residuals 14 3885 278

Signif. codes: 0 ’wxx’ 0.001 '+ 0.01 '+’ 0.05 *.7 0.1° * 1
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> anova(aov(yield - block + pre + treat, data = apple))
Analysis of Variance Table

Response: yield

Df Sun Sq Mean Sq F value Pr(>F)
block 3 47853 15951 80.82 7.9e-07 sk
pre 115944 15944  80.78 8.60-06 ix
treat 5 4353 871 441 0.026 +
proitreat 5 2109 422 2.14 0.152
Residuals 9 1776 197

Signif. codes: 0 ’+xx’ 0.001 '+ 0.01 '+’ 0.05 *.7 0.1 7 * 1






OEBPS/A77776_2_En_14_Fig17_HTML.gif
il

¢EJE]H = i
B J = E]E %
TH_ || = T V:m: —_—

ool

i

4|

i






OEBPS/A77776_2_En_10_Fig1_HTML.gif
H [* »
N Fn
Y l ht o
B AR
Lnse £ o oomm
sex
§ w4 s
h ale
-, female o
i i
42
F I
[
o |






OEBPS/A77776_2_En_9_Fige_HTML.gif
> data(hardness)

hardness.1in.1n <- lu(hardness - density,
+ data=hardness)

> anova(hardness.1in.1m)
Analysis of Variance Table

Response: hardness

Df Sun Sq Mean Sq F value Pr(>F)
density 121345674 21345674 637 <2e-16 wex
Residuals 34 1139366 33511

0 es? 0.001 ’4x’ 0.01 ’%’ 0.05 *.% 0.1’ 1

> coef (summary. ln(hardness. 1in.1m))

Estimate Std. Error t value Pr(>|tl)
(Intercept) -1160.50  108.580 ~-10.69 2.066e-12
density 57.51 2.279  25.24 1.333e-23

> b2 <- data.frame(density=hardness$density, poly(hardness$density, 2))

> xyplot(Xi + X2 ~ demsity, data=h2) ## graph not shown in book

hardness.quad.orth.ln <- lm(hardness - density + h2$X2,
+ data=hardness)

> anova(hardness..quad. orth. 1n)
Analysis of Variance Table

Response: hardness

Df  Sun Sq Mean Sq F value Pr(>F)
density 121345674 21345674  815.9 <20-16 ++
128X2 1 276041 276041  10.6 0.0027 x
Residuals 33 863325 26161

0 es? 0.001 ’4x’ 0.01 ’%’ 0.05 *.’ 0.1’ 1

> coef (summary. ln(hardness.quad. orth. 1n))
Estimate Std. Error t value Pr(>|tl)
(Intercept) -1160.50  95.937 -12.096 1.125e-13
density 57.51 2.013 28.564 7.528e-25
2$X2 §25.40  161.745 3.248 2.669e-03
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bad: names(tv) <- c("life.exp","ppl.per.tv","ppl.per.phys",
"fem.life.exp","male.life.exp")

good: names(tv) <- c("life.exp",
"ppl.per.tv",
"ppl.per.phys",
"fem.life.exp",
"male.life.exp")
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> elnino. loop <- arma.loop(elnino, order=c(2,1,2))

> elnino.loop
$series
[1] "elnino”

$model
1l "(p,1,)"

$signa2

o 1 2
00,8333 0.6740 0.6707
1 0.7250 0.6708 0.6707
20,6925 0.6704 0.6678

Saic

o 1 2
0 1210 1116 1116
1 1149 1116 1118
2 1130 1118 1118

Scoef

ar1 ar2  mat ma2
0,1,0) A A A [y
(1,1,0) -0.36153 NA A N
(2,1,0) -0.43720 -0.21245 A N
©,1,1) A NA -0.5258 iy
(1,1,1) 0.12397 NA -0.6127 N
(2,1,1) 0.07603 -0.04306 -0.5625 [y
©,1,2) A NA -0.4868 -0.06870
(1,1,2) -0.02671 NA -0.4604 -0.08237

(2,1,2) 0.73112 -0.23604 -1.2121 0.48199

$t.coef

art a2 mal  ma2
0,1,0) A Iy A N
(1,1,0) -8.2319 A A N
(2,1,0) -9.5122 -4.6147 A A
©,1,1) A A -12.492 Iy
(1,1,1) 1.4328 NA -8.944 N
(2,1,1) 0.6434 -0.5906 ~-5.099 NA
©,1,2) A A -10.391 -1.4911
(1,1,2) -0.0642 NA -1.115 -0.3805

(2,1,2) 3.0449 -2.0250 -5.266 2.6781
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> notten. loop[["1","0"]]

canl:
arima(x = x, order = c(1, 0, 0), seasonal
period = 12), method = "ML")

list(order = c(2, 1, 0),

Coefficients:
arl  sarl  sar2
0.286 -0.860 -0.296

s.e. 0.064 0.064 0.067

signa2 estimated as 5.7:

log likelihood = -626.6, aic = 1061
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> crash.aov <- aov(crashrate

agerange + passengers, dat:

> summary(crash.aov)

Df Sun Sq Mean Sq F value Pr(>F)
agerange 2 17.943  8.971 7.238 0.0252 %
passengers 3 6.230 2.077 1.675 0.2701
Residuals 6 7.437 1.239

Signif. codes: O ’wxx’ 0.001 '+’ 0.01 *+’ 0.05 *.° 0.1° * 1
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> data(catalysta)
> catalystn.aov <- aov(concent ~ catalyst, data=catalystm)

> anova(catalysta.aov)
Analysis of Variance Table

Response: concent

DE Sum Sq Mean Sq F value PrOF)
catalyst 3 85.7 28.56  9.92 0.0014 *x
Residuals 12 34.6 2.8

Signif. codes:
0 74447 0.001 ’*x? 0.01 ' 0.05 7.7 0.1 7’ 1

> model. tables (catalysta. aov)
Tables of effects

catalyst
A B ¢ »p

2.412 1.287 -1.254 -3.362
ep 5.000 4.000 3.000 4.000
> Proj <- proj(catalystn.aov)

> Proj <-cbind(Proj, Sum=apply(Proj, 1, sun))

> proj
(Intercept) catalyst Residuals Sua

1 54.49  2.412  1.3000 56.2
2 54.49  2.412  0.3000 §7.2
3 54.49  2.412  1.5000 58.4
4 54.49  2.412  -1.1000 55.8
5 54.49  2.412  -2.0000 54.9
6 54.49  1.287  0.5250 56.3
7 54.49  1.267 -1.2750 54.5
8 54.49  1.287  1.2250 §7.0
9 54.49  1.287  -0.4750 55.3
10 54.49 -1.254 -3.1333 50.1
1 54.49 -1.254  0.9667 54.2
12 54.49  -1.254  2.1667 55.4
13 54.49 -3.362  1.7750 52.9
14 54.49  -3.362 -1.2250 49.9
15 54.49 -3.362 -1.1250 50.0
16 54.49  -3.362  0.5750 51.7

> apply(Proj, 2, function(x) sun(x"2))
(Intercept)  catalyst Residuals Sun
47502.20 85.68 3456 47622.44
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varone <- function(x) {
n <= length(x)
xbar <- mean(x)
(sun(x"2) - nwxbar~2) / (a=1)

b

x < 1:3

> varone(x)
1

> varone (x+10°7)

w1

> ## half machine precision
> varone(x+10°8)
o

> varone (x+10°15)
o

> ## boundary of machine precision
>

> varone(x+10°16)

o

> varone (x+10°17)
o

vartwo <~ function(o) {
n < length()
xbar <- mean(x)
sun(Geexbar)“2) / (a-1)
¥

x < 1:3

> vartwo(x)
SR

> vartwo(x+10°7)
m

> ## half machine precision
> vartuo(x+10°8)

o1

> vartuo(x+10°15)
1

> ## boundary of machine precision
> ## See next table.

> vartuo(x+10°16)

(S

> vartwo(x+10°17)
oo
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> ccl76t <- cci76

for (i in names(ccl76t))
if (is.factor(cc176t[[111))
contrasts(cc176t[[1]]) <
contr . treatment (Length(levels(cc176t[[111)))

> sapply(cci7ét, class)
Sut.d
(1] "nuneric"

Sut.n
[1] "numeric*

$n.treats
[1] "positioned" "ordered"  "factor"

$current
[1] "positioned” "ordered"  "factor"

S$minutes
[1] "positioned” "ordered  "factor"

srep
[1] "factor”
> cci76t.aov <- aov(vt.d ~ rep + wt.n + n.treats + wt.necurrent,

+ data=cc176t)

> sumary(cci76t.aov)
Df Sum Sq Mean Sq F value Pr(>F)

rep 1 605 605 14.19 0.00030 *+%
wt.n 11334 1334 31.29 2.6-07 *ax
n.treats 2 439 219 5.15 0.00776 *x
current 3 2114 705 16.53 1.50-08 *xx
wt.nicurrent 3 867 289  6.78 0.00038 wxx
Residuals 85 3624 43

0 ex? 0.001 ’#x’ 0.01 ’%’ 0.05 *.’ 0.1’ 1
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Analysis of Variance of Dependent Variable y

Source Degrees  Sumof Mean F pvalue
of Freedom Squares Square
Treatment A dfy SSy  MSa Fa pa
Treatment B dfy SSp  MSp Fu ps
ABlnteraction dfap  SSap MSap Fas pas
Residual  dfge,  SSpes MSges
Total Oftow  SStou
Terms of the table are defined by:
Treatment A Treatment AB
dfs a-1 dfap  (a=1b-1)

SS bn X (¥ - V.7
MS, SS,/dfs

SSpp nX(Fy, -7 -SS, - SSp
MSap SSap/diag

Fa MSy/MSges Fan  MSpp/MSges

a1 = Fr(Fpldia dfiRe) pan 1= Fr(Fan | dfap. dies)
Treatment B Residual

dfy b1 e abn—1)

SSp an ¥(¥,-7.)

MSp SSp/diy

Fy MSp/MSges

Py 1= Fr(Fy | dip, digey)

SSpes Xi X,(Yiju = Vi)*
MSges SSes/dfies

Total

Ofro abn—1
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> aovStatementAndAnova(CgT, warn-FALSE)
> anova(aov(Sodiun ~ Calories, data = hotdog))
Analysis of Variance Table

Response: Sodiun

Df Sun Sq Mean Sq F value PrO>F)
Calories 1106270 106270  14.5 0.00037 sk
Residuals 52 380718 7321

Signif. codes: 0 ’wxx’ 0.001 '+’ 0.01 *+’ 0.05 *.’ 0.1° * 1
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> turkey.aov < aov(vt.gain - diet, data=turkey)

> sunnary (turkey. aov)

Df Sun Sq Mean Sq F value Pr(F)
atet 4 103.0 25.76  81.7 5.6e-14 +x
Residuals 25 7.9  0.32

Signif. codes: 0 ’wxx’ 0.001 '+ 0.01 '+’ 0.05 *.7 0.1° * 1

> model.tables(turkey.aov, type
Tables of means
Grand mean

‘means", se=TRUE)

6.53

diet

atet.

control A 2”2 B1 B2
3.783  5.500 6.983 7.000 9.383

Standard errors for differences of means
diet
0.3202
replic. 6
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> rhiz.clover.aov <- aov(Npg ~ strain + comb, data=rhiz.clover)

> sumnary (rhiz. clover.aov)

Df Sun Sq Mean Sq F value Pr(>F)
strain 5 642.3 128.45 9.916 1.47e-06 +xx
comb 1 6.9 6.88 0.531 0.46955
strainicomb 5 228.2 45.65 3.524 0.00857 *+
Residuals 48 621.8 12.95

Signif. codes: 0 ’swx’ 0.001 ’++’ 0.01 '+’ 0.05 .’ 0.1 '’ 1

> model. tables(rhiz.clover.aov, type='means", se=TRUE)
Tables of means
Grand mean

26.00674

strain
strain

3DOk1 3DOKS 3DOk4 3DOK7 3DOK13 k.comp
28.72 31.86 22.66 23.95 23.39 25.45

comb
comb
clover clovertalfalfa
26.345 25.668

strain: conb
comb
strain  clover clover+alfalfa
3D0k1 29.04 28.41
3DOKS 36.29 27.44
D04 21.35 23.98
3D0K7 22.93 24.96
3D0K13 22.49 24.30
k.comp 25.97 24.92

Standard errors for differences of means
strain comb strain:comb
1.6096 0.9293 2.2763

replic. 10 30 5
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> sten(teacherss"English-Grook")

The decimal point is 1 digit(s) to the
right of the |

-1
-1
-
-0

65
442000
988887665
331
22380
7799

|
|
I
|
|
I
133

o
o
1
> t.tost (toacherss"English-Grook")

One Sample t-test

data:  teachors$"English-Groek"
t = -2.211, af = 31, p-value = 0.03457
alternative hypothesis:

true mean is not equal to O
95 percent confidence interval:
-6.2484 -0.2516
sasple estimates:
mean of x

-3.25

4. Original Scale

> sten(sqrt (teachors$"English-Graek” + 17),
+ scales)

The decimal potnt is at the |

| oa77
I 26668

1 00002335677
I 04456699

I 1185

> t.test(sqrt (toachorss English-Groak” + 17,
. mu=sqrt(17)

One Sanple t-test.

data:  sqrt(teachors$"English-Greck” + 17)
© % -2.871, df = 31, p-value = 0.00731
alternative hypothesis:
true mean is not equal to 4.123
95 percent confidence interval:
3,086 3.947
sample estimates:
nean of x
3517

b. Transformed Scale
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> houseprice.lul <- lm(price ~ sqft + taxes, data=houseprice)

> anova(houseprice.lui, houseprice.ln2)

Analysis of Variance Table

Model 1: price ~ sqft + taxes

Model 2: price ~ sqft + taxes + custom + corner
Res.Df  RSS Df Sum of Sq F PrOF)

1 104 3152660

2 102 2687729 2 464931 8.82 0.00029 *xx

Signif. codes: O ’swx’ 0.001 ’++’ 0.01 '+’ 0.05 .’ 0.1 '’ 1
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For each observation i the standard regression printout shows

ar(f) + Vai(e;) = var(y;)
hie? + o (=he?
(Std Err Predict)? + (Std Err Residual)? = Residual Mean Square
= Error Mean Square

> h <= hat(model.matrix(fat.lm))
> pred <- prodict(fat.lm, se.fit=TRUE)

> res <- resid(fat.lm)

signa.hat.square <- anova(fat.lm) ["Residuals”, "Mean Sq"]

> fat.predvalues <-
+ data. frame("y=bodyfat"=fat$bodyfat, "x=abdomin'=fat$abdomin,
+ heh, mu.hat=predsfit,
+ e=res, var.mu.hat=h+signa.hat.square,
+ var.resid=(1-h)signa.hat.square,
+ signa.hat.square=signa.hat .square,
. se.fit=sqrt (hxsigna.hat. square) ,
+ se.resid=sqrt((1-h)*signa.hat.square))
> fat.predvalues(1:3, 1:7]
y-bodyfat x.abdomin h mu.hat © var.mu.hat var.resid
1 12.6 85.2 0.02762 14.46 -1.860  0.7800  27.46
2 6.9 3.0 0.03171 13.35 -6.450  0.8954  27.34
3 2.6 7.9 0.02399 15.82 8.776  0.6773  27.56

## fat.predvalues

>
>
> ## linear idemtity
> all.equal (rouSuns (fat . predvalues(,c("mu.hat",
N
&

fatsbodyfat,
check. names=FALSE)
1] TRUE

> ## quadratic identity
> (SSqReg <- sum((fat.predvalues$mu.hat - mean(fat$bodyfat))"2))
[1] 2440

> (SSqRes <- sun(res"2))
1] 1271

> (sSqTot <- sum((fatS$bodyfat - mean(fat$bodyfat))~2))
(1) 3711

> all.equal (SSqReg + SSqRes, SSqTot)
[1] TRUE
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> HHscriptnames(7)
7 "/Library/Franeworks/R. franework/Versions/3.2/Resources/
1ibrary/HH/scripts/hh2/mcomp.R"






OEBPS/A77776_2_En_15_Chapter_IEq26.gif
Zen





OEBPS/A77776_2_En_15_Chapter_IEq25.gif





OEBPS/A77776_2_En_11_Chapter_IEq87.gif





OEBPS/A77776_2_En_11_Chapter_IEq86.gif





OEBPS/A77776_2_En_11_Chapter_IEq85.gif
DFFITS





OEBPS/A77776_2_En_7_Fig15_HTML.gif
Construction of MMC plot: concent ~ catalyst






OEBPS/A77776_2_En_18_Fig28_HTML.gif
10
08
06
04
02
00

Time Series Question, n=100, Z.bar=55

aciZ)

aci(@iiz))

‘el a)

CH@HEHZA)

|

ul

[l

|Hm|.

Ll

[

024681 024681 024681 0246810





OEBPS/A77776_2_En_12_Fig14_HTML.gif
ot

Npg means | cs level

28

2
B0
e
P
B

clover comparisons

combnie,2) == 16

e

comeao0ns

o~

BRI

B S bt et Buhi Al o S A

contastvaue

g
s
v g,
vl

o200 cer 30001
iR 00 i oo

o 30015-imer 30081
o 00 core 30007
o 300t 30004
o 3006 cerkcono
o 00k om0V
oo cow 00
ok conp-cowt 300K
ok o cowt 00
o 00730004
o 00K o 0





OEBPS/A77776_2_En_15_Chapter_IEq31.gif
p vac( no.par)





OEBPS/A77776_2_En_15_Chapter_IEq30.gif
P no.vac( no.par)





OEBPS/A77776_2_En_15_Chapter_IEq33.gif





OEBPS/A77776_2_En_15_Chapter_IEq32.gif
Wil p no.vae( no.par) — p vac( no.par))





OEBPS/A77776_2_En_8_Fig6_HTML.gif
Rosiduals —_Fited Vaives Nomal -0
o " .
N PN g Pl
N i s
N i _
I A s
32l -
P, .
., 2 -1 o 1 2
o . ‘Theoretical Quantiles
TTFoSamEsT — Fasdvaes =3 =)
N P a 10 °
_ AT K L
g | e g 3 .
S 24 v vw « 8 0 I
P R 2E 5
) Cadzuraetsth odzaressts

Fitted Values amin

Residuals





OEBPS/A77776_2_En_15_Chapter_IEq35.gif
((n0.par/par)so vac)/((m0.par/par)isc)





OEBPS/A77776_2_En_15_Chapter_IEq34.gif
2(0-E)/ VE(van





OEBPS/A77776_2_En_11_Chapter_IEq79.gif
DFBETAS





OEBPS/A77776_2_En_11_Chapter_IEq78.gif
DFBETAS





OEBPS/A77776_2_En_11_Chapter_IEq77.gif
DFBETAS





OEBPS/A77776_2_En_11_Chapter_IEq76.gif
Bio =B~ 4b





OEBPS/A77776_2_En_BookBackmatter_Figaan_HTML.gif
> nums <= c(0,

> data. frame("decimal-;

9000

0625, .1, .3, .3125,

5, .6, (3 +.6),

"decinal-17"=fornat (nuns, digits=17),

hexadecimal

decimal. 17

0.00000000000000000
0.06250000000000000
0.10000000000000001
0.29999999999999999
0.
o
o
o
o
1

31250000000000000

.50000000000000000

59999999999999998

.89999999999999991
.90000000000000002
£00000000000000000

+0x0,

+ox1
+0x1

+ox1
+0x1
+ox1

+ox1

rintf("/+13.13a", nuns))

hexadecimal

.0000000000000p+0.
+0x1.

0000000000000p~4.

.999999999999ap-4.
.3333333333333p-2
+0x1.

£0000000000000p~1

4000000000000p-2

3333333333333p-1

_ccccccccccccep-1
+0x1.

ceceececcccedp-1

.0000000000000p+0.

s

n
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> lyaphi.gln <- gln(nodes - X.ray + acid.ph, data=lymph, family=binomial)

> anova(lyaphi.gla, tes
Analysis of Deviance Table

hisq")

Model: binomial, link: logit
Response: nodes

Torms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 52 70.3
Xray 1 11.25 51 59.0  0.0008 wav
acid.ph 1 1.94 50 57.1 0.1634

Signif. codes: O ’wxx’ 0.001 '+’ 0.01 *+’ 0.05 *.° 0.1° * 1

> suanary(lympht . glm)Scoef

Estinate Std. Error z value Pr(>lzl)
(Intercept) -2.33567  0.96831 -2.412 0.015861
X.rayl 2.11595  0.70911  2.984 0.002845
acid.ph  0.01685  0.01262 1.336 0.181701
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> dnorm(1.645, m=0, s=1)
[1] 0.1031

> pnorm(1.645, m=0, s=1)
11 0.95

> quorm(0.95, m=0, s=1)
[1] 1.645
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data(zhiz.clover)

> cloverD <- rhiz.clover[-c(7,9,10),]

> cloverDsc.acy <
+aovllipg - strain + cosb,
. datascloverD,

+ List(strain=contr.sun,
+ combecontr.sum))

> anova(cloverbsc.aov) [,¢(2,1,4,5))
Sua Sq Df F value PrOF)

strain 657 5 29.28 4.20-13
conb 20 1 446 0.04
strainicomb 594 5 26.47 2.30-12
Residuals 202 45

> Anova(cloverbsc.aoy, type=2)
Anova Table (Type 11 tests)

Response: lipg
Sum Sq D F value PrOF)

strain 675 5 30.07 2.70-13
cob 20 1
strainicomb 594 &
Residuals 202 45

> Anova(cloverbsc.aov, t;
Anova Table (Type TII te:

Response: lipg
Sum Sq D F value PrOF)
(Intercept) 38711

strain 1089
comb 86
strainicomb 594
Residuals 202

## drop tuo observation to illustrate Type II and III suss of squares
#8 T ax dropping the non-outlier observations in 3DOKS

o1d.opt <~ options (shov.signif .starseFALSE, digits=3)

> cloverdes.aoy <-
+ aov(ipg - cosb + strain,

. data=cloverD,

. contrasts:

M List(strain=contr sun,
. combecontr. eum))

> anova(cloverdes.a0) [,c(2,1,4,5)]
Sun Sq DI F value PrOF)

conb 21 05 0.8
strain 675 5 30.07 2.7e-13
combistrain 594 5 26.47 2.3e-12

Residuals 202 45

> Anova(cloverdcs.aov, type=2)
Anova Table (Type 11 tests)

Sun Sq DI F value PrOF)
20 1 446  0.08
675 5 30.07 2.76-13
59 5 26.47 2.3e-12
Residuals 202 45

> Anova(cloverdes.aov, type=3)
Anova Table (Type III tests)

Response: lipg
Sun Sq Df F value PrOF)

(Intorcept) 38711 1 8621.1 < 20-16

conb 8 1
strain 1089 5
combistrain 594 5 26.5 2.3e-12
Residuals 202 45

> options (old.opt)
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## modified Gram-Schmidt orthogonalization

mgs <~ function() {
4 modified Gram-Schmide orthogonalization

## this is an expository algorithm
## this is not an efficient computing algorithn

## ql,3) is the normalized residual from the least squares fit of
## x[,3] on the preceding normalized coluans q[,1:(j=1)]

5

<= nrou(x)
< neol(x)

s

< x
< matrix(0, m, m)

"o

for G in tim) {
£l4,4] < sqrt(sun(q[,i1°2)) ## length of q[,i)
al,i] <= ql,4) / rli,i] ## nornalize ql,i]

if (i <m) { #F if ve still have columns to go
for (j in (D)) {
04,31 < sun(@[,i) * q[,5]) ## length of projection of q[,3] on ql,i)
al,3] < al,5] - ql,i] * £i,j] ## remove projection of q[,j] on ql,il
b

3
¥
list(qeq, r=r)
b
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> CC < read.table(text="
sxy
12
+ 3999
+56
7.
+9 10
+ ", header=TRUE)
> e
x oy
11 2
23 999
35 6
a7 .
59 10

> sapply(CC, class)
x v
“integer" "factor”

> cosy
m2 996 . 10
Levels: . 10 2 6 999
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> displayf .mac <- mac(displayf.aov, focus="panel")

> displayf.mmc
Tukey contrasts
Fit: aov(formula = time ~ emergenc * panel, data = display)
Estinated Quantile = 2.668615
96% family-wise confidence level
Snca
estimate stderr  lover  upper height

-1 5.375 1.203294 2.163871 8.586129 22.9375
3-2  7.375 1.203294 4.163871 10.586129 21.9375
1-2 2,000 1.203294 -1.211129 5.211129 19.2500
Snone

estimate  stderr  lower  upper height
3 25.625 0.8508574 23.35439 27.89561 25.625
1 20.250 0.8508574 17.97939 22.52061 20.250
2 18.250 0.8508574 15.97939 20.52061 18.250
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> rent.lndln <- lm(rnt.alf ~ rnt.till + cow.dens +
+ lime + cow.dens:lime, data=rent)

> sumnary (rent. ndln)

Call:
In(formula = rnt.alf ~ rnt.till + cow.dens + lime + cow.dens:lime,
data = rent)

Residuals:
Min 10 Median 3 Max
-24.346 -4.251 -0.194 4.151 27.193

Coefficients:

Estinate Std. Error t value Pr(>|t])
(Intercept) ~ -5.9584  3.0117 -1.98  0.052 .
at.till 0.9269  0.0536 17.28 < 2e-16 wxx
cow.dens 0.4567  0.0991  4.61 2.10-05 +
limet -3.6034  2.1642 -1.66  0.101
cow.dens:limel 0.1926  0.0986  1.95  0.055 .

Signif. codes: O ’swx’ 0.001 s’ 0.01 '+’ 0.05 .’ 0.1 ° ’ 1

Residual standard error: 9.1 on 62 degrees of freedom
Multiple R-squared: 0.847,Adjusted R-squared: 0.838
F-statistic: 86.1 on 4 and 62 DF, p-value: <2e-16

> anova(rent.lndln)
Analysis of Variance Table

Response: rat.alf
Df Sun Sq Mean Sq F value Pr(>F)

nt.till 125824 25824 311.61 < 2e-16 ke
cow.dens 1 2386 2386  28.80 1.3e-06 +ax
line 1 5 5 0.07 0.799
cow.dems:lime 1 316 316  3.81 0.055 .
Residuals 62 5138 83

Signif. codes: O 'eew’ 0.001 *e+’ 0.01 '+ 0.05 *.’ 0.1’ 1
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> ## one-way analysis of variance
> Btwt.aov <- aov(ht ~ sex, data=htut)

> sumnary (htwt.aov)

Df Sun Sq Mean Sq F value Pr(>F)
sex 1282 2823 30.8 2.5e-06 +ex
Residuals 37 33 9.2

Signif. codes: O wsx’ 0.001 '+’ 0.01 *+’ 0.05 *.° 0.1° ' 1

> model.tables (htwt.aov, type='means")
Tables of means
Grand mean

66.71

t m
64.47 69.94
rep 23.00 16.00
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Yes  No [ Total
Treated K6l 61 136

Control | 54 83 137
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> M < matrix(c(1,3,6,4,2,3,8,6,4,5,3,2), 4, 3)

>u
L1 02 03
12 4

)

2] 3 3 s
B 6 8 3
“w 4 6 2
> M.svd <= svd(W)

> M.svd
sa
[1] 14.4806 4.3243 0.7825

su

L L2 L3
[1,] -0.2561 0.6098 -0.6935
[2,] -0.4102 0.6334 0.5907
[3,] -0.7125 -0.3674 0.1755
[4,] -0.5084 -0.3034 -0.3733

s

L L2 £,3
[1,] -0.5383 -0.2099 0.81617
[2,] -0.7246 -0.3791 -0.57547
[3,] -0.4302 0.9012 -0.05198

> zapsmall(crossprod (i, svd$u))
LU L2 03

w1 o o

@1 o 1 o

Bl o o 1

> zapsmall(crossprod(. svasv))
L1 02 03

wl o1 oo o

21 o 1 o

] o o 1

> M.sva$u %% diag(M.svd$d) %w t(.svdsv)
L1 02 (3

11 2 4

1 3

1 8

1 6

sow

o,
2, s
3, 3
[, 2
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> feed.int.aov <- aov(retained ~ temp * supp, data=feed)

> anova(feed. int.aov)
Analysis of Variance Table

Response: retained

Df Sun Sq Mean Sq F value  Pr(>F)
emp 21479.2 739.60 26.0423 1.3210-05 *xx
supp 43862.1 965.53 33.9977 2.334e-07 *i+
tempisupp 8 243.5 30.43 1.0716  0.4313
Residuals 15 426.0  28.40

Signif. codes: O 'eer’ 0.001 'e+’ 0.01 '+ 0.05 *.’ 0.1’ 1
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> crash2.aov <- aov(crashrate ~ agerange + passengers +
. as.vector(cv), data=crash)

> sunmary(crash2. aov)
Df Sun Sq Mean Sq F value Pr(>F)
agerange 2 17.94  8.97 161.2 2.90-05 +ix
passengers 3 6.23  2.08  37.3 0.00076 wex
as.vector(cw) 1 7.16  T.16 1287 9.30-05 +xt
Residuals 5 0.28  0.06

Signif. codes: O ’wss’ 0.001 '+’ 0.01 *+> 0.05 *.° 0.1° * 1

> coef (crash2. aov)
(Intercept)  agerange agerange.Q passengers.L
1.77000 09657 0.30006 1.38189
passengers.Q passengers.C as.vector(cv)
0.40333 0.06559 1.55165
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> model.matrix("A, data=abc,

contrast:
List(

(Intercept)
1
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vz
attr(, "assign’
Mo

1
1
1
1
1
1
1
1
1
1
1

")

ontr. treatment))

A2 A3

0
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attr(,"contrasts")$h

23
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cwn
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> model.matrix("A, dat
+  contrasts=

be,

+ List (A=contr.sun))

(Intercept) AL A2
rw 110
r.x 110
ry 110
rz 110
s 1001
s.x 1001
5.y 101
sz 101
v 1-1-1
t.x 1-1-1
ty 1-1 -1
vz 1-1-1
attr(,"assign")
moi1
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attr(,"contrasts")$A

L1 L2
r o1 0
s 0 1
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> sten(tvsmale. life.exp)
The decimal point is 1 digit(s) to the right of the

1 002234
1 6799

I 012223344
| 66777888899
I 1223334

I 556
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>a.lm < ln(y - x, data=abcd)
> sumary(a.1n)

Gal
1a.default(formula = y = x, data = abed)

Residuals:
1 2 5 6 7 8
0.704 ~1.219 1.013 -0.910 1.167 -0.755

Coefficients:
Estinate Std. Error t value Pr(>Itl)

(Intercept) ~ 4.373 1.053  4.16  0.0142 %

x 0.923 0.103  4.79  0.0087 *x

Signif. codes:
0 7axs? 0.001 %+’ 0.0 0.05 7.7 0.1’ 1

Residual standard error: 1.2 on 4 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.851,Adjusted R-squared: 0.814

F-statistic: 22.9 on 1 and 4 DF, p-value: 0.00872

> predict(a.1n)
1 2 5 6 7 8
5.296 6.219 8.987 9.910 10.833 11.755
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(code/longley.s)

> longley.lm <- lm( Employed ~ . , data=longley)

> sumnary(longley. 1n)

Call:
n(fornula = Employed ~ ., data = longley)
Residuals:

Min 1Q Median Q0 Max

-0.4101 -0.1577 -0.0282 0.1016 0.4554

Coefficients:
Estimate Std. Error t value Pr(>It])
(Intercept) -3.48e+03 8.90e+02 -3.91 0.00356 *x
GNP.deflator 1.51e-02 8.49%e-02  0.18 0.86314
P -3.58¢-02 3.35e-02 -1.07 0.31268
Unemployed ~-2.02e-02 4.88¢-03 -4.14 0.00254 *x
Armed.Forces -1.03e-02  2.14e-03  -4.82 0.00094 *xx
Population -5.11e-02 2.26e-01 -0.23 0.82621
Year 1.83e400  4.56e-01  4.02 0.00304 **

Signif. codes: O 'eew’ 0.001 *e+’ 0.01 '+ 0.05 *.’ 0.1’ 1

Residual standard error: 0.305 on 9 degrees of freedom
Multiple R-squared: 0.995,Adjusted R-squared: 0.992
F-statistic: 330 on 6 and 9 DF, p-value: 4.98e-10

> anova(longley.lm)
Analysis of Variance Table

Response: Employed
Df Sun Sq Mean Sq F value Pr(>F)
GNP.deflator 1 174.4 174.4 1876.53 9.3e-12 s+

anp 1 4.8 4.8 51.51 5.20-05 s
Unemployed 1 2.3 2.3 24.36 0.00081 *s+
Armed.Forces 1 0.9 0.9  9.43 0.01334 +
Population 1 0.3 0.3  3.75 0.08476 .
Year 1 1.5 1.5 16.13 0.00304 *x
Residuals 9 0.8 0.1
Signif. codes: O ’eer’ 0.001 *++’ 0.01 '+ 0.05 *.’ 0.1’ 1
> vif(longley.1n)
GNP deflator GNP Unemployed Armed.Forces

135.532  1788.513 33.619 3.589

Population Year

399.151 758.981
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. X=TRUE)

> appleq <- qr.Q(qr (applebpst.aovsx))

> ## correct anova for ‘y.bp.brt‘

applebpst.aov <- aov(yield ~ block + pre * treat, data=apple,

“(pre.block:treat) block < appleQl,11:15]

> anova(aov(yield.block - pre.block + treat +
i “(pre.block: treat) .block", data=apple))

Analysis of Variance Table

Response: yield.block

Df Sun Sq Mean Sq F value Pr(>F)

pre.block 1 15944
treat 5 4353
“(pre.block:treat) .block! 5 2109
Residuals 12 1776

Signif. codes: 0 ’wxx’ 0.001 'x’

15944 107.71 2.40-07 was
871 5.88 0.0057 *x
422 2.85 0.0637 .
148

0.01 7+2 0.05 *.7 0.1 7 1
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> ## Simple R session
>344
w7

> pnorm(c(-1.96, -1.645, -0.6745, 0, 0.6745, 1.645, 1.96))
(1] 0.02500 0.04998 0.25000 0.50000 0.75000 0.95002 0.97500
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> spacshu.bin.gln <- gln(danage = tempF, data-spacshu, family=binonial)
> spacshu.bin.gln

Call: gin(formila = damage - tempF, family = binomial, data = spacshu)

Goefficients:
(Intercept) tempF
5.085 -0.116

Degrees of Freedom: 137 Total (i.e. Null); 136 Residual
Null Deviance:  66.5
Residual Deviance: 60.4 AIC: 64.4

> anova(spacshu.bin.gln, test="Chi")
Analysis of Deviance Table

Model: binomial, link: logit
Response: damage

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NoLL 137 66.5

tempF 1 6.14 136 60.4  0.013 %
Signif. codes

0 7ax37 0.001 ’4+? 0.01 ¥ 0.05 7.7 0.1’ 1

> coef (summary(spacshu. bin. gln))

Estimate Std. Error z value Pr(>lzl)
(Intercept) ~5.0850  3.05248 1.666 0.09574
tompF -0.1186  0.04702 -2.458 0.01396

> ## prediction on response scale, in this case (0,1).
> ## leading to Figure spaceshuttle-d.pdf, Panel d

> spacshu.pred <-

+  interval(spacshu.bin.gln, newdata=data.frame(tempF=30:85),
. type="response")
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bar <- data.frame(diff=hari§Pre - haris$Post)

har$abs <- abs (har$diff)
har$abs (har$abs==0] <- NA
har$rank <- rank(har$abs)
har$rank [har$aiff == 0] <- 0
har$prnk <- har$rank

har$prnk (har$diff < 0] <= 0

har [order (har$abs) ] »
Qiff abs rank pruk asts
0.30.3 1.5 1.5 11 -1.9
0.30.3 1.5 1.5 33 2.1
-0.40.4 3.5 0.0 18 2.2
0.40.4 3.5 3.5 36 2.2
0.40.4 5.0 5.0 44 2.2
-0.40.4 7.0 0.0 46 2.3
-0.40.4 7.0 0.0 2 2.3
0.40.4 7.0 7.0 5 2.9
0.50.5 9.5 9.5 4 3.2
0505 9.5 9.5 6 3.2
0.7 0.7 11.5 11.5 23 3.8
-0.7 0.7 1.5 0.0 31 3.9
-0.7 0.7 13.0 0.0 47 a1
-0.8 0.8 14.0 0.0 40 4.2
0.9.0.9 15.0 15.0 38 4.3
0.9 0.9 16.0 16.0 14 45
-1.0 1.0 17.0 0.0 24 4.5
411 1.1 18.0 0.0 30 4.5
-1.11.119.0 0.0 34 -4.6
-1.11.120.0 0.0 29 5.0
1.4 1.4 21.0 21.0 s 1.5
-1.5 1.5 22.0 0.0 a1 9.0
1.7 1.7 23.0 23.0 3 0.0
-1.7 1.7 24.0 0.0 9 0.0

manually

abs

rank

2.
2.
27,
28.
28.
30.
31
3.
33,
34.
35.
36.
7.
38.
39.
a1
a1
a1
3.
4.
5.
46.

edit into colums

## rank for positive differences

H

coobooo00000000000000n000






OEBPS/A77776_2_En_14_Fig12_HTML.gif
final

final.adj

Initial Score

sex
male

lo»

sex

male A
male e

order
medium igh
. 2
A a
4 4
3 T 2
o 4 - ©
e .
3 o
poor poor average good poor average  good
standing
Observed Data
order
medum Figh
%4 -
25 A ‘: i
24
a |18
* . *
04
poor poor average good poor  average  good
standing
Adjusted for Covariates
order
medum Tigh
20
254
PP . 3 4|0 2 4
T o |& X

154
104

sex

male A
female o

poor

poor average  good  poor

standing

average

g00d






OEBPS/A77776_2_En_5_Chapter_IEq131.gif





OEBPS/A77776_2_En_5_Chapter_IEq130.gif





OEBPS/A77776_2_En_5_Chapter_IEq133.gif
< cale





OEBPS/A77776_2_En_5_Chapter_IEq132.gif





OEBPS/A77776_2_En_5_Chapter_IEq134.gif





OEBPS/A77776_2_En_15_Fig1_HTML.gif
proportion female

0.10 -

N . I
oo | . .
e





OEBPS/A77776_2_En_12_Figk_HTML.gif
> ## unset position(rhiz.alfalfasconb) for glht
data(rhiz.alfalfa) ## fresh copy of the data.

Thiz.alfalfa.aov <= aov(ipg ~ strain + comb, data=rhiz.alfalfa)

> sumnary (rhiz.alfalfa.aov)

Df Sun Sq Mean Sq F value Pr(>F)
strain 5 46.22 9.244 4.565 0.00174 *x
comb 1 0.57 0.573 0.283 0.59714
strainicomb 5 8.44 1.687 0.833 0.53275
Residuals 48 97.21 2.025

Signif. codes: 0 ’eer’ 0.001 *++’ 0.01 '+ 0.05 *.’ 0.1’ 1
> alf.means <- model.tables(rhiz.alfalfa.aov, type="means",
+ se=TRUE, cterms="strain")

> alf.means
Tables of means
Grand mean

30.73847

strain
strain

3D0a1  3D0a7 3D0a10 3D0a12 3D0als a.comp
30.00 20.89 30.00 30.82 31.43 32.27

Standard errors for differences of means
strain
0.6364

replic. 10
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> fat2.1m <- lm(bodyfat ~ abdomin + biceps, data=fat)

> anova(fat2.1m)
Analysis of Variance Table

Response: bodyfat
Df Sun Sq Mean Sq F value Pr(>F)
abdomin 1 2440 2440 101.17 5.6-13 #x

biceps 1 209 209  8.68 0.0051 *x
Residuals 44 1061 2
Signif. codes: 0 ’sxx’ 0.001 '+’ 0.01 '+’ 0.05 .’ 0.1’ ' 1

> sumnary(fat2.1n)

ca1l:
In(formula = bodyfat ~ abdomin + biceps, data = fat)
Residuals:

Min 19 Median 3q Max

-11.252 -3.674 0.716 3.771 10.241

Coefficients:
Estimate Std. Error t value Pr(>ltl)

(Intercept) -14.5937  6.6922 =-2.18 0.0346 *

abdonin 0.6829  0.0786  8.69 4.2e-11 xxx

biceps -0.9222  0.3130 -2.95 0.0051 *x

Signif. codes: O 'ess’ 0.001 ’#x’ 0.01 ’47 0.05 *.” 0.1’ * 1

Residual standard error: 4.91 on 44 degrees of freedom
Multiple R-squared: 0.714,Adjusted R-squared: 0.701
F-statistic: 54.9 on 2 and 44 DF, p-value: 1.1e-12
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> product.loop <- arma.loop(product, order=c(2,1,2))
> product.diags <- diag.arma.loop(product.loop, x=product, lag.max=60)

> product.loop
$series
{11 "product”

$model
[l "

$signa2

o 1 2
0 1043 1041.8 1025.3
11042 1029.3 919.9
21033 917.8 916.3

saic

o 1 2
0 2919 2920 2918
12920 2919 2889
2 2920 2889 2890

Scoet

art ar2 mal  ma2
(0,1,0) A A NA NA
(1,1,0) 0.02806 A NA NA
(2,1,0) 0.03066 -0.09105 NA NA
(0,1,1) A NA 0.03390 NA
(1,1,1) -0.82544 NA 0.88997 A
(2,1,1) 0.90160 -0.15413 -0.98624 NA
(0,1,2) A NA -0.02332 -0.1995
(1,1,2) 0.71744 NA -0.81250 -0.1736
(2,1,2) 1.11728 -0.32627 -1.20533 0.2183
$t.coef

art  ar2 mal  ma2
(0,1,0) NA WA NA NA
(1,1,0) 0.4833  NA NA NA
(2,1,0) 0.5299 -1.576 NA NA
(0,1,1) NA  NA  0.5341 NA
(1,1,1) -6.5556  NA  8.7970 NA
(2,1,1) 15.4832 -2.648 -61.7180 NA
(0,1,2) NA  NA -0.3401 -2.0824

(1,1,2) 12.9601  NA -10.9925 -2.5043
(2,1,2) 4.6121 -1.697 -4.8510 0.8844
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## R defaults to treatment contrasts for factors.
## Ve need an orthogonal set of factors for this exercise.
-a

data(tires)
contrasts(tires§car) <= contr.helmert (4)
contrasts(tires$position) <- contr.helmert(4)
contrasts(tiresSbrand) <~ contr.helmert(4)

tires.aov <- aov(uear ~ car + position + brand, data=tires, x=TRUE)
anova(tires.aov)
tires.rc.aov <- aov(uear
anovatires.rc.aov)

car + position, data=tires, x=TRUE)

t(tires.aov$x[,8:10])

t(tires.rc.aovsx[,8:16])

tri.lm < ln(tires.aov$x[,8] ~ tires.rc.aov$x[,8:161)
anova(tr1.1n)
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> X < matrix(c(1,3,6,4,2,3,8,6,4,5,3,2), 4, 3)
> M <= crossprod(X)

>u
L1 02 03
] 6 83 45
2 8 113 59
(3] 45 59 54
> chol ()
LU L2 L3
[1,] 7.874 10.541 5.7150
[2,] 0.000 1.374 -0.9041
(3,1 0.000 0.000 4.5301

> crossprod(chol(M)) ## reproduce M
01 02 3

1) 62 8 45

(2 8 113 59

3] 45 59 54
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> ## after looking at all of above
> ## Total Sun of Squares

> var(vestscore$final) + (Length(testscore$final)-1)
[ 1607

> testscoreS.aov <- aov(final ~ initial + mental.age +

. grade + standing + order + sex
+ + sex:order,
. data=testscore)

> sumnary(vestscores.aov)
Df Sun Sq Mean Sq F value Pr(>F)

initial 1 1463 1468 1176.02 < 20-16
mental.age 1 8 8 6.10 0.01765
grade 2 16 8 6.34 0.00393
standing 2 21 10 8.23 0.00096
order 2 30 15 11.82 8.5e-05
sox 1 7 7 5.69 0.02169
orderisex 2 6 2.35 0.10811
Residuals 42 52 1

> testscore6.aov <- aov(final ~ initial + mental.age +
. standing + order + grade + sex,
. data=testscore)

> sumnary (vestscore6.aov)
Df Sun Sq Mean Sq F value Pr(>F)

initial 1 1463 1468 1108.18 < 20-16
mental.age 1 8 8  5.75 0.02080
standing 2 29 15 10.96 0.00014
order 2 m: 17 12.77 4.20-05
grade 2 3 2 1.13 0.33084
sox 1 7 7 5.36 0.02535
Residuals 44 58 1

> testscore7.aov <- aov(final ~ initial + mental.age +
. standing + order + sex,
. datastestscore)

> suanary (testscore? . aov)
Df Sun Sq Mean Sq F value Pr(>F)

initial 1 1463 1468 1108.96 < 2e-16
mental.age 1 s 8 5.75 0.02056
standing 2 29 15 10.97 0.00013
order 2 m 17 12.77 3.9e-05
sox 1 7 7 5.66 0.02153

Residuals 46 61 1
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> ## y=ut.d with x=wt.n as covariate
> ## (get essentially the same ANOVA as the approximate (y-bx)™2
> ## ANOVA table in Cochran and Cox)
> cci76.a0v <- aov(ut.d - Tep + wt.n + n.treats+minutesecurrent,
+ data=cci76)
> ## summary(cc176.a0v)
> summary(cc176.a0v,
+ split=list(n.treats=list(n.treats.lin=1,
+ n.treats.quad=2)),
+ expand. sp1it=FALSE)
Df Sun Sq Mean Sq F value Pr(>F)
rep 1 605 605 12.58 0.00091 %x+
wt.n 11334 1334 27.74 3.60-06 wex
n.treats 2 439 219 4.56 0.01557 %
n.treats: n.treats.lin 1 438 438 9.11 0.00413 =
n.treats: n.treats.quad 1 1 1 0.010.91048
minutes 3 184 61 1.28 0.29409
current 3 2114 705  14.66 7.80-07 s
n.treats:minutes 6 198 33 0.69 0.66051
n.treats:current 6 4% 8  1.70 0.14163
minutes: current 9 383 43 0.88 0.54627
n.treats:minutes:current 18 1022 57 1.18 0.31542
Residuals 46 2212 48
Signif. codes: O 'eew’ 0.001 *e+’ 0.01 '+ 0.05 *.’ 0.1’ 1
>
> ## adjust y for x
> cci768y.ad) <- cci7esut.d -
+  (cci768wt.n - mean(cci76$ut.n))+coef (cc176.aov) ["we .

## duplicate CC Table 5.17
cc176.means <- tapply(cc1768y.adj,
+ cc176[,c("current”, "n.treats")], mean)

cc176.means

n.treats
current 13 6
galvanic 56.03 59.08 65.29
faradic 69.95 §5.79 57.27
60.cycle 63.26 63.92 68.58
25.cycle 64.47 71.78 73.20

> apply(cc176.neans, 1, mean)
galvanic faradic 60.cycle 25.cycle
60.13  57.67  65.25  69.82
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> Observed <- c(13, 18, 20, 18, 6, 5)
> names(Observed) <- 0:5

> ## binomial proportion p=.4 is specified
> Expected <- dbinon(0:5, size=, p=.4)+80

> names(Expected) <- 0:5
> chisq.test(Observed, psExpected, rescale.p=TRUE)
Chi-squared test for given probabilities

data: Observed
X-squared = 31.21, df = 5, p-value = 8.496e-06

Warning message:
In chisq.test(Observed, p = Expected, rescale.p = TRUE) :
Chi-squared approximation may be incorrect

> ## binomial proportion p is calculated from the observations
> p <= sun(Observed * (0:5)/5)/sun(Observed)

>p
1] 0.4025

> Expected <- dbinom(0:5, size

L pep)*80

> nanes(Expected) <- 0:5

> WrongDF <- chisq.test(Observed, p-Expected, rescale.p=TRUE)

Varning message:

In chisq.test(Observed, p = Expected, rescale.p = TRUE) :
Chi-squared approximation may be incorrect

> WrongDF

Chi-squared test for given probabilities

data: Observed
X-squared = 30.72, df = 5, p-value = 1.066e-05

> c(irongDFSstatistic, WrongDFSparaeter)
X-squared at
072 5.00

> ## correct df and p-value
> pohisq(irongDF$statistic, df=WrongDF$paraneter - 1, lower=FALSE)
X-squared
3.4980-06
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> Z.loop(["1","1"]]

cal1:
arima(x = x, order = c(1, 0, 1))

Coefficients:
art  mal intercept
-0.780 0.917 0.064
s.e. 0.151 0.104 0.102

signa™2 estimated as 0.904: log likelihood = -137, aic = 281.9






OEBPS/A77776_2_En_5_Chapter_IEq19.gif





OEBPS/A77776_2_En_5_Chapter_IEq18.gif





OEBPS/A77776_2_En_5_Chapter_IEq17.gif
pe=)
=






OEBPS/A77776_2_En_3_Chapter_IEq115.gif
=7
o/






OEBPS/A77776_2_En_3_Chapter_IEq114.gif





OEBPS/A77776_2_En_3_Chapter_IEq117.gif
100(1 - 2)th





OEBPS/A77776_2_En_3_Chapter_IEq116.gif





OEBPS/A77776_2_En_3_Chapter_IEq111.gif





OEBPS/A77776_2_En_3_Chapter_IEq110.gif





OEBPS/A77776_2_En_3_Chapter_IEq113.gif





OEBPS/A77776_2_En_3_Chapter_IEq112.gif





OEBPS/A77776_2_En_12_Figq_HTML.gif
> feed.aov <- aov(retained " temp + supp, data=feed)

> anova(feed.aov)
Analysis of Variance Table

Response: retained
Df Sun Sq Mean Sq F value  Pr(>F)

temp 2 1479.2 739.60 25.410 1.4990-06 *xx
supp 4 3862.1 965.53 33.172 3.037e-09 *ks

Residuals 23 669.5 29.11

> sumary(feed.2o0v, split=

+ List(vemp=list (linear=1, quadratic=2),
-+ supp=list(linear=1, quadratic=2, rest=3:4)))

Df Sun Sq Mean Sq F value

temp 2 1479 739.6 25.409 1.50e-06
temp: linear 370 369.8 12.705 0.00165
temp: quadratic 1109 1109.4 38.114 2.68¢-06
supp 3862 965.5 33.172 3.04e-09

supp: quadratic
supp: rest

Residuals 23 669 290.1

> model.tables(feed.aov, type="means", se=TRUE)

Tables of means
Grand mean

68.8

temp
temp

40 80 120
60.2 77.4 68.8

supp
supp
2 4 6 8 10

48.33 64.67 76.00 79.00 76.00

Standard errors for differences of means
temp supp
2.413 3.115

replic. 10 6

947 946.7 32.525 8.300-06

1
1
4

supp: linear 1 2912 2912.1 100.046 7.61e-10
1
2 3 1.7 0.088 0.94418
3

0 x+x? 0.001 ’4x’ 0.01 ’%7 0.05 ’.’ 0.1’

0 wex? 0.001 ’4x’ 0.01 ’%7 0.05 *.’ 0.1

1

1
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> aoyStatenentAndAnova (TxC)
> anova(aov(Sodiua ~ Type, data = hotdog))
Analysis of Variance Table

Response: Sodiun

Df Sun Sq Mean Sq F value Pr(>F)
Type 2 31739 15869 1.78  0.18
Residuals 51 455249 8926

> model. tables(TxC, typ
Tables of means
Grand mean

ieans")

448

Type
Bast Meat Poultry
d01.1 4185 459

rep 200 1.0 17
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>b.la < ln(y * x, data=abed, na.action-na.exclude)
> sumnary(b.1m)

Gall:
1n.default(formula = y = x, data = abed, na.action = na.exclude)

Residuals:
1 2 5 6 7 8
0.704 ~1.219 1.013 -0.910 1.167 -0.755

Coefficients:
Estinate Std. Error t value Pr(>Itl)

(Intercept) ~ 4.373 1.053  4.16  0.0142 %

x 0.923 0.193  4.79  0.0087 *x

Signif. codes
0 7axs? 0.001 %+’ 0.01  0.05 7.7 0.1’ 1

Residual standard error: 1.2 on 4 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.851,Adjusted R-squared: 0.814

F-statistic: 22.9 on 1 and 4 DF, p-value: 0.00872

> predict(b.1n)
1 2 3 4 5 6 7 8
5.295 6.219  NA  NA 8.987 9.910 10.833 11.755
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> old.uidth <- options(width=70)

> mm <- model.matrix(“A¥B, data=abc,

+ contrasts=1ist(A=contr.helmert, B=contr.helmert))
> mal,]

(Intercept) At A2 BI B2 B3 A1:B1 A2:Bi A1:B2 A2:B2 A1:B3 A2:B3
T 1-1-1-1-1-1 1 1 1 1 11
r.x 1-1-1 111 -1 -1 1 1 11
ry 1-1-102-1 0 0 -2 -2 1 1
rz 1-1-1 003 0 0 0 0 -3 -3
s e e T T T T O T
s.x I T e T e T
s.y 11-102-1 0 0o 2 -2 -1 1
5.z 111003 0 0o 0o 0 3 -3
tw 102-1-1-1 0 =2 0 -2 0 -2
t.x 1021-1-1 0 2 0 -2 0 -2
ty 10202-1 0 0 0 4 0 -2
t.z 102003 o0 0o 0 0 0 &

> print(Ah <- mal"s.y", c("AL","A2")])

AL A2
1-1

> print(BBB <- mm["s.y", c("B1","B2","B3")])

B1 B2 B3
0 2-1

> outer(AA, BBB)
B1 B2 B3

A0 2 -1

2 02 1

> as.vector(outer (AR, BBB))

1 oo 2-2

> mm["s.y", c("AL:BL","A2:B1","A1:B2","A2:B2","A1:B3","A2:B3")]

-1

1

A1:B1 A2:B1 A1:B2 A2:B2 A1:B3 A2:B3
-2

o o

2

> options(old.width)

-1

1
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> lyaphiXa.gln <- gln(nodes = X.ray * acid.ph, data=lynph, family=binomial)

> anova(lyaphiXa.gla, test
Analysis of Deviance Table

Chisq")

Model: binomial, link: logit
Response: nodes

Terns added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 52 70.3
X.ray 11125 51 59.0 0.0008 *xx
acid.ph 1 19 50 57.1 0.1634
X.rayiacid.ph 1 3.52 a9 53.5  0.0605 .

Signif. codes: O ’wxx’ 0.001 '+’ 0.01 *+’ 0.05 *.° 0.1° * 1
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> data(turkey)

> turkey[c(1,7,13,19,25),]
diet wt.gain

1 control 4.1
7 A 52
13 2 6.3
19 Bl 6.5
2 B2 9.5
> turkey$trt.vs.control <-

factor (rep(c("control”, "treatment"), <(6,24)))
> contrasts(turkey$trt.vs.control) <- c(4,-1)

> turkey$additive <- factor(rep(c("control","A","B"), c(6,12,12)),
+ levels=c("control","A","B"))

> contrasts(turkey$additive) <- c(0,1,-1)
> turkey$amount <- factor(rep(c(0,1,2,1,2), c(6,6,6,6,6)))
> contrasts (turkey$amount) <- c(0,1,-1)

> turkey[c(1,7,13,19,25),]
diet wt.gain trt.vs.control additive amount

1 control 4.1 control control 0
7 M 52 treatment A 1
13 2 63 treatuent A 2
19 Bl 6.5 treatment B 1
2 B2 9.5 treatment B 2






OEBPS/A77776_2_En_3_Chapter_IEq124.gif





OEBPS/A77776_2_En_3_Chapter_IEq123.gif





OEBPS/A77776_2_En_3_Chapter_IEq120.gif





OEBPS/A77776_2_En_7_Fig1_HTML.gif
+

2}

N - 0 o ®

507 yBlam

group





OEBPS/A77776_2_En_6_Fig3_HTML.gif
Calcium

234

26

235

233

Brown-Forsyth Homogeneity of Variance

Y y-y' ly-y' |
I
E]JE_ ; . Eﬂﬂﬂ El..lj 1

!






OEBPS/A77776_2_En_9_Figj_HTML.gif
> longley3.lm <- lm( Employed ~
+ GNP.deflator + GNP + Unemployed + Armed.Forces + Year,
+ data=longley)

> sumnary (longley3. 1m)

ca11:
In(formula = Eaployed - GNP.deflator + GNP + Unemployed +
Armed.Forces + Year, data = longley)

Residuals:
Min 10 Median 30 Max
-0.3901 -0.1434 -0.0356 0.0973 0.4614

Coefficients:
Estimate Std. Error t value PrO>lt|)

(Intercept) ~-3.56e+03 7.720402 =4.62 0.00096 *++
GNP.deflator 2.77e-02 6.07e-02  0.46 0.65798

NP -4.216-02  1.76e-02 -2.39 0.03789 *
Unemployed ~-2.10e-02 3.03e-03 -6.95  4e-05 +xx
Armed.Forces -1.04e-02  2.00e-03  -5.21 0.00040 *xx

Year 1.87e400 3.99e-01  4.68 0.00087 *w+
Signif. codes: 0 '+ss’ 0.001 ’#x’ 0.01 ’+7 0.05 *.” 0.1’ * 1

Residual standard error: 0.29 on 10 degrees of freedom
Multiple R-squared: 0.995,Adjusted R-squared: 0.993
F-statistic: 438 on 5 and 10 DF, p-value: 2.27e-11

> anova(longley3.1m)
Analysis of Variance Table

Response: Eaployed
Df Sun Sq Mean Sq F value Pr(>F)
GNP.deflator 1 174.4 174.4 2073.3 6.3e-13 sx

e 1 4.8 4.8 56.9 2.0e-05 +ax
Unemployed 1 2.3 2.3  26.9 0.00041 *xx
Armed.Forces 1 0.9 0.9  10.4 0.00905 #x

Year 1 1.8 1.8 21.9 0.00087 s+

Residuals 10 0.8 0.1

Signif. codes: O ’swx’ 0.001 ’'++’ 0.01 '+’ 0.05 .’ 0.1 '’ 1

> vif(longley3.1n)
GNP deflator GNP Unemployed Armed.Forces  Year
76.641 546.870 14.290 3.461 644.626
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> tmp.c <- zapsmall(contrasts(fabricuearSspeed), 14)
> dimnanes (tup.c) [[1]] <- levels(fabricwear$speed)

> tap.c

L Q c -4 -5
100 -0.5976 0.5455 -0.3727 0.1890 -0.06299
120 -0.3586 -0.1091 0.5217 -0.5669 0.31497
140 -0.1195 -0.4364 0.2981 0.3780 -0.62994
160 0.1195 -0.4364 -0.2981 0.3780 0.62994
180 0.3586 -0.1091 -0.5217 -0.5669 -0.31497
200 0.5076 0.5455 0.3727 0.1890 0.06299

> zapsmall(crossprod(tap.c), 13)
L0 .5
00 0

o
o
1
0

cooro

> min.nonzero <- function(x, digits=13) {
+ xx < zapsmall(x, digits)
+  minCexbox 1= 01)

<3
> tmp.nin <~ apply(abs(tmp.c), 2, min.nonzero)

> sweep(tap.c, 2, tmp.min, "/")
L. coa s

100 -5 5 -1.25 1 -1

120 -3 -1 1.75 -3 5

140 -1 -4 1.00 2 -10

160 1-4-1.00 2 10

180 3 -1 -1.75 -3 -5

20 5 5 1.5 1 1
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vi=ho +Bixi + e for from Equation (8.1)
G =B+ Brxi + e
= F+B-D +e linear identity
i ¥ Bl -0 e iy Y Bw-® e
1126 184 25 142 184 8429
2 69 184 26 46 184 6712
326 184 27 85 184 9288
4109 184 28 224 184 2168
5 278 184 29 47 184 9641
6 206 184 30 94 184 4794
7190 184 31123 184 <2168
8 128 184 32 65 184 -4289
9 51 184 33134 184 7015
100120 184 34209 184 379
175 184 35 311184 11415
12 85 184 36 382 184 10152
13205 184 37 236 184 3992
14208 184 38275 184 2032
15217 184 39 338 184 27825
16205 184 40 313 184 7628
17281 184 41330 184 16767
18 224 184 42317 184 5709
19161 184 43304 184 9.193
20 165 184 44308 184 5709
2190 184 45 84 184 8581
2153 184 2932 6028 46 141 184 -5804
23157 184 8379 5683 47112 184 9742
24176 184  -6561 5765
S columns] 19616 15905 2440 1271
Total Sum of Squares = £)? - % §
IR
= 19616 — 15905
3711

@)+ L€

2440 + 1271 quadratic identity
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> reshape2: :acast(filucoat, temprt ~ pressure, mean,

p.low
t.low 41.33333
t.med 35.66667
t.high 37.33333
(all) 38.11111

> film.aovi <- aov(coat

value.var="coat", margins=TRUE)
pomed p.high  (all)

44.33333 45.33333 43.66667
38.33333 40.00000 38.00000
34.66667 41.00000 37.66667
30.11111 42.11111 39.77778

> sumary(film.aovi)

temprt
pressure

temprt :pressure
Residuals

Df Sun Sq Mean Sq F value Pr(>F)
2204.67 102.33 47.638 6.46e-08 +xx
2 78.00 39.00 18.155 4.83-05 *xx
4 37.33 9.3 4.385 0.0124 *
18 38.67 2.15

0 xes? 0.001 ’#x’ 0.01 ’%7 0.05 *.’ 0.1

temprtspressure, data=filmcoat)

1
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> library(car)
> data(fat)
> fat.ln < In(bodyfat - abdomin + biceps, data=fat)

> ## regression coefficients
> coef (summary (fat.1m))

Estimate Std. Error ¢t value  PrOlcl)
(Intercept) -14.5937363 6.69222199 -2.180701 3.459548e-02
abdonin 0.6829379 0.07855885 8.693329 4.168613e-11
biceps -0.9221544 0.31304822 ~2.945726 5.133920e-03

> ## sequential suss of squares (Type 1)
> anova(fat.1m)
Analysis of Variance Table

Response: bodyfat
Df Sun Sq Mean Sq F value  PrOF)
abdomin 1 2440.50 2440.50 101.1718 5.5810-13 s
biceps 1 209.32 209.32 8.6773 0.005134 ++
Residuals 44 1061.33  24.12

Signif. codes

0 x#2? 0.001 24x’ 0.01 7%’ 0.05 *.7 0.1’ 1

> ## veighted squares of means (Type III)
> Anova(fat.lm, type="III")
Anova Table (Type III tests)

Response: bodyfat

Sun Sq Df F value  PrOF)
(Intercept) 114.71 1 4.7555 0.034595 *
abdomin  1823.02 1 75.5740 4.169e-11 *xx
biceps 209.32 1 8.6773 0.005134 *+
Residuals  1061.33 44

Signif. codes: O ’swx’ 0.001 s’ 0.01 '+ 0.05 .’ 0.1 ° ’ 1
> ## model sum of squares

> var(fatSbodyfat) * (nrow(fat)-1) - sun(fat.lm$residuals™2)
[1] 2649.817
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> displayf.aov <- aov(time ~ emergenc *+ panel, data=display)

> anova(displayf .aov)
Analysis of Variance Table

Response: time
Df Sun Sq Mean Sq F value  Pr(>F)

emergenc 3 1052.46 350.82 60.5731 1.612e-07 %xx
panel 2 23275 116.38 20.0935 0.0001478 *++
emergencipanel 6 28.92  4.82 0.8321 0.5675015
Residuals 12 69.50  5.79

Signif. codes: O 'eer’ 0.001 'e+’ 0.01 '+ 0.05 *.’ 0.1’ 1
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> turkey2.a0v <- aov(st.gain = diet, data=turkey)

> sumnary(vurkey2.aov)

Df Sun Sq Mean Sq F value Pr(>F)
aiet 4 103.0 25.76  81.7 5.6e-14 +x
Residuals 25 7.9 0.32

Signif. codes: 0 wwx’ 0.001 '+« 0.01 *+» 0.05 *.° 0.1 % 7 1

> old.wideh <~ options (uidth=6T)

> sumnary(turkey2.aov,
. split=list(diet=list(
. control.vs. treatnent=1,
+ A.vs.B=2,
N anount=3,
+ A.vs.B.by. anount=4)))
Df Sun Sq Mean Sq F value Pr(>F)

atet 4 103.0 25.8  81.67 5.6e-14 wan
diet: control.vs.treatment 1 56.6  56.6 179.40 6.6e-13 *xx
diet: A.vs.B 1228 22.8  72.34 7.60-09 #ax
anount 1224 224 7111 8.9e-09 xxx
¢ Ave.Bby.amount 1 1.2 1.2 3.85 0.061 .
Residuals 25 s 03
Signif. codes: O ’wws’ 0.001 '++’ 0.01 *+’ 0.05 *.° 0.1° * 1

> options(old.width)
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00, e NRCOmmaer
Fie Edt Data Statstcs Graphs Models Distributons Tools Help |

@ oataset: haroness | [/ Edt data set |[ (8 View dataset | Model: 3 Uneartodel1 |

R scrpt R Markdown |

LinearModel 1 <- Un(hardness ~ density + [(dnsity"2), datamhardness)

sumaryLinearmodel. 1)

Fegri. lotixchardnessbdensity, yshardnessshardness, resid.plot="square’,
Shabiedensityt, yiabehardhests, Coxch.3, xLume (24.7, 75.74002405788115),
Uine (355.o1si63015701, 3368), model=LinearMoaet. 1r
Toine Residuats from model:  hardness - dencity + Iidensity"2) ")

a7 plotixchardnessSdencity, yhardnessshardness, residplate square’,

]

Rlabs-density”, ylabs-hardness-, cex=l.3, x\inzc(2d.7, 75.7480249784115),

JUim=c (259.91516301731, 3260), main='Residuals from model: hardoess ~ density’) | |
r o
- submit
(Intercept) -119.0074 3349669 -0.352 0.72686 o}
density o440 lao3se 0.632 053197
Tldensity2) o501  0.157 3248 0.00267 *+

Signif. codes: © *+es 0.001 e+t 0.01 "+ 0.05 .1 0.1 1
Residual standard error: 161.7 on 33 degrees of freedom
miitiple R squared: ©0.9616, Adjusted R-squarad: 0.9593
Fstatistic: 413.2 on 2 and 33 DF, p-valve: < 2.2616 H

? regrtettomarmesstimaisy, yharsmessshartiess rosia plotoisqure.
. ylab="hardness", cexc.3, xlim=c(24.7, 75.7430249784115),
T Vimc (355, StsislaisTal, 32600, modeleiinearvodel 1,

main=-Residuals from model: hardness ~ density + I{density"2)")

> regrl.plot (xchardnesssdensity, yshardnessShardness, resid.plot="square’,
« "Nlabtdensity”, ylabe-hardness-, cex=l.3, xlincc(24.7, 75.7480249784115),
+ YUinec(259.915163015731, 3260), main="Residuals from model: hardress ~ density’)
I D
Messages

i Version 2,16 E

[[2] NOTE! The dataset hardaess has 36 rows and 2 colums.
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> table(sign(hari§Post - harigPre))

-1 01
31215

> pbinon(15, 46, .5, lover=TRUE)
[1] 0.01205
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We need to align b
hex to binary, shifting or
bits
1.

.3 +0x1.3333333333333p-2 =
.6 +0x1.3333333333333p-1 = +0x1.3333333333333p-1

+0x0.9999999999999p-1  aligned binary (see below)

9 add of aligned binary +0xi.cccccceccceeep-l
9 convert from decimal  +0xl.cccecceccecedp-l

nary points for addition. The shift is calculated by converting
bit to the right to get the same p=1 exponent, regrouping four
nto hex characters, and allowing the last bit to fall off

0011 0011 0011 ... 0011 x 2°2 — .1001 1001 1001

L1001 | £x 27

nums369 <- c(.3, .

L .3+.6, 9)

nuns3694f <

data. frame("decinal-2"=nuns369,
"decimal-17"=fornat (nuns369, digits=17),
hexadecimal=sprintf ("4+13.13a", nuns369))

Dums369d£ [3,1] <- "0.3 + 0.6"

nums369df
decimal.2 decimal. 17
0.3 0.29999999999999999

0.6 0.59999999999999998

0.3 + 0.6 0.89999999999999991
9 9.00000000000000000

hexadecimal
+0x1.3333333333333p2
+0x1.3333333333333p1
+0x1.cececcecccccep-1
+0x1.2000000000000p+3
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> X.loop

Sseries

(1] "tser.mystery.X"

$model
1 e

$signa2

3
02.715
11.500
2 1.286

Saic

o
0 387.7
1330.9
2317.9

Scoef

0,0,0)
(1,0,0)
(2,0,0)
0,0,1)
(1,0,1)
2,0,1)
0,0,2)
1,0,2)
2,0,2)

$t.coef,

0,0,0)
(1,0,0)
(2,0,0)
0,0,1)
(1,0,1)
2,0,1)
0,0,2)
(1,0,2)
2,0,2)

,0,9"

12
1.435 1.277
1.271 1.262
1.260 1.260

1
326.6 317.
316.7 318..
317.9 319..

art ar2

A N
0.6636 [y
0.9135 -0.3721

A N
0.4200 [y
0.6213 -0.1781

A N
0.2614 Na
0.5417 -0.1479

art ar2
[ [y
9.0295 A
9.9262 -4.0464
A N
3.8606 N
2.6785 -0.9701
A N

1.0949 [y
0.7891 -0.4658

mal  ma2 intercept
A A NA
A NA -0.2744
A N -0.2528
0.7264 NA -0.2568
0.5221 NA-0.2620
0.3483 NA-0.2571
0.9272 0.32058  -0.2548
0.7057 0.17341  -0.2588
0.4280 0.04826  -0.2572
mal  ma2 intercept
NA NA A
NA WA -0.7684
NANA -1.0257
13.2037  NA -1.2471
5.1540 A -0.8828
1.5262  NA -0.9525
10.6280 3.5060  -1.0063
3.0019 0.8897  -0.9135
0.6246 0.1267  -0.9478
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emacsDemo2.R

anova(fat.ln)  ## anova table
sunmary(fat.ln) ## summary information

red <- predict(
res < resid(fat.ln)

n)

Ai Ui emacsbeso.R  Bot (15,0)  CVS:1.1 (ESSIS] R db =] Eloc) y
n
i

| )

pred <- predict(fat, UnjiSEUFEESTRUE

res < resid(fat.ln) n

Bi -ikk- emacsDemo2.R Bot (12,0)  CVS:1.1 (ESSIS] [R db -] EWoc)
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data(fat)

## model without a constant tern
xy.moint.1n <- ln(bodyfat = biceps - 1, data=fat)

> summary (xy.noint . 1n)

Call:
In(fornula = bodyfat = biceps - 1, data = fat)
Residuals:

Min 10 Median 3Q  Max

-16.110 -6.145 -0.006 6.841 20.185

Coefficients:
Estimate Std. Error t value Pr(>|t|)
biceps  0.563 0.036  15.6  <2e-16 wxx

0 es? 0.001 ’4x’ 0.01 ’x’ 0.05 *.% 0.1 * 1

Residual standard error: 8.22 on 46 degrees of freedom
Multiple R-squared: 0.841,Adjusted R-squared: 0.838
F-statistic: 244 on 1 and 46 DF, p-value: <2e-16

> anova(xy.noint.1n)
Analysis of Variance Table

Response: bodyfat

Df Sun Sq Mean Sq F value Pr(>F)
biceps 1 16506 16506 244 <2e-16 wax
Residuals 46 3110 68

Signif. codes: 0 ’sxx’ 0.001 '+’ 0.01 '+’ 0.05 .’ 0.1 ' ’ 1
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abed <= data.frame(x=c(1, 2, NA, 4, 5, 6, 7, 8),
y=c(6, 5, 8, NA, 10, 9, 12, 11),

ThecCA, "N, "0, “pr. vQh, vRW, ngn, wv),

stringshsFactors=FALSE)

abed
xy
16 >
25
s
4m
510
6 9
712
811

Hemowo=

sapply(abcd, class)
x y EY
"numeric"  "numeric" "character"
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> data(tv)

> tap <- as.matrix(table(cut (tvénale.life.exp, breaks=seq(49.5,79.5,5))))
> dimnanes (top) <~

+  list("Male Life Expectancy’=

- ©("50--54" , "55--59" , "60--64" ,"65--69","T0--74", "75--79")
. " "="Frequency")

> tap

Male Life Expectancy Frequency
50- 6

P
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> yatesppl2.anova <-

+ " aov(y - varietysitrogen + Error(blocks/variety/nitrogen),

N data=yatesppl)
> sumary(yatesppl2. anova)

Error: blocks
Df Sun Sq Mean Sq F value Pr(>F)
Residuals 5 15875 3175

Error: blocks:variety

Dt Sun Sq Mean Sq F value Pr(>F)
variety 2 1785 893  1.49 0.27
Residuals 10 6013 601

Error: blocks:variety:nitrogen
Df Sun Sq Mean Sq F value Pr(>F)

nitrogen 3 20020 6674  37.7 2.5e-12 s
variety:nitrogen 6 322 54 0.3 0.3
Residuals 45 7969 177

Signif. codes: O ’*xx’ 0.001 '+ 0.01 '+’ 0.05 *.’ 0.1° * 1
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## aov contrast matrix for catalyst factor. The colums are

> ## constructed by contr.treatment with the default base=1

Cow> v

Caw>

contrasts (catalystagcatalyst)

BCD
000
100
010
001
## Linear function used internally by glht for pairwise contrasts.
## The rows of linfct are the differences of the columns
## of the contrast matrix.
catalystn. micuca$glhtSlinfct
(Intercept) catalystB catalystC catalystD
B o -1 o o
c o o -1 0
c o 1 -1 o
D o o 0 -1
D o 1 0 -1
D o o 1 -1
## Contrasts in lmat format, each colum sums to zero.
## The last three rows are the transpose of the last three colums
## of the linfct matrix.
## The first row is prepended to make the column sun be zero.
catalyst.pairwise <- lmatPairvise(catalystm.muc)

catalyst.pairvise
A-B A=C B-C A-D B-D C-D
11 0 1 0 0
10 1 0 1 0
0 -1 -1 0 0 1
0 0 0 -1 -1 -1
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16-17|-1.035 —0.6083 —0.1383  1.7817| 1.605
18-19| 0.215 0.1417 0.2117 —0.5683| —0.245| =
30-59( 0.820 0.4667 —0.0733 —1.2133| —1.360

col | —0.740 —0.4667 0.06333 1.1433| 1.770

012 3+ Tow
16-17)
18-19|e, —cj|ri=rl-p
30-59

col
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> stats:::dfbetas.ln
function (model, infl = lm.influence(model, do.coef = TRUE),
)

<

qrm <- qr(aodel)

xxi <- chol2inv(qru$qr, qrm$rank)

dfbeta(model, infl)/outer(infl$signa, sqrt(diag(xxi)))
]

<bytecode: 0x10a0fa708>
<environment: namespace:stats>
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> wilcox.test(hari$Pre, hari$Post, alternative
. Ppaired=TRUE, exact=FALSE)

greater”,

Wilcoxon signed rank test with continuity correction

data: hari$Pre and harigPost
V = 808.5, p-value = 0.001734
alternative hypothesis: true location shift is greater than 0
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abc.nested <- ## nested

with(abe,

print(abe.nested, na.print=

BuA

matrix(c(y[1:4],  rep(NA,8),

Tep(NA,4), y(5:8],  rep(NA,4),
Tep(NA,8) , ylo:12D),
3, 12, byrow=TRUE,
dimnanes=1ist (A=unique(A), BuA=BuA))
)

d e £ g n

i x 1 = a

r -0.02 1.19 -0.02 0.23

s
t

0.67 1.95 -0.71 -0.4
-0.56 0.01 0.13 1.19

abe.double. indexed <- ## doubly-indexed
abel,"y", drop=FALSE]

abc.double. indexed

-0.

1.
-o.
.23
.67
.95
.71

y
02
19
02

40

.56
.01
.13
.19
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R282 <- t(sapply(strsplit(Design_2.8_28trt, ),

function(trtconb)
as.numeric(letters(1:8] %in% trecomb)))

dimnanes(R282) <- list(Design.2.8_28trt, letters(1:8])

R282 <- data. frame(blocks=Design_2.8_2§blocks, R282)

R282

data(R282.y) ## R282.y was randomly generated

R282.20v <- 20v(R2B2.y ~ blocks + (atbrcrdvertrgeh)"2, data=Rs2)

anova(R282.20v)

model.matrix(R282.a0v)

## confirn aliasing

R282E.a0v <~ aov(R282.y  Error(blocks) + (atbtcdterfvgth) 2,
data=R282)

‘sumnary (R282E. aov)
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> data(tires)

> tires.aov <- aov(uear - car + position + brand, data=tires)

> sumary(tires.aov)
Df Sun Sq Mean Sq F value Pr(F)

car 3 38.69 12.896 14.395 0.00378 *x
position 3 6.19 2.062 2.302 0.17695
brand 3 30.69 10.220 11.419 0.00683 **

Residuals 6 5.38 0.896

Signif. codes: 0 ’sxx’ 0.001 '+’ 0.01 '+’ 0.05 .’ 0.1’ ’ 1

>  tapply(tiresSwear, tiresScar, "mean”
12 3 a4
14.00 12.76 11.75 9.75

> tapply(tiresSwear, tires$position, "mean")
12 3 a4
11.00 12.50 12.50 12.25

> tapply(tiresSwear, tires$brand, "mean")
12 3 a4
14.25 12.25 10.75 11.00
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> usair.ln7 <- lu.regsubsets(usair.regsubset, 7)

> anova(usair. 1n7)
Analysis of Variance Table

Response: 1nS02
Df Sun Sq Mean Sq F value Pr(>F)

lunfg 1226 226 9.00 0.0049 *x
precip 1 0.03  0.03  0.11 0.73%

temp 16.21  6.21 24.77 1.6e-05 x+
wind 1221 221 8.84 0.0052 *x

Residuals 36 9.02  0.25

Signif. codes: 0 ’sxx’ 0.001 '+’ 0.01 '+’ 0.05 .’ 0.1 ' ’ 1

> sumary(usair.1a7)

Call:
In(fornula = 1nS02 ~ lmmfg + precip + temp + wind, data = usair)
Residuals:

Min 10 Median Q0 Max

-0.8965 -0.3405 -0.0854 0.2963 1.0321

Coefficients:
Estimate Std. Error t value PrO>lt|)
(Intercept) 6.89138  1.07009  6.44 1.8e-07 #ax

1nnfg 0.23999  0.08677  2.77  0.0089 *+
precip 0.01830  0.00738  2.62 0.0129 *

temp -0.07304  0.01283  -5.69 1.8e-06 *++

wind -0.18437  0.06203 -2.97  0.0052

Signif. codes: O ’swx’ 0.001 s’ 0.01 '+’ 0.05 .’ 0.1 ° ’ 1

Residual standard error: 0.501 on 36 degrees of freedom
Multiple R-squared: 0.543,Adjusted R-squared: 0.492
F-statistic: 10.7 on 4 and 36 DF, p-value: 8.23¢-06

> vif (usair.1a7)
lunfg precip temp wind
1.115 1.204 1.373 1.253
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> data(cereals)

> table(cereals(,c("afz", "type™)1)
type

nfr C

0

22

2

5

mow=xox>

o
7
8

" & cerealssmfr ink c("K",

> C.KG <~ coreals$type

cerealsC <- cereals[C.KG, c("mfr", "carbo") ]

cerealsCénfr <- factor(cerealsCinfr)

buplot(carbo = mfr, datascerealsC) +
dotplot(carbo = mfr, data=cerealsC)

> t.t < t.test(carbo ~ mfr, data=cerealsC, var.equal=TRUE)

>t
Two Sample t-test

data: carbo by mfr
t = -0.3415, df = 43, p-value = 0.7344
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.784 1.978
sample estimates:
mean in group G mean in group K
14.73 15.13
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> M < matrix(c(1,3,6,4,2,3,8,6,4,5,3,2), 4, 3)

>u

L1 02 03
wl 12 4
2] 3 3 s
1 6 8 3
Wl 4 s 2

> library(MASS)
> Mi <= ginv()

>mi

L1 2 £,3 %)
[1,] -0.7434 0.6006 0.22741 -0.35569
[2,] 0.4694 -0.4694 -0.06122 0.32653
[3,] 0.1808 0.1050 -0.06706 -0.02332

> zapsmall(eigen( %x% Mi)$value)
mwitio

> zapsmall(ti %+ M)

LU L2 03
Wl 1 o o
@] o 1 o
B o o 1

> M.sva$y 4w diag(1/M.svd$d) %% t(M.svdsu)
L 2 £,3 [,4

[1,] -0.7434 0.6006 0.22741 -0.35569

[2,] 0.4694 -0.4694 -0.06122 0.32653

[3,] 0.1808 0.1050 -0.06706 -0.02332
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Fli)

machine precision,

rounded to rounded to 53 bits,
i f() fraction 4 decimaldigits  ~ 17 decimal digits
T 1/6 176 0.1667 0.16666666666666666
2 16 26 03333
3016 36 05000 0.50000000000000000
416 46 06667 0.66666666666666663
516 5/6 08333
6 16 6/6 10000 1.00000000000000000
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> data(hardness)

hardness.lin.la <- lu(hardness - demsity,
+ datashardness)

> anova(hardness.1in.1m)
Analysis of Variance Table

hardness
Df Sum Sq Mean Sq F valus Pr(>F)
density 1 21345674 21345674 637 <2e-16 wes
Residuals 34 1139366 33511

Respons:

1

> anova(hardness .quad. 1n)
Analysis of Variance Table

Response: hardness
Df SunSq lean Sq F value PrF)
density 1 21345674 21345674  B15.9 <20-16 *xx

I(density"2) 1 276041 276041  10.6 0.0027 ++
Residuals ~ 33 863325 26161

Signif. codes: O 'eer’ 0.001 *++’ 0.01 '+ 0.05 *.’ 0.1’ 1
> coef (sumnary. ln(hardness..quad. 1n))

Estimate Std. Error t value Pr(>Itl)
(Intercept) -118.0074  334.9669 -0.3523 0.726857
density 9.4340  14.9356 0.6316 0.531970
I(density"2)  0.5091  0.1567 3.2483 0.002669
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> pbinom(size=15, prob=.4, q=6)
[1] 0.6098

> pnorm(g=
[1] 0.6039

.5, mean=15+.4, sd=sqrt(15+.4+(1-.4))
> dbinon(size=15, prob=.4, x=6)
[1] 0.2066

> iff (porm(q=c(5.5, 6.5), mean=15+.4, sd=sqrt(15+.4+(1-.4))))
111 0.2079
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> HHscriptnames(7)
7 "C:/Users/rmh/Docunents/R/win-1ibrary/3.2/HH/scripts/
hh2/mcomp. R"
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> ddco2.100pPQ <=

+ arma.loop(co2,
order=c(2,1,2),
seasonal=list(order=c(0,1,1), period=12)

> ddco2.1oopPQ
$series

1] "co2"

$model

1] "(p,1,)x00,1,

$signa2

o 1
00.09063 0.08260
1 0.08358 0.08221
210.08315 0.08176

Saic
o 1

0 221.5 178.2 179.
1184.2 178.1 180.
2 183.5 177.8 179.

Scoef

0,1,00%(0,1,1)12
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(2,1,00%(0,1,1)12
0,1,1)%(0,1,1)12
(1,1,1%(0,1,1)12
(2,1,1)%(0,1,1)12
0,1,2)x(0,1,1)12
(1,1,2)%00,1,1)12
(2,1,2)%(0,1,1)12

$t.coef

(0,1,00%(0,1,1)12
(1,1,00%(0,1,1)12
(2,1,00%(0,1,1)12
0,1,1)%(0,1,1)12
(1,1,1)%00,1,1)12
2,1,1%(0,1,1)12
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> rent.lmi2n <- aov(alf.till ~ lime * cow.dems, data=rent)

> anova(rent.ln12m)
Analysis of Variance Table

Response: alf.till
Dt Sun Sq Mean Sq F value Pr(>F)
lime 10.846  0.846  17.11 0.00011 xax
cou.dens 1 0.754  0.750  15.26 0.00023 *kx
line:cou.dens 1 0.140 0.140  2.84 0.09708 .
Residuals 63 3.113 0.049

Signif. codes: O 'eew’ 0.001 *e+’ 0.01 '+ 0.05 *.’ 0.1’ 1

> sumnary. lu(rent.1n12m)

Call:
aov(formula = alf.till = lime * cov.dens, data = rent)

Residuals:

Min 1Q Median 30 Max
-0.3296 -0.1362 -0.0139 0.0877 0.8408
Coefficients:

Estinate Std. Error t value Pr(>It|)

(Intercept) ~ 0.80653  0.06248  15.37 < 2e-16 wex
limet -0.10424  0.05248 -1.99  0.051 .
cow.dens 0.01024  0.00241  4.25 7.1e-05 %x+
limel:cow.dens 0.00405  0.00241  1.68  0.097 .

Signif. codes: O 'eew’ 0.001 'ex’ 0.01 '+ 0.05 *.’ 0.1’ 1

Residual standard error: 0.222 on 63 degrees of freedom
Multiple R-squared: 0.359,Adjusted R-squared: 0.328
F-statistic: 11.7 on 3 and 63 DF, p-value: 3.32e-06
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> data(turkey)
> turkey.aov <- aov(wt.gain " diet, data=turkey)

> scheffe.quantile < sqrt(4+qf(.95, 4, 25))

> turkey.lmat <-
+  cbind(control.vs. treatment=c(1,-.25,-.25, 25),
+ Avs.B =c(0, .5, .5, 5,
+ amount, =c(0, .5, -.5, 5),
+ A.vs.B.by.amount  =c(0, .5, -.5, 5)

> row.names (turkey.1nat) <- row.names(contrasts(turkey$diet))

> turkey.mec < mmc(turkey.aov, calpha=scheffe.quantile, focus="diet",
focus. Inat=turkey . lnat,
+ estinate.sign=0, order.contrasts=FALSE)

turkey.mnc$lnat

estimate stderr lower upper height
control.vs.treatment -3.433 0.2563 -4.2849 -2.582 5.500
Avs.B -1.950 0.2293 -2.7116 -1.188 7.217
anount -1.933 0.2293 -2.6950 -1.172 7.217
A.vs.B.by.amount 0.450 0.2293 -0.3116 1.212 7.217
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> ## solve using power.t.test
> PIT <=

power. . test(delta-delta, sd=sd, sig.level-alpha, pover-power,
type="one.sample”, alternative="one.sided")

> pTT
One-sample t test pover calculation

n=26.14
delta = 1
sd=2
sig.level = 0.05
pover = 0.8
alternative = one.sided

> NTpLot(PTT, zaxi

RUE) ## static plot

> ## NTplot(PIT, zaxis

RUE, shiny=TRUE) ## dynamic plot
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Legible:

> anova(fat2.1m)
fnalysis of Variance Table

Response: bodyfat

Terms added sequentially (first
Df Sum of Sq Mean Sq

abdomin 1 2440.500 2440.500
biceps 1 209.317 209.317
Residuals 44 1061.382 24.122

to last)
F Value Pr(F)
101.1718 0.00000000

8.6773 0.00513392

Illegible (folded at 31 characters)

> anova(fat2.1m)
Analysis of Variance Table

Response: bodyfat

Terns added sequentially (first
%o last)
DE Sum of Sq Mean Sq
Fualue  Pr()
abdomin 1 2440.500 240.500
101.1718 0.00000000
biceps 1 209.317 209.317
8.6773 0.00513392
Residuals 44 1061.382 24.122
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data(hotdog, package="HH")
data(coldx2, package="HH")

## constant line across all groups
Wy x
ancovaplot (Sodium * Calories, group

ype, data-hotdog, col=col3x2)
## different horizontal line in each group

#wy-a

ancovaplot (Sodium  Type, x~Calories, datashotdog, col=col3x2)

## constant slope, different intercepts
Wy xva or y-atx
ancovaplot (Sodium  Calories + Type, dats

## different slopes, and different intercepts
#y-xsa or y-axx
ancovaplot(Sodiun - Calories * Type, datashotdog, col=col3x2)
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Constant slope | Linear regression,  Standard analysis of covariance with
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Analysis of variance, ignoring the
covariate.
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data(cc13s)

alc < aov(terns(yield = cou + square:period + treat + res.treat,
keep.order=TRUE), data=cc135)

sumnary (atc)

ater <- aov(terms(yield ~ cou + square:period + res.treat + treat,
keep.order=TRUE), data=cc135)

sumnary (atcr)
Source Df_SumofSq_Mean Sq_F Value _Pr(F)
cow 5 STSLIIL 1156222 23211 0.005
period in square 4 1480011 2872278 57662 0.001
treat-+res.treat 4 2802972
{ime 2 2276778 1138389 22853 0.006
restreat after treat 2 616194 308097 6185  0.060
[ 2 38422 19211 038 0703
treat after res.treat 2 2854550  1427.275 0.004
Residuals 4 199250 49812
Total 1720362444
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> kruskal.test(pulse = task, data=pulse)
Kruskal-Wallis rank sum test

data: pulse by task
Kruskal-Wallis chi-squared = 16, df = §, p-value = 0.007
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summary (Lineartodel. 1)
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sumary (Lineartiodel. 1)
au:
(formila = hardness ~ density + I(density~2), data = harcness)
siduals:
Min 10 Medin 30 Max
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>y < 1:3; q < 3:5; yy < tlouter(2°q, y, +)
> yy6 <- mptr(yy, 6); dimnames(yy6) <- list(y, @)

> yy6

‘mpfrMatrix’ of dim(.) = (3, 3) of precision 6 bits
3

o

coows
8eg
coom

0.
1.

558

> vartwo(yy6(,"s"])
1 'mpfr’ number of precision 53 bits
1

> fornatBin(yy6)

3 4 5
+0b1.00100p+3 +0b1.00010p+4 +0b1.00001p+5
+0b1.01000p+3 +0b1.00100p+4 +0b1.00010p+
3 +0b1.01100p+3 +0b1.00110p+4 +0b1.00011p+S

> fornatBin(yy6, scientific=FALSE)

3 4 5
1 +0b__1001.00 +0b_10001.0_ +0b100001
2 40b__1010.00 +0b_10010.0_ +0b100010
3 40b__1011.00 +0b_10011.0_ +0b100011

>y <= 1:3; q < 3:5; yy < tlouter(2°q, y, “+9)
> yy5 <- mptr(yy, 5); dimnames(yy5) <- list(y, @)

> yy6

‘mpfrMatrix’ of dim(.) = (3, 3) of precision 5 bits
s 4 s

19.00 17.0 32.0

210.0 18.0 34.0

311.0 19.0 36.0

> vartwo(yy5[,"5"])

1 'mpfr’ number of precision 53 bits

S

> fornatBin(yys)

3 1 5
+0b1.0010p+3 +0b1.0001p+4 +0b1.0000p+5
2 +0b1.0100p#3 +0b1.0010p+4 +0b1.0001p+5
3 +0b1.0110p+3 +0b1.0011p+4 +0b1.0010p+5

> fornatBin(yys, scientific=FALSE)
3 4 5
1 +0b__1001.0 +0b_10001._ +0b10000_._
+0b__1010.0 +0b_10010._ +0b10001_._
3 +0b__1011.0 +0b_10011._ +0b10010_._
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> tsq.loop <- arma.loop(tsq, order=c(2,0,2)

> tsq.loop

Sseries

(1] "tsq’

Smodel

1] "(p,0,)"

Ssigna2

o
0 1.330
11.173
2 1.003

Saic

0
0316.3
1305.8
2202.6

Scoef

(0,0,0)
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> lyaph3.glm <- glm(nodes - X.ray + stage + grade + acid.ph,
. data=lyaph, family=binomial)

> anova(lyaph3.gla, tes
Analysis of Deviance Table

hisq")

Model: binomial, link: logit
Response: nodes

Terns added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 52 70.3
Xoray 1 1138 51 59.0  0.0008 *xx
stage 1 5.65 50 53.4 0.0175 %
grade 1 0.57 40 52.8  0.4489
acid.ph 1 3.16 a8 49.6 0.0753 .

Signif. codes: 0 ’xxx’ 0.001 '+ 0.01 '+’ 0.05 *.’ 0.1° * 1
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Courier (with correct aligament of columns)

Times Roman (alignment is lost)

> tvl1:5, 1:3)
1ife.exp ppl.per.tv ppl.per.phys

Argentina  70.5 4.0 370
Bangladesh  §3.5 315.0 6166
Brazil  65.0 4.0 684
Canada  76.5 1.7 449
China  70.0 8.0 643

> w15, 1:3)

life.exp ppl.per.tv ppl.per.phys
Argentina 70.5 4.0 370
Bangladesh 53.5 315.0 6166
Brazil 65.0 4.0 681

Canada 76.5 1.7 449

China 70.0 8.0 643
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gunload.aov <~
aov(rounds ~ method+group + Error((tean %in’ group)/method) ,
data=gunload)

> sumnary (gunload. aov)

Error: team:group

Df Sun Sq Mean Sq F value Pr(>F)
group 2 16.05 8.026 1.227 0.358
Residuals 6 39.26 6.543

Error: team:group:method

Df Sun Sq Mean Sq F value Pr(>F)
method 10652.0 652.0 364.841 1.330-06 *kx
method:group 2 1.2 0.6 0.382  0.73
Residuals 6 10.7 1.8

Signif. codes: O ’swx’ 0.001 s’ 0.01 '+’ 0.05 .’ 0.1 ° ’ 1

Error: Within
Df Sun Sq Mean Sq F value Pr(>F)
Residuals 18 41.59 2.311

> model. tables (gunload.aov, type="means")
Tables of means
Grand mean

19.33333

method
method

new  old
23.589 15.078

group
group

slight average heavy
20.125 19.383 18.492

method: group
group
method slight average heavy
new 24.350 23.433 22.983
old 15.900 15.333 14.000
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dinnames=1ist(1:4, A=unique()))

data(abe)
abe
AB ABBaA  y

wrwrw c-0.02
xrxrx 4 119
yryry e-0.02
zrzrz f 023
wswsw g 0.67
xsxsx h 1.95
ysysy i-0.71
zszsz j-0.40
Wtwtw k-0.56
xtxtx 1 0.01
ytyty m 013
ztztz o 119
abc.onevay <- ## one-vay
with(abe,

natrix(y, 4, 3,

)
abe. onevay
&

st
1-0.02 0.67 -0.56
2 119 1.95 o0.01
3-0.02 -0.71 0.13

4 0.23 -0.40 1.19

abc.crossed <- ## crossed

ab

thabe,

matrix(y, 3, 4, byrowsTRUE,
dimnanes=1ist (A=unique(d), Brunique(8)))

)

c.crossed
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((2) + (11% ) + (15°) ## parenthesized expression

(@ + (121)) + (225) ## square each term

(4 + 120 ) + 220 ##roundeach termto two significant decimal digits

( 124 ) + 220 ## calculate the intermediate sum

( 120 ) + 220 ## round the intermediate sum to two decimal digits
340 ## sun the terms

Compare this to the full precision arithmetic

(25 + (113 ) + (15%) ## parenthesized expression

(4 + 121 ) + 225 ##squareachtem

( 125 )+ 225 ##calculate the intermediate sum
350 ## sum the terms
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Decimal  Hex

100 = +0x64
x 100 +0x1.9000000000000p+6
a < xsl 101 +0x1.9400000000000p+6
b o< xa2 102 +0x1.9800000000000p+6
a2 10201 +0x1.3¢c8000000000p+13
b2 +0x1.4520000000000p+13
b2 - a2 +0x1.9600000000000p+7

(bra) * (b-a) +0x1.9600000000000p+7

Hex

+0x8000000
x 134217728 +0x1.0000000000000p+27
a < ow 134217729 40x1.0000002000000p+27
b x2 134217730 +0x1.0000004000000p+27
b2 180143990 +0x1..0000008000001p+54
b2 - a2 268135460  +0x1.0000004000000p+25

(b+a) * (b-a) 268435459 +0x1.0000003000000p+28
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> data(pulnonary)

> pulnonary

smoker n FVC s
NS NS 200 3.35 0.63
PS  PS 200 3.23 0.46
NI NI 50 3.19 0.52
LS LS 200 3.15 0.39
MS  MS 200 2.80 0.38
HS  HS 200 2.55 0.38

> pulmonary.aov <-
+ aovSufficient (FVC = smoker, data=pulmonary,
+ weights=pulmonary$n, sd=pulmonary$s)

> sumnary (pulmonary.aov)

Df Sun Sq Mean Sq F value Pr(>F)
smoker 5 89.3 17.85  83.9 <2e-16 sxx
Residuals 1044 222.1  0.21

Signif. codes: 0 ’sxx’ 0.001 '+’ 0.01 '+’ 0.05 ’.’ 0.1’

1
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> crashi.aoy <-
+  20v(10000/crashrate ~ agerange + passengers, datascrash)

> sunmary(crashi.aov)

Df Sun Sq Mean Sq F value Pr(F)
agerange 2 1.026409 5.09¢+08  44.97 0.00024 +++
passengers 3 2.42e+06 8.06e+05  0.07 0.97325
Residuals 6 6.79¢+07 1.136+07

Signif. codes: O ’wxx’ 0.001 '+’ 0.01 ’+’ 0.05 *.’ 0.1 ° *

1
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> aovStatementhndhnova (CpT)
> anova(aov(Sodiun ~ Calories + Type, data = hotdog))
Analysis of Variance Table

Response: Sodiun

Df Sun Sq Mean Sq F value Pr(>F)
Calories 1106270 106270  34.6 3.30-07 #x
Type 2207336 113693 37.1 1.30-10 wxx
Residuals 50 153331 3067

Signif. codes: O ’*xx’ 0.001 '+ 0.01 '+’ 0.05 *.7 0.1° * 1
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> yatesppl.aov <=
+ 7 aou(y - varietymitrogen + Error (blocks/plots/subplots),
. datasyatesppl)

> sunnary (yatesppl.aov)

Error: blocks
Df Sun Sq Mean Sq F value Pr(>F)
Residuals 5 15875 3175

Error: blocks:plots

Dt Sun Sq Mean Sq F value Pr(>F)
variety 2 1785 893  1.49 0.27
Residuals 10 6013 601

Error: blocks:plots: subplots
Df Sun Sq Mean Sq F value Pr(>F)

nitrogen 3 20021 6674  37.7 2.5e-12 s
variety:nitrogen 6 322 54 0.3 0.3
Residuals 45 7969 177

Signif. codes: O ’xxx’ 0.001 '+ 0.01 '+’ 0.05 *.’ 0.1° * 1
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> catalysta.mac <-
+  mac(catalystml.aov, linfct = mcp(catalyst = "Tukey"))

> catalysta.mc
Tukey contrasts

Fit: aov(formula = concent
Estinated Quantile = 2.966
95/ family-uise confidence level

catalyst, data = catalystm)

Smca

estimate stderr  lower upper height
AB 1.125 1.138 -2.25211 4.502 56.34
A-C 3.667 1.239 -0.00986 7.343 55.07
B-C  2.542 1.296 -1.30334 6.387 54.50
AD  5.775 1.138 2.39789 9.152 54.01
B-D  4.650 1.200 1.09022 8.210 53.45
C-D  2.108 1.296 -1.73667 5.953 52.18
Snone

estimate stderr lower upper height
56.90 0.7590 54.65 59.15 56.90
55.77 0.8485 53.26 58.20 55.77
53.23 0.9798 50.33 56.14 53.23
51.12 0.8485 48.61 53.64 51.12






OEBPS/A77776_2_En_7_Figa_HTML.gif
> weightloss.aov <- aov(loss ~ group, data=weightloss)
> sumnary (veightloss.aov)

Df Sun Sq Mean Sq F value Pr(>F)
grouwp 4 59.9 14.97  15.1 6.9e-08 +
Residuals 45 44.7  0.99

Signif. codes: 0 ’#xx’ 0.001 '+’ 0.01 '+’ 0.05 .’ 0.1’ ’ 1
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> contrasts (catalystascatalyst)

Sows
coro

> X <= model matrix(catalystn.aov) [,2:4]

>x
catalystB catalystC catalystd

1 o o o

2 o o o

3 o o o

4 o o o

5 o o o

6 1 o 0

7 1 o o

8 1 o o

s 1 o o

10 o 1 o

1 o 1 o

12 o 1 o

13 o o 1

14 o o 1

15 o o 1

16 o ° 1

> catalysta.ln <-

+  In(concent - X[,"catalystB"] + X[,"catalystC"] + X[,"catalystd"],

. datascatalystm)

> anova(catalysta. 1n)
fnalysis of Variance Table

Response: concent
Df Sun Sq Mean Sq F value PrOF)

X[, "catalystB’] 1 8.8 8.8  3.07 0.10526

X[, "catalystc’] 1 2.7 2.7  0.95 0.35012

X[, "catalystD’] 1 741  74.1  25.73 0.00027 +++

Residuals 12 3.6 2.9

Signif. codes:

O Thkk’ 0.001 T4’ 0.01 '+ 0.05 7.7 0.1 * 1
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## An orthogonal set of ($4-18) contrasts for the catalyst factor.
## user-specified contrasts A B C oD
catalystn.lnat <- cbind("AB-D" =c(1, 1, 0,-2),

"A-B" =c(1,-1, 0, 0),

"ABD-C'=c(1, 1,-3, 1))

> dimnanes(catalystn.lmat) [[1]] <- levels(catalystaScatalyst)

catalystn. lmat
AB-D A-B ABD-C

A1 1
Boo1 -1 1
c o o -3
D -2 0o 1

crossprod(catalystn. luat)
AB-D A-B ABD-C

BD 6 0 0

A-B o 2 o

MDC 0 0 12

> catalyst.pairuise

A-B A-C B-C A-D B-D C-D.
A1 1 0 1 0 0
B -1 0 1 0 1 0
C 0 -1 -1 0 0 1
D 0 0 0 -1 -1 -1

resid(ln(catalystn. lnat
AB-D A-B ABD-C

catalyst.pairuise))

Cvows>
cooo
cooo
cooo
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> fisher.test(glasses)
Fisher’s Exact Test for Count Data

data: glasses

p-value = 0.03497

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval

0.0009526 0.9912282

sample estinate:

odds ratio
0.06464
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## dummy variable
htwt$female <- as.numeric(htutSsex == "£")

hwe.la <- la(ht ~ female, data=htut)

> sumary(htut.1n, corr=FALSE)
Gall:
ln(formula = ht ~ female, data = htwt)
Residuals:

Min 10 Median 30  Max

.938 2202 0.533 2.062 5.062

Coefficients:
Estimate Std. Error t value PrOltl)
(Intercept)  69.938 0.757  92.42 < 20-16 wax
female 470 0.985  -5.55 2.50-06 *rx
Signif. codes: 0 ’wxx’ 0.001 '+’ 0.01 '+’ 0.05 *.’ 0.1 °

Residual standard error: 3.03 on 37 degrees of freedon
Multiple R-squared: 0.454,Adjusted R-square

F-statistic: 30.8 on 1 and 37 DF,

anova(htwt.1n)

Analysis of Variance Table

Responss

Bt
Df Sun Sq Mean Sq F value Pr(>F)

female 1 282 282.3  30.8 2.50-06
Residuals 37 339 9.2

Signif. codes: 0 ’wxx’ 0.001 '+’ 0.01 '+’

d: 0.4

0.05 7.

pvalue: 2.540-06

v

1

1
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rent.ludl <-

data=rent)
> sumnary(rent . 1n31)

Call:

In(rot.alf = rnt.till + cow.dens + prop.past + lime,

In(fornula = rat.alf ~ rat.till + cou.dens + prop.past + lime,

data = rent)

Residuals:

Min 10 Median 3q
-21.229 -4.869 -0.029 4.755

Coefficients:

Estimate Std. Error

(Intercept) -3.334

t.till 0.883
cow.dens 0.432
prop.past  -11.380
line1 -0.506

4.101
0.069
0.108

11.894
1.428

Signif. codes: 0 'ews’ 0.001 ’

Residual standard error: 9.31 on 62 degrees of freedom
0.84,Adjusted R-squared: 0.83

Multiple R-squar

Max
27.767

t value Pr(>Itl)
-0.81 0.41931
12.80 < 2e-16 #ax
4.00 0.00017 *xx
-0.96 0.34236
-0.36 0.72371

#42 0,01 *+? 0.05 7.7 0.1

F-statistic: 81.6 on 4 and 62 DF, p-value: <2e-16

> anova(rent.1u31)

Analysis of Variance Table

Response: rnt.alf

Df Sun Sq Mean Sq F value Pr(>F)

mt.till 1 25824
cou.dens 1 2386
prop.past 1 74
lime 11
Residuals 62 5375

Signif. codes: 0 ’sxx’ 0.001 '+’ 0.01 ’+’ 0.05 ’.’ 0.1 °

25824 297.89 <2e-16 *r+
2386 27.53 20-06 sxx
74 0.85 0.36
1 013 0.72

87

1

1
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data(sali)
> salk2 <= tapply(salk$Freq, salk[c(2,3,D], ©)

> class(salk2) <- "table"

## salka ## salk? is structured as a set of 2x2 tables
1t <- apply(salk2, 3, fisher.test, alternative='less")

> ## odds ratio and p-value
> sapply(lt, ‘[, c(*estimate’,"p.value"))

0-4 59 10-14 15-19  20-39 40+
estinate 0.2973 0.1669 1 0.1098 0.3645 0
p.value 0.01359 0.009521 0.7381 0.05656 0.2116 0.6667
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> data(balance)

> unname(n.old <- table(balance$age) ["o1d"])
e

> unname(n.young <- table(balancesage) ["young"])
ms

> (r <- rank(balance$sway))
(1] 6.516.0 8.0 6.515.0 13.5 9.5 12.0 17.0 13.5 9.5
[12) 4.5 3.0 1.5 1.511.0 4.5

> (NTIES <- table(r))

112135 15 16 17

1.5 3 45 6.5 8 9.5
12 11 o2 111

2 1 2 2

> unname (tie.adjustment <-

. sun(NTIES"3 - NTIES) /

+ ((n.old + n.young) * (n.0ld + n.young - 1)))
1) 0.1103

> unname (SIGHA <-

+ sqrt((n.old * n.young/12) *

+ ((n.0ld + n.young + 1) - tie.adjustment)))
1) 10.36

> unname (STATISTIC.old <~

. Gl = sun(xr[1:9]) - n.old * (n.odd + 1)/2))

1 59

> unname(z.01d <~ STATISTIC.old - n.old * n.young/2)
[BEY

> unname(z.01d <= (z.0ld - .5)/SIGHA)

1 2.172

> unname (pnorn(z.01d, lower.tail = FALSE))

1] 0.01494

> unname (STATISTIC. young <-

- (i = sun(x[10:17)) - n.young * (n.young + 1)/2))
11

> unname(z.young <~ STATISTIC.young - n.old * n.young/2)
1l -2

> unname(z.young <- (z.young + .5)/SIGHA)
1) -2.172

> unnane (pnorn(z. young))
111 0.01454
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> rent.lmi2p <- lm(alf.till = lime * cow.dens + prop.past, data=rent)
> sumnary(rent.lni2p, corr=FALSE)

ca11:
In(fornula = alf.till = lime * cou.dens + prop.past, data = rent)

Residuals:
Min 10 Median 3Q  Max
-0.3342 -0.1247 -0.0203 0.1045 0.7853

Coefficients:
Estinate Std. Error t value Pr(>|t|)
(Intercept) ~ 0.78957  0.05637 14.01 < 2e-16 +#+
limet -0.09686  0.05333 -1.82 0.07419 .
cow.dens 0.00944  0.00259  3.64 0.00066 wxx
prop.past 0.18989  0.22670  0.84 0.40546
0.00391  0.00242  1.62 0.11063
Signif. codes: 0 *#++? 0.001 ’+x’ 0.01 ’+? 0.05 *.” 0.1 * 1

Residual standard error: 0.223 on 62 degrees of freedom
Multiple R-squared: 0.366,Adjusted R-squared: 0.325
F-statistic: 8.94 on 4 and 62 DF, p-value: 9.17e-06

> anova(rent.1m12p)
Analysis of Variance Table

Response: alf.till
Df Sun Sq Mean Sq F value PrOF)

lime 1 0.846 0.846  17.03 0.00011 ++x
cow.dens 1 0.754 0.754  15.19 0.00024 *sx
prop.past 1 0.045 0.045  0.91 0.34503
lime:cow.dens 1 0.130 0.130  2.62 0.11063
Residuals 62 3.078  0.050

Signif. codes: 0 ’swx’ 0.001 ’'++’ 0.01 '+’ 0.05 .’ 0.1 '’ 1
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> cnxb <- round(coef (sunmary.lu(rhiz.clover.nest.aov)), 3)

> dtmnanes (cnxd) ([1]] <- tap

## cnxb
cnxblc(1,2, 3,5,7,9,11, 4,6,8,10,12),]
Estimate Std. Error t value PrO>ltl)

(In) 29.042 1.610 18.043  0.000
bt -0.637 2.276 -0.280  0.781
c:3005  7.243 2.276 3.182  0.003
-7.688 2.276 -3.378  0.001
-6.110 2.276 -2.684  0.010
-6.556 2.276 -2.880  0.006
-3.070 2.276 -1.349  0.184
-0.966 2.276 -0.424  0.673
-4.430 2.276 -1.946  0.057
-3.441 2.276 -1.512  0.137
-4.106 2.276 -1.804  0.078

-3.482 2.276 -1.530  0.133
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> weightloss.mc <-
+  mmc(veightloss.aov,
+ Linfct=ncp(group=

+ contrMat (table(veightlossSgroup) , base=4)),
+ alternative = "greater")

> weightloss.mmc
Dunnett contrasts
Fit: aov(formula = loss ~ group, data = weightloss)
Estinated Quantile = -2.222
95% fanily-wise confidence level
$mca

estimate stderr  lower upper height

E-D  2.90 -Inf 1.909477 Inf 10.72
A-D  2.78  -Inf 1.780477 Inf 10.66
B-D  1.75 -Inf 0.759477 Inf 10.14
C-D  1.00 -Inf 0.009477 Inf 9.77
Snone

estimate stderr lower upper height
E 12,17 -Inf 11.47 Inf 12.17
A 12,05 -Inf 11.35 Inf 12.05
B 11.02 -Inf 10.32 Inf 11.02
€ 10.27 ~-Inf 9.57 Inf 10.27
D 9.27 -Inf 857 Inf 9.27
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o
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=g

sapply(8B, class)
* v
“integer" "integer"
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vartwoC <- function(x) {
+  vartwo(x-mean(x))

> vartuoC(x)

SV

> vartwoC(x+10°7)
[V

> ## half machine precision
> vartwoC(x+10°8)
[SA0Y

> vartuoC(x+10°15)
SV

> ## boundary of machine precision
>

> vartuoC(x+10°16)

SV

> vartuoC(x+10°17)
o
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> newdata <- cbind(initial=mean(testacore$initial),

. mental . age=nean(testscoreSnental .age) ,
+ testscore(c(1:9,28:36),
N ("standing","order”,"sex")])
> newdatalc(1,2,3,4,18),]
initial mental.age standing order  sex
1 7.8 44.06  good high male
2 1748 44.06  good medium male
3 1748 44.06  good low male
4 1748 44.06 average high male
36 17.48 44.06  poor  low female

> final.pred <- predict(testscore?.aov, newdata=neudata)
> final.pred.table <- tapply(final.pred, newdatal,3:5], c)

> final.pred.table
L . sex = female

order
standing  low medium high
poor  16.05 17.69 18.69
average 17.48 19.12 20.12
good  20.37 22.02 23.01

. . sex = male

order
standing  low medium high
poor  16.81 18.46 19.45
average 18.24 19.89 20.88
good  21.14 22.79 23.78

> ## now sumarize this over each factor to get predicted values
> apply(final.pred.table, 1, mean) ## each scholastic standing
poor average  good
17.86 19.29 22.19

> apply(final.pred.table, 2, mean) ## each individual order
lov mediun  high
18.35 20.00 20.99
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> library(reshape2)

> wide <- data.frame(Names=LETTERS[1:5], x=1:

1
2
3
4
5

moaws

1

> long <- melt(vide, id="Names")

> long

Names variable value
1 A x 1
2 B x 2
3 c x 3
4 > x4
5 E x5
6 A y 6
7 B y o7
8 c y e
° > y e
0 E y 10

> wideagain < dcast(Vames - variable, value="value", data=long)
> wideagain

Names x
A

B
c
>
E
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> anova(aov(yield.block - treat, data = apple))
Analysis of Variance Table

Response: yield.block

Df Sun Sq Mean Sq F value Pr(>F)
treat 5 750 150  0.12 0.9
Residuals 18 23432 1302
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> sprintf ("4+13.13a", 28334198897217900000000)
[1] "+0x1.8000000000007p+74"

> as.matrix(sprintf ("+13.13a", c(10°27 + 1, 10°27 + 2, 10°27 + 3)))
[

[1,] "+0x1.94971e4£¢8402p+89"

[2,] "+0x1.94971e4£¢8402p+89"

[3,] "+0x1.94971e4£e8402p+89"
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> circuit.aov <- aov( yield ~ A + B + C + A:B, data=circuit)

> sunmary(circuit.aov)
Df Sun Sq Mean Sq F value PrOF)

A 1 495 495 193.2 2.50-08 wax
B 14590 4590 1791.2 1.60-13 #a%
c 1473 473 184.6 3.20-08 #ax
A:B 1189 189 73.8 3.30-06 wxx
Residuals 11 28 3

Signif. codes: O s’ 0.001 '+ 0.01 '+’ 0.05 *.° 0.1 7 7 1

> model.tables(circuit.aov, type="means")
Tables of means
Grand mean

30.31
A
A
o 1
24.75 35.88
B
B
o 1
13.38 47.25
c
c
o 1
24.88 35.75
a:B
B
Ao 1
0 11.25 38.25

1 15.50 56.25

> tapply(circuit(,"yield"], circuitl,"D"], mean)
o 1

30.75 29.88

> tapply(eircuit(,"yield"], circuit[,c("A","C")], mean)
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> apple.aov.4 < aov(yield.block * pre.block + treat, data=apple)

> applesyield.block.pre <- appleSyield.block -

+ predict.ln(apple.aov.4, type="terms", terms='pre.block")

> anova(aov(yield.block.pre
Analysis of Variance Table

treat, data = apple))

Response: yield.block.pre

Dt Sun Sq Mean Sq F value Pr(>F)
treat 5 5472 1094  5.07 0.0045 %+
Residuals 18 3885 216

Signif. codes: O ’wss’ 0.001 '+’ 0.01 *+’ 0.05 *.’ 0.1° ' 1
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> X < matrix(c(3,1,0, 1,2,0, 0,0,0), 3, 3)
> P <= cbind(ar-Q(ar) [, 1:2], 0)

5P

LU L2 03
[1,] -0.9487 0.3162 0
[2,] -0.3162 -0.9487 0
[3,] 0.0000 0.0000 O

> crossprod(P)

01 02 0,3
wl ot oo o
21 o 1 o
Bl o o o

>y
(&)
w1
2] 2
B3] 3
> Py

€11

11, -0.3162

12, -2.213

£3,] 0.0000

> sqrt(sua(y[1:2,1°2)
[1] 2.236

> sqrt(sun((P %k y)°2))
1] 2.236
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> rhiz.clover.nest.aov <-
+  aov(Npg ~ comb/strain, data=rhiz.clover)

> sumnary(rhiz.clover.nest .aov)

Df Sun Sq Mean Sq F value Pr(>F)
comb 1 6.9 6.88 0.531 0.47
comb:strain 10 870.5 87.05 6.720 2e-06 *xx
Residuals 48 621.8 12.95

0 xex? 0.001 24x’ 0.01 2%’ 0.05 *.7 0.1’ ’ 1

Signif. codes
> old.width <- options(width=35)

> names (coef (rhiz.clover.nest.aov))
[1] "(Intercept)"
[2) "combclover+alfalfa"
[3] "combclover:strain3DOks"
[4] "combclover+alfalfa:strain3DOks"
s] :strain3D0k4"
[6] "combcloversalfalfa:strain3D0k4"
[7) "combclover:strain3DOk7"
[8] "combclover+alfalfa:strain3DOk7"
[9] "combclover:strain3DOk13"
[10] "combclover+alfalfa:straindD0k13"
[11] "combelover: straink.comp”
[12] "combclover+alfalfa:straink.comp”

> options(old.width)

> sumary (rhiz. clover.nest .aov,

+ split=list("cont
+ List(clover=c(1,3,5,7,9),
+ “clover+alf'=c(2,4,6,8,10))))

Df Sun Sq Mean Sq F value Pr(>F)
comb 1 6.9 6.88 0.531  0.470
comb:strain 10 870.5 87.05 6.720 2.00e-06 *xx

comb:strain: clover 5 788.4 157.68 12.172 1.22e-07 #xx
comb:strain: clovertalf 5 82.1 16.42 1.268  0.293

Residuals 48 621.8 12.95

Signif. codes: 0 ’sxx’ 0.001 '+’ 0.01 '+’ 0.05 .’ 0.1 ' ' 1
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> fabricwear.aov <- aov(vear ~ speed, data-fabricwear)
> sumnary(fabricuear . aov)

Df Sun Sq Mean Sq F value Pr(>F)
speed 5 4872 974 298 <2e-16 wa
Residuals 42 137 3

Signif. codes: 0 ’+xx’ 0.001 '++ 0.01 '+’ 0.05 *.’ 0.1° * 1

> model.tables(fabricwear.aov, "mean”)
Tables of means
Grand mean

34.93

speed
speed

100 120 140 160 180 200
24.78 26.96 28.68 32.93 43.05 63.19
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This is the default Computer Modern Typewriter font.

% switch to Adobe Courier
\renewconnand{\ttdefault}{pcr}

This is Adobe Courier font.

%% return to Computer Modern Typewriter
\renewcommand (\ttdefault} (cmtt )

And back to the Computer Modern Typeuriter font.
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> hovBF(Calcium ~ Batch, data=batch)
hov: Brown-Forsyth
data: Calcium

F = 0.03219, af:Batch = 4, df :Residuals = 20, p-value = 0.998
alternative hypothesis: variances are not identical
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Analysis of Variance of Dependent Variable y

Source  Degrees  Sumof Mean Fp-value
of Freedom Squares Square

Blocks  Ofgi  SSpi MSpi

Treatments df, SSr,  MSt Fro pre
Residuals fgey  SSgey MSes
Total dfrow  SStot

The terms of the table are defined by:

Blocks Residual

digy, b-1 dfges (b= Dit-1)

SSpi XX, - 5.7 SSpes T X0 =5 =5+ 5.7
MSpix SSpi /Al MSges SSRes/fRes
‘Treatments Total

-1 G br

SSt X X0 - SStow % 2,0 =57
MSy, SSy/dir,
Fre MSr/MSges

pre__ 1= Fr(Fr | diry, dfes)
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data(fat)

## usual model with intercept
xy.int.ln < ln(bodyfat - biceps, data=fat)

> sumnary(xy.int.1m)
call:
In(fornula = bodyfat = biceps, data = fat)
Residuals:
Min 10 Median 30 Max

-16.580 -5.443 -0.846 5.255 21.088

Coefficients:
Estimate Std. Error ¢ value Pr(>ltl)

(Intercept) -20.364  10.855 ~-1.88 0.06715 .

biceps 1471 0.326  3.59 0.00081 *xx

Signif. codes: 0 *#++? 0.001 ’+x’ 0.01 ’+? 0.05 *.” 0.1 * 1

Residual standard error: 8.01 on 45 degrees of freedom
Multiple R-squared: 0.223,Adjusted R-squared: 0.206
F-statistic: 12.9 on 1 and 45 DF, p-value: 0.00081

> anova(xy.int.1n)
Analysis of Variance Table

Response: bodyfat

Df Sun Sq Mean Sq F value PrOF)
biceps 1 827 827  12.9 0.00081 s
Residuals 45 2884 64

Signif. codes: 0 ’sxx’ 0.001 '+’ 0.01 '+’ 0.05 .’ 0.1’ ’ 1
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> mm <- tapply(cerealsCicarbo, cerealsCSnfr, mean)
> v <- tapply(cerealsCicarbo, cerealsCSafr, var)

> 11 <- tapply(cerealsCScarbo, cerealsCSnfr, length)

52p <= ((11-1) %% vv) / sun(11-1)
> et <= -diff(mm) / (sqrt(s2p) * sqrt(sua(1/11)))
>t

L1
1,1 -0.3415
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Car Car

Position T2 3 4 Position T2 34
TF CD A B TF 12 11 13 8§
RF B C D A RF 14 12 1 13
LR A BCD LR 17 14 10 9
RR D A B C RR 13 14 13 9
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applesyield.block <-
appleSyield - proj(ln(yield - block, data=apple))[,"block"]

applespre.block  <-
applespre - proj(m( pre - block, datasapple))[,"block"]

> ## wrong interaction sun of squares
> anova(aov(yield.block ~ block + pre.block * treat,
+ data = apple))

Analysis of Variance Table

Response: yield.block
Df Sun 5q Mean Sq F value PrOF)

block 3 0 0 0.00 1.00000
pre.block 1 15944 15044  42.56 0.00011 wxx
treat 5 4353 871 2.32 0.12840
pre.blockitreat 5 514 103 0.27 0.91600
Residuals o a2 aTs

Signif. codes: 0 ’wxx’ 0.001 '+’ 0.01 ’+’ 0.05 *.’ 0.1° * 1
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> ks.test(rtS, rnn)
Two-sample Kolmogorov-Smirnov test
data: rtS and rmn

D = 0.1, p-value = 0.09956
alternative hypothesis: tuo-sided
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longley. subsets <-
leaps: :regsubsets(Enployed ~ GNP.deflator + GNP +
Uneaployed +
Armed.Forces + Population + Year,
data=longley, nbest=2)

> longley.subsets.Sumary <- summaryHH(longley.subsets)

> ## longley.subsets . Sumnary
> tmp <- (longley.subsets.Sumary$cp <= 10)

> longley.subsets. Sumary [tup, ]
model p rsq rss adjr2 cp  bic stderr

5 U-A-Y 4 0.993 1.323 0.991 6.24 -68.0 0.332
7 GNP-U-A-Y 5 0.995 0.859 0.994 3.24 -72.1 0.279
8 U-A- .95 0.986 0.993 4.61 -69.9 0.299
9 GNP-U-A-] .95 0.839 0.993 5.03 -69.7 0.290

10 GNP.-GNP-U-}

5
6
6

11 GNP.-GNP-U-A-P-Y 7

o
0.9
0.995 0.841 0.993 5.05 ~69.7 0.290
0.995 0.836 0.992 7.00 ~67.0 0.305

Model variables with abbreviations

sodsl
ap

Yoar

Unesployed-Year
GiP-Unezployed
Loyed-Armed. Forces-Year

GP-Unamployed-Arsod. Forc
P def1ator-CiP-Unsaployed-Armed. Force

Y GNP, defator—GIP-Unosployed-Arsed. Forces-Fopulation-

model with largest adjr2

7

Number of observations
16
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> CpT.mme <= mmc(aoy.trellis(CpD)

> CpT.mmc
Tukey contrasts
Fit: aov(formila = Sodiun ~ Calories + Type, data = hotdog)
Estinated Quantile = 2.41
951 fanily-uise contidence level
S$mca
estinate stderr lower uppor height

Poultry-Heat 171.47 23.13 115.73 227.21 460.8
Powlery-Beef 182.76 22,19 120,30 236.22 455.1
Heat-Best 1129 18,28 -32.75 55.34 369.4
$none

estinate stderr lover upper height
Poultry  546.5 16.07 507.8 565.2 546.5
Heat 375.0 14,13 341.0 409.1 375.0
Beet 363.7 12.94 332.6 394.9 363.7
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> sprintf("1+13.132", <2, sqrt(2)°2))
[1] "40x1.0000000000000p+1" "+0x1.0000000000001p+1"
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SF <= cbind(nundead=budworn$nundead,
numalive = 20 - budworn$nundead)

> ## model with interaction tern for sex and logdose, from VR
> budvorn.1g <-

+ gln(SF ~ sexsldose,

. datasbuduorn,

+ fanily = binomial)

anova(budworn. 1g, test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: SF

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 1 124.9
sex 1 6.1 10 118.8  0.014
1dose 1 120 o 6.8 <2e-16 *xx
sex:ldose 1 1.8 8 5.0 0.184
Signif. code:

0 Paws’ 0.001 wx’ 0.01 '’ 0.05 7.’ 0.1’ 1

> ## model with no interaction term
> budworn.1g0 <- gln(SF ~ sex + ldose - 1,
+ data=budworn,

. family = binonial)

anova(budworn. 1g0, tes
Analysis of Deviance Table

Chisq")

Model: binomial, link: logit
Response: SF

Terns added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 12 126.2
sex 2 7.4 10 118.8  0.024 +
ldose 1 112.0 9 6.8 <20-16 +4x
Signif. code:

0 Paws’ 0.001 4x’ 0.01 '’ 0.05 7.’ 0.1’ 1
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> X < matrix(c(1,3,6,4,2,3,8,6,4,5,3,2), 4, 3)

>x

L1 02 03
wl 12 4
2] 3 3 s
1 6 8 3
“wl 4 s 2

> crossprod(x)

L1 02 (3
] 6 83 45
2] 83 113 59
(3] 45 59 54

> ## use the efficient calculation
> X.gr <= qr(0

> qr.Q(X.qr) # display q
L L2 L3
14, -0.127 0.48139 0.8188
[2,] -0.381 -0.73969 0.4755
[3,] -0.762 -0.02348 ~0.3038
[4,] -0.508 0.46965 -0.1057

> qr.R(X.qr) ## display T
Lo L2 L3
[1,] ~7.874 -10.541 -5.7150
[2,] 0.000 1.374 -0.9041
(3, 0.000 0.000 4.5301

> zapsmall(crossprod(qr-Q(X.qr))) ## identity
01 02 (3

wl 1o o

2] o 1 o

) o o 1

> crossprod(qr.R(X.qr))  ## reproduce crossprod(X)
LU L2 03

(1) 6 8 45

(2] 8 113 59

[ 45 59 54

> qr.X(t.qr) ## reproduce X
LU L2 03
12 4

sow

1)
2, 3 s
3, 8 3
28] 6 2
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> ## polynomial contrasts in nitrogen
contrasts (yatesppl$nitrogen)

234

000

100
o010
001

> contrasts (yatespplnitrogen) <- contr.poly(4)

contrasts (yatespplénitrogen)

Lo c
-0.6708204 0.5 -0.2236068
2236068 -0.5 0.6708204
0.2236068 ~0.5 -0.6708204
0.6708204 0.5 0.2236068

## split plot analysis with polynomial contrasts
yatespplp.aov <-
a0v(y - varietymitrogen + Error(blocks/plots/subplots),
data=yatesppl)

sunnary (yatespplp.aov,
+ split=list(nitrogen=list(linear=1, quad=2, cub=3)),
. expand. split=FALSE)

Error: blocks
Dt Sun Sq Mean Sq F value Pr(>F)
Residuals 5 15875 3175

Error: blocks:plots

Df Sun Sq Mean Sq F value Pr(>F)
variety 2 1785 893.2 1.485 0.272
Residuals 10 6013  601.3

Error: blocks:plots:subplots
Df Sun Sq Mean Sq F value Pr(>F)
nitrogen 3 20021 6674 37.686 2.46e-12 +es

nitrogen: linear 1 19536 19536 110.323 1.09e-13 *ss
nitrogen: quad 1 480 480 2.713  0.106
nitrogen: cub 1 4 4 0.020  0.887
variety:nitrogen 6 322 54 0.303  0.932
Residuals a5 7960 177

Signif. codes: O ’wws’ 0.001 '+’ 0.01 *+’ 0.05 *.° 0.1° * 1
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> WindowsPath(HHscriptnames (7))
7 C:\Users\rmh\Docunents\R\win-1ibrary\3. 2\HH\scripts\
hh2\mcomp.R
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> Y.loop
$series
(1] "tser.mystery.¥"

$model
1 "(p,0,"

$signa2

o 1 2
0 1.186 1.064 1.0243
11.035 1.034 1.0042
21.034 1.015 0.9502

Saic

o 1 2
0304.9 296.1 294.4
1293.3 295.3 294.5
2 295.2 295.5 293.0

Scoef

ar1 ar2
0,0,0) A NA
(1,0,0) 0.3740 N
(2,0,0) 0.3623 0.03129
0,0,1) A NA
(1,0,1) 0.4189 N
(2,0,1) -0.4676 0.38428
0,0,2) A N
(1,0,2) -0.6314 A

(2,0,2) -0.9648 -0.54982

$t.coef

art ar2
©0,0,00 WA [y
(1,0,0) 3.817 NA
(2,0,0) 3.433 0.2962
©0,0,1) WA N
(1,0,1) 1.994 N
(2,0,1) -1.913 3.6606
0,02 WA A
(1,0,2) -2.958 Iy

(2,0,2) -8.179 -5.0155

21

mat
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> co2.arima < ddco2.1oopPQ[["0","1"]]

> co2.coef.t <~ co2.arimaScoef / sqrt(diag(co2.arimasvar.coef))

> co.arima

Call:

arima(x = x, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1),

period = 1))

Coefficients
mal  smat
-0.35 -0.851

s.e. 0.05 0.026
signa"2 estimated as 0.0826: log likelihood = -86.08,

> co2.coef.t
mal  smal
-7.053 -33.151

> voov(co2.arina)

nat smat
mal  0.0024638 -0.0002662
snal -0.0002662 0.0006583

aic = 178.2
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> turkey3.aov <- aov(ut.gain - trt.vs.control / (additiveramount),
+ data-turkey, x=TRUE)

> sumnary (turkey3.aov)
Df Sum Sq Mean Sq F value PrOF)

trt.vs.control 1 56.58 56.58 179.395 6.58e-13 #ax
trt.vs.control :additive 1 22.81 2281 72.337 7.56e-09 #xx
trt.vs.control :amount. 122,43 22.43 71.105 8.88e-09 #ax
trt.vs.control:additive:amount 1 1.21  1.21 3.852  0.0609 .
Residuals 2 7.88 0.32

Signif. codes: O ’swx’ 0.001 ’++’ 0.01 '+’ 0.05 .’ 0.1 '’ 1
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> dice <- sample(rep(1:6, ©(3,7,5,8,1,6)))

> dice
[114642324463643234626214351216
(290 42

> table(dice)
aice

> chisq.test (vable(dice))
Chi-squared test for given probabilities

data: table(dice)
X-squared = 6.8, df = 5, p-value = 0.2359
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> contrasts (turkey$diet)

cbind(control.vs. treatment=c(i,-..
=c(0, .
=<(0, .

a1 a2 B1 B2
control 0 0 0 0

AL 1000

a2 0100

B1 0010

B2 0001

> contrasts(turkey$diet) <-
. A.vs.B

. anount

A.vs.B.by.amount

> contrasts (turkeySdiet)
control.vs.treatnent A.vs.B amount A.vs.B.by.amount

control
a1
2
B1
B2

> tapply(turkeySut gain, turkeySdiet, mean) v

1.00
-0.25
-0.25
-0.25
-0.25

+  contrasts(turkeySdiet)

control.vs.treatment A.vs.B amount A.vs.B.by.
-1.95 -1.933

s8]

433

=c(0,

0.0
0.5
0.5

0.5

0.5

0.0
0.5
0.5
0.5
-0.5

0.0
0.5
0.5
0.5
0.5

amount.
0.45
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Location

A B A&B combined

Summary Survival _standard new  standard new standard _new
Count not 950 9000 5000 5 5950 9005
survive 50 1000 5000 95 5050 1095

Percent  not 95 90 50 5 5189
survive 5 10 50 95 46 11
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nydata <- data.frame(x=1:6, y=c(1,4,2,3,6,2))
ny.dm <- 1a(y ~ x , data=mydata)

summary(ny.1n) ## sumary() method on lm argument

old.mfrow <- par(afrow=c(2,2)) ## four panels on the graphics device
plot(my.1n)  ## plot() method on lm argument

par (old.mfrow) ## restore previous arrangement
coef(ny.lm)  ## coef() method on lm argument

anova(ny.lm)  ## anova() method on lm argument

resid(my.lm)  ## resid() method on lm argument

predict(ny.1n) ## predict() method on lm argument
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> yatesppl.amc <- mmc(yatesppl.wrong.aov, focus="nitrogen")
> nitrogen.lnat <- contr.poly(4)
> rownanes (nitrogen.lnat) <- levels(yatespplénitrogen)

> yatesppl.mc <- mac(yatesppl.urong.aov, focus="nitrogen",

. focus. 1nat=nitrogen. lnat)

mmc: At least one reversed contrat name did not have a ’=’ sign.
Ve appended 2 '~ sign.

> yatesppl.mac
Tukey contrasts
Fit: aov(formila = terms(y = (blocks * variety) + (nitrogen *
variety), keep.order = TRUE), data = yatesppl)

Estinated Quantile = 2.667
95 fanily-wise confidence level
$aca

estinate stderr lower upper height

4-3 9.167 4.436 -2.662 21.00 118.81
42 24.500 4.436 12.671 36.33 111.14
32 15.333 4.436 3.504 27.16 106.56
4-1  44.000 4.436 32.171 55.83 101.39
3-1 34.833 4.436 23.004 46.66 96.81
21 19.500 4.436 7.671 31.33 89.14
Snone

estimate stderr lower upper height

4 123.39 3.137 115.02 131.75 123.39
3 114.22 3.137 105.86 122.59 114.22
2 98.89 3.137 90.52 107.25 98.89
1 79.39 3.137 71.02 §7.75 79.39
Slmat

estimate stderr lower upper height
.C- 0.500 3.507 -8.852 9.852 105.3
.- 5.167 3.137 -3.198 13.531 104.0
L 36.833 3.507 27.482 46.185 102.7
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> catalystm.glht <-
+  glht(catalystni.aov, linfct = mcp(catalyst = "Tukey"))

> confint(catalystn.glht)
Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = concent ~ catalyst, data = catalystm)

Quantile = 2.966
95 family-wise confidence level

Linear Hypotheses:
Estimate lur  upr

-1.125  -4.501 2.251
-3.667 -7.342 0.009
775 -9.151 -2.399
542 -6.386 1.302
-4.650 -8.209 -
-2.108 -5.952 1.736

ooavaw
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> rent.case12n <- case(rent.lmi2m)

rent.case12n. trellis <-
plot(rent.casel2n, rent.lmi2m, par.strip.text=list(cex=1.2),
layout=c(3,3), main.cex=1.6, col=likertColor(2)[2], lud=4)

> rent.casel2m.trellis ## display both graph and list of noteworthy cases
Noteworthy Observations

Student del resid 19 33
deleted std dev 19 33

n 13 40 49 56

Cook’s distance

atfits 519 32 33 49 60 66
DFBETAS (Intercept) 5 19

DFBETAS 1imet 519

DFBETAS cow.dens 532 33 49 60

DFBETAS lime1:cow.dens 5 32 33 49 60






OEBPS/A77776_2_En_6_Fig4_HTML.gif
Variability of Groups, Centers of Groups, and all Data

°
4 o [
g 01 - - |
5 ' o ) |
3 ' -
S ' L
S
© 00 . of
g
2 T
g -
© 014 . - v
'
'
-
12 3 4 5 Cenesof Al

Groups  Data
Batch





OEBPS/A77776_2_En_3_Chapter_IEq19.gif





OEBPS/A77776_2_En_7_Chapter_IEq12.gif





OEBPS/A77776_2_En_10_Chapter_IEq1.gif
P female





OEBPS/A77776_2_En_7_Chapter_IEq11.gif





OEBPS/A77776_2_En_7_Chapter_IEq14.gif





OEBPS/A77776_2_En_7_Chapter_IEq13.gif





OEBPS/A77776_2_En_8_Fig7_HTML.gif
a. Cumulative distribution of the standard b. Empirical distributions of fitted values and

normal @(x) for x~ N(O, 1. residuals with independent ranges for the
abscissa.
Cumatie istituton o N0.1) empicacaor anpicactor
e vaes e

* sonfprosestatim) Sonesiatatim)

. Empirical distributions of fitted values and  d. Transposed empirical distributions of fitied
fuals with common range for the abscissa. ~values and residuals with common range for

15 of Figure 8.6.
ot mpicalctof ansposad ampicl ot of

Soneecntatim) - mean ooy

sortoredetliat i) - mean bodyiall  sortlesidiat i) n





OEBPS/A77776_2_En_7_Chapter_IEq10.gif





OEBPS/A77776_2_En_3_Chapter_IEq22.gif





OEBPS/A77776_2_En_10_Chapter_IEq8.gif
Po = 69.9375





OEBPS/A77776_2_En_10_Chapter_IEq9.gif
B female = —54701





OEBPS/A77776_2_En_3_Chapter_IEq23.gif





OEBPS/A77776_2_En_3_Chapter_IEq24.gif





OEBPS/A77776_2_En_10_Chapter_IEq6.gif
BRLu





OEBPS/A77776_2_En_3_Chapter_IEq25.gif
4/15)/4=2/3





OEBPS/A77776_2_En_10_Chapter_IEq7.gif
Brus





OEBPS/A77776_2_En_3_Chapter_IEq26.gif





OEBPS/A77776_2_En_10_Chapter_IEq4.gif
BRLu





OEBPS/A77776_2_En_10_Chapter_IEq5.gif
Brus





OEBPS/A77776_2_En_3_Chapter_IEq27.gif
4x3/9=2/15





OEBPS/A77776_2_En_10_Chapter_IEq2.gif
B female > ©





OEBPS/A77776_2_En_13_Figb_HTML.gif
Treament_Min__m-sd_Mean _m+sd__Max boxplot

2cycle 5421 6104 6982 7859 8592 e =]
Gcycle 4707 5793 6525 7258 79.69 o 1 EF -1
faradic 3955 5198 5767 6337 67.64 o o mio

galvanic 4552 5282 60.13 6744 7372 = =3

— T T T T T
40 50 60 70 80






OEBPS/A77776_2_En_3_Chapter_IEq28.gif





OEBPS/A77776_2_En_10_Chapter_IEq3.gif
B female <0





OEBPS/A77776_2_En_3_Chapter_IEq29.gif





OEBPS/A77776_2_En_13_Figh_HTML.gif
> tires.mmc.brand <- mmc(tires.aov, linfct=mcp(brand="Tukey"))

## print(vires.mnc.brand)
brand.lmat <- cbind("1-43" =c( 2, 0,-1,-1),
"4-3" =c( 0, 0,-1, 1),
"143-2"=c( 1,-3, 1, 1)

> dimnames(brand.lmat) [[1]] <- levels(tires$brand)

> tires.mmc.brand <- mmc(tires.aov, linfct=mcp(brand="Tukey"),
+ focus . 1nat=brand. lnat)

> print(tires.mac.brand)
Tukey contrasts
Fit: aov(formula = wear ~ car + position + brand, data = tires)
Estinated Quantile = 3.462
95% family-wise confidence level
$nca
estimate stderr lower upper height
2.00 0.6693 -0.3173 4.317 13.25
3.25 0.6693 0.9327 5.567 12.62
3.50 0.6693 1.1827 5.817 12.50
1.25 0.6693 -1.0673 3.567 11.63
1.50 0.6693 -0.8173 3.817 11.50
0.25 0.6693 -2.0673 2.567 10.88

estimate stderr lower upper height
1 14.25 0.4732 12.611 15.89 14.25
2 12.25 0.4732 10.611 13.89 12.25
4 11.00 0.4732 9.361 12.64 11.00
3 10.75 0.4732 9.111 12.39 10.75
s

1mat

estimate stderr lower upper height
1-43  3.375 0.5796 1.368 5.382 12.56
2-143  0.250 0.5465 -1.642 2.142 12.13
4-3 0.250 0.6693 -2.067 2.567 10.88

> contrasts(tires$brand) <- brand.lmat

> tires.aov <- aov(vear - car + position + brand, data=tires)
>  sumnary(tires.aov, split=list(brand=list("

Df Sun Sq Mean Sq F value Pr(F)
car 3 38.7 12.90 14.40 0.0038

-43"=1, rest

)))

position 6.2  2.06  2.30 0.1769
brand .7 10.23  11.42 0.0068
brand: 1-43 X

0.16  0.17 0.8441
0.90

brand: rest
Residuals

am e

0.7
0.4 30.37  33.91 0.0011
0.3
5.4
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> houseprice.1n2 <- lm(price - sqft + taxes + custom + corner,
+ data=houseprice)

> anova(houseprice. 1n2)
Analysis of Variance Table

Response: price
Df Sum Sq Mean Sq F value PrOF)

saft 1 11102445 11102445 421.34 < 2e-16 *xx
taxes 1 1374474 1374474  52.16 9.5e-11 wxx
custon 1 350716 350716  13.31 0.00042 wxx
corner 1 114215 114215 4.33 0.03985 *

Residuals 102 2687729 26350
Signif. codes: 0 Teve’ 0.001 Tes’ 0.01 78 0.05 .7 0.1 0 7 1
> sumnary (houseprice. 1n2)

Call:

In(formula = price
data = houseprice)

sqft + taxes + custom + corner,

Residuals:
Min  1Q Median 30  Max
-544.6 -99.5 -4.8 64.8 510.2

Coefficients:
Estimate Std. Error t value Pr(>It|)

(Intercept) 175.166  56.312 3.1 0.00242 **

sqft 0.208 0.061  3.40 0.00096 xxx

taxes 0.677 0.101  6.70 1.2e-09 *xx

custon 156.815  44.495  3.52 0.00064 *xx

corner -83.401  40.059 -2.08 0.03985 *

Signif. codes: O 'ess’ 0.001 ’#x’ 0.01 ’47 0.05 *.’ 0.1’ * 1

Residual standard error: 162 on 102 degrees of freedom
Multiple R-squared: 0.828,Adjusted R-squared:
F-statistic: 123 on 4 and 102 DF, p-valug
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> group <- factor (LETTERS[1:4])
> n < ¢(5,100,100,5)

> yoar <= (2, 2.1, 2.8, 3)

> inconsistent.aov <- aovSufficient(ybar - group, weights=n, sd=.8)
> anova(inconsistent.aov)
Analysis of Variance Table

Response: ybar

Df Sun Sq Mean Sq F value Pr(>F)
group 3 27 9.01  14.12.2008 ex
Residuals 206 132  0.64

0 kss? 0.001 ’4x’ 0.01 ’%’ 0.05 *.’ 0.1 * 1

> inconsistent.glht <-
+  glht(inconsistent.aov, linfct=mcp(group="Tukey"),
-+ veov.=vcovSufficient, df=inconsistent.aov$df.residual)

> crit.point <- qukey(.95, 4, 206)/sqrt(2)
> confint(inconsistent.glht, calpha=crit.point)
Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = formila, data = data, weights = weights, x = TRUE)

Quantile = 2.59
95% confidence level

Linear Hypotheses
Estimate lur  upr

0.1000 -0.8496 1.0496
0.8000 -0.1496 1.7496
1.0000 -0.3105 2.3105
0.7000  0.4070 0.9930
0.9000 -0.0496 1.8496
0.2000 -0.7496 1.1496

ooavaw
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> HHscriptnames(7)
7 "/home/rnh/R/x86_64-unknown-1inux-gnu-library/3.2/HH/
scripts/hh2/mcomp.R"
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>3+
(SR

> sun(3, NA)
(S

> sun(3, NA, na.rm=TRUE)
w3

> abcd$x
(] 1 20 45678

> mean(abed$x)
(ST

> mean(abcd$x, na.rm=TRUE)
1] 4.714
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> appleS.aov <- aov(yield  block + pre + treat, data=apple)

> anova(apples . aov)
Analysis of Variance Table

Response: yield
Df Sun Sq Mean Sq F value Pr(>F)

block 3 47853 15051 57.48 4.10-08 *xx
pre 115944 15944  57.45 2.60-06 #a%
treat 5 433 &7l 314 0.082 *

Residuals 14 3885 278

Signif. codes: 0 ’wxx’ 0.001 '+’ 0.01 '+’ 0.05 *.7 0.1° * 1

> appleSd.mmc <~ mac(apples.aoy,
+  linfct-ncp(treat=contrMat (table (appleStreat),
B type="Dunnett”, base=6)))

> applesd.mac
Dunnett contrasts
Fit: aov(formila = yield = block + pre + treat, data = apple)
Estinated Quantile = 2.821
95 fanily-wise confidence level
$aca
estimate stderr lower upper height
5-6  49.58 13.30 12.065 87.10 276.1
4-6 29.80 12.67 -5.924 65.53 266.2
16 29.14 1213 -5.062 63.34 265.9
3-6 2273 12.21 -11.711 57.17 262.7
2.6 15.23 12.21 -19.211 49.67 259.0
$none
estimate stderr lover upper height

5 300.9 8.794 276.1 325.7 300.9
4 281.1 8.430 257.4 304.9 281.1
1 280.5 8.343 256.9 304.0 280.5
3 274.1 8.331 250.6 297.6 274.1
2 266.6 8.331 243.1 290.1 266.6
6 251.3 5.980 226.0 276.7 251.3
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> co2.arimall <- ddco2.loopPQ[["1","1"]]

> co2.coef11.t <= co2.arimaliScoef / sqrt(diag(co2.arimall$var.coef))
> co2.arimal

Call:

arima(x = x, order = c(1, 1, 1), seasonal = list(order = c(0, 1, 1),

period = 12))

Coefficients:

art  mal  smal
0.240 -0.571 -0.852
0.143 0.124  0.026

signa2 estimated as 0.0822: log likelihood = -85.03, aic = 178.1

> co2.coefll.t
art  mal  smal
1.677 -4.617 -33.287

> veou(co2.arinail)

art ma1 smat
arl  0.0204605 -0.0167184 -0.0004893
0167184 0.0152966  0.0002301
.0004893  0.0002301  0.0006544
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> anova(aov(yield.block - pre.block, data = apple))
Analysis of Variance Table

Response: yield.block

Df Sun Sq Mean Sq F value Pr(>F)
pre.block 1 15044 15944  42.6 1.50-06 wex
Residuals 22 8238 374

Signif. codes: 0 ’wxx’ 0.001 '+’ 0.01 *+’ 0.05 *.’ 0.1° * 1
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6-bit binary rounded to 5-bit b

nary

displayed truncated _cquivalent

decimal__binary as G-bit___to5-bit decimal
33 +0b100001. +0b100000. +0b1000 32
34 +0b100010. +0b100010. +0b1000 31

35 +0b100011. +0b100100. +0b10010. 36
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> catalystal.aov <- aov(concent ~ catalyst, data=catalystm)
> anova(catalystai.aov)
Analysis of Variance Table

Response: concent

Dt Sun Sq Mean Sq F value Pr(>F)
catalyst 3 85.7 28.56  9.92 0.0014 %
Residuals 12 34.6 2.8

Signif. codes: O ’wss’ 0.001 '+’ 0.01 *+» 0.05 *.° 0.1° * 1

> model. tables (catalystut.aov, "means")
Tables of means
Grand mean

54.49

catalyst
A B c D

56.9 §5.77 §3.23 51.12
rep 5.0 4.00 3.00 4.00
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> rent.lmi2ns.aov <- aov(alf.till ~ lime * cou.dens,
+ data=rent[-c(19, 33, 60, 49),1)

> anova(rent. lui2ns.aov)
Analysis of Variance Table

Response: alf.till

Df Sun Sq Mean Sq F value Pr(>F)
Lime 1 0.428 0.428 17.81 8.50-05 wkx
cou.dens 1 0.395 0.395 16.43 0.00015 *+x
line:cou.dens 1 0.233 0.233  9.67 0.00288 *+
Residuals 59 1.419 0.024

0 es? 0.001 ’4x’ 0.01 ’%’ 0.05 *.% 0.1’ 1
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## line break in the middle of a word
Residual standard error: 0.4811 on 10 degrees of fre
don

## wrong: line break in string
plot(y = x, main="abc
def")

plot(y = x, i correct
main="abc def")
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13; p < 15:16
> xx <= t(outer(10°p, x, “+*)); dimnames(xx) <- list(x, p)

> print(xx, digits=17)

15 16
100000000000000110000000000000000
1000000000000002  10000000000000002
3 1000000000000003 10000000000000004

> formathex(xx)

15 16
1 +0x1.¢6b£526340008p+49 +0x1.1c37937a08000p+53
2 +0x1.c6bE526340010p+49 +0x1.1c37937008001p+53
3 +0x1.cObE526340018p+49 +0x1. 1¢37937608002p+53

> var(xx[,"15'])
[SA

> var(xx[,"16"])
e

> x54 < mpfr(1:3, 54)

> xx54 <= t(outer(10°p, x54, ‘+)); dimnames(xx54) <- list(x, p)

> xxb4

‘mpfrMatrix’ of din(.) = (3, 2) of precision 54 bits
15 16

1 1000000000000001.00  10000000000000001 .0

2 1000000000000002.00 10000000000000002.0

31000000000000003.00 10000000000000003.0.

> vartwo(xx54[,"16"] - mean(xx54[,"16"]))
1 'mpfr’ number of precision 54 bits
(S

> ## hex for 54-bit numbers is not currently available from R.
>

> ## Ve manually constructed it here.

> fornathex(xx54) ## Ve mamually constructed this
15 16

1 +0x1.c6bE5263400080p+49 +0x1.1c37937a080008p+53

2 40x1. cOb5263400100p+49 +0x1. 1c379376080010p+53

3 +0x1.cOb£5263800180p+49 +0x1.1c379370B0018p+53
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>k < c(0, 1, 2, 15, 16, 17, 26, 27, 28)

> cbind (k=i

1)
2,
3,
28]
(5,
[C8]
7]
18,
©.]

. var-apply(cbind(10k + 1, 10°k + 2, 10°k + 3), 1, var))

K var
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17
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## one-vay
abe.A.aov <- aov(y = A, data=abc)
anova(abe. A.aov)

coef (abe. A.aov)

contrasts (abc$h)

model .matrix(abe. A.ao0v)

## crossed: mo interaction
abe.ApB.aov <- aov(y ~ A+B, data=abc)
anova(abe. ApB. 20v)

coef (abc. ApB.aov)

contrasts (abc$h)

contrasts (abc$B)

nodel.matrix(abe. ApB.aov)

## crossed: with interaction
abc.AsB.aov <- aov(y - A+B, data=abc)
anova(abc. AsB.aov)

coef (abc.AsB.aov)

contrasts (abc$A)

contrasts (abc$B)

contrasts (abc$AB)
model.matrix(abc.AsB.aov)

## nested
abe.Buk.aov <- aov(y ~ A/B, data=abc)
anova(abe. Buk.aov)

coef (abc. BuA.aov)

contrasts (abc$A)
contrasts(interaction(abcsh, abcsB))
model .matrix(abc.Buh.a0v)

## doubly-indexed
abc.AB.aov <- aov(y ~ AB, data=abc)
anova(abc.AB.aov)

coef (abc. AB.aov)

contrasts (abc$AB)
model.matrix(abc.AB.aov)
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> ## solve manually with t distribution. Use ncp for alternative
> 10 <= 30 ## pick an n0 for starting value

> t.critical <- qt(i-alpha, df=n0-1)

> t.critical
(1] 1.699

## (1] 1.609

## a series of n values
<= 23:30

names (on) <- mn

> m
23 24 25
2324 25

28 29 30
28 29 30

> ## £ind the power for a series of n values for the specified critical value
> pt(t.critical, df=nn-1, ncp=delta/(sd/sqrt(un)), lower=FALSE)

23 24 25 26 27 28 20 30
7568 0.7722 0.7868 0.8006 0.8136 0.8258 0.8374 0.8483

w23 24 25 26 27 28 29 30
#4# 0.7568 0.7722 0.7868 0.8006 0.8136 0.8258 0.8374 0.8483

## recalculate critical value with new n=26
t.critical <- qt(i-alpha, df=26-1)

> t.critical
1] 1.708

> ## find the pover for a series of n values for the new critical value
> pt(t.critical, df-nn-1, ncp=delta/(sd/sqrt(mn)), lower=FALSE)

28 24 25 26 27 28 29 30
7540 0.7695 0.7842 0.7981 0.8112 0.8235 0.8352 0.8461

w8 23 24 25 26 21 28 29 30
## 0.7540 0.7695 0.7842 0.7981 0.8112 0.8235 0.8352 0.8461
## conclude n between 26 and 27
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## prediction on link scale, in this case (-Inf, Inf)
## leading to Figure spaceshuttle-g.pdf Panel g
spacshu.pred. link <~
interval (spacshu.bin.gln, newdata=data.frame(tempF=30:85),
type="link")

cbind(tenpF=30:85, round(spacshu.pred.link, digits=2))[c(1:3,54:56),]
tempF  fit ci.low ci.hi pi.low pi.hi
130 1.62 -1.66 4.90 -2.21 5.45
2 31 1.50 -1.69 4.69 -2.25 5.26
3 32 1.9 -1.71 4.49 -2.29 5.06
54 83 -4.51 -6.37 -2.65 -7.23 ~1.79
55 84 -4.63 -6.57 -2.68 -7.40 ~1.85
56 85 -4.74 -6.77 -2.71 -7.58 -1.90

> chind(tenpF-30:85, round(spacshu.pred, digits=2)) [c(1:3,54:56),]
tempF fit ci.low ci.hi pi.low pi.hi

1 300.83 0.16 0.99 0.10 1.00
2 31082 0.16 0.9 0.10 0.99
3 32080 0.15 0.9 0.09 0.99
54 830.01 0.00 0.07 0.00 0.14
55 840.01 0.00 0.06 0.00 0.14
56 85 0.01 0.00 0.06 0.00 0.13






OEBPS/A77776_2_En_9_Chapter_IEq4.gif





OEBPS/A77776_2_En_9_Chapter_IEq5.gif





OEBPS/A77776_2_En_9_Chapter_IEq2.gif
Yax1





OEBPS/A77776_2_En_9_Fig5_HTML.gif
-8
re
re
re

density





OEBPS/A77776_2_En_7_Fig8_HTML.gif
concent

54 58

50

catalyst






OEBPS/A77776_2_En_9_Chapter_IEq3.gif
Xoxlep) = 1 X1X2 .. X,]





OEBPS/A77776_2_En_9_Chapter_IEq1.gif





OEBPS/A77776_2_En_BookBackmatter_Figaaaae_HTML.gif
020

015

‘dbinom(x, size = 15, prob = 0.4)

IREEEEEEEEE]






OEBPS/A77776_2_En_9_Chapter_IEq8.gif





OEBPS/A77776_2_En_9_Chapter_IEq9.gif





OEBPS/A77776_2_En_9_Chapter_IEq6.gif
Furora





OEBPS/A77776_2_En_BookBackmatter_Figi_HTML.gif
Densty estimate

datathardness, package.
Uineardodel 1 < n(ha s andeat dsplay.

summary (Lincarbodel.1)

‘Quantie-comparison plot

set | odel

I Unearodel 1

Ehardness)

ldensity) o501}
‘Quantie comparison plot with test

Signif. codes: 0

Scatterplot
ine graph
XY condtoning plot
ouput strp chart
> inearodel. 1 < Wa(y, ashardness) e
> summary (LinearModel. 71¢ it
oty pr——
[Ua(formila = hardness <cuarpiot matrx . (1) fness)
Residuals: XY condtioning pot . ()
Min 10 Media latice plt.. ()
32663 8135 ~15.2 e ot (fomda).. 420
lcoetticients Resize latice plots
Estimate plotof two-way interactions.. ()
(Intercept) -118.0074, B
[interes 59974 Dotpiot wit stacked mltiple hts._ (1)

* 30 graph. M
Resicuat_ standard erro Save gaphto le
Ll = 0]
Hessages

[Remdr Vorsion 2.1






OEBPS/A77776_2_En_9_Chapter_IEq7.gif
1)
€1~ N(O, 07,





OEBPS/A77776_2_En_10_Figm_HTML.gif
> aouStatementAndAnova(CsT)
> anova(aov(Sodiun ~ Calories * Type, data = hotdog))
Analysis of Variance Table

Response: Sodiun
Df Sun Sq Mean Sq F value PrOF)

Calories 1106270 106270  35.69 2.7e-07 +4%
Type 2227386 113693  38.18 1.20-10 *ex
Calories:Type 2 10402 5201  1.75  0.19
Residuals 48 142930 2978

Signif. codes: O ’wwx’ 0.001 '+ 0.01 *+’ 0.05 *.’ 0.1° ' 1
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> data(htwt)

> levels(factor (htwtssex, exclude=NULL))
143 "gn mme WA

> any(is nahtutshe))
(1] TRUE

> for (n in tapply(htut$ht, factor(htut$sex, exclude=NULL), c))
+  stem(h, scale=1.5)

The decimal point is at the |

Female Male
s8 10 s8 |

60 | 60 |

62 | 00000 6210

64 | 000000000 6 lo0

66 | 000008 66 1 000
s lo0 8 | 00
701 70|

721 72 | 000000
70 741 00
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> workstation.aov <- aov(devices ~ method / station,
+ datasworkstation)

> summary (vorkstation.aov)
Df Sun Sq Mean Sq F value  Pr(>F)

method 21545.3  772.6 51.452 2.09e-09 *xx
method:station 3 210.2  70.1 4.666 0.0105 *

Residuals 24 360.4  15.0

Signif. codes: 0 ’sxx’ 0.001 '+’ 0.01 '+’ 0.05 .’ 0.1’ ' 1

> model.tables (vorkstation.aov, "means", se=TRUE)
Tables of means
Grand mean

23.06667

method

method
12 3

14.8 22.1 32.3

method:station
station
method 1 2

Standard errors for differences of means
method method:

1.733

replic. 10
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> print (na.print=
+ tapply(turkey$ut.gain,
+ turkey[,c("additive”, "anount™)],
+ mean)
+)
amount

additive o 1 2

control 3.783333

A 5.5 6.983333

B 7.0 9.383333
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> data(vocab)

> table(vocab)

vocab

910 11 12 13 14 15 16 17 19
14137 9945 11

> table(vocabsscore - 10)
40123456759
14137 9945 11

> table( sign(vocabscore-10) )

-1 01
1449

> pbinon(48.5, 50, .5, lower=FALSE)
[1] 4.53-14

> 1 - pbinon(4s.5, 50, .5)
11 4.53e-14
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> rt5 < re(300, af=5)

> ron <= rnorm(300)

> ks.test(rt5, function(x)pt(x, df=2))
One-sample Kolmogorov-Smirnov test
data: rts

D = 0.0563, p-value = 0.2982
alternative hypothesis: tuo-sided

> ks.test(ran, function(x)pt(x, df=2))
One-sample Kolmogorov-Sairnov test
data: ron

D = 0.1022, p-value = 0.003808
alternative hypothesis: two-sided
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7 "C:\\Users\\rmh\\Documents\\R\\win-library\\3.2\\HH'
\scripts\\hh2\\mcomp.R!
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Do not allow the right margins of your work to run off
the edge of the page. 1t is hard to read text that isn’t isible,

Do ot allow lines to be arbitrarily folded in a way thht destroys the

format

ng.

This is particularly a problem if you copy output from

the R Console window to an editor in a word-processitg mode. Word

[processors (as distinct from text editors) by default enfopce
[English-language conventions (such as maximum line

length and proportional font) on code and output text fhat s designed

for column alignment and a fixed-width font. Use an edifor,

such as Emacs with ESS, that is aware of the R formattijig conventions.

[Most word processors do have an option to set sections fn

fixed-width Courier font and to give the write control of] margins.

Sun of
Source oF Squares

Folding re Fualie Pr>F

makes

this table Hodel 2 2649.816730

impossible to | |65 se.e2 <0001

read. Exror 44 1061.382419
28
Corrcted Total 46  3711.199149

Mean Squa

1324.9083

24,1223

Sum of
S Source DF Squares Mean Square F Value Pr > F
- Model 2 2649.816730 1321.908365 51.92 <.0001

o is Error 44 1061.382419 24122328
unreadable.

Corrected Total 46 3711199149
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> match(dimnames (coef (sunmary. ln (turkey3.aov))) [[1]],

+ dimnanes (turkey3
M1 24 812

> turkey[c(1,7,13,19,25)

~a0v$x) [[211)

Bl

diet wt.gain trt.vs.control additive amount

1 comtrol 4.1 control control o

7 A 5.2 treatment A 1

13 2 63 treatment A 2

19 Bl 6.5 treatment B 1

2 B2 9.5 treatment B 2

> turkey3.coef <- summary.lm(turkey3.aov)$coef

> turkey3.x <- turkey3.aov$x

> tern.names <-

+  c("(Intercept)","trt.vs.control", "additive", "amount",

+ "additive:amount:

> dimnanes (turkey3. coef)

"

[[1]) <- term.names

> dimnanes (turkey3.x) [[2]][c(1,2,4,8,12)] <- tern.names

> zapsmall(turkey3. coef)

Estinate
(Intercept) 6.53000
trt.vs.control -0.68667
additive -0.97500
amount. -0.96667

additive:amount 0.22500

Std. Error  t value
0.10253  63.68585
0.05127 -13.39386
0.11464 -8.50510
0.11464 -8.43241
0.11464  1.96272

> turkey3.x[c(1,7,13,19,25), c(1,2,4,8,12)]
(Intercept) trt.vs.control additive amount

1 1
7 1
13 1
19 1
2 1

4 0 o
-1 1 1
-1 PR
-1 -1 1
-1 -1

Prolel)
0.0000
0.0000
0.0000
0.0000
0.0609

additive
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> eigen(tcrossprod ()
Svalues
[1] 2.097¢+02 1.8706+01 6.123e-01 -5.978e-15

Svectors

Lu L2 L3 e
[1,] -0.2561 0.6098 0.6935 -0.2857
[2,] -0.4102 0.6334 -0.5907 0.2857
[3,] -0.7125 -0.3674 -0.1755 -0.5714
[4,] -0.5084 -0.3034 0.3733 0.7143

> eigen(crossprod (M)
$values
[1] 209.6877 18.7000 0.6123

Svectors

L 2 £,3
[1,] -0.5383 -0.2099 0.81617
[2,] -0.7246 -0.3791 -0.57547
[3,] -0.4302 0.9012 -0.05198

> M.svd$d"2
[1] 209.6877 18.7000 0.6123
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> pass <- as.nuneric(crash$passengers)

crashinlin.aov <- aov(10000/crashrate - agerange/pass,
+ data=crash)

## sumnary (crashinlin.aov)
## coef (summary . In(crashinlin.aov))

Estimate Std. Error t value PrO>Itl)

agerangel6-17:pass  -1531 335 -4.569 0.0038164
agorange18-19:pass  -1849 335 -5.520 0.0014874
agerange30-59:pass 2762 335 8.244 0.0001721

> print(digits=3,
+ sumary(crashinlin.aoy,

+  split=list("agerange:pass"=list (veens=1:2, adults=3))))

Df SunSq Mean Sq F value PrOF)
agerange 21.020409 5.09e+08  906.9 3.6e-08
agerange:pass 36.700407 2.230+07  39.8 0.00024

agerange:pass.

Residuals 6 3.37¢406 5.61e405

print (coef (sumary. Ia(crashinlin.aov)) [4:6,], digita=t)

teens 2 2.88e407 1.44e407  25.7 0.00115
agerange:pass: adults 1 3.810+07 3.810+07  68.0 0.00017

Signif. codes: O 'wwx’ 0.001 '+ 0.01 *+» 0.05 *.° 0.1 7 7 1






OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq78.gif
8=090"





OEBPS/A77776_2_En_7_Fig11_HTML.gif
5

20

25
oontrast value

30

35

> ® 0 o

contrasts





OEBPS/A77776_2_En_6_Chapter_Equ38.gif
AvsB © 1 1-1-1
controlvs.treatment (4 —1 —1 -1 —1)





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq77.gif
cos(6)





OEBPS/A77776_2_En_6_Chapter_Equ39.gif
H, : not all the o7 are identical to each other





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq72.gif
Px = X(X'X)'X' = 00’





OEBPS/A77776_2_En_6_Chapter_Equ36.gif





OEBPS/A77776_2_En_6_Chapter_Equ37.gif
V8(1-.25-.25-.25-25)





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq71.gif





OEBPS/A77776_2_En_6_Chapter_Equ34.gif





OEBPS/A77776_2_En_12_Fig15_HTML.gif
ot

Npg means | cs level

BB

250

clover orthogonal contrasts --- 6 groups --> 5 contrasts

e

orao0ns

p——

BB,

Tiebrester

i Rt St i S ot it W Al S bk

owrta
iz

e





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq74.gif





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq73.gif
Cx)





OEBPS/A77776_2_En_6_Chapter_Equ35.gif
van(Ciysm) > g g





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq79.gif





OEBPS/A77776_2_En_6_Chapter_Equ32.gif
c:

AvsE =

(¥ control Yar Yo Y1 ¥32)- (0
@)-(c)





OEBPS/A77776_2_En_14_Figa_HTML.gif
LBt

1
1 V3:.
52 V3.
3 V3N
4 Va:.

Vi,
Vi,

LB

P1
s1v3.
52 V3.
3 V3:N.
s4 V3.

Vi,
Vi,

LB

P1
1 v2:
2 v2:N
3 v2:i.
s4 V2.

omno

LB

53 Va:l.

.. B

.6 VLINL4 V3:N.4
.0 VLIN.6 V3:N.6
3 V2:N.4 VL:N.0 V3:N.2
.2 VLIN.2 V3:N.0
.. B8
P1
S1 VL

s2 VLN

=E==
Sona






OEBPS/A77776_2_En_6_Chapter_Equ33.gif
SShyss = 1(Chyep)* = 22815





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq81.gif





OEBPS/A77776_2_En_6_Chapter_Equ30.gif





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq80.gif
VE =28





OEBPS/A77776_2_En_6_Chapter_Equ31.gif





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq21.gif
Z63)





OEBPS/A77776_2_En_12_Chapter_IEq32.gif





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq20.gif
(Ze





OEBPS/A77776_2_En_12_Chapter_IEq31.gif





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq23.gif





OEBPS/A77776_2_En_12_Chapter_IEq30.gif
IS

o





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq22.gif
b # oo





OEBPS/A77776_2_En_12_Chapter_IEq36.gif
sl

=2.668





OEBPS/A77776_2_En_12_Chapter_IEq35.gif
0/ V2





OEBPS/A77776_2_En_12_Chapter_IEq34.gif





OEBPS/A77776_2_En_12_Chapter_IEq33.gif
S =Fa)/ s





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq29.gif





OEBPS/A77776_2_En_12_Fig1_HTML.gif
time: main effects and 2-way interactions

Time - panelordered  emergenc.

Time - emergenc T emergenc

emergenc,

Fis

Fio

panel ordered]
3

Fis

k1o

panel.ordored

emergenc

time

time





OEBPS/A77776_2_En_12_Chapter_IEq39.gif





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq28.gif
x— 0"





OEBPS/A77776_2_En_12_Chapter_IEq38.gif





OEBPS/A77776_2_En_12_Chapter_IEq37.gif
MSre

791667





OEBPS/A77776_2_En_15_Fig16_HTML.gif
Is your job professionally challenging?

reasome rorsosery || [ I | >
I - =
8
[l T 3
oarment .‘ n g
P iy P
‘Sell-employed :
e
susars. v o )| I 5
P S S

Percent

‘Strongly Disagreolll  DisagroeBll  NoOpinion~  Agreolll  Strongly Agreo Bl





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq25.gif
y=cln(), x>0





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq24.gif





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq27.gif





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq26.gif





OEBPS/A77776_2_En_12_Figa_HTML.gif
> displayf.aov <- aov(time ~ emergenc *+ panel, data=display)

> anova(displayf .aov)
Analysis of Variance Table

Response: time
Df Sun Sq Mean Sq F value  Pr(>F)

emergenc 3 1052.46 350.82 60.5731 1.612e-07 %xx
panel 2 23275 116.38 20.0935 0.0001478 *++
emergencipanel 6 28.92  4.82 0.8321 0.5675015
Residuals 12 69.50  5.79

Signif. codes: O 'eer’ 0.001 'e+’ 0.01 '+ 0.05 *.’ 0.1’ 1
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>V < matrix(e(2, 1, 1, 1), 2, 2)

>y

[V ]
w2 1
@) 11

> oV <= eigen(V)

>V
Svalues
(1] 2.618 0.382

Svectors

L1 2
[1,] -0.8507 0.5257
[2,] -0.5257 -0.8507

> sqri(eVéval) ## semimajor and semiminor axis lengths
(1] 1.618 0.618

> ## angle of axes in radians
> atan(c(eVsvec(2,1]/eVsvec(1,1], eVSvec(2,2]/eVsvec(1,2]))
1] 0.5536 -1.0172

> ## = -pi/2 ## right angle
> diff (atan(c(eV3vec(2,1]/eVsvec(1, 1], eVSvec(2,2]/eVsvec(1,2])))
1] -1.571
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> usair.regsubset <- leaps::regsubsets(
1nS02 ~ lnmfg + lnpopn + precip + raindays + temp + wind,
+ data=usair, nbest=2)

> usair.subsets.Sumary <- summaryHH(usair.regsubset)
> tmp <~ (usair.subsets.Summary$cp <= 10)

> usair.subsets.Summary [tup,]

model p rsq rss adjr2 cp  bic stderr
5 lnm-t-w 4 0.456 10.74 0.412 8.16 -10.09 0.539
6 p-t-w 4 0.446 10.94 0.401 8.93 -9.33 0.544
7 lnm-p-t-w 5 0.543 9.02 0.492 3.58 -13.51 0.501
B Inm-r-t-w 5 0.513 9.61 0.459 5.82 -10.93 0.517
9 lmm-lnp-p-t-w 6 0.550 8.88 0.486 5.03 -10.46 0.504
10 lmm-p-r-t-w 6 0.543 9.02 0.477 5.58 -9.80 0.508
11 lnn-lnp-p-r-t-u 7 0.550 8.87 0.471 7.00 -6.78 0.511

Model variables with abbreviations

model
3 temp
x raindays
Pt precip-tenp
-t raindays-teap
lom-t-w 1nnfg-temp-wind
prt-w precip-temp-wind
lnm-p-t-u 1nnfg-precip-temp-wind
lon-r-t-u lunfg-raindays-temp-wind
lan-1op-p-t-w 1nntg-1npopn-precip-temp-wind
lnm-p-r-t-u 1nnfg-precip-raindays-temp-wind

1nn-1np-p-r-t-u lnafg-lnpopn-precip-raindays-temp-wind

model with largest adjr2
7

Number of observations
a1
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> Z.1oop
$series
(1] "tser.mystery.z"

$model
1 "(p,0,"

$signa2

3 1 2
00.9454 0.9354 0.8930
10.9399 0.9039 0.8930
20.8868 0.8862 0.8088

Saic
o 1 2

0 282.2 283.1 280.6
1283.6 281.9 282.6
2279.9 281.8 277.2
Scoef

art ar2
0,0,0) A NA
(1,0,0) 0.07625 N
(2,0,0) 0.09630 -0.2360
0,0,1) A NA
(1,0,1) -0.78022 N
(2,0,1) 0.17084 -0.2424
0,0,2) A A
(1,0,2) 0.01253 A
(2,0,2) -0.38096 -0.8567
$t.coef

art ar2
0,0,0) A A
(1,0,0) 0.76442 A
(2,0,0) 0.98344 -2.424
0,0,1) A A
(1,0,1) -5.17277 A
(2,0,1) 0.57783 -2.458
0,0,2) A NA
(1,0,2) 0.02659 N

(2,0,2) -4.25626 -13.016

mal  ma2 intercept
A n A
A NA 0.06379
A NA0.06402
13415 NA0.06471
91668 NA 0.06438
07901 NA  0.06405
.09445 -0.2177  0.08464
.08246 -0.2183  0.06466
.57783 0.9732  0.06617
mal  ma2 intercept
[TSEY [
NA WA 0.6083
NA N 0.7721
0571 WA 0.5905
L8387 NA  0.6291
L2664 WA 0.7885
.9615 2.171  0.7771
L1788 -2.130  0.7786
L2170 9.171  0.6453
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> ## calculate the statistic
> sun.prak <- sun(harSpruk)

> n <= sun(har$diff != 0)

> sum.prak
[1] 808.5

>n
1l 46

> ## normal approximation
> mean.prak <- n(n+1)/4

> numerator <- sun.prnk - mean.prnk

> var.prakl <-n * (n + 1) * (2 % n+ 1)/24

> NTIES <- table(har$abs[1:46]) ## non-zero differences

> TIEadjustment <- sun(NTIES"3 - NTIES)/48
> var.afterTIES <- var.praki - TIEadjustment
>z < (numerator - .5) / sqrt(var.afterTIES)

1] 2.923

> p.val <- pnorm(z, lover.tail = FALSE)

> p.val
[1] 0.001733
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> data(fat)
> fat.la <- lm(bodyfat ~ abdomin, data=fat)

> anova(fat.lm)
Analysis of Variance Table

Response: bodyfat
Df Sun Sq Mean Sq F value Pr(>F)

abdomin 1 2440 2440  86.4 4.90-12 +x

Residuals 45 1271 2

Signif. codes:

0 Terr’ 0.001 '#+ 0.01 '+ 0.05 ' 0.1 1

> sumnary(fat.ln)

call:
In(formula = bodyfat = abdomin, data = fat)
Residuals:

Min 10 Median 30 Max

-12.42 -4.11 1.21 3.52 9.65

Coefficients:
Estimate Std. Error t value Pr(>It|)
(Intercept) -28.5601  5.1100 =-5.59 1.3e-06 *xx

abdomin 0.5049  0.0543  9.30 4.9e-12 *r+

Signif. codes:
0 Tees’ 0.001 ’#x’ 0.01 ’x’ 0.05 *.’ 0.1 * 1

Residual standard error: 5.31 on 45 degrees of freedom
Multiple R-squared: 0.658,Adjusted R-squared: 0.65
F-statistic: 86.4 on 1 and 45 DF, p-value: 4.85e-12
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summary. ln(turkey3.aov)
coef (sumary. 1n(turkey3.aov))
dinnanes (coef (sunnary . 1 (turkey3.aov)))
dinnanes (coef (sunmary . 1n (turkey3.aov))) [[1]]

turkey3. aov$x
dimnanes (turkey3.aov$x)
dimnanes (turkey3.aov$x) [[2]]

match(dinnanes (coef (sumnary . 1n (turkey3.aov))) [[11],
dinnanes (turkey3.aov$x) [[2]])
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> x <= ts(sample(10), start=1978)
>y < ts(sample(s), start=1980)

>x
Tine Series:
Start = 1078
End = 1987
Frequency = 1
(110 6 9 1 43 27 85

>y

Time Series:
Start = 1980
End = 1985
Frequency = 1
1346125

1986
1987

A
N

> ts.union(x,y) > ts.intersect (x,y)
Time Series: Time Series:
Start = 1978 Start = 1980
End = 1087 End = 1985
Frequency = 1 Frequency = 1

xy xy
1978 10 NA 1980 9.3
1979 6 NA 1981 1 4
1980 9 3 1982 4 6
1981 1 4 1983 3 1
1982 4 6 1984 2 2
1983 3 1 19857 5
1982 2 2
1985 7 5

8

5
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> fat2.1n <- lm(bodyfat ~ abdomin + biceps, data=fat)

> pi.fit < predict(fat2.1m,
+ newdata=data. frane (abdomin=93:94, biceps=33:34),

+ se.fit=TRUE, interval="prediction")
> ci.fit < predict(fat2.1n,

+ newdata=data. frane (abdomin=93:94,
+ biceps=33:34),

+ se.fit=TRUE, interval="confidenc

> pi.tit

stit

fit  lur  upr
1 18.49 8.485 28.49
2 18.25 8.236 28.26

$se.fit
1 2

0.7171 0.7518

Sar

[ 44

Sresidual.scale
[ 4.911

> ci.fitsfit

fit  lur  upr
118.49 17.04 19.93
2 18.25 16.73 19.76
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> o2, sqre()°2)
22

> sqrt(2)°2
2

> 2 == sqre()°2
[1] FALSE

>2 - sqrt(2)°2
(1] -4.441e-16

> identical(2, sqrt(2)72)
(1] FALSE

> all.equal(2, sqrt(2)72)
(1] TRUE
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X < matrix(c(1,3,6,4,2,3,8,6,4,5,3,2), 4, )
X
crossprod(X)

## use the expository function defined in the previous chunk
X.ngs <- mgs(X)

X.ngs ## q is orthogonal, r is upper triangular

## These are identical to the results of qr(x)

## up to the sign of the columns of q and the rows of r.

zapsnall(crossprod(X.ngs$q)) ## identity
crossprod(X.ngs$r)  ## reproduces crossprod(X)

X.mgs$q %% X.ngs$r  ## reproduces X
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> yatespplurong.aov <
+ " sovteras(y - (blockswvariety) + (nitrogensvariety),
- koep.order=TRUE),

. data=yatesppl)

> summary (yatesppl. wrong..aov)
Df Sun Sq Mean Sq F value PrOF)

blocks 5 15875 3175  17.93 9.5e-10 s
variety 2 1786 893  5.04 0.0106 +
blocks:ivariety 10 6013 601  3.40 0.0023 wx
nitrogen 3 20021 6674 37.69 2.5e-12 e
variety:nitrogen 6 322 54 0.30 0.9322
Residuals R

Signif. codes: O wwx’ 0.001 '+’ 0.01 *+’ 0.05 *.’ 0.1° * 1
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£> Uibrary (RendrPlugin. iH)
Loading required package: HH

lattice
grid
latticebxtra
RColorBrewer
multconp
mvtnom
survival
splines
TH.data
gridextra
rgl
mgey
Loading required package: nine
This is mgcv 1.8-4. For overview type 'help(“ngcv-package”)'.
Loading required package: car

Attaching package: ‘car’
The following abjects are masked from ‘package:HH':

logit, vif |
Landing required package: sondvch
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notten.loop <~ arma.loop(notten, order=c(2,0,2),
. seasonal=list(order=c(2,1,0), period=12),
+ method="HL")

> print(notten.loop, digits=4)
$series
[1] "notten”

$model
1] "(p,0,)x(2,1,012"

$signaz

o 1 2
06,219 5.799 5.661
1 5.702 5.674 5.656
25,666 5.661 5.656

Saic

o 1 2
0 1078 1065 1062
1 1061 1062 1063
2 1062 1064 1065

Scoef

art ar2 mal  ma2  sarl
0,0,00x(2,1,0)12 NA A Mo NA -0.8220
(1,0,0)x(2,1,0)12 0.285699 A NANA -0.8598
(2,0,0)x(2,1,0)12 0.261443 0.07937 NA O NA -0.8602
(0,0,1)%(2,1,0012 NA NA 0.23606  NA -0.8505
(1,0,1)x(2,1,0)12 0.478197 NA -0.20979 A -0.8603
(2,0,1)x(2,1,0)12 0.001805 0.15577 0.26037  NA -0.8608
(0,0,2)x(2,1,0012 A NA  0.25718 0.1675 -0.8607
(1,0,2)x(2,1,0)12 0.169231 A 0.09343 0.1200 -0.8611

(2,0,2)x(2,1,0)12 0.118763 0.01077 0.14252 0.1212 -0.8614

$t.coef

art  ar2  mal ma2 sart  sar2
(0,0,00x(2,1,0)12 N NA N ONA -13.07 -4.418
(1,0,00x(2,1,0)12 4.451829  NA N NA -13.46 -4.443
(2,0,0)x(2,1,0)12 3.899219 1.1772 N NA -13.54 -4.596
0,0,1)%(2,1,0)12 NA  NA 4.0370  NA -13.32 -4.275
(1,0,1)x(2,1,0)12 2.668022  NA -1.0576  NA -13.52 -4.556
(2,0,1)x(2,1,0)12 0.003237 0.9644 0.4644  NA -13.56 -4.620
0,0,2)%(2,1,0)12 NA  NA 3.9101 2.302 -13.58 -4.661

(1,0,2)x(2,1,0)12 0.448103  NA 0.2501 1.008 -13.58 -4.650
(2,0,2)x(2,1,0)12 2887888 Nal 1.0990 1.015 -26.55 -29.916

> notten.diag <-
+  rearrange.diag.arna.loop(diag.arna. loop(notten.loop, nottem))
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longley4.ln <- lm(Employed ~
GNP + Unemployed + Armed.Forces + Year,
+ data=longley)

> sumnary (longley4.1m)

call:
In(formula = Employed ~ GNP + Unemployed + Armed.Forces + Year,
data = longley)

Residuals:
Min 10 Median 30 Max
-0.4217 -0.1246 -0.0242 0.0837 0.4527

Coefficients:
Estimate Std. Error t value PrO>ltl)

(Intercept) -3.600403 7.416402 -4.86 0.00050 sas
ap -4.020-02  1.65e-02 -2.44 0.03283 *
Unemployed  -2.09e-02  2.90e-03 ~7.20 1.7e-05 #xx
Armed.Forces -1.01e-02  1.84e-03  -5.52 0.00018 *xx

Year 1.89e+00  3.83¢-01  4.93 0.00045 +xx
Signif. codes: 0 *#++? 0.001 ’+x’ 0.01 *4? 0.05 *.” 0.1 * 1

Residual standard error: 0.279 on 11 degrees of freedom
Multiple R-squared: 0.995,Adjusted R-squared: 0.994
F-statistic: 590 on 4 and 11 DF, p-value: 9.5e-13

> anova(longley4.1n)
Analysis of Variance Table

Response: Employed
Df Sun Sq Mean Sq F value Pr(>F)

e 10179.0 179.0 2292.7 de-14 wex

Unemployed 1 2 2.5 31.50.00016 +++

Armed.Forces 1 0. 8 10.5 0.00779 x

Year 11 9 24.3 0.00045 sxs

Residuals 11 0O 1

Signif. codes: 0 ’sxx’ 0.001 ’#+’ 0.01 '+’ 0.05 .’ 0.1’ ’ 1

0.
1
o

> vif(longley4.1n)
GNP Unemployed Armed.Forces Year
515.124 14.109 3.142 638.128






OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq99.gif
2

5257





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq94.gif
A1=2618





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq93.gif





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq96.gif
260+ 60 ¥ 261860





OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_IEq95.gif
VE = 26188





OEBPS/A77776_2_En_BookBackmatter_Figaap_HTML.gif
> library (Raptr)
> FourBits <- mpfr(matrix(0:39, 8, 5), precBits=4)

> dimnames (FourBits) <- 1ist(0:7, c(0,8,16,24,32))

> FourBits

‘mpfrMatrix’ of dim(.) = (8, 5) of precision 4 bits
o 8 15 24 3

00.00 8.00 16.0 24.0 32.0

11.00 9.00 16.0 24.0 32.0

212,00 10.0 18.0 26.0 32.0

313.00 11.0 20.0 28.0 36.0

44.00 12.0 20.0 28.0 36.0

55.00 13.0 20.0 28.0 36.0

66.00 14.0 22.0 30.0 40.0

7.7.00 15.0 24.0 32.0 40.0

> fornatHex(FourBits)

0 ) 16 2 32

+0x0.0p+0 +0x1.0p+3 +0x1.0p+4 +0x1.8p+4 +0x1.0p+5
40x1.0p#0 +0x1.2p+3 +0x1.0p#4 +0x1.8p+#4 +0x1.0p+5
+0x1.0p+1 +0x1.4p+3 +0x1.2p+4 +0x1.ap+d +0x1.0p+5
40x1.8p*1 +0x1.6p+3 +0x1.4p+4 +0x1.cp#d +0x1.2p+5
+0x1.0p+2 +0x1.8p+3 +0x1.dp+d +0x1.cp+d +0x1.2p+5
+0x1.4p+2 +0x1.ap+3 +0x1.4p+d +0x1.cp+d +0x1.2p+5
40x1.8p#2 +0x1.cp#3 +0x1.6p+4 +0x1.cp+d +0x1.4p+5
+0x1.cp+2 +0x1.0p+3 +0x1.8p+d +0x1.0p+5 +0x1.4p+5

NooswN=O

formatBin(FourBits)

o 8 16 2 32
+0b0.000p+0 +0b1.000p+3 +0b1.000p+4 +0bi.100p+4 +0b1.000p+5
+0b1.000p+0 +0b1.001p+3 +0b1.000p+4 +0b1.100p+4 +0b1.000p+S
+0b1.000p+1 +0b1.010p+3 +0b1.001p+4 +0bi.101p+4 +0b1.000p+5
+0b1.100p+1 40b1.011p+3 +0b1.010p+4 +0bi.110p+4 +0b1.001p+5
+0b1.000p+2 +0b1.100p+3 +0b1.010p+4 +0bi.110p+4 +0b1.001p+s
+0b1.010p+2 40b1.101p+3 +0b1.010p+4 +0bl.110p+4 +0b1.001p+5
+0b1.100p+2 +0b1.110p+3 +0b1.011p+4 +0bl.111p+4 +0b1.010p+5
+0b1.110p+2 +0b1.111p+3 +0b1.100p+4 +0b1.000p+5 +0b1.010p+5

NooswNeoO

fornatBin(FourBits, scientific=FALSE)

8 16 2 32
[ +0b__1000. ___ +0b_1000_.___ +0b_1100_.___ +0b1000.
1 +0b__1001.___ +0b_1000_.___ +0b_1100. +0b1000.
2 40b__1010.___ +0b_1001_.___ +0b_1101. +0b1000.
3 40b__1011.___ 40b_1010_.___ +0b_1110. +0b1001.
4 +0b__1100.___ +0b_1010_.___ +0b_1110. +0b1001.
5 40b__1101.___ 40b_1010_.___ +0b_1110. +0b1001.
6 +0b__1110.___ +0b_1011_.___ +0b_1111, +0b1010.
7 40b__1111.___ +0b_1100_.___ +0b1000_ +0b1010.
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> summary (ex0221)
weight  code
Min.:23.20 1:35
1st Qu.:24.75  2:24
Median:25.70

> summary(ex0221)
weight code
Min.:23.20 1:35

Ist Qu.i24.75 2:24
Median:25.70
Mean:25.79

3rd Qu.:26.50
Max.:31.10
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> sunnary (fabricwear.aoy,
. split=list (speedslist(speed.Le1, speed.4=2,

speed.C=3,

2))

DE Sum Sq Mean Sq F value

speed
speed: speed.L
speed: speed.Q
speed: speed.C
speed: rest

Residuals 4

Signif. codes: 0 'wss’

5
1
1
1
2

2

4872

513
7
2
137

> summary.la(fabricwear.aov)

cal1:
aov(formila = wear

Residuals:

Min 10 Median
-9.487 -0.653 0.181

Coetficients:

Estinate
(Intercept)  34.929
speed.L 23.256
speed.q 8.009
928
677
600

speed.C
speedd
speed’s,

Signif. codes

o074 207
4327 4327 1321,
513 156.
2.
3.

7
13
3

0.001 *#+? 0.01

70
90
76
10
88

PrOF)

< 216 wer

< 2616 s

9.1e-16 wax
0.154
0.028 *

0.05

speed, data = fabricuear)

3Q Max

0.825 2.

712

std. Error ¢ value Pr(>Itl)

0.261
0.640
0.640
0.640
0.640
0.640

0 »ese> 0.001 *

133.
36.
12.
1.
-2
-0.

e 0.

76
36
52
45
62
o

o1

<
<
5.

20-16
2e-16
1e-16
0.154
0.012
0.354

0.05

soo

v b

Residual standard error: 1.81 on 42 degrees of freedom
0.973,Adjusted R-squared:

Multiple R-squared:

F-statistic: 298 on 5 and 42 DF,

0.969
pvalue: <2e-16

1

1
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Strain Clover Clover+alfalfa Mean Strain Clover Clover+alfalfa Mean
3DOk1 i 3DOK1 29.04 28.41(28.72
3DOKS T 3D0KS | 36.29 27.44[31.86
300Kt T 3D0ks | 2135 23.08[22.66
3DOK7 Ya 3DOK7 2293 24.96(23.95
3DOk13 s 3DOk13 2249 24.30(23.39
keomposite| Ty Keomposite| 25,97 24922545
Mean I3 Mean 2635 25.67)26.01
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old.data <-
data. frame(y=rnorn(50), xi=rnorm(50), x2=rnorm(0), x3=rnorm(50))

example.ln <- In(y ~ x1 + x2 + x3, data=old.data)

> (example.coef <- coef(example.lm))
(Intercept) x1 x2 x3
-0.09670  0.11671  -0.12881  -0.09652

> (new.data <- data.frame(x1=3, x2=2, x3=45))
x1 x2 x3
13 245

> predict(exaple.ln, newdata=mew.data, se.fit=TRUE,
+ interval="contidence")
stiv

fit L upr
1-4.344 -18.03 9.337

$se.fit
(1] 6.797

saf
1) 46

$residual.scale
[1] 0.9492

> predict(exanple.ln, newdata=new.data, se.fit=TRUE,
+ interval="prediction")
stit
fit  ler upr
1-4.344 -18.16 9.47

$se.fit
1 6.797

saf
(1] 46

Sresidual.scale
[1] 0.9492

> c(1, data.matrix(new.data)) %+ example.coef
(]
[1,] -4.344






OEBPS/A77776_2_En_BookBackmatter_OnlinePDF_Equ19.gif





OEBPS/A77776_2_En_14_Figr_HTML.gif
> anova(aov(yield ~ block + pre + treat, data=apple))
Analysis of Variance Table

Response: yield
Df Sun Sq Mean Sq F value Pr(>F)

block 3 47853 15051 57.48 4.10-08 *xx
pre 115944 15944  67.45 2.60-06 #a%
treat 5 433 &71 314 0.062 *

Residuals 14 3885 278

Signif. codes: 0 ’xxx’ 0.001 '+ 0.01 '+’ 0.05 *.7 0.1° * 1
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(£6%) = Omar
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rank(A,.) = min(r,c)
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