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Preface

                There are many books that are excellent sources of knowledge about individual statistical tools (survival models, general linear models, etc.), but the art of data analysis is about choosing and using multiple tools. In the words of Chatfield [100, p. 420] “…students typically know the technical details of regression for example, but not necessarily when and how to apply it. This argues the need for a better balance in the literature and in statistical teaching between
                techniques
                and problem solving
                strategies
                .” Whether analyzing risk factors, adjusting for biases in observational studies, or developing predictive models, there are common problems that few regression texts address. For example, there are missing data in the majority of datasets one is likely to encounter (other than those used in textbooks!) but most regression texts do not include methods for dealing with such data effectively, and most texts on missing data do not cover regression modeling.
              

                This book links standard regression modeling approaches with
                	methods for relaxing linearity assumptions that still allow one to easily obtain predictions and confidence limits for future observations, and to do formal hypothesis tests,

	non-additive modeling approaches not requiring the assumption that interactions are always linear × linear,

	methods for imputing missing data and for penalizing variances for incomplete data,

	methods for handling large numbers of predictors without resorting to problematic stepwise variable selection techniques,

	data reduction methods (unsupervised learning methods, some of which are based on multivariate psychometric techniques too seldom used in statistics) that help with the problem of “too many variables to analyze and not enough observations” as well as making the model more interpretable when there are predictor variables containing overlapping information,

	methods for quantifying predictive accuracy of a fitted model,

	powerful model validation techniques based on the bootstrap that allow the analyst to estimate predictive accuracy nearly unbiasedly without holding back data from the model development process, and

	graphical methods for understanding complex models.




              

                On the last point, this text has special emphasis on what could be called “presentation graphics for fitted models” to help make regression analyses more palatable to non-statisticians. For example, nomograms have long been used to make equations portable, but they are not drawn routinely because doing so is very labor-intensive. An
                R
                function called
                nomogram
                in the package described below draws nomograms from a regression fit, and these diagrams can be used to communicate modeling results as well as to obtain predicted values manually even in the presence of complex variable transformations.
              
Most of the methods in this text apply to all regression models, but special emphasis is given to some of the most popular ones: multiple regression using least squares and its generalized least squares extension for serial (repeated measurement) data, the binary logistic model, models for ordinal responses, parametric survival regression models, and the Cox semiparametric survival model. There is also a chapter on nonparametric transform-both-sides regression. Emphasis is given to detailed case studies for these methods as well as for data reduction, imputation, model simplification, and other tasks. Except for the case study on survival of Titanic passengers, all examples are from biomedical research. However, the methods presented here have broad application to other areas including economics, epidemiology, sociology, psychology, engineering, and predicting consumer behavior and other business outcomes.

                This text is intended for Masters or PhD level graduate students who have had a general introductory probability and statistics course and who are well versed in ordinary multiple regression and intermediate algebra. The book is also intended to serve as a reference for data analysts and statistical methodologists. Readers without a strong background in applied statistics may wish to first study one of the many introductory applied statistics and regression texts that are available. The author’s course notes
                Biostatistics for Biomedical Research
                on the text’s web site covers basic regression and many other topics. The paper by Nick and Hardin [476] also provides a good introduction to multivariable modeling and interpretation. There are many excellent intermediate level texts on regression analysis. One of them is by Fox, which also has a companion software-based text [200, 201]. For readers interested in medical or epidemiologic research, Steyerberg’s excellent text
                Clinical Prediction Models
                [586] is an ideal companion for
                Regression Modeling Strategies
                . Steyerberg’s book provides further explanations, examples, and simulations of many of the methods presented here. And no text on regression modeling should fail to mention the seminal work of John Nelder [450].
              

                The overall philosophy of this book is summarized by the following statements.
                	Satisfaction of model assumptions improves precision and increases statistical power.

	It is more productive to make a model fit step by step (e.g., transformation estimation) than to postulate a simple model and find out what went wrong.

	Graphical methods should be married to formal inference.

	Overfitting occurs frequently, so data reduction and model validation are important.

	In most research projects, the cost of data collection far outweighs the cost of data analysis, so it is important to use the most efficient and accurate modeling techniques, to avoid categorizing continuous variables, and to not remove data from the estimation sample just to be able to validate the model.

	The bootstrap is a breakthrough for statistical modeling, and the analyst should use it for many steps of the modeling strategy, including derivation of distribution-free confidence intervals and estimation of optimism in model fit that takes into account variations caused by the modeling strategy.

	Imputation of missing data is better than discarding incomplete observations.

	Variance often dominates bias, so biased methods such as penalized maximum likelihood estimation yield models that have a greater chance of accurately predicting future observations.

	Software without multiple facilities for assessing and fixing model fit may only seem to be user-friendly.

	Carefully fitting an improper model is better than badly fitting (and overfitting) a well-chosen one.

	Methods that work for all types of regression models are the most valuable.

	Using the data to guide the data analysis is almost as dangerous as not doing so.

	
                      There are benefits to modeling by deciding how many degrees of freedom (i.e., number of regression parameters) can be “spent,” deciding where they should be spent, and then spending them.
                      
                        
                        
                      
                    




              

                On the last point, the author believes that significance tests and
                P
                -values are problematic, especially when making modeling decisions. Judging by the increased emphasis on confidence intervals in scientific journals there is reason to believe that hypothesis testing is gradually being de-emphasized. Yet the reader will notice that this text contains many
                P
                -values. How does that make sense when, for example, the text recommends against simplifying a model when a test of linearity is not significant? First, some readers may wish to emphasize hypothesis testing in general, and some hypotheses have special interest, such as in pharmacology where one may be interested in whether the effect of a drug is linear in log dose. Second, many of the more interesting hypothesis tests in the text are tests of complexity (nonlinearity, interaction) of the overall model. Null hypotheses of linearity of effects in particular are frequently rejected, providing formal evidence that the analyst’s investment of time to use more than simple statistical models was warranted.
              
The rapid development of Bayesian modeling methods and rise in their use is exciting. Full Bayesian modeling greatly reduces the need for the approximations made for confidence intervals and distributions of test statistics, and Bayesian methods formalize the still rather ad hoc frequentist approach to penalized maximum likelihood estimation by using skeptical prior distributions to obtain well-defined posterior distributions that automatically deal with shrinkage. The Bayesian approach also provides a formal mechanism for incorporating information external to the data. Although Bayesian methods are beyond the scope of this text, the text is Bayesian in spirit by emphasizing the careful use of subject matter expertise while building statistical models.

                The text emphasizes predictive modeling, but as discussed in Chapter
                1
                , developing good predictions goes hand in hand with accurate estimation of effects and with hypothesis testing (when appropriate). Besides emphasis on multivariable modeling, the text includes a Chapter
                17
                introducing survival analysis and methods for analyzing various types of single and multiple events. This book does not provide examples of analyses of one common type of response variable, namely, cost and related measures of resource consumption. However, least squares modeling presented in Chapter 15.1, the robust rank-based methods presented in Chapters
                13
                ,
                15
                , and
                20
                , and the transform-both-sides regression models discussed in Chapter
                16
                are very applicable and robust for modeling economic outcomes. See [167] and [260] for example analyses of such dependent variables using, respectively, the Cox model and nonparametric additive regression. The central Web site for this book (see the Appendix) has much more material on the use of the Cox model for analyzing costs.
              
This text does not address some important study design issues that if not respected can doom a predictive modeling or estimation project to failure. See Laupacis, Sekar, and Stiell [378] for a list of some of these issues.

                Heavy use is made of the S language used by
                R
                .
                R
                is the focus because it is an elegant
                
                  
                
                object-oriented system in which it is easy to implement new statistical ideas. Many
                R
                users around the world have done so, and their work has benefited many of the procedures described here.
                R
                also has a uniform syntax for specifying statistical models (with respect to categorical predictors, interactions, etc.), no matter which type of model is being fitted [96].
              

                The free, open-source statistical software system
                R
                has been adopted by analysts and research statisticians worldwide. Its capabilities are growing exponentially because of the involvement of an ever-growing community of statisticians who are adding new tools to the base
                R
                system through contributed packages. All of the functions used in this text are available in
                R
                . See the book’s Web site for updated information about software availability.
              

                Readers who don’t use
                R
                or any other statistical software environment will still find the statistical methods and case studies in this text useful, and it is hoped that the code that is presented will make the statistical methods more concrete. At the very least, the code demonstrates that all of the methods presented in the text are feasible.
              

                This text does not teach analysts how to use
                R
                . For that, the reader may wish to see reading recommendations on
                www.r-project.org
                as well as Venables and Ripley [635] (which is also an excellent companion to this text) and the many other excellent texts on
                R
                . See the Appendix for more information.
              

                In addition to powerful features that are built into
                R
                , this text uses a package of freely available
                R
                functions called
                
                  
                
                rms
                written by the author.
                rms
                tracks modeling details related to the expanded
                X
                or design matrix. It is a series of over 200 functions for model fitting, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit.
                rms
                includes functions for least squares and penalized least squares multiple regression modeling in addition to functions for binary and ordinal regression, generalized least squares for analyzing serial data, quantile regression, and survival analysis that are emphasized in this text. Other freely available miscellaneous
                R
                functions used in the text are found in the
                Hmisc
                package also written by
                
                  
                
                the author. Functions in
                Hmisc
                include facilities for data reduction, imputation, power and sample size calculation, advanced table making, recoding variables, importing and inspecting data, and general graphics. Consult the Appendix for information on obtaining
                Hmisc
                and
                rms
                .
              

                The author and his colleagues have written SAS macros for fitting restricted cubic splines and for other basic operations. See the Appendix for more information. It is unfair not to mention some excellent capabilities of other statistical packages such as Stata (which has also been extended to provide regression splines and other modeling tools), but the extendability and graphics of
                R
                makes it especially attractive for all aspects of the comprehensive modeling strategy presented in this book.
              

                Portions of Chapters
                4
                and
                20
                were published as reference [269]. Some of Chapter
                13
                was published as reference [272].
              
The author may be contacted by electronic mail at f.harrell@vanderbilt.edu and would appreciate being informed of unclear points, errors, and omissions in this book. Suggestions for improvements and for future topics are also welcome. As described in the Web site, instructors may contact the author to obtain copies of quizzes and extra assignments (both with answers) related to much of the material in the earlier chapters, and to obtain full solutions (with graphical output) to the majority of assignments in the text.

                Major changes since the first edition include the following:
                1.
                        Creation of a now mature
                        R
                        package,
                        rms
                        , that replaces and greatly extends the
                        Design
                        library used in the first edition
                        
                          
                        
                      

 

2.
                        Conversion of all of the book’s code to
                        R
                      

 

3.
                        Conversion of the book source into
                        knitr
                        [677] reproducible documents
                      

 

4.All code from the text is executable and is on the web site

 

5.
                        Use of color graphics and use of the
                        ggplot2
                        graphics package [667]
                        
                          
                        
                      

 

6.Scanned images were re-drawn

 

7.New text about problems with dichotomization of continuous variables and with classification (as opposed to prediction)

 

8.
                        Expanded material on multiple imputation and predictive mean matching and emphasis on multiple imputation (using the Hmisc
                        aregImpute
                        function) instead of single imputation
                      

 

9.Addition of redundancy analysis

 

10.
                        Added a new section in Chapter
                        5
                        on bootstrap confidence intervals for rankings of predictors
                      

 

11.Replacement of the U.S. presidential election data with analyses of a new diabetes dataset from NHANES using ordinal and quantile regression

 

12.
                        More emphasis on semiparametric ordinal regression models for continuous
                        Y
                        , as direct competitors of ordinary multiple regression, with a detailed case study
                      

 

13.A new chapter on generalized least squares for analysis of serial response data

 

14.The case study in imputation and data reduction was completely reworked and now focuses only on data reduction, with the addition of sparse principal components

 

15.More information about indexes of predictive accuracy

 

16.Augmentation of the chapter on maximum likelihood to include more flexible ways of testing contrasts as well as new methods for obtaining simultaneous confidence intervals

 

17.Binary logistic regression case study 1 was completely re-worked, now providing examples of model selection and model approximation accuracy

 

18.Single imputation was dropped from binary logistic case study 2

 

19.The case study in transform-both-sides regression modeling has been reworked using simulated data where true transformations are known, and a new example of the smearing estimator was added

 

20.Addition of 225 references, most of them published 2001–2014

 

21.New guidance on minimum sample sizes needed by some of the models

 

22.De-emphasis of bootstrap bumping [610] for obtaining simultaneous confidence regions, in favor of a general multiplicity approach [307].
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Typographical Conventions

                Boxed numbers in the margins such as
                [image: A69956_2_En_BookFrontmatter_Figb_HTML.gif]
                correspond to numbers at the end of chapters in sections named “Further Reading.” Bracketed numbers and numeric superscripts in the text refer to the bibliography, while alphabetic superscripts indicate footnotes.
              

                R
                language commands and names of
                R
                functions and packages are set in
                typewriter font
                , as are most variable names.
              

                R
                code blocks are set off with a shadowbox, and
                R
                output that is not directly using LaTeX appears in a box that is framed on three sides.
              

                In the S language upon which
                R
                is based,
                x
                [image: $$\leftarrow$$]
                y
                is read “
                x
                gets the value of
                y
                .” The assignment operator
                [image: $$\leftarrow$$]
                , used in the text for aesthetic reasons (as are ≤ and ≥ ), is entered by the user as
                <-
                . Comments begin with #, subscripts use brackets ([ ]), and the missing value is denoted by
                NA
                (not available).
              
In ordinary text and mathematical expressions, [logical variable] and [logical expression] imply a value of 1 if the logical variable or expression is true, and 0 otherwise.
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1.1 Hypothesis Testing, Estimation, and Prediction
Statistics comprises among other areas study design, hypothesis testing, estimation, and prediction. This text aims at the last area, by presenting methods that enable an analyst to develop models that will make accurate predictions of responses for future observations. Prediction could be considered a superset of hypothesis testing and estimation, so the methods presented here will also assist the analyst in those areas. It is worth pausing to explain how this is so.
In traditional hypothesis testing one often chooses a null hypothesis defined as the absence of some effect. For example, in 
                
              testing whether a variable such as cholesterol is a risk factor for sudden death, one might test the null hypothesis that an increase in cholesterol does not increase the risk of death. Hypothesis testing can easily be done within the context of a statistical model, but a model is not required. When one only wishes to assess whether an effect is zero, P-values may be computed using permutation or rank (nonparametric) tests while making only minimal assumptions. But there are still reasons for preferring a model-based approach over techniques that only yield P-values.
1.Permutation and rank tests do not easily give rise to estimates of magnitudes of effects.

 

2.These tests cannot be readily extended to incorporate complexities such as cluster sampling or repeated measurements within subjects.

 

3.Once the analyst is familiar with a model, that model may be used to carry out many different statistical tests; there is no need to learn specific formulas to handle the special cases. The two-sample t-test is a special case of the ordinary multiple regression model having as its sole X variable a 
                        
                      dummy variable indicating group membership. The 
                        
                        
                      Wilcoxon-Mann-Whitney test is a special case of the proportional odds ordinal logistic model. 664 The analysis of variance (multiple group) test and the 
                        
                        
                      

                        
                        
                      

                        
                        
                      Kruskal–Wallis test can easily be obtained from these two regression models by using more than one dummy predictor variable.

 




Even without complexities such as repeated measurements, problems can arise when many hypotheses are to be tested. Testing too many hypotheses is related to fitting too many predictors in a regression model. One commonly hears the statement that “the dataset was too small to allow modeling, so we just did hypothesis tests.” It is unlikely that the resulting inferences would be reliable. If the sample size is insufficient for modeling it is often insufficient for tests or estimation. This is especially true when one desires to publish an estimate of the effect corresponding to the hypothesis yielding the smallest P-value. Ordinary point estimates are known to be badly biased when the quantity to be estimated was determined by “data dredging.” This can be remedied by the same kind of shrinkage used in multivariable modeling (Section 9.​10).
Statistical estimation is usually model-based. For example, one might use a 
                
               survival regression model to estimate the relative effect of increasing cholesterol from 200 to 250 mg/dl on the hazard of death. Variables other than cholesterol may also be in the regression model, to allow estimation of the effect of increasing cholesterol, holding other risk factors constant. But accurate estimation of the cholesterol effect will depend on how cholesterol as well as each of the adjustment variables is assumed to relate to the hazard of death. If linear relationships are incorrectly assumed, estimates will be inaccurate. Accurate estimation also depends on avoiding overfitting the adjustment variables. If the dataset contains 200 subjects, 30 of whom died, and if one adjusted for 15 “confounding” variables, the estimates would be “overadjusted” for the effects of the 15 variables, as some of their apparent effects would actually result from spurious associations with the response variable (time until death). The 
                
              overadjustment would reduce the cholesterol effect. The resulting unreliability of estimates equals the degree to which the overall model fails to validate on an independent sample.
It is often useful to think of effect estimates as differences between two predicted values from a model. This way, one can account for nonlinearities and interactions. For example, if cholesterol is represented nonlinearly in a logistic regression model, predicted values on the “linear combination of X’s scale” are predicted log odds of an event. The increase in log odds from raising cholesterol from 200 to 250 mg/dl is the difference in predicted values, where cholesterol is set to 250 and then to 200, and all other variables are held constant. The point estimate of the 250:200 mg/dl odds ratio is the anti-log of this difference. If cholesterol is represented nonlinearly in the model, it does not matter how many terms in the model involve cholesterol as long as the overall predicted values are obtained.
Thus when one develops a reasonable multivariable predictive model, hypothesis testing and estimation of effects are byproducts of the fitted model. So predictive modeling is often desirable even when prediction is not the main goal.

1.2 Examples of Uses of Predictive Multivariable Modeling
There is an endless variety of uses for multivariable models. Predictive models have long been used in business to forecast 
                
              financial performance and to model consumer purchasing and loan pay-back behavior. In ecology, regression models are used to predict the probability that a fish species will disappear from a lake. Survival models have been used to predict product life (e.g., time to burn-out of an mechanical part, time until saturation of a disposable diaper). Models are commonly used in discrimination litigation in an attempt to determine whether race or sex is used as the basis for hiring or promotion, after taking other personnel characteristics into account.
Multivariable models are used extensively in medicine, epidemiology, biostatistics, health services research, pharmaceutical research, and related fields. The author has worked primarily in these fields, so most of the examples in this text come from those areas. In medicine, two of the major areas of application are diagnosis and prognosis. There models are used to predict the probability that a certain type of patient will be shown to have a specific disease, or to predict the time course of an already diagnosed disease. In 
                
              observational studies in which one desires to compare patient outcomes between two or more treatments, multivariable modeling is very important because of the biases caused by nonrandom treatment assignment. Here the simultaneous effects of several uncontrolled variables must be controlled (held constant mathematically if using a regression model) so that the effect of the factor of interest can be more purely estimated. A newer technique for more aggressively adjusting for nonrandom treatment assignment, the propensity score, 116, 530 provides yet another opportunity for multivariable modeling (see Section 10.​1.​4). The propensity score is merely the 
                
               predicted value from a multivariable model where the response variable is the exposure or the treatment actually used. The estimated propensity score is then used in a second step as an adjustment variable in the model for the response of interest.
It is not widely recognized that multivariable modeling is extremely valuable even in well-designed randomized experiments. Such studies are often designed to make relative comparisons of two or more treatments, using odds ratios, hazard ratios, and other measures of relative effects. But to be able to estimate absolute effects one must develop a multivariable model of the response variable. This model can predict, for example, the probability that a patient on treatment A with characteristics X will survive five years, or it can predict the life 
                
              expectancy for this patient. By making the same prediction for a patient on treatment B with the same characteristics, one can estimate the absolute difference in probabilities or life expectancies. This approach recognizes that low-risk patients must have less absolute benefit of treatment (lower change in outcome probability) than high-risk patients, 351 a fact that has been ignored in many clinical trials. Another reason for multivariable modeling in randomized clinical trials is that when the basic response model is nonlinear (e.g., logistic, Cox, parametric survival models), the unadjusted estimate of the treatment effect is not correct if there is moderate 
                
              heterogeneity of subjects, even with perfect balance of baseline characteristics across the treatment groups.1 9, 24, 198, 588 So even when investigators are interested in simple comparisons of two groups’ responses, multivariable modeling can be advantageous and sometimes mandatory.


                
              Cost-effectiveness analysis is becoming increasingly used in health care research, and the “effectiveness” (denominator of the cost-effectiveness ratio) is always a measure of absolute effectiveness. As absolute effectiveness varies dramatically with the risk profiles of subjects, it must be estimated for individual subjects using a multivariable model 90, 344.

1.3 Prediction vs. Classification

              
                
              
              
                
              
            
For problems ranging from bioinformatics to marketing, many analysts desire to develop “classifiers” instead of developing predictive models. Consider an optimum case for classifier development, in which the response variable is binary, the two levels represent a sharp dichotomy with no gray zone (e.g., complete success vs. total failure with no possibility of a partial success), the user of the classifier is forced to make one of the two choices, the cost of misclassification is the same for every future observation, and the ratio of the cost of a false positive to that of a false negative equals the (often hidden) ratio implied by the analyst’s classification rule. Even if all of those conditions are met, classification is still inferior to probability modeling for driving the development of a predictive instrument or for estimation or hypothesis testing. It is far better to use the full information in the data to develop a probability model, then develop classification rules on the basis of estimated probabilities. At the least, this forces the analyst to use a proper accuracy score 219 in finding or weighting data features.
When the dependent variable is ordinal or continuous, classification through forced up-front dichotomization in an attempt to simplify the problem results in arbitrariness and major information loss even when the optimum cut point (the median) is used. Dichtomizing the outcome at a different point may require a many-fold increase in sample size to make up for the lost information 187. In the area of medical diagnosis, it is often the case that the disease is really on a continuum, and predicting the severity of disease (rather than just its presence or absence) will greatly increase power and precision, not to mention making the result less arbitrary.
It is important to note that two-group classification represents an artificial forced choice. It is not often the case that the user of the classifier needs to be limited to two possible actions. The best option for many subjects may be to refuse to make a decision or to obtain more data (e.g., order another medical diagnostic test). A gray zone can be helpful, and predictions include gray zones automatically.
Unlike prediction (e.g., of absolute risk), classification implicitly uses utility functions (also called loss or cost functions, e.g., cost of a false positive classification). Implicit utility functions are highly problematic. First, it is well known that the utility function depends on variables that are not predictive of outcome and are not collected (e.g., subjects’ preferences) that are available only at the decision point. Second, the approach assumes every subject has the same utility function2. Third, the analyst presumptuously assumes that the subject’s utility coincides with his own.
Formal decision analysis uses subject-specific utilities and optimum predictions based on all available data 62, 74, 183, 210, 219, 642
3. It follows that receiver operating characteristic curve (ROC4) analysis is 
                
              misleading except for the special case of mass one-time group decision making with unknown utilities (e.g., launching a flu vaccination program).[image: A69956_2_En_1_Figd_HTML.gif]
                        
An analyst’s goal should be the development of the most accurate and reliable predictive model or the best model on which to base estimation or hypothesis testing. In the vast majority of cases, classification is the task of the user of the predictive model, at the point in which utilities (costs) and preferences are known.
                
              

                
              


1.4 Planning for Modeling
When undertaking the development of a model to predict a response, one of the first questions the researcher must ask is “will this model actually be used?” Many models are never used, for several reasons 522 including: (1) it was not deemed relevant to make predictions in the setting envisioned by the authors; (2) potential users of the model did not trust the relationships, weights, or variables used to make the predictions; and (3) the variables necessary to make the predictions were not routinely available.
Once the researcher convinces herself that a predictive model is worth developing, there are many study design issues to be addressed. 18, 378 Models are often developed using a “convenience sample,” that is, a dataset that was not collected with such predictions in mind. The resulting models are often fraught with difficulties such as the following.
1.The most important predictor or response variables may not have been collected, tempting the researchers to make do with variables that do not capture the real underlying processes.

 

2.The subjects appearing in the dataset are ill-defined, or they are not representative of the population for which inferences are to be drawn; similarly, the data collection sites may not represent the kind of variation in the population of sites.

 

3.Key variables are missing in large numbers of subjects.

 

4.Data are not missing at random; for example, data may not have been collected on subjects who dropped out of a study early, or on patients who were too sick to be interviewed.

 

5.Operational definitions of some of the key variables were never made.

 

6.Observer variability studies may not have been done, so that the reliability of measurements is unknown, or there are other kinds of important measurement errors.

 




A predictive model will be more accurate, as well as useful, when data collection is planned prospectively. That way one can design data collection instruments containing the necessary variables, and all terms can be given standard definitions (for both descriptive and response variables) for use at all data collection sites. Also, steps can be taken to minimize the amount of missing data.
In the context of describing and modeling health outcomes, Iezzoni 317 has an excellent discussion of the dimensions of risk that should be captured by variables included in the model. She lists these general areas that should be quantified by predictor variables:
1.age,

 

2.sex,

 

3.acute clinical stability,

 

4.principal diagnosis,

 

5.severity of principal diagnosis,

 

6.extent and severity of comorbidities,

 

7.physical functional status,

 

8.psychological, cognitive, and psychosocial functioning,

 

9.cultural, ethnic, and socioeconomic attributes and behaviors,

 

10.health status and quality of life, and

 

11.patient attitudes and preferences for outcomes.

 




Some baseline covariates to be sure to capture in general include
1.a baseline measurement of the response variable,

 

2.the subject’s most recent status,

 

3.the subject’s trajectory as of time zero or past levels of a key variable,

 

4.variables explaining much of the variation in the response, and

 

5.more subtle predictors whose distributions strongly differ between the levels of a key variable of interest in an observational study.

 




Many things can go wrong in statistical modeling, including the following.
1.The process generating the data is not stable.

 

2.The model is misspecified with regard to nonlinearities or interactions, or there are predictors missing.

 

3.The model is misspecified in terms of the transformation of the response variable or the model’s distributional assumptions.

 

4.The model contains discontinuities (e.g., by categorizing continuous predictors or fitting regression shapes with sudden changes) that can be gamed by users.

 

5.Correlations among subjects are not specified, or the correlation structure is misspecified, resulting in inefficient parameter estimates and overconfident inference.

 

6.The model is overfitted, resulting in predictions that are too extreme or positive associations that are false.

 

7.The user of the model relies on predictions obtained by extrapolating to combinations of predictor values well outside the range of the dataset used to develop the model.

 

8.Accurate and discriminating predictions can lead to behavior changes that make future predictions inaccurate.

 




1.4.1 Emphasizing Continuous Variables
When designing the data collection it is important to emphasize the use of continuous variables over categorical ones. Some categorical variables are subjective and hard to standardize, and on the average they do not contain the same amount of statistical information as continuous variables. Above all, it is unwise to categorize naturally continuous variables during data collection,5 as the original values can then not be recovered, and if another researcher feels that the (arbitrary) cutoff values were incorrect, other cutoffs cannot be substituted. Many researchers make the mistake of assuming that categorizing a continuous variable will result in less measurement error. This is a false assumption, for if a subject is placed in the wrong interval this will be as much as a 100% error. Thus the magnitude of the error multiplied by the probability of an error is no better with 
                  
                categorization. [image: A69956_2_En_1_Fige_HTML.gif]
                            


1.5 Choice of the Model
The actual method by which an underlying statistical model should be chosen by the analyst is not well developed. A. P. Dawid is quoted in Lehmann 397 as saying the following.

              Where do probability models come from? To judge by the resounding silence over this question on the part of most statisticians, it seems highly embarrassing. In general, the theoretician is happy to accept that his abstract probability triple (Ω, A, P) was found under a gooseberry bush, while the applied statistician’s model “just growed”. [image: A69956_2_En_1_Figf_HTML.gif]
                                


            
In biostatistics, epidemiology, economics, psychology, sociology, and many other fields it is seldom the case that subject matter knowledge exists that would allow the analyst to pre-specify a model (e.g., Weibull or log-normal survival model), a transformation for the response variable, and a structure for how predictors appear in the model (e.g., transformations, addition of nonlinear terms, interaction terms). Indeed, some authors question whether the notion of a true model even exists in many cases. 100 We are for better or worse forced to develop models empirically in the majority of cases. Fortunately, careful and objective validation of the accuracy of model predictions against observable responses can lend credence to a model, if a good validation is not merely the result of overfitting (see Section 5.​3).
There are a few general guidelines that can help in choosing the basic form of the statistical model.
1.The model must use the data efficiently. If, for example, one were interested in predicting the probability that a patient with a specific set of characteristics would live five years from diagnosis, an inefficient model would be a binary logistic model. A more efficient method, and one that would also allow for losses to follow-up before five years, would be a semi-parametric (rank based) or parametric survival model. Such a model uses individual times of events in estimating coefficients, but it can easily be used to estimate the probability of surviving five years. As another example, if one were interested in predicting patients’ quality of life on a scale of excellent, very good, good, fair, and poor, a polytomous (multinomial) categorical response model would not be efficient as it would not make use of the ordering of responses.

 

2.Choose a model that fits overall structures likely to be present in the data. In modeling survival time in chronic disease one might feel that the importance of most of the risk factors is constant over time. In that case, a proportional hazards model such as the Cox or Weibull model would be a good initial choice. If on the other hand one were studying acutely ill patients whose risk factors wane in importance as the patients survive longer, a model such as the 
                        
                        
                      log-normal or 
                        
                        
                      log-logistic regression model would be more appropriate.

 

3.Choose a model that is 
                        
                        
                      robust to problems in the data that are difficult to check. For example, the Cox proportional hazards model and ordinal logistic models are not affected by monotonic transformations of the response variable.

 

4.Choose a model whose mathematical form is appropriate for the response being modeled. This often has to do with minimizing the need for interaction terms that are included only to address a basic lack of fit. For example, many researchers have used ordinary linear regression models for binary responses, because of their simplicity. But such models allow predicted probabilities to be outside the interval [0, 1], and strange interactions among the predictor variables are needed to make predictions remain in the legal range.

 

5.Choose a model that is readily extendible. The Cox model, by its use of stratification, easily allows a few of the predictors, especially if they are categorical, to violate the assumption of equal regression coefficients over time (proportional hazards assumption). The continuation ratio ordinal logistic model can also be generalized easily to allow for varying coefficients of some of the predictors as one proceeds across categories of the response.

 




R. A. Fisher as quoted in Lehmann 397 had these suggestions about model building: “(a) We must confine ourselves to those forms which we know how to handle,” and (b) “More or less elaborate forms will be suitable according to the volume of the data.” Ameen [100, p. 453] stated that a good model is “(a) satisfactory in performance relative to the stated objective, (b) logically sound, (c) representative, (d) questionable and subject to on-line interrogation, (e) able to accommodate external or expert information and (f) able to convey information.”
It is very typical to use the data to make decisions about the form of the model as well as about how predictors are represented in the model. Then, once a model is developed, the entire modeling process is routinely forgotten, and statistical quantities such as standard errors, confidence limits, P-values, and R
2 are computed as if the resulting model were entirely pre-specified. However, Faraway, 186 Draper, 163 Chatfield, 100 Buckland et al. 80 and others have written about the severe problems that result from treating an empirically derived model as if it were pre-specified and as if it were the correct model. As Chatfield states [100, p. 426]:“It is indeed strange that we often admit model uncertainty by searching for a best model but then ignore this uncertainty by making inferences and predictions as if certain that the best fitting model is actually true.”
Stepwise variable selection is one of the most widely used and abused of all data analysis techniques. Much is said about this technique later (see Section 4.​3), but there are many other elements of model development that will need to be accounted for when making statistical inferences, and unfortunately it is difficult to derive quantities such as 
                
              confidence limits that are properly adjusted for uncertainties such as the data-based choice between a Weibull and a log-normal regression model. [image: A69956_2_En_1_Figg_HTML.gif]
                        
Ye 678 developed a general method for estimating the “generalized degrees of freedom” (GDF) 
                
                
               for any “data mining” or model selection procedure based on least squares. The GDF is an extremely useful index of the amount of “data dredging” or overfitting that has been done in a modeling process. It is also useful for estimating the residual variance with less bias. In one example, Ye developed a regression tree using 
                
              recursive partitioning involving 10 candidate predictor variables on 100 observations. The resulting tree had 19 nodes and GDF of 76. The usual way of estimating the residual variance involves dividing the pooled within-node sum of squares by 100 − 19, but Ye showed that dividing by 100 − 76 instead yielded a much less biased (and much higher) estimate of σ
2. In another example, Ye considered stepwise variable selection using 20 candidate predictors and 22 observations. When there is no true association between any of the predictors and the response, Ye found that GDF = 14.1 for a strategy that selected the best five-variable model. [image: A69956_2_En_1_Figh_HTML.gif]
                        
Given that the choice of the model has been made (e.g., a log-normal model), 
                
                
              penalized maximum likelihood estimation has major advantages in the battle between making the model fit adequately and avoiding overfitting (Sections 9.​10 and 13.​4.​7). Penalization lessens the need for model selection.

1.6 Further Reading

                            [image: A69956_2_En_1_Figd_HTML.gif] Briggs and Zaretzki 74 eloquently state the problem with ROC curves and the areas under them (AUC):
                
              


              Statistics such as the AUC are not especially relevant to someone who must make a decision about a particular x

                    c
                  . …ROC curves lack or obscure several quantities that are necessary for evaluating the operational effectiveness of diagnostic tests. …ROC curves were first used to check how radio receivers (like radar receivers) operated over a range of frequencies. …This is not how must ROC curves are used now, particularly in medicine. The receiver of a diagnostic measurement …wants to make a decision based on some x

                    c
                  , and is not especially interested in how well he would have done had he used some different cutoff.


            
In the discussion to their paper, David Hand states

              When integrating to yield the overall AUC measure, it is necessary to decide what weight to give each value in the integration. The AUC implicitly does this using a weighting derived empirically from the data. This is nonsensical. The relative importance of misclassifying a case as a noncase, compared to the reverse, cannot come from the data itself. It must come externally, from considerations of the severity one attaches to the different kinds of misclassifications.


            
AUC, only because it equals the concordance probability in the binary Y case, is still often useful as a predictive discrimination measure.

                            [image: A69956_2_En_1_Fige_HTML.gif] More severe problems caused by dichotomizing continuous variables are discussed in [13, 17, 45, 82, 185, 294, 379, 521, 597].

                            [image: A69956_2_En_1_Figf_HTML.gif] See the excellent editorial by Mallows 434 for more about model choice. See Breiman and discussants 67 for an interesting debate about the use of data models vs. algorithms. This material also covers interpretability vs. predictive accuracy and several other topics.

                            [image: A69956_2_En_1_Figg_HTML.gif] See [15, 80, 100, 163, 186, 415] for information about accounting for model selection in making final inferences. Faraway 186 demonstrated that the 
                
                
              bootstrap has good potential in related although somewhat simpler settings, and Buckland et al. 80 developed a promising bootstrap weighting method for accounting for model uncertainty.

                            [image: A69956_2_En_1_Figh_HTML.gif] Tibshirani and Knight 611 developed another approach to estimating the generalized degrees of freedom. Luo et al. 430 developed a way to add noise of known variance to the response variable to tune the stopping rule used for variable selection. Zou et al. 689 showed that the lasso, an approach that simultaneously selects variables and shrinks coefficients, has a nice property. Since it uses penalization (shrinkage), an unbiased estimate of its effective number of degrees of freedom is the number of nonzero regression coefficients in the final model.
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Footnotes
1For example, unadjusted odds ratios from 2 × 2 tables are different from adjusted odds ratios when there is variation in subjects’ risk factors within each treatment group, even when the distribution of the risk factors is identical between the two groups.

 

2Simple examples to the contrary are the less weight given to a false negative diagnosis of cancer in the elderly and the aversion of some subjects to surgery or chemotherapy.

 

3To make an optimal decision you need to know all relevant data about an individual (used to estimate the probability of an outcome), and the utility (cost, loss function) of making each decision. Sensitivity and specificity do not provide this information. For example, if one estimated that the probability of a disease given age, sex, and symptoms is 0.1 and the “cost”of a false positive equaled the “cost” of a false negative, one would act as if the person does not have the disease. Given other utilities, one would make different decisions. If the utilities are unknown, one gives the best estimate of the probability of the outcome to the decision maker and let her incorporate her own unspoken utilities in making an optimum decision for her.
Besides the fact that cutoffs that are not individualized do not apply to individuals, only to groups, individual decision making does not utilize sensitivity and specificity. For an individual we can compute [image: 
$$\text{Prob}(Y = 1\vert X = x)$$
]; we don’t care about Prob(Y = 1 | X > c), and an individual having X = x would be quite puzzled if she were given Prob(X > c | future unknown Y) when she already knows X = x so X is no longer a random variable.
Even when group decision making is needed, sensitivity and specificity can be bypassed. For mass marketing, for example, one can rank order individuals by the estimated probability of buying the product, to create a lift curve
                    
                  . This is then used to target the k most likely buyers where k is chosen to meet total program cost constraints.

 

4The ROC curve is a plot of sensitivity vs. one minus specificity as one varies a cutoff on a continuous predictor used to make a decision.

 

5An exception may be sensitive variables such as income level. Subjects may be more willing to check a box corresponding to a wide interval containing their income. It is unlikely that a reduction in the probability that a subject will inflate her income will offset the loss of precision due to 
                      
                    categorization of income, but there will be a decrease in the number of refusals. This reduction in missing data can more than offset the lack of precision.
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2.1 Notation for Multivariable Regression Models
The ordinary multiple linear regression model is frequently used and has parameters that are easily interpreted. In this chapter we study a general class of regression models, those stated in terms of a weighted sum of a set of independent or predictor variables. It is shown that after linearizing the model with respect to the predictor variables, the parameters in such regression models are also readily interpreted. Also, all the designs used in ordinary linear regression can be used in this general setting. These designs include analysis of variance (
                
              ANOVA) setups, interaction effects, and nonlinear effects. Besides describing and interpreting general regression models, this chapter also describes, in general terms, how the three types of assumptions of regression models can be examined.
First we introduce notation for regression models. Let Y denote the response (dependent) variable, and let [image: 
$$X = X_{1},X_{2},\ldots,X_{p}$$
] denote a list or vector of predictor variables (also called covariables or independent, descriptor, or concomitant variables). These predictor variables are assumed to be constants for a given individual or subject from the population of interest. Let [image: 
$$\beta =\beta _{0},\beta _{1},\ldots,\beta _{p}$$
] denote the list of regression coefficients (parameters). β
0 is an optional intercept parameter, and [image: 
$$\beta _{1},\ldots,\beta _{p}$$
] are weights or regression coefficients corresponding to [image: 
$$X_{1},\ldots,X_{p}$$
]. We use matrix or vector notation to describe a weighted sum of the Xs: [image: 
$$\displaystyle{ X\beta =\beta _{0} +\beta _{1}X_{1} +\ldots +\beta _{p}X_{p}, }$$
]

 (2.1)

 where there is an implied X
0 = 1.
A regression model is stated in terms of a connection between the predictors X and the response Y. Let C(Y | X) denote a property of the distribution of Y given X (as a function of X). For example, C(Y | X) could be E(Y | X), the expected value or average of Y given X, or C(Y | X) could be the probability that Y = 1 given X (where Y = 0 or 1).

2.2 Model Formulations
We define a regression function as a function that describes interesting properties of Y that may vary across individuals in the population. X describes the list of factors determining these properties. Stated mathematically, a general regression model is given by [image: 
$$\displaystyle{ C(Y \vert X) = g(X). }$$
]

 (2.2)

 We restrict our attention to models that, after a certain transformation, are linear in the unknown parameters, that is, models that involve X only through a weighted sum of all the Xs. The general linear regression model is given by [image: 
$$\displaystyle{ C(Y \vert X) = g(X\beta ). }$$
]

 (2.3)

 For example, the ordinary linear regression model is [image: 
$$\displaystyle{ C(Y \vert X) = E(Y \vert X) = X\beta, }$$
]

 (2.4)

 and given X, Y has a normal distribution with mean X β and constant variance σ
2. The binary logistic regression model 129, 647 is [image: 
$$\displaystyle{ C(Y \vert X) =\mathop{ \mathrm{Prob}}\nolimits \{Y = 1\vert X\} = (1 +\exp (-X\beta ))^{-1}, }$$
]

 (2.5)

 where Y can take on the values 0 and 1. In general the model, when stated in terms of the property C(Y | X), may not be linear in X β; that is C(Y | X) = g(X β), where g(u) is nonlinear in u. For example, a regression model could be E(Y | X) = (X β). 5. The model may be made linear in the unknown parameters by a transformation in the property C(Y | X): [image: 
$$\displaystyle{ h(C(Y \vert X)) = X\beta, }$$
]

 (2.6)

 where [image: 
$$h(u) = g^{-1}(u)$$
], the inverse function of g. As an example consider the binary logistic regression model given by [image: 
$$\displaystyle{ C(Y \vert X) =\mathop{ \mathrm{Prob}}\nolimits \{Y = 1\vert X\} = (1 +\exp (-X\beta ))^{-1}. }$$
]

 (2.7)

 If [image: 
$$h(u) =\mathop{ \mathrm{logit}}\nolimits (u) =\log (u/(1 - u))$$
], the transformed model becomes [image: 
$$\displaystyle{ h(\mathop{\mathrm{Prob}}\nolimits (Y = 1\vert X)) =\log (\exp (X\beta )) = X\beta. }$$
]

 (2.8)

 The transformation h(C(Y | X)) is sometimes called a link function

                
              . Let h(C(Y | X)) be denoted by C′(Y | X). The general linear regression model then becomes [image: 
$$\displaystyle{ C'(Y \vert X) = X\beta. }$$
]

 (2.9)

 In other words, the model states that some property C′ of Y, given X, is a weighted sum of the Xs (X β). In the ordinary linear regression model, C′(Y | X) = E(Y | X). In the logistic regression case, C′(Y | X) is the logit of the probability that Y = 1, [image: 
$$\log \mathrm{Prob}\{Y = 1\}/[1 -\mathop{\mathrm{Prob}}\nolimits \{Y = 1\}]$$
]. This is the log of the odds that Y = 1 versus Y = 0.
It is important to note that the general linear regression model has two major components: C′(Y | X) and X β. The first part has to do with a property or transformation of Y. The second, X β, is the linear regression or linear predictor part. The method of least squares can sometimes be used to fit the model if C′(Y | X) = E(Y | X). Other cases must be handled using other methods such as maximum likelihood estimation or nonlinear least squares.

2.3 Interpreting Model Parameters
In the original model, C(Y | X) specifies the way in which X affects a property of Y. Except in the ordinary linear regression model, it is difficult to interpret the individual parameters if the model is stated in terms of C(Y | X). In the model [image: 
$$C'(Y \vert X) = X\beta =\beta _{0}\: +\:\beta _{1}X_{1}\: +\:\ldots \: +\:\beta _{p}X_{p}$$
], the regression parameter β

                j
               is interpreted as the change in the property C′ of Y per unit change in the descriptor variable X

                j
              , all other descriptors remaining constant1: [image: 
$$\displaystyle{ \beta _{j} = C'(Y \vert X_{1},X_{2},\ldots,X_{j} + 1,\ldots,X_{p}) - C'(Y \vert X_{1},X_{2},\ldots,X_{j},\ldots,X_{p}). }$$
]

 (2.10)

 In the ordinary linear regression model, for example, β

                j
               is the change in expected value of Y per unit change in X

                j
              . In the logistic regression model β

                j
               is the change in log odds that Y = 1 per unit change in X

                j
              . When a non-interacting X

                j
               is a dichotomous variable or a continuous one that is linearly related to C′, X

                j
               is represented by a single term in the model and its contribution is described fully by β

                j
              .
In all that follows, we drop the ′ from C′ and assume that C(Y | X) is the property of Y that is linearly related to the weighted sum of the Xs.
2.3.1 Nominal Predictors

                
                  
                  
                
              
Suppose that we wish to model the effect of two or more treatments and be able to test for differences between the treatments in some property of Y. A nominal or polytomous factor such as treatment group having k levels, in which there is no definite ordering of categories, is fully described by a series of k − 1 binary 
                  
                

                  
                 indicator variables (sometimes called dummy variables). Suppose that there are four treatments, J, K, L, and M, and the treatment factor is denoted by T. The model can be written as [image: 
$$\displaystyle\begin{array}{rcl} C(Y \vert T = J)& =& \beta _{0} \\ C(Y \vert T = K)& =& \beta _{0} +\beta _{1} \\ C(Y \vert T = L)& =& \beta _{0} +\beta _{2} \\ C(Y \vert T = M)& =& \beta _{0} +\beta _{3}.{}\end{array}$$
]

 (2.11)

 The four treatments are thus completely specified by three regression parameters and one intercept that we are using to denote treatment J, the reference treatment. This model can be written in the previous notation as [image: 
$$\displaystyle{ C(Y \vert T) = X\beta =\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\beta _{3}X_{3}, }$$
]

 (2.12)

 where [image: 
$$\displaystyle\begin{array}{rcl} & & X_{1} = 1\mathrm{if}\ \ T = K,0\ \ \mathrm{otherwise} \\ & & X_{2} = 1\mathrm{if}\ \ T = L,0\ \ \mathrm{otherwise} \\ & & X_{3} = 1\mathrm{if}\ \ T = M,0\ \ \mathrm{otherwise}.{}\end{array}$$
]

 (2.13)

 For treatment J (T = J), all three Xs are zero and [image: 
$$C(Y \vert T = J) =\beta _{0}$$
]. The test for any differences in the property C(Y ) between treatments is [image: 
$$H_{0}:\beta _{1} =\beta _{2} =\beta _{3} = 0$$
].
This model is an analysis of variance or k-sample-type model. If there are other descriptor covariables in the model, it becomes an 

                    
                  analysis of covariance-type model. 
                  
                  
                


2.3.2 Interactions

                
                  
                
              
Suppose that a model has descriptor variables X
1 and X
2 and that the effect of the two Xs cannot be separated; that is the effect of X
1 on Y depends on the level of X
2 and vice versa. One simple way to describe this interaction is to add the constructed variable X
3 = X
1
X
2 to the model: [image: 
$$\displaystyle{ C(Y \vert X) =\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\beta _{3}X_{1}X_{2}. }$$
]

 (2.14)

 It is now difficult to interpret β
1 and β
2 in isolation. However, we may quantify the effect of a one-unit increase in X
1 if X
2 is held constant as [image: 
$$\displaystyle\begin{array}{rcl} C(Y \vert X_{1} + 1,X_{2})& -& C(Y \vert X_{1},X_{2}) \\ & =& \beta _{0} +\beta _{1}(X_{1} + 1) +\beta _{2}X_{2} \\ & +& \beta _{3}(X_{1} + 1)X_{2} \\ & -& [\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\beta _{3}X_{1}X_{2}] \\ & =& \beta _{1} +\beta _{3}X_{2}. {}\end{array}$$
]

 (2.15)

 Likewise, the effect of a one-unit increase in X
2 on C if X
1 is held constant is [image: 
$$\beta _{2} +\beta _{3}X_{1}$$
]. Interactions can be much more complex than can be modeled with a product of two terms. If X
1 is binary, the interaction may take the form of a difference in shape (and/or distribution) of X
2 versus C(Y ) depending on whether X
1 = 0 or X
1 = 1 (e.g., logarithm vs. square root). When both variables are continuous, the possibilities are much greater (this case is discussed later). Interactions among more than two variables can be exceedingly complex.

2.3.3 Example: Inference for a Simple Model
Suppose we postulated the model [image: 
$$\displaystyle{C(Y \vert age,sex) =\beta _{0} +\beta _{1}age +\beta _{2}[sex = f] +\beta _{3}age[sex = f],}$$
]


 where [sex = f] is a 0–1 
                  
                indicator variable for sex = female; the reference cell is sex = male corresponding to a zero value of the indicator variable. This is a model that assumes
1.age is linearly related to C(Y ) for males,

 

2.age is linearly related to C(Y ) for females, and

 

3.whatever distribution, variance, and independence assumptions are appropriate for the model being considered.

 




We are thus assuming that the interaction between age and sex is simple; that is it only alters the slope of the age effect. The parameters in the model have interpretations shown in Table 2.1. β
3 is the difference in slopes (female – male).Table 2.1Parameters in a simple model with interaction


	Parameter
	Meaning

	
                            β
                            0
                          
	
                            [image: 
$$C(Y \vert age = 0,sex = m)$$
]
                          

	
                            β
                            1
                          
	
                            [image: 
$$C(Y \vert age = x + 1,sex = m) - C(Y \vert age = x,sex = m)$$
]
                          

	
                            β
                            2
                          
	
                            [image: 
$$C(Y \vert age = 0,sex = f) - C(Y \vert age = 0,sex = m)$$
]
                          

	
                            β
                            3
                          
	
                            [image: 
$$C(Y \vert age = x + 1,sex = f) - C(Y \vert age = x,sex = f)-$$
]
                          

	 	
                            [image: 
$$[C(Y \vert age = x + 1,sex = m) - C(Y \vert age = x,sex = m)]$$
]
                          





There are many useful hypotheses that can be tested for this model. First let’s consider two hypotheses that are seldom appropriate although they are routinely tested.
1.
H
0: β
1 = 0: This tests whether age is associated with Y for males.

 

2.
H
0: β
2 = 0: This tests whether sex is associated with Y for zero-year olds.

 




Now consider more useful hypotheses. For each hypothesis we should write what is being tested, translate this to tests in terms of parameters, write the alternative hypothesis, and describe what the test has maximum power to detect. The latter component of a hypothesis test needs to be emphasized, as almost every statistical test is focused on one specific pattern to detect. For example, a 
                  
                  
                

                  
                test of association against an alternative hypothesis that a slope is nonzero will have maximum power when the true association is linear. If the true regression model is exponential in X, a linear regression test will have some power to detect “non-flatness” but it will not be as powerful as the test from a well-specified exponential regression effect. If the true effect is U-shaped, a test of association based on a linear model will have almost no power to detect association. If one tests for association against a quadratic (parabolic) alternative, the test will have some power to detect a logarithmic shape but it will have very little power to detect a cyclical trend having multiple “humps.” In a quadratic regression model, a 
                  
                  
                test of linearity against a quadratic alternative hypothesis will have reasonable power to detect a quadratic nonlinear effect but very limited power to detect a multiphase cyclical trend. Therefore in the tests in Table 2.2 keep in mind that power is maximal when linearity of the age relationship holds for both sexes. In fact it may be useful to write alternative hypotheses as, for example, “H

                  a
                : age is associated with C(Y ), powered to detect a linear relationship.”Table 2.2Most Useful Tests for Linear Age × Sex Model


	Null or Alternative Hypothesis
	Mathematical

	 	Statement

	Effect of age is independent of sex or
	
H
0: β
3 = 0

	Effect of sex is independent of age or
	 
	Age and sex are additive
	 
	Age effects are parallel
	 
	Age interacts with sex
	
H

                              a
                            : β
3 ≠ 0

	Age modifies effect of sex
	 
	Sex modifies effect of age
	 
	Sex and age are non-additive (synergistic)
	 
	Age is not associated with Y

	
                            [image: 
$$H_{0}:\beta _{1} =\beta _{3} = 0$$
]
                          

	Age is associated with Y

	
                            [image: 
$$H_{a}:\beta _{1}\neq 0\text{ or }\beta _{3}\neq 0$$
]
                          

	Age is associated with Y for either
	 
	Females or males
	 
	Sex is not associated with Y

	
                            [image: 
$$H_{0}:\beta _{2} =\beta _{3} = 0$$
]
                          

	Sex is associated with Y

	
                            [image: 
$$H_{a}:\beta _{2}\neq 0\text{ or }\beta _{3}\neq 0$$
]
                          

	Sex is associated with Y for some
	 
	Value of age
	 
	Neither age nor sex is associated with Y

	
                            [image: 
$$H_{0}:\beta _{1} =\beta _{2} =\beta _{3} = 0$$
]
                          

	Either age or sex is associated with Y

	
                            [image: 
$$H_{a}:\beta _{1}\neq 0\text{ or }\beta _{2}\neq 0\text{ or }\beta _{3}\neq 0$$
]
                          





Note that if there is an interaction effect, we know that there is both an age and a sex effect. However, there can also be age or sex effects when the lines are parallel. That’s why the tests of total association have 2 d.f.


2.4 Relaxing Linearity Assumption for Continuous Predictors
2.4.1 Avoiding Categorization

                
                  
                
              
Relationships among variables are seldom linear, except in special cases such as when one variable is compared with itself measured at a different time. It is a common belief among practitioners who do not study bias and efficiency in depth that the presence of non-linearity should be dealt with by chopping continuous variables into intervals. Nothing could be more disastrous. 13, 14, 17, 45, 82, 185, 187, 215, 294, 300, 379, 446, 465, 521, 533, 559, 597, 646

Problems caused by dichotomization include the following.
1.Estimated values will have reduced precision, and associated tests will have reduced power.

 

2.Categorization assumes that the relationship between the predictor and the response is flat within intervals; this assumption is far less reasonable than a linearity assumption in most cases.

 

3.To make a continuous predictor be more accurately modeled when categorization is used, multiple intervals are required. The needed indicator variables will spend more degrees of freedom than will fitting a smooth relationship, hence power and precision will suffer. And because of sample size limitations in the very low and very high range of the variable, the outer intervals (e.g., outer quintiles) will be wide, resulting in significant heterogeneity of subjects within those intervals, and residual confounding.

 

4.Categorization assumes that there is a discontinuity in response as interval boundaries are crossed. Other than the effect of time (e.g., an instant stock price drop after bad news), there are very few examples in which such discontinuities have been shown to exist.

 

5.Categorization only seems to yield interpretable estimates such as odds ratios. For example, suppose one computes the odds ratio for stroke for persons with a systolic blood pressure > 160 mmHg compared with persons with a blood pressure ≤ 160 mmHg. The interpretation of the resulting odds ratio will depend on the exact distribution of blood pressures in the sample (the proportion of subjects > 170, > 180, etc.). On the other hand, if blood pressure is modeled as a continuous variable (e.g., using a regression spline, quadratic, or linear effect) one can estimate the ratio of odds for exact settings of the predictor, e.g., the odds ratio for 200 mmHg compared with 120 mmHg.

 

6.Categorization does not condition on full information. When, for example, the risk of stroke is being assessed for a new subject with a known blood pressure (say 162 mmHg), the subject does not report to her physician “my blood pressure exceeds 160” but rather reports 162 mmHg. The risk for this subject will be much lower than that of a subject with a blood pressure of 200 mmHg.

 

7.If cutpoints are determined in a way that is not blinded to the response variable, calculation of P-values and confidence intervals requires special simulation techniques; ordinary inferential methods are completely invalid. For example, if cutpoints are chosen by trial and error in a way that utilizes the response, even informally, ordinary P-values will be too small and confidence intervals will not have the claimed coverage probabilities. The correct Monte-Carlo simulations must take into account both multiplicities and uncertainty in the choice of cutpoints. For example, if a cutpoint is chosen that minimizes the P-value and the resulting P-value is 0.05, the true type I error can easily be above 0.5 300.

 

8.Likewise, categorization that is not blinded to the response variable results in biased effect estimates 17, 559.

 

9.“Optimal” cutpoints do not replicate over studies. Hollander et al. 300 state that “…the optimal cutpoint approach has disadvantages. One of these is that in almost every study where this method is applied, another cutpoint will emerge. This makes comparisons across studies extremely difficult or even impossible. Altman et al. point out this problem for studies of the prognostic relevance of the S-phase fraction in breast cancer published in the literature. They identified 19 different cutpoints used in the literature; some of them were solely used because they emerged as the ‘optimal’ cutpoint in a specific data set. In a meta-analysis on the relationship between cathepsin-D content and disease-free survival in node-negative breast cancer patients, 12 studies were in included with 12 different cutpoints …Interestingly, neither cathepsin-D nor the S-phase fraction are recommended to be used as prognostic markers in breast cancer in the recent update of the American Society of Clinical Oncology.” Giannoni et al. 215 demonstrated that many claimed “optimal cutpoints” are just the observed median values in the sample, which happens to optimize statistical power for detecting a separation in outcomes and have nothing to do with true outcome thresholds. Disagreements in cutpoints (which are bound to happen whenever one searches for things that do not exist) cause severe interpretation problems. One study may provide an odds ratio for comparing body mass index (BMI) > 30 with BMI ≤ 30, another for comparing BMI > 28 with BMI ≤ 28. Neither of these odds ratios has a good definition and the two estimates are not comparable.

 

10.Cutpoints are arbitrary and manipulatable; cutpoints can be found that can result in both positive and negative associations 646.

 

11.If a confounder is adjusted for by categorization, there will be residual confounding that can be explained away by inclusion of the continuous form of the predictor in the model in addition to the categories.

 




When cutpoints are chosen using Y, categorization represents one of those few times in statistics where both type I and type II errors are elevated.
A scientific quantity is a quantity which can be defined outside of
                  
                 the specifics of the current experiment. The kind of high:low estimates that result from categorizing a continuous variable are not scientific quantities; their interpretation depends on the entire sample distribution of continuous measurements within the chosen intervals.
To summarize problems with categorization it is useful to examine its effective assumptions. Suppose one assumes there is a single cutpoint
                  
                
c for predictor X. Assumptions implicit in seeking or using this cutpoint include (1) the relationship between X and the response Y is discontinuous at X = c and only X = c; (2) c is correctly found as the cutpoint; (3) X vs. Y is flat to the left of c; (4) X vs. Y is flat to the right of c; (5) the “optimal” cutpoint does not depend on the values of other predictors. Failure to have these assumptions satisfied will result in great error in estimating c (because it doesn’t exist), low predictive accuracy, serious lack of model fit, residual confounding, and overestimation of effects of remaining variables.
A better approach that maximizes power and that only assumes a smooth relationship is to use regression splines for predictors that are not known to predict linearly. Use of flexible parametric approaches such as this allows standard inference techniques (P-values, confidence limits) to be used, as will be described below. Before introducing splines, we consider the simplest approach to allowing for nonlinearity. 
                  
                


2.4.2 Simple Nonlinear Terms

                
                  
                
                
                  
                  
                
                
                  
                  
                
              
If a continuous predictor is represented, say, as X
1 in the model, the model is assumed to be linear in X
1. Often, however, the property of Y of interest does not behave linearly in all the predictors. The simplest way to describe a nonlinear effect of X
1 is to include a term for [image: 
$$X_{2} = X_{1}^{2}$$
] in the model: [image: 
$$\displaystyle{ C(Y \vert X_{1}) =\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{1}^{2}. }$$
]

 (2.16)

 If the model is truly linear in X
1, β
2 will be zero. This model formulation allows one to test H
0: model is linear in X
1 against H

                  a
                : model is quadratic (parabolic) in X
1 by testing H
0: β
2 = 0.
Nonlinear effects will frequently not be of a parabolic nature. If a transformation of the predictor is known to induce linearity, that transformation (e.g., log(X)) may be substituted for the predictor. However, often the transformation is not known. Higher powers of X
1 may be included in the model to approximate many types of relationships, but polynomials have some undesirable properties (e.g., undesirable peaks and valleys, and the fit in one region of X can be greatly affected by data in other regions 433) and will not adequately fit many functional forms. 156 For example, polynomials do not adequately fit logarithmic functions or “threshold” effects.

2.4.3 Splines for Estimating Shape of Regression Function and Determining Predictor Transformations
A draftsman’s spline is a flexible strip of metal or rubber used to draw curves. 
                  
                Spline functions are piecewise polynomials used in curve fitting. That is, they are polynomials within intervals of X that are connected across different intervals of X. Splines have been used, principally in the physical sciences, to approximate a wide variety of functions. The simplest spline function is a linear 
                  
                  
                spline function, a piecewise linear function. Suppose that the x axis is divided into intervals with endpoints at a, b, and c, called knots. The linear 
                  
                  
                spline 
                  
                function is given by [image: 
$$\displaystyle{ f(X) =\beta _{0} +\beta _{1}X +\beta _{2}(X - a)_{+} +\beta _{3}(X - b)_{+} +\beta _{4}(X - c)_{+}, }$$
]

 (2.17)

 where [image: 
$$\displaystyle\begin{array}{rcl} (u)_{+} = u,u> 0,& & \\ 0,u \leq 0.& &{}\end{array}$$
]

 (2.18)

 The number of knots can vary depending on the amount of available data for fitting the function. The linear 
                  
                  
                spline function can be rewritten as [image: 
$$\displaystyle{ \begin{array}{lcl} f(X)& =\beta _{0} +\beta _{1}X, &X \leq a \\ & =\beta _{0} +\beta _{1}X +\beta _{2}(X - a) &a <X \leq b \\ & =\beta _{0} +\beta _{1}X +\beta _{2}(X - a) +\beta _{3}(X - b)&b <X \leq c \\ & =\beta _{0} +\beta _{1}X +\beta _{2}(X - a) & \\ & +\beta _{3}(X - b) +\beta _{4}(X - c) &c <X.\end{array} }$$
]

 (2.19)

 A linear 
                  
                  
                spline is depicted in Figure 2.1.
[image: A69956_2_En_2_Fig1_HTML.gif]
Fig. 2.1A linear spline function with knots at [image: 
$$a = 1,b = 3,c = 5$$
].





The general linear regression model can be written assuming only piecewise linearity in X by incorporating constructed variables X
2, X
3, and X
4: [image: 
$$\displaystyle{ C(Y \vert X) = f(X) = X\beta, }$$
]

 (2.20)

 where [image: 
$$X\beta =\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\beta _{3}X_{3} +\beta _{4}X_{4}$$
], and [image: 
$$\displaystyle\begin{array}{rcl} X_{1} = XX_{2} = (X - a)_{+}\ & & \\ X_{3} = (X - b)_{+}X_{4} = (X - c)_{+}.& &{}\end{array}$$
]

 (2.21)

 By modeling a slope increment for X in an interval (a, b] in terms of [image: 
$$(X - a)_{+}$$
], the function is constrained to join (“meet”) at the knots. Overall linearity in X can be tested by testing [image: 
$$H_{0}:\beta _{2} =\beta _{3} =\beta _{4} = 0$$
].

2.4.4 Cubic Spline Functions

                
                  
                  
                
              
Although the linear spline is simple and can approximate many common relationships, it is not smooth and will not fit highly curved functions well. These problems can be overcome by using piecewise polynomials of order higher than linear. Cubic polynomials have been found to have nice properties with good ability to fit sharply curving shapes. Cubic splines can be made to be smooth at the join points (knots) by forcing the first and second derivatives of the function to agree at the knots. Such a smooth cubic spline function with three knots (a, b, c) is given by [image: 
$$\displaystyle\begin{array}{rcl} f(X)& =& \beta _{0} +\beta _{1}X +\beta _{2}X^{2} +\beta _{ 3}X^{3} \\ & +& \beta _{4}(X - a)_{+}^{3} +\beta _{ 5}(X - b)_{+}^{3} +\beta _{ 6}(X - c)_{+}^{3} \\ & =& X\beta {}\end{array}$$
]

 (2.22)

 with the following constructed variables: [image: 
$$\displaystyle\begin{array}{rcl} X_{1} = XX_{2}& =& X^{2} \\ X_{3} = X^{3}X_{ 4}& =& (X - a)_{+}^{3} \\ X_{5} = (X - b)_{+}^{3}X_{ 6}& =& (X - c)_{+}^{3}.{}\end{array}$$
]

 (2.23)

 If the cubic spline function has k knots, the function will require estimating k + 3 regression coefficients besides the intercept. See Section 2.4.6 for information on choosing the number and location of knots. [image: A69956_2_En_2_Figd_HTML.gif]
                            
There are more numerically stable ways to form a design matrix for cubic spline functions that are based on B-splines
                  
                  
                 instead of the truncated power basis 152, 575 used here. However, B-splines are more complex and do not allow for extrapolation beyond the outer knots, and the truncated power basis seldom presents estimation problems (see Section 4.​6) when modern methods such as the 
                  
                Q–R decomposition are used for matrix inversion. [image: A69956_2_En_2_Fige_HTML.gif] 
                  
                  
                


2.4.5 Restricted Cubic Splines

                
                  
                  
                
              
Stone and Koo 595 have found that cubic spline functions do have a drawback in that they can be poorly behaved in the tails, that is before the first knot and after the last knot. They cite advantages of constraining the function to be linear in the tails. Their restricted cubic spline function (also called natural splines) has the additional advantage that only k − 1 parameters must be estimated (besides the intercept) as opposed to k + 3 parameters with the unrestricted cubic spline. The restricted spline function with k knots [image: 
$$t_{1},\ldots,t_{k}$$
] is given by 156
[image: 
$$\displaystyle{ f(X) =\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\ldots +\beta _{k-1}X_{k-1}, }$$
]

 (2.24)

 where X
1 = X and for [image: 
$$j = 1,\ldots,k - 2$$
], [image: 
$$\displaystyle\begin{array}{rcl} X_{j+1}& =& (X - t_{j})_{+}^{3} - (X - t_{ k-1})_{+}^{3}(t_{ k} - t_{j})/(t_{k} - t_{k-1}) \\ & +& (X - t_{k})_{+}^{3}(t_{ k-1} - t_{j})/(t_{k} - t_{k-1}). {}\end{array}$$
]

 (2.25)

 It can be shown that X

                  j
                 is linear in X for X ≥ t

                  k
                . For numerical behavior and to put all basis functions for X on the same scale, R Hmisc and rms package functions by default divide the terms in Eq. 2.25 by [image: 
$$\displaystyle{ \tau = (t_{k} - t_{1})^{2}. }$$
]

 (2.26)


[image: A69956_2_En_2_Figf_HTML.gif]

Figure 2.2 displays the τ-scaled spline component variables X

                  j
                 for j = 2, 3, 4 and k = 5 and one set of knots. The left graph magnifies the lower portion of the curves.[image: A69956_2_En_2_Figa_HTML.gif]

[image: A69956_2_En_2_Fig2_HTML.gif]
Fig. 2.2Restricted cubic spline component variables for k = 5 and knots at X = . 05, . 275, . 5, . 725, and. 95. Nonlinear basis functions are scaled by τ. The left panel is a y–magnification of the right panel. Fitted functions such as those in Figure 2.3 will be linear combinations of these basis functions as long as knots are at the same locations used here.





Figure 2.3 displays some typical shapes of restricted cubic spline functions with k = 3, 4, 5, and 6. These functions were generated using random β. [image: A69956_2_En_2_Figb_HTML.gif]

[image: A69956_2_En_2_Fig3_HTML.gif]
Fig. 2.3Some typical restricted cubic spline functions for k = 3, 4, 5, 6. The y–axis is X β. Arrows indicate knots. These curves were derived by randomly choosing values of β subject to standard deviations of fitted functions being normalized.





Once [image: 
$$\beta _{0},\ldots,\beta _{k-1}$$
] are estimated, the restricted cubic spline can be restated in the form [image: 
$$\displaystyle\begin{array}{rcl} f(X)& =& \beta _{0} +\beta _{1}X +\beta _{2}(X - t_{1})_{+}^{3} +\beta _{ 3}(X - t_{2})_{+}^{3} \\ & & +\ldots +\beta _{k+1}(X - t_{k})_{+}^{3} {}\end{array}$$
]

 (2.27)

 by dividing [image: 
$$\beta _{2},\ldots,\beta _{k-1}$$
] by τ (Eq. 2.26) and computing [image: 
$$\displaystyle\begin{array}{rcl} \beta _{k}& =& [\beta _{2}(t_{1} - t_{k})\! +\beta _{3}(t_{2} - t_{k})\! +\ldots +\beta _{k-1}(t_{k-2} - t_{k})]/(t_{k} - t_{k-1}) \\ \beta _{k+1}& =& [\beta _{2}(t_{1} - t_{k-1})\! +\beta _{3}(t_{2} - t_{k-1})\! +\ldots +\beta _{k-1}(t_{k-2} - t_{k-1})]/(t_{k-1} - t_{k}).{}\end{array}$$
]

 (2.28)

 A test of linearity in X can be obtained by testing [image: 
$$\displaystyle{ H_{0}:\beta _{2} =\beta _{3} =\ldots =\beta _{k-1} = 0. }$$
]

 (2.29)


[image: A69956_2_En_2_Figg_HTML.gif]

The truncated power basis for restricted cubic splines does allow for rational (i.e., linear) extrapolation beyond the outer knots. However, when the outer knots are in the tails of the data, extrapolation can still be dangerous.
When nonlinear terms in Equation 2.25 are 
                  
                  
                normalized, for example, by dividing them by the square of the difference in the outer knots to make all terms have units of X, the ordinary truncated power basis has no numerical difficulties when modern matrix algebra software is used. 
                  
                  
                


2.4.6 Choosing Number and Position of Knots
We have assumed that the locations of the knots are specified in advance; that is, the knot locations are not treated as free parameters to be estimated. If knots were free parameters, the fitted function would have more flexibility but at the cost of instability of estimates, statistical inference problems, and inability to use standard regression modeling software for estimating regression parameters.
How then does the analyst pre-assign knot locations? If the regression relationship were described by prior experience, pre-specification of knot locations would be easy. For example, if a function were known to change curvature at X = a, a knot could be placed at a. However, in most situations there is no way to pre-specify knots. Fortunately, Stone 593 has found that the location of knots in a restricted cubic spline model is not very crucial in most situations; the fit depends much more on the choice of k, the number of knots. Placing knots at fixed quantiles (percentiles) of a predictor’s 
                  
                marginal distribution is a good approach in most datasets. This ensures that enough points are available in each interval, and also guards against letting outliers overly influence knot placement. Recommended equally spaced quantiles are shown in Table 2.3.Table 2.3Default quantiles for knots


	k
	Quantiles

	3
	 	 	.10
	.5
	.90
	 	 
	4
	 	 	.05
	.35
	.65
	.95
	 
	5
	 	.05
	.275
	.5
	.725
	.95
	 
	6
	.05
	.23
	.41
	.59
	.77
	.95
	 
	7
	.025
	.1833
	.3417
	.5
	.6583
	.8167
	.975




[image: A69956_2_En_2_Figh_HTML.gif]

The principal reason for using less extreme default quantiles for k = 3 and more extreme ones for k = 7 is that one usually uses k = 3 for small sample sizes and k = 7 for large samples. When the sample size is less than 100, the outer quantiles should be replaced by the fifth smallest and fifth largest data points, respectively. 595 What about the choice of k? The flexibility of possible fits must be tempered by the sample size available to estimate the unknown parameters. Stone 593 has found that more than 5 knots are seldom required in a restricted cubic spline model. The principal decision then is between k = 3, 4, or 5. For many datasets, k = 4 offers an adequate fit of the model and is a good compromise between flexibility and loss of precision caused by overfitting a small sample. When the sample size is large (e.g., n ≥ 100 with a continuous uncensored response variable), k = 5 is a good choice. Small samples ( < 30, say) may require the use of k = 3. Akaike’s information criterion (
                  
                AIC, Section 9.​8.​1) can be used for a data-based choice of k. The value of k maximizing the model likelihood ratio χ
2 − 2k would be the best “for the money” using AIC.
The analyst may wish to devote more knots to variables that are thought to be more important, and risk lack of fit for less important variables. In this way the total number of estimated parameters can be controlled (Section 4.​1). 
                  
                  
                


2.4.7 Nonparametric Regression
One of the most important results of an analysis is the estimation of the tendency (trend) of how X relates to Y. This trend is useful in its own right and it may be sufficient for obtaining predicted values in some situations, but trend estimates can also be used to guide formal regression modeling (by suggesting predictor variable transformations) and to check model assumptions.
Nonparametric smoothers are excellent tools for determining the shape of the relationship between a predictor and the response. The standard nonparametric smoothers work when one is interested in assessing one continuous predictor at a time and when the property of the response that should be linearly related to the predictor is a standard measure of central tendency. For example, when C(Y ) is E(Y ) or Pr[Y = 1], standard smoothers are useful, but when C(Y ) is a measure of variability or a rate (instantaneous risk), or when Y is only incompletely measured for some subjects (e.g., Y is censored for some subjects), simple smoothers will not work.
The oldest and simplest nonparametric smoother is the moving average. Suppose that the data consist of the points X = 1, 2, 3, 5, and 8, with the corresponding Y values 2. 1, 3. 8, 5. 7, 11. 1, and 17. 2. To smooth the relationship we could estimate E(Y | X = 2) by [image: 
$$(2.1 + 3.8 + 5.7)/3$$
] and [image: 
$$E(Y \vert X = (2 + 3 + 5)/3)$$
] by [image: 
$$(3.8 + 5.7 + 11.1)/3$$
]. Note that overlap is fine; that is one point may be contained in two sets that are averaged. You can immediately see that the simple moving average has a problem in estimating E(Y ) at the outer values of X. The estimates are quite sensitive to the choice of the number of points (or interval width) to use in “binning” the data.
A moving least squares linear regression smoother is far superior to a moving flat line smoother (moving average). Cleveland’s 111 moving linear regression smoother loess

                  
                  
                 has become the most popular smoother. To obtain the smoothed value of Y at X = x, we take all the data having X values within a suitable interval about x. Then a linear regression is fitted to all of these points, and the predicted value from this regression at X = x is taken as the estimate of E(Y | X = x). Actually, loess

                  
                 uses weighted least squares estimates, which is why it is called a locally weighted least squares method. The weights are chosen so that points near X = x are given the most weight2 in the calculation of the slope and intercept. Surprisingly, a good default choice for the interval about x is an interval containing 2∕3 of the data points! The weighting function is devised so that points near the extremes of this interval receive almost no weight in the calculation of the slope and intercept.
Because loess

                  
                 uses a moving straight line rather than a moving flat one, it provides much better behavior at the extremes of the Xs. For example, one can fit a straight line to the first three data points and then obtain the predicted value at the lowest X, which takes into account that this X is not the middle of the three Xs.

loess

                  
                 obtains smoothed values for E(Y ) at each observed value of X. Estimates for other Xs are obtained by linear interpolation.
The loess

                  
                 algorithm has another component. After making an initial estimate of the trend line, loess

                  
                 can look for outliers off this trend. It can then delete or down-weight those apparent outliers to obtain a more robust trend estimate. Now, different points will appear to be outliers with respect to this second trend estimate. The new set of outliers is taken into account and another trend line is derived. By default, the process stops after these three iterations. loess

                  
                 works exceptionally well for binary Y as long as the iterations that look for outliers are not done, that is only one iteration is performed.
For a single X, Friedman’s “super smoother” 207 is another efficient and flexible nonparametric trend estimator. For both loess

                  
                 and the 
                  
                

                  
                  
                super smoother the amount of smoothing can be controlled by the analyst. Hastie and Tibshirani 275 provided an excellent description of smoothing methods and developed a generalized 
                  
                additive model for multiple Xs, in which each continuous predictor is fitted with a nonparametric smoother (see Chapter 16). Interactions are not allowed. Cleveland et al. 96 have extended two-dimensional smoothers to multiple dimensions without assuming additivity. Their 

                    
                    
                  local regression model is feasible for up to four or so predictors. Local regression models are extremely flexible, allowing parts of the model to be parametrically specified, and allowing the analyst to choose the amount of smoothing or the effective number of degrees of freedom of the fit.[image: A69956_2_En_2_Figi_HTML.gif]
                            

Smoothing splines are related to nonparametric smoothers. Here a knot is placed at every data point, but a penalized likelihood is maximized to derive the smoothed estimates. Gray 237, 238 developed a general method that is halfway between smoothing splines and regression splines. He pre-specified, say, 10 fixed knots, but uses a penalized likelihood for estimation. This allows the analyst to control the effective number of 
                  
                  
                degrees of freedom used. [image: A69956_2_En_2_Figj_HTML.gif]
                            
Besides using smoothers to estimate regression relationships, smoothers are valuable for examining trends in residual plots. See Sections 14.​6 and 21.​2 for examples.

2.4.8 Advantages of Regression Splines over Other Methods
There are several advantages of regression splines: 271
1.Parametric splines are piecewise polynomials and can be fitted using any existing regression program after the constructed predictors are computed. Spline regression is equally suitable to multiple linear regression, survival models, and logistic models for discrete outcomes.

 

2.Regression coefficients for the spline function are estimated using standard techniques (maximum likelihood or least squares), and statistical inferences can readily be drawn. Formal tests of no overall association, linearity, and additivity can readily be constructed. 
                          
                        Confidence limits for the estimated regression function are derived by standard theory.

 

3.The fitted 
                          
                        spline function directly estimates the transformation that a predictor should receive to yield linearity in C(Y | X). The fitted spline transformation sometimes suggests a simple transformation (e.g., square root) of a predictor that can be used if one is not concerned about the proper number of degrees of freedom for testing association of the predictor with the response.

 

4.The spline function can be used to represent the predictor in the final model. Nonparametric methods do not yield a prediction equation.

 

5.Splines can be extended to non-additive models (see below). Multidimensional nonparametric estimators often require burdensome computations.

 






2.5 Recursive Partitioning: Tree-Based Models
Breiman et al. 69 have developed an essentially model-free approach called classification and regression trees (
                
              CART), a form of recursive partitioning. For some implementations of CART, we say “essentially” model-free since a model-based statistic is sometimes chosen as a splitting criterion. The essence of recursive partitioning is as follows.
1.Find the predictor so that the best possible binary split on that predictor has a larger value of some statistical criterion than any other split on any other predictor. For ordinal and continuous predictors, the split is of the form X < c versus X ≥ c. For polytomous predictors, the split involves finding the best separation of categories, without preserving order.

 

2.Within each previously formed subset, find the best predictor and best split that maximizes the criterion in the subset of observations passing the previous split.

 

3.Proceed in like fashion until fewer than k observations remain to be split, where k is typically 20 to 100.

 

4.Obtain predicted values using a statistic that summarizes each terminal node (e.g., mean or proportion).

 

5.Prune the tree backward so that a tree with the same number of nodes developed on 0.9 of the data validates best on the remaining 0.1 of the data (average over the 10 cross-validations). Alternatively, shrink the node estimates toward the mean, using a progressively stronger shrinkage factor, until the best cross-validation results.

 



[image: A69956_2_En_2_Figk_HTML.gif]

Tree models have the advantage of not requiring any functional form for the predictors and of not assuming additivity of predictors (i.e., 
                
              recursive partitioning can identify complex interactions). Trees can deal with missing data flexibly. They have the disadvantages of not utilizing continuous variables effectively and of overfitting in three directions: searching for best predictors, for best splits, and searching multiple times. The penalty for the extreme amount of data searching required by 
                
              recursive partitioning surfaces when the tree does not cross-validate optimally until it is pruned all the way back to two or three splits. Thus reliable trees are often not very discriminating. [image: A69956_2_En_2_Figl_HTML.gif]
                        
Tree models are especially useful in messy situations or settings in which overfitting is not so problematic, such as 
                
              confounder adjustment using propensity scores 117 or in missing value imputation. A major advantage of tree modeling is savings of analyst time, but this is offset by the underfitting needed to make trees validate.

2.6 Multiple Degree of Freedom Tests of Association
When a factor is a linear or binary term in the regression model, the test of association for that factor with the response involves testing only a single regression parameter. Nominal factors and predictors that are represented as a quadratic or spline function require multiple regression parameters to be tested simultaneously in order to assess association with the response. For a nominal factor having k levels, the overall 
                
              ANOVA-type test with k − 1 d.f. tests whether there are any differences in responses between the k categories. It is recommended that this test be done before attempting to interpret individual parameter estimates. If the overall test is not significant, it can be dangerous to rely on individual pairwise comparisons because the type I error will be increased. Likewise, for a continuous predictor for which linearity is not assumed, all terms involving the predictor should be tested simultaneously to check whether the factor is associated with the outcome. This test should precede the test for linearity and should usually precede the attempt to eliminate nonlinear terms. For example, in the model [image: 
$$\displaystyle{ C(Y \vert X) =\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\beta _{3}X_{2}^{2}, }$$
]

 (2.30)

 one should test [image: 
$$H_{0}:\beta _{2} =\beta _{3} = 0$$
] with 2 d.f. to assess association between X
2 and outcome. In the five-knot restricted cubic spline model [image: 
$$\displaystyle{ C(Y \vert X) =\beta _{0} +\beta _{1}X +\beta _{2}X' +\beta _{3}X'' +\beta _{4}X''', }$$
]

 (2.31)

 the hypothesis [image: 
$$H_{0}:\beta _{1} =\ldots =\beta _{4} = 0$$
] should be tested with 4 d.f. to assess whether there is any association between X and Y. If this 4 d.f. test is insignificant, it is dangerous to interpret the shape of the fitted spline function because the hypothesis that the overall function is flat has not been rejected.
A dilemma arises when an overall 
                
                
              

                
              test of association, say one having 4 d.f., is insignificant, the 3 d.f. test for linearity is insignificant, but the 1 d.f. test for linear association, after deleting nonlinear terms, becomes significant. Had the test for linearity been borderline significant, it would not have been warranted to drop these terms in order to test for a linear association. But with the evidence for nonlinearity not very great, one could attempt to test for association with 1 d.f. This however is not fully justified, because the 1 d.f. test statistic does not have a χ
2 distribution with 1 d.f. since pretesting was done. The original 4 d.f. test statistic does have a χ
2 distribution with 4 d.f. because it was for a pre-specified test.
For quadratic regression, Grambsch and O’Brien 234 showed that the 2 d.f. 
                
                
              test of association is nearly optimal when pretesting is done, even when the true relationship is linear. They considered an ordinary regression model [image: 
$$E(Y \vert X) =\beta _{0} +\beta _{1}X +\beta _{2}X^{2}$$
] and studied tests of association between X and Y. The strategy they studied was as follows. First, fit the quadratic model and obtain the partial test of H
0: β
2 = 0, that is the 
                
                
              test of linearity. If this partial F-test is significant at the α = 0. 05 level, report as the final test of association between X and Y the 2 d.f. F-test of [image: 
$$H_{0}:\beta _{1} =\beta _{2} = 0$$
]. If the test of linearity is insignificant, the model is refitted without the quadratic term and the test of association is then a 1 d.f. test, [image: 
$$H_{0}:\beta _{1} = 0\vert \beta _{2} = 0$$
]. Grambsch and O’Brien demonstrated that the type I error from this two-stage test is greater than the stated α, and in fact a fairly accurate P-value can be obtained if it is computed from an F distribution with 2 numerator d.f. even when testing at the second stage. This is because in the original 2 d.f. test of association, the 1 d.f. corresponding to the nonlinear effect is deleted if the nonlinear effect is very small; that is one is retaining the most significant part of the 2 d.f. F statistic.
If we use a 2 d.f. F critical value to assess the X effect even when X
2 is not in the model, it is clear that the two-stage approach can only lose power and hence it has no advantage whatsoever. That is because the sum of squares due to regression from the quadratic model is greater than the sum of squares computed from the linear model.

2.7 Assessment of Model Fit
2.7.1 Regression Assumptions
In this section, the regression part of the model is isolated, and methods are described for validating the regression assumptions or modifying the model to meet the assumptions. The general linear regression model is [image: 
$$\displaystyle{ C(Y \vert X) = X\beta =\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\ldots +\beta _{k}X_{k}. }$$
]

 (2.32)

 The assumptions of linearity and additivity need to be verified. We begin with a special case of the general model, [image: 
$$\displaystyle{ C(Y \vert X) =\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2}, }$$
]

 (2.33)

 where X
1 is binary and X
2 is continuous. One needs to verify that the property of the response C(Y ) is related to X
1 and X
2 according to Figure 2.4.
[image: A69956_2_En_2_Fig4_HTML.gif]
Fig. 2.4Regression assumptions for one binary and one continuous predictor





There are several methods for checking the fit of this model. The first method below is based on critiquing the simple model, and the other methods directly “estimate” the model.
1.Fit the simple linear additive model and critically examine residual plots for evidence of systematic patterns. For least squares fits one can compute estimated residuals [image: 
$$e = Y - X\hat{\beta }$$
] and box plots of e stratified by X
1 and scatterplots of e versus X
1 and [image: 
$$\hat{Y }$$
] with trend curves. If one is assuming constant conditional variance of Y, the spread of the residual distribution against each of the variables can be checked at the same time. If the normality assumption is needed (i.e., if significance tests or confidence limits are used), the distribution of e can be compared with a normal distribution with mean zero. Advantage: Simplicity. Disadvantages: Standard residuals can only be computed for continuous uncensored response variables. The judgment of non-randomness is largely subjective, it is difficult to detect interaction, and if interaction is present it is difficult to check any of the other assumptions. Unless trend lines are added to plots, patterns may be difficult to discern if the sample size is very large. Detecting patterns in residuals does not always inform the analyst of what corrective action to take, although 
                          
                          
                        partial residual plots can be used to estimate the needed transformations if interaction is absent.

 

2.Make a scatterplot of Y versus X
2 using different symbols according to values of X
1. Advantages: Simplicity, and one can sometimes see all regression patterns including interaction. Disadvantages: Scatterplots cannot be drawn for binary, categorical, or censored Y. Patterns are difficult to see if relationships are weak or if the sample size is very large.

 

3.Stratify the sample by X
1 and quantile groups (e.g., deciles) of X
2. Within each X
1 × X
2 stratum an estimate of C(Y | X
1, X
2) is computed. If X
1 is continuous, the same method can be used after grouping X
1 into quantile groups. Advantages: Simplicity, ability to see interaction patterns, can handle censored Y if care is taken. Disadvantages: Subgrouping requires relatively large sample sizes and does not use continuous factors effectively as it does not attempt any interpolation. The ordering of quantile groups is not utilized by the procedure. 
                          
                        Subgroup estimates have low precision (see p. 488 for an example). Each stratum must contain enough information to allow trends to be apparent above 
                          
                        noise in the data. The method of grouping chosen (e.g., deciles vs. quintiles vs. rounding) can alter the shape of the plot.

 

4.Fit a nonparametric smoother separately for levels of X
1 (Section 2.4.7) relating X
2 to Y. Advantages: All regression aspects of the model can be summarized efficiently with minimal assumptions. Disadvantages: Does not easily apply to censored Y, and does not easily handle multiple predictors.

 

5.Fit a flexible parametric model that allows for most of the departures from the linear additive model that you wish to entertain. Advantages: One framework is used for examining the model assumptions, fitting the model, and drawing formal inference. Degrees of freedom are well defined and all aspects of statistical inference “work as advertised.” Disadvantages: Complexity, and it is generally difficult to allow for interactions when assessing patterns of effects.

 




The first four methods each have the disadvantage that if 
                  
                confidence limits or formal inferences are desired it is difficult to know how many 
                  
                  
                degrees of freedom were effectively used so that, for example, confidence limits will have the stated 
                  
                  
                coverage probability. For method five, the restricted cubic spline function is an excellent tool for estimating the true relationship between X
2 and C(Y ) for continuous variables without assuming linearity. By fitting a model containing X
2 expanded into k − 1 terms, where k is the number of knots, one can obtain an estimate of the function of X
2 that could be used linearly in the model: [image: 
$$\displaystyle\begin{array}{rcl} \hat{C}(Y \vert X)& =& \hat{\beta }_{0} +\hat{\beta } _{1}X_{1} +\hat{\beta } _{2}X_{2} +\hat{\beta } _{3}X_{2}' +\hat{\beta } _{4}X_{2}'' \\ & =& \hat{\beta }_{0} +\hat{\beta } _{1}X_{1} +\hat{ f}(X_{2}), {}\end{array}$$
]

 (2.34)

 where [image: 
$$\displaystyle{ \hat{f}(X_{2}) =\hat{\beta } _{2}X_{2} +\hat{\beta } _{3}X_{2}' +\hat{\beta } _{4}X_{2}'', }$$
]

 (2.35)

 and X
2′ and X
2″ are constructed spline variables (when k = 4) as described previously. We call [image: 
$$\hat{f}(X_{2})$$
] the spline-estimated transformation of X
2. Plotting the estimated spline function [image: 
$$\hat{f}(X_{2})$$
] versus X
2 will generally shed light on how the effect of X
2 should be modeled. If the sample is sufficiently large, the spline function can be fitted separately for X
1 = 0 and X
1 = 1, allowing detection of even unusual interaction patterns. A formal 
                  
                  
                test of linearity in X
2 is obtained by testing [image: 
$$H_{0}:\beta _{3} =\beta _{4} = 0$$
], using a computationally efficient score test, for example (Section 9.​2.​3).
If the model is nonlinear in X
2, either a transformation suggested by the spline function plot (e.g., log(X
2)) or the spline function itself (by placing X
2, X
2′, and X
2″ simultaneously in any model fitted) may be used to describe X
2 in the model. If a tentative transformation of X
2 is specified, say g(X
2), the adequacy of this transformation can be tested by expanding g(X
2) in a spline function and testing for linearity. If one is concerned only with prediction and not with statistical inference, one can attempt to find a simplifying transformation for a predictor by plotting g(X
2) against [image: 
$$\hat{f}(X_{2})$$
] (the estimated spline transformation) for a variety of g, seeking a linearizing transformation of X
2. When there are nominal or binary predictors in the model in addition to the continuous predictors, it should be noted that there are no shape assumptions to verify for the binary/nominal predictors. One need only test for interactions between these predictors and the others.
If the model contains more than one continuous predictor, all may be expanded with spline functions in order to test linearity or to describe nonlinear relationships. If one did desire to assess simultaneously, for example, the linearity of predictors X
2 and X
3 in the presence of a linear or binary predictor X
1, the model could be specified as

[image: 
$$\displaystyle\begin{array}{rcl} C(Y \vert X)& =& \beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\beta _{3}X_{2}' +\beta _{4}X_{2}'' \\ & +& \beta _{5}X_{3} +\beta _{6}X_{3}' +\beta _{7}X_{3}'', {}\end{array}$$
]

 (2.36)

 where [image: 
$$X_{2}',X_{2}'',X_{3}'$$
], and X
3″ represent components of four knot restricted cubic spline functions.
The 
                  
                  
                test of linearity for X
2 (with 2 d.f.) is [image: 
$$H_{0}:\beta _{3} =\beta _{4} = 0$$
]. The overall test of linearity for X
2 and X
3 is [image: 
$$H_{0}:\beta _{3} =\beta _{4} =\beta _{6} =\beta _{7} = 0$$
], with 4 d.f. But as described further in Section 4.​1, even though there are many reasons for allowing relationships to be nonlinear, there are reasons for not testing the nonlinear components for significance, as this might tempt the analyst to simplify the model thus distorting inference. 234 Testing for linearity is usually best done to justify to non-statisticians the need for complexity to explain or predict outcomes.

2.7.2 Modeling and Testing Complex Interactions

                
                  
                
              
For testing interaction between X
1 and X
2 (after a needed transformation may have been applied), often a product term (e.g., X
1
X
2) can be added to the model and its coefficient tested. A more general simultaneous 
                  
                  
                test of linearity and lack of interaction for a two-variable model in which one variable is binary (or is assumed linear) is obtained by fitting the model [image: 
$$\displaystyle\begin{array}{rcl} C(Y \vert X)& =& \beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\beta _{3}X_{2}' +\beta _{4}X_{2}'' \\ & +& \beta _{5}X_{1}X_{2} +\beta _{6}X_{1}X_{2}' +\beta _{7}X_{1}X_{2}''{}\end{array}$$
]

 (2.37)

 and testing [image: 
$$H_{0}:\beta _{3} =\ldots =\beta _{7} = 0$$
]. This formulation allows the shape of the X
2 effect to be completely different for each level of X
1. There is virtually no departure from linearity and additivity that cannot be detected from this expanded model formulation if the number of knots is adequate and X
1 is binary. For binary logistic models, this method is equivalent to fitting two separate spline regressions in X
2.[image: A69956_2_En_2_Figm_HTML.gif]
                            
Interactions can be complex when all variables are continuous. An approximate approach is to reduce the variables to two transformed variables, in which case interaction may sometimes be approximated by a single product of the two new variables. A disadvantage of this approach is that the estimates of the transformations for the two variables will be different depending on whether interaction terms are adjusted for when estimating “main effects.” A good compromise method involves fitting interactions of the form X
1
f(X
2) and X
2
g(X
1):

[image: 
$$\displaystyle\begin{array}{rcl} C(Y \vert X)& =& \beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{1}' +\beta _{3}X_{1}'' \\ & +& \beta _{4}X_{2} +\beta _{5}X_{2}' +\beta _{6}X_{2}'' \\ & +& \beta _{7}X_{1}X_{2} +\beta _{8}X_{1}X_{2}' +\beta _{9}X_{1}X_{2}'' \\ & +& \beta _{10}X_{2}X_{1}' +\beta _{11}X_{2}X_{1}'' {}\end{array}$$
]

 (2.38)

 (for k = 4 knots for both variables). The test of 
                  
                  
                

                  
                  
                additivity is [image: 
$$H_{0}:\beta _{7} =\beta _{8} =\ldots =\beta _{11} = 0$$
] with 5 d.f. A test of lack of fit for the simple product interaction with X
2 is [image: 
$$H_{0}:\beta _{8} =\beta _{9} = 0,$$
] and a test of lack of fit for the simple product interaction with X
1 is [image: 
$$H_{0}:\beta _{10} =\beta _{11} = 0$$
].
A general way to model and test interactions, although one requiring a larger number of parameters to be estimated, is based on modeling the [image: 
$$X_{1} \times X_{2} \times Y$$
] relationship with a smooth three-dimensional surface. A cubic spline surface can be constructed by covering the X
1 − X
2 plane with a grid and fitting a patch-wise cubic polynomial in two variables. The grid is [image: 
$$(u_{i},v_{j}),i = 1,\ldots,k,j = 1,\ldots,k$$
], where knots for X
1 are [image: 
$$(u_{1},\ldots,u_{k})$$
] and knots for X
2 are [image: 
$$(v_{1},\ldots,v_{k})$$
]. The number of parameters can be reduced by constraining the surface to be of the form [image: 
$$aX_{1} + bX_{2} + cX_{1}X_{2}$$
] in the lower left and upper right corners of the plane. The resulting restricted cubic spline surface is described by a multiple regression model containing spline expansions in X
1 and X
2 and all cross-products of the restricted cubic spline components (e.g., X
1
X
2′). If the same number of knots k is used for both predictors, the number of interaction terms is (k − 1)2. Examples of various ways of modeling interaction are given in Chapter 10 Spline functions made up of cross-products of all terms of individual spline functions are called 
                  
                  
                
tensor splines. 50, 274 [image: A69956_2_En_2_Fign_HTML.gif]
                            
The presence of more than two predictors increases the complexity of tests for interactions because of the number of two-way interactions and because of the possibility of interaction effects of order higher than two. For example, in a model containing age, sex, and diabetes, the important interaction could be that older male diabetics have an exaggerated risk. However, higher-order interactions are often ignored unless specified a priori based on knowledge of the subject matter. Indeed, the number of two-way interactions alone is often too large to allow testing them all with reasonable power while controlling multiple comparison problems. Often, the only two-way interactions we can afford to test are those that were thought to be important before examining the data. A good approach is to test for all such pre-specified interaction effects with a single global (pooled) test. Then, unless interactions involving only one of the predictors are of special interest, one can either drop all interactions or retain all of them.
For some problems a reasonable approach is, for each predictor separately, to test simultaneously the joint importance of all interactions involving that predictor. For p predictors this results in p tests each with p − 1 degrees of freedom. The multiple comparison problem would then be reduced from [image: 
$$p(p - 1)/2$$
] tests (if all two-way interactions were tested individually) to p tests.
In the fields of biostatistics and 
                  
                epidemiology, some types of interactions that have consistently been found to be important in predicting outcomes and thus may be pre-specified are the following.
1.Interactions between treatment and the severity of disease being treated. Patients with little disease can receive little benefit.

 

2.Interactions involving age and risk factors. Older subjects are generally less affected by risk factors. They had to have been robust to survive to their current age with risk factors present.

 

3.Interactions involving age and type of disease. Some diseases are incurable and have the same prognosis regardless of age. Others are treatable or have less effect on younger patients.

 

4.Interactions between a measurement and the state of a subject during a measurement. Respiration rate measured during sleep may have greater predictive value and thus have a steeper slope versus outcome than respiration rate measured during activity.

 

5.Interaction between menopausal status and treatment or risk factors.

 

6.Interactions between race and disease.

 

7.Interactions between calendar time and treatment. Some treatments have learning curves causing secular trends in the associations.

 

8.Interactions between month of the year and other predictors, due to seasonal effects.

 

9.Interaction between the quality and quantity of a symptom, for example, daily frequency of chest pain × severity of a typical pain episode.

 

10.Interactions between study center and treatment. [image: A69956_2_En_2_Figo_HTML.gif]
                                            

 





2.7.3 Fitting Ordinal Predictors

                
                  
                  
                
              
For the case of an ordinal predictor, spline functions are not useful unless there are so many categories that in essence the variable is continuous. When the number of categories k is small (three to five, say), the variable is usually modeled as a polytomous factor using 
                  
                indicator variables or equivalently as one linear term and k − 2 indicators. The latter coding facilitates testing for linearity. For more categories, it may be reasonable to stratify the data by levels of the variable and to compute summary statistics (e.g., logit proportions for a logistic model) or to examine regression coefficients associated with indicator variables over categories. Then one can attempt to summarize the pattern with a linear or some other simple trend. Later hypothesis tests must take into account this data-driven scoring (by using > 1 d.f., for example), but the scoring can save degrees of freedom when testing for interaction with other factors. In one dataset, the number of comorbid diseases was used to summarize the risk of a set of diseases that was too large to model. By plotting the logit of the proportion of deaths versus the number of diseases, it was clear that the square of the number of diseases would properly score the variables.
Sometimes it is useful to code an ordinal predictor with k − 1 
                  
                indicator variables of the form [X ≥ v

                  j
                ], where j = 2, …, k and [h] is 1 if h is true, 0 otherwise. 648 Although a 
                  
                  
                test of linearity does not arise immediately from this coding, the regression coefficients are interpreted as amounts of change from the previous category. A test of whether the last m categories can be combined with the category k − m does follow easily from this coding.

2.7.4 Distributional Assumptions

                
                  
                  
                
              
The general linear regression model is stated as C(Y | X) = X β to highlight its regression assumptions. For logistic regression models for binary or nominal responses, there is no distributional assumption if simple random sampling is used and subjects’ responses are independent. That is, the binary logistic model and all of its assumptions are contained in the expression logit[image: 
$$\{Y = 1\vert X\} = X\beta$$
]. For ordinary multiple regression with constant variance σ
2, we usually assume that Y − X β is normally distributed with mean 0 and variance σ
2. This assumption can be checked by estimating β with [image: 
$$\hat{\beta }$$
] and plotting the overall distribution of the residuals [image: 
$$Y - X\hat{\beta }$$
], the residuals against [image: 
$$\hat{Y }$$
], and the residuals against each X. For the latter two, the residuals should be normally distributed within each neighborhood of [image: 
$$\hat{Y }$$
] or X. A weaker requirement is that the overall distribution of residuals is normal; this will be satisfied if all of the stratified residual distributions are normal. Note a hidden assumption in both models, namely, that there are no omitted predictors. Other models, such as the Weibull
                  
                  
                 survival model or the Cox 132 proportional hazards model, also have 
                  
                  
                distributional assumptions that are not fully specified by C(Y | X) = X β. However, regression and distributional assumptions of some of these models are encapsulated by [image: 
$$\displaystyle{ C(Y \vert X) = C(Y = y\vert X) = d(y) + X\beta }$$
]

 (2.39)

 for some choice of C. Here C(Y = y | X) is a property of the response Y evaluated at Y = y, given the predictor values X, and d(y) is a component of the distribution of Y. For the Cox proportional hazards model, C(Y = y | X) can be written as the log of the hazard of the event at time y, or equivalently as the log of the − log of the survival probability at time y, and d(y) can be thought of as a log hazard function for a “standard” subject.
If we evaluated the property C(Y = y | X) at predictor values X
1 and X
2, the difference in properties is [image: 
$$\displaystyle\begin{array}{rcl} C(Y = y\vert X^{1}) - C(Y = y\vert X^{2})& =& d(y) + X^{1}\beta \\ & -& [d(y) + X^{2}\beta ] \\ & =& (X^{1} - X^{2})\beta,{}\end{array}$$
]

 (2.40)

 which is independent of y. One way to verify part of the distributional assumption is to estimate C(Y = y | X
1) and C(Y = y | X
2) for set values of X
1 and X
2 using a method that does not make the assumption, and to plot [image: 
$$C(Y = y\vert X^{1}) - C(Y = y\vert X^{2})$$
] versus y. This function should be flat if the distributional assumption holds. The assumption can be tested formally if d(y) can be generalized to be a function of X as well as y. A test of whether d(y | X) depends on X is a test of one part of the distributional assumption. For example, writing [image: 
$$d(y\vert X) = d(y) + X\varGamma \log (y)$$
] where [image: 
$$\displaystyle{ X\varGamma =\varGamma _{1}X_{1} +\varGamma _{2}X_{2} +\ldots +\varGamma _{k}X_{k} }$$
]

 (2.41)

 and testing [image: 
$$H_{0}:\varGamma _{1} =\ldots =\varGamma _{k} = 0$$
] is one way to test whether d(y | X) depends on X. For semiparametric models such as the Cox proportional hazards model, the only distributional assumption is the one stated above, namely, that the difference in properties between two subjects depends only on the difference in the predictors between the two subjects. Other, parametric, models assume in addition that the property C(Y = y | X) has a specific shape as a function of y, that is that d(y) has a specific functional form. For example, the Weibull survival model has a specific assumption regarding the shape of the hazard or survival distribution as a function of y.
Assessments of distributional assumptions are best understood by applying these methods to individual models as is demonstrated in later chapters.


2.8 Further Reading

                            [image: A69956_2_En_2_Figd_HTML.gif] References [152, 575, 578] have more information about cubic splines.

                            [image: A69956_2_En_2_Fige_HTML.gif] See Smith 578 for a good overview of spline functions.

                            [image: A69956_2_En_2_Figf_HTML.gif] More material about natural splines may be found in de Boor 152. McNeil et al. 451 discuss the overall smoothness of natural splines in terms of the integral of the square of the second derivative of the regression function, over the range of the data. Govindarajulu et al. 230 compared restricted cubic splines, penalized splines, and fractional polynomial 532

                
                
              

                
              fits and found that the first two methods agreed with each other more than with estimated fractional polynomials.

                            [image: A69956_2_En_2_Figg_HTML.gif] A tutorial on restricted cubic splines is in [271].

                            [image: A69956_2_En_2_Figh_HTML.gif] Durrleman and Simon 168 provide examples in which knots are allowed to be estimated as free parameters, jointly with the regression coefficients. They found that even though the “optimal” knots were often far from a priori knot locations, the model fits were virtually identical.

                            [image: A69956_2_En_2_Figi_HTML.gif] Contrast Hastie and Tibshirani’s generalized nonparametric additive models 275 with Stone and Koo’s 595

                
               additive model in which each continuous predictor is represented with a restricted cubic spline function.

                            [image: A69956_2_En_2_Figj_HTML.gif] Gray 237, 238 provided some comparisons with ordinary regression splines, but he compared penalized regression splines with non-restricted splines with only two knots. Two knots were chosen so as to limit the degrees of freedom needed by the regression spline method to a reasonable number. Gray argued that regression splines are sensitive to knot locations, and he is correct when only two knots are allowed and no linear tail restrictions are imposed. Two knots also prevent the (ordinary maximum likelihood) fit from utilizing some local behavior of the regression relationship. For penalized likelihood estimation using B-splines
                
                
              , Gray 238 provided extensive simulation studies of type I and II error for testing association in which the true regression function, number of knots, and amount of likelihood penalization were varied. He studied both normal regression and Cox regression.

                            [image: A69956_2_En_2_Figk_HTML.gif] Breiman et al.’s original CART method 69 used the Gini criterion for splitting. Later work has used log-likelihoods. 109 Segal, 562 LeBlanc and Crowley, 389 and Ciampi et al. 107, 108 and Keleş and Segal 342 have extended 
                
              recursive partitioning to censored survival data using the 
                
                
               log-rank statistic as the criterion. Zhang 682 extended tree models to handle multivariate binary responses. Schmoor et al. 556 used a more general splitting criterion that is useful in therapeutic trials, namely, a Cox test for main and interacting effects. Davis and Anderson 149 used an exponential survival model as the basis for tree construction. Ahn and Loh 7 developed a Cox proportional hazards model adaptation of 
                
              recursive partitioning along with bootstrap and cross-validation-based methods to protect against “over-splitting.” The Cox-based regression tree methods of Ciampi et al. 107 have a unique feature that allows for construction of “treatment interaction trees” with hierarchical adjustment for baseline variables. Zhang et al. 683 provided a new method for handling missing predictor values that is simpler than using surrogate splits. See [34, 140, 270, 629] for examples using recursive partitioning for binary responses in which the prediction trees did not validate well.

                            [image: A69956_2_En_2_Figl_HTML.gif] 443, 629 discuss other problems with tree models.

                            [image: A69956_2_En_2_Figm_HTML.gif] For ordinary linear models, the regression estimates are the same as obtained with separate fits, but standard errors are different (since a pooled standard error is used for the combined fit). For Cox 132 regression, separate fits can be slightly different since each subset would use a separate ranking of Y.

                            [image: A69956_2_En_2_Fign_HTML.gif] Gray’s penalized fixed-knot regression splines can be useful for estimating joint effects of two continuous variables while allowing the analyst to control the effective number of 
                
                
              degrees of freedom in the fit [237, 238, Section 3.​2] When Y is a non-censored variable, the 
                
                
              local regression model of Cleveland et al., 96 a multidimensional scatterplot smoother mentioned in Section 2.4.7, provides a good graphical assessment of the joint effects of several predictors so that the forms of interactions can be chosen. See Wang et al. 653 and Gustafson 248 for several other flexible approaches to analyzing interactions among continuous variables.

                            [image: A69956_2_En_2_Figo_HTML.gif] Study site by treatment interaction is often the interaction that is worried about the most in multi-center randomized clinical trials, because regulatory agencies are concerned with consistency of treatment effects over study centers. However, this type of interaction is usually the weakest and is difficult to assess when there are many centers due to the number of interaction parameters to estimate. Schemper 545 discusses various types of interactions and a general nonparametric test for interaction.

2.9 Problems
For problems 1 to 3, state each model statistically, identifying each predictor with one or more component variables. Identify and interpret each regression parameter except for coefficients of nonlinear terms in spline functions. State each hypothesis below as a formal statistical hypothesis involving the proper parameters, and give the (numerator) degrees of freedom of the test. State alternative hypotheses carefully with respect to unions or intersections of conditions and list the type of alternatives to the null hypothesis that the test is designed to detect.3
1.A property of Y such as the mean is linear in age and blood pressure and there may be an interaction between the two predictors. Test H
0: there is no interaction between age and blood pressure. Also test H
0: blood pressure is not associated with Y (in any fashion). State the effect of blood pressure as a function of age, and the effect of age as a function of blood pressure.

 

2.Consider a linear additive model involving three treatments (control, drug Z, and drug Q) and one continuous adjustment variable, age. Test H
0: treatment group is not associated with response, adjusted for age. Also test H
0: response for drug Z has the same property as the response for drug Q, adjusted for age.

 

3.Consider models each with two predictors, temperature and white blood count (WBC), for which temperature is always assumed to be linearly related to the appropriate property of the response, and WBC may or may not be linear (depending on the particular model you formulate for each question). Test:
a.
H
0: WBC is not associated with the response versus H

                                a
                              : WBC is linearly associated with the property of the response.

 

b.
H
0: WBC is not associated with Y versus H

                                a
                              : WBC is quadratically associated with Y. Also write down the formal 
                                
                                
                              test of linearity against this quadratic alternative.

 

c.
H
0: WBC is not associated with Y versus H

                                a
                              : WBC related to the property of the response through a smooth spline function; for example, for WBC the model requires the variables WBC, WBC′, and WBC″ where WBC′ and WBC″ represent nonlinear components (if there are four knots in a restricted cubic spline function). Also write down the formal 
                                
                                
                              test of linearity against this spline function alternative.

 

d.Test for a lack of fit (combined nonlinearity or non-additivity) in an overall model that takes the form of an interaction between temperature and WBC, allowing WBC to be modeled with a smooth spline function.

 





 

4.For a fitted model [image: 
$$Y = a + bX + cX^{2}$$
] derive the estimate of the effect on Y of changing X from x
1 to x
2.

 

5.In “The Class of 1988: A Statistical Portrait,” the College Board reported mean SAT scores for each state. Use an ordinary least squares multiple regression model to study the mean verbal SAT score as a function of the percentage of students taking the test in each state. Provide plots of fitted functions and defend your choice of the “best” fit. Make sure the shape of the chosen fit agrees with what you know about the variables. Add the raw data points to plots.
a.Fit a linear spline function with a knot at X = 50%. Plot the data and the fitted function and do a formal test for linearity and a test for association between X and Y. Give a detailed interpretation of the estimated coefficients in the linear spline model, and use the partial t-test to test linearity in this model.

 

b.Fit a restricted cubic spline function with knots at X = 6, 12, 58, and 68% (not percentile).4 Plot the fitted function and do a formal 
                                
                                
                              test of association between X and Y. Do two tests of linearity that test the same hypothesis:
i.by using a contrast to simultaneously test the correct set of coefficients against zero (done by the anova function in rms);5


 

ii.by comparing the R
2 from the complex model with that from a simple linear model using a partial F-test.

 




Explain why the tests of linearity have the d.f. they have.

 

c.Using subject matter knowledge, pick a final model (from among the previous models or using another one) that makes sense.

 




The data are found in Table 2.4 and may be created in R using the sat.r code on the RMS course web site.Table 2.4SAT data from the College Board, 1988


	% Taking SAT
	Mean Verbal
	% Taking SAT
	Mean Verbal

	(X)
	Score (Y )
	(X)
	Score (Y )

	4
	482
	24
	440

	5
	498
	29
	460

	5
	513
	37
	448

	6
	498
	43
	441

	6
	511
	44
	424

	7
	479
	45
	417

	9
	480
	49
	422

	9
	483
	50
	441

	10
	475
	52
	408

	10
	476
	55
	412

	10
	487
	57
	400

	10
	494
	58
	401

	12
	474
	59
	430

	12
	478
	60
	433

	13
	457
	62
	433

	13
	485
	63
	404

	14
	451
	63
	424

	14
	471
	63
	430

	14
	473
	64
	431

	16
	467
	64
	437

	17
	470
	68
	446

	18
	464
	69
	424

	20
	471
	72
	420

	22
	455
	73
	432

	23
	452
	81
	436






 

6.Derive the formulas for the restricted cubic spline component variables without cubing or squaring any terms.

 

7.Prove that each component variable is linear in X when X ≥ t

                        k
                      , the last knot, using general principles and not algebra or calculus. Derive an expression for the restricted spline regression function when X ≥ t

                        k
                      .

 

8.Consider a two–stage procedure in which one tests for linearity of the effect of a predictor X on a property of the response C(Y | X) against a quadratic alternative. If the two–tailed test of linearity is significant at the α level, a two d.f. test of association between X and Y is done. If the test for linearity is not significant, the square term is dropped and a linear model is fitted. The test of association between X and Y is then (apparently) a one d.f. test.
a.Write a formal expression for the test statistic for association.

 

b.Write an expression for the nominal P–value for testing association using this strategy.

 

c.Write an expression for the actual P–value or alternatively for the type–I error if using a fixed critical value for the test of association.

 

d.For the same two–stage strategy consider an estimate of the effect on C(Y | X) of increasing X from a to b. Write a brief symbolic algorithm for deriving a true two–sided 1 −α confidence interval for the b: a effect (difference in C(Y )) using the bootstrap.
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Footnotes
1Note that it is not necessary to “hold constant” all other variables to be able to interpret the effect of one predictor. It is sufficient to hold constant the weighted sum of all the variables other than X

                    j
                  . And in many cases it is not physically possible to hold other variables constant while varying one, e.g., when a model contains X and X
2 (David Hoaglin, personal communication).

 

2This weight is not to be confused with the regression coefficient; rather the weights are [image: 
$$w_{1},w_{2},\ldots,w_{n}$$
] and the fitting criterion is [image: 
$$\sum _{i}^{n}w_{i}(Y _{i} -\hat{ Y _{i}})^{2}$$
].

 

3In other words, under what assumptions does the test have maximum power?

 

4Note: To pre-specify knots for restricted cubic spline functions, use something like rcs(predictor, c(t1,t2,t3,t4)), where the knot locations are t1, t2, t3, t4.

 

5Note that anova in rms computes all needed test statistics from a single model fit object.
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3. Missing Data
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3.1 Types of Missing Data
There are missing data in the majority of datasets one is likely to encounter. Before discussing some of the problems of analyzing data in which some variables are missing for some subjects, we define some nomenclature. [image: A69956_2_En_3_Figd_HTML.gif]
                        
Missing completely at random (MCAR)
Data are missing for reasons that are unrelated to any characteristics or responses for the subject, including the value of the missing value, were it to be known. Examples include missing laboratory measurements because of a dropped test tube (if it was not dropped because of knowledge of any measurements), a study that ran out of funds before some subjects could return for follow-up visits, and a survey in which a subject omitted her response to a question for reasons unrelated to the response she would have made or to any other of her characteristics.

Missing at random (MAR)
Data are not missing at random, but the probability that a value is missing depends on values of variables that were actually measured. As an example, consider a survey in which females are less likely to provide their personal income in general (but the likelihood of responding is independent of her actual income). If we know the sex of every subject and have income levels for some of the females, unbiased sex-specific income estimates can be made. That is because the incomes we do have for some of the females are a random sample of all females’ incomes. Another way of saying that a variable is MAR is that given the values of other available variables, subjects having missing values are only randomly different from other subjects. 535 Or to paraphrase Greenland and Finkle, 242 for MAR the missingness of a covariable cannot depend on unobserved covariable values; for example whether a predictor is observed cannot depend on another predictor when the latter is missing but it can depend on the latter when it is observed. MAR and MCAR data are also called 

                    
                    
                  ignorable non-responses.

Informative missing (IM)
The tendency for a variable to be missing is a function of data that are not available, including the case when data tend to be missing if their true values are systematically higher or lower. An example is when subjects with lower income levels or very high incomes are less likely to provide their personal income in an interview. IM is also called 
                  
                  
                nonignorable non-response and missing not at random (MNAR).

IM is the most difficult type of missing data to handle. In many cases, there is no fix for IM nor is there a way to use the data to test for the existence of IM. External considerations must dictate the choice of missing data models, and there are few clues for specifying a model under IM. MCAR is the easiest case to handle. Our ability to correctly analyze MAR data depends on the availability of other variables (the sex of the subject in the example above). Most of the methods available for dealing with missing data assume the data are MAR. Fortunately, even though the MAR assumption is not testable, it may hold approximately if enough variables are included in the imputation models 256.

3.2 Prelude to Modeling
No matter whether one deletes incomplete cases, carefully imputes (estimates) missing data, or uses a full maximum likelihood or Bayesian techniques to incorporate partial data, it is beneficial to characterize patterns of missingness using exploratory data analysis techniques. These techniques include binary logistic models and 
                
               recursive partitioning for predicting the probability that a given variable is missing. Patterns of missingness should be reported to help readers understand the limitations of incomplete data. If you do decide to use imputation, it is also important to describe how variables are simultaneously missing. A cluster analysis of missing value status of all the variables is useful here. This can uncover cases where imputation is not as effective. For example, if the only variable moderately related to diastolic blood pressure is systolic pressure, but both pressures are missing on the same subjects, systolic pressure cannot be used to estimate diastolic blood pressure. R functions naclus

                
               and naplot

                
               in the Hmisc package (see p. 142) can help detect how variables are simultaneously missing. 
                
              Recursive partitioning (regression tree) algorithms (see Section 2.​5) are invaluable for describing which kinds of subjects are missing on a variable. Logistic regression is also an excellent tool for this purpose. A later example (p. 302) demonstrates these procedures.
It can also be helpful to explore the distribution of non-missing Y by the number of missing variables in X (including zero, i.e., complete cases on X).

3.3 Missing Values for Different Types of Response Variables
When the response variable Y is collected serially but some subjects drop out of the study before completion, there are many ways of dealing with partial information 42, 412, 480 including multiple 
                
                
              imputation in phases, 381 or efficiently analyzing all available serial data using a full likelihood model. When Y is the time until an event, there are actually no missing values of Y but follow-up will be curtailed for some subjects. That leaves the case where the response is completely measured once.
It is common practice to discard subjects having missing Y. Before doing so, at minimum an analysis should be done to characterize the tendency for Y to be missing, as just described. For example, logistic regression or 
                
              recursive partitioning can be used to predict whether Y is missing and to test for systematic tendencies as opposed to Y being missing completely at random. In many models, though, more efficient and less biased estimates of regression coefficients can be made by also utilizing observations missing on Y that are non-missing on X. Hence there is a definite place for imputation of Y. von Hippel 645 found advantages of using all variables to impute all others, and once imputation is finished, discarding those observations having missing Y. However if missing Y values are MCAR, up-front deletion of cases having missing Y may sometimes be preferred, as imputation requires correct specification of the imputation model.[image: A69956_2_En_3_Fige_HTML.gif]
                        

3.4 Problems with Simple Alternatives to Imputation

              
                
              
            
Incomplete predictor information is a very common missing data problem. Statistical software packages use 
                
                
               casewise deletion in handling missing predictors; that is, any subject having any predictor or Y missing will be excluded from a regression analysis. Casewise deletion results in regression coefficient estimates that can be terribly biased, imprecise, or both 353. First consider an example where bias is the problem. Suppose that the response is death and the predictors are age, sex, and blood pressure, and that age and sex were recorded for every subject. Suppose that blood pressure was not measured for a fraction of 0.10 of the subjects, and the most common reason for not obtaining a blood pressure was that the subject was about to die. Deletion of these very sick patients will cause a major bias (downward) in the model’s intercept parameter. In general, 
                
                
              casewise deletion will bias the estimate of the model’s intercept parameter (as well as others) when the probability of a case being incomplete is related to Y and not just to X [422, Example 3.3]. van der Heijden et al. 628 discuss how complete case analysis (casewise deletion) usually assumes MCAR.[image: A69956_2_En_3_Figf_HTML.gif]
                        
Now consider an example in which 
                
                
              casewise deletion of incomplete records is inefficient. The inefficiency comes from the reduction of sample size, which causes standard errors to increase, 162 confidence intervals to widen, and power of tests of association and tests of lack of fit to decrease. Suppose that the response is the presence of 
                
              coronary artery disease and the predictors are age, sex, LDL cholesterol, HDL cholesterol, blood pressure, triglyceride, and smoking status. Suppose that age, sex, and smoking are recorded for all subjects, but that LDL is missing in 0.18 of the subjects, HDL is missing in 0.20, and triglyceride is missing in 0.21. Assume that all missing data are MCAR and that all of the subjects missing LDL are also missing HDL and that overall 0.28 of the subjects have one or more predictors missing and hence would be excluded from the analysis. If total cholesterol were known on every subject, even though it does not appear in the model, it (along perhaps with age and sex) can be used to estimate (impute) LDL and HDL cholesterol and triglyceride, perhaps using regression equations from other studies. Doing the analysis on a “filled in” dataset will result in more precise estimates because the sample size would then include the other 0.28 of the subjects.
In general, observations should only be discarded if the MCAR assumption is justified, there is a rarely missing predictor of overriding importance that cannot be reliably imputed from other information, or if the fraction of observations excluded is very small and the original sample size is large. Even then, there is no advantage of such deletion other than saving analyst time. If a predictor is MAR but its missingness depends on Y, casewise deletion is biased.
The first blood pressure example points out why it can be dangerous to handle missing values by adding a dummy variable to the model. Many analysts would set missing blood pressures to a constant (it doesn’t matter which constant) and add a variable to the model such as is.na(blood.pressure) in R notation. The coefficient for the latter dummy variable will be quite large in the earlier example, and the model will appear to have great ability to predict death. This is because some of the left-hand side of the model contaminates the right-hand side; that is, is.na(blood.pressure) is correlated with death. For categorical variables, another common practice is to add a new category to denote missing, adding one more degree of freedom to the predictor and changing its meaning.1 Jones 326, Allison [12, pp. 9–11], Donders et al. 161, Knol et al. 353 and van der Heijden et al. 628 describe why both of these missing-indicator methods are invalid even when MCAR holds. [image: A69956_2_En_3_Figg_HTML.gif]
[image: A69956_2_En_3_Figh_HTML.gif]
                        

3.5 Strategies for Developing an Imputation Model

              
                
                
              
            
Except in special circumstances that usually involve only very simple models, the primary alternative to deleting incomplete observations is 
                
                
              imputation of the missing values. Many non-statisticians find the notion of estimating data distasteful, but the way to think about imputation of missing values is that “making up” data is better than discarding valuable data. It is especially distressing to have to delete subjects who are missing on an adjustment variable when a major variable of interest is not missing. So one goal of imputation is to use as much information as possible for examining any one predictor’s adjusted association with Y. The overall goal of imputation is to preserve the information and meaning of the non-missing data.
At this point the analyst must make some decisions about the information to use in computing predicted values for missing values.
1.Imputation of missing values for one of the variables can ignore all other information. Missing values can be filled in by sampling non-missing values of the variable, or by using a constant such as the median or mean non-missing value.

 

2.Imputation algorithms can be based only on external information not otherwise used in the model for Y in addition to variables included in later modeling. For example, family income can be imputed on the basis of location of residence when such information is to remain confidential for other aspects of the analysis or when such information would require too many degrees of freedom to be spent in the ultimate response model.

 

3.Imputations can be derived by only analyzing interrelationships among the Xs.

 

4.Imputations can use relationships among the Xs and between X and Y.

 

5.Imputations can use X, Y, and auxiliary variables not in the model predicting Y.

 

6.Imputations can take into account the reason for non-response if known.

 




The model to estimate the missing values in a sometimes-missing (target) variable should include all variables that are either

              1.related to the missing data mechanism;

 

2.have distributions that differ between subjects that have the target variable missing and those that have it measured;

 

3.are associated with the target variable when it is not missing; or

 

4.are included in the final response model 43.

 



            
The imputation and analysis (response) models should be “congenial” or the imputation model should be more general than the response model or make well-founded assumptions 256.
When a variable, say X

                j
              , is to be included as a predictor of Y, and X

                j
               is sometimes missing, ignoring the relationship between X

                j
               and Y for those observations for which both are known will bias regression coefficients for X

                j
               toward zero in the outcome model. 421 On the other hand, using Y to singly impute X

                j
               using a conditional mean will cause a large inflation in the apparent importance of X

                j
               in the final model. In other words, when the missing X

                j
               are replaced with a mean that is conditional on Y without a random component, this will result in a falsely strong relationship between the imputed X

                j
               values and Y.
At first glance it might seem that using Y to impute one or more of the Xs, even with allowance for the correct amount of random variation, would result in a circular analysis in which the importance of the Xs will be exaggerated. But the relationship between X and Y in the subset of imputed observations will only be as strong as the associations between X and Y that are evidenced by the non-missing data. In other words, regression coefficients estimated from a dataset that is completed by imputation will not in general be biased high as long as the imputed values have similar variation as non-missing data values.
The next important decision about developing 
                
                
              imputation algorithms is the choice of how missing values are estimated.
1.Missings can be estimated using single “best guesses” (e.g., predicted conditional expected values or means) based on relationships between non-missing values. This is called single imputation of conditional means.

 

2.Missing X

                        j
                       (or Y ) can be estimated using single individual predicted values, where by predicted value we mean a random variable value from the whole conditional distribution of X

                        j
                      . If one uses ordinary multiple regression to estimate X

                        j
                       from Y and the other Xs, a random residual would be added to the predicted mean value. If assuming a normal distribution for X

                        j
                       conditional on the other data, such a residual could be computed by a Gaussian random number generator given an estimate of the residual standard deviation. If normality is not assumed, the residual could be a randomly chosen residual from the actual computed residuals. When m missing values need 
                        
                        
                      imputation for X

                        j
                      , the residuals could be sampled with replacement from the entire vector of residuals as in the 
                        
                        
                       bootstrap. Better still according to Rubin and Schenker 535 would be to use the “approximate Bayesian bootstrap” which involves sampling n residuals with replacement from the original n estimated residuals (from observations not missing on X

                        j
                      ), then sampling m residuals with replacement from the first sampled set. [image: A69956_2_En_3_Figi_HTML.gif]
                                        

 

3.More than one random predicted value (as just defined) can be generated for each missing value. This process is called multiple imputation and it has many advantages over the other methods in general. This is discussed in Section 3.8.

 

4.Matching methods can be used to obtain random draws of other subject’s values to replace missing values. 
                        
                      Nearest neighbor matching can be used to select a subject that is “close” to the subject in need of 
                        
                        
                      imputation, on the basis of a series of variables. This method requires the analyst to make decisions about what constitutes “closeness.” To simplify the matching process into a single dimension, Little 420 proposed the predictive mean matching method where matching is done on the basis of predicted values from a regression model for predicting the sometimes-missing variable (section 3.7).
                        
                        
                       According to Little, in large samples predictive mean matching may be more robust to model misspecification than the method of adding a random residual to the subject’s predicted value, but because of difficulties in finding matches the random residual method may be better in smaller samples. The random residual method may be easier to use when multiple imputations are needed, but care must be taken to create the correct degree of uncertainty in residuals. [image: A69956_2_En_3_Figj_HTML.gif]
                                        

 




What if X

                j
               needs to be imputed for some subjects based on other variables that themselves may be missing on the same subjects missing on X

                j
              ? This is a place where 
                
              recursive partitioning with “surrogate splits” in case of missing predictors may be a good method for developing imputations (see Section 2.​5 and p. 142). If using regression to estimate missing values, an algorithm to cycle through all sometimes-missing variables for multiple iterations may perform well. This algorithm is used by the R transcan

                
               function described in Section 4.​7.​4 as well as the to–be–described aregImpute

                
               function. First, all missing values are initialized to medians (modes for categorical variables). Then every time missing values are estimated for a certain variable, those estimates are inserted the next time the variable is used to predict other sometimes-missing variables.
If you want to assess the importance of a specific predictor that is frequently missing, it is a good idea to perform a sensitivity analysis in which all observations containing imputed values for that predictor are temporarily deleted. The test based on a model that included the imputed values may be diluted by the imputation or it may test the wrong hypothesis, especially if Y is not used in imputing X.
Little argues for down-weighting observations containing imputations, to obtain a more accurate 
                
              variance–covariance matrix. For the ordinary linear model, the weights have been worked out for some cases [421, p. 1231].

3.6 Single Conditional Mean Imputation
For a continuous or binary X that is unrelated to all other predictor variables, the mean or median may be substituted for missing values without much loss of efficiency, 162 although regression coefficients will be biased low since Y was not utilized in the 
                
                
              imputation. When the variable of interest is related to the other Xs, it is far more efficient to use an individual predictive model for each X based on the other variables. 79, 525, 612 The “best guess” imputation method fills in missings with predicted expected values using the multivariable imputation model based on non-missing data2. It is true that conditional means are the best estimates of unknown values, but except perhaps for binary logistic regression 621, 623 their use will result in biased estimates and very biased (low) variance estimates. The latter problem arises from the reduced variability of imputed values [174, p. 464].
Tree-based models (Section 2.​5) may be very useful for 
                
                
              imputation since they do not require linearity or additivity assumptions, although such models often have poor discrimination when they don’t overfit. When a continuous X being imputed needs to be non-monotonically transformed to best relate it to the other Xs (e.g., blood pressure vs. heart rate), trees and ordinary regression are inadequate. Here a general transformation modeling procedure (Section 4.​7) may be needed.
Schemper et al. 551, 553 proposed imputing missing binary covariables by predicted probabilities. For categorical sometimes-missing variables, 
                
                
              imputation models can be derived using polytomous logistic regression or a 
                
              classification tree method. For missing values, the most likely value for each subject (from the series of predicted probabilities from the logistic or recursive partitioning model) can be substituted to avoid creating a new category that is falsely highly correlated with Y. For an ordinal X, the predicted mean value (possibly rounded to the nearest actual data value) or median value from an ordinal logistic model is sometimes useful. [image: A69956_2_En_3_Figk_HTML.gif]
                        

3.7 Predictive Mean Matching

              
                
                
              
            
In predictive mean matching 422 (PMM), one replaces a missing (NA) value for the target variable being imputed with the actual value from a donor observation. Donors are identified by matching in only one dimension, namely the predicted value (e.g., predicted mean) of the target. Key considerations are how to
1.model the target when it is not NA


 

2.match donors on predicted values

 

3.avoid overuse of “good” donors to disallow excessive ties in imputed data

 

4.account for all uncertainties (section 3.8).

 




The predictive model for each target variable uses any outcome variables, all predictors in the final outcome model, plus any needed auxiliary variables. The modeling method should be flexible, not assuming linearity. Many methods will suffice; parametric additive models are often good choices. Beauties of PMM include the lack of need for distributional assumptions (as no residuals are calculated), and predicted values need only be monotonically related to real predicted values3

In the original PMM method the donor for an NA was the complete observation whose predicted target was closest to the predicted value of the target from all complete observations4. This approach can result in some donors being used repeatedly. This can be addressed by sampling from a multinomial distribution, where the probabilities are scaled distances of all potential donors’ predictions to the predicted value y
∗ of the missing target. Tukey’s tricube function (used in loess) is a good weighting function, implemented in the Hmisc aregImpute

                
               function: [image: 
$$\displaystyle\begin{array}{rcl} & & w_{i} = (1 -\min (d_{i}/s,1)^{3})^{3}, \\ & & d_{i}\qquad = \vert \hat{y_{i}} - y^{{\ast}}\vert \\ & &\phantom{d}s = 0.2 \times \text{mean}\vert \hat{y_{i}} - y^{{\ast}}\vert.{}\end{array}$$
]

 (3.1)

 s above is a good default scale factor, and the w

                i
               are scaled so that ∑ w

                i
               = 1.

3.8 Multiple Imputation

              
                
                
              
            
Imputing missing values and then doing an ordinary analysis as if the imputed values were real measurements is usually better than excluding subjects with incomplete data. However, ordinary formulas for standard errors and other statistics are invalid unless 
                
                
              imputation is taken into account. 651 Methods for properly accounting for having incomplete data can be complex. The bootstrap (described later) is an easy method to implement, but the computations can be slow5.
Multiple 
                
                
              imputation uses random draws from the conditional distribution of the target variable given the other variables (and any additional information that is relevant) 85, 417, 421, 536. The additional information used to predict the missing values can contain any variables that are potentially predictive, including variables measured in the future; the causal chain is not relevant. 421, 463 When a regression model is used for imputation, the process involves adding a random residual to the “best guess” for missing values, to yield the same conditional variance as the original variable. Methods for estimating residuals were listed in Section 3.5. To properly account for variability due to unknown values, the imputation is repeated M times, where M ≥ 3. Each repetition results in a “completed” dataset that is analyzed using the standard method. Parameter estimates are averaged over these multiple imputations to obtain better estimates than those from single imputation. The 
                
              variance–covariance matrix of the averaged parameter estimates, adjusted for variability due to 
                
                
              imputation, is estimated using 422 [image: 
$$\displaystyle{ V = M^{-1}\sum _{ i}^{M}V _{ i} + \frac{M + 1} {M} B, }$$
]

 (3.2)

 where V

                i
               is the ordinary complete data estimate of the 
                
              variance–covariance matrix for the model parameters from the ith 
                
                
              imputation, and B is the between-imputation sample variance–covariance matrix, the diagonal entries of which are the ordinary sample variances of the M parameter estimates.
[image: A69956_2_En_3_Figl_HTML.gif]
[image: A69956_2_En_3_Figm_HTML.gif]

After running aregImpute

                
               (or MICE

                
              ) you can run the Hmisc packages’s fit.mult.impute

                
               function to fit the chosen model separately for each artificially completed dataset corresponding to each imputation. After fit.mult.impute

                
               fits all of the models, it averages the sets of regression coefficients and computes variance and covariance estimates that are adjusted for imputation (using Eq. 3.2).
White and Royston 661 provide a method for multiply imputing missing covariate values using censored survival time data in the context of the Cox proportional hazards model.
                
                
              

                
                
                
              

White et al. 662 recommend choosing the number of imputations M so that the key inferential statistics are very reproducible should the imputation analysis be repeated. They suggest the use of 100f imputations when f is the fraction of cases that are incomplete. See also [85, Section 2.​7] and 232. Extreme amount of missing data does not prevent one from using multiple imputation, because alternatives are worse 321. Horton and Lipsitz 302 also have a good overview of multiple imputation and a review of several software packages that implement PMM.

Caution: Multiple imputation methods can generate imputations having very reasonable distributions but still not having the property that final response model regression coefficients have nominal confidence interval coverage. Among other things, it is worth checking that imputations generate the correct collinearities among covariates.
3.8.1 The aregImpute

                  
                 and Other Chained Equations Approaches
A flexible approach to multiple imputation that handles a wide variety of target variables to be imputed and allows for multiple variables to be missing on the same subject is the chained equation method. With a chained equations approach, each target variable is predicted by a regression model conditional on all other variables in the model, plus other variables. An iterative process cycles through all target variables to impute all missing values 627. This approach is used in the MICE algorithm (multiple imputation using chained equations) implemented in R and other systems. 
                  
                  
                

                  
                  
                

                  
                The chained equation method does not attempt to use the full Bayesian multivariate model for all target variables, which makes it more flexible and easy to use but leaves it open to creating improper imputations, e.g., imputing conflicting values for different target variables. However, simulation studies 627 so far have demonstrated very good performance of imputation based on chained equations in non-complex situations.
The aregImpute

                  
                 algorithm 463 takes all aspects of uncertainty into account using the bootstrap while using the same estimation procedures as transcan

                  
                 (section 4.​7). Different bootstrap resamples used for each imputation by fitting a flexible additive model on a sample with replacement from the original data. This model is used to predict all of the original missing and non-missing values for the target variable for the current imputation. aregImpute

                  
                 uses flexible parametric additive regression spline models to predict target variables. There is an option to allow target variables to be optimally transformed, even non-monotonically (but this can overfit). The function implements regression imputation based on adding random residuals to predicted means, but its real value lies in implementing a wide variety of PMM algorithms
                  
                  
                .
The default method used by aregImpute

                  
                 is (weighted) PMM so that no residuals or distributional assumptions are required. The default PMM matching used is van Buuren’s “Type 1” matching [85, Section 3.4.2] to capture the right amount of uncertainty. Here one computes predicted values for missing values using a regression fit on the bootstrap sample, and finds donor observations by matching those predictions to predictions from potential donors using the regression fit from the original sample of complete observations. When a predictor of the target variable is missing, it is first imputed from its last imputation when it was a target variable. The first 3 iterations of the process are ignored (“burn-in”). aregImpute

                  
                 seems to perform as well as MICE but runs significantly faster and allows for nonlinear relationships.[image: A69956_2_En_3_Fign_HTML.gif]
                            
Here is an example using the R Hmisc and rms packages.

                [image: A69956_2_En_3_Figa_HTML.gif]

              


3.9 Diagnostics
One diagnostic that can be helpful in assessing the MCAR assumption is to compare the distribution of non-missing Y for those subjects having complete X with those having incomplete X. On the other hand, Yucel and Zaslavsky 681 developed a diagnostic that is useful for checking the imputations themselves. In solving a problem related to imputing binary variables using continuous data models, they proposed a simple approach. Suppose we were interested in the reasonableness of imputed values for a sometimes-missing predictor X

                j
              . Duplicate the entire dataset, but in the duplicated observations set all values of X

                j
               to missing. Develop imputed values for the missing values of X

                j
              , and in the observations of the duplicated portion of the dataset corresponding to originally non-missing values of X

                j
              , compare the distribution of imputed X

                j
               with the original values of X

                j
              .[image: A69956_2_En_3_Figo_HTML.gif]
                        

3.10 Summary and Rough Guidelines
Table 3.1 summarizes the advantages and disadvantages of three methods of dealing with missing data. Here “Single” refers to single conditional mean 
                
                
              imputation (which cannot utilize Y ) and “Multiple” refers to multiple random-draw 
                
                
              imputation (which can incorporate Y ).
Table 3.1Summary of Methods for Dealing with Missing Values


	Method
	Deletion
	Single
	Multiple

	Allows nonrandom missing
	–
	x
	x

	Reduces sample size
	x
	–
	–

	Apparent S.E. of [image: 
$$\hat{\beta }$$
] too low
	–
	x
	–

	Increases real S.E. of [image: 
$$\hat{\beta }$$
]

	x
	–
	–

	
[image: 
$$\hat{\beta }$$
] biased
	if not MCAR
	x
	–





The following contains crude guidelines. Simulation studies are needed to refine the recommendations. Here f refers to the proportion of observations having any variables missing. 
f < 0. 03:It doesn’t matter very much how you impute missings or whether you adjust variance of regression coefficient estimates for having imputed data in this case. For continuous variables imputing missings with the median non-missing value is adequate; for categorical predictors the most frequent category can be used. Complete case analysis is also an option here. Multiple imputation may be needed to check that the simple approach “worked.”



f ≥ 0. 03:Use multiple imputation with number of imputations equal to max(5, 100f). Fewer imputations may be possible with very large sample sizes. Type 1 predictive mean matching is usually preferred, with weighted selection of donors. Account for imputation in estimating the covariance matrix for final parameter estimates. Use the t distribution instead of the Gaussian distribution for tests and confidence intervals, if possible, using the estimated d.f. for the parameter estimates.


Multiple predictors frequently missing:More imputations may be required. Perform a “sensitivity to order” analysis by creating multiple imputations using different orderings of sometimes missing variables. It may be beneficial to place the variable with the highest number of NAs first so that initialization of other missing variables to medians will have less impact.





It is important to note that the reasons for missing data are more important determinants of how missing values should be handled than is the quantity of missing values.
If the main interest is prediction and not interpretation or inference about individual effects, it is worth trying a simple 
                
                
               imputation (e.g., median or normal value substitution) to see if the resulting model predicts the response almost as well as one developed after using customized imputation. But it is not appropriate to use the dummy variable or extra category method, because these methods steal information from Y and bias all [image: 
$$\hat{\beta }$$
] s. 
                
              Clark and Altman 110 presented a nice example of the use of multiple imputation for developing a prognostic model. Marshall et al. 442 developed a useful method for obtaining predictions on future observations when some of the needed predictors are unavailable. Their method uses an approximate re-fit of the original model for available predictors only, utilizing only the coefficient estimates and covariance matrix from the original fit. Little and An 418 also have an excellent review of imputation methods and developed several approximate formulas for understanding properties of various estimators. They also developed a method combining imputation of missing values with propensity score modeling of the probability of missingness.[image: A69956_2_En_3_Figp_HTML.gif]
                        

3.11 Further Reading

                            [image: A69956_2_En_3_Figd_HTML.gif] These types of missing data are well described in an excellent review article on missing data by Schafer and Graham 542. A good introductory article on missing data and imputation is by Donders et al. 161 and a good overview of multiple imputation is by White et al. 662 and Harel and Zhou 256. Paul Allison’s booklet 12 and van Buuren’s book 85 are also excellent practical treatments.

[image: A69956_2_En_3_Fige_HTML.gif] Crawford et al. 138 give an example where responses are not MCAR for which deleting subjects with missing responses resulted in a biased estimate of the response distribution. They found that multiple imputation of the response resulted in much improved estimates. Wood et al. 673 have a good review of how missing response data are typically handled in randomized trial reports, with recommendations for improvements. Barnes et al. 42 have a good overview of imputation methods and a comparison of bias and confidence interval coverage for the methods when applied to longitudinal data with a small number of subjects. Twist et al. 617 found instability in using multiple imputation of longitudinal data, and advantages of using instead full likelihood models.

[image: A69956_2_En_3_Figf_HTML.gif] See van Buuren et al. 626 for an example in which subjects having missing baseline blood pressure had shorter survival time. Joseph et al. 327 provide examples demonstrating difficulties with casewise deletion and single imputation, and comment on the robustness of multiple imputation methods to violations of assumptions.

[image: A69956_2_En_3_Figg_HTML.gif] Another problem with the missingness indicator approach arises when more than one predictor is missing and these predictors are missing on almost the same subjects. The missingness indicator variables will be collinear; that is impossible to disentangle. 326


[image: A69956_2_En_3_Figh_HTML.gif] See [623, pp. 2645–2646] for several problems with the “missing category” approach. A clear example is in 161 where covariates X
1, X
2 have true β
1 = 1, β
2 = 0 and X
1 is MCAR. Adding a missingness indicator for X
1 as a covariate resulted in [image: 
$$\hat{\beta _{1}} = 0.55,\hat{\beta _{2}} = 0.51$$
] because in the missing observations the constant X
1 was uncorrelated with X
2. D’Agostino and Rubin 146 developed methods for 
                
              

                
              propensity score modeling that allow for missing data. They mentioned that extra categories may be added to allow for missing data in propensity models and that adding indicator variables describing patterns of missingness will also allow the analyst to match on missingness patterns when comparing non-randomly assigned treatments.

[image: A69956_2_En_3_Figi_HTML.gif] Harel and Zhou 256 and Siddique 569 discuss the approximate Bayesian bootstrap further.

[image: A69956_2_En_3_Figj_HTML.gif] Kalton and Kasprzyk 332 proposed a hybrid approach to imputation in which missing values are imputed with the predicted value for the subject plus the residual from the subject having the closest predicted value to the subject being imputed.

[image: A69956_2_En_3_Figk_HTML.gif] Miller et al. 458 studied the effect of ignoring imputation when conditional mean fill-in methods are used, and showed how to formalize such methods using linear models.

[image: A69956_2_En_3_Figl_HTML.gif] Meng 455 argues against always separating imputation from final analysis, and in favor of sometimes incorporating weights into the process.

[image: A69956_2_En_3_Figm_HTML.gif] van Buuren et al. 626 presented an excellent case study in multiple imputation in the context of survival analysis. Barzi and Woodward 43 present a nice review of multiple imputation with detailed comparison of results (point estimates and confidence limits for the effect of the sometimes-missing predictor) for various imputation methods. Barnard and Rubin 41 derived an estimate of the d.f. associated with the imputation-adjusted variance matrix for use in a t-distribution approximation for hypothesis tests about imputation-averaged coefficient estimates. When d.f. is not very large, the t approximation will result in more accurate P-values than using a normal approximation that we use with Wald statistics after inserting Equation 3.2 as the variance matrix.

[image: A69956_2_En_3_Fign_HTML.gif] Little and An 418 present imputation methods based on flexible additive regression models using penalized cubic splines. Horton and Kleinman 301 compare several software packages for handling missing data and have comparisons of results with that of aregImpute

                
              . Moons et al. 463 compared aregImpute

                
               with MICE

                
              .

[image: A69956_2_En_3_Figo_HTML.gif] He and Zaslavsky 280 formalized the duplication approach to imputation diagnostics.

[image: A69956_2_En_3_Figp_HTML.gif] A good general reference on missing data is Little and Rubin, 422 and Volume 16, Nos. 1 to 3 of Statistics in Medicine, a large issue devoted to incomplete covariable data. Vach 620 is an excellent text describing properties of various methods of dealing with missing data in binary logistic regression (see also [621, 622, 624]). These references show how to use maximum likelihood to explicitly model the missing data process. Little and Rubin show how 
                
                
              imputation can be avoided if the analyst is willing to assume a multivariate distribution for the joint distribution of X and Y. Since X usually contains a strange mixture of binary, polytomous, and continuous but highly skewed predictors, it is unlikely that this approach will work optimally in many problems. That’s the reason the imputation approach is emphasized. See Rubin 536 for a comprehensive source on multiple imputation. See Little, 419 Vach and Blettner, 623 Rubin and Schenker, 535 Zhou et al., 688 Greenland and Finkle, 242 and Hunsberger et al. 313 for excellent reviews of missing data problems and approaches to solving them. Reilly and Pepe have a nice comparison of the “hot-deck” imputation method with a maximum likelihood-based method. 523 White and Carlin 660 studied bias of multiple imputation vs. complete case analysis.

3.12 Problems
The 
                
                
              SUPPORT Study (Study to Understand Prognoses Preferences Outcomes and Risks of Treatments) was a five-hospital study of 10,000 critically ill hospitalized adults6 352. Patients were followed for in-hospital outcomes and for long-term survival. We analyze 35 variables and a random sample of 1000 patients from the study.
1.Explore the variables and patterns of missing data in the SUPPORT dataset.
a.Print univariable summaries of all variables. Make a plot (showing all variables on one page) that describes especially the continuous variables.

 

b.Make a plot showing the extent of missing data and tendencies for some variables to be missing on the same patients. Functions in the Hmisc package may be useful.

 

c.Total hospital costs (variable totcst) were estimated from hospital-specific Medicare cost-to-charge ratios. Characterize what kind of patients have missing totcst. For this characterization use the following patient descriptors: age, sex, dzgroup, num.co, edu, income, scoma, meanbp, hrt, resp, temp.

 





 

2.Prepare for later development of a model to predict costs by developing reliable imputations for missing costs. Remove the observation having zero totcst.7
a.The cost estimates are not available on 105 patients. Total hospital charges (bills) are available on all but 25 patients. Relate these two variables to each other with an eye toward using charges to predict totcst when totcst is missing. Make graphs that will tell whether linear regression or linear regression after taking logs of both variables is better.

 

b.Impute missing total hospital costs in SUPPORT based on a regression model relating charges to costs, when charges are available. You may want to use a statement like the following in R:

                                                            [image: A69956_2_En_3_Figb_HTML.gif]
 If in the previous problem you felt that the relationship between costs and charges should be based on taking logs of both variables, the “expression in charges” above may look something like exp(intercept + slope * log(charges)), where constants are inserted for intercept and slope.

 

c.Compute the likely error in approximating total cost using charges by computing the median absolute difference between predicted and observed total costs in the patients having both variables available. If you used a log transformation, also compute the median absolute percent error in imputing total costs by anti-logging the absolute difference in predicted logs.

 





 

3.State briefly why single conditional median8 imputation is OK here.

 

4.Use transcan to develop single imputations for total cost, commenting on the strength of the model fitted by transcan as well as how strongly each variable can be predicted from all the others.

 

5.Use predictive mean matching to multiply impute cost 10 times per missing observation. Describe graphically the distributions of imputed values and briefly compare these to distributions of non-imputed values. State in a simple way what the sample variance of multiple imputations for a single observation of a continuous predictor is approximating.

 

6.Using the multiple imputed values, develop an overall least squares model for total cost (using the log transformation) making optimal use of partial information, with variances computed so as to take imputation (except for cost) into account. The model should use the predictors in Problem 1 and should not assume linearity in any predictor but should assume additivity. Interpret one of the resulting ratios of imputation-corrected variance to apparent variance and explain why ratios greater than one do not mean that imputation is inefficient.
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Footnotes
1This may work if values are “missing” because of “not applicable”, e.g. one has a measure of marital happiness, dichotomized as high or low, but the sample contains some unmarried people. One could have a 3-category variable with values high, low, and unmarried (Paul Allison, IMPUTE e-mail list, 4Jul09).

 

2Predictors of the target variable include all the other Xs along with auxiliary variables that are not included in the final outcome model, as long as they precede the variable being imputed in the causal chain (unlike with multiple imputation).

 

3Thus when modeling binary or categorical targets one can frequently take least squares shortcuts in place of maximum likelihood for binary, ordinal, or multinomial logistic models.

 

4
662 discusses an alternative method based on choosing a donor observation at random from the q closest matches (q = 3, for example).

 

5To use the 
                    
                    
                  bootstrap to correctly estimate variances of regression coefficients, one must repeat the imputation process and the model fitting perhaps 100 times using a resampling procedure 174, 566 (see Section 5.​2). Still, the bootstrap can estimate the right variance for the wrong parameter estimates if the imputations are not done correctly.

 

6The dataset is on the book’s dataset wiki and may be automatically fetched over the internet and loaded using the Hmisc package’s command getHdata(support)

                    
                  .

 

7You can use the R command subset(support, is.na(totcst) | totcst > 0). The is.na condition tells R that it is permissible to include observations having missing totcst without setting all columns of such observations to NA.

 

8We are anti-logging predicted log costs and we assume log cost has a symmetric distribution
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Chapter 2 dealt with aspects of modeling such as transformations of predictors, relaxing linearity assumptions, modeling interactions, and examining lack of fit. Chapter 3 dealt with missing data, focusing on utilization of incomplete predictor information. All of these areas are important in the overall scheme of model development, and they cannot be separated from what is to follow. In this chapter we concern ourselves with issues related to the whole model, with emphasis on deciding on the amount of complexity to allow in the model and on dealing with large numbers of predictors. The chapter concludes with three default modeling strategies depending on whether the goal is prediction, estimation, or hypothesis testing.[image: A69956_2_En_4_Figd_HTML.gif]
                    
There are many choices to be made when deciding upon a global modeling strategy, including choice between 	parametric and nonparametric procedures

	parsimony and complexity

	parsimony and good discrimination ability

	interpretable models and black boxes.





This chapter addresses some of these issues. One general theme of 
              
            what follows is the idea that in statistical inference when a method is capable of worsening performance of an estimator or inferential quantity (i.e., when the method is not systematically biased in one’s favor), the analyst is allowed to benefit from the method. Variable selection 
              
              
             is an example where the analysis is systematically tilted in one’s favor by directly selecting variables on the basis of P-values of interest, and all elements of the final result (including regression coefficients and P-values) are biased. On the other hand, the next section is an example of the “capitalize on the benefit when it works, and the method may hurt” approach because one may reduce the complexity of an apparently weak predictor by removing its most important component—nonlinear effects—from how the predictor is expressed in the model. The method hides tests of nonlinearity that would systematically bias the final result.
The book’s web site contains a number of simulation studies and references to others that support the advocated approaches.
4.1 Prespecification of Predictor Complexity Without Later Simplification

              
                
                
              
            
There are rare occasions in which one actually expects a relationship to be linear. For example, one might predict mean arterial blood pressure at two months after beginning drug administration using as baseline variables the pretreatment mean blood pressure and other variables. In this case one expects the pretreatment blood pressure to linearly relate to follow-up blood pressure, and modeling is simple1. In the vast majority of studies, however, there is every reason to suppose that all relationships involving nonbinary predictors are nonlinear. In these cases, the only reason to represent predictors linearly in the model is that there is insufficient information in the sample to allow us to reliably fit nonlinear relationships.2

Supposing that nonlinearities are entertained, analysts often use scatter diagrams or descriptive statistics to decide how to represent variables in a model. The result will often be an adequately fitting model, but 
                
               confidence limits will be too narrow, P-values too small, R
2 too large, and calibration too good to be true. The reason is that the “phantom d.f.” that represented potential complexities in the model that were dismissed during the subjective assessments are forgotten in computing standard errors, P-values, and R

                a d j
              
2. The same problem is created when one entertains several transformations (log, ✓, etc.) and uses the data to see which one fits best, or when one tries to simplify a spline fit to a simple transformation.
An approach that solves this problem is to prespecify the complexity with which each predictor is represented in the model, without later simplification of the model. The amount of complexity (e.g., number of knots in spline functions or order of ordinary polynomials) one can afford to fit is roughly related to the “effective sample size.” It is also very reasonable to allow for greater complexity for predictors that are thought to be more powerfully related to Y. For example, errors in estimating the curvature of a regression function are consequential in predicting Y only when the regression is somewhere steep. Once the analyst decides to include a predictor in every model, it is fair to use general measures of association to quantify the predictive potential for a variable. For example, if a predictor has a low rank correlation with the response, it will not “pay” to devote many degrees of freedom to that predictor in a spline function having many knots. On the other hand, a potent predictor (with a high rank correlation) not known to act linearly might be assigned five knots if the sample size allows.
When the effective sample size available is sufficiently large so that a saturated main effects model may be fitted, a good approach to gauging predictive potential is the following. 	Let all continuous predictors be represented as restricted cubic splines with k knots, where k is the maximum number of knots the analyst entertains for the current problem.

	Let all categorical predictors retain their original categories except for pooling of very low prevalence categories (e.g., ones containing < 6 observations).

	Fit this general main effects model.

	Compute the partial χ
2 statistic for testing the association of each predictor with the response, adjusted for all other predictors. In the case of ordinary regression, convert partial F statistics to χ
2 statistics or partial R
2 values.

	Make corrections for chance associations to “level the playing field” for predictors having greatly varying d.f., e.g., subtract the d.f. from the partial χ
2 (the expected value of χ

                      p
                    
2 is p under H
0).

	Make certain that tests of nonlinearity are not revealed as this would bias the analyst.

	Sort the partial association statistics in descending order.





Commands in the rms package can be used to plot only what is needed. Here is an example for a logistic model.
                
              

                
              


              [image: A69956_2_En_4_Figa_HTML.gif]

            
This approach, and the rank correlation approach about to be discussed, do not require the analyst to really prespecify predictor complexity, so how are they not biased in our favor? There are two reasons: the analyst has already agreed to retain the variable in the model even if the strength of the association is very low, and the assessment of association does not reveal the degree of nonlinearity of the predictor to allow the analyst to “tweak” the number of knots or to discard nonlinear terms. Any predictive ability a variable might have may be concentrated in its nonlinear effects, so using the total association measure for a predictor to save degrees of freedom by restricting the variable to be linear may result in no predictive ability. Likewise, a low association measure between a categorical variable and Y might lead the analyst to collapse some of the categories based on their frequencies. This often helps, but sometimes the categories that are so combined are the ones that are most different from one another. So if using partial tests or rank correlation to reduce degrees of freedom can harm the model, one might argue that it is fair to allow this strategy to also benefit the analysis.
When collinearities or confounding are not problematic, a quicker approach based on pairwise measures of association can be useful. This approach will not have numerical problems (e.g., singular covariance matrix). When Y is binary or continuous (but not censored), a good general-purpose measure of association that is useful in making decisions about the number of parameters to devote to a predictor is an extension of Spearman’s ρ rank correlation
                
                
              . This is the 
                
                
               ordinary R
2 from predicting the rank of Y based on the rank of X and the square of the rank of X. This ρ
2 will detect not only nonlinear relationships (as will ordinary Spearman ρ) but some 
                
              non-monotonic ones as well. It is important that the ordinary Spearman ρ not be computed, as this would tempt the analyst to simplify the regression function (towards 
                
              monotonicity) if the generalized ρ
2 does not significantly exceed the square of the ordinary Spearman ρ. For categorical predictors, ranks are not squared but instead the predictor is represented by a series of dummy variables. The resulting ρ
2 is related to the Kruskal–Wallis test. 
                
                
              

                
                
              See p. 460 for an example. Note that bivariable correlations can be misleading if marginal relationships vary greatly from ones obtained after adjusting for other predictors. [image: A69956_2_En_4_Fige_HTML.gif] [image: A69956_2_En_4_Figf_HTML.gif]
                        
Once one expands a predictor into linear and nonlinear terms and estimates the coefficients, the best way to understand the relationship between predictors and response is to graph this estimated relationship3. If the plot appears almost linear or the test of 
                
                
              nonlinearity is very insignificant there is a temptation to simplify the model. The Grambsch and O’Brien result described in Section 2.​6 demonstrates why this is a bad idea.
From the above discussion a general principle emerges. Whenever the response variable is informally or formally linked, in an unmasked fashion, to particular parameters that may be deleted from the model, special adjustments must be made in P-values, standard errors, test statistics, and 
                
              confidence limits, in order for these statistics to have the correct interpretation. Examples of strategies that are improper without special adjustments (e.g., using the bootstrap) include examining a frequency table or scatterplot to decide that an association is too weak for the predictor to be included in the model at all or to decide that the relationship appears so linear that all nonlinear terms should be omitted. It is also valuable to consider the reverse situation; that is, one posits a simple model and then additional analysis or outside subject matter information makes the analyst want to generalize the model. Once the model is generalized (e.g., nonlinear terms are added), the 
                
                
              test of association can be recomputed using multiple d.f. So another general principle is that when one makes the model more complex, the d.f. properly increases and the new test statistics for association have the claimed distribution. Thus moving from simple to more complex models presents no problems other than conservatism if the new complex components are truly unnecessary.

4.2 Checking Assumptions of Multiple Predictors Simultaneously
Before developing a multivariable model one must decide whether the assumptions of each continuous predictor can be verified by ignoring the effects of all other potential predictors. In some cases, the shape of the relationship between a predictor and the property of response will be different if an adjustment is made for other correlated factors when deriving regression estimates. Also, failure to adjust for an important factor can frequently alter the nature of the distribution of Y. Occasionally, however, it is unwieldy to deal simultaneously with all predictors at each stage in the analysis, and instead the regression function shapes are assessed separately for each continuous predictor.

4.3 Variable Selection

              
                
              
              
                
                
              
            
The material covered to this point dealt with a prespecified list of variables to be included in the regression model. For reasons of developing a concise model or because of a fear of collinearity or of a false belief that it is not legitimate to include “insignificant” regression coefficients when presenting results to the intended audience, stepwise variable selection is very commonly employed. Variable selection is used when the analyst is faced with a series of potential predictors but does not have (or use) the necessary subject matter knowledge to enable her to prespecify the “important” variables to include in the model. But using Y to compute P-values to decide which variables to include is similar to using Y to decide how to pool treatments in a five–treatment randomized trial, and then testing for global treatment differences using fewer than four degrees of freedom.
Stepwise variable selection has been a very popular technique for many years, but if this procedure had just been proposed as a statistical method, it would most likely be rejected because it violates every principle of statistical estimation and hypothesis testing. Here is a summary of the problems with this method.

              1.It yields R
2 values that are biased high.

 

2.The ordinary F and χ
2 test statistics do not have the claimed distribution4. 234 Variable selection is based on methods (e.g., F tests for nested models) that were intended to be used to test only prespecified hypotheses.

 

3.The method yields standard errors of regression coefficient estimates that are biased low and confidence intervals for effects and predicted values that are falsely narrow. 16


 

4.It yields P-values that are too small (i.e., there are severe multiple comparison problems) and that do not have the proper meaning, and the proper correction for them is a very difficult problem.

 

5.It provides regression coefficients that are biased high in absolute value and need shrinkage. Even if only a single predictor were being analyzed and one only reported the regression coefficient for that predictor if its association with Y were “statistically significant,” the estimate of the regression coefficient [image: 
$$\hat{\beta }$$
] is biased (too large in absolute value). To put this in symbols for the case where we obtain a positive association ([image: 
$$\hat{\beta }> 0$$
]), [image: 
$$E(\hat{\beta }\vert P < 0.05,\hat{\beta }> 0) >\beta$$
]. 100


 

6.In observational studies, variable selection to determine confounders for adjustment results in residual confounding 241.

 

7.Rather than solving problems caused by collinearity, variable selection is made arbitrary by collinearity.

 

8.It allows us to not think about the problem.

 



            
The problems of P-value-based variable selection are exacerbated when the analyst (as she so often does) interprets the final model as if it were prespecified. Copas and Long 125 stated one of the most serious problems with stepwise modeling eloquently when they said, “The choice of the variables to be included depends on estimated regression coefficients rather than their true values, and so X

                j
               is more likely to be included if its regression coefficient is over-estimated than if its regression coefficient is underestimated.” Derksen and Keselman 155 studied stepwise variable selection, backward elimination, and forward selection, with these conclusions:

              
                  1.“The degree of correlation between the predictor variables affected the frequency with which authentic predictor variables found their way into the final model.

 

2.The number of candidate predictor variables affected the number of 
                            
                          noise variables that gained entry to the model.

 

3.The size of the sample was of little practical importance in determining the number of authentic variables contained in the final model.

 

4.The population multiple coefficient of determination could be faithfully estimated by adopting a statistic that is adjusted by the total number of candidate predictor variables rather than the number of variables in the final model.”

 



                


            
They found that variables selected for the final model represented 
                
              noise 0.20 to 0.74 of the time and that the final model usually contained less than half of the actual number of authentic predictors. Hence there are many reasons for using methods such as full-model fits or data reduction, instead of using any stepwise variable selection algorithm.
If stepwise selection must be used, a 
                
                
               global test of no regression should be made before proceeding, simultaneously testing all candidate predictors and having degrees of freedom equal to the number of candidate variables (plus any nonlinear or interaction terms). If this global test is not significant, selection of individually significant predictors is usually not warranted.
The method generally used for such variable selection is forward selection of the most significant candidate or backward elimination of the least significant predictor in the model. One of the recommended stopping rules is based on the “residual χ
2” with degrees of freedom equal to the number of candidate variables remaining at the current step. The residual χ
2 can be tested for significance (if one is able to forget that because of variable selection this statistic does not have a χ
2 distribution), or the stopping rule can be based on Akaike’s information criterion (
                
              AIC 33), here residual χ
2 − 2× d.f. 257 Of course, use of more insight from knowledge of the subject matter will generally improve the modeling process substantially. It must be remembered that no currently available stopping rule was developed for data-driven variable selection. Stopping rules such as AIC or Mallows’ C

                p
              

                
               are intended for comparing a limited number of prespecified models [66, Section 1.​3]
347
5. [image: A69956_2_En_4_Figg_HTML.gif]
                        
If the analyst insists on basing the stopping rule on P-values, the optimum (in terms of predictive accuracy) α to use in deciding which variables to include in the model is α = 1. 0 unless there are a few powerful variables and several completely irrelevant variables. A reasonable α that does allow for deletion of some variables is α = 0. 5. 589 These values are far from the traditional choices of α = 0. 05 or 0. 10. [image: A69956_2_En_4_Figh_HTML.gif]
                        
Even though forward stepwise variable selection is the most commonly used method, the step-down
                
                
               method is preferred for the following reasons.[image: A69956_2_En_4_Figi_HTML.gif]
1.It usually performs better than forward stepwise methods, especially when collinearity is present. 437


 

2.It makes one examine a full model fit, which is the only fit providing accurate standard errors, error mean square, and P-values.

 

3.The method of Lawless and Singhal 385 allows extremely efficient step-down modeling using Wald statistics, in the context of any fit from least squares or maximum likelihood. This method requires passing through the data matrix only to get the initial full fit.

 




For a given dataset, bootstrapping (Efron et al. 150, 172, 177, 178) can help decide between using full and reduced models. Bootstrapping can be done on the whole model and compared with bootstrapped estimates of predictive accuracy based on stepwise variable selection for each resample. Unless most predictors are either very significant or clearly unimportant, the full model usually outperforms the reduced model.
Full model fits have the advantage of providing meaningful confidence intervals using standard formulas. Altman and Andersen 16 gave an example in which the lengths of confidence intervals of predicted survival probabilities were 60% longer when bootstrapping was used to estimate the simultaneous effects of variability caused by variable selection and coefficient estimation, as compared with confidence intervals computed ignoring how a “final” model came to be. On the other hand, models developed on full fits after data reduction will be optimum in many cases.[image: A69956_2_En_4_Figj_HTML.gif] [image: A69956_2_En_4_Figk_HTML.gif]
                        
In some cases you may want to use the full model for prediction and variable selection for a “best bet” parsimonious list of independently important predictors. This could be accompanied by a list of variables selected in 50 
                
                
              bootstrap samples to demonstrate the imprecision in the “best bet.”
Sauerbrei and Schumacher 541 present a method to use bootstrapping to actually select the set of variables. However, there are a number of drawbacks to this approach 35:
1.The choice of an α cutoff for determining whether a variable is retained in a given 
                        
                        
                      bootstrap sample is arbitrary.

 

2.The choice of a cutoff for the proportion of bootstrap samples for which a variable is retained, in order to include that variable in the final model, is somewhat arbitrary.

 

3.Selection from among a set of correlated predictors is arbitrary, and all highly correlated predictors may have a low bootstrap selection frequency. It may be the case that none of them will be selected for the final model even though when considered individually each of them may be highly significant.

 

4.By using the bootstrap to choose variables, one must use the double bootstrap to resample the entire modeling process in order to validate the model and to derive reliable confidence intervals. This may be computationally prohibitive.

 

5.The bootstrap did not improve upon traditional backward stepdown variable selection. Both methods fail at identifying the “correct” variables.

 




For some applications the list of variables selected may be stabilized by grouping variables according to subject matter considerations or empirical correlations and testing each related group with a multiple degree of freedom test. Then the entire group may be kept or deleted and, if desired, groups that are retained can be summarized into a single variable or the most accurately measured variable within the group can replace the group. See Section 4.7 for more on this.
Kass and Raftery 337 showed that 
                
               Bayes factors have several advantages in variable selection, including the selection of less complex models that may agree better with subject matter knowledge. However, as in the case with more traditional stopping rules, the final model may still have regression coefficients that are too large. This problem is solved by Tibshirani’s 
                
              
lasso method, 608, 609 which is a penalized estimation technique in which the estimated regression coefficients are constrained so that the sum of their scaled absolute values falls below some constant k chosen by cross-validation. This kind of constraint forces some regression coefficient estimates to be exactly zero, thus achieving variable selection while shrinking the remaining coefficients toward zero to reflect the overfitting caused by data-based model selection.
A final problem with variable selection is illustrated by comparing this approach with the sensible way many 
                
              economists develop regression models. Economists frequently use the strategy of deleting only those variables that are “insignificant” and whose regression coefficients have a nonsensible direction. Standard variable selection on the other hand yields biologically implausible findings in many cases by setting certain regression coefficients exactly to zero. In a study of survival time for patients with heart failure, for example, it would be implausible that patients having a specific symptom live exactly as long as those without the symptom just because the symptom’s regression coefficient was “insignificant.” The 
                
              lasso method shares this difficulty with ordinary variable selection methods and with any method that in the Bayesian context places nonzero prior probability on β being exactly zero.[image: A69956_2_En_4_Figl_HTML.gif]

Many papers claim that there were insufficient data to allow for multivariable modeling, so they did “univariable screening” wherein only “significant” variables (i.e., those that are separately significantly associated with Y ) were entered into the model.6 This is just a forward stepwise variable selection in which insignificant variables from the first step are not reanalyzed in later steps. 
                
              Univariable screening is thus even worse than stepwise modeling as it can miss important variables that are only important after adjusting for other variables. 598 Overall, neither univariable screening nor stepwise variable selection in any way solves the problem of “too many variables, too few subjects,” and they cause severe biases in the resulting multivariable model fits while losing valuable predictive information from deleting marginally significant variables. [image: A69956_2_En_4_Figm_HTML.gif]

The online course notes contain a simple simulation study of stepwise selection using R. 
                
              


4.4 Sample Size, Overfitting, and Limits on Number of Predictors

              
                
                
              
            
When a model is fitted that is too complex, that it, has too many free 
                
               parameters to estimate for the amount of information in the data, the worth of the model (e.g., R
2) will be exaggerated and future observed values will not agree with predicted values. In this situation, overfitting is said to be present, and some of the findings of the analysis come from fitting 
                
              noise and not just signal, or finding spurious associations between X and Y. In this section general guidelines for preventing overfitting are given. Here we concern ourselves with the reliability or calibration

                
                
               of a model, meaning the ability of the model to predict future observations as well as it appeared to predict the responses at hand. For now we avoid judging whether the model is adequate for the task, but restrict our attention to the likelihood that the model has significantly overfitted the data.[image: A69956_2_En_4_Fign_HTML.gif]

In typical low signal–to–noise ratio situations7, model validations on independent datasets have found the minimum training sample size for which the fitted model has an independently validated predictive discrimination that equals the apparent discrimination seen with in training sample.
                
                
               Similar validation experiments have considered the margin of error in estimating an absolute quantity such as event probability. Studies such as 268, 270, 577 have shown that in many situations a fitted regression model is likely to be reliable when the number of predictors (or candidate predictors if using variable selection) p is less than m∕10 or m∕20, where m is the “limiting sample size” given in Table 4.1. A 
                
               good average requirement is [image: 
$$p < \frac{m} {15}$$
]. For example, Smith et al. 577 found in one series of simulations that the expected error in Cox model predicted five–year survival probabilities was below 0.05 when p < m∕20 for “average” subjects and below 0.10 when p < m∕20 for “sick” subjects, where m is the number of deaths. For “average” subjects, m∕10 was adequate for preventing expected errors > 0. 1. Note: The number of non-intercept parameters in the model (p) is usually greater than the number of predictors. Narrowly distributed predictor variables (e.g., if all subjects’ ages are between 30 and 45 or only 5% of subjects are female) will require even higher sample sizes. Note that the number of candidate variables must include all variables screened for association with the response, including nonlinear terms and interactions. Instead of relying on the rules of thumb in the table, the shrinkage factor estimate presented in the next section can be used to guide the analyst in determining how many d.f. to model (see p. 87).
Table 4.1Limiting Sample Sizes for Various Response Variables


	Type of Response Variable
	Limiting Sample Size m


	Continuous
	
n (total sample size)

	Binary
	min(n
1, n
2)8
                                                

	Ordinal (k categories)
	
                          [image: 
$$n - \frac{1} {n^{2}} \sum _{i=1}^{k}n_{i}^{3}$$
]
                          9
                        

	Failure (survival) time
	number of failures10
                                                




[image: A69956_2_En_4_Figo_HTML.gif]

Rules of thumb such as the 15:1 rule do not consider that a certain minimum sample size is needed just to estimate basic parameters such as an intercept or residual variance. This is dealt with in upcoming topics about specific models. For the case of ordinary linear regression
                
              

                
              , estimation of the residual variance is central. All standard errors, P-values, confidence intervals, and R
2 depend on having a precise estimate of σ
2. The one-sample problem of estimating a mean, which is equivalent to a linear model containing only an intercept, is the easiest case when estimating σ
2. When a sample of size n is drawn from a normal distribution, a 1 −α two-sided confidence interval for the unknown population variance σ
2 is given by [image: 
$$\displaystyle{ \frac{n - 1} {\chi _{1-\alpha /2,n-1}^{2}}s^{2} <\sigma ^{2} < \frac{n - 1} {\chi _{\alpha /2,n-1}^{2}}s^{2}, }$$
]

 (4.1)

 where s
2 is the sample variance and χ

α, n−1
2 is the α critical value of the χ
2 distribution with n − 1 degrees of freedom. We take the fold-change or multiplicative margin of error (MMOE) for estimating σ to be [image: 
$$\displaystyle{ \sqrt{\max (\frac{\chi _{1-\alpha /2,n-1 }^{2 }} {n - 1}, \frac{n - 1} {\chi _{\alpha /2,n-1}^{2}})} }$$
]

 (4.2)



To achieve a MMOE of no worse than 1.2 with 0.95 confidence when estimating σ requires a sample size of 70 subjects.
The linear model
                
               case is useful for examining n: p ratio another way. As discussed in the next section, R
adj
2 is a nearly unbiased estimate of R
2, i.e., is 
                
                
               not inflated by overfitting if the value used for p is “honest”, i.e., includes all variables screened. We can ask the question “for a given R
2, what ratio of n: p is required so that R
adj
2 does not drop by more than a certain relative or absolute amount from the value of R
2?” This assessment takes into account that higher signal:noise ratios allow fitting more variables.
                
              

                
                
               
                
              

                
                
              For example, with low R
2 a 100:1 ratio of n: p may be required to prevent R
2 from dropping by more [image: 
$$\frac{1} {10}$$
] or by an absolute amount of 0.01. A 15:1 rule would prevent R
2 from dropping by more than 0.075 for low R
2 (Figure 4.1).
[image: A69956_2_En_4_Fig1_HTML.gif]
Fig. 4.1Multiple of p that n must be to achieve a relative drop from R
2 to R
adj
2 by the indicated relative factor (left panel, 3 factors) or absolute difference (right panel, 6 decrements)






4.5 Shrinkage

              
                
              
            
The term shrinkage is used in regression modeling to denote two ideas. The first meaning relates to the slope of a calibration plot, which is a plot of observed responses against predicted responses11. When a dataset is used to fit the model parameters as well as to obtain the calibration plot, the usual estimation process will force the slope of observed versus predicted values to be one. When, however, parameter estimates are derived from one dataset and then applied to predict outcomes on an independent dataset, overfitting will cause the slope of the calibration plot (i.e., the shrinkage factor) to be less than one, a result of regression to the mean

                
              . Typically, low predictions will be too low and high predictions too high. Predictions near the mean predicted value will usually be quite accurate. The second meaning of shrinkage is a statistical estimation method that preshrinks regression coefficients towards zero so that the calibration plot for new data will not need shrinkage as its calibration slope will be one.
We turn first to shrinkage as an adverse result of traditional modeling. In ordinary linear regression, we know that all of the coefficient estimates are exactly unbiased estimates of the true effect when the model fits. Isn’t the existence of shrinkage and overfitting implying that there is some kind of bias in the parameter estimates? The answer is no because each separate coefficient has the desired expectation. The problem lies in how we use the coefficients. We tend not to pick out coefficients at random for interpretation but we tend to highlight very small and very large coefficients.
A simple example may suffice. Consider a clinical trial with 10 randomly assigned treatments such that the patient responses for each treatment are normally distributed. We can do an 
                
              ANOVA by fitting a multiple regression model with an intercept and nine 
                
              dummy variables. The intercept is an unbiased estimate of the mean response for patients on the first treatment, and each of the other coefficients is an unbiased estimate of the difference in mean response between the treatment in question and the first treatment. [image: 
$$\hat{\beta _{0}} +\hat{\beta _{1}}$$
] is an unbiased estimate of the mean response for patients on the second treatment. But if we plotted the predicted mean response for patients against the observed responses from new data, the slope of this calibration plot would typically be smaller than one. This is because in making this plot we are not picking coefficients at random but we are sorting the coefficients into ascending order. The treatment group having the lowest sample mean response will usually have a higher mean in the future, and the treatment group having the highest sample mean response will typically have a lower mean in the future. The sample mean of the group having the highest sample mean is not an unbiased estimate of its population mean.
As an illustration, let us draw 20 samples of size n = 50 from a uniform distribution for which the true mean is 0.5. Figure 4.2 displays the 20 means sorted into ascending order, similar to plotting Y versus [image: 
$$\hat{Y } = X\hat{\beta }$$
] based on least squares after sorting by [image: 
$$X\hat{\beta }$$
]. Bias in the very lowest and highest estimates is evident.
[image: A69956_2_En_4_Figb_HTML.gif]

[image: A69956_2_En_4_Fig2_HTML.gif]
Fig. 4.2Sorted means from 20 samples of size 50 from a uniform [0, 1] distribution. The reference line at 0.5 depicts the true population value of all of the means.





When we want to highlight a treatment that is not chosen at random (or a priori), the data-based selection of that treatment needs to be compensated for in the estimation process.12 It is well known that the use of shrinkage methods such as the James–Stein estimator to pull treatment means toward the grand mean over all treatments results in estimates of treatment-specific means that are far superior to ordinary stratified means. 176

Turning from a cell means model to the general case where predicted values are general linear combinations [image: 
$$X\hat{\beta }$$
], the slope γ of properly transformed responses Y against [image: 
$$X\hat{\beta }$$
] (sorted into ascending order) will be less than one on new data. Estimation of the shrinkage coefficient γ allows quantification of the amount of overfitting present, and it allows one to estimate the likelihood that the model will reliably predict new observations. van Houwelingen and le Cessie [633, Eq. 77] provided a heuristic shrinkage estimate that has worked well in several examples: [image: 
$$\displaystyle{ \hat{\gamma }= \frac{\mathrm{model}\ \chi ^{2} - p} {\mathrm{model}\ \chi ^{2}}, }$$
]

 (4.3)

 [image: A69956_2_En_4_Figp_HTML.gif]

where p is the total degrees of freedom for the predictors and model χ
2 is the likelihood ratio χ
2 statistic for testing the joint influence of all predictors simultaneously (see Section 9.​3.​1). For ordinary linear models, van Houwelingen and le Cessie proposed a shrinkage factor [image: 
$$\hat{\gamma }$$
] that can be shown to equal [image: 
$$\frac{n-p-1} {n-1} \frac{R_{\mathrm{adj}}^{2}} {R^{2}}$$
], where the adjusted R
2

                
                
               is given by

                            [image: A69956_2_En_4_Figq_HTML.gif]
[image: 
$$\displaystyle{ R_{\mathrm{adj}}^{2} = 1 - (1 - R^{2}) \frac{n - 1} {n - p - 1}. }$$
]

 (4.4)

 For such linear models with an intercept β
0, the shrunken estimate of β is [image: 
$$\displaystyle\begin{array}{rcl} \hat{\beta }_{0}^{s}& =& (1-\hat{\gamma })\overline{Y } +\hat{\gamma }\hat{\beta } _{ 0} \\ \hat{\beta }_{j}^{s}& =& \hat{\gamma }\hat{\beta }_{ j},j = 1,\ldots,p,{}\end{array}$$
]

 (4.5)

 where [image: 
$$\overline{Y }$$
] is the mean of the response vector. Again, when stepwise fitting is used, the p in these equations is much closer to the number of candidate 
                
                
              degrees of freedom rather than the number in the “final” model. See Section 5.​3 for methods of estimating γ using the 
                
                
              bootstrap (p. 115) or cross-validation.[image: A69956_2_En_4_Figr_HTML.gif]

Now turn to the second usage of the term shrinkage. Just as 
                
                
              clothing is sometimes preshrunk so that it will not shrink further once it is purchased, better calibrated predictions result when shrinkage is built into the estimation process in the first place. The object of shrinking regression coefficient estimates is to obtain a shrinkage coefficient of γ = 1 on new data. Thus by somewhat discounting [image: 
$$\hat{\beta }$$
] we make the model underfitted on the data at hand (i.e., apparent γ < 1) so that on new data extremely low or high predictions are correct.


                
              Ridge regression 388, 633 is one technique for placing restrictions on the parameter estimates that results in shrinkage. A ridge parameter must be chosen to control the amount of shrinkage. 
                
                
              Penalized maximum likelihood estimation, 237, 272, 388, 639 a generalization of ridge regression, is a general shrinkage procedure. A method such as cross-validation or optimization of a modified 
                
              AIC must be used to choose an optimal penalty factor. An advantage of penalized estimation is that one can differentially penalize the more complex components of the model such as nonlinear or interaction effects. A drawback of ridge regression and 
                
                
              penalized maximum likelihood is that the final model is difficult to validate unbiasedly since the optimal amount of shrinkage is usually determined by examining the entire dataset. Penalization is one of the best ways to approach the “too many variables, too little data” problem. See Section 9.​10 for details.
                
                
               
                
              


4.6 Collinearity

              
                
              
            
When at least one of the predictors can be predicted well from the other predictors, the standard errors of the regression coefficient estimates can be inflated and corresponding tests have reduced power. 217 In stepwise variable selection, collinearity can cause predictors to compete and make the selection of “important” variables arbitrary. Collinearity makes it difficult to estimate and interpret a particular regression coefficient because the data have little information about the effect of changing one variable while holding another (highly correlated) variable constant [101, Chap. 9]. However, collinearity does not affect the joint influence of highly correlated variables when tested simultaneously. Therefore, once groups of highly correlated predictors are identified, the problem can be rectified by testing the contribution of an entire set with a multiple d.f. test rather than attempting to interpret the coefficient or one d.f. test for a single predictor.
Collinearity does not affect predictions made on the same dataset used to estimate the model parameters or on new data that have the same degree of collinearity as the original data [470, pp. 379–381] as long as extreme extrapolation is not attempted. Consider as two predictors the total and LDL cholesterols that are highly correlated. If predictions are made at the same combinations of total and LDL cholesterol that occurred in the training data, no problem will arise. However, if one makes a prediction at an inconsistent combination of these two variables, the predictions may be inaccurate and have high standard errors.
When the ordinary truncated power basis is used to derive component variables for fitting linear and cubic splines, as was described earlier, the component variables can be very collinear. It is very unlikely that this will result in any problems, however, as the component variables are connected algebraically. Thus it is not possible for a combination of, for example, x and max(x − 10, 0) to be inconsistent with each other. Collinearity problems are then more likely to result from partially redundant subsets of predictors as in the cholesterol example above.
One way to quantify collinearity is with variance inflation factors

                
               or VIF, which in ordinary least squares are diagonals of the inverse of the X′X matrix scaled to have unit variance (except that a column of 1s is retained corresponding to the intercept). Note that some authors compute VIF from the correlation matrix form of the design matrix, omitting the intercept. V I F

                i
               is [image: 
$$1/(1 - R_{i}^{2})$$
] where R

                i
              
2 is the squared multiple correlation coefficient between column i and the remaining columns of the design matrix. For models that are fitted with maximum likelihood estimation, the 
                
              information matrix is scaled to correlation form, and VIF is the diagonal of the inverse of this scaled matrix. 147, 654 Then the VIF are similar to those from a weighted correlation matrix of the original columns in the design matrix. Note that indexes such as VIF are not very informative as some variables are algebraically connected to each other.[image: A69956_2_En_4_Figs_HTML.gif]

The SAS VARCLUS

                
               procedure 539 and R varclus

                
               function can identify collinear predictors. Summarizing collinear variables using a summary score is more powerful and stable than arbitrary selection of one variable in a group of collinear variables (see the next section). 
                
              
                            [image: A69956_2_En_4_Figt_HTML.gif]
                        

4.7 Data Reduction

              
                
              
              
                
                
              
            
The sample size need not be as large as shown in Table 4.1 if the model is to be validated independently and if you don’t care that the model may fail to validate. However, it is likely that the model will be overfitted and will not validate if the sample size does not meet the guidelines. Use of data reduction methods before model development is strongly recommended if the conditions in Table 4.1 are not satisfied, and if shrinkage is not incorporated into parameter estimation. Methods such as shrinkage and data reduction reduce the effective d.f. of the model, making it more likely for the model to validate on future data. Data reduction is aimed at reducing the number of parameters to estimate in the model, without distorting statistical inference for the parameters. This is accomplished by ignoring Y during data reduction. Manipulations of X in unsupervised learning 
                
               may result in a loss of information for predicting Y, but when the information loss is small, the gain in power and reduction of overfitting more than offset the loss.
Some available data reduction methods are given below.
1.Use the literature to eliminate unimportant variables.

 

2.Eliminate variables whose distributions are too narrow.

 

3.Eliminate candidate predictors that are missing in a large number of subjects, especially if those same predictors are likely to be missing for future applications of the model.

 

4.Use a statistical data reduction method such as incomplete principal component regression, nonlinear generalizations of principal components such as principal surfaces, sliced inverse regression, variable clustering, or ordinary cluster analysis on a measure of similarity between variables. [image: A69956_2_En_4_Figu_HTML.gif]
                                        

 




See Chapters 8 and 14 for detailed case studies in data reduction.
4.7.1 Redundancy Analysis

                
                  
                
              
There are many approaches to data reduction. One rigorous approach involves removing predictors that are easily predicted from other predictors, using flexible parametric additive regression models. This approach is unlikely to result in a major reduction in the number of regression coefficients to estimate against Y, but will usually provide insights useful for later data reduction over and above the insights given by methods based on pairwise correlations instead of multiple R
2.
The Hmisc redun

                  
                 function implements the following redundancy checking algorithm. 	Expand each continuous predictor into restricted cubic spline basis functions. Expand categorical predictors into dummy variables.

	Use OLS to predict each predictor with all component terms of all remaining predictors (similar to what the Hmisc transcan

                        
                       function does). When the predictor is expanded into multiple terms, use the first canonical variate13.

	Remove the predictor that can be predicted from the remaining set with the highest adjusted or regular R
2.

	Predict all remaining predictors from their complement.

	Continue in like fashion until no variable still in the list of predictors can be predicted with an R
2 or adjusted R
2 greater than a specified threshold or until dropping the variable with the highest R
2 (adjusted or ordinary) would cause a variable that was dropped earlier to no longer be predicted at the threshold from the now smaller list of predictors.





Special consideration must be given to categorical predictors. One way to consider a categorical variable redundant is if a linear combination of dummy variables representing it can be predicted from a linear combination of other variables. For example, if there were 4 cities in the data and each city’s rainfall was also present as a variable, with virtually the same rainfall reported for all observations for a city, city would be redundant given rainfall (or vice-versa). If two cities had the same rainfall, ‘city’ might be declared redundant even though tied cities might be deemed non-redundant in another setting. A second, more stringent way to check for redundancy of a categorical predictor is to ascertain whether all dummy variables created from the predictor are individually redundant. The redun

                  
                 function implements both approaches.
Examples of use of redun

                  
                 are given in two case studies. [image: A69956_2_En_4_Figv_HTML.gif]
                                
                  
                


4.7.2 Variable Clustering

                
                  
                  
                
              
Although the use of subject matter knowledge is usually preferred, statistical clustering techniques can be useful in determining independent dimensions that are described by the entire list of candidate predictors. Once each dimension is scored (see below), the task of regression modeling is simplified, and one quits trying to separate the effects of factors that are measuring the same phenomenon. One type of variable clustering 539 is based on a type of oblique-rotation principal component (PC)
                  
                 analysis that attempts to separate variables so that the first PC of each group is representative of that group (the first PC is the linear combination of variables having maximum variance subject to normalization constraints on the coefficients 142, 144). Another approach, that of doing a hierarchical cluster analysis on an appropriate similarity matrix (such as squared correlations) will often yield the same results. For either approach, it is often advisable to use 
                  
                  
                robust (e.g., rank-based) measures for continuous variables if they are skewed, as skewed variables can greatly affect ordinary correlation coefficients. Pairwise deletion of missing values is also advisable for this procedure—
                  
                  
                casewise deletion can result in a small biased sample. [image: A69956_2_En_4_Figw_HTML.gif]
                            
When variables are not monotonically related to each other, Pearson or Spearman squared correlations can miss important associations and thus are not always good similarity measures. A general and 
                  
                  
                robust 
                  
                similarity measure is Hoeffding’s D, 295 which for two variables X and Y is a measure of the agreement between F(x, y) and G(x)H(y), where G, H are marginal cumulative distribution functions and F is the joint CDF. The D statistic will detect a wide variety of dependencies between two variables.
See pp. 330 and 458 for examples of variable clustering.[image: A69956_2_En_4_Figx_HTML.gif]


                
                  
                  
                
              

4.7.3 Transformation and Scaling Variables Without Using Y

Scaling techniques often allow the analyst to reduce the number of parameters to fit by estimating transformations for each predictor using only information about associations with other predictors. It may be advisable to cluster variables before scaling so that patterns are derived only from variables that are related. For purely categorical predictors, methods such as 
                  
                correspondence analysis (see, for example, [108, 139, 239, 391, 456]) can be useful for data reduction. Often one can use these techniques to scale multiple dummy variables into a few dimensions. For mixtures of categorical and continuous predictors, qualitative principal component analysis such as the maximum total variance (MTV)
                  
                 method of Young et al. 456, 680 is useful. For the special case of representing a series of variables with one PC, the MTV method is quite easy to implement.
1.Compute P C
1, the first PC of the variables to reduce X
1, …, X

                          q
                         using the correlation matrix of Xs.

 

2.Use ordinary linear regression to predict P C
1 on the basis of functions of the Xs, such as restricted cubic spline functions for continuous Xs or a series of dummy variables for polytomous Xs. The expansion of each X

                          j
                         is regressed separately on P C
1.

 

3.These separately fitted regressions specify the working transformations of each X.

 

4.Recompute P C
1 by doing a PC analysis on the transformed Xs (predicted values from the fits).

 

5.Repeat steps 2 to 4 until the proportion of variation explained by P C
1 reaches a plateau. This typically requires three to four iterations.

 




A transformation procedure that is similar to MTV is the maximum generalized variance (
                  
                MGV) method due to Sarle [368, pp. 1267–1268]. MGV involves predicting each variable from (the current transformations of) all the other variables. When predicting variable i, that variable is represented as a set of linear and nonlinear terms (e.g., spline components). Analysis of 
                  
                canonical variates 279 can be used to find the linear combination of terms for X

                  i
                 (i.e., find a new transformation for X

                  i
                ) and the linear combination of the current transformations of all other variables (representing each variable as a single, transformed, variable) such that these two linear combinations have maximum correlation. (For example, if there are only two variables X
1 and X
2 represented as quadratic polynomials, solve for a, b, c, d such that a X
1 + b X
1
2 has maximum correlation with c X
2 + d X
2
2.) The process is repeated until the transformations converge. The goal of 
                  
                MGV is to transform each variable so that it is most similar to predictions from the other transformed variables. MGV does not use PCs (so one need not precede the analysis by variable clustering), but once all variables have been transformed, you may want to summarize them with the first PC.
The SAS PRINQUAL

                  
                 procedure of Kuhfeld 368 implements the MTV and MGV methods, and allows for very flexible transformations of the predictors, including monotonic splines and ordinary cubic splines.
A very flexible automatic procedure for transforming each predictor in turn, based on all remaining predictors, is the 
                  
                ACE (alternating conditional expectation) procedure of Breiman and Friedman. 68 Like SAS PROC PRINQUAL

                  
                , ACE handles monotonically restricted transformations and categorical variables. It fits transformations by maximizing R
2 between one variable and a set of variables. It automatically transforms all variables, using the “super smoother” 207 for continuous variables. Unfortunately, ACE does not handle missing values. See Chapter 16 for more about ACE.
It must be noted that at best these automatic transformation procedures generally find only marginal transformations, not transformations of each predictor adjusted for the effects of all other predictors. When adjusted transformations differ markedly from marginal transformations, only joint modeling of all predictors (and the response) will find the correct transformations.
Once transformations are estimated using only predictor information, the adequacy of each predictor’s transformation can be checked by graphical methods, by nonparametric smooths of transformed X

                  j
                 versus Y, or by expanding the transformed X

                  j
                 using a spline function. This approach of checking that transformations are optimal with respect to Y uses the response data, but it accepts the initial transformations unless they are significantly inadequate. If the sample size is low, or if P C
1 for the group of variables used in deriving the transformations is deemed an adequate summary of those variables, that P C
1 can be used in modeling. In that way, data reduction is accomplished two ways: by not using Y to estimate multiple coefficients for a single predictor, and by reducing related variables into a single score, after transforming them. See Chapter 8 for a detailed example of these scaling techniques.

4.7.4 Simultaneous Transformation and Imputation

                
                  
                
              
As mentioned in Chapter 3 (p. 52) if transformations are complex or 
                  
                non-monotonic, ordinary imputation models may not work. SAS PROC PRINQUAL

                  
                 implemented a method for simultaneously imputing missing values while solving for transformations. Unfortunately, the imputation procedure frequently converges to imputed values that are outside the allowable range of the data. This problem is more likely when multiple variables are missing on the same subjects, since the transformation algorithm may simply separate missings and nonmissings into clusters.
A simple modification of the 
                  
                MGV algorithm of PRINQUAL

                  
                 that simultaneously imputes missing values without these problems is implemented in the R function transcan

                  
                

                  
                . Imputed values are initialized to medians of continuous variables and the most frequent category of categorical variables. For continuous variables, transformations are initialized to linear functions. For categorical ones, transformations may be initialized to the identify function, to dummy variables indicating whether the observation has the most prevalent categorical value, or to random numbers. Then when using 
                  
                canonical variates to transform each variable in turn, observations that are missing on the current “dependent” variable are excluded from consideration, although missing values for the current set of “predictors” are imputed. Transformed variables are normalized to have mean 0 and standard deviation 1. Although categorical variables are scored using the first canonical variate, transcan

                  
                 has an option to use recursive partitioning to obtain imputed values on the original scale 
                  
                 (Section 2.​5) for these variables. It defaults to imputing categorical variables using the category whose predicted 
                  
                canonical score is closest to the predicted score.

transcan

                  
                 uses restricted cubic splines to model continuous variables. It does not implement monotonicity constraints. transcan

                  
                 automatically constrains imputed values (both on transformed and original scales) to be in the same range as non-imputed ones. This adds much stability to the resulting estimates although it can result in a boundary effect. Also, imputed values can optionally be shrunken using Eq. 4.5 to avoid overfitting when developing the 
                  
                  
                imputation models. Optionally, missing values can be set to specified constants rather than estimating them. These constants are ignored during the transformation-estimation phase14. This technique has proved to be helpful when, for example, a laboratory test is not ordered because a physician thinks the patient has returned to normal with respect to the lab parameter measured by the test. In that case, it’s better to use a normal lab value for missings.
The transformation and imputation information created by transcan

                  
                 may be used to transform/impute variables in datasets not used to develop the transformation and imputation formulas. There is also an R function to create R functions that compute the final transformed values of each predictor given input values on the original scale.
As an example of 
                  
                non-monotonic transformation and 
                  
                  
                imputation, consider a sample of 1000 hospitalized patients from the SUPPORT15 study. 352 Two mean arterial blood pressure measurements were set to missing.

                [image: A69956_2_En_4_Figc_HTML.gif]

                [image: A69956_2_En_4_Fig3_HTML.gif]
Fig. 4.3Transformations fitted using transcan. Tick marks indicate the two imputed values for blood pressure.




                [image: A69956_2_En_4_Fig4_HTML.gif]
Fig. 4.4The lower left plot contains raw data (Spearman ρ = −0. 02); the lower right is a scatterplot of the corresponding transformed values (ρ = −0. 13). Data courtesy of the SUPPORT study 352.




              
Spearman’s rank correlation ρ between pairs of heart rate and blood pressure was -0.02, because these variables each require U-shaped transformations. Using restricted cubic splines with five knots placed at default quantiles, transcan

                  
                 provided the transformations shown in Figure 4.3. Correlation between transformed variables is ρ = −0. 13. The fitted transformations are similar to those obtained from relating these two variables to time until death.

4.7.5 Simple Scoring of Variable Clusters
If a subset of the predictors is a series of related dichotomous variables, a simpler data reduction strategy is sometimes employed. First, construct two new predictors representing whether any of the factors is positive and a count of the number of positive factors. For the ordinal count of the number of positive factors, score the summary variable to satisfy linearity assumptions as discussed previously. For the more powerful predictor of the two summary measures, test for adequacy of scoring by using all dichotomous variables as candidate predictors after adjusting for the new summary variable. A residual χ
2 statistic can be used to test whether the summary variable adequately captures the predictive information of the series of binary predictors.16 This statistic will have degrees of freedom equal to one less than the number of binary predictors when testing for adequacy of the summary count (and hence will have low power when there are many predictors). Stratification by the summary score and examination of responses over cells can be used to suggest a transformation on the score.
Another approach to scoring a series of related dichotomous predictors is to have “experts” assign severity points to each condition and then to either sum these points or use a 
                  
                hierarchical rule that scores according to the condition with the highest points (see Section 14.​3 for an example). The latter has the advantage of being easy to implement for field use. The adequacy of either type of scoring can be checked using tests of linearity in a regression model17.

4.7.6 Simplifying Cluster Scores
If a variable cluster contains many individual predictors, 
                  
                parsimony may sometimes be achieved by predicting the cluster score from a subset of its components (using linear regression or 
                  
                CART (Section 2.​5), for example). Then a new cluster score is created and the response model is rerun with the new score in the place of the original one. If one constituent variable has a very high R
2 in predicting the original cluster score, the single variable may sometimes be substituted for the cluster score in refitting the model without loss of predictive discrimination.[image: A69956_2_En_4_Figy_HTML.gif]

Sometimes it may be desired to simplify a variable cluster by asking the question “which variables in the cluster are really the predictive ones?,” even though this approach will usually cause true predictive discrimination to suffer. For clusters that are retained after limited step-down modeling, the entire list of variables can be used as candidate predictors and the step-down process repeated. All variables contained in clusters that were not selected initially are ignored. A fair way to validate such two-stage models is to use a resampling method (Section 5.​3) with scores for deleted clusters as candidate variables for each resample, along with all the individual variables in the clusters the analyst really wants to 
                  
                

                  
                retain. A method called battery reduction can be used to delete variables from clusters by determining if a subset of the variables can explain most of the variance explained by P C
1 (see [142, Chapter 12] and 445). This approach does not require examination of associations with Y. Battery reduction can also be used to find a set of individual variables that capture much of the information in the first k principal components.[image: A69956_2_En_4_Figz_HTML.gif]
                            

4.7.7 How Much Data Reduction Is Necessary?
In addition to using the sample size to degrees of freedom ratio as a rough guide to how much data reduction to do before model fitting, the heuristic shrinkage
                  
                 estimate in Equation 4.3 can also be informative. First, fit a full model with all candidate variables, nonlinear terms, and hypothesized interactions. Let p denote the number of parameters in this model, aside from any intercepts. Let LR denote the log likelihood ratio χ
2 for this full model. The estimated shrinkage
                  
                 is [image: 
$$(\mathrm{LR} - p)/\mathrm{LR}$$
]. If this falls below 0.9, for example, we may be concerned with the lack of calibration the model may experience on new data. Either a shrunken estimator or data reduction is needed. A reduced model may have acceptable calibration if associations with Y are not used to reduce the predictors.
A simple method, with an assumption, can be used to estimate the target number of total regression degrees of freedom q in the model. In a “best case,” the variables removed to arrive at the reduced model would have no association with Y. The expected value of the χ
2 statistic for testing those variables would then be p − q. The shrinkage
                  
                 for the reduced model is then on average [image: 
$$[\mathrm{LR} - (p - q) - q]/[\mathrm{LR} - (p - q)]$$
]. Setting this ratio to be ≥ 0. 9 and solving for q gives [image: 
$$q \leq (\mathrm{LR} - p)/9$$
]. Therefore, reduction of 
                  
                dimensionality down to q degrees of freedom would be expected to achieve < 10% shrinkage. With these assumptions, there is no hope that a reduced model would have acceptable calibration
                  
                  
                 unless LR > p + 9. If the information explained by the omitted variables is less than one would expect by chance (e.g., their total χ
2 is extremely small), a reduced model could still be beneficial, as long as the conservative bound [image: 
$$(\mathrm{LR} - q)/\mathrm{LR} \geq 0.9$$
] or q ≤ LR∕10 were achieved. This conservative bound assumes that no χ
2 is lost by the reduction, that is that the final model χ
2 ≈ LR. This is unlikely in practice. Had the p − q omitted variables had a larger χ
2 of 2(p − q) (the break-even point for 
                  
                AIC), q must be [image: 
$$\leq (LR - 2p)/8$$
].
As an example, suppose that a binary logistic model is being developed from a sample containing 45 events on 150 subjects. The 10:1 rule suggests we can analyze 4.5 degrees of freedom. The analyst wishes to analyze age, sex, and 10 other variables. It is not known whether interaction between age and sex exists, and whether age is linear. A restricted cubic spline is fitted with four knots, and a linear interaction is allowed between age and sex. These two variables then need [image: 
$$3 + 1 + 1 = 5$$
] degrees of freedom. The other 10 variables are assumed to be linear and to not interact with themselves or age and sex. There is a total of 15 d.f. The full model with 15 d.f. has LR = 50. Expected shrinkage
                  
                 from this model is [image: 
$$(50 - 15)/50 = 0.7$$
]. Since LR [image: 
$$> 15 + 9 = 24$$
], some reduction might yield a better validating model. Reduction to [image: 
$$q = (50 - 15)/9 \approx 4$$
] d.f. would be necessary, assuming the reduced LR is about [image: 
$$50 - (15 - 4) = 39$$
]. In this case the 10:1 rule yields about the same value for q. The analyst may be forced to assume that age is linear, modeling 3 d.f. for age and sex. The other 10 variables would have to be reduced to a single variable using principal components or another scaling technique. The AIC-based calculation yields a maximum of 2.5 d.f.
If the goal of the analysis is to make a series of hypothesis tests (adjusting P-values for multiple comparisons) instead of to predict future responses, the full model would have to be used.
A summary of the various data reduction methods is given in Figure 4.5.[image: A69956_2_En_4_Fig5_HTML.gif]
Fig. 4.5Summary of Some Data Reduction Methods





When principal component analysis or related methods are used for data reduction, the model may be harder to describe since internal coefficients are “hidden.” R code on p. 141 shows how an ordinary linear model fit can be used in conjunction with a logistic model fit based on principal components to draw a nomogram with axes for all predictors. [image: A69956_2_En_4_Figaa_HTML.gif]
                                
                  
                



4.8 Other Approaches to Predictive Modeling
The approaches recommended in this text are 	fitting fully pre-specified models without deletion of “insignificant” predictors

	using data reduction methods (masked to Y ) to reduce the dimensionality of the predictors and then fitting the number of parameters the data’s information content can support

	using shrinkage (penalized estimation) to fit a large model without worrying about the sample size.





Data reduction approaches covered in the last section can yield very interpretable, stable models, but there are many decisions to be made when using a two-stage (reduction/model fitting) approach. Newer single stage approaches are evolving. These new approaches, listed on the text’s web site, handle continuous predictors well, unlike recursive partitioning.
When data reduction is not required, generalized additive models 277, 674 should also be considered.

4.9 Overly Influential Observations

              
                
              
              
                
                
              
            
Every observation should influence the fit of a regression model. It can be disheartening, however, if a significant treatment effect or the shape of a regression effect rests on one or two observations. Overly influential observations also lead to increased variance of predicted values, especially when variances are estimated by bootstrapping after taking variable selection into account. In some cases, overly influential observations can cause one to abandon a model, “change” the data, or get more data. Observations can be overly influential for several major reasons.
1.The most common reason is having too few observations for the complexity of the model being fitted. Remedies for this have been discussed in Sections 4.7 and 4.3.

 

2.Data transcription or data entry errors can ruin a model fit.

 

3.Extreme values of the predictor variables can have a great impact, even when these values are validated for accuracy. Sometimes the analyst may deem a subject so atypical of other subjects in the study that deletion of the case is warranted. On other occasions, it is beneficial to truncate measurements where the data density ends. In one dataset of 4000 patients and 2000 deaths, white blood count (WBC) ranged from 500 to 100,000 with.05 and.95 quantiles of 2755 and 26,700, respectively. Predictions from a linear spline function of WBC were sensitive to WBC > 60,000, for which there were 16 patients. There were 46 patients with WBC > 40,000. Predictions were found to be more stable when WBC was truncated at 40,000, that is, setting WBC to 40,000 if WBC > 40,000.

 

4.Observations containing disagreements between the predictors and the response can influence the fit. Such disagreements should not lead to discarding the observations unless the predictor or response values are erroneous as in Reason 3, or the analysis is made conditional on observations being unlike the influential ones. In one example a single extreme predictor value in a sample of size 8000 that was not on a straight line relationship with the other (X, Y ) pairs caused a χ
2 of 36 for testing 
                        
                        
                      nonlinearity of the predictor. Remember that an imperfectly fitting model is a fact of life, and discarding the observations can inflate the model’s predictive accuracy. On rare occasions, such lack of fit may lead the analyst to make changes in the model’s structure, but ordinarily this is best done from the “ground up” using formal tests of lack of fit (e.g., a test of linearity or interaction).

 




Influential observations of the second and third kinds can often be detected by careful quality control of the data. Statistical measures can also be helpful. The most common measures that apply to a variety of regression models are leverage, DFBETAS, DFFIT, and DFFITS. 
                
              

                
              

                
              

                
              

Leverage measures the capacity of an observation to be influential due to having extreme predictor values. Such an observation is not necessarily influential. To compute leverage in ordinary least squares, we define the hat matrix H given by
                
               [image: 
$$\displaystyle{ H = X(X'X)^{-1}X'. }$$
]

 (4.6)

 H is the matrix that when multiplied by the response vector gives the predicted values, so it measures how an observation estimates its own predicted response. The diagonals h

                i i
               of H are the leverage measures and they are not influenced by Y. It has been suggested 47 that [image: 
$$h_{ii} > 2(p + 1)/n$$
] signal a high leverage point, where p is the number of columns in the design matrix X aside from the intercept and n is the number of observations. Some believe that the distribution of h

                i i
               should be examined for values that are higher than typical.
DFBETAS
                
               is the change in the vector of regression coefficient estimates upon deletion of each observation in turn, scaled by their standard errors. 47 Since DFBETAS encompasses an effect for each predictor’s coefficient, DFBETAS allows the analyst to isolate the problem better than some of the other measures. DFFIT is the change in the predicted X β when the observation is dropped, and DFFITS
                
              

                
               is DFFIT standardized by the standard error of the estimate of X β. In both cases, the standard error used for normalization is recomputed each time an observation is omitted. Some classify an observation as overly influential when [image: 
$$\vert \mathrm{DFFITS}\vert > 2\sqrt{(p + 1)/(n - p - 1)}$$
], while others prefer to examine the entire distribution of DFFITS to identify “outliers”. 47

Section 10.​7 discusses influence measures for the logistic model, which requires maximum likelihood estimation. These measures require the use of special residuals and information matrices (in place of X′X).
If truly influential observations are identified using these indexes, careful thought is needed to decide how (or whether) to deal with them. Most important, there is no substitute for careful examination of the dataset before doing any analyses. 99 Spence and Garrison [581, p. 16] feel that

              Although the identification of aberrations receives considerable attention in most modern statistical courses, the emphasis sometimes seems to be on disposing of embarrassing data by searching for sources of technical error or minimizing the influence of inconvenient data by the application of resistant methods. Working scientists often find the most interesting aspect of the analysis inheres in the lack of fit rather than the fit itself.


            

              
                
              
            

4.10 Comparing Two Models

              
                
                
              
              
                
                
              
            
Frequently one wants to choose between two competing models on the basis of a common set of observations. The methods that follow assume that the performance of the models is evaluated on a sample not used to develop either one. In this case, predicted values from the model can usually be considered as a single new variable for comparison with responses in the new dataset. These methods listed below will also work if the models are compared using the same set of data used to fit each one, as long as both models have the same effective number of (candidate or actual) parameters. This requirement prevents us from rewarding a model just because it overfits the training sample (see Section 9.​8.​1 for a method comparing two models of differing complexity). The methods can also be enhanced using bootstrapping or cross-validation on a single sample to get a fair comparison when the playing field is not level, for example, when one model had more opportunity for fitting or overfitting the responses.
Some of the criteria for choosing one model over the other are
1.calibration (e.g., one model is well-calibrated and the other is not),

 

2.discrimination,

 

3.face validity,

 

4.measurement errors in required predictors,

 

5.use of continuous predictors (which are usually better defined than categorical ones),

 

6.omission of “insignificant” variables that nonetheless make sense as risk factors,

 

7.simplicity (although this is less important with the availability of computers), and

 

8.lack of fit for specific types of subjects.

 




Items 3 through 7 require subjective judgment, so we focus on the other aspects. If the purpose of the models is only to rank-order subjects, 
                
                
              calibration is not an issue. Otherwise, a model having poor calibration can be dismissed outright. Given that the two models have similar calibration, discrimination should be examined critically. Various statistical indexes can quantify 
                
                
              discrimination ability (e.g., R
2, model χ
2, Somers’ D

                x y
              , Spearman’s ρ, area under ROC curve—see Section 10.​8). Rank measures (D

                x y
              , ρ, 
                
                
              ROC area) only measure how well predicted values can rank-order responses. For example, predicted probabilities of 0.01 and 0.99 for a pair of subjects are no better than probabilities of 0.2 and 0.8 using rank measures, if the first subject had a lower response value than the second. Therefore, rank measures such as ROC area (c index), 
                
               although fine for describing a given model, may not be very sensitive in choosing between two models 118, 488, 493. This is especially true when the models are strong, as it is easier to move a rank correlation from 0.6 to 0.7 than it is to move it from 0.9 to 1.0. 
                
                
              Measures such as R
2 and the model χ
2 statistic (calculated from the predicted and observed responses) are more sensitive. Still, one may not know how to interpret the added utility of a model that boosts the R
2 from 0.80 to 0.81.
Again given that both models are equally well calibrated, 
                
                
              discrimination can be studied more simply by examining the distribution of predicted values [image: 
$$\hat{Y }$$
]. Suppose that the predicted value is the probability that a subject dies. Then high-resolution histograms of the predicted risk distributions for the two models can be very revealing. If one model assigns 0.02 of the sample to a risk of dying above 0.9 while the other model assigns 0.08 of the sample to the high risk group, the second model is more discriminating. The worth of a model can be judged by how far it goes out on a limb while still maintaining good 
                
                
              calibration. [image: A69956_2_En_4_Figab_HTML.gif]

Frequently, one model will have a similar 
                
                
              discrimination index to another model, but the likelihood ratio χ
2 statistic is meaningfully greater for one. Assuming corrections have been made for complexity, the model with the higher χ
2 usually has a better fit for some subjects, although not necessarily for the average subject. A crude plot of predictions from the first model against predictions from the second, possibly stratified by Y, can help describe the differences in the models. More specific analyses will determine the characteristics of subjects where the differences are greatest. Large differences may be caused by an omitted, underweighted, or improperly transformed predictor, among other reasons. In one example, two models for predicting hospital mortality in critically ill patients had the same 
                
                
              discrimination index (to two decimal places). For the relatively small subset of patients with extremely low white blood counts or serum albumin, the model that treated these factors as continuous variables provided predictions that were very much different from a model that did not.
When comparing predictions for two models that may not be calibrated (from overfitting, e.g.), the two sets of predictions may be shrunk so as to not give credit for overfitting (see Equation 4.3).
Sometimes one wishes to compare two models that used the response variable differently, a much more difficult problem. For example, an investigator may want to choose between a survival model that used time as a continuous variable, and a binary logistic model for dead/alive at six months. Here, other considerations are also important (see Section 17.​1). A model that predicts dead/alive at six months does not use the response variable effectively, and it provides no information on the chance of dying within three months.


                
                
              When one or both of the models is fitted using least squares, it is useful to compare them using an error measure that was not used as the optimization criterion, such as mean absolute error or median absolute error. Mean and median absolute errors are excellent measures for judging the value of a model developed without transforming the response to a model fitted after transforming Y, then back-transforming to get predictions. [image: A69956_2_En_4_Figac_HTML.gif]


4.11 Improving the Practice of Multivariable Prediction
Standards for published predictive modeling and feature selection in high-dimensional problems 
                
               are not very high. There are several things that a good analyst can do to improve the situation.
1.Insist on validation of predictive models and discoveries, using rigorous internal validation based on resampling or using external validation.

 

2.Show collaborators that split-sample validation is not appropriate unless the number of subjects is huge 	This can be demonstrated by spliting the data more than once and seeing volatile results, and by calculating a confidence interval for the predictive accuracy in the test dataset and showing that it is very wide.






 

3.Run a simulation study with no real associations and show that associations are easy to find if a dangerous data mining procedure is used. Alternately, analyze the collaborator’s data after randomly permuting the Y vector and show some “positive” findings.

 

4.Show that alternative explanations are easy to posit. For example: 	The importance of a risk factor may disappear if 5 “unimportant” risk factors are added back to the model

	Omitted main effects can explain away apparent interactions.

	Perform a uniqueness analysis: attempt to predict the predicted values from a model derived by data torture from all of the features not used in the model. 
                              
                             If one can obtain R
2 = 0. 85 in predicting the “winning” feature signature (predicted values) from the “losing” features, the “winning” pattern is not unique and may be unreliable.






 





4.12 Summary: Possible Modeling Strategies

              
                
                
              
            
Some possible global modeling strategies are to 	Use a method known not to work well (e.g., stepwise variable selection without penalization; recursive partitioning resulting in a single tree), document how poorly the model performs (e.g. using the bootstrap), and use the model anyway

	Develop a black box model that performs poorly and is difficult to interpret (e.g., does not incorporate penalization)

	Develop a black box model that performs well and is difficult to interpret

	Develop interpretable approximations to the black box

	Develop an interpretable model (e.g. give priority to additive effects) that performs well and is likely to perform equally well on future data from the same stream.





As stated in the Preface, the strategy emphasized in this text, stemming from the last philosophy, is to decide how many degrees of freedom 
                
                
               can be “spent,” where they should be spent, and then to spend them. If statistical tests or confidence limits are required, later reconsideration of how d.f. are spent is not usually recommended.
                
                
               In what follows some default strategies are elaborated. These strategies are far from failsafe, but they should allow the reader to develop a strategy that is tailored to a particular problem. At the least these default strategies are concrete enough to be criticized so that statisticians can devise better ones.
4.12.1 Developing Predictive Models

                
                  
                  
                
              
The following strategy is generic although it is aimed principally at the development of accurate predictive models.
1.Assemble as much accurate pertinent data as possible, with wide distributions for predictor values. For survival time data, follow-up must be sufficient to capture enough events as well as the clinically meaningful phases if dealing with a chronic process.

 

2.Formulate good hypotheses that lead to specification of relevant candidate predictors and possible interactions. Don’t use Y (either informally using graphs, descriptive statistics, or tables, or formally using hypothesis tests or estimates of effects such as odds ratios) in devising the list of candidate predictors.

 

3.If there are missing Y values on a small fraction of the subjects but Y can be reliably substituted by a surrogate response, use the surrogate to replace the missing values. Characterize tendencies for Y to be missing using, for example, recursive partitioning or binary logistic regression. Depending on the model used, even the information on X for observations with missing Y can be used to improve precision of [image: 
$$\hat{\beta }$$
], so multiple 
                          
                          
                        imputation of Y can sometimes be effective. Otherwise, discard observations having missing Y.

 

4.Impute missing Xs if the fraction of observations with any missing Xs is not tiny. Characterize observations that had to be discarded. Special imputation models may be needed if a continuous X needs a 
                          
                        non-monotonic transformation (p. 52). These models can simultaneously impute missing values while determining transformations. In most cases, multiply impute missing Xs based on other Xs and Y, and other available information about the missing data mechanism.

 

5.For each predictor specify the complexity or degree of nonlinearity that should be allowed (see Section 4.1). When prior knowledge does not indicate that a predictor has a linear effect on the property C(Y | X) (the property of the response that can be linearly related to X), specify the number of degrees of freedom that should be devoted to the predictor. The d.f. (or number of knots) can be larger when the predictor is thought to be more important in predicting Y or when the sample size is large.

 

6.If the number of terms fitted or tested in the modeling process (counting nonlinear and cross-product terms) is too large in comparison with the number of outcomes in the sample, use data reduction (ignoring Y ) until the number of remaining free variables needing regression coefficients is tolerable. Use the m∕10 or m∕15 rule or an estimate of likely shrinkage or overfitting (Section 4.7) as a guide. Transformations determined from the previous step may be used to reduce each predictor into 1 d.f., or the transformed variables may be clustered into highly correlated groups if more data reduction is required. Alternatively, use penalized estimation with the entire set of variables. This will also effectively reduce the total 
                          
                          
                        degrees of freedom. 272


 

7.Use the entire sample in the model development as data are too precious to waste. If steps listed below are too difficult to repeat for each bootstrap or cross-validation sample, hold out test data from all model development steps that follow.

 

8.When you can test for model complexity in a very structured way, you may be able to simplify the model without a great need to penalize the final model for having made this initial look. For example, it can be advisable to test an entire group of variables (e.g., those more expensive to collect) and to either delete or retain the entire group for further modeling, based on a single P-value (especially if the P value is not between 0.05 and 0.2). Another example of structured testing to simplify the “initial” model is making all continuous predictors have the same number of knots k, varying k from 0 (linear), 3, 4, 5, …, and choosing the value of k that optimizes AIC. A composite test of all nonlinear effects in a model can also be used, and statistical inferences are not invalidated if the global test of nonlinearity yields P > 0. 2 or so and the analyst deletes all nonlinear terms.

 

9.Make tests of linearity of effects in the model only to demonstrate to others that such effects are often statistically significant. Don’t remove insignificant effects from the model when tested separately by predictor. Any examination of the response that might result in simplifying the model needs to be accounted for in computing 
                          
                        confidence limits and other statistics. It is preferable to retain the complexity that was prespecified in Step 5 regardless of the results of assessments of nonlinearity.

 

10.Check additivity assumptions by testing prespecified interaction terms. If the 
                          
                          
                        global test for additivity is significant or equivocal, all prespecified interactions should be retained in the model. If the test is decisive (e.g., P > 0. 3), all interaction terms can be omitted, and in all likelihood there is no need to repeat this pooled test for each resample during model validation. In other words, one can assume that had the global interaction test been carried out for each bootstrap resample it would have been insignificant at the 0.05 level more than, say, 0.9 of the time. In this large P-value case the pooled interaction test did not induce an uncertainty in model selection that needed accounting.

 

11.Check to see if there are overly influential observations.

 

12.Check 
                          
                          
                        distributional assumptions and choose a different model if needed.

 

13.Do limited backwards step-down variable selection if 
                          
                        parsimony is more important than accuracy. 582 The cost of doing any aggressive variable selection is that the variable selection algorithm must also be included in a resampling procedure to properly validate the model or to compute confidence limits and the like.

 

14.This is the “final” model.

 

15.Interpret the model graphically (Section 5.​1) and by examining predicted values and using appropriate significance tests without trying to interpret some of the individual model parameters. For collinear predictors obtain pooled tests of association so that competition among variables will not give misleading impressions of their total significance.

 

16.Validate the final model for calibration and discrimination ability, preferably using bootstrapping (see Section 5.​3). Steps 9 to 13 must be repeated for each bootstrap sample, at least approximately. For example, if age was transformed when building the final model, and the transformation was suggested by the data using a fit involving age and age2, each 
                          
                          
                        bootstrap repetition should include both age variables with a possible step-down from the quadratic to the linear model based on automatic significance testing at each step.

 

17.Shrink parameter estimates if there is overfitting but no further data reduction is desired, if shrinkage was not built into the estimation process.

 

18.When missing values were imputed, adjust final variance–covariance matrix for imputation wherever possible (e.g., using bootstrap or multiple imputation). This may affect some of the other results.

 

19.When all steps of the modeling strategy can be automated, consider using Faraway’s method 186 to penalize for the randomness inherent in the multiple steps. [image: A69956_2_En_4_Figad_HTML.gif]
                                            

 

20.Develop simplifications to the full model by approximating it to any desired degrees of accuracy (Section 5.​5).

 





4.12.2 Developing Models for Effect Estimation

                
                  
                  
                
                
                  
                
              
By effect estimation is meant point and interval estimation of differences in properties of the responses between two or more settings of some predictors, or estimating some function of these differences such as the antilog. In ordinary multiple regression with no transformation of Y such differences are absolute estimates. In regression involving log(Y ) or in logistic or proportional hazards models, effect estimation is, at least initially, concerned with estimation of relative effects. As discussed on pp. 4 and 224, estimation of absolute effects for these models must involve accurate prediction of overall response values, so the strategy in the previous section applies.
When estimating differences or relative effects, the bias in the effect estimate, besides being influenced by the study design, is related to how well subject heterogeneity and confounding are taken into account. The variance of the effect estimate is related to the distribution of the variable whose levels are being compared, and, in least squares estimates, to the amount of variation “explained” by the entire set of predictors. Variance of the estimated difference can increase if there is overfitting. So for estimation, the previous strategy largely applies.
The following are differences in the modeling strategy when effect estimation is the goal.
1.There is even less gain from having a parsimonious model than when developing overall predictive models, as estimation is usually done at the time of analysis. Leaving insignificant predictors in the model increases the likelihood that the confidence interval for the effect of interest has the stated coverage. By contrast, overall predictions are conditional on the values of all predictors in the model. The variance of such predictions is increased by the presence of unimportant variables, as predictions are still conditional on the particular values of these variables (Section 5.​5.​1) and cancellation of terms (which occurs when differences are of interest) does not occur.

 

2.Careful consideration of inclusion of interactions is still a major consideration for estimation. If a predictor whose effects are of major interest is allowed to interact with one or more other predictors, effect estimates must be conditional on the values of the other predictors and hence have higher variance.

 

3.A major goal of imputation is to avoid lowering the sample size because of missing values in adjustment variables. If the predictor of interest is the only variable having a substantial number of missing values, multiple imputation is less worthwhile, unless it corrects for a substantial bias caused by deletion of nonrandomly missing data.

 

4.The analyst need not be very concerned about conserving degrees of freedom devoted to the predictor of interest. The complexity allowed for this variable is usually determined by prior beliefs, with compromises that consider the bias-variance trade-off.

 

5.If penalized estimation is used, the analyst may wish to not shrink parameter estimates for the predictor of interest.

 

6.Model validation is not necessary unless the analyst wishes to use it to quantify the degree of overfitting.

 





4.12.3 Developing Models for Hypothesis Testing

                
                  
                  
                
                
                  
                
              
A default strategy for developing a multivariable model that is to be used as a basis for hypothesis testing is almost the same as the strategy used for estimation.
1.There is little concern for parsimony. A full model fit, including insignificant variables, will result in more accurate P-values for tests for the variables of interest.

 

2.Careful consideration of inclusion of interactions is still a major consideration for hypothesis testing. If one or more predictors interacts with a variable of interest, either separate hypothesis tests are carried out over the levels of the interacting factors, or a combined “main effect + interaction” test is performed. For example, a very well–defined test is whether treatment is effective for any race group.

 

3.If the predictor of interest is the only variable having a substantial number of missing values, multiple imputation is less worthwhile. In some cases, multiple imputation may increase power (e.g., in ordinary multiple regression one can obtain larger degrees of freedom for error) but in others there will be little net gain. However, the test can be biased due to exclusion of nonrandomly missing observations if imputation is not done.

 

4.As before, the analyst need not be very concerned about conserving degrees of freedom devoted to the predictor of interest. The degrees of freedom allowed for this variable is usually determined by prior beliefs, with careful consideration of the trade-off between bias and power.

 

5.If penalized estimation is used, the analyst should not shrink parameter estimates for the predictors being tested.

 

6.Model validation is not necessary unless the analyst wishes to use it to quantify the degree of overfitting. This may shed light on whether there is overadjustment for confounders.

 






4.13 Further Reading

[image: A69956_2_En_4_Figd_HTML.gif] Some good general references that address modeling strategies are [216, 269, 476, 590].

[image: A69956_2_En_4_Fige_HTML.gif] Even though they used a generalized correlation index for screening variables and not for transforming them, Hall and Miller 249 present a related idea, computing the ordinary R
2 against a cubic spline transformation of each potential predictor.

[image: A69956_2_En_4_Figf_HTML.gif] Simulation studies are needed to determine the effects of modifying the model based on assessments of “predictor promise.” Although it is unlikely that this strategy will result in regression coefficients that are biased high in absolute value, it may on some occasions result in somewhat optimistic standard errors and a slight elevation in type I error probability. Some simulation results may be found on the Web site. Initial promising findings for least squares models for two uncorrelated predictors indicate that the procedure is conservative in its estimation of σ
2 and in preserving type I error.

[image: A69956_2_En_4_Figg_HTML.gif] Verweij and van Houwelingen 640 and Shao 565 describe how cross-validation can be used in formulating a stopping rule. Luo et al. 430 developed an approach to tuning forward selection by adding noise to Y.

[image: A69956_2_En_4_Figh_HTML.gif] Roecker 528 compared forward variable selection (FS) and all possible subsets selection (APS) with full model fits in ordinary least squares. APS had a greater tendency to select smaller, less accurate models than FS. Neither selection technique was as accurate as the full model fit unless more than half of the candidate variables was redundant or unnecessary.

[image: A69956_2_En_4_Figi_HTML.gif] Wiegand 668 showed that it is not very fruitful to try different stepwise algorithms and then to be comforted by agreements in some of the variables selected. It is easy for different stepwise methods to agree on the wrong set of variables.

[image: A69956_2_En_4_Figj_HTML.gif] Other results on how variable selection affects inference may be found in Hurvich and Tsai 316 and Breiman [66, Section 8.​1]


[image: A69956_2_En_4_Figk_HTML.gif] Goring et al. 227 presented an interesting analysis of the huge bias caused by conditioning analyses on statistical significance in a high-dimensional genetics context.

[image: A69956_2_En_4_Figl_HTML.gif] Steyerberg et al. 589 have comparisons of smoothly penalized estimators with the 
                
              lasso and with several stepwise variable selection algorithms.

[image: A69956_2_En_4_Figm_HTML.gif] See Weiss, 656 Faraway, 186 and Chatfield 100 for more discussions of the effect of not prespecifying models, for example, dependence of point estimates of effects on the variables used for adjustment.

[image: A69956_2_En_4_Fign_HTML.gif] Greenland 241 provides an example in which overfitting a logistic model resulted in far too many predictors with P < 0. 05.

[image: A69956_2_En_4_Figo_HTML.gif] See Peduzzi et al. 486, 487 for studies of the relationship between “events per variable” and types I and II error, accuracy of variance estimates, and accuracy of normal approximations for regression coefficient estimators. Their findings are consistent with those given in the text (but 644 has a slightly different take). van der Ploeg et al. 629 did extensive simulations to determine the events per variable ratio needed to avoid a drop-off (in an independent test sample) in more than 0.01 in the c-index, 
                
                
              

                
              

                
              for a variety of predictive methods. They concluded that support vector machines, neural networks, and random forests needed far more events per variable to achieve freedom from overfitting than does logistic regression, and that recursive partitioning was not competitive. Logistic regression required between 20 and 50 events per variable to avoid overfitting. Different results might have been obtained had the authors used a proper accuracy score. 
                
              

                
              


[image: A69956_2_En_4_Figp_HTML.gif] Copas [122, Eq. 8.5] adds 2 to the numerator of Equation 4.3 (see also [504, 631]).

[image: A69956_2_En_4_Figq_HTML.gif] An excellent discussion about such indexes may be found in http://​r.​789695.​n4.​nabble.​com/​Adjusted-R-squared-formula-in-lm-td4656857.​html where J. Lucke points out that R
2 tends to [image: 
$$\frac{p} {n-1}$$
] when the population R
2 is zero, but R
adj
2 converges to zero.

[image: A69956_2_En_4_Figr_HTML.gif] Efron [173, Eq. 4.23] and van Houwelingen and le Cessie 633 showed that the average expected optimism in a mean logarithmic quality score for a p-predictor binary logistic model is p∕n. Taylor et al. 600 showed that the ratio of variances for certain quantities is proportional to the ratio of the number of parameters in two models. Copas stated that “Shrinkage can be particularly marked when stepwise fitting is used: the shrinkage is then closer to that expected of the full regression rather than of the subset regression actually fitted.” 122, 504, 631 Spiegelhalter, 582 in arguing against variable selection, states that better prediction will often be obtained by fitting all candidate variables in the final model, shrinking the vector of regression coefficient estimates towards zero.

[image: A69956_2_En_4_Figs_HTML.gif] See Belsley [46, pp. 28–30] for some reservations about using VIF.

[image: A69956_2_En_4_Figt_HTML.gif] Friedman and Wall 208 discuss and provide graphical devices for explaining suppression by a predictor not correlated with the response but that is correlated with another predictor. Adjusting for a suppressor variable will increase the predictive discrimination of the model.
                
               Meinshausen 453 developed a novel hierarchical approach to gauging the importance of collinear predictors.

[image: A69956_2_En_4_Figu_HTML.gif] For incomplete principal component regression 
                
              

                
                
              see [101, 119, 120, 142, 144, 320, 325]. See 396, 686 for sparse principal component analysis methods in which constraints are applied to loadings so that some of them are set to zero. The latter reference provides a principal component method for binary data. See 246 for a type of sparse principal component analysis that also encourages loadings to be similar for a group of highly correlated variables and allows for a type of variable clustering.
                
                
              See [390] for principal surfaces. Sliced inverse regression is described in [104, 119, 120, 189, 403, 404]. For material on variable clustering see [142, 144, 268, 441, 539]. A good general reference on cluster analysis is [634, Chapter 11] de Leeuw and Mair in their R homals package [153] have one of the most general approaches to data reduction related to optimal scaling. Their approach includes nonlinear principal component analysis among several other multivariate analyses.

[image: A69956_2_En_4_Figv_HTML.gif] The redundancy analysis described here is related to principal variables 448 but is faster.

[image: A69956_2_En_4_Figw_HTML.gif] Meinshausen 453 developed a method of testing the importance of competing (collinear) variables using an interesting automatic clustering procedure.

[image: A69956_2_En_4_Figx_HTML.gif] The R ClustOfVar

                
               package by Marie Chavent, Vanessa Kuentz, Benoit Liquet, and Jerome Saracco generalizes variable clustering and explicitly handles a mixture of quantitative and categorical predictors. It also implements bootstrap cluster stability analysis.

[image: A69956_2_En_4_Figy_HTML.gif] Principal components are commonly used to summarize a cluster of variables. Vines 643 developed a method to constrain the principal component coefficients to be integers without much loss of explained variability.

[image: A69956_2_En_4_Figz_HTML.gif] Jolliffe 324 presented a way to discard some of the variables making up principal components. Wang and Gehan 649 presented a new method for finding subsets of predictors that approximate a set of principal components, and surveyed other methods for simplifying principal components.

[image: A69956_2_En_4_Figaa_HTML.gif] See D’Agostino et al. 144 for excellent examples of variable clustering (including a two-stage approach) and other data reduction techniques using both statistical methods and subject-matter expertise.

[image: A69956_2_En_4_Figab_HTML.gif] Cook 118 and Pencina et al. 490, 492, 493 present an approach for judging the added value of new variables that is based on evaluating the extent to which the new information moves predicted probabilities higher for subjects having events and lower for subjects not having events. But see 292, 592.

[image: A69956_2_En_4_Figac_HTML.gif] The Hmisc abs.error.pred

                
               function computes a variety of accuracy measures based on absolute errors
                
                
              .

[image: A69956_2_En_4_Figad_HTML.gif] Shen et al. 567 developed an “optimal approximation” method to make correct inferences after model selection.

4.14 Problems
Analyze the SUPPORT dataset (getHdata(support)) as directed below to relate selected variables to total cost of the hospitalization. Make sure this response variable is utilized in a way that approximately satisfies the assumptions of normality-based multiple regression so that statistical inferences will be accurate. See problems at the end of Chapters 3 and 7 of the text for more information. Consider as predictors mean arterial blood pressure, heart rate, age, disease group, and coma score.
1.Do an analysis to understand interrelationships among predictors, and find optimal scaling (transformations) that make the predictors better relate to each other (e.g., optimize the variation explained by the first principal component).

 

2.Do a redundancy analysis of the predictors, using both a less stringent and a more stringent approach to assessing the redundancy of the multiple-level variable disease group.

 

3.Do an analysis that helps one determine how many d.f. to devote to each predictor.

 

4.Fit a model, assuming the above predictors act additively, but do not assume linearity for the age and blood pressure effects. Use the truncated power basis for fitting restricted cubic spline functions with 5 knots. Estimate the shrinkage coefficient [image: 
$$\hat{\gamma }$$
].

 

5.Make appropriate graphical diagnostics for this model.

 

6.Test linearity in age, linearity in blood pressure, and linearity in heart rate, and also do a joint test of linearity simultaneously in all three predictors.

 

7.Expand the model to not assume additivity of age and blood pressure. Use a tensor natural spline or an appropriate restricted tensor spline. If you run into any numerical difficulties, use 4 knots instead of 5. Plot in an interpretable fashion the estimated 3-D relationship between age, blood pressure, and cost for a fixed disease group.

 

8.Test for additivity of age and blood pressure. Make a joint test for the overall absence of complexity in the model (linearity and additivity simultaneously).
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Footnotes
1Even then, the two blood pressures may need to be transformed to meet distributional assumptions.

 

2Shrinkage (penalized estimation) is a general solution (see Section 4.5). One can always use complex models that are “penalized towards simplicity,” with the amount of penalization being greater for smaller sample sizes.

 

3One can also perform a joint test of all parameters associated with nonlinear effects. This can be useful in demonstrating to the reader that some complexity was actually needed.

 

4Lockhart et al. 425 provide an example with n = 100 and 10 orthogonal predictors where all true βs are zero. The test statistic for the first variable to enter has type I error of 0.39 when the nominal α is set to 0.05, in line with what one would expect with multiple testing using [image: 
$$1 - 0.95^{10} = 0.40$$
].

 

5AIC works successfully when the models being entertained are on a progression defined by a single parameter, e.g. a common shrinkage coefficient or the single number of knots to be used by all continuous predictors. AIC can also work when the model that is best by AIC is much better than the runner-up so that if the process were bootstrapped the same model would almost always be found. When used for one variable at a time variable selection. AIC
                    
                   is just a restatement of the P-value, and as such, doesn’t solve the severe problems with stepwise variable selection other than forcing us to use slightly more sensible α values. Burnham and Anderson 84 recommend selection based on AIC for a limited number of theoretically well-founded models. Some statisticians try to deal with multiplicity problems caused by stepwise variable selection by making α smaller than 0.05. This increases bias by giving variables whose effects are estimated with error a greater relative chance of being selected. Variable selection does not compete well with shrinkage methods that simultaneously model all potential predictors.

 

6This is akin to doing a t-test to compare the two treatments (out of 10, say) that are apparently most different from each other.

 

7These are situations where the true R
2 is low, unlike tightly controlled experiments and mechanistic models where signal:noise ratios can be quite high. In those situations, many parameters can be estimated from small samples, and the [image: 
$$\frac{m} {15}$$
] rule of thumb can be significantly relaxed.

 

8See [487]. If one considers the power of a two-sample 
                                
                                
                              binomial test compared with a 
                                
                                
                              Wilcoxon test if the response could be made continuous and the proportional odds assumption holds, the effective sample size for a binary response is 3n
1
n
2∕n ≈ 3min(n
1, n
2) if n
1∕n is near 0 or 1 [664, Eq. 10, 15]. Here n
1 and n
2 are the marginal frequencies of the two response levels.

 

9Based on the power of a 
                                
                                
                              proportional odds model two-sample test when the marginal cell sizes for the response are n
1, …, n

                                k
                              , compared with all cell sizes equal to unity (response is continuous) [664, Eq, 3]. If all cell sizes are equal, the relative efficiency of having k response categories compared with a continuous response is [image: 
$$1 - 1/k^{2}$$
] [664, Eq. 14]; for example, a five-level response is almost as efficient as a continuous one if proportional odds holds across category cutoffs.

 

10This is approximate, as the effective sample size may sometimes be boosted somewhat by censored observations, especially for 
                                
                              non-proportional hazards methods such as Wilcoxon-type tests. 49


 

11An even more stringent assessment is obtained by stratifying calibration curves by predictor settings.

 

12It is interesting that researchers are quite comfortable with adjusting P-values for post hoc selection of comparisons using, for example, the Bonferroni inequality, but they do not realize that post hoc selection of comparisons also biases point estimates.

 

13There is an option to force continuous variables to be linear when they are being predicted.

 

14If one were to estimate transformations without removing observations that had these constants inserted for the current Y -variable, the resulting transformations would likely have a spike at Y = imputation constant.

 

15Study to Understand Prognoses Preferences Outcomes and Risks of Treatments

 

16Whether this statistic should be used to change the model is problematic in view of model uncertainty.

 

17The R function score.binary

                      
                     in the Hmisc package (see Section 6.​2) assists in computing a summary variable from the series of binary conditions.
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5.1 Describing the Fitted Model
5.1.1 Interpreting Effects

                
                  
                  
                
              
Before addressing issues related to describing and interpreting the model and its coefficients, one can never apply too much caution in attempting to interpret results in a causal manner. 
                  
                Regression models are excellent tools for estimating and inferring associations between an X and Y given that the “right” variables are in the model. Any ability of a model to provide causal inference rests entirely on the faith of the analyst in the experimental design, completeness of the set of variables that are thought to measure confounding and are used for adjustment when the experiment is not randomized, 
                  
                 lack of important measurement error, and lastly the goodness of fit of the model.
The first line of attack in interpreting the results of a multivariable analysis is to interpret the model’s parameter estimates. For simple linear, additive models, regression coefficients may be readily interpreted. If there are interactions or nonlinear terms in the model, however, simple interpretations are usually impossible. Many programs ignore this problem, routinely printing such meaningless quantities as the effect of increasing age2 by one day while holding age constant. A meaningful age change needs to be chosen, and connections between mathematically related variables must be taken into account. These problems can be solved by relying on predicted values and differences between predicted values.
Even when the model contains no nonlinear effects, it is difficult to compare regression coefficients across predictors having varying scales. Some analysts like to gauge the relative contributions of different predictors on a common scale by multiplying regression 
                  
                coefficients by the standard deviations of the predictors that pertain to them. This does not make sense for nonnormally distributed predictors (and regression models should not need to make assumptions about the distributions of predictors). When a predictor is binary (e.g., sex), the standard deviation makes no sense as a scaling factor as the scale would depend on the prevalence of the predictor.1
                                [image: A69956_2_En_5_Figf_HTML.gif]
                            
It is more sensible to estimate the change in Y when X

                  j
                 is 
                  
                changed by an amount that is subject-matter relevant. For binary predictors this is a change from 0 to 1. For many continuous predictors the 
                  
                interquartile range is a reasonable default choice. If the 0.25 and 0.75 quantiles of X

                  j
                 are g and h, linearity holds, and the estimated coefficient of X

                  j
                 is b; b × (h − g) is the effect of increasing X

                  j
                 by h − g units, which is a span that contains half of the sample values of X

                  j
                .
For the more general case of continuous predictors that are monotonically but not linearly related to Y, a useful point summary is the change in X β when the variable changes from its 0.25 quantile to its 0.75 quantile. For models for which exp(X β) is meaningful, antilogging the predicted change in X β results in quantities such as 
                  
                 interquartile-range odds and hazards ratios. When the variable is involved in interactions, these ratios are estimated separately for various levels of the interacting factors. For categorical predictors, ordinary effects are computed by comparing each level of the predictor with a reference level. See Section 10.​10 and Chapter 11 for tabular and graphical examples of this approach.[image: A69956_2_En_5_Figg_HTML.gif]
                            
The model can be described using partial effect plots by plotting each X against [image: 
$$X\hat{\beta }$$
] holding other predictors 
                  
                 constant. Modified versions of such plots, by nonlinearly rank-transforming the predictor axis, can show the relative importance of a predictor 336.
For an X that interacts with other factors, separate curves are drawn on the same graph, one for each level of the interacting factor.
Nomograms 40, 254, 339, 427

                  
                 provide excellent graphical depictions of all the variables in the model, in addition to enabling the user to obtain predicted values manually. Nomograms are especially good at helping the user envision interactions. See Section 10.​10 and Chapter 11 for examples. [image: A69956_2_En_5_Figh_HTML.gif] [image: A69956_2_En_5_Figi_HTML.gif]
                            

5.1.2 Indexes of Model Performance
5.1.2.1 Error Measures

                  
                    
                  
                
Care must be taken in the choice of accuracy scores to be used in validation. Indexes can be broken down into three main areas. Central tendency of prediction errors:These measures include mean absolute differences, mean squared differences, and logarithmic scores. An absolute measure is mean [image: 
$$\vert Y -\hat{ Y }\vert $$
]. The mean squared error is a commonly used and sensitive measure if there are no outliers. For the special case where Y is binary, such a measure is the Brier score, which is a quadratic proper scoring rule that combines calibration and discrimination2. The logarithmic proper scoring rules (related to average log-likelihood) is even more sensitive but can be harder to interpret and can be destroyed by a single predicted probability of 0 or 1 that was incorrect.


Discrimination measures:

                            
                            
                           A measure of pure discrimination is a rank correlation of [image: 
$$\hat{Y }$$
] and Y, including 
                            
                           Spearman’s ρ, Kendall’s τ, and Somers’ D

                            x y
                          . When 
                            
                           Y is binary, [image: 
$$D_{xy} = 2 \times (c -\frac{1} {2})$$
] where c is the concordance probability or area under the receiver operating characteristic curve
                            
                          , a linear translation of the Wilcoxon-Mann-Whitney statistic. R
2 is mostly a measure of discrimination, 
                            
                            
                           and R
adj
2 is is a good overfitting-corrected measure, if the model is pre-specified. See Section 10.​8 for more information about rank-based measures.


Discrimination measures based on variation in [image: 
$$\hat{Y }$$
]:These include the regression sum of squares and the g–Index (see below).


Calibration measures:These assess absolute prediction accuracy.
                            
                            
                           Calibration–in–the–large compares the average [image: 
$$\hat{Y }$$
] with the average Y. A high-resolution calibration curve or calibration–in–the–small assesses the absolute forecast accuracy of predictions at individual levels of [image: 
$$\hat{Y }$$
]. When the calibration curve is linear, this can be summarized by the calibration slope and intercept. A more general approach uses the loess

                            
                            
                           nonparametric smoother to estimate the calibration curve 37. For any shape of calibration curve, errors can be summarized by quantities such as the maximum absolute calibration error, mean absolute calibration error, and 0.9 quantile of calibration error.







                    
                    
                   The g-index is a new measure of a model’s predictive discrimination based only on [image: 
$$X\hat{\beta } =\hat{ Y }$$
] that applies quite generally. It is based on Gini’s mean difference for a variable Z, which is the mean over all possible i ≠ j of | Z

                    i
                   − Z

                    j
                   | . The g-index is an interpretable, robust, and highly efficient measure of variation. For example, when predicting systolic blood pressure, g = 11mmHg represents a typical difference in [image: 
$$\hat{Y }$$
]. g is independent of censoring and other complexities. For models in which the anti-log of a difference in [image: 
$$\hat{Y }$$
] represents meaningful ratios (e.g., odds ratios, hazard ratios, ratio of medians), g

                    r
                   can be defined as exp(g). For models in which [image: 
$$\hat{Y }$$
] can be turned into a probability estimate (e.g., logistic regression), g

                    p
                   is defined as Gini’s mean difference of [image: 
$$\hat{P}$$
]. These g–indexes represent e.g. “typical” odds ratios, and “typical” risk differences. Partial g indexes can also be defined. More details may be found in the documentation for the R rms package’s gIndex

                    
                   function.[image: A69956_2_En_5_Figj_HTML.gif]
                                

                  
                    
                  
                



5.2 The Bootstrap

              
                
              
            
When one assumes that a random variable Y has a certain population distribution, one can use simulation or analytic derivations to study how a statistical estimator computed from samples from this distribution behaves. For example, when Y has a 
                
                
              log-normal distribution, the variance of the sample median for a sample of size n from that distribution can be derived analytically. Alternatively, one can simulate 500 samples of size n from the log-normal distribution, compute the sample median for each sample, and then compute the sample variance of the 500 sample medians. Either case requires knowledge of the population distribution function.
Efron’s bootstrap 150, 177, 178 is a general-purpose technique for obtaining estimates of the properties of statistical estimators without making assumptions about the distribution giving rise to the data. Suppose that a random variable Y comes from a cumulative distribution function [image: 
$$F(y) =\mathop{ \mathrm{Prob}}\nolimits \{Y \leq y\}$$
] and that we have a sample of size n from this unknown distribution, Y
1, Y
2, …, Y

                n
              . The basic idea is to repeatedly simulate a sample of size n from F, computing the statistic of interest, and assessing how the statistic behaves over B repetitions. Not having F at our disposal, we can estimate F by the empirical cumulative distribution function [image: 
$$\displaystyle{ F_{n}(y) = \frac{1} {n}\sum _{i=1}^{n}[Y _{ i} \leq y]. }$$
]

 (5.1)

 F

                n
               corresponds to a density function that places probability 1∕n at each observed datapoint (k∕n if that point were duplicated k times and its value listed only once).
As an example, consider a random sample of size n = 30 from a normal distribution with mean 100 and standard deviation 10. Figure 5.1 shows the population and empirical cumulative distribution functions.
[image: A69956_2_En_5_Fig1_HTML.gif]
Fig. 5.1Empirical and population cumulative distribution function





Now pretend that F

                n
              (y) is the original population distribution F(y). Sampling from F

                n
               is equivalent to sampling with replacement from the observed data Y
1, …, Y

                n
              . For large n, the expected fraction of original datapoints that are selected for each bootstrap sample is [image: 
$$1 - e^{-1} = 0.632$$
]. Some points are selected twice, some three times, a few four times, and so on. We take B samples of size n with replacement, with B chosen so that the summary measure of the individual statistics is nearly as good as taking B = ∞. The bootstrap is based on the fact that the distribution of the observed differences between a resampled estimate of a parameter of interest and the original estimate of the parameter from the whole sample tells us about the distribution of unobservable differences between the original estimate and the unknown population value of the parameter.[image: A69956_2_En_5_Figk_HTML.gif]
                        
As an example, consider the data (1, 5, 6, 7, 8, 9) and suppose that we would like to obtain a 0.80 confidence interval for the population median, as well as an estimate of the population expected value of the sample median (the latter is only used to estimate bias in the sample median). The first 20 bootstrap samples (after sorting data values) and the corresponding sample medians are shown in Table 5.1.Table 5.1First 20 bootstrap samples


	Bootstrap Sample
	 	Sample Median

	1 6 6 7 8 9
	 	6.5

	1 5 5 5 6 8
	 	5.0

	5 7 8 9 9 9
	 	8.5

	7 7 7 8 8 9
	 	7.5

	1 5 7 7 9 9
	 	7.0

	1 5 6 6 7 8
	 	6.0

	7 8 8 8 8 8
	 	8.0

	5 5 5 7 9 9
	 	6.0

	1 5 5 7 7 9
	 	6.0

	1 5 5 7 7 8
	 	6.0

	1 1 5 5 7 7
	 	5.0

	1 1 5 5 7 8
	 	5.0

	1 5 5 7 7 8
	 	6.0

	1 5 6 7 8 8
	 	6.5

	1 5 6 7 9 9
	 	6.5

	6 6 7 7 8 9
	 	7.0

	1 5 7 8 8 9
	 	7.5

	6 6 8 9 9 9
	 	8.5

	1 1 5 5 6 9
	 	5.0

	1 6 8 9 9 9
	 	8.5





For a given number B of 
                
                
               bootstrap samples, our estimates are simply the sample 0.1 and 0.9 quantiles of the sample medians, and the mean of the sample medians. Not knowing how large B should be, we could let B range from, say, 50 to 1000, stopping when we are sure the estimates have converged. In the left plot of Figure 5.2, B varies from 1 to 400 for the mean (10 to 400 for the quantiles). It can be seen that the bootstrap estimate of the population mean of the sample median can be estimated satisfactorily when B > 50. For the lower and upper limits of the 0.8 confidence interval for the population median Y, B must be at least 200. For more extreme 
                
                
              confidence limits, B must be higher still.
[image: A69956_2_En_5_Fig2_HTML.gif]
Fig. 5.2Estimating properties of sample median using the bootstrap





For the final set of 400 sample medians, a histogram (right plot in Figure 5.2) can be used to assess the form of the sampling distribution of the sample median. Here, the distribution is almost normal, although there is a slightly heavy left tail that comes from the data themselves having a heavy left tail. For large samples, sample medians are normally distributed for a wide variety of population distributions. Therefore we could use bootstrapping to estimate the variance of the sample median and then take ± 1. 28 standard errors as a 0.80 confidence interval. In other cases (e.g., regression coefficient estimates for certain models), estimates are asymmetrically distributed, and the 
                
                
              bootstrap quantiles are better estimates than confidence intervals that are based on a normality assumption. Note that because sample quantiles are more or less restricted to equal one of the values in the sample, the 
                
                
              bootstrap distribution is discrete and can be dependent on a small number of outliers. For this reason, bootstrapping quantiles does not work particularly well for small samples [150, pp. 41–43].
The method just presented for obtaining a nonparametric confidence interval for the population median is called the bootstrap percentile method. It is the simplest but not necessarily the best performing 
                
                
              bootstrap method. [image: A69956_2_En_5_Figl_HTML.gif]
                        
In this text we use the bootstrap primarily for computing statistical estimates that are much different from standard errors and confidence intervals, namely, estimates of model performance. 
                
              


5.3 Model Validation

              
                
              
            
5.3.1 Introduction

                
                  
                
                
                  
                  
                
                
                  
                  
                
              
The surest method to have a model fit the data at hand is to discard much of the data. A p-variable fit to p + 1 observations will perfectly predict Y as long as no two observations have the same Y. Such a model will, however, yield predictions that appear almost random with respect to responses on a different dataset
                  
                . Therefore, unbiased estimates of predictive accuracy are essential.
Model validation is done to ascertain whether predicted values from the model are likely to accurately predict responses on future subjects or subjects not used to develop our model. Three major causes of failure of the model to validate are overfitting, changes in measurement methods/changes in definition of categorical variables, and major changes in subject inclusion criteria.[image: A69956_2_En_5_Figm_HTML.gif]

There are two major modes of model validation, external and internal. The most stringent 
                  
                  
                external validation involves testing a final model developed in one country or setting on subjects in another country or setting at another time. This validation would test whether the data collection instrument was translated into another language properly, whether cultural differences make earlier findings nonapplicable, and whether secular trends have changed associations or base rates. Testing a finished model on new subjects from the same geographic area but from a different institution as subjects used to fit the model is a less stringent form of 
                  
                  
                external validation. The least stringent form of external validation involves using the first m of n observations for model training and using the remaining n − m observations as a test sample. This is very similar to data-splitting (Section 5.3.3). For details about methods for external validation see the R val.prob

                  
                 and val.surv

                  
                 functions in the rms package.[image: A69956_2_En_5_Fign_HTML.gif]

Even though 
                  
                  
                external validation is frequently favored by non-statisticians, it is often problematic. Holding back data from the model-fitting phase results in lower precision and power, and one can increase precision and learn more about geographic or time differences by fitting a unified model to the entire subject series including, for example, country or calendar time as a main effect and/or as an interacting effect. Indeed one could use the following working definition of external validation: validation of a prediction tool using data that were not available when the tool needed to be completed. An alternate definition could be taken as the validation of a prediction tool by an independent research team.
One suggested hierarchy of the quality of various validation methods is as follows, ordered from worst to best. 
                  
                  
                

                  
                  
                
1.Attempting several validations (internal or external) and reporting only the one that “worked”

 

2.Reporting apparent performance on the training dataset (no validation)

 

3.Reporting predictive accuracy on an undersized independent test sample

 

4.Internal validation using data-splitting where at least one of the training and test samples is not huge and the investigator is not aware of the arbitrariness of variable selection done on a single sample

 

5.Strong internal validation using 100 repeats of 10-fold cross-validation or several hundred bootstrap resamples, repeating all analysis steps involving Y afresh at each re-sample and the arbitrariness of selected “important variables” is reported (if variable selection is used)

 

6.External validation on a large test sample, done by the original research team

 

7.Re-analysis by an independent research team using strong internal validation of the original dataset

 

8.External validation using new test data, done by an independent research team

 

9.External validation using new test data generated using different instruments/technology, done by an independent research team

 




Internal validation involves fitting and validating the model by carefully using one series of subjects. One uses the combined dataset in this way to estimate the likely performance of the final model on new subjects, which after all is often of most interest. Most of the remainder of Section 5.3 deals with internal validation.
                  
                


5.3.2 Which Quantities Should Be Used in Validation?

                
                  
                  
                
              
For ordinary multiple regression models, the R
2

                  
                 index is a good measure of the model’s predictive ability, especially for the purpose of quantifying drop-off in predictive ability when applying the model to other datasets. R
2 is biased, however. For example, if one used nine predictors to predict outcomes of 10 subjects, R
2 = 1. 0 but the R
2 that will be achieved on future subjects will be close to zero. In this case, dramatic overfitting has occurred. The adjusted R
2 (Equation 4.​4) solves this problem, at least when the model has been completely prespecified and no variables or parameters have been “screened” out of the final model fit. That is, R

                  a d j
                
2 is only valid when p in its formula is honest— when it includes all parameters ever examined (formally or informally, e.g., using graphs or tables) whether these parameters are in the final model or not.
Quite often we need to validate indexes other than R
2 for which adjustments for p have not been created.3 We also need to validate models containing “phantom degrees of freedom” 
                  
                  
                 that were screened out earlier, formally or informally. For these purposes, we obtain nearly unbiased estimates of R
2 or other indexes using data splitting, cross-validation, or the bootstrap. The bootstrap provides the most precise estimates.
The g–index is another discrimination measure to validate. But g and R
2 measures only one aspect of predictive ability. In general, there are two major aspects of predictive 
                  
                accuracy that need to be assessed. As discussed in Section 4.​5, calibration or reliability is the ability of the model to make unbiased estimates of outcome. 

                    
                    
                  Discrimination is the model’s ability to separate subjects’ outcomes. Validation of the model is recommended even when a data reduction technique is used. This is a way to ensure that the model was not overfitted or is otherwise inaccurate.

5.3.3 Data-Splitting


                  
                  
                The simplest validation method is one-time data-splitting. Here a dataset is split into training (model development) and test (model validation) samples by a random process with or without balancing distributions of the response and predictor variables in the two samples. In some cases, a chronological split is used so that the validation is prospective. The model’s calibration and discrimination are validated in the test set.
In ordinary least squares, 
                  
                  
                calibration may be assessed by, for example, plotting Y against [image: 
$$\hat{Y }$$
]. 
                  
                  
                Discrimination here is assessed by R
2 and it is of interest in comparing R
2 in the 
                  
                training sample with that achieved in the test sample
                  
                . A drop in R
2 indicates overfitting, and the absolute R
2 in the test sample is an unbiased estimate of predictive discrimination. Note that in extremely overfitted models, R
2

                  
                 in the test set can be negative, since it is computed on “frozen” intercept and regression coefficients using the formula [image: 
$$1 - SSE/SST$$
], where S S E is the error sum of squares, S S T is the total sum of squares, and S S E can be greater than S S T (when predictions are worse than the constant predictor [image: 
$$\overline{Y }$$
]). [image: A69956_2_En_5_Figo_HTML.gif]
                            
To be able to validate predictions from the model over an entire test sample (without validating it separately in particular subsets such as in males and females), the test sample must be large enough to precisely fit a model containing one predictor. For a study with a continuous uncensored response variable, the test sample size should ordinarily be ≥ 100 at a bare minimum. For survival time studies, the test sample should at least be large enough to contain a minimum of 100 outcome events. For binary outcomes, the test sample should contain a bare minimum of 100 subjects in the least frequent outcome category. Once the size of the test sample is determined, the remaining portion of the original sample can be used as a 
                  
                 training sample. Even with these test sample sizes, validation of extreme predictions is difficult.


                  
                  
                Data-splitting has the advantage of allowing hypothesis tests to be confirmed in the test sample. However, it has the following disadvantages.
1.Data-splitting greatly reduces the sample size for both model development and model testing. Because of this, Roecker 528 found this method “appears to be a costly approach, both in terms of predictive accuracy of the fitted model and the precision of our estimate of the accuracy.” Breiman [66, Section 1.​3] found that 
                          
                          
                        bootstrap validation on the original sample was as efficient as having a separate test sample twice as large 36.

 

2.It requires a larger sample to be held out than cross-validation (see below) to be able to obtain the same precision of the estimate of predictive accuracy.

 

3.The split may be fortuitous; if the process were repeated with a different split, different assessments of predictive accuracy may be obtained.

 

4.Data-splitting does not validate the final model, but rather a model developed on only a subset of the data. The training and test sets are recombined for fitting the final model, which is not validated.

 

5.Data-splitting requires the split before the first analysis of the data. With other methods, analyses can proceed in the usual way on the complete dataset. Then, after a “final” model is specified, the modeling process is rerun on multiple resamples from the original data to mimic the process that produced the “final” model.

 





5.3.4 Improvements on Data-Splitting: Resampling

                
                  
                
              
Bootstrapping, jackknifing, and other resampling plans can be used to obtain nearly unbiased estimates of model performance without sacrificing sample size. These methods work when either the model is completely specified except for the regression coefficients, or all important steps of the modeling process, especially variable selection, are automated. Only then can each 
                  
                  
                bootstrap replication be a reflection of all sources of variability in modeling. Note that most analyses involve examination of graphs and testing for lack of model fit, with many intermediate decisions by the analyst such as simplification of interactions. These processes are difficult to automate. But variable selection alone is often the greatest source of variability because of multiple comparison problems, so the analyst must go to great lengths to 
                  
                  
                bootstrap or 
                  
                jackknife variable selection.
The ability to study the arbitrariness of how a stepwise variable selection algorithm selects “important” factors is a major benefit of bootstrapping. A useful display is a matrix of blanks and asterisks, where an asterisk is placed in column x of row i if variable x is selected in 
                  
                  
                 bootstrap sample i (see p. 263 for an example). If many variables appear to be selected at random, the analyst may want to turn to a data reduction method rather than using stepwise selection (see also [541]).


                  
                  
                Cross-validation is a generalization of data-splitting that solves some of the problems of data-splitting. 
                  
                  
                
Leave-out-one cross-validation, 565, 633 the limit of cross-validation, is similar to jackknifing. 675 Here one observation is omitted from the analytical process and the response for that observation is predicted using a model derived from the remaining n − 1 observations. The process is repeated n times to obtain an average accuracy. Efron 172 reports that grouped cross-validation is more accurate; here groups of k observations are omitted at a time. Suppose, for example, that 10 groups are used. The original dataset is divided into 10 equal subsets at random. The first 9 subsets are used to develop a model (transformation selection, interaction testing, stepwise variable selection, etc. are all done). The resulting model is assessed for accuracy on the remaining 1∕10th of the sample. This process is repeated at least 10 times to get an average of 10 indexes such as R
2. [image: A69956_2_En_5_Figp_HTML.gif]
                            
A drawback of 
                  
                  
                 cross-validation is the choice of the number of observations to hold out from each fit. Another is that the number of repetitions needed to achieve accurate estimates of accuracy often exceeds 200. For example, one may have to omit [image: 
$$\frac{1} {10}$$
] th of the sample 500 times to accurately estimate the index of interest Thus the sample would need to be split into tenths 50 times. Another possible problem is that cross-validation may not fully represent the variability of variable selection. If 20 subjects are omitted each time from a sample of size 1000, the lists of variables selected from each 
                  
                training sample of size 980 are likely to be much more similar than lists obtained from fitting independent samples of 1000 subjects. Finally, as with data-splitting, 
                  
                  
                cross-validation does not validate the full 1000-subject model.[image: A69956_2_En_5_Figq_HTML.gif]

An interesting way to study overfitting could be called the 
                  
                  
                randomization method. Here we ask the question “How well can the response be predicted when we use our best procedure on random responses when the predictive 
                  
                accuracy should be near zero?” The better the fit on random Y, the worse the overfitting. The method takes a random permutation of the response variable and develops a model with optional variable selection based on the original X and permuted Y. Suppose this yields R
2 = . 2 for the fitted sample. Apply the fit to the original data to estimate optimism
                  
                . If overfitting is not a problem, R
2 would be the same for both fits and it will ordinarily be very near zero. [image: A69956_2_En_5_Figr_HTML.gif]
                            

5.3.5 Validation Using the Bootstrap

                
                  
                
                
                  
                  
                
              
Efron, 172, 173 Efron and Gong, 175 Gong, 224 Efron and Tibshirani, 177, 178 Linnet, 416 and Breiman 66 describe several bootstrapping procedures for obtaining nearly unbiased estimates of future model performance without holding back data when making the final estimates of model parameters. With the “simple bootstrap” [178, p. 247], one repeatedly fits the model in a 
                  
                  
                bootstrap sample and evaluates the performance of the model on the original sample. The estimate of the likely performance of the final model on future data is estimated by the average of all of the indexes computed on the original sample.
Efron showed that an enhanced 
                  
                  
                bootstrap estimates future model performance more accurately than the simple bootstrap. Instead of estimating an 
                  
                accuracy index directly from averaging indexes computed on the original sample, the enhanced bootstrap uses a slightly more indirect approach by estimating the bias due to overfitting or the “optimism”
                  
                 in the final model fit. After the optimism is estimated, it can be subtracted from the index of 
                  
                  
                accuracy derived from the original sample to obtain a bias-corrected or overfitting-corrected estimate of predictive 
                  
                  
                accuracy. The 
                  
                  
                bootstrap method is as follows. From the original X and Y in the sample of size n, draw a sample with replacement also of size n. Derive a model in the bootstrap sample and apply it without change to the original sample. The 
                  
                  
                accuracy index from the bootstrap sample minus the index computed on the original sample is an estimate of optimism. This process is repeated for 100 or so 
                  
                bootstrap replications to obtain an average optimism, which is subtracted from the final model fit’s apparent 
                  
                  
                accuracy to obtain the overfitting-
                  
                  
                corrected estimate. [image: A69956_2_En_5_Figs_HTML.gif]
                            
Note that bootstrapping validates the process that was used to fit the original model (as does cross-validation). It provides an estimate of the expected value of the optimism, which when subtracted from the original index, provides an estimate of the expected bias-corrected index. If stepwise variable selection is part of the bootstrap process (as it must be if the final model is developed that way), and not all resamples (samples with replacement or training samples in cross-validation) resulted in the same model (which is almost always the case), this internal validation process actually provides an unbiased estimate of the future performance of the process used to identify markers and scoring systems; it does not validate a single final model. But resampling does tend to provide good estimates of the future performance of the final model that was selected using the same procedure repeated in the resamples.[image: A69956_2_En_5_Figt_HTML.gif]

Note that by drawing samples from X and Y, we are estimating aspects of the unconditional distribution of statistical quantities. One could instead draw samples from quantities such as residuals from the model to obtain a distribution that is conditional on X. However, this approach requires that the model be specified correctly, whereas the unconditional 
                  
                  
                bootstrap does not. Also, the unconditional estimators are similar to conditional estimators except for very skewed or very small samples [186, p. 217].
Bootstrapping can be used to estimate the optimism in virtually any index. Besides discrimination indexes such as R
2, slope and intercept 
                  
                  
                calibration factors can be estimated. When one fits the model C(Y | X) = X β, and then refits the model [image: 
$$C(Y \vert X) =\gamma _{0} +\gamma _{1}X\hat{\beta }$$
] on the same data, where [image: 
$$\hat{\beta }$$
] is an estimate of β, [image: 
$$\hat{\gamma }_{0}$$
] and [image: 
$$\hat{\gamma }_{1}$$
] will necessarily be 0 and 1, respectively. However, when [image: 
$$\hat{\beta }$$
] is used to predict responses on another dataset, [image: 
$$\hat{\gamma }_{1}$$
] may be < 1 if there is overfitting, and [image: 
$$\hat{\gamma }_{0}$$
] will be different from zero to compensate. Thus a 
                  
                  
                bootstrap estimate of γ
1 will not only quantify overfitting nicely, but can also be used to shrink predicted values to make them more calibrated (similar to [582]). Efron’s optimism bootstrap is used to estimate the optimism in (0, 1) and then (γ
0, γ
1) are estimated by subtracting the optimism in the constant estimator (0, 1). Note that in 
                  
                  
                cross-validation one estimates β with [image: 
$$\hat{\beta }$$
] from the training sample and fits [image: 
$$C(Y \vert X) =\gamma X\hat{\beta }$$
] on the test sample directly. Then the γ estimates are averaged over all test samples. This approach does not require the choice of a parameter that determines the amount of shrinkage as does 
                  
                ridge regression or 
                  
                  
                penalized maximum likelihood estimation; instead one estimates how to make the initial fit well calibrated. 123, 633 However, this approach is not as reliable as building shrinkage into the original estimation process. The latter allows different parameters to be shrunk by different factors.[image: A69956_2_En_5_Figu_HTML.gif]

Ordinary bootstrapping can sometimes yield overly optimistic estimates of optimism, that is, may underestimate the amount of overfitting. This is especially true when the ratio of the number of observations to the number of parameters estimated is not large. 205 A variation on the 
                  
                  
                bootstrap that improves precision of the assessment is the “.632” method, which Efron found to be optimal in several examples. 172 This method provides a 
                  
                  
                bias-corrected estimate of predictive accuracy by substituting 0. 632× [apparent accuracy [image: 
$$-\hat{\epsilon }_{0}]$$
] for the estimate of optimism, where [image: 
$$\hat{\epsilon }_{0}$$
] is a weighted average of accuracies evaluated on observations omitted from bootstrap samples [178, Eq. 17.​25, p. 253]. [image: A69956_2_En_5_Figv_HTML.gif]
                            
For ordinary least squares, where the genuine per-observation.632 estimator can be used, several simulations revealed close agreement with the modified.632 estimator, even in small, highly overfitted samples. In these overfitted cases, the ordinary 
                  
                  
                bootstrap bias-corrected 
                  
                  
                accuracy estimates were significantly higher than the.632 estimates. Simulations 259, 591 have shown, however, that for most types of indexes of accuracy of binary logistic regression models, Efron’s original bootstrap has lower mean squared error than the.632 bootstrap when [image: 
$$n = 200,p = 30$$
]. 
                  
                  
                Bootstrap overfitting-corrected estimates of model performance can be biased in favor of the model. Although 
                  
                  
                cross-validation is less biased than the bootstrap, Efron 172 showed that it has much higher variance in estimating overfitting-corrected predictive accuracy than bootstrapping. In other words, cross-validation, like data-splitting, can yield significantly different estimates when the entire validation process is repeated.[image: A69956_2_En_5_Figw_HTML.gif]

It is frequently very informative to estimate a measure of predictive accuracy forcing all candidate factors into the fit and then to separately estimate accuracy allowing stepwise variable selection, possibly with different stopping rules. Consistent with Spiegelhalter’s proposal to use all factors and then to shrink the coefficients to adjust for overfitting, 582 the full model fit will outperform the stepwise model more often than not. Even though stepwise modeling has slightly less optimism in predictive discrimination, this improvement is not enough to offset the loss of information from deleting even marginally important variables. Table 5.2 shows a typical scenario. In this example, stepwise modeling lost a possible [image: 
$$0.50 - 0.47 = 0.03$$
] predictive discrimination. The full model fit will especially be an improvement when
1.the stepwise selection deletes several variables that are almost significant;

 

2.these marginal variables have some real predictive value, even if it’s slight; and

 

3.there is no small set of extremely dominant variables that would be easily found by stepwise selection.[image: A69956_2_En_5_Figx_HTML.gif]
                                            

 



Table 5.2Example validation with and without variable selection


	Method
	Apparent Rank
	Over-
	Bias-Corrected

	 	Correlation of
	Optimism
	Correlation

	 	Predicted vs.
	 	 
	 	Observed
	 	 
	Full Model
	0.50
	0.06
	0.44

	Stepwise Model
	0.47
	0.05
	0.42





Faraway 186 has a fascinating study showing how resampling methods can be used to estimate the distributions of predicted values and of effects of a predictor, adjusting for an automated multistep modeling process. Bootstrapping can be used, for example, to penalize the variance in predicted values for choosing a transformation for Y and for 
                  
                outlier and 
                  
                influential observation deletion, in addition to variable selection. Estimation of the transformation of Y greatly increased the variance in Faraway’s examples. Brownstone [77, p. 74] states that “In spite of considerable efforts, theoretical statisticians have been unable to analyze the sampling properties of [usual multistep modeling strategies] under realistic conditions” and concludes that the modeling strategy must be completely specified and then bootstrapped to get consistent estimates of variances and other sampling properties. [image: A69956_2_En_5_Figy_HTML.gif] 
                  
                 
                  
                 
                  
                  
                



5.4 Bootstrapping Ranks of Predictors
When the order of importance of predictors is not pre-specified but the researcher attempts to determine that order by assessing multiple associations with Y, the process of selecting “winners” and “losers” is unreliable. The bootstrap can be used to demonstrate the difficulty of this task, by estimating confidence intervals for the ranks of all the predictors. Even though the bootstrap intervals are wide, they actually underestimate the true widths 250.
The following exampling uses simulated data with known ranks of importance of 12 predictors, using an ordinary linear model. The importance metric is the partial χ
2 minus its degrees of freedom, while the true metric is the partial β, as all covariates have U(0, 1) distributions. 
                
                
              

                
                
              


              [image: A69956_2_En_5_Figa_HTML.gif]

            
With a sample size of n = 300 the observed ranks of predictor importance do not coincide with population βs, even when there are no collinearities among the predictors. Confidence intervals are wide; for example the 0.95 confidence interval for the rank of x7 (which has a true rank of 7) is [1, 8], so we are only confident that x7 is not one of the 4 most influential predictors. The confidence intervals do include the true ranks in each case (Figure 5.3).[image: A69956_2_En_5_Fig3_HTML.gif]
Fig. 5.3Bootstrap percentile 0.95 confidence limits for ranks of predictors in an OLS model. Ranking is on the basis of partial χ
2 minus d.f. Point estimates are original ranks






5.5 Simplifying the Final Model by Approximating It

              
                
                
              
              
                
              
            
5.5.1 Difficulties Using Full Models
A model that contains all prespecified terms will usually be the one that predicts the most accurately on new data. It is also a model for which confidence limits and statistical tests have the claimed properties. Often, however, this model will not be very parsimonious. The full model may require more predictors than the researchers care to collect in future samples. It also requires predicted values to be conditional on all of the predictors, which can increase the variance of the predictions.
As an example suppose that least squares has been used to fit a model containing several variables including race (with four categories). Race may be an insignificant predictor and may explain a tiny fraction of the observed variation in Y. Yet when predictions are requested, a value for race must be inserted. If the subject is of the majority race, and this race has a majority of, say 0.75, the variance of the predicted value will not be significantly greater than the variance for a predicted value from a model that excluded race for its list of predictors. If, however, the subject is of a minority race (say “other” with a prevalence of 0.01), the predicted value will have much higher variance. One approach to this problem, that does not require development of a second model, is to ignore the subject’s race and to get a weighted average prediction. That is, we obtain predictions for each of the four races and weight these predictions by the relative frequencies of the four races.4 This weighted average estimates the expected value of Y unconditional on race. It has the advantage of having exactly correct 
                  
                  
                confidence limits when model assumptions are satisfied, because the correct “error term” is being used (one that deducts 3 d.f. for having ever estimated the race effect). In regression models having nonlinear link functions, this process does not yield such a simple interpretation.
When predictors are collinear, their competition results in larger P-values when predictors are (often inappropriately) tested individually. Likewise, confidence intervals for individual effects will be wide and uninterpretable (can other variables really be held constant when one is changed?).

5.5.2 Approximating the Full Model

                
                  
                  
                
              
When the full model contains several predictors that do not appreciably affect the predictions, the above process of “unconditioning”
                  
                 is unwieldy. In the search for a simple solution, the most commonly used procedure for making the model parsimonious is to remove variables on the basis of P-values, but this results in a variety of problems as we have seen. Our approach instead is to consider the full model fit as the “gold standard” model, especially the model from which formal inferences are made. We then proceed to approximate this full model to any desired degree of accuracy. For any approximate model we calculate the 
                  
                  
                accuracy with which it approximates the best model. One goal this process accomplishes is that it provides different degrees of 
                  
                parsimony to different audiences, based on their needs. One investigator may be able to collect only three variables, another one seven. Each investigator will know how much she is giving up by using a subset of the predictors. In approximating the gold standard model it is very important to note that there is nothing gained in removing certain nonlinear terms; gains in 
                  
                parsimony come only from removing entire predictors. Another accomplishment of model approximation is that when the full model has been fitted using shrinkage (penalized estimation, Section 9.​10), the approximate models will inherit the shrinkage (see Section 14.​10 for an example).
Approximating complex models with simpler ones has been used to decode “black boxes” such as artificial neural networks. 
                  
                Recursive partitioning trees (Section 2.​5) may sometimes be used in this context. One develops a regression tree to predict the predicted value [image: 
$$X\hat{\beta }$$
] on the basis of the unique variables in X, using R
2, the average absolute prediction error, or the maximum absolute prediction error as a stopping rule, for example 184. The user desiring simplicity may use the tree to obtain predicted values, using the first k nodes, with k just large enough to yield a low enough absolute error in predicting the more comprehensive prediction. Overfitting is not a problem as it is when the tree procedure is used to predict the outcome, because (1) given the predictor values the predictions are deterministic and (2) the variable being predicted is a continuous, completely observed variable. Hence the best cross-validating tree approximation will be one with one subject per node. One advantage of the tree-approximation procedure is that data collection on an individual subject whose outcome is being predicted may be abbreviated by measuring only those Xs that are used in the top nodes, until the prediction is resolved to within a tolerable error.
When principal component regression is being used, trees can also be used to approximate the components or to make them more interpretable.
Full models may also be approximated using least squares as long as the linear predictor [image: 
$$X\hat{\beta }$$
] is the target, and not some nonlinear transformation of it such as a logistic model probability. When the original model was fitted using unpenalized least squares, submodels fitted against [image: 
$$\hat{Y }$$
] will have the same coefficients as if least squares had been used to fit the subset of predictors directly against Y. To see this, note that if X denotes the entire design matrix and T denotes a subset of the columns of X, the coefficient estimates for the full model are (X′X)−1
X′Y, [image: 
$$\hat{Y } = X(X'X)^{-1}X'Y$$
], estimates for a reduced model fitted against Y are (T′T)−1
T′Y, and coefficients fitted against [image: 
$$\hat{Y }$$
] are (T′T)T′X(X′X)−1
X′Y which can be shown to equal (T′T)−1
T′Y.
When least squares is used for both the full and reduced models, the 
                  
                variance–covariance matrix of the coefficient estimates of the reduced model is (T′T)−1
σ
2, where the residual variance σ
2 is estimated using the full model. When σ
2 is estimated by the unbiased estimator using the d.f. from the full model, which provides the only unbiased estimate of σ
2, the estimated variance–covariance matrix of the reduced model will be appropriate (unlike that from stepwise variable selection) although the bootstrap may be needed to fully take into account the source of variation due to how the approximate model was selected.
So if in the least squares case the approximate model coefficients are identical to coefficients obtained upon fitting the reduced model against Y, how is model approximation any different from stepwise variable selection? There are several differences, in addition to how σ
2 is estimated.
1.When the full model is approximated by a backward step-down procedure against [image: 
$$\hat{Y }$$
], the stopping rule is less arbitrary. One stops deleting variables when deleting any further variable would make the approximation inadequate (e.g., the R
2 for predictions from the reduced model against the original [image: 
$$\hat{Y }$$
] drops below 0.95).

 

2.Because the stopping rule is different (i.e., is not based on P-values), the approximate model will have a different number of predictors than an ordinary stepwise model.

 

3.If the original model used penalization, approximate models will inherit the amount of shrinkage used in the full fit.

 




Typically, though, if one performed ordinary backward step-down against Y using a large cutoff for α (e.g., 0.5), the approximate model would be very similar to the step-down model. The main difference would be the use of a larger estimate of σ
2 and smaller error d.f. than are used for the ordinary step-down approach (an estimate that pretended the final reduced model was prespecified).
When the full model was not fitted using least squares, least squares can still easily be used to approximate the full model. If the coefficient estimates from the full model are [image: 
$$\hat{\beta }$$
], estimates from the approximate model are matrix contrasts of [image: 
$$\hat{\beta }$$
], namely, [image: 
$$W\hat{\beta }$$
], where [image: 
$$W = (T'T)^{-1}T'X$$
]. So the variance–covariance matrix of the reduced coefficient estimates is given by [image: 
$$\displaystyle{ WV W', }$$
]

 (5.2)

 where V is the variance matrix for [image: 
$$\hat{\beta }$$
]. See Section 19.​5 for an example. Ambler et al. 21 studied model simplification using simulation studies based on several clinical datasets, and compared it with ordinary backward stepdown variable selection and with shrinkage methods such as the lasso (see 
                  
                Section 4.​3). They found that ordinary backwards variable selection can be competitive when there is a large fraction of truly irrelevant predictors (something that can be difficult to know in advance). Paul et al. 485 found advantages to modeling the response with a complex but reliable approach, and then developing a parsimoneous model using the 
                  
                
lasso or stepwise variable selection against [image: 
$$\hat{Y }$$
]. See Section 11.​7 for a case study in model approximation.


5.6 Further Reading

[image: A69956_2_En_5_Figf_HTML.gif] Gelman 213 argues that continuous variables should be scaled by two standard deviations to make them comparable to binary predictors. However his approach assumes linearity in the predictor effect and assumes the prevalence of the binary predictor is near 0.5. John Fox [202, p. 95] points out that if two predictors are on the same scale and have the same impact (e.g., years of employment and years of education), standardizing the coefficients will make them appear to have different impacts.

[image: A69956_2_En_5_Figg_HTML.gif] Levine et al. 401 have a compelling argument for graphing effect ratios on a logarithmic scale.

[image: A69956_2_En_5_Figh_HTML.gif] Hankins 254 is a definitive reference on nomograms and has multi-axis examples of historical significance. According to Hankins, Maurice d’Ocagne could be called the inventor of the nomogram, starting with alignment diagrams in 1884 and declaring a new science of “nomography” in 1899. d’Ocagne was at École des Ponts et Chaussées, a French civil engineering school. Julien and Hanley 328 have a nice example of adding axes to a nomogram to estimate the absolute effect of a treatment estimated using a Cox proportional hazards model. Kattan and Marasco 339 have several clinical examples and explain advantages to the user of nomograms over “black box” computerized prediction.

[image: A69956_2_En_5_Figi_HTML.gif] Graham and Clavel 231 discuss graphical and tabular ways of obtaining risk estimates. van Gorp et al. 630 have a nice example of a score chart for manually obtaining estimates.

[image: A69956_2_En_5_Figj_HTML.gif] Larsen and Merlo 375 developed a similar measure—the median odds ratio. Gönen and Heller 223 developed a c-index that like g is a function of the covariate distribution.

[image: A69956_2_En_5_Figk_HTML.gif] Booth and Sarkar 61 have a nice analysis of the number of bootstrap resamples needed to guarantee with 0.95 confidence that a variance estimate has a sufficiently small relative error. They concentrate on the Monte Carlo simulation error, showing that small errors in variance estimates can lead to important differences in P-values. Canty et al. 91 provide a number of diagnostics to check the reliability of bootstrap calculations.

[image: A69956_2_En_5_Figl_HTML.gif] There are many variations on the basic bootstrap for computing confidence limits. 150, 178 See Booth and Sarkar 61 for useful information about choosing the number of resamples. They report the number of resamples necessary to not appreciably change P-values, for example. Booth and Sarkar propose a more conservative number of resamples than others use (e.g., 800 resamples) for estimating variances. Carpenter and Bithell 92 have an excellent overview of 
                
                
               bootstrap confidence intervals, with practical guidance. They also have a good discussion of the unconditional nonparametric 
                
                
              bootstrap versus the conditional semiparametric bootstrap.

[image: A69956_2_En_5_Figm_HTML.gif] Altman and Royston 18 have a good general discussion of what it means to validate a predictive model, including issues related to study design and consideration of uses to which the model will be put.

[image: A69956_2_En_5_Fign_HTML.gif] An excellent paper on external validation and generalizability is Justice et al. 329. Bleeker et al. 58 provide an example where internal validation is misleading when compared with a true external validation done using subjects from different centers in a different time period. Vergouwe et al. 638 give good guidance about the number of events needed in sample used for external validation of binary logistic models.

[image: A69956_2_En_5_Figo_HTML.gif] See Picard and Berk 505 for more about data-splitting.

[image: A69956_2_En_5_Figp_HTML.gif] In the context of variable selection where one attempts to select the set of variables with nonzero true regression coefficients in an ordinary regression model, Shao 565 demonstrated that 
                
                
              leave-out-one cross-validation selects models that are “too large.” Shao also showed that the number of observations held back for validation should often be larger than the number used to train the model. This is because in this case one is not interested in an accurate model (you fit the whole sample to do that), but an accurate estimate of prediction error is mandatory so as to know which variables to allow into the final model. Shao suggests using a cross-validation strategy in which approximately n
3∕4 observations are used in each 
                
               training sample and the remaining observations are used in the test sample. A repeated balanced or Monte Carlo splitting approach is used, and 
                
                
              accuracy estimates are averaged over 2n (for the Monte Carlo method) repeated splits.

[image: A69956_2_En_5_Figq_HTML.gif] Picard and Cook’s Monte Carlo cross-validation procedure 506 is an improvement over ordinary cross-validation.

[image: A69956_2_En_5_Figr_HTML.gif] The randomization method is related to Kipnis’ “chaotization relevancy principle” 348 in which one chooses between two models by measuring how far each is from a nonsense model. Tibshirani and Knight also use a randomization method for estimating the optimism in a model fit. 611


[image: A69956_2_En_5_Figs_HTML.gif] This method used here is a slight change over that presented in [172], where Efron wrote predictive accuracy as a sum of per-observation components (such as 1 if the observation is classified correctly, 0 otherwise). Here we are writing m × the unitless summary index of predictive accuracy in the place of Efron’s sum of m per-observation accuracies [416, p. 613].

[image: A69956_2_En_5_Figt_HTML.gif] See [633] and [66, Section 4] for insight on the meaning of expected optimism.

[image: A69956_2_En_5_Figu_HTML.gif] See Copas, 123 van Houwelingen and le Cessie [633, p. 1318], Verweij and van Houwelingen, 640 and others 631 for other methods of estimating shrinkage coefficients.

[image: A69956_2_En_5_Figv_HTML.gif] Efron 172 developed the “. 632” estimator only for the case where the index being bootstrapped is estimated on a per-observation basis. A natural generalization of this method can be derived by assuming that the accuracy evaluated on observation i that is omitted from a 
                
                
              bootstrap sample has the same expectation as the accuracy of any other observation that would be omitted from the sample. The modified estimate of ε
0 is then given by [image: 
$$\displaystyle{ \hat{\epsilon }_{0} =\sum _{ i=1}^{B}w_{ i}T_{i}, }$$
]

 (5.3)

 where T

                i
               is the accuracy estimate derived from fitting a model on the ith bootstrap sample and evaluating it on the observations omitted from that bootstrap sample, and w

                i
               are weights derived for the B bootstrap samples: [image: 
$$\displaystyle{ w_{i} = \frac{1} {n}\sum _{j=1}^{n} \frac{[\mathrm{bootstrap\ sample\ }i\mathrm{\ omits\ observation\ }j]} {\#\mathrm{bootstrap\ samples\ omitting\ observation\ }j}. }$$
]

 (5.4)

 Note that [image: 
$$\hat{\epsilon }_{0}$$
] is undefined if any observation is included in every bootstrap sample. Increasing B will avoid this problem. This modified “. 632” estimator is easy to compute if one assembles the 
                
                
              bootstrap sample assignments and computes the w

                i
               before computing the 
                
                
              accuracy indexes T

                i
              . For large n, the w

                i
               approach 1∕B and so [image: 
$$\hat{\epsilon }_{0}$$
] becomes equivalent to the accuracy computed on the observations not contained in the bootstrap sample and then averaged over the B repetitions.

[image: A69956_2_En_5_Figw_HTML.gif] Efron and Tibshirani 179 have reduced the bias of the “.632” estimator further with only a modest increase in its variance. Simulation has, however, shown no advantage of this “.632+” method over the basic optimism 
                
                
              bootstrap for most accuracy indexes used in logistic models.

[image: A69956_2_En_5_Figx_HTML.gif] van Houwelingen and le Cessie 633 have several interesting developments in model validation. See Breiman 66 for a discussion of the choice of X for which to validate predictions. Steyerberg et al. 587 present simulations showing the number of bootstrap samples needed to obtain stable estimates of optimism of various accuracy measures. They demonstrate that bootstrap estimates of optimism are nearly unbiased when compared with simulated external estimates. They also discuss problems with precision of estimates of accuracy, especially when using external validation on small samples.

[image: A69956_2_En_5_Figy_HTML.gif] Blettner and Sauerbrei also demonstrate the variability caused by data-driven analytic decisions. 59 Chatfield 100 has more results on the effects of using the data to select the model.

              
                
                
              
              
                
              
            

5.7 Problem
Perform a simulation study to understand the performance of various internal validation methods for binary logistic models. Modify the R code below in at least two meaningful ways with regard to covariate distribution or number, sample size, true regression coefficients, number of resamples, or number of times certain strategies are averaged. Interpret your findings and give recommendations for best practice for the type of configuration you studied. The R code from this assignment may be downloaded from the RMS course wiki page.
For each of 200 simulations, the code below generates a training sample of 200 observations with p predictors (p = 15 or 30) and a binary response. The predictors are independently U(−0. 5, 0. 5). The response is sampled so as to follow a logistic model where the intercept is zero and all regression coefficients equal 0.5. The “gold standard” is the predictive ability of the fitted model on a test sample containing 50,000 observations generated from the same population model. For each of the 200 simulations, several validation methods are employed to estimate how the training sample model predicts responses in the 50,000 observations. These validation methods involve fitting 40 or 200 models in resamples.

g-fold cross-validation is done using the command validate(f, method= ’cross’, B=g) using the rms package. This was repeated and averaged using an extra loop, shown below.
For bootstrap methods, validate(f, method=’boot’ or ’.632’, B=40 or B=200) was used. method=’.632’ does Efron’s “.632” method 179, labeled 632a in the output. An ad-hoc modification of the.632 method, 632b was also done. Here a “bias-corrected” index of accuracy is simply the index evaluated in the observation omitted from the bootstrap resample. The “gold standard” external validations were obtained from the val.prob function in the rms package. The following indexes of predictive accuracy are used: 
D

                      x y
                    :Somers’ rank correlation between predicted probability that Y = 1 vs. the binary Y values. This equals 2(C − 0. 5) where C is the “ROC Area” or concordance probability.



D:Discrimination index — likelihood ratio χ
2 divided by the sample size



U:Unreliability index — unitless index of how far the logit calibration curve intercept and slope are from (0, 1)



Q:Logarithmic accuracy score — a scaled version of the log-likelihood achieved by the predictive model


Intercept:Calibration intercept on logit scale


Slope:Calibration slope (slope of predicted log odds vs. true log odds)





Accuracy of the various resampling procedures may be estimated by computing the mean absolute errors and the root mean squared errors of estimates (e.g., of D

                x y
               from the bootstrap on the 200 observations) against the “gold standard” (e.g., D

                x y
               for the fitted 200-observation model achieved in the 50,000 observations).

              [image: A69956_2_En_5_Figb_HTML.gif][image: A69956_2_En_5_Figc_HTML.gif][image: A69956_2_En_5_Figd_HTML.gif]

            
Results are best summarized in a multi-way dot chart. Bootstrap nonparametric percentile 0.95 confidence limits are included.

              [image: A69956_2_En_5_Fige_HTML.gif]
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Footnotes
1The s.d. of a binary variable is, aside from a multiplier of [image: 
$$\frac{n} {n-1}$$
], equal to [image: 
$$\sqrt{a(1 - a)}$$
], where a is the proportion of ones.

 

2There are decompositions of the Brier score into discrimination and calibration components.

 

3For example, in the binary logistic model, there is a generalization of R
2 available, but no adjusted version. For logistic models we often validate other indexes such as the 
                      
                      
                    ROC area or rank correlation between predicted probabilities and observed outcomes. We also validate the calibration 
                      
                    accuracy of [image: 
$$\hat{Y }$$
] in predicting Y.

 

4Using the rms package described in Chapter 6, such estimates and their confidence limits can easily be obtained, using for example contrast(fit, list(age=50, disease=’hypertension’, race=levels(race)), type=’average’, weights=table(race)).
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The methods described in this book are useful in any regression model that involves a linear combination of regression parameters. The software that is described below is useful in the same situations. Functions in R 520 allow interaction spline functions as well as a wide variety of predictor parameterizations for any regression function, and facilitate model validation by resampling.[image: A69956_2_En_6_Figq_HTML.gif]


R is the most comprehensive tool for general regression models for the following reasons.
1.It is very easy to write R functions for new models, so R has implemented a wide variety of modern regression models.

 

2.Designs can be generated for any model. There is no need to find out whether the particular modeling function handles what SAS calls “class” variables—dummy variables are generated automatically when an R category, factor, ordered, or character variable is analyzed.

 

3.A single R object can contain all information needed to test hypotheses and to obtain predicted values for new data.

 

4.
R has superior graphics.

 

5.
Classes in R make possible the use of generic function names (e.g., predict

                      
                    , summary

                      
                    , anova

                      
                    ) to examine fits from a large set of specific model–fitting functions.

 





R 44, 601, 635 is a high-level 
              
            object-oriented language for statistical analysis with over six thousand packages and tens of thousands of functions available. The R system 318, 520 is the basis for R software used in this text, centered around the Regression Modeling Strategies (rms) package 261. See the Appendix and the Web site for more information about software implementations.
6.1 The R Modeling Language

R has a battery of functions that make up a statistical modeling language. 96 At the heart of the modeling functions is an R formula of the form [image: A69956_2_En_6_Figr_HTML.gif]
                        

              [image: A69956_2_En_6_Figa_HTML.gif]

            
The terms represent additive components of a general linear model. Although variables and functions of variables make up the terms, the formula refers to additive combinations; for example, when terms is age + blood.pressure, it refers to [image: 
$$\beta _{1}\ \times \mathtt{age} +\beta _{2}\ \times \mathtt{blood.pressure}$$
]. Some examples of formulas are below.

              [image: A69956_2_En_6_Figb_HTML.gif]

            
The formula for a regression model is given to a modeling function; for example,

              [image: A69956_2_En_6_Figc_HTML.gif]

            
is read “use a logistic regression model to model y as a function of x, representing x by a restricted cubic spline with four default knots.”1 You can use the R function update to refit a model with changes to the model terms or the data used to fit it:

              [image: A69956_2_En_6_Figd_HTML.gif]

            

6.2 User-Contributed Functions
In addition to the many functions that are packaged with R, a wide variety of user-contributed functions is available on the Internet (see the Appendix or Web site for addresses). Two packages of functions used extensively in this text are 
                
              

                
              
Hmisc 20 and rms written by the author. The Hmisc package contains miscellaneous functions such as varclus

                
              , spearman2

                
              , transcan

                
              , hoeffd

                
              , rcspline.eval

                
              , impute

                
              , cut2

                
              , describe

                
              , sas.get

                
              , latex

                
              , and several power and sample size calculation functions. The varclus

                
               function uses the R hclust

                
               hierarchical clustering function to do variable clustering, 
                
                
              and the R plclust

                
               function to draw dendrograms depicting the clusters. varclus

                
               offers a choice of three similarity measures (Pearson r
2, Spearman ρ
2, and 
                
              

                
                
              

                
                
              Hoeffding D) and uses pairwise deletion of missing values. varclus

                
               automatically generates a series of dummy variables for categorical factors. The Hmisc hoeffd

                
               function computes a matrix of Hoeffding Ds for a series of variables. The spearman2

                
               function will do 
                
                
              Wilcoxon, Spearman, and 
                
                
              

                
                
              

                
                
              Kruskal–Wallis tests and generalizes Spearman’s ρ to detect 
                
              non-monotonic relationships.

Hmisc’s transcan

                
               function (see Section 4.​7) performs a similar function to PROC PRINQUAL in SAS—it uses restricted splines, 
                
              dummy variables, and 
                
              canonical variates to transform each of a series of variables while imputing missing values. An option to shrink regression coefficients for the 
                
                
              imputation models avoids overfitting for small samples or a large number of predictors. transcan

                
               can also do multiple 
                
                
              imputation and adjust 
                
              variance–covariance matrices for imputation. See Chapter 8 for an example of using these functions for data reduction.
See the Web site for a list of R functions for 
                
              correspondence analysis, principal component analysis, and missing data imputation available from other users. Venables and Ripley [635, Chapter 11] provide a nice description of the multivariate methods that are available in R, and they provide several new multivariate analysis functions.
A basic function in Hmisc is the rcspline.eval

                
               function, which creates a design matrix for a restricted (natural) cubic spline using the truncated power basis. Knot locations are optionally estimated using methods described in Section 2.​4.​6, and two types of normalizations to reduce numerical problems are supported. You can optionally obtain the design matrix for the anti-derivative of the spline function. The rcspline.restate

                
               function computes the coefficients (after un-normalizing if needed) that translate the restricted cubic spline function to unrestricted form (Equation 2.​27). rcspline.restate

                
               also outputs 
                
              LaTeX and R representations of spline functions in simplified form.

6.3 The rms Package

              
                
              
            
A package of R functions called rms contains several functions that extend R to make the analyses described in this book easy to do. A central function in rms is datadist

                
              , which computes statistical summaries of predictors to automate estimation and plotting of effects. datadist

                
               exists as a separate function so that the candidate predictors may be summarized once, thus saving time when fitting several models using subsets or different transformations of predictors. If datadist

                
               is called before model fitting, the distributional summaries are stored with the fit so that the fit is self-contained with respect to later estimation. Alternatively, datadist

                
               may be called after the fit to create temporary summaries to use as plot ranges and effect intervals, or these ranges may be specified explicitly to Predict

                
               and summary

                
               (see below), without ever calling datadist

                
              . The input to datadist

                
               may be a data frame, a list of individual predictors, or a combination of the two.
The characteristics saved by datadist

                
               include the overall range and certain quantiles for continuous variables, and the distinct values for discrete variables (i.e., R factor variables or variables with 10 or fewer unique values). The quantiles and set of distinct values facilitate estimation and plotting, as described later. When a function of a predictor is used (e.g., pol(pmin(x,50),2)), the limits saved apply to the innermost variable (here, x). When a plot is requested for how x relates to the response, the plot will have x on the x-axis, not pmin(x,50). The way that defaults are computed can be controlled by the q.effect and q.display parameters to datadist

                
              . By default, continuous variables are plotted with ranges determined by the tenth smallest and tenth largest values occurring in the data (if n < 200, the 0.05 and 0.95 quantiles are used). The default range for estimating effects such as odds and hazard ratios is the lower and upper quartiles. When a predictor is adjusted to a constant so that the effects of changes in other predictors can be studied, the default constant used is the median for continuous predictors and the most frequent category for factor variables. The R system option datadist

                
               is used to point to the result returned by the datadist

                
               function. See the help files for datadist

                
               for more information.

rms fitting functions save detailed information for later prediction, plotting, and testing. rms also allows for special restricted interactions and sets the default method of generating contrasts for categorical variables to "contr.treatment", the traditional 
                
              dummy-variable approach.

rms has a special operator %ia% in the terms of a formula that allows for restricted interactions. For example, one may specify a model that contains sex and a five-knot linear spline for age, but restrict the age × sex interaction to be linear in age. To be able to connect this incomplete interaction with the main effects for later hypothesis testing and estimation, the following formula would be given:

              [image: A69956_2_En_6_Fige_HTML.gif]

            
The following expression would restrict the age × cholesterol interaction to be of the form A F(B) + B G(A) by removing 
                
              doubly nonlinear terms.

              [image: A69956_2_En_6_Figf_HTML.gif]

            

rms has special fitting functions that facilitate many of the procedures described in this book, shown in Table 6.1. Table 6.1
rms Fitting Functions


	Function
	Purpose
	Related R


	 	 	Functions

	
                          ols
                          
                            
                          
                        
	Ordinary least squares linear model
	
                          lm
                          
                            
                          
                        

	
                          lrm
                          
                            
                          
                        
	Binary and ordinal logistic regression model
	
                          glm
                          
                            
                          
                        

	 	Has options for penalized MLE
	 
	
                          orm
                          
                            
                          
                        
	Ordinal semi-parametric regression model with
	
polr,lrm


	 	several link functions
	 
	
                          psm
                          
                            
                          
                        
	Accelerated failure time parametric survival
	
                          survreg
                          
                            
                          
                        

	 	models
	 
	
                          cph
                          
                            
                          
                        
	Cox proportional hazards regression
	
                          coxph
                          
                            
                          
                        

	
                          bj
                          
                            
                          
                        
	Buckley–James censored least squares model
	
survreg

                            
                          ,lm

                            
                          


	
                          Glm
                          
                            
                          
                        
	General linear models
	
                          glm
                          
                            
                          
                        

	
                          Gls
                          
                            
                          
                        
	Generalized least squares
	
                          gls
                          
                            
                          
                        

	
                          Rq
                          
                            
                          
                        
	Quantile regression
	
                          rq
                          
                            
                          
                        






Glm

                
               is a slight modification of the built-in R glm

                
               function so that rms methods can be run on the resulting fit object. glm

                
               fits general linear models under a wide variety of distributions of Y. Gls

                
               is a modification of the gls

                
               function from the nlme

                
               package of Pinheiro and Bates 509, for repeated measures (longitudinal) and spatially correlated data. The Rq

                
               function is a modification of the quantreg

                
               package’s rq

                
               function 356, 357. Functions related to survival analysis make heavy use of Therneau’s survival package 482.
                
              

You may want to specify to the fitting functions an option for how missing values (NAs) are handled. The method for handling missing data in R is to specify an na.action

                
               function. Some possible na.actions are given in Table 6.2. The default na.action

                
               is na.delete

                
               when you use rms’s fitting functions. An easy way to specify a new default na.action

                
               is, for example,
[image: A69956_2_En_6_Figg_HTML.gif]

Table 6.2Some na.actions Used in rms



	Function Name
	Method Used

	
                          na.fail
                          
                            
                          
                        
	Stop with error message if any missing

	 	values present

	
                          na.omit
                          
                            
                          
                        
	Function to remove observations with

	 	any predictors or responses missing

	
                          na.delete
                          
                            
                          
                        
	Modified version of na.omit

                            
                           to also

	 	report on frequency of NAs for each

	 	variable





before using a fitting function. If you use na.delete

                
               you can also use the system option na.detail.response

                
               that makes model fits store information about Y stratified by whether each X is missing. The default descriptive statistics for Y are the sample size and mean. For a survival time response object the sample size and proportion of events are used. Other summary functions can be specified using the na.fun.response

                
               option.

              [image: A69956_2_En_6_Figh_HTML.gif]

            
When R deletes missing values during the model–fitting procedure, residuals, fitted values, and other quantities stored with the fit will not correspond row-for-row with observations in the original data frame (which retained NAs). This is problematic when, for example, age in the dataset is plotted against the residual from the fitted model. Fortunately, for many na.actions including na.delete

                
               and a modified version of na.omit

                
              , a class of R functions called naresid

                
               written by Therneau works behind the scenes to put NAs back into residuals, predicted values, and other quantities when the predict

                
               or residuals

                
               functions (see below) are used. Thus for some of the na.actions, predicted values and residuals will automatically be arranged to match the original data.
Any R function can be used in the terms for formulas given to the fitting function, but if the function represents a transformation that has data-dependent parameters (such as the standard R functions poly

                
               or ns

                
              ), R will not in general be able to compute predicted values correctly for new observations. For example, the function ns

                
               that automatically selects knots for a B-spline
                
                
               fit will not be conducive to obtaining predicted values if the knots are kept “secret.” For this reason, a set of functions that keep track of transformation parameters, exists in rms for use with the functions highlighted in this book. These are shown in Table 6.3. Of these functions, asis

                
              , catg

                
              , scored

                
              , and matrx are almost always called implicitly and are not mentioned by the user. catg

                
               is usually called explicitly when the variable is a numeric variable to be used as a polytomous factor, and it has not been converted to an R categorical variable using the factor function. Table 6.3
rms Transformation Functions


	Function
	Purpose
	Related R


	 	 	Functions

	
                          asis
                          
                            
                          
                        
	No 
                            
                            
                          post-transformation (seldom used explicitly)
	
                          I
                        

	
                          rcs
                          
                            
                          
                        
	Restricted cubic spline
	
                          ns
                          
                            
                          
                        

	
                          pol
                          
                            
                          
                        
	Polynomial using standard notation
	
                          poly
                          
                            
                          
                        

	
                          lsp
                          
                            
                          
                          
                            
                            
                          
                        
	Linear spline
	 
	
                          catg
                          
                            
                          
                        
	Categorical predictor (seldom)
	
                          factor
                        

	
                          scored
                          
                            
                          
                        
	Ordinal categorical variables
	
                          ordered
                          
                            
                          
                        

	
                          matrx
                          
                            
                          
                        
	Keep variables as group for anova

                            
                           and fastbw

                            
                          

	
                          matrix
                          
                            
                          
                        

	
                          strat
                          
                            
                          
                        
	Nonmodeled stratification factors
	
                          strata
                          
                            
                          
                        

	 	(used for cph

                            
                           only)
	 




These functions can be used with any function of a predictor. For example, to obtain a four-knot cubic spline expansion of the cube root of x, specify rcs(x
∧
(1/3),4).
When the transformation functions are called, they are usually given one or two arguments, such as rcs(x,5). The first argument is the predictor variable or some function of it. The second argument is an optional vector of parameters describing a transformation, for example location or number of knots. Other arguments may be provided.
The Hmisc package’s
                
               cut2

                
               function is sometimes used to create a categorical variable from a continuous variable x. You can specify the actual interval endpoints (cuts), the number of observations to have in each interval on the average (m), or the number of quantile groups (g). Use, for example, cuts=c(0,1,2) to cut into the intervals [0, 1), [1, 2].
A key concept in fitting models in R is that the fitting function returns an object that is an R list. This object contains basic information about the fit (e.g., regression coefficient estimates and covariance matrix, model χ
2) as well as information about how each parameter of the model relates to each factor in the model. Components of the fit object are addressed by, for example, fit$coef, fit$var, fit$loglik. rms causes the following information to also be retained in the fit object: the limits for plotting and estimating effects for each factor (if options(datadist="name") was in effect), the label for each factor, and a vector of values indicating which parameters associated with a factor are nonlinear (if any). Thus the “fit object” contains all the information needed to get predicted values, plots, odds or hazard ratios, and hypothesis tests, and to do “smart” variable selection that keeps parameters together when they are all associated with the same predictor.

R uses the notion of the class of an object. The 
                
              object-oriented class idea allows one to write a few generic functions that decide which specific functions to call based on the class of the object passed to the generic function. An example is the function for printing the main results of a logistic model. The lrm

                
               function returns a fit object of class "lrm". If you specify the R command print(fit) (or just fit if using R interactively—this invokes print), the print function invokes the print.lrm function to do the actual printing specific to logistic models. To find out which particular methods are implemented for a given generic function, type methods(generic.name).
Generic functions that are used in this book include those in Table 6.4. Table 6.4
rms Package and R Generic Functions


	Function
	Purpose
	Related Functions

	
                          print
                        
	Print parameters and statistics of fit
	 
	
                          coef
                          
                            
                          
                        
	Fitted regression coefficients
	 
	
                          formula
                          
                            
                          
                        
	Formula used in the fit
	 
	
                          specs
                          
                            
                          
                        
	Detailed specifications of fit
	 
	
                          vcov
                          
                            
                          
                        
	Fetch covariance matrix
	 
	
                          logLik
                          
                            
                          
                        
	Fetch maximized log-likelihood
	 
	
                          AIC
                          
                            
                          
                        
	Fetch AIC
	 
	
                          lrtest
                          
                            
                          
                        
	Likelihood ratio test for two nested models
	 
	
                          univarLR
                          
                            
                          
                        
	Compute all univariable LR χ
2

	 
	
                          robcov
                          
                            
                          
                        
	Robust covariance matrix estimates
	 
	
                          bootcov
                          
                            
                          
                        
	Bootstrap covariance matrix estimates
	 
	 	and bootstrap distributions of estimates
	 
	
                          pentrace
                          
                            
                          
                        
	Find optimum penalty factors by tracing
	 
	 	effective AIC for a grid of penalties
	 
	
                          effective.df
                          
                            
                          
                        
	Print effective d.f. for each type of variable
	 
	 	in model, for penalized fit or pentrace

                            
                           result
	 
	
                          summary
                        
	Summary of effects of predictors
	 
	
                          plot.summary
                        
	Plot continuously shaded confidence bars
	 
	 	for results of summary

                            
                          

	 
	
                          anova
                          
                            
                          
                        
	Wald tests of most meaningful hypotheses
	 
	
                          plot.anova
                        
	Graphical depiction of anova

	 
	
                          contrast
                          
                            
                          
                        
	General contrasts, C.L., tests
	 
	
                          Predict
                          
                            
                          
                        
	Predicted values and confidence limits easily
	 
	 	varying a subset of predictors and leaving the
	 
	 	rest set at default values
	 
	
                          plot.Predict
                        
	Plot the result of Predict

                            
                           using 
                            
                          
lattice

	 
	
                          ggplot
                          
                            
                          
                        
	Plot the result of Predict

                            
                           using 
                            
                          
ggplot2

	 
	
                          bplot
                          
                            
                          
                        
	3-dimensional plot when Predict

                            
                           varied
	 
	 	two continuous predictors over a fine grid
	 
	
                          gendata
                          
                            
                          
                        
	Easily generate predictor combinations
	 
	
                          predict
                        
	Obtain predicted values or design matrix
	 
	
                          fastbw
                          
                            
                          
                        
	Fast backward step-down variable selection
	
                          step
                          
                            
                          
                        

	
                          residuals
                        
	(or resid

                            
                          ) Residuals, influence stats from fit
	 
	
                          sensuc
                          
                            
                          
                        
	Sensitivity analysis for unmeasured
	 
	 	confounder
	 
	
                          which.influence
                          
                            
                          
                        
	Which observations are overly influential
	
                          residuals
                          
                            
                          
                        

	
                          latex
                          
                            
                          
                        
	LaTeX representation of fitted model
	
                          Function
                          
                            
                          
                        

	
                          Function
                          
                            
                          
                        
	
R function analytic representation of [image: 
$$X\hat{\beta }$$
]

	
                          latex
                          
                            
                          
                        

	 	from a fitted regression model
	 
	
                          Hazard
                          
                            
                          
                        
	
R function analytic representation of a fitted
	 
	 	hazard function (for psm

                            
                          )
                            
                          

	 
	
                          Survival
                          
                            
                          
                        
	
R function analytic representation of fitted
	 
	 	survival function (for psm

                            
                          , cph

                            
                          )
	 
	 	exceedance probabilities for orm

                            
                          

	 
	
                          Quantile
                          
                            
                          
                        
	
R function analytic representation of fitted
	 
	 	function for quantiles of survival time
	 
	 	(for psm

                            
                          , cph

                            
                          )
	 
	
                          Mean
                          
                            
                          
                        
	
R function analytic representation of fitted
	 
	 	function for mean survival time or for ordinal logistic
	 
	
                          nomogram
                          
                            
                          
                        
	Draws a nomogram for the fitted model
	
latex

                            
                          , plot


	
                          survest
                          
                            
                          
                        
	Estimate survival probabilities (psm

                            
                          , cph

                            
                          )
	
                          survfit
                          
                            
                          
                        

	
                          survplot
                          
                            
                          
                        
	Plot survival curves (psm

                            
                          , cph

                            
                          )
	
                          plot.survfit
                        

	
                          validate
                          
                            
                          
                        
	Validate indexes of model fit using resampling
	 
	
                          calibrate
                          
                            
                          
                        
	Estimate calibration curve using resampling
	
                          val.prob
                          
                            
                          
                        

	
                          vif
                          
                            
                          
                        
	

                            
                          Variance inflation factors for fitted model
	 
	
                          naresid
                          
                            
                          
                        
	Bring elements corresponding to missing data
	 
	 	back into predictions and residuals
	 
	
                          naprint
                          
                            
                          
                        
	Print summary of missing values
	 
	
                          impute
                          
                            
                          
                        
	Impute missing values
	
                          transcan
                          
                            
                          
                        

	
                          ExProb
                          
                            
                          
                        
	
R function analytic representation of
	 




The first argument of the majority of functions is the object returned from the model fitting function. When used with ols

                
              , lrm

                
              , orm

                
              , psm

                
              , cph

                
              , Glm

                
              , Gls

                
              , Rq

                
              , bj

                
              , these functions do the following. specs

                
               prints the design specifications, for example, number of parameters for each factor, levels of categorical factors, knot locations in splines, and so on. vcov

                
               returns the variance-covariance matrix for the model. logLik

                
               retrieves the maximized log-likelihood, whereas AIC

                
               computes the Akaike Information Criterion for the model on the minus twice log-likelihood scale (with an option to compute it on the χ
2 scale if you specify type=’chisq’). lrtest

                
              , when given two fit objects from nested models, computes the likelihood ratio test for the extra variables. univarLR

                
               computes all univariable likelihood ratio χ
2 statistics, one predictor at a time.
The robcov

                
               function computes the Huber robust covariance matrix estimate. bootcov

                
               uses the 
                
                
              bootstrap to estimate the covariance matrix of parameter estimates. Both robcov

                
               and bootcov

                
               assume that the design matrix and response variable were stored with the fit. They have options to adjust for cluster sampling
                
              

                
              

                
                
              . Both replace the original variance–covariance matrix with robust estimates and return a new fit object that can be passed to any of the other functions. In that way, robust Wald tests, variable selection, confidence limits, and many other quantities may be computed automatically. The functions do save the old covariance estimates in component orig.var of the new fit object. bootcov

                
               also optionally returns the matrix of parameter estimates over the bootstrap simulations. These estimates can be used to derive 
                
                
              bootstrap confidence intervals that don’t assume normality or symmetry. Associated with bootcov

                
               are plotting functions for drawing histogram and smooth density estimates for 
                
                
              bootstrap distributions. bootcov

                
               also has a feature for deriving approximate nonparametric 
                
                
              simultaneous confidence sets. For example, the function can get a simultaneous 0.90 confidence region for the regression effect of age over its entire range.
The pentrace

                
               function assists in selection of penalty factors for fitting regression models using 
                
                
              penalized maximum likelihood estimation (see Section 9.​10). Different types of model terms can be penalized by different amounts. For example, one can penalize interaction terms more than main effects. The effective.df

                
               function prints details about the effective 
                
                
              degrees of freedom devoted to each type of model term in a penalized fit.

summary

                
               prints a summary of the effects of each factor. When summary

                
               is used to estimate effects (e.g., odds or hazard ratios) for continuous variables, it allows the levels of interacting factors to be easily set, as well as allowing the user to choose the interval for the effect. This method of estimating effects allows for nonlinearity in the predictor. By default, 
                
              interquartile range effects (differences in [image: 
$$X\hat{\beta }$$
], odds ratios, hazards ratios, etc.) are printed for continuous factors, and all comparisons with the reference level are made for categorical factors. See the example at the end of the summary

                
               documentation for a method of quickly computing pairwise treatment effects and confidence intervals for a large series of values of factors that interact with the treatment variable. Saying plot(summary(fit)) will depict the effects graphically, with bars for a list of confidence levels.
The anova

                
               function automatically tests most meaningful hypotheses in a design. For example, suppose that age and cholesterol are predictors, and that a general interaction is modeled using a restricted spline surface. anova

                
               prints Wald statistics for testing linearity of age, linearity of cholesterol, age effect (age + age × cholesterol interaction), cholesterol effect (cholesterol + age × cholesterol interaction), linearity of the age × cholesterol interaction (i.e., adequacy of the simple age × cholesterol 1 d.f. product), linearity of the interaction in age alone, and linearity of the interaction in cholesterol alone. Joint tests of all interaction terms in the model and all nonlinear terms in the model are also performed. The plot.anova function draws a dot chart showing the relative contribution (χ
2, χ
2 minus d.f., AIC, partial R
2, P-value, etc.) of each factor in the model.
The contrast

                
               function is used to obtain general contrasts and corresponding 
                
              confidence limits and test statistics. This is most useful for testing effects in the presence of interactions (e.g., type II and type III contrasts). See the help file for contrast

                
               for several examples of how to obtain joint tests of multiple contrasts (see Section 9.​3.​2) as well as double differences (interaction contrasts).
The predict

                
               function is used to obtain a variety of values or predicted values from either the data used to fit the model or a new dataset. The Predict

                
               function is easier to use for most purposes, and has a special plot method. The gendata

                
               function makes it easy to obtain a data frame containing predictor combinations for obtaining selected predicted values.
The fastbw

                
               function
                
                
               performs a slightly inefficient but numerically stable version of fast backward elimination on factors, using a method based on Lawless and Singhal. 385 This method uses the fitted complete model and computes approximate Wald statistics by computing conditional (restricted) maximum likelihood estimates assuming multivariate normality of estimates. It can be used in simulations since it returns indexes of factors retained and dropped:

              [image: A69956_2_En_6_Figi_HTML.gif]

            

fastbw

                
               deletes factors, not columns of the design matrix. Factors requiring multiple d.f. will be retained or dropped as a group. The function prints the deletion statistics for each variable in turn, and prints approximate parameter estimates for the model after deleting variables. The approximation is better when the number of factors deleted is not large. For ols

                
              , the approximation is exact.
The which.influence

                
               function creates a list with a component for each factor in the model. The names of the components are the factor names. Each component contains the observation identifiers of all observations that are “overly influential” with respect to that factor, meaning that  | dfbetas |  > 
u for at least one β

                i
               associated with that factor, for a given u. The default u is.2. You must have specified x=TRUE, y=TRUE in the fitting function to use which.influence

                
              . The first argument is the fit object, and the second argument is the cutoff u.
The following R program will print the set of predictor values that were very influential for each factor. It assumes that the data frame containing the data used in the fit is called df.

              [image: A69956_2_En_6_Figj_HTML.gif]

            
The latex

                
               function is a generic function available in the Hmisc

                
               package. It invokes a specific latex

                
               function for most of the fit objects created by rms to create a LaTeX algebraic representation of the fitted model for inclusion in a report or viewing on the screen. This representation documents all parameters in the model and the functional form being assumed for Y, and is especially useful for getting a simplified version of restricted cubic spline functions. On the other hand, the print method with optional argument latex=TRUE is used to output LaTeX code representing the model results in tabular form to the console. This is intended for use with knitr 677 or Sweave 399.
The Function

                
               function composes an R function that you can use to evaluate [image: 
$$X\hat{\beta }$$
] analytically from a fitted regression model. The documentation for Function

                
               also shows how to use a subsidiary function sascode

                
               that will (almost) translate such an R function into SAS code for evaluating predicted values in new subjects. Neither Function

                
               nor latex

                
               handles third-order interactions.
The nomogram

                
               function draws a partial nomogram for obtaining predictions from the fitted model manually. It constructs different scales when interactions (up to third-order) are present. The constructed nomogram is not complete, in that point scores are obtained for each predictor and the user must add the point scores manually before reading predicted values on the final axis of the nomogram. The constructed nomogram is useful for interpreting the model fit, especially for non-monotonically transformed predictors (their scales wrap around an axis automatically).
The vif

                
               function computes 
                
              variance inflation factors from the covariance matrix of a fitted model, using [147, 654].
The impute

                
               function is another generic function. It does simple 
                
                
              imputation by default. It can also work with the transcan

                
               function to multiply or singly impute missing values using a flexible 
                
              additive model.
As an example of using many of the functions, suppose that a categorical variable treat has values "a", "b", and "c", an ordinal variable num.diseases has values 0,1,2,3,4, and that there are two continuous variables, age and cholesterol. age is fitted with a restricted cubic spline, while cholesterol is transformed using the transformation log(cholesterol+10). Cholesterol is missing on three subjects, and we impute these using the overall median cholesterol. We wish to allow for interaction between treat and cholesterol. The following R program will fit a logistic model, test all effects in the design, estimate effects, and plot estimated transformations. The fit for num.diseases really considers the variable to be a five-level categorical variable. The only difference is that a 3 d.f. test of linearity is done to assess whether the variable can be remodeled “asis”. Here we also show statements to attach the rms package and store predictor characteristics from datadist

                
              .

              [image: A69956_2_En_6_Figk_HTML.gif][image: A69956_2_En_6_Figl_HTML.gif]

            
To examine interactions in a simpler way, you may want to group age into tertiles:

              [image: A69956_2_En_6_Figm_HTML.gif]

            
Example output from these functions is shown in Chapter 10 and later chapters.
Note that type="terms" in predict

                
               scores each factor in a model with its fitted transformation. This may be used to compute, for example, rank correlation between the response and each transformed factor, pretending it has 1 d.f.
When regression is done on principal components, one may use an ordinary linear model to decode “internal” regression coefficients for helping to understand the final model. Here is an example.

              [image: A69956_2_En_6_Fign_HTML.gif]

            
In addition to many of the add-on functions described above, there are several other R functions that validate models. The first, predab.resample

                
              , is a general-purpose function that is used by functions for specific models described later. predab.resample

                
               computes estimates of optimism and 
                
                
              bias-corrected estimates of a vector of indexes of predictive 
                
                
              accuracy, for a model with a specified design matrix, with or without fast backward step-down of predictors. If bw=TRUE, predab.resample

                
               prints a matrix of asterisks showing which factors were selected at each repetition, along with a frequency distribution of the number of factors retained across resamples. The function has an optional parameter that may be specified to force the 
                
              bootstrap algorithm to do sampling with replacement from clusters rather than from original records, which is useful when each subject has multiple records in the dataset. It also has a parameter that can be used to validate predictions in a subset of the records even though models are refit using all records.
The generic function validate

                
               invokes predab.resample

                
               with model-specific fits and measures of 
                
                
              accuracy. The function calibrate

                
               invokes predab.resample

                
               to estimate 
                
                
              bias-corrected model 
                
                
              calibration and to plot the calibration curve. Model calibration is estimated at a sequence of predicted values. 
                
              


6.4 Other Functions
For principal component analysis, R has the princomp

                
               and prcomp

                
               functions. 
                
              Canonical correlations and 
                
              canonical variates can be easily computed using the cancor

                
               function. There are many other R functions for examining associations and for fitting models. The supsmu

                
               function implements Friedman’s “super smoother.” 207 The lowess

                
               function implements Cleveland’s two-dimensional smoother. 111 The glm

                
               function will fit general linear models under a wide variety of distributions of Y. There are functions to fit Hastie and Tibshirani’s 275 generalized 
                
              additive model for a variety of distributions. More is said about parametric and nonparametric additive multiple regression functions in Chapter 16 The loess

                
               function fits a multidimensional scatterplot smoother (the 
                
                
              local regression model of Cleveland et al. 96). loess

                
               provides approximate test statistics for normal or symmetrically distributed Y:

              [image: A69956_2_En_6_Figo_HTML.gif]

            

loess

                
               has a large number of options allowing various restrictions to be placed on the fitted surface.
Atkinson and Therneau’s rpart

                
               recursive partitioning package and related functions implement 
                
              classification and regression trees 69 algorithms for binary, continuous, and right-censored response variables (assuming an 
                
                
              exponential distribution for the latter). rpart

                
               deals effectively with missing predictor values using surrogate splits. The rms package has a validate

                
               function for rpart

                
               objects for obtaining cross-validated mean squared errors and Somers’ D

                x y
              

                
               rank correlations (
                
              Brier score and ROC areas for probability models).
For displaying which variables tend to be missing on the same subjects, the Hmisc naclus

                
               function can be used (e.g., plot(naclus(dataframename)) or naplot(naclus( dataframename))). For characterizing what type of subjects have NA’s on a given predictor (or response) variable, a 
                
              tree model whose response variable is is.na(varname) can be quite useful.

              [image: A69956_2_En_6_Figp_HTML.gif]

            
The Hmisc rcorr.cens

                
               function can compute Somers’ D

                x y
               rank correlation coefficient and its standard error, for binary or continuous (and possibly right-censored) responses. A simple 
                
              

                
              transformation of D

                x y
               yields the c index (generalized ROC area). The Hmisc improveProb

                
               function is useful for comparing two probability models using the methods of Pencina etal 490, 492, 493 in an external validation setting. See also the rcorrp.cens

                
               function in this context.

6.5 Further Reading

                            [image: A69956_2_En_6_Figq_HTML.gif]
 Harrell and Goldstein 263 list components of statistical languages or packages and compare several popular packages for survival analysis capabilities.

[image: A69956_2_En_6_Figr_HTML.gif] Imai et al. 319 have further generalized R as a statistical modeling language.
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Footnotes
1
lrm and rcs are in the rms package.
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In this chapter we consider models for a multivariate response variable represented by serial measurements over time within subject. This setup induces correlations between measurements on the same subject that must be taken into account to have optimal model fits and honest inference. Full likelihood model-based approaches have advantages including (1) optimal handling of imbalanced data and (2) robustness to missing 
              
            

              
             data (dropouts) that occur not completely at random. The three most popular model-based full likelihood approaches are mixed effects models, generalized least squares, and Bayesian hierarchical models. For continuous Y, generalized least squares has a certain elegance, and a case study will demonstrate its use after surveying competing approaches. As OLS is a special case of generalized least squares, the case study is also helpful in developing and interpreting OLS models1.
              
            

              
              
            

Some good references on longitudinal data analysis include 148, 159, 252, 414, 509, 635, 637.
7.1 Notation and Data Setup
Suppose there are N independent subjects, with subject i (i = 1, 2, …, N) having n

                i
               responses measured at times [image: 
$$t_{i1},t_{i2},\ldots,t_{in_{i}}$$
]. The response at time t for subject i is denoted by Y

                it
              . Suppose that subject i has baseline covariates X

                i
              . Generally the response measured at time t

i1 = 0 is a covariate in X

                i
               instead of being the first measured response Y

i0.
For flexible analysis, longitudinal data are usually arranged in a “tall and thin” layout. This allows measurement times to be irregular. In studies comparing two or more treatments, a response is often measured at baseline (pre-randomization). The analyst has the option to use this measurement as Y

i0 or as part of X

                i
              . There are many reasons to put initial measurements of Y in X, i.e., to use baseline measurements as baseline.[image: A69956_2_En_7_Figk_HTML.gif]


7.2 Model Specification for Effects on E(Y )
Longitudinal data can be used to estimate overall means or the mean at the last scheduled follow-up, making maximum use of incomplete records. But the real value of longitudinal data comes from modeling the entire time course. Estimating the time course leads to understanding slopes, shapes, overall trajectories, and periods of treatment effectiveness. With continuous Y one typically specifies the time course by a mean time-response profile. Common representations for such profiles include 	
k dummy variables for k + 1 unique times (assumes no functional form for time but assumes discrete measurement times and may spend many d.f.)

	
k = 1 for linear time trend, g
1(t) = t


	
k–order polynomial in t


	
k + 1–knot restricted cubic spline (one linear term, k − 1 nonlinear terms)





Suppose the time trend is modeled with k parameters so that the time effect has k d.f. Let the basis functions modeling the time effect be g
1(t), g
2(t), …, g

                k
              (t) to allow it to be nonlinear. A model for the time profile without interactions between time and any X is given by [image: 
$$\displaystyle{ E[Y _{it}\vert X_{i}] = X_{i}\beta +\gamma _{1}g_{1}(t) +\gamma _{2}g_{2}(t) +\ldots +\gamma _{k}g_{k}(t). }$$
]

 (7.1)

 To allow the slope or shape of the time-response profile to depend on some of the Xs we add product terms for desired interaction effects. For example, to allow the mean time trend for subjects in group 1 (reference group) to be arbitrarily different from the time trend for subjects in group 2, have a dummy variable for group 2, a time “main effect” curve with k d.f. and all k products of these time components with the dummy variable for group 2.
Once the right hand side of the model is formulated, predicted values, contrasts, and ANOVAs are obtained just as with a univariate model. For these purposes time is no different than any other covariate except for what is described in the next section.

7.3 Modeling Within-Subject Dependence
Sometimes understanding within-subject correlation patterns is of interest in itself. More commonly, accounting for intra-subject correlation is crucial for inferences to be valid. Some methods of analysis cover up the correlation pattern while others assume a restrictive form for the pattern. The following table is an attempt to briefly survey available longitudinal analysis methods. LOCF and the summary statistic method are not modeling methods. LOCF is an ad hoc attempt to account for longitudinal dropouts, and summary statistics can convert multivariate responses to univariate ones with few assumptions (other than minimal dropouts), with some information loss.[image: A69956_2_En_7_Figl_HTML.gif]


              What Methods To Use for Repeated Measurements / Serial Data?ab



	 	Repeated
	GEE
	Mixed
	GLS
	LOCF
	Summary

	 	Measures
	 	Effects
	 	 	Statisticc


	 	ANOVA
	 	Model
	 	 	 
	Assumes normality
	×
	 	×
	×
	 	 
	Assumes independence of
	×d

	×e

	 	 	 	 
	measurements within subject
	 	 	 	 	 	 
	Assumes a correlation structuref

	×
	×g

	×
	×
	 	 
	Requires same measurement
	×
	 	 	 	?
	 
	times for all subjects
	 	 	 	 	 	 
	Does not allow smooth modeling
	×
	 	 	 	 	 
	of time to save d.f.
	 	 	 	 	 	 
	Does not allow adjustment for
	×
	 	 	 	 	 
	baseline covariates
	 	 	 	 	 	 
	Does not easily extend to
	×
	 	 	×
	 	 
	non-continuous Y

	 	 	 	 	 	 
	Loses information by not using
	 	 	 	 	×h

	×

	intermediate measurements
	 	 	 	 	 	 
	Does not allow widely varying #
	×
	×i

	 	 	×
	×j


	of observations per subject
	 	 	 	 	 	 
	Does not allow for subjects
	×
	×
	 	×
	×
	 
	to have distinct trajectoriesk

	 	 	 	 	 	 
	Assumes subject-specific effects
	 	 	×
	 	 	 
	are Gaussian
	 	 	 	 	 	 
	Badly biased if non-random
	?
	×
	 	 	×
	 
	dropouts
	 	 	 	 	 	 
	Biased in general
	 	 	 	 	×
	 
	Harder to get tests & CLs
	 	 	×l

	 	×m

	 
	Requires large # subjects/clusters
	 	×
	 	 	 	 
	SEs are wrong
	×n

	 	 	 	×
	 
	Assumptions are not verifiable
	×
	N/A
	×
	×
	×
	 
	in small samples
	 	 	 	 	 	 
	Does not extend to complex
	×
	 	×
	×
	×
	?

	settings such as time-dependent
	 	 	 	 	 	 
	covariates and dynamico models
	 	 	 	 	 	 


aThanks to Charles Berry, Brian Cade, Peter Flom, Bert Gunter, and Leena Choi for valuable input.

bGEE: generalized estimating equations; GLS: generalized least squares; LOCF: last observation carried forward.

cE.g., compute within-subject slope, mean, or area under the curve over time. Assumes that the summary measure is an adequate summary of the time profile and assesses the relevant treatment effect.

dUnless one uses the Huynh-Feldt or Greenhouse-Geisser correction

eFor full efficiency, if using the working independence model

fOr requires the user to specify one

gFor full efficiency of regression coefficient estimates

hUnless the last observation is missing

iThe cluster sandwich variance estimator used to estimate SEs in GEE does not perform well in this situation, and neither does the working independence model because it does not weight subjects properly.

jUnless one knows how to properly do a weighted analysis

kOr uses population averages

lUnlike GLS, does not use standard maximum likelihood methods yielding simple likelihood ratio χ 2 statistics. Requires high-dimensional integration to marginalize random effects, using complex approximations, and if using SAS, unintuitive d.f. for the various tests.

mBecause there is no correct formula for SE of effects; ordinary SEs are not penalized for imputation and are too small

nIf correction not applied

oE.g., a model with a predictor that is a lagged value of the response variable

bE.g., few statisticians use subject random effects for univariate Y. Pinheiro and Bates [509, Section 5.​1.​2] state that “in some applications, one may wish to avoid incorporating random effects in the model to account for dependence among observations, choosing to use the within-group component Λ

                      i
                     to directly model variance-covariance structure of the response.”

bThis procedure can be generalized to allow for heteroscedasticity over time or with respect to X, e.g., males may be allowed to have a different variance than females.



            
The most prevalent full modeling approach is mixed effects models in which baseline predictors are fixed effects, and random effects are used to describe subject differences and to induce within-subject correlation. Some disadvantages of mixed effects models are 	The induced correlation structure for Y may be unrealistic if care is not taken in specifying the model.

	Random effects require complex approximations for distributions of test statistics.

	The most commonly used models assume that random effects follow a normal distribution. This assumption may not hold.







                
                
              It could be argued that an extended linear model (with no random effects) is a logical extension of the univariate OLS model 2. This model, called the generalized least squares or growth curve model 221, 509, 510, was developed long before mixed effect models became popular.

              
                
                
              
              
                
                
              
            
We will assume that Y

                it
               | X

                i
               has a multivariate normal distribution with mean given above and with variance-covariance matrix V

                i
              , an n

                i
               × n

                i
               matrix that is a function of [image: 
$$t_{i1},\ldots,t_{in_{i}}$$
]. We further assume that the diagonals of V

                i
               are all equal. 
                
                
              

!extended linear

!generalized least squares

                
                
              This extended linear model has the following assumptions: 	all the assumptions of OLS at a single time point including correct modeling of predictor effects and univariate normality of responses conditional on X


	the distribution of two responses at two different times for the same subject, conditional on X, is bivariate normal with a specified correlation coefficient

	the joint distribution of all n

                      i
                     responses for the i

                      th
                     subject is multivariate normal with the given correlation pattern (which implies the previous two distributional assumptions)

	responses from two different subjects are uncorrelated.






7.4 Parameter Estimation Procedure
Generalized least squares is like weighted least squares but uses a covariance matrix that is not diagonal. Each subject can have her own shape of V

                i
               due to each subject being measured at a different set of times. This is a maximum likelihood procedure. 
                
              

                
              

                
              

                
                
              Newton-Raphson or other trial-and-error methods are used for estimating parameters. For a small number of subjects, there are advantages in using REML (restricted maximum likelihood) instead of ordinary MLE [159, Section 5.​3] [509, Chapter 5] 221 (especially to get a more unbiased estimate of the covariance matrix).
When imbalances of measurement times are not severe, OLS fitted ignoring subject identifiers may be efficient for estimating β. But OLS standard errors will be too small as they don’t take intra-cluster correlation into account. This may be rectified by substituting a covariance matrix estimated using the Huber-White cluster sandwich estimator or from the cluster bootstrap. 
                
                
              

                
                
              When imbalances are severe and intra-subject correlations are strong, OLS (or GEE using a working independence model) is not
                
               expected to be efficient because it gives equal weight to each observation; a subject contributing two distant observations receives [image: 
$$\frac{1} {5}$$
] the weight of a subject having 10 tightly-spaced observations.

7.5 Common Correlation Structures

              
                
              
              
                
              
            
We usually restrict ourselves to isotropic correlation structures which assume the correlation between responses within subject at two times depends only on a measure of the distance between the two times, not the individual times. We simplify further and assume it depends on | t
1 − t
2 | 2. Assume that the correlation coefficient for [image: 
$$Y _{it_{1}}$$
] vs. [image: 
$$Y _{it_{2}}$$
] conditional on baseline covariates X

                i
               for subject i is h( | t
1 − t
2 | , ρ), where ρ is a vector (usually a scalar) set of fundamental correlation parameters. Some commonly used structures when times are continuous and are not equally spaced [509, Section 5.​3.​3] are shown below, along with the correlation function names from the R 
                
              
nlme package.

              Compound symmetry:
h = ρ if t
1 ≠ t
2, 1 if t
1 = t
2 nlme corCompSymm

(Essentially what two-way ANOVA assumes)


Autoregressive-moving average lag 1:
                      [image: 
$$h =\rho ^{\vert t_{1}-t_{2}\vert } =\rho ^{s}$$
]
                      corCAR1
                    
where [image: 
$$s = \vert t_{1} - t_{2}\vert $$
]



Exponential:
                      [image: 
$$h =\exp (-s/\rho )$$
]
                      corExp
                    


Gaussian:
                      [image: 
$$h =\exp [-(s/\rho )^{2}]$$
]
                      corGaus
                    


Linear:
                      [image: 
$$h = (1 - s/\rho )[s <\rho ]$$
]
                      corLin
                    


Rational quadratic:
                      [image: 
$$h = 1 - (s/\rho )^{2}/[1 + (s/\rho )^{2}]$$
]
                      corRatio
                    


Spherical:
                      [image: 
$$h = [1 - 1.5(s/\rho ) + 0.5(s/\rho )^{3}][s <\rho ]$$
]
                      corSpher
                    


Linear exponent AR(1):
[image: 
$$h =\rho ^{d_{min}+\delta \frac{s-d_{min}} {d_{max}-d_{min}} }$$
], 1 if t
1 = t
2 572





            
The structures 3–7 use ρ as a scaling parameter, not as something restricted to be in [0, 1]

7.6 Checking Model Fit
The constant variance assumption may be checked using typical residual plots. The 
                
              

                
                
               univariate normality assumption (but not multivariate normality) may be checked using typical Q-Q plots on residuals. For checking the correlation pattern, a variogram is a very helpful device based on estimating correlations of all possible pairs of residuals at different time points3. 
                
              

                
                
               
                
              Pairs of estimates obtained at the same absolute time difference s are pooled. The variogram is a plot with [image: 
$$y = 1 -\hat{ h}(s,\rho )$$
] vs. s on the x-axis, and the theoretical variogram of the correlation model currently being assumed is superimposed.

7.7 Sample Size Considerations

              
                
              
            
Section 4.​4 provided some guidance about sample sizes needed for OLS. A good way to think about sample size adequacy for generalized least squares is to determine the effective number of independent observations that a given configuration of repeated measurements has. For example, if the standard error of an estimate from three measurements on each of 20 subjects is the same as the standard error from 27 subjects measured once, we say that the 20 × 3 study has an effective sample size of 27, and we equate power from the univariate analysis on n subjects measured once to [image: 
$$\frac{20n} {27}$$
] subjects measured three times. Faes et al. 181 have a nice approach to effective sample sizes with a variety of correlation patterns in longitudinal data. For an AR(1) correlation structure with n equally spaced measurement times on each of N subjects, with the correlation between two consecutive times being ρ, the effective sample size is [image: 
$$\frac{n-(n-2)\rho } {1+\rho } N$$
]. Under compound symmetry, the effective size is [image: 
$$\frac{nN} {1+\rho (n-1)}.$$
]
                        

7.8 
                            R Software
The nonlinear mixed effects model package 
                
              
nlme of Pinheiro & Bates in Rprovides many useful functions. For fitting linear models, fitting functions are lme

                
               for mixed effects models and gls

                
               for generalized least squares without random effects. The 
                
              
rms package has a front-end function Gls

                
               so that many features of rms can be used: 
anova

                      
                    :all partial Wald tests, test of linearity, pooled tests



summary

                      
                    :effect estimates (differences in [image: 
$$\hat{Y }$$
]) and confidence limits



Predict

                      
                     and plot:partial effect plots



nomogram

                      
                    :nomogram



Function

                      
                    :generate R function code for the fitted model



latex

                      
                    :LaTeX representation of the fitted model.





In addition, Gls

                
               has a cluster bootstrap option (hence you do not use 
                
              
rms’s bootcov for Gls fits). When B is provided to Gls( ), bootstrapped regression coefficients and correlation estimates are saved, the former setting up for bootstrap percentile confidence limits
                
                
              
4 The 
                
              
nlme package has many graphics and fit-checking functions. Several functions will be demonstrated in the case study.

7.9 Case Study
Consider the dataset in Table 6.9 of
                
                
               Davis [148, pp. 161–163] from a multi-center, randomized controlled trial of botulinum toxin type B (BotB) in patients with cervical dystonia from nine U.S. sites. Patients were randomized to placebo (N = 36), 5000 units of BotB (N = 36), or 10,000 units of BotB (N = 37). The response variable is the total score on the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS), measuring severity, pain, and disability of cervical dystonia (high scores mean more impairment). TWSTRS is measured at baseline (week 0) and weeks 2, 4, 8, 12, 16 after treatment began. The dataset name on the dataset wiki page is cdystonia. 
                
                
              

7.9.1 Graphical Exploration of Data
Graphics which follow display raw data as well as quartiles of TWSTRS by time, site, and treatment. A table shows the realized measurement schedule.

                [image: A69956_2_En_7_Figa_HTML.gif]

                [image: A69956_2_En_7_Fig1_HTML.gif]
Fig. 7.1Time profiles for individual subjects, stratified by study site and dose




              

                [image: A69956_2_En_7_Figb_HTML.gif]

                [image: A69956_2_En_7_Fig2_HTML.gif]
Fig. 7.2Quartiles of TWSTRS stratified by dose




              
Next the data are rearranged so that Y

i0 is a baseline covariate.

                [image: A69956_2_En_7_Figc_HTML.gif]

              

7.9.2 Using Generalized Least Squares
We stay with baseline adjustment and use a variety of correlation structures, with constant variance. Time is modeled as a restricted cubic spline with 3 knots, because there are only 3 unique interior values of week. Below, six correlation patterns are attempted. In general it is better to use scientific knowledge to guide the choice of the correlation structure.

                [image: A69956_2_En_7_Figd_HTML.gif]

              
AIC computed above is set up so that smaller values are best. From this the continuous-time AR1 and exponential structures are tied for the best. For the remainder of the analysis we use corCAR1, using Gls. [image: A69956_2_En_7_Figm_HTML.gif]


                [image: A69956_2_En_7_Fige_HTML.gif]

              

                Generalized Least Squares Fit by REML
              
Gls(model = twstrs ~ treat * rcs(week, 3) + rcs(twstrs0, 3) +
rcs(age, 4) * sex, data = both, correlation = corCAR1
(form = ~week | uid))
	Obs 522
	Log-restricted-likelihood -1756.95

	Clusters 108
	Model d.f. 17

	
g 11.334
	
σ 8.5917

	 	d.f. 504




	 	Coef
	S.E.
	
                            t
                          
	Pr( >  | t | )

	Intercept
	-0.3093
	11.8804
	-0.03
	0.9792

	treat=5000U
	0.4344
	2.5962
	0.17
	0.8672

	treat=Placebo
	7.1433
	2.6133
	2.73
	0.0065

	week
	0.2879
	0.2973
	0.97
	0.3334

	week’
	0.7313
	0.3078
	2.38
	0.0179

	twstrs0
	0.8071
	0.1449
	5.57
	 < 0. 0001

	twstrs0’
	0.2129
	0.1795
	1.19
	0.2360

	age
	-0.1178
	0.2346
	-0.50
	0.6158

	age’
	0.6968
	0.6484
	1.07
	0.2830

	age”
	-3.4018
	2.5599
	-1.33
	0.1845

	sex=M
	24.2802
	18.6208
	1.30
	0.1929

	treat=5000U * week
	0.0745
	0.4221
	0.18
	0.8599

	treat=Placebo * week
	-0.1256
	0.4243
	-0.30
	0.7674

	treat=5000U * week’
	-0.4389
	0.4363
	-1.01
	0.3149

	treat=Placebo * week’
	-0.6459
	0.4381
	-1.47
	0.1411

	age * sex=M
	-0.5846
	0.4447
	-1.31
	0.1892

	age’ * sex=M
	1.4652
	1.2388
	1.18
	0.2375

	age” * sex=M
	-4.0338
	4.8123
	-0.84
	0.4023





Correlation Structure: Continuous AR(1)
Formula: ~week | uid
Parameter estimate(s):
 Phi
0.8666689

[image: 
$$\hat{\rho }= 0.867$$
], the estimate of the correlation between two measurements taken one week apart on the same subject. The estimated correlation for measurements 10 weeks apart is 0. 86710 = 0. 24.

                [image: A69956_2_En_7_Figf_HTML.gif]

                [image: A69956_2_En_7_Fig3_HTML.gif]
Fig. 7.3Variogram, with assumed correlation pattern superimposed




              
The empirical variogram is largely in agreement with the pattern dictated by AR(1).
                  
                

                  
                  
                

Next check constant variance and normality assumptions.

                [image: A69956_2_En_7_Figg_HTML.gif]

                [image: A69956_2_En_7_Fig4_HTML.gif]
Fig. 7.4Three residual plots to check for absence of trends in central tendency and in variability. Upper right panel shows the baseline score on the x-axis. Bottom left panel shows the mean ± 2×SD. Bottom right panel is the QQ plot for checking normality of residuals from the GLS fit.




              
These model assumptions appear to be well satisfied, so inferences are likely to be trustworthy if the more subtle multivariate assumptions hold.
Now get hypothesis tests, estimates, and graphically interpret the model.

                [image: A69956_2_En_7_Figh_HTML.gif]

                [image: A69956_2_En_7_Fig5_HTML.gif]
Fig. 7.5Results of anova

                          
                         from generalized least squares fit with continuous time AR1 correlation structure. As expected, the baseline version of Y dominates.




                	 	Low
	High
	
                            Δ
                          
	Effect
	S.E.
	Lower 0.95
	Upper 0.95

	week
	4
	12
	8
	6.69100
	1.10570
	4.5238
	8.8582

	twstrs0
	39
	53
	14
	13.55100
	0.88618
	11.8140
	15.2880

	age
	46
	65
	19
	2.50270
	2.05140
	-1.5179
	6.5234

	treat — 5000U:10000U
	1
	2
	 	0.59167
	1.99830
	-3.3249
	4.5083

	treat — Placebo:10000U
	1
	3
	 	5.49300
	2.00430
	1.5647
	9.4212

	sex — M:F
	1
	2
	 	-1.08500
	1.77860
	-4.5711
	2.4011




              

                [image: A69956_2_En_7_Figi_HTML.gif]

                [image: A69956_2_En_7_Fig6_HTML.gif]
Fig. 7.6Estimated effects of time, baseline TWSTRS, age, and sex




                [image: A69956_2_En_7_Fig7_HTML.gif]
Fig. 7.7Contrasts and 0.95 confidence limits from GLS fit




              
Although multiple d.f. tests such as total treatment effects or treatment × time interaction tests are comprehensive, their increased degrees of freedom can dilute power. In a treatment comparison, treatment contrasts at the last time point (single d.f. tests) are often of major interest. Such contrasts are 
                  
                  
                 informed by all the measurements made by all subjects (up until dropout times) when a smooth time trend is assumed. They use appropriate extrapolation past dropout times based on observed trajectories of subjects followed the entire observation period. In agreement with the top left panel of Figure 7.6, Figure 7.7 shows that the treatment, despite causing an early improvement, wears off by 16 weeks at which time no benefit is seen.
A nomogram can be used to obtain predicted values, as well as to better understand the model, just as with a univariate Y.

                [image: A69956_2_En_7_Figj_HTML.gif]

                [image: A69956_2_En_7_Fig8_HTML.gif]
Fig. 7.8Nomogram from GLS fit. Second axis is the baseline score.




              


7.10 Further Reading

[image: A69956_2_En_7_Figk_HTML.gif] Jim Rochon (Rho, Inc., Chapel Hill NC) has the following comments about using the baseline measurement of Y as the first longitudinal response.

              For RCTs [randomized clinical trials], I draw a sharp line at the point when the intervention begins. The LHS [left hand side of the model equation] is reserved for something that is a response to treatment. Anything before this point can potentially be included as a covariate in the regression model. This includes the “baseline” value of the outcome variable. Indeed, the best predictor of the outcome at the end of the study is typically where the patient began at the beginning. It drinks up a lot of variability in the outcome; and, the effect of other covariates is typically mediated through this variable.
I treat anything after the intervention begins as an outcome. In the western scientific method, an “effect” must follow the “cause” even if by a split second.
Note that an RCT is different than a cohort study. In a cohort study, “Time 0” is not terribly meaningful. If we want to model, say, the trend over time, it would be legitimate, in my view, to include the “baseline” value on the LHS of that regression model.
Now, even if the intervention, e.g., surgery, has an immediate effect, I would include still reserve the LHS for anything that might legitimately be considered as the response to the intervention. So, if we cleared a blocked artery and then measured the MABP, then that would still be included on the LHS.
Now, it could well be that most of the therapeutic effect occurred by the time that the first repeated measure was taken, and then levels off. Then, a plot of the means would essentially be two parallel lines and the treatment effect is the distance between the lines, i.e., the difference in the intercepts.
If the linear trend from baseline to Time 1 continues beyond Time 1, then the lines will have a common intercept but the slopes will diverge. Then, the treatment effect will the difference in slopes.
One point to remember is that the estimated intercept is the value at time 0 that we predict from the set of repeated measures post randomization. In the first case above, the model will predict different intercepts even though randomization would suggest that they would start from the same place. This is because we were asleep at the switch and didn’t record the “action” from baseline to time 1. In the second case, the model will predict the same intercept values because the linear trend from baseline to time 1 was continued thereafter.
More importantly, there are considerable benefits to including it as a covariate on the RHS. The baseline value tends to be the best predictor of the outcome post-randomization, and this maneuver increases the precision of the estimated treatment effect. Additionally, any other prognostic factors correlated with the outcome variable will also be correlated with the baseline value of that outcome, and this has two important consequences. First, this greatly reduces the need to enter a large number of prognostic factors as covariates in the linear models. Their effect is already mediated through the baseline value of the outcome variable. Secondly, any imbalances across the treatment arms in important prognostic factors will induce an imbalance across the treatment arms in the baseline value of the outcome. Including the baseline value thereby reduces the need to enter these variables as covariates in the linear models.


            
Stephen Senn 563 states that temporally and logically, a “baseline cannot be a response to treatment”, so baseline and response cannot be modeled in an integrated framework.

              …one should focus clearly on ‘outcomes’ as being the only values that can be influenced by treatment and examine critically any schemes that assume that these are linked in some rigid and deterministic view to ‘baseline’ values. An alternative tradition sees a baseline as being merely one of a number of measurements capable of improving predictions of outcomes and models it in this way.


            
The final reason that baseline cannot be modeled as the response at time zero is that many studies have inclusion/exclusion criteria that include cutoffs on the baseline variable yielding a truncated distribution. In general it is not appropriate to model the baseline with the same distributional shape as the follow-up measurements. Thus the approach recommended by Liang and Zeger 405 and Liu et al. 423 are problematic5.

[image: A69956_2_En_7_Figl_HTML.gif] Gardiner et al. 211 compared several longitudinal data models, especially with regard to assumptions and how regression coefficients are estimated. Peters et al. 500 have an empirical study confirming that the “use all available data” approach of likelihood–based longitudinal models makes imputation of follow-up measurements unnecessary.

[image: A69956_2_En_7_Figm_HTML.gif] Keselman et al. 347 did a simulation study to study the reliability of AIC for selecting the correct covariance structure in repeated measurement models. In choosing from among 11 structures, AIC selected the correct structure 47% of the time. Gurka et al. 247 demonstrated that fixed effects in a mixed effects model can be biased, independent of sample size, when the specified covariate matrix is more restricted than the true one.
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Footnotes
1A case study in OLS—Chapter 7 from the first edition—may be found on the text’s web site.

 

2We can speak interchangeably of correlations of residuals within subjects or correlations between responses measured at different times on the same subject, conditional on covariates X.

 

3Variograms can be unstable.

 

4To access regular gls

                    
                   functions named anova

                    
                   (for likelihood ratio tests, AIC, etc.) or summary

                    
                   use anova.gls

                    
                   or summary.gls

                    
                  .

 

5In addition to this, one of the paper’s conclusions that analysis of covariance is not appropriate if the population means of the baseline variable are not identical in the treatment groups is arguable 563. See 346 for a discussion of 423.
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Recall that the aim of data reduction is to reduce (without using the outcome) the number of parameters needed in the outcome model. The following case study illustrates these techniques:
1.redundancy analysis;

 

2.variable clustering;

 

3.data reduction using principal component analysis (PCA), sparse PCA, and pretransformations;

 

4.restricted cubic spline fitting using ordinary least squares, in the context of scaling; and

 

5.scaling/variable transformations using canonical variates and nonparametric additive regression.

 




8.1 Data
Consider the 506-patient 
                
                
              prostate cancer dataset from Byar and Green. 87 The data are listed in [28, Table 46] and are available in ASCII form from StatLib (lib.stat.cmu.edu) in the Datasets area from this book’s Web page. These data were from a randomized trial comparing four treatments for stage 3 and 4 prostate cancer, with almost equal numbers of patients on placebo and each of three doses of estrogen. Four patients had missing values on all of the following variables: wt, pf, hx, sbp, dbp, ekg, hg, bm; two of these patients were also missing sz. These patients are excluded from consideration. The ultimate goal of an analysis of the dataset might be to discover patterns in survival or to do an analysis of covariance to assess the effect of treatment while adjusting for patient heterogeneity. See Chapter 21 for such analyses. The data reductions developed here are general and can be used for a variety of dependent variables.
The variable names, labels, and a summary of the data are printed below.

              [image: A69956_2_En_8_Figa_HTML.gif][image: A69956_2_En_8_Figb_HTML.gif][image: A69956_2_En_8_Figc_HTML.gif][image: A69956_2_En_8_Figd_HTML.gif]

            

stage is defined by ap as well as X-ray results. Of the patients in stage 3, 0.92 have ap ≤ 0.8. Of those in stage 4, 0.93 have ap > 0.8. Since stage can be predicted almost certainly from ap, we do not consider stage in some of the analyses.

8.2 How Many Parameters Can Be Estimated?
There are 354 deaths among the 502 patients. If predicting survival time were of major interest, we could develop a reliable model if no more than about [image: 
$$354/15 = 24$$
] parameters were examined against Y in unpenalized modeling. Suppose that a full model with no interactions is fitted and that linearity is not assumed for any continuous predictors. Assuming age is almost linear, we could fit a restricted cubic spline function with three knots. For the other continuous variables, let us use five knots. For categorical predictors, the maximum number of degrees of freedom needed would be one fewer than the number of categories. For pf we could lump the last two categories since the last category has only 2 patients. Likewise, we could combine the last two levels of ekg. Table 8.1 lists the candidate predictors with the maximum number of parameters we consider for each. Table 8.1Degrees of freedom needed for predictors


	Predictor:
	
                          rx
                        
	
                          age
                        
	
                          wt
                        
	
                          pf
                        
	
                          hx
                        
	
                          sbp
                        
	
                          dbp
                        
	
                          ekg
                        
	
                          hg
                        
	
                          sz
                        
	
                          sg
                        
	
                          ap
                        
	
                          bm
                        

	# Parameters:
	3
	2
	4
	2
	1
	4
	4
	5
	4
	4
	4
	4
	1






8.3 Redundancy Analysis
As described in Section 4.​7.​1, it is occasionally useful to do a rigorous redundancy analysis on a set of potential predictors. Let us run the algorithm discussed there, on the set of predictors we are considering. We will use a low threshold (0.3) for R
2 for demonstration purposes.

[image: A69956_2_En_8_Fige_HTML.gif][image: A69956_2_En_8_Figf_HTML.gif]
 By any reasonable criterion on R
2, none of the predictors is redundant. stage can be predicted with an R
2 = 0. 658 from the other 13 variables, but only with R
2 = 0. 493 after deletion of 3 variables later declared to be “redundant.”

8.4 Variable Clustering
From Table 8.1, the total number of parameters is 42, so some data reduction should be considered. We resist the temptation to take the “easy way out” using stepwise variable selection so that we can achieve a more stable modeling process and obtain unbiased standard errors. Before using a variable 
                
                
              clustering procedure, note that ap is extremely skewed. To handle skewness, we use Spearman rank correlations for continuous variables (later we transform each variable using transcan, which will allow ordinary correlation coefficients to be used). After classifying ekg as “normal/benign” versus everything else, the Spearman correlations are plotted below. 
                
              
                            [image: A69956_2_En_8_Figr_HTML.gif]


              [image: A69956_2_En_8_Figg_HTML.gif]

              [image: A69956_2_En_8_Fig1_HTML.gif]
Fig. 8.1Matrix of Spearman ρ rank correlation coefficients between predictors. Horizontal gray scale lines correspond to ρ = 0. The tallest bar corresponds to | ρ |  = 0. 78.




            
We perform a hierarchical cluster analysis based on a similarity matrix that contains pairwise 
                
              

                
                
              

                
                
              Hoeffding D statistics. 295 D will detect 
                
              nonmonotonic associations.

[image: A69956_2_En_8_Figh_HTML.gif]
 We combine sbp and dbp, and tentatively combine ap, sg, sz, and bm.

8.5 Transformation and Single Imputation Using transcan


              
                
              
            
Now we turn to the scoring of the predictors to potentially reduce the number of regression parameters that are needed later by doing away with the
[image: A69956_2_En_8_Fig2_HTML.gif]
Fig. 8.2Hierarchical clustering using Hoeffding’s D as a similarity measure. Dummy variables were used for the categorical variable ekg. Some of the dummy variables cluster together since they are by definition negatively correlated.



need for nonlinear terms and multiple dummy variables. The R Hmisc

                
               package transcan

                
               function defaults to using a maximum generalized variance
                
               method 368 that incorporates canonical variates to optimally transform both sides of a multiple regression model. Each predictor is treated in turn as a variable being predicted, and all variables are expanded into restricted cubic splines
                
               (for continuous variables) or dummy variables (for categorical ones).

              [image: A69956_2_En_8_Figi_HTML.gif][image: A69956_2_En_8_Figj_HTML.gif][image: A69956_2_En_8_Figk_HTML.gif]

            
The plotted output is shown in Figure 8.3. Note that at face value the transformation of ap was derived in a circular manner, since the combined index of stage and histologic grade, sg, uses in its stage component a cutoff on ap. However, if sg is omitted from consideration, the resulting transformation for ap does not change appreciably. Note that bm and hx are represented as binary variables, so their coefficients in the table of 
                
               canonical variable coefficients are on a different scale. For the variables that were actually transformed, the coefficients are for standardized transformed variables (mean 0, variance 1). From examining the R
2s, age, wt, ekg, pf, and hx are not strongly related to other variables. Imputations for age, wt, ekg are thus relying more on the median or modal values from the marginal distributions. From the coefficients of first (standardized) canonical variates, sbp is predicted almost solely from dbp; bm is predicted mainly from ap, hg, and pf. [image: A69956_2_En_8_Fig3_HTML.gif]
Fig. 8.3Simultaneous transformation and single imputation of all candidate predictors using transcan

                        
                      . Imputed values are shown as red plus signs. Transformed values are arbitrarily scaled to [0, 1].




                            [image: A69956_2_En_8_Figs_HTML.gif]


8.6 Data Reduction Using Principal Components

              
                
              
            
The first PC, PC1, is the linear combination of standardized variables having maximum variance. PC2 is the linear combination of predictors having the second largest variance such that PC2 is orthogonal to (uncorrelated with) PC1. If there are p raw variables, the first k PCs, where k < p, will explain only part of the variation in the whole system of p variables unless one or more of the original variables is exactly a linear combination of the remaining variables. Note that it is common to scale and center variables to have mean zero and variance 1 before computing PCs.
The response variable (here, time until death due to any cause) is not examined during data reduction, so that if PCs are selected by variance explained in the X-space and not by variation explained in Y, one needn’t correct for model uncertainty or multiple comparisons. 
                
              

PCA results in data reduction when the analyst uses only a subset of the p possible PCs in predicting Y. This is called incomplete principal component regression.
                
              

                
               When one sequentially enters PCs into a predictive model in a strict pre-specified order (i.e., by descending amounts of variance explained for the system of p variables), model uncertainty requiring bootstrap adjustment is minimized. In contrast, model uncertainty associated with stepwise regression (driven by associations with Y ) is massive. 
                
              

For the prostate dataset, consider PCs on raw candidate predictors, expanding polytomous factors using dummy variables. The R function princomp

                
               is used, after singly imputing missing raw 
                
                
               values using transcan

                
              ’s optimal additive nonlinear models. In this series of analyses we ignore the treatment variable, rx.

              [image: A69956_2_En_8_Figl_HTML.gif]

            
The resulting plot shown in Figure 8.4 is called a “scree” plot
                
               [325, pp. 96–99, 104, 106]. It shows the variation explained by the first k principal components as k increases all the way to 16 parameters (no data reduction). It requires 10 of the 16 possible components to explain > 0. 8 of the variance, and the first 5 components explain 0. 49 of the variance of the system. Two of the 16 dimensions are almost totally redundant.[image: A69956_2_En_8_Fig4_HTML.gif]
Fig. 8.4Variance of the system of raw predictors (black) explained by individual principal components (lines) along with cumulative proportion of variance explained (text), and variance explained by components computed on transcan

                        
                      -transformed variables (red)





After repeating this process when transforming all predictors via transcan

                
              , we have only 12 degrees of freedom for the 12 predictors. The variance explained is depicted in Figure 8.4 in red. It requires at least 9 of the 12 possible components to explain ≥ 0. 9 of the variance, and the first 5 components explain 0. 66 of the variance as opposed to 0. 49 for untransformed variables.
Let us see how the PCs “explain” the times until death using the Cox regression 132 function from rms, cph

                
              , described in Chapter 20

                
                
               
                
               In what follows we vary the number of components used in the Cox models from 1 to all 16, computing the AIC for each model.
                
               AIC is related to model log likelihood penalized for number of parameters estimated, and lower is better. For reference, the AIC of the model using all of the original predictors, and the AIC of a full additive spline model are shown as horizontal lines.

[image: A69956_2_En_8_Figm_HTML.gif]
 For the money, the first 5 components adequately summarizes all variables, if linearly transformed, and the full linear model is no better than this. The model allowing all continuous predictors to be nonlinear is not worth its added degrees of freedom.
Next check the performance of a model derived from cluster scores of transformed variables.

              [image: A69956_2_En_8_Fign_HTML.gif]

            
	 	Model Tests
	Discrimination

	 	 	Indexes

	Obs 502
	LR χ
2 81.11
	
R
2 0.149

	Events 354
	d.f. 7
	
D

                          x y
                         0.286

	Center 0
	Pr( > χ
2) 0.0000
	
g 0.562

	 	Score χ
2 86.81
	
g

                          r
                         1.755

	 	Pr( > χ
2) 0.0000
	 


	 	Coef
	S.E.
	Wald Z

	Pr( >  | Z | )

	tumor
	-0.1723
	0.0367
	-4.69
	 < 0. 0001

	bp
	-0.0251
	0.0424
	-0.59
	0.5528

	cardiac
	-0.2513
	0.0516
	-4.87
	 < 0. 0001

	hg
	-0.1407
	0.0554
	-2.54
	0.0111

	age
	-0.1034
	0.0579
	-1.79
	0.0739

	pf
	-0.0933
	0.0487
	-1.92
	0.0551

	wt
	-0.0910
	0.0555
	-1.64
	0.1012



The tumor and cardiac clusters seem to dominate prediction of mortality, and the AIC of the model built from cluster scores of transformed variables compares favorably with other models (Figure 8.5).[image: A69956_2_En_8_Fig5_HTML.gif]
Fig. 8.5AIC of Cox models fitted with progressively more principal components. The solid blue line depicts the AIC of the model with all original covariates. The dotted blue line is positioned at the AIC of the full spline model.





8.6.1 Sparse Principal Components

                
                  
                
                
                  
                  
                
              
A disadvantage of principal components is that every predictor receives a nonzero weight for every component, so many coefficients are involved even through the effective degrees of freedom with respect to the response model are reduced. Sparse principal components 672 uses a penalty function to reduce the magnitude of the loadings variables receive in the components. If an L1 penalty is used (as with the lasso)
                  
                

                  
                  
                , some loadings are shrunk to zero, resulting in some simplicity. Sparse principal components combines some elements of variable clustering, scoring of variables within clusters, and redundancy analysis.
                  
                  
                

                  
                

Filzmoser, Fritz, and Kalcher 191 have written a nice R package 
                  
                 pcaPP for doing sparse PC analysis.1 The following example uses the prostate data again. To allow for nonlinear transformations and to score the ekg variable in the prostate dataset down to a scalar, we use the transcan

                  
                -transformed predictors as inputs.
                  
                
[image: A69956_2_En_8_Figo_HTML.gif]


[image: A69956_2_En_8_Fig6_HTML.gif]
Fig. 8.6Variance explained by individual sparse principal components (lines) along with cumulative proportion of variance explained (text)



Only nonzero loadings are shown. The first sparse PC is the tumor cluster used above, and the second is the blood pressure cluster. Let us see how well incomplete sparse principal component regression predicts time until death.

                [image: A69956_2_En_8_Figp_HTML.gif]

              
[image: A69956_2_En_8_Fig7_HTML.gif]
Fig. 8.7Performance of sparse principal components in Cox models



More components are required to optimize AIC than were seen in Figure 8.5, but a model built from 6–8 sparse PCs performed as well as the other models.


8.7 Transformation Using Nonparametric Smoothers
The 
                
              ACE nonparametric additive regression method of Breiman and Friedman 68 transforms both the left-hand-side variable and all the right-hand-side variables so as to optimize R
2. ACE can be used to transform the predictors using the R ace

                
               function in the 
                
               acepack 
                
               package, called by the transace

                
               function in the 
                
              
Hmisc package. transace does not impute data but merely does casewise deletion of missing values. Here transace is run after single imputation by transcan

                
              . binary is used to tell transace

                
               which variables not to try to predict (because they need no transformation). Several predictors are restricted to be monotonically transformed.

              [image: A69956_2_En_8_Figq_HTML.gif]

            
Except for ekg, age, and for arbitrary sign reversals, the transformations in Figure 8.8 determined using transace

                
               were similar to those in Figure 8.3. The transcan

                
               transformation for ekg makes more sense.[image: A69956_2_En_8_Fig8_HTML.gif]
Fig. 8.8Simultaneous transformation of all variables using ACE.






              
                
                
              
            

8.8 Further Reading

[image: A69956_2_En_8_Figr_HTML.gif] Sauerbrei and Schumacher 541 used the 
                
                
              bootstrap to demonstrate the variability of a standard variable selection procedure for the prostate cancer dataset.

[image: A69956_2_En_8_Figs_HTML.gif] Schemper and Heinze 551 used logistic models to impute dichotomizations of the predictors for this dataset.

8.9 Problems
The Mayo Clinic conducted a randomized trial in primary biliary cirrhosis (PBC) of the liver between January 1974 and May 1984, to compare D-penicillamine with placebo. The drug was found to be ineffective [197, p. 2], and the trial was done before liver transplantation was common, so this trial constitutes a natural history study for PBC. Followup continued through July, 1986. For the 19 patients that did undergo transplant, followup time was censored (status=0) at the day of transplant. 312 patients were randomized, and another 106 patients were entered into a registry. The nonrandomized patients have most of their laboratory values missing, except for bilirubin, albumin, and prothrombin time. 28 randomized patients had both serum cholesterol and triglycerides missing. The data, which consist of clinical, biochemical, serologic, and histologic information, are listed in [197, pp. 359–375]. The PBC data are discussed and analyzed in [197, pp. 2–7, 102–104, 153–162], [158], [7] (a tree-based analysis which on its p. 480 mentions some possible lack of fit of the earlier analyses), and [361]. The data are stored in the datasets web site so may be accessed using the Hmisc getHdata

                
               function with argument pbc. Use only the data on randomized patients for all analyses. For Problems 1–6, ignore followup time, status, and drug.
1.Do an initial variable clustering based on ranks, using pairwise deletion of missing data. Comment on the potential for one-dimensional summaries of subsets of variables being adequate summaries of prognostic information.

 

2.
cholesterol, triglycerides, platelets, and copper are missing on some patients. Impute them using a method you recommend. Use some or all of the remaining predictors and possibly the outcome. Provide a correlation coefficient describing the usefulness of each imputation model. Provide the actual imputed values, specifying observation numbers. For all later analyses, use imputed values for missing values.

 

3.Perform a scaling/transformation analysis to better measure how the predictors interrelate and to possibly 
                        
                        
                      pretransform some of them. Use transcan or 
                        
                      ACE. Repeat the variable clustering using the transformed scores and Pearson correlation or using an oblique rotation principal component analysis. Determine if the correlation structure (or variance explained by the first principal component) indicates whether it is possible to summarize multiple variables into single scores.

 

4.Do a principal component analysis of all transformed variables simultaneously. Make a graph of the number of components versus the cumulative proportion of explained variation. Repeat this for laboratory variables alone.

 

5.Repeat the overall PCA using sparse principal components. Pay attention to how best to solve for sparse components, e.g., consider the lambda parameter in sPCAgrid

                        
                      .

 

6.How well can variables (lab and otherwise) that are routinely collected (on nonrandomized patients) capture the information (variation) of the variables that are often missing? It would be helpful to explore the strength of interrelationships by
a.correlating two PC1s obtained from untransformed variables,

 

b.correlating two PC1s obtained from transformed variables,

 

c.correlating the best linear combination of one set of variables with the best linear combination of the other set, and

 

d.doing the same on transformed variables.

 




For this problem consider only complete cases, and transform the 5 non-numeric categorical predictors to binary 0–1 variables.

 

7.Consider the patients having complete data who were randomized to placebo. Consider only models that are linear in all the covariates.
a.Fit a survival model to predict time of death using the following covariates: bili, albumin, stage, protime, age, alk.phos, sgot, chol, trig, platelet, copper.

 

b.Perform an ordinary principal component analysis. Fit the survival model using only the first 3 PCs. Compare the likelihood ratio χ
2 and AIC with that of the model using the original variables.

 

c.Considering the PCs are fixed, use the bootstrap to estimate the 0.95 confidence interval of the inter-quartile-range age effect on the original scale, and the same type of confidence interval for the coefficient of PC1.

 

d.Now accounting for uncertainty in the PCs, compute the same two confidence intervals. Compare and interpret the two sets. Take into account the fact that PCs are not unique to within a sign change.

 





 





R programming hints for this exercise are found on the course web site.
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Footnotes
1The 
                      
                     spca package is a new sparse PC package that should also be considered.
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9.1 General Notions—Simple Cases

              
                
                
              
              
                
                
              
            
In ordinary least squares multiple regression, the objective in fitting a model is to find the values of the unknown parameters that minimize the sum of squared errors of prediction. When the response variable is non-normal, polytomous, or not observed completely, one needs a more general objective function to optimize.

Maximum likelihood (ML) estimation is a general technique for estimating parameters and drawing statistical inferences in a variety of situations, especially nonstandard ones. Before laying out the method in general, ML estimation is illustrated with a standard situation, the one-sample 
                
                
              binomial problem. Here, independent binary responses are observed and one wishes to draw inferences about an unknown parameter, the probability of an event in a population.
Suppose that in a population of individuals, each individual has the same probability P that an event occurs. We could also say that the event has already been observed, so that P is the prevalence of some condition in the population. For each individual, let Y = 1 denote the occurrence of the event and Y = 0 denote nonoccurrence. Then [image: 
$$\mathrm{Prob}\{Y = 1\} = P$$
] for each individual. Suppose that a random sample of size 3 from the population is drawn and that the first individual had Y = 1, the second had Y = 0, and the third had Y = 1. The respective probabilities of these outcomes are P, 1 − P, and P. The joint probability of observing the independent events Y = 1, 0, 1 is [image: 
$$P(1 - P)P = P^{2}(1 - P)$$
]. Now the value of P is unknown, but we can solve for the value of P that makes the observed data (Y = 1, 0, 1) most likely to have occurred. In this case, the value of P that maximizes P
2(1 − P) is [image: 
$$P = 2/3$$
]. This value for P is the maximum likelihood estimate (MLE) of the population probability.
Let us now study the situation of independent binary trials in general. Let the sample size be n and the observed responses be Y
1, Y
2, …, Y

                n
              . The joint probability of observing the data is given by [image: 
$$\displaystyle{ L =\prod _{ i=1}^{n}P^{Y _{i} }(1 - P)^{1-Y _{i} }. }$$
]

 (9.1)

 Now let s denote the sum of the Y s or the number of times that the event occurred (Y

                i
               = 1), that is the number of “successes.” The number of non-occurrences (“failures”) is n − s. The likelihood of the data can be simplified to [image: 
$$\displaystyle{ L = P^{s}(1 - P)^{n-s}. }$$
]

 (9.2)

 It is easier to work with the log likelihood function, which also has desirable statistical properties.
                
               For the one-sample binary response problem, the log likelihood is [image: 
$$\displaystyle{ \log L = s\log (P) + (n - s)\log (1 - P). }$$
]

 (9.3)



The MLE of P is that value of P that maximizes L or log L. Since log L is a smooth function of P, its maximum value can be found by finding the point at which log L has a slope of 0. The slope or first derivative of log L, with respect to P, is [image: 
$$\displaystyle{ U(P) = \partial \log L/\partial P = s/P - (n - s)/(1 - P). }$$
]

 (9.4)

 The first derivative of the log likelihood function with respect to the parameter(s), here U(P), is called the 

                  
                score function. Equating this function to zero requires that [image: 
$$s/P = (n - s)/(1 - P)$$
]. Multiplying both sides of the equation by P(1 − P) yields [image: 
$$s(1 - P) = (n - s)P$$
] or that [image: 
$$s = (n - s)P + sP = nP$$
]. Thus the MLE of P is [image: 
$$p = s/n$$
].
Another important function is called the Fisher information about the unknown parameters. The 
                
              information function is the expected value of the negative of the curvature in log L, which is the negative of the slope of the slope as a function of the parameter, or the negative of the second derivative of log L. Motivation for consideration of the Fisher information is as follows. If the log likelihood function has a distinct peak, the sample provides information that allows one to readily discriminate between a good parameter estimate (the location of the obvious peak) and a bad one. In such a case the MLE will have good precision or small variance. If on the other hand the likelihood function is relatively flat, almost any estimate will do and the chosen estimate will have poor precision or large variance. The degree of peakedness of a function at a given point is the speed with which the slope is changing at that point, that is, the slope of the slope or second derivative of the function at that point.
Here, the information is [image: 
$$\displaystyle\begin{array}{rcl} I(P)& =& E\{ - \partial ^{2}\log L/\partial P^{2}\} \\ & =& E\{s/P^{2} + (n - s)/(1 - P)^{2}\} \\ & =& nP/P^{2} + n(1 - P)/(1 - P)^{2} = n/[P(1 - P)].{}\end{array}$$
]

 (9.5)

 We estimate the information by substituting the MLE of P into I(P), yielding [image: 
$$I(p) = n/[p(1 - p)]$$
].
Figures 9.1, 9.2, and 9.3 depict, respectively, log L, U(P), and I(P), all as a function of P. Three combinations of n and s were used in each graph. These combinations correspond to p = . 5, . 6, and. 6, respectively.
[image: A69956_2_En_9_Fig1_HTML.gif]
Fig. 9.1log likelihood functions for three one-sample binomial problems




[image: A69956_2_En_9_Fig2_HTML.gif]
Fig. 9.2Score functions (∂ L∕∂ P)




[image: A69956_2_En_9_Fig3_HTML.gif]
Fig. 9.3Information functions ([image: 
$$-\partial ^{2}\log L/\partial P^{2})$$
]






In each case it can be seen that the value of P that makes the data most likely to have occurred (the value that maximizes L or log L) is p given above. Also, the 
                
              score function (slope of log L) is zero at P = p. Note that the 
                
              information function I(P) is highest for P approaching 0 or 1 and is lowest for P near. 5, where there is maximum uncertainty about P. Note also that while log L has the same shape for the s = 60 and s = 12 curves in Figure 9.1, the range of log L is much greater for the larger sample size. Figures 9.2 and 9.3 show that the larger sample size produces a sharper likelihood. In other words, with larger n, one can zero in on the true value of P with more precision.
In this binary response one-sample example let us now turn to inference about the parameter P. First, we turn to the estimation of the variance of the MLE, p. An estimate of this variance is given by the inverse of the information at P = p: [image: 
$$\displaystyle{ V ar(p) = I(p)^{-1} = p(1 - p)/n. }$$
]

 (9.6)

 Note that the variance is smallest when the information is greatest (p = 0 or 1).
The variance estimate forms a basis for 
                
              confidence limits on the unknown parameter. For large n, the MLE p is approximately normally distributed with expected value (mean) P and variance [image: 
$$P(1 - P)/n$$
]. Since p(1 − p) is a consistent estimate of [image: 
$$P(1 - P)/n$$
], it follows that [image: 
$$p \pm z[p(1 - p)/n]^{1/2}$$
] is an approximate 1 −α confidence interval for P if z is the [image: 
$$1 -\alpha /2$$
] critical value of the standard normal distribution.

9.2 Hypothesis Tests
Now let us turn to hypothesis tests about the unknown population parameter P — H
0: P = P
0. There are three kinds of statistical tests that arise from likelihood theory.
9.2.1 Likelihood Ratio Test

                
                  
                
              
This test statistic is the ratio of the likelihood at the hypothesized parameter values to the likelihood of the data at the maximum (i.e., at parameter values = MLEs). It turns out that − 2× the log of this likelihood ratio has desirable statistical properties. The likelihood ratio test statistic is given by [image: 
$$\displaystyle\begin{array}{rcl} LR& =& -2\log (L\ \mathrm{at\ }H_{0}/L\ \mathrm{at\ MLEs}) \\ & =& -2(\log L\ \mathrm{at\ }H_{0}) - [-2(\log L\ \mathrm{at\ MLEs})].{}\end{array}$$
]

 (9.7)

 The L R statistic, for large enough samples, has approximately a χ
2 distribution with degrees of freedom equal to the number of parameters estimated, if the null hypothesis is “simple,” that is, doesn’t involve any unknown parameters. Here L R has 1 d.f.
The value of log L at H
0 is [image: 
$$\displaystyle{ \log L(H_{0}) = s\log (P_{0}) + (n - s)\log (1 - P_{0}). }$$
]

 (9.8)

 The maximum value of log L (at MLEs) is [image: 
$$\displaystyle{ \log L(P = p) = s\log (p) + (n - s)\log (1 - p). }$$
]

 (9.9)



For the hypothesis H
0: P = P
0, the test statistic is [image: 
$$\displaystyle{ LR = -2\{s\log (P_{0}/p) + (n - s)\log [(1 - P_{0})/(1 - p)]\}. }$$
]

 (9.10)

 Note that when p happens to equal P
0, L R = 0. When p is far from P
0, L R will be large. Suppose that [image: 
$$P_{0} = 1/2$$
], so that H
0 is [image: 
$$P = 1/2$$
]. For [image: 
$$n = 100,s = 50$$
], L R = 0. For [image: 
$$n = 100,s = 60$$
], [image: 
$$\displaystyle{ LR = -2\{60\log (.5/.6) + 40\log (.5/.4)\} = 4.03. }$$
]

 (9.11)

 For [image: 
$$n = 20,s = 12$$
], [image: 
$$\displaystyle{ LR = -2\{12\log (.5/.6) + 8\log (.5/.4)\} =.81 = 4.03/5. }$$
]

 (9.12)

 Therefore, even though the best estimate of P is the same for these two cases, the test statistic is more impressive when the sample size is five times larger. 
                  
                


9.2.2 Wald Test

                
                  
                
              
The Wald test statistic is a generalization of a t- or z-statistic. It is a function of the difference in the MLE and its hypothesized value, normalized by an estimate of the standard deviation of the MLE. Here the statistic is [image: 
$$\displaystyle{ W = [p - P_{0}]^{2}/[p(1 - p)/n]. }$$
]

 (9.13)

 For large enough n, W is distributed as χ
2 with 1 d.f. For [image: 
$$n = 100,s = 50$$
], W = 0. For the other samples, W is, respectively, 4.17 and 0.83 (note [image: 
$$0.83 = 4.17/5$$
]).
Many statistical packages treat [image: 
$$\sqrt{W}$$
] as having a t distribution instead of a normal distribution. As pointed out by Gould, 228 there is no basis for this outside of ordinary linear models1.
                  
                

                  
                  
                


9.2.3 Score Test

                
                  
                
              
If the MLE happens to equal the hypothesized value P
0, P
0 maximizes the likelihood and so U(P
0) = 0. Rao’s score statistic measures how far from zero the 
                  
                score function is when evaluated at the null hypothesis. The score function (slope or first derivative of log L) is normalized by the information (curvature or second derivative of − log L). The test statistic for our example is [image: 
$$\displaystyle{ S = U(P_{0})^{2}/I(P_{ 0}), }$$
]

 (9.14)

 which formally does not involve the MLE, p. The statistic can be simplified as follows. [image: 
$$\displaystyle\begin{array}{rcl} U(P_{0})& =& s/P_{0} - (n - s)/(1 - P_{0}) \\ I(P_{0})& =& s/P_{0}^{2} + (n - s)/(1 - P_{ 0})^{2} \\ S& =& (s - nP_{0})^{2}/[nP_{ 0}(1 - P_{0})] = n(p - P_{0})^{2}/[P_{ 0}(1 - P_{0})].{}\end{array}$$
]

 (9.15)

 Note that the numerator of S involves s − n P
0, the difference between the observed number of successes and the number of successes expected under H
0.
As with the other two test statistics, S = 0 for the first sample. For the last two samples S is, respectively, 4 and.8 = 4∕5. 
                  
                
[image: A69956_2_En_9_Figf_HTML.gif]


9.2.4 Normal Distribution—One Sample

                
                  
                  
                
              
Suppose that a sample of size n is taken from a population for a random variable Y that is known to be normally distributed with unknown mean μ and variance σ
2. Denote the observed values of the random variable by Y
1, Y
2, …, Y

                  n
                . Now unlike the binary response case (Y = 0 or 1), we cannot use the notion of the probability that Y equals an observed value. This is because Y is continuous and the probability that it will take on a given value is zero. We substitute the density function for the probability. The density at a point y is the limit as d approaches zero of [image: 
$$\displaystyle{ \mathrm{Prob}\{y < Y \leq y + d\}/d = [F(y + d) - F(y)]/d, }$$
]

 (9.16)

 where F(y) is the normal cumulative distribution function (for a mean of μ and variance of σ
2). The limit of the right-hand side of the above equation as d approaches zero is f(y), the density function of a normal distribution with mean μ and variance σ
2. This density function is [image: 
$$\displaystyle{ f(y) = (2\pi \sigma ^{2})^{-1/2}\exp \{ - (y-\mu )^{2}/2\sigma ^{2}\}. }$$
]

 (9.17)

 The likelihood of observing the observed sample values is the joint density of the Y s. The log 
                  
                likelihood function here is a function of two unknowns, μ and σ
2. [image: 
$$\displaystyle{ \log L = -.5n\log (2\pi \sigma ^{2}) -.5\sum _{ i=1}^{n}(Y _{ i}-\mu )^{2}/\sigma ^{2}. }$$
]

 (9.18)

 It can be shown that the value of μ that maximizes log L is the value that minimizes the sum of squared deviations about μ, which is the sample mean [image: 
$$\overline{Y }$$
]. The MLE of σ
2 is [image: 
$$\displaystyle{ s^{2} =\sum _{ i=1}^{n}(Y _{ i} -\overline{Y })^{2}/n. }$$
]

 (9.19)

 Recall that the sample variance uses n − 1 instead of n in the denominator. It can be shown that the expected value of the MLE of σ
2, s
2, is [image: 
$$[(n - 1)/n]\sigma ^{2}$$
]; in other words, s
2 is too small by a factor of [image: 
$$(n - 1)/n$$
] on the average. The sample variance is unbiased, but being unbiased does not necessarily make it a better estimator. The MLE has greater precision (smaller mean squared error) in many cases.


9.3 General Case
Suppose we need to estimate a vector of unknown parameters B = { B
1, B
2, …, B

                p
              } from a sample of size n based on observations Y
1, …, Y

                n
              . Denote the probability or density function of the random variable Y for the ith observation by f

                i
              (y; B). The likelihood for the ith observation is L

                i
              (B) = f

                i
              (Y

                i
              ; B). In the one-sample binary response case, recall that [image: 
$$L_{i}(B) = L_{i}(P) = P^{Y _{i}}[1 - P]^{1-Y _{i}}$$
]. The 
                
              likelihood function, or joint likelihood of the sample, is given by [image: 
$$\displaystyle{ L(B) =\prod _{ i=1}^{n}f_{ i}(Y _{i};B). }$$
]

 (9.20)

 The log likelihood function is [image: 
$$\displaystyle{ \log L(B) =\sum _{ i=1}^{n}\log L_{ i}(B). }$$
]

 (9.21)

 The MLE of B is that value of the vector B that maximizes log L(B) as a function of B. In general, the solution for B requires iterative trial-and-error methods as outlined later. Denote the MLE of B as b = { b
1, …, b

                p
              }. The score vector is the vector of first derivatives of log L(B) with respect to B
1, …, B

                p
              : [image: 
$$\displaystyle\begin{array}{rcl} U(B)& =& \{\partial /\partial B_{1}\log L(B),\ldots,\partial /\partial B_{p}\log L(B)\} \\ & =& (\partial /\partial B)\log L(B). {}\end{array}$$
]

 (9.22)

 The Fisher information matrix

                
               is the p × p matrix whose elements are the negative of the expectation of all second partial derivatives of log L(B): [image: 
$$\displaystyle\begin{array}{rcl} I^{{\ast}}(B)& =& -\{E[(\partial ^{2}\log L(B)/\partial B_{ j}\partial B_{k})]\}_{p\times p} \\ & =& -E\{(\partial ^{2}/\partial B\partial B')\log L(B)\}. {}\end{array}$$
]

 (9.23)

 The observed information matrix I(B) is I
∗(B) without taking the expectation. In other words, observed values remain in the second derivatives: [image: 
$$\displaystyle{ I(B) = -(\partial ^{2}/\partial B\partial B')\log L(B). }$$
]

 (9.24)

 This 
                
              information matrix is often estimated from the sample using the estimated observed information I(b), by inserting b, the MLE of B, into the formula for I(B).
Under suitable conditions, which are satisfied for most situations likely to be encountered, the MLE b for large samples is an optimal estimator (has as great a chance of being close to the true parameter as all other types of estimators) and has an approximate multivariate normal distribution with mean vector B and variance–covariance matrix 
                
               I
∗−1(B), where C
−1 denotes the inverse of the matrix C. (C
−1 is the matrix such that C
−1
C is the identity matrix, a matrix with ones on the diagonal and zeros elsewhere. If C is a 1 × 1 matrix, [image: 
$$C^{-1} = 1/C$$
].) A consistent estimator of the variance–covariance matrix is given by the matrix V, obtained by inserting b for B in [image: 
$$I(B): V = I^{-1}(b)$$
].
9.3.1 Global Test Statistics

                
                  
                  
                
              
Suppose we wish to test the null hypothesis H
0: B = B
0. The likelihood ratio test statistic is
                  
                 [image: 
$$\displaystyle\begin{array}{rcl} LR& =& -2\log (L\ \mathrm{at\ }H_{0}/L\ \mathrm{at\ MLEs}) \\ & =& -2[\log L(B^{0}) -\log L(b)].{}\end{array}$$
]

 (9.25)

 The corresponding Wald test
                  
                 statistic, using the estimated observed 
                  
                information matrix, is [image: 
$$\displaystyle{ W = (b - B^{0})'I(b)(b - B^{0}) = (b - B^{0})'V ^{-1}(b - B^{0}). }$$
]

 (9.26)

 (A quadratic form a′V a is a matrix generalization of a
2
V.) Note that if the number of estimated parameters is p = 1, W reduces to [image: 
$$(b - B^{0})^{2}/V$$
], which is the square of a z- or t-type statistic (estimate − hypothesized value divided by estimated standard deviation of estimate).
The score statistic for H
0 is [image: 
$$\displaystyle{ S = U'(B^{0})I^{-1}(B^{0})U(B^{0}). }$$
]

 (9.27)

 Note that as before, S does not require solving for the MLE. For large samples, L R, W, and S have a χ
2 distribution with p d.f. under suitable conditions.

9.3.2 Testing a Subset of the Parameters

                
                  
                  
                
              
Let B = { B
1, B
2} and suppose that we wish to test H
0: B
1 = B
1
0. We are treating B
2 as a 
                  
                nuisance parameter. For example, we may want to test whether blood pressure and cholesterol are risk factors after adjusting for confounders age and sex. In that case B
1 is the pair of regression coefficients for blood pressure and cholesterol and B
2 is the pair of coefficients for age and sex. B
2 must be estimated to allow adjustment for age and sex, although B
2 is a 
                  
                nuisance parameter and is not of primary interest.
Let the number of parameters of interest be k so that B
1 is a vector of length k. Let the number of “nuisance” or “adjustment” parameters be q, the length of B
2 (note [image: 
$$k + q = p$$
]).
Let b
2
∗ be the MLE of B
2 under the restriction that B
1 = B
1
0. Then the likelihood ratio statistic is
                  
                 [image: 
$$\displaystyle{ LR = -2[\log L\ \mathrm{at}\ H_{0} -\log L\ \mathrm{atMLE}]. }$$
]

 (9.28)

 Now log L at H
0 is more complex than before because H
0 involves an unknown 
                  
                nuisance parameter B
2 that must be estimated. log L at H
0 is the maximum of the 
                  
                likelihood function for any value of B
2 but subject to the condition that B
1 = B
1
0. Thus [image: 
$$\displaystyle{ LR = -2[\log L(B_{1}^{0},b_{ 2}^{{\ast}}) -\log L(b)], }$$
]

 (9.29)

 where as before b is the overall MLE of B. Note that L R requires maximizing two log likelihood functions. The first component of L R is a restricted maximum likelihood and the second component is the overall or unrestricted maximum.

L R is often computed by examining successively more complex models in a stepwise fashion and calculating the increment in likelihood ratio χ
2 in the overall model. The L R χ
2 for testing H
0: B
2 = 0 when B
1 is not in the model is [image: 
$$\displaystyle{ LR(H_{0}: B_{2} = 0\vert B_{1} = 0) = -2[\log L(0,0) -\log L(0,b_{2}^{{\ast}})]. }$$
]

 (9.30)

 Here we are specifying that B
1 is not in the model by setting [image: 
$$B_{1} = B_{1}^{0} = 0$$
], and we are testing H
0: B
2 = 0. (We are also ignoring nuisance parameters such as an intercept term in the test for B
2 = 0.)
The L R χ
2 for testing [image: 
$$H_{0}: B_{1} = B_{2} = 0$$
] is given by [image: 
$$\displaystyle{ LR(H_{0}: B_{1} = B_{2} = 0) = -2[\log L(0,0) -\log L(b)]. }$$
]

 (9.31)

 Subtracting L R χ
2 for the smaller model from that of the larger model yields [image: 
$$\displaystyle\begin{array}{rcl} & -2[\log L(0,0) -\log L(b)] --2[\log L(0,0) -\log L(0,b_{2{\ast}})]& \\ =& -2[\log L(0,b_{2}^{{\ast}}) -\log L(b)], &{}\end{array}$$
]

 (9.32)

 which is the same as above (letting [image: 
$$B_{1}^{0} = 0$$
]).
For example, suppose successively larger models yield the L R χ 2s in Table 9.1. The L R χ
2 for testing for linearity in age (not adjusting for sex) against quadratic alternatives is [image: 
$$1010 - 1000 = 10$$
] with 1 d.f. The L R χ
2 for testing the added information provided by sex, adjusting for a quadratic effect of age, is [image: 
$$1013 - 1010 = 3$$
] with 1 d.f. The L R χ
2 for testing the joint importance of sex and the nonlinear (quadratic) effect of age is [image: 
$$1013 - 1000 = 13$$
] with 2 d.f.
Table 9.1Example tests


	Variables (Parameters)
	
                            L R
                            χ
                            2
                          
	Number of

	in Model
	 	Parameters

	Intercept, age
	1000
	2

	Intercept, age, age2

	1010
	3

	Intercept, age, age2, sex
	1013
	4





To derive the Wald statistic
                  
                 for testing [image: 
$$H_{0}: B_{1} = B_{1}^{0}$$
] with B
2 being a 
                  
                nuisance parameter, let the MLE b be partitioned into b = { b
1, b
2}. We can likewise partition the estimated variance–covariance matrix V 
                  
                 into [image: 
$$\displaystyle{ V = \left [\begin{array}{cc} V _{11} & V _{12} \\ V _{12}' & V _{22} \end{array} \right ]. }$$
]

 (9.33)

 The Wald statistic
                  
                 is [image: 
$$\displaystyle{ W = (b_{1} - B_{1}^{0})'V _{ 11}^{-1}(b_{ 1} - B_{1}^{0}), }$$
]

 (9.34)

 which when k = 1 reduces to (estimate − hypothesized value)2∕ estimated variance, with the estimates adjusted for the parameters in B
2.
The score statistic for testing [image: 
$$H_{0}: B_{1} = B_{1}^{0}$$
] does not require solving for the full set of unknown parameters. Only the MLEs of B
2 must be computed, under the restriction that [image: 
$$B_{1} = B_{1}^{0}$$
]. This restricted MLE is [image: 
$$b_{2}^{{\ast}}$$
] from above. Let [image: 
$$U(B_{1}^{0},b_{2}^{{\ast}})$$
] denote the vector of first derivatives of log L with respect to all parameters in B, evaluated at the hypothesized parameter values [image: 
$$B_{1}^{0}$$
] for the first k parameters and at the restricted MLE [image: 
$$b_{2}^{{\ast}}$$
] for the last q parameters. (Since the last q estimates are MLEs, the last q elements of U are zero, so the formulas that follow simplify.) Let [image: 
$$I(B_{1}^{0},b_{2}^{{\ast}})$$
] be the observed 
                  
                information matrix evaluated at the same values of B as is U. The score statistic for testing [image: 
$$H_{0}: B_{1} = B_{1}^{0}$$
] is [image: 
$$\displaystyle{ S = U'(B_{1}^{0},b_{ 2}^{{\ast}})I^{-1}(B_{ 1}^{0},b_{ 2}^{{\ast}})U(B_{ 1}^{0},b_{ 2}^{{\ast}}). }$$
]

 (9.35)

 Under suitable conditions, the distribution of L R, W, and S can be
                  
                

                  
                

                  
                 adequately approximated by a χ
2 distribution with k d.f. [image: A69956_2_En_9_Figg_HTML.gif]


9.3.3 Tests Based on Contrasts
Wald tests
                  
                 are also done by setting up a general linear contrast
                  
                  
                . H
0: C B = 0 is tested by a Wald statistic of the form
                  
                  
                 [image: 
$$\displaystyle{ W = (Cb)'(CV C')^{-1}(Cb), }$$
]

 (9.36)

 where C is a contrast matrix that “picks off” the proper elements of B.
                  
                  
                 The contrasts can be much more general by allowing elements of C to be other than zero and one. For the normal linear model, W is converted to an F-statistic by dividing by the rank r of C (normally the number of rows in C), yielding a statistic with an F-distribution with r numerator degrees of freedom.
Many interesting contrasts are tested by forming differences in predicted values. By forming more contrasts than are really needed, one can develop a surprisingly flexible approach to hypothesis testing using predicted values. This has the major advantage of not requiring the analyst to account for how the predictors are coded. Suppose that one wanted to assess the difference in two vectors of predicted values, [image: 
$$X_{1}b - X_{2}b = (X_{1} - X_{2})b =\varDelta b$$
] to test H
0: Δ B = 0, where [image: 
$$\varDelta = X_{1} - X_{2}$$
]. The covariance matrix for Δ b is given by
                  
                  
                 [image: 
$$\displaystyle{ \mathrm{var}(\varDelta b) =\varDelta V \varDelta '. }$$
]

 (9.37)

 Let r be the rank of [image: 
$$\mathrm{var}(\varDelta b)$$
], i.e., the number of 
                  
                  
                 non-linearly-dependent (non-redundant) differences of predicted values of Δ. The value of r and the rows of Δ that are not redundant may easily be determined using the Q R decomposition as done by the R function qr

                  
                
2. The χ
2 statistic with r degrees of freedom (or F-statistic upon dividing the statistic by r) may be obtained by computing [image: 
$$\varDelta ^{{\ast}}V ^{{\ast}}\varDelta ^{{\ast'}}$$
] where Δ
∗ is the subset of elements of Δ corresponding to non-redundant contrasts and V
∗ is the corresponding sub-matrix of V.
                  
                  
                

The “difference in predictions” approach
                  
                 can be used to compare means in a 30 year old male with a 40 year old female3. But the true utility of the approach is most obvious when the contrast involves multiple nonlinear terms for a single predictor, e.g., a spline function. 
                  
                  
                

                  
                To test for a difference in two curves, one can compare predictions at one predictor value against predictions at a series of values with at least one value that pertains to each basis function. Points can be placed between every pair of knots and beyond the outer knots, or just obtain predictions at 100 equally spaced X-values.
Suppose that there are three treatment groups (A, B, C) interacting with a cubic spline function of X. If one wants to test the multiple degree of freedom hypothesis that the profile for X is the same for treatment A and B vs. the alternative hypothesis that there is a difference between A and B for at least one value of X, one can compare predicted values at treatment A and a vector of X values against predicted values at treatment B and the same vector of X values. If the X relationship is linear, any two X values will suffice, and if X is quadratic, any three points will suffice. It would be difficult to test complex hypotheses involving only 2 of 3 treatments using other methods.
The contrast

                  
                 function in rms

                  
                 can estimate a wide variety of contrasts and make joint tests involving them, automatically computing the number of non-linearly-dependent contrasts as the test’s degrees of freedom. 
                  
                  
                

                  
                 See its help file for several examples.

9.3.4 Which Test Statistics to Use When
At this point, one may ask why three types of test statistics are needed. The answer lies in the statistical properties of the three tests as well as in computational expense in different situations. From the standpoint of statistical properties, L R is
                  
                 the best statistic, followed by S and W. The major statistical problem with W is that it is sensitive to problems in the estimated 
                  
                variance–covariance matrix in the full model. For some models, most notably the logistic regression model, 278 the variance–covariance estimates can be too large as the effects in the model become very strong, resulting in values of W that are too small (or significance levels that are too large). W is also sensitive to the way the parameter appears in the model. For example, a test of H
0: log odds ratio = 0 will yield a different value of W than will H
0: odds ratio = 1.
Relative computational efficiency of the three types of tests is also an issue. Computation of L R and W requires estimating all p unknown parameters, and in addition L R requires re-estimating the last q parameters under that restriction that the first k parameters [image: 
$$= B_{1}^{0}$$
]. Therefore, when one is contemplating whether a set of parameters should be added to a model, the score test
                  
                 is the easiest test to carry out. For example, if one were interested in testing all two-way interactions among 4 predictors, the score test statistic for H
0: “no interactions present” could be computed without estimating the [image: 
$$4 \times 3/2 = 6$$
] interaction effects. S would also be appealing for testing linearity of effects in a model—the nonlinear spline terms could be tested for significance after adjusting for the linear effects (with estimation of only the linear effects). Only parameters for linear effects must be estimated to compute S, resulting in fewer numerical problems such as lack of 
                  
                convergence of the 
                  
                Newton–Raphson algorithm.
The Wald tests
                  
                 are very easy to make after all the parameters in a model have been estimated. Wald tests are thus appealing in a multiple regression setup when one wants to test whether a given predictor or set of predictors is “significant.” A score test would require re-estimating the regression coefficients under the restriction that the parameters of interest equal zero.
Likelihood ratio tests are used often for testing the global
                  
                 hypothesis that no effects are significant, as the log likelihood evaluated at the MLEs is already available from fitting the model and the log likelihood evaluated at a “null model” (e.g., a model containing only an intercept) is often easy to compute. Likelihood ratio tests should also be used when the validity of a Wald test is in question as in the example cited above.
Table 9.2 summarizes recommendations for choice of test statistics for various situations. 
                  
                

                  
                

                  
                
Table 9.2Choice of test statistics


	Type of Test
	Recommended Test Statistic

	Global association
	LR (S for large no. parameters)

	Partial association
	W (LR or S if problem with W)

	Lack of fit, 1 d.f.
	W or S

	Lack of fit, > 1 d.f.
	S

	Inclusion of additional predictors
	S






9.3.5 Example: Binomial—Comparing Two Proportions

                
                  
                  
                
              
Suppose that a binary random variable Y
1 represents responses for population 1 and Y
2 represents responses for population 2. Let [image: 
$$P_{i} =\mathrm{ Prob}\{Y _{i} = 1\}$$
] and assume that a random sample has been drawn from each population with respective sample sizes n
1 and n
2. The sample values are denoted by [image: 
$$Y _{i1},\ldots,Y _{in_{i}},i = 1$$
] or 2. Let [image: 
$$\displaystyle{ s_{1} =\sum _{ j=1}^{n_{1} }Y _{1j}\ \ \ \ \ \ \ \ \ s_{2} =\sum _{ j=1}^{n_{2} }Y _{2j}, }$$
]

 (9.38)

 the respective observed number of “successes” in the two samples. Let us test the null hypothesis H
0: P
1 = P
2 based on the two samples.
The 
                  
                likelihood function is [image: 
$$\displaystyle\begin{array}{rcl} L& =& \prod _{i=1}^{2}\prod _{ j=1}^{n_{i} }P_{i}^{Y _{ij} }(1 - P_{i})^{1-Y _{ij} } \\ & =& \prod _{i=1}^{2}P_{ i}^{s_{i} }(1 - P_{i})^{n_{i}-s_{i} } {}\end{array}$$
]

 (9.39)

 [image: 
$$\displaystyle\begin{array}{rcl} \log L& =& \sum _{i=1}^{2}\{s_{ i}\log (P_{i}) + (n_{i} - s_{i})\log (1 - P_{i})\}.{}\end{array}$$
]

 (9.40)

 Under [image: 
$$H_{0},P_{1} = P_{2} = P$$
], so [image: 
$$\displaystyle\begin{array}{rcl} \log L(H_{0})& =& s\log (P) + (n - s)\log (1 - P),{}\end{array}$$
]

 (9.41)

 where [image: 
$$s = s_{1} + s_{2},n = n_{1} + n_{2}$$
]. The (restricted) MLE of this common P is [image: 
$$p = s/n$$
] and log L at this value is [image: 
$$s\log (p) + (n - s)\log (1 - p)$$
].
Since the original unrestricted log likelihood 
                  
                 function contains two terms with separate parameters, the two parts may be maximized separately giving MLEs [image: 
$$\displaystyle{ p_{1} = s_{1}/n_{1}\ \ \ \ \ \mathrm{and}\ \ \ \ \ p_{2} = s_{2}/n_{2}. }$$
]

 (9.42)

 log L evaluated at these (unrestricted) MLEs is [image: 
$$\displaystyle\begin{array}{rcl} \log L& =& s_{1}\log (p_{1}) + (n_{1} - s_{1})\log (1 - p_{1}) \\ & +& s_{2}\log (p_{2}) + (n_{2} - s_{2})\log (1 - p_{2}).{}\end{array}$$
]

 (9.43)

 The likelihood ratio statistic for testing H
0: P
1 = P
2 is then
                  
                 [image: 
$$\displaystyle\begin{array}{rcl} LR& =& -2\{s\log (p) + (n - s)\log (1 - p) \\ & -& [s_{1}\log (p_{1}) + (n_{1} - s_{1})\log (1 - p_{1}) \\ & +& s_{2}\log (p_{2}) + (n_{2} - s_{2})\log (1 - p_{2})]\}.{}\end{array}$$
]

 (9.44)

 This statistic for large enough n
1 and n
2 has a χ
2 distribution with 1 d.f. since the null hypothesis involves the estimation of one fewer parameter than does the unrestricted case. This L R statistic
                  
                 is the likelihood ratio χ
2 statistic for a 2 × 2 
                  
                contingency table. It can be shown that the corresponding score statistic is equivalent to the Pearson χ
2 statistic
                  
                  
                

                  
                . The better L R statistic can be used routinely over the Pearson χ
2 for testing hypotheses in contingency tables.


9.4 Iterative ML Estimation
In most cases, one cannot explicitly solve for MLEs but must use trial-and-error numerical methods to solve for parameter values B that maximize log L(B) or yield a score vector U(B) = 0. One of the fastest and most applicable methods for maximizing a function is the 
                
              Newton–Raphson method, which is based on approximating U(B) by a linear function of B in a small region. A starting estimate b
0 of the MLE b is made. The linear approximation (a first-order Taylor series approximation) [image: 
$$\displaystyle{ U(b) = U(b^{0}) - I(b^{0})(b - b^{0}) }$$
]

 (9.45)

 is equated to 0 and solved by b yielding [image: 
$$\displaystyle{ b = b^{0} + I^{-1}(b^{0})U(b^{0}). }$$
]

 (9.46)

 The process is continued in like fashion. At the ith step the next estimate is obtained from the previous estimate using the formula [image: 
$$\displaystyle{ b^{i+1} = b^{i} + I^{-1}(b^{i})U(b^{i}). }$$
]

 (9.47)

 If the log likelihood actually worsened at b

i+1, “step halving” is used; b

i+1 is replaced with [image: 
$$(b^{i} + b^{i+1})/2$$
]. Further 
                
              step halving is done if the log likelihood still is worse than the log likelihood at b

                i
              , after which the original iterative strategy is resumed. The 
                
              Newton–Raphson iterations continue until the − 2log likelihood changes by only a small amount over the previous iteration (say. 025). The reasoning behind this stopping rule is that estimates of B that change the − 2log likelihood by less than this amount do not affect statistical inference since − 2log likelihood is on the χ
2 scale. [image: A69956_2_En_9_Figh_HTML.gif]


9.5 Robust Estimation of the Covariance Matrix

              
                
              
            
The estimator for the covariance matrix of b found in Section 9.3 assumes that the model is correctly specified in terms of distribution, regression assumptions, and independence assumptions. The model may be incorrect in a variety of ways such as non-independence (e.g., repeated measurements within subjects), lack of fit (e.g., omitted covariable, incorrect covariable transformation, omitted interaction), and distributional (e.g., Y has a Γ distribution instead of a normal distribution). Variances and covariances, and hence confidence intervals and Wald tests
                
              , will be incorrect when these assumptions are violated.
For the case in which the observations are independent and identically distributed but other assumptions are possibly violated, Huber 312 provided a covariance matrix estimator that is consistent. His “sandwich” estimator is given by [image: 
$$\displaystyle{ H = I^{-1}(b)[\sum _{ i=1}^{n}U_{ i}U_{i}']I^{-1}(b), }$$
]

 (9.48)

 where I(b) is the observed 
                
              information matrix (Equation 9.24) and U

                i
               is the vector of derivatives, with respect to all parameters, of the log likelihood component for the ith observation (assuming the log likelihood can be partitioned into per-observation contributions). For the normal multiple linear regression case, H was derived by White: 659

                
               [image: 
$$\displaystyle{ (X'X)^{-1}[\sum _{ i=1}^{n}(Y _{ i} - X_{i}b)^{2}X_{ i}X_{i}'](X'X)^{-1}, }$$
]

 (9.49)

 where X is the design matrix (including an intercept if appropriate) and X

                i
               is the vector of predictors (including an intercept) for the ith observation. This covariance estimator allows for any pattern of variances of Y | X across observations. Note that even though H improves the bias of the covariance matrix of b, it may actually have larger mean squared error than the ordinary estimate in some cases due to increased variance. 164, 529
[image: A69956_2_En_9_Figi_HTML.gif]

When observations are dependent within clusters, and the number of observations within clusters is very small in comparison to the total 
                
              

                
              

                
                
              sample size, a simple adjustment to Equation 9.48 can be used to derive appropriate covariance matrix estimates (see Lin [407, p. 2237], Rogers, 529 and Lee et al. [393, Eq. 5.​1, p. 246]). One merely accumulates sums of elements of U within clusters before computing cross-product terms: [image: 
$$\displaystyle{ H_{c} = I^{-1}(b)[\sum _{ i=1}^{c}\{(\sum _{ j=1}^{n_{i} }U_{ij})(\sum _{j=1}^{n_{i} }U_{ij})'\}]I^{-1}(b), }$$
]

 (9.50)

 where c is the number of clusters, n

                i
               is the number of observations in the ith cluster, U

                i j
               is the contribution of the jth observation within the ith cluster to the score vector, and I(b) is computed as before ignoring clusters. For a model such as the Cox model which has no per-observation score contributions, special score residuals 393, 407, 410, 605 are used for U.
Bootstrapping can also be used to derive robust covariance matrix estimates 177, 178

                
               in many cases, especially if covariances of b that are not conditional on X are appropriate. One merely generates approximately 200 samples with replacement from the original dataset, computes 200 sets of parameter estimates, and computes the sample covariance matrix of these parameter estimates. Sampling with replacement from entire clusters can be used to derive variance estimates in the presence of 
                
              

                
               
                
               intracluster correlation. 188 
                
                
              Bootstrap estimates of the conditional 
                
              variance–covariance matrix given X are harder to obtain and depend on the model assumptions being satisfied. The simpler unconditional estimates may be more appropriate for many non-experimental studies where one may desire to “penalize” for the X being random variables. It is interesting that these unconditional estimates may be very difficult to obtain parametrically, since a multivariate distribution may need to be assumed for X.[image: A69956_2_En_9_Figj_HTML.gif]

The previous discussion addresses the use of a “
                
              working independence model” with clustered data. Here one estimates regression coefficients assuming independence of all records (observations). Then a sandwich or 
                
                
              bootstrap method is used to increase standard errors to reflect some redundancy in the correlated observations. The parameter estimates will often be consistent estimates of the true parameter values, but they may be inefficient for certain cluster or correlation structures. [image: A69956_2_En_9_Figk_HTML.gif]

The rms package’s robcov

                
               function computes the Huber
                
               robust covariance matrix estimator, and the bootcov

                
               function computes the 
                
                
              bootstrap covariance estimator. Both of these functions allow for clustering.

9.6 Wald, Score, and Likelihood-Based Confidence Intervals
A 1 −α confidence interval for a parameter β

                i
               is the set of all values [image: 
$$\beta _{i}^{0}$$
] that if hypothesized would be accepted in a test of [image: 
$$H_{0}:\beta _{i} =\beta _{ i}^{0}$$
] at the α level. What test should form the basis for the confidence interval? The Wald test
                
               is most frequently used because of its simplicity. A two-sided 1 −α confidence interval is [image: 
$$b_{i} \pm z_{1-\alpha /2}s$$
], where z is the critical value from the normal distribution and s is the estimated standard error of the parameter estimate b

                i
              .4 The problem with s discussed in Section 9.3.4 points out that Wald statistics
                
               may not always be a good basis. Wald-based confidence intervals are also symmetric even though the 
                
                
              coverage probability may not be. 160 Score- and LR-based 
                
              confidence limits have definite advantages.
                
              

                
               When Wald-type 
                
              confidence intervals are appropriate, the analyst may consider insertion of robust covariance estimates (Section 9.5) into the confidence interval formulas (note that adjustments for heterogeneity and correlated observations are not available for score and LR statistics).[image: A69956_2_En_9_Figl_HTML.gif]

Wald– (asymptotic normality) based statistics
                
               are convenient for deriving confidence intervals for linear or more complex combinations of the model’s parameters. As in Equation 9.36, the 
                
              variance–covariance matrix of C b, where C is an appropriate matrix and b is the vector of parameter estimates, is C V C′,
                
                
               where V is the variance matrix of b. In regression models we commonly substitute a vector of predictors (and optional intercept) for C to obtain the variance of the linear predictor X b as [image: 
$$\displaystyle{ \mathrm{var}(Xb) = XV X'. }$$
]

 (9.51)

 See Section 9.3.3 for related information.
9.6.1 Simultaneous Wald Confidence Regions
The confidence intervals just discussed are pointwise confidence intervals. For OLS regression
                  
                  
                 there are methods for computing confidence intervals with exact simultaneous confidence 
                  
                  
                 coverage for multiple estimates 374. There are approximate methods for simultaneous confidence limits for all models for which the vector of estimates b is approximately multivariately normally distributed. The method of Hothorn et al. 307 is quite general; in their R package multcomp’s
                  
                 glht

                  
                 function, the user can specify any contrast matrix over which the individual confidence limits will be simultaneous. A special case of a contrast matrix is the design matrix X itself, resulting in simultaneous confidence bands for any number of predicted values. An example is shown in Figure 9.5. See Section 9.3.3 for a good use for simultaneous contrasts.


9.7 Bootstrap Confidence Regions
A more nonparametric method for computing confidence intervals for functions of the vector of parameters B can be based on 
                
                
              

                
                
               bootstrap percentile confidence limits. For each sample with replacement from the original dataset, one computes the MLE of B, b, and then the quantity of interest g(b). Then the gs are sorted and the desired quantiles are computed. At least 1000 bootstrap samples will be needed for accurate assessment of outer 
                
                
               confidence limits. This method is suitable for obtaining pointwise confidence bands for a nonlinear regression function, say, the relationship between age and the log odds of disease. At each of 100 age values the predicted logits are computed for each 
                
                
              bootstrap sample. Then separately for each age point the 0.025 and 0.975 quantiles of 1000 estimates of the logit are computed to derive a 0.95 confidence band. Other more complex bootstrap schemes will achieve somewhat greater accuracy of confidence interval 
                
                
              coverage, 178 and as described in Section 9.5 one can use variations on the basic bootstrap in which the predictors are considered fixed and/or cluster sampling is taken into account. The R function bootcov

                
               in the rms package bootstraps model fits to obtain unconditional (with respect to 
                
               predictors) 
                
                
              bootstrap distributions with or without cluster sampling. bootcov

                
               stores the matrix of bootstrap regression coefficients so that the bootstrapped quantities of interest can be computed in one sweep of the coefficient matrix once bootstrapping is completed. [image: A69956_2_En_9_Figm_HTML.gif]
[image: A69956_2_En_9_Fign_HTML.gif]

For many regression models. the rms package’s
                
               Predict

                
              , summary

                
              , and contrast

                
               functions make it easy to compute pointwise bootstrap confidence intervals in a variety of contexts. 
                
                
               As an example, consider 200 simulated x values from a log-normal distribution and simulate binary y from a true population binary logistic model given by [image: 
$$\displaystyle{ \mathop{\mathrm{Prob}}\nolimits (Y = 1\vert X = x) = \frac{1} {1 +\exp [-(1 + x/2)]}. }$$
]

 (9.52)

 Not knowing the true model, a quadratic logistic model is fitted. The R code needed to generate the data and fit the model is given below.[image: A69956_2_En_9_Figa_HTML.gif]



              Logistic Regression Model
            
 lrm(formula = y ~ pol(x1, 2), x = TRUE, y = TRUE)	 	Model Likelihood
	Discrimination
	Rank Discrim.

	 	Ratio Test
	Indexes
	Indexes

	Obs 200
	LR χ
2 16.37
	
R
2 0.105
	
C 0.642

	 0 97
	d.f. 2
	
g 0.680
	
D

                            x y
                           0.285

	 1 103
	Pr( > χ
2) 0.0003
	
g

                            r
                           1.973
	
γ 0.286

	
[image: 
$$\max \vert \frac{\partial \log L} {\partial \beta } \vert $$
] 3​ ×​ 10−9

	 	
g

                            p
                           0.156
	
τ

                            a
                           0.143

	 	 	Brier 0.231
	 



	 	Coef 
	S.E. 
	Wald Z

	Pr( >  | Z | )

	Intercept
	-0.0842 
	0.1823 
	-0.46
	0.6441

	x1
	 0.5902 
	0.1580 
	3.74
	0.0002

	x12

	 0.1557 
	0.1136 
	1.37
	0.1708






              [image: A69956_2_En_9_Figb_HTML.gif]

              	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	x1
	13. 99
	2
	0. 0009

	
                          Nonlinear
                        
	1. 88
	1
	0. 1708

	TOTAL
	13. 99
	2
	0. 0009




            
The bootcov

                
               function is used to draw 1000 resamples to obtain bootstrap estimates of the covariance matrix of the regression coefficients as well as to save the 1000 × 3 matrix of regression coefficients. Then, because individual regression coefficients for x do not tell us much, we summarize the x-effect by computing the effect (on the logit scale) of increasing x from 1 to 5. We first compute bootstrap nonparametric percentile confidence intervals the long way. The 1000 bootstrap estimates of the log odds ratio are computed easily using a single matrix multiplication with the difference in predictions approach, multiplying the difference in two design matrices
                
              , and we obtain the bootstrap estimate of the standard error of the log odds ratio by computing the sample standard deviation of the 1000 values5.
                
                
               
                
                
               Bootstrap percentile confidence limits are just sample quantiles from the bootstrapped log odds ratios. [image: A69956_2_En_9_Figc_HTML.gif]


Figure 9.4 shows the distribution of log odds ratios.[image: A69956_2_En_9_Fig4_HTML.gif]
Fig. 9.4Distribution of 1000 bootstrap x=1:5 log odds ratios




[image: A69956_2_En_9_Fig5_HTML.gif]
Fig. 9.5Predicted log odds and confidence bands for seven types of confidence intervals. Seven categories are ordered top to bottom corresponding to order of lower confidence bands at x1=5. Dotted lines are for Wald–type methods that yield symmetric confidence intervals and assume normality of point estimators.





Now consider confidence bands for the true log odds that y = 1, across a sequence of x values. The Predict

                
               function automatically calculates point-by-point bootstrap percentiles, basic bootstrap, or BCa 203 confidence 
                
                
              

                
                
               limits when the fit has passed through bootcov

                
              . Simultaneous Wald-based confidence intervals 307 and Wald intervals substituting the bootstrap covariance matrix estimator are added to the plot when Predict

                
               calls the multcomp

                
               package (Figure 9.5). 
                
                
              

                
                
               
                
                
              

                
                
               
                
              

                
              

                
                
              


              [image: A69956_2_En_9_Figd_HTML.gif]

            
See Problems at chapter’s end for a worrisome investigation of bootstrap confidence interval coverage using simulation. 
                
                
               It appears that when the model’s log odds distribution is not symmetric and includes very high or very low probabilities, neither the bootstrap percentile nor the bootstrap BCa intervals have good 
                
                
              

                
                
               coverage, while the basic bootstrap and ordinary Wald intervals are fairly accurate6. It is difficult in general to know when to trust the bootstrap for logistic and perhaps other models when computing confidence intervals, and the simulation problem suggests that the basic bootstrap should be used more frequently. Similarly, the distribution of bootstrap effect estimates can be suspect. Asymmetry in this distribution does not imply that the true sampling distribution is asymmetric or that the percentile intervals are preferred.

9.8 Further Use of the Log Likelihood
9.8.1 Rating Two Models, Penalizing for Complexity
Suppose that from a single sample two competing models were developed. Let the respective − 2log likelihoods for these models be denoted by L
1 and L
2, and let p
1 and p
2 denote the number of parameters estimated in each model. Suppose that L
1 < L
2. It may be tempting to rate model one as the “best” fitting or “best” predicting model. That model may provide a better fit for the data at hand, but if it required many more parameters to be estimated, it may not be better “for the money.” If both models were applied to a new sample, model one’s overfitting of the original dataset may actually result in a worse fit on the new dataset.
Akaike’s information criterion (
                  
                AIC 33, 359, 633) provides a method for penalizing the log likelihood achieved by a given model for its complexity to obtain a more unbiased assessment of the model’s worth. The penalty is to subtract the number of parameters estimated from the log likelihood, or equivalently to add twice the number of parameters to the − 2log likelihood. The penalized log likelihood is analogous to Mallows’ C

                  p
                 in ordinary multiple regression. AIC would choose the model by comparing L
1 + 2p
1 to L
2 + 2p
2 and picking the model with the lower value. We often use 
                  
                AIC in “adjusted χ
2” form: [image: A69956_2_En_9_Figo_HTML.gif]
[image: 
$$\displaystyle{ \mathrm{AIC} =\mathrm{ LR\ }\chi ^{2} - 2p. }$$
]

 (9.53)

 Breiman [66, Section 1.​3] and Chatfield [100, Section 4] discuss the fallacy of AIC and C

                  p
                 for selecting from a series of non-prespecified models.[image: A69956_2_En_9_Figp_HTML.gif]


9.8.2 Testing Whether One Model Is Better than Another
One way to test whether one model (A) is better than another (B) is to embed both models in a more general model (A + B). Then a L R χ
2 test
                  
                 can be done to test whether A is better than B by changing the hypothesis to test whether A adds predictive information to B (H
0: A + B > B) and whether B adds information to A (H
0: A + B > A). The approach of testing A > B via testing A + B > B and A + B > A is especially useful for selecting from competing predictors such as a multivariable model and a subjective assessor. 131, 264, 395, 669

Note that L R χ
2 for H
0: A + B > B minus L R χ
2 for H
0: A + B > A equals L R χ
2 for H
0: A has no predictive information minus L R χ
2 for H
0: B has no predictive information, 665 the difference in L R χ
2 for testing each model (set of variables) separately
                  
                . This gives further support to the use of two separately computed Akaike’s information criteria for rating the two sets of variables. [image: A69956_2_En_9_Figq_HTML.gif]

See Section 9.8.4 for an example.

9.8.3 Unitless Index of Predictive Ability
The global likelihood ratio test
                  
                 for regression is useful for determining whether any predictor is associated with the response. If the sample is large enough, even weak associations can be “statistically significant.” Even though a likelihood ratio test does not shed light on a model’s predictive strength, the log likelihood (L.L.) can still be useful here. Consider the following L.L.s: [image: 
$$\displaystyle{\begin{array}{l} \mathrm{Best(lowest)possible - 2L.L.:} \\ \ \qquad \mathrm{L^{{\ast}} = -2L.L.\ forahypotheticalmodelthatperfectlypredictstheoutcome.}\\ \\ \mathrm{-2L.L.\ achieved:} \\ \ \qquad \mathrm{L = -2L.L.\ forthefittedmodel.}\\ \\ \mathrm{Worst - 2L.L.:} \\ \ \qquad \mathrm{L^{0} = -2L.L.\ foramodelthathasnopredictiveinformation.}\\ \end{array} }$$
]


 The last − 2 L.L., for a “no information” model, is the − 2 L.L. under the null hypothesis that all regression coefficients except for intercepts are zero. A “no information” model often contains only an intercept and some distributional parameters (a variance, for example).[image: A69956_2_En_9_Figr_HTML.gif]

The quantity L
0 − L is L R, the log likelihood ratio statistic
                  
                 for testing the 
                  
                  
                global null hypothesis that no predictors are related to the response. It is also the − 2 log likelihood “explained” by the model. The best (lowest) − 2 L.L. is L
∗, so the amount of L.L. that is capable of being explained by the model is L
0 − L
∗. The fraction of − 2 L.L. explained that was capable of being explained is [image: 
$$\displaystyle{ (L^{0} - L)/(L^{0} - L^{{\ast}})\ \ \ =\ \ \ LR/(L^{0} - L^{{\ast}}). }$$
]

 (9.54)

 The fraction of log likelihood explained is analogous to R
2 in an ordinary linear model, although Korn and Simon 365, 366 provide a much more precise notion.
Akaike’s information criterion can be used to penalize this measure of association for the number of parameters estimated (p, say) to transform this unitless measure of association into a quantity that is analogous to the adjusted R
2

                  
                 or Mallows’ C

                  p
                 in ordinary linear regression. We let R denote the square root of such a penalized fraction of log likelihood explained. R is defined by [image: 
$$\displaystyle{ R^{2} = (LR - 2p)/(L_{ 0} - L^{{\ast}}). }$$
]

 (9.55)

 The R index can be used to assess how well the model compares with a “perfect” model, as well as to judge whether a more complex model has predictive strength that justifies its additional parameters. Had p been used in Equation 9.55 rather than 2p, R
2

                  
                 is negative if the log likelihood explained is less than what one would expect by chance. R will be the square root of [image: 
$$1 - 2p/(L_{0} - L^{{\ast}})$$
] if the model perfectly predicts the response. This upper limit will be near one if the sample size is large.
Partial R indexes can also be defined by substituting the − 2 L.L. explained for a given factor in place of that for the entire model, L R. The “penalty factor” p becomes one. This index R
partial is defined by [image: 
$$\displaystyle{ R_{\mathrm{partial}}^{2} = (LR_{\mathrm{ partial}} - 2)/(L_{0} - L^{{\ast}}), }$$
]

 (9.56)

 which is the (penalized) fraction of − 2 log likelihood explained by the predictor. Here L R
partial is the log likelihood ratio statistic for testing whether the predictor is associated with the response, after adjustment for the other predictors. Since such likelihood ratio statistics are tedious to compute, the 1 d.f. Wald χ
2 can be substituted for the L R statistic (keeping in mind that difficulties with the Wald statistic can arise).
Liu and Dyer 424 and Cox and Wermuth 136 point out difficulties with the R
2 measure for binary logistic models. Cox and Snell 135 and Magee 432 used other analogies to derive other R
2 measures that may have better properties. For a sample of size n and a Wald statistic for testing overall association, they defined
                  
                 [image: 
$$\displaystyle\begin{array}{rcl} R_{\mathrm{W}}^{2}& =& \frac{W} {n + W} \\ R_{\mathrm{LR}}^{2}& =& 1 -\exp (-\mathrm{LR}/n) \\ & =& 1 -\lambda ^{2/n}, {}\end{array}$$
]

 (9.57)

 where λ is the null model likelihood divided by the fitted model likelihood. In the case of ordinary least squares with normality both of the above indexes are equal to the traditional R
2. R
LR
2 is equivalent to Maddala’s index [431, Eq. 2.44]. Cragg and Uhler 137 and Nagelkerke 471 suggested dividing R
LR
2 by its maximum attainable value [image: 
$$\displaystyle{ R_{\mathrm{max}}^{2} = 1 -\exp (-L^{0}/n) }$$
]

 (9.58)

 to derive R
N
2 which ranges from 0 to 1. This is the form of the R
2 index we use throughout.
                  
                  
                

For penalizing for overfitting, see Verweij and van Houwelingen 640 for an overfitting-corrected R
2 that uses a cross-validated likelihood.[image: A69956_2_En_9_Figs_HTML.gif]


9.8.4 Unitless Index of Adequacy of a Subset of Predictors
Log likelihoods are also useful for quantifying the predictive information contained in a subset of the predictors compared with the information contained in the entire set of predictors. 264 Let L R again denote the − 2 log likelihood ratio statistic for testing the joint significance of the full set of predictors. Let L R

                  s
                 denote the − 2 log likelihood ratio statistic for testing the importance of the subset of predictors of interest, excluding the other predictors from the model. A measure of adequacy of the subset for predicting the response is given by 
                  
                  
                 [image: 
$$\displaystyle{ A = LR^{s}/LR. }$$
]

 (9.59)

 A is then the proportion of log likelihood explained by the subset with reference to the log likelihood explained by the entire set
                  
                . When A = 1, the subset contains all the predictive information found in the whole set of predictors; that is, the subset is adequate by itself and the additional predictors contain no independent information. When A = 0, the subset contains no predictive information by itself.
Califf et al. 89 used the A index to quantify the adequacy (with respect to prognosis) of two competing sets of predictors that each describe the extent of 
                  
                coronary artery disease. The response variable was time until cardiovascular death and the statistical model used was the Cox 132 proportional hazards model. Some of their results are reproduced in Table 9.3

                  
                 A chance-corrected adequacy measure could be derived by squaring the ratio of the R-index for the subset to the R-index for the whole set. A formal test of superiority of X
1 = maximum % stenosis over X
2 = jeopardy score can be obtained by testing whether X
1 adds to X
2 ([image: 
$$LR\ \chi ^{2} = 57.5 - 42.6 = 14.9$$
]) and whether X
2 adds to X
1 ([image: 
$$LR\ \chi ^{2} = 57.5 - 51.8 = 5.7$$
]). X
1 adds more to X
2 (14.9) than X
2 adds to X
1 (5.7). The difference [image: 
$$14.9 - 5.7 = 9.2$$
] equals the difference in single factor χ
2 (51. 8 − 42. 6) 665.[image: A69956_2_En_9_Figt_HTML.gif]
Table 9.3Completing prognostic markers


	Predictors Used
	
                            L R
                            χ
                            2
                          
	Adequacy

	Coronary jeopardy score
	42.6
	0.74

	Maximum % stenosis in each artery
	51.8
	0.90

	Combined
	57.5
	1.00







9.9 Weighted Maximum Likelihood Estimation

              
                
                
              
            
It is commonly the case that data elements represent combinations of values that pertain to a set of individuals. This occurs, for example, when unique combinations of X and Y are determined from a massive dataset, along with the frequency of occurrence of each combination, for the purpose of reducing the size of the dataset to analyze. For the ith combination we have a case weight w

                i
               that is a positive integer representing a frequency. Assuming that observations represented by combination i are independent, the likelihood needed to represent all w

                i
               observations is computed simply by multiplying all of the likelihood elements (each having value L

                i
              ), yielding a total likelihood contribution for combination i of [image: 
$$L_{i}^{w_{i}}$$
] or a log likelihood contribution of w

                i
              log L

                i
              . To obtain a likelihood for the entire dataset one computes the product over all combinations. The total log likelihood is ∑ w

                i
              log L

                i
              . As an example, the weighted likelihood that would be used to fit a weighted logistic regression model is given by [image: 
$$\displaystyle{ L =\prod _{ i=1}^{n}P_{ i}^{w_{i}Y _{i} }(1 - P_{i})^{w_{i}(1-Y _{i})}, }$$
]

 (9.60)

 where there are n combinations, ∑

i = 1

                n
              
w

                i
               > n, and P

                i
               is [image: 
$$\mathop{\mathrm{Prob}}\nolimits [Y _{i} = 1\vert X_{i}]$$
] as dictated by the model. Note that in general the correct likelihood function cannot be obtained by weighting the data and using an unweighted likelihood.
By a small leap one can obtain 
                
                
              

                
              weighted maximum likelihood estimates from the above method even if the weights do not represent frequencies or even integers, as long as the weights are non-negative. Non-frequency weights are commonly used in sample surveys to adjust estimates back to better represent a target population when some types of subjects have been over-sampled from that population. Analysts should beware of possible losses in efficiency when obtaining weighted estimates in sample surveys. 363, 364 Making the regression estimates conditional on sampling strata by including strata as covariables may be preferable to re-weighting the strata. If weighted estimates must be obtained, the weighted likelihood function is generally valid for obtaining properly weighted parameter estimates. However, the 
                
              variance–covariance matrix obtained by inverting the 
                
              information matrix from the weighted likelihood will not be correct in general. For one thing, the sum of the weights may be far from the number of subjects in the sample. A rough approximation to the variance–covariance matrix may be obtained by first multiplying each weight by [image: 
$$n/\sum w_{i}$$
] and then computing the weighted information matrix, where n is the number of actual subjects in the sample.[image: A69956_2_En_9_Figu_HTML.gif]


9.10 Penalized Maximum Likelihood Estimation

              
                
              
              
                
                
              
            
Maximizing the log likelihood provides the best fit to the dataset at hand, but this can also result in fitting 
                
              noise in the data. For example, a categorical predictor with 20 levels can produce extreme estimates for some of the 19 regression parameters, especially for the small cells (see Section 4.​5). A shrinkage approach will often result in regression coefficient estimates that while biased are lower in mean squared error and hence are more likely to be close to the true unknown parameter values. 
                
              Ridge regression is one approach to shrinkage, but a more general and better developed approach is penalized maximum likelihood estimation, 237, 388, 639, 641 which is really a special case of Bayesian modeling with a Gaussian prior.
                
               Letting L denote the usual likelihood function and λ be a penalty factor, we maximize the penalized log likelihood given by [image: 
$$\displaystyle{ \log L -\frac{1} {2}\lambda \sum _{i=1}^{p}(s_{ i}\beta _{i})^{2}, }$$
]

 (9.61)

 where s
1, s
2, …, s

                p
               are scale factors chosen to make s

                i
              
β

                i
               unitless. Most authors standardize the data first and do not have scale factors in the equation, but Equation 9.61 has the advantage of allowing estimation of β on the original scale of the data. The usual methods (e.g., 
                
              Newton–Raphson) are used to maximize 9.61.[image: A69956_2_En_9_Figv_HTML.gif]

The choice of the scaling constants has received far too little attention in the 
                
              ridge regression and penalized MLE literature. It is common to use the standard deviation of each column of the design matrix to scale the corresponding parameter. For models containing nothing but continuous variables that enter the regression linearly, this is usually a reasonable approach. For continuous variables represented with multiple terms (one of which is linear), it is not always reasonable to scale each nonlinear term with its own standard deviation. For 
                
              dummy variables, scaling using the standard deviation ([image: 
$$\sqrt{d(1 - d)}$$
], where d is the mean of the dummy variable, i.e., the fraction of observations in that cell) is problematic since this will result in high prevalance cells getting more shrinkage than low prevalence ones because the high prevalence cells will dominate the penalty function.[image: A69956_2_En_9_Figw_HTML.gif]

An advantage of the formulation in Equation 9.61 is that one can assign scale constants of zero for parameters for which no shrinkage is desired. 237, 639 For example, one may have prior beliefs that a linear additive model will fit the data. In that case, nonlinear and non-additive terms may be penalized.
For a 
                
                
              categorical predictor having c levels, users of 
                
              ridge regression often do not recognize that the amount of shrinkage and the predicted values from the fitted model depend on how the design matrix is coded. For example, one will get different predictions depending on which cell is chosen as the reference cell when constructing 
                
              dummy variables. The setup in Equation 9.61 has the same problem. For example, if for a three-category factor we use category 1 as the reference cell and have parameters β
2 and β
3, the unscaled penalty function is [image: 
$$\beta _{2}^{2} +\beta _{ 3}^{2}$$
]. If category 3 were used as the reference cell instead, the penalty would be [image: 
$$\beta _{3}^{2} + (\beta _{2} -\beta _{3})^{2}$$
]. To get around this problem, Verweij and van Houwelingen 639 proposed using the penalty function [image: 
$$\sum _{i}^{c}(\beta _{i} -\overline{\beta })^{2}$$
], where [image: 
$$\overline{\beta }$$
] is the mean of all c βs. This causes shrinkage of all parameters toward the mean parameter value. Letting the first category be the reference cell, we use c − 1 
                
              dummy variables and define [image: 
$$\beta _{1} \equiv 0$$
]. For the case c = 3 the sum of squares is [image: 
$$2[\beta _{2}^{2} +\beta _{ 3}^{2} -\beta _{2}\beta _{3}]/3$$
]. For c = 2 the penalty is [image: 
$$\beta _{2}^{2}/2$$
]. If no scale constant is used, this is the same as scaling β
2 with [image: 
$$\sqrt{ 2}\ \times $$
] the standard deviation of a binary dummy variable with prevalance of 0.5.
The sum of squares can be written in matrix form as [image: 
$$[\beta _{2},\ldots,\beta _{c}]'(A - B)[\beta _{2},\ldots,\beta _{c}]$$
], where A is a [image: 
$$c - 1 \times c - 1$$
] identity matrix and B is a [image: 
$$c - 1 \times c - 1$$
] matrix all of whose elements are [image: 
$$\frac{1} {c}$$
].[image: A69956_2_En_9_Figx_HTML.gif]

For general penalty functions such as that just described, the penalized log likelihood can be generalized to [image: 
$$\displaystyle{ \log L -\frac{1} {2}\lambda \beta 'P\beta. }$$
]

 (9.62)

 For purposes of using the Newton–Raphson procedure, the first derivative of the penalty function with respect to β is −λ P β, and the negative of the second derivative is λ P.[image: A69956_2_En_9_Figy_HTML.gif]

Another problem in penalized estimation is how the choice of λ is made. Many authors use 
                
                
              cross-validation. A limited number of simulation studies in binary logistic regression modeling has shown that for each λ being considered, at least 10-fold cross-validation must be done so as to obtain a reasonable estimate of predictive 
                
              accuracy. Even then, a smoother 207 (“super smoother”) must be used on the (λ, accuracy) pairs to allow location of the optimum value unless one is careful in choosing the initial sub-samples and uses these same splits throughout. Simulation studies have shown that a modified 
                
              AIC is not only much quicker to compute (since it requires no cross-validation) but performs better at finding a good value of λ (see below).[image: A69956_2_En_9_Figz_HTML.gif]

For a given λ, the effective number of parameters being estimated is reduced because of shrinkage. Gray [237, Eq. 2.​9] and others estimate the effective 
                
                
              degrees of freedom by computing the expected value of a global Wald statistic for testing association, when the null hypothesis of no association is true. The d.f. is equal to [image: 
$$\displaystyle{ \mathrm{trace}[I(\hat{\beta }^{P})V (\hat{\beta }^{P})], }$$
]

 (9.63)

 where [image: 
$$\hat{\beta }^{P}$$
] is the penalized MLE (the parameters that maximize Equation 9.61), I is the 
                
              information matrix computed from ignoring the penalty function, and V is the covariance matrix computed by inverting the information matrix that included the second derivatives with respect to β in the penalty function.[image: A69956_2_En_9_Figaa_HTML.gif]

Gray [237, Eq. 2.​6] states that a better estimate of the variance–covariance matrix 
                
               for [image: 
$$\hat{\beta }^{P}$$
] than [image: 
$$V (\hat{\beta }^{P})$$
] is [image: 
$$\displaystyle{ V ^{{\ast}} = V (\hat{\beta }^{P})I(\hat{\beta }^{P})V (\hat{\beta }^{P}). }$$
]

 (9.64)

 Therneau (personal communication, 2000) has found in a limited number of simulation studies that V
∗ underestimates the true variances, and that a better estimate of the variance–covariance matrix is simply [image: 
$$V (\hat{\beta }^{P})$$
], assuming that the model is correctly specified
                
              . This is the covariance matrix used by default in the rms package (the user can request that the 
                
                
              sandwich estimator be used instead) and is in fact the one Gray used for Wald tests.
Penalization will bias estimates of β, so hypothesis tests and confidence intervals using [image: 
$$\hat{\beta }^{P}$$
] may not have a simple interpretation. The same problem arises in score and likelihood ratio tests. So far, penalization is better understood in pure prediction mode unless Bayesian methods are used.
Equation 9.63 can be used to derive a modified 
                
              AIC (see [639, Eq. 6] and [641, Eq. 7]) on the model χ
2 scale: [image: 
$$\displaystyle{ \mathrm{LR\ }\chi ^{2} - 2 \times \ \mathrm{ effective\ d.f.}, }$$
]

 (9.65)

 where LR χ
2 is the likelihood ratio χ
2 for the penalized model, but ignoring the penalty function. If a variety of λ are tried and one plots the (λ, AIC) pairs, the λ that maximizes AIC will often be a good choice, that is, it is likely to be near the value of λ that maximizes predictive 
                
                
              accuracy on a future dataset7.
Note that if one does penalized maximum likelihood estimation where a set of variables being penalized has a negative value for the unpenalized χ
2 − 2 × d.f., the value of λ that will optimize the overall model AIC will be ∞.
As an example, consider some simulated data (n = 100) with one predictor in which the true model is [image: 
$$Y = X_{1}+\epsilon$$
], where ε has a standard normal distribution and so does X
1. We use a series of penalties (found by trial and error) that give rise to sensible effective d.f., and fit penalized restricted cubic spline functions with five knots. We penalize two ways: all terms in the model including the coefficient of X
1, which in reality needs no penalty; and only the nonlinear terms. The following R program, in conjunction with the rms

                
               package, does the job.

              [image: A69956_2_En_9_Fige_HTML.gif]

              [image: A69956_2_En_9_Fig6_HTML.gif]
Fig. 9.6Penalized least squares estimates for an unnecessary five-knot restricted cubic spline function. In the left graph all parameters (except the intercept) are penalized. The effective d.f. are 4, 3. 21, 2. 71, 2. 30, 2. 03, 1. 82, and 1. 51. In the right graph, only parameters associated with nonlinear functions of X
1 are penalized. The effective d.f. are 4, 3. 22, 2. 73, 2. 34, 2. 11, 1. 96, and 1. 68.




            
The left panel in Figure 9.6 corresponds to penalty = list(simple=a, nonlinear=a) in the R program, meaning that all parameters except the intercept are shrunk by the same amount a (this would be more appropriate had there been multiple predictors). As effective d.f. get smaller (penalty factor gets larger), the regression fits get flatter (too flat for the largest penalties) and confidence bands get narrower. The right graph corresponds to penalty=list(simple=0, nonlinear=a), causing only the cubic spline terms that are nonlinear in X
1 to be shrunk. As the amount of shrinkage increases (d.f. lowered), the fits become more linear and closer to the true regression line (longer dotted line). Again, confidence intervals become smaller. 
                
              

                
                
              
[image: A69956_2_En_9_Figab_HTML.gif]


9.11 Further Reading

[image: A69956_2_En_9_Figf_HTML.gif] Boos 60 has some nice generalizations of the score test. Morgan et al. 464 show how score test χ
2 statistics may negative unless the expected information matrix is used.

[image: A69956_2_En_9_Figg_HTML.gif] See Marubini and Valsecchi 444, pp. 164–169 for an excellent description of the relationship between the three types of test statistics.

[image: A69956_2_En_9_Figh_HTML.gif] References [115, 507] have good descriptions of methods used to maximize log L.

[image: A69956_2_En_9_Figi_HTML.gif] As Long and Ervin 426 argue, for small sample sizes, the usual Huber–White covariance estimator should not be used because there the residuals do not have constant variance even under homoscedasticity. They showed that a simple correction due to Efron and others can result in substantially better estimates. Lin and Wei, 410 Binder, 55 and Lin 407 have applied the Huber estimator to the Cox 132 survival model. Freedman 206 questioned the use of sandwich estimators because they are often used to obtain the right variances on the wrong parameters when the model doesn’t fit. He also has some excellent background information.

[image: A69956_2_En_9_Figj_HTML.gif] Feng et al. 188 showed that in the case of cluster correlations arising from repeated measurement data with Gaussian errors, the cluster 
                
                
              bootstrap performs excellently even when the number of observations per cluster is large and the number of subjects is small. Xiao and Abrahamowicz 676 compared the cluster bootstrap with a two-stage cluster bootstrap in the context of the Cox model.

[image: A69956_2_En_9_Figk_HTML.gif] Graubard and Korn 235 and Fitzmaurice 195 describe the kinds of situations in which the working independence model can be trusted.

[image: A69956_2_En_9_Figl_HTML.gif] Minkin, 460 Alho, 11 Doganaksoy and Schmee, 160 and Meeker and Escobar 452 discuss the need for LR and score-based confidence intervals. Alho found that score-based intervals are usually more tedious to compute, and provided useful algorithms for the computation of either type of interval (see also [452] and [444, p. 167]). Score and LR intervals require iterative computations and have to deal with the fact that when one parameter is changed (e.g., b

                i
               is restricted to be zero), all other parameter estimates change. DiCiccio and Efron 157 provide a method for very accurate confidence intervals for exponential families that requires a modest amount of additional computation. Venzon and Moolgavkar provide an efficient general method for computing LR-based intervals. 636 Brazzale and Davison 65 developed some promising and feasible ways to make unconditional likelihood-based inferences more accurate in small samples.

[image: A69956_2_En_9_Figm_HTML.gif] Carpenter and Bithell 92 have an excellent overview of several variations on the bootstrap for obtaining confidence limits.

[image: A69956_2_En_9_Fign_HTML.gif] Tibshirani and Knight 610 developed an easy to program approach for deriving 
                
                
              simultaneous confidence sets that is likely to be useful for getting simultaneous confidence regions for the entire vector of model parameters, for population values for an entire sequence of predictor values, and for a set of regression effects (e.g., interquartile-range odds ratios for age for both sexes). The basic idea is that during the, say, 1000 bootstrap repetitions one stores the − 2 log likelihood for each model fit, being careful to compute the likelihood at the current bootstrap parameter estimates but with respect to the original data matrix, not the 
                
                
              bootstrap sample of the data matrix. To obtain an approximate 
                
                
              simultaneous 0.95 confidence set one computes the 0.95 quantile of the − 2 log likelihood values and determines which vectors of parameter estimates correspond to − 2 log likelihoods that are at least as small as the 0.95 quantile of all − 2 log likelihoods. Once the qualifying parameter estimates are found, the quantities of interest are computed from those parameter estimates and an outer envelope of those quantities is found. Computations are facilitated with the rms

                
               package confplot

                
               function.

[image: A69956_2_En_9_Figo_HTML.gif] van Houwelingen and le Cessie [633, Eq. 52] showed, consistent with AIC, that the average optimism in a mean logarithmic (minus log likelihood) quality score for logistic models is p∕n.

[image: A69956_2_En_9_Figp_HTML.gif] Schwarz 560 derived a different penalty using large-sample Bayesian properties of competing models. His Bayesian Information Criterion (
                
              BIC) chooses the model having the lowest value of [image: 
$$L + 1/2p\log n$$
] or the highest value of LR χ
2 − plog n. Kass and Raftery have done several studies of 
                
              BIC. 337 Smith and Spiegelhalter 576 and Laud and Ibrahim 377 discussed other useful generalizations of likelihood penalties. Zheng and Loh 685 studied several penalty measures, and found that 
                
              AIC does not penalize enough for overfitting in the ordinary regression case. Kass and Raftery [337, p. 790] provide a nice review of this topic, stating that “
                
              AIC picks the correct model asymptotically if the complexity of the true model grows with sample size” and that “AIC selects models that are too big even when the sample size is large.” But they also cite other papers that show the existence of cases where AIC can work better than 
                
              BIC. According to Buckland et al., 80 BIC “assumes that a true model exists and is low-dimensional.”
Hurvich and Tsai 314, 315 made an improvement in 
                
              AIC that resulted in much better model selection for small n. They defined the corrected AIC as [image: 
$$\displaystyle{ \mathrm{AIC}_{C} =\mathrm{ LR\ }\chi ^{2} - 2p[1 + \frac{p + 1} {n - p - 1}]. }$$
]

 (9.66)

 In [314] they contrast asymptotically efficient model selection with 
                
              AIC when the true model has infinitely many parameters with improvements using other indexes such as AIC
                C
               when the model is finite.
One difficulty in applying the Schwarz, AIC
                C
              , and related criteria is that with censored or binary responses it is not clear that the actual sample size n should be used in the formula.

[image: A69956_2_En_9_Figq_HTML.gif] Goldstein, 222 Willan et al., 669 and Royston and Thompson 534 have nice discussions on comparing non-nested regression models. Schemper’s method 549 is useful for testing whether a set of variables provides significantly greater information (using an R
2 measure) 
                
                
               than another set of variables.

[image: A69956_2_En_9_Figr_HTML.gif] van Houwelingen and le Cessie [633, Eq. 22] recommended using L∕2 (also called the 
                
              Kullback–Leibler error rate) as a quality index.

[image: A69956_2_En_9_Figs_HTML.gif] Schemper 549 provides a bootstrap technique for testing for significant differences between correlated R
2 measures. Mittlböck and Schemper, 461 Schemper and Stare, 554 Korn and Simon, 365, 366 Menard, 454 and Zheng and Agresti 684 have excellent discussions about the pros and cons of various indexes of the predictive value of a model.

[image: A69956_2_En_9_Figt_HTML.gif] Al-Radi et al. 10 presented another analysis comparing competing predictors using the adequacy index and a receiver operating characteristic curve area approach based on a test for whether one predictor has a higher probability of being “more concordant” than another.

[image: A69956_2_En_9_Figu_HTML.gif][55, 97, 409] provide good 
                
              variance–covariance estimators from a weighted maximum likelihood analysis.

[image: A69956_2_En_9_Figv_HTML.gif] Huang and Harrington 310 developed penalized partial likelihood estimates for Cox models and provided useful background information and theoretical results about improvements in mean squared errors of regression estimates. They used a bootstrap error estimate for selection of the penalty parameter.

[image: A69956_2_En_9_Figw_HTML.gif] Sardy 538 proposes that the square roots of the diagonals of the inverse of the covariance matrix for the predictors be used for scaling rather than the standard deviations.

[image: A69956_2_En_9_Figx_HTML.gif] Park and Hastie483 and articles referenced therein describe how quadratic penalized logistic regression automatically sets coefficient estimates for empty cells to zero and forces the sum of k coefficients for a k-level categorical predictor to equal zero.

[image: A69956_2_En_9_Figy_HTML.gif] Greenland 241 has a nice discussion of the relationship between penalized maximum likelihood estimation and mixed effects models. He cautions against estimating the shrinkage parameter.

[image: A69956_2_En_9_Figz_HTML.gif] See 310 for a bootstrap approach to selection of λ.

[image: A69956_2_En_9_Figaa_HTML.gif] Verweij and van Houwelingen [639, Eq. 4] derived another expression for d.f., but it requires more computation and did not perform any better than Equation 9.63 in choosing λ in several examples tested.

[image: A69956_2_En_9_Figab_HTML.gif] See van Houwelingen and Thorogood 631 for an approximate empirical 
                
              Bayes approach to shrinkage. See Tibshirani 608 for the use of a non-smooth penalty function that results in variable selection as well as shrinkage (see Section 4.​3). Verweij and van Houwelingen 640 used a “cross-validated likelihood” based on 
                
                
               leave-out-one estimates to penalize for overfitting. Wang and Taylor 652 presented some methods for carrying out hypothesis tests and computing confidence limits under penalization. Moons et al. 462 presented a case study of penalized estimation and discussed the advantages of penalization.

9.12 Problems

              1.A sample of size 100 from a normal distribution with unknown mean and standard deviation (μ and σ) yielded the following log likelihood values when computed at two values of μ. [image: 
$$\displaystyle\begin{array}{rcl} \log L(\mu = 10,\sigma = 5)& =& -800 {}\\ \log L(\mu = 20,\sigma = 5)& =& -820. {}\\ \end{array}$$
]


 What do you know about μ? What do you know about [image: 
$$\overline{Y }$$
]?

 

2.Several regression models were considered for predicting a response. L R χ
2 (corrected for the intercept) for models containing various combinations of variables are found in Table 9.4.
Table 9.4Likelihood ratio global test statistics


	Variables in Model
	
                                  L R
                                  χ
                                  2
                                

	age
	100

	sex
	108

	age, sex
	111

	age2

	60

	age, age2

	102

	age, age2, sex
	115





Compute all possible meaningful L R χ
2. For each, state the d.f. and an approximate P-value. State which L R χ
2 involving only one variable is not very meaningful.

 

3.For each problem below, rank Wald, score, and L R statistics by overall statistical properties and then by computational convenience.
a.A forward stepwise variable selection (to be later accounted for with the bootstrap) is desired to determine a concise model that contains most of the independent information in all potential predictors.

 

b.A test of independent association of each variable in a given model (each variable adjusted for the effects of all other variables in the given model) is to be obtained.

 

c.A model that contains only additive effects is fitted. A large number of potential interaction terms are to be tested using a global (multiple d.f.) test.

 





 

4.Consider a univariate saturated model in 3 treatments (A, B, C) that is quadratic in age. Write out the model with all the βs, and write in detail the contrast for comparing treatment B with treatment C for 30 year olds. Sketch out the same contrast using the “difference in predictions” approach without simplification.

 

5.Simulate a binary logistic model for n = 300 with an average fraction of events somewhere between 0.15 and 0.3. Use 5 continuous covariates and assume the model is everywhere linear. Fit an unpenalized model, then solve for the optimum quadratic penalty λ. Relate the resulting effective d.f. to the 15:1 rule of thumb, and compute the heuristic shrinkage coefficient [image: 
$$\hat{\gamma }$$
] for the unpenalized model and for the optimally penalized model, inserting the effective d.f. for the number of non-intercept parameters in the model.

 

6.For a similar setup as the binary logistic model simulation in Section 9.7, do a Monte Carlo simulation to determine the coverage probabilities for ordinary Wald and for three types of bootstrap 
                        
                        
                      

                        
                        
                       confidence intervals for the true x=5 to x=1 log odds ratio. In addition, consider the Wald-type confidence interval arising from the sandwich covariance estimator. Estimate the non-coverage probabilities in both tails. Use a sample size n = 200 with the single predictor x
1 having a standard log-normal distribution, and the true model being logit[image: 
$$(Y = 1) = 1 + x_{1}/2$$
]. Determine whether increasing the sample size relieves any problem you observed. Some R code for this simulation is on the web site.
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Footnotes
1In linear regression, a t distribution is used to penalize for the fact that the variance of Y | X is estimated. In models such as the logistic model, there is no separate variance parameter to estimate. Gould has done simulations that show that the normal distribution provides more accurate P-values than the t for binary logistic regression.

 

2For example, in a 3-treatment comparison one could examine contrasts between treatments A and B, A and C, and B and C by obtaining predicted values for those treatments, even though only two differences are required.

 

3The rms

                      
                     command could be 
                      
                     contrast(fit, list(sex=’male’,age=30), list(sex=’female’,age=40)) where all other predictors are set to medians or modes.

 

4This is the basis for confidence limits computed by the R rms package’s Predict

                    
                  , 
                    
                   summary

                    
                  , and contrast

                    
                   functions. When the robcov

                    
                   function has been used to replace the information-matrix-based covariance matrix with a Huber robust covariance estimate with an optional cluster sampling correction, the functions are using a “robust” Wald statistic
                    
                   basis. When the bootcov

                    
                   function has been used to replace the model fit’s covariance matrix with a bootstrap unconditional covariance matrix estimate, the two functions are computing 
                    
                  confidence limits based on a normal distribution but using more nonparametric covariance estimates.

 

5As indicated below, this standard deviation can also be obtained by using the summary

                    
                   function on the object returned by bootcov

                    
                  , as bootcov

                    
                   returns a fit object like one from lrm

                    
                   except with the bootstrap covariance matrix substituted for the information-based one.

 

6Limited simulations using the conditional bootstrap and Firth’s penalized likelihood 281 did not show significant improvement in confidence interval coverage.

 

7Several examples from simulated datasets have shown that using 
                    
                  BIC to choose a penalty results in far too much shrinkage.
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10.1 Model

              
                
                
              
            
Binary responses are commonly studied in many fields. Examples include
                
                
               the presence or absence of a particular disease, death during surgery, or a consumer purchasing a product. Often one wishes to study how a set of predictor variables X is related to a dichotomous response variable Y. The predictors may describe such quantities as treatment assignment, dosage, risk factors, and calendar time. [image: A69956_2_En_10_Figza_HTML.gif]

For convenience we define the response to be Y = 0 or 1, with Y = 1 denoting the occurrence of the event of interest. Often a dichotomous outcome can be studied by calculating certain proportions, for example, the proportion of deaths among females and the proportion among males. However, in many situations, there are multiple descriptors, or one or more of the descriptors are continuous. Without a statistical model, studying patterns such as the relationship between age and occurrence of a disease, for example, would require the creation of arbitrary age groups to allow estimation of disease prevalence as a function of age.
Letting X denote the vector of predictors {X
1, X
2, …, X

                k
              }, a first attempt at modeling the response might use the ordinary linear regression model [image: 
$$\displaystyle{ E\{Y \vert X\} = X\beta, }$$
]

 (10.1)

 since the expectation of a binary variable Y is Prob{Y = 1}. However, such a model by definition cannot fit the data over the whole range of the predictors since a purely linear model E{Y | X} = Prob[image: 
$$\{Y = 1\vert X\} = X\beta$$
] can allow Prob{Y = 1} to exceed 1 or fall below 0. The statistical model that is generally preferred for the analysis of binary responses is instead the binary logistic regression model, stated in terms of the probability that Y = 1 given X, the values of the predictors: [image: 
$$\displaystyle{ \mbox{ Prob}\{Y = 1\vert X\} = [1 +\exp (-X\beta )]^{-1}. }$$
]

 (10.2)

 As before, X β stands for [image: 
$$\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\ldots +\beta _{k}X_{k}$$
]. The binary logistic regression model was developed primarily by Cox 129 and Walker and Duncan. 647 The regression parameters β are estimated by the method of maximum likelihood (see below). [image: A69956_2_En_10_Figzb_HTML.gif]

The function [image: 
$$\displaystyle{ P = [1 +\exp (-x)]^{-1} }$$
]

 (10.3)

 is called the logistic function. This function is plotted in Figure 10.1 for x varying from − 4 to + 4. This function has an unlimited range for x while P is restricted to range from 0 to 1.
[image: A69956_2_En_10_Fig1_HTML.gif]
Fig. 10.1Logistic function





For future derivations it is useful to express x in terms of P. Solving the equation above for x by using [image: 
$$\displaystyle{ 1 - P =\exp (-x)/[1 +\exp (-x)] }$$
]

 (10.4)

 yields the inverse of the logistic function: [image: 
$$\displaystyle{ x =\log [P/(1 - P)] =\log [\mbox{ odds that}\ Y = 1\mathrm{\ occurs}] = \mbox{ logit}\{Y = 1\}. }$$
]

 (10.5)



Other methods that have been used to analyze binary response data include the probit model, which writes P in terms of the cumulative normal distribution, and 
                
              discriminant analysis. Probit regression, although assuming a similar shape to the logistic function for the regression relationship between X β and Prob{Y = 1}, involves more cumbersome calculations, and there is no natural interpretation of its regression parameters. In the past, discriminant analysis has been the predominant method since it is the simplest computationally. However, it makes more assumptions than logistic regression. The model used in 
                
              discriminant analysis is stated in terms of the distribution of X given the outcome group Y, even though one is seldom interested in the distribution of the predictors per se. The discriminant model has to be inverted using Bayes’ rule to derive the quantity of primary interest, Prob{Y = 1}. By contrast, the logistic model is a direct probability model since it is stated in terms of Prob{Y = 1 | X}. Since the distribution of a binary random variable Y is completely defined by the true probability that Y = 1 and since the model makes no assumption about the distribution of the predictors, the logistic model makes no distributional assumptions whatsoever. 
                
                
              
[image: A69956_2_En_10_Figzc_HTML.gif]

10.1.1 Model Assumptions and Interpretation of Parameters
Since the logistic model is a direct probability model, its only assumptions relate to the form of the regression equation. Regression assumptions are verifiable, unlike the assumption of multivariate normality made by discriminant analysis. The logistic model assumptions are most easily understood by transforming Prob{Y = 1} to make a model that is linear in X β: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ logit}\{Y = 1\vert X\}& =& \mbox{ logit}(P) =\log [P/(1 - P)] \\ & =& X\beta, {}\end{array}$$
]

 (10.6)

 where [image: 
$$P = \mbox{ Prob}\{Y = 1\vert X\}$$
]. Thus the model is a linear regression model in the log odds that Y = 1 since logit(P) is a weighted sum of the Xs. If all effects are additive (i.e., no interactions are present), the model assumes that for every predictor X

                  j
                , [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ logit}\{Y = 1\vert X\}& =& \beta _{0} +\beta _{1}X_{1} +\ldots +\beta _{j}X_{j} +\ldots +\beta _{k}X_{k} \\ & =& \beta _{j}X_{j} + C, {}\end{array}$$
]

 (10.7)

 where if all other factors are held constant, C is a constant given by [image: 
$$\displaystyle{ C =\beta _{0} +\beta _{1}X_{1} +\ldots +\beta _{j-1}X_{j-1} +\beta _{j+1}X_{j+1} +\ldots +\beta _{k}X_{k}. }$$
]

 (10.8)

 The parameter β

                  j
                 is then the change in the log odds per unit change in X

                  j
                 if X

                  j
                 represents a single factor that is linear and does not interact with other factors and if all other factors are held constant. Instead of writing this relationship in terms of log odds, it could just as easily be written in terms of the odds that Y = 1: [image: 
$$\displaystyle{ \mbox{ odds}\{Y = 1\vert X\} =\exp (X\beta ), }$$
]

 (10.9)



and if all factors other than X

                  j
                 are held constant, [image: 
$$\displaystyle{ \mbox{ odds}\{Y = 1\vert X\} =\exp (\beta _{j}X_{j} + C) =\exp (\beta _{j}X_{j})\exp (C). }$$
]

 (10.10)



The regression parameters can also be written in terms of odds ratios

                  
                . The odds that Y = 1 when X

                  j
                 is increased by d, divided by the odds at X

                  j
                 is [image: 
$$\displaystyle\begin{array}{rcl} \frac{\mbox{ odds}\{Y = 1\vert X_{1},X_{2},\ldots,X_{j} + d,\ldots,X_{k}\}} {\mbox{ odds}\{Y = 1\vert X_{1},X_{2},\ldots,X_{j},\ldots,X_{k}\}} & & \\ = \frac{\exp [\beta _{j}(X_{j} + d)]\exp (C)} {[\exp (\beta _{j}X_{j})\exp (C)]} & & \\ =\exp [\beta _{j}X_{j} +\beta _{j}d -\beta _{j}X_{j}] =\exp (\beta _{j}d).& &{}\end{array}$$
]

 (10.11)

 Thus the effect of increasing X

                  j
                 by d is to increase the odds that Y = 1 by a factor of exp(β

                  j
                
d), or to increase the log odds that Y = 1 by an increment of β

                  j
                
d. In general, the ratio of the odds of response for an individual with predictor variable values X
∗ compared with an individual with predictors X is [image: 
$$\displaystyle\begin{array}{rcl} X^{{\ast}}: X\mathrm{\ odds\ ratio}& =& \exp (X^{{\ast}}\beta )/\exp (X\beta ) \\ & =& \exp [(X^{{\ast}}- X)\beta ].{}\end{array}$$
]

 (10.12)



Now consider some special cases of the logistic multiple regression model. If there is only one predictor X and that predictor is binary, the model can be written [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ logit}\{Y = 1\vert X = 0\}& =& \beta _{0} \\ \mbox{ logit}\{Y = 1\vert X = 1\}& =& \beta _{0} +\beta _{1}.{}\end{array}$$
]

 (10.13)

 Here β
0 is the log odds of Y = 1 when X = 0. By subtracting the two equations above, it can be seen that β
1 is the difference in the log odds when X = 1 as compared with X = 0, which is equivalent to the log of the ratio of the odds when X = 1 compared with the odds when X = 0. The quantity exp(β
1) is the odds ratio
                  
                 for X = 1 compared with X = 0. Letting [image: 
$$P^{0} = \mbox{ Prob}\{Y = 1\vert X = 0\}$$
] and [image: 
$$P^{1} = \mbox{ Prob}\{Y = 1\vert X = 1\}$$
], the regression parameters are interpreted by [image: 
$$\displaystyle\begin{array}{rcl} \beta _{0}& =& \mbox{ logit}(P^{0}) =\log [P^{0}/(1 - P^{0})] \\ \beta _{1}& =& \mbox{ logit}(P^{1}) -\mbox{ logit}(P^{0}) \\ & =& \log [P^{1}/(1 - P^{1})] -\log [P^{0}/(1 - P^{0})] \\ & =& \log \{[P^{1}/(1 - P^{1})]/[P^{0}/(1 - P^{0})]\}.{}\end{array}$$
]

 (10.14)



Since there are only two quantities to model and two free parameters, there is no way that this two-sample model can’t fit; the model in this case is essentially fitting two cell proportions. Similarly, if there are g − 1 dummy indicator Xs representing g groups, the ANOVA-type logistic model must always fit.
If there is one continuous predictor X, the model is [image: 
$$\displaystyle{ \mbox{ logit}\{Y = 1\vert X\} =\beta _{0} +\beta _{1}X, }$$
]

 (10.15)

 and without further modification (e.g., taking log transformation of the predictor), the model assumes a straight line in the log odds, or that an increase in X by one unit increases the odds by a factor of exp(β
1).
Now consider the simplest 
                  
                analysis of covariance model in which there are two treatments (indicated by X
1 = 0 or 1) and one continuous covariable (X
2). The simplest logistic model for this setup is [image: 
$$\displaystyle{ \mbox{ logit}\{Y = 1\vert X\} =\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2}, }$$
]

 (10.16)

 which can be written also as [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ logit}\{Y = 1\vert X_{1} = 0,X_{2}\}& =& \beta _{0} +\beta _{2}X_{2} \\ \mbox{ logit}\{Y = 1\vert X_{1} = 1,X_{2}\}& =& \beta _{0} +\beta _{1} +\beta _{2}X_{2}.{}\end{array}$$
]

 (10.17)

 The [image: 
$$X_{1} = 1: X_{1} = 0$$
] odds ratio is exp(β
1), independent of X
2. The odds ratio for a one-unit increase in X
2 is exp(β
2), independent of X
1.
This model, with no term for a possible interaction between treatment and covariable, assumes that for each treatment the relationship between X
2 and log odds is linear, and that the lines have equal slope; that is, they are parallel. Assuming linearity in X
2, the only way that this model can fail is for the two slopes to differ. Thus, the only assumptions that need verification are linearity and lack of interaction between X
1 and X
2.
To adapt the model to allow or test for interaction, we write [image: 
$$\displaystyle{ \mbox{ logit}\{Y = 1\vert X\} =\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\beta _{3}X_{3}, }$$
]

 (10.18)

 where the derived variable X
3 is defined to be X
1
X
2. The test for lack of interaction (equal slopes) is H
0: β
3 = 0. The model can be amplified as [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ logit}\{Y = 1\vert X_{1} = 0,X_{2}\}& =& \beta _{0} +\beta _{2}X_{2} \\ \mbox{ logit}\{Y = 1\vert X_{1} = 1,X_{2}\}& =& \beta _{0} +\beta _{1} +\beta _{2}X_{2} +\beta _{3}X_{2} \\ & =& \beta _{0}' +\beta _{2}'X_{2}, {}\end{array}$$
]

 (10.19)



where [image: 
$$\beta _{0}' =\beta _{0} +\beta _{1}$$
] and [image: 
$$\beta _{2}' =\beta _{2} +\beta _{3}$$
]. The model with interaction is therefore equivalent to fitting two separate logistic models with X
2 as the only predictor, one model for each treatment group. Here the [image: 
$$X_{1} = 1: X_{1} = 0$$
] odds ratio is exp(β
1 +β
3
X
2).

10.1.2 Odds Ratio, Risk Ratio, and Risk Difference

                
                  
                
                
                  
                
                
                  
                
              
As discussed above, the logistic model quantifies the effect of a predictor in terms of an odds ratio or log odds ratio. An odds ratio is a natural description of an effect in a probability model since an odds ratio can be constant. For example, suppose that a given risk factor doubles the odds of disease. Table 10.1 shows the effect of the risk factor for various levels of initial risk.Table 10.1Effect of an odds ratio of two on various risks


	Without Risk Factor
	With Risk Factor

	Probability
	Odds
	Odds
	Probability

	.2 
	.25
	.5
	.33

	.5 
	1
	2
	.67

	.8 
	4
	8
	.89

	.9 
	9
	18
	.95

	.98
	49
	98
	.99




                            
Since odds have an unlimited range, any positive odds ratio will still yield a valid probability. If one attempted to describe an effect by a risk ratio, the effect can only occur over a limited range of risk (probability). For example, a risk ratio of 2 can only apply to risks below.5; above that point the risk ratio must diminish. (Risk ratios are similar to odds ratios if the risk is small.) Risk differences have the same difficulty; the risk difference cannot be constant and must depend on the initial risk. Odds ratios, on the other hand, can describe an effect over the entire range of risk. An odds ratio can, for example, describe the effect of a treatment independently of covariables affecting risk. Figure 10.2 depicts the relationship between risk of a subject without the risk factor and the increase in risk for a variety of relative increases (odds ratios). It demonstrates how absolute risk increase is a function of the baseline risk. Risk increase will also be a function of factors that interact with the risk factor, that is, factors that modify its relative effect. Once a model is developed for estimating Prob{Y = 1 | X}, this model can easily be used to estimate the absolute risk increase as a function of baseline risk factors as well as interacting factors. Let X
1 be a binary risk factor and let A = { X
2, …, X

                  p
                } be the other factors (which for convenience we assume do not interact with X
1). Then the estimate of [image: 
$$\mbox{ Prob}\{Y = 1\vert X_{1} = 1,A\} -\mbox{ Prob}\{Y = 1\vert X_{1} = 0,A\}$$
] is [image: 
$$\displaystyle\begin{array}{rcl} \frac{1} {1 +\exp -[\hat{\beta _{0}} +\hat{\beta _{1}} +\hat{\beta _{2}}X_{2} +\ldots +\hat{\beta _{p}}X_{p}]}& & \\ - \frac{1} {1 +\exp -[\hat{\beta _{0}} +\hat{\beta _{2}}X_{2} +\ldots +\hat{\beta _{p}}X_{p}]}& & \\ = \frac{1} {1 + (\frac{1-\hat{R}} {\hat{R}} )\exp (-\hat{\beta }_{1})} -\hat{ R},& &{}\end{array}$$
]

 (10.20)

 where [image: 
$$\hat{R}$$
] is the estimate of the baseline risk, [image: 
$$\mbox{ Prob}\{Y = 1\vert X_{1} = 0\}$$
]. The risk difference estimate can be plotted against [image: 
$$\hat{R}$$
] or against levels of variables in A to display absolute risk increase against overall risk (Figure 10.2) or against specific subject characteristics. [image: A69956_2_En_10_Figzd_HTML.gif]
[image: A69956_2_En_10_Fig2_HTML.gif]
Fig. 10.2Absolute benefit as a function of risk of the event in a control subject and the relative effect (odds ratio) of the risk factor. The odds ratios are given for each curve.






10.1.3 Detailed Example
Consider the data in Table 10.2. A graph of the data, along with a fitted logistic model (described later), appears in Figure 10.3. The graph also displays proportions of responses obtained by stratifying
                  
                 the data by sex and age group ( < 45, 45 − 54, ≥ 55). The age points on the abscissa for these groups are the overall mean ages in the three age intervals (40.2, 49.1, and 61.1, respectively).Table 10.2Example binary response data


	
Females Age:
	37
	39
	39
	42
	47
	48
	48
	52
	53
	55
	56
	57
	58
	58
	60
	64
	65
	68
	68
	70

	
Response:
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	1
	1
	1

	
Males Age:
	34
	38
	40
	40
	41
	43
	43
	43
	44
	46
	47
	48
	48
	50
	50
	52
	55
	60
	61
	61

	
Response:
	1
	1
	0
	0
	0
	1
	1
	1
	0
	0
	1
	1
	1
	0
	1
	1
	1
	1
	1
	1




[image: A69956_2_En_10_Fig3_HTML.gif]
Fig. 10.3Data, subgroup proportions, and fitted logistic model, with 0.95 pointwise confidence bands






                [image: A69956_2_En_10_Figa_HTML.gif]
              

[image: 
$$X\hat{\beta } = -9.84 + 3.49[\mathrm{male}] + 0.158\:\mathrm{age}$$
].
Descriptive statistics for assessing the association between sex and response, age group and response, and age group and response stratified by sex are found below. Corresponding fitted logistic models, with sex coded as 0 = female, 1 = male are also given. Models were fitted first with sex as the only predictor, then with age as the (continuous) predictor, then with sex and age simultaneously. First consider the relationship between sex and response, ignoring the effect of age.

                [image: A69956_2_En_10_Figb_HTML.gif]
              
Note that the estimate of β
0, [image: 
$$\hat{\beta }_{0}$$
] is the log odds for females and that [image: 
$$\hat{\beta }_{1}$$
] is the log odds (M:F) ratio. [image: 
$$\hat{\beta }_{0} +\hat{\beta } _{1} =.847$$
], the log odds for males. The likelihood ratio test
                  
                 for H
0: no effect of sex on probability of response is obtained as follows.
	Log likelihood (β
1 = 0)
	:
	− 27. 727

	Log likelihood (max)
	:
	− 24. 435

	LR χ
2(H
0: β
1 = 0)
	:
	
[image: 
$$-2(-27.727 --24.435) = 6.584$$
].



 (Note the agreement of the LR χ
2 with the 
                  
                 contingency table likelihood ratio χ
2, and compare 6.584 with the Wald statistic 6.03.)
Next, consider the relationship between age and response, ignoring sex.

                [image: A69956_2_En_10_Figc_HTML.gif]
              
The estimate of β
1 is in rough agreement with that obtained from the frequency table. The 55+: < 45 log odds ratio is.875, and since the respective mean ages in the 55+ and < 45 age groups are 61.1 and 40.2, an estimate of the log odds ratio increase per year is [image: 
$$.875/(61.1 - 40.2) =.875/20.9 =.042$$
].
The likelihood ratio test for H
0: no association between age and response is obtained as follows.
	Log likelihood (β
1 = 0)
	:
	− 27. 727

	Log likelihood (max)
	:
	− 26. 511

	LR χ
2(H
0: β
1 = 0)
	:
	
[image: 
$$-2(-27.727 --26.511) = 2.432$$
].



 (Compare 2.432 with the Wald statistic 2.28.)
Next we consider the simultaneous association of age and sex with response.

                [image: A69956_2_En_10_Figd_HTML.gif]
              
A logistic model for relating sex and age simultaneously to response is given below.
	Parameter
	Estimate
	Std Err
	Wald χ
2

	P

	
                            β
                            0
                          
	− 9. 8429
	3. 6758
	7. 1706
	0. 0074

	
β
1 (sex)
	3. 4898
	1. 1992
	8. 4693
	0. 0036

	
β
2 (age)
	0. 1581
	0. 0616
	6. 5756
	0. 0103





Likelihood ratio tests are obtained from the information below.
	Log likelihood ([image: 
$$\beta _{1} = 0,\beta _{2} = 0$$
])
	:
	− 27. 727

	Log likelihood (max)
	:
	− 19. 458

	Log likelihood (β
1 = 0)
	:
	− 26. 511

	Log likelihood (β
2 = 0)
	:
	− 24. 435

	LR χ
2 ([image: 
$$H_{0}:\beta _{1} =\beta _{2} = 0$$
])
	:
	
                            [image: 
$$-2(-27.727 --19.458) = 16.538$$
]
                          

	LR χ
2 (H
0: β
1 = 0) sex | age
	:
	
                            [image: 
$$-2(-26.511 --19.458) = 14.106$$
]
                          

	LR χ
2 (H
0: β
2 = 0) age | sex
	:
	
[image: 
$$-2(-24.435 --19.458) = 9.954$$
].



 The 14.1 should be compared with the Wald statistic of 8.47, and 9.954 should be compared with 6.58. The fitted logistic model is plotted separately for females and males in Figure 10.3. The fitted model is [image: 
$$\displaystyle{ \mbox{ logit}\{\mbox{ Response} = 1\vert \mbox{ sex,age}\} = -9.84 + 3.49 \times \mbox{ sex} +.158 \times \mbox{ age}, }$$
]

 (10.21)

 where as before sex = 0 for females, 1 for males. For example, for a 40-year-old female, the predicted logit is [image: 
$$-9.84 +.158(40) = -3.52$$
]. The predicted probability of a response is [image: 
$$1/[1 +\exp (3.52)] =.029$$
]. For a 40-year-old male, the predicted logit is [image: 
$$-9.84 + 3.49 +.158(40) = -.03$$
], with a probability of . 492.

10.1.4 Design Formulations
The logistic multiple regression model can incorporate the same designs as can ordinary linear regression. An analysis of variance (
                  
                ANOVA) model for a treatment with k levels can be formulated with k − 1 dummy variables. This logistic model is equivalent to a 2 × k

                  
                contingency table. An 
                  
                analysis of covariance logistic model is simply an ANOVA model augmented with covariables used for adjustment.
One unique design that is interesting to consider in the context of logistic models is a simultaneous comparison of multiple factors between two groups. Suppose, for example, that in a randomized trial with two treatments one wished to test whether any of 10 baseline characteristics are mal-distributed between the two groups. If the 10 factors are continuous, one could perform a two-sample 
                  
                  
                Wilcoxon–Mann–Whitney test or a t-test for each factor (if each is normally distributed). However, this procedure would result in multiple comparison problems and would also not be able to detect the combined effect of small differences across all the factors. A better procedure would be a multivariate test. The 
                  
                  
                Hotelling T
2 test is designed for just this situation. It is a k-variable extension of the one-variable unpaired t-test. The T
2 test, like 
                  
                discriminant analysis, assumes multivariate normality of the k factors. This assumption is especially tenuous when some of the factors are polytomous. A better alternative is the 
                  
                  
                global test of no regression from the logistic model. This test is valid because it can be shown that H
0: mean X is the same for both groups (= H
0: mean X does not depend on group = H
0: mean X | group = constant) is true if and only if H
0: Prob{group | X} = constant. Thus k factors can be tested simultaneously for differences between the two groups using the binary logistic model, which has far fewer assumptions than does the 
                  
                  
                Hotelling T
2 test. The logistic global test of no regression (with k d.f.) would be expected to have greater power if there is non-normality. Since the logistic model makes no assumption regarding the distribution of the descriptor variables, it can easily test for simultaneous group differences involving a mixture of continuous, binary, and nominal variables. In 
                  
                observational studies, such models for treatment received or exposure (propensity score models) hold great promise for adjusting for 
                  
                

                  
                confounding. 117, 380, 526, 530, 531 [image: A69956_2_En_10_Figze_HTML.gif]

O’Brien 479 has developed a general test for comparing group 1 with group 2 for a single measurement. His test detects location and scale differences by fitting a logistic model for Prob{Group 2} using X and X
2 as predictors.
For a randomized study where adjustment for confounding is seldom necessary, adjusting for covariables using a binary logistic model results in increases in standard errors of regression coefficients. 527 This is the opposite of what happens in linear regression where there is an unknown variance parameter that is estimated using the residual squared error. Fortunately, adjusting for covariables using logistic regression, by accounting for subject 
                  
                heterogeneity, will result in larger regression coefficients even for a randomized treatment variable. The increase in estimated regression coefficients more than offsets the increase in standard error 284, 285, 527, 588. 
                  
                  
                



10.2 Estimation
10.2.1 Maximum Likelihood Estimates

                
                  
                  
                
              
The parameters in the logistic regression model are estimated using the maximum likelihood (ML) method. The method is based on the same principles as the one-sample proportion example described in Section 9.​1 The difference is that the general logistic model is not a single sample or a two-sample problem. The probability of response for the ith subject depends on a particular set of predictors X

                  i
                , and in fact the list of predictors may not be the same for any two subjects. Denoting the response and probability of response of the ith subject by Y

                  i
                 and P

                  i
                , respectively, the model states that [image: 
$$\displaystyle{ P_{i} = \mbox{ Prob}\{Y _{i} = 1\vert X_{i}\} = [1 +\exp (-X_{i}\beta )]^{-1}. }$$
]

 (10.22)

 The likelihood of an observed response Y

                  i
                 given predictors X

                  i
                 and the unknown parameters β is [image: 
$$\displaystyle{ P_{i}^{Y _{i} }[1 - P_{i}]^{1-Y _{i} }. }$$
]

 (10.23)

 The joint likelihood of all responses Y
1, Y
2, …, Y

                  n
                 is the product of these likelihoods for i = 1, …, n. The likelihood and log likelihood functions are rewritten by using the definition of P

                  i
                 above to allow them to be recognized as a function of the unknown parameters β. Except in simple special cases (such as the k-sample problem in which all Xs are dummy variables), the ML estimates (MLE) of β cannot be written explicitly. The 
                  
                Newton–Raphson method described in Section 9.​4 is usually used to solve iteratively for the list of values β that maximize the log likelihood. The MLEs are denoted by [image: 
$$\hat{\beta }$$
]. The inverse of the estimated observed 
                  
                information matrix is taken as the estimate of the variance–covariance matrix of [image: 
$$\hat{\beta }$$
].
Under [image: 
$$H_{0}:\beta _{1} =\beta _{2} =\ldots =\beta _{k} = 0$$
], the intercept parameter β
0 can be estimated explicitly and the log likelihood under this 
                  
                  
                global null hypothesis can be computed explicitly. Under the 
                  
                  
                global null hypothesis, [image: 
$$P_{i} = P = [1 +\exp (-\beta _{0})]^{-1}$$
] and the MLE of P is [image: 
$$\hat{P} = s/n$$
] where s is the number of responses and n is the sample size. The MLE of β
0 is [image: 
$$\hat{\beta }_{0} = \mbox{ logit}(\hat{P})$$
]. The log likelihood under this null hypothesis is [image: A69956_2_En_10_Figzf_HTML.gif]
[image: 
$$\displaystyle\begin{array}{rcl} & s\ \log (\hat{P}) + (n - s)\log (1 -\hat{ P}) & \\ =& s\ \log (s/n) + (n - s)\log [(n - s)/n]& \\ =& s\ \log s + (n - s)\log (n - s) - n\log (n).&{}\end{array}$$
]

 (10.24)




10.2.2 Estimation of Odds Ratios and Probabilities
Once β is estimated, one can estimate any log odds, odds, or odds ratios. The MLE of the X

                  j
                 + 1: X

                  j
                 log odds ratio is [image: 
$$\hat{\beta }_{j}$$
], and the estimate of the X

                  j
                 + d: X

                  j
                 log odds ratio is [image: 
$$\hat{\beta }_{j}d$$
], all other predictors remaining constant (assuming the absence of interactions and nonlinearities involving X

                  j
                ). For large enough samples, the MLEs are normally distributed with variances that are consistently estimated from the estimated variance–covariance matrix. Letting z denote the [image: 
$$1 -\alpha /2$$
] critical value of the standard normal distribution, a two-sided 1 −α confidence interval for the log odds ratio for a one-unit increase in X

                  j
                 is [image: 
$$[\hat{\beta }_{j} - zs,\hat{\beta }_{j} + zs]$$
], where s is the estimated standard error of [image: 
$$\hat{\beta }_{j}$$
]. (Note that for α = . 05, i.e., for a 95% confidence interval, z = 1. 96.)
A theorem in statistics states that the MLE of a function of a parameter is that same function of the MLE of the parameter. Thus the MLE of the X

                  j
                 + 1: X

                  j
                 odds ratio is [image: 
$$\exp (\hat{\beta }_{j})$$
]. Also, if a 1 −α confidence interval of a parameter β is [c, d] and f(u) is a one-to-one function, a 1 −α confidence interval of f(β) is [f(c), f(d)]. Thus a 1 −α confidence interval for the X

                  j
                 + 1: X

                  j
                 odds ratio is [image: 
$$\exp [\hat{\beta }_{j} \pm zs]$$
]. Note that while the confidence interval for β

                  j
                 is symmetric about [image: 
$$\hat{\beta }_{j}$$
], the confidence interval for exp(β

                  j
                ) is not. By the same theorem just used, the MLE of [image: 
$$P_{i} = \mbox{ Prob}\{Y _{i} = 1\vert X_{i}\}$$
] is [image: 
$$\displaystyle{ \hat{P}_{i} = [1 +\exp (-X_{i}\hat{\beta })]^{-1}. }$$
]

 (10.25)

 A confidence interval for P

                  i
                 could be derived by computing the standard error of [image: 
$$\hat{P}_{i}$$
], yielding a symmetric confidence interval. However, such an interval would have the disadvantage that its endpoints could fall below zero or exceed one. A better approach uses the fact that for large samples [image: 
$$X\hat{\beta }$$
] is approximately normally distributed. An estimate of the variance of [image: 
$$X\hat{\beta }$$
] in matrix notation is X V X′ where V is the estimated variance–covariance matrix of [image: 
$$\hat{\beta }$$
] (see Equation 9.​51). This variance is the sum of all variances and covariances of [image: 
$$\hat{\beta }$$
] weighted by squares and products of the predictors. The estimated standard error of [image: 
$$X\hat{\beta }$$
], s, is the square root of this variance estimate. A 1 −α confidence interval for P

                  i
                 is then [image: A69956_2_En_10_Figzg_HTML.gif]
[image: 
$$\displaystyle{ \{1 +\exp [-(X_{i}\hat{\beta } \pm zs)]\}^{-1}. }$$
]

 (10.26)




10.2.3 Minimum Sample Size Requirement
Suppose there were no covariates, so that the only parameter in the 
                  
                 model is the intercept. What is the sample size required to allow the estimate of the intercept to be precise enough so that the predicted probability is within 0.1 of the true probability with 0.95 confidence, when the true intercept is in the neighborhood of zero? The answer is n=96. What if there were one covariate, and it was binary with a prevalence of [image: 
$$\frac{1} {2}$$
]? One would need 96 subjects with X = 0 and 96 with X = 1 to have an upper bound on the margin of error for estimating [image: 
$$\mbox{ Prob}\{Y = 1\vert X = x\}$$
] not exceed 0.1 for either value of x
1.
Now consider a very simple single continuous predictor case in which X has a normal distribution with mean zero and standard deviation σ, with the true [image: 
$$\mbox{ Prob}\{Y = 1\vert X = x\} = [1 +\exp (-x)]^{-1}$$
]. The expected number of events is [image: 
$$\frac{n} {2}$$
]
2. The following simulation answers the question “What should n be so that the expected maximum absolute error (over x ∈ [−1. 5, 1. 5]) in [image: 
$$\hat{P}$$
] is less than ε?”

                [image: A69956_2_En_10_Fige_HTML.gif]
              


10.3 Test Statistics
The likelihood ratio, score, and Wald statistics discussed earlier can be used to test any hypothesis in the logistic model. The likelihood ratio test is generally preferred. When true parameters are near the null values all three statistics usually agree. The Wald test has a significant drawback when the true parameter value is very far from the null value. In such case the standard error estimate becomes too large. As [image: 
$$\hat{\beta }_{j}$$
] increases from 0, the Wald test statistic for H
0: β

                j
               = 0 becomes larger, but after a certain point it becomes smaller. The statistic will eventually drop to zero if [image: 
$$\hat{\beta }_{j}$$
] becomes 
                
              infinite. 278 Infinite estimates can occur in the logistic model especially when there is a binary predictor whose mean is near 0 or 1. Wald statistics are especially problematic in this case. For example, if 10 out of 20 males had a disease and 5 out of 5 females had the disease, the female: male odds ratio is 
                
              infinite and so is the logistic regression coefficient for sex. If such a situation occurs, the likelihood ratio or score statistic should be used instead of the Wald statistic.
For k-sample (
                
              ANOVA-type) logistic models, logistic model statistics are equivalent to 
                
              contingency table χ
2 statistics. As exemplified in the logistic model relating sex to response described previously, the global likelihood ratio statistic for all dummy variables in a k-sample model is identical to the contingency table (k-sample 
                
                
              binomial) likelihood ratio χ
2 statistic. The score
                
               statistic for this same situation turns out to be identical to the k − 1 degrees of freedom Pearson χ
2

                
                
              for a k × 2 table.
As mentioned in Section 2.​6, it can be dangerous to interpret individual parameters, make pairwise treatment comparisons, or test linearity if the overall 
                
                
              test of association for a factor represented by multiple parameters is insignificant.

10.4 Residuals
Several types of residuals can be computed for binary logistic model fits. Many of these residuals are used to examine the influence of individual observations on the fit. The partial residual can be used for directly assessing how each predictor should be transformed. For the ith observation, the partial residual for the jth element of X is defined by [image: A69956_2_En_10_Figzh_HTML.gif]
[image: 
$$\displaystyle{ r_{ij} =\hat{\beta } _{j}X_{ij} + \frac{Y _{i} -\hat{ P}_{i}} {\hat{P}_{i}(1 -\hat{ P}_{i})}, }$$
]

 (10.27)

 where X

                i j
               is the value of the jth variable in the ith observation, Y

                i
               is the corresponding value of the response, and [image: 
$$\hat{P}_{i}$$
] is the predicted probability that Y

                i
               = 1. A smooth plot (using, e.g., loess) of X

                i j
               against r

                i j
               will provide an estimate of how X

                j
               should be transformed, adjusting for the other Xs (using their current transformations). Typically one tentatively models X

                j
               linearly and checks the smoothed plot for linearity. A U-shaped relationship in this plot, for example, indicates that a squared term or spline function needs to be added for X

                j
              . This approach does assume additivity of predictors. [image: A69956_2_En_10_Figzi_HTML.gif]


10.5 Assessment of Model Fit
As the logistic regression model makes no distributional assumptions, only the assumptions of linearity and additivity need to be verified (in addition to the usual assumptions about independence of observations and inclusion of important covariables). In ordinary linear regression there is no global test for lack of model fit unless there are replicate observations at various settings of X. This is because ordinary regression entails estimation of a separate variance parameter σ
2. In logistic regression there are global tests for 
                
              goodness of fit. Unfortunately, some of the most frequently used ones are inappropriate. For example, it is common to see a 
                
              deviance test of 
                
              goodness of fit based on the “residual” log likelihood, with P-values obtained from a χ
2 distribution with n − p d.f. This P-value is inappropriate since the deviance does not have an asymptotic χ
2 distribution, due to the facts that the number of parameters estimated is increasing at the same rate as n and the expected cell frequencies are far below five (by definition).
Hosmer and Lemeshow 304 have developed a commonly used test for 
                
              goodness of fit for binary logistic models based on grouping into deciles of predicted probability and performing an ordinary χ
2 test for the mean predicted probability against the observed fraction of events (using 8 d.f. to account for evaluating fit on the model development sample). The 
                
                
              

                
              Hosmer–Lemeshow test is dependent on the choice of how predictions are grouped 303 and it is not clear that the choice of the number of groups should be independent of n. Hosmer et al. 303 have compared a number of global 
                
              goodness of fit tests for binary logistic regression. They concluded that the simple unweighted sum of squares test of Copas 124 as modified by le Cessie and van Houwelingen 387 is as good as any. They used a normal Z-test for the sum of squared errors (n × B, where B is the Brier index in Equation 10.35)
                
              . This test takes into account the fact that one cannot obtain a χ
2 distribution for the sum of squares. It also takes into account the estimation of β. It is not yet clear for which types of lack of fit this test has reasonable power. Returning to the external validation case where uncertainty of β does not need to be accounted for, 
                
                
              Stallard 584 has further documented the lack of power of the original 
                
                
              

                
              Hosmer-Lemeshow test and found more power with a logarithmic scoring rule (deviance test) and a χ
2 test that, unlike the simple unweighted sum of squares test, weights each squared error by dividing it by [image: 
$$\hat{P}_{i}(1 -\hat{ P}_{i})$$
]. A scaled χ
2 distribution seemed to provide the best approximation to the null distribution of the test statistics.
More power for detecting lack of fit is expected to be obtained from testing specific alternatives to the model. In the model [image: 
$$\displaystyle{ \mbox{ logit}\{Y = 1\vert X\} =\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2}, }$$
]

 (10.28)

 where X
1 is binary and X
2 is continuous, one needs to verify that the log odds is related to X
1 and X
2 according to Figure 10.5.[image: A69956_2_En_10_Fig4_HTML.gif]
Fig. 10.4Simulated expected maximum error in estimating probabilities for x ∈ [−1. 5, 1. 5] with a single normally distributed X with mean zero




[image: A69956_2_En_10_Fig5_HTML.gif]
Fig. 10.5Logistic regression assumptions for one binary and one continuous predictor





The simplest method for validating that the data are consistent with the no-interaction linear model involves stratifying
                
               the sample by X
1 and quantile groups (e.g., deciles) of X
2. 265 Within each stratum the proportion of responses [image: 
$$\hat{P}$$
] is computed and the log odds calculated from [image: 
$$\log [\hat{P}/(1 -\hat{ P})]$$
]. The number of quantile groups should be such that there are at least 20 (and perhaps many more) subjects in each X
1 × X
2 group. Otherwise, probabilities cannot be estimated precisely enough to allow trends to be seen above “noise” in the data. Since at least 3 X
2 groups must be formed to allow assessment of linearity, the total sample size must be at least 2 × 3 × 20 = 120 for this method to work at all.
Figure 10.6 demonstrates this method for a large sample size of 3504 subjects stratified
                
               by sex and deciles of age. Linearity is apparent for males while there is evidence for slight interaction between age and sex since the age trend for females appears curved.[image: A69956_2_En_10_Fig6_HTML.gif]
Fig. 10.6Logit proportions of significant coronary artery disease by sex and deciles of age for n=3504 patients, with spline fits (smooth curves). Spline fits are for k = 4 knots at age= 36, 48, 56, and 68 years, and interaction between age and sex is allowed. Shaded bands are pointwise 0.95 confidence limits for predicted log odds. Smooth nonparametric estimates are shown as dotted curves. Data courtesy of the Duke Cardiovascular Disease Databank.






              [image: A69956_2_En_10_Figf_HTML.gif]
            
The subgrouping method requires relatively large sample sizes and does not use continuous factors effectively. The ordering of values is not used at all between intervals, and the estimate of the relationship for a continuous variable has little resolution. Also, the method of grouping chosen (e.g., deciles vs. quintiles vs. rounding) can alter the shape of the plot.
In this dataset with only two variables, it is efficient to use a nonparametric smoother for age, separately for males and females. Nonparametric smoothers, such as loess 111 used here, work well for binary response variables (see Section 2.​4.​7); the logit transformation is made on the smoothed probability estimates. The smoothed estimates are shown in Figure 10.6. [image: A69956_2_En_10_Figzj_HTML.gif]

When there are several predictors, the restricted cubic spline function is better for estimating the true relationship between X
2 and logit{Y = 1} for continuous variables without assuming linearity. By fitting a model containing X
2 expanded into k − 1 terms, where k is the number of knots, one can obtain an estimate of the transformation of X
2 as discussed in Section 2.​4: [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ logit}\{Y = 1\vert X\}& =& \hat{\beta }_{0} +\hat{\beta } _{1}X_{1} +\hat{\beta } _{2}X_{2} +\hat{\beta } _{3}X_{2}' +\hat{\beta } _{4}X_{2}'' \\ & =& \hat{\beta }_{0} +\hat{\beta } _{1}X_{1} + f(X_{2}), {}\end{array}$$
]

 (10.29)

 where X
2′ and X
2″ are constructed spline variables (when k = 4). Plotting the estimated spline function f(X
2) versus X
2 will estimate how the effect of X
2 should be modeled. If the sample is sufficiently large, the spline function can be fitted separately for X
1 = 0 and X
1 = 1, allowing detection of even unusual interaction patterns. A formal 
                
                
              test of linearity in X
2 is obtained by testing [image: 
$$H_{0}:\beta _{3} =\beta _{4} = 0$$
].
For testing interaction between X
1 and X
2, a product term (e.g., X
1
X
2) can be added to the model and its coefficient tested. A more general simultaneous test of linearity and lack of interaction for a two-variable model in which one variable is binary (or is assumed linear) is obtained by fitting the model [image: 
$$\displaystyle\begin{array}{rcl} \mbox{ logit}\{Y = 1\vert X\}& =& \beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\beta _{3}X_{2}' +\beta _{4}X_{2}'' \\ & +& \beta _{5}X_{1}X_{2} +\beta _{6}X_{1}X_{2}' +\beta _{7}X_{1}X_{2}''{}\end{array}$$
]

 (10.30)

 and testing [image: 
$$H_{0}:\beta _{3} =\ldots =\beta _{7} = 0$$
]. This formulation allows the shape of the X
2 effect to be completely different for each level of X
1. There is virtually no departure from linearity and additivity that cannot be detected from this expanded model formulation. The most computationally efficient test for lack of fit is the score test (e.g., X
1 and X
2 are forced into a tentative model and the remaining variables are candidates). Figure 10.6 also depicts a fitted spline logistic model with k = 4, allowing for general interaction between age and sex as parameterized above. The fitted function, after expanding the restricted cubic spline function for simplicity (see Equation 2.​27), is given above. Note the good agreement between the empirical estimates of log odds and the spline fits and nonparametric estimates in this large dataset.
An analysis of log likelihood for this model and various sub-models is found in Table 10.3. The χ
2 for global tests is corrected for the intercept and the degrees of freedom does not include the intercept.
Table 10.3LR χ
2 tests for coronary artery disease risk


	Model / Hypothesis
	Likelihood
	d.f.
	
                          P
                        
	Formula

	 	Ratio χ
2

	 	 	 
	a: sex, age (linear, no interaction)
	766.0
	2
	 	 
	b: sex, age, age × sex
	768.2
	3
	 	 
	c: sex, spline in age
	769.4
	4
	 	 
	d: sex, spline in age, interaction
	782.5
	7
	 	 
	
H
0: no age × sex interaction given linearity
	2.2
	1
	.14 
	(b − a)

	
H
0: age linear | no interaction
	3.4
	2
	.18 
	(c − a)

	
H
0: age linear, no interaction
	16.6
	5
	.005
	(d − a)

	
H
0: age linear, product form interaction
	14.4
	4
	.006
	(d − b)

	
H
0: no interaction, allowing for nonlinearity in age
	13.1
	3
	.004
	(d − c)







                
               This analysis confirms the first impression from the graph, namely, that age × sex interaction is present but it is not of the form of a simple product between age and sex (change in slope). In the context of a linear age effect, there is no significant product interaction effect (P = . 14). Without allowing for interaction, there is no significant nonlinear effect of age (P = . 18). However, the general test of lack of fit with 5 d.f. indicates a significant departure from the linear additive model (P = . 005).
In Figure 10.7, data from 2332 patients who underwent cardiac catheterization at Duke University Medical Center and were found to have significant ( ≥ 75%) diameter narrowing of at least one major coronary artery were analyzed (the dataset is available from the Web site). The relationship between the time from the onset of symptoms of 
                
              coronary artery disease (e.g., angina, myocardial infarction) to the probability that the patient has severe (three-vessel disease or left main disease—tvdlm) coronary disease was of interest. There were 1129 patients with tvdlm. A logistic model was used with the duration of symptoms appearing as a restricted cubic spline function with k = 3, 4, 5, and 6 equally spaced knots in terms of quantiles between.05 and.95. The best fit for the number of parameters was chosen using Akaike’s information criterion (
                
              AIC), computed in Table 10.4 as the model likelihood ratio χ
2 minus twice the number of parameters in the model aside from the intercept. The linear model is denoted k = 0.Table 10.4AIC on χ
2 scale by number of knots


	
                          k
                        
	Model χ
2

	AIC

	0
	99.23
	97.23

	3
	112.69
	108.69

	4
	121.30
	115.30

	5
	123.51
	115.51

	6
	124.41
	114.51




[image: A69956_2_En_10_Fig7_HTML.gif]
Fig. 10.7Estimated relationship between duration of symptoms and the log odds of severe coronary artery disease for k = 5. Knots are marked with arrows. Solid line is spline fit; dotted line is a nonparametric loess estimate.






              [image: A69956_2_En_10_Figg_HTML.gif]
            
Figure 10.7 displays the spline fit for k = 5. The triangles represent 
                
              subgroup estimates obtained by dividing the sample into groups of 150 patients. For example, the leftmost triangle represents the logit of the proportion of tvdlm in the 150 patients with the shortest duration of symptoms, versus the mean duration in that group. A Wald test of linearity, with 3 d.f., showed highly significant nonlinearity (χ
2= 23.92 with 3 d.f.). The plot of the spline transformation suggests a log transformation, and when log (duration of symptoms in months + 1) was fitted in a logistic model, the log likelihood of the model (119.33 with 1 d.f.) was virtually as good as the spline model (123.51 with 4 d.f.); the corresponding 
                
              Akaike information criteria (on the χ
2 scale) are 117.33 and 115.51. To check for adequacy in the log transformation, a five-knot restricted cubic spline function was fitted to log10(months + 1), as displayed in Figure 10.8. There is some evidence for lack of fit on the right, but the Wald χ
2 for testing linearity yields P = . 27.[image: A69956_2_En_10_Fig8_HTML.gif]
Fig. 10.8Fitted linear logistic model in log10(duration + 1), with subgroup estimates using groups of 150 patients. Fitted equation is logit(tvdlm) [image: 
$$= -.9809 +.7122\log _{10}(\mathrm{months} + 1)$$
].






              [image: A69956_2_En_10_Figh_HTML.gif]
            
If the model contains two continuous predictors, they may both be expanded with spline functions in order to test linearity or to describe nonlinear relationships. Testing interaction is more difficult here. If X
1 is continuous, one might temporarily group X
1 into quantile groups. Consider the subset of 2258 (1490 with disease) of the 3504 patients used in Figure 10.6 who have serum cholesterol measured. A logistic model for predicting significant coronary disease was fitted with age in tertiles (modeled with two dummy variables), sex, age × sex interaction, four-knot restricted cubic spline in cholesterol, and age tertile × cholesterol interaction. Except for the sex adjustment this model is equivalent to fitting three separate spline functions in cholesterol, one for each age tertile. The fitted model is shown in Figure 10.9 for cholesterol and age tertile against logit of significant disease. Significant age × cholesterol interaction is apparent from the figure and is suggested by the Wald χ
2 statistic (10.03) that follows. Note that the test for linearity of the interaction with respect to cholesterol is very insignificant (χ
2 = 2.40 on 4 d.f.), but we retain it for now. The fitted function is[image: A69956_2_En_10_Fig9_HTML.gif]
Fig. 10.9Log odds of significant coronary artery disease modeling age with two dummy variables




                        

              [image: A69956_2_En_10_Figi_HTML.gif]
            

              Logistic Regression Model
            
 lrm(formula = sigdz ~ age.tertile * (sex + rcs(cholesterol, 4)),
 data = acath)
Frequencies of Missing Values Due to Each Variable
  sigdz age.tertile   sex cholesterol
   0   0   0  1246
	 	Model Likelihood Ratio Test
	Discrimination Indexes
	Rank Discrim. Indexes

	Obs
	2258
	LR χ
2
                                            
	533.52
	
                        R
                        2
                      
	0.291
	
                        C
                      
	0.780

	0
	768
	d.f.
	14
	
                        g
                      
	1.316
	
                        D
                        
                          x y
                        
                      
	0.560

	1
	1490
	Pr( > χ
2)
	< 0. 0001
	
                        g
                        
                          r
                        
                      
	3.729
	
                        γ
                      
	0.562

	
                        [image: 
$$\max \vert \frac{\partial \log L} {\partial \beta } \vert $$
]
                      
	2​ ×​ 10−8

	 	 	
                        g
                        
                          p
                        
                      
	0.252
	
                        τ
                        
                          a
                        
                      
	0.251

	 	 	Brier
	0.173
	 


	 	Coef 
	S.E. 
	Wald Z

	Pr( | Z | )

	Intercept
	-0.4155 
	1.0987 
	-0.38
	0.7053

	age.tertile=[49,58)
	0.8781 
	1.7337 
	0.51
	0.6125

	age.tertile=[58,82]
	4.7861 
	1.8143 
	2.64
	0.0083

	sex=female
	-1.6123 
	0.1751 
	-9.21
	 < 0. 0001

	cholesterol
	0.0029 
	0.0060 
	0.48
	0.6347

	cholesterol’
	0.0384 
	0.0242 
	1.59
	0.1126

	cholesterol”
	-0.1148 
	0.0768 
	-1.49
	0.1350

	age.tertile=[49,58) * sex=female
	-0.7900 
	0.2537 
	-3.11
	0.0018

	age.tertile=[58,82] * sex=female
	-0.4530 
	0.2978 
	-1.52
	0.1283

	age.tertile=[49,58) * cholesterol
	0.0011 
	0.0095 
	0.11
	0.9093

	age.tertile=[58,82] * cholesterol
	-0.0158 
	0.0099 
	-1.59
	0.1111

	age.tertile=[49,58) * cholesterol’
	-0.0183 
	0.0365 
	-0.50
	0.6162

	age.tertile=[58,82] * cholesterol’
	0.0127 
	0.0406 
	0.31
	0.7550

	age.tertile=[49,58) * cholesterol”
	0.0582 
	0.1140 
	0.51
	0.6095

	age.tertile=[58,82] * cholesterol”
	-0.0092 
	0.1301 
	-0.07
	0.9436




              [image: A69956_2_En_10_Figj_HTML.gif]
            

[image: 
$$X\hat{\beta } = -0.415+0.878[\mathrm{age.tertile} \in [49,58)]+4.79[\mathrm{age.tertile} \in [58,82]]-1.61[\mathrm{female}]+0.00287\mathrm{cholesterol}+1.52\!\times \!10^{-6}(\mathrm{cholesterol}-160)_{+}^{3}-4.53\!\times \!10^{-6}(\mathrm{cholesterol}-208)_{+}^{3}+3.44\!\times \!10^{-6}(\mathrm{cholesterol}-243)_{+}^{3}-4.28\!\times \!10^{-7}(\mathrm{cholesterol}-319)_{+}^{3}+[\mathrm{female}][-0.79\:[\mathrm{age.tertile} \in [49,58)]-0.453\:[\mathrm{age.tertile} \in [58,82]]]+[\mathrm{age.tertile} \in [49,58)][0.00108\mathrm{cholesterol}-7.23\!\times \!10^{-7}(\mathrm{cholesterol}-160)_{+}^{3}+2.3\!\times \!10^{-6}(\mathrm{cholesterol}-208)_{+}^{3}-1.84\!\times \!10^{-6}(\mathrm{cholesterol}-243)_{+}^{3}+2.69\!\times \!10^{-7}(\mathrm{cholesterol}-319)_{+}^{3}]+[\mathrm{age.tertile} \in [58,82]][-0.0158\mathrm{cholesterol}+5\!\times \!10^{-7}(\mathrm{cholesterol}-160)_{+}^{3}-3.64\!\times \!10^{-7}(\mathrm{cholesterol}-208)_{+}^{3}-5.15\!\times \!10^{-7}(\mathrm{cholesterol}-243)_{+}^{3}+3.78\!\times \!10^{-7}(\mathrm{cholesterol}-319)_{+}^{3}]$$
].
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              Table 10.5Crudely categorizing age into tertiles


	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	age.tertile (Factor+Higher Order Factors)
	120. 74
	10
	< 0. 0001

	   All Interactions

	21. 87
	8
	0.0052

	sex (Factor+Higher Order Factors)
	329. 54
	3
	< 0. 0001

	   All Interactions

	9. 78
	2
	0.0075

	cholesterol (Factor+Higher Order Factors)
	93. 75
	9
	< 0. 0001

	   All Interactions

	10. 03
	6
	0.1235

	
                             Nonlinear (Factor+Higher Order Factors)
                        
	9. 96
	6
	0.1263

	age.tertile × sex (Factor+Higher Order Factors)
	9. 78
	2
	0.0075

	age.tertile × cholesterol (Factor+Higher Order Factors)
	10. 03
	6
	0.1235

	   Nonlinear

	2. 62
	4
	0.6237

	   Nonlinear Interaction: f(A,B) vs. AB

	2. 62
	4
	0.6237

	TOTAL NONLINEAR
	9. 96
	6
	0.1263

	TOTAL INTERACTION
	21. 87
	8
	0.0052

	TOTAL NONLINEAR + INTERACTION
	29. 67
	10
	0.0010

	TOTAL
	410. 75
	14
	< 0. 0001




            

              
                
              
            
Before fitting a parametric model that allows interaction between age and cholesterol, let us use the 
                
                
              local regression model of Cleveland et al. 96 discussed in Section 2.​4.​7. This nonparametric smoothing method is not meant to handle binary Y, but it can still provide useful graphical displays in the binary case. Figure 10.10 depicts the fit from a local regression model predicting [image: 
$$Y = 1 =$$
] significant 
                
              coronary artery disease. Predictors are sex (modeled parametrically with a dummy variable), age, and cholesterol, the last two fitted nonparametrically. The effect of not explicitly modeling a probability is seen in the figure, as the predicted probabilities exceeded 1. Because of this we do not take the logit transformation but leave the predicted values in raw form. However, the overall shape is in agreement with Figure 10.10.[image: A69956_2_En_10_Fig10_HTML.gif]
Fig. 10.10Local regression fit for the logit of the probability of significant coronary disease vs. age and cholesterol for males, based on the loess function.
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Chapter 2 discussed linear splines, which can be used to construct linear spline surfaces by adding all cross-products of the linear variables and spline terms in the model. With a sufficient number of knots for each predictor, the linear spline surface can fit a wide variety of patterns. However, it requires a large number of parameters to be estimated. For the age–sex–cholesterol example, a linear spline surface is fitted for age and cholesterol, and a sex × age spline interaction is also allowed. Figure 10.11 shows a fit that placed knots at quartiles of the two continuous variables3. The algebraic form of the fitted model is shown below.
                
              
[image: A69956_2_En_10_Fig11_HTML.gif]
Fig. 10.11Linear spline surface for males, with knots for age at 46, 52, 59 and knots for cholesterol at 196, 224, and 259 (quartiles).
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[image: 
$$X\hat{\beta } = -1.83+0.0232\:\mathrm{age}+0.0759(\mathrm{age}-46)_{+}-0.0025(\mathrm{age}-52)_{+}+2.27(\mathrm{age}-59)_{+}+3.02[\mathrm{female}]-0.0177\:\mathrm{cholesterol}+0.114(\mathrm{cholesterol}-196)_{+}-0.131(\mathrm{cholesterol}-224)_{+}+0.0651(\mathrm{cholesterol}-259)_{+}+[\mathrm{female}][-0.112\:\mathrm{age}+0.0852\:(\mathrm{age}-46)_{+}-0.0302\:(\mathrm{age}-52)_{+}+0.176\:(\mathrm{age}-59)_{+}]+\mathrm{age}[0.000577\:\mathrm{cholesterol}-0.00286\:(\mathrm{cholesterol}-196)_{+}+0.00382\:(\mathrm{cholesterol}-224)_{+}-0.00205\:(\mathrm{cholesterol}-259)_{+}]+(\mathrm{age}-46)_{+}[-0.000936\:\mathrm{cholesterol}+0.00643\:(\mathrm{cholesterol}-196)_{+}-0.0115\:(\mathrm{cholesterol}-224)_{+}+0.00756\:(\mathrm{cholesterol}-259)_{+}]+(\mathrm{age}-52)_{+}[0.000433\:\mathrm{cholesterol}-0.0037\:(\mathrm{cholesterol}-196)_{+}+0.00815\:(\mathrm{cholesterol}-224)_{+}-0.00715\:(\mathrm{cholesterol}-259)_{+}]+(\mathrm{age}-59)_{+}[-0.0124\:\mathrm{cholesterol}+0.015\:(\mathrm{cholesterol}-196)_{+}-0.0067\:(\mathrm{cholesterol}-224)_{+}+0.00752\:(\mathrm{cholesterol}-259)_{+}]$$
].
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              Table 10.6Linear spline surface


	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	age (Factor+Higher Order Factors)
	164. 17
	24
	 < 0. 0001

	   All Interactions

	42. 28
	20
	0.0025

	   Nonlinear (Factor+Higher Order Factors)

	25. 21
	18
	0.1192

	sex (Factor+Higher Order Factors)
	343. 80
	5
	 < 0. 0001

	   All Interactions

	23. 90
	4
	0.0001

	cholesterol (Factor+Higher Order Factors)
	100. 13
	20
	 < 0. 0001

	   All Interactions

	16. 27
	16
	0.4341

	   Nonlinear (Factor+Higher Order Factors)

	16. 35
	15
	0.3595

	age × sex (Factor+Higher Order Factors)
	23. 90
	4
	0.0001

	   Nonlinear

	12. 97
	3
	0.0047

	   Nonlinear Interaction: f(A,B) vs. AB

	12. 97
	3
	0.0047

	age × cholesterol (Factor+Higher Order Factors)
	16. 27
	16
	0.4341

	   Nonlinear

	11. 45
	15
	0.7204

	   Nonlinear Interaction: f(A,B) vs. AB

	11. 45
	15
	0.7204

	   f(A,B) vs. Af(B) + Bg(A)

	9. 38
	9
	0.4033

	   Nonlinear Interaction in age vs. Af(B)

	9. 99
	12
	0.6167

	   Nonlinear Interaction in cholesterol vs. Bg(A)

	10. 75
	12
	0.5503

	TOTAL NONLINEAR
	33. 22
	24
	0.0995

	TOTAL INTERACTION
	42. 28
	20
	0.0025

	TOTAL NONLINEAR + INTERACTION
	49. 03
	26
	0.0041

	TOTAL
	449. 26
	29
	 < 0. 0001




            
Chapter 2 also discussed a tensor spline extension of the 
                
                
               restricted cubic spline model to fit a smooth function of two predictors, f(X
1, X
2). Since this function allows for general interaction between X
1 and X
2, the two-variable cubic spline is a powerful tool for displaying and testing interaction, assuming the sample size warrants estimating [image: 
$$2(k - 1) + (k - 1)^{2}$$
] parameters for a rectangular grid of k × k knots. Unlike the linear spline surface, the cubic surface is smooth. It also requires fewer parameters in most situations. The general cubic model with k = 4 (ignoring the sex effect here) is [image: 
$$\displaystyle\begin{array}{rcl} & \beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{1}' +\beta _{3}X_{1}'' +\beta _{4}X_{2} +\beta _{5}X_{2}' +\beta _{6}X_{2}'' +\beta _{7}X_{1}X_{2}& \\ +& \beta _{8}X_{1}X_{2}' +\beta _{9}X_{1}X_{2}'' +\beta _{10}X_{1}'X_{2} +\beta _{11}X_{1}'X_{2}' & \\ +& +\beta _{12}X_{1}'X_{2}'' +\beta _{13}X_{1}''X_{2} +\beta _{14}X_{1}''X_{2}' +\beta _{15}X_{1}''X_{2}'', &{}\end{array}$$
]

 (10.31)

 where [image: 
$$X_{1}',X_{1}'',X_{2}'$$
], and X
2″ are restricted cubic spline component variables for X
1 and X
2 for k = 4. A general test of interaction with 9 d.f. is [image: 
$$H_{0}:\beta _{7} =\ldots =\beta _{15} = 0$$
]. A test of adequacy of a simple product form interaction is [image: 
$$H_{0}:\beta _{8} =\ldots =\beta _{15} = 0$$
] with 8 d.f. A 13 d.f. test of linearity and 
                
                
              

                
                
              additivity is [image: 
$$H_{0}:\beta _{2} =\beta _{3} =\beta _{5} =\beta _{6} =\beta _{7} =\beta _{8} =\beta _{9} =\beta _{10} =\beta _{11} =\beta _{12} =\beta _{13} =\beta _{14} =\beta _{15} = 0$$
].
Figure 10.12 depicts the fit of this model. There is excellent agreement with Figures 10.9 and 10.11, including an increased (but probably insignificant) risk with low cholesterol for age ≥ 57.
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[image: 
$$X\hat{\beta } = -6.41+0.166\mathrm{age}-0.00067(\mathrm{age}-36)_{+}^{3}+0.00543(\mathrm{age}-48)_{+}^{3}-0.00727(\mathrm{age}-56)_{+}^{3}+0.00251(\mathrm{age}-68)_{+}^{3}+2.87[\mathrm{female}]+0.00979\mathrm{cholesterol}+1.96\!\times \!10^{-6}(\mathrm{cholesterol}-160)_{+}^{3}-7.16\!\times \!10^{-6}(\mathrm{cholesterol}-208)_{+}^{3}+6.35\!\times \!10^{-6}(\mathrm{cholesterol}-243)_{+}^{3}-1.16\!\times \!10^{-6}(\mathrm{cholesterol}-319)_{+}^{3}+[\mathrm{female}][-0.109\mathrm{age}+7.52\!\times \!10^{-5}(\mathrm{age}-36)_{+}^{3}+0.00015(\mathrm{age}-48)_{+}^{3}-0.00045(\mathrm{age}-56)_{+}^{3}+0.000225(\mathrm{age}-68)_{+}^{3}]+\mathrm{age}[-0.00028\mathrm{cholesterol}+2.68\!\times \!10^{-9}(\mathrm{cholesterol}-160)_{+}^{3}+3.03\!\times \!10^{-8}(\mathrm{cholesterol}-208)_{+}^{3}-4.99\!\times \!10^{-8}(\mathrm{cholesterol}-243)_{+}^{3}+1.69\!\times \!10^{-8}(\mathrm{cholesterol}-319)_{+}^{3}]+\mathrm{age}'[0.00341\mathrm{cholesterol}-4.02\!\times \!10^{-7}(\mathrm{cholesterol}-160)_{+}^{3}+9.71\!\times \!10^{-7}(\mathrm{cholesterol}-208)_{+}^{3}-5.79\!\times \!10^{-7}(\mathrm{cholesterol}-243)_{+}^{3}+8.79\!\times \!10^{-9}(\mathrm{cholesterol}-319)_{+}^{3}]+\mathrm{age}''[-0.029\mathrm{cholesterol}+3.04\!\times \!10^{-6}(\mathrm{cholesterol}-160)_{+}^{3}-7.34\!\times \!10^{-6}(\mathrm{cholesterol}-208)_{+}^{3}+4.36\!\times \!10^{-6}(\mathrm{cholesterol}-243)_{+}^{3}-5.82\!\times \!10^{-8}(\mathrm{cholesterol}-319)_{+}^{3}]$$
].
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Table 10.7Cubic spline surface


	 	
                        χ
                        2
                      
	d.f.
	
                        P
                      

	age (Factor+Higher Order Factors)
	165. 23
	15
	 < 0. 0001

	   All Interactions

	37. 32
	12
	0.0002

	   Nonlinear (Factor+Higher Order Factors)

	21. 01
	10
	0.0210

	sex (Factor+Higher Order Factors)
	343. 67
	4
	 < 0. 0001

	   All Interactions

	23. 31
	3
	 < 0. 0001

	cholesterol (Factor+Higher Order Factors)
	97. 50
	12
	 < 0. 0001

	   All Interactions

	12. 95
	9
	0.1649

	   Nonlinear (Factor+Higher Order Factors)

	13. 62
	8
	0.0923

	age × sex (Factor+Higher Order Factors)
	23. 31
	3
	 < 0. 0001

	   Nonlinear

	13. 37
	2
	0.0013

	   Nonlinear Interaction: f(A,B) vs. AB

	13. 37
	2
	0.0013

	age × cholesterol (Factor+Higher Order Factors)
	12. 95
	9
	0.1649

	   Nonlinear

	7. 27
	8
	0.5078

	   Nonlinear Interaction: f(A,B) vs. AB

	7. 27
	8
	0.5078

	   f(A,B) vs. Af(B) + Bg(A)

	5. 41
	4
	0.2480

	   Nonlinear Interaction in age vs. Af(B)

	6. 44
	6
	0.3753

	   Nonlinear Interaction in cholesterol vs. Bg(A)

	6. 27
	6
	0.3931

	TOTAL NONLINEAR
	29. 22
	14
	0.0097

	TOTAL INTERACTION
	37. 32
	12
	0.0002

	TOTAL NONLINEAR + INTERACTION
	45. 41
	16
	0.0001

	TOTAL
	450. 88
	19
	 < 0. 0001



[image: A69956_2_En_10_Fig12_HTML.gif]
Fig. 10.12Restricted cubic spline surface in two variables, each with k = 4 knots



Statistics for testing age × cholesterol components of this fit are above. None of the nonlinear interaction components is significant, but we again retain them.
The general interaction model can be restricted to be of the form [image: 
$$\displaystyle{ f(X_{1},X_{2}) = f_{1}(X_{1}) + f_{2}(X_{2}) + X_{1}g_{2}(X_{2}) + X_{2}g_{1}(X_{1}) }$$
]

 (10.32)

 by removing the parameters β
11, β
12, β
14, and β
15 from the model. The previous table of Wald statistics included a test of adequacy of this reduced form (χ
2 = 5. 41 on 4 d.f., P = . 248). The resulting fit is in Figure 10.13.[image: A69956_2_En_10_Fig13_HTML.gif]
Fig. 10.13Restricted cubic spline fit with age × spline(cholesterol) and cholesterol × spline(age)
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Table 10.8Singly nonlinear cubic spline surface


	 	
                        χ
                        2
                      
	d.f.
	
                        P
                      

	sex (Factor+Higher Order Factors)
	343. 42
	4
	 < 0. 0001

	   All Interactions

	24. 05
	3
	 < 0. 0001

	age (Factor+Higher Order Factors)
	169. 35
	11
	 < 0. 0001

	   All Interactions

	34. 80
	8
	 < 0. 0001

	   Nonlinear (Factor+Higher Order Factors)

	16. 55
	6
	0.0111

	cholesterol (Factor+Higher Order Factors)
	93. 62
	8
	 < 0. 0001

	   All Interactions

	10. 83
	5
	0.0548

	   Nonlinear (Factor+Higher Order Factors)

	10. 87
	4
	0.0281

	age × cholesterol (Factor+Higher Order Factors)
	10. 83
	5
	0.0548

	   Nonlinear

	3. 12
	4
	0.5372

	   Nonlinear Interaction: f(A,B) vs. AB

	3. 12
	4
	0.5372

	   Nonlinear Interaction in age vs. Af(B)

	1. 60
	2
	0.4496

	   Nonlinear Interaction in cholesterol vs. Bg(A)

	1. 64
	2
	0.4400

	sex × age (Factor+Higher Order Factors)
	24. 05
	3
	 < 0. 0001

	   Nonlinear

	13. 58
	2
	0.0011

	   Nonlinear Interaction: f(A,B) vs. AB

	13. 58
	2
	0.0011

	TOTAL NONLINEAR
	27. 89
	10
	0.0019

	TOTAL INTERACTION
	34. 80
	8
	 < 0. 0001

	TOTAL NONLINEAR + INTERACTION
	45. 45
	12
	 < 0. 0001

	TOTAL
	453. 10
	15
	 < 0. 0001
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[image: 
$$X\hat{\beta } = -7.2+2.96[\mathrm{female}]+0.164\mathrm{age}+7.23\!\times \!10^{-5}(\mathrm{age}-36)_{+}^{3}-0.000106(\mathrm{age}-48)_{+}^{3}-1.63\!\times \!10^{-5}(\mathrm{age}-56)_{+}^{3}+4.99\!\times \!10^{-5}(\mathrm{age}-68)_{+}^{3}+0.0148\mathrm{cholesterol}+1.21\!\times \!10^{-6}(\mathrm{cholesterol}-160)_{+}^{3}-5.5\!\times \!10^{-6}(\mathrm{cholesterol}-208)_{+}^{3}+5.5\!\times \!10^{-6}(\mathrm{cholesterol}-243)_{+}^{3}-1.21\!\times \!10^{-6}(\mathrm{cholesterol}-319)_{+}^{3}+\mathrm{age}[-0.00029\mathrm{cholesterol}+9.28\!\times \!10^{-9}(\mathrm{cholesterol}-160)_{+}^{3}+1.7\!\times \!10^{-8}(\mathrm{cholesterol}-208)_{+}^{3}-4.43\!\times \!10^{-8}(\mathrm{cholesterol}-243)_{+}^{3}+1.79\!\times \!10^{-8}(\mathrm{cholesterol}-319)_{+}^{3}]+\mathrm{cholesterol}[2.3\!\times \!10^{-7}(\mathrm{age}-36)_{+}^{3}+4.21\!\times \!10^{-7}(\mathrm{age}-48)_{+}^{3}-1.31\!\times \!10^{-6}(\mathrm{age}-56)_{+}^{3}+6.64\!\times \!10^{-7}(\mathrm{age}-68)_{+}^{3}]+[\mathrm{female}][-0.111\mathrm{age}+8.03\!\times \!10^{-5}(\mathrm{age}-36)_{+}^{3}+0.000135(\mathrm{age}-48)_{+}^{3}-0.00044(\mathrm{age}-56)_{+}^{3}+0.000224(\mathrm{age}-68)_{+}^{3}]$$
].
The fit is similar to the former one except that the climb in risk for low-cholesterol older subjects is less pronounced. The test for nonlinear interaction is now more concentrated (P = . 54 with 4 d.f.). Figure 10.14 accordingly depicts a fit that allows age and cholesterol to have nonlinear main effects, but restricts the interaction to be a product between (untransformed) age and cholesterol. The function agrees substantially with the previous fit.[image: A69956_2_En_10_Fig14_HTML.gif]
Fig. 10.14Spline fit with nonlinear effects of cholesterol and age and a simple product interaction
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              Table 10.9Linear interaction surface


	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	age (Factor+Higher Order Factors)
	167. 83
	7
	 < 0. 0001

	   All Interactions

	31. 03
	4
	 < 0. 0001

	   Nonlinear (Factor+Higher Order Factors)

	14. 58
	4
	0.0057

	sex (Factor+Higher Order Factors)
	345. 88
	4
	 < 0. 0001

	   All Interactions

	22. 30
	3
	0.0001

	cholesterol (Factor+Higher Order Factors)
	89. 37
	4
	 < 0. 0001

	   All Interactions

	7. 99
	1
	0.0047

	   Nonlinear

	10. 65
	2
	0.0049

	age × cholesterol (Factor+Higher Order Factors)
	7. 99
	1
	0.0047

	age × sex (Factor+Higher Order Factors)
	22. 30
	3
	0.0001

	   Nonlinear

	12. 06
	2
	0.0024

	   Nonlinear Interaction: f(A,B) vs. AB

	12. 06
	2
	0.0024

	TOTAL NONLINEAR
	25. 72
	6
	0.0003

	TOTAL INTERACTION
	31. 03
	4
	 < 0. 0001

	TOTAL NONLINEAR + INTERACTION
	43. 59
	8
	 < 0. 0001

	TOTAL
	452. 75
	11
	 < 0. 0001




            

[image: 
$$X\hat{\beta } = -7.36+0.182\mathrm{age}-5.18\!\times \!10^{-5}(\mathrm{age}-36)_{+}^{3}+8.45\!\times \!10^{-5}(\mathrm{age}-48)_{+}^{3}-2.91\!\times \!10^{-6}(\mathrm{age}-56)_{+}^{3}-2.99\!\times \!10^{-5}(\mathrm{age}-68)_{+}^{3}+2.8[\mathrm{female}]+0.0139\mathrm{cholesterol}+1.76\!\times \!10^{-6}(\mathrm{cholesterol}-160)_{+}^{3}-4.88\!\times \!10^{-6}(\mathrm{cholesterol}-208)_{+}^{3}+3.45\!\times \!10^{-6}(\mathrm{cholesterol}-243)_{+}^{3}-3.26\!\times \!10^{-7}(\mathrm{cholesterol}-319)_{+}^{3}-0.00034\:\mathrm{age}\:\times \:\mathrm{cholesterol}+[\mathrm{female}][-0.107\mathrm{age}+7.71\!\times \!10^{-5}(\mathrm{age}-36)_{+}^{3}+0.000115(\mathrm{age}-48)_{+}^{3}-0.000398(\mathrm{age}-56)_{+}^{3}+0.000205(\mathrm{age}-68)_{+}^{3}]$$
].
The Wald test for age × cholesterol interaction yields χ
2 = 7. 99 with 1 d.f., P = . 005. These analyses favor the nonlinear model with simple product interaction in Figure 10.14 as best representing the relationships among cholesterol, age, and probability of prognostically severe 
                
              coronary artery disease. A nomogram depicting this model is shown in Figure 10.21.
Using this simple product interaction model, Figure 10.15 displays predicted cholesterol effects at the mean age within each age tertile. Substantial agreement with Figure 10.9 is apparent.[image: A69956_2_En_10_Fig15_HTML.gif]
Fig. 10.15Predictions from linear interaction model with mean age in tertiles indicated.
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The partial residuals discussed in Section 10.4 can be used to check logistic model fit (although it may be difficult to deal with interactions). As an example, reconsider the “duration of symptoms” fit in Figure 10.7. Figure 10.16 displays “loess smoothed” and raw partial residuals for the original and log-transformed variable. The latter provides a more linear relationship, especially where the data are most dense.[image: A69956_2_En_10_Fig16_HTML.gif]
Fig. 10.16Partial residuals for duration and log10(duration+1). Data density shown at top of each plot.
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Table 10.10 summarizes the relative merits of stratification
                
              , nonparametric smoothers, and regression splines for determining or checking binary logistic model fits.Table 10.10Merits of Methods for Checking Logistic Model Assumptions


	Method
	Choice
	Assumes
	Uses Ordering
	Low
	Good

	 	Required
	Additivity
	of X

	Variance
	Resolution

	 	 	 	 	 	on X


	Stratification
	Intervals
	 	 	 	 
	Smoother on X
1

	Bandwidth
	 	x
	x
	x

	stratifying on X
2

	 	 	(not on X
2)
	(if min. strat.)
	(X
1)

	Smooth partial
	Bandwidth
	x
	x
	x
	x

	residual plot
	 	 	 	 	 
	Spline model
	Knots
	x
	x
	x
	x

	for all Xs
	 	 	 	 	 





10.6 Collinearity
The 
                
              variance inflation factors (VIFs) discussed in Section 4.​6 can apply to any regression fit. 147, 654 These VIFs allow the analyst to isolate which variable(s) are responsible for highly correlated parameter estimates. Recall that, in general, collinearity is not a large problem compared with nonlinearity and overfitting.

10.7 Overly Influential Observations
Pregibon 511 developed a number of regression diagnostics that apply to the family of regression models of which logistic regression is a member. Influence statistics based on the “leave-out-one” method use an approximation to avoid having to refit the model n times for n observations. This approximation uses the fit and covariance matrix at the last iteration and assumes that the “weights” in the weighted least squares fit can be kept constant, yielding a computationally feasible one-step estimate of the 
                
                
              leave-out-one regression coefficients.
Hosmer and Lemeshow 305, pp. 149–170 discuss many diagnostics for logistic regression and show how the final fit can be used in any least squares program that provides diagnostics. A new dependent variable to be used in that way is [image: 
$$\displaystyle{ Z_{i} = X\hat{\beta } + \frac{Y _{i} -\hat{ P}_{i}} {V _{i}}, }$$
]

 (10.33)

 where [image: 
$$V _{i} =\hat{ P}_{i}(1 -\hat{ P}_{i})$$
], and [image: 
$$\hat{P}_{i} = [1 +\exp -X\hat{\beta }]^{-1}$$
] is the predicted probability that Y

                i
               = 1. The V

                i
              , i = 1, 2, …, n are used as weights in an ordinary weighted least squares fit of X against Z. This least squares fit will provide regression coefficients identical to b. The new standard errors will be off from the actual logistic model ones by a constant.
As discussed in Section 4.​9, the standardized change in the regression coefficients upon leaving out each observation in turn (DFBETAS) is one of the most useful diagnostics, as these can pinpoint which observations are influential on each part of the model. After carefully modeling predictor transformations, there should be no lack of fit due to improper transformations. However, as the white blood count example in Section 4.​9 indicates, it is commonly the case that extreme predictor values can still have too much influence on the estimates of coefficients involving that predictor.
In the age–sex–response example of Section 10.1.3, both DFBETAS and DFFITS identified the same 
                
              influential observations. The observation given by age = 48 sex = female response = 1 was influential for both age and sex, while the observation age = 34 sex = male response = 1 was influential for age and the observation age = 50 sex = male response = 0 was influential for sex. It can readily be seen from Figure 10.3 that these points do not fit the overall trends in the data. However, as these data were simulated from a population model that is truly linear in age and additive in age and sex, the apparent 
                
              influential observations are just random occurrences. It is unwise to assume that in real data all points will agree with overall trends. Removal of such points would bias the results, making the model apparently more predictive than it will be prospectively. See Table 10.11. [image: A69956_2_En_10_Figzk_HTML.gif]
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Table 10.11Example influence statistics


	Females
	Males

	DFBETAS
	DFFITS
	DFBETAS
	DFFITS

	Intercept
	Age
	Sex
	 	Intercept
	Age
	Sex
	 
	 0.0
	 0.0
	 0.0
	 0
	 0.5
	-0.5
	-0.2
	 2

	 0.0
	 0.0
	 0.0
	 0
	 0.2
	-0.3
	 0.0
	 1

	 0.0
	 0.0
	 0.0
	 0
	-0.1
	 0.1
	 0.0
	-1

	 0.0
	 0.0
	 0.0
	 0
	-0.1
	 0.1
	 0.0
	-1

	-0.1
	 0.1
	 0.1
	 0
	-0.1
	 0.1
	-0.1
	-1

	-0.1
	 0.1
	 0.1
	 0
	 0.0
	 0.0
	 0.1
	 0

	 0.7
	-0.7
	-0.8
	 3
	 0.0
	 0.0
	 0.1
	 0

	-0.1
	 0.1
	 0.1
	 0
	 0.0
	 0.0
	 0.1
	 0

	-0.1
	 0.1
	 0.1
	 0
	 0.0
	 0.0
	-0.2
	-1

	-0.1
	 0.1
	 0.1
	 0
	 0.1
	-0.1
	-0.2
	-1

	-0.1
	 0.1
	 0.1
	 0
	 0.0
	 0.0
	 0.1
	 0

	-0.1
	 0.0
	 0.1
	 0
	-0.1
	 0.1
	 0.1
	 0

	-0.1
	 0.0
	 0.1
	 0
	-0.1
	 0.1
	 0.1
	 0

	 0.1
	 0.0
	-0.2
	 1
	 0.3
	-0.3
	-0.4
	-2

	 0.0
	 0.0
	 0.1
	-1
	-0.1
	 0.1
	 0.1
	 0

	 0.1
	-0.2
	 0.0
	-1
	-0.1
	 0.1
	 0.1
	 0

	-0.1
	 0.2
	 0.0
	 1
	-0.1
	 0.1
	 0.1
	 0

	-0.2
	 0.2
	 0.0
	 1
	 0.0
	 0.0
	 0.0
	 0

	-0.2
	 0.2
	 0.0
	 1
	 0.0
	 0.0
	 0.0
	 0

	-0.2
	 0.2
	 0.1
	 1
	 0.0
	 0.0
	 0.0
	 0




10.8 Quantifying Predictive Ability
The test statistics discussed above allow one to test whether a factor or set of factors is related to the response. If the sample is sufficiently large, a factor that grades risk from.01 to.02 may be a significant risk factor. However, that factor is not very useful in predicting the response for an individual subject. There is controversy regarding the appropriateness of R
2 from ordinary least squares in this setting. 136, 424 The generalized R
N
2 index of Nagelkerke 471 and Cragg and Uhler 137, Maddala 431, and Magee 432 described in Section 9.​8.​3 can be useful for quantifying the predictive strength of a model: [image: A69956_2_En_10_Figzl_HTML.gif]
[image: 
$$\displaystyle{ R_{\mathrm{N}}^{2} = \frac{1 -\exp (-\mbox{ LR}/n)} {1 -\exp (-L^{0}/n)}, }$$
]

 (10.34)

 where LR is the global log likelihood ratio statistic for testing the importance of all p predictors in the model and L
0 is the − 2 log likelihood for the null model. [image: A69956_2_En_10_Figzm_HTML.gif]



                
              

                
              Tjur 613 coined the term “coefficient of discrimination” D, defined as the average [image: 
$$\hat{P}$$
] when Y = 1 minus the average [image: 
$$\hat{P}$$
] when Y = 0, and showed how it ties in with sum of squares–based R
2 measures. D has many advantages as an index of predictive power4.
Linnet 416 advocates quadratic and logarithmic probability scoring rules for measuring predictive performance for probability models. Linnet shows how to 
                
                
              bootstrap such measures to get bias-corrected estimates and how to use bootstrapping to compare two correlated scores. The quadratic scoring rule is Brier’s score, frequently used in judging meteorologic forecasts 30, 73

                
              : [image: 
$$\displaystyle{ B = \frac{1} {n}\sum _{i=1}^{n}(\hat{P}_{ i} - Y _{i})^{2}, }$$
]

 (10.35)

 where [image: 
$$\hat{P}_{i}$$
] is the predicted probability and Y

                i
               the corresponding observed response for the ith observation. [image: A69956_2_En_10_Figzn_HTML.gif]

A unitless index of the strength of the rank correlation between predicted probability of response and actual response is a more interpretable measure of the fitted model’s predictive 
                
                
              discrimination. One such index is the probability of 
                
              concordance, c, between predicted probability and response. The c index
                
              , which 
                
                
              is derived from the 
                
                
              Wilcoxon–Mann–Whitney two-sample rank test, is computed by taking all possible pairs of subjects such that one subject responded and the other did not. The index is the proportion of such pairs with the responder having a higher predicted probability of response than the nonresponder.
Bamber 39 and Hanley and McNeil 255 have shown that c is identical to a widely used measure of diagnostic 
                
                
              discrimination, the area under a “receiver operating characteristic” (ROC) curve. A value of c of.5 indicates random predictions, and a 
                
                
              

                
              value of 1 indicates perfect prediction (i.e., perfect separation of responders and nonresponders). A model having c greater than roughly.8 has some utility in predicting the responses of individual subjects. The 
                
              concordance index is also related to another widely used index, Somers’ D

                x y
              

                
               rank correlation 579 between predicted probabilities and observed responses, by the identity [image: 
$$\displaystyle{ D_{xy} = 2(c -.5). }$$
]

 (10.36)


D

                x y
               is the difference between concordance and discordance probabilities. When D

                x y
               = 0, the model is making random predictions. When D

                x y
               = 1, 
                
              the predictions are perfectly discriminating. These rank-based indexes have the advantage of being insensitive to the prevalence of positive responses. [image: A69956_2_En_10_Figzo_HTML.gif]

A commonly used measure of predictive ability for binary logistic models is the fraction of correctly classified responses. Here one chooses a cutoff on the predicted probability of a positive response and then predicts that a response will be positive if the predicted probability exceeds this cutoff. There are a number of reasons why this measure should be avoided.
1.It’s highly dependent on the cutpoint chosen for a “positive” prediction.

 

2.You can add a highly significant variable to the model and have the percentage classified correctly actually decrease. Classification error is a very insensitive and statistically inefficient measure 264, 633 since if the threshold for “positive” is, say 0. 75, a prediction of 0. 99 rates the same as one of 0. 751.

 

3.It gets away from the purpose of fitting a logistic model. A logistic model is a model for the probability of an event, not a model for the occurrence of the event. For example, suppose that the event we are predicting is the probability of being struck by lightning. Without having any data, we would predict that you won’t get struck by lightning. However, you might develop an interesting model that discovers real risk factors that yield probabilities of being struck that range from 0. 000000001 to 0. 001.

 

4.If you make a classification rule from a probability model, you are being presumptuous. Suppose that a model is developed to assist physicians in diagnosing a disease. Physicians sometimes profess to desiring a binary decision model, but if given a probability they will rightfully apply different thresholds for treating different patients or for ordering other diagnostic tests. Even though the age of the patient may be a strong predictor of the probability of disease, the physician will often use a lower threshold of disease likelihood for treating a young patient. This usage is above and beyond how age affects the likelihood.

 

5.If a disease were present in only 0.02 of the population, one could be 0.98 accurate in diagnosing the disease by ruling that everyone is disease–free, i.e., by avoiding predictors. The proportion classified correctly fails to take the difficulty of the task into account.

 

6.van Houwelingen and le Cessie 633 demonstrated a peculiar property that occurs when you try to obtain an honest estimate of classification error using cross-validation. The cross-validated error rate corrects the apparent error rate only if the predicted probability is exactly 1∕2 or is [image: 
$$1/2 \pm 1/(2n)$$
]. The cross-validation estimate of optimism is “zero for n even and negligibly small for n odd.” Better measures of error rate such as the 
                        
                      Brier score and logarithmic scoring rule do not have this problem. They also have the nice property of being maximized when the predicted probabilities are the population probabilities. 416. [image: A69956_2_En_10_Figzp_HTML.gif]


 





10.9 Validating the Fitted Model

              
                
              
            
The major cause of unreliable models is overfitting the data. The methods described in Section 5.​3 can be used to assess the accuracy of models fairly. If a sample has been held out and never used to study associations with the response, indexes of predictive accuracy can now be estimated using that sample. More efficient is cross-validation, and bootstrapping is the most efficient validation procedure. As discussed earlier, bootstrapping does not require holding out any data, since all aspects of model development (stepwise variable selection, tests of linearity, estimation of coefficients, etc.) are re-validated on samples taken with replacement from the whole sample.
Cox 130 proposed and Harrell and Lee 267 and Miller et al. 457 further developed the idea of fitting a new binary logistic model to a new sample to estimate the relationship between the predicted probability and the observed outcome in that sample. This fit provides a simple 
                
                
              calibration equation that can be used to quantify unreliability (lack of calibration) and to calibrate the predictions for future use. This logistic calibration also leads to indexes of unreliability (U), 
                
                
              discrimination (D), and overall quality ([image: 
$$Q = D - U$$
]) which are derived from likelihood ratio tests 267. Q is a logarithmic scoring rule, which can be compared with Brier’s index (Equation 10.35)
                
              . See [633] for many more ideas.
With bootstrapping we do not have a separate validation sample for assessing calibration, but we can estimate the overoptimism in assuming that the final model needs no calibration, that is, it has overall intercept=0 and slope=1. As discussed in Section 5.​3, refitting the model [image: 
$$\displaystyle{ P_{c} = \mbox{ Prob}\{Y = 1\vert X\hat{\beta }\} = [1 +\exp -(\gamma _{0} +\gamma _{1}X\hat{\beta })]^{-1} }$$
]

 (10.37)

 (where P

                c
               denotes the calibrated probability and the original predicted probability is [image: 
$$\hat{P} = [1 +\exp (-X\hat{\beta })]^{-1}$$
]) in the original sample will always result in [image: 
$$\gamma = (\gamma _{0},\gamma _{1}) = (0,1)$$
], since a logistic model will always “fit” the training sample when assessed overall. We thus estimate γ by using Efron’s 172 method to estimate the overoptimism in (0, 1) to obtain bias-corrected estimates of the true 
                
                
              calibration. Simulations have shown this method produces an efficient estimate of γ. 259

More stringent calibration checks can be made by running separate calibrations for different covariate levels. Smooth nonparametric curves described in Section 10.11 are more flexible than the linear-logit calibration method just described.
A good set of indexes to estimate for summarizing a model validation is the c or D

                x y
              

                
              

                
               indexes and measures of calibration. In addition, the overoptimism in the indexes may be reported to quantify the amount of overfitting present. The estimate of γ can be used to draw a 
                
                
              calibration curve by plotting [image: 
$$\hat{P}$$
] on the x-axis and [image: 
$$\hat{P}_{c} = [1 +\exp -(\gamma _{0} +\gamma _{1}L)]^{-1}$$
] on the y-axis, where [image: 
$$L = \mbox{ logit}(\hat{P})$$
]. 130, 267 An easily interpreted index of unreliability, E

                m a x
              , follows immediately from this 
                
                
              calibration model: [image: 
$$\displaystyle{ E_{max}(a,b) =\max _{a\leq \hat{P}\leq b}\vert \hat{P} -\hat{ P}_{c}\vert, }$$
]

 (10.38)

 the maximum error in predicted probabilities over the range [image: 
$$a \leq \hat{ P} \leq b$$
]. In some cases, we would compute the maximum absolute difference in predicted and calibrated probabilities over the entire interval, that is, use E

                m a x
              (0, 1). The null hypothesis H
0: E

                m a x
              (0, 1) = 0 can easily be tested by testing [image: 
$$H_{0}:\gamma _{0} = 0,\gamma _{1} = 1$$
] as above. Since E

                m a x
               does not weight the discrepancies by the actual distribution of predictions, it may be preferable to compute the average absolute discrepancy over the actual distribution of predictions (or to use a mean squared error, incorporating the same 
                
                
              calibration function).
If stepwise variable selection is being done, a matrix depicting which factors are selected at each 
                
                
              bootstrap sample will shed light on how arbitrary is the selection of “significant” factors. See Section 5.​3 for reasons to compare full and stepwise model fits.
As an example using bootstrapping to validate the 
                
                
              calibration and discrimination of a model, consider the data in Section 10.1.3. Using 150 samples with replacement, we first validate the additive model with age and sex forced into every model. The optimism-corrected discrimination and 
                
                
              calibration statistics produced by validate

                
               (see Section 10.11) are in the table below.

              [image: A69956_2_En_10_Figz_HTML.gif]
            
Bootstrap Validation, 2 Predictors Without Stepdown
	Index
	Original
	Training
	Test
	Optimism
	Corrected
	
                        n
                      

	 	Sample
	Sample
	Sample
	 	Index
	 
	
                        D
                        
                          x y
                        
                      
	0. 70
	0. 70
	0. 67
	0. 04
	0. 66
	150

	
                        R
                        2
                      
	0. 45
	0. 48
	0. 43
	0. 05
	0. 40
	150

	Intercept
	0. 00
	0. 00
	0. 01
	− 0. 01
	0. 01
	150

	Slope
	1. 00
	1. 00
	0. 91
	0. 09
	0. 91
	150

	
                        E
                        max
                      
	0. 00
	0. 00
	0. 02
	0. 02
	0. 02
	150

	
                        D
                      
	0. 39
	0. 44
	0. 36
	0. 07
	0. 32
	150

	
                        U
                      
	− 0. 05
	− 0. 05
	0. 04
	− 0. 09
	0. 04
	150

	
                        Q
                      
	0. 44
	0. 49
	0. 32
	0. 16
	0. 28
	150

	
                        B
                      
	0. 16
	0. 15
	0. 18
	− 0. 03
	0. 19
	150

	
                        g
                      
	2. 10
	2. 49
	1. 97
	0. 52
	1. 58
	150

	
                        g
                        
                          p
                        
                      
	0. 35
	0. 35
	0. 34
	0. 01
	0. 34
	150



Now we incorporate variable selection. The variables selected in the first 10 bootstrap replications are shown below. The apparent Somers’ D

                x y
               is 0.7, and the bias-corrected D

                x y
               is 0.66. The slope shrinkage factor is 0.91. The maximum absolute error in predicted probability is estimated to be 0.02.
We next allow for step-down variable selection at each resample. For illustration purposes only, we use a suboptimal stopping rule based on significance of individual variables at the α = 0. 10 level. Of the 150 repetitions, both age and sex were selected in 137, and neither variable was selected in 3 samples. The validation statistics are in the table below.

              [image: A69956_2_En_10_Figaa_HTML.gif]
            
Bootstrap Validation, 2 Predictors with Stepdown
	Index
	Original
	Training
	Test
	Optimism
	Corrected
	
                        n
                      

	 	Sample
	Sample
	Sample
	 	Index
	 
	
                        D
                        
                          x y
                        
                      
	0. 70
	0. 70
	0. 64
	0. 07
	0. 63
	150

	
                        R
                        2
                      
	0. 45
	0. 49
	0. 41
	0. 09
	0. 37
	150

	Intercept
	0. 00
	0. 00
	− 0. 04
	0. 04
	− 0. 04
	150

	Slope
	1. 00
	1. 00
	0. 84
	0. 16
	0. 84
	150

	
                        E
                        max
                      
	0. 00
	0. 00
	0. 05
	0. 05
	0. 05
	150

	
                        D
                      
	0. 39
	0. 45
	0. 34
	0. 11
	0. 28
	150

	
                        U
                      
	− 0. 05
	− 0. 05
	0. 06
	− 0. 11
	0. 06
	150

	
                        Q
                      
	0. 44
	0. 50
	0. 28
	0. 22
	0. 22
	150

	
                        B
                      
	0. 16
	0. 14
	0. 18
	− 0. 04
	0. 20
	150

	
                        g
                      
	2. 10
	2. 60
	1. 88
	0. 72
	1. 38
	150

	
                        g
                        
                          p
                        
                      
	0. 35
	0. 35
	0. 33
	0. 02
	0. 33
	150



Factors Retained in Backwards Elimination
First 15 Resamples
	sex
	age

	•
	•

	•
	•

	•
	•

	•
	•

	•
	•

	•
	•

	•
	•

	•
	•

	•
	•

	•
	•

	•
	•

	•
	•

	•
	•

	•
	•

	•
	 


Frequencies of Numbers of Factors Retained
	0
	1
	2

	3
	10
	137



The apparent Somers’ D

                x y
               is 0.7 for the original stepwise model (which actually retained both age and sex), and the bias-corrected D

                x y
               is 0.63, slightly worse than the more correct model which forced in both variables. The calibration was also slightly worse as reflected in the slope correction factor estimate of 0.84 versus 0.91.
Next, five additional candidate variables are considered. These variables are random uniform variables, x1, …, x5 on the [0, 1] interval, and have no association with the response.

              [image: A69956_2_En_10_Figab_HTML.gif]
            
Bootstrap Validation with 5 Noise Variables and Stepdown
	Index
	Original
	Training
	Test
	Optimism
	Corrected
	
                        n
                      

	 	Sample
	Sample
	Sample
	 	Index
	 
	
                        D
                        
                          x y
                        
                      
	0. 70
	0. 47
	0. 38
	0. 09
	0. 60
	139

	
                        R
                        2
                      
	0. 45
	0. 34
	0. 23
	0. 11
	0. 34
	139

	Intercept
	0. 00
	0. 00
	0. 03
	− 0. 03
	0. 03
	139

	Slope
	1. 00
	1. 00
	0. 78
	0. 22
	0. 78
	139

	
                        E
                        max
                      
	0. 00
	0. 00
	0. 06
	0. 06
	0. 06
	139

	
                        D
                      
	0. 39
	0. 31
	0. 18
	0. 13
	0. 26
	139

	
                        U
                      
	− 0. 05
	− 0. 05
	0. 07
	− 0. 12
	0. 07
	139

	
                        Q
                      
	0. 44
	0. 36
	0. 11
	0. 25
	0. 19
	139

	
                        B
                      
	0. 16
	0. 17
	0. 22
	− 0. 04
	0. 20
	139

	
                        g
                      
	2. 10
	1. 81
	1. 06
	0. 75
	1. 36
	139

	
                        g
                        
                          p
                        
                      
	0. 35
	0. 23
	0. 19
	0. 04
	0. 31
	139



Factors Retained in Backwards Elimination
First 15 Resamples
	age
	sex
	x1
	x2
	x3
	x4
	x5

	•
	•
	 	•
	•
	•
	•

	•
	•
	•
	 	 	 	•

	•
	•
	 	 	 	 	 
	•
	•
	 	 	 	•
	•

	•
	•
	•
	 	 	 	 
	•
	•
	 	 	 	 	 
	•
	•
	 	 	 	 	 
	•
	•
	 	•
	 	 	 
	•
	•
	 	 	•
	 	 


Frequencies of Numbers of Factors Retained
	0
	1
	2
	3
	4
	5
	6

	50
	15
	37
	18
	11
	7
	1



Using step-down variable selection with the same stopping rule as before, the “final” model on the original sample correctly deleted x1, …, x5. Of the 150 bootstrap repetitions, 11 samples yielded a singularity or non-convergence
                
               either in the full-model fit or after step-down variable selection. Of the 139 successful repetitions, the frequencies of the number of factors selected, as well as the frequency of variable combinations selected, are shown above. Validation statistics are also shown above.
Figure 10.17 depicts the 
                
                
              calibration (reliability) curves for the three strategies using the corrected intercept and slope estimates in the above tables as γ
0 and γ
1, and the logistic 
                
                
              calibration model [image: 
$$P_{c} = [1 +\exp -(\gamma _{0} +\gamma _{1}L)]^{-1}$$
], where P

                c
               is the “actual” or calibrated probability, L is logit[image: 
$$(\hat{P})$$
], and [image: 
$$\hat{P}$$
] is the predicted probability. The shape of the calibration curves (driven by slopes < 1) is typical of overfitting—low predicted probabilities are too low and high predicted probabilities are too high. Predictions near the overall prevalence of the outcome tend to be calibrated even when overfitting is present.[image: A69956_2_En_10_Fig17_HTML.gif]
Fig. 10.17Estimated logistic calibration (reliability) curves obtained by bootstrapping three modeling strategies.






              [image: A69956_2_En_10_Figac_HTML.gif]
            
“Honest” calibration curves may also be estimated using nonparametric smoothers in conjunction with bootstrapping and cross-validation (see Section 10.11).

10.10 Describing the Fitted Model
Once the proper variables have been modeled and all model assumptions have been met, the analyst needs to present and interpret the fitted model. There are at least three ways to proceed. The coefficients in the model may be interpreted. For each variable, the change in log odds for a sensible change in the variable value (e.g., interquartile range) may be computed. Also,
the odds ratio or factor by which the odds increases for a certain change in a predictor, holding all other predictors constant, may be displayed. Table 10.12 contains such summary statistics for the linear age × cholesterol interaction surface fit described in Section 10.5.

              [image: A69956_2_En_10_Figad_HTML.gif]
            
Table 10.12Effects  Response: sigdz


	 	Low
	High
	
                        Δ
                      
	Effect
	S.E.
	Lower 0.95
	Upper 0.95

	age
	46
	59
	13
	0.90629
	0.18381
	0.546030
	1.26650

	
                        Odds Ratio
                      
	46
	59
	13
	2.47510
	 	1.726400
	3.54860

	cholesterol
	196
	259
	63
	0.75479
	0.13642
	0.487410
	1.02220

	
                        Odds Ratio
                      
	196
	259
	63
	2.12720
	 	1.628100
	2.77920

	sex — female:male
	1
	2
	 	-2.42970
	0.14839
	-2.720600
	-2.13890

	
                        Odds Ratio
                      
	1
	2
	 	0.08806
	 	0.065837
	0.11778



The outer quartiles of age are 46 and 59 years, so the “half-sample” odds ratio for age is 2. 47, with 0. 95 confidence interval [1. 63, 3. 74] when sex is male and cholesterol is set to its median. The effect of increasing cholesterol from 196 (its lower quartile) to 259 (its upper quartile) is to increase the
log odds by 0. 79 or to increase the odds by a factor of 2. 21. Since there are interactions allowed between age and sex and between age and cholesterol, each odds ratio in the above table depends on the setting of at least one other factor. The results are shown graphically in Figure 10.18. The shaded confidence bars show various levels of confidence and do not pin the analyst down to, say, the 0.95 level.[image: A69956_2_En_10_Fig18_HTML.gif]
Fig. 10.18Odds ratios and confidence bars, using quartiles of age and cholesterol for assessing their effects on the odds of coronary disease





For those used to thinking in terms of odds or log odds, the preceding description may be sufficient. Many prefer instead to interpret the model in terms of predicted probabilities instead of odds. If the model contains only a single predictor (even if several spline terms are required to represent that predictor), one may simply plot the predictor against the predicted response. Such a plot is shown in Figure 10.19 which depicts the fitted relationship between age of diagnosis and the probability of acute bacterial 
                
                
              meningitis (ABM) as opposed to acute viral meningitis (AVM), based on an analysis of 422 cases from Duke University Medical Center. 580 The data may be found on the web site. A linear spline function with knots at 1, 2, and 22 years was used to model this relationship.[image: A69956_2_En_10_Fig19_HTML.gif]
Fig. 10.19Linear spline fit for probability of bacterial versus viral meningitis as a function of age at onset 580. Points are simple proportions by age quantile groups.





When the model contains more than one predictor, one may graph the predictor against log odds, and barring interactions, the shape of this relationship will be independent of the level of the other predictors. When displaying the model on what is usually a more interpretable scale, the probability scale, a difficulty arises in that unlike log odds the relationship between one predictor and the probability of response depends on the levels of all other factors. For example, in the model [image: 
$$\displaystyle{ \mbox{ Prob}\{Y = 1\vert X\} =\{ 1 +\exp [-(\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2})]\}^{-1} }$$
]

 (10.39)



there is no way to factor out X
1 when examining the relationship between X
2 and the probability of a response. For the two-predictor case one can plot X
2 versus predicted probability for each level of X
1. When it is uncertain whether to include an interaction in this model, consider presenting graphs for two models (with and without interaction terms included) as was done in [658].
When three factors are present, one could draw a separate graph for each level of X
3, a separate curve on each graph for each level of X
1, and vary X
2 on the x-axis. Instead of this, or if more than three factors are present, a good way to display the results may be to plot “adjusted probability estimates” as a function of one predictor, adjusting all other factors to constants such as the mean. For example, one could display a graph relating serum cholesterol to probability of myocardial infarction or death, holding age constant at 55, sex at 1 (male), and systolic blood pressure at 120 mmHg.
The final method for displaying the relationship between several predictors and probability of response is to construct a nomogram. 40, 254 A nomogram not only sheds light on how the effect of one predictor on the probability of response depends on the levels of other factors, but it allows one to quickly estimate the probability of response for individual subjects. The nomogram in Figure 10.20 allows one to predict the probability of acute bacterial 
                
                
              meningitis (given the patient has either viral or bacterial meningitis) using the same sample as in Figure 10.19. Here there are four continuous predictor values, none of which are linearly related to log odds of bacterial meningitis: age at admission (expressed as a linear spline function), month of admission (expressed as | month − 8 | ), cerebrospinal fluid glucose/blood glucose ratio (linear effect truncated at.6; that is, the effect is the glucose ratio if it is ≤ . 6, and.6 if it exceeded.6), and the cube root of the total number of polymorphonuclear leukocytes in the cerebrospinal fluid. [image: A69956_2_En_10_Figzq_HTML.gif]
[image: A69956_2_En_10_Fig20_HTML.gif]
Fig. 10.20Nomogram for estimating probability of bacterial (ABM) versus viral (AVM) meningitis. Step 1, place ruler on reading lines for patient’s age and month of presentation and mark intersection with line A; step 2, place ruler on values for glucose ratio and total polymorphonuclear leukocyte (PMN) count in cerebrospinal fluid and mark intersection with line B; step 3, use ruler to join marks on lines A and B, then read off the probability of ABM versus AVM. 580






The model associated with Figure 10.14 is depicted in what could be called a “precision nomogram” in Figure 10.21. Discrete cholesterol levels were required because of the interaction between two continuous variables.[image: A69956_2_En_10_Fig21_HTML.gif]
Fig. 10.21Nomogram relating age, sex, and cholesterol to the log odds and to the probability of significant coronary artery disease. Select one axis corresponding to sex and to age ∈ { 30, 40, 50, 60, 70}. There is linear interaction between age and sex and between age and cholesterol. 0. 70 and 0. 90 confidence intervals are shown (0. 90 in gray). Note that for the “Linear Predictor” scale there are various lengths of confidence intervals near the same value of [image: 
$$X\hat{\beta }$$
], demonstrating that the standard error of [image: 
$$X\hat{\beta }$$
] depends on the individual X values. Also note that confidence intervals corresponding to smaller patient groups (e.g., females) are wider.






              [image: A69956_2_En_10_Figae_HTML.gif]
            

              
                
              
            

10.11 
R Functions
The general R statistical modeling functions 96 described in Section 6.​2 work with the author’s lrm

                
               function for fitting binary and ordinal logistic regression models. lrm

                
               has several options for doing 
                
                
              penalized maximum likelihood estimation, with special treatment of categorical predictors so as to shrink all estimates (including the reference cell) to the mean. The following example fits a logistic model containing predictors age, blood.pressure, and sex, with age fitted with a smooth five-knot restricted cubic spline function and a different shape of the age relationship for males and females.[image: A69956_2_En_10_Figzr_HTML.gif]


              [image: A69956_2_En_10_Figaf_HTML.gif]
            
The pentrace

                
               function makes it easy to check the effects of a sequence of penalties. The following code fits an unpenalized model and plots the 
                
              AIC and Schwarz 
                
              BIC for a variety of penalties so that approximately the best cross-validating model can be chosen (and so we can learn how the penalty relates to the effective 
                
                
              degrees of freedom). Here we elect to only penalize the nonlinear or non-additive parts of the model.

              [image: A69956_2_En_10_Figag_HTML.gif]
            
See Sections 9.​8.​1 and 9.​10 for more information. [image: A69956_2_En_10_Figzs_HTML.gif]

The residuals

                
               function for lrm

                
               and the which.influence

                
               function can be used to check predictor transformations as well as to analyze overly 
                
              influential observations in binary logistic regression. See Figure 10.16 for one application. The residuals

                
               function will also perform the unweighted sum of squares test for global 
                
              goodness of fit described in Section 10.5.
The validate

                
               function when used on an object created by lrm

                
               does resampling validation of a logistic regression model, with or without backward step-down variable deletion. It provides bias-corrected Somers’ D

                x y
              

                
               rank correlation, R
N
2 index, the intercept and slope of an overall logistic 
                
                
              calibration equation, the maximum absolute difference in predicted and calibrated
probabilities E

                m a x
              , the 
                
                
              discrimination index D [(model L.R. [image: 
$$\chi ^{2} - 1)/n$$
]], the unreliability index U = (difference in − 2 log likelihood between uncalibrated X β and X β with overall intercept and slope calibrated to test sample)∕n, and the overall quality index [image: 
$$Q = D - U$$
]. 267 The “corrected” slope can be thought of as a shrinkage factor that takes overfitting into account. See predab.resample

                
               in Section 6.​2 for the list of resampling methods.
The calibrate

                
               function produces bootstrapped or cross-validated 
                
                
              calibration curves for logistic and linear models. The “apparent” calibration 
                
                
              accuracy is estimated using a nonparametric smoother relating predicted probabilities to observed binary outcomes. The nonparametric estimate is evaluated at a sequence of predicted probability levels. Then the distances from the 45∘ line are compared with the differences when the current model is evaluated back on the whole sample (or omitted sample for cross-validation). The differences in the differences are estimates of overoptimism. After averaging over many replications, the predicted-value-specific differences are then subtracted from the apparent differences and an adjusted 
                
                
              calibration curve is obtained. Unlike validate

                
              , calibrate

                
               does not assume a linear logistic calibration. For an example, see the end of Chapter 11
calibrate

                
               will print the mean absolute calibration error, the 0.9 quantile of the absolute error, and the mean squared error, all over the observed distribution of predicted values.
The val.prob

                
               function is used to compute measures of discrimination and 
                
                
              

                
                
              

                
                
              calibration of predicted probabilities for a separate sample from the one used to derive the probability estimates. Thus val.prob

                
               is used in external validation and data-splitting. The function computes similar indexes as validate

                
               plus the 
                
              Brier score and a statistic for testing for unreliability or [image: 
$$H_{0}:\gamma _{0} = 0,\gamma _{1} = 1$$
].
In the following example, a logistic model is fitted on 100 observations simulated from the actual model given by [image: 
$$\displaystyle{ \mbox{ Prob}\{Y = 1\vert X_{1},X_{2},X_{3}\} = [1 +\exp [-(-1 + 2X_{1})]]^{-1}, }$$
]

 (10.40)

 where X
1 is a random uniform [0, 1] variable. Hence X
2 and X
3 are irrelevant. After fitting a linear additive model in X
1, X
2, and X
3, the coefficients are used to predict Prob{Y = 1} on a separate sample of 100 observations.

              [image: A69956_2_En_10_Figah_HTML.gif]
            
The output is shown in Figure 10.22.
[image: A69956_2_En_10_Fig22_HTML.gif]
Fig. 10.22Validation of a logistic model in a test sample of size n = 100. The calibrated risk distribution (histogram of logistic-calibrated probabilities) is shown.



The R built-in function glm

                
              , a very general modeling function, can fit binary logistic models. The response variable must be coded 0/1 for glm

                
               to work. Glm

                
               is a slight modification of the built-in glm

                
               function in the rms package that allows fits to use rms methods. This facilitates Poisson and several other types of regression analysis.
                
              


10.12 Further Reading

[image: A69956_2_En_10_Figza_HTML.gif] See [590] for modeling strategies specific to binary logistic regression.

[image: A69956_2_En_10_Figzb_HTML.gif] See [632] for a nice review of logistic modeling. Agresti 6 is an excellent source for categorical Y in general.

[image: A69956_2_En_10_Figzc_HTML.gif] Not only does discriminant analysis assume the same regression model as logistic regression, but it also assumes that the predictors are each normally distributed and that jointly the predictors have a multivariate normal distribution. These assumptions are unlikely to be met in practice, especially when one of the predictors is a discrete variable such as sex group. When 
                
              discriminant analysis assumptions are violated, logistic regression yields more accurate estimates. 251, 514 Even when discriminant analysis is optimal (i.e., when all its assumptions are satisfied) logistic regression is virtually as accurate as the discriminant model. 264


[image: A69956_2_En_10_Figzd_HTML.gif] See [573] for a review of measures of effect for binary outcomes.

[image: A69956_2_En_10_Figze_HTML.gif] Cepedaet al.95 found that propensity adjustment is better than covariate adjustment with logistic models when the number of events per variable is less than 8.

[image: A69956_2_En_10_Figzf_HTML.gif] Pregibon 512 developed a modification of the log likelihood function that when maximized results in a fit that is resistant to overly influential and outlying observations.

[image: A69956_2_En_10_Figzg_HTML.gif] See Hosmer and Lemeshow 306 for methods of testing for a difference in the observed event proportion and the predicted event probability (average of predicted probabilities) for a group of heterogeneous subjects.

[image: A69956_2_En_10_Figzh_HTML.gif] See Hosmer and Lemeshow, 305 Kay and Little, 341 and Collett 115, Chap. 5 Landwehr et al.373 proposed the 
                
                
              partial residual (see also Fowlkes 199).

[image: A69956_2_En_10_Figzi_HTML.gif] See Berk and Booth 51 for other partial-like residuals.

[image: A69956_2_En_10_Figzj_HTML.gif] See [341] for an example comparing a smoothing method with a parametric logistic model fit.

[image: A69956_2_En_10_Figzk_HTML.gif] See Collett 115, Chap. 5 and Pregibon 512 for more information about influence statistics. Pregibon’s resistant estimator of β handles overly influential groups of observations and allows one to estimate the weight that an observation contributed to the fit after making the fit robust. Observations receiving low weight are partially ignored but are not deleted.

[image: A69956_2_En_10_Figzl_HTML.gif] Buyse 86 showed that in the case of a single categorical predictor, the ordinary R
2

                
               has a ready interpretation in terms of variance explained for binary responses. Menard 454 studied various indexes for binary logistic regression. He criticized R
N
2 for being too dependent on the proportion of observations with Y = 1. Hu et al. 309 further studied the properties of variance-based R
2 measures for binary responses. Tjur 613 has a nice discussion discrimination graphics and sum of squares–based R
2 measures for binary logistic regression, as well as a good discussion of “separation” and infinite regression coefficients. Sums of squares are approximated various ways.

[image: A69956_2_En_10_Figzm_HTML.gif] Very little work has been done on developing adjusted R
2 measures in logistic regression and other non-linear model setups. Liao and McGee 406 developed one adjusted R
2 measure for binary logistic regression, but it uses simulation to adjust for the bias of overfitting. One might as well use the bootstrap to adjust any of the indexes discussed in this section.

[image: A69956_2_En_10_Figzn_HTML.gif][123, 633] have more pertinent discussion of probability accuracy scores.

[image: A69956_2_En_10_Figzo_HTML.gif] Copas 121 demonstrated how ROC areas can be misleading when applied to different responses having greatly different prevalences. He proposed another approach, the logit rank plot. Newsom 473 is an excellent reference on D

                x y
              . Newson 474 developed several generalizations to D

                x y
               including a stratified version, and discussed the jackknife variance estimator for them. ROC areas are not very useful for comparing two models 118, 493 (but see 490).

[image: A69956_2_En_10_Figzp_HTML.gif] Gneiting and Raftery 219 have an excellent review of proper scoring rules. Hand 253 contains much information about assessing classification accuracy. Mittlböck and Schemper 461 have an excellent review of indexes of 
                
              explained variation for binary logistic models. See also Korn and Simon 366 and Zheng and Agresti. 684.

[image: A69956_2_En_10_Figzq_HTML.gif] Pryor et al. 515 presented nomograms for a 10-variable logistic model. One of the variables was sex, which interacted with some of the other variables. Evaluation of predicted probabilities was simplified by the construction of separate nomograms for females and males. Seven terms for discrete predictors were collapsed into one weighted point score axis in the nomograms, and age by risk factor interactions were captured by having four age scales.

[image: A69956_2_En_10_Figzr_HTML.gif] Moons et al. 462 presents a case study in penalized binary logistic regression modeling.

[image: A69956_2_En_10_Figzs_HTML.gif] The rcspline.plot

                
               function in the 
                
              
Hmisc
R package does not allow for interactions as does lrm

                
              , but it can provide detailed output for checking spline fits. This function plots the estimated spline regression and 
                
              confidence limits, placing summary statistics on the graph. If there are no adjustment variables, rcspline.plot

                
               can also plot two alternative estimates of the regression function: proportions or logit proportions on grouped data, and a nonparametric estimate. The nonparametric regression estimate is based on smoothing the binary responses and taking the logit transformation of the smoothed estimates, if desired. The smoothing uses the “super smoother” of Friedman 207 implemented in the R function supsmu

                
              .

10.13 Problems

              1.Consider the age–sex–response example in Section 10.1.3. This dataset is available from the text’s web site in the Datasets area.
a.Duplicate the analyses done in Section 10.1.3.

 

b.For the model containing both age and sex, test H
0: logit response is linear in age versus H

                                a
                              : logit response is quadratic in age. Use the best test statistic.

 

c.Using a Wald test, test H
0: no age × sex interaction. Interpret all parameters in the model.

 

d.Plot the estimated logit response as a function of age and sex, with and without fitting an interaction term.

 

e.Perform a likelihood ratio test of H
0: the model containing only age and sex is adequate versus H

                                a
                              : model is inadequate. Here, “inadequate” may mean nonlinearity (quadratic) in age or presence of an interaction.

 

f.Assuming no interaction is present, test H
0: model is linear in age versus H

                                a
                              : model is nonlinear in age. Allow “nonlinear” to be more general than quadratic. (Hint: use a restricted cubic spline function with knots at age=39, 45, 55, 64 years.)

 

g.Plot age against the estimated spline transformation of age (the transformation that would make age fit linearly). You can set the sex and intercept terms to anything you choose. Also plot Prob{response = 1 | age, sex} from this fitted restricted cubic spline logistic model.

 





 

2.Consider a binary logistic regression model using the following predictors: age (years), sex, race (white, African-American, Hispanic, Oriental, other), blood pressure (mmHg). The fitted model is given by

[image: 
$$\mbox{ logit Prob}[Y = 1\vert X] = X\hat{\beta } = -1.36 +.03(\mbox{ race = African-American}) -.04(\mbox{ race = hispanic}) +.05(\mbox{ race = oriental}) -.06(\mbox{ race = other}) +.07\vert \mbox{ blood pressure} - 110\vert +.3(\mbox{ sex = male}) -.1\mbox{ age} +.002\mbox{ age}^{2} +(\mbox{ sex = male})[.05\mbox{ age} -.003\mbox{ age}^{2}]$$
].
a.Compute the predicted logit (log odds) that Y = 1 for a 50-year-old female Hispanic with a blood pressure of 90 mmHg. Also compute the odds that Y = 1 ([image: 
$$\mbox{ Prob}[Y = 1]/\mbox{ Prob}[Y = 0]$$
]) and the estimated probability that Y = 1.

 

b.Estimate odds ratios for each nonwhite race compared with the reference group (white), holding all other predictors constant. Why can you estimate the relative effect of race for all types of subjects without specifying their characteristics?

 

c.Compute the odds ratio for a blood pressure of 120 mmHg compared with a blood pressure of 105, holding age first to 30 years and then to 40 years.

 

d.Compute the odds ratio for a blood pressure of 120 mmHg compared with a blood pressure of 105, all other variables held to unspecified constants. Why is this relative effect meaningful without knowing the subject’s age, race, or sex?

 

e.Compute the estimated risk difference in changing blood pressure from 105 mmHg to 120 mmHg, first for age = 30 then for age = 40, for a white female. Why does the risk difference depend on age?

 

f.Compute the relative odds for males compared with females, for age = 50 and other variables held constant.

 

g.Same as the previous question but for females: males instead of males: females.

 

h.Compute the odds ratio resulting from increasing age from 50 to 55 for males, and then for females, other variables held constant. What is wrong with the following question: What is the relative effect of changing age by one year?
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Footnotes
1The general formula for the sample size required to achieve a margin of error of δ in estimating a true probability of θ at the 0.95 confidence level is [image: 
$$n = (\frac{1.96} {\delta } )^{2} \times \theta (1-\theta )$$
]. Set [image: 
$$\theta = \frac{1} {2}$$
] (intercept=0) for the worst case.

 

2The R code can easily be modified for other event frequencies, or the minimum of the number of events and non-events for a dataset at hand can be compared with [image: 
$$\frac{n} {2}$$
] in this simulation. An average maximum absolute error of 0.05 corresponds roughly to a half-width of the 0.95 confidence interval of 0.1.

 

3In the wireframe plots that follow, predictions for cholesterol–age combinations for which fewer than 5 exterior points exist are not shown, so as to not extrapolate to regions not supported by at least five points beyond the data perimeter.

 

4Note that D and B (below) and other indexes not related to c (below) do not work well in case-control studies because of their reliance on absolute probability estimates.
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This chapter contains a case study on developing, describing, and validating a binary logistic regression model. In addition, the following methods are exemplified:
1.Data reduction using incomplete linear and nonlinear principal components

 

2.Use of AIC
                        
                       to choose from five modeling variations, deciding which is best for the number of parameters

 

3.Model simplification using stepwise variable selection and approximation of the full model

 

4.The relationship between the degree of approximation and the degree of predictive discrimination loss

 

5.Bootstrap validation that includes penalization for model uncertainty (variable selection) and that demonstrates a loss of predictive discrimination over the full model even when compensating for overfitting the full model.

 




The data reduction and pre-transformation methods used here were discussed in more detail in Chapter 8 Single imputation will be used because of the limited quantity of missing data.
                
                
               
                
              


11.2 Background
Consider the randomized trial of estrogen for treatment of 
                
                
              prostate cancer 87 described in Chapter 8 In this trial, larger doses of estrogen reduced the effect of prostate cancer but at the cost of increased risk of cardiovascular death. Kay 340 did a formal analysis of the competing risks for cancer, cardiovascular, and other deaths. It can also be quite informative to study how treatment and baseline variables relate to the cause of death for those patients who died. 376 We subset the original dataset of those patients dying from prostate cancer (n = 130), heart or vascular disease (n = 96), or cerebrovascular disease (n = 31). Our goal is to predict cardiovascular–cerebrovascular death (cvd, n = 127) given the patient died from either cvd or prostate cancer. Of interest is whether the time to death has an effect on the cause of death, and whether the importance of certain variables depends on the time of death.

11.3 Data Transformations and Single Imputation

              
                
                
              
            
In R, first obtain the desired subset of the data and do some preliminary calculations such as combining an infrequent category with the next category, and dichotomizing ekg for use in ordinary principal components (PCs). 
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11.4 Regression on Original Variables, Principal Components and Pretransformations

              
                
                
              
            
We first examine the performance of data reduction in predicting the cause of death, similar to what we did for survival time in Section 8.​6 The first analyses assess how well PCs (on raw and transformed variables) predict the cause of death.
There are 127 cvds. We use the 15:1 rule of thumb discussed on P. 72 to justify using the first 8 PCs. ap is log-transformed because of its extreme distribution. 
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The five approaches to modeling the outcome are compared using AIC (where smaller is better). 
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              Based on AIC, the more traditional model fitted to the raw data and assuming linearity for all the continuous predictors has only a slight chance of producing worse cross-validated predictive accuracy than other methods. The chances are also good that effect estimates from this simple model will have competitive mean squared errors.

11.5 Description of Fitted Model
Here we describe the simple all-linear full model. Summary statistics and a Wald-ANOVA table are below, followed by partial effects plots with pointwise confidence bands, and odds ratios over default ranges of predictors. 
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              Logistic Regression Model
            
 lrm(formula = cvd ~ sz + sg + log(ap) + sbp + dbp + age + wt +
  hg + ekg + pf + bm + hx + rx + dtime, data = psub)
	 	Model Likelihood
	Discrimination
	Rank Discrim.

	 	Ratio Test
	Indexes
	Indexes

	Obs 257
	LR χ
2 144.39
	
R
2 0.573
	
C 0.893

	FALSE 130
	d.f. 21
	
g 2.688
	
D

                          x y
                         0.786

	TRUE 127
	Pr( > χ
2)  < 0. 0001
	
g

                          r
                         14.701
	
γ 0.787

	
[image: 
$$\max \vert \frac{\partial \log L} {\partial \beta } \vert$$
] 6​ ×​ 10−11

	 	
g

                          p
                         0.394
	
τ

                          a
                         0.395

	 	 	Brier 0.133
	 


	 	Coef
	S.E.
	Wald Z

	Pr( > | Z | )

	Intercept
	-4.5130
	3.2210
	-1.40
	0.1612

	sz
	-0.0640
	0.0168
	-3.80
	0.0001

	sg
	-0.2967
	0.1149
	-2.58
	0.0098

	ap
	-0.3927
	0.1411
	-2.78
	0.0054

	sbp
	-0.0572
	0.0890
	-0.64
	0.5201

	dbp
	0.3917
	0.1629
	2.40
	0.0162

	age
	0.0926
	0.0286
	3.23
	0.0012

	wt
	-0.0177
	0.0140
	-1.26
	0.2069

	hg
	0.0860
	0.0925
	0.93
	0.3524

	ekg=bngn
	1.0781
	0.8793
	1.23
	0.2202

	ekg=rd&ec
	-0.1929
	0.6318
	-0.31
	0.7601

	ekg=hbocd
	-1.3679
	0.8279
	-1.65
	0.0985

	ekg=hrts
	0.4365
	0.4582
	0.95
	0.3407

	ekg=MI
	0.3039
	0.5618
	0.54
	0.5886

	pf=in bed < 50% daytime
	0.9604
	0.6956
	1.38
	0.1673

	pf=in bed > 50% daytime
	-2.3232
	1.2464
	-1.86
	0.0623

	bm
	0.1456
	0.5067
	0.29
	0.7738

	hx
	1.0913
	0.3782
	2.89
	0.0039

	rx=0.2 mg estrogen
	-0.3022
	0.4908
	-0.62
	0.5381

	rx=1.0 mg estrogen
	0.7526
	0.5272
	1.43
	0.1534

	rx=5.0 mg estrogen
	0.6868
	0.5043
	1.36
	0.1733

	dtime
	-0.0136
	0.0107
	-1.27
	0.2040




              [image: A69956_2_En_11_Fige_HTML.gif]
            
	 	
                        χ
                        2
                      
	d.f.
	
                        P
                      

	sz
	14. 42
	1
	0.0001

	sg
	6. 67
	1
	0.0098

	ap
	7. 74
	1
	0.0054

	sbp
	0. 41
	1
	0.5201

	dbp
	5. 78
	1
	0.0162

	age
	10. 45
	1
	0.0012

	wt
	1. 59
	1
	0.2069

	hg
	0. 86
	1
	0.3524

	ekg
	6. 76
	5
	0.2391

	pf
	5. 52
	2
	0.0632

	bm
	0. 08
	1
	0.7738

	hx
	8. 33
	1
	0.0039

	rx
	5. 72
	3
	0.1260

	dtime
	1. 61
	1
	0.2040

	TOTAL
	66. 87
	21
	 < 0. 0001




              [image: A69956_2_En_11_Figf_HTML.gif]
              [image: A69956_2_En_11_Fig1_HTML.gif]
Fig. 11.1Ranking of apparent importance of predictors of cause of death




              [image: A69956_2_En_11_Fig2_HTML.gif]
Fig. 11.2Partial effects (log odds scale) in full model for cause of death, along with vertical line segments showing the raw data distribution of predictors




              [image: A69956_2_En_11_Fig3_HTML.gif]
Fig. 11.3Interquartile-range odds ratios for continuous predictors and simple odds ratios for categorical predictors. Numbers at left are upper quartile: lower quartile or current group: reference group. The bars represent 0. 9, 0. 95, 0. 99 
                        
                      confidence limits. The intervals are drawn on the log odds ratio scale and labeled on the odds ratio scale. Ranges are on the original scale.




            
The van Houwelingen–Le Cessie heuristic shrinkage estimate (Equation 4.​3) is [image: 
$$\hat{\gamma }= 0.85$$
], indicating that this model will validate on new data about 15% worse than on this dataset.

11.6 Backwards Step-Down
Now use fast backward step-down (with total residual AIC as the stopping rule) to identify the variables that explain the bulk of the cause of death. Later validation will take this screening of variables into account.
                
                
              

                
              The greatly reduced model results in a simple nomogram.

              [image: A69956_2_En_11_Figg_HTML.gif]
            

              [image: 
$$\displaystyle{\mathrm{Prob}\{\mathrm{cvd}\} = \frac{1} {1 +\exp (-X\beta )},\mathrm{\ \ where}}$$
]



              [image: 
$$\displaystyle\begin{array}{rcl} & & X\hat{\beta } = {}\\ & & -5.009276 - 0.05510121\:\mathrm{sz} - 0.509185\:\mathrm{\log (ap)} + 0.0788052\:\mathrm{age} + 1.070601\:\mathrm{hx} {}\\ \end{array}$$
]



            

              [image: A69956_2_En_11_Figh_HTML.gif]
              [image: A69956_2_En_11_Fig4_HTML.gif]
Fig. 11.4Nomogram calculating [image: 
$$X\hat{\beta }$$
] and [image: 
$$\hat{P}$$
] for cvd as the cause of death, using the step-down model. For each predictor, read the points assigned on the 0–100 scale and add these points. Read the result on the Total Points scale and then read the corresponding predictions below it.




            
It is readily seen from this model that patients with a history of heart disease, and patients with less extensive prostate cancer are those more likely to die from cvd rather than from cancer.
                
               
                
                
              

                
                
              But beware that it is easy to over-interpret findings when using unpenalized estimation, and confidence intervals are too narrow. Let us use the bootstrap to study the uncertainty in the selection of variables and to penalize for this uncertainty when estimating predictive performance of the model. The variables selected in the first 20 bootstrap resamples are shown, making it obvious that the set of “significant” variables, i.e., the final model, is somewhat arbitrary.
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	Index
	Original
	Training
	Test
	Optimism
	Corrected
	
                        n
                      

	 	Sample
	Sample
	Sample
	 	Index
	 
	
                        D
                        
                          x y
                        
                      
	0. 682
	0. 713
	0. 643
	0. 071
	0. 611
	200

	
                        R
                        2
                      
	0. 439
	0. 481
	0. 393
	0. 088
	0. 351
	200

	Intercept
	0. 000
	0. 000
	− 0. 006
	0. 006
	− 0. 006
	200

	Slope
	1. 000
	1. 000
	0. 811
	0. 189
	0. 811
	200

	
                        E
                        max
                      
	0. 000
	0. 000
	0. 048
	0. 048
	0. 048
	200

	
                        D
                      
	0. 395
	0. 449
	0. 346
	0. 102
	0. 293
	200

	
                        U
                      
	− 0. 008
	− 0. 008
	0. 018
	− 0. 026
	0. 018
	200

	
                        Q
                      
	0. 403
	0. 456
	0. 329
	0. 128
	0. 275
	200

	
                        B
                      
	0. 162
	0. 151
	0. 174
	− 0. 022
	0. 184
	200

	
                        g
                      
	1. 932
	2. 213
	1. 756
	0. 457
	1. 475
	200

	
                        g
                        
                          p
                        
                      
	0. 341
	0. 355
	0. 320
	0. 035
	0. 306
	200



Factors Retained in Backwards Elimination First 20 Resamples 	sz
	sg
	ap
	sbp
	dbp
	age
	wt
	hg
	ekg
	pf
	bm
	hx
	rx
	dtime

	 	•
	 	•
	•
	 	 	 	 	 	 	 	 	 
	•
	 	•
	 	•
	•
	•
	 	•
	 	 	•
	•
	 
	•
	 	•
	 	 	 	 	 	 	 	 	•
	•
	 
	•
	 	•
	 	 	 	 	 	 	 	 	 	 	 
	•
	•
	 	 	•
	 	 	 	•
	 	 	 	 	 
	 	•
	 	 	 	 	 	 	 	 	 	•
	 	 
	•
	 	•
	 	 	 	 	 	 	 	 	•
	•
	•

	•
	 	•
	 	 	•
	•
	 	 	 	 	 	 	 
	•
	 	•
	 	 	•
	 	 	 	 	 	 	 	 
	•
	•
	 	 	 	 	 	 	 	 	 	•
	 	 
	•
	 	•
	 	 	•
	 	 	 	 	 	•
	 	 
	•
	 	•
	 	 	•
	 	 	 	 	 	•
	 	 
	•
	 	•
	 	•
	 	 	 	 	 	 	•
	 	 
	•
	 	•
	 	•
	•
	 	 	 	 	 	 	 	 
	•
	•
	 	 	•
	•
	 	 	•
	•
	 	•
	•
	 
	 	 	•
	 	•
	•
	 	 	 	 	 	•
	 	 
	•
	•
	•
	 	•
	•
	 	 	 	 	 	•
	 	 
	•
	 	•
	 	 	 	 	 	 	 	 	 	 	 
	•
	•
	 	 	 	•
	 	 	 	•
	 	 	 	 
	 	•
	 	 	 	 	 	 	 	 	 	•
	 	 




Frequencies of Numbers of Factors Retained 	1
	2
	3
	4
	5
	6
	7
	8
	9
	11
	12

	6
	39
	47
	61
	19
	10
	8
	4
	2
	3
	1





The slope shrinkage ([image: 
$$\hat{\gamma }$$
]) is a bit lower than was estimated above. There is drop-off in all indexes. The estimated likely future predictive discrimination of the model as measured by Somers’ D

                x y
               
                
              

                
                
               fell from 0.682 to 0.611. The latter estimate is the one that should be claimed when describing model performance.
A nearly unbiased estimate of future calibration of the stepwise-derived model is given below. 
                
                
              

                
              


              [image: A69956_2_En_11_Figj_HTML.gif]
              [image: A69956_2_En_11_Fig5_HTML.gif]
Fig. 11.5Bootstrap overfitting–corrected calibration curve estimate for the backwards step-down cause of death logistic model, along with a rug plot showing the distribution of predicted risks. The smooth nonparametric calibration estimator (loess)
                        
                        
                       is used.




            
The amount of overfitting seen in Figure 11.5 is consistent with the indexes produced by the validate function.
For comparison, consider a bootstrap validation of the full model without using variable selection.

              [image: A69956_2_En_11_Figk_HTML.gif]
            
	Index
	Original
	Training
	Test
	Optimism
	Corrected
	
                        n
                      

	 	Sample
	Sample
	Sample
	 	Index
	 
	
                        D
                        
                          x y
                        
                      
	0. 786
	0. 833
	0. 738
	0. 095
	0. 691
	200

	
                        R
                        2
                      
	0. 573
	0. 641
	0. 501
	0. 140
	0. 433
	200

	Intercept
	0. 000
	0. 000
	− 0. 013
	0. 013
	− 0. 013
	200

	Slope
	1. 000
	1. 000
	0. 690
	0. 310
	0. 690
	200

	
                        E
                        max
                      
	0. 000
	0. 000
	0. 085
	0. 085
	0. 085
	200

	
                        D
                      
	0. 558
	0. 653
	0. 468
	0. 185
	0. 373
	200

	
                        U
                      
	− 0. 008
	− 0. 008
	0. 051
	− 0. 058
	0. 051
	200

	
                        Q
                      
	0. 566
	0. 661
	0. 417
	0. 244
	0. 322
	200

	
                        B
                      
	0. 133
	0. 115
	0. 150
	− 0. 035
	0. 168
	200

	
                        g
                      
	2. 688
	3. 464
	2. 355
	1. 108
	1. 579
	200

	
                        g
                        
                          p
                        
                      
	0. 394
	0. 416
	0. 366
	0. 050
	0. 344
	200



Compared to the validation of the full model, the step-down model has less optimism, but it started with a smaller D

                x y
               due to loss of information from removing moderately important variables. The improvement in optimism was not enough to offset the effect of eliminating variables. If shrinkage were used with the full model, it would have better calibration and discrimination than the reduced model, since shrinkage does not diminish D

                x y
              . Thus stepwise variable selection failed at delivering excellent predictive discrimination.
Finally, compare previous results with a bootstrap validation of a step-down model using a better significance level for a variable to stay in the model (α = 0. 5, 589) and using individual approximate Wald tests rather than tests combining all deleted variables. 
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	Index
	Original
	Training
	Test
	Optimism
	Corrected
	
                        n
                      

	 	Sample
	Sample
	Sample
	 	Index
	 
	
                        D
                        
                          x y
                        
                      
	0. 739
	0. 801
	0. 716
	0. 085
	0. 654
	200

	
                        R
                        2
                      
	0. 517
	0. 598
	0. 481
	0. 117
	0. 400
	200

	Intercept
	0. 000
	0. 000
	− 0. 008
	0. 008
	− 0. 008
	200

	Slope
	1. 000
	1. 000
	0. 745
	0. 255
	0. 745
	200

	
                        E
                        max
                      
	0. 000
	0. 000
	0. 067
	0. 067
	0. 067
	200

	
                        D
                      
	0. 486
	0. 593
	0. 444
	0. 149
	0. 337
	200

	
                        U
                      
	− 0. 008
	− 0. 008
	0. 033
	− 0. 040
	0. 033
	200

	
                        Q
                      
	0. 494
	0. 601
	0. 411
	0. 190
	0. 304
	200

	
                        B
                      
	0. 147
	0. 125
	0. 156
	− 0. 030
	0. 177
	200

	
                        g
                      
	2. 351
	2. 958
	2. 175
	0. 784
	1. 567
	200

	
                        g
                        
                          p
                        
                      
	0. 372
	0. 401
	0. 358
	0. 043
	0. 330
	200



The performance statistics are midway between the full model and the smaller stepwise model.

11.7 Model Approximation

              
                
                
              
              
                
                
              
              
                
                
              
            
Frequently a better approach than stepwise variable selection is to approximate the full model, using its estimates of precision, as discussed in Section 5.​5 Stepwise variable selection as well as regression trees are useful for making the approximations, and the sacrifice in predictive accuracy is always apparent. 
                
                
              

We begin by computing the “gold standard” linear predictor from the full model fit (R
2 = 1. 0), then running backwards step-down OLS regression to approximate it.
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              [image: A69956_2_En_11_Fig6_HTML.gif]
Fig. 11.6Fraction of explainable variation (full model LR χ
2) in cvd that was explained by approximate models, along with approximation accuracy (x–axis)




            
After 6 deletions, slightly more than 0.05 of both the LR χ
2 and the approximation R
2 are lost (see Figure 11.6). Therefore we take as our approximate model the one that removed 6 predictors. The equation for this model is below, and its nomogram is in Figure 11.7. 
                
                
              

                
                
              

                
                
              
[image: A69956_2_En_11_Fig7_HTML.gif]
Fig. 11.7Nomogram for predicting the probability of cvd based on the approximate model
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R2 0.9453396

              [image: A69956_2_En_11_Figo_HTML.gif]
            

              [image: 
$$\displaystyle{\mathrm{E}(\mathrm{lp}) = X\beta,\mathrm{\ \ where}}$$
]



            

              [image: 
$$\displaystyle\begin{array}{rcl} & & X\hat{\beta } = {}\\ & & -2.868303 - 0.06233241\:\mathrm{sz} - 0.3157901\:\mathrm{sg} - 0.3834479\:\mathrm{\log (ap)} + 0.09089393\:\mathrm{age} {}\\ & & +1.396922[\mathrm{bngn}] + 0.06275034[\mathrm{rd\&ec}] - 1.24892[\mathrm{hbocd}] + 0.6511938[\mathrm{hrts}] {}\\ & & +0.3236771[\mathrm{MI}] {}\\ & & +1.116028[\mathrm{in\ bed\ <\ 50\%\ daytime}] - 2.436734[\mathrm{in\ bed\>\ 50\%\ daytime}] {}\\ & & +1.05316\:\mathrm{hx} {}\\ & & -0.3888534[\mathrm{0.2\ mg\ estrogen}] + 0.6920495[\mathrm{1.0\ mg\ estrogen}] {}\\ & & +0.7834498[\mathrm{5.0\ mg\ estrogen}] {}\\ \end{array}$$
]



            
and [c] = 1 if subject is in group c,  0 otherwise.

              [image: A69956_2_En_11_Figp_HTML.gif]
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             This case study demonstrates the development of a binary logistic regression model to describe patterns of survival in passengers on the Titanic

              
              
            , based on passenger age, sex, ticket class, and the number of family members accompanying each passenger. Nonparametric regression is also used. Since many of the passengers had missing ages, multiple imputation is used so that the complete information on the other variables can be efficiently utilized. Titanic passenger data were gathered by many researchers. Primary references are the Encyclopedia Titanica at 
                www.encyclopedia-titanica.org
               and Eaton and Haas. 169 Titanic survival patterns have been analyzed previously 151, 296, 571 but without incorporation of individual passenger ages. Thomas Cason while a University of Virginia student compiled and interpreted the data from the World Wide Web. One thousand three hundred nine of the passengers are represented in the dataset, which is available from this text’s Web site under the name titanic3. An early analysis of Titanic data may be found in Bron 75.
12.1 Descriptive Statistics
First we obtain basic descriptive statistics on key variables. 
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                            [image: A69956_2_En_12_Figx_HTML.gif]
 Next, we obtain access to the needed variables and observations, and save data distribution characteristics for plotting and for computing predictor effects. There are not many passengers having more than 3 siblings or spouses or more than 3 children, so we truncate two variables at 3 for the purpose of estimating stratified survival probabilities. 
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              [image: A69956_2_En_12_Fig1_HTML.gif]
Fig. 12.1Univariable summaries of Titanic survival




            
Note the large number of missing ages. Also note the strong effects of sex and passenger class on the probability of surviving. The age effect does not appear to be very strong, because as we show later, much of the effect is restricted to age < 21 years for one of the sexes. The effects of the last two variables are unclear as the estimated proportions are not monotonic in the values of these descriptors. Although some of the cell sizes are small, we can show four-way empirical relationships with the fraction of surviving passengers by creating four cells for sibsp × parch combinations and by creating two age groups. We suppress proportions based on fewer than 25 passengers in a cell. Results are shown in Figure 12.2.[image: A69956_2_En_12_Fig2_HTML.gif]
Fig. 12.2Multi-way summary of Titanic survival






              [image: A69956_2_En_12_Figd_HTML.gif]

            
Note that none of the effects of sibsp or parch for common passenger groups appear strong on an absolute risk scale.

12.2 Exploring Trends with Nonparametric Regression
As described in Section 2.​4.​7, the loess smoother has excellent performance when the response is binary, as long as 
                
              outlier detection is turned off. Here we use a ggplot2

                
               add-on function histSpikeg

                
               in the Hmisc package
                
               to obtain and plot the loess fit and age distribution. histSpikeg

                
               uses the “no iteration” option for the R lowess

                
               function when the response is binary.

              [image: A69956_2_En_12_Fige_HTML.gif]

              [image: A69956_2_En_12_Fig3_HTML.gif]
Fig. 12.3Nonparametric regression (loess) estimates of the relationship between age and the probability of surviving the Titanic, with tick marks depicting the age distribution. The top left panel shows unstratified estimates of the probability of survival. Other panels show nonparametric estimates by various stratifications.




            
Figure 12.3 shows much of the story of passenger survival patterns. “Women and children first” seems to be true except for women in third class. It is interesting that there is no real cutoff for who is considered a child. For men, the younger the greater chance of surviving. The interpretation of the effects of the “number of relatives”-type variables will be more difficult, as their definitions are a function of age. Figure 12.4 shows these relationships.[image: A69956_2_En_12_Fig4_HTML.gif]
Fig. 12.4Relationship between age and survival stratified by the number of siblings or spouses on board (left panel) or by the number of parents or children of the passenger on board (right panel).
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12.3 Binary Logistic Model With Casewise Deletion of Missing Values


                
                
               What follows is the standard analysis based on eliminating observations having any missing data. We develop an initial somewhat saturated logistic model, allowing for a flexible nonlinear age effect that can differ in shape for all six sex × class strata. The sibsp and parch variables do not have sufficiently dispersed distributions to allow for us to model them nonlinearly. Also, there are too few passengers with nonzero values of these two variables in sex × pclass × age strata to allow us to model complex interactions involving them. The meaning of these variables does depend on the passenger’s age, so we consider only age interactions involving sibsp and parch. 
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              Table 12.1Wald Statistics for survived



	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	sex (Factor+Higher Order Factors)
	187. 15
	15
	 < 0. 0001

	
                          All Interactions
                        
	59. 74
	14
	 < 0. 0001

	pclass (Factor+Higher Order Factors)
	100. 10
	20
	 < 0. 0001

	
                          All Interactions
                        
	46. 51
	18
	0.0003

	age (Factor+Higher Order Factors)
	56. 20
	32
	0.0052

	
                          All Interactions
                        
	34. 57
	28
	0.1826

	
                          Nonlinear (Factor+Higher Order Factors)
                        
	28. 66
	24
	0.2331

	sibsp (Factor+Higher Order Factors)
	19. 67
	5
	0.0014

	
                          All Interactions
                        
	12. 13
	4
	0.0164

	parch (Factor+Higher Order Factors)
	3. 51
	5
	0.6217

	
                          All Interactions
                        
	3. 51
	4
	0.4761

	sex × pclass (Factor+Higher Order Factors)
	42. 43
	10
	 < 0. 0001

	sex × age (Factor+Higher Order Factors)
	15. 89
	12
	0.1962

	
                          Nonlinear (Factor+Higher Order Factors)
                        
	14. 47
	9
	0.1066

	
                          Nonlinear Interaction: f(A,B) vs. AB
                        
	4. 17
	3
	0.2441

	pclass × age (Factor+Higher Order Factors)
	13. 47
	16
	0.6385

	
                          Nonlinear (Factor+Higher Order Factors)
                        
	12. 92
	12
	0.3749

	
                          Nonlinear Interaction: f(A,B) vs. AB
                        
	6. 88
	6
	0.3324

	age × sibsp (Factor+Higher Order Factors)
	12. 13
	4
	0.0164

	
                          Nonlinear
                        
	1. 76
	3
	0.6235

	
                          Nonlinear Interaction: f(A,B) vs. AB
                        
	1. 76
	3
	0.6235

	age × parch (Factor+Higher Order Factors)
	3. 51
	4
	0.4761

	
                          Nonlinear
                        
	1. 80
	3
	0.6147

	
                          Nonlinear Interaction: f(A,B) vs. AB
                        
	1. 80
	3
	0.6147

	sex × pclass × age (Factor+Higher Order Factors)
	8. 34
	8
	0.4006

	
                          Nonlinear
                        
	7. 74
	6
	0.2581

	TOTAL NONLINEAR
	28. 66
	24
	0.2331

	TOTAL INTERACTION
	75. 61
	30
	 < 0. 0001

	TOTAL NONLINEAR + INTERACTION
	79. 49
	33
	 < 0. 0001

	TOTAL
	241. 93
	39
	 < 0. 0001




            
Three-way interactions are clearly insignificant (P = 0. 4) in Table 12.1. So is parch (P = 0. 6 for testing the combined main effect + interaction effects for parch, i.e., whether parch is important for any age). These effects would be deleted in almost all bootstrap resamples had we bootstrapped a variable selection procedure using α = 0. 1 for retention of terms, so we can safely ignore these terms for future steps. The model not containing those terms is fitted below. The ^2 in the model formula means to expand the terms in parentheses to include all main effects and second-order interactions. 
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              Logistic Regression Model
            
lrm(formula = survived ~ (sex + pclass + rcs(age, 5))^2
+ rcs(age, 5) * sibsp, data = t3)
Frequencies of Missing Values Due to Each Variable
survived   sex  pclass   age  sibsp
  0    0    0   263    0
	 	Model Likelihood
	Discrimination
	Rank Discrim.

	 	Ratio Test
	Indexes
	Indexes

	Obs 1046
	LR χ
2 553.87
	
R
2 0.555
	
C 0.878

	0 619
	d.f. 26
	
g 2.427
	
D

                          x y
                         0.756

	1 427
	Pr( > χ
2)  < 0. 0001
	
g

                          r
                         11.325
	
γ 0.758

	
[image: 
$$\max \vert \frac{\partial \log L} {\partial \beta } \vert $$
] 6​ ×​ 10−6

	 	
g

                          p
                         0.365
	
τ

                          a
                         0.366

	 	 	Brier 0.130
	 


	 	Coef
	S.E.
	Wald Z

	Pr( >  | Z | )

	Intercept
	3.3075
	1.8427
	1.79
	0.0727

	sex=male
	-1.1478
	1.0878
	-1.06
	0.2914

	pclass=2nd
	6.7309
	3.9617
	1.70
	0.0893

	pclass=3rd
	-1.6437
	1.8299
	-0.90
	0.3691

	age
	0.0886
	0.1346
	0.66
	0.5102

	age’
	-0.7410
	0.6513
	-1.14
	0.2552

	age”
	4.9264
	4.0047
	1.23
	0.2186

	age”’
	-6.6129
	5.4100
	-1.22
	0.2216

	sibsp
	-1.0446
	0.3441
	-3.04
	0.0024

	sex=male * pclass=2nd
	-0.7682
	0.7083
	-1.08
	0.2781

	sex=male * pclass=3rd
	2.1520
	0.6214
	3.46
	0.0005

	sex=male * age
	-0.2191
	0.0722
	-3.04
	0.0024

	sex=male * age’
	1.0842
	0.3886
	2.79
	0.0053

	sex=male * age”
	-6.5578
	2.6511
	-2.47
	0.0134

	sex=male * age”’
	8.3716
	3.8532
	2.17
	0.0298

	pclass=2nd * age
	-0.5446
	0.2653
	-2.05
	0.0401

	pclass=3rd * age
	-0.1634
	0.1308
	-1.25
	0.2118

	pclass=2nd * age’
	1.9156
	1.0189
	1.88
	0.0601

	pclass=3rd * age’
	0.8205
	0.6091
	1.35
	0.1780

	pclass=2nd * age”
	-8.9545
	5.5027
	-1.63
	0.1037

	pclass=3rd * age”
	-5.4276
	3.6475
	-1.49
	0.1367

	pclass=2nd * age”’
	9.3926
	6.9559
	1.35
	0.1769

	pclass=3rd * age”’
	7.5403
	4.8519
	1.55
	0.1202

	age * sibsp
	0.0357
	0.0340
	1.05
	0.2933

	age’ * sibsp
	-0.0467
	0.2213
	-0.21
	0.8330

	age” * sibsp
	0.5574
	1.6680
	0.33
	0.7382

	age”’ * sibsp
	-1.1937
	2.5711
	-0.46
	0.6425
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This is a very powerful model (ROC area = c = 0. 88); the survival patterns are easy to detect. The Wald ANOVA in Table 12.2 indicates especially strong sex and pclass effects (χ
2 = 199 and 109, respectively). There is a very strong sex × pclass interaction and a strong age × sibsp interaction, considering the strength of sibsp overall.Table 12.2Wald Statistics for survived



	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	sex (Factor+Higher Order Factors)
	199. 42
	7
	 < 0. 0001

	
                          All Interactions
                        
	56. 14
	6
	 < 0. 0001

	pclass (Factor+Higher Order Factors)
	108. 73
	12
	 < 0. 0001

	
                          All Interactions
                        
	42. 83
	10
	 < 0. 0001

	age (Factor+Higher Order Factors)
	47. 04
	20
	0.0006

	
                          All Interactions
                        
	24. 51
	16
	0.0789

	
                          Nonlinear (Factor+Higher Order Factors)
                        
	22. 72
	15
	0.0902

	sibsp (Factor+Higher Order Factors)
	19. 95
	5
	0.0013

	
                          All Interactions
                        
	10. 99
	4
	0.0267

	sex × pclass (Factor+Higher Order Factors)
	35. 40
	2
	 < 0. 0001

	sex × age (Factor+Higher Order Factors)
	10. 08
	4
	0.0391

	
                          Nonlinear
                        
	8. 17
	3
	0.0426

	
                          Nonlinear Interaction: f(A,B) vs. AB
                        
	8. 17
	3
	0.0426

	pclass × age (Factor+Higher Order Factors)
	6. 86
	8
	0.5516

	
                          Nonlinear
                        
	6. 11
	6
	0.4113

	
                          Nonlinear Interaction: f(A,B) vs. AB
                        
	6. 11
	6
	0.4113

	age × sibsp (Factor+Higher Order Factors)
	10. 99
	4
	0.0267

	
                          Nonlinear
                        
	1. 81
	3
	0.6134

	
                          Nonlinear Interaction: f(A,B) vs. AB
                        
	1. 81
	3
	0.6134

	TOTAL NONLINEAR
	22. 72
	15
	0.0902

	TOTAL INTERACTION
	67. 58
	18
	 < 0. 0001

	TOTAL NONLINEAR + INTERACTION
	70. 68
	21
	 < 0. 0001

	TOTAL
	253. 18
	26
	 < 0. 0001





Let us examine the shapes of predictor effects. With so many interactions in the model we need to obtain predicted values at least for all combinations of sex and pclass. For sibsp we consider only two of its possible values. 
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Fig. 12.5Effects of predictors on probability of survival of Titanic passengers, estimated for zero siblings or spouses




            
Note the agreement between the lower right-hand panel of Figure 12.3 with Figure 12.5. This results from our use of similar flexibility in the parametric and nonparametric approaches (and similar effective degrees of freedom). The estimated effect of sibsp as a function of age is shown in Figure 12.6.[image: A69956_2_En_12_Fig6_HTML.gif]
Fig. 12.6Effect of number of siblings and spouses on the log odds of surviving, for third class males
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Note that children having many siblings apparently had lower survival. Married adults had slightly higher survival than unmarried ones.
There will never be another Titanic, so we do not need to validate the
                
               model for prospective use. But we use the bootstrap to validate the model anyway, in an effort to detect whether it is overfitting the data. We do not penalize the calculations that follow for having examined the effect of parch or for testing three-way interactions, in the belief that these tests would replicate well. 
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              	Index
	Original
	Training
	Test
	Optimism
	Corrected
	
                          n
                        

	 	Sample
	Sample
	Sample
	 	Index
	 
	
                          D
                          
                            x y
                          
                        
	0. 76
	0. 77
	0. 74
	0. 03
	0. 72
	200

	
                          R
                          2
                        
	0. 55
	0. 58
	0. 53
	0. 05
	0. 50
	200

	Intercept
	0. 00
	0. 00
	− 0. 08
	0. 08
	− 0. 08
	200

	Slope
	1. 00
	1. 00
	0. 87
	0. 13
	0. 87
	200

	
                          E
                          max
                        
	0. 00
	0. 00
	0. 05
	0. 05
	0. 05
	200

	
                          D
                        
	0. 53
	0. 56
	0. 50
	0. 06
	0. 46
	200

	
                          U
                        
	0. 00
	0. 00
	0. 01
	− 0. 01
	0. 01
	200

	
                          Q
                        
	0. 53
	0. 56
	0. 49
	0. 07
	0. 46
	200

	
                          B
                        
	0. 13
	0. 13
	0. 13
	− 0. 01
	0. 14
	200

	
                          g
                        
	2. 43
	2. 75
	2. 37
	0. 37
	2. 05
	200

	
                          g
                          
                            p
                          
                        
	0. 37
	0. 37
	0. 35
	0. 02
	0. 35
	200
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The output of validate

                
               indicates minor overfitting. Overfitting would have been worse had the risk factors not been so strong. The closeness of the 
                
                
              calibration curve to the 45∘ line in Figure 12.7 demonstrates excellent validation on an absolute probability scale. But the extent of missing data casts some doubt on the validity of this model, and on the efficiency of its parameter estimates.[image: A69956_2_En_12_Fig7_HTML.gif]
Fig. 12.7Bootstrap overfitting-corrected loess nonparametric calibration curve for casewise deletion model






12.4 Examining Missing Data Patterns


                
              The first step to dealing with missing data is understanding the patterns of missing values. To do this we use the Hmisc library’s naclus

                
               and naplot

                
               functions, and the 
                
              recursive partitioning library of Atkinson and Therneau. Below naclus

                
               tells us which variables tend to be missing on the same persons, and it computes the proportion of missing values for each variable. The rpart

                
               function derives a tree to predict which types of passengers tended to have age missing. 
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              [image: A69956_2_En_12_Fig8_HTML.gif]
Fig. 12.8Patterns of missing data. Upper left panel shows the fraction of observations missing on each predictor. Lower panel depicts a hierarchical cluster analysis of missingness combinations. The similarity measure shown on the Y -axis is the fraction of observations for which both variables are missing. Right panel shows the result of recursive partitioning for predicting is.na(age). The rpart

                        
                       function found only strong patterns according to passenger class.




            
We see in Figure 12.8 that age tends to be missing on the same passengers as the body bag identifier, and that it is missing in only 0.09 of first or second class passengers. The category of passengers having the highest fraction of missing ages is third class passengers having no parents or children on board. Below we use Hmisc’s summary.formula

                
               function to plot simple descriptive statistics on the fraction of missing ages, stratified by other variables. We see that without adjusting for other variables, age is slightly more missing on nonsurviving passengers.

              [image: A69956_2_En_12_Figo_HTML.gif]
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Fig. 12.9Univariable descriptions of proportion of passengers with missing age




            
Let us derive a logistic model to predict missingness of age, to see if the survival bias maintains after adjustment for the other variables.
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              Logistic Regression Model
            
lrm(formula = is.na(age) ~ sex * pclass + survived + sibsp +
parch, data = t3)
	 	Model Likelihood
	Discrimination
	Rank Discrim.

	 	Ratio Test
	Indexes
	Indexes

	Obs 1309
	LR χ
2 114.99
	
R
2 0.133
	
C 0.703

	FALSE 1046
	d.f. 8
	
g 1.015
	
D

                          x y
                         0.406

	TRUE 263
	Pr( > χ
2)  < 0. 0001
	
g

                          r
                         2.759
	
γ 0.452

	
[image: 
$$\max \vert \frac{\partial \log L} {\partial \beta } \vert $$
] 5​ ×​ 10−6

	 	
g

                          p
                         0.126
	
τ

                          a
                         0.131

	 	 	Brier 0.148
	 


	 	Coef
	S.E.
	Wald Z

	Pr( >  | Z | )

	Intercept
	-2.2030
	0.3641
	-6.05
	 < 0. 0001

	sex=male
	0.6440
	0.3953
	1.63
	0.1033

	pclass=2nd
	-1.0079
	0.6658
	-1.51
	0.1300

	pclass=3rd
	1.6124
	0.3596
	4.48
	 < 0. 0001

	survived
	-0.1806
	0.1828
	-0.99
	0.3232

	sibsp
	0.0435
	0.0737
	0.59
	0.5548

	parch
	-0.3526
	0.1253
	-2.81
	0.0049

	sex=male * pclass=2nd
	0.1347
	0.7545
	0.18
	0.8583

	sex=male * pclass=3rd
	-0.8563
	0.4214
	-2.03
	0.0422
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Fortunately, after controlling for other variables, Table 12.3 provides evidence that nonsurviving passengers are no more likely to have age missing. The only important predictors of missingness are pclass and parch (the more parents or children the passenger has on board, the less likely age was to be missing).Table 12.3Wald Statistics for is.na(age)



	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	sex (Factor+Higher Order Factors)
	5. 61
	3
	0.1324

	
                          All Interactions
                        
	5. 58
	2
	0.0614

	pclass (Factor+Higher Order Factors)
	68. 43
	4
	 < 0. 0001

	
                          All Interactions
                        
	5. 58
	2
	0.0614

	survived
	0. 98
	1
	0.3232

	sibsp
	0. 35
	1
	0.5548

	parch
	7. 92
	1
	0.0049

	sex × pclass (Factor+Higher Order Factors)
	5. 58
	2
	0.0614

	TOTAL
	82. 90
	8
	 < 0. 0001






12.5 Multiple Imputation


                
                
               Multiple imputation is expected to reduce bias in estimates as well as to provide an estimate of the variance–covariance matrix of [image: 
$$\hat{\beta }$$
] penalized for imputation. With multiple imputation, survival status can be used to impute missing ages, so the age relationship will not be as attenuated as with single conditional mean imputation. 
                
                
              
aregImpute

                
              

                
                
               
                
              

                
                
              

                
               The following uses the Hmisc package aregImpute function to do predictive mean matching, using van Buuren’s “Type 1” matching [85, Section 3.4.2] in conjunction with bootstrapping to incorporate all uncertainties, in the context of smooth additive imputation models. Sampling of donors is handled by distance weighting to yield better distributions of imputed values. By default, aregImpute does not transform age when it is being predicted from the other variables. Four knots are used to transform age when used to impute other variables (not needed here as no other missings were present in the variables of interest). Since the fraction of observations with missing age is [image: 
$$\frac{263} {1309} = 0.2$$
] we use 20 imputations.
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              [image: A69956_2_En_12_Fig10_HTML.gif]
Fig. 12.10Distributions of imputed and actual ages for the Titanic dataset. Imputed values are in black and actual ages in gray.




            
We now fit logistic models for five completed datasets. The fit.mult.impute

                
               function fits five models and examines the within– and between–imputation variances to compute an imputation-corrected variance–covariance matrix that is stored in the fit object f.mi. fit.mult.impute

                
               will also average the five [image: 
$$\hat{\beta }$$
] vectors, storing the result in f.mi$coefficients. The function also prints the ratio of imputation-corrected variances to average ordinary variances. 
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              Table 12.4Wald Statistics for survived



	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	sex (Factor+Higher Order Factors)
	240. 42
	7
	 < 0. 0001

	
                          All Interactions
                        
	54. 56
	6
	 < 0. 0001

	pclass (Factor+Higher Order Factors)
	114. 21
	12
	 < 0. 0001

	
                          All Interactions
                        
	36. 43
	10
	0.0001

	age (Factor+Higher Order Factors)
	50. 37
	20
	0.0002

	
                          All Interactions
                        
	25. 88
	16
	0.0557

	
                          Nonlinear (Factor+Higher Order Factors)
                        
	24. 21
	15
	0.0616

	sibsp (Factor+Higher Order Factors)
	24. 22
	5
	0.0002

	
                          All Interactions
                        
	12. 86
	4
	0.0120

	sex × pclass (Factor+Higher Order Factors)
	30. 99
	2
	 < 0. 0001

	sex × age (Factor+Higher Order Factors)
	11. 38
	4
	0.0226

	
                          Nonlinear
                        
	8. 15
	3
	0.0430

	
                          Nonlinear Interaction: f(A,B) vs. AB
                        
	8. 15
	3
	0.0430

	pclass × age (Factor+Higher Order Factors)
	5. 30
	8
	0.7246

	
                          Nonlinear
                        
	4. 63
	6
	0.5918

	
                          Nonlinear Interaction: f(A,B) vs. AB
                        
	4. 63
	6
	0.5918

	age × sibsp (Factor+Higher Order Factors)
	12. 86
	4
	0.0120

	
                          Nonlinear
                        
	1. 84
	3
	0.6058

	
                          Nonlinear Interaction: f(A,B) vs. AB
                        
	1. 84
	3
	0.6058

	TOTAL NONLINEAR
	24. 21
	15
	0.0616

	TOTAL INTERACTION
	67. 12
	18
	 < 0. 0001

	TOTAL NONLINEAR + INTERACTION
	70. 99
	21
	 < 0. 0001

	TOTAL
	298. 78
	26
	 < 0. 0001




            
The Wald χ
2 for age is reduced by accounting for imputation but is increased (by a lesser amount) by using patterns of association with survival status to impute missing age. The Wald tests are all adjusted for multiple imputation. Now examine the fitted age relationship using multiple imputation vs. casewise deletion.
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              [image: A69956_2_En_12_Fig11_HTML.gif]
Fig. 12.11Predicted probability of survival for males from fit using casewise deletion again (top) and multiple random draw imputation (bottom). Both sets of predictions are for sibsp=0.




            

12.6 Summarizing the Fitted Model
In this section we depict the model fitted using multiple imputation, by computing odds ratios and by showing various predicted values. For age, the odds ratio for an increase from 1 year old to 30 years old is computed, instead of the default odds ratio based on outer quartiles of age. The estimated odds ratios are very dependent on the levels of interacting factors, so Figure 12.12 depicts only one of many patterns.

              [image: A69956_2_En_12_Figu_HTML.gif]

              [image: A69956_2_En_12_Fig12_HTML.gif]
Fig. 12.12Odds ratios for some predictor settings




            
Now compute estimated probabilities of survival for a variety of settings of the predictors.
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We can also get predicted values by creating an R function that will evaluate the model on demand.
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A nomogram could be used to obtain predicted values manually, but this is not feasible when so many interaction terms are present. 
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13.1 Background

              
                
                
              
              
                
              
              
                
                
              
            
Many medical and epidemiologic studies incorporate an ordinal response variable. In some cases an ordinal response Y represents levels of a standard measurement scale such as severity of pain (none, mild, moderate, severe). In other cases, ordinal responses are constructed by specifying a hierarchy of separate endpoints. For example, clinicians may specify an ordering of the severity of several component events and assign patients to the worst event present from among none, heart attack, disabling stroke, and death. Still another use of ordinal response methods is the application of rank-based methods to continuous responses so as to obtain 
                
                
               robust inferences. For example, the proportional odds model described later allows for a continuous Y and is really a generalization of the 
                
                
               Wilcoxon–Mann–Whitney rank test. Thus the semiparametric proportional odds model is a direct competitor of ordinary linear models.
                
                
              

                
                
               
                
              

                
              

There are many variations of logistic models used for predicting an ordinal response variable Y. All of them have the advantage that they do not assume a spacing between levels of Y. In other words, the same regression coefficients and P-values result from an analysis of a response variable having levels 0, 1, 2 when the levels are recoded 0, 1, 20. Thus ordinal models use only the rank-ordering of values of Y.
In this chapter we consider two of the most popular ordinal logistic models, the proportional odds (PO) form of an ordinal logistic model 647 and the forward continuation ratio (CR) ordinal logistic model. 190 Chapter 15 deals with a wider variety of ordinal models with emphasis on analysis of continuous Y.[image: A69956_2_En_13_Figf_HTML.gif]


13.2 Ordinality Assumption

              
                
                
              
            
A basic assumption of all commonly used ordinal regression models is that the response variable behaves in an ordinal fashion with respect to each predictor. Assuming that a predictor X is linearly related to the log odds of some appropriate event, a simple way to check for ordinality is to plot the mean of X stratified by levels of Y. These means should be in a consistent order. If for many of the Xs, two adjacent categories of Y do not distinguish the means, that is evidence that those levels of Y should be pooled.
One can also estimate the mean or expected value of X | Y = j (E(X | Y = j)) given that the ordinal model assumptions hold. This is a useful tool for checking those assumptions, at least in an unadjusted fashion. For simplicity, assume that X is discrete, and let [image: 
$$P_{jx} =\Pr (Y = j\vert X = x)$$
] be the probability that Y = j given X = x that is dictated from the model being fitted, with X being the only predictor in the model. 
                
                
              Then [image: 
$$\displaystyle\begin{array}{rcl} \Pr (X = x\vert Y = j)& =& \Pr (Y = j\vert X = x)\Pr (X = x)/\mathrm{Pr}(Y = j) \\ E(X\vert Y = j)& =& \sum _{x}xP_{jx}\Pr (X = x)/\Pr (Y = j), {}\end{array}$$
]

 (13.1)

 and the expectation can be estimated by [image: 
$$\displaystyle{ \hat{E}(X\vert Y = j) =\sum _{x}x\hat{P}_{jx}f_{x}/g_{j}, }$$
]

 (13.2)

 where [image: 
$$\hat{P}_{jx}$$
] denotes the estimate of P

                jx
               from the fitted one-predictor model (for inner values of Y in the PO models, these probabilities are differences between terms given by Equation 13.4 below), f

                x
               is the frequency of X = x in the sample of size n, and g

                j
               is the frequency of Y = j in the sample. This estimate can be computed conveniently without grouping the data by X. For n subjects let the n values of X be [image: 
$$x_{1},x_{2},\ldots,x_{n}$$
]. Then [image: 
$$\displaystyle{ \hat{E}(X\vert Y = j) =\sum _{ i=1}^{n}x_{ i}\hat{P}_{jx_{i}}/g_{j}. }$$
]

 (13.3)

 Note that if one were to compute differences between conditional means of X and the conditional means of X given PO, and if furthermore the means were conditioned on Y ≥ j instead of Y = j, the result would be proportional to means of score residuals defined later in Equation 13.6. 
                
                
              


13.3 Proportional Odds Model

              
                
                
              
            
13.3.1 Model
The most commonly used ordinal logistic model was described in Walker and Duncan 647 and later called the proportional odds (PO) model by McCullagh. 449 The PO model is best stated as follows, for a response variable having levels 0, 1, 2, …, k: [image: 
$$\displaystyle{ \Pr [Y \geq j\vert X] = \frac{1} {1 +\exp [-(\alpha _{j} + X\beta )]}, }$$
]

 (13.4)

 where j = 1, 2, …, k. Some authors write the model in terms of Y ≤ j. Our formulation makes the model coefficients consistent with the binary logistic model. There are k intercepts (αs). For fixed j, the model is an ordinary logistic model for the event Y ≥ j. By using a common vector of regression coefficients β connecting probabilities for varying j, the PO model allows for parsimonious modeling of the distribution of Y. [image: A69956_2_En_13_Figg_HTML.gif]

There is a nice connection between the PO model and the 
                  
                  
                Wilcoxon–Mann–Whitney two-sample test: when there is a single predictor X
1 that is binary, the numerator of the score test for testing H
0: β
1 = 0 is proportional to the two-sample test statistic [664, pp. 2258–2259].

13.3.2 Assumptions and Interpretation of Parameters

                
                  
                  
                
              
There is an implicit assumption in the PO model that the regression coefficients (β) are independent of j, the cutoff level for Y. One could say that there is no X × Y interaction if PO holds. For a specific Y -cutoff j, the model has the same assumptions as the binary logistic model (Section 10.​1.​1). That is, the model in its simplest form assumes the log odds that Y ≥ j is linearly related to each X and that there is no interaction between the Xs.
In designing clinical studies, one sometimes hears the statement that an ordinal outcome should be avoided since statistical tests of patterns of those outcomes are hard to interpret. In fact, one interprets effects in the PO model using ordinary odds ratios. The difference is that a single odds ratio is assumed to apply equally to all events Y ≥ j, j = 1, 2, …, k. If linearity and additivity hold, the X

                  m
                 + 1: X

                  m
                 odds ratio for Y ≥ j is exp(β

                  m
                ), whatever the cutoff j.
The proportional hazards assumption is frequently violated, just as the assumptions of normality of residuals with equal variance in ordinary regression are frequently violated, but the PO model can still be useful and powerful in this situation. As stated by Senn and Julious 564,

                Clearly, the dependence of the proportional odds model on the assumption of proportionality can be over-stressed. Suppose that two different statisticians would cut the same three-point scale at different cut points. It is hard to see how anybody who could accept either dichotomy could object to the compromise answer produced by the proportional odds model.


              
Sometimes it helps in interpreting the model to estimate the mean Y as a function of one or more predictors, even though this assumes a spacing for the Y-levels. [image: A69956_2_En_13_Figh_HTML.gif]


13.3.3 Estimation
The PO model is fitted using MLE on a somewhat complex likelihood function that is dependent on differences in logistic model probabilities. The estimation process forces the αs to be in descending order.

13.3.4 Residuals


                  
                  
                Schoenfeld residuals 557 are very effective 233 in checking the proportional hazards assumption in the Cox 132 survival model. For the PO model 
                  
                  
                one could analogously compute each subject’s contribution to the first derivative of the log likelihood function with respect to β

                  m
                , average them separately by levels of Y, and examine trends in the residual plots as in Section 20.​6.​2 A few examples have shown that such plots are usually hard to interpret. Easily interpreted score residual plots for the PO model can be constructed, however, by using the fitted PO model to predict a series of binary events Y ≥ j, j = 1, 2, …, k, using the corresponding predicted probabilities [image: 
$$\displaystyle{ \hat{P}_{ij} = \frac{1} {1 +\exp [-(\hat{\alpha }_{j} + X_{i}\hat{\beta })]}, }$$
]

 (13.5)

 where X

                  i
                 stands for a vector of predictors for subject i. Then, after forming an indicator variable for the event currently being predicted ([Y

                  i
                 ≥ j]), one computes the score (first derivative) components U

                  im
                 from an ordinary binary logistic model: [image: 
$$\displaystyle{ U_{im} = X_{im}([Y _{i} \geq j] -\hat{ P}_{ij}), }$$
]

 (13.6)

 for the subject i and predictor m. Then, for each column of U, 
                  
                  
                plot the mean [image: 
$$\bar{U}_{\cdot m}$$
] and confidence limits, with Y (i.e., j) on the x-axis. For each predictor the trend against j should be flat if PO holds. 1In binary logistic regression, partial residuals are very useful as they allow the analyst to fit linear effects for all the predictors but then to nonparametrically estimate the true transformation that each predictor requires (Section 10.​4). The 
                  
                  
                partial residual is defined as follows, for the ith subject and mth predictor variable. 115, 373 [image: 
$$\displaystyle{ r_{im} =\hat{\beta } _{m}X_{im} + \frac{Y _{i} -\hat{ P}_{i}} {\hat{P}_{i}(1 -\hat{ P_{i}})}, }$$
]

 (13.7)

 where [image: 
$$\displaystyle{ \hat{P_{i}} = \frac{1} {1 +\exp [-(\alpha +X_{i}\hat{\beta })]}. }$$
]

 (13.8)

 A smoothed plot (e.g., using the moving linear regression algorithm in loess 111) of X

                  im
                 against r

                  im
                 provides a nonparametric estimate of how X

                  m
                 relates to the log relative odds that Y = 1 | X

                  m
                . For ordinal Y, we just need to compute binary model partial residuals for all cutoffs j: [image: 
$$\displaystyle{ r_{im} =\hat{\beta } _{m}X_{im} + \frac{[Y _{i} \geq j] -\hat{ P}_{ij}} {\hat{P}_{ij}(1 -\hat{ P}_{ij})}, }$$
]

 (13.9)

 then to make a plot for each m showing smoothed 
                  
                  
                partial residual curves for all j, looking for similar shapes and slopes for a given predictor for all j. Each curve provides an estimate of how X

                  m
                 relates to the relative log odds that Y ≥ j. Since partial residuals allow examination of predictor transformations (linearity) while simultaneously allowing examination of PO (
                  
                  
                parallelism), 
                  
                  
                partial residual plots are generally preferred over score residual plots for ordinal models.
Li and Shepherd 402 have a residual for ordinal models that serves for the entire range of Y without the need to consider cutoffs. Their residual is useful for checking functional form of predictors but not the proportional odds assumption.

13.3.5 Assessment of Model Fit

                
                  
                  
                
              
Peterson and Harrell 502 developed score and likelihood ratio tests for testing the PO assumption. The score test is used in the SAS PROC LOGISTIC

                  
                , 540 but its extreme anti-conservatism in many cases can make it unreliable. 502 [image: A69956_2_En_13_Figi_HTML.gif]

For determining whether the PO assumption is likely to be satisfied
                  
                  
                 for each predictor separately, there are several graphics that are useful. One is the graph comparing means of X | Y with and without assuming PO, as described in Section 13.2 (see Figure 14.​2 for an example). Another is the simple method of stratifying on each predictor and computing the logits of all proportions of the form Y ≥ j, j = 1, 2, …, k. When proportional odds holds, the differences in logits between different values of j should be the same at all levels of X, because the model dictates that [image: 
$$\mathop{\mathrm{logit}}\nolimits (Y \geq j\vert X) -\mathop{\mathrm{logit}}\nolimits (Y \geq i\vert X) =\alpha _{j} -\alpha _{i}$$
], for any constant X. An example of this is in Figure 13.1.
[image: A69956_2_En_13_Figa_HTML.gif]

[image: A69956_2_En_13_Fig1_HTML.gif]
Fig. 13.1Checking PO assumption separately for a series of predictors. The circle, triangle, and plus sign correspond to Y ≥ 1, 2, 3, respectively. PO is checked by examining the vertical constancy of distances between any two of these three symbols. Response variable is the severe functional disability scale sfdm2 from the 1000-patient SUPPORT dataset, with the last two categories combined because of low frequency of coma/intubation.





When Y is continuous or almost continuous and X is discrete, the PO model assumes that the logit of the cumulative distribution function of Y is parallel across categories of X.
                  
                

                  
                  
                

                  
                  
                

                  
                

                  
                  
                

                  
                  
                

                  
                 The corresponding, more rigid, assumptions of the ordinary linear model (here, parametric ANOVA) are parallelism and linearity if the normal inverse cumulative distribution function across categories of X. As an example consider the web site’s diabetes dataset, where we consider the distribution of log glycohemoglobin across subjects’ body frames.

                [image: A69956_2_En_13_Figb_HTML.gif]

              
One could conclude the right panel of Figure 13.2 displays more parallelism than the left panel displays linearity, so the assumptions of the PO model are 
                  
                  
                 better satisfied than the assumptions of the ordinary linear model.
[image: A69956_2_En_13_Fig2_HTML.gif]
Fig. 13.2Transformed empirical cumulative distribution functions stratified by body frame in the diabetes dataset. Left panel: checking all assumptions of the parametric ANOVA. Right panel: checking all assumptions of the PO model (here, Kruskal–Wallis test).





Chapter 14 has many examples of graphics for assessing fit of PO models. Regarding assessment of linearity and additivity assumptions, splines, partial residual plots, and interaction tests are among the best tools. Fagerland and Hosmer 182 have a good review of goodness-of-fit tests for the PO model.

13.3.6 Quantifying Predictive Ability
The [image: 
$$R_{N}^{2}$$
] coefficient is really computed from the model LR χ
2 (χ
2 added to a model containing only the k intercept parameters) to describe the model’s predictive power. The Somers’ D

                  xy
                

                  
                 rank correlation between [image: 
$$X\hat{\beta }$$
] and Y is an easily interpreted measure of predictive 
                  
                  
                discrimination. Since it is a rank measure, it does not matter which intercept α is used in the calculation. The probability of 
                  
                concordance, c, is also a useful measure. Here one takes all possible pairs of subjects having differing Y values and computes the fraction of such pairs for which the values of [image: 
$$X\hat{\beta }$$
] are in the same direction as the two Y values. c could be called a generalized 
                  
                  
                

                  
                  
                ROC area in this setting. As before, [image: 
$$D_{xy} = 2(c - 0.5)$$
]. Note that D

                  xy
                , c, and the 
                  
                Brier score B can easily be computed for various dichotomizations of Y, to investigate predictive ability in more detail.

13.3.7 Describing the Fitted Model

                
                  
                  
                
              
As discussed in Section 5.​1, models are best described by computing predicted values or differences in predicted values. For PO models there are four and sometimes five types of relevant predictions:
1.logit[Y ≥ j | X], i.e., the linear predictor

 

2.Prob[Y ≥ j | X]

 

3.Prob[Y = j | X]

 

4.Quantiles of Y | X (e.g., the median2)

 

5.
E(Y | X) if Y is interval scaled.

 




For the first two quantities above a good default choice for j is the middle category. Partial effect plots are as simple to draw for PO models as they are for binary logistic models.
                  
                 Other useful graphics, as before, are odds ratio charts and nomograms. For the latter, an axis displaying the predicted mean makes the model more interpretable, under scaling assumptions on Y.
                  
                

                  
                


13.3.8 Validating the Fitted Model

                
                  
                
              
The PO model is validated much the same way as the binary logistic model (see Section 10.​9). For estimating an overfitting-corrected calibration curve (Section 10.​11) one estimates Pr(Y ≥ j | X) using one j at a time.

13.3.9 
R Functions

                
                  
                
              
The rms package’s lrm

                  
                 and orm

                  
                 functions fit the PO model directly, assuming that the levels of the response variable (e.g., the levels of a factor variable) are listed in the proper order. lrm

                  
                 is intended to be used for the case where the number of unique values of Y are less than a few dozen whereas orm

                  
                 handles the continuous Y case efficiently, as well as allowing for links other than the logit. See Chapter 15 for more information.
If the response is numeric, lrm assumes the numeric codes properly order the responses. If it is a character vector and is not a factor, lrm assumes the correct ordering is alphabetic. Of course ordered variables in R are appropriate response variables for ordinal regression. The predict

                  
                 function (predict.lrm) can compute all the quantities listed in Section 13.3.7 except for quantiles.
The R functions popower

                  
                 and posamsize

                  
                 (in the 
                  
                 Hmisc package) compute power and sample size estimates for ordinal responses using the proportional odds model.
The function plot.xmean.ordinaly

                  
                 in rms computes and graphs the 
                  
                  
                quantities described in Section 13.2. It plots simple Y -stratified means overlaid with [image: 
$$\hat{E}(X\vert Y = j)$$
], with j on the x-axis. The [image: 
$$\hat{E}$$
] s are computed for both PO and continuation ratio ordinal logistic models. The Hmisc package’s summary.formula

                  
                 function is also useful for assessing the PO assumption (Figure 13.1). Generic rms functions such as validate

                  
                , calibrate

                  
                , and nomogram

                  
                 work with PO model fits from lrm as long as the analyst specifies which intercept(s) to use. 
                  
                  
                 rms has a special function generator Mean

                  
                 for constructing an easy-to-use function for getting the predicted mean Y from a PO model. This is handy with plot and nomogram

                  
                . If the fit has been run through the bootcov

                  
                 function, it is easy to use the Predict

                  
                 function to estimate bootstrap confidence limits for predicted means.


13.4 Continuation Ratio Model

              
                
                
              
            
13.4.1 Model
Unlike the PO model, which is based on cumulative probabilities, the continuation ratio (CR) model is based on conditional probabilities. The (forward) CR model 31, 52, 190 is stated as follows for Y = 0, …, k.

[image: 
$$\displaystyle\begin{array}{rcl} \Pr (Y = j\vert Y \geq j,X)& =& \frac{1} {1 +\exp [-(\theta _{j} + X\gamma )]} \\ \mathop{\mathrm{logit}}\nolimits (Y = 0\vert Y \geq 0,X)& =& \mathop{\mathrm{logit}}\nolimits (Y = 0\vert X) \\ & =& \theta _{0} + X\gamma \\ \mathop{\mathrm{logit}}\nolimits (Y = 1\vert Y \geq 1,X)& =& \theta _{1} + X\gamma \\ \ldots & & \\ \mathop{\mathrm{logit}}\nolimits (Y = k - 1\vert Y \geq k - 1,X)& =& \theta _{k-1} + X\gamma. {}\end{array}$$
]

 (13.10)

 The CR model has been said to be likely to fit ordinal responses when subjects have to “pass through” one category to get to the next. The CR model is a discrete version of the Cox proportional hazards model. The discrete hazard function is defined as Pr(Y = j | Y ≥ j).

13.4.2 Assumptions and Interpretation of Parameters


                  
                  
                The CR model assumes that the vector of regression coefficients, γ, is the same regardless of which 
                  
                conditional probability is being computed.
One could say that there is no X× condition interaction if the CR model holds. For a specific condition Y ≥ j, the model has the same assumptions as the binary logistic model (Section 10.​1.​1). That is, the model in its simplest form assumes that the log odds that Y = j conditional on Y ≥ j is linearly related to each X and that there is no interaction between the Xs.
A single odds ratio is assumed to apply equally to all conditions [image: 
$$Y \geq j,j = 0,1,2,\ldots,k - 1$$
]. If linearity and additivity hold, the X

                  m
                 + 1: X

                  m
                 odds ratio for Y = j is exp(β

                  m
                ), whatever the conditioning event Y ≥ j.
To compute Pr(Y > 0 | X) from the CR model, one only needs to take one minus Pr(Y = 0 | X). To compute other unconditional probabilities from the CR model, one must multiply the conditional probabilities. For example, [image: 
$$\Pr (Y> 1\vert X) =\Pr (Y> 1\vert X,Y \geq 1)\times \Pr (Y \geq 1\vert X) = [1-\Pr (Y = 1\vert Y \geq 1,X)][1-\Pr (Y = 0\vert X)] = [1-1/(1+\exp [-(\theta _{1}+X\gamma )])][1-1/(1+\exp [-(\theta _{0}+X\gamma )])]$$
].

13.4.3 Estimation
Armstrong and Sloan 31 and Berridge and Whitehead 52 showed how the CR model can be fitted using an ordinary binary logistic model likelihood function, after certain rows of the X matrix are duplicated and a new binary Y vector is constructed. For each subject, one constructs separate records by considering successive conditions Y ≥ 0, Y ≥ 1, …, Y ≥ k − 1 for a response variable with values 0, 1, …, k. The binary response for each applicable condition or “cohort” is set to 1 if the subject failed at the current “cohort” or “risk set,” that is, if Y = j where the cohort being considered is Y ≥ j. The constructed cohort variable is carried along with the new X and Y. This variable is considered to be categorical and its coefficients are fitted by adding k − 1 dummy variables to the binary logistic model. For ease of computation, the CR model is restated as follows, with the first cohort used as the reference cell. [image: 
$$\displaystyle{ \Pr (Y = j\vert Y \geq j,X) = \frac{1} {1 +\exp [-(\alpha +\theta _{j} + X\gamma )]}. }$$
]

 (13.11)

 Here α is an overall intercept, [image: 
$$\theta _{0} \equiv 0$$
], and θ
1, …, θ

k−1 are increments from α.

13.4.4 Residuals
To check CR model assumptions, binary logistic model partial residuals are again valuable. We separately fit a sequence of binary logistic models using a series of binary events and the corresponding applicable (increasingly small) subsets of subjects, and plot smoothed partial residuals against X for all of the binary events. 
                  
                  
                Parallelism in these plots indicates that the CR model’s constant γ assumptions are satisfied.

13.4.5 Assessment of Model Fit

                
                  
                  
                
              
The 
                  
                  
                partial residual plots just described are very useful for checking the constant slope assumption of the CR model. The next section shows how to test this assumption formally. Linearity can be assessed visually using the smoothed partial residual plot, and interactions between predictors can be tested as usual.

13.4.6 Extended CR Model


                  
                  
                The PO model has been extended by Peterson and Harrell 502 to allow for unequal slopes for some or all of the Xs for some or all levels of Y. This partial PO model requires specialized software. The CR model can be extended more easily. In R notation, the ordinary CR model is specified as [image: A69956_2_En_13_Figj_HTML.gif]


                [image: A69956_2_En_13_Figc_HTML.gif]

              
with cohort denoting a polytomous variable. The CR model can be extended to allow for some or all of the βs to change with the cohort or Y -cutoff. 31 Suppose that non-constant slope is allowed for X1 and X2. The R notation for the extended model would be

                [image: A69956_2_En_13_Figd_HTML.gif]

              
The extended CR model is a discrete version of the Cox survival model with 
                  
                time-dependent covariables.
There is nothing about the CR model that makes it fit a given dataset better than other ordinal models such as the PO model. The real benefit of the CR model is that using standard binary logistic model software one can flexibly specify how the 
                  
                  
                equal-slopes assumption can be relaxed.

13.4.7 Role of Penalization in Extended CR Model
As demonstrated in the upcoming case study, penalized MLE is invaluable in allowing the model to be extended into an unequal-slopes model insofar as the information content in the data will support. Faraway 186 has demonstrated how all data-driven steps of the modeling process increase the real variance in “final” parameter estimates, when one estimates variances without assuming that the final model was prespecified. For ordinal regression modeling, the most important modeling steps are (1) choice of predictor variables, (2) selecting or modeling predictor transformations, and (3) allowance for unequal slopes across Y -cutoffs (i.e., non-PO or non-CR). Regarding Steps (2) and (3) one is tempted to rely on graphical methods such as residual plots to make detours in the strategy, but it is very difficult to estimate variances or to properly penalize assessments of predictive accuracy for subjective modeling decisions. Regarding (1), shrinkage has been proven to work better than stepwise variable selection when one is attempting to build a main-effects model. Choosing a shrinkage factor is a well-defined, smooth, and often a unique process as opposed to binary decisions on whether variables are “in” or “out” of the model. Likewise, instead of using arbitrary subjective (residual plots) or objective (χ
2 due to cohort × covariable interactions, i.e., non-constant covariable effects), shrinkage can systematically allow model enhancements insofar as the information content in the data will support, through the use of differential penalization. Shrinkage is a solution to the dilemma faced when the analyst attempts to choose between a parsimonious model and a more complex one that fits the data. Penalization does not require the analyst to make a binary decision, and it is a process that can be validated using the bootstrap. 
                  
                  
                


13.4.8 Validating the Fitted Model

                
                  
                
              
Validation of statistical indexes such as D

                  xy
                 and model 
                  
                  
                calibration is done using techniques discussed previously, except that certain problems must be addressed. First, when using the bootstrap, the resampling must take into account the existence of multiple records per subject that were created to use the binary logistic likelihood trick. That is, sampling should be done with replacement from subjects rather than records. Second, the analyst must isolate which event to predict. This is because when observations are expanded in order to use a binary logistic likelihood function to fit the CR model, several different events are being predicted simultaneously. Somers’ D

                  xy
                 could be computed by relating [image: 
$$X\hat{\gamma }$$
] (ignoring intercepts) to the ordinal Y, but other indexes are not defined so easily. The simplest approach here would be to validate a single prediction for Pr(Y = j | Y ≥ j, X), for example. The simplest event to predict is Pr(Y = 0 | X), as this would just require subsetting on all observations in the first cohort level in the validation sample. It would also be easy to validate any one of the later conditional probabilities. The validation functions described in the next section allow for such subsetting, as well as handling the cluster sampling. Specialized calculations would be needed to validate an unconditional probability such as Pr(Y ≥ 2 | X). 
                  
                  
                


13.4.9 
R Functions
The cr.setup

                  
                 function in rms returns a list of vectors useful in constructing a dataset used to trick a binary logistic function such as lrm into fitting CR models. The subs vector in this list contains observation numbers in the original data, some of which are repeated. Here is an example.

                [image: A69956_2_En_13_Fige_HTML.gif]

              
Since the lrm

                  
                 and pentrace

                  
                 functions have the capability to penalize different parts of the model by different amounts, they are valuable for fitting extended CR models in which the cohort × predictor interactions are allowed to be only as important as the information content in the data will support. Simple main effects can be unpenalized or slightly penalized as desired.
The validate

                  
                 and calibrate

                  
                 functions for lrm

                  
                 allow specification of subject identifiers when using the bootstrap, so the samples can be constructed with replacement from the original subjects. In other words, cluster sampling is done from the expanded records. This is handled internally by the predab.resample

                  
                 function. These functions also allow one to specify a subset of the records to use in the validation, which makes it especially easy to validate the part of the model used to predict Pr(Y = 0 | X).
The plot.xmean.ordinaly

                  
                 function is useful for checking the CR assumption for single predictors, as described earlier. [image: A69956_2_En_13_Figk_HTML.gif]



13.5 Further Reading

                            [image: A69956_2_En_13_Figf_HTML.gif] See 5, 25, 26, 31, 32, 52, 63, 64, 113, 126, 240, 245, 276, 354, 449, 502, 561, 664, 679 for some excellent background references, applications, and extensions to the ordinal models. 663 and 428 demonstrate how to model ordinal outcomes with repeated measurements within subject using random effects in Bayesian models. The first to develop an ordinal regression model were Aitchison and Silvey 8.

                            [image: A69956_2_En_13_Figg_HTML.gif] Some analysts feel that combining categories improves the performance of test statistics when fitting PO models when sample sizes are small and cells are sparse. Murad et al. 469 demonstrated that this causes more problems, because it results in overly conservative Wald tests.

                            [image: A69956_2_En_13_Figh_HTML.gif] Anderson and Philips [26, p. 29] proposed methods for constructing properly spaced response values given a fitted PO model.

[image: A69956_2_En_13_Figi_HTML.gif] The simplest demonstration of this is to consider a model in which there is a single predictor that is totally independent of a nine-level response Y, so PO must hold. A PO model is fitted in SAS using:

              [image: 
$$\displaystyle{\begin{array}{l} \mathtt{DATA\ test;} \\ \mathtt{DO\ i = 1\ to\ 50;} \\ \qquad \quad \mathtt{y = FLOOR(RANUNI(151) {\ast}9);} \\ \qquad \quad \mathtt{x = RANNOR(5);} \\ \qquad \quad \mathtt{OUTPUT;} \\ \qquad \quad \mathtt{END;} \\ \mathtt{PROC\ LOGISTIC;\ MODEL\ y = x;} \end{array} }$$
]



            
The score test for PO was χ
2 = 56 on 7 d.f., P < 0. 0001. This problem results from some small cell sizes in the distribution of Y. 502 The P-value for testing the regression effect for X was 0.76.

[image: A69956_2_En_13_Figj_HTML.gif] The R glmnetcr package by Kellie Archer provides a different way to fit continuation ratio models.

[image: A69956_2_En_13_Figk_HTML.gif] Bender and Benner 48 have some examples using the precursor of the rms package for fitting and assessing the goodness of fit of ordinal logistic regression models.

13.6 Problems
Test for the association between disease group and total hospital cost in SUPPORT, without imputing any missing costs (exclude the one patient having zero cost).
1.Use the Kruskal–Wallis rank test.

 

2.Use the proportional odds ordinal logistic model generalization of the Wilcoxon–Mann–Whitney Kruskal–Wallis Spearman test. Group total cost into 20 quantile groups so that only 19 intercepts will need to be in the model, not one less than the number of subjects (this would have taken the program too long to fit the model). Use the likelihood ratio χ
2 for this and later steps.

 

3.Use a binary logistic model to test for association between disease group and whether total cost exceeds the median of total cost. In other words, group total cost into two quantile groups and use this binary variable as the response. What is wrong with this approach?

 

4.Instead of using only two cost groups, group cost into 3, 4, 5, 6, 8, 10, and 12 quantile groups. Describe the relationship between the number of intervals used to approximate the continuous response variable and the efficiency of the analysis. How many intervals of total cost, assuming that the ordering of the different intervals is used in the analysis, are required to avoid losing significant information in this continuous variable?

 

5.If you were selecting one of the rank-based tests for testing the association between disease and cost, which of any of the tests considered would you choose?

 

6.Why do all of the tests you did have the same number of degrees of freedom for the hypothesis of no association between dzgroup and totcst?

 

7.What is the advantage of a rank-based test over a parametric test based on log(cost)?

 

8.Show that for a two-sample problem, the numerator of the score test for comparing the two groups using a proportional odds model is exactly the numerator of the Wilcoxon-Mann-Whitney two-sample rank-sum test.
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Footnotes
1If [image: 
$$\hat{\beta }$$
] were derived from separate binary fits, all [image: 
$$\bar{U}_{\cdot m} \equiv 0$$
].

 

2If Y does not have very many levels, the median will be a discontinuous function of X and may not be satisfactory.
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This case study is taken from Harrell et al. 272 which described a World Health Organization study 439 in which vital signs and a large number of clinical signs and symptoms were used to develop a predictive model for an ordinal response. This response consists of laboratory assessments of diagnosis and severity of illness related to pneumonia, meningitis, and sepsis. Much of the modeling strategy given in Chapter 4 was used to develop the model, with additional emphasis on 
              
              
            penalized maximum likelihood estimation (Section 9.​10). The following laboratory data are used in the response: cerebrospinal fluid (CSF) culture from a lumbar puncture (LP), blood culture (BC), arterial oxygen saturation (SaO
2, a measure of lung dysfunction), and chest X-ray (CXR). The sample consisted of 4552 infants aged 90 days or less.
This case study covers these topics:
1.definition of the ordinal response (Section 14.1);

 

2.scoring and clustering of clinical signs (Section 14.2);

 

3.testing adequacy of weights specified by subject-matter specialists and assessing the utility of various scoring schemes using a tentative ordinal logistic model (Section 14.3);

 

4.assessing the basic ordinality assumptions and examining the proportional odds and continuation ratio (PO and CR) assumptions separately for each predictor (Section 14.4);

 

5.deriving a tentative PO model using cluster scores and regression splines (Section 14.5);

 

6.using residual plots to check PO, CR, and linearity assumptions (Section 14.6);

 

7.examining the fit of a CR model (Section 14.7);

 

8.utilizing an extended CR model to allow some or all of the regression coefficients to vary with cutoffs of the response level as well as to provide formal tests of constant slopes (Section 14.8);

 

9.using 
                      
                      
                    penalized maximum likelihood estimation to improve accuracy (Section 14.9);

 

10.approximating the full model by a sub-model and drawing a nomogram on the basis of the sub-model (Section 14.10); and

 

11.validating the ordinal model using the bootstrap (Section 14.11).

 




14.1 Response Variable
To be a candidate for BC and CXR, an infant had to have a clinical indication for one of the three diseases, according to prespecified criteria in the study protocol (n = 2398). Blood work-up (but not necessarily LP) and CXR was also done on a random sample intended to be 10% of infants having no signs or symptoms suggestive of infection (n = 175). Infants with signs suggestive of meningitis had LP done. All 4552 infants received a full physical exam and standardized pulse oximetry to measure SaO
2. The vast majority of infants getting CXR had the X-rays interpreted by three independent radiologists.
The analyses that follow are not corrected for verification bias 687 with respect to BC, LP, and CXR, but Section 14.1 has some data describing the extent of the problem, and the problem is reduced by conditioning on a large number of covariates.
Patients were assigned to the worst qualifying outcome category. Table 14.1 shows the definition of the ordinal outcome variable Y and shows the distribution of Y by the lab work-up strategy.
Table 14.1Ordinal Outcome Scale


	Outcome
	Definition
	
                          n
                        
	Fraction in Outcome Level
	 	 
	Level
	 	 	BC, CXR
	Not
	Random

	
                          Y
                        
	 	 	Indicated
	Indicated
	Sample

	 	 	 	(n = 2398)
	(n = 1979)
	(n = 175)

	0
	None of the below
	3551
	0.63
	0.96
	0.91

	1
	90% ≤ SaO
2 < 95%

	490
	0.17
	0.04 1

	0.05

	 	or CXR+
	 	 	 	 
	2
	BC+ or CSF+
	511
	0.21
	0.00 2

	0.03

	 	or SaO
2 < 90%

	 	 	 	 




The effect of verification bias is a false negative fraction of 0.03 for Y = 2, from comparing the detection fraction of zero for Y = 2 in the “Not Indicated” group with the observed positive fraction of 0.03 in the random sample that was fully worked up. The extent of verification bias in Y = 1 is [image: 
$$0.05 - 0.04 = 0.01$$
]. These biases are ignored in this analysis.

14.2 Variable Clustering

              
                
                
              
            
Forty-seven clinical signs were collected for each infant. Most questionnaire items were scored as a single variable using equally spaced codes, with 0 to 3 representing, for example, sign not present, mild, moderate, severe. The resulting list of clinical signs with their abbreviations is given in Table 14.2. The signs are organized into clusters as discussed later.
Table 14.2Clinical Signs


	Cluster Name
	Sign
	Name
	Values

	 	Abbreviation
	of Sign
	 
	bul.conv
	abb
	bulging fontanel
	0-1

	 	convul
	hx convulsion
	0-1

	hydration
	abk
	sunken fontanel
	0-1

	 	hdi
	hx diarrhoea
	0-1

	 	deh
	dehydrated
	0-2

	 	stu
	skin turgor
	0-2

	 	dcp
	digital capillary refill
	0-2

	drowsy
	hcl
	less activity
	0-1

	 	qcr
	quality of crying
	0-2

	 	csd
	drowsy state
	0-2

	 	slpm
	sleeping more
	0-1

	 	wake
	wakes less easily
	0-1

	 	aro
	arousal
	0-2

	 	mvm
	amount of movement
	0-2

	agitated
	hcm
	crying more
	0-1

	 	slpl
	sleeping less
	0-1

	 	con
	consolability
	0-2

	 	csa
	agitated state
	0-1

	crying
	hcm
	crying more
	0-1

	 	hcs
	crying less
	0-1

	 	qcr
	quality of crying
	0-2

	 	smi2
	smiling ability × age > 42 days
	0-2

	reffort
	nfl
	nasal flaring
	0-3

	 	lcw
	lower chest in-drawing
	0-3

	 	gru
	grunting
	0-2

	 	ccy
	central cyanosis
	0-1

	stop.breath
	hap
	hx stop breathing
	0-1

	 	apn
	apnea
	0-1

	ausc
	whz
	wheezing
	0-1

	 	coh
	cough heard
	0-1

	 	crs
	crepitation
	0-2

	hxprob
	hfb
	fast breathing
	0-1

	 	hdb
	difficulty breathing
	0-1

	 	hlt
	mother report resp. problems
	none, chest, other

	feeding
	hfa
	hx abnormal feeding
	0-3

	 	absu
	sucking ability
	0-2

	 	afe
	drinking ability
	0-2

	labor
	chi
	previous child died
	0-1

	 	fde
	fever at delivery
	0-1

	 	ldy
	days in labor
	1-9

	 	twb
	water broke
	0-1

	abdominal
	adb
	abdominal distension
	0-4

	 	jau
	jaundice
	0-1

	 	omph
	omphalitis
	0-1

	fever.ill
	illd
	age-adjusted no. days ill
	 
	 	hfe
	hx fever
	0-1

	pustular
	conj
	conjunctivitis
	0-1

	 	oto
	otoscopy impression
	0-2

	 	puskin
	pustular skin rash
	0-1





Here, hx stands for history, ausc for auscultation, and hxprob for history of problems. Two signs (qcr, hcm) were listed twice since they were later placed into two clusters each.
Next, hierarchical 
                
                
              clustering was done using the matrix of squared Spearman rank correlation coefficients as the similarity matrix. The varclus

                
               R function was used as follows. 
                
              


              [image: A69956_2_En_14_Figa_HTML.gif]

            
The
                
               output appears in Figure 14.1. This output served as a starting point for clinicians to use in constructing more meaningful clinical clusters. The clusters in Table 14.2 were the consensus of the clinicians who were the investigators in the WHO study. Prior subject matter knowledge plays a key role at this stage in the analysis.
[image: A69956_2_En_14_Fig1_HTML.gif]
Fig. 14.1Hierarchical variable clustering using Spearman ρ
2 as a similarity measure for all pairs of variables. Note that since the hlt variable was nominal, it is represented by two dummy variables here.






14.3 Developing Cluster Summary Scores
The clusters listed in Table 14.2 were first scored by the first principal component of transcan

                
              -transformed signs, denoted by PC
1. Knowing that the resulting weights may be too complex for clinical use, the primary reasons for analyzing the principal components were to see if some of the clusters could be removed from consideration so that the clinicians would not spend time developing scoring rules for them. Let us “peek” at Y to assist in scoring clusters at this point, but to do so in a very structured way that does not involve the examination of a large number of individual coefficients.
To judge any cluster scoring scheme, we must pick a tentative outcome model. For this purpose we chose the PO model. By using the 14 PC
1s corresponding to the 14 clusters, the fitted PO model had a likelihood ratio (LR) χ
2 of 1155 with 14 d.f., and the predictive 
                
                
              discrimination of the clusters was quantified by a Somers’ D

                xy
               rank correlation between [image: 
$$X\hat{\beta }$$
] and Y of 0.596. The following clusters were not statistically important predictors and we assumed that the lack of importance of the PC
1s in predicting Y (adjusted for the other PC
1s) justified a conclusion that no sign within that cluster was clinically important in predicting Y: hydration, hxprob, pustular, crying, fever.ill, stop.breath, labor. This list was identified using a backward step-down procedure on the full model. The total Wald χ
2 for these seven PC
1s was 22.4 (P = 0. 002). The reduced model had LR χ
2 = 1133 with 7 d.f., D

                xy
               = 0. 591. The bootstrap validation in Section 14.11 penalizes for examining all candidate predictors.
The clinicians were asked to rank the clinical severity of signs within each potentially important cluster. During this step, the clinicians also ranked severity levels of some of the component signs, and some cluster scores were simplified, especially when the signs within a cluster occurred infrequently. The clinicians also assessed whether the severity points or weights should be equally spaced, assigning unequally spaced weights for one cluster (agitated). The resulting rankings and sign combinations are shown in Table 14.3. The signs or sign combinations separated by a comma are treated as separate categories, whereas some signs were unioned (“or”–ed) when the clinicians deemed them equally important. As an example, if an additive cluster score was to be used for drowsy, the scorings would be 0 = none present, 1 = hcl, 2 = qcr>0, 3 = csd>0 or slpm or wake, 4 = aro>0, 5 = mvm>0 and the scores would be added.
Table 14.3Clinician Combinations, Rankings, and Scorings of Signs


	Cluster
	Combined/Ranked Signs in Order of Severity
	Weights

	bul.conv
	abb ∪ convul
	0–1

	drowsy
	hcl, qcr > 0, csd > 0 ∪ slpm ∪ wake, aro > 0, mvm > 0
	0–5

	agitated
	hcm, slpl, con=1, csa, con=2
	0, 1, 2, 7, 8, 10

	reffort
	nfl > 0, lcw > 1, gru=1, gru=2, ccy
	0–5

	ausc
	whz, coh, crs > 0
	0–3

	feeding
	hfa=1, hfa=2, hfa=3, absu=1 ∪ afe=1,
	0–5

	 	absu=2 ∪ afe=2
	 
	abdominal
	jau ∪ abd > 0 ∪ omph
	0–1





This table reflects some data reduction already (unioning some signs and selection of levels of ordinal signs) but more reduction is needed. Even after signs are ranked within a cluster, there are various ways of assigning the cluster scores. We investigated six methods. We started with the purely statistical approach of using PC
1 to summarize each cluster. Second, all sign combinations within a cluster were unioned to represent a 0/1 cluster score. Third, only sign combinations thought by the clinicians to be severe were unioned, resulting in drowsy=aro>0 or mvm>0, agitated=csa or con=2, reffort=lcw>1 or gru>0 or ccy, ausc=crs>0, and feeding=absu>0 or afe>0. For clusters that are not scored 0/1 in Table 14.3, the fourth summarization method was a hierarchical one that used the weight of the worst applicable category as the cluster score. For example, if aro=1 but mvm=0, drowsy would be scored as 4. The fifth method counted the number of positive signs in the cluster. The sixth method summed the weights of all signs or sign combinations present. Finally, the worst sign combination present was again used as in the second method, but the points assigned to the category were data-driven ones obtained by using extra dummy variables. This provided an assessment of the adequacy of the clinician-specified weights. By comparing rows 4 and 7 in Table 14.4 we see that response data-driven sign weights have a slightly worse 
                
              AIC, indicating that the number of extra β parameters estimated was not justified by the improvement in χ
2. The hierarchical method, using the clinicians’ weights, performed quite well. The only cluster with inadequate clinician weights was ausc—see below. The PC
1 method, without any guidance, performed well, as in 268. The only reasons not to use it are that it requires a coefficient for every sign in the cluster and the coefficients are not translatable into simple scores such as 0, 1, ….
Table 14.4Predictive information of various cluster scoring strategies. AIC is on the likelihood ratio χ
2 scale.


	Scoring Method
	LR χ
2

	d.f.
	AIC

	
PC
1 of each cluster
	1133
	7
	1119

	Union of all signs
	1045
	7
	1031

	Union of higher categories
	1123
	7
	1109

	Hierarchical (worst sign)
	1194
	7
	1180

	Additive, equal weights
	1155
	7
	1141

	Additive using clinician weights
	1183
	7
	1169

	Hierarchical, data-driven weights
	1227
	25
	1177





Representation of clusters by a simple union of selected signs or of all signs is inadequate, but otherwise the choice of methods is not very important in terms of explaining variation in Y. We chose the fourth method, a hierarchical severity point assignment (using weights that were prespecified by the clinicians), for its ease of use and of handling missing component variables (in most cases) and potential for speeding up the clinical exam (examining to detect more important signs first). Because of what was learned regarding the relationship between ausc and Y, we modified the ausc cluster score by redefining it as ausc=crs>0 (crepitations present). Note that neither the “tweaking” of ausc nor the examination of the seven scoring methods displayed in Table 14.4 is taken into account in the model validation. 
                
                
              


14.4 Assessing Ordinality of Y for each X, and Unadjusted Checking of PO and CR Assumptions
Section 13.​2 described a graphical method for
                
                
               assessing the 
                
                
              ordinality assumption for Y separately with respect to each X, and for assessing PO and CR assumptions individually. Figure 14.2 is an example of such displays. For this dataset we expect strongly nonlinear effects for temp, rr, and hrat, so for those predictors we plot the mean absolute differences from suitable “normal” values as an approximate solution. 
                
              

                
                
              
[image: A69956_2_En_14_Fig2_HTML.gif]
Fig. 14.2Examination of the ordinality of Y for each predictor by assessing how varying Y relate to the mean X, and whether the trend is monotonic. Solid lines connect the simple stratified means, and dashed lines connect the estimated expected value of X | Y = j given that PO holds. Estimated expected values from the CR model are marked with Cs.






              [image: A69956_2_En_14_Figb_HTML.gif]

            
The plot is shown in Figure 14.2. Y does not seem to operate in an ordinal fashion with respect to age, | rr− 60 | , or ausc. For the other variables, 
                
                
              ordinality holds, and PO holds reasonably well for the other variables. For heart rate, the PO assumption appears to be satisfied perfectly. CR model assumptions appear to be more tenuous than PO assumptions, when one variable at a time is fitted.


14.5 A Tentative Full Proportional Odds Model

              
                
                
                
              
            
Based on what was determined in Section 14.3, the original list of 47 signs was reduced to seven predictors: two unions of signs (bul.conv, abdominal), one single sign (ausc), and four “worst category” point assignments (drowsy, agitated, reffort, feeding). Seven clusters were dropped for the time being because of weak associations with Y. Such a limited use of variable selection reduces the severe problems inherent with that technique.
At this point in model development add to the model age and vital signs: temp (temperature), rr (respiratory rate), hrat (heart rate), and waz, weight-for-age Z-score. Since age was expected to modify the interpretation of temp, rr, and hrat, and interactions between continuous variables would be difficult to use in the field, we categorized age into three intervals: 0–6 days (n = 302), 7–59 days (n = 3042), and 60–90 days (n = 1208).3 
                
              


              [image: A69956_2_En_14_Figc_HTML.gif]

            
The new variables temp, rr, hrat, waz were missing in, respectively, n = 13, 11, 147, and 20 infants. Since the three vital sign variables are somewhat correlated with each other, customized single imputation models were developed to impute all the missing values 
                
                
               without assuming linearity or even monotonicity of any of the regressions. 
                
              

                
              


              [image: A69956_2_En_14_Figd_HTML.gif]

            
After transcan

                
               estimated optimal restricted cubic spline transformations, temp could be predicted with adjusted R
2 = 0. 17 from hrat and rr, hrat could be predicted with adjusted R
2 = 0. 16 from temp and rr, and rr could be predicted with adjusted R
2 of only 0. 06. The first two R
2, while not large, mean that customized imputations are more efficient than imputing with constants. Imputations on rr were closer to the median rr of 48/minute as compared with the other two vital signs whose imputations have more variation. In a similar manner, waz was imputed using age, birth weight, head circumference, body length, and prematurity (adjusted R
2 for predicting waz from the others was 0.74). The continuous predictors temp, hrat, rr were not assumed to linearly relate to the log odds that Y ≥ j. Restricted cubic spline functions with five knots for temp,rr and four knots for hrat,waz were used to model the effects of these variables: 
                
              


              [image: A69956_2_En_14_Fige_HTML.gif]

            

              Logistic Regression Model
            
lrm(formula = Y ~ ageg * (rcs(temp, 5) + rcs(rr, 5) + rcs(hrat,
4)) + rcs(waz, 4) + bul.conv + drowsy + agitated + reffort +
ausc + feeding + abdominal, data = Sc, x = TRUE, y = TRUE)
	 	Model Likelihood
	Discrimination
	Rank Discrim.

	 	Ratio Test
	Indexes
	Indexes

	Obs 4552
	LR χ
2 1393.18
	
R
2 0.355
	
C 0.826

	 0 3551
	d.f. 45
	
g 1.485
	
D

                            xy
                           0.653

	 1 490
	Pr( > χ
2)  < 0. 0001
	
g

                            r
                           4.414
	
γ 0.654

	 2 511
	 	
g

                            p
                           0.225
	
τ

                            a
                           0.240

	
[image: 
$$\max \vert \frac{\partial \log L} {\partial \beta } \vert $$
] 2​ ×​ 10−6

	 	Brier 0.120
	 



	 	Coef
	S.E. 
	Wald Z

	Pr( >  | Z | )

	y ≥ 1
	0.0653 
	7.6563 
	0.01
	0.9932

	y ≥ 2
	-1.0646 
	7.6563 
	-0.14
	0.8894

	ageg=[ 7,60)
	9.5590 
	9.9071 
	0.96
	0.3346

	ageg=[60,90]
	29.1376 
	15.8915 
	1.83
	0.0667

	temp
	-0.0694 
	0.2160 
	-0.32
	0.7480

	…
	 	 	 	 




Wald tests of nonlinearity and
                
              

                
               interaction are shown in Table 14.5.
Table 14.5Wald statistics from the proportional odds model


	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	ageg (Factor+Higher Order Factors)
	41. 49
	24
	0.0147

	
                          All Interactions
                        
	40. 48
	22
	0.0095

	temp (Factor+Higher Order Factors)
	37. 08
	12
	0.0002

	
                          All Interactions
                        
	6. 77
	8
	0.5617

	
                          Nonlinear (Factor+Higher Order Factors)
                        
	31. 08
	9
	0.0003

	rr (Factor+Higher Order Factors)
	81. 16
	12
	 < 0. 0001

	
                          All Interactions
                        
	27. 37
	8
	0.0006

	
                          Nonlinear (Factor+Higher Order Factors)
                        
	27. 36
	9
	0.0012

	hrat (Factor+Higher Order Factors)
	19. 00
	9
	0.0252

	
                          All Interactions
                        
	8. 83
	6
	0.1836

	
                          Nonlinear (Factor+Higher Order Factors)
                        
	7. 35
	6
	0.2901

	waz
	35. 82
	3
	 < 0. 0001

	
                          Nonlinear
                        
	13. 21
	2
	0.0014

	bul.conv
	12. 16
	1
	0.0005

	drowsy
	17. 79
	1
	 < 0. 0001

	agitated
	8. 25
	1
	0.0041

	reffort
	63. 39
	1
	 < 0. 0001

	ausc
	105. 82
	1
	 < 0. 0001

	feeding
	30. 38
	1
	 < 0. 0001

	abdominal
	0. 74
	1
	0.3895

	ageg × temp (Factor+Higher Order Factors)
	6. 77
	8
	0.5617

	
                          Nonlinear
                        
	6. 40
	6
	0.3801

	
                          Nonlinear Interaction: f(A,B) vs. AB
                        
	6. 40
	6
	0.3801

	ageg × rr (Factor+Higher Order Factors)
	27. 37
	8
	0.0006

	
                          Nonlinear
                        
	14. 85
	6
	0.0214

	
                          Nonlinear Interaction: f(A,B) vs. AB
                        
	14. 85
	6
	0.0214

	ageg × hrat (Factor+Higher Order Factors)
	8. 83
	6
	0.1836

	
                          Nonlinear
                        
	2. 42
	4
	0.6587

	
                          Nonlinear Interaction: f(A,B) vs. AB
                        
	2. 42
	4
	0.6587

	TOTAL NONLINEAR
	78. 20
	26
	 < 0. 0001

	TOTAL INTERACTION
	40. 48
	22
	0.0095

	TOTAL NONLINEAR + INTERACTION
	96. 31
	32
	 < 0. 0001

	TOTAL
	1073. 78
	45
	 < 0. 0001
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The bottom four lines of the table are the most important. First, there is strong evidence that some associations with Y exist (45 d.f. test) and very strong evidence of nonlinearity in one of the vital signs or in waz (26 d.f. test). There is moderately strong evidence for an interaction effect somewhere in the model (22 d.f. test). We see that the grouped age variable ageg is predictive of Y, but mainly as an effect modifier for rr, and hrat. temp is extremely nonlinear, and rr is moderately so. hrat, a difficult variable to measure reliably in young infants, is perhaps not important enough (χ
2 = 19, 9 d.f.) to keep in the final model.

14.6 Residual Plots

              
                
                
              
              
                
                
              
            
Section 13.​3.​4 defined binary logistic score residuals for isolating the PO assumption in an ordinal model. For the tentative PO model, score residuals for four of the variables were plotted using 
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The result is shown in Figure 14.3. We see strong evidence of non-PO for ausc and moderate evidence for drowsy and bul.conv, in agreement with Figure 14.2.
[image: A69956_2_En_14_Fig3_HTML.gif]
Fig. 14.3Binary logistic model score residuals for binary events derived from two cutoffs of the ordinal response Y. Note that the mean residuals, marked with closed circles, correspond closely to differences between solid and dashed lines at Y = 1, 2 in Figure 14.2. Score residual assessments for spline-expanded variables such as rr would have required one plot per d.f.





Partial residuals computed separately for each Y -cutoff (Section 13.​3.​4) are the most useful residuals for ordinal models as they simultaneously check linearity, find needed transformations, and check PO. In Figure 14.4, smoothed 
                
                
              partial residual plots were obtained for all predictors, after first fitting a simple model in which every predictor was assumed to operate linearly. Interactions were temporarily ignored and age was used as a continuous variable. 
                
              

                
              

                
              
[image: A69956_2_En_14_Fig4_HTML.gif]
Fig. 14.4Smoothed partial residuals corresponding to two cutoffs of Y, from a model in which all predictors were assumed to operate linearly and additively. The smoothed curves estimate the actual predictor transformations needed, and parallelism relates to the PO assumption. Solid lines denote Y ≥ 1 while dashed lines denote Y ≥ 2.
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The degree of 
                
                
              non-parallelism generally agreed with the degree of 
                
                
              non-flatness in Figure 14.3 and with the other score residual plots that were not shown. The partial residuals show that temp is highly nonlinear and that it is much more useful in predicting Y = 2. For the cluster scores, the linearity assumption appears reasonable, except possibly for drowsy. Other nonlinear effects are taken into account using splines as before (except for age, which is categorized).
A model can have significant lack of fit with respect to some of the predictors and still yield quite accurate predictions. To see if that is the case for this PO model, we computed predicted probabilities of Y = 2 for all infants from the model and compared these with predictions from a customized binary logistic model derived to predict Pr(Y = 2). The mean absolute difference in predicted probabilities between the two models is only 0.02, but the 0.90 quantile of that difference is 0.059. For high-risk infants, discrepancies of 0.2 were common. Therefore we elected to consider a different model. 
                
                
                
              


14.7 Graphical Assessment of Fit of CR Model


                
                
                
              

                
                
               In order to take a first look at the fit of a CR model, let us consider the two binary events that need to be predicted, and assess linearity and 
                
                
              parallelism over Y -cutoffs. Here we fit a sequence of binary fits and then use the plot.lrm.partial

                
               function, which assembles partial residuals for a sequence of fits and constructs one graph per predictor. 
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The output is in Figure 14.5. There is not much more 
                
                
              parallelism here than in Figure 14.4. For the two most important predictors, ausc and rr, there are strongly differing effects for the different events being predicted (e.g., Y = 0 or Y = 1 | Y ≥ 1). As is often the case, there is no one constant β model that satisfies assumptions with respect to all predictors simultaneously, especially when there is evidence for 
                
                
              non-ordinality for ausc in Figure 14.2. The CR model will need to be generalized to adequately fit this dataset. 
                
                
                
              
[image: A69956_2_En_14_Fig5_HTML.gif]
Fig. 14.5
loess smoothed partial residual plots for binary models that are components of an ordinal continuation ratio model. Solid lines correspond to a model for Y = 0, and dotted lines correspond to a model for Y = 1 | Y ≥ 1.






14.8 Extended Continuation Ratio Model


                
                
                
              The CR model in its ordinary form has no advantage over the PO model for this dataset. But Section 13.​4.​6 discussed how the CR model can easily be extended to relax any of its assumptions. First we use the cr.setup

                
               function to set up the data for fitting a CR model using the binary logistic trick. 
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Here the cohort variable has values ’all’, ’Y>=1’ corresponding to the conditioning events in Equation 13.​10. Once the data frame is expanded to include the different risk cohorts, vectors such as age are lengthened (to 5553 records). Now we fit a fully extended CR model that makes no equal slopes assumptions; that is, the model has to fit Y assuming the covariables are linear and additive. At this point, we omit hrat but add back all variables that were deleted by examining their association with Y. Recall that most of these seven cluster scores were summarized using PC
1. Adding back “insignificant” variables will allow us to validate the model fairly using the bootstrap, as well as to obtain confidence intervals that are not falsely narrow. 16 
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              Logistic Regression Model
            
lrm(formula = y ~ cohort * (ageg * (rcs(temp, 5) +
rcs(rr, 5)) + rcs(waz, 4) + bul.conv + drowsy +
agitated + reffort + ausc + feeding + abdominal +
hydration + hxprob + pustular + crying + fever.ill +
stop.breath + labor), data = Sc.expanded, x = TRUE,
y = TRUE)
	 	Model Likelihood
	Discrimination
	Rank Discrim.

	 	Ratio Test
	Indexes
	Indexes

	Obs 5553
	LR χ
2 1824.33
	
R
2 0.406
	
C 0.843

	 0 1512
	d.f. 87
	
g 1.677
	
D

                            xy
                           0.685

	 1 4041
	Pr( > χ
2)  < 0. 0001
	
g

                            r
                           5.350
	
γ 0.687

	
[image: 
$$\max \vert \frac{\partial \log L} {\partial \beta } \vert $$
] 8​ ×​ 10−7

	 	
g

                            p
                           0.269
	
τ

                            a
                           0.272

	 	 	Brier 0.135
	 



	 	Coef 
	S.E. 
	Wald Z

	Pr( >  | Z | )

	Intercept
	1.3966 
	9.0827 
	0.15
	0.8778

	cohort=Y ≥ 1
	1.5077 
	14.6443 
	0.10
	0.9180

	ageg=[ 7,60)
	-9.3715 
	11.4104 
	-0.82
	0.4115

	ageg=[60,90]
	-26.4502 
	17.2188 
	-1.54
	0.1245

	temp
	-0.0049 
	0.2551 
	-0.02
	0.9846

	…
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              This model has LR χ
2 = 1824 with 87 d.f. Wald statistics are in Tables 14.6 and 14.7. The 
                
                
              global test of the constant slopes assumption in the CR model (test of all interactions involving cohort) has Wald χ
2 = 172 with 43 d.f., P < 0. 0001. Consistent with Figure 14.5, the formal tests indicate that ausc is the biggest violator, followed by waz and rr.
Table 14.6Wald statistics for cohort in the CR model


	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	cohort (Factor+Higher Order Factors)
	199. 47
	44
	 < 0. 0001

	
                          All Interactions
                        
	172. 12
	43
	 < 0. 0001

	TOTAL
	199. 47
	44
	 < 0. 0001




Table 14.7Wald statistics for the continuation ratio model. Interactions with cohort assess non-proportional hazards


	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	cohort
	199. 47
	44
	 < 0. 0001

	ageg
	48. 89
	36
	0.0742

	temp
	59. 37
	24
	0.0001

	rr
	93. 77
	24
	 < 0. 0001

	waz
	39. 69
	6
	 < 0. 0001

	bul.conv
	10. 80
	2
	0.0045

	drowsy
	15. 19
	2
	0.0005

	agitated
	13. 55
	2
	0.0011

	reffort
	51. 85
	2
	 < 0. 0001

	ausc
	109. 80
	2
	 < 0. 0001

	feeding
	27. 47
	2
	 < 0. 0001

	abdominal
	1. 78
	2
	0.4106

	hydration
	4. 47
	2
	0.1069

	hxprob
	6. 62
	2
	0.0364

	pustular
	3. 03
	2
	0.2194

	crying
	1. 55
	2
	0.4604

	fever.ill
	3. 63
	2
	0.1630

	stop.breath
	5. 34
	2
	0.0693

	labor
	5. 35
	2
	0.0690

	ageg × temp
	8. 18
	16
	0.9432

	ageg × rr
	38. 11
	16
	0.0015

	cohort × ageg
	14. 88
	18
	0.6701

	cohort × temp
	8. 77
	12
	0.7225

	cohort × rr
	19. 67
	12
	0.0736

	cohort × waz
	9. 04
	3
	0.0288

	cohort × bul.conv
	0. 33
	1
	0.5658

	cohort × drowsy
	0. 57
	1
	0.4489

	cohort × agitated
	0. 55
	1
	0.4593

	cohort × reffort
	2. 29
	1
	0.1298

	cohort × ausc
	38. 11
	1
	 < 0. 0001

	cohort × feeding
	2. 48
	1
	0.1152

	cohort × abdominal
	0. 09
	1
	0.7696

	cohort × hydration
	0. 53
	1
	0.4682

	cohort × hxprob
	2. 54
	1
	0.1109

	cohort × pustular
	2. 40
	1
	0.1210

	cohort × crying
	0. 39
	1
	0.5310

	cohort × fever.ill
	3. 17
	1
	0.0749

	cohort × stop.breath
	2. 99
	1
	0.0839

	cohort × labor
	0. 05
	1
	0.8309

	cohort × ageg × temp
	2. 22
	8
	0.9736

	cohort × ageg × rr
	10. 22
	8
	0.2500

	TOTAL NONLINEAR
	93. 36
	40
	 < 0. 0001

	TOTAL INTERACTION
	203. 10
	59
	 < 0. 0001

	TOTAL NONLINEAR + INTERACTION
	257. 70
	67
	 < 0. 0001

	TOTAL
	1211. 73
	87
	 < 0. 0001






14.9 Penalized Estimation

              
                
              
              
                
                
                
              
            
We know that the CR model must be extended to fit these data adequately. If the model is fully extended to allow for all cohort × predictor interactions, we have not gained any precision or power in using an ordinal model over using a polytomous logistic model. Therefore we seek some restrictions on the model’s parameters. The lrm

                
               and pentrace

                
               functions allow for differing λ for shrinking different types of terms in the model. Here we do a grid search to determine the optimum penalty for simple main effect (non-interaction) terms and the penalty for interaction terms, most of which are terms interacting with cohort to allow for unequal slopes. The following code uses pentrace

                
               on the full extended CR model fit to find the optimum penalty factors. All combinations of the simple and interaction λs for which the interaction penalty ≥ the penalty for the simple parameters are examined. 
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We see that shrinkage from 87 d.f. down to 49.75 effective d.f. results in an improvement in χ
2–scaled AIC of 23. The optimum penalty factors were 0.05 for simple terms and 125 for interaction terms.
Let us now store a penalized version of the full fit, find where the effective d.f. were reduced, and compute χ
2 for each factor in the model. We take the effective d.f. for a collection of model parameters to be the sum of the diagonals of the matrix product defined underneath Gray’s Equation 2.​9 237 that correspond to those parameters.

              [image: A69956_2_En_14_Figo_HTML.gif]

            

              Logistic Regression Model
            
lrm(formula = y ~ cohort * (ageg * (rcs(temp, 5) + rcs(rr, 5)) +
rcs(waz, 4) + bul.conv + drowsy + agitated + reffort + ausc +
feeding + abdominal + hydration + hxprob + pustular + crying +
fever.ill + stop.breath + labor), data = Sc.expanded, x = TRUE,
y = TRUE, penalty = list(simple = 0.05, interaction = 125))
Penalty factors
simple nonlinear interaction nonlinear.interaction
0.05   0.05     125          125
	 	Model Likelihood
	Discrimination
	Rank Discrim.

	 	Ratio Test
	Indexes
	Indexes

	Obs 5553
	LR χ
2 1772.11
	
R
2 0.392
	
C 0.840

	 0 1512
	d.f. 49.75
	
g 1.594
	
D

                          xy
                         0.679

	 1 4041
	Pr( > χ
2)  < 0. 0001
	
g

                          r
                         4.924
	
γ 0.681

	
[image: 
$$\max \vert \frac{\partial \log L} {\partial \beta } \vert $$
] 1​ ×​ 10−7

	Penalty 21.48
	
g

                          p
                         0.263
	
τ

                          a
                         0.269

	 	 	Brier 0.136
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This will be the final model except for the model used in Section 14.10. The model has LR χ
2 = 1772. The output of effective.df

                
               shows that non-interaction terms have barely been penalized, and coefficients of interaction terms have been shrunken from 59 d.f. to effectively 22.6 d.f. Predictive 
                
                
              discrimination was assessed by computing the Somers’ D

                xy
               rank correlation between [image: 
$$X\hat{\beta }$$
] and whether Y = 0, in the subset of records for which Y = 0 is what was being predicted. Here D

                xy
               = 0. 672, and the ROC area is 0.838 (the unpenalized model had an apparent D

                xy
               = 0. 676). To summarize in another way the effectiveness of this model in screening infants for risks of any abnormality, the fraction of infants with predicted probabilities that Y > 0 being < 0. 05, > 0. 25, and > 0. 5 are, respectively, 0.1, 0.28, and 0.14. anova

                
               output is plotted in Figure 14.6 to give a snapshot of the importance of the various predictors. The Wald statistics used here are computed on a variance–covariance matrix which is adjusted for penalization (using Gray Equation 2.​6 237 before it was determined that the sandwich covariance estimator performs less well than the inverse of the penalized 
                
              information matrix—see p. 211).
[image: A69956_2_En_14_Fig6_HTML.gif]
Fig. 14.6Importance of predictors in full penalized model, as judged by partial Wald χ
2 minus the predictor d.f. The Wald χ
2 values for each line in the dot plot include contributions from all higher-order effects. Interaction effects by themselves have been removed as has the cohort effect.





The full equation for the fitted model is below. 
                
              Only the part of the equation used for predicting Pr(Y = 0) is shown, other than an intercept for Y ≥ 1 that does not apply when Y = 0.

              [image: A69956_2_En_14_Figq_HTML.gif]

            

[image: A69956_2_En_14_Figac_HTML.gif]
 where [image: 
$$[c] = 1\mathrm{\ if\ subject\ is\ in\ group\ }c,\ 0\mathrm{\ otherwise};\ (x)_{+} = x\mathrm{\ if\ }x > 0,\ 0\mathrm{\ otherwise}$$
].
Now consider displays of the shapes of effects of the predictors. For the continuous variables temp and rr that interact with age group, we show the effects for all three age groups separately for each Y cutoff. All effects have been centered so that the log odds at the median predictor value is zero when cohort=’all’, so these plots actually show log odds relative to reference values. The patterns in Figures 14.9 and 14.8 are in agreement with those in Figure 14.5.[image: A69956_2_En_14_Fig7_HTML.gif]
Fig. 14.7Centered effects of predictors on the log odds, showing the effects of two predictors with interaction effects for the age intervals noted. The title all refers to the prediction of Y = 0 | Y ≥ 0, that is, Y = 0. Y > =1 refers to predicting the probability of Y = 1 | Y ≥ 1.




[image: A69956_2_En_14_Fig8_HTML.gif]
Fig. 14.8Centered effects of predictors on the log odds, for predicting Y = 1 | Y ≥ 1




[image: A69956_2_En_14_Fig9_HTML.gif]
Fig. 14.9Centered effects of predictors on the log odds, for predicting Y ≥ 1. No plot was made for the fever.ill, stop.breath. or labor cluster scores.
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14.10 Using Approximations to Simplify the Model
Parsimonious models can be developed by approximating predictions from the model to any desired level of 
                
                
              accuracy. Let [image: 
$$\hat{L} = X\hat{\beta }$$
] denote the predicted log odds from the full penalized ordinal model, including multiple records for subjects with Y > 0. Then we can use a variety of techniques to approximate [image: 
$$\hat{L}$$
] from a subset of the predictors (in their raw form). With this approach one can immediately see what is lost over the full model by computing, for example, the mean absolute error in predicting [image: 
$$\hat{L}$$
]. Another advantage to full 
                
                
              model approximation is that shrinkage used in computing [image: 
$$\hat{L}$$
] is inherited by any model that predicts [image: 
$$\hat{L}$$
]. In contrast, the usual stepwise methods result in [image: 
$$\hat{\beta }$$
] that are too large since the final coefficients are estimated as if the model structure were prespecified. [image: A69956_2_En_14_Fig13_HTML.gif]



                
              CART would be particularly useful as a model approximator as it would result in a prediction tree that would be easy for health workers to use. Unfortunately, a 50-node CART was required to predict [image: 
$$\hat{L}$$
] with an R
2 ≥ 0. 9, and the mean absolute error in the predicted logit was still 0.4. This will happen when the model contains many important continuous variables.
Let’s approximate the full model using its important components, by using a step-down technique predicting [image: 
$$\hat{L}$$
] from all of the component variables using ordinary least squares. In using step-down with the least squares function ols

                
               in rms there is a problem when the initial R
2 = 1. 0 as in that case the estimate of σ = 0. This can be circumvented by specifying an arbitrary nonzero value of σ to ols

                
               (here 1.0), as we are not using the variance–covariance matrix from ols anyway. Since cohort interacts with the predictors, separate approximations can be developed for each level of Y. For this example we approximate the log odds that Y = 0 using the cohort of patients used for determining Y = 0, that is, Y ≥ 0 or cohort=’all’.
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The 
                
                
              approximate model had R
2 against the full penalized model of 0.972, and the mean absolute error in predicting [image: 
$$\hat{L}$$
] was 0.17. The D

                xy
               rank correlation between the approximate model’s predicted logit and the binary event Y = 0 is 0.665 as compared with the full model’s D

                xy
               = 0. 672. See Section 19.​5 for an example of computing correct estimates of variance of the parameters in an 
                
                
              approximate model.
Next turn to diagramming this 
                
                
              model approximation so that all predicted values can be computed without the use of a computer. We draw a type of nomogram that converts each effect in the model to a 0 to 100 scale which is just proportional to the log odds. These points are added across predictors to derive the “Total Points,” which are converted to [image: 
$$\hat{L}$$
] and then to predicted probabilities. For the interaction between rr and ageg, rms’s nomogram

                
               function automatically constructs three rr axes—only one is added into the total point score for a given subject. Here we draw a nomogram for predicting the probability that Y > 0, which is [image: 
$$1 -\Pr (Y = 0)$$
]. This probability is derived by negating [image: 
$$\hat{\beta }$$
] and [image: 
$$X\hat{\beta }$$
] in the model derived to predict Pr(Y = 0). 
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The
                
                
               nomogram is shown in Figure 14.10. As an example in using the nomogram, a six-day-old infant gets approximately 9 points for having a respiration rate of 30/minute, 19 points for having a temperature of 39∘C, 11 points for waz=0, 14 points for drowsy=5, and 15 points for reffort=2. Assuming that bul.conv=ausc=feeding=0, that infant gets 68 total points. This corresponds to [image: 
$$X\hat{\beta } = -0.68$$
] and a probability of 0.34. [image: A69956_2_En_14_Fig14_HTML.gif]
[image: A69956_2_En_14_Fig10_HTML.gif]
Fig. 14.10Nomogram for predicting Pr(Y > 0) from the penalized extended CR model, using an approximate model fitted using ordinary least squares (R
2 = 0. 972 against the full model’s predicted logits).






14.11 Validating the Model


                
              For the full CR model that was fitted using penalized maximum likelihood estimation (PMLE), we used 200 bootstrap 
                
                
               replications to estimate and then to correct for optimism in various statistical indexes: D

                xy
              , generalized R
2, intercept and slope of a linear re-calibration equation for [image: 
$$X\hat{\beta }$$
], the maximum calibration error for Pr(Y = 0) based on the linear-logistic re-calibration (Emax),
                
               and the Brier quadratic probability score B. PMLE is used at each of the 200 resamples. During the bootstrap simulations, we sample with replacement from the patients and not from the 5553 expanded records, hence the specification cluster=u$subs, where u$subs is the vector of sequential patient numbers computed from cr.setup

                
               above. To be able to assess predictive 
                
              accuracy of a single predicted probability, the subset parameter is specified so that Pr(Y = 0) is being assessed even though 5553 observations are used to develop each of the 200 models. 
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	Index
	Original
	Training
	Test
	Optimism
	Corrected
	
                        n
                      

	 	Sample
	Sample
	Sample
	 	Index
	 
	
                        D
                        
                          xy
                        
                      
	0. 67
	0. 68
	0. 67
	0. 01
	0. 66
	200

	
                        R
                        2
                      
	0. 38
	0. 38
	0. 37
	0. 01
	0. 36
	200

	Intercept
	− 0. 03
	− 0. 03
	0. 00
	− 0. 03
	0. 00
	200

	Slope
	1. 03
	1. 03
	1. 00
	0. 03
	1. 00
	200

	
                        E
                        max
                      
	0. 00
	0. 00
	0. 00
	0. 00
	0. 00
	200

	
                        D
                      
	0. 28
	0. 29
	0. 28
	0. 01
	0. 27
	200

	
                        U
                      
	0. 00
	0. 00
	0. 00
	0. 00
	0. 00
	200

	
                        Q
                      
	0. 28
	0. 29
	0. 28
	0. 01
	0. 27
	200

	
                        B
                      
	0. 12
	0. 12
	0. 12
	0. 00
	0. 12
	200

	
                        g
                      
	1. 47
	1. 50
	1. 45
	0. 04
	1. 42
	200

	
                        g
                        
                          p
                        
                      
	0. 22
	0. 23
	0. 22
	0. 00
	0. 22
	200
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We see that for the apparent D

                xy
               = 0. 672 and that the optimism from overfitting was estimated to be 0.011 for the PMLE model, so the bias-corrected estimate of predictive discrimination is 0.661. The intercept and slope needed to re-calibrate [image: 
$$X\hat{\beta }$$
] to a 45∘ line are very near (0, 1). The estimate of the maximum calibration error in predicting Pr(Y = 0) is 0.001, which is quite satisfactory. The corrected Brier score is 0.122.
The simple calibration statistics just listed do not address the issue of whether predicted values from the model are miscalibrated in a nonlinear way, so now we estimate an overfitting-corrected calibration curve nonparametrically. 
                
              


              [image: A69956_2_En_14_Figy_HTML.gif]

            
The results are shown in Figure 14.11. One can see a slightly nonlinear calibration function estimate, but the overfitting-corrected calibration is excellent everywhere, being only slightly worse than the apparent calibration. The estimated maximum calibration error is 0.044. The excellent validation for both predictive discrimination and calibration are a result of the large sample size, frequency distribution of Y, initial data reduction, and PMLE. 
                
                
                
              

                
                
                
              
[image: A69956_2_En_14_Fig11_HTML.gif]
Fig. 14.11Bootstrap calibration curve for the full penalized extended CR model. 200 bootstrap repetitions were used in conjunction with the loess smoother. 111 Also shown is a “rug plot” to demonstrate how effective this model is in discriminating patients into low- and high-risk groups for Pr(Y = 0) (which corresponds with the derived variable value y = 1 when cohort=’all’).






14.12 Summary
Clinically guided variable 
                
                
              clustering and item weighting resulted in a great reduction in the number of candidate predictor degrees of freedom and hence increased the true predictive accuracy of the model. Scores summarizing clusters of clinical signs, along with temperature, respiration rate, and weight-for-age after suitable nonlinear transformation and allowance for interactions with age, are powerful predictors of the ordinal response. Graphical methods are effective for detecting lack of fit in the PO and CR models and for diagramming the final model. 
                
                
              Model approximation allowed development of parsimonious clinical prediction tools. Approximate models inherit the shrinkage from the full model. For the ordinal model developed here, substantial shrinkage of the full model was needed.

14.13 Further Reading

[image: A69956_2_En_14_Fig12_HTML.gif] See Moons et al. 462 for another case study in penalized maximum likelihood estimation.

[image: A69956_2_En_14_Fig13_HTML.gif] The 
                
              
lasso method of Tibshirani 608, 609 also incorporates shrinkage into variable selection.

[image: A69956_2_En_14_Fig14_HTML.gif] To see how this compares with predictions using the full model, the extra clinical signs in that model that are not in the 
                
                
              approximate model were predicted individually on the basis of [image: 
$$X\hat{\beta }$$
] from the reduced model along with the signs that are in that model, using ordinary linear regression. The signs not specified when evaluating the 
                
                
              approximate model were then set to predicted values based on the values given for the 6-day-old infant above. The resulting [image: 
$$X\hat{\beta }$$
] for the full model is − 0. 81 and the predicted probability is 0.31, as compared with -0.68 and 0.34 quoted above.

              
                
                
              
            

14.14 Problems
Develop a proportional odds ordinal logistic model predicting the severity of functional disability (sfdm2) in SUPPORT. The highest level of this variable corresponds to patients dying before the two-month follow-up interviews. Consider this level as the most severe outcome. Consider the following predictors: age, sex, dzgroup, num.co, scoma, race (use all levels), meanbp, hrt, temp, pafi, alb, adlsc. The last variable is the baseline level of functional disability from the “activities of daily living scale.”

              1.For the variables adlsc, sex, age, meanbp, and others if you like, make plots of means of predictors stratified by levels of the response, to check for ordinality. On the same plot, show estimates of means assuming the proportional odds relationship between predictors and response holds. Comment on the evidence for ordinality and for proportional odds.

 

2.To allow for maximum adjustment of baseline functional status, treat this predictor as nominal (after rounding it to the nearest whole number; fractional values are the result of imputation) in remaining steps, so that all dummy variables will be generated. Make a single chart showing proportions of various outcomes stratified (individually) by adlsc, sex, age, meanbp. For continuous predictors use quartiles. You can pass the following function to the summary (summary.formula) function to obtain the proportions of patients having sfdm2 at or worse than each of its possible levels (other than the first level). An easy way to do this is to use the cumcategory

                        
                       function with the Hmisc package’s summary.formula function. 
                        
                      
cumcategory

                        
                      
summary.formula

                        
                       Print estimates to only two significant digits of precision. Manually check the calculations for the sex variable using table(sex, sfdm2). Then plot all estimates on a single graph using plot(object, which=1:4), where object was created by summary (actually summary.formula). Note: for printing tables you may want to convert sfdm2 to a 0–4 variable so that column headers are short and so that later calculations are simpler. You can use for example:

                      [image: A69956_2_En_14_Figz_HTML.gif]

                    

 

3.Use an R function such as the following to compute the logits of the cumulative proportions.

                      [image: A69956_2_En_14_Figaa_HTML.gif]

                    
As the Y = 3 category is rare, it may be even better to omit the Y ≥ 4 column above, as was done in Section 13.​3.​9 and Figure 13.​1 For each predictor pick two rows of the summary table having reasonable sample sizes, and take the difference between the two rows. Comment on the validity of the proportional odds assumption by assessing how constant the row differences are across columns. Note: constant differences in log odds (logits) mean constant ratios of odds or constant relative effects of the predictor across outcome levels.

 

4.Make two plots nonparametrically relating age to all of the cumulative proportions or their logits. You can use commands such as the following (to use the R Hmisc package). 
                        
                      


                      [image: A69956_2_En_14_Figab_HTML.gif]

                    
Comment on the linearity of the age effect (which of the two plots do you use?) and on the proportional odds assumption for age, by assessing parallelism in the second plot.

 

5.Impute race using the most frequent category and pafi and alb using “normal” values.

 

6.Fit a model to predict the ordinal response using all predictors. For continuous ones assume a smooth relationship but allow it to be nonlinear. Quantify the ability of the model to discriminate patients in the five outcomes. Do an overall likelihood ratio test for whether any variables are associated with the level of functional disability.

 

7.Compute partial tests of association for each predictor and a test of nonlinearity for continuous ones. Compute a global test of nonlinearity. Graphically display the ranking of importance of the predictors.

 

8.Display the shape of how each predictor relates to the log odds of exceeding any level of sfdm2 you choose, setting other predictors to typical values (one value per predictor). By default, Predict will make predictions for the second response category, which is a satisfactory choice here.

 

9.Use resampling to validate the Somers’ D

                        xy
                       rank correlation between predicted logit and the ordinal outcome. Also validate the generalized R
2, and slope shrinkage coefficient, all using a single R command. Comment on the quality (potential “export-ability”) of the model.
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Footnotes
1
SaO
2 was measured but CXR was not done

 

2
Assumed zero since neither BC nor LP were done.

 

3These age intervals were also found to adequately capture most of the interaction effects.
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This chapter concerns univariate continuous Y. There are many multivariable models for predicting such response variables, such as 
              
            
                        	linear models with assumed normal residuals, fitted with ordinary least squares 
                    
                    
                  


	generalized linear models and other parametric models based on special distributions such as the gamma 
                    
                    
                  


	generalized additive models (GAMs) 277


	generalization of GAMs to also nonparametrically transform Y (see Chapter 16) 
                    
                  


	quantile regression (see Section 15.2)

	other robust regression models that, like quantile regression, use an objective different from minimizing the sum of squared errors 635 
                    
                  


	semiparametric models based on the ranks of Y, such as the Cox proportional hazards model (Chapter 20) and the proportional odds ordinal logistic model (Chapters 13 and 14)

	cumulative probability models (often called cumulative link models) which are semiparametric models from a wider class of families than the logistic.
                    
                  








              
            

              
              
            Semiparametric models that treat Y as ordinal but not interval-scaled have many advantages including robustness and freedom from all distributional assumptions for Y conditional on any given set of predictors. 
              
            Advantages are demonstrated in a case study of a cumulative probability ordinal model. Some of the results are compared to quantile regression and OLS. Many of the methods used in the case study also apply to ordinary linear models.
15.1 The Linear Model
The most popular multivariable model for analyzing a univariate continuous Y is the linear model [image: 
$$\displaystyle{ E(Y \vert X) = X\beta, }$$
]

 (15.1)

 where β is estimated using ordinary least squares, that is, by solving for [image: 
$$\hat{\beta }$$
] to minimize [image: 
$$\sum (Y _{i} - X\hat{\beta })^{2}$$
].
To compute P-values and confidence limits using parametric methods we would have to assume that Y | X is normal with mean X β and constant variance σ
2
1. One could estimate conditional means of Y without any distributional assumptions, but least squares estimators are not robust to outliers or high-leverage points, and the model would be inaccurate in estimating conditional quantiles of Y | X or [image: 
$$\mathop{\mathrm{Prob}}\nolimits [Y \geq c\vert X]$$
] unless normality of residuals holds. To be accurate in estimating all quantities, the linear model assumes that the Gaussian distribution of Y | X
1 is a simple shift from the distribution of Y | X
2.

15.2 Quantile Regression

              
                
              
            
Quantile regression 355, 357 is a different approach to modeling Y. It makes no distributional assumptions other than continuity of Y, while having all the usual right hand side assumptions. Quantile regression provides essentially the same estimates as sample quantiles if there is only an intercept or a categorical predictor in the model. Quantile regression is transformation invariant — pre-transforming Y is not important.
Quantile regression is a natural generalization of sample quantiles. Let [image: 
$$\rho _{\tau }(y) = y(\tau -[y <0])$$
]. The τ
th
 sample quantile is the minimizer q of [image: 
$$\sum _{i-1}^{n}\rho _{\tau }(y_{i} - q)$$
]. For a conditional τ
th
 quantile of Y | X the corresponding quantile regression estimator [image: 
$$\hat{\beta }_{\tau }$$
] minimizes [image: 
$$\sum _{i=1}^{n}\rho _{\tau }(Y _{i} - X\beta )$$
].
In non-large samples, quantile regression is not as efficient at estimating quantiles as is ordinary least squares at estimating the mean, if the latter’s assumptions hold.
Koenker’s quantreg

                
               package in R 356 implements quantile regression, and the rms package’s Rq 

                
              function provides a front-end that gives rise to various graphics and inference tools.
Using quantile regression, we directly model the median as a function of covariates so that only the X β structure need be correct. Other quantiles (e.g., 90th
 percentile) can be modeled but standard errors will be much larger as it is more difficult to precisely estimate outer quantiles.

15.3 Ordinal Regression Models for Continuous Y

A different robust semiparametric regression approach than quantile regression is the cumulative probability ordinal model. 
                
              

                
              
                            
                
              Semiparametric models have several advantages over parametric models such as OLS.
                
              While quantile regression has no restriction in the parameters when modeling one quantile versus another2, ordinal cumulative probability models assume a connection between distributions of Y for different X. Ordinal regression even makes one less assumption than quantile regression about the distribution of Y for a specific X: the distribution need not be continuous.
Applying an increasing 1–1 transformation to Y results in no change to regression coefficient estimates with ordinal regression3. Regression coefficient estimates are completely robust to extreme Y values4. Estimates of quantiles of Y from ordinal regression are exactly transformation-preserving, e.g., the estimate of the median of logY is exactly the log of the estimate of the median Y.


                
              

                
              
                            
                
              For a general continuous distribution function F(y), an ordinal regression model based on cumulative probabilities may be stated as follows5. Let the ordered unique values of Y be denoted by [image: 
$$y_{1},y_{2},\ldots,y_{k}$$
] and let the intercepts associated with [image: 
$$y_{1},\ldots,y_{k}$$
] be [image: 
$$\alpha _{1},\alpha _{2},\ldots,\alpha _{k}$$
], where α
1 = ∞ because [image: 
$$\mathop{\mathrm{Prob}}\nolimits [Y \geq y_{1}] = 1$$
]. Let [image: 
$$\alpha _{y} =\alpha _{i},i: y_{i} = y$$
]. Then [image: 
$$\displaystyle{ \mathop{\mathrm{Prob}}\nolimits [Y \geq y_{i}\vert X] = F(\alpha _{i} + X\beta ) = F(\alpha _{y_{i}} + X\beta ) }$$
]

 (15.2)

 For the OLS fully parametric case,
                
              the model may be restated [image: 
$$\displaystyle\begin{array}{rcl} \mathop{\mathrm{Prob}}\nolimits [Y \geq y\vert X] =\mathop{ \mathrm{Prob}}\nolimits [\frac{Y - X\beta } {\sigma } \geq \frac{y - X\beta } {\sigma } ]& &{}\end{array}$$
]

 (15.3)

 [image: 
$$\displaystyle\begin{array}{rcl} = 1 -\varPhi (\frac{y - X\beta } {\sigma } ) =\varPhi (\frac{-y} {\sigma } + \frac{X\beta } {\sigma } )& &{}\end{array}$$
]

 (15.4)



so that to within an additive constant6 [image: 
$$\alpha _{y} = \frac{-y} {\sigma }$$
] (intercepts α are linear in y whereas they are arbitrarily descending in the ordinal model), and σ is absorbed in β to put the OLS model into the new notation.


                
              

                
              
                            
                
              The general ordinal regression model assumes that for fixed X
1, X
2, [image: 
$$\displaystyle\begin{array}{rcl} F^{-1}(\mathop{\mathrm{Prob}}\nolimits [Y \geq y\vert X_{ 2}]) - F^{-1}(\mathop{\mathrm{Prob}}\nolimits [Y \geq y\vert X_{ 1}])& &{}\end{array}$$
]

 (15.5)

 [image: 
$$\displaystyle\begin{array}{rcl} = (X_{2} - X_{1})\beta & &{}\end{array}$$
]

 (15.6)

 independent of the αs (parallelism assumption). If [image: 
$$F = [1 +\exp (-y)]^{-1}$$
], this is the proportional odds assumption.
                
                
              

                
                
              

Common choices of F, implemented in the R rms orm

                
              function, are shown in Table 15.1.
                
              

                
              

                
              

                
              

                
                
              

                
                
              

                
                
              

                
                
              

                
                
              

                
                
              

                
                
               The Gumbel maximum value distribution is also called the extreme value type I distribution. This distribution 
                
                
              

                
                
              (log − log link) also represents a continuous time proportional hazards model
                
              

                
              . The hazard ratio when X changes from X
1 to X
2 is [image: 
$$\exp (-(X_{2} - X_{1})\beta )$$
].Table 15.1Distribution families used in ordinal cumulative probability models. Φ denotes the Gaussian cumulative distribution function. For the Connection column, [image: 
$$P_{1} =\mathop{ \mathrm{Prob}}\nolimits [Y \geq y\vert X_{1}],P_{2} =\mathop{ \mathrm{Prob}}\nolimits [Y \geq y\vert X_{2}],\varDelta = (X_{2} - X_{1})\beta$$
]. The connection specifies the only distributional assumption if the model is fitted
                        
                      semiparametrically, i.e, contains an intercept for every unique Y value less one. For parametric models, P
1 must be specified absolutely instead of just requiring a relationship between P
1 and P
2. For example, 
                        
                      the traditional Gaussian parametric model specifies that [image: 
$$\mathop{\mathrm{Prob}}\nolimits [Y \geq y\vert X] = 1 -\varPhi (\frac{y-X\beta } {\sigma } ) =\varPhi (\frac{-y+X\beta } {\sigma } )$$
].


	Distribution
	
                          F
                        
	Inverse
	Link Name
	Connection

	 	 	(Link Function)
	 	 
	Logistic
	
                          [image: 
$$[1 +\exp (-y)]^{-1}$$
]
                        
	
                          [image: 
$$\log ( \frac{y} {1-y})$$
]
                        
	logit
	
                          [image: 
$$\frac{P_{2}} {1-P_{2}} = \frac{P_{1}} {1-P_{1}} \exp (\varDelta )$$
]
                        

	Gaussian
	
Φ(y)
	
Φ
−1(y)
	probit
	
                          [image: 
$$P_{2} =\varPhi (\varPhi ^{-1}(P_{1})+\varDelta )$$
]
                        

	Gumbel maximum
	
                          [image: 
$$\exp (-\exp (-y))$$
]
                        
	log(−log(y))
	log − log
	
                          [image: 
$$P_{2} = P_{1}^{\exp (\varDelta )}$$
]
                        

	 value
	 	 	 	 
	Gumbel minimum
	
                          [image: 
$$1 -\exp (-\exp (y))$$
]
                        
	
                          [image: 
$$\log (-\log (1 - y))$$
]
                        
	complementary
	
                          [image: 
$$1 - P_{2} = (1 - P_{1})^{\exp (\varDelta )}$$
]
                        

	 value
	 	 	log − log
	 
	Cauchy
	
                          [image: 
$$\frac{1} {\pi } \tan ^{-1}(y) + \frac{1} {2}$$
]
                        
	
                          [image: 
$$\tan [\pi (y -\frac{1} {2})]$$
]
                        
	cauchit
	 






                
              

                
              
                            
                
              The mean of Y | X is easily estimated from a fitted cumulative probability ordinal model by computing
                
                
              
                            [image: 
$$\displaystyle{ \sum _{i=1}^{n}y_{ i}\widehat{\mathop{ \mathrm{Prob}}\nolimits }[Y = y_{i}\vert X] }$$
]

 (15.7)

 
                
                
              and the q
th quantile of Y | X is y such that [image: 
$$F^{-1}(1 - q) - X\hat{\beta } =\hat{\alpha } _{y}$$
].7

The orm

                
              function in the rms package takes advantage of the information matrix being of a sparse tri-band diagonal form for the intercept parameters. This makes the computations efficient even for hundreds of intercepts (i.e., unique values of Y ). orm

                
              is made to handle continuous Y.
                
              

Ordinal regression has nice properties in addition to those listed above, allowing for 
                
              

                
              
                            
                
              
                            	estimation of quantiles as efficiently as quantile regression if the parallel slopes assumptions hold

	efficient estimation of mean Y


	direct estimation of [image: 
$$\mathop{\mathrm{Prob}}\nolimits [Y \geq y\vert X]$$
]


	arbitrary clumping of values of Y, while still estimating β and mean Y efficiently8


	solutions for [image: 
$$\hat{\beta }$$
] using ordinary Newton-Raphson or other popular optimization techniques

	being based on a standard likelihood function, penalized estimation can be straightforward

	Wald, score, and likelihood ratio χ
2 tests that are more powerful than tests from quantile regression.





On the last point, if there is a single predictor in the model and it is binary, the score test from the proportional odds model is essentially the Wilcoxon test, and the score test from the Gumbel 
                
                
              

                
                
              log-log cumulative probability model is essentially the log-rank test.
                
                
              

                
                
              

                
                
              

                
                
              

                
              

15.3.1 Minimum Sample Size Requirement

                
                  
                
              
When Y is continuous and the purpose of an ordinal model includes semiparametric estimation of probabilities or quantiles, the accuracy of estimates is limited even more by the accuracy of estimating the empirical cumulative distribution of Y than by estimating β. When β = 0, intercept estimates are transformations of the empirical distribution step function. As described in Section 20.​3, the sample size must be 184 to estimate the entire distribution of Y with a global margin of error not exceeding 0.1. For estimating the mean of Y, smaller sample sizes may be needed.


15.4 Comparison of Assumptions of Various Models
Quantile regression
                
              makes the fewest left-hand-side model assumptions except for the assumption that Y be continuous, but can have less estimator precision than other models and has lower power. To summarize how assumptions of parametric models compare to assumptions of semiparametric ordinal models, consider the ordinary linear model
                
              or its special case the equal variance two-sample t-test, vs. the probit or logit (proportional odds) 
                
                
              

                
                
              ordinal model or their special cases the Van der Waerden (normal-scores) two-sample rank test or the Wilcoxon two-sample test. 
                
                
              

                
                
              
                            
                
                
              All the assumptions of the linear model other than independence of residuals are captured in the following, using the more standard Y ≤ y notation: [image: 
$$\displaystyle\begin{array}{rcl} F(y\vert X) =\mathop{ \mathrm{Prob}}\nolimits [Y \leq y\vert X]& =& \varPhi (\frac{y - X\beta } {\sigma } ){}\end{array}$$
]

 (15.8)

 [image: 
$$\displaystyle\begin{array}{rcl} \varPhi ^{-1}(F(y\vert X))& =& \frac{y - X\beta } {\sigma }{}\end{array}$$
]

 (15.9)



On the other hand, ordinal models assume the following: [image: 
$$\displaystyle{ \mathop{\mathrm{Prob}}\nolimits [Y \leq y\vert X] = F(g(y) - X\beta ), }$$
]

 (15.10)

 where g is unknown and may be discontinuous. This translates to the parallelism assumption in the right panel of Figure 15.1, whereas the linear model makes the additional strong assumption of linearity of normal inverse cumulative distribution function, which arises from the Gaussian distribution assumption.[image: A69956_2_En_15_Fig1_HTML.gif]
Fig. 15.1Assumptions of the linear model (left panel) and semiparametric ordinal probit or logit (proportional odds) models (right panel). Ordinal models do not assume any shape for the distribution of Y for a given X; they only assume parallelism. The linear model can relax the parallelism assumption if σ is allowed to vary, but in practice it is difficult to know how to vary it except for the unequal variance two-sample t-test.






15.5 Dataset and Descriptive Statistics
Diabetes Mellitus (DM) type II (adult onset diabetes) is strongly associated with obesity. The currently best laboratory test for diabetes measures glycosylated hemoglobin (HbA1c
), also called glycated hemoglobin, glycohemoglobin, or hemoglobin A
1c
. HbA1c
 reflects average blood glucose for the preceding 60 to 90 days. HbA1c
  > 7. 0 is sometimes taken as a positive diagnosis of diabetes even though there are no data to support the use of a threshold. 
                
              

                
              

The goals of this analyses are to better understand effects of body size measurements on risk of DM and to enhance screening for DM. The best way to develop a model for DM screening is not to fit a binary logistic model with HbA1c
  > 7 as the response variable. There are at least two reasons for this. First, when the relationship between a measurement and its ultimate clinical impact is smooth, all cutpoints are arbitrary. There is no justification for any putative cut on HbA1c
. Second, such an analysis loses information by treating HbA1c
=2 the same as HbA1c
=6.9, and by treating HbA1c
=7.1 as equal to HbA1c
=10. Failure to use all available information results in larger standard errors of [image: 
$$\hat{\beta }$$
], lower power, and wider confidence bands. It is better to predict continuous HbA1c
 using a continuous response model, then use that model to estimate the probability that HbA1c
 exceeds any cutoff, or estimate the 0.9 quantile of HbA1c
.
The data used here are from the National Health and Nutrition Examination Survey (NHANES) 2009–2010 from the U.S. National Center 
                
                
              for Health Statistics/Centers for Disease Control. The original data may be obtained from 
                
              
                            http://​www.​cdc.​gov/​nchs/​nhanes.​htm 94; the analysis file used here, called nhgh, may be obtained from the DataSets wiki page, along with R code used to download and create the file. Note that CDC coded age ≥ 80 as 80. We use the subset of subjects with age ≥ 21 who have neither been diagnosed nor treated for DM. Descriptive statistics are shown below.

              [image: A69956_2_En_15_Figa_HTML.gif]

            

              [image: A69956_2_En_15_Figb_HTML.gif]

            

              [image: A69956_2_En_15_Figc_HTML.gif]

            

              [image: A69956_2_En_15_Figd_HTML.gif]

            
15.5.1 Checking Assumptions of OLS and Other Models


                  
                First let’s see if gh would make a Gaussian residuals model fit. Use ordinary regression on four key variables to collapse these into one variable (predicted mean from the OLS model). Stratify the predicted means into six quantile groups. Apply the normal inverse cumulative distribution function Φ
−1 to the empirical cumulative distribution functions (ECDF) of gh using these strata, and check for normality and constant σ
2. The ECDF estimates [image: 
$$\mathop{\mathrm{Prob}}\nolimits [Y \leq y\vert X]$$
] but for ordinal modeling we want to state models in terms of [image: 
$$\mathop{\mathrm{Prob}}\nolimits [Y \geq y\vert X]$$
] so take one minus the ECDF before inverse transforming.

                [image: A69956_2_En_15_Fige_HTML.gif]

              
The upper right curves in Figure 15.2 are not linear, implying that a normal conditional distribution cannot work for gh
9 There is non-parallelism for the logit model. The other graphs will be used to guide selection of an ordinal model below.[image: A69956_2_En_15_Fig2_HTML.gif]
Fig. 15.2Examination of normality and constant variance assumption, and assumptions for various ordinal models







15.6 Ordinal Regression Applied to HbA1c




                
              

                
              
                            
                
              In the upper left panel of Figure 15.2, logit inverse curves are not parallel so the proportional odds assumption does not hold when predicting HbA1c
. The log-log link yields the highest degree of parallelism and most constant regression coefficients across cutoffs of gh, so we use this link in an ordinal regression model (linearity of the curves is not required).
15.6.1 Checking Fit for Various Models Using Age
Another way to examine model fit is to flexibly fit the single most important predictor (age) using a variety of methods, and compare predictions to sample quantiles and means based on subsets on age. We use overlapping subsets to gain resolution, with each subset composed of those subjects having age within five years of the point being predicted by the models. Here we predict the 0.5, 0.75, and 0.9 quantiles and the mean. For quantiles we can compare to quantile regression (discussed below) and for means we compare to OLS.
                  
                

                  
                


                [image: A69956_2_En_15_Figf_HTML.gif]

              
It can be seen in Figure 15.3 that models dedicated to a specific task (quantile regression for quantiles and OLS for means) were best for those tasks. 
                  
                

                  
                
                                
                  
                Although the log-log ordinal cumulative probability model did not estimate the median as accurately as some other methods, it does well for the 0.75 and 0.9 quantiles and is the best compromise overall because of its ability to also directly predict the mean as well as quantities such as [image: 
$$\mathop{\mathrm{Prob}}\nolimits [\mathrm{HbA}_{1c}> 7\vert X]$$
].[image: A69956_2_En_15_Fig3_HTML.gif]
Fig. 15.3Three estimated quantiles and estimated mean using 6 methods, compared against caliper-matched sample quantiles/means (circles). Numbers are mean absolute differences between predicted and sample quantities using overlapping intervals of age and caliper matching
                          
                        . QR:quantile regression.





From here on we focus on the log-log ordinal model. Returning to the bottom left of Figure 15.2, let’s look at quantile groups of predicted HbA1c
 by OLS and plot predicted distributions of actual HbA1c
 against empirical distributions.

                [image: A69956_2_En_15_Figg_HTML.gif]

              
Agreement between predicted and observed exceedance probability distributions is excellent in Figure 15.4.[image: A69956_2_En_15_Fig4_HTML.gif]
Fig. 15.4Observed (dashed lines, open circles) and predicted (solid lines, closed circles) exceedance probability distributions from a model using 6-tiles of OLS-predicted HbA1c
. Key shows quantile group intervals of predicted mean HbA1c
.





To return to the initial look at a linear model with assumed Gaussian residuals, fit a probit ordinal model and compare the estimated intercepts to the linear relationship with gh that is assumed by the normal distribution.
                  
                


                [image: A69956_2_En_15_Figh_HTML.gif]

              
Figure 15.5 depicts a significant departure from the linear form implied by Gaussian residuals (Eq. 15.4).
                  
                
                                [image: A69956_2_En_15_Fig5_HTML.gif]
Fig. 15.5Estimated intercepts from probit model. Linearity would have indicated Gaussian residuals.






15.6.2 Examination of BMI
Body mass index (BMI, weight divided by height2) is commonly used as an obesity measure because it is well correlated with abdominal visceral fat. But it is not obvious that BMI is the correct summary of height and weight for predicting pre-clinical diabetes, and it may be the case that body size measures other than height and weight are better predictors.
Use the log-log ordinal model to check the adequacy of BMI, adjusting for age (without assuming linearity). This can be done by examining the ratio of coefficients of log height and log weight, and also by using AIC to judge whether BMI is an adequate summary of height and weight when compared to nonlinear functions of the logs, and to a tensor spline interaction surface.
                  
                  
                

                  
                


                [image: A69956_2_En_15_Figi_HTML.gif]

              
The ratio of the coefficient of log height to the coefficient of log weight is -2.4, which is between what BMI uses and the more dimensionally reasonable weight / height3. By AIC
                  
                , a spline interaction 
                  
                  
                

                  
                surface between height and weight does slightly better than BMI in predicting HbA1c
, but a nonlinear function of BMI is barely worse. It will require other body size measures to displace BMI as a predictor.
As an aside, compare this model fit to that from the Cox proportional hazards model. 
                  
                

                  
                The Cox model uses a conditioning argument to obtain a partial likelihood free of the intercepts α (and requires a second step to estimate these log discrete hazard components) whereas we are using a full marginal likelihood of the ranks of Y 330.

                [image: A69956_2_En_15_Figj_HTML.gif]

              
Close agreement of the two is seen, as expected.

15.6.3 Consideration of All Body Size Measurements
Next we examine all body size measures, and check their redundancies.

                [image: A69956_2_En_15_Figk_HTML.gif]

              
Six size measures adequately capture the entire set. Height and BMI are removed (Figure 15.6). An advantage of removing height is that it is age-dependent due to vertebral compression in the elderly:[image: A69956_2_En_15_Fig6_HTML.gif]
Fig. 15.6Variable clustering for all potential predictors






                [image: A69956_2_En_15_Figl_HTML.gif]

              
However, upper leg length has the same declining trend, implying a survival bias or birth year effect.
In preparing to create a multivariable model, degrees of freedom are allocated according to the generalized Spearman 
                  
                  
                
                                ρ
2(Figure 15.7)10.[image: A69956_2_En_15_Fig7_HTML.gif]
Fig. 15.7Estimated median height as a smooth function of age, allowing age to interact with sex, from a proportional odds model






                [image: A69956_2_En_15_Figm_HTML.gif]

              
Parameters will be allocated in descending order of ρ
2. But note that subscapular skinfold has a large number of NAs and other predictors also have NAs. Suboptimal casewise deletion will be used until the final model is fitted (Figure 15.8).[image: A69956_2_En_15_Fig8_HTML.gif]
Fig. 15.8Generalized squared rank correlations





Because there are many competing body measures, we use backwards 
                  
                  
                stepdown to arrive at a set of predictors. The bootstrap will be used to penalize predictive ability for variable selection. First the full model is fit using casewise deletion, then we do a composite test to assess whether any of the frequently–missing predictors is important.

                [image: A69956_2_En_15_Fign_HTML.gif][image: A69956_2_En_15_Figu_HTML.gif]

              
The model achieves Spearman ρ = 0. 52, the rank correlation between predicted and observed HbA1c
.
We show the predicted mean and median HbA1c
 as a function of age, adjusting other variables to their median or mode (Figure 15.9). Compare the estimate of the median and 90th percentile with that from quantile regression.
                  
                
                                [image: A69956_2_En_15_Fig9_HTML.gif]
Fig. 15.9Estimated mean and 0.5 and 0.9 quantiles from the log-log ordinal model using casewise deletion, along with predictions of 0.5 and 0.9 quantiles from quantile regression (QR). Age is varied and other predictors are held constant to medians/modes.
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	Index
	Original
	Training
	Test
	Optimism
	Corrected
	
                          n
                        

	 	Sample
	Sample
	Sample
	 	Index
	 
	
                          ρ
                        
	0. 5225
	0. 5290
	0. 5208
	0. 0083
	0. 5142
	100

	
                          R
                          2
                        
	0. 2712
	0. 2788
	0. 2692
	0. 0095
	0. 2617
	100

	Slope
	1. 0000
	1. 0000
	0. 9761
	0. 0239
	0. 9761
	100

	
                          g
                        
	1. 2276
	1. 2505
	1. 2207
	0. 0298
	1. 1978
	100

	
                          [image: 
$$\vert \overline{\mathrm{Pr}(Y \geq Y _{0.5}) -\frac{1} {2}}\vert$$
]
                        
	0. 2007
	0. 2050
	0. 1987
	0. 0064
	0. 1943
	100



Factors Retained in Backwards Elimination
First 30 Resamples
	age
	sex
	re
	wt
	leg
	arml
	armc
	waist
	tri
	sub
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	•
	•
	 	•
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	 	•
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	 	•
	 	•
	 	•
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	•
	 	•
	•
	•
	 	•
	•
	•
	•
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	 	•
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	 	 	•
	•
	•
	•

	•
	 	•
	•
	•
	 	•
	•
	•
	•

	•
	 	•
	•
	•
	 	•
	•
	•
	•

	•
	 	•
	 	•
	 	•
	 	•
	•



Frequencies of Numbers of Factors Retained 	5
	6
	7
	8
	9
	10

	1
	19
	29
	46
	4
	1





Next we fit the reduced model, using multiple imputation to impute missing predictors (Figure 15.10).
                  
                  
                
                                [image: A69956_2_En_15_Fig10_HTML.gif]
Fig. 15.10ANOVA for reduced model, after multiple imputation, with addition of a combined effect for four size variables




[image: A69956_2_En_15_Fig11_HTML.gif]
Fig. 15.11Partial effects (log hazard or log-log cumulative probability scale) of all predictors in reduced model, after multiple imputation
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                [image: A69956_2_En_15_Figq_HTML.gif]

              
Compare the estimated age partial effects and confidence intervals with those from a model using casewise deletion, and with bootstrap nonparametric confidence intervals (also with casewise deletion). 
                  
                  
                


                [image: A69956_2_En_15_Figr_HTML.gif]

              
Figure 15.13 depicts the relationship between various predicted quantities, demonstrating that the ordinal model makes fewer model assumptions that dictate their connections. A Gaussian or log-Gaussian model would have a straight-line relationship between the predicted mean and median.[image: A69956_2_En_15_Fig12_HTML.gif]
Fig. 15.12Partial effect for age from multiple imputation (center red line) and casewise deletion (center blue line) with symmetric Wald 0.95 confidence bands using casewise deletion (gray shaded area), basic bootstrap confidence bands using casewise deletion (blue lines), percentile bootstrap confidence bands using casewise deletion (dashed blue lines), and symmetric Wald confidence bands accounting for multiple imputation (red lines).




[image: A69956_2_En_15_Fig13_HTML.gif]
Fig. 15.13Predicted mean HbA1c
vs. predicted median and 0.9 quantile along with their marginal distributions






                [image: A69956_2_En_15_Figs_HTML.gif]

              
Finally, let us draw a nomogram that shows the full power of ordinal models, by predicting five quantities of interest.

                [image: A69956_2_En_15_Figt_HTML.gif]

                [image: A69956_2_En_15_Fig14_HTML.gif]
Fig. 15.14Nomogram for predicting median, mean, and 0.9 quantile of glycohemoglobin, along with the estimated probability that HbA1c
 ≥ 6. 5, 7, or 7. 5, all from the log-log ordinal model
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Footnotes
1The latter assumption may be dispensed with if we use a robust Huber–White or bootstrap covariance matrix estimate. Normality may sometimes be dispensed with by using bootstrap confidence intervals.

 

2Quantile regression allows the estimated value of the 0.5 quantile to be higher than the estimated value of the 0.6 quantile for some values of X. Composite quantile regression 690 removes this possibility by
                    
                    
                  forcing all the X coefficients to be the same across multiple quantiles, a restriction not unlike what cumulative probability ordinal models make.

 

3For symmetric distributions applying a decreasing transformation will negate the coefficients. For asymmetric distributions (e.g., Gumbel), reversing the order of Y will do more than change signs.

 

4Only an estimate of mean Y from these [image: 
$$\hat{\beta }$$
] s is non-robust.

 

5It is more traditional to state the model in terms of [image: 
$$\mathop{\mathrm{Prob}}\nolimits [Y \leq y\vert X]$$
] but we use [image: 
$$\mathop{\mathrm{Prob}}\nolimits [Y \geq y\vert X]$$
] so that higher predicted values are associated with higher Y.

 

6
[image: 
$$\hat{\alpha _{y}}$$
] are unchanged if a constant is added to all y.

 

7The intercepts have to be shifted to the left one position in solving this equation because the quantile is such that [image: 
$$\mathop{\mathrm{Prob}}\nolimits [Y \leq y] = q$$
] whereas the model is stated in terms of [image: 
$$\mathop{\mathrm{Prob}}\nolimits [Y \geq y]$$
].

 

8But it is not sensible to estimate quantiles of Y when there are heavy ties in Y in the area containing the quantile.

 

9They are not parallel either.

 

10Competition between collinear size measures hurts interpretation of partial tests of association in a saturated additive model.
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16.1 Background
Fitting multiple regression models by the method of least squares is 
                
                
               one of the most commonly used methods in statistics. There are a number of challenges to the use of least squares, even when it is only used for estimation and not inference, including the following.
1.How should continuous predictors be transformed so as to get a good fit?

 

2.Is it better to transform the response variable? How does one find a good transformation that simplifies the right-hand side of the equation?

 

3.What if Y needs to be transformed non-monotonically (e.g., | Y − 100 | ) before it will have any correlation with X?
                        
                      


 




When one is trying to draw an inference about population effects using confidence limits or hypothesis tests, the most common approach is to assume that the residuals have a normal distribution. This is equivalent to assuming that the conditional distribution of the response Y given the set of predictors X is normal with mean depending on X and variance that is (one hopes) a constant independent of X. The need for a distributional assumption to enable us to draw inferences creates a number of other challenges such as the following.
1.If for the untransformed original scale of the response Y the distribution of the residuals is not normal with constant spread, ordinary methods will not yield correct inferences (e.g., confidence intervals will not have the desired 
                        
                        
                      coverage probability and the intervals will need to be asymmetric).

 

2.Quite often there is a transformation of Y that will yield well-behaving residuals. How do you find this transformation? Can you find a transformation for the Xs at the same time?

 

3.All classical statistical inferential methods assume that the full model was pre-specified, that is, the model was not modified after examining the data. How does one correct confidence limits, for example, for data-based model and transformation selection?

 





16.2 Generalized Additive Models

              
                
              
              
                
              
            
Hastie and Tibshirani 275 have developed generalized additive models (GAMs) for a variety of distributions for Y. There are semiparametric GAMs, but most GAMs for continuous Y assume that the conditional distribution of Y is from a specific distribution family. GAMs nicely estimate the transformation each continuous X requires so as to optimize a fitting criterion such as sum of squared errors or log likelihood, subject to the degrees of freedom the analyst desires to spend on each predictor. However, GAMs assume that Y has already been transformed to fit the specified distribution family.
There is excellent software available for fitting a wide variety of GAMs, such as the R packages gam, mgcv, and robustgam.
                
              

                
              

                
              


16.3 Nonparametric Estimation of Y -Transformation


                
              When the model’s left-hand side also needs transformation, either to improve R
2

                
               or to achieve constant variance of the residuals (which increases the chances of satisfying a normality assumption), there are a few approaches available. One approach is Breiman and Friedman’s alternating conditional expectation (ACE) method. 68 ACE simultaneously transforms both Y and each of the Xs so as to maximize the multiple R
2 between the transformed Y and the transformed Xs. The model is given by [image: 
$$\displaystyle{ g(Y ) = f_{1}(X_{1}) + f_{2}(X_{2}) +\ldots +f_{p}(X_{p}). }$$
]

 (16.1)

 ACE allows the analyst to impose restrictions on the transformations such as 
                
              monotonicity. It allows for categorical predictors, whose categories will automatically be given numeric scores. The transformation for Y is allowed to be 
                
              non-monotonic. One feature of ACE is its ability to estimate the 
                
               maximal correlation between an X and the response Y. Unlike the ordinary correlation coefficient (which assumes linearity) or Spearman’s rank correlation (which assumes 
                
              monotonicity), the maximal correlation has the property that it is zero if and only if X and Y are statistically independent. This property holds because ACE allows for 
                
              non-monotonic transformations of all variables. The “super smoother” (see the S supsmu

                
               function) is the basis for the nonparametric estimation of transformations for continuous Xs. 
                
              

                
              

                
              



                
              

                
              Tibshirani developed a different algorithm for nonparametric additive regression based on least squares, additivity and variance stabilization (AVAS). 607 Unlike 
                
              ACE, AVAS forces g(Y ) to be monotonic. AVAS’s fitting criterion is to maximize R
2

                
               while forcing the transformation for Y to result in nearly constant variance of residuals. The model specification is the same as for 
                
              ACE (Equation 16.3).


                
              

                
                
              

                
              ACE and 
                
              AVAS are powerful fitting algorithms, but they can result in overfitting (R
2 can be greatly inflated when one fits many predictors), and they provide no statistical inferential measures. As discussed earlier, the process of estimating transformations (especially those for Y ) can result in significant variance under-estimation, especially for small sample sizes. The bootstrap can be used to correct the apparent R
2 ([image: 
$$R_{app}^{2}$$
]) for overfitting. As before, it estimates the optimism (bias) in [image: 
$$R_{app}^{2}$$
] and subtracts this optimism from [image: 
$$R_{app}^{2}$$
] to get a more trustworthy estimate. The bootstrap can also be used to compute 
                
              confidence limits for all estimated transformations, and confidence limits for estimated predictor effects that take fully into account the uncertainty associated with the transformations. To do this, all steps involved in fitting the additive models must be repeated fresh for each re-sample.
Limited testing has shown that the sample size needs to exceed 100 for 
                
              ACE and 
                
              AVAS to provide stable estimates. In small sample sizes the bootstrap 
                
                
               bias-
                
                
              corrected estimate of R
2 will be zero because the sample information did not support simultaneous estimation of all transformations.

16.4 Obtaining Estimates on the Original Scale
A common practice in least squares fitting is to attempt to rectify lack of fit by taking parametric transformations of Y before fitting; the logarithm is the most common transformation.1 If after transformation the model’s residuals have a population median of zero, the inverse transformation of a predicted transformed value estimates the population median of Y given X. This is because unlike means, quantiles are transformation-preserving. Many analysts make the mistake of not reporting which population parameter is being estimated when inverse transforming [image: 
$$X\hat{\beta }$$
], and sometimes they even report that the mean is being estimated.
How would one go about estimating the population mean or other parameter on the untransformed scale? If the residuals are assumed to be normally distributed and if log(Y ) is the transformation, the mean of the 
                
                
              log-normal distribution, a function of both the mean and the variance of the residuals, can be used to derive the desired quantity. However, if the residuals are not normally distributed, this procedure will not result in the correct estimator. Duan 165 developed a “smearing” estimator for more nonparametrically obtaining estimates of parameters on the original scale. In the simple one-sample case without predictors in which one has computed [image: 
$$\hat{\theta }=\sum _{ i=1}^{n}\log (Y _{i})/n$$
], the residuals from this fitted value are given by [image: 
$$e_{i} =\log (Y _{i})-\hat{\theta }$$
]. The 
                
                
              smearing estimator of the population mean is [image: 
$$\sum \exp [\hat{\theta }+e_{i}]/n$$
]. In this simple case the result is the ordinary sample mean [image: 
$$\overline{Y }$$
].
The worth of Duan’s 
                
                
              smearing estimator is in regression modeling. Suppose that the regression was run on g(Y ) from which estimated values [image: 
$$\hat{g}(Y _{i}) = X_{i}\hat{\beta }$$
] and residuals on the transformed scale [image: 
$$e_{i} =\hat{ g}(Y _{i}) - X_{i}\hat{\beta }$$
] were obtained. Instead of restricting ourselves to estimating the population mean, let [image: 
$$W(y_{1},y_{2},\ldots,y_{n})$$
] denote any function of a vector of untransformed response values. To estimate the population mean in the homogeneous one-sample case, W is the simple average of all of its arguments. To estimate the population 0.25 quantile, W is the sample 0.25 quantile of [image: 
$$y_{1},\ldots,y_{n}$$
]. Then the 
                
                
              smearing estimator of the population parameter estimated by W given X is [image: 
$$W(g^{-1}(a + e_{1}),g^{-1}(a + e_{2}),\ldots,g^{-1}(a + e_{n}))$$
], where g
−1 is the inverse of the g transformation and [image: 
$$a = X\hat{\beta }$$
].
When using the 
                
              AVAS algorithm, the monotonic transformation g is estimated from the data, and the predicted value of [image: 
$$\hat{g}(Y )$$
] is given by Equation 16.3. So we extend the 
                
                
              smearing estimator as [image: 
$$W(\hat{g}^{-1}(a + e_{1}),\ldots,\hat{g}^{-1}(a + e_{n}))$$
], where a is the predicted transformed response given X. As [image: 
$$\hat{g}$$
] is nonparametric (i.e., a table look-up), the areg.boot

                
               function described below computes [image: 
$$\hat{g}^{-1}$$
] using reverse linear interpolation.
If residuals from [image: 
$$\hat{g}(Y )$$
] are assumed to be symmetrically distributed, their population median is zero and we can estimate the median on the untransformed scale by computing [image: 
$$\hat{g}^{-1}(X\hat{\beta })$$
]. To be safe, areg.boot

                
               adds the median residual to [image: 
$$X\hat{\beta }$$
] when estimating the population median (the median residual can be ignored by specifying statistic=’fitted’ to functions that operate on objects created by areg.boot).
When quantiles of Y are of major interest, a more direct way to obtain estimates is through the use of quantile regression 357. An excellent case study including comparisons with other methods such as Cox regression can be found in Austin et al. 38. 
                
              

                
              


16.5 
                            R Functions

              
                
              
            
The R acepack

                
               package’s ace

                
               function implements all the features of the 
                
              ACE algorithm, and its avas

                
               function does likewise for 
                
              AVAS. The bootstrap and 
                
                
              smearing capabilities mentioned above are offered for these estimation functions by the areg.boot

                
               (“additive regression using the bootstrap”) function in the Hmisc package
                
              . Unlike the ace

                
               and avas

                
               functions, areg.boot

                
               uses the R modeling language, making it easier for the analyst to specify the predictor variables and what is assumed about their relationships with the transformed Y. areg.boot

                
               also implements a parametric transform-both-sides approach using restricted cubic splines and canonical variates, 
                
              

                
              

                
               and offers various estimation options with and without 
                
                
              smearing. It can estimate the effect of changing one predictor, holding others constant, using the ordinary bootstrap to estimate the standard deviation of difference in two possibly transformed estimates (for two values of X), assuming normality of such differences. Normality is assumed to avoid generating a large number of bootstrap replications of time-consuming model fits. It would not be very difficult to add nonparametric bootstrap confidence limit capabilities to the software. areg.boot

                
               re-samples every aspect of the modeling process it uses, just as Faraway 186 did for parametric least squares modeling.

areg.boot

                
               implements a variety of methods as shown in the simple example below. The monotone

                
               function restricts a variable’s transformation to be monotonic, while the I function restricts it to be linear. 
                
              


              [image: A69956_2_En_16_Figa_HTML.gif]

            
The methods are best described in a case study.

16.6 Case Study


                
                
              

                
                
              Consider simulated data where the conditional distribution of Y is log-normal given X, but where transform-both-sides regression methods use unlogged Y. Predictor X
1 is linearly related to log Y, X
2 is related by [image: 
$$\vert X_{2} -\frac{1} {2}\vert$$
], and categorical X
3 has reference group a effect of zero, group b effect of 0.3, and group c effect of 0.5.

              [image: A69956_2_En_16_Figb_HTML.gif]

            

              Linear Regression Model
            
 ols(formula = log(y) ~ x1 + rcs(x2, 5) + x3)
	 	Model Likelihood
	Discrimination

	 	Ratio Test
	Indexes

	Obs 400
	LR χ
2 236.87
	
R
2 0.447

	
σ 0.4722
	d.f. 7
	
R
adj
2 0.437

	d.f. 392
	Pr( > χ
2) 0.0000
	
g 0.482



Residuals 	Min
	1Q
	Median
	3Q
	Max

	− 1. 346
	− 0. 3075
	− 0. 0134
	0. 327
	1. 527





Now fit the avas

                
               model. We use 300 bootstrap repetitions but only plot the first 20 estimates to see clearly how the bootstrap re-estimates of transformations vary. Had we wanted to restrict transformations to be linear, we would have specified the identity function, for example, I(x1). 
                
              

                
              


              [image: A69956_2_En_16_Figc_HTML.gif]

            
Note that the coefficients above do not mean very much as the scale of the transformations is arbitrary. We see that the model was very slightly overfitted (R
2 dropped from 0.44 to 0.42), and the R
2 are in agreement with the OLS model fit above.
Next we plot the transformations, 0.95 confidence bands, and a sample of the bootstrap estimates.

              [image: A69956_2_En_16_Figd_HTML.gif]

            
The plot is shown in Figure 16.1. The nonparametrically estimated transformation of x1 is almost linear, and the transformation of x2 is close to | x2 − 0. 5 | . We know that the true transformation of y is log(y), so variance stabilization and normality of residuals will be achieved if the estimated y-transformation is close to log(y). 
                
               
                
              

                
              
[image: A69956_2_En_16_Fig1_HTML.gif]
Fig. 16.1
avas

                        
                       transformations: overall estimates, pointwise 0. 95 confidence bands, and 20 bootstrap estimates (red lines).




[image: A69956_2_En_16_Fig2_HTML.gif]
Fig. 16.2Checking estimated against optimal transformation






              [image: A69956_2_En_16_Fige_HTML.gif]

            
Approximate linearity indicates that the estimated transformation is very log-like.2

Now let us obtain approximate tests of effects of each predictor. summary does this by setting all other predictors to reference values (e.g., medians), and comparing predicted responses for a given level of the predictor X with predictions for the lowest setting of X. The default predicted response for summary is the median, which is used here. Therefore tests are for differences in medians.

              [image: A69956_2_En_16_Figf_HTML.gif]

            
For example, when x1 increases from 0.2 to 0.8 we predict an increase in median y by 1.55 with bootstrap standard error 0.21, when all other predictors are held to constants. Setting them to other constants will yield different estimates of the x1 effect, as the transformation of y is nonlinear.
Next depict the fitted model by plotting predicted values, with x2 varying on the x-axis, and three curves corresponding to three values of x3. x1 is set to 0.5. Figure 16.3 shows estimates of both the median and the mean y. [image: A69956_2_En_16_Fig3_HTML.gif]
Fig. 16.3Predicted median (left panel) and mean (right panel) y as a function of x2 and x3. True population values are shown in gray.
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Footnotes
1A disadvantage of transform-both-sides regression is this difficulty of interpreting estimates on the original scale. Sometimes the use of a special generalized linear model can allow for a good fit without transforming Y.

 

2Beware that use of a data–derived transformation in an ordinary model, as this will result in standard errors that are too small. This is because model selection is not taken into account. 186
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17.1 Background
Suppose that one wished to study the occurrence of some event in a population of subjects. If the time until the occurrence of the event 
                
              

                
              were unimportant, the event could be analyzed as a binary outcome using the logistic regression model. For example, in analyzing mortality associated with open heart surgery, it may not matter whether a patient dies during the procedure or he dies after being in a coma for two months. For other outcomes, especially those concerned with chronic conditions, the time until the event is important. In a study of emphysema, death at eight years after onset of symptoms is different from death at six months. An analysis that simply counted the number of deaths would be discarding valuable information and sacrificing statistical power.

Survival analysis is used to analyze data in which the time until the event is of interest. The response variable is the time until that event and is often called a failure time, survival time, or event time. Examples of responses of interest include the time until cardiovascular death, time until death or myocardial infarction, time until failure of a light bulb, time until pregnancy, or time until occurrence of an ECG abnormality during exercise. Bull and Spiegelhalter 83 have an excellent overview of survival analysis. [image: A69956_2_En_17_Figa_HTML.gif]

The response, event time, is usually continuous, but survival analysis allows the response to be incompletely determined for some subjects. For example, suppose that after a five-year follow-up study of survival after myocardial infarction a patient is still alive. That patient’s survival time is censored on the right at five years; that is, her survival time is known only to exceed five years. The response value to be used in the analysis is 5+. Censoring can also occur when a subject is lost to follow-up. [image: A69956_2_En_17_Figb_HTML.gif]

If no responses are censored, standard regression models for continuous responses could be used to analyze the failure times by writing the expected failure time as a function of one or more predictors, assuming that the distribution of failure time is properly specified. However, there are still several reasons for studying failure time using the specialized methods of survival analysis.
1.Time to failure can have an unusual distribution. Failure time is restricted to be positive so it has a skewed distribution and will never be normally distributed.

 

2.The probability of surviving past a certain time is often more relevant than the expected survival time (and expected survival time may be difficult to estimate if the amount of censoring is large).

 

3.A function used in survival analysis, the hazard function
                        
                      , helps one to understand the mechanism of failure. 308


 




Survival analysis is used often in industrial life-testing experiments, and it is heavily used in clinical and epidemiologic follow-up studies. Examples include a randomized trial comparing a new drug with placebo for its ability to maintain remission in patients with leukemia, and an 
                
              observational study of prognostic factors in coronary heart disease. In the latter example subjects may well be followed for varying lengths of time, as they may enter the study over a period of many years.
When regression models are used for survival analysis, all the advantages of these models can be brought to bear in analyzing failure times. Multiple, independent prognostic factors can be analyzed simultaneously and treatment differences can be assessed while adjusting for 
                
              heterogeneity and 
                
              imbalances in baseline characteristics. Also, patterns in outcome over time can be predicted for individual subjects.
Even in a simple well-designed experiment, survival modeling can allow one to do the following in addition to making simple comparisons.
1.Test for and describe interactions with treatment. 
                        
                      Subgroup analyses can easily generate spurious results and they do not consider interacting factors in a dose-response manner. Once interactions are modeled, relative treatment benefits can be estimated (e.g., hazard ratios), and analyses can be done to determine if some patients are too sick or too well to have even a relative benefit.

 

2.Understand prognostic factors (strength and shape).

 

3.Model absolute effect of treatment. First, a model for the probability of surviving past time t is developed. Then differences in survival probabilities for patients on treatments A and B can be estimated. The differences will be due primarily to sickness (overall risk) of the patient and to treatment interactions.

 

4.Understand time course of treatment effect. The period of maximum effect or period of any substantial effect can be estimated from a plot of relative effects of treatment over time.

 

5.Gain power for testing treatment effects.

 

6.Adjust for imbalances in treatment allocation in non-randomized studies.

 





17.2 Censoring, Delayed Entry, and Truncation


                
              

                
                
              

                
              Responses may be left–censored and interval–censored besides being right–censored. 
                
                
               Interval–censoring is present, for example, when a measuring device functions only for a certain range of the response; measurements outside that range are censored at an end of the scale of the device. Interval–censoring also occurs when the presence of a medical condition is assessed during periodic exams. When the condition is present, the time until the condition developed is only known to be between the current and the previous exam. 
                
                
              
Left–censoring means that an event is known to have occurred before a certain time. In addition, left–truncation 
                
               and 

                  
                delayed entry are common. Nomenclature is confusing as many authors refer to 
                
              delayed entry as left–truncation. Left–truncation really means that an unknown subset of subjects failed before a certain time and the subjects didn’t get into the study. For example, one might study the survival patterns of patients who were admitted to a tertiary care hospital. Patients who didn’t survive long enough to be referred to the hospital compose the left-truncated group, and interesting questions such as the optimum timing of admission to the hospital cannot be answered from the data set. [image: A69956_2_En_17_Figc_HTML.gif]



                
              Delayed entry occurs in follow-up studies when subjects are exposed to the risk of interest only after varying periods of survival. For example, in a study of occupational exposure to a toxic compound, researchers may be interested in comparing life length of employees with life expectancy in the general population. A subject must live until the beginning of employment before exposure is possible; that is, death cannot be observed before employment. The start of follow-up is delayed until the start of employment and it may be right–censored when follow-up ends. In some studies, a researcher may want to assume that for the purpose of modeling the shape of the hazard function, time zero is the day of diagnosis of disease, while patients enter the study at various times since diagnosis. 
                
              Delayed entry occurs for patients who don’t enter the study until some time after their diagnosis. Patients who die before study entry are left-truncated. Note that the choice of time origin is very important. 53, 83, 112, 133

Heart transplant studies have been analyzed by considering time zero to be the time of enrollment in the study. Pre-transplant survival is right–censored at the time of transplant. Transplant survival experience is based on 
                
              delayed entry into the “risk set” to recognize that a transplant patient is not at risk of dying from transplant failure until after a donor heart is found. In other words, survival experience is not credited to transplant surgery until the day of transplant. Comparisons of transplant experience with medical treatment suffer from “
                
              waiting time bias” if transplant survival begins on the day of transplant instead of using 
                
              delayed entry. 209, 438, 570

There are several planned mechanisms by which a response is right–censored. Fixed type I 
                
                
              censoring occurs when a study is planned to end after two years of follow-up, or when a measuring device will only measure responses up to a certain limit. There the responses are observed only if they fall below a fixed value C. In type II 
                  
                  
                censoring, a study ends when there is a pre-specified number of events. If, for example, 100 mice are followed until 50 die, the censoring time is not known in advance.
We are concerned primarily with random type I right-censoring 
                
                
               in which each subject’s event time is observed only if the event occurs before a certain time, but the censoring time can vary between subjects. Whatever the cause of censoring, we assume that the 
                
                
              censoring is non-informative about the event; that is, the censoring is caused by something that is independent of the impending failure. Censoring is non-informative when it is caused by planned termination of follow-up or by a subject moving out of town for reasons unrelated to the risk of the event. If subjects are removed from follow-up because of a worsening condition, the informative censoring

                
                
               will result in biased estimates and inaccurate statistical inference about the survival experience. For example, if a patient’s response is censored because of an adverse effect of a drug or 
                
              noncompliance to the drug, a serious bias can result if patients with adverse experiences or noncompliance are also at higher risk of suffering the outcome. In such studies, efficacy can only be assessed fairly using the intention to treat principle: all events should be attributed to the treatment assigned even if the subject is later removed from that treatment. 
                
              
[image: A69956_2_En_17_Figd_HTML.gif]


17.3 Notation, Survival, and Hazard Functions
In survival analysis we use T to denote the response variable, as the response is usually the time until an event. Instead of defining the statistical model for the response T in terms of the expected failure time, it is advantageous to define it in terms of the survival function, S(t), given by [image: 
$$\displaystyle{ S(t) = \mathrm{Prob}\{T> t\} = 1 - F(t), }$$
]

 (17.1)

 where F(t) is the cumulative distribution function for T. If the event is death, S(t) is the probability that death occurs after time t, that is, the probability that the subject will survive at least until time t. S(t) is always 1 at t = 0; all subjects survive at least to time zero. The survival function must be non-increasing as t increases. An example of a survival function is shown in Figure 17.1. In that example subjects are at very high risk of the event in the early period so that the S(t) drops sharply. The risk is low for [image: 
$$0.1 \leq t \leq 0.6$$
], so S(t) is somewhat flat. After t = . 6 the risk again increases, so S(t) drops more quickly. Figure 17.2 depicts the 

                  
                  
                cumulative hazard function corresponding to the survival function in Figure 17.1. This function is denoted by Λ(t). It describes the accumulated risk up until time t, and as is shown later, is the negative of the log of the survival function. Λ(t) is non-decreasing as t increases; that is, the accumulated risk increases or remains the same. Another important function is the hazard function

                
              , λ(t), also called the force of mortality, or instantaneous event (death, failure) rate. The hazard at time t is related to the probability that the event will occur in a small interval around t, given that the event has not occurred before time t. By studying the event rate at a given time conditional on the event not having occurred by that time, one can learn about the mechanisms and forces of risk over time. Figure 17.3 depicts the hazard function corresponding to S(t) in Figure 17.1 and to Λ(t) in Figure 17.2. Notice that the hazard function allows one to more easily determine the phases of increased risk than looking for sudden drops in S(t) or Λ(t). [image: A69956_2_En_17_Fig1_HTML.gif]
Fig. 17.1Survival function




[image: A69956_2_En_17_Fig2_HTML.gif]
Fig. 17.2Cumulative hazard function




[image: A69956_2_En_17_Fig3_HTML.gif]
Fig. 17.3Hazard function





The hazard function is defined formally by [image: 
$$\displaystyle{ \lambda (t) =\lim _{u\rightarrow 0}\frac{\mathrm{Prob}\{t <T \leq t + u\vert T> t\}} {u}, }$$
]

 (17.2)

 which using the law of 
                
              conditional probability becomes [image: 
$$\displaystyle\begin{array}{rcl} \lambda (t)& =& \lim _{u\rightarrow 0}\frac{\mathrm{Prob}\{t <T \leq t + u\}/\mathrm{Prob}\{T> t\}} {u} \\ & =& \lim _{u\rightarrow 0}\frac{[F(t + u) - F(t)]/u} {S(t)} \\ & =& \frac{\partial F(t)/\partial t} {S(t)} \\ & =& \frac{f(t)} {S(t)}, {}\end{array}$$
]

 (17.3)



where f(t) is the probability density function of T evaluated at t, the derivative or slope of the cumulative distribution function 1 − S(t). Since [image: 
$$\displaystyle{ \frac{\partial \log S(t)} {\partial t} = \frac{\partial S(t)/\partial t} {S(t)} = -\frac{f(t)} {S(t)}, }$$
]

 (17.4)

 the hazard function
                
               can also be expressed as [image: 
$$\displaystyle{ \lambda (t) = -\frac{\partial \log S(t)} {\partial t}, }$$
]

 (17.5)

 the negative of the slope of the log of the survival function. Working backwards, the integral of λ(t) is: [image: 
$$\displaystyle{ \int _{0}^{t}\lambda (v)dv = -\log S(t). }$$
]

 (17.6)

 The integral or area under λ(t) is defined to be Λ(t), the cumulative hazard function. Therefore [image: 
$$\displaystyle{ \varLambda (t) = -\log S(t), }$$
]

 (17.7)

 or [image: 
$$\displaystyle{ S(t) =\exp [-\varLambda (t)]. }$$
]

 (17.8)

 So knowing any one of the functions S(t), Λ(t), or λ(t) allows one to derive the other two functions. The three functions are different ways of describing the same distribution.
One property of Λ(t) is that the expected value of Λ(T) is unity, since if [image: 
$$T \sim S(t)$$
], the density of T is λ(t)S(t) and [image: 
$$\displaystyle\begin{array}{rcl} E[\varLambda (T)]& =& \int _{0}^{\infty }\varLambda (t)\lambda (t)\exp (-\varLambda (t))dt \\ & =& \int _{0}^{\infty }u\exp (-u)du \\ & =& 1. {}\end{array}$$
]

 (17.9)



Now consider properties of the distribution of T. The population qth quantile (100qth percentile), T

                q
              , is the time by which a fraction q of the subjects will fail. It is the value t such that [image: 
$$S(t) = 1 - q$$
]; that is [image: 
$$\displaystyle{ T_{q} = S^{-1}(1 - q). }$$
]

 (17.10)

 The median life length is the time by which half the subjects will fail, obtained by setting S(t) = 0. 5: [image: 
$$\displaystyle{ T_{0.5} = S^{-1}(0.5). }$$
]

 (17.11)

 The qth quantile of T can also be computed by setting [image: 
$$\exp [-\varLambda (t)] = 1 - q$$
], giving [image: 
$$\displaystyle\begin{array}{rcl} T_{q}& =& \varLambda ^{-1}[-\log (1 - q)]\mathrm{\ \ and\ as\ a\ special\ case,} \\ T_{.5}& =& \varLambda ^{-1}(\log 2). {}\end{array}$$
]

 (17.12)

 The mean or expected value of T (the expected failure time) is the area under the survival function for t ranging from 0 to ∞: [image: 
$$\displaystyle{ \mu =\int _{ 0}^{\infty }S(v)dv. }$$
]

 (17.13)

 Irwin has defined mean restricted life (see [334, 335]), which is the area under S(t) up to a fixed time (usually chosen to be a point at which there is still adequate follow-up information).
The random variable T denotes a random failure time from the survival distribution S(t). We need additional notation for the response and 
                
              censoring information for the ith subject. Let T

                i
               denote the response for the ith subject. This response is the time until the event of interest, and it may be censored if the subject is not followed long enough for the event to be observed. Let C

                i
               denote the censoring time for the ith subject, and define the event indicator as [image: 
$$\displaystyle\begin{array}{rcl} e_{i}& =& 1\mathrm{\ \ if\ the\ event\ was\ observed\ \ }(T_{i} \leq C_{i}), \\ & =& 0\mathrm{\ \ if\ the\ response\ was\ censored\ \ }(T_{i}> C_{i}).{}\end{array}$$
]

 (17.14)

 The observed response is [image: 
$$\displaystyle{ Y _{i} =\min (T_{i},C_{i}), }$$
]

 (17.15)

 which is the time that occurred first: the failure time or the 
                
              censoring time. The pair of values [image: 
$$(Y _{i},e_{i})$$
] contains all the response information for most purposes (i.e., the potential censoring time C

                i
               is not usually of interest if the event occurred before C

                i
              ).
Figure 17.4 demonstrates this notation. The line segments start at study entry (survival time t = 0). [image: A69956_2_En_17_Fig4_HTML.gif]
Fig. 17.4Some censored data. Circles denote events.





A useful property of the cumulative hazard function can be derived as follows. Let z be any cutoff time and consider the expected value of Λ evaluated at the earlier of the cutoff time or the actual failure time. [image: 
$$\displaystyle\begin{array}{rcl} E[\varLambda (\min (T,z))]& =& E[\varLambda (T)[T \leq z] +\varLambda (z)[T> z]] \\ & =& E[\varLambda (T)[T \leq z]] +\varLambda (z)S(z).{}\end{array}$$
]

 (17.16)

 The first term in the right–hand side is

[image: 
$$\displaystyle\begin{array}{rcl} & & \int _{0}^{\infty }\varLambda (t)[t \leq z]\lambda (t)\exp (-\varLambda (t))dt \\ & =& \int _{0}^{z}\varLambda (t)\lambda (t)\exp (-\varLambda (t))dt \\ & =& -[u\exp (-u) +\exp (-u)]\vert _{0}^{\varLambda (z)} \\ & =& 1 - S(z)[\varLambda (z) + 1].{}\end{array}$$
]

 (17.17)

 Adding Λ(z)S(z) results in [image: 
$$\displaystyle{ E[\varLambda (\min (T,z))] = 1 - S(z) = F(z). }$$
]

 (17.18)

 It follows that [image: 
$$\sum _{i=1}^{n}\varLambda (\min (T_{i},z))$$
] estimates the expected number of failures occurring before time z among the n subjects. [image: A69956_2_En_17_Fige_HTML.gif]


17.4 Homogeneous Failure Time Distributions
In this section we assume that each subject in the sample has the same distribution of the random variable T that represents the time until the event. In particular, there are no covariables that describe differences between subjects in the distribution of T. As before we use S(t), λ(t), and Λ(t) to denote, respectively, the survival, hazard, and cumulative hazard functions.
The form of the true population survival distribution function S(t) is almost always unknown, and many distributional forms have been used for describing failure time data. We consider first the two most popular parametric survival distributions: the exponential and Weibull distributions. The 
                
                
              exponential distribution is a very simple one in which the hazard function is constant; that is, λ(t) = λ. The cumulative hazard and survival functions are then [image: 
$$\displaystyle\begin{array}{rcl} \varLambda (t)& =& \lambda t\mathrm{\ \ \ \ and} \\ S(t)& =& \exp (-\varLambda (t)) =\exp (-\lambda t).{}\end{array}$$
]

 (17.19)

 The median life length is Λ
−1(log2) or [image: 
$$\displaystyle{ T_{0.5} =\log (2)/\lambda. }$$
]

 (17.20)

 The time by which 1∕2 of the subjects will have failed is then proportional to the reciprocal of the constant hazard rate λ. This is true also of the expected or mean life length, which is 1∕λ. 
                
              

The 
                
                
              exponential distribution is one of the few distributions for which a closed-form solution exists for the estimator of its parameter when censoring is present. This estimator is a function of the number of events and the total person-years

                
               of exposure. Methods based on person-years in fact implicitly assume an exponential distribution. The exponential distribution is often used to model events that occur “at random in time.” 323 It has the property that the future lifetime of a subject is the same, no matter how “old” it is, or [image: 
$$\displaystyle{ \mathrm{Prob}\{T> t_{0} + t\vert T> t_{0}\} = \mathrm{Prob}\{T> t\}. }$$
]

 (17.21)

 This “ageless” property also makes the 
                
                
              exponential distribution a poor choice for modeling human survival except over short time periods.
The Weibull distribution
                
                
               is a generalization of the exponential distribution. Its hazard, cumulative hazard, and survival functions are given by [image: 
$$\displaystyle\begin{array}{rcl} \lambda (t)& =& \alpha \gamma t^{\gamma -1} \\ \varLambda (t)& =& \alpha t^{\gamma } \\ S(t)& =& \exp (-\alpha t^{\gamma }).{}\end{array}$$
]

 (17.22)

 The Weibull distribution with γ = 1 is an exponential distribution (with constant hazard). When γ > 1, its hazard is increasing with t, and when γ < 1 its hazard is decreasing. Figure 17.5 depicts some of the shapes of the hazard function that are possible.
                
                
               If T has a Weibull distribution, the median of T is [image: 
$$\displaystyle{ T_{0.5} = [(\log 2)/\alpha ]^{1/\gamma }. }$$
]

 (17.23)


[image: A69956_2_En_17_Fig5_HTML.gif]
Fig. 17.5Some Weibull hazard functions with α = 1 and various values of γ.





There are many other traditional parametric survival distributions, some of which have hazards that are “bathtub shaped”
                
                
               as in Figure 17.3. 243, 323 The restricted cubic spline function described in Section 2.​4.​5 is an alternative basis for λ(t). 286, 287 This function family allows for any shape of smooth λ(t) since the number of knots can be increased as needed, subject to the number of events in the sample. Nonlinear terms in the spline function can be tested to assess linearity of hazard (Rayleigh-ness) or constant hazard (
                
                
              exponentiality). [image: A69956_2_En_17_Figf_HTML.gif]

The restricted cubic spline hazard model with k knots is [image: 
$$\displaystyle{ \lambda _{k}(t) = a + bt +\sum _{ j=1}^{k-2}\gamma _{ j}w_{j}(t), }$$
]

 (17.24)

 where the w

                j
              (t) are the restricted cubic spline terms of Equation 2.​25. There terms are cubic terms in t. A set of knots [image: 
$$v_{1},\ldots,v_{k}$$
] is selected from the quantiles of the uncensored failure times (see Section 2.​4.​5 and [286]).
The 
                
                
              cumulative hazard function for this model is [image: 
$$\displaystyle{ \varLambda (t) = at + \frac{1} {2}t^{2} + \frac{1} {4} \times \mathrm{\ quartic\ terms\ in\ t}. }$$
]

 (17.25)

 Standard maximum likelihood theory is used to obtain estimates of the k unknown parameters to derive, for example, smooth estimates of λ(t) with confidence bands. The flexible estimates of S(t) using this method are as efficient as Kaplan–Meier estimates, but they are smooth and can be used as a basis for modeling predictor variables. The spline hazard model
                
               is particularly useful for fitting steeply falling and gently rising hazard functions that are characteristic of high-risk medical procedures.

17.5 Nonparametric Estimation of S and Λ

17.5.1 Kaplan–Meier Estimator


                  
                  
                As the true form of the survival distribution is seldom known, it is useful to estimate the distribution without making any assumptions. For many analyses, this may be the last step, while in others this step helps one select a statistical model for more in-depth analyses. When no event times are censored, a nonparametric estimator of S(t) is 1 − F

                  n
                (t) where F

                  n
                (t) is the usual empirical cumulative distribution function based on the observed failure times [image: 
$$T_{1},\ldots,T_{n}$$
]. Let S

                  n
                (t) denote this empirical survival function. S

                  n
                (t) is given by the fraction of observed failure times that exceed t: [image: 
$$\displaystyle{ S_{n}(t) = [\mathrm{number\ of\ }T_{i}> t]/n. }$$
]

 (17.26)

 When censoring is present, S(t) can be estimated (at least for t up until the end of follow-up) by the Kaplan–Meier 333 product-limit estimator. This method is based on conditional probabilities. For example, suppose that every subject has been followed for 39 days or has died within 39 days so that the proportion of subjects surviving at least 39 days can be computed. After 39 days, some subjects may be lost to follow-up besides those removed from follow-up because of death within 39 days. The proportion of those still followed 39 days who survive day 40 is computed. The probability of surviving 40 days from study entry equals the probability of surviving day 40 after living 39 days, multiplied by the chance of surviving 39 days.
The life table in Table 17.1 demonstrates the method in more detail. We suppose that 100 subjects enter the study and none die or are lost before day 12. Table 17.1Kaplan-Meier computations


	Day
	No. Subjects
	Deaths
	Censored
	Cumulative

	 	At Risk
	 	 	Survival

	12
	100
	1
	0
	
                            [image: 
$$99/100 =.99$$
]
                          

	30
	99
	2
	1
	
                            [image: 
$$97/99 \times 99/100 =.97$$
]
                          

	60
	96
	0
	3
	
                            [image: 
$$96/96 \times.97 =.97$$
]
                          

	72
	93
	3
	0
	
                            [image: 
$$90/93 \times.97 =.94$$
]
                          

	.
	.
	.
	.
	.

	.
	.
	.
	.
	.





Times in a life table should be measured as precisely as possible. If the event being analyzed is death, the failure time should usually be specified to the nearest day. We assume that deaths occur on the day indicated and that being censored on a certain day implies the subject survived through the end of that day. The data used in computing Kaplan–Meier estimates consist of [image: 
$$(Y _{i},e_{i}),i = 1,2,\ldots,n$$
] using notation defined previously. Primary data collected to derive [image: 
$$(Y _{i},e_{i})$$
] usually consist of entry date, event date (if subject failed), and censoring date (if subject did not fail). Instead, the entry date, date of event/censoring, and event/censoring indicator e

                  i
                 may be specified.
The Kaplan–Meier estimator is called the product-limit estimator because it is the limiting case of 
                  
                actuarial survival estimates as the time periods shrink so that an entry is made for each failure time. An entry need not be in the table for censoring times (when no failures occur at that time) as long as the number of subjects censored is subtracted from the next number at risk. Kaplan–Meier estimates are preferred to actuarial estimates because they provide more resolution and make fewer assumptions. In constructing a yearly actuarial life table, for example, it is traditionally assumed that subjects censored between two years were followed 0.5 years.
The product-limit estimator is a nonparametric maximum likelihood estimator [331, pp. 10–13]. The formula for the Kaplan–Meier product-limit estimator of S(t) is as follows. Let k denote the number of failures in the sample and let [image: 
$$t_{1},t_{2},\ldots,t_{k}$$
] denote the unique event times (ordered for ease of calculation). Let d

                  i
                 denote the number of failures at t

                  i
                 and n

                  i
                 be the number of subjects at risk at time t

                  i
                ; that is, n

                  i
                 = number of failure/censoring times ≥ t

                  i
                . The estimator is then [image: 
$$\displaystyle{ S_{\mathrm{KM}}(t) =\prod _{i:t_{i}\leq t}(1 - d_{i}/n_{i}). }$$
]

 (17.27)

 The Kaplan–Meier estimator of Λ(t) is [image: 
$$\varLambda _{\mathrm{KM}}(t) = -\log S_{\mathrm{KM}}(t)$$
]. An estimate of quantile q of failure time is [image: 
$$S_{\mathrm{KM}}^{-1}(1 - q)$$
], if follow-up is long enough so that S
KM(t) drops as low as 1 − q. If the last subject followed failed so that S
KM(t) drops to zero, the expected failure time can be estimated by computing the area under the Kaplan–Meier curve.
To demonstrate computation of S
KM(t), imagine a sample of failure times given by [image: 
$$\displaystyle{ 1\ \ 3\ \ 3\ \ 6^{+}\ \ 8^{+}\ \ 9\ \ 10^{+}, }$$
]


 where + denotes a censored time. The quantities needed to compute S
KM are in Table 17.2. Table 17.2Summaries used in Kaplan-Meier computations
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                            n
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                            d
                            
                              i
                            
                          
	
                            [image: 
$$(n_{i} - d_{i})/n_{i}$$
]
                          

	1
	1
	7
	1
	6/7

	2
	3
	6
	2
	4/6

	3
	9
	2
	1
	1/2





Thus [image: 
$$\displaystyle\begin{array}{rcl} S_{\mathrm{KM}}(t)& =& 1,\ \ \ \ 0 \leq t <1 \\ & =& 6/7 =.85,\ \ 1 \leq t <3 \\ & =& (6/7)(4/6) =.57,\ \ 3 \leq t <9 \\ & =& (6/7)(4/6)(1/2) =.29,\ \ 9 \leq t <10.{}\end{array}$$
]

 (17.28)

 Note that the estimate of S(t) is undefined for t > 10 since not all subjects have failed by t = 10 but no follow-up extends beyond t = 10. A graph of the Kaplan–Meier estimate is found in Figure 17.6. [image: A69956_2_En_17_Fig6_HTML.gif]
Fig. 17.6Kaplan–Meier product–limit estimator with 0. 95 confidence bands. The Altschuler–Nelson–Aalen–Fleming–Harrington estimator is depicted with the dotted lines.




[image: A69956_2_En_17_Figg_HTML.gif]



                
                  
                  
                
                
                  
                  
                
                
                  
                  
                
              
The variance of S
KM(t) can be estimated using 
                  
                  
                 Greenwood’s formula [331, p. 14], and using normality of S
KM(t) in large samples this variance can be used to derive a confidence interval for S(t). A better method is to derive an asymmetric confidence interval for S(t) based on a symmetric interval for logΛ(t). This latter method ensures that a confidence limit does not exceed one or fall below zero, and is more accurate since [image: 
$$\log \varLambda _{\mathrm{KM}}(t)$$
] is more normally distributed than S
KM(t). Once a confidence interval, say [a, b] is determined for logΛ(t), the confidence interval for S(t) is computed by [image: 
$$[\exp \{-\exp (b)\},\exp \{-\exp (a)\}]$$
]. The formula for an estimate of the variance of interest is [331, p. 15]: [image: 
$$\displaystyle{ \mathrm{Var}\{\log \varLambda _{\mathrm{KM}}(t)\} = \frac{\sum _{i:t_{i}\leq t}d_{i}/[n_{i}(n_{i} - d_{i})]} {\{\sum _{i:t_{i}\leq t}\log [(n_{i} - d_{i})/n_{i}]\}^{2}}. }$$
]

 (17.29)

 Letting s denote the square root of this variance estimate, an approximate 1 −α confidence interval for logΛ(t) is given by [image: 
$$\log \varLambda _{\mathrm{KM}}(t) \pm zs$$
], where z is the [image: 
$$1 -\alpha /2$$
] standard normal critical value. After simplification, the confidence interval for S(t) becomes [image: 
$$\displaystyle{ S_{\mathrm{KM}}(t)^{\exp (\pm zs)}. }$$
]

 (17.30)



Even though the logΛ basis for confidence limits has theoretical advantages, on the log − log scale the estimate of S(t) has the greatest instability where much information is available: when S(t) falls just below 1.0. For that reason, the recommended default confidence limits are on the Λ(t) scale using [image: 
$$\displaystyle{ \mathrm{Var}\{\varLambda _{\mathrm{KM}}(t)\} =\sum _{i:t_{i}\leq t} \frac{d_{i}} {[n_{i}(n_{i} - d_{i})]}. }$$
]

 (17.31)

 Letting s denote its square root, an approximate 1 −α confidence interval for S(t) is given by [image: 
$$\displaystyle{ \exp (\pm zs)S_{\mathrm{KM}}(t), }$$
]

 (17.32)

 truncated to [0, 1]. [image: A69956_2_En_17_Figh_HTML.gif]

                  
                  
                


17.5.2 Altschuler–Nelson Estimator
Altschuler 19, 
                  
                  
                Nelson 472, 
                  
                  
                

                  
                  
                Aalen 1 and Fleming and Harrington 196 proposed estimators of Λ(t) or of S(t) based on an estimator of Λ(t): [image: 
$$\displaystyle\begin{array}{rcl} \hat{\varLambda }(t)& =& \sum _{i:t_{i}\leq t}\frac{d_{i}} {n_{i}} \\ S_{\varLambda }(t)& =& \exp (-\hat{\varLambda }(t)).{}\end{array}$$
]

 (17.33)

 S

                  Λ
                (t) has advantages over S
KM(t). First, [image: 
$$\sum _{i=1}^{n}\hat{\varLambda }(Y _{i}) =\sum _{ i=1}^{n}e_{i}$$
] [605, Appendix 3]. In other words, the estimator gives the correct expected number of events. Second, there is a wealth of asymptotic theory based on the Altschuler–Nelson
                  
                  
                 estimator. 196

See Figure 17.6 for an example of the S

                  Λ
                (t) estimator. This estimator has the same variance as S
KM(t) for large enough samples. [image: A69956_2_En_17_Figi_HTML.gif]



17.6 Analysis of Multiple Endpoints
Clinical studies frequently assess multiple endpoints. A cancer clinical trial may, for example, involve recurrence of disease and death, whereas a cardiovascular trial may involve nonfatal myocardial infarction and death. Endpoints may be combined, and the new event (e.g., time until infarction or death) may be analyzed with any of the tools of survival analysis because only the usual censoring mechanism is used. Sometimes the various endpoints may need separate study, however, because they may have different risk factors.
When the multiple endpoints represent multiple causes of a terminating event (e.g., death), Prentice et al. have developed standard methods for analyzing 
                
                
              cause-specific hazards ]513 331, pp. 163–178]. Their methods allow each cause of failure to be analyzed separately, censoring on the other causes. They do not assume any mechanism for 
                
              cause removal nor make any assumptions regarding the interrelation among causes of failure. However, analyses of competing events using data where some causes of failure are removed in a different way from the original dataset will give rise to different inferences.
When the multiple endpoints represent a mixture of fatal and nonfatal outcomes, the analysis may be more complex. The same is true when one wishes to jointly study an event-time endpoint and a repeated measurement. [image: A69956_2_En_17_Figj_HTML.gif]

17.6.1 Competing Risks

                
                  
                
              
When events are independent, each event may also be analyzed separately by censoring on all other events as well as censoring on loss to follow-up. This will yield an unbiased estimate of an easily interpreted 
                  
                  
                cause-specific λ(t) or S(t) because censoring is 
                  
                  
                non-informative [331, pp. 168–169]. One minus S
KM(t) computed in this manner will correctly estimate the probability of failing from the event in the absence of other events. Even when the competing events are not independent, the cause-specific hazard model may lead to valid results, but the resulting model does not allow one to estimate risks conditional on removal of one or more causes of the event. See Kay 340 for a nice example of competing risks analysis when a treatment reduces the risk of death from one cause but 
                  
                increases the risk of death from another cause. [image: A69956_2_En_17_Figk_HTML.gif]

Larson and Dinse 376 have an interesting approach that jointly models the time until (any) failure and the failure type. For r failure types, they use an r-category polytomous logistic model to predict the probability of failing from each cause. They assume that censoring is unrelated to cause of event.

17.6.2 Competing Dependent Risks

                
                  
                
              
In many medical and epidemiologic studies one is interested in analyzing multiple causes of death. If the goal is to estimate 
                  
                  
                cause-specific failure probabilities, treating subjects dying from extraneous causes as censored and then computing the ordinary Kaplan–Meier
                  
                  
                 estimate results in biased (high) survival estimates 212, 225. If cause m is of interest, the 
                  
                  
                 cause-specific hazard function is defined as [image: 
$$\displaystyle{ \lambda _{m}(t) =\lim _{u\rightarrow 0}\frac{\mathrm{Pr}\{\mathrm{fail\ from\ cause\ }m\mathrm{\ in\ }[t,t + u)\vert \mathrm{alive\ at\ }t\}} {u}. }$$
]

 (17.34)

 The cumulative 
                    
                    
                  incidence function or probability of failure from cause m by time t is given by [image: 
$$\displaystyle{ F_{m}(t) =\int _{ 0}^{t}\lambda _{ m}(u)S(u)du, }$$
]

 (17.35)

 where S(u) is the probability of surviving (ignoring cause of death), which equals [image: 
$$\exp [-\int _{0}^{u}(\sum \lambda _{m}(x))dx]$$
] [212]; [444, Chapter 10]; [102, 408]. As previously mentioned, [image: 
$$1 - F_{m}(t) =\exp [-\int _{0}^{t}\lambda _{m}(u)du]$$
] only if failures due to other causes are eliminated and if the 
                  
                  
                cause-specific hazard of interest remains unchanged in doing so.212

Again letting [image: 
$$t_{1},t_{2},\ldots,t_{k}$$
] denote the unique ordered failure times, a nonparametric estimate of F

                  m
                (t) is given by [image: 
$$\displaystyle{ \hat{F}_{m}(t) =\sum _{i:t_{i}\leq t}\frac{d_{mi}} {n_{i}} S_{\mathrm{KM}}(t_{i-1}), }$$
]

 (17.36)

 where d

                  mi
                 is the number of failures of type m at time t

                  i
                 and n

                  i
                 is the number of subjects at risk of failure at t

                  i
                .
Pepe and others 494, 496, 497 showed how to use a combination of Kaplan–Meier
                  
                  
                 estimators to derive an estimator of the probability of being free of event 1 by time t given event 2 has not occurred by time t (see also [349]). Let T
1 and T
2 denote, respectively, the times until events 1 and 2. Let S
1(t) and S
2(t) denote, respectively, the two survival functions. Let us suppose that event 1 is not a terminating event (e.g., is not death) and that even after event 1 subjects are followed to ascertain occurrences of event 2. The probability that T
1 > t given T
2 > t is [image: 
$$\displaystyle\begin{array}{rcl} \mathrm{Prob}\{T_{1}> t\vert T_{2}> t\}& =& \frac{\mathrm{Prob}\{T_{1}> t\mathrm{\ and\ }T_{2}> t\}} {\mathrm{Prob}\{T_{2}> t\}} \\ & =& \frac{S_{12}(t)} {S_{2}(t)}, {}\end{array}$$
]

 (17.37)

 where S
12(t) is the survival function for [image: 
$$\min (T_{1},T_{2})$$
], the earlier of the two events. Since S
12(t) does not involve any informative 
                  
                  
                censoring (assuming as always that loss to follow-up is 
                  
                  
                non-informative), S
12 may be estimated by the Kaplan–Meier estimator [image: 
$$S_{\mathrm{KM_{12}}}$$
] (or by S

                  Λ
                ). For the type of event 1 we have discussed above, S
2 can also be estimated without bias by [image: 
$$S_{\mathrm{KM_{2}}}$$
]. Thus we estimate, for example, the probability that a subject still alive at time t will be free of myocardial infarction as of time t by [image: 
$$S_{\mathrm{KM_{12}}}/S_{\mathrm{KM_{2}}}$$
].
Another quantity that can easily be computed from ordinary survival estimates is [image: 
$$S_{2}(t) - S_{12}(t) = [1 - S_{12}(t)] - [1 - S_{2}(t)]$$
], which is the probability that event 1 occurs by time t and that event 2 has not occurred by time t.
The ratio estimate above is used to estimate the survival function for one event given that another has not occurred. Another function of interest is the 

                    
                    
                  crude survival function which is a marginal distribution; that is, it is the probability that T
1 > t whether or not event 2 occurs: 362 [image: 
$$\displaystyle\begin{array}{rcl} S_{c}(t)& =& 1 - F_{1}(t) \\ F_{1}(t)& =& \mathrm{Prob}\{T_{1} \leq t\},{}\end{array}$$
]

 (17.38)

 where F
1(t) is the crude 
                    
                    
                  incidence function defined previously. Note that the T
1 ≤ t implies that the occurrence of event 1 is part of the probability being computed. If event 2 is a terminating event so that some subjects can never suffer event 1, the 
                  
                  
                crude survival function for T
1 will never drop to zero. The crude survival function can be interpreted as the survival distribution of W where W = T
1 if T
1 < T
2 and W = ∞ otherwise. 362 [image: A69956_2_En_17_Figl_HTML.gif]


17.6.3 State Transitions and Multiple Types of Nonfatal Events

                
                  
                
                
                  
                  
                
              
In many studies there is one final, absorbing state (death, all causes) and multiple live states. The live states may represent different health states or phases of a disease. For example, subjects may be completely free of cancer, have an isolated tumor, metastasize to a distant organ, and die. Unlike this example, the live states need not have a definite ordering. One may be interested in estimating transition probabilities, for example, the probability [image: 
$$\pi _{ij}(t_{1},t_{2})$$
] that an individual in state i at time t
1 is in state j after an additional time t
2. Strauss and Shavelle 596 have developed an extended Kaplan–Meier
                  
                  
                 estimator for this situation. Let [image: 
$$S_{KM}^{i}(t\vert t_{1})$$
] denote the ordinary Kaplan–Meier estimate of the probability of not dying before time t (ignoring distinctions between multiple live states) for a cohort of subjects beginning follow-up at time t
1 in state i. This is an estimate of the probability of surviving an additional t time units (in any live state) given that the subject was alive and in state i at time t
1. Strauss and Shavelle’s estimator is given by [image: 
$$\displaystyle{ \pi _{ij}(t_{1},t_{2}) = \frac{n_{ij}(t_{1},t_{2})} {n_{i}(t_{1},t_{2})} S_{KM}^{i}(t_{ 2}\vert t_{1}), }$$
]

 (17.39)

 where [image: 
$$n_{i}(t_{1},t_{2})$$
] is the number of subjects in live state i at time t
1 who are alive and uncensored t
2 time units later, and [image: 
$$n_{ij}(t_{1},t_{2})$$
] is the number of such subjects in state jt
2 time units beyond t
1. [image: A69956_2_En_17_Figm_HTML.gif]


17.6.4 Joint Analysis of Time and Severity of an Event

                
                  
                  
                
              
In some studies, an endpoint is given more weight if it occurs earlier or if it is more severe clinically, or both. For example, the event of interest may be myocardial infarction, which may be of any severity from minimal damage to the left ventricle to a fatal infarction. Berridge and Whitehead 52 have provided a promising model for the analysis of such endpoints. Their method assumes that the severity of endpoints which do occur is measured on an ordinal categorical scale and that severity is assessed at the time of the event. Berridge and Whitehead’s example was time until first headache, with severity of headaches graded on an ordinal scale. They proposed a joint hazard of an individual who responds with ordered category j: [image: 
$$\displaystyle{ \lambda _{j}(t) =\lambda (t)\pi _{j}(t), }$$
]

 (17.40)

 where λ(t) is the hazard for the failure time and π

                  j
                (t) is the probability of an individual having event severity j given she fails at time t. Note that a shift in the distribution of response severity is allowed as the time until the event increases. [image: A69956_2_En_17_Fign_HTML.gif]


17.6.5 Analysis of Multiple Events

                
                  
                
              
It is common to choose as an endpoint in a clinical trial an event that can recur. Examples include myocardial infarction, gastric ulcer, pregnancy, and infection. Using only the time until the first event can result in a loss of statistical information and power.1 There are specialized multivariate survival models (whose assumptions are extremely difficult to verify) for handling this setup, but in many cases a simpler approach will be efficient.
The simpler approach involves modeling the 
                  
                marginal distribution of the time until each event. 407, 495 Here one forms one record per subject per event, and the survival time is the time to the first event for the first record, or is the time from the previous event to the next event for all later records. This approach yields consistent estimates of distribution parameters as long as the marginal distributions are correctly specified. 655 One can allow the number of previous events to influence the hazard function of another event by modeling this count as a covariable.
The multiple events within subject are not independent, so variance estimates must be corrected for 
                  
                

                  
                

                  
                intracluster correlation. The clustered sandwich covariance matrix estimator described in Section 9.​5 and in [407] will provide consistent estimates of variances and covariances even if the events are dependent. Lin 407 also discussed how this method can easily be used to model multiple events of differing types. [image: A69956_2_En_17_Figo_HTML.gif]



17.7 
                            R Functions
The event.chart function of Lee et al. 394 will draw a variety of charts for displaying raw survival time data, for both single and multiple events per subject. Relationships with covariables can also be displayed. The event.history function of Dubin et al. 166 draws an event history graph for right-censored survival data, including time-dependent covariate status. These function are in the Hmisc package. 
                
              

The analyses described in this chapter can be viewed as special cases of the Cox proportional hazards model. 132 The programs for Cox model analyses described in Section 20.​13 can be used to obtain the results described here, as long as there is at least one stratification factor in the model. There are, however, several R functions that are pertinent to the homogeneous or stratified case
                
              . The R function survfit

                
              , and its particular renditions of the print, plot, lines, and points generic functions (all part of the survival package written by Terry Therneau), will compute, print, and plot Kaplan–Meier and 
                
                
              Nelson survival estimates. Confidence intervals for S(t) may be based on S, Λ, or logΛ. The rms

                
               package’s front-end to the survival package’s survfit

                
               function
                
               is npsurv

                
               for “nonparametric survival”. It and other functions described in later chapters use Therneau’s Surv

                
               function to combine the response variable and event indicator into a single R “survival time” object. In its simplest form, use Surv(y, event), where y is the failure/right–censoring
                
                
               time and event is the event/censoring indicator, usually coded T/F, 0 = censored 1 = event or 1 = censored 2 = event. If the event status variable has other coding (e.g., 3 means death), use Surv(y, s==3). To handle interval 
                
              time-dependent covariables, or to use Andersen and Gill’s counting process formulation of the Cox model, 23 use the notation Surv(tstart, tstop, status). The counting process notation allows subjects to enter and leave risk sets at random. For each time interval for each subject, the interval is made up of tstart < t ≤ tstop. For 
                
              time-dependent stratification
                
              , there is an optional origin argument to Surv

                
               that indicates the hazard shape time origin at the time of crossover to a new stratum. A type argument is used to handle left– and interval–censoring
                
                
              , especially for parametric survival models. Possible values of type are "right","left","interval","counting","interval2","mstate".
The Surv

                
               expression will usually be used inside another function, but it is fine to save the result of Surv

                
               in another object and to use this object in the particular fitting function.

npsurv

                
               is invoked by the following, with default parameter settings indicated.

              [image: A69956_2_En_17_Figp_HTML.gif]

            
If there are no stratification variables (svar1, …), omit them. To print a table of estimates, use

              [image: A69956_2_En_17_Figq_HTML.gif]

            
For failure times stored in days, use

              [image: A69956_2_En_17_Figr_HTML.gif]

            
to print monthly estimates.
There is a plot method To plot the object returned by survfit

                
               and npsurv

                
              . This invokes plot.survfit.
Objects created by npsurv

                
               can be passed to the more comprehensive plotting function survplot

                
               (here, actually survplot.npsurv) for other options that include automatic curve labeling and showing the number of subjects at risk at selected times. See Figure 17.6 for an example. Stratified
                
               estimates, with four treatments distinguished by line type and curve labels, could be drawn by

              [image: A69956_2_En_17_Figs_HTML.gif]

            
The groupkm

                
               in rms computes and optionally plots S
KM(u) or logΛ
KM(u) (if loglog=TRUE) for fixed u with automatic stratification
                
               on a continuous predictor x. As in cut2

                
               (Section 6.​2) you can specify the number of subjects per interval (default is m=50), the number of quantile groups (g), or the actual cutpoints (cuts). groupkm

                
               plots the survival or log–log survival estimate against mean x in each x interval.
The bootkm

                
               function in the Hmisc package bootstraps Kaplan–Meier survival estimates or Kaplan–Meier estimates of quantiles of the survival time distribution. It is easy to use bootkm

                
               to compute, for example, a nonparametric confidence interval for the ratio of median survival times for two groups.
See the Web site for a list of functions from other users for nonparametric estimation of S(t) with left–, right–, and interval–censored data. The adaptive linear spline log-hazard fitting function heft

                
               361 is freely available.

17.8 Further Reading

                            [image: A69956_2_En_17_Figa_HTML.gif] Some excellent general references for survival analysis are [57, 83, 114, 133, 154, 197, 282, 308, 331, 350, 382, 392, 444, 484, 574, 604]. Govindarajulu et al. 229 have a nice review of frailty models in survival analysis, for handling clustered time-to-event data.

[image: A69956_2_En_17_Figb_HTML.gif] See Goldman, 220 Bull and Spiegelhalter, 83, Lee et al. 394, and Dubin et al. 166 for ways to construct descriptive graphs depicting right–censored data.

[image: A69956_2_En_17_Figc_HTML.gif] Some useful references for left–truncation are [83, 112, 244, 524]. Mandel 435 carefully described the difference between censoring and truncation.

[image: A69956_2_En_17_Figd_HTML.gif] See [384, p. 164] for some ideas for detecting informative 
                
                
              censoring. Bilker and Wang 54 discuss right–truncation and contrast it with right–censoring.

[image: A69956_2_En_17_Fige_HTML.gif] Arjas 29 has applications based on properties of the cumulative hazard function.

[image: A69956_2_En_17_Figf_HTML.gif] Kooperberg et al. 361, 594 have an adaptive method for fitting hazard functions using linear splines in the log hazard. Binquet et al. 56 studied a related approach using quadratic splines. Mudholkar et al. 466 presented a generalized Weibull model allowing for a variety of hazard shapes.
                
                
              


[image: A69956_2_En_17_Figh_HTML.gif] Hollander et al. 299 provide a nonparametric 
                
                
               simultaneous confidence band for S(t), surprisingly using likelihood ratio methods. Miller 459 showed that if the parametric form of S(t) is known to be Weibull with known shape parameter (an 
                
                
               unlikely scenario), the Kaplan–Meier estimator is very inefficient (i.e., has high variance) when compared with the parametric maximum likelihood estimator. See [666] for a discussion of how the efficiency of Kaplan–Meier estimators can be improved by interpolation as opposed to piecewise flat step functions. That paper also discusses a variety of other estimators, some of which are significantly more efficient than Kaplan–Meier.

[image: A69956_2_En_17_Figi_HTML.gif] See [112, 244, 438, 570, 614, 619] for methods of estimating S or Λ in the presence of 
                
              left–truncation. See Turnbull 616 for nonparametric estimation of S(t) with left–, right–, and interval–censoring, 
                
                
               and Kooperberg and Clarkson 360 for a flexible parametric approach to modeling that allows for interval–censoring. 
                
                
               Lindsey and Ryan 413 have a nice tutorial on the analysis of interval–censored data.

[image: A69956_2_En_17_Figj_HTML.gif] Hogan and Laird 297, 298 developed methods for dealing with mixtures of fatal and nonfatal outcomes, including some ideas for handling outcome-related dropouts on the repeated measurements. See also Finkelstein and Schoenfeld. 193 The 30 April 1997 issue of Statistics in Medicine (Vol. 16) is devoted to methods for analyzing multiple endpoints as well as designing multiple endpoint studies. The papers in that issue are invaluable, as is Therneau and Hamilton 606 and Therneau and Grambsch. 604 Huang and Wang 311 presented a joint model for recurrent events and a terminating event, addressing such issues as the frequency of recurrent events by the time of the terminating event.

[image: A69956_2_En_17_Figk_HTML.gif] See Lunn and McNeil 429 and Marubini and Valsecchi [444, Chapter 10] for practical approaches to analyzing competing risks using ordinary Cox proportional hazards models. A nice overview of competing risks with comparisons of various approaches is found in Tai et al. 599, Geskus 214, and Koller et al. 358. Bryant and Dignam 78 developed a semiparametric procedure in which competing risks are adjusted for nonparametrically while a parametric cumulative incidence function is used for the event of interest, to gain precision. Fine and Gray 192 developed methods for analyzing competing risks by estimating sub-distribution functions. Nishikawa et al. 478 developed some novel approaches to competing risk analysis involving time to adverse drug events competing with time to withdrawal from therapy. They also dealt with different severities of events in an interesting way. Putter et al. 517 has a nice tutorial on competing risks, 
                
              

                
              

                
              

                
                
              multi-state models, and associated R software. Fiocco et al. 194 developed an approach to avoid the problems caused by having to estimate a large number of regression coefficients in multi-state models. Ambrogi et al. 22 provide clinically useful estimates from competing risks analyses.

[image: A69956_2_En_17_Figl_HTML.gif] Jiang, Chappell, and Fine 322 present methods for estimating the distribution of event times of nonfatal events in the presence of terminating events such as death.

[image: A69956_2_En_17_Figm_HTML.gif] Shen and Thall 568 have developed a flexible parametric approach to multi-state survival analysis.

[image: A69956_2_En_17_Fign_HTML.gif] Lancar et al. 372 developed a method for analyzing repeated events of varying severities.

[image: A69956_2_En_17_Figo_HTML.gif] Lawless and Nadeau 384 have a very good description of models dealing with recurrent events. They use the notion of the cumulative mean function, which is the expected number of events experienced by a subject by a certain time. Lawless 383 contrasts this approach with other approaches. See Aalen et al. 3 for a nice example in which multivariate failure times (time to failure of fillings in multiple teeth per subject) are analyzed. Francis and Fuller 204 developed a graphical device for depicting complex event history data. Therneau and Hamilton 606 have very informative comparisons of various methods for modeling multiple events, showing the importance of whether the analyst starts the clock over after each event. Kelly and Lim 343 have another very useful paper comparing various methods for analyzing recurrent events. Wang and Chang 650 demonstrated the difficulty of using Kaplan–Meier estimates for recurrence time data.

17.9 Problems

              1.Make a rough drawing of a hazard function from birth for a man who develops significant coronary artery disease at age 50 and undergoes coronary artery bypass surgery at age 55.

 

2.Define in words the relationship between the hazard function and the survival function.

 

3.In a study of the life expectancy of light bulbs as a function of the bulb’s wattage, 100 bulbs of various wattage ratings were tested until each had failed. What is wrong with using the product-moment linear correlation test to test whether wattage is associated with life length concerning (a) distributional assumptions and (b) other assumptions?

 

4.A placebo-controlled study is undertaken to ascertain whether a new drug decreases mortality. During the study, some subjects are withdrawn because of moderate to severe side effects. Assessment of side effects and withdrawal of patients is done on a blinded basis. What statistical technique can be used to obtain an unbiased treatment comparison of survival times? State at least one efficacy endpoint that can be analyzed unbiasedly.

 

5.Consider long-term follow-up of patients in the support dataset. What proportion of the patients have censored survival times? Does this imply that one cannot make accurate estimates of chances of survival? Make a histogram or empirical distribution function estimate of the censored follow-up times. What is the typical follow-up duration for a patient in the study who has survived so far? What is the typical survival time for patients who have died? Taking censoring into account, what is the median survival time from the Kaplan–Meier estimate of the overall survival function? Estimate the median graphically or using any other sensible method.

 

6.Plot Kaplan–Meier survival function estimates stratified by dzclass. Estimate the median survival time and the first quartile of time until death for each of the four disease classes.

 

7.Repeat Problem 6 except for tertiles of meanbp.

 

8.The commonly used 
                        
                        
                      log-rank test for comparing survival times between groups of patients is a special case of the test of association between the grouping variable and survival time in a Cox proportional hazards regression model. Depending on how one handles tied failure times, the log-rank χ
2 statistic exactly equals the score χ
2 statistic from the Cox model, and the likelihood ratio and Wald χ
2 test statistics are also appropriate. To obtain global score or LR χ
2 tests and P-values you can use a statement as the following, where cph

                        
                       is in the rms package. It 
                        
                      

                        
                       is similar to the survival package’s coxph

                        
                       function.

                      [image: A69956_2_En_17_Figt_HTML.gif]

                    
Here Survobject is a survival time object created by the Surv

                        
                       function. Obtain the 
                        
                        
                      log-rank (score) χ
2 statistic, degrees of freedom, and P-value for testing for differences in survival time between levels of dzclass. Interpret this test, referring to the graph you produced in Problem 6 if needed.

 

9.Do preliminary analyses of survival time using the Mayo Clinic primary biliary cirrhosis dataset described in Section 8.​9 Make graphs of Altschuler–
                        
                      Nelson or Kaplan–Meier survival estimates stratified separately by a few categorical predictors and by categorized versions of one or two continuous predictors. Estimate median failure time for the various strata. You may want to suppress confidence bands when showing multiple strata on one graph. See [361] for parametric fits to the survival and hazard function for this dataset.
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Footnotes
1An exception to this is the case in which once an event occurs for the first time, that event is likely to recur multiple times for any patient. Then the latter occurrences are redundant.
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18. Parametric Survival Models
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18.1 Homogeneous Models (No Predictors)
The nonparametric estimator of S(t) is a very good descriptive statistic for displaying survival data. For many purposes, however, one may want to make more assumptions to allow the data to be modeled in more detail. By specifying a functional form for S(t) and estimating any unknown parameters in this function, one can
1.easily compute selected quantiles of the survival distribution;

 

2.estimate (usually by extrapolation) the expected failure time;

 

3.derive a concise equation and smooth function for estimating S(t), Λ(t), and λ(t); and

 

4.estimate S(t) more precisely than S
KM(t) or S

                        Λ
                      (t) if the parametric form is correctly specified.

 




18.1.1 Specific Models
Parametric modeling requires choosing one or more distributions. The Weibull and exponential distributions were discussed in Chapter 18 Other commonly used survival distributions are obtained by transforming T and using a standard distribution. The log transformation is most commonly employed. The 

                    
                    
                  log-normal distribution specifies that log(T) has a normal distribution with mean μ and variance σ
2. Stated another way, log(T) ∼ μ +σ ε, where ε has a standard normal distribution. Then [image: 
$$S(t) = 1 -\varPhi ((\log (t)-\mu )/\sigma )$$
], where Φ is the standard normal cumulative distribution function. The 

                    
                    
                  log-logistic distribution is given by [image: 
$$S(t) = [1 +\exp (-(\log (t)-\mu )/\sigma )]^{-1}$$
]. Here [image: 
$$\log (T) \sim \mu +\sigma \epsilon$$
] where ε follows a logistic distribution [image: 
$$[1 +\exp (-u)]^{-1}$$
]. The log extreme value distribution is given by [image: 
$$S(t) =\exp [-\exp ((\log (t)-\mu )/\sigma )]$$
], and [image: 
$$\log (T) \sim \mu +\sigma \epsilon$$
], where [image: 
$$\epsilon \sim 1 -\exp [-\exp (u)]$$
].
The generalized gamma and generalized F distributions provide a richer variety of distribution and hazard functions 127, 128. Spline hazard models 286, 287, 361 are other excellent alternatives.

18.1.2 Estimation


                  
                  
                

                  
                 Maximum likelihood (ML) estimation is used to estimate the unknown parameters of S(t). The general method presented in Chapter 9 must be augmented, however, to allow for censored failure times. The basic idea is as follows. Again let T be a random variable representing time until the event, T

                  i
                 be the (possibly censored) failure time for the ith observation, and Y

                  i
                 denote the observed failure or censoring time [image: 
$$\min (T_{i},C_{i})$$
], where C

                  i
                 is the censoring time. If Y

                  i
                 is uncensored, observation i contributes a factor to the likelihood equal to the density function for T evaluated at Y

                  i
                , f(Y

                  i
                ). If Y

                  i
                 instead represents a censored time so that [image: 
$$T_{i} = Y _{i}^{+}$$
], it is only known that T

                  i
                 exceeds Y

                  i
                . The contribution to the likelihood function is the probability that T

                  i
                 > C

                  i
                 (equal to Prob{T

                  i
                 > Y

                  i
                }). This probability is S(Y

                  i
                ). The joint likelihood over all observations i = 1, 2, …, n is [image: 
$$\displaystyle{ L =\prod _{ i:Y _{i}\mathrm{\ uncensored}}^{n}f(Y _{ i})\prod _{i:Y _{i}\mathrm{\ censored}}^{n}S(Y _{ i}). }$$
]

 (18.1)

 There is one more component to L: the distribution of 
                  
                censoring times if these are not fixed in advance. Recall that we assume that censoring is 
                  
                  
                non-informative, that is, it is independent of the risk of the event. This independence implies that the likelihood component of the censoring distribution simply multiplies L and that the censoring distribution contains little information about the survival distribution. In addition, the censoring distribution may be very difficult to specify. For these reasons we can maximize L separately to estimate parameters of S(t) and ignore the censoring distribution.
Recalling that f(t) = λ(t)S(t) and [image: 
$$\varLambda (t) = -\log S(t)$$
], the log likelihood can be written as [image: 
$$\displaystyle{ \log L =\sum _{ i:Y _{i}\mathrm{\ uncensored}}^{n}\log \lambda (Y _{ i}) -\sum _{i=1}^{n}\varLambda (Y _{ i}). }$$
]

 (18.2)

 All observations then contribute an amount to the log likelihood equal to the negative of the cumulative hazard evaluated at the failure/censoring time. In addition, uncensored observations contribute an amount equal to the log of the hazard function evaluated at the time of failure. Once L or log L is specified, the general ML methods outlined earlier can be used without change in most situations. The principal difference is that censored observations contribute less information to the statistical inference than uncensored observations. For distributions such as the log-normal that are written only in terms of S(t), it may be easier to write the likelihood in terms of S(t) and f(t).
As an example, we turn to the 
                  
                  
                exponential distribution, for which log L has a simple form that can be maximized explicitly. Recall that for this distribution λ(t) = λ and Λ(t) = λ t. Therefore, [image: 
$$\displaystyle{ \log L =\sum _{ i:Y _{i}\mathrm{\ uncensored}}^{n}\log \lambda -\sum _{ i=1}^{n}\lambda Y _{ i}. }$$
]

 (18.3)

 Letting n

                  u
                 denote the number of uncensored event times, [image: 
$$\displaystyle{ \log L = n_{u}\log \lambda -\sum _{i=1}^{n}\lambda Y _{ i}. }$$
]

 (18.4)

 Letting w denote the sum of all failure/censoring times (“person years of exposure”): [image: 
$$\displaystyle{ w =\sum _{ i=1}^{n}Y _{ i}, }$$
]

 (18.5)

 the derivatives of log L are given by [image: 
$$\displaystyle\begin{array}{rcl} \frac{\partial \log L} {\partial \lambda } & =& n_{u}/\lambda - w \\ \frac{\partial ^{2}\log L} {\partial \lambda ^{2}} & =& -n_{u}/\lambda ^{2}.{}\end{array}$$
]

 (18.6)

 Equating the derivative of log L to zero implies that the MLE of λ is 
                  
                

                  
                  
                 [image: 
$$\displaystyle{ \hat{\lambda }= n_{u}/w }$$
]

 (18.7)

 or the number of failures per 
                  
                person-years of exposure. By inserting the MLE of λ into the formula for the second derivative we obtain the observed estimated information, [image: 
$$w^{2}/n_{u}$$
]. The estimated variance of [image: 
$$\hat{\lambda }$$
] is thus [image: 
$$n_{u}/w^{2}$$
] and the standard error is [image: 
$$n_{u}^{1/2}/w$$
]. The precision of the estimate depends primarily on n

                  u
                .
Recall that the expected life length μ is 1∕λ for the 
                  
                  
                exponential distribution. The MLE of μ is w∕n

                  u
                 and its estimated variance is [image: 
$$w^{2}/n_{u}^{3}$$
]. The MLE of S(t), [image: 
$$\hat{S}(t)$$
], is [image: 
$$\exp (-\hat{\lambda }t)$$
], and the estimated variance of [image: 
$$\log (\hat{\varLambda }(t))$$
] is simply 1∕n

                  u
                .
As an example, consider the sample listed previously, [image: 
$$\displaystyle{ 1\ \ 3\ \ 3\ \ 6^{+}\ \ 8^{+}\ \ 9\ \ 10^{+}. }$$
]


 Here n

                  u
                 = 4 and w = 40, so the MLE of λ is 0.1 failure per person-period. The estimated standard error is [image: 
$$2/40 = 0.05$$
]. Estimated expected life length is 10 units with a standard error of 5 units. Estimated median failure time is [image: 
$$\log (2)/0.1 = 6.931$$
]. The estimated survival function is [image: 
$$\exp (-0.1t)$$
], which at t = 1, 3, 9, 10 yields 0. 90, 0. 74, 0. 41, and 0. 37, which can be compared to the product limit estimates listed earlier (0. 85, 0. 57, 0. 29, 0. 29).
Now consider the Weibull distribution
                  
                  
                . The log likelihood function is [image: 
$$\displaystyle{ \log L =\sum _{ i:Y _{i}\mathrm{\ uncensored}}^{n}\log [\alpha \gamma Y _{ i}^{\gamma -1}] -\sum _{ i=1}^{n}\alpha Y _{ i}^{\gamma }. }$$
]

 (18.8)

 Although log L can be simplified somewhat, it cannot be solved explicitly for α and γ. An iterative method such as the 
                  
                Newton–Raphson method is used to compute the MLEs of α and γ. Once these estimates are obtained, the estimated variance–covariance matrix and other derived quantities such as [image: 
$$\hat{S}(t)$$
] can be obtained in the usual manner.
For the dataset used in the exponential fit, the Weibull fit follows. [image: 
$$\displaystyle\begin{array}{rcl} \hat{\alpha }& =& 0.0728 \\ \hat{\gamma }& =& 1.164 \\ \hat{S}(t)& =& \exp (-0.0728t^{1.164}) \\ \hat{S}^{-1}(0.5)& =& [(\log 2)/\hat{\alpha }]^{1/\hat{\gamma }} = 6.935\ \mathrm{(estimated\ median)}.{}\end{array}$$
]

 (18.9)

 This fit is very close to the exponential fit since [image: 
$$\hat{\gamma }$$
] is near 1.0. Note that the two medians are almost equal. The predicted survival probabilities for the Weibull model for t = 1, 3, 9, 10 are, respectively, 0. 93, 0. 77, 0. 39, 0. 35.
Sometimes a formal test can be made to assess the fit of the proposed parametric survival distribution. For the data just analyzed, a formal test of 
                  
                  
                exponentiality versus a Weibull
                  
                  
                 alternative is obtained by testing H
0: γ = 1 in the Weibull model. A score test yielded χ
2 = 0. 14 with 1 d.f., p = 0. 7, showing little evidence for non-exponentiality
                  
                  
                 (note that the sample size is too small for this test to have any power).

18.1.3 Assessment of Model Fit
The fit of the hypothesized survival distribution can often be checked easily using graphical methods. Nonparametric estimates of S(t) and Λ(t) are primary tools for this purpose. For example, the Weibull
                  
                  
                 distribution [image: 
$$S(t) =\exp (-\alpha t^{\gamma })$$
] can be rewritten by taking logarithms twice: [image: 
$$\displaystyle{ \log [-\log S(t)] =\log \varLambda (t) =\log \alpha +\gamma (\log t). }$$
]

 (18.10)

 The fit of a Weibull model can be assessed by plotting [image: 
$$\log \hat{\varLambda }(t)$$
] versus log t and checking whether the curve is approximately linear. Also, the plotted curve provides approximate estimates of α (the antilog of the intercept) and γ (the slope). Since an 
                  
                  
                exponential distribution is a special case of a Weibull distribution when γ = 1, exponentially distributed data will tend to have a graph that is linear with a slope of 1.
For any assumed distribution S(t), a graphical assessment of 
                  
                goodness of fit can be made by plotting S
−1[S

                  Λ
                (t)] or S
−1[S
KM(t)] against t and checking for linearity. For log distributions, S specifies the distribution of log(T), so we plot against log t. For a 
                  
                  
                log-normal distribution we thus plot Φ
−1[S

                  Λ
                (t)] against log t, where Φ
−1 is the inverse of the standard normal cumulative distribution function. For a 
                  
                  
                log-logistic distribution we plot logit[S

                  Λ
                (t)] versus log t. For an 
                  
                  
                extreme value distribution we use log − log plots as with the Weibull distribution. Parametric model fits can also be checked by plotting the fitted [image: 
$$\hat{S}(t)$$
] and S

                  Λ
                (t) against t on the same graph.


18.2 Parametric Proportional Hazards Models


                
                
               In this section we present one way to generalize the survival model to a survival regression model. In other words, we allow the sample to be heterogeneous by adding predictor variables X = { X
1, X
2, …, X

                k
              }. As with other regression models, X can represent a mixture of binary, polytomous, continuous, spline-expanded, and even ordinal predictors (if the categories are scored to satisfy the linearity assumption). Before discussing ways in which the regression part of a survival model might be specified, first recall how regression effects have been modeled in other settings. In multiple linear regression, the regression effect [image: 
$$X\beta =\beta _{0} +\beta _{1}X_{1} +\beta _{2}X_{2} +\ldots +\beta _{k}X_{k}$$
] can be thought of as an increment in the expected value of the response Y. In binary logistic regression, X β specifies the log odds that Y = 1, or [image: 
$$\exp (X\beta )$$
] multiplies the odds that Y = 1.
18.2.1 Model
The most widely used survival regression specification is to allow the hazard function
                  
                 λ(t) to be multiplied by [image: 
$$\exp (X\beta )$$
]. The survival model is thus generalized from a hazard function λ(t) for the failure time T to a hazard function [image: 
$$\lambda (t)\exp (X\beta )$$
] for the failure time given the predictors X: [image: 
$$\displaystyle{ \lambda (t\vert X) =\lambda (t)\exp (X\beta ). }$$
]

 (18.11)

 This regression formulation is called the proportional hazards (PH) model. The λ(t) part of λ(t | X) is sometimes called an underlying hazard function or a hazard function for a standard subject, which is a subject with X β = 0. Any parametric hazard function can be used for λ(t), and as we show later, λ(t) can be left completely unspecified without sacrificing the ability to estimate β, by the use of Cox’s semi-parametric PH model. 132 Depending on whether the underlying hazard function λ(t) has a constant scale parameter, X β may or may not include an intercept β
0. The term [image: 
$$\exp (X\beta )$$
] can be called a relative hazard function and in many cases it is the function of primary interest as it describes the (relative) effects of the predictors.
The PH model can also be written in terms of the cumulative hazard and survival functions: [image: 
$$\displaystyle\begin{array}{rcl} \varLambda (t\vert X)& =& \varLambda (t)\exp (X\beta ) \\ S(t\vert X)& =& \exp [-\varLambda (t)\exp (X\beta )] =\exp [-\varLambda (t)]^{\exp (X\beta )}.{}\end{array}$$
]

 (18.12)

 Λ(t) is an “underlying” cumulative hazard function. S(t | X), the probability of surviving past time t given the values of the predictors X, can also be written as [image: 
$$\displaystyle{ S(t\vert X) = S(t)^{\exp (X\beta )}, }$$
]

 (18.13)

 where S(t) is the “underlying” survival distribution, [image: 
$$\exp (-\varLambda (t))$$
]. The effect of the predictors is to multiply the hazard and cumulative hazard functions by a factor [image: 
$$\exp (X\beta )$$
], or equivalently to raise the survival function to a power equal to [image: 
$$\exp (X\beta )$$
].

18.2.2 Model Assumptions and Interpretation of Parameters
In the general regression notation of Section 2.​2, the log hazard or log cumulative hazard can be used as the property of the response T evaluated at time t that allows distributional and regression parts to be isolated and checked. The PH model can be linearized with respect to X β using the following identities. [image: 
$$\displaystyle\begin{array}{rcl} \log \lambda (t\vert X)& =& \log \lambda (t) + X\beta \\ \log \varLambda (t\vert X)& =& \log \varLambda (t) + X\beta.{}\end{array}$$
]

 (18.14)

 No matter which of the three model statements are used, there are certain assumptions in a parametric PH survival model. These assumptions are listed below.
1.The true form of the underlying functions (λ, Λ, and S) should be specified correctly.

 

2.The relationship between the predictors and log hazard or log cumulative hazard should be linear in its simplest form. In the absence of interaction terms, the predictors should also operate additively.

 

3.The way in which the predictors affect the distribution of the response should be by multiplying the hazard or cumulative hazard by [image: 
$$\exp (X\beta )$$
] or equivalently by adding X β to the log hazard or log cumulative hazard at each t. The effect of the predictors is assumed to be the same at all values of t since log λ(t) can be separated from X β. In other words, the PH assumption implies no t by predictor interaction.
                          
                          
                        


 




The regression coefficient for X

                  j
                , β

                  j
                , is the increase in log hazard or log cumulative hazard at any fixed point in time if X

                  j
                 is increased by one unit and all other predictors are held constant. This can be written formally as [image: 
$$\displaystyle{ \beta _{j} =\log \lambda (t\vert X_{1},X_{2},\ldots,X_{j} + 1,X_{j+1},\ldots,X_{k}) -\log \lambda (t\vert X_{1},\ldots,X_{j},\ldots,X_{k}), }$$
]

 (18.15)

 which is equivalent to the log of the ratio of the hazards at time t. The regression coefficient can just as easily be written in terms of a ratio of hazards at time t. The ratio of hazards at X

                  j
                 + d versus X

                  j
                , all other factors held constant, is [image: 
$$\exp (\beta _{j}d)$$
]. Thus the effect of increasing X

                  j
                 by d is to increase the hazard of the event by a factor of [image: 
$$\exp (\beta _{j}d)$$
] at all points in time, assuming X

                  j
                 is linearly related to log λ(t). In general, the ratio of hazards for an individual with predictor variable values X
∗ compared to an individual with predictors X is [image: 
$$\displaystyle\begin{array}{rcl} X^{{\ast}}: X\mathrm{\ hazard\ ratio}& =& [\lambda (t)\exp (X^{{\ast}}\beta )]/[\lambda (t)\exp (X\beta )] \\ & =& \exp (X^{{\ast}}\beta )/\exp (X\beta ) =\exp [(X^{{\ast}}- X)\beta ].\qquad {}\end{array}$$
]

 (18.16)

 If there is only one predictor X
1 and that predictor is binary, the PH model can be written [image: 
$$\displaystyle\begin{array}{rcl} \lambda (t\vert X_{1} = 0)& =& \lambda (t) \\ \lambda (t\vert X_{1} = 1)& =& \lambda (t)\exp (\beta _{1}).{}\end{array}$$
]

 (18.17)

 Here [image: 
$$\exp (\beta _{1})$$
] is the [image: 
$$X_{1} = 1: X_{1} = 0$$
] hazard ratio
                  
                . This simple case has no regression assumption but assumes PH and a form for λ(t). If the single predictor X
1 is continuous, the model becomes [image: 
$$\displaystyle{ \lambda (t\vert X_{1}) =\lambda (t)\exp (\beta _{1}X). }$$
]

 (18.18)

 Without further modification (such as taking a transformation of the predictor), the model assumes a straight line in the log hazard or that for all t, an increase in X by one unit increases the hazard by a factor of [image: 
$$\exp (\beta _{1})$$
].
As in logistic regression, much more general regression specifications can be made, including interaction effects. Unlike logistic regression, however, a model containing, say age, sex, and age × sex interaction is not equivalent to fitting two separate models. This is because even though males and females are allowed to have unequal age slopes, both sexes are assumed to have the underlying hazard function proportional to λ(t) (i.e., the PH assumption holds for sex in addition to age).

18.2.3 Hazard Ratio, Risk Ratio, and Risk Difference


                  
                

                  
                Other ways of modeling predictors can also be specified besides a multiplicative effect on the hazard. For example, one could postulate that the effect of a predictor is to add to the hazard of failure instead of to multiply it by a factor. The effect of a predictor could also be described in terms of a mortality ratio (relative risk), risk difference, odds ratio, or increase in expected failure time. However, just as an odds ratio is a natural way to describe an effect on a binary response, a hazard ratio is often a natural way to describe an effect on survival time. One reason is that a hazard ratio can be constant.
Table 18.1 provides treated (T) to control (C) survival (mortality) differences and mortality ratios for three hypothetical types of subjects. We suppose that subjects 1, 2, and 3 have increasingly worse prognostic factors. For example, the age at baseline of the subjects might be 30, 50, and 70 years, respectively. We assume that the treatment affects the hazard by a constant multiple of 0.5 (i.e., PH is in effect and the constant hazard ratio is 0.5). Note that S

                  T
                 = S

                  C
                
0. 5. Notice that the mortality difference and ratio depend on the survival of the control subject. A control subject having “good” predictor values will leave little room for an improved prognosis from the treatment. Table 18.1Mortality differences and ratios when hazard ratio is 0. 5


	Subject
	5-Year
	Difference
	Mortality

	 	Survival
	 	Ratio (T/C)

	 	C
	T
	 	 
	1
	0.98
	0.99
	0.01
	0.01/0.02 = 0.5

	2
	0.80
	0.89
	0.09
	0.11/0.2 = 0.55

	3
	0.25
	0.50
	0.25
	0.5/0.75 = 0.67





The hazard ratio is a basis for describing the mechanism of an effect. In the above example, it is reasonable that the treatment affect each subject by lowering her hazard of death by a factor of 2, even though less sick subjects have a low mortality difference. Hazard ratios also lead to good statistical tests for differences in survival patterns and to predictive models. Once the model is developed, however, survival differences may better capture the impact of a risk factor. Absolute survival differences rather than relative differences (hazard ratios) also relate more closely to statistical power. For example, even if the effect of a treatment is to halve the hazard rate, a population where the control survival is 0.99 will require a much larger sample than will a population where the control survival is 0.3.
Figure 18.1 depicts the relationship between survival S(t) of a control subject at any time t, relative reduction in hazard (h), and difference in survival S(t) − S(t)
                  h
                . This figure demonstrates that absolute clinical benefit is primarily a function of the baseline risk of a subject. Clinical benefit will also be a function of factors that interact with treatment, that is, factors that modify the relative benefit of treatment. Once a model is developed for estimating S(t | X), this model can be used to estimate absolute benefit as a function of baseline risk factors as well as factors that interact with a treatment. Let X
1 be a binary treatment indicator and let A = { X
2, …, X

                  p
                } be the other factors (which for convenience we assume do not interact with X
1). Then the estimate of [image: 
$$S(t\vert X_{1} = 0,A) - S(t\vert X_{1} = 1,A)$$
] can be plotted against S(t | X
1 = 0) or against levels of variables in A to display absolute benefit versus overall risk or specific subject characteristics. [image: A69956_2_En_18_Figa_HTML.gif]

                  
                
[image: A69956_2_En_18_Fig1_HTML.gif]
Fig. 18.1Absolute clinical benefit as a function of survival in a control subject and the relative benefit (hazard ratio). The hazard ratios are given for each curve.






18.2.4 Specific Models
Let X β denote the linear combination of predictors excluding an intercept term. Using the PH formulation, an exponential survival regression model 218 can be stated as [image: 
$$\displaystyle\begin{array}{rcl} \lambda (t\vert X)& =& \lambda \exp (X\beta ) \\ S(t\vert X)& =& \exp [-\lambda t\exp (X\beta )] =\exp (-\lambda t)^{\exp (X\beta )}.{}\end{array}$$
]

 (18.19)

 The parameter λ can be thought of as the antilog of an intercept term since the model could be written [image: 
$$\lambda (t\vert X) =\exp [(\log \lambda ) + X\beta ]$$
]. The effect of X on the expected or median failure time is as follows. [image: 
$$\displaystyle\begin{array}{rcl} E\{T\vert X\}& =& 1/[\lambda \exp (X\beta )] \\ T_{0.5}\vert X& =& (\log 2)/[\lambda \exp (X\beta )].{}\end{array}$$
]

 (18.20)

 The exponential regression model can be written in another form that is more numerically stable by replacing the λ parameter with an intercept term in X β, specifically [image: 
$$\lambda =\exp (\beta _{0})$$
]. After redefining X β to include β
0, λ can be dropped in all the above formulas.
The Weibull regression model
                  
                  
                 is defined by one of the following functions (assuming that X β does not contain an intercept). [image: 
$$\displaystyle\begin{array}{rcl} \lambda (t\vert X)& =& \alpha \gamma t^{\gamma -1}\exp (X\beta ) \\ \varLambda (t\vert X)& =& \alpha t^{\gamma }\exp (X\beta ) \\ S(t\vert X)& =& \exp [-\alpha t^{\gamma }\exp (X\beta )] \\ & =& [\exp (-\alpha t^{\gamma })]^{\exp (X\beta )}.{}\end{array}$$
]

 (18.21)

 Note that the parameter α in the homogeneous Weibull model has been replaced with [image: 
$$\alpha \exp (X\beta )$$
]. The median survival time is given by [image: 
$$\displaystyle{ T_{0.5}\vert X =\{\log 2/[\alpha \exp (X\beta )]\}^{1/\gamma }. }$$
]

 (18.22)

 As with the exponential model, the parameter α could be dropped (and replaced with [image: 
$$\exp (\beta _{0}))$$
] if an intercept β
0 is added to X β.
For numerical reasons it is sometimes advantageous to write the Weibull
                  
                  
                 PH model as [image: 
$$\displaystyle{ S(t\vert X) =\exp (-\varLambda (t\vert X)), }$$
]

 (18.23)

 where [image: 
$$\displaystyle{ \varLambda (t\vert X) =\exp (\gamma \log t + X\beta ). }$$
]

 (18.24)




18.2.5 Estimation
The parameters in λ and β are estimated by maximizing a log likelihood function constructed in the same manner as described in Section 18.1. The only difference is the insertion of [image: 
$$\exp (X_{i}\beta )$$
] in the likelihood function: [image: 
$$\displaystyle{ \log L =\sum _{ i:Y _{i}\mathrm{\ uncensored}}^{n}\log [\lambda (Y _{ i})\exp (X_{i}\beta )] -\sum _{i=1}^{n}\varLambda (Y _{ i})\exp (X_{i}\beta ). }$$
]

 (18.25)

 Once [image: 
$$\hat{\beta }$$
], the MLE of β, is computed along with the large-sample standard error estimates, hazard ratio estimates and their confidence intervals can readily be computed. Letting s denote the estimated standard error of [image: 
$$\hat{\beta }_{j}$$
], a 1 −α confidence interval for the X

                  j
                 + 1: X

                  j
                 hazard ratio
                  
                 is given by [image: 
$$\exp [\hat{\beta }_{j} \pm zs]$$
], where z is the [image: 
$$1 -\alpha /2$$
] critical value for the standard normal distribution.
Once the parameters of the underlying hazard function are estimated, the MLE of λ(t), [image: 
$$\hat{\lambda }(t)$$
], can be derived. The MLE of λ(t | X), the hazard as a function of t and X, is given by [image: 
$$\displaystyle{ \hat{\lambda }(t\vert X) =\hat{\lambda } (t)\exp (X\hat{\beta }). }$$
]

 (18.26)

 The MLE of Λ(t), [image: 
$$\hat{\varLambda }(t)$$
], can be derived from the integral of [image: 
$$\hat{\lambda }(t)$$
] with respect to t. Then the MLE of S(t | X) can be derived: [image: 
$$\displaystyle{ \hat{S}(t\vert X) =\exp [-\hat{\varLambda }(t)\exp (X\hat{\beta })]. }$$
]

 (18.27)

 For the Weibull
                  
                  
                 model, we denote the MLEs of the hazard parameters α and γ by [image: 
$$\hat{\alpha }$$
] and [image: 
$$\hat{\gamma }$$
]. The MLE of λ(t | X), Λ(t | X), and S(t | X) for this model are [image: 
$$\displaystyle\begin{array}{rcl} \hat{\lambda }(t\vert X)& =& \hat{\alpha }\hat{\gamma }t^{\hat{\gamma }-1}\exp (X\hat{\beta }) \\ \hat{\varLambda }(t\vert X)& =& \hat{\alpha }t^{\hat{\gamma }}\exp (X\hat{\beta }) \\ \hat{S}(t\vert X)& =& \exp [-\hat{\varLambda }(t\vert X)].{}\end{array}$$
]

 (18.28)

 Confidence intervals for S(t | X) are best derived using general matrix notation to obtain an estimate s of the standard error of [image: 
$$\log [\hat{\lambda }(t\vert X)]$$
] from the estimated information matrix of all hazard and regression parameters. A confidence interval for [image: 
$$\hat{S}$$
] will be of the form [image: 
$$\displaystyle{ \hat{S}(t\vert X)^{\exp (\pm zs)}. }$$
]

 (18.29)

 The MLEs of β and of the hazard shape parameters lead directly to MLEs of the expected and median life length. For the Weibull
                  
                  
                 model the MLE of the median life length given X is [image: 
$$\displaystyle{ \hat{T}_{0.5}\vert X =\{\log 2/[\hat{\alpha }\exp (X\hat{\beta })]\}^{1/\hat{\gamma }}. }$$
]

 (18.30)

 For the exponential model, the MLE of the expected life length for a subject having predictor values X is given by [image: 
$$\displaystyle{ \hat{\mathrm{E}}(T\vert X) = [\hat{\lambda }\exp (X\hat{\beta })]^{-1}, }$$
]

 (18.31)

 where [image: 
$$\hat{\lambda }$$
] is the MLE of λ.

18.2.6 Assessment of Model Fit
Three assumptions of the parametric PH model were listed in Section 18.2.2. We now lay out in more detail what relationships need to be satisfied. We first assume a PH model with a single binary predictor X
1. For a general underlying hazard function λ(t), all assumptions of the model are displayed in Figure 18.2. In this case, the assumptions are PH and a shape for λ(t). [image: A69956_2_En_18_Fig2_HTML.gif]
Fig. 18.2PH model with one binary predictor. Y -axis is log λ(t) or log Λ(t). For log Λ(t), the curves must be non-decreasing. For log λ(t), they may be any shape.





If λ(t) is Weibull
                  
                  
                , the two curves will be linear if log t is plotted instead of t on the x-axis. Note also that if there is no association between X and survival (β
1 = 0), estimates of the two curves will be close and will intertwine due to random variability. In this case, PH is not an issue.
If the single predictor is continuous, the relationships in Figures 18.3 and 18.4 must hold. Here linearity is assumed (unless otherwise specified) besides PH and the form of λ(t). In Figure 18.3, the curves must be parallel for any choices of times t
1 and t
2 as well as each individual curve being linear. Also, the difference between ordinates needs to conform to the assumed distribution. This difference is log[λ(t
2)∕λ(t
1)] or log[Λ(t
2)∕Λ(t
1)]. [image: A69956_2_En_18_Fig3_HTML.gif]
Fig. 18.3PH model with one continuous predictor. Y -axis is log λ(t) or log Λ(t); for log Λ(t), drawn for t
2 > t
1. The slope of each line is β
1.




[image: A69956_2_En_18_Fig4_HTML.gif]
Fig. 18.4PH model with one continuous predictor. Y -axis is log λ(t) or log Λ(t). For log λ, the functions need not be monotonic.





Figure 18.4 highlights the PH assumption. The relationship between the two curves must hold for any two values c and d of X
1. The shape of the function for a given value of X
1 must conform to the assumed λ(t). For a Weibull
                  
                  
                 model, the functions should each be linear in log t.
When there are multiple predictors, the PH assumption can be displayed in a way similar to Figures 18.2 and 18.4 but with the population additionally cross-classified by levels of the other predictors besides X
1. If there is one binary predictor X
1 and one continuous predictor X
2, the relationship in Figure 18.5 must hold at each time t if linearity is assumed for X
2 and there is no interaction between X
1 and X
2. [image: A69956_2_En_18_Fig5_HTML.gif]
Fig. 18.5Regression assumptions, linear additive PH or AFT model with two predictors. For PH, Y -axis is log λ(t) or log Λ(t) for a fixed t. For AFT, Y -axis is log(T).





Methods for verifying the regression assumptions (e.g., splines and residuals) and the PH assumption are covered in detail under the Cox PH model in Chapter 20

The method for verifying the assumed shape of S(t) in Section 18.1.3 is also useful when there are a limited number of categorical predictors. To validate a Weibull
                  
                  
                 PH model one can stratify on X and plot log Λ
KM(t | X stratum) against log t. This graph simultaneously assesses PH in addition to shape assumptions—all curves should be parallel as well as straight. Straight but nonparallel (non-PH) curves indicate that a series of Weibull models with differing γ parameters will fit.


18.3 Accelerated Failure Time Models

              
                
                
              
            
18.3.1 Model
Besides modeling the effect of predictors by a multiplicative effect on the hazard function, other regression effects can be specified. The accelerated failure time (AFT) model is commonly used; it specifies that the predictors act multiplicatively on the failure time or additively on the log failure time. The effect of a predictor is to alter the rate at which a subject proceeds along the time axis (i.e., to accelerate the time to failure [331, pp. 33–35]). The model is [image: A69956_2_En_18_Figb_HTML.gif]
[image: 
$$\displaystyle{ S(t\vert X) =\psi ((\log (t) - X\beta )/\sigma ), }$$
]

 (18.32)

 where ψ is any standardized survival distribution function. The parameter σ is called the scale parameter. The model can also be stated as [image: 
$$(\log (T) - X\beta )/\sigma \sim \psi$$
] or [image: 
$$\log (T) = X\beta +\sigma \epsilon$$
], where ε is a random variable from the distribution ψ. Sometimes the untransformed T is used in place of log(T). When the log form is used, the models are said to be log-normal, log-logistic, and so on.
The exponential and Weibull
                  
                  
                 are the only two distributions that can describe either a PH or an AFT model. [image: A69956_2_En_18_Figc_HTML.gif]


18.3.2 Model Assumptions and Interpretation of Parameters


                  
                  
                 The log λ or log Λ transformation of the PH model has the following equivalent for AFT models. [image: 
$$\displaystyle{ \psi ^{-1}[S(t\vert X)] = (\log (t) - X\beta )/\sigma. }$$
]

 (18.33)

 Letting as before ε denote a random variable from the distribution S, the model is also [image: 
$$\displaystyle{ \log (T) = X\beta +\sigma \epsilon. }$$
]

 (18.34)

 So the property of the response T of interest for regression modeling is log(T). In the absence of censoring, we could check the model by plotting an X against log T and checking that the residuals [image: 
$$\log (T) - X\hat{\beta }$$
] are distributed as ψ to within a scale factor.
The assumptions of the AFT model are thus the following.
                  
                  
                
1.The true form of ψ (the distributional family) is correctly specified.

 

2.In the absence of nonlinear and interaction terms, each X

                          j
                         affects log(T) or ψ
−1[S(t | X)] linearly.

 

3.Implicit in these assumptions is that σ is a constant independent of X.

 




A one-unit change in X

                  j
                 is then most simply understood as a β

                  j
                 change in the log of the failure time. The one-unit change in X

                  j
                 increases the failure time by a factor of [image: 
$$\exp (\beta _{j})$$
].
The median survival time is obtained by solving [image: 
$$\psi ((\log (t) - X\beta )/\sigma ) = 0.5$$
] giving [image: 
$$\displaystyle{ T_{0.5}\vert X =\exp [X\beta +\sigma \psi ^{-1}(0.5)] }$$
]

 (18.35)




18.3.3 Specific Models
Common choices for the distribution function ψ in Equation 18.32 are the 
                  
                  
                extreme value distribution [image: 
$$\psi (u) =\exp (-\exp (u))$$
], the logistic distribution [image: 
$$\psi (u) = [1 +\exp (u)]^{-1}$$
], and the normal distribution [image: 
$$\psi (u) = 1 -\varPhi (u)$$
]. The AFT model equivalent of the Weibull
                  
                  
                 model is obtained by using the extreme value distribution, negating β, and replacing γ with 1∕σ in Equation 18.24: [image: 
$$\displaystyle\begin{array}{rcl} S(t\vert X)& =& \exp [-\exp ((\log (t) - X\beta )/\sigma )] \\ T_{0.5}\vert X& =& [\log (2)]^{\sigma }\exp (X\beta ). {}\end{array}$$
]

 (18.36)

 The exponential model is obtained by restricting σ = 1 in the 
                  
                  
                extreme value distribution.
The log-normal regression model is 
                  
                  
                 [image: 
$$\displaystyle{ S(t\vert X) = 1 -\varPhi ((\log (t) - X\beta )/\sigma ), }$$
]

 (18.37)

 and the log-logistic model is 
                  
                  
                 [image: 
$$\displaystyle{ S(t\vert X) = [1 +\exp ((\log (t) - X\beta )/\sigma )]^{-1}. }$$
]

 (18.38)



The t distribution allows for more flexibility by varying the degrees of freedom. Figure 18.6 depicts possible hazard functions for the log t distribution for varying σ and degrees of freedom. However, this distribution does not have a late increasing hazard phase typical of human survival. [image: A69956_2_En_18_Figd_HTML.gif]

[image: A69956_2_En_18_Fig6_HTML.gif]
Fig. 18.6log(T) distribution for σ = 0. 25, 0. 6, 1, 2 and for degrees of freedom 1, 2, 3, 5, 7, 15, 500 (almost log-normal). The top left plot has degrees of freedom written in the plot.





All three of these parametric survival models have median survival time [image: 
$$T_{0.5}\vert X =\exp (X\beta )$$
].

18.3.4 Estimation
Maximum likelihood estimation is used much the same as in Section 18.2.5. Care must be taken in the choice of initial values; iterative methods are especially prone to problems in choosing the initial [image: 
$$\hat{\sigma }$$
]. Estimation works better if σ is parameterized as [image: 
$$\exp (\delta )$$
]. Once β and σ ([image: 
$$\exp (\delta )$$
]) are estimated, MLEs of secondary parameters such as survival probabilities and medians can readily be obtained: [image: 
$$\displaystyle\begin{array}{rcl} \hat{S}(t\vert X)& =& \psi ((\log (t) - X\hat{\beta })/\hat{\sigma }) \\ \hat{T}_{0.5}\vert X& =& \exp [X\hat{\beta } +\hat{\sigma }\psi ^{-1}(0.5)].{}\end{array}$$
]

 (18.39)

 For normal and logistic distributions, [image: 
$$\hat{T}_{0.5}\vert X =\exp (X\hat{\beta })$$
]. The MLE of the effect on log(T) of increasing X

                  j
                 by d units is [image: 
$$\hat{\beta _{j}}d$$
] if X

                  j
                 is linear and additive.
The delta (statistical differential) method can be used to compute an 
                  
                estimate of the variance of [image: 
$$f = [\log (t) - X\hat{\beta }]/\hat{\sigma }$$
]. Let [image: 
$$(\hat{\beta },\hat{\delta })$$
] denote the estimated parameters, and let [image: 
$$\hat{V }$$
] denote the estimated covariance matrix for these parameter estimates. Let F denote the vector of derivatives of f with respect to (β
0, β
1, …, β

                  p
                , δ); that is, [image: 
$$F = [-1,-X_{1},-X_{2},\ldots,-X_{p},-(\log (t) - X\hat{\beta })]/\hat{\sigma }$$
]. The variance of f is then approximately [image: 
$$\displaystyle{ \mathrm{Var}(f) = F\hat{V }F'. }$$
]

 (18.40)

 Letting s be the square root of the variance estimate and [image: 
$$z_{1-\alpha /2}$$
] be the normal critical value, a 1 −α confidence limit for S(t | X) is [image: 
$$\displaystyle{ \psi ((\log (t) - X\hat{\beta })/\hat{\sigma } \pm z_{1-\alpha /2} \times s). }$$
]

 (18.41)




18.3.5 Residuals
For an AFT model, standardized residuals are simply [image: 
$$\displaystyle{ r = (\log (T) - X\hat{\beta })/\sigma. }$$
]

 (18.42)

 When T is right-censored, r is right-censored. Censoring must be taken into account, for example, by displaying Kaplan–Meier estimates based on groups of residuals rather than showing individual residuals. The residuals can be used to check for lack of fit as described in the next section. Note that examining individual uncensored residuals is not appropriate, as their distribution is conditional on T

                  i
                 < C

                  i
                , where C

                  i
                 is the censoring time. [image: A69956_2_En_18_Fige_HTML.gif]

Cox and Snell 134 proposed a type of general residuals that also work for censored data. Using their method on the cumulative probability scale results in the probability integral transformation. If the probability of failure before time t given X is S(t | X), [image: 
$$F(T\vert X) = 1 - S(T\vert X)$$
] has a uniform [0, 1] distribution, where T is a subject’s actual failure time. When T is right-censored, so is 1 − S(T | X). Substituting [image: 
$$\hat{S}$$
] for S results in an approximate uniform [0, 1] distribution for any value of X. One minus the Kaplan–Meier estimate of [image: 
$$1 -\hat{ S}(T\vert X)$$
] (using combined data for all X) is compared against a 45∘ line to check for 
                  
                goodness of fit. A more stringent assessment is obtained by repeating this process while stratifying on X.

18.3.6 Assessment of Model Fit
For a single binary predictor, all assumptions of the AFT model are depicted in Figure 18.7. That figure also shows the assumptions for any two values of a single continuous predictor that behaves linearly. For a single continuous predictor, the relationships in Figure 18.8 must hold for any two follow-up times. The regression assumptions are isolated in Figure 18.5. [image: A69956_2_En_18_Fig7_HTML.gif]
Fig. 18.7AFT model with one predictor. Y -axis is [image: 
$$\psi ^{-1}[S(t\vert X)] = (\log (t) - X\beta )/\sigma$$
]. Drawn for d > c. The slope of the lines is σ
−1.




[image: A69956_2_En_18_Fig8_HTML.gif]
Fig. 18.8AFT model with one continuous predictor. Y -axis is [image: 
$$\psi ^{-1}[S(t\vert X)] = (\log (t) - X\beta )/\sigma$$
]. Drawn for t
2 > t
1. The slope of each line is β
1∕σ and the difference between the lines is [image: 
$$\log (t_{2}/t_{1})/\sigma$$
].





To verify the fit of a 
                  
                  
                log-logistic model with age as the only predictor, one could stratify by quartiles of age and check for linearity and parallelism of the four logit S

                  Λ
                (t) or S
KM(t) curves over increasing t as in Figure 18.7, which stresses the distributional assumption (no T by X interaction and linearity vs. log(t)). To stress the linear regression assumption while checking for absence of time interactions (part of the distributional assumptions), one could make a plot like Figure 18.8. For each decile of age, the logit transformation of the 1-, 3-, and 5-year survival estimates for that decile would be plotted against the mean age in the decile. This checks for linearity and constancy of the age effect over time. Regression splines will be a more effective method for checking linearity and determining transformations. This is demonstrated in Chapter 20 with the Cox model, but identical methods apply here.
As an example, consider data from Kalbfleisch and Prentice [331, pp. 1–2], who present data from Pike 508 on the time from exposure to the carcinogen DMBA to mortality from vaginal cancer in rats. The rats are divided into two groups on the basis of a pre-treatment regime. Survival times in days (with censored times marked +) are found in Table 18.2. Table 18.2Rat vaginal cancer data from Pike 508



	Group 1
	143
	164
	188
	188
	190
	192
	206
	209
	213
	216

	 	220
	227
	230
	234
	246
	265
	304
	216+

	244+

	 
	Group 2
	142
	156
	163
	198
	205
	232
	232
	233
	233
	233

	 	233
	239
	240
	261
	280
	280
	296
	296
	323
	204+


	 	344+

	 	 	 	 	 	 	 	 	 





                [image: A69956_2_En_18_Figf_HTML.gif]

              
The top left plot in Figure 18.9 displays nonparametric survival estimates for the two groups, with the number of rats “at risk” at each 30-day mark written above the x-axis. The remaining three plots are for checking assumptions of three models. None of the parametric models presented will completely allow for such a long period with no deaths. Neither will any allow for the early crossing of survival curves. 
                  
                  
                Log-normal and 
                  
                  
                log-logistic models yield very similar results due to the similarity in shapes between Φ(z) and [image: 
$$[1 +\exp (-z)]^{-1}$$
] for non-extreme z. All three transformations show good parallelism after the early crossing. The log-logistic and log-normal transformations are slightly more linear. The fitted models are: [image: A69956_2_En_18_Fig9_HTML.gif]
Fig. 18.9Altschuler–Nelson–Fleming–Harrington nonparametric survival estimates for rats treated with DMBA, 508 along with various transformations of the estimates for checking distributional assumptions of three parametric survival models.






                [image: A69956_2_En_18_Figg_HTML.gif]

              
The estimated failure time ratios and median failure times for the two groups are given in Table 18.3. For example, the effect of going from Group 1 to Group 2 is to increase log failure time by 0.132 for the extreme value model, giving a Group 2:1 failure time ratio of [image: 
$$\exp (0.132) = 1.14$$
]. This ratio is also the ratio of median survival times. Table 18.3Group effects from three survival models


	Model
	Group 2:1
	Median Survival Time

	 	Failure Time Ratio
	Group 1
	Group 2

	Extreme Value (Weibull)
	1.14
	217
	248

	Log-logistic
	1.11
	217
	241

	Log-normal
	1.10
	217
	238



 We choose the log-logistic model for its simpler form. The fitted survival curves are plotted with the nonparametric estimates in Figure 18.10. Excellent agreement is seen, except for 150 to 180 days for Group 2. The standard error of the regression coefficient for group in the log-logistic model is 0.0636 giving a Wald χ
2 for group differences of [image: 
$$(.105/.0636)^{2} = 2.73,P = 0.1$$
]. [image: A69956_2_En_18_Fig10_HTML.gif]
Fig. 18.10Agreement between fitted log-logistic model and nonparametric survival estimates for rat vaginal cancer data.






                [image: A69956_2_En_18_Figh_HTML.gif]

              
The Weibull
                  
                  
                 PH form of the fitted extreme value model, using Equation 18.24, is [image: 
$$\displaystyle{\mathrm{Prob}\{T \geq t\} =\exp \{ -t^{5.456}\exp (X\hat{\beta })\}\mathrm{\ \ where}}$$
]


 [image: 
$$\displaystyle\begin{array}{rcl} X\hat{\beta } =&& {}\\ & & -29.74 {}\\ & & -0.72[\mathrm{Group\ 2}] {}\\ & & {}\\ \end{array}$$
]


 and [c] = 1 if subject is in group c, 0 otherwise.
A sensitive graphical verification of the distributional assumptions of the AFT model is obtained by plotting the estimated survival distribution of standardized residuals (Equation 18.3.5), censored identically to the way T is censored. This distribution is plotted along with the theoretical distribution ψ. The assessment may be made more stringent by stratifying the residuals by important subject characteristics and plotting separate survival function estimates; they should all have the same standardized distribution (e.g., same σ).

                [image: A69956_2_En_18_Figi_HTML.gif]

              
As an example, Figure 18.11 shows the Kaplan–Meier estimate of the distribution of residuals, Kaplan–Meier estimates stratified by group, and the assumed log-logistic distribution. [image: A69956_2_En_18_Figj_HTML.gif] [image: A69956_2_En_18_Fig11_HTML.gif]
Fig. 18.11Kaplan–Meier estimates of distribution of standardized censored residuals from the log-logistic model, along with the assumed standard log-logistic distribution (dashed curve). The step functions in red is the estimated distribution of all residuals, and the step functions in black are the estimated distributions of residuals stratified by group, as indicated. The blue curve is the assumed log-logistic distribution.





Section 19.​2 has a more in-depth example of this approach.

18.3.7 Validating the Fitted Model


                  
                AFT models may be validated for both 
                  
                  
                calibration and discrimination 
                  
                accuracy using the same methods that are presented for the Cox model in Section 20.​11 The methods discussed there for checking calibration are based on choosing a single follow-up time. Checking the 
                  
                  
                distributional assumptions of the parametric model is also a check of calibration accuracy in a sense. Another indirect calibration assessment may be obtained from a set of Cox–Snell residuals (Section 18.3.5) or by using ordinary residuals as just described. A higher resolution indirect 
                  
                  
                calibration assessment based on plotting individual uncensored failure times is available when the theoretical censoring times for those observations are known. Let C denote a subject’s censoring time and F the cumulative distribution of a failure time T. The expected value of F(T | X) is 0.5 when T is an actual failure time random variable. The expected value for an event time that is observed because it is uncensored is the expected value of F(T | T ≤ C, X) = 0. 5F(C | X). A smooth plot (using, say, loess) of F(T | X) − 0. 5F(C | X) against [image: 
$$X\hat{\beta }$$
] should be a flat line through y = 0 if the model is well calibrated. A smooth plot of 2F(T | X)∕F(C | X) against [image: 
$$X\hat{\beta }$$
] (or anything else) should be a flat line through y = 1. This method assumes that the model is calibrated well enough that we can substitute [image: 
$$1 -\hat{ S}(C\vert X)$$
] for F(C | X). 
                  
                  
                



18.4 Buckley–James Regression Model


                
                
              

                
                
              

                
                
              Buckley and James 81 developed a method for estimating regression coefficients using least squares after imputing censored residuals. Their method does not assume a distribution for survival time or the residuals, but is aimed at estimating expected survival time or expected log survival time given predictor variables. This method has been generalized to allow for smooth nonlinear effects and interactions in the S bj

                
               function in the rms package, written by Stare and Harrell 585.

18.5 Design Formulations
Various designs can be formulated with survival regression models just as with other regression models. By constructing the proper dummy variables, 
                
              ANOVA and 
                
              ANOCOVA models can easily be specified for testing differences in survival time between multiple treatments. Interactions and complex nonlinear effects may also be modeled.

18.6 Test Statistics
As discussed previously, likelihood ratio, score, and Wald statistics can be derived from the maximum likelihood analysis, and the choice of test statistic depends on the circumstance and on computational convenience.

18.7 Quantifying Predictive Ability
See Section 20.​10 for a generalized measure of concordance between predicted and observed survival time (or probability of survival) for right-censored data.

18.8 Time-Dependent Covariates


                
               Time-dependent covariates (predictors) requires special likelihood functions and add significant complexity to analyses in exchange for greater versatility and enhanced predictive discrimination 604. Nicolaie et al. 477 and D’Agostino et al. 145 provide useful static covariate approaches to modeling time-dependent predictors using landmark analysis
                
              .

18.9 
                            R Functions
Therneau’s survreg

                
               function (part of his survival package) can fit regression models in the AFT family with left–, right–, or interval–censoring. The time variable can be untransformed or log-transformed (the default). Distributions supported are extreme value (Weibull and exponential), normal, logistic, and Student-t. The version of survreg

                
               in rms that fits parametric survival models in the same framework as lrm

                
              , ols

                
              , and cph

                
               is called psm

                
              . psm

                
               works with print, coef, formula, specs, summary, anova, predict, Predict, fastbw, latex, nomogram, validate, calibrate, survest

                
              , and survplot

                
               functions for obtaining and plotting predicted survival probabilities. The dist argument to psm

                
               can be "exponential", "extreme", "gaussian", "logistic", "loglogistic", "lognormal", "t", or "weibull". To fit a model with no covariables, use the command 
                
              


[image: A69956_2_En_18_Figk_HTML.gif]
 To restate a Weibull
                
                
               or exponential model in PH form, use the pphsm

                
               function. An example of how many of the functions are used is found below.

[image: A69956_2_En_18_Figl_HTML.gif]
 Special functions work with objects created by psm

                
               to create S functions that contain the analytic form for predicted survival probabilities (Survival

                
              ), hazard functions (Hazard

                
              ), quantiles of survival time (Quantile

                
              ), and mean or expected survival time (Mean

                
              ). Once the S functions are constructed, they can be used in a variety of contexts. The survplot

                
               and survest

                
               functions have a special argument for psm

                
               fits: what. The default is what="survival" to estimate or plot survival probabilities. Specifying what="hazard" will plot hazard functions. Predict

                
               also has a special argument for psm

                
               fits: time. Specifying a single value for time results in survival probability for that time being plotted instead of [image: 
$$X\hat{\beta }$$
]. Examples of many of the functions appear below, with the output of the survplot

                
               command shown in Figure 18.12. [image: A69956_2_En_18_Fig12_HTML.gif]
Fig. 18.12Estimated hazard functions for log-logistic fit to rat vaginal cancer data, along with median survival times.






              [image: A69956_2_En_18_Figm_HTML.gif]

            
The S object called survreg.distributions

                
               in Therneau’s survival package and the object survreg.auxinfo

                
               in the rms package have detailed information for extreme-value, logistic, normal, and t distributions. For each distribution, components include the 
                
              deviance function, an algorithm for obtaining starting parameter estimates, a LaTeX representation of the survival function, and S functions defining the survival, hazard, quantile functions, and basic survival inverse function (which could have been used in Figure 18.9). See Figure 18.6 for examples. rms’s val.surv

                
               function is useful for indirect external validation 
                
                
              of parametric models using Cox–Snell residuals and other approaches of Section 18.3.7. The plot method for an object created by val.surv makes it easy to stratify all computations by a variable of interest to more stringently validate the fit with respect to that variable.

rms’s bj

                
               function fits the 
                
                
              

                
                
              Buckley–James model for right-censored responses.
Kooperberg et al.’s adaptive linear spline log-hazard model 360, 361, 594 has been implemented in the S function hare

                
              . Their procedure searches for second-order interactions involving predictors (and linear splines of them) and linear splines in follow-up time (allowing for 
                
              non-proportional hazards). hare

                
               is also used to estimate calibration curves for parametric survival models (rms function calibrate

                
              ) as it is for Cox models.

18.10 Further Reading

[image: A69956_2_En_18_Figa_HTML.gif] Wellek 657 developed a test statistic for a specified maximum survival difference after relating this difference to a hazard ratio.

[image: A69956_2_En_18_Figb_HTML.gif] Hougaard 308 compared accelerated failure time models with proportional hazard models.

[image: A69956_2_En_18_Figc_HTML.gif] Gore et al. 226 discuss how an AFT model (the log-logistic model) gives rise to varying hazard ratios.

[image: A69956_2_En_18_Fige_HTML.gif] See Hillis 293 for other types of residuals and plots that use them.

[image: A69956_2_En_18_Figj_HTML.gif] See Gore et al. 226 and Lawless 382 for other methods of checking assumptions for AFT models. Lawless is an excellent text for in-depth discussion of parametric survival modeling. Kwong and Hutton 369 present other methods of choosing parametric survival models, and discuss the robustness of estimates when fitting an incorrectly chosen accelerated failure time model.

18.11 Problems

              1.For the failure times (in days) [image: 
$$\displaystyle{ 1\ \ 3\ \ 3^{+}\ \ 6^{+}\ \ 7^{+} }$$
]


 compute MLEs of the following parameters of an 
                        
                        
                       exponential distribution by hand: λ, μ, T
0. 5, and S(3 days). Compute 0.95 confidence limits for λ and S(3), basing the latter on log[Λ(t)].

 

2.For the same data in Problem 1, compute MLEs of parameters of a Weibull distribution. Also compute the MLEs of S(3) and T
0. 5.
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             Consider the random sample of 1000 patients from the 
              
              
            SUPPORT study, 352 described in Section 3.​12 In this case study we develop a parametric survival time model (
              
              
            accelerated failure time model) for time until death for the acute disease subset of SUPPORT (acute respiratory failure, multiple organ system failure, coma). We eliminate the chronic disease categories because the shapes of the survival curves are different between acute and chronic disease categories. To fit both acute and chronic disease classes would require a log-normal model with σ parameter that is disease-specific. 
              
              
            

Patients had to survive until day 3 of the study to qualify. The baseline physiologic variables were measured during day 3.
19.1 Descriptive Statistics
First we create a variable acute to flag the categories of interest, and print univariable descriptive statistics for the data subset. 
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Next, patterns of missing data are displayed. 
                
              


              [image: A69956_2_En_19_Figg_HTML.gif]

              [image: A69956_2_En_19_Fig1_HTML.gif]
Fig. 19.1Cluster analysis showing which predictors tend to be missing on the same patients




            
The Hmisc

                
               varclus

                
               function is used to quantify and depict associations between predictors, allowing for general 
                
              nonmonotonic relationships. This is done by using Hoeffding’s D as a 
                
              

                
              similarity measure for all possible pairs of predictors instead of the default similarity, Spearman’s ρ. 
                
              


              [image: A69956_2_En_19_Figh_HTML.gif]

              [image: A69956_2_En_19_Fig2_HTML.gif]
Fig. 19.2Hierarchical clustering of potential predictors using Hoeffding D as a similarity measure. Categorical predictors are automatically expanded into dummy variables.




            

19.2 Checking Adequacy of Log-Normal Accelerated Failure Time Model


                
                
              Let us check whether a parametric survival time model will fit the data, with respect to the key prognostic factors. First, Kaplan–Meier estimates stratified by disease group are computed, and plotted after inverse normal transformation, against logt. 
                
                
              Parallelism and linearity indicate 
                
              goodness of fit to the log normal distribution for disease group. Then a more stringent assessment is made by fitting an initial model and computing right-censored residuals. These residuals, after dividing by [image: 
$$\hat{\sigma }$$
], should all have a normal distribution if the model holds. We compute Kaplan–Meier estimates of the distribution of the residuals and overlay the estimated survival distribution with the theoretical Gaussian one. This is done overall, and then to get more stringent assessments of fit, residuals are stratified by key predictors and plots are produced that contain multiple Kaplan–Meier curves along with a single theoretical normal curve. All curves should hover about the normal distribution. To gauge the natural variability of stratified residual distribution estimates, the residuals are also stratified by a random number that has no bearing on the 
                
              goodness of fit. 
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              [image: A69956_2_En_19_Figj_HTML.gif]

              [image: A69956_2_En_19_Fig3_HTML.gif]
Fig. 19.3
Φ
−1(S

                        KM
                      (t)) stratified by dzgroup. Linearity and semi-parallelism indicate a reasonable fit to the log-normal accelerated failure time model with respect to one predictor.




              [image: A69956_2_En_19_Fig4_HTML.gif]
Fig. 19.4Kaplan-Meier estimates of distributions of normalized, right-censored residuals from the fitted log-normal survival model. Residuals are stratified by important variables in the model (by quartiles of continuous variables), plus a random variable to depict the natural variability (in the lower right plot). Theoretical standard Gaussian distributions of residuals are shown with a thick solid line.




            
Now remove from consideration predictors that are missing in more than 0.2 of patients. Many of these were collected only for the second half of SUPPORT. Of those variables to be included in the model, find which ones have enough potential predictive power to justify allowing for nonlinear relationships or multiple categories, which spend more d.f. For each variable compute Spearman ρ
2 based on multiple linear regression of rank(x), rank(x)2, and 
                
                
              

the survival time, truncating survival time at the shortest follow-up for survivors (356 days; see Section 4.​1). 
                
              


              [image: A69956_2_En_19_Figk_HTML.gif]

              [image: A69956_2_En_19_Fig5_HTML.gif]
Fig. 19.5Generalized Spearman ρ
2 rank correlation between predictors and truncated survival time




            
A better approach is to use the complete information in the failure and censoring times by computing Somers’ D

                xy
               rank correlation allowing for censoring. 
                
              

                
              

                
              


              [image: A69956_2_En_19_Figl_HTML.gif]

              [image: A69956_2_En_19_Fig6_HTML.gif]
Fig. 19.6Somers’ D

                        xy
                       rank correlation between predictors and original survival time. For dzgroup or race, the correlation coefficient is the maximum correlation from using a dummy variable to represent the most frequent or one to represent the second most frequent category.’,scap=’Somers’ D

                        xy
                       rank correlation between predictors and original survival time




            
Remaining missing values are imputed using the “most normal” values, a procedure found to work adequately for this particular study. Race is imputed using the modal category. 
                
              

                
              

                
              


              [image: A69956_2_En_19_Figm_HTML.gif]

            


                
              Now that missing values have been imputed, a formal multivariable redundancy analysis can be undertaken. The Hmisc

                
               package’s redun function
                
              

                
               goes farther than the varclus pairwise correlation approach and allows for non-monotonic transformations in predicting each predictor from all the others.

              [image: A69956_2_En_19_Fign_HTML.gif]

            
Now turn to a more efficient approach for gauging the potential of each predictor, one that makes maximal use of failure time and censored data is to all continuous variables to have a maximum number of knots in a log-normal survival model.
                
                
               This approach must use imputation to have an adequate sample size. A semi-saturated main effects additive log-normal model is fitted. It is necessary to limit restricted cubic splines to 4 knots, force scoma to be linear, and to omit ph.i in order to avoid a singular covariance matrix in the fit.

              [image: A69956_2_En_19_Figo_HTML.gif]

            
Figure 19.7 properly blinds the analyst to the form of effects (tests of linearity). Next fit a 
                
                
              log-normal survival model with number of parameters corresponding to nonlinear effects determined from the partial χ
2 tests in Figure 19.7. For the most promising predictors, five knots can be allocated, as there are fewer singularity problems once less promising predictors are simplified.
[image: A69956_2_En_19_Fig7_HTML.gif]
Fig. 19.7Partial χ
2 statistics for association of each predictor with response from saturated main effects model, penalized for d.f.
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              Parametric Survival Model: Log Normal Distribution
            
psm(formula = S ~ rcs(age, 5) + sex + dzgroup + num.co + scoma +
  pol(adlsc, 2) + race2 + rcs(meanbp, 5) + rcs(hrt, 3) + rcs(resp,
  3) + temp + rcs(crea, 4) + sod + rcs(wblc.i, 3) + rcs(pafi.i,
  4), dist = "lognormal")
	 	Model Likelihood Ratio Test
	Discrimination Indexes

	Obs
	537
	LR χ
2
                                            
	236.83
	
                        R
                        2
                      
	0.594

	Events
	356
	d.f.
	30
	
                        D
                        
                          xy
                        
                      
	0.485

	
                        σ
                      
	2.230782
	Pr( > χ
2)
	 < 0. 0001
	
                        g
                      
	0.033

	 	 	
                        g
                        
                          r
                        
                      
	1.959
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19.3 Summarizing the Fitted Model
First let’s plot the shape of the effect of each predictor on log survival time. All effects are centered so that they can be placed on a common scale. This allows the relative strength of various predictors to be judged. Then Wald χ
2 statistics, penalized for d.f., are plotted in descending order. Next, relative effects of varying predictors over reasonable ranges (survival time ratios varying continuous predictors from the first to the third quartile) are charted. 
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              [image: A69956_2_En_19_Fig8_HTML.gif]
Fig. 19.8Effect of each predictor on log survival time. Predicted values have been centered so that predictions at predictor reference values are zero. Pointwise 0.95 confidence bands are also shown. As all y-axes have the same scale, it is easy to see which predictors are strongest.
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              Table 19.1Wald Statistics for S



	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	age
	15. 99
	4
	0.0030

	   Nonlinear

	0. 23
	3
	0.9722

	sex
	0. 11
	1
	0.7354

	dzgroup
	45. 69
	2
	 < 0. 0001

	num.co
	4. 99
	1
	0.0255

	scoma
	10. 58
	1
	0.0011

	adlsc
	8. 28
	2
	0.0159

	   Nonlinear

	3. 31
	1
	0.0691

	race2
	1. 26
	1
	0.2624

	meanbp
	27. 62
	4
	 < 0. 0001

	   Nonlinear

	10. 51
	3
	0.0147

	hrt
	11. 83
	2
	0.0027

	   Nonlinear

	1. 04
	1
	0.3090

	resp
	11. 10
	2
	0.0039

	   Nonlinear

	8. 56
	1
	0.0034

	temp
	0. 39
	1
	0.5308

	crea
	33. 63
	3
	 < 0. 0001

	   Nonlinear

	21. 27
	2
	 < 0. 0001

	sod
	0. 08
	1
	0.7792

	wblc.i
	5. 47
	2
	0.0649

	   Nonlinear

	5. 46
	1
	0.0195

	pafi.i
	15. 37
	3
	0.0015

	   Nonlinear

	6. 97
	2
	0.0307

	TOTAL NONLINEAR
	60. 48
	14
	 < 0. 0001

	TOTAL
	261. 47
	30
	 < 0. 0001
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Fig. 19.9Contribution of variables in predicting survival time in log-normal model




              [image: A69956_2_En_19_Fig10_HTML.gif]
Fig. 19.10Estimated survival time ratios for default settings of predictors. For example, when age changes from its lower quartile to the upper quartile (47.9y to 74.5y), median survival time decreases by more than half. Different shaded areas of bars indicate different confidence levels (.9, 0.95, 0.99).




            

19.4 Internal Validation of the Fitted Model Using the Bootstrap

              
                
              
            
Let us decide whether there was significant overfitting during the development of this model, using the bootstrap. 
                
              


              [image: A69956_2_En_19_Figt_HTML.gif]

            
	Index
	Original
	Training
	Test
	Optimism
	Corrected
	
                        n
                      

	 	Sample
	Sample
	Sample
	 	Index
	 
	
                        D
                        
                          xy
                        
                      
	0. 49
	0. 51
	0. 46
	0. 05
	0. 43
	300

	
                        R
                        2
                      
	0. 59
	0. 66
	0. 54
	0. 12
	0. 47
	300

	Intercept
	0. 00
	0. 00
	− 0. 05
	0. 05
	− 0. 05
	300

	Slope
	1. 00
	1. 00
	0. 90
	0. 10
	0. 90
	300

	
                        D
                      
	0. 48
	0. 55
	0. 42
	0. 13
	0. 35
	300

	
                        U
                      
	0. 00
	0. 00
	− 0. 01
	0. 01
	− 0. 01
	300

	
                        Q
                      
	0. 48
	0. 56
	0. 43
	0. 12
	0. 36
	300

	
                        g
                      
	1. 96
	2. 05
	1. 87
	0. 19
	1. 77
	300



Judging from D

                xy
               and R
2 there is a moderate amount of overfitting. The slope shrinkage factor (0.9) is not troublesome, however. An almost unbiased estimate of future predictive 
                
                
              discrimination on similar patients is given by the corrected D

                xy
               of 0.43. This index equals the difference between the probability of concordance and the probability of discordance of pairs of predicted survival times and pairs of observed survival times, accounting for censoring.
Next, a bootstrap overfitting-corrected 
                
                
              calibration curve is estimated. Patients are stratified by the predicted probability of surviving one year, such that there are at least 60 patients in each group. 
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[image: A69956_2_En_19_Fig11_HTML.gif]
Fig. 19.11Bootstrap validation of calibration curve. Dots represent apparent calibration accuracy; × are bootstrap estimates corrected for overfitting, based on binning predicted survival probabilities and computing Kaplan-Meier estimates. Black curve is the estimated observed relationship using hare and the blue curve is the overfitting-corrected hare estimate. The gray-scale line depicts the ideal relationship.




19.5 Approximating the Full Model
The fitted log-normal model is perhaps too complex for routine use and for routine data collection. Let us develop a simplified model that can predict the predicted values of the full model with high 
                
                
              accuracy (R
2 = 0. 967). The simplification is done using a fast backward step-down against the full model predicted values. 
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We can estimate the variance–covariance matrix of the coefficients of the reduced model using Equation 5.​2 in Section 5.​5.​2 The computations below result in a covariance matrix that does not include elements related to the scale parameter. In the code x is the matrix T in Section 5.​5.​2


              [image: A69956_2_En_19_Figw_HTML.gif]

            
Let’s compare the variance estimates (diagonals of v) with variance estimates from a reduced model that is fitted against the actual outcomes.

              [image: A69956_2_En_19_Figx_HTML.gif]

            
The estimated variances from the reduced model are actually slightly smaller than those that would have been obtained from stepwise variable selection in this case, had variable selection used a stopping rule that resulted in the same set of variables being selected. Now let us compute Wald statistics for the reduced model.

              [image: A69956_2_En_19_Figy_HTML.gif]
            
The results are shown in Table 19.2. Note the similarity of the statistics to those found in the table for the full model. This would not be the case had deleted variables been very collinear with retained variables.
The equation for the simplified model follows. The model is also depicted graphically in Figure 19.12. The nomogram allows one to calculate mean and median survival time. Survival probabilities could have easily been added as additional axes. Table 19.2Wald Statistics for Z
                                        


	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	dzgroup
	55. 94
	2
	 < 0. 0001

	meanbp
	29. 87
	4
	 < 0. 0001

	   Nonlinear

	9. 84
	3
	0.0200

	crea
	39. 04
	3
	 < 0. 0001

	   Nonlinear

	24. 37
	2
	 < 0. 0001

	age
	18. 12
	4
	0.0012

	   Nonlinear

	0. 34
	3
	0.9517

	hrt
	9. 87
	2
	0.0072

	   Nonlinear

	0. 40
	1
	0.5289

	scoma
	9. 85
	1
	0.0017

	pafi.i
	14. 01
	3
	0.0029

	   Nonlinear

	6. 66
	2
	0.0357

	adlsc
	9. 71
	2
	0.0078

	   Nonlinear

	2. 87
	1
	0.0904

	resp
	9. 65
	2
	0.0080

	   Nonlinear

	7. 13
	1
	0.0076

	TOTAL NONLINEAR
	58. 08
	13
	 < 0. 0001

	TOTAL
	252. 32
	23
	 < 0. 0001
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              [image: 
$$\displaystyle{\mathrm{E(\mathrm{Z}}) = X\beta,\mathrm{\ \ where}}$$
]



              [image: 
$$\displaystyle\begin{array}{rcl} & & X\hat{\beta } = {}\\ & & \ \ -2.51 {}\\ & & \ \ -1.94[\mathrm{Coma}] - 1.75[\mathrm{MOSF\ w/Malig}] {}\\ & & \ \ +0.068\mathrm{meanbp} - 3.08\! \times \! 10^{-5}(\mathrm{meanbp} - 41.8)_{ +}^{3} + 7.9\! \times \! 10^{-5}(\mathrm{meanbp} - 61)_{ +}^{3} {}\\ & & \ \ -4.91\! \times \! 10^{-5}(\mathrm{meanbp} - 73)_{ +}^{3} + 2.61\! \times \! 10^{-6}(\mathrm{meanbp} - 109)_{ +}^{3} - 1.7\! \times \! 10^{-6}(\mathrm{meanbp} - 135)_{ +}^{3} {}\\ & & \ \ -0.553\mathrm{crea} - 0.229(\mathrm{crea} - 0.6)_{+}^{3} + 0.45(\mathrm{crea} - 1.1)_{ +}^{3} - 0.233(\mathrm{crea} - 1.94)_{ +}^{3} {}\\ & & \ \ +0.0131(\mathrm{crea} - 7.32)_{+}^{3} {}\\ & & \ \ -0.0165\mathrm{age} - 1.13\! \times \! 10^{-5}(\mathrm{age} - 28.5)_{ +}^{3} + 4.05\! \times \! 10^{-5}(\mathrm{age} - 49.5)_{ +}^{3} {}\\ & & \ \ -2.15\! \times \! 10^{-5}(\mathrm{age} - 63.7)_{ +}^{3} - 2.68\! \times \! 10^{-5}(\mathrm{age} - 72.7)_{ +}^{3} + 1.9\! \times \! 10^{-5}(\mathrm{age} - 85.6)_{ +}^{3} {}\\ & & \ \ -0.0136\mathrm{hrt} + 6.09\! \times \! 10^{-7}(\mathrm{hrt} - 60)_{ +}^{3} - 1.68\! \times \! 10^{-6}(\mathrm{hrt} - 111)_{ +}^{3} + 1.07\! \times \! 10^{-6}(\mathrm{hrt} - 140)_{ +}^{3} {}\\ & & \ \ -0.0135\:\mathrm{scoma} {}\\ & & \ \ +0.0161\mathrm{pafi.i} - 4.77\! \times \! 10^{-7}(\mathrm{pafi.i} - 88)_{ +}^{3} + 9.11\! \times \! 10^{-7}(\mathrm{pafi.i} - 167)_{ +}^{3} {}\\ & & \ \ -5.02\! \times \! 10^{-7}(\mathrm{pafi.i} - 276)_{ +}^{3} + 6.76\! \times \! 10^{-8}(\mathrm{pafi.i} - 426)_{ +}^{3} - 0.369\:\mathrm{adlsc} + 0.0409\:\mathrm{adlsc}^{2} {}\\ & & \ \ +0.0394\mathrm{resp} - 9.11\! \times \! 10^{-5}(\mathrm{resp} - 10)_{ +}^{3} + 0.000176(\mathrm{resp} - 24)_{ +}^{3} - 8.5\! \times \! 10^{-5}(\mathrm{resp} - 39)_{ +}^{3} {}\\ & & {}\\ \end{array}$$
]



            
and [image: 
$$[c] = 1\mathrm{\ if\ subject\ is\ in\ group\ }c,\ 0\mathrm{\ otherwise};\ (x)_{+} = x\mathrm{\ if\ }x> 0,\ 0$$
] otherwise.
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Fig. 19.12Nomogram for predicting median and mean survival time, based on approximation of full model




              
                
                
                
              
            

19.6 Problems
Analyze the Mayo Clinic PBC dataset.
1.Graphically assess whether Weibull (extreme value), exponential, log-logistic, or log-normal distributions will fit the data, using a few apparently important stratification factors.

 

2.For the best fitting parametric model from among the four examined, fit a model containing several sensible covariables, both categorical and continuous. Do a Wald test for whether each factor in the model has an association with survival time, and a likelihood ratio test for the simultaneous contribution of all predictors. For classification factors having more than two levels, be sure that the Wald test has the appropriate degrees of freedom. For continuous factors, verify or relax linearity assumptions. If using a Weibull model, test whether a simpler exponential model would be appropriate. Interpret all estimated coefficients in the model. Write the full survival model in mathematical form. Generate a predicted survival curve for a patient with a given set of characteristics.

 




See [361] for an analysis of this dataset using linear splines in time and in the covariables.
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20.1 Model

              
                
              
            
20.1.1 Preliminaries
The Cox proportional hazards model 132 is the most popular model for the analysis of survival data. It is a semiparametric model; it makes
                  
                 a parametric assumption concerning the effect of the predictors on the hazard function
                  
                , but makes no assumption regarding the nature of the hazard function λ(t) itself. The Cox PH model assumes that predictors act multiplicatively on the hazard function but does not assume that the hazard function is constant (i.e., exponential model), Weibull, or any other particular form. The regression portion of the model is fully parametric; that is, the regressors are linearly related to log hazard or log cumulative hazard. In many situations, either the form of the true hazard function is unknown or it is complex, so the Cox model has definite advantages. Also, one is usually more interested in the effects of the predictors than in the shape of λ(t), and the Cox approach allows the analyst to essentially ignore λ(t), which is often not of primary interest.
[image: A69956_2_En_20_Figaf_HTML.gif]

The Cox PH model uses only the rank ordering of the failure and censoring times and thus is less affected by outliers in the failure times than fully parametric methods. The model contains as a special case the popular 
                  
                  
                log-rank test for comparing survival of two groups. For estimating and testing regression coefficients, the Cox model is as efficient as parametric models (e.g., Weibull model with PH) even when all assumptions of the parametric model are satisfied. 171

When a parametric model’s assumptions are not true (e.g., when a Weibull model is used and the population is not from a Weibull survival distribution so that the choice of model is incorrect), the Cox analysis is more efficient than the parametric analysis. As shown below, diagnostics for checking Cox model assumptions are very well developed.

20.1.2 Model Definition
The Cox PH model is most often stated in terms of the hazard function
                  
                : [image: 
$$\displaystyle{ \lambda (t\vert X) =\lambda (t)\exp (X\beta ). }$$
]

 (20.1)

 We do not include an intercept parameter in X β here. Note that this is identical to the parametric PH model stated earlier. There is an important difference, however, in that now we do not assume any specific shape for λ(t). For the moment, we are not even interested in estimating λ(t). The reason for this departure from the fully parametric approach is due to an ingenious conditional argument by Cox. 132 Cox argued that when the PH model holds, information about λ(t) is not very useful in estimating the parameters of primary interest, β. By special conditioning in formulating the log 
                  
                likelihood function, Cox showed how to derive a valid estimate of β that does not require estimation of λ(t) as λ(t) dropped out of the new likelihood function. Cox’s derivation focuses on using the information in the data that relates to the relative hazard function [image: 
$$\exp (X\beta )$$
].

20.1.3 Estimation of β

Cox’s derivation of an estimator of β can be loosely described as follows. Let t
1 < t
2 < … < t

                  k
                 represent the unique ordered failure times in the sample of n subjects; assume for now that there are no tied failure times (tied censoring times are allowed) so that k = n. Consider the set of individuals at risk of failing an instant before failure time t

                  i
                . This set of individuals is called the risk set at time t

                  i
                , and we use R

                  i
                 to denote this risk set. R

                  i
                 is the set of subjects j such that the subject had not failed or been censored by time t

                  i
                ; that is, the risk set R

                  i
                 includes subjects with failure/censoring time Y

                  j
                 ≥ t

                  i
                .
The 
                  
                conditional probability that individual i is the one that failed at t

                  i
                , given that the subjects in the set R

                  i
                 are at risk of failing, and given further that exactly one failure occurs at t

                  i
                , is [image: 
$$\displaystyle\begin{array}{rcl} \mathrm{Prob}\{\mathrm{subject\ }i\mathrm{\ fails\ at\ }t_{i}\vert R_{i}\mathrm{\ and\ one\ failure\ at\ }t_{i}\}& = & \\ \frac{\mathrm{Prob}\{\mathrm{subject\ }i\mathrm{\ fails\ at\ }t_{i}\vert R_{i}\}} {\mathrm{Prob}\{\mathrm{\ one\ failure\ at\ }t_{i}\vert R_{i}\}} & &{}\end{array}$$
]

 (20.2)

 using the rules of 
                  
                conditional probability. This conditional probability equals [image: 
$$\displaystyle{ \frac{\lambda (t_{i})\exp (X_{i}\beta )} {\sum _{j\in R_{i}}\lambda (t_{i})\exp (X_{j}\beta )} = \frac{\exp (X_{i}\beta )} {\sum _{j\in R_{i}}\exp (X_{j}\beta )} = \frac{\exp (X_{i}\beta )} {\sum _{Y _{j}\geq t_{i}}\exp (X_{j}\beta )} }$$
]

 (20.3)

 independent of λ(t). To understand this likelihood, consider a special case where the predictors have no effect; that is, β = 0 [93, pp. 48–49]. Then [image: 
$$\exp (X_{i}\beta ) =\exp (X_{j}\beta ) = 1$$
] and Prob{subject i is the subject that failed at t

                  i
                 | R

                  i
                 and one failure occurred at t

                  i
                } is 1∕n

                  i
                 where n

                  i
                 is the number of subjects at risk at time t

                  i
                .
By arguing that these conditional probabilities are themselves conditionally independent across the different failure times, a total likelihood can be computed by multiplying these individual likelihoods 
                  
                  
                

                  
                  
                over all failure times. Cox termed this a partial likelihood for β: [image: 
$$\displaystyle{ L(\beta ) =\prod _{Y _{i}\mathrm{\ uncensored}} \frac{\exp (X_{i}\beta )} {\sum _{Y _{j}\geq Y _{i}}\exp (X_{j}\beta )}. }$$
]

 (20.4)

 The log partial likelihood is [image: 
$$\displaystyle{ \log L(\beta ) =\sum _{Y _{i}\mathrm{\ uncensored}}\{X_{i}\beta -\log [\sum _{Y _{j}\geq Y _{i}}\exp (X_{j}\beta )]\}. }$$
]

 (20.5)

 Cox and others have shown that this partial log likelihood can be treated as an ordinary log likelihood to derive valid (partial) MLEs of β. Note that this log likelihood is unaffected by the addition of a constant to any or all of the Xs. This is consistent with the fact that an intercept term is unnecessary and cannot be estimated since the Cox model is a model for the relative hazard and does not directly estimate the underlying hazard λ(t).
When there are tied failure times in the sample, the true partial log likelihood function involves permutations so it can be time-consuming to compute. When the number of ties is not large, Breslow 70 has derived a satisfactory approximate log likelihood function. The formula given above, when applied without modification to samples containing ties, actually uses Breslow’s approximation. If there are ties so that k < n and t
1, …, t

                  k
                 denote the unique failure times as we originally intended, Breslow’s approximation is written as [image: 
$$\displaystyle{ \log L(\beta ) =\sum _{ i=1}^{k}\{S_{ i}\beta - d_{i}\log [\sum _{Y _{j}\geq t_{i}}\exp (X_{j}\beta )]\}, }$$
]

 (20.6)

 where [image: 
$$S_{i} =\sum _{j\in D_{i}}X_{j}$$
], D

                  i
                 is the set of indexes j for subjects failing at time t

                  i
                , and d

                  i
                 is the number of failures at t

                  i
                .
Efron 171 derived another approximation to the true likelihood that is significantly more accurate than the Breslow approximation and often yields estimates that are very close to those from the more cumbersome permutation likelihood: 288 [image: 
$$\displaystyle\begin{array}{rcl} \log L(\beta )& =& \sum _{i=1}^{k}\{S_{ i}\beta -\sum _{j=1}^{d_{i} }\log [\sum _{Y _{j}\geq t_{i}}\exp (X_{j}\beta ) \\ & -& \frac{j - 1} {d_{i}} \sum _{l\in D_{i}}\exp (X_{l}\beta )]\}. {}\end{array}$$
]

 (20.7)

 In the special case when all tied failure times are from subjects with identical X

                  i
                
β, the Efron approximation yields the exact (permutation) marginal likelihood (Therneau, personal communication, 1993).
Kalbfleisch and Prentice 330 showed that Cox’s partial likelihood, in the absence of predictors that are functions of time, is a 
                  
                marginal distribution of the ranks of the failure/censoring times.
See Therneau and Grambsch 604 and Huang and Harrington 310 for descriptions of penalized partial likelihood estimation methods for improving mean squared error of estimates of β in a similar fashion to what was discussed in Section 9.​10


20.1.4 Model Assumptions and Interpretation of Parameters
The Cox PH regression model has the same assumptions as the parametric PH model except that no assumption is made regarding the shape of the underlying hazard or survival functions λ(t) and S(t). The Cox PH model assumes, in its most basic form, linearity and additivity of the predictors with respect to log hazard or log cumulative hazard. It also assumes the PH assumption of no time by predictor interactions; that is, the predictors have the same effect on the hazard function at all values of t. The relative hazard function [image: 
$$\exp (X\beta )$$
] is constant through time and the survival functions for subjects with different values of X are powers of each other. If, for example, the hazard of death at time t for treated patients is half that of control patients at time t, this same hazard ratio
                  
                 is in effect at any other time point. In other words, treated patients have a consistently better hazard of death over all follow-up time.
The regression parameters are interpreted the same as in the parametric PH model. The only difference is the absence of hazard shape parameters in the model, since the hazard shape is not estimated in the Cox partial likelihood procedure.

20.1.5 Example
Consider again the rat vaginal cancer data from Section 18.​3.​6 Figure 20.1 displays the nonparametric survival estimates for the two groups along with estimates derived from the Cox model (by a method discussed later).[image: A69956_2_En_20_Fig1_HTML.gif]
Fig. 20.1Altschuler–Nelson–Fleming–Harrington nonparametric survival estimates and Cox-Breslow estimates for rat data 508







                [image: A69956_2_En_20_Figa_HTML.gif]

                [image: A69956_2_En_20_Figb_HTML.gif]

              
The predicted survival curves from the fitted Cox model are in good agreement with the nonparametric estimates, again verifying the PH assumption for these data. The estimates of the group effect from a Cox model (using the exact likelihood since there are ties, along with both Efron’s and Breslow’s approximations) as well as from a Weibull model and an exponential model are shown in Table 20.1. The exponential model, with its constant hazard, cannot accommodate the long early period with no failures. The group predictor was coded as X
1 = 0 and X
1 = 1 for Groups 1 and 2, respectively. Table 20.1Group effects using three versions of the partial likelihood and three parametric models


	Model
	Group Regression
	S.E.
	Wald
	Group 2:1

	 	Coefficient
	 	
P-Value
	Hazard Ratio

	Cox (Exact)
	-0.629
	0.361
	0.08
	0.533

	Cox (Efron)
	-0.569
	0.347
	0.10
	0.566

	Cox (Breslow)
	-0.596
	0.348
	0.09
	0.551

	Exponential
	-0.093
	0.334
	0.78
	0.911

	Weibull (AFT)
	0.132
	0.061
	0.03
	–

	Weibull (PH)
	-0.721
	–
	–
	0.486





For this example, the Breslow likelihood approximation resulted in [image: 
$$\hat{\beta }$$
] closer to that from maximizing the exact likelihood. Note how the group effect (47% reduction in hazard of death by the exact Cox model) is underestimated by the exponential model (9% reduction in hazard). The hazard ratio
                  
                 from the Weibull fit agrees with the Cox fit.

20.1.6 Design Formulations
Designs are no different for the Cox PH model than for other models except for one minor distinction. Since the Cox model does not have an intercept parameter, the group omitted from X in an 
                  
                ANOVA model will go into the underlying hazard function. As an example, consider a three-group model for treatments A, B, and C. We use the two dummy variables [image: 
$$\displaystyle\begin{array}{rcl} X_{1}& =& 1\mathrm{\ \ \ if\ treatment\ is\ A,\ \ }0\mathrm{\ otherwise,\ and} {}\\ X_{2}& =& 1\mathrm{\ \ \ if\ treatment\ is\ B,\ \ }0\mathrm{\ otherwise}. {}\\ \end{array}$$
]


 The parameter β
1 is the A: C log hazard ratio
                  
                 or difference in hazards at any time t between treatment A and treatment C. β
2 is the B: C log hazard ratio ([image: 
$$\exp (\beta _{2})$$
] is the B: C hazard ratio, etc.). Since there is no intercept parameter, there is no direct estimate of the hazard function for treatment C or any other treatment; only relative hazards are modeled.
As with all regression models, a Wald, score, or likelihood ratio test for differences between any treatments is conducted by testing [image: 
$$H_{0}:\beta _{1} =\beta _{2} = 0$$
] with 2 d.f.

20.1.7 Extending the Model by Stratification


                  
                 A unique feature of the Cox PH model is its ability to adjust for factors that are not modeled. Such factors usually take the form of polytomous stratification factors that either are too difficult to model or do not satisfy the PH assumption. For example, a subject’s occupation or clinical study site may take on dozens of levels and the sample size may not be large enough to model this nominal variable with dozens of dummy variables. Also, one may know that a certain predictor (either a polytomous one or a continuous one that is grouped) may not satisfy PH and it may be too complex to model the hazard ratio for that predictor as a function of time.
The idea behind the stratified Cox PH model is to allow the form of the underlying hazard function to vary across levels of the stratification factors. A stratified Cox analysis ranks the failure times separately within strata. Suppose that there are b strata indexed by j = 1, 2, …, b. Let C denote the stratum identification. For example, C = 1 or 2 may stand for the female and male strata, respectively. The stratified PH model is [image: 
$$\displaystyle\begin{array}{rcl} \lambda (t\vert X,C = j)& =& \lambda _{j}(t)\exp (X\beta ),\mathrm{\ \ \ or} \\ S(t\vert X,C = j)& =& S_{j}(t)^{\exp (X\beta )}.{}\end{array}$$
]

 (20.8)

 Here λ

                  j
                (t) and S

                  j
                (t) are, respectively, the underlying hazard and survival functions for the jth stratum. The model does not assume any connection between the shapes of these functions for different strata.
In this stratified analysis, the data are stratified by C but, by default, a common vector of regression coefficients is fitted across strata. These common regression coefficients can be thought of as “pooled” estimates. For example, a Cox model with age as a (modeled) predictor and sex as a stratification variable essentially estimates the common slope of age by pooling information about the age effect over the two sexes. The effect of age is adjusted by sex differences, but no assumption is made about how sex affects survival. There is no PH assumption for sex. Levels of the stratification factor C can represent multiple stratification factors that are cross-classified. Since these factors are not modeled, no assumption is made regarding interactions among them.
At first glance it appears that stratification causes a loss of efficiency. However, in most cases the loss is small as long as the number of strata is not too large with regard to the total number of events. A stratum that contains no events contributes no information to the analysis, so such a situation should be avoided if possible.
The stratified or “pooled” Cox model is fitted by formulating a separate log likelihood function for each stratum, but with each log likelihood having a common β vector. If different strata are made up of independent subjects, the strata are independent and the likelihood functions are multiplied together to form a joint likelihood over strata. Log likelihood functions are thus added over strata. This total log likelihood function is maximized once to derive a pooled or stratified estimate of β and to make an inference about β. No inference can be made about the stratification factors. They are merely “adjusted for.”
Stratification is useful for checking the PH and linearity assumptions for one or more predictors. Predicted Cox survival curves (Section 20.2) can be derived by modeling the predictors in the usual way, and then stratified survival curves can be estimated by using those predictors as stratification factors. Other factors for which PH is assumed can be modeled in both instances. By comparing the modeled versus stratified survival estimates, a graphical check of the assumptions can be made. Figure 20.1 demonstrates this method although there are no other factors being adjusted for and stratified Cox estimates are KM estimates. The stratified survival estimates are derived by stratifying the dataset to obtain a separate underlying survival curve for each stratum, while pooling information across strata to estimate coefficients of factors that are modeled.
Besides allowing a factor to be adjusted for without modeling its effect, a stratified Cox PH model can also allow a modeled factor to interact with strata. 143, 180, 603 For the age–sex example, consider the following model with X
1 denoting age and C = 1, 2 denoting females and males, respectively. [image: 
$$\displaystyle\begin{array}{rcl} \lambda (t\vert X_{1},C = 1)& =& \lambda _{1}(t)\exp (\beta _{1}X_{1}) \\ \lambda (t\vert X_{1},C = 2)& =& \lambda _{2}(t)\exp (\beta _{1}X_{1} +\beta _{2}X_{1}).{}\end{array}$$
]

 (20.9)

 This model can be simplified to [image: 
$$\displaystyle{ \lambda (t\vert X_{1},C = j) =\lambda _{j}(t)\exp (\beta _{1}X_{1} +\beta _{2}X_{2}) }$$
]

 (20.10)

 if X
2 is a product interaction term equal to 0 for females and X
1 for males. The β
2 parameter quantifies the interaction between age and sex: it is the difference in the age slope between males and females. Thus the interaction between age and sex can be quantified and tested, even though the effect of sex is not modeled!
The stratified Cox model is commonly used to adjust for hospital differences in a multicenter randomized trial. With this method, one can allow for differences in outcome between q hospitals without estimating q − 1 parameters. Treatment × hospital interactions can be tested efficiently without computational problems by estimating only the treatment main effect, after stratifying on hospital. The score statistic (with q − 1 d.f.) for testing q − 1 treatment × hospital interaction terms is then computed (“residual χ
2” in a stepwise procedure with treatment × hospital terms as candidate predictors).
The stratified Cox model turns out to be a generalization of the 
                  
                  
                conditional logistic model for analyzing matched set (e.g., case-control) data. 71 Each stratum represents a set, and the number of “failures” in the set is the number of “cases” in that set. For r: 1 matching (r may vary across sets), the Breslow 70 likelihood may be used to fit the conditional logistic model exactly. For r: m matching, an exact Cox likelihood must be computed. 
                  
                



20.2 Estimation of Survival Probability and Secondary Parameters
As discussed above, once a partial log likelihood function is derived, it is used as if it were an ordinary log likelihood function to estimate β, estimate standard errors of β, obtain confidence limits, and make statistical tests. Point and interval estimates of hazard ratios are obtained in the same fashion as with parametric PH models discussed earlier.
The Cox model and parametric survival models differ markedly in how one estimates S(t | X). Since the Cox model does not depend on a choice of the underlying survival function S(t), fitting a Cox model does not result directly in an estimate of S(t | X). However, several authors have derived secondary estimates of S(t | X). One method is the discrete hazard model of Kalbfleisch and Prentice 331, pp. 36–37, 84–87. Their estimator has two advantages: it is an extension of the Kaplan–Meier estimator and is identical to S
KM if the estimated value of β happened to be zero or there are no covariables being modeled; and it is not affected by the choice of what constitutes a “standard” subject having the underlying survival function S(t). In other words, it would not matter whether the standard subject is one having age equal to the mean age in the sample or the median age in the sample; the estimate of S(t | X) as a function of X = age would be the same (this is also true of another estimator which follows).
Let t
1, t
2, …, t

                k
               denote the unique failure times in the sample. The discrete hazard model assumes that the probability of failure is greater than zero only at observed failure times. The probability of failure at time t

                j
               given that the subject has not failed before that time is also the hazard of failure at time t

                j
               since the model is discrete. The hazard at t

                j
               for the standard subject is written λ

                j
              . Letting [image: 
$$\alpha _{j} = 1 -\lambda _{j}$$
], the underlying survival function can be written [image: 
$$\displaystyle{ S(t_{i}) =\prod _{ j=0}^{i-1}\alpha _{ j},i = 1,2,\ldots,k\ \ \ \ (\alpha _{0} = 1). }$$
]

 (20.11)

 A separate equation can be solved using the Newton–Raphson method to estimate each α

                j
              . If there is only one failure at time t

                i
              , there is a closed-form solution for the maximum likelihood estimate of α

                i
              , a

                i
              , letting j denote the subject who failed at t

                i
              . [image: 
$$\hat{\beta }$$
] denotes the partial MLE of β. [image: 
$$\displaystyle{ \hat{\alpha }_{i} = [1 -\exp (X_{j}\hat{\beta })/\sum _{Y _{m}\geq Y _{j}}\exp (X_{m}\hat{\beta })]^{\exp (-X_{j}\hat{\beta })}. }$$
]

 (20.12)

 If [image: 
$$\hat{\beta }= 0$$
], this formula reduces to a 
                
              conditional probability component of the product-limit estimator, [image: 
$$1 - (1/$$
] number at risk).
The estimator of the underlying survival function is [image: 
$$\displaystyle{ \hat{S}(t) =\prod _{j:t_{j}\leq t}\hat{\alpha }_{j}, }$$
]

 (20.13)

 and the estimate of the probability of survival past time t for a subject with predictor values X is [image: 
$$\displaystyle{ \hat{S}(t\vert X) =\hat{ S}(t)^{\exp (X\hat{\beta })}. }$$
]

 (20.14)



When the model is stratified, estimation of the α

                j
               and S is carried out separately within each stratum once [image: 
$$\hat{\beta }$$
] is obtained by pooling over strata. The stratified survival function estimates can be thought of as stratified Kaplan–Meier estimates adjusted for X, with the adjustment made by assuming PH and linearity. As mentioned previously, these stratified adjusted survival estimates are useful for checking model assumptions and for providing a simple way to incorporate factors that violate PH.
The stratified estimates are also useful in themselves as descriptive statistics without making assumptions about a major factor. For example, in a study from Califf et al. 88 to compare medical therapy with coronary artery bypass grafting (
                
              CABG), the model was stratified by treatment but adjusted for a variety of baseline characteristics by modeling. These adjusted survival estimates do not assume a form for the effect of surgery. Figure 20.2 displays unadjusted (Kaplan–Meier) and adjusted survival curves, with baseline predictors adjusted to their mean levels in the combined sample. Notice that valid adjusted survival estimates are obtained even though the curves cross (i.e., PH is violated for the treatment variable). These curves are essentially product limit estimates with respect to treatment and Cox PH estimates with respect to the baseline descriptor variables.[image: A69956_2_En_20_Fig2_HTML.gif]
Fig. 20.2Unadjusted (Kaplan–Meier) and adjusted (Cox–Kalbfleisch–Prentice) estimates of survival. Left, Kaplan–Meier estimates for patients treated medically and surgically at Duke University Medical Center from November 1969 through December 1984. These survival curves are not adjusted for baseline prognostic factors. Right, survival curves for patients treated medically or surgically after adjusting for all known important baseline prognostic characteristics. 88






The 
                
                
              Kalbfleisch–Prentice discrete underlying hazard model estimates of the α

                j
               are one minus estimates of the hazard function at the discrete failure times. However, these estimated hazard functions are usually too “noisy” to be useful unless the sample size is very large or the failure times have been grouped (say by rounding).
Just as Kalbfleisch and Prentice have generalized the Kaplan–Meier estimator to allow for covariables, 
                
                
              Breslow 70 has generalized the Altschuler– 
                
                
              

                
                
              Nelson–Aalen–Fleming–Harrington estimator to allow for covariables. Using the notation in Section 20.1.3, Breslow’s estimate is derived through an estimate of the cumulative hazard function: [image: 
$$\displaystyle{ \hat{\varLambda }(t) =\sum _{i:t_{i}<t} \frac{d_{i}} {\sum _{Y _{i}\geq t_{i}}\exp (X_{i}\hat{\beta })}. }$$
]

 (20.15)

 For any X, the estimates of Λ and S are [image: 
$$\displaystyle\begin{array}{rcl} \hat{\varLambda }(t\vert X)& =& \hat{\varLambda }(t)\exp (X\hat{\beta }) \\ \hat{S}(t\vert X)& =& \exp [-\hat{\varLambda }(t)\exp (X\hat{\beta })].{}\end{array}$$
]

 (20.16)

 More asymptotic theory has been derived from the 
                
                
              Breslow estimator than for the 
                
                
              Kalbfleisch–Prentice estimator. Another advantage of the Breslow estimator is that it does not require iterative computations for d

                i
               > 1. Lawless 382, p. 362 states that the two survival function estimators differ little except in the right-hand tail when all d

                i
              s are unity. Like the Kalbfleisch–Prentice estimator, the Breslow estimator is invariant under different choices of “standard subjects” for the underlying survival S(t). [image: A69956_2_En_20_Figag_HTML.gif]

Somewhat complex formulas are available for computing confidence limits of [image: 
$$\hat{S}(t\vert X)$$
]. 615 
[image: A69956_2_En_20_Figah_HTML.gif]


20.3 Sample Size Considerations
One way of estimating the minimum sample size for a Cox model analysis 
                
               aimed at estimating survival probabilities is to consider the simplest case where there are no covariates. Thus the problem reduces to using the Kaplan-Meier estimate to estimate S(t). Let’s further simplify things to assume there is no censoring. Then the Kaplan-Meier estimate is just one minus the empirical cumulative distribution function. By the Dvoretzky-Kiefer-Wolfowitz inequality, the maximum absolute error in an empirical distribution function estimate of the true continuous distribution function is less than or equal to ε with probability of at least [image: 
$$1 - 2e^{-2n\epsilon ^{2} }$$
]. For the probability to be at least 0.95, n = 184. Thus in the case of no censoring, one needs 184 subjects to estimate the survival curve to within a margin of error of 0.1 everywhere. To estimate the subject-specific survival curves (S(t | X)) will require greater sample sizes, as will having censored data. It is a fair approximation to think of 184 as the needed number of subjects suffering the event or being censored “late.”
Turning to estimation of a hazard ratio for a single binary predictor 
                
               X that has equal numbers of X = 0 and X = 1, if the total sample size is n and the number of events in the two categories are respectively e
0 and e
1, the variance of the log hazard ratio is approximately [image: 
$$v = \frac{1} {e_{0}} + \frac{1} {e_{1}}$$
]. Letting z denote the [image: 
$$1 -\alpha /2$$
] standard normal critical value, the multiplicative margin of error (MMOE) with confidence 1 −α is given by [image: 
$$\exp (z\sqrt{v})$$
]. To achieve a MMOE of 1.2 in estimating [image: 
$$e^{\hat{\beta }}$$
] with equal numbers of events in the two groups and α = 0. 05 requires a total of 462 events.

20.4 Test Statistics
Wald, score, and likelihood ratio statistics are useful and valid for drawing inferences about β in the Cox model. The score test deserves special mention here. If there is a single binary predictor in the model that describes two groups, the score test for assessing the importance of the binary predictor is virtually identical to the 
                
                
              

                
                
              Mantel–Haenszel 
                
                
              log-rank test for comparing the two groups. If the analysis is stratified for other (nonmodeled) factors, the score test from a stratified Cox model is equivalent to the corresponding stratified log-rank test. Of course, the likelihood ratio or Wald tests could also be used in this situation, and in fact the likelihood ratio test may be better than the score test (i.e., type I errors by treating the likelihood ratio test statistic as having a χ
2 distribution may be more accurate than using the 
                
                
              log-rank statistic).
The Cox model can be thought of as a generalization of the 
                
                
              log-rank procedure since it allows one to test continuous predictors, perform simultaneous tests of various predictors, and adjust for other continuous factors without grouping them. Although a stratified log-rank test does not make assumptions regarding the effect of the adjustment (stratifying) factors, it makes the same assumption (i.e., PH) as the Cox model regarding the treatment effect for the statistical test of no difference in survival between groups.

20.5 Residuals
Therneau et al. 605 discussed four types of residuals from the Cox model: 
                
              

                
                
              martingale, score, 
                
                
              Schoenfeld, and 
                
              deviance. The first three have been proven to be very useful, as indicated in Table 20.2. 
[image: A69956_2_En_20_Figai_HTML.gif]
Table 20.2Types of residuals for the Cox model


	Residual
	Purposes

	Martingale
	Assessing adequacy of a hypothesized predictor

	 	transformation. Graphing an estimate of a

	 	predictor transformation (Section 20.6.1).

	Score
	Detecting overly influential observations

	 	(Section 20.9). Robust estimate of

	 	covariance matrix of [image: 
$$\hat{\beta }$$
] (Section 9.​5). 410


	Schoenfeld
	Testing PH assumption (Section 20.6.2).

	 	Graphing estimate of hazard ratio function

	 	(Section 20.6.2).






20.6 Assessment of Model Fit
As stated before, the Cox model makes the same assumptions as the parametric PH model except that it does not assume a given shape for λ(t) or S(t). Because the Cox PH model is so widely used, methods of assessing its fit are dealt with in more detail than was done with the parametric PH models.
20.6.1 Regression Assumptions
Regression assumptions (linearity, additivity) for the PH model are displayed in Figures 18.​3 and 18.​5. As mentioned earlier, the regression assumptions can be verified by stratifying by X and examining [image: 
$$\log \hat{\varLambda }(t\vert X)$$
] or [image: 
$$\log [\varLambda _{\mathrm{KM}}(t\vert X)]$$
] estimates as a function of X at fixed time t. However, as was pointed out in logistic regression, the stratification method is prone to problems of high variability of estimates. The sample size must be moderately large before estimates are precise enough to observe trends through the “
                  
                noise.” If one wished to divide the sample by quintiles of age and 15 events were thought to be needed in each stratum to derive a reliable estimate of [image: 
$$\log [\varLambda _{\mathrm{KM}}(2\mathrm{\ years})]$$
], there would need to be 75 events in the entire sample. If the Kaplan–Meier estimates were needed to be adjusted for another factor that was binary, twice as many events would be needed to allow the sample to be stratified by that factor.
Figure 20.3 displays Kaplan–Meier three-year log cumulative hazard estimates stratified
                  
                 by sex and decile of age. The simulated sample consists of 2000 hypothetical subjects (389 of whom had events), with 1174 males (146 deaths) and 826 females (243 deaths). The sample was drawn from a population with a known survival distribution that is exponential with hazard function [image: 
$$\displaystyle{ \lambda (t\vert X_{1},X_{2}) =.02\exp [.8X_{1} +.04(X_{2} - 50)], }$$
]

 (20.17)

 where X
1 represents the sex group (0 = male, 1 = female) and X
2 age in years, and censoring is uniform. Thus for this population PH, linearity, and additivity hold. Notice the amount of variability and wide confidence limits in the stratified nonparametric survival estimates.
[image: A69956_2_En_20_Figc_HTML.gif]

[image: A69956_2_En_20_Fig3_HTML.gif]
Fig. 20.3Kaplan–Meier log Λ estimates by sex and deciles of age, with 0. 95 confidence limits. Solid line is for males, dashed line for females.





As with the logistic model and other regression models, the restricted cubic spline function is an excellent tool for modeling the regression relationship with very few assumptions. A four-knot spline Cox PH model in two variables (X
1, X
2) that assumes linearity in X
1 and no X
1 × X
2 interaction is given by [image: 
$$\displaystyle\begin{array}{rcl} \lambda (t\vert X)& =& \lambda (t)\exp (\beta _{1}X_{1} +\beta _{2}X_{2} +\beta _{3}X_{2}' +\beta _{4}X_{2}''), \\ & =& \lambda (t)\exp (\beta _{1}X_{1} + f(X_{2})), {}\end{array}$$
]

 (20.18)

 where X
2′ and X
2″ are spline component variables as described earlier and f(X
2) is the spline function or spline transformation of X
2 given by [image: 
$$\displaystyle{ f(X_{2}) =\beta _{2}X_{2} +\beta _{3}X_{2}' +\beta _{4}X_{2}''. }$$
]

 (20.19)

 In linear form the Cox model without assuming linearity in X
2 is [image: 
$$\displaystyle{ \log \lambda (t\vert X) =\log \lambda (t) +\beta _{1}X_{1} + f(X_{2}). }$$
]

 (20.20)

 By computing partial MLEs of β
2, β
3, and β
4, one obtains the estimated transformation of X
2 that yields linearity in log hazard or log cumulative hazard.
A similar model that does not assume PH in X
1 is the Cox model stratified on X
1. Letting the stratification factor be C = X
1, this model is [image: 
$$\displaystyle\begin{array}{rcl} \log \lambda (t\vert X_{2},C = j)& =& \log \lambda _{j}(t) +\beta _{1}X_{2} +\beta _{2}X_{2}' +\beta _{3}X_{2}'' \\ & =& \log \lambda _{j}(t) + f(X_{2}). {}\end{array}$$
]

 (20.21)

 This model does assume no X
1 × X
2 interaction.
Figure 20.4 displays the estimated spline function relating age and sex to log[Λ(3)] in the simulated dataset, using the additive model stratified on sex.[image: A69956_2_En_20_Fig4_HTML.gif]
Fig. 20.4Cox PH model stratified on sex, using spline function for age, no interaction. 0. 95 confidence limits also shown. Solid line is for males, dashed line is for females.
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[image: A69956_2_En_20_Figaz_HTML.gif]

[image: A69956_2_En_20_Fige_HTML.gif]


A formal test of the linearity assumption of the Cox PH model in the above example is obtained by testing [image: 
$$H_{0}:\beta _{2} =\beta _{3} = 0$$
]. The χ
2 statistic with 2 d.f. is 0.69, P = 0. 7. The fitted equation, after simplifying the restricted cubic spline to simpler (unrestricted) form, is [image: 
$$X\hat{\beta } = -1.46+0.0255\mathrm{age}+2.59\times 10^{-5}(\mathrm{age}-30.3)^{3}-0.000101(\mathrm{age}-45.1)_{+}^{3}+9.73\times 10^{-5}(\mathrm{age}-54.6)_{+}^{3}-2.22\times 10^{-5}(\mathrm{age}-69.6)_{+}^{3}$$
]. Notice that the spline estimates are closer to the true linear relationships than were the Kaplan–Meier estimates, and the confidence limits are much tighter. The spline estimates impose a smoothness on the relationship and also use more information from the data by treating age as a continuous ordered variable. Also, unlike the stratified Kaplan–Meier estimates, the modeled estimates can make the assumption of no age × sex interaction. When this assumption is true, modeling effectively boosts the sample size in estimating a common function for age across both sex groups. Of course, this assumption can be tested and interactions can be modeled if necessary.
A Cox model that still does not assume PH for X
1 = C but which allows for an X
1 × X
2 interaction is [image: 
$$\displaystyle\begin{array}{rcl} \log \lambda (t\vert X_{2},C = j) =\log \lambda _{j}(t)& +& \beta _{1}X_{2} +\beta _{2}X_{2}' +\beta _{3}X_{2}'' \\ & +& \beta _{4}X_{1}X_{2} +\beta _{5}X_{1}X_{2}' \\ & +& \beta _{6}X_{1}X_{2}''. {}\end{array}$$
]

 (20.22)

 This model allows the relationship between X
2 and log hazard to be a smooth nonlinear function and the shape of the X
2 effect to be completely different for each level of X
1 if X
1 is dichotomous. Figure 20.5 displays a fit of this model at t = 3 years for the simulated dataset.[image: A69956_2_En_20_Fig5_HTML.gif]
Fig. 20.5Cox PH model stratified on sex, with interaction between age spline and sex. 0. 95 confidence limits are also shown. Solid line is for males, dashed line for females.
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The fitted equation is [image: 
$$\begin{array}{llll}X\hat{\beta } = -1.8+0.0493\mathrm{age}-2.15\times 10^{-6}(\mathrm{age}-30.3)_{+}^{3}-\\2.82\times 10^{-5}(\mathrm{age}-45.1)_{+}^{3}+5.18\times 10^{-5}(\mathrm{age}-54.6)_{+}^{3}-2.15\times 10^{-5}(\mathrm{age}-69.6)_{+}^{3}\\+\mathrm{[Female]}[-0.0366\mathrm{age}+4.29\times 10^{-5}(\mathrm{age}-30.3)_{+}^{3}-0.00011(\mathrm{age}-45.1)_{+}^{3}+\\6.74\times 10^{-5}(\mathrm{age}-54.6)_{+}^{3}-2.32\times 10^{-7}(\mathrm{age}-69.6)_{+}^{3}]\end{array}$$
]. The test for interaction yielded χ
2 = 1. 05 with 3 d.f., P = 0. 8. The simultaneous test for linearity and additivity yielded χ
2 = 1. 8 with 5 d.f., P = 0. 9. Note that allowing the model to be very flexible (not assuming linearity in age, additivity between age and sex, and PH for sex) still resulted in estimated regression functions that are very close to the true functions. However, confidence limits in this unrestricted model are much wider.
Figure 20.6 displays the estimated relationship between left ventricular ejection fraction (LVEF) and log hazard ratio for cardiovascular death in a sample of patients with significant 
                  
                coronary artery disease. The relationship is estimated using three knots placed at quantiles 0.05, 0.5, and 0.95 of LVEF. Here there is significant nonlinearity (Wald χ
2 = 9. 6 with 1 d.f.). The graphs leads to a transformation of LVEF that better satisfies the linearity assumption: min(LVEF, 0.5). This transformation has the best log likelihood “for the money” as judged by the Akaike information criterion (AIC = − 2 log L.R. − 2× no. parameters = 127). The AICs for 3, 4, 5, and 6-knot spline fits were, respectively, 126, 124, 122, and 120.[image: A69956_2_En_20_Fig6_HTML.gif]
Fig. 20.6Restricted cubic spline estimate of relationship between LVEF and relative log hazard from a sample of 979 patients and 198 cardiovascular deaths. Data from the Duke Cardiovascular Disease Databank.





Had the suggested transformation been more complicated than a truncation, a tentative transformation could have been checked for adequacy by expanding the new transformed variable into a new spline function and testing it for linearity.
Other methods based on smoothed residual plots are also valuable tools for selecting predictor transformations. Therneau et al. 605 describe residuals based on 
                  
                

                  
                  
                martingale theory that can estimate transformations of any number of predictors omitted from a Cox model fit, after adjusting for other variables included in the fit. Figure 20.7 used various smoothing methods on the points (LVEF, residual). First, the R loess

                  
                 function 96 was used to obtain a smoothed scatterplot fit and approximate 0.95 confidence bars. Second, an ordinary least squares model, representing LVEF as a restricted cubic spline with five default knots, was fitted. Ideally, both fits should have used weighted regression as the residuals do not have equal variance. Predicted values from this fit along with 0.95 confidence limits are shown. The loess

                  
                 and spline-linear regression agree extremely well. Third, Cleveland’s lowess scatterplot smoother 111 was used on the 
                  
                

                  
                  
                martingale residuals against LVEF. The suggested transformation from all three is very similar to that of Figure 20.6. For smaller sample sizes, the raw residuals should also be displayed.[image: A69956_2_En_20_Fig7_HTML.gif]
Fig. 20.7Three smoothed estimates relating martingale residuals 605 to LVEF.



 There is one vector of 
                  
                

                  
                  
                martingale residuals that is plotted against all of the predictors. When correlations among predictors are mild, plots of estimated predictor transformations without adjustment for other predictors (i.e., marginal transformations) may be useful. 
                  
                

                  
                  
                Martingale residuals may be obtained quickly by fixing [image: 
$$\hat{\beta }= 0$$
] for all predictors. Then smoothed plots of predictor against residual may be made for all predictors. Table 20.3 summarizes some of the ways 
                  
                

                  
                  
                martingale residuals may be used. Table 20.3Uses of martingale residuals for estimating predictor transformations


	Purpose
	Method

	Estimate transformation for
	Force [image: 
$$\hat{\beta_{1}} = 0$$
] and compute

	a single variable
	residuals from the null regression

	Check linearity assumption for
	Compute [image: 
$$\hat{\beta _{1}}$$
] and compute

	a single variable
	residuals from the linear regression

	Estimate marginal
	Force [image: 
$$\hat{\beta _{1}},\ldots,\hat{\beta _{p}} = 0$$
] and compute

	transformations for p variables
	residuals from the global null model

	Estimate transformation for
	Estimate p − 1 βs, forcing [image: 
$$\hat{\beta _{i}} = 0$$
]


	variable i adjusted for other
	Compute residuals from mixed

	
p − 1 variables
	global/null model



 See section 10.​5 for more information on checking the regression assumptions. The methods for examining interaction surfaces described there apply without modification to the Cox model (except that the nonparametric regression surface does not apply because of censoring). [image: A69956_2_En_20_Figaj_HTML.gif]
[image: A69956_2_En_20_Figak_HTML.gif]


20.6.2 Proportional Hazards Assumption


                  
                  
                 Even though assessment of fit of the regression part of the Cox PH model corresponds with other regression models such as the logistic model, the Cox model has its own distributional assumption in need of validation. Here, of course, the distributional assumption is not as stringent as with other survival models, but we do need to validate how the survival or hazard functions for various subjects are connected. There are many graphical and analytical methods of verifying the PH assumption. Two of the methods have already been discussed: a graphical examination of 
                  
                  
                parallelism of logΛ plots, and a comparison of stratified with unstratified models (as in Figure 20.1). Muenz 467 suggested a simple modification that will make 
                  
                nonproportional hazards more apparent: plot [image: 
$$\varLambda _{\mathrm{KM}_{ 1}}(t)/\varLambda _{\mathrm{KM}_{2}}(t)$$
] against t and check for flatness. The points on this curve can be passed through a smoother. One can also plot differences in log(−logS(t)) against t. 143 
                  
                Arjas 29 developed a graphical method based on plotting the estimated cumulative hazard versus the cumulative number of events in a stratum as t progresses.
There are other methods for assessing whether PH holds that may be more direct. Gore et al., 226 Harrell and Lee, 266 and Kay 340 (see also Anderson and Senthilselvan 27) describe a method for allowing the log hazard ratio (Cox regression coefficient) for a predictor to be a function of time by fitting specially stratified Cox models. Their method assumes that the predictor being examined for PH already satisfies the linear regression assumption. Follow-up time is stratified into intervals and a separate model is fitted to compute the regression coefficient within each interval, assuming that the effect of the predictor is constant only within that small interval. It is recommended that intervals be constructed so that there is roughly an equal number of events in each. The number of intervals should allow at least 10 or 20 events per interval.
The 
                  
                  
                interval-specific log hazard ratio is estimated by excluding all subjects with event/censoring time before the start of the interval and censoring all events that occur after the end of the interval. This process is repeated for all desired time intervals. By plotting the log hazard ratio and its confidence limits versus the interval, one can assess the importance of a predictor as a function of follow-up time and learn how to model non-PH using more complicated models containing predictor by time interactions. If the hazard ratio is approximately constant within broad time intervals, the time stratification method can be used for fitting and testing the predictor × time interaction 266, p. 827; [98].
Consider as an example the rat vaginal cancer data used in Figures 18.​9, 18.​10, and 20.1. Recall that the PH assumption appeared to be satisfied for the two groups although Figure 18.​9 demonstrated some non-Weibullness. Figure 20.8 contains a Λ ratio plot. 467
[image: A69956_2_En_20_Fig8_HTML.gif]
Fig. 20.8Estimate of Λ
2∕Λ
1 based on − log of Altschuler–Nelson–Fleming–Harrington nonparametric survival estimates.
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The number of observations is declining over time because computations in each interval were based on animals followed at least to the start of that interval. The overall Cox regression coefficient was − 0. 57 with a standard error of 0. 35. There does not appear to be any trend in the hazard ratio over time, indicating a constant hazard ratio or proportional hazards (Table 20.4).Table 20.4Interval-specific group effects from rat data by artificial censoring


	Time
	Observations
	Deaths
	Log Hazard
	Standard

	Interval
	 	 	Ratio
	Error

	[0, 209)
	40
	12
	− 0. 47
	0. 59

	[209, 234)
	27
	12
	− 0. 72
	0. 58

	234 +
	14
	12
	− 0. 50
	0. 64





Now consider the Veterans Administration Lung Cancer dataset 331, pp. 60, 223–4. Log Λ plots indicated that the four cell types did not satisfy PH. To simplify the problem, omit patients with “large” cell type and let the binary predictor be 1 if the cell type is “squamous” and 0 if it is “small” or “adeno.” We are assessing whether survival patterns for the two groups “squamous” versus “small” or “adeno” have PH. 
                  
                  
                Interval-specific estimates of the squamous: small,adeno log hazard ratios (using Efron’s likelihood) are found in Table 20.5. Times are in days.Table 20.5Interval-specific effects of squamous cell cancer in VA lung cancer data


	Time
	Observations
	Deaths
	Log Hazard
	Standard

	Interval
	 	 	Ratio
	Error

	[0, 21)
	110
	26
	− 0. 46
	0. 47

	[21, 52)
	84
	26
	− 0. 90
	0. 50

	[52, 118)
	59
	26
	− 1. 35
	0. 50

	118 +
	28
	26
	− 1. 04
	0. 45






[image: A69956_2_En_20_Figj_HTML.gif]

 There is evidence of a trend of a decreasing hazard ratio over time which is consistent with the observation that squamous cell patients had equal or worse survival in the early period but decidedly better survival in the late phase.
From the same dataset now examine the PH assumption for Karnofsky performance status using data from all subjects, if the linearity assumption is satisfied. 
                  
                  
                 Interval-specific regression coefficients for this predictor are given in Table 20.6.Table 20.6Interval-specific effects of performance status in VA lung cancer data


	Time
	Observations
	Deaths
	Log Hazard
	Standard

	Interval
	 	 	Ratio
	Error

	[0, 19]
	137
	27
	− 0. 053
	0. 010

	[19, 49)
	112
	26
	− 0. 047
	0. 009

	[49, 99)
	85
	27
	− 0. 036
	0. 012

	99 +
	28
	26
	− 0. 012
	0. 014





There is good evidence that the importance of performance status is decreasing over time and that it is not a prognostic factor after roughly 99 days. In other words, once a patient survives 99 days, the performance status does not contain much information concerning whether the patient will survive 120 days. This non-PH would be more difficult to detect from Kaplan–Meier plots stratified on performance status unless performance status was stratified carefully. 
[image: A69956_2_En_20_Figal_HTML.gif]

Figure 20.9 displays a log hazard ratio plot for a larger dataset in which more time strata can be formed. In 3299 patients with 
                  
                coronary artery disease, 827 suffered cardiovascular death or nonfatal myocardial infarction. Time was stratified into intervals containing approximately 30 events, and within each interval the Cox regression coefficient for an index of anginal pain and ischemia was estimated. The pain/ischemia index, one component of which is unstable angina, is seen to have a strong effect for only six months. After that, survivors have stabilized and knowledge of the angina status in the previous six months is not informative.[image: A69956_2_En_20_Fig9_HTML.gif]
Fig. 20.9Stratified hazard ratios for pain/ischemia index over time. Data from the Duke Cardiovascular Disease Databank.





Another method for graphically assessing the log hazard ratio over time is based on Schoenfeld’s partial residuals 503, 557 with respect to each predictor in the fitted model. The residual is the contribution of the first derivative of the log likelihood function with respect to the predictor’s regression coefficient, computed separately at each risk set or unique failure time. In Figure 20.10 the “loess-smoothed” 96 (with approximate 0.95 confidence bars) and “super-smoothed” 207 relationship between the residual and unique failure time is shown for the same data as Figure 20.9. For smaller n, the raw residuals should also be displayed to convey the proper sense of variability. The agreement with the pattern in Figure 20.9 is evident.[image: A69956_2_En_20_Fig10_HTML.gif]
Fig. 20.10Smoothed weighted 233 Schoenfeld 557 residuals for the same data in Figure 20.9. Test for PH based on the correlation (ρ) between the individual weighted Schoenfeld residuals and the rank of failure time yielded [image: 
$$\rho = -0.23,z = -6.73,P = 2 \times 10^{-11}$$
].





Pettitt and Bin Daud 503 suggest scaling the partial residuals by the information matrix components. They also propose a score test for PH based on the 
                  
                  
                Schoenfeld residuals. Grambsch and Therneau 233 found that the Pettitt–Bin Daud standardization is sometimes misleading in that non-PH in one variable may cause the residual plot for another variable to display non-PH. The Grambsch–Therneau weighted residual solves this problem and also yields a residual that is on the same scale as the log relative hazard ratio. Their residual is

[image: 
$$\displaystyle{ \hat{\beta }+dR\hat{V }, }$$
]

 (20.23)

 where d is the total number of events, R is the n × p matrix of 
                  
                  
                Schoenfeld residuals, and [image: 
$$\hat{V }$$
] is the estimated covariance matrix for [image: 
$$\hat{\beta }$$
]. This new residual can also be the basis for tests for PH, by correlating a user-specified function of unique failure times with the weighted residuals.
[image: A69956_2_En_20_Figam_HTML.gif]

The residual plot is computationally very attractive since the score residual components are byproducts of Cox maximum likelihood estimation. Another attractive feature is the lack of need to categorize the time axis. Unless approximate confidence intervals are derived from smoothing techniques, a lack of confidence intervals from most software is one disadvantage of the method. 
[image: A69956_2_En_20_Figan_HTML.gif]

Formal tests for PH can be based on time-stratified Cox regression estimates. 27, 266 Alternatively, more complex (and probably more efficient) formal tests for PH can be derived by specifying a form for the time by predictor interaction (using what is called a 
                  
                time-dependent covariable in the Cox model) and testing coefficients of such interactions for significance. The obsolete Version 5 SAS PHGLM procedure used a computationally fast procedure based on an approximate score statistic that tests for linear correlation between the rank order of the failure times in the sample and Schoenfeld’s partial residuals. 258, 266 This test is available in R (for both weighted and unweighted residuals) using Therneau’s cox.zph

                  
                 function in the survival

                  
                 package. For the results in Figure 20.10, the test for PH is highly significant (correlation coefficient = − 0. 23, normal deviate [image: 
$$z = -6.73$$
]). Since there is only one regression parameter, the weighted residuals are a constant multiple of the unweighted ones, and have the same correlation coefficient. [image: A69956_2_En_20_Figao_HTML.gif]
[image: A69956_2_En_20_Figap_HTML.gif]

Another method for checking the PH assumption which is especially applicable to a polytomous predictor involves taking ratios of parametrically estimated hazard functions estimated separately for each level of the predictor. For example, suppose that a risk factor X is either present (X = 1) or absent (X = 0), and suppose that separate Weibull distributions adequately fit the survival pattern of each group. If there are no other predictors to adjust for, define the hazard function for X = 0 as α γ t

γ−1 and the hazard for X = 1 as δ θ t

θ−1. The X = 1: X = 0 hazard ratio is [image: 
$$\displaystyle{ \frac{\alpha \gamma t^{\gamma -1}} {\delta \theta t^{\theta -1}} = \frac{\alpha \gamma } {\delta \theta }t^{\gamma -\theta }. }$$
]

 (20.24)

 The hazard ratio is constant if the two Weibull shape parameters (γ and θ) are equal. These Weibull parameters can be estimated separately and a Wald test statistic of H
0: γ = θ can be computed by dividing the square of their difference by the sum of the squares of their estimated standard errors, or better by a likelihood ratio test. A plot of the estimate of the hazard ratio above as a function of t may also be informative. [image: A69956_2_En_20_Figaq_HTML.gif]

In the VA lung cancer data, the MLEs of the Weibull shape parameters for squamous cell cancer is 0.77 and for the combined small + adeno is 0.99. Estimates of the reciprocals of these parameters, provided by some software packages, are 1.293 and 1.012 with respective standard errors of 0.183 and 0.0912. A Wald test for differences in these reciprocals provides a rough test for a difference in the shape estimates. The Wald χ
2 is 1.89 with 1 d.f. indicating slight evidence for non-PH.
The fitted Weibull hazard function for squamous cell cancer is. 0167t
0. 23 and for adeno + small is 0. 0144t
−0. 01. The estimated hazard ratio is then 1. 16t
−0. 22 and the log hazard ratio is 0. 148 − 0. 22logt. By evaluating this Weibull log hazard ratio at interval midpoints (arbitrarily using t = 200 for the last (open) interval) we obtain log hazard ratios that are in good agreement with those obtained by time-stratifying the Cox model (Table 20.5) as shown in Table 20.7.Table 20.7Time-specific hazard ratio estimates of squamous cell cancer effect in VA lung cancer data, by fitting two Weibull distributions with unequal shape parameters


	
                            t
                          
	log Hazard

	 	Ratio

	10
	− 0. 36

	36
	− 0. 64

	83. 5
	− 0. 83

	200
	− 1. 02





There are many methods of assessing PH using 
                  
                time-dependent covariables in the Cox model. 226, 583 Gray 237, 238 mentions a flexible and efficient method of estimating the hazard ratio function using time-dependent covariables that are X × spline term interactions. Gray’s method uses B-splines
                  
                  
                 and requires one to maximize a penalized log-likelihood function. Verweij and van Houwelingen 641 developed a more nonparametric version of this approach. Hess 289 uses simple restricted cubic splines to model the 
                  
                time-dependent covariable effects (see also [4, 287, 398, 498]). Suppose that k = 4 knots are used and that a covariable X is already transformed correctly. The model is [image: 
$$\displaystyle{ \log \lambda (t\vert X) =\log \lambda (t) +\beta _{1}X +\beta _{2}Xt +\beta _{3}Xt' +\beta _{4}Xt'', }$$
]

 (20.25)

 where t′, t″ are constructed spline variables (Equation 2.​25). The X + 1: X log hazard ratio function is estimated by [image: 
$$\displaystyle{ \hat{\beta _{1}} +\hat{\beta _{2}}t +\hat{\beta _{3}}t' +\hat{\beta _{4}}t''. }$$
]

 (20.26)

 This method can be generalized to allow for simultaneous estimation of the shape of the X effect and X × t interaction using spline surfaces in (X, t) instead of (X
1, X
2) (Section 2.​7.​2). 
[image: A69956_2_En_20_Figar_HTML.gif]

Table 20.8 summarizes many facets of verifying assumptions for PH models.Table 20.8Assumptions of the Proportional Hazards Model


[image: A69956_2_En_20_Figk_HTML.gif]



The trade-offs of the various methods for assessing proportional hazards are given in Table 20.9. 
[image: A69956_2_En_20_Figas_HTML.gif]
Table 20.9Comparison of methods for checking the proportional hazards assumption and for allowing for non-proportional hazards


[image: A69956_2_En_20_Figl_HTML.gif]





20.7 What to Do When PH Fails
When a factor violates the PH assumption and a test of association is not needed, the factor can be adjusted for through stratification as mentioned earlier. This is especially attractive if the factor is categorical. For continuous predictors, one may want to stratify into quantile groups. The continuous version of the predictor can still be adjusted for as a covariable to account for any residual linearity within strata.
When a test of significance is needed and the P-value is impressive, the “principle of conservatism” could be invoked, as the P-value would likely have been more impressive had the factor been modeled correctly. Predicted survival probabilities using this approach will be erroneous in certain time intervals.
An efficient test of association can be done using 
                
              time-dependent covariables 444, pp. 208–217. For example, in the model [image: 
$$\displaystyle{ \lambda (t\vert X) =\lambda _{0}(t)\exp (\beta _{1}X +\beta _{2}X \times \log (t + 1)) }$$
]

 (20.27)

 one tests [image: 
$$H_{0}:\beta _{1} =\beta _{2} = 0$$
] with 2 d.f. This is similar to the approach used by [72]. Stratification on time intervals can also be used: 27, 226, 266 [image: 
$$\displaystyle{ \lambda (t\vert X) =\lambda _{0}(t)\exp (\beta _{1}X +\beta _{2}X \times [t > c]). }$$
]

 (20.28)

 If this step-function model holds, and if a sufficient number of subjects have late follow-up, you can also fit a model for early outcomes and a separate one for late outcomes using 
                
                
              interval-specific censoring as discussed in Section 20.6.2. The dual model approach provides easy to interpret models, assuming that proportional hazards is satisfied within each interval.
Kronborg and Aaby 367 and Dabrowska et al. 143 provide tests for differences in Λ(t) at specific t based on stratified PH models. These can also be used to test for treatment effects when PH is violated for treatment but not for adjustment variables. Differences in mean restricted life length (differences in areas under survival curves up to a fixed finite time) can also be useful for comparing therapies when PH fails. 335

Parametric models that assume an effect other than PH, for example, the 
                
                
              log-logistic model, 226 can be used to allow a predictor to have a constantly increasing or decreasing effect over time. If one predictor satisfies PH but another does not, this approach will not work. 
[image: A69956_2_En_20_Figat_HTML.gif]


              
                
                
              
            

20.8 Collinearity
See Section 4.​6 for the general approach using variance inflation factors.

20.9 Overly Influential Observations


                
               Therneau et al. 605 describe the use of score residuals for assessing influence in Cox and related regression models. They show that the infinitesimal 
                  
                jackknife estimate of the influence of observation i on β equals V s′, where V is the estimated variance–covariance matrix of the p regression estimates b and s = (s

i1, s

i2, …, s

                i p
              ) is the vector of score residuals for the p regression coefficients for the ith observation. Let S

n×p
 denote the matrix of score residuals over all observations. Then an approximation to the unstandardized change in b (DFBETA) is S V. Standardizing by the standard errors of b found from the diagonals of V, [image: 
$$e = (V _{11},V _{22},\ldots,V _{pp})^{1/2}$$
], yields [image: 
$$\displaystyle{ \mathrm{DFBETAS} = SV \mathrm{\ Diag}(e)^{-1}, }$$
]

 (20.29)

 where Diag(e) is a diagonal matrix containing the estimated standard errors.
As discussed in Section 20.13, identification of overly influential observations is facilitated by printing, for each predictor, the list of observations containing DFBETAS > u for any parameter associated with that predictor. The choice of cutoff u depends on the sample size among other things. A typical choice might be u = 0. 2 indicating a change in a regression coefficient of 0.2 standard errors.

20.10 Quantifying Predictive Ability
To obtain a unitless measure of predictive ability for a Cox PH model we can use the R index described in Section 9.​8.​3, which is the square root of the fraction of log likelihood explained by the model of the log likelihood that could be explained by a perfect model, penalized for the complexity of the model. The lowest (best) possible − 2 log likelihood for the Cox model is zero, which occurs when the predictors can perfectly rank order the survival times. Therefore, as was the case with the logistic model, the quantity L
∗ from Section 9.​8.​3 is zero and an R index that is penalized for the number of parameters in the model is given by [image: 
$$\displaystyle{ R^{2} = (\mathrm{LR} - 2p)/L^{0}, }$$
]

 (20.30)

 where p is the number of parameters estimated and L
0 is the − 2 log likelihood when β is restricted to be zero (i.e., there are no predictors in the model). R will be near one for a perfectly predictive model and near zero for a model that does not discriminate between short and long survival times. The R index does not take into account any stratification factors. If stratification factors are present, R will be near one if survival times can be perfectly ranked within strata even though there is overlap between strata.
Schemper 546 and Korn and Simon 365 have reported that R
2 is too sensitive to the distribution of censoring times and have suggested alternatives based on the distance between estimated Cox survival probabilities (using predictors) and Kaplan–Meier estimates (ignoring predictors). Kent and O’Quigley 345 also report problems with R
2 and suggest a more complex measure. Schemper 548 investigated the Maddala–Magee 431, 432 index [image: 
$$R_{\mathrm{LR}}^{2}$$
] described in Section 9.​8.​3, applied to Cox regression: [image: 
$$\displaystyle\begin{array}{rcl} R_{\mathrm{LR}}^{2}& =& 1 -\exp (-\mathrm{LR}/n) \\ & =& 1 -\omega ^{2/n},{}\end{array}$$
]

 (20.31)

 where ω is the null model likelihood divided by the fitted model likelihood.
For many situations, [image: 
$$R_{\mathrm{LR}}^{2}$$
] performed as well as Schemper’s more complex measure 546, 549 and hence it is preferred because of its ease of calculation (assuming that PH holds). Ironically, Schemper 548 demonstrated that the n in the formula for this index is the total number of observations, not the number of events (but see O’Quigley, Xu, and Stare 481). To make the R
2 index have a maximum value of 1.0, we use the Nagelkerke 471 [image: 
$$R_{\mathrm{N}}^{2}$$
] discussed in Section 9.​8.​3. 
[image: A69956_2_En_20_Figau_HTML.gif]

An easily interpretable index of 
                
                
              discrimination for survival models is derived from Kendall’s τ and Somers’ D

                x y
              

                
               rank correlation, 579 the Gehan–
                
                
              Wilcoxon statistic for comparing two samples for survival differences, and the Brown–Hollander–Korwar nonparametric test of association for censored data. 76, 170, 262, 268 This index, c, is a generalization of the area under the ROC curve discussed under the 
                
                
              

                
                
              

                
                
              logistic model, in that it applies to a continuous response variable that can be censored. The c index is the proportion of all pairs of subjects whose survival time can be ordered such that the subject with the higher predicted survival is the one who survived longer. Two subjects’ survival times cannot be ordered if both subjects are censored or if one has failed and the follow-up time of the other is less than the failure time of the first. The c index is a probability of concordance
                
               between predicted and observed survival, with c = 0. 5 for random predictions and c = 1 for a perfectly discriminating model. The c index is mildly affected by the amount of censoring. 
                
                
              
D

                x y
               is obtained from 2(c − 0. 5). While c (and D

                x y
              ) is a good measure of pure discrimination ability of a single model, it is not sensitive enough to allow multiple models to be compared 447. 
[image: A69956_2_En_20_Figav_HTML.gif]

Since high hazard means short survival time, when the linear predictor [image: 
$$X\hat{\beta }$$
] from a Cox model is compared with observed survival time, D

                x y
               will be negative.
                
                
               Some analysts may want to negate reported values of D

                x y
              .

20.11 Validating the Fitted Model


                
              Separate bootstrap or cross-validation assessments can be made for 
                
                
              calibration and 
                
                
              discrimination of Cox model survival and log relative hazard estimates.
[image: A69956_2_En_20_Figaw_HTML.gif]

20.11.1 Validation of Model Calibration
One approach to validation of the 
                  
                  
                calibration of predictions is to obtain unbiased estimates of the difference between Cox predicted and Kaplan–Meier survival estimates at a fixed time u. Here is one sequence of steps.1.Obtain cutpoints (e.g., deciles) of predicted survival at time u so as to have a given number of subjects (e.g., 50) in each interval of predicted survival. These cutpoints are based on the distribution of [image: 
$$\hat{S}(u\vert X)$$
] in the whole sample for the “final” model (for data-splitting, instead use the model developed in the training sample). Let k denote the number of intervals used.

 

2.Compute the average [image: 
$$\hat{S}(u\vert X)$$
] in each interval.

 

3.Compare this with the Kaplan–Meier survival estimates at time u, stratified by intervals of [image: 
$$\hat{S}(u\vert X)$$
]. Let the differences be denoted by d = (d
1, …, d

                          k
                        ).

 

4.Use bootstrapping or cross-validation to estimate the overoptimism in d and then to correct d to get a more fair assessment of these differences. For each repetition, repeat any stepwise variable selection or stagewise significance testing using the same stopping rules as were used to derive the “final” model. No more than B = 200 replications are needed to obtain accurate estimates.

 

5.If desired, the bias-corrected d can be added to the original stratified Kaplan–Meier estimates to obtain a bias-corrected calibration curve.

 





However, any statistical method that uses binning of continuous variables (here, the predicted risk), is arbitrary and has lower precision than smooth estimates that allow for interpolation. A far better approach to estimating calibration curves for survival models is to use the flexible adaptive hazard regression approach of Kooperberg et al. 361 as discussed on P. 450. Their method does not assume linearity or proportional hazards. Hazard regression can be used to estimate the relationship between (suitably transformed) predicted survival probabilities and observed outcomes, i.e., to derive a calibration curve. The bootstrap is used to de-bias the estimates to correct for overfitting, allowing estimation of the likely future calibration performance of the fitted model.
                  
                  
                

                  
                

As an example, consider a dataset of 20 random uniformly distributed predictors for a sample of size 200. Let the failure time be another random uniform variable that is independent of all the predictors, and censor half of the failure times at random. Due to fitting 20 predictors to 100 events, there will apparently be fair agreement between predicted and observed survival over all strata (smooth black curve from hazard regression in Figure 20.11). However, the bias-corrected calibration (blue curve from hazard regression) gives a more truthful answer: examining the Xs across levels of predicted survival demonstrate that predicted and observed survival are weekly related, in more agreement with how the data were generated. For the more arbitrary Kaplan-Meier approach, we divide the observations into quintiles of predicted 0.5-year survival, so that there are 40 observations per stratum.[image: A69956_2_En_20_Fig11_HTML.gif]
Fig. 20.11Calibration of random predictions using Efron’s bootstrap with B = 200 resamples. Dataset has n = 200, 100 uncensored observations, 20 random predictors, model χ
20
2 = 19. The smooth black line is the apparent calibration estimated by adaptive linear spline hazard regression 361, and the blue line is the bootstrap bias– (overfitting–) corrected calibration curve estimated also by hazard regression. The gray scale line is the line of identity representing perfect calibration. Black dots represent apparent calibration accuracy obtained by stratifying into intervals of predicted 0.5y survival containing 40 events per interval and plotting the mean predicted value within the interval against the stratum’s Kaplan-Meier estimate. The blue × represent bootstrap bias-corrected Kaplan-Meier estimates.




[image: A69956_2_En_20_Figm_HTML.gif]



20.11.2 Validation of Discrimination and Other Statistical Indexes
Here bootstrapping and cross-validation are used as for logistic models (Section 10.​9). We can obtain bootstrap bias-corrected estimates of c or equivalently D

                  x y
                . To instead obtain a measure of relative calibration or slope shrinkage, we can bootstrap the apparent estimate of γ = 1 in the model [image: 
$$\displaystyle{ \lambda (t\vert X) =\lambda (t)\exp (\gamma Xb). }$$
]

 (20.32)

 Besides being a measure of calibration in itself, the bootstrap estimate of γ also leads to an unreliability index U which measures how far the model maximum log likelihood (which allows for an overall slope correction) is from the log likelihood evaluated at “frozen” regression coefficients (γ = 1) (see [267] and Section 10.​9). [image: 
$$\displaystyle{ U = \frac{\mathrm{LR}(\hat{\gamma }Xb) -\mathrm{LR}(Xb)} {L^{0}}, }$$
]

 (20.33)

 where L
0 is the − 2 log likelihood for the null model (Section 9.​8.​3). Similarly, a 
                  
                  
                discrimination index D 267 can be derived from the − 2 log likelihood at the shrunken linear predictor, penalized for estimating one parameter (γ) (see also 633, p. 1318 and [123]): [image: 
$$\displaystyle{ D = \frac{\mathrm{LR}(\hat{\gamma }Xb) - 1} {L^{0}}. }$$
]

 (20.34)

 D is the same as R
2 discussed above when p = 1 (indicating only one reestimated parameter, γ), the penalized proportion of explainable log likelihood that was explained by the model. Because of the remark of Schemper, 546 all of these indexes may unfortunately be functions of the censoring pattern.
An index of overall quality that penalizes 
                  
                  
                discrimination for unreliability is [image: 
$$\displaystyle{ Q = D - U = \frac{\mathrm{LR}(Xb) - 1} {L^{0}}. }$$
]

 (20.35)

 Q is a normalized and penalized − 2 log likelihood that is evaluated at the uncorrected linear predictor.
For the random predictions used in Figure 20.11, the bootstrap estimates with B = 200 resamples are found in Table 20.10.Table 20.10Bootstrap validation of a Cox model with random predictors


	Index
	Original
	Training
	Test
	Optimism
	Corrected
	
                            n
                          

	 	Sample
	Sample
	Sample
	 	Index
	 
	
                            D
                            
                              x y
                            
                          
	0. 213
	0. 335
	0. 147
	0. 188
	0. 025
	200

	
                            R
                            2
                          
	0. 092
	0. 191
	0. 042
	0. 150
	− 0. 058
	200

	Slope
	1. 000
	1. 000
	0. 389
	0. 611
	0. 389
	200

	
                            D
                          
	0. 021
	0. 048
	0. 009
	0. 039
	− 0. 019
	200

	
                            U
                          
	− 0. 002
	− 0. 002
	0. 028
	− 0. 031
	0. 028
	200

	
                            Q
                          
	0. 023
	0. 050
	− 0. 020
	0. 070
	− 0. 047
	200

	
                            g
                          
	0. 516
	0. 878
	0. 339
	0. 539
	− 0. 023
	200






                [image: A69956_2_En_20_Fign_HTML.gif]

              
It can be seen that the apparent correlation ([image: 
$$D_{xy} = -0.21$$
]) does not hold up after correcting for overfitting ([image: 
$$D_{xy} = -0.02$$
]). Also, the slope shrinkage (0.39) indicates extreme overfitting.
See 633, Section 6 and [640] and Section 18.​3.​7 for still more useful methods for validating the Cox model.


20.12 Describing the Fitted Model
As with logistic modeling, once a Cox PH model has been fitted and all its assumptions verified, the final model needs to be presented and interpreted. The fastest way to describe the model is to interpret each effect in it. For each predictor the change in log hazard per desired units of change in the predictor value may be computed, or the antilog of this quantity, [image: 
$$\exp (\beta _{j} \times \mathrm{\ change\ in\ }X_{j})$$
], may be used to estimate the hazard ratio holding all other factors constant. When X

                j
               is a nonlinear factor, changes in predicted X β for sensible values of X

                j
               such as quartiles can be used as described in Section 10.​10 Of course for nonmodeled stratification factors, this method is of no help. Figure 20.12 depicts a way to display estimated surgical: medical hazard ratios in the presence of a significant treatment by disease severity interaction and a secular trend in the benefit of surgical therapy (treatment by year of diagnosis interaction).[image: A69956_2_En_20_Fig12_HTML.gif]
Fig. 20.12A display of an interaction between treatment and extent of disease, and between treatment and calendar year of start of treatment. Comparison of medical and surgical average hazard ratios for patients treated in 1970, 1977, and 1984 according to coronary disease severity. Circles represent point estimates; bars represent 0. 95 confidence limits of hazard ratios. Ratios less than 1.0 indicate that coronary bypass surgery is more effective. 88






Often, the use of predicted survival probabilities may make the model more interpretable. If the effect of only one factor is being displayed and that factor is polytomous or predictions are made for specific levels, survival curves (with or without adjustment for other factors not shown) can be drawn for each level of the predictor of interest, with follow-up time on the x-axis. Figure 20.2 demonstrated this for a factor which was a stratification factor. Figure 20.13 extends this by displaying survival estimates stratified by treatment but adjusted to various levels of two modeled factors, one of which, year of diagnosis, interacted with treatment.[image: A69956_2_En_20_Fig13_HTML.gif]
Fig. 20.13Cox–Kalbfleisch–Prentice survival estimates stratifying on treatment and adjusting for several predictors, showing a secular trend in the efficacy of coronary artery bypass surgery. Estimates are for patients with left main disease and normal (LVEF=0.6) or impaired (LVEF=0.4) ventricular function. 516






When a continuous predictor is of interest, it is usually more informative to display that factor on the x-axis with estimated survival at one or more time points on the y-axis. When the model contains only one predictor, even if that predictor is represented by multiple terms such as a spline expansion, one may simply plot that factor against the predicted survival. Figure 20.14 depicts the relationship between treadmill exercise score, which is a weighted linear combination of several predictors in a Cox model, and the probability of surviving five years.[image: A69956_2_En_20_Fig14_HTML.gif]
Fig. 20.14Cox model predictions with respect to a continuous variable. X-axis shows the range of the treadmill score seen in clinical practice and Y -axis shows the corresponding five-year survival probability predicted by the Cox regression model for the 2842 study patients. 440






When displaying the effect of a single factor after adjusting for multiple predictors which are not displayed, care only need be taken for the values to which the predictors are adjusted (e.g., grand means). When instead the desire is to display the effect of multiple predictors simultaneously, an important continuous predictor can be displayed on the x-axis while separate curves or graphs are made for levels of other factors. Figure 20.15, which corresponds to the logΛ plots in Figure 20.5, displays the joint effects of age and sex on the three-year survival probability. Age is modeled with a cubic spline function, and the model includes terms for an age × sex interaction.[image: A69956_2_En_20_Fig15_HTML.gif]
Fig. 20.15Survival estimates for model stratified on sex, with interaction.




[image: A69956_2_En_20_Figo_HTML.gif]


Besides making graphs of survival probabilities estimated for given levels of the predictors, nomograms have some utility in specifying a fitted Cox model. A nomogram can be used to compute [image: 
$$X\hat{\beta }$$
], the estimated log hazard for a subject with a set of predictor values X relative to the “standard” subject. The central line in the nomogram will be on this linear scale unlike the logistic model nomograms given in Section 10.​10 which further transformed [image: 
$$X\hat{\beta }$$
] into [image: 
$$[1 +\exp (-X\hat{\beta })]^{-1}$$
]. Alternatively, the central line could be on the nonlinear [image: 
$$\exp (X\hat{\beta })$$
] hazard ratio scale or survival at fixed t.
[image: A69956_2_En_20_Figax_HTML.gif]

A graph of the estimated underlying survival function [image: 
$$\hat{S}(t)$$
] as a function of t can be coupled with the nomogram used to compute [image: 
$$X\hat{\beta }$$
]. The survival for a specific subject, [image: 
$$\hat{S}(t\vert X)$$
] is obtained from [image: 
$$\hat{S}(t)^{\exp (X\hat{\beta })}$$
]. Alternatively, one could graph [image: 
$$\hat{S}(t)^{\exp (X\hat{\beta })}$$
] for various values of [image: 
$$X\hat{\beta }$$
] (e.g., [image: 
$$X\hat{\beta } = -2,-1,0,1,2$$
]) so that the desired survival curve could be read directly, at least to the nearest tabulated [image: 
$$X\hat{\beta }$$
]. For estimating survival at a fixed time, say two years, one only need to provide the constant [image: 
$$\hat{S}(t)$$
]. The nomogram could even be adapted to include a nonlinear scale [image: 
$$\hat{S}(2)^{\exp (X\hat{\beta })}$$
] to allow direct computation of two-year survival.

20.13 
                            R Functions
Harrell’s cpower

                
              , spower

                
              , and ciapower

                
               (in the Hmisc

                
               package) perform power calculations for Cox tests in follow-up studies. cpower

                
               computes power for a two-sample Cox (
                
                
              log-rank) test with random patient entry over a fixed duration and a given length of minimum follow-up. The expected number of events in each group is estimated by assuming exponential survival. cpower

                
               uses a slight modification of the method of Schoenfeld 558 (see [501]). Separate specification of 
                
              noncompliance in the active treatment arm and “drop-in”
                
               from the control arm into the active arm are allowed, using the method of Lachin and Foulkes. 370 The ciapower

                
               function computes power of the Cox interaction test in a 2 × 2 setup using the method of Peterson and George. 501 It does not take noncompliance into account. The spower

                
               function simulates power for two-sample tests (the log-rank test by default) allowing for very complex conditions such as continuously varying treatment effect and 
                
              noncompliance probabilities.
The rms package cph

                
               function is a slight modification of the coxph

                
               function written by Terry Therneau (in his survival

                
               package to work in the rms framework. cph

                
               computes MLEs of Cox and stratified Cox PH models, overall score and likelihood ratio χ
2 statistics for the model, martingale residuals, the linear predictor ([image: 
$$X\hat{\beta }$$
] centered to have mean 0), and collinearity diagnostics. Efron, Breslow, and exact partial likelihoods are supported (although the exact likelihood is very computationally intensive if ties are frequent). The function also fits the 
                
                
              Andersen–Gill 23 generalization of the Cox PH model. This model allows for predictor values to change over time in the form of step functions as well as allowing 
                
              time-dependent stratification (subjects can jump to different hazard function shapes). The Andersen–Gill formulation allows multiple events per subject and permits subjects to move in and out of risk at any desired time points. The latter feature allows time zero to have a more general definition. (See Section 9.​5 for methods of adjusting the variance–covariance matrix of [image: 
$$\hat{\beta }$$
] for dependence in the events per subject.) The printing function corresponding to cph

                
               prints the Nagelkerke index [image: 
$$R_{\mathrm{N}}^{2}$$
] described in Section 20.10, and has a latex option for better output. cph

                
               works in conjunction with the generic functions such as specs, predict, summary, anova, fastbw, which.influence, latex, residuals, coef, nomogram, and Predict described in Section 20.13, the same as the logistic regression function lrm

                
               does. For the purpose of plotting predicted survival at a single time, Predict has an additional argument time for plotting cph

                
               fits. It also has an argument loglog which if TRUE causes instead log-log survival to be plotted on the y-axis. cph

                
               has all the arguments described in Section 20.13 and some that are specific to it.
Similar to functions for psm

                
              , there are Survival

                
              , Quantile

                
              , and Mean

                
               functions which create other R functions to evaluate survival probabilities and perform other calculations, based on a cph

                
               fit with surv=TRUE. These functions, unlike all the others, allow polygon (linear interpolation) estimation of survival probabilities, quantiles, and mean survival time as an option. Quantile

                
               is the only automatic way for obtaining survival quantiles with cph

                
              . Quantile estimates will be missing when the survival curve does not extend long enough. Likewise, survival estimates will be missing for t > maximum follow-up time, when the last event time is censored. Mean

                
               computes the mean survival time if the last failure time in each stratum is uncensored. Otherwise, Mean

                
               may be used to compute restricted mean lifetime using a user-specified truncation point. 334 Quantile

                
               and Mean

                
               are especially useful with plot and nomogram

                
              . Survival

                
               is useful with nomogram

                
              .
The R program below demonstrates how several cph

                
              -related functions work well with the nomogram

                
               function. 
                
               Here predicted three-year survival probabilities and median survival time (when defined) are displayed against age and sex from the previously simulated dataset. The fact that a nonlinear effect interacts with a stratified factor is taken into account. [image: A69956_2_En_20_Figp_HTML.gif]

                        

[image: 
$$\displaystyle{\mathrm{Prob}\{T \geq t\ \vert \ \mathrm{sex} = i\} = S_{i}(t)^{e^{X\beta } },\mathrm{\ \ where}}$$
]


 [image: 
$$\displaystyle\begin{array}{rcl} X\hat{\beta } =&& {}\\ & & -1.8 {}\\ & & +0.0493\mathrm{age} - 2.15\! \times \! 10^{-6}(\mathrm{age} - 30.3)_{ +}^{3} - 2.82\! \times \! 10^{-5}(\mathrm{age} - 45.1)_{ +}^{3} {}\\ & & +5.18\! \times \! 10^{-5}(\mathrm{age} - 54.6)_{ +}^{3} - 2.15\! \times \! 10^{-5}(\mathrm{age} - 69.6)_{ +}^{3} {}\\ & & +[\mathrm{Female}][-0.0366\mathrm{age} + 4.29\! \times \! 10^{-5}(\mathrm{age} - 30.3)_{ +}^{3} - 0.00011(\mathrm{age} - 45.1)_{ +}^{3} {}\\ & & +6.74\! \times \! 10^{-5}(\mathrm{age} - 54.6)_{ +}^{3} - 2.32\! \times \! 10^{-7}(\mathrm{age} - 69.6)_{ +}^{3}] {}\\ & & {}\\ \end{array}$$
]


 and [image: 
$$[c] = 1\mathrm{\ if\ subject\ is\ in\ group\ }c,\,0\mathrm{\ otherwise};\ (x)_{+} = x\mathrm{\ if\ }x > 0,\ 0$$
] otherwise. 	
                          t
                        
	
S

                            M a l e
                          (t)
	
S

                            F e m a l e
                          (t)

	0
	1. 000
	1. 000

	1
	0. 993
	0. 902

	2
	0. 984
	0. 825

	3
	0. 975
	0. 725

	4
	0. 967
	0. 648

	5
	0. 956
	0. 576

	6
	0. 947
	0. 520

	7
	0. 938
	0. 481

	8
	0. 928
	0. 432

	9
	0. 920
	0. 395

	10
	0. 909
	0. 358

	11
	0. 904
	0. 314

	12
	0. 892
	0. 268

	13
	0. 886
	0. 223

	14
	0. 877
	0. 203




[image: A69956_2_En_20_Fig16_HTML.gif]
Fig. 20.16Nomogram from a fitted stratified Cox model that allowed for interaction between age and sex, and nonlinearity in age. The axis for median survival time is truncated on the left where the median is beyond the last follow-up time.






[image: A69956_2_En_20_Figq_HTML.gif]
The corresponding smoothed 
                
              

                
                
              martingale residual plot for LVEF in Figure 20.7 was created with[image: A69956_2_En_20_Figr_HTML.gif]


Because we desired residuals with respect to the omitted predictor LVEF, the parameter iter.max=0 had to be given to make cph

                
               stop the estimation process at the starting parameter estimates (default of zero). The effect of this is to ignore the predictors when computing the residuals; that is, to compute residuals from a flat line rather than the usual residuals from a fitted straight line.


                
              The residuals

                
               function is a slight modification of Therneau’s residuals.coxph function to obtain 
                
              

                
                
              martingale, Schoenfeld, score, 
                
              deviance residuals, or approximate DFBETA or DFBETAS. Since martingale residuals are always stored by cph

                
               (assuming there are covariables present), residuals

                
               merely has to pick them off the fit object and reinsert rows that were deleted due to missing values. For other residuals, you must have stored the design matrix and Surv

                
               object with the fit by using ..., x=TRUE, y=TRUE. Storing the design matrix with x=TRUE ensures that the same transformation parameters (e.g., knots) are used in evaluating the model as were used in fitting it. To use residuals

                
               you can use the abbreviation resid

                
              . See the help file for residuals

                
               for an example of how 
                
              

                
                
              martingale residuals may be used to quickly plot univariable (unadjusted) relationships for several predictors.
Figure 20.10, which used smoothed scaled 
                
                
              Schoenfeld partial residuals 557 to estimate the form of a predictor’s log hazard ratio over time, was made with
[image: A69956_2_En_20_Figs_HTML.gif]


The computation and plotting of scaled 
                
                
              Schoenfeld residuals could have been done automatically in this case by using the single command plot(cox.zph (cox)), although cox.zph

                
               defaults to plotting against the Kaplan–Meier transformation of follow-up time.
The hazard.ratio.plot

                
               function in rms repeatedly estimates Cox regression coefficients and confidence limits within time intervals. The log hazard ratios are plotted against the mean failure/censoring time within the interval. Figure 20.9 was created with[image: A69956_2_En_20_Figt_HTML.gif]


If you have multiple degree of freedom factors, you may want to score them into linear predictors before using hazard.ratio.plot. The predict

                
               function with argument type="terms" will produce a matrix with one column per factor to do this (Section 20.13).
Therneau’s cox.zph

                
               function implements Harrell’s 
                
                
              Schoenfeld residual correlation test for PH. This function also stores results that can easily be passed to a plotting method for cox.zph

                
               to automatically plot smoothed residuals that estimate the effect of each predictor over time.
Therneau has also written an R function survdiff

                
               that compares two or more survival curves using the G −ρ family of rank tests (Harrington and Fleming 273).
The rcorr.cens

                
               function in the Hmisc library computes the c index
                
               and the corresponding generalization of Somers’ D

                x y
              

                
                
               
                
                
                
              rank correlation for a censored response variable. rcorr.cens

                
               also works for uncensored and binary responses (see ROC area in Section 10.​8), although its use of all possible pairings makes it slow for this purpose. The survival

                
               package’s survConcordance

                
               has an extremely fast algorithm for the c index
                
               and a fairly accurate estimator of its standard error. [image: A69956_2_En_20_Figay_HTML.gif]
                        
The calibrate

                
               function for cph

                
               constructs a bootstrap or cross-validation optimism-corrected calibration curve for a single time point by resampling the differences between average Cox predicted survival and Kaplan–Meier estimates (see Section 20.11.1). But more precise is calibrate

                
              ’s default method based on adaptive semiparametric regression discussed in the same section. Figure 20.11 is an example.
The validate

                
               function for cph

                
               fits validates several statistics describing Cox model fits—slope shrinkage, [image: 
$$R_{\mathrm{N}}^{2},D,U,Q$$
], and D

                x y
              . The val.surv

                
               function can also be of use in externally 
                
                
              validating a Cox model using the methods presented in Section 18.​3.​7. 
                
              


20.14 Further Reading

[image: A69956_2_En_20_Figaf_HTML.gif] Good general texts for the Cox PH model include Cox and Oakes, 133 Kalbfleisch and Prentice, 331 Lawless, 382 Collett, 114 Marubini and Valsecchi, 444 and Klein and Moeschberger. 350 Therneau and Grambsch 604 describe the many ways the standard Cox model may be extended.

[image: A69956_2_En_20_Figag_HTML.gif] Cupples et al. 141 and Marubini and Valsecchi 444, pp. 201–206 present good description of various methods of computing “adjusted survival curves.”

[image: A69956_2_En_20_Figah_HTML.gif] See Altman and Andersen 15 for simpler approximate formulas. Cheng et al. 103 derived methods for obtaining pointwise and 
                
                
              simultaneous confidence bands for S(t) for future subjects, and Henderson 282 has a comprehensive discussion of the use of Cox models to estimate survival time for individual subjects.

[image: A69956_2_En_20_Figai_HTML.gif] Aalen 2 and Valsecchi et al. 625 discuss other residuals useful in graphically checking survival model assumptions. León and Tsai 400 derived residuals for estimating covariate transformations that are different from martingale residuals.

[image: A69956_2_En_20_Figaj_HTML.gif] [411] has other methods for generating confidence intervals for martingale residual plots.

[image: A69956_2_En_20_Figak_HTML.gif] Lin et al. 411 describe other methods of checking transformations using cumulative martingale residuals.

[image: A69956_2_En_20_Figal_HTML.gif] A parametric analysis of the VA dataset using linear splines and incorporating X × t interactions is found in [361].

[image: A69956_2_En_20_Figam_HTML.gif] Winnett and Sasieni 671 show how to use scaled Schoenfeld residuals in an iterative fashion to actually model effects that are not in proportional hazards.

[image: A69956_2_En_20_Figan_HTML.gif] See [233, 503] for some methods for obtaining confidence bands for Schoenfeld residual plots. Winnett and Sasieni 670 discuss conditions in which the Grambsch–Therneau scaling of the Schoenfeld residuals does not perform adequately for estimating β(t).

[image: A69956_2_En_20_Figao_HTML.gif] [475, 519] compared the power of the test for PH based on the correlation between failure time and Schoenfeld residuals with the power of several other tests.

[image: A69956_2_En_20_Figap_HTML.gif] See Lin et al. 411 for another approach to deriving a formal test of PH using residuals. Other graphical methods for examining the PH assumption are due to Gray, 236 who used hazard smoothing to estimate hazard ratios as a function of time, and Thaler, 602 who developed a nonparametric estimator of the hazard ratio over time for 
                
              time-dependent covariables. See Valsecchi et al. 625 for other useful graphical assessments of PH.

[image: A69956_2_En_20_Figaq_HTML.gif] A related test of constancy of hazard ratios may be found in [519]. Also, see Schemper 547 for related methods.

[image: A69956_2_En_20_Figar_HTML.gif] See [547] for a variation of the standard Cox likelihood to allow for non-PH.

[image: A69956_2_En_20_Figas_HTML.gif] An excellent review of graphical methods for assessing PH may be found in Hess. 290. Sahoo and Sengupta 537 provide some new graphical methods for assessing PH irrespective of satisfaction of the other model assumptions.

[image: A69956_2_En_20_Figat_HTML.gif] Schemper 547 provides a way to determine the effect of falsely assuming PH by comparing the Cox regression coefficient with a well-described average log hazard ratio. Zucker 691 shows how dependent a weighted 
                
                
              log-rank test is on the true hazard ratio function, when the weights are derived from a hypothesized hazard ratio function. Valsecchi et al. 625 proposed a method that is robust to non-PH that occurs in the late follow-up period. Their method uses down-weighting of certain types of “outliers.” See Herndon and Harrell 287 for a flexible parametric PH model with 
                
              time-dependent covariables, which uses the restricted cubic spline function to specify λ(t). Putter et al. 518 and Muggeo and Tagliavia 468 have nice approaches that use time-dependent covariates to model time interactions to allow non-proportional hazards. Perperoglou et al.498, 499 developed a systematic approach that allows one to continuously vary the amount of non PH allowed, through the use of a structure matrix that connects predictors with functions of time. Schuabel et al.543 have a good exposition of internal time-dependent covariates.

[image: A69956_2_En_20_Figau_HTML.gif] See van Houwelingen and le Cessie 633, Eq. 61 and Verweij and van Houwelingen 640 for an interesting index of cross-validated predictive accuracy. Schemper and Henderson 552 relate explained variation to predictive accuracy in Cox models. Hielscher et al. 291 compares and illustrates several measures of explained variation as does Choodari-Oskooei et al. 106. Choodari-Oskooei et al.105 studied explained randomness and predictive accuracy measures.

[image: A69956_2_En_20_Figav_HTML.gif] See similar indexes in Schemper 544 and a related idea in 633, Eq. 63. Mandel, Galai, and Simchen 436 presented a time-varying c index. See Korn and Simon, 365 Schemper and Stare, 554 and Henderson 282 for nice comparisons of various measures. Pencina and D’Agostino 489 provide more details about the c index and derived new interval estimates. They also discussed the relationship between c and a version of Kendall’s τ. Pencina et al. 491 found advantages of c. Uno et al. 618 described exactly how c depends on the amount of censoring and proposed a new index, requiring one to choose a time cutoff, that is invariant to the amount of censoring. Henderson et al. 283 discussed the benefits of using the probability of a serious prognostication error (e.g., being off by a factor of 2.0 or worse on the time scale) as an accuracy measure. Schemper 550 shows that models with very important predictors can have very low absolute prediction ability, and he discusses measures of predictive accuracy from a general standpoint. Lawless and Yuan 386 present prediction error estimators and confidence limits, focusing on such measures as error in predicted median or mean survival time. Schmid and Potapov 555 studied the bias of several variations on the c index under non-proportional hazards and/or nonrandom censoring. Gönen and Heller 223 developed a c-index that is censoring-independent.

[image: A69956_2_En_20_Figaw_HTML.gif] Altman and Royston 18 have a good discussion of validation of prognostic models and present several examples of validation using a simple discrimination index. Thomas Gerds has an R package pec

                
               that provides many validation methods and accuracy indexes.

[image: A69956_2_En_20_Figax_HTML.gif] Kattan et al. 338 describe how to make nomograms for deriving predicted survival probabilities when there are competing risks.

[image: A69956_2_En_20_Figay_HTML.gif] Hielscher et al. 291 provides an overview of software for computing accuracy indexes with censored data.
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21.1 Choosing the Number of Parameters and Fitting the Model

              
                
                
              
            
Consider the randomized trial of estrogen for treatment of 
                
                
              prostate cancer 87 described in Chapter 8 Let us now develop a model for time until death (of any cause). There are 354 deaths among the 502 patients. To be able to efficiently estimate treatment benefit, to test for differential treatment effect, or to estimate prognosis or absolute treatment benefit for individual patients, we need a multivariable survival model. In this case study we do not make use of data reductions obtained in Chapter 8 but show simpler (partial) approaches to data reduction. We do use the transcan

                
               results for imputation.
First let’s assess the wisdom of fitting a full additive model that does not assume linearity of effect for any predictor. Categorical predictors are expanded using dummy variables. For pf we could lump the last two categories as before since the last category has only two patients. Likewise, we could combine the last two levels of ekg. Continuous predictors are expanded by fitting four-knot restricted cubic spline functions, which contain two nonlinear terms and thus have a total of three d.f. Table 21.1 defines the candidate predictors and lists their d.f. The variable stage is not listed as it can be predicted with high accuracy from sz,sg,ap,bm (stage could have been used as a predictor for imputing missing values on sz, sg).There are a total of 36 candidate d.f. that should not be artificially reduced by “univariable screening” or graphical assessments of association with death. This is about 1∕10 as many predictor d.f. as there are deaths, so there is some hope that a fitted model may validate. Let us also examine this issue by estimating the amount of shrinkage using Equation 4.​3. We first use transcan

                
               impute missing data.Table 21.1Initial allocation of degrees of freedom


	Predictor
	Name
	d.f.
	Original Levels

	Dose of estrogen
	
                          rx
                        
	3
	placebo, 0.2, 1.0, 5.0 mg

	 	 	 	estrogen

	Age in years
	
                          age
                        
	3
	 
	Weight index: wt(kg)−ht(cm)+200
	
                          wt
                        
	3
	 
	Performance rating
	
                          pf
                        
	2
	normal, in bed < 50% of

	 	 	 	time, in bed > 50%, in

	 	 	 	bed always

	History of cardiovascular disease
	
                          hx
                        
	1
	present/absent

	Systolic blood pressure/10
	
                          sbp
                        
	3
	 
	Diastolic blood pressure/10
	
                          dbp
                        
	3
	 
	Electrocardiogram code
	
                          ekg
                        
	5
	normal, benign, rhythm

	 	 	 	disturb., block, strain,

	 	 	 	old myocardial infarction,

	 	 	 	new MI

	Serum hemoglobin (g/100ml)
	
                          hg
                        
	3
	 
	Tumor size (cm2)
	
                          sz
                        
	3
	 
	Stage/histologic grade combination
	
                          sg
                        
	3
	 
	Serum prostatic acid phosphatase
	
                          ap
                        
	3
	 
	Bone metastasis
	
                          bm
                        
	1
	present/absent
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              Cox Proportional Hazards Model
            
 cph(formula = S ~ rx + rcs(age, 4) + rcs(wt, 4) + pf + hx
  + rcs(sbp, 4) + rcs(dbp, 4) + ekg + rcs(hg, 4)
  + rcs(sg, 4) + rcs(sz, 4) + rcs(log(ap), 4) + bm)
	 	Model Tests
	Discrimination

	 	 	Indexes

	Obs 502
	LR χ
2 136.22
	
R
2 0.238

	Events 354
	d.f. 36
	
D

                          x y
                         0.333

	Center -2.9933
	Pr( > χ
2) 0.0000
	
g 0.787

	 	Score χ
2 143.62
	
g

                          r
                         2.196

	 	Pr( > χ
2) 0.0000
	 


The likelihood ratio χ
2 statistic is 136.2 with 36 d.f. This test is highly significant so some modeling is warranted. The AIC value (on the χ
2 scale) is [image: 
$$136.2 - 2 \times 36 = 64.2$$
]. The rough shrinkage estimate is 0.74 (100.2/136.2) so we estimate that 0.26 of the model fitting will be 
                
              noise, especially with regard to calibration accuracy. The approach of Spiegelhalter 582 is to fit this full model and to shrink predicted values. We instead try to do data reduction (blinded to individual χ
2 statistics from the above model fit) to see if a reliable model can be obtained without shrinkage. A good approach at this point might be to do a variable clustering analysis followed by single degree of freedom scoring for individual predictors or for clusters of predictors. Instead we do an informal data reduction. The strategy is described in Table 21.1. For ap, more exploration is desired to be able to model the shape of effect with such a highly skewed distribution. Since we expect the tumor variables to be strong prognostic factors we retain them as separate variables. No assumption is made for the 
                
              dose-response shape for estrogen, as there is reason to expect a non-monotonic effect due to competing risks for cardiovascular death.Table 21.2Final allocation of degrees of freedom


	Variables
	Reductions
	d.f. Saved

	
                          wt
                        
	Assume variable not important enough
	1

	 	for 4 knots; use 3 knots
	 
	
                          pf
                        
	Assume linearity
	1

	
                          hx,ekg
                        
	Make new 0,1,2 variable and assume
	5

	 	linearity: 2 = hx and ekg not normal
	 
	 	or benign, 1 = either, 0 = none
	 
	
                          sbp,dbp
                        
	Combine into mean arterial bp and
	4

	 	use 3 knots: map = (2 dbp + sbp)∕3
	 
	
                          sg
                        
	Use 3 knots
	1

	
                          sz
                        
	Use 3 knots
	1

	
                          ap
                        
	Look at shape of effect of ap in detail,
	-1

	 	and take log before expanding as spline
	 
	 	to achieve numerical stability: add 1 knots
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              Cox Proportional Hazards Model
            
 cph(formula = S ~ rx + rcs(age, 4) + rcs(wt, 3) + pf.coded +
  heart + rcs(map, 3) + rcs(hg, 4) + rcs(sg, 3) +
  rcs(sz, 3) + rcs(log(ap), 5) + bm, x = TRUE, y = TRUE,
  surv = TRUE, time.inc = 5 * 12)
	 	Model Tests
	Discrimination

	 	 	Indexes

	Obs 502
	LR χ
2 118.37
	
R
2 0.210

	Events 354
	d.f. 24
	
D

                          x y
                         0.321

	Center -2.4307
	Pr( > χ
2) 0.0000
	
g 0.717

	 	Score χ
2 125.58
	
g

                          r
                         2.049

	 	Pr( > χ
2) 0.0000
	 


	 	Coef
	S.E.
	Wald Z

	Pr( >  | Z | )

	rx=0.2 mg estrogen
	-0.0002
	0.1493
	0.00
	0.9987

	rx=1.0 mg estrogen
	-0.4160
	0.1657
	-2.51
	0.0121

	rx=5.0 mg estrogen
	-0.1107
	0.1571
	-0.70
	0.4812

	…
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The total savings is thus 12 d.f. The likelihood ratio χ
2 is 118 with 24 d.f., with a slightly improved AIC of 70. The rough shrinkage estimate is slightly better at 0. 80, but still worrisome. A further data reduction could be done, such as using the transcan

                
               transformations determined from 
                
                
              self-consistency of predictors, but we stop here and use this model.
From Table 21.3 there are 11 parameters associated with nonlinear effects, and the overall test of linearity indicates the strong presence of nonlinearity for at least one of the variables age,wt,map,hg,sz,sg,ap. There is no strong evidence for a difference in survival time between doses of estrogen.Table 21.3Wald Statistics for S



	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	rx
	8. 01
	3
	0.0459

	age
	13. 84
	3
	0.0031

	
                          Nonlinear
                        
	9. 06
	2
	0.0108

	wt
	8. 21
	2
	0.0165

	
                          Nonlinear
                        
	2. 54
	1
	0.1110

	pf.coded
	3. 79
	1
	0.0517

	heart
	23. 51
	1
	 < 0. 0001

	map
	0. 04
	2
	0.9779

	
                          Nonlinear
                        
	0. 04
	1
	0.8345

	hg
	12. 52
	3
	0.0058

	
                          Nonlinear
                        
	8. 25
	2
	0.0162

	sg
	1. 64
	2
	0.4406

	
                          Nonlinear
                        
	0. 05
	1
	0.8304

	sz
	12. 73
	2
	0.0017

	
                          Nonlinear
                        
	0. 06
	1
	0.7990

	ap
	6. 51
	4
	0.1639

	
                          Nonlinear
                        
	6. 22
	3
	0.1012

	bm
	0. 03
	1
	0.8670

	TOTAL NONLINEAR
	23. 81
	11
	0.0136

	TOTAL
	119. 09
	24
	 < 0. 0001






21.2 Checking Proportional Hazards
Now that we have a tentative model, let us examine the model’s 
                
                
              distributional assumptions using smoothed scaled 
                
                
              Schoenfeld residuals. A messy detail is how to handle multiple regression coefficients per predictor. Here we do an approximate analysis in which each predictor is scored by adding up all that predictor’s terms in the model, to transform that predictor to optimally relate to the log hazard (at least if the shape of the effect does not change with time). In doing this we are temporarily ignoring the fact that the individual regression coefficients were estimated from the data. For dose of estrogen, for example, we code the effect as 0 (placebo), − 0. 00025 (0. 2 mg), − 0. 416 (1. 0 mg), and − 0. 111 (5. 0 mg), and age is transformed using its fitted spline function. In the rms package the predict

                
               function easily summarizes multiple terms and produces a matrix (here, z) containing the total effects for each predictor. Matrix factors can easily be included in model formulas.

              [image: A69956_2_En_21_Figd_HTML.gif]
            
The fit f.short based on the matrix of single d.f. predictors z has the same LR χ
2 of 118 as the fit f, but with a falsely low 11 d.f. All regression coefficients are unity.
Now we compute scaled Schoenfeld residuals separately for each predictor and test the PH assumption using the “correlation with time” test. Also plot smoothed trends in the residuals. The plot method for cox.zph

                
               objects uses cubic splines to smooth the relationship.

              [image: A69956_2_En_21_Fige_HTML.gif]
            
Perhaps only the drug effect significantly changes over time (P = 0. 05 for testing the correlation rho between the scaled 
                
                
              Schoenfeld residual and time), but when a 
                
                
              global test of PH is done penalizing for 11 d.f., the P value is 0.78. A graphical examination of the trends doesn’t find anything interesting for the last 10 variables. A residual plot is drawn for rx alone and is shown in Figure 21.1. We ignore the possible increase in effect of estrogen over time. If this non-PH is real, a more accurate model might be obtained by stratifying on rx or by using a time × rx interaction as a 
                
              time-dependent covariable.[image: A69956_2_En_21_Fig1_HTML.gif]
Fig. 21.1Raw and spline-smoothed scaled Schoenfeld residuals for dose of estrogen, nonlinearly coded from the Cox model fit, with ± 2 standard errors.






21.3 Testing Interactions
Note that the model has several insignificant predictors. These are not deleted, as that would not improve predictive accuracy and it would make accurate confidence intervals hard to obtain. At this point it would be reasonable to test prespecified interactions. Here we test all interactions with dose. Since the multiple terms for many of the predictors (and for rx) make for a great number of d.f. for testing interaction (and a loss of power), we do approximate tests on the data-driven coding of predictors. P-values for these tests are likely to be somewhat anti-conservative.

              [image: A69956_2_En_21_Figf_HTML.gif]
            
The global test of additivity in Table 21.4 has P = 0. 27, so we ignore the interactions (and also forget to penalize for having looked for them below!).Table 21.4Wald Statistics for S



	 	
                          χ
                          2
                        
	d.f.
	
                          P
                        

	z.dose (Factor+Higher Order Factors)
	18. 74
	11
	0.0660

	
                          All Interactions
                        
	12. 17
	10
	0.2738

	z.other (Factor+Higher Order Factors)
	125. 89
	20
	 < 0. 0001

	
                          All Interactions
                        
	12. 17
	10
	0.2738

	z.dose × z.other (Factor+Higher Order Factors)
	12. 17
	10
	0.2738

	TOTAL
	129. 10
	21
	 < 0. 0001






21.4 Describing Predictor Effects
Let us plot how each predictor is related to the log hazard of death, including 0.95 confidence bands. Note in Figure 21.2 that due to a peculiarity of the Cox model the standard error of the predicted [image: 
$$X\hat{\beta }$$
] is zero at the reference values (medians here, for continuous predictors).[image: A69956_2_En_21_Fig2_HTML.gif]
Fig. 21.2Shape of each predictor on log hazard of death. Y -axis shows [image: 
$$X\hat{\beta }$$
], but the predictors not plotted are set to reference values. Note the highly non-monotonic relationship with ap, and the increased slope after age 70 which occurs in outcome models for various diseases.
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21.5 Validating the Model

              
                
              
            
We first validate this model for Somers’ D

                x y
              

                
               rank correlation between predicted log hazard and observed survival time, and for slope shrinkage. The bootstrap is used (with 300 resamples) to penalize for possible overfitting, as discussed in Section 5.​3


              [image: A69956_2_En_21_Figh_HTML.gif]
            
Divergence or singularity in 83 samples
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	Index
	Original
	Training
	Test
	Optimism
	Corrected
	
                        n
                      

	 	Sample
	Sample
	Sample
	 	Index
	 
	
                        D
                        
                          x y
                        
                      
	0. 3208
	0. 3454
	0. 2954
	0. 0500
	0. 2708
	217

	
                        R
                        2
                      
	0. 2101
	0. 2439
	0. 1754
	0. 0685
	0. 1417
	217

	Slope
	1. 0000
	1. 0000
	0. 7941
	0. 2059
	0. 7941
	217

	
                        D
                      
	0. 0292
	0. 0348
	0. 0238
	0. 0110
	0. 0182
	217

	
                        U
                      
	− 0. 0005
	− 0. 0005
	0. 0023
	− 0. 0028
	0. 0023
	217

	
                        Q
                      
	0. 0297
	0. 0353
	0. 0216
	0. 0138
	0. 0159
	217

	
                        g
                      
	0. 7174
	0. 7918
	0. 6273
	0. 1645
	0. 5529
	217



Here “training” refers to 
                
                
              accuracy when evaluated on the bootstrap sample used to fit the model, and “test” refers to the 
                
                
              accuracy when this model is applied without modification to the original sample. The apparent D

                x y
               is 0. 32, but a better estimate of how well the model will discriminate prognoses in the future is D

                x y
               = 0. 27. The bootstrap estimate of slope shrinkage is 0.79, close to the simple heuristic estimate. The shrinkage coefficient could easily be used to shrink predictions to yield better calibration.
Finally, we validate the model (without using the shrinkage coefficient) for calibration accuracy in predicting the probability of surviving five years. The bootstrap is used to estimate the optimism in how well predicted five-year survival from the final Cox model tracks flexible smooth estimates, without any binning of predicted survival probabilities or assuming proportional hazards.

              [image: A69956_2_En_21_Figj_HTML.gif]
            
The estimated calibration curves are shown in Figure 21.3, similar to what was done in Figure 19.​11 Bootstrap calibration demonstrates some overfitting, consistent with 
                
              regression to the mean. The absolute error is appreciable for 5-year survival predicted to be very low or high.[image: A69956_2_En_21_Fig3_HTML.gif]
Fig. 21.3Bootstrap estimate of calibration accuracy for 5-year estimates from the final Cox model, using adaptive linear spline hazard regression 361. The line nearer the ideal line corresponds to apparent predictive accuracy. The blue curve corresponds to bootstrap-corrected estimates.






21.6 Presenting the Model
To present point and interval estimates of predictor effects we draw a hazard ratio chart (Figure 21.4), and to make a final presentation of the model we draw a nomogram having multiple “predicted value” axes. Since the ap relationship is so non-monotonic, use a 20: 1 hazard ratio for this variable.[image: A69956_2_En_21_Fig4_HTML.gif]
Fig. 21.4Hazard ratios and multi-level confidence bars for effects of predictors in model, using default ranges except for ap







              [image: A69956_2_En_21_Figk_HTML.gif]
            
The ultimate graphical display for this model will be a nomogram relating the predictors to [image: 
$$X\hat{\beta }$$
], estimated three– and five-year survival probabilities and median survival time. It is easy to add as many “output” axes as desired to a nomogram.

              [image: A69956_2_En_21_Figl_HTML.gif]
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Fig. 21.5Nomogram for predicting death in prostate cancer trial




            

21.7 Problems
Perform Cox regression analyses of survival time using the Mayo Clinic PBC dataset described in Section 8.​9 Provide model descriptions, parameter estimates, and conclusions.
1.Assess the nature of the association of several predictors of your choice. For polytomous predictors, perform a log-rank-type score test (or k-sample 
                        
                      ANOVA extension if there are more than two levels). For continuous predictors, plot a smooth curve that estimates the relationship between the predictor and the log hazard or log–log survival. Use both parametric and nonparametric (using martingale residuals) approaches. Make a test of H
0: predictor is not associated with outcome versus H

                        a
                      : predictor is associated (by a smooth function). The test should have more than 1 d.f. If there is no evidence that the predictor is associated with outcome. Make a formal test of linearity of each remaining continuous predictor. Use restricted cubic spline functions with four knots. If you feel that you can’t narrow down the number of candidate predictors without examining the outcomes, and the number is too great to be able to derive a reliable model, use a data reduction technique and combine many of the variables into a summary index.

 

2.For factors that remain, assess the PH assumption using at least two methods, after ensuring that continuous predictors are transformed to be as linear as possible. In addition, for polytomous predictors, derive log cumulative hazard estimates adjusted for continuous predictors that do not assume anything about the relationship between the polytomous factor and survival.

 

3.Derive a final Cox PH model. Stratify on polytomous factors that do not satisfy the PH assumption. Decide whether to categorize and stratify on continuous factors that may strongly violate PH. Remember that in this case you can still model the continuous factor to account for any residual regression after adjusting for strata intervals. Include an interaction between two predictors of your choosing. Interpret the parameters in the final model. Also interpret the final model by providing some predicted survival curves in which an important continuous predictor is on the x-axis, predicted survival is on the y-axis, separate curves are drawn for levels of another factor, and any other factors in the model are adjusted to specified constants or to the grand mean. The estimated survival probabilities should be computed at t = 730 days.

 

4.Verify, in an unbiased fashion, your “final” model, for either calibration or discrimination. Validate intermediate steps, not just the final parameter estimates.
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Appendix A

                  Datasets,
                  R
                  Packages, and Internet Resources
                
Central Web Site and Datasets

                    The web site for information related to this book is
                    biostat.​mc.​vanderbilt.​edu/​rms
                    , and a related web site for a full-semester course based on the book is
                    http://​biostat.​mc.​vanderbilt.​edu/​CourseBios330
                    . The main site contains links to several other web sites and a link to the dataset repository that holds most of the datasets mentioned in the text for downloading. These datasets are in fully annotated
                    R
                    save
                    (
                    .sav
                    suffixes) files
                    1
                    ; some of these
                    
                      
                    
                    are also available in other formats. The datasets were selected because of the variety of types of response and predictor variables, sample size, and numbers of missing values. In
                    R
                    they may be read using the
                    load
                    function,
                    load(url())
                    to read directly from the Web, or by using the
                    Hmisc
                    package’s
                    getHdata
                    
                      
                    
                    function to do the same (as is done in code in the case studies). From the web site there are links to other useful dataset sources. Links to presentations and technical reports related to the text are also found on this site, as is information for instructors for obtaining quizzes and answer sheets, extra problems, and solutions to these and to many of the problems in the text. Details about short courses based on the text are also found there. The main site also has Chapter
                    7
                    from the first edition, which is a case study in ordinary least squares modeling.
                  


                    R
                    Packages
                    
                      
                    
                  

                    The
                    rms
                    package written by the author maintains detailed information about a model’s design matrix so that many analyses using the model fit are automated.
                    rms
                    is a large package of
                    R
                    functions. Most of the functions in
                    rms
                    analyze model fits, validate them, or make presentation graphics from them, but the packages also contain special model–fitting functions for binary and ordinal logistic regression (optionally using penalized maximum likelihood), unpenalized ordinal regression with a variety of link functions, penalized and unpenalized least squares, and parametric and semiparametric survival models. In addition,
                    rms
                    handles quantile regression and longitudinal analysis using generalized least squares. The
                    rms
                    package pays special attention to computing predicted values in that design matrix attributes (e.g., knots for splines, categories for categorical predictors) are “remembered” so that predictors are properly transformed while predictions are being generated. The functions makes extensive use of a wealth of survival analysis software written by Terry Therneau of the
                    
                      
                    
                    Mayo Foundation. This
                    survival
                    package is a standard part of
                    R
                    .
                  

                    The author’s
                    Hmisc
                    package contains other miscellaneous functions
                    
                      
                    
                    used in the text. These are functions that do not operate on model fits that used the enhanced design attributes stored by the
                    rms
                    package. Functions in
                    Hmisc
                    include facilities for data reduction, imputation, power and sample size calculation, advanced table making, recoding variables, translating SAS datasets into
                    R
                    data frames while preserving all data attributes (including variable and value labels and special missing values), drawing and annotating plots, and converting certain
                    R
                    objects to LaTeX
                    371
                    typeset form. The latter
                    
                      
                    
                    capability, provided by a family of
                    latex
                    
                      
                    
                    functions, completes the conversion to LaTeX of many of the objects created by
                    rms
                    . The packages contain several LaTeX methods that create LaTeX code for typesetting model fits in algebraic notation, for printing ANOVA and regression effect (e.g., odds ratio) tables, and other applications. The LaTeX methods were used extensively in the text, especially for writing restricted cubic spline function fits in simplest notation.
                  

                    The latest version of the
                    rms
                    package is available from
                    CRAN
                    (see below). It is necessary to install the
                    Hmisc
                    package in order to use
                    rms
                    package. The Web site also contains more in-depth overviews of the packages, which run on UNIX, Linux, Mac, and Microsoft Windows systems. The packages may be automatically downloaded and installed using
                    R
                    ’s
                    install.packages
                    function or using menus under
                    R
                    graphical user interfaces.
                  


                    R-help
                    ,
                    CRAN
                    , and Discussion Boards
                  

                    To subscribe to the highly informative and helpful
                    R-help
                    e-mail group, see the Web site.
                    R-help
                    is appropriate for asking general questions about
                    R
                    including those about finding or writing functions to do specific analyses (for questions specific to a package, contact the author of that package). Another resource is the
                    CRAN
                    repository at
                    www.​r-project.​org
                    . Another excellent resource for askings questions about
                    R
                    is
                    stackoverflow.​com/​questions/​tagged/​r
                    . There is a Google group
                    regmod
                    devoted to the book and courses.
                  

Multiple Imputation

                    
                      
                      
                    
                    The
                    Impute
                    E-mail list maintained by Juned Siddique of Northwestern University is an invaluable source of information regarding missing data problems. To subscribe to this list, see the Web site. Other excellent sources of online information are Joseph Schafer’s “Multiple Imputation Frequently Asked Questions” site and Stef van Buuren and Karin Oudshoorn’s “Multiple Imputation Online” site, for which links exist on the main Web site.
                  

Bibliography

                    An extensive annotated bibliography containing all the references in this text as well as other references concerning predictive methods, survival analysis, logistic regression, prognosis, diagnosis, modeling strategies, model validation, practical Bayesian methods, clinical trials, graphical methods, papers for teaching statistical methods, the bootstrap, and many other areas may be found at
                    http://​www.​citeulike.​org/​user/​harrelfe
                    .
                  

SAS
SAS macros for fitting restricted cubic splines and for other basic operations are freely available from the main Web site. The Web site also has notes on SAS usage for some of the methods presented in the text.
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actual plotting of chi-square - d.f. for each bootstrap
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so that a rank of 1 is assigned to the highest. It is

important to tell plot.anova.rms not to sort the results,
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for the partial test statistics.

require (rms)

n « 300

set.seed (1)
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x4=runif(n), x5=runif(n), x6=runif(n), x7=runif(n),
x8=runif (n), x9=runif(n), x10=runif(n), xii=runif(n),
x12=runif (n)

48y « with(d, lexl + 2+x2 + 3ex3 + dexd + 5ex5 + 6vx6 +

THXT 4 84x8 + 9%x9 + 10%x10 + 1lexil +
124x12 + 9+rnorm(n))

R W R RN

£ ola(y ~ x1+x2+x3+xA+x5+x6+xT+x8+x9+x10+x11+x12, dat
B « 1000
ranks ¢ matrix(NA, mrow=B, ncol=12)
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Rank ¢ rankvars (f)
for(i in 1:8) {
5 « sample(iin, n, TRUE)
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predictor + factor (mames(Rank), names(Rank))
w ¢« data.frame (predictor, Ramk, lower=lim[,1], upper=lin(,2])
require (ggplot2)
£Eplot (v, aes(x=predictor, y=Ramk)) + geom_point () +
coord_flip() + scale_y_continuous(breaks=1:12) +
geon_errorbar (aes (ynin=1in[,1], ymax=1im[,2]), width=0)
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require (Hmisc)
gethdata(support)  # Get data frame from ueb site
heart.rate « support$hrt

blood.pressure ¢ support$meanbp

blood.pressure [400:401]

Moan Arterial Blood Pr
(1) 151 136

sure Day 3

blood.pressure [400:401] « NA # Create two missings

d + data.frame (heart.rate, blood.pressure)

par(pch=46)  # Figure 4.3

W ¢ transcan(~ heart.rate + blood.pressure, transformed=TRUE,
inputed=TRUE, show.na=TRUE, data=d)

Convergence criterion:2.901 0.035

0.007
Convergence in 4 iterations
R? achieved in predicting each variable:

heart .rate blood.pressure
0.259 0.259

Adjusted R

heart.rate blood.pressure
0.254 0.253

w$inputed$blood.pressure

400 401
132.4087 109.7741

t « w$transformed
spe « round (c(spearman(heart.rate, blood.pressure),
spearman(t[, 'heart.rate '],
[, 'blood.pressure 1)), 2)

plot (heart.rate , blood.pressure) # Figure 4.4
plot (t[, 'heart.rate '], t[, 'blood.pressure'l,
xlab='Transformed hr', ylab='Transformed bp')
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surv ¢« Survival(f)
survd ¢ function(x) surv(3+12,1p=x)
survs ¢ function (x) surv(5+12,1lp=x)
quan ¢ Quantile(f)

med  + function(x) quan(lp=x)/12
ss  « c(.05,.1,.2,.3,.4,.5,.6

nom ¢« nomogram(f, ap=c(.1,.5,1,2,3,4,5,10,20,30,40) ,
fun=list(surv3, survs, med),
funlabel=c('3-year Survival','S-year Survival',

'Median Survival Time (years)'),
fun.at=list(ss, ss, c(.5,1:6)))

plot(nom, xfrac=.65, lmgp=.35) # Figure 21.5
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require (rms)

getdata (ari) # defines ari, Sc, Y, Y.death
velust

varclus(~ i11d + hlt + slpm + slpl + wake + convul + hfa +
Bfb + hfe + hap + hel + hem + hes ¢ hdi +
fde + chi + twb + ldy + apn + lew  + nfl +
str + gru + coh + ccy + jeu + omph  + csd +
csa + aro + qcr + con + att + mvam  + afe +
absu + stu + deh + decp + cre + abb  + abk +
whz + hdb + smi2 + abd + conj + oto  + puskin,

data=ari)
plot(vclust) # Figure 14.1
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# Figure 12.3
b ¢« scale_size_discrete (rang
yl « ylab(NULL)
P1 ¢« geplot (13, aes(x=age, y=survived)) +
histSpikeg (survived ~ age, lowess=TRUE, data=t3) +
ylim(0,1) + y1
p2 « gegplot (13, aes(x=age, y=survived, color=sex)) +
histSpikeg (survived ~ age + sex, lowess=TRUE,
data=t3) + ylim(0,1) + yl
p3 ¢« ggplot (13, aes(x=age, y=survived, size=pclass)) +
histSpikeg (survived ~ age + pclass, lowess=TRUE,
data=t3) + b + ylin(0,1) + yl
p4 ¢ ggplot (13, aes(x=age, y=survived, color=sex,
size=pclass)) +
histSpikeg (survived ~ age + sex + pclass,
lowess=TRUE, data=t3) +
b+ ylin(0,1) + yl
gridExtra::grid.arrange (pi, p2, p3, p4, ncol=2) # combine 4

.1, .88)
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fastbw (£)

Deleted Chi-Sq d.f. P Residual d.f. P a1c
ekg  6.76 5 0.2391 6.76 5 0.2391 -3.24
ba 0009 1 0.7639 6.85 6 0.3349 -5.15
bg 038 1 05378 7.23 7 0.4053 -6.77
sbp 048 1 04881 7.71 8 0.4622 -8.29
ut 11 1 02032 882 9 0.4588 -9.18
avime 147 1 0.2253 10.20 10  0.4158 =-9.71
x 565 3 0.1302 15.93 13 0.2528 -10.07
Pt 478 2 0.0916 2071 15  0.1462 -9.20
sg 428 1 0.0385 25.00 16  0.0698 -7.00
abp 584 1 0.0157 30.83 17  0.0209 ~-3.17

Approximate Estimates after Deleting Factors

Coof  S.E. Wald Z P
Intercept -3.74986 1.82887 -2.050 0.0403286
sz 0104862 001532 -3.174 0.0015013
ap -0.40694 0.11117 -3.660 0.0002518
age 0/06000 0.02562 2,342 0.0191701
Bx 0186969 0.34339 2.533 0.0113198

Factors in Final Model

(1] sz ap age bx

fred « lrm(cvd ~ sz + log(ap) + age + hx, data=psub)
latex (fred, file='')
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s « spearman2(gh ~ age + sex + re + wt + leg + arml + armc
waist + tri + sub, data=w, p=2)

plot (s)
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Xp=

~2.868303 — 0.06233241 52— 03157901 53 — 03834479 log(ap) + 0.09089393 age
+1.396922[bngn] +0.06275034[rd&ec] — 1 24892(hbocd] + 06511938 hurts]
+03236771 (M1

+1.116028[inbed < 50% daytime] — 2 436734[in bed 50% daytime]

+1.05316hx

~0.3888534[0.2 mg estrogen] + 0.6920495[1.0 mg estrogen]

+0.7834498[5.0 mg estrogen]
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—5.009276 - 0.05510121 sz — 0.509185 log(ap) + 0.0788052 age + 1.070601 hx
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Prob[Y 2 yiX] = F(a; + XB) = F(ay, + Xp)
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fit ¢« lrm(death ~ blood.pressure + sex * rcs(age,5))
anova (£it)
plot (Predict (fit, age, sex))
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sod : Serum sodium Day 3 antlithatn

Lowest 118 120 120 126 127, bgheses 16 167 168 168 476

ph : Serum pH (arterial) Day 3 J——TT | [T

Mighane 7650 7528 7,63 7,600 763
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phtest ¢ cox.zph(f.short, transform='identity')
phtest

rho  chisq »
x 0.10232 4.00823 0.0453
age -0.05483 1.05850 0.3036
we 0.01838 0.11632 0.7331
PE.coded -0.03429 0.41884 0.5175
heart 002650 0.30052 0.5836
=ap 0102055 0.14135 0.7069
Be. 0100362 0.00511 0.9430
8 0105137 0.94589 0.3308
sz -0.01554 0.08330 0.7729
ap 0101720 0.11858 0.7306
b 0104957 0.95354 0.3288
GLOBAL A 7.18985 0.7835

plot (phtest, var='rx')  # Figure 21.1
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require (rms)

units (y) ¢ "Month"

# Default is "Day” - used for azis labels, etc

npsurv (Surv(y, event) ~ svari + svar2 + ... , data, subset,
type=c("kaplan-meier”, "fleming-harrington”, "fh2")
error=c("greenwood”, "tsiatis"), se.fit=TRUE,
conf.int=.95,
conf.type=c("log","log-log","plain”,"none"), ...)
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age.tertile + cut2(age, g=3)
# For auto ranges later, specify age.tertile to datadist
it + lrm(y ~ age.tertile *+ rcs(cholesterol))
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—4.91x107%(meanbp — 73) + 2.61x 10™8(meanbp — 109)3 — 1.7x10"%meanbp — 1353
—0.553crea — 0.229(crea — 0.6) + 0.45(crea — 1.1)] — 0.233(crea — 1.94)3
+0.0131(crea —7.32)}
—0.0165age — 1.13x 107 (age —28.5)% +4.05x107(age — 49.5)]
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~0.0135 scoma
+0.0161pafi.i— 4.77x 107 (pafi.i — 88)3 + 9.11x 107 (pafii — 167)3
—5.02x107(pafi i — 276) + 6.76x 107 (pafi.i — 426)] — 0.369 adlsc + 0.0409 adlsc®
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£ + loess(y ~ age * pressure)
plot (£) # cross-sectional plots
ages « 5eq(20,70, length=40)
pressures ¢ seq(80,200, length=40)
pred « predict(f,

expand.grid (age=ages, pressure=pressures))
persp (ages, pressures, pred) # 3-D plot
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#z, y for predict, validate, calidrate;
# surv,’ time.inc for calibrate
latex (anova (1), file='"',label='tab:coxcase-anoval')# Table 21.3
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XB=
~1.337435[Y >=1]
+0.1074525ageg € [ 7,60)] + 01971287 [ages € [60,90])
+0.1978706temp + 01091831 (temp — 36.19998)% — 2.833442(temp — 37)%
+5.07114(temp — 37.29999)% — 2.507527(temp — 37.69998)3.
+0.1606456(temp — 39)%
+0.02090741rr — 6.336873x 105 (rr — 32)3 + 8.405441x 1075 (xr — 42)3.
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options(na.action="na.delete", na.detail.response=TRUE,
na.fun.response="nystats")
# Just use na.fun.response="quantile” if don't care about n
mystats ¢ function(y) {
z ¢ quantile(y, na.rm=T)
n « sun(tis.na(y))
c(N=n, z)  # elements named N, 0%, 25, etc.
3
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an ¢ anova(f)
latex (an, fil

tab:
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DATA test;
D0i=1t050;
y = FLOOR(RANUNT(151)+9);
X = RANNOR(S);
QUTPUT;
END;
PROC LOGISTIC; MODELy = x;
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f.mi  fit.mult.impute (

survived ~ (sex + pclass + rcs(age,5))"2 +
rcs (age ,5) *sibsp

1rm, mi, data=t3, pr=FALSE)
latex (anova(f.mi), file='', label='titanic-anova.mi'
size='small')  # Table 12.4
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cal « calibrate(f, B=300, u=5+12, maxdim=4) ]

Using Cox survival estimates at 60 Momths

plot(cal, subtitles=FALSE)  # Figure 21.3 ]
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s ¢ summary(f.linia) # Table 10.12
latex(s, file='
label='tab:lra-cholxage-confbar ')
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nom ¢ nomogram(fapprox, ap=c(.1, .5, 1, 5, 10, 20, 30, 40),
fun-plogis, funlabel="Probability",
1p.at=(-5):4,

fun.1p.at=qlogis (c(.01,.05,.25,

plot (nom, xfrac=.45)  # Figure 11.7

.75,.95,.99)))
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£ ¢ lrm(y ~ sex + race + rcs(age,5) + rcs(weight,5) +
rcs(height ,5) + res(blood.pressure,5))
plot (anova (£))
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summary (£, values=list(x1=c(.2, .8), x2=c(.1, .5)))

summary . areg.boot (object = £, values = list(xi = c(0.2, 0.8),
x2 = (0.1, 0.5))

Estimates based on 300 resampl

Values to which predictors are set when sstimating
effects of other predictor

y x1 x2 3
3.728843 0.500000 0.300000 2.000000

Estimates of differences of effects on Median Y (from first X
value), and bootstrap standard errors of these differences.
Settings for X are shoun as row headings.

Predictor: xi

x  Differences 5, Lover 0.9 Upper 0.98 z Praiz))
0.2 0.000000 A s NA A
08 1046902 0.2000986  1.135408  1.058677 7.366773 1.747491e-13

Predictor: x2

x  Differences S.E Lower 0.95 Upper 0.95 z Praiz
0.1 0.000000 [ NA s A i
0.5 -1.658961 0.3163361 -2.278968 -1.038953 -5.244298 1.5687868-07

Predictor: x3

x  Differences 8,8 Lover 0.9 Upper 0.5 z Praiz))
a 0.0000000 i A A
b 010447473 0.1766244 0.4981730 1191317 4.777208 1.7766920-08
©  1.3526151 0.2206395 0.9201697  1.785061 6.130431 8.764127e-10
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set.seed (13)

n < 200

x1 & runif(n)

x2 ¢« runif(n)

x3 ¢« runif(n)

logit « 2+(x1-.5)

P 1/(1+exp(-logit))

y ¢ ifelse(runif(n) < P, 1, 0)
d « data.frame(xl, x2, x3, y)

£ ¢ lrm(y ~ x1 + x2 + x3, subset=
phat ¢ predict(f, d[101:200,], type
# Figure 10.22

v ¢ val.prob(phat, y[101:200], m=20, cex=.5)

00)
'fitted ')
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£ ¢ update(f, x=TRUE, y=TRUE)
v « validate(f, B=200, bw=TRUE)

latex (v, B=20, digits=3) ]
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latex (anova(£1), file='', label='ordinal-amova.f1',
caption='Wald statistics from the proportional odds model',
size='smaller')  # Table 14.5
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v2  validate(f,
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individual')

latex(v2,
caption='Bootstrap Validation, 2 Predictors with Stepdown',
digits=2, B=15, file='', size='Ssize')
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dd ¢ datadist(t3)

# describe distributions of variables to rms

options (datadist="'dd')

s < summary(survived ~ age + sex + pclass +
cut2(sibsp,0:3) + cut2(parch,0:3), data=t3)

plot (s, main='', subtitles=FALSE)  # Figure 12.1
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plogit ¢ predict(full.pen)

£ ¢ ols(plogit ~ ageg+(rcs(temp,5) + res(rr,5)) +
rcs(vaz,4) + bul.conv + drousy + agitated +
reffort + ausc + feeding + abdominal + hydration +
hxprob + pustular + crying + fever.ill +
stop.breath + labor,
subset=cohort=='all’', data=Sc.expanded, sigma=1)

# Do fast backuard stepdoun
W ¢ options(width=120)
fastbu (f, aics=1e10)
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# To get results for week 8 for a different referemce group
# for treatment, use e.g. sunmary(a, week=4, treat='Placebo

# Compare low dose with placebo, separately at each time
k1 & conmtrast(a, list(week=c(2,4,8,12,16), treat='5000U"),
list (week=c(2,4,8,12,16), treat='Placebo'))

options (width=80)
print (ki, digits=3)

ek tustrsO age sex Contrast S.E. Lower Upper 2 Pr(>lzl)
1 2 46 86 F  -6.31 2.10 -10.43 -2.186 -3.00  0.0027
2 s 46 86 F  -5.91 1.82 -9.47 -2.349 -3.25  0.0011
3 s 46 S6 F  -4.90 2.01 -8.85 -0.953 -2.43  0.0150
1 46 56 F  -3.07 1.75 -6.49 0.361 -1.75  0.0795
5 16 46 86 F  -1.02 2,10 -5.14 3.092 -0.49  0.6260

Redundant contrasts are demoted by *

Confidence intervals are 0.95 individual intervals

# Compare high dose with placebo
k2 4 contrast(a, list(week=c(2,4,8,12,16), treat='10000U"),

list(week=c(2,4,8,12,16), treat='Placebo'))
print (k2, digits=3)

ook tustrsO age sex Contrast S.E. Lower Upper  Z Pr>lzl)
1 2 46 56 F  -6.89 2.07 -10.96 -2.83 -3.32  0.0000
2 4 46 S6 F  -6.64 1.79 -10.15 -3.13 -3.70  0.0002
3 s 46 56 F  -5.49 2.00 -9.42 -1.56 -2.74  0.0061
1 46 86 F  -1.76 1.74 -5.17 1.65 -1.01  0.3109
s 16 46 86 F 2,62 2.09 -1.47 6.71 1.25 0.2009

Redundant contrasts are denoted by +

Confidence imtervals are 0.95 individual imtervals

ki ¢ as.data.frame(kilc('week', 'Contrast', 'Lower',
"Upper ')1)

Pl ¢ ggplot(ki, aes(x=week, y=Contrast)) + geom_point() +
geom_line ) + ylab('Low Dose - Placebo') +
geom_errorbar (aes (ynin=Lower , ymax=Upper), width=0)

k2 ¢ as.data.frame(k2[c('week', 'Contrast', 'Lower',

"Upper ')1)

P2 ¢ ggplot (k2, aes(x=week, y=Contrast)) + geom_point() +
geom_line ) + ylab('High Dose - Placebo') +
geom_errorbar (aes (ynin=Lower , ymax=Upper), width=0)

gridExtra::grid.arrange (pl, p2, ncol=2)  # Figure (7.7)
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# Combine 2 levels of ekg (ome had freg. 1)
levels (prostate$ekg) [levels (prostate$ekg) %in%
c('old MI', 'recent MI')] « 'NI'

prostate$pf.coded ¢ as.integer (prostateS$pf)
# make a numeric version; combine last 2 levels of original
levels (prostate$pf) « levels(prostate$pf)[c(1,2,3,3)]

ptrans
transcan(~ sz + sg + ap + sbp + dbp +
age + wt + hg + ekg + pf + bm + hx, imputed=TRUE,
transformed=TRUE, trantab=TRUE, pl=FALSE
show.na=TRUE, data=prostate, frac=.1, pr=FALSE)
summary (ptrans, digits=4)
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sex response

Frequency
Row Pet 0 1 Total  0dds/Log
F 14 6 20 6/14-.429
70.00  30.00 -.847
n 5 14 20 14/6=2.33
30.00  70.00 847
Total 20 20 0

iF odds ratio = (14/6)/(6/14) = 5.44, log=1.695
Stati

ies for sex x response

Statistic df Valie P

X 1 6.400 0.011
Likelihood Ratio x? 1 6.583 0.010

Parameter Estimate Std Err Wald 2 P

Bo ~0.8473 04880  3.0152
B 1.6946 0.6901  6.0305 0.0141
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E[AT)] = A(DA(t) exp(—A(£))dt
uexp(—u)du

=1
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set.seed (717)
cal ¢ calibrate(g, u=1, B=300)

plot (cal, subtitles=FALSE)

cal ¢ calibrate(g, cmethod='KM', u=1, m=60, B=120, pr=FALSE)
plot (cal, add=TRUE) # Figure 19.11
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require (rms)

tt « c(1,3,3,6,8,9,10)
stat + c(1,1,1,0,0,1,0)
s « Surv(et, stat)
survplot (npsurv(S ~ 1), conf="bands", n.risk=TRUE,
xlab=expression (t))
survplot (npsurv(S ~ 1, type="fleming-harrington”,
conf.int=FALSE), add=TRUE, lty=3
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ggplot (Predict (f), sepdiscrete='vertical', nlevels
vnames='names ') # Figure 21.2
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g 4+ Newlevels(g, list(re=abbreviate(levels(w$re))))
exprob  ExProb (g)
nom

nomogram (g, fun=list (Mean=M,
'Median Glycohemoglobin' = med,
'0.9 Quantile’ = a90,

'Prob(HbAlc > 6.5)'=
function(x) exprob (x,
'Prob(HbAlc > 7.0)'=
function(x) exprob(x, y=7),
'Prob(HbAlc > 7.5)'=
function(x) exprob(x, y=7.5)),
fun.at=1ist(seq(5, 8, by=.5),
©(5,5.25,5.5,5.75,6,6.25),
<(5.5,6,6.5,7,8,10,12,14),
©(.01,.05,.1,.2,.3,.4),
€(.01,.05,.1,.2,.3,.4),
©(.01,.05,.1,.2,.3,.4)))
plot (nom, lmgp=.28)  # Figure 15.14
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an < anova(full, india=FALSE, indnl=FALSE)

latex(an, file='', label='ordinal-anova.full ',
caption='Wald statistics for the continuation ratio model.
Interactions with \\co{cohort} assess non-proportional
hazards', caption.lot='Vald statistics for $Y$ in the
continuation ratio model',
smaller[2]')  # Table 14.7
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prostate[2:17]
16 Variables 502 Observations

stage : Stage
n missing unique Info Mean
502 0 20733424

3 (289, 584, 4 (213, 42)

n missing unique
502 0 1

placebo (127, 26%), 0.2 mg estrogen (124, 25%)
1.0 mg estrogen (126, 26%), 5.0 mg estrogen (125, 26%)

dtime : Months of Follow-up T B
n missing unique Info Mean .05 .10 25 .50 .75 .90 .95
502 0 76 13613 1.05 5.00 14.25 34.00 57.75 67.00 7100

lowest : O 1 2 3 4, highest: 72 73 74 75 76

status
n missing unique
502 010

alive (148, 29%), dead - prostatic ca (130, 26%)
dead - heart or vascular (96, 19%), dead - cerebrovascular (31, 6%)
dead - puluonary embolus (14, 3%), dead - other ca (25, 5%)

dead - respiratory disease (16, 3%)

dead - other specific non-ca (28, 6%), dead - unspecified non-ca (7, 1%)
dead - unknown cause (7, 1%)

age : Age in Years o
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95
501 1 41 1 71.46 56 60 70 73 76 78 80

lowest : 48 49 50 51 52, highest: 84 85 87 88 89

wt : Weight Index = wt(kg)-ht(cm)+200 o
n missing unique Info Mean .05 .10 .25 .50 75 90 95
500 2 67 1 99.03 77.95 82.90 90.00 98.00 107.00 116.00 123.00

lowest : 69 71 72 73 74, highest: 136 142 145 150 152
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acath ¢ transform(acath,
cholesterol = choleste,
age.tertile = cut2(age,g=3)
sx = as.integer (acath$sex) - 1)

# sz for loess, need to code as numeric

dd ¢ datadist(acath); options(datadist='dd')

# First model stratifies age into tertiles to get more
# empirical estimates of age © cholesterol interaction

£ ¢ lrm(sigdz ~ age.tertiles(sex + rcs(cholesterol,4))
data=acath)
print (f, latex=TRUE)
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fu ¢« psm(S ~ group, data=kprats, dist='weibull')

£1 « psm(S ~ group, data=kprats, dist='loglogistic',
y=TRUE)

fn ¢ psn(S ~ group, data=kprats, dist='lognormal')

latex (fw, fi='")

log(t) — X/
Prob{T > t} = exp|— exp(%)] where
XB=
5.450859

+0.131983(Group 2]

and [c] = 1 if subject is in group c, 0 otherwise.
latex (f1, fi='') I

g () = XB) 4
0.1159753

Prob{T > t} = 1 + exp(

XB=
5.375675
+0.1051005(Group 2]

and [c] = 1 if subject is in group c, 0 otherwise.
latex (fn, fi='") ]

log(t) - X8
02100081 ) M

Prob{T > t} =1 - &(

5.375328
+0.0930606[Group 2]

1 if subject is in group ¢, 0 otherwise.
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latex(validate(f, B=200), digits=3, file='', caption='',
table.env=TRUE, label='tab:cox-val-randonm')
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TOTAL NONLINEAR + INTERACTION  1.80
TOTAL 72.82

0.8763
< 0.0001

. _df__ P
age (Factor+ Higher Order Factors) 7282 6 < 0.0001
All Interactions 105 3 0.7886
Nonlinear (Factor+Higher Order Factors) 180 4 0.7728
age x sex (Factor+Higher Order Factors)  1.05 3 0.7886
Nonlinear 105 2 05911
Nonlinear Interaction : f(A,B) vs. AB 105 2 05911
TOTAL NONLINEAR 180 4 07728
5
6
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# Show quartiles
ggplot (cdystonia, aes(x=week, y=twstrs)) + x1 + yl +
ylin(0, 70) + stat_summary (fun.data="median_hilow",
conf.int=0.5, geom='smooth') +
tacet_urap (~ treat, mrow=2) # Fig. (7.2)






OEBPS/A69956_2_En_4_Fige_HTML.gif





OEBPS/A69956_2_En_10_Figw_HTML.gif
# Make estimates of cholesterol effects for mean age in
# tertiles corresponding to initial analysis
mean.age
with (acath,

as.vector (tapply (age, age.tertile, mean, na.rm=TRUE)))

plot (Predict (f, cholesterol, age=round(mean.age,2),
sex="male"),
adj.subtitle=FALSE, ylim=yl) #3 curves, Figure 10.15
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p « Predict(f.ia, age, sex, time=3, loglog=TRUE)
ggplot (p, ylim=c(-5, -.5))
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pes ¢ s$scores # pick off sparse PCs
aic ¢ numeric(10)
for(i in 1:10) {
ps « pesl[,1:i]
aicli] « AIC(cph(S ~ ps))
}  # Figure 8.7
plot (1:10, aic, xlab='Number of Components Used'
ylab='AIC', type='l', ylim=c(3950,4000))
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redun(~ crea + age + sex + dzgroup + num.co + scoma + adlsc +
race2 + meanbp + hrt + resp + temp + sod + wblc.i +
pafi.i + ph.i, nk=4)

Redundancy Analysis

redun(formula = ~crea + age + sex + dzgroup + mum.co + scoma +
adlsc + race2 + meanbp + hrt + resp + temp + sod + ublc.i +
pafi.i + ph.i, nk = 4)

i S3T pids mk: 4
Nusber of Nks: 0

Transfornation of target variables forced to be linear
R cutoff: 0.9 Type: ordinary

B with which each variable can be predicted from all other variables:

crea  age  sex dzgroup num.co scoma adlsc race2 meanbp
0.133  0.246 0.132  0.451 0.147 0.418 0.153 0.151 0.178
brt  resp  tesp  sod wblc.i pafi.i  ph.i

0.288  0.131  0.197 0.135 0.093 0.143  0.171

No redundant variables
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pred.logit « Function(f.mi)

# Note: if don't define sibsp to pred.logit, defaults to 0

# normally just type the function name to see its body

latex (pred.logit, file='', type='Sinput', size='small',
width.cutoff =49)

pred.logit « function (sex = "male”, pclass = "3rd”,
age = 28, sibsp = 0)
{
3.2427671 — 0.95431809 + (sex = "male”) + 5.4086505 «
(pclass = "2nd”) — 1.3378623 » (pclass —

"3rd”) + 0.091162649 « age — 0.00031204327 «
pmax(age — 6, 0)"3 + 0.0021750413 + pmax(age —

21, 0)"3 — 0.0027627032 =+ pmax(age — 27, 0)"3 +
0.0009805137 « pmax(age — 36, 0)'3 — 8.0808484e—05 +
pmax(age — 55.8, 0)"3 — 1.1567976 « sibsp +

(sex = "male”) + (~0.46061284 » (pclass —
"2nd”) + 2.0406523 « (peclass = "3rd”)) +
(sex = "male”) + (—0.22469066 » age + 0.00043708296 <

pmax(age — 6, 0)"3 — 0.0026505136 + pmax(age —
21, 0)"3 + 0.0031201404 = pmax(age — 27,
0)"3 ~ 0.00097923749 + pmax(age — 36,
0)"3 + 7.2527708¢—05 » pmax(age — 55.8 ,
0)73) + (pelass = "2nd”) » (—0.46144083 =
age + 0.00070194849 « pmax(age — 6, 0)"3 —
0.0034726662 + pmax(age — 21, 0)"3 + 0.0035255387 =
pmax(age — 27, 0)"3 — 0.0007900891 « pmax(age —
36, 0)"3 + 3.5268151e—05 + pmax(age — 55.8 ,
0)73) + (pelass = "3rd”) » (-0.17513289 =
age + 0.00035283358 « pmax(age — 6, 0)"3 —
0.0023049372 « pmax(age — 21, 0)"3 + 0.0028978962 =
pmax(age — 27, 0)"3 — 0.00105145 + pmax(age —
36, 0)"3 + 0.00010565735 » pmax(age — 55.8 ,
0)73) + sibsp + (0.040830773 = age — 1.5627772¢—05 «
pmax(age — 6, 0)"3 + 0.00012790256 « pmax(age —
21, 0)"3 — 0.00025039385 » pmax(age — 27,
0)"3 + 0.00017871701 + pmax(age — 36, 0)*3 —
4.0597949¢—05 » pmax(age — 55.8, 0)"3)

# Run the neuly created function
plogis (pred.logit (age=c(2,21,50), sex='male', pclass='3rd'))

[1] 0.914817 0.132640 0.056248
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require (rms)

getHdata (titanicd) # get dataset from web site
# List of names of variables to analyze

v ¢ c('pelass ', 'survived','age','sex', 'sibsp', 'parch')
©3 « titanic3[, vl

units (t38age) « 'years'

latex (describe (t3), file='')
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£.sub « psm(S ~ dzgroup + rcs(meanbp,5) + rcs(crea,4) +
rs(age,s) + ros(hrt,3) + scoma + rcs(pafi.i,d) +
pol(adlsc,2)+ rcs(resp,3), dist='lognormal')

diag(v)/diag(vcov(£.sub, regcoet .only=TRUE))

Intercept dzgroup=Cona dzgroup=MOSF w/Malig
0.981 0.979 0.979

r ¢ diag(v)/diag(vcov(f.sub,regcoef.only =TRUE))
rlc(which.nin(r), which.max(r))]

hre' age
0.976 0.982
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yl + c(-1,5)
plot (Predict (f, cholesterol, age.tertile),
adj.subtitle=FALSE, ylim=yl) # Figure 10.9
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n « 2000

set.seed (3)

age ¢ 50 + 12 * rnorm(n)

label(age) ¢ ‘'Age'

sex « factor(1 + (runif(n) < .4), 1:2, c('Male', 'Female'))
cems ¢ 15 * runif(n)

B .02 * exp(.04 * (age - 50) + .8 x (sex
ft & -log(runif(n)) / h

o ¢ ifelse(ft < cems, 1, 0)

print (table(e))

'Female ')

o 1
1611 389

£t < pmin(fe, cens)
units(£6)  'Year'
Srv ¢ Surv(ft, e)
age.dec  cut2(age,
label(age.dec)  'Age'

dd ¢ datadist(age, sex, age.dec); options(datadist='dd')

np ¢« cph(Srv ~ strat(age.dec) + strat(sex), surv=TRUE)
surv=TRUE speeds up computations, and confidemce limits when
there are no covariables are still accurate.

< Predict(f.np, age.dec, sex, time=3, loglog=TRUE)

Treat age.dec as a numeric variable (means within deciles)
pSage.dec « as.mumeric(as.character (pSage.dec))

ggplot (p, ylim=c(-5, -.5))

0, levels.mean=TRUE)

W oww e
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vsign.trans ¢ transcan(~ temp + hrat + rr, data=Sc,
imputed=TRUE, pl=FALSE)

Convergence criterion:2.222 0.643 0.191 0.056 0.016
Convergence in 6 iterations
I achieved in predicting each variable

temp hrat  rr
0.168 0.160 0.066

Adjusted R':

temp hrat  rr
0.167 0.159 0.064

Sc « transform(Sc,
temp = impute (vsign.trams, temp),
hrat = impute (vsign.trans, hrat),
rr = impute(vsign.trams, rr))
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an ¢ anova(g)
1an(an)

AL P
age 69250 4 < 0.0001
Nonlinear 2847 3 < 0.0001
re 168.91 4 < 0.0001
leg 2437 2 <0.0001
Nonlinear 214 1 01434
waist 12831 3 <0.0001
Nonlinear 405 2 01318
tri 39.44 1< 0.0001
sub 39.30 3 < 0.0001
Nonlinear 6.63 2 0.0363
OTAL NONLINEAR ~ 46.80 8 < 0.0001
TOTAL 1464.24 17 < 0.0001

b« anova(g, leg, waist, tri, sub)
# Ad4d new lines to the plot with combined effect
s ¢ rbind(an, size=b['TOTAL', 1)

class(s) ¢ ‘'anova.rms'

plot (s)

gplot (Predict (g), abbrev=TRUE, ylab=NULL) +

of 4 size var.
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set.seed (133)

n ¢+ nrow(d)

x1 4 runif(n)

x2 + runif (n)

x3 + runif(n)

x4 ¢+ runif(n)

x5 ¢+ runif (n)

f « lrn(response ~ age + sex + x1 + x2 + x3 + x4 + x5,
data=d, x=TRUE, y=TRUE)

v3 + validate(f, B=150, bw=TRUE,

rule='p', sls=.1, type='individual')

k « attr(v3, 'kept')
# Compute number of zi1-z5 selected
nx  apply(k[,3:7], 1, sum)
# Get selections of age and sez
v + colnames (k)
as ¢« apply(k[,1:2], 1,
function(x) paste(v[1:2][x], collapse=', '))

table (paste (as, ' ', nx, 'Xs')
o1 e age 2 Xs age, 0
50 3 1 3
age. sex 11Xs age, sex 2 Xs age, sex 3 Xs age, sex 4 Is
17 i i f

sex 0 xs sex 11

12 3

latex (v3,

caption='Bootstrap Validation with § Noise Variables and
Stepdoun', digits=2, B=15, size='Ssize', file='')
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w
18 Variables 4629 Observations

seqn : Respondent sequence number i
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95
4629 0 4629 156902 52136 52633 54284 56930 59495 61079 61641

lowest : 51624 51629 51630 51645 51647
highest: 62152 62153 62155 62157 62158

sex
n missing u;
4629 ]

male (2259, 49%), female (2370, 51%)

ique
2

age : Age [years]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95
4629 0 703 1 48.57 23.33 26.08 33.92 46.83 G1.83 74.83 80.00

lowest : 21.00 21.08 21.17 21.25 21.33
highest: 79.67 79.75 79.83 79.92 80.00

re : Race/Ethnicity
1 missing unicug

4629 5

Mexican American (832, 18%), Other Hispanic (474, 101)
Non-Hispanic White (2318, 50%), Non-Hispanic Black (756, 16%)
Other Race Including Multi-Racial (249, 5%)

income : Family Income
n missing unique

4380 210 14

[0,5000) (162, 4%), [§000,10000) (216, §%), [10000,15000) (371, 8%)
[15000,20000)" (300, 74), [20000,250003 (374, 9%)

[25000,35000) (535, 1243, [35000,45000) (421, 10%)

[45000,55000) (346, 87), ' [55000,65000) (257, 6%), [65000,75000) (188, 4%)
> 720000 (149, 31), < 20000 (52, 1%), [75000]100000) (399, 9%)

>="100000 (619, 14%)

wt : Weight [ke] [ T—
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4629 0 890 1 80.49 52.44 57.18 66.10 77.70 91.40 106.52 118.00

lowest : 33.2 36.1 37.9 38.5 38.7
highest: 184.3 186.9 195.3 196.6 203.0

ht : Standing Height [cm] ot
ing unique Info Mean .05 .10 .25 .50 .75 .90 .95
o 512 1 167.5 151.1 154.4 160.1 167.2 175.0 181.0 184.8

lowest : 123.3 135.4 137.5 139.4 139.8
highest: 199.2 199.3 1396 201.7 202.7
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require (rms)

gethdata (cdystonia)
attach (cdystonia)

# Conmstruct unigue subject ID
uid + with(cdystonia, factor (paste(site, 1d)))
# Tabulate patterns of subjects'
table (tapply (week, uid,

time points

function(w) paste (sort (unique(w)), collapse=' ')))

3 024 0241216 0248 024812

1 1 3 1 1
02481216 024816 0281216 0481216 04816

0 i 2 4 i

# Plot raw data, superposing subjects

x1 ¢ xlab('Week'); yl ¢ ylab('TWSTRS-total score')

ggplot (cdystonia, aes(x=week, y=twstrs, color=factor(id))) +
geom_line () + x1 + yl + facet_grid(treat ~ site) +
guides (color=FALSE) # Fig. (7.1)
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rcspline.plot (lvef death, nk=3)
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# Compute PC1 on a subset of transcan-transformed predictors
peo ¢ function(v) {

£ « princonp(ptrans$transformed[,v], cor=TRUE)

vars « f$sdev’2

cat('Fraction of variance explained by PC1:',

round (vars [1]/sum(vars),2), "\n')

f$scores [,1]

b

tumor ¢+ peolc('sz', 'sg’

sg','ap’, 'bn'))
Fraction of variance explained by PC1: 0.59
bp + peolc('sbp’, 'dbp"))

Fraction of variance explained by PC1: 0.84
cardiac ¢ pco(c('hx', ekg'))

Fraction of variance explained by PC1: 0.61

# Get transformed individual variables that are not clustered
other ¢ ptrans$transformed[,c('hg', 'age’,'pt', wt')]

£ < cph(S ~ tumor + bp + cardiac + other) # other is matriz
ATC ()

(1] 3954.393

print (f, latex=TRUE, long=FALSE, title
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XB = -9.84 + 3.49[male] + 0.158 age
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—9.84 + 349+ .158(40) = —.03
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£ « psm(S ~ rcs(age,5)+sex+dzgroup+num.co+
scoma+pol (adlsc ,2)+race2+rcs (meanbp ,5)+
res(hrt ,3)+rcs (resp,3)+temp+
rcs(crea,4)+sod+rcs (wblc.i,3)+rcs (pafi.i,4),
dist='lognormal')
print (f, latex=TRUE, coefs=FALSE)
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£ ¢ areg.boot (Y ~ monotone(age) +

plot (£)
Function (£)

predict (£)
summary (£)
smearingEst ()
Mean (£)

Quantile (f)

sex + weight + I(blood.pressure))

#show transformations, CLs
#generate S functions

#defining transformations

#get predictions, smearing estimates
#compute CLs on effects of each X
#generalized smearing estimators
#derive S function to

#compute smearing mean ¥

#derive function to compute smearing

quantile
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latex (anova (£)
#12.2
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plot (summary (is.na(age) ~ sex + pclass + survived +
sibsp + parch, data=t3)) # Figure 12.9
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Redundancy Analysis
redun(formula = ~stage + I(rxn) + age + wt + I(pfn) + hx +
sbp + dbp + ekg.norm + hg + sz + sg + ap + bm,
data = prostate, r2 = 0.3, type = "adjusted")

n: 483 p: 14  nk: 3

Number of NAs: 19
Frequencies of Missing Values Due to Each Variable
stage  I(rxn) age Wt I(pfn) hx sbp

dbp

o o 1 2 0 0 0
0
ekg.norn hg sz sg ap bn

0 o 5 11 o o

Transformation of target variables forced to be linsar
R? cutoff: 0.3 Type: adjusted

R? with which each variable can be predicted from all other

variables:
stage  I(rxn) age Wt I(pfn) hx sbp
dbp
0.658  0.000  0.073  0.111  0.156  0.062  0.452
0.417
ekg.norn hg sz sg ap bn
0.085  0.146  0.192  0.540  0.147  0.391

Rendundant variables:
stage sbp bm sg

Predicted from variables:

I(rxn) age wt I(pfn) hx dbp ekg.norm hg sz ap

Variable Deleted K? R? after later deletions

1 stage 0.658 0.658 0.646 0.494
2 sbp 0.452 0.453 0.455
3 bu 0.374 0.367
4 sg 0.342
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require (rms)

haz « survreg.auxinfoStS$hazard
times ¢ c(seq(0, .25, length=100), seq(.26, 2, length=150))

high « c(6, 1.5, 1.5, 1.75)
low « (0, 0, 0, .25)

dfs « c(1, 2, 3, 5, 7, 15, 500)
cols « rep(1, 7)

ltys « 1:

10

for(scale in (.25, .6, 1, 2)) {
e
Plot(0, 0, xlim=c(0,2), ylim=c(low[il, high[il),
xlab=expression (t), ylab=expression (lambda(t)), type="n"
col « 1.09
jeo
for(df in dfs) {
PR
## Divide by t to get hazard for log t distribution
lines(times,
haz (log(times), 0, c(log(scale), df))/times,
col=cols[j], lty=ltys[j])
if(1==1) text(1.7, .23 + haz(log(1.7), 0,
c(log(scale),df))/1.7, format (df))
b
title(paste("Scale:", format(scale)))
}  # Figure 18.6
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latex (anova(full, cohort), file='', # Table 14.6
caption='Wald statistics for \\co{cohort} in the CR model'
size='smaller [2] ', label='ordinal-anova.cohort ')
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# Re-do model with conmtinuous age
£ ¢ loess(sigdz ~ age * (sx + cholesterol), data=acath,
parametric="sx", drop.square="sx")

ages ¢ seq(25, 75, length=40)

chols + seq(100, 400, length=40)

g < expand.grid (cholesterol=chols, age=ages, sx=0)

# drop sez dimension of grid since held to 1 value

p ¢« drop(predict(f, g))

plp < 0.001] « 0.001

plp > 0.999] « 0.999

2zl « c(-3, 6)  # Figure 10.10

wireframe (qlogis (p) ~ cholesterol+age,
xlab=1ist (rot=30), ylab=list(rot=-40),
zlab=1ist (label='log odds', rot=90), zlim=zl,
scales = list(arrows = FALSE), data=g)
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a « areglmpute(~ age + sex + bp + death +
heart.attack.before.death ,
data=mydata, n.impute=5)

£ ¢ fit.mult.impute (death ~ rcs(age,3) + sex +

rcs(bp,5), lrm, a, data=mydata)
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require (rms) # make new functions available
ddist ¢+ datadist(cholesterol, treat, num.diseases, age)
# Could have used ddist + datadist(data.frame.name)
options (datadist="ddist") # defines data dist. to rms
cholesterol ¢ impute (cholesterol)
£it « lrm(y ~ treat + scored (num.diseases) + rcs(age) +
log(cholesterol+10) +
treat:log(cholesterol+10))

describe(y ~ treat + scored (num.diseases) + rcs(age))
# or use describe(formula(fit)) for all variables used in
# fit. describe function (in Hmisc) gets simple statistics
# on variables
# fit « robcou(fit)# Would make all statistics that follow

# use a robust covariance matriz

# would need z=TRUE, y=TRUE in irm()
specs (£it) # Describe the design characteristics
anova (£it)
anova (fit, treat, cholesterol) # Test these 2 by themselves
plot (anova (£it)) # Summarize anova graphically
summary (£it) # Est. effects; default ranges
plot (summary (£it)) # Graphical display of effects with C.I
# Specific referemce cell and adjustment value:
summary (fit, treat="b", age=60)
# Estimate effect of imcreasing age: 50->70
summary (fit, age=c(50,70))
# Increase age 50->70, adjust to 60 when estimating
# effects of other factors:
summary (fit, age=c(50,60,70)
# If had not defined datadist, would have to define
# ranges for all variables

# Estimate and test treatment (b-a) effect averaged
# over 3 cholesterols:
contrast (fit, list(treat='b', cholesterol=c(150,200,250)),
list(treat='a', cholesterol=c(150,200,250)),
type='average ')

p ¢ Predict(fit, age=seq(20,80,length=100), treat,
conf.int=FALSE)

plot (p) # Plot relationship betueen age and

# or ggplot(p) # log odds, separate curve for each
# treat, no C.I

plot(p, ~ age | treat) # Same but 2 panels

ggplot (p, groups=FALSE)
bplot (Predict (fit, age, cholesterol, np=50))
# 3-dimensional perspective plot for
# age, cholesterol, and log odds
# using default ranges for both
# Plot estimated probadilities instead of log odds:
plot (Predict (fit, num.diseases,
fun=function(x) 1/(1+exp(-x)),
conf.int=.9), ylab="Prob")
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# Function to compute the first k PCs
ipc ¢ function(x, k=1, ...)
princomp (x, ..., cor=TRUE)$scores[,1:k]
# Compute the first 8 PCs on raw variables then on
# transformed ones
pc8 « ipc(~ sz + sg + log(ap) + sbp + dbp + age +
Wt + hg + ekg.morm + pfn + bm + hx + rxn + dtime,
data=psub, k=8)
£8 ¢ lrm(cvd ~ pc8, data=psub)
pc8t ¢« ipc(trans, k=8)
£8t ¢ lrm(cvd ~ pcBt, data=psub)
# Fit binary logistic model on original variables
£ « lrm(cvd ~ sz + sg + log(ap) + sbp + dbp + age +
Wt + hg + ekg + pf + bm + hx + rx + dtime, data=psub)

# Ecpand continuous variables using splines

g  lrm(cva ~ rcs(sz,4) + rcs(sg,4) + res(log(ap),4) +
rcs(sbp,4) + res(dbp,d) + res(age,d) + res(ut,d) +
res(hg,4) + ekg + pf + bm + hx + rx + rcs(dtime,d),
data=psub)

# Fit binary logistic model on individual transformed var.

« 1rm(cvd ~ trans, data=psub)
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= s log(s/n)+ (n - 5)logl(n — 5)/n]
s logs +(n — 5)log(n — ) — n log(n).
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£ « psm(S ~ dzgroup + rcs(age,5) + rcs(meanbp,5),

dist='lognormal ', y=TRUE)
r « resid(f)

survplot (r, dzgroup, label.curve=FALSE)
survplot (r, age, label.curve =FALSE)
survplot (r, meanbp, label.curve=FALSE)

random < runif(length(age)); label(random) +

survplot (r, random, label.curve=FALSE)

# Fig.

'Random Number '

19.4
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} # end over methods
} # end over reps
} # end over p
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= fotPrXas
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logitY = 1|X} = fo +S1X1 + o
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logit(P°) = log[P°/(1 — P°)]
logit(P!) - logit(P°)

log[P!/(1 = P1)] - log[P°/(1 ~ P°)]
log{[P!/(1 = PHI/IFP/(1 = FP))}
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t3
6 Variables 1309 Observations

pelass.
n missing unique
1309 0 3

1st (323, 25%), 2nd (277, 21%), 3rd (709, 54%)

survived ; Survived
n missing unique Info Sum Mean
1309 0 2071 500 0.382

age : Age [years] ol bl

n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95
1046 263 95 12988 5 14 21 28 39 50 57

0.1667 0.3333 0.4167 0.6667 0.7500
70.5000 71.0000 740000 76.0000 80.0000

N

sex
n missing unique
1309 02

female (466, 36%), male (843, 641)

sibsp : Number of Siblings/Spouses Aboard
n missing unique Info- Mean
1309 0 706704989

0 123
Frequency 891 319 42 20 2;
% 68 24 3 2

parch : Number of Parents/Children Aboard
13 missing uniqug Info Mean

1309 80.55 0.385

0 1 234569
Frequency 1002 170 113 8 6 6 2 2
% 77 13 910000
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support « tramsform (support ,
totcst = ifelse(is.na(totest),
(expression_in_charges), totcst))
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£.approx$var ¢ v
latex (anova (f.approx, test='Chisq', ss=FALSE), file='',
label='tab: support-anovaa ')
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cox + cph(Surv(d.time, cdeath) ~ lvef, iter.max=0)

res + resid(cox)

& ~ loess(res ~ lvef)

plot(g, coverage=0.95, confidence=7, xlab="LVEF",

ylab="Martingale Residual®)

& « ols(res ~ res(lvef,s))

plot(g, lvef=NA, add=T, lty=2)

lines(lowess (lvef, res, iter=0), lty=3)

legend (.3, 1.15, c("loess Fit and 0.95 Confidence Bars",
“ols Splime Fit and 0.95 Confidence Limits",
“"lowess Smoother®), 1ty=1:3, bty="n")
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v 4 varclus(~ wt + ht + bmi + leg + arml + armc + waist +
tri + sub + age + sex + re, data=w)
plot (v)
# Omit wt so it won't be removed before bmi
redun(~ ht + bmi + leg + arml + armc + waist + tri + sub,
data=u, r2=.75)

Redundancy Analysis

redun(formula = ~ht + bmi + leg + arml + armc + waist + tri +
sub, data = w, r2 = 0.75)

n: 3883 pi 8 3

Number of NAs: 776
Frequencies of Missing Values Due to Each Variable
Bt bmi  leg arml armc waist tri  sub
0 0 155 127 130 164 334 655

Transformation of target variables forced to be linear

R cutotf: 0.75 Type: ordinary

R? uith vhich each variable can be predicted from all other variable

Bt bmi  leg arml armc waist tri  sub
0.829 0.924 0.682 0.748 0.843 0.364 0.531 0.594

Rendundant variabl

bai bt
Predicted from variables:
leg aral armc waist tri sub

Variable Deleted R’ R? after later deletions

1 bmi 0.924 0.909
2 ht 0.792





OEBPS/A69956_2_En_8_Fige_HTML.gif
# Allow only 1 d.f. for three of the predictors
prostate
transforn (prostate,
ekg.norn = 1+(ekg %in% c(*normal”,"benign")),
rxn = as.numeric (rx),
pfn = as.numeric (pt))
# Force pfn, ran to be linear because of difficulty of placing
# knots with so many ties in the data
# Note: all incomplete cases are deleted (inefficient)
redun(~ stage + I(rxm) + age + wt + I(pfn) + hr +
sbp + dbp + ekg.morm + hg + sz + sg + ap + bm,
r2=.3, type='adjusted', data=prostate)
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[c] = 1 if subject is in group ¢, 0 otherwise; (x)+ = xif x>0, 0
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£1 « lrm(survived ~ sexspclassercs(age,5) +
rcs(age,5)*(sibsp + parch), data=td)  # Table 12.1
latex (anova(f1), file='', label='titanic-anova3'
size='small ')
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a « areglmpute(~ gh + wt + ht + bmi + leg + arml + armc + waist +
©tri+ sub + age +re, data=, n.impute=s, preFALSE)
& « fit.mult.impute(gh ~ rcs(age,5) + re + rcs(leg,3) +
res(uaist,d) + tri + res(sub,d),
ors, a, family=loglog, data=v, pr=FALSE)

print (g, latex=TRUE, needspace='1.5in’)
-log-log Ordinal Regression Model
fit.mult.impute(formula = gh ~ rcs(age, 5) + re + rcs(leg, 3)

+ res(waist, 4) + tri + rcs(sub, 4), fitter = orm,
xtrans = a, data = w, pr = FALSE, family = loglog)

Model Likelihood Discrimination  |Rank Discrim|
Ratio Test Indexes Indexes
Obs  4620|LR \?  1448.42[R 0.269[p 0.513]
Unique ¥ 63|d.f. 17lg 0.743
Yo5 5.5(Pr(> x?) < 0.0001|¢ 2.102
nmx\"—[ﬁi\ Score y*  1569.21 0.173
1x107°  |Pr(> x?) < 0.0001

Cocl _S.B._Wald Z Pr(> |Z])
00401 0.0055  7.29 < 0.0001
0.0228 0.0279  -0.82  0.4137
00126 0.0876  0.14  0.8857
0.0424 0.1148 0.37 0.7116
00766 0.0597 128 0.1902
-0.4121 0.0449  -9.17 < 0.0001
0.0645 0.0566 114
re=Other Race Including Multi-Racial -0.0555 0.0750 -0.74 0.4593
leg -0.0339 0.0091 0.0002
leg’ 0.0153 0.0105 146 0.1434
0.0073 0.0050 147 0.
0.0304 0.0158 1.93 0.0536
-0.0910 0.0508 -1.79 0.0732
-0.0163 0.0026 -6.28 < 0.0001
<0.0027 0.0097 -0.28  0.7817
00674 0.0280 233 0.0198
-0.1895 0.0922  -2.06 0.0398
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set.seed(1) # so can reproduce results
v + validate(f, B=300)
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ac « support [acute,]

ac$dzgroup ¢ ac$dzgroup[drop=TRUE]  # Remove unused levels

label (ac$dzgroup) ¢ 'Disease Group'

attach (ac)

ve ¢ varclus(~ age + sex + dzgroup + mum.co + edu + income +
scoma + race + meambp + wblc + hrt + resp +
temp + pafi + alb + bili + crea + sod + ph +
glucose + bun + urime + adlsc, sim='hoeffding')

plot (ve) # Figure 19.2
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n ¢ nomogram(a, age=c(seq(20, 80, by=10), 85))
plot(n, cex.axis=.55, cex.var=.8, lmgp=.25) # Figure (7.8)
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ve « varclus(~ stage + rxn + age + Wt + pfn + hx +
sbp + dbp + ekg.norm + hg + sz + sg + ap + bm,
sim='hoeffding', data=prostate)

plot(ve)  # Figure 8.2
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M Mean(g)
qu + Quantile(g)

med « function(1p) qu(.5, 1p)

990 + function(1p) qu(.9, 1p)

1p + predict(g)

1pr ¢ quantile(predict(g), c(.002, .998), na.rm=TRUE)
1ps ¢ seq(lprl1], lpr[2], length=200)

pun « M(1ps)

pue + med(lps)

P90« q90(1ps)

plot(pmn, pme, # Figure 15.13
xlab=expression (paste ('Predicted Mean ', HbA["1c"1)),
ylab='Median and 0.9 Quantile', type='l',
xlim=c(4.75, 8.0), ylim=c(4.75, 8.0), bty='n'

box (col=gray (.8))

lines(pun, po0, col='blue')

abline (a=0, b=1, col=gray(.8))

text (6.5, 5.5, 'Median')

text (5.5, 6.3, '0.9', col='blue')

nint « 350

scat1d (M(lp),  mint=nint)

scat1d (med(1p), side=2, mint=nint)

scat1d (q90(1p), side=4, col='blue', nint=nint)
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# Get predicted values for certain types of passengers
s ¢ summary(f.mi, age=c(1,30), sibsp=0:1)
# override default ranges for 3 variables
plot (s, log=TRUE, main='') # Figure 12.12
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units(y) ¢ "Year"
£ « mpsurv(Surv(y, stat) ~ treatment)
survplot (f, ylab="Fraction Pain-Free")
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Z « predict(f)  # Xsbeta hat

a ¢ ols(Z ~ rcs(age,5)+sex+dzgroup+nun.co+
scoma+pol (adlsc ,2)+race2+
rcs (meanbp ,5)+rcs (hrt ,3)+res (resp,3)+
temp+rcs (crea,d)+sod+rcs (wblc.i,3)+
res(pati.i,4), sigma=i)

# sigma=1 is used to prevent sigma hat from being zero when

# R2=1.0 since we start out by approzimating Z with all

# component variables

fastbu (a, aics=10000)  # fast backuard stepdown

Deleted Chi-Sq d.f. P Residual d.f. P Aac 2
sod 0.431  0.512  0.43 1  0.5117  -1.57 1.000
sex 0571 0.451 1.0 2 0.6073 -3.00 0.999
temp 2.201 0,138 3.20 3 0.3621  -2.80 0.998
race2  6.81 1  0.009 10.01 4 0.0402  2.01 0.994
wblc.i 29,52 2  0.000 39.53 6 0.0000 27.53 0.976
num.co 30,84 1  0.000 70,36 7 0.0000 56.36 0.957
resp  54.18 2 0.000 124.55 9 0.0000 106.55 0.924
adlsc  §2.46 2 0.000 177.00 11  0.0000 155.00 0.892
pafi.i 66.78 3  0.000 243.79 13 0.0000 215.79 0.851
scoma  78.07 1  0.000 321.86 15 0.0000 291.86 0.803
bre 83117 2 0.000 405.02 17  0.0000 371.02 0.752
age 68.08 4 0,000 473.10 21  0.0000 431.10 0.710
crea  314.47 3 0.000 787.57 24  0.0000 739.57 0.517
meanbp 403.04 4  0.000 1190.61 28  0.0000 1134.61 0.270
dzgroup 441.28 2 0.000 1631.89 30  0.0000 1571.89 0.000

Approximate Estimates after Deleting Factors

Coof  S.E. Wald Z P
[1,) -0.5928 0.04315 -13.74 0

Factors in Fimal Model

None

f.approx ¢ ols(Z ~ dzgroup + rcs(meanbp,5) + rcs(crea,d) +
rcs(age,5) + rcs(hrt,3) + scoma +
res(pati.i,4) + pol(adlsc,2)+
rcs(resp,3), x=TRUE)

£.approx$stats

o Model L.R. 4.t R2 i Sigaa
537.000  1688.226  23.000 0.957 1,915 0.370
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£ « orm(gh ~ rcs(age,6), family=probit, data=w)

g « ols(gh ~ rcs(age,6), data=w)

s « gstats['Signa'l

yu « fSyuniquel-1]

© « quantile(u$gh, c(.005, .995))

alphas ¢ coef(f)[1:mum.intercepts(f)]

plot(-yu / s, alphas, type='l', xlim=rev(- r / s), # Fig. 15.5
xlab=expression (-y/hat (signa)), ylab=expression (alphalyl))
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# Figure 10.12
bplot (Predict(f, cholesterol, age, mp=40), perim=perim,
1fun-wireframe, zlim=z1, adj.subtitle=FALSE)
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f « lrm(sigdz ~ rcs(age,4)*sex + rcs(cholesterol,4) +
age %ia% cholesterol, data=acath)
latex(anova(f), caption='Linear imteraction surface', file='',
size='smaller', label='tab:anova-lia') #Table 10.9
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nom « nomogram(fred, ap=c(.1, .5, 1, 5, 10, 50),
fun=plogis, funlabel="Probability",
fun.at=c(.01,.05,.1,.25,.5,.75,.9,.95,.99))

45)  # Figure 11.4

plot (nom, xfra
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u  cr.setup(Y)
attach (mydata [u$subs,])

Y=original ordinal response
mydata is the original dataset
mydatali,] subscripts input data,
using duplicate values of i for
repeats

y « usy constructed binary responses
cohort ¢ u$cohort cohort or risk set categories

£ + lrm(y ~ cohort+age + sex)

M w ok w
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T ¢ resid(fl, 'cens')
survplot (npsurv (r ~ group, data=kprats),

conf='nome ', xlab='Residual’,

label.curves=1ist (keys='lines'), levels.only=TRUE)
survplot (npsurv(r ~ 1), conf='none', add=TRUE, col='red')

lines(r, lwd=1, col='blue') # Figure 18.11
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¥yl « c(-3, 1)  # put all plots on common y-azis scale

Plot predictors that interact with another predictor
Vary ageg over all age groups, them vary temp over its
default range (10th smallest to 10th largest values in
data). Make a separate plot for each 'cohort'
ref.zero centers effects using median

® R R R R

44« datadist(Sc.expanded); dd ¢ datadist(dd, cohort)
options (datadist='dd')

Pl ¢ Predict(full.pen, temp, ageg, cohort,
ref.zero=TRUE, conf.int=FALSE)
p2 ¢ Predict(full.pen, rr, ageg, cohort,
ref.zero=TRUE, conf.int=FALSE)
p « rbind(temp=pi, rr=p2) # Figure 14.7:
source (paste('http://biostat.mc.vanderbilt.edu/wiki/pub/Main',
'RConfiguration/graphicsSet.r', sep='/'))
ggplot (p, ~ cohort, groups='ageg', varypred=TRUE,
ylim=yl, layout=c(2, 1), legend.position=c(.85,.8),
addlayer=1theme (width=3, height=3, text=2.5, title=2.5),
adj.subtitle=FALSE)  # Ltheme defined with source()
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dz ¢ subset (acath, sigdz
dd + datadist(dz)

£ ¢ lrm(tvdlm ~ rcs(cad.dur, 5), data=dz)
% « function(...)
with(dz, {
plsmo(cad.dur, tvdlm, fun=qlogis, add=TRUE,
grid=TRUE, lty='dotted')
x ¢ cut2(cad.dur, g=15, levels.mean=TRUE)
prop + qlogis (tapply (tvdlm, x, mean, na.rm
xm ¢ as.numeric (names (prop))
lpoints(xm, prop, pch=2, col='green')
} ) # Figure 10.7
plot (Predict (f, cad.dur), addpamel=w)
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sex=F

age response

Frequency

Row Pct. o 1 Total

<5 4 0 4
100.0 0.0

45-54 4 1 E
8.0 20.0

55+ 6 5 11
54.6  45.4

Total 14 6 20

sex=

age response

Frequency

Row Pct 0 1 Total

<as 4 5 9
4.4 55.6

45-54 2 5 7
8.6  71.4

55+ o 4 4
0.0 100.0

Total 6 14 20
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units (d.time) « "Year"

£ ¢ psm(Surv(d.time,cdeath) ~ lsp(age,65) *sex)
# default is Weidull

anova (£)
summary (£) # summarize effects with delta log T
latex (1) # typeset math. form of fitted model

survest(f, times=1) # 1y survival est. for all subjects
survest(f, expand.grid(sex="female", age=30:80), times=1:2)
# 1y, 2y survival estimates vs. age, for females
survest (f, data.frame(sex="female",age=50))
# survival curve for an individual subject
survplot (f, sex=NA, age=50, n.risk=T)
# survival curves for each sez, adjusting age to 50
t.ph « pphsu(f)  # convert from AFT to PH
summary (£.ph) # summarize with hazard ratios
# instead of changes in log(T)
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both$resid « r « resid(a); both$fitted « fitted(a)

e
P«

P2 «
p3

pa

ylab('Residuals ')

ggplot (both, aes(x=fitted, y=resid)) + geom_point () +
facet_grid (~ treat) + yl

ggplot (both, aes(x=twstrs0, y=resid)) + geom_point O+yl
g8plot (both, aes(x=week, y=resid)) + yl + ylin(-20,20) +
stat_summary(fun.data="nean_sdl”, geom='smooth')

geplot (both, aes(sample=resid)) + stat_qq() +
geon_abline (intercept=mean(r), slope=sd(r)) + yl

gridExtra:igrid.arrange(pi, p2, p3, pd, ncol=2) # Figure (7.4)
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theme (axi
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# Figure 8.3
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£ ¢ ols(gh ~ rcs(age,5) + sex + re + rcs(bmi, 3), data=w)
pgh « fitted ()

p « function(fun, row, col) {
£ « substitute(fun); g « function(F) eval(f)
z « Ecdf(~ gh, groups=cut2(pgh, g=6),
fun=function (F) g(1 - F),
ylab=as.expression(f), xlin=c(4.5, 7.75), data=w,
label.curve =FALSE)
print(z, split=c(col, row, 2, 2), more=row < 2 | col < 2)

3
P(log(F/(1-F)), 1, 1)
p(quora (F), 1, 2

P(-log(-log(F)), 2, 1)
p(log(-log(1-F)), 2, 2)
# Get slopes of pgh for some cutoffs of ¥
# Use gim complementary log-log link on Prob (Y < cutoff) to
# get log-log link on Prob(Y > cutoff)
T« NULL
for(link in c('logit', 'probit ', 'cloglog'))
for(k in c(5, 5.5, 6)) €
co « coef(gln(gh < k ~ pgh, data=w, family=binomial (1ink)))
r ¢ rbind(r, data.frame (Link=link, cutoff=k,
slope=round(col2],2)))
¥
print (r, rov.names=FALSE)

link cutoff slope

logit 5.0 -3.39
logit 6.5 -4.33
logit 6.0 -5.62
probit 5.0 -1.69
probit 5.5 -2.61
probit 6.0 -3.07

cloglog 5.0 -3.18

Cloglog 5.5 -2.97

cloglog 6.0 -2.51
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1 if treatment s A, 0 otherwise, and
1 if treatment s B, 0 otherwise.
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require (nlme)

cpe list(corCARL,corExp ,corCompSyan ,corLin , corGaus , corSpher)
z ¢+ vector('list',length(cp))
for(k in 1:length(cp)) {
2[[k]] ¢ gls(tustrs ~ treat * rcs(week, 3) +
res(twstrs0, 3) + rcs(age, 4) * sex, data=both,
correlation=cpl(k]](forn = ~ueek | uid))

anova (z[[1]1,2[[2]],2((3]1],2[(41],2[(51],2[(61])

Model ar atc BIC  loglik
20011 120 3553.906 3638.357 -1756.953
2(02]] 2 20 3553.906 3638.357 -1756.953
2[031] 3 20 3587.974 3672.426 -1773.987
2((4]] 420 3575.079 3659.531 -1767.540
2(061] 5 20 3621.081 3705.532 -1790.540
210611 6 20 3570.958 3655.409 -1765.479
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full.pen
update (full ,
penalty=list(simple=.05, interaction=125))
print (full.pen, latex=TRUE, coefs=FALSE)
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latex(a, file

'',label='tab:support-anovat ') # Table 19.1

plot (a) # Figure 19.9 ]

options (digits=3)
plot (summary(f), log=TRUE, main

# Figure 19.10
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set.seed (17) # so can reproduce random aspects
mi ¢ areglmpute(~ age + sex + pclass +

sibsp + parch + survived,

data=t3, n.impute=20, nk=4, pr=FALSE)

Multiple Imputation using Bootstrap and PMM

areglapute(foraula = ~age + sex + pclass + sibsp + parch + survived,
data = 3, n.impute = 20, mk = 4, pr = FALSE)

n: 1309 p: 6 Imputations: 20 ks 4

Number of NAs:

age sex sibsp  parch survived

263 o 3 o o
type d.1.
age P
sex P
pelass < 2
sibsp s 2
parch s 2
survived 1 1

Transformation of Target Variables Forced to be Linear

R-squares for Predicting Non-Missing Values for Each Variable
Using Last Isputations of Predictors

age
0.295

# Print the first 10 imputations for the first 10 passengers
# having missing age
mi$inputed$age [1:10, 1:10]

L1) 02) [,3) (4] 08) L6) 07) [e) [,9) [L10)
16 a0 a9 24 29 60.0 58 64 35 50 61
38 33 45 40 49 80.0 2 38 38 36 53
41 29 24 19 31400 60 64 42 30 65
47 40 42 20 48 36.0 46 64 30 38 42
60 52 40 22 31380 22 19 24 40 33
70 16 14 23 23 180 24 19 271 69 23
71 30 62 57 3042.0 31 64 40 40 63
75 43 23 36 61 45.5 58 64 27 26 50
81 44 &7 47 31450 30 64 62 39 67
107 52 18 24 6232.5 38 64 47 19 23

plot (mi)
Ecdf (t3$age, add=TRUE, col='gray', lwd=2,
subtitles=FALSE) #Fig. 12.10
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x1s ¢ seq(0, 5, lemgth=100)

puald « Predict(f, xi=xis)
psand « Predict (robcov (f), xi=xls)
pbootcoy ¢ Predict(b, xi=xis, usebootcoef=FALSE)
pbootnp ¢ Predict(b, xi=xis)
pbootbca « Predict(b, xi=xis, boot.type='bca')
pbootbas ¢ Predict(b, xi=xis, boot.type='basic')
psimult ¢ Predict(b, xi=xis, conf.type='simultaneous')
z « rbind('Boot percentile’ = pbootap,

'Robust sandwich ' = psand,

'Boot BCa' = pbootbea,

'Boot covariance+Wald'= pbootcov ,

Wald pvald,

'Boot basic ' - pbootbas ,

Simultaneous = psimult)

28class « ifelse(z$.set. %in% c('Boot percentile','Boot bca ',
'Boot basic'), 'Other', 'Wald')

ggplot (z, groups=c('.set.', 'class'),
line', ylim=c(-1, 9), legend.label=FALSE)
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vfull ¢ validate(
latex (vfull, digi
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require (rms)
dd ¢+ datadist(my.data)
options (datadist="'dd")
pefit ¢ princomp(~ pain.symptom! + pain.symptom2 + signi +
sign2 + signd + smoking)
pc2 « pefit$scores[,1:2] # first 2 PCs as matriz
logistic.fit + lrm(death ~ rcs(age,d) + pc2)
predicted.logit ¢ predict(logistic.fit)
linear.mod ¢ ols(predicted.logit ~ rcs(age,4) +
pain.symptomi + pain.symptom2 +
signl + sign2 + sign3 + smoking)
# This model will have R-squared=1
nom + nomogram(linear.mod , fun=function(x)1/(1+exp(-x)),
funlabel="Probability of Death")
# can use fun=plogis
plot (nom)
# 7 Ages showing effects of all predictors, plus a reading
# azis comverting to predicted prodability scale
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heart ¢ hx + ekg %nin% c('mormal’, 'benign')
label (heart) ¢ 'Heart Disease Code'

map ¢ (2+dbp + sbp)/3

label(map) ¢ 'Mean Arterial Pressure/10'
dd ¢+ datadist(dd, heart, map)

£ ¢ cph(S ~ rx + rcs(age,4) + rcs(wt,3) + pf.coded +
heart + rcs(map,3) + rcs(hg,4) +
rcs(sg,3) + res(sz,3) + rcs(log(ap),5) + bm,
x=TRUE, y=TRUE, surv=TRUE, time.inc=5+12)
print (f, latex=TRUE, coefs=3)
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support[acute, |
35 Variables 537 Observations

age : Age e it s Sl .
n missing unique Info Mean .05 .10 0 .75 .90 .95
537 0 529 1 60.7 28.49 35.22 47.93 63.67 74.49 81.54 85.56

lowest : 18.04 18.41 19.76 20.30 20.31
highest: 91.62 91.82 91.93 92.74 95.51

death : Death at any time up to NDI date:31DEC94
n missing unique Info Sum_ Mean
537 0 20.67_356 0.6620

n missing unique

537 0 2
female (251, 474), male (286, 53%)

hospdead : Death in Hospital
n missing unique Info Sum Mean
537 0 2 0.7 201 0.3743

slos : Days from Study Entry to Discharge [l
g unique Info Mean .05 .10 .25 .50 .75 .90 .95
0 85 123.4440500.015.027.0 47.4 68.2

3 4 5 6 7, highest: 145 164 202 236 241

Days of Follow-Up [ -

n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95
537 0 340 14461 4 6 16182 724 1421 1742
lowest : 3 4 5 6 T, highest: 1977 1979 1982 2011 2022
dzgroup
1 missing unique
537 o3

ARF/MOSF w/Sepsis (391, 73%), Coma (60, 11%), MOSF w/Malig (86, 16%)

ARF/MOSF (477, 89%), Coma (60, 11%)

num.co : number of comorbidities

0 70.93 1.525

0 1 23456
Frequency 111 196 133 51 31 10 5
% 21 36 25 9 6 21
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A(lX) = A(t)exp(XB)
S(HX) = exp[-A(t)exp(X)] = exp[-A(1)]FH)
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= (6/7)4/6)= 57, 3<1<9
= (6/7X4/6)(1/2)= 29, 9<¢<10
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AHX) = dexpXp)
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= exp(X'p)/ exp(XP) = exp[(X* - X)]





OEBPS/A69956_2_En_17_Chapter_Equ25.gif
1, 1
A= ar+ 37+ x quartic tems int.





OEBPS/A69956_2_En_17_Chapter_Equ24.gif
k=2
Aelt)=a+bt+ Z Yt






OEBPS/A69956_2_En_18_Chapter_Equ17.gif
X, =0) = A
Xy = 1) = o) exp(By)





OEBPS/A69956_2_En_17_Figq_HTML.gif
£ « npsurv(...)
print(f)  # print brief summary of f
summary (f, times, cemsored=FALSE)  # in survival






OEBPS/A69956_2_En_19_Figm_HTML.gif
# Compute number of missing values per variable
sapply (11ist (age ,num.co,scoma ,meanbp ,hrt ,resp, temp,crea,sod ,
adlsc,wblc,pafi,ph), function(x) sum(is.na(x)))

age nus.co scoms mesmbp  hrt resp temp crea  sod adlsc
o o o o o o 3 o o o
wble pati  ph
s s a

# Can also do naplot(naclus(support[acute,]))

# Can also use the Hmisc naclus and naplot functions

# Impute missing values with normal or modal values

wblc.i + impute (wblc, 9)

pafi.i ¢ impute(pafi, 333.3)

ph.i <+ impute(ph,  7.4)

race2 « race

levels (race2) ¢ list(white='white',other=levels (race)[-1])
race2 [is.na(race2)] ¢ 'white'

dd + datadist(dd, wblc.i, pafi.i, ph.i, race2)
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exp[-af exp(XB)]
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set.seed(1)  # so can reproduce results

v ¢ validate(full.pem, B=200, cluster=uSsubs,
subset =cohort=="'all")

latex (v, file='', digits=2, size='smaller')
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# Derive S functions that ezpress mean and quantiles
# of survival time for specific linear predictors

# analytically

expected.surv ¢ Mean(f)
quantile.surv ¢« Quantile(f)
latex (expected.surv, file='', type

‘Sinput ')

expected.surv « function (1p = NULL,
parms = 0.802352037606488)
{
names (parms) ¢ NULL
exp(lp + exp(2 * parms)/2)

latex (quantile.surv, file='', type='Sinput ')

quantile.surv « function (q = 0.5, lp = NULL,
parms = 0.802352037606488)

{
names (parms) ¢ NULL
£ ¢ function(lp, q, parms) lp + exp(parms) * qnorm(q)
names (q) « format (q)
drop (exp (outer (1p, q, FUN = f, parms = parms)))
3

median.surv  « function(x) quantile.surv(lp=x)

# Improve variable labels for the nmomogram
f.approx « Newlabels (f.approx, c('Disease Group',
'Mean Arterial BP','Creatinmine','Age’,'Heart Rate
'SUPPORT Coma Score','Pa02/(.01+Fi02) ', "ADL',
‘Resp. Rate'))

nom
nomogram (f.approx,
pafi.i=c(0, 50, 100, 200, 300, 500, 600, 700, 80O,
900),
fun=1ist('Median Survival Time'=median.surv,
‘Mean Survival Time' =expected.surv),
fun.at=c(.1,.25,.5,1,2,5,10,20,40))
plot(nom, cex.var=i, cex.axis=.75, lmgp=.25)
# Figure 19.12
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+ARIT > ]
+ A5 (2).
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x ¢ with(imputed,
cbind (sz,

sg, ap, sbp, dbp, age, wt, hg, ekg,
bm, hx))

monotonic ¢ c("sz","sg","ap","sbp","dbp","age","pf")

transace (x, monotomic,

# Figure 8.8
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qui.

rms)

n « 200

set.seed (15)

x1 ¢« rnorm(n)

logit « x1/2

y ¢ ifelse(runif(n) < plogis(logit), 1, 0)
dd ¢ datadist(x1); options(datadist='dd')
£ ¢ lrm(y ~ pol(xi,2), x=TRUE, y=TRUE)
print (f, latex=TRUE)
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a ¢ Gls(twstrs ~ treat * rcs(week, 3) + rcs(twstrs0, 3) +
rcs(age, 4) * sex, data=both,
correlation=corCAR1 (form=~week |

uid))
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tn ¢ transform(t3,
agec = ifelse(age < 21, 'child', 'adult'),
sibsp= ifelse(sibsp == 0, 'mo sib/sp', 'sib/sp'),
parch= ifelse(parch == 0, 'mo par/child', 'par/child'))

g ¢ function(y) if(length(y) < 26) NA else mean(y)
s ¢ with(tn, summarize(survived,
1list (agec, sex, pclass, sibsp, parch), g))
# 1list, summarize in Hmisc package
# Figure 12.2:
ggplot (subset (s, agec AT,
aes(x=survived, y=pclass, shape=sex)) +
geom_point () + facet_grid(agec ~ sibsp * parch) +
xlab('Proportion Surviving') + ylab('Passenger Class') +
scale_x_continuous (breaks=c(0, .5, 1))
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£ « lrm(tvdlm ~ logl0(cad.dur + 1), data=dz)
w ¢ function(...)
with(dz, {
x ¢ cut2(cad.dur, m=150, levels.mean=TRUE)
prop ¢ tapply(tvdlm, x, mean, na.rm=TRUE)
xm ¢ as.numeric (names (prop))
lpoints(xm, prop, pch=2, col='green')
I
#  Figure 10.8
plot (Predict (f, cad.dur, fun=plogis), ylab='P',
ylim=c(.2, .8), addpanel=w)
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require (rms)

getidata (sex.age.response)

d « sex.age.response

4d ¢ datadist(d); options(datadist='dd')
£ ¢ lrm(response ~ sex + age, data=d)
fasr  f  # Save for later

¥ « function(...)

with(d, {
m « sex=='male'
£ « sex=='female'

1points (age(f], response (], pch=1)

1points (age [n], response [a), pch=2)

af ¢ cut2(age, c(45,55), levels.mean=TRUE)

prop ¢ tapply(response, list(af, sex), mean,
na.ra=TRUE)

agen ¢ as.numeric (row.names (prop))

1points (agem, propl,'female'l,

pch=4, cex=1.3, col='green')
1points (agen, propl, 'male'l,
pch=5, cex=1.3, col='green')

x ¢ rep(62, 4); y « seq(.25, .1, length=4)
1points (x, y, peh=c(1, 2, 4, 5),
col=rep(c('blue ', 'green'),each=2))
Ltext (x+5, y,
cC'F Observed','M Observed',
'F Proportion '
})  # Figure 10.3

.M Proportion'), cex=.8)

plot(Predict (f, age=seq(34, 70, length=200), sex, fun=plogis),
ylab='Prlresponse] ', ylim=c(-.02, 1.02), addpanel=w)
ltx ¢« function(fit) latex(fit, inline=TRUE, columms=54,
file='', after='s.', digits=3,
Ssize', before='$X\\hat{\\beta}=

siz
1ex(£)
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cr0 « 1lrm(Y==0 ~ age + temp + rr + hrat + waz +
bul.conv + drowsy + agitated + reffort + ausc
feeding + abdominal, data=Sc, x=TRUE, y=TRUE)

# Use the update function to save repeating model right-

# hand side. An indicator variable for Y=1 is the

# response variable below

cri ¢ update(cr0, Y==1 ~ ., subset=Y3>1)

plot.lrm.partial (cr0, cri, center=TRUE) # Figure 14.5
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w$pghg « cut2(pgh, g=6)
f ¢ orn(gh ~ pghg, data=w)

1p « predict (f, newdata=data.frame (pghg=levels (u$pghg)))

ep ¢ ExProb(f) # Ecceedance prob. functn. gemerator in rms
z « eplp)

j ¢ order(uSpghg) # puts in order of lp (levels of pghg)
plot(z, xlim=c(4, 7.5), data=w(j,c('pghg', 'gh')]) # Fig. 15.4
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£ + lrm(tvdlm ~ cad.dur, data=dz, x=TRUE, y=TRUE)
resid (f, "partial®, pl="loess", xlim=c(0,250), ylim=
scat1d (dz§cad.dur)

log.cad.dur + log10(dz$cad.dur + 1)

£ < lrm(tvdlm ~ log.cad.dur, data=dz, x=TRUE, y=TRUE)
resid (f, "partial®, pl="loess", ylim=c(-3,3))

scatid (log.cad.dur)  # Figure 10.16

(-3,3))
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f « orm(gh ~ rcs(age,5) + sex + re + rcs(wt,3) + rcs(leg,3) + arml +
res(arnc,3) + res(waist,4) + tri + rcs(sub,3),
» ®=TRUE, y=TRUE)

prant (s,
-log-log Ordinal Regression Model

orm(formula = gh ~ rcs(age, 5) + sex + re + rcs(ut, 3)
+ rcs(leg, 3) + arnl + res(arme, 3) + res(uaist, 4)
+ tri + res(sub, 3), data = w, x = TRUE, y = TRUE,
family = "loglog")

Frequencies of Missing Values Due to Each Variable

eh
age

0 100 200 300 400 500 600 700

Model Likelihood | Discrimination  |Rank Discrim
Ratio Test Indexes Indexes
Obs 3853|LR x° 1180.13| R’ 0.265(p 0.520]
Unique Y 60|d.1. 2209 0.732]
Yos  5.5|Pr(>x2) < 0.0001g, 2.080)

max | 295L| Score x*  1298.88([Pr(Y > Yo.5)
3x107%  |Pr(> x?) < 0.0001

lan « function(a) latex(a, table.enveFALSE, file='')
lan(anova(f, leg, arml, armc, vaist, tri, sub))

110172
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resid (f1, 'sco
## Figure 1

which=c(17,18,20,21))
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effective.df (full.pen)

Original and Effective Degrees of Freedom

Original Penalized

ALl 87 49.75
Simple Terms 20 19.98
Interaction or Nomlinear 67 20.77
Nonlinear 40 16.82
Interaction 59 22.57
Nonlinear Interaction 32 9.62

## Compute discrimination for ¥=0 vs. ¥>0

perf.pen ¢ perf(full.pen) # Figure 14.6

# Ezclude interactions and cohort effects from plot

plot (anova (full.pen), cex.labels=0.75, rm.ia=TRUE,
rm.other='cohort (Factor+Higher Order Factors)')
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# Draw a nomogram that shows ezamples of confidence intervald

nom ¢ nomogram(f.linia, cholesterol=seq(150, 400, by=50),
interact=1ist (age=seq(30, 70, by=10)),
1p.at=seq(-2, 3.5, by=.5),
conf.int=TRUE, conf.lp="all",
fun=function(x)1/ (1+exp(-x)), # or plogis
funlabel="Probability of CAD",
fun.at=c(seq(.1, .9, by=.1), .95, .99)
) # Figure 10.21

plot (nom, col.grid = gray(c(0.8, 0.95)),

varname.label=FALSE, ia.space=1, xfrac=.46, lmgp=.2)
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latex (anova(f), caption='Linear spline surface', file='',

size='smaller', label='tab:anova-lsp')  # Table 10.6

perim ¢ with(acath,
perimeter (cholesterol , age, xinc=20, n=5))
21 « c(-2, 4)  # Figure 10.11
bplot (Predict(f, cholesterol, age, np=40), perim=perim,
1fun-wireframe, zlim=z1, adj.subtitle=FALSE)
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pf
n missing unique

502 0 4

normal activity (450, 90%), in bed < 50% daytime (37, 7%4)
in bed > 50% daytime (13, 3%), confined to bed (2, O%)

hx : History of Cardiovascular Disease
1 missing unique Info Sum Mean
502 0 2073 21304243

sbp : Systolic Blood Pressure/10
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

502 0 18098 1435 11 12 13 14 16 17 18

8910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 30
Frequency 13 1427 6574 98 7472341712 3 2 3 1 1 1
% 01 3 51315201514 7 3 2 1 0 1 0 0 0

dbp : Diastolic Blood Pressure/10
1 missing unique Info Mean .05 .10 .25 .50 .75 .90 .95
502 0 120958149 6 6 7 8 910 10

45 6 7 8 91011121314 18
Frequency 4 5 43 107 165 94 66 9 5 2 1 1
119

% 21 331913 2 1 0 0 0
ekg

1 missing unique

494 s 7

normal (168, 34%), benign (23, 5%)

rhythnic disturb & electrolyte ch (51, 10%)

heart block or conduction def (26, 5%), heart strain (150, 30%)
old MI (75, 15%), recent MI (1, 0%)

hg : Serum Hemoglobin (g/100ml) T T
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95
502 0 91 1 13.45 10.2 10.7 12.3 13.7 14.7 15.8 16.4

lowest : 5.899 7.000 7.199 7.800 8.199
highest: 17.297 17.500 17.598 18.199 21.199

s: Size of Primary Tumor (cm?) Al
n missing unique Info Mean .05 .10 .25 .50 .75 .90
497 5 55 1 14.63 2.0 3.0 5.0 11.0 21.0 32.0 39.2

lowest : 0 1 2 3 4, highest: 54 55 61 62 69
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f.ia — cph(Srv ~ rcs(age,4) * strat(sex), x=TRUE, y=TRUE,
surv=TRUE)

W ¢ latex(f.ia, inline=TRUE, digits=3)

latex(anova(f.ia), table.env=FALSE, fil
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Sc « transform(Sc,

1+ (ausc == 3),
bul.conv = 1 * (bul.conv 'TRUE '),
abdominal = 1 * (abdominal == 'TRUE'))
plot.xmean.ordinaly (Y ~ age + abs(temp-37) + abs(rr-60) +
abs (hrat-125) + waz + bul.conv + drowsy +
agitated + reffort + ausc + feeding +
abdominal , data=Sc, cr=TRUE,
subn=FALSE, cex.points=.65) # Figure 14.3
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survplot(f, conf.int=FALSE, # Figure 18.10
levels.only=TRUE, label.curves=list(keys='lines'))
survplot (f1, add=TRUE, label.curves=FALSE, conf.int=FALSE)
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baseline ¢ subset (data.frame(cdystonia,uid), week == 0,

-ueek)

baseline ¢« upData(baseline, remame=c(twstrs='twstrs0'),

print=FALSE)

followup ¢ subset (data.frame (cdystonia,uid), week > 0,

rm(uid)
both

da

c(uid, veek, tustrs))
« merge (baseline, followup, by='uid')

+ datadist(both)

options (datadist="'dd')
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# Figure 10.14:
bplot (Predict(f, cholesterol, age, mp=40), perim=perim,
1fun=wireframe, zlim=z1, adj.subtitle=FALSE)
f.linia ¢ f # save linear interaction fit for later

1ex(f)
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getHdata(diabetes)
a ¢ Ecdf(~ log(glyhb), group=frame, fun=qnorm,
xlab='log(HbAlc) ', label.curves=FALSE, data=diabetes,
ylab=expression (paste (Phi’-1, (F[nl(x))))) # Fig. 13.2
b ¢ Ecdf(~ log(glyhb), group=frame, fun=qlogis,
xlab='log(HbAlc) ', label.curves=list (keys='lines'),
data=diabetes, ylab=expression(logit (F[n](x))))
print (a, more=TRUE, split=c(1,1,2,1))
print (b, split=c(2,1,2,1))
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d ¢ options(digits=4)
pentrace (full,
1ist (simple=c(0,.025,.05,.075,.1),
interaction=c(0,10,50,100,125,150)))

Best penmalty:

simple interaction  df
0.05 125 49.75
simple interaction  df aic bic aic.c
0.000 0 87.00 1650 1074 1648
0.000 10 60.63 1671 1269 1669
0.025 10 60.11 1672 1274 1670
0.050 10 59.80 1672 1276 1670
0.075 10 59.58 1671 1277 1670
0.100 10 59.42 1671 1278 1670
0.000 50 54.64 1671 1309 1670
0.025 50 54.14 1672 1313 1671
0.050 50 53.83 1672 1316 1671
0.075 50 53.62 1672 1317 1671
0.100 50 53.46 1672 1318 1671
0.000 100 51.61 1672 1330 1671
0.025 100 51.11 1673 1334 1672
0.050 100 50.81 1673 1336 1672
0.075 100 50.60 1672 1337 1671
0.100 100 50.44 1672 1338 1671
0.000 125 50.55 1672 1337 1671
0.025 125 50.05 1673 1341 1672
0.050 125 49.75 1673 1343 1672
0.075 125 49.54 1672 1344 1672
0.100 125 49.39 1672 1345 1671
0.000 150 49.65 1672 1343 1671
0.025 150 49.15 1672 1347 1672
0.050 150 48.85 1673 1349 1672
0.075 150 48.64 1672 1350 1671
0.100 150 48.49 1672 1351 1671

options ()
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getHdata (kprats)
kprats$group < factor (kprats$group, 0:1, c('Group 1', 'Group 2'))
dd + datadist (kprats); options(datadist="dd")

S « with(kprats, Surv(t, death))
£ + mpsurv(S ~ group, type="fleming", data=kprats)
survplot (f, n.risk=TRUE, conf='mone', # Figure 18.9
label.curves=1ist(keys='lines'), levels.only=TRUE)
title(sub="Nonparametric estimates", adj=0, cex=.7)

# Check fits of Weibull, log-logistic, log-normal
X1« c(4.8, 5.9)
survplot (f, loglog=TRUE, logt=TRUE, conf="mone", xli
label.curves=1ist (keys='lines'), levels.onl:
title(sub="Weibull (extreme value)", adj=0, cex=.7)
survplot (£, fun=function(y)log(y/(1-y)), ylab="logit S(t)",
10gt=TRUE, conf="nome", xlim=xl,
label.curves=1ist(keys='lines'), levels.only=TRUE)
title(sub="Log-logistic", adj=0, cex=.7)
survplot (f, fun=quorm, ylab="Inverse Normal S(t)",
1ogt=TRUE, conf="none",
xlim=xl,cex.label=.7,
label.curves=1ist (keys='lines'), levels.only=TRUE)
Log-normal”, adj=0, cex=.7)

title (sut
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lot(pi, 8)  # S was Surv(dm
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ToslX = exp(XB)
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latex (anova(f), caption='Cubic spline surface', file='',
size='smaller', label='tab:anova-rcs') #Table 10.6
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n « 200

P« 20

set.seed (6)

xx ¢ matrix(rmorm(n * p), nrow=n, ncol=p)
y « runif(n)

units(y) « "Year"

e« clrep(0, n / 2), rep(i, n / 2))
£« cph(Surv(y, e) ~ xx, x=TRUE, y=TRUE,
time.inc=.5, surv=TRUE)

cal « calibrate(f, u=.5, B=200)

Using Cox survival ostimates at 0.5 Years

plot(cal, ylim=c(.4, 1), subtitles=FALSE)
calkm « calibrate(f, u=.5, m=40, cmethod='KN', B=200)

Using Cox survival estimates at 0.5 Years

plot(calkn, add=TRUE)  # Figure 20.11
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Estimates after

S.E. Wald Z P
[1,] 1.617 0.01482

Factors in Final
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options (w)

Model

109.1 0
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# 1010 causes all variables to eventually be
# deleted so can see most important ones in order

AlC

113
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“1451

—385
6.05
17.26
38.74
70.14
119.67
181.33
263.49
371.35
659.01
1021.87
1469.70

2204.90
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R:

000
000
000
000
999
997
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948
011
566
510
717
182
000

# Fit an approzimation to the full penalized model using

# most

full.approx
ols(plogit ~ rcs(temp,5) + agegrcs(rr,5) +
rcs(vaz,4) + bul.conv + drowsy + reffort +

ausc + feeding,

important variables

subset=cohort=="'all', data=Sc.expanded)
p ¢ predict(full.approx)

abserr + mean(abs(p - plogit [cohort
Dxy  somers2(p, ylcohort ==

'all'l))
'all'])['bxy ']
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# First add data to model fit so bootstrap can re-sample
# from the data

g « update (f, x=TRUE, y=TRUE)

set.seed (717)

latex (validate(g, B=300), digits=2, size='Ssize')
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# Again, if mo datadist were defined, would have to tell

# plot all limits

logit + predict(fit, expand.grid(treat="b",num.dis=1:3,
age=c(20,40,60) ,
cholesterol=seq (100,300, length=10)))

# Could obtain list of predictor settings interactively

logit ¢ predict(fit, gendata(fit, mobs=12))

An easier approach is

# Predict(fit, treat='b',num.dis=1:3,...)

# Since age doesn't interact with anything, we can quickly

# and interactively try various transformations of age,

#

#

=

taking the spline function of age as the gold standard.
We are seeking a linearizing transformation.
ag + 10:80
logit + predict(fit, expand.grid(treat="a", num.dis=0,
age=ag,
cholesterol=median (cholesterol)),
type="terns")[,"age"]
Note: if age interacted with anything, this would be the
age “main effect' ignoring interaction terms
Could also use logit « Predict(f, age=ag, ...)$yhat,
which allows evaluation of the shape for any level of
interacting factors. When age does not interact with
anything, the result from predict(f, ..., type="terms")
would equal the result from Predict if all other terms
were ignored

B R R R R R W

Could also specify:
logit « predict(fit,

gendata(fit, age=ag, cholestero
Unmentioned variables are set to referemce values

)

®woww

plot(ag'.5, logit)  # try square root vs. spline transform.
plot (ag'1.5, logit) # try 1.5 power

# Pretty printing of table of estimates and
# summary statistics:

print (fit, latex=TRUE) # print HEX code to console

latex (£it) # invokes latez.lrm, creates fit.tez
# Draw a nomogram for the model fit

plot (nomogran (£it))

# Compose R function to evaluate linear predictors
# analytically

g ¢ Function(fit)

g(treat='b', cholesterol=260, age=50)

# Letting num.diseases default to reference value
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age response

Frequency
Row Pet 0 1 Total  0dds/Log
<a5 8 5 13 5/8=.625

61.5  38.4 -.a1
45-54 6 6 12 6/6=1

50.0  50.0 o
55+ 6 9 15 9/6=1.5

0.0 60.0 .405
Total 20 20 0

55+ : <45 odds ratio = (9/6)/(5/8) = 2.4, log=.875

Parameter Estimate Std Err Wald x* P

Bo ~2.7338 1.8375
B 0.0540 0.0358
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require (Hmisc)

x < rcspline.eval(seq(0,1,.01),
knots=seq(.05,.95,length=5), inclx=T
xm  x
xnlxm > .0106] « NA
matplot (x[,1], xm, type="1", ylim=c(0,.01)
xlab=expression (X), ylab='', lty=1)
matplot (x[,1], x, type="1",
xlab=expression (X), ylab='', lty=1)
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ggplot (Predict (£, ref.zero=TRUE), vmames='names',
sepdiscrete='vertical', anova=a) # Figure 19.8
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require (rpart)

£ ¢ rpart(is.na(cholesterol) ~ age +
plot (£) # plots the tree

text (£) # labels the tree

x + trig + smoking)
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# Impute all missing values in all variables given to transcam
imputed « impute(ptrans, data=prostate, list.out=TRUE)

Inputed missing values uith the following frequenci
and stored them in variables with their original nam

sz sg age wt ekg
5 11 1 2 8

inputed ¢ as.data.frame (imputed)

# Compute principal components on imputed data.

# Create o design matriz from ekg categories

Ekg ¢ model.matrix(~ ekg, data=imputed)[, -1]

# Use correlation matriz

pfn « prostate$pfn

prin.raw ¢ princomp(~ sz + sg + ap + sbp + dbp + age +
wt + hg + Ekg + pfn + bm + hx,
cor=TRUE, data=imputed)

plot (prin.raw, type='lines', main='', ylim=c(0,3))#Figure 77

# Add cumulative fraction of variance ezplained

addscree ¢ function(x, mpcs=min(10, length(x$sdev)),
Pplotv=FALSE ,
col=1, offset=.8

2dj=0, pr=FALSE) {

vars « x$sdev’2
cumv ¢+ cumsum (vars)/sun(vars)
if (pr) print (cumv)
text (1:mpes, vars[i:mpes] + offsetspar('cxy')[2],
as.character (round (cumv [1:npcs], 2)),
srt=45, adj=adj, cex=.65, xpd=NA, col=col)
if (plotv) linmes(1:npes, vars[i:mpes], type='b', col=col)
3
addscree (prin.raw)
prin.trans ¢ princomp(ptrans$transformed, cor=TRUE)
addscree (prin.trans, npcs=10, plotv=TRUE, col='red',
offset=-.8, adj=1)
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meanbp : Mean Arterial Blood Pressure Day 3 oY T

Towest 0 2 21 3 32, bgheses 165 150 161 162 100

wble : White Blood Coll Count Day 3 [ —
Mg S 0.0 or e 19,9902 1000000
hrt : Heart Rate Day 3 vl

» missing uniaue Info M

Towes 0 1 30 3 4o, bgheses 169 133 199 22 300

resp : Respiration Rate Day 3 it

bighet: 18 49 52 0 68

temp : Temperature (celcius) Day 3 e il ol

pafi : PaO2/(.01*FiO2) Day 3 T[T T T—
 miming wnique Info Mean 05 10 26 50 7% o0 5

Mighase 674,00 59,12 6400 620,00 8,30

alb : Serum Albumin Day 3 Sl

bill : Bilirubin Day 3 h... -

Dighao 72,5076 39.00000 31 50000 5.00000 39 20698

crea : Serum creatinine Day 3 ... S
g e ot st Cos a0z o o o

Lowet 0.3 0.4 0.5 0.6 0.7, bighests 10.4 106 112 1
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£ « lrm(death ~ rcs(age,5)*treatment + lsp(sbp,c(120,140)),
x=TRUE, y=TRUE)
plot (pentrace (£,

penalty=1ist (nonlinear=seq(.25,10,by=.25)))
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Xp = —0.68
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f.noia + cph(Srv ~ rcs(age,4) + strat(sex), x=TRUE, y=TRUE)
# Get accurate C.L. for any age by specifying z=TRUE y=TRUE
# Note: for evaluating shape of regression, we would not
# ordinarily bother to get 3-year survival probabilities -
# would just use X * beta

# We do so here to use same scale as nonparametric estimates
w + latex(f.noia, inline=TRUE, digits=3)
latex(anova(f.noia), table.env=FALSE, file='')
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set.seed (123)

n + 50

y ¢+ runif (20%n)

group ¢ rep(1:20,each=n)

ybar + tapply(y, group, mean)

ybar « sort (ybar)

plot (1:20, ybar, type='n', axes=FALSE,
xlab="'Group', ylab='Group Mean')

lines(1:20, ybar)

points (1:20, ybar, pch=20, cex=.5)

axis (2)

axis(1, a

for(j in 1

abline (h=.5, col=gray(.85))

:20, labels=FALSE)

ylin=c(.3,.

0) axis(1, at=j, labels=names (ybar)[j])

7,
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shortest.follow.up « min(d.time [death==0], na.rm=TRUE)
d.timet + pmin(d.time, shortest.follow.up)

W ¢ spearman2(d.timet ~ age + num.co + scoma + meanbp +
hrt + resp + temp + crea + sod + adlsc +
wblc + pafi + ph + dzgroup + race, p=2)

plot (v, main='') # Figure 19.5
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require (rms)
set.seed (1) # so can reproduce results

n o« 200 # Size of training sample
reps ¢ 200 # Simulations
npop « 50000 # Size of validation gold standard sample

methods ¢ c('Boot 40','Boot 200','632a 40','632a 200",
'632b 40", '632b 200','10-fold x 4','4-fold x 10,
'10-fold x 20','4-fold x 50')
R ¢ expand.grid(sim = 1:reps,
» ©(15,30),
method = methods)
R§Dxy ¢ R$Intercept ¢ R$Slope « RSD « RSU « R$Q «
R$repmeth ¢ RSB ¢ NA
R$n « n

## Function to do r overall reps of B resamples, averaging ta
## get estimates similar to as if r+B resamples were done

val « function(fit, method, B, r) {
contains « function(m) lemgth(grep(m, method)) > 0
meth ¢ if(contains('Boot')) 'boot' else
if (contains('fold')) 'crossvalidation' else
if (contains('632')) '.632'
z 0
for(i in 1:ir) z  z + validate(fit, method=meth, B=B)[
c("Dxy","Intercept”,"Slope”,"D","U","Q"),
'index.corrected ']
z/r
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logit(y =
gitlY = X} = fo+fiXi+ ...+,
Zin X+ B
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response
dd « datadist(d); optioms(datadis
£ < lrm(response ~ sex + age, data=
set.seed(3) # for reproducidility
vi + validate(f, B=150)

ad’)
. x=TRUE, y=TRUE)

latex (vi,
caption='Bootstrap Validation, 2 Predictors Without
Stepdoun', digits=2, size='Ssize', file='')
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B=200) # Figure 12.7

cal « calibrate(f,
ALSE)

plot (cal, subtitle

8=1046  Mean absolute error=0.000 Mean squared error=0.00012
0.9 Quantile of absolute error=0.017





OEBPS/A69956_2_En_20_Chapter_IEq1.gif
exp(Xp)





OEBPS/A69956_2_En_6_Figb_HTML.gif
y ~ age + sex # age + sex main effects
¥ ~ age + sex + ag # add second-order interaction
y ~ agessex # second-order interaction +

# all main effects
y ~ (age + sex + pressure)’2
# age+sez+pressuretage:seztage:pressure

y ~ (age + sex + pressure)”2 - sex:pressure

# all main effects and all 2nd order

# interactions ezcept sez:pressure
y ~ (age + race)*sex # agetrace+sez+age:sez+race:ses
y ~ treatmentx(agetrace + age+sex)

# no interact. with race,sez
sart(y) ~ sex+sqrt(age) + race
# functions, with dummy variables gemerated if
# race is an R factor (classification) variable
y ~ sex + poly(age,2)# poly makes orthogonal polynomials
race.sex ¢ inmteraction(race,sex)
y ~ age + race.sex # if desire dummy variables for all
# combinations of the factors
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1-P =exp(—x)/[1 +exp(-x)]
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x = log[P/(1 — P)] = log[ odds that ¥ = 1 occurs]
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logit[y = 1|X} = logit(P) = log[P/(1 - P)]
= XB,
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E{Y|X} = XB,
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ProblY = 11X} = [1 +exp(-Xp)]™"
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exp(X;f) = exp(X;) = 1
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for(i in 1:4)
plsmo(age, sfdm > i, add=
ylin=c(.2,.8),
for(i in 1:4)
plsmo(age, sfdm > i, add=i>1, fun=qlogis,
ylin=qlogis (c(.2,.8)), ylab='logit')

>,
Proportion Y>3
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newdat ¢ expand.grid(x2=seq(.05, .95, length=200),
x3=c('a’,'b','c"), x1=.5,
statistic=c('median’, 'mean’'))
yhat ¢ c(predict(f, subset(newdat, statistic=='median'),
statistic='median'),
predict(f, subset (newdat, statistic=='mean'),
statistic='mean'))

newdat
upData (newdat ,
1p = x1 + 2%abs(x2 - .5) + .3%(x3==
Ba(x3=="c"),
ytrue = ifelse(statistic=='median’, exp(1p),
exp(1p + 0.5%(0.5"2))), pr=FALSE)

b+

Input object size: 45472 bytes; 4 variables
Added variable 1

Added variable ytrue

Added variable P

New object size: 69800 bytes; 7 variables

# Use Hmisc function a¥plot to produce Figure 16.3
xYplot (yhat ~ x2 | statistic, groups=x3,
data=newdat, type='l', col=1,
ylab=expression (hat (y)),
panel=function(...) {
panel.x¥plot (...)
dat + subset (newdat,
statistic==c('median', 'mean') [current.column ()])
for(w in c('a','b','c")
with (subset (dat, x3==w),
1lines (x2, ytrue, col=gray(.7), lwd=1.5))
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gethdata (acath)

acath$sex « factor (acath$sex, 0:1, c('male’,'female'))
dd ¢ datadist(acath); optionms(datadist='dd')

£ ¢ lrm(sigdz ~ rcs(age, 4) * sex, data=acath)

w + function(
with(acath, {
plsmo(age, sigdz, group=sex, fun=qlogis, lty='dotted',
add=TRUE, grid=TRUE)
af ¢ cut2(age, g=10, levels.mean=TRUE)
prop ¢ qlogis(tapply(sigdz, list(af, sex), mean,
na.rm=TRUE))
agem ¢ as.numeric(row.names (prop))
1points(agem, propl, 'female'l, pch=4, col='green')
1points (agem, propl,'male'],  pch=2, col='green')
} ) # Figure 10.6
plot (Predict (f, age, sex), ylim=c(-2,4), addpanel=w
label.curve=list (offset=unit (0.5, 'cm')))

)
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Pl ¢ Predict(f, age, pclass, sex, sibsp=0, fun=plogis)
p2 ¢« Predict(f.mi, age, pclass, sex, sibsp=0, fun=plogis)
p ¢ rbind('Casewise Deletion'=pl, 'Multiple Imputation '=p2)
ggplot (p, groups='sex', ylab='Probability of Surviving')

# Figure 12.11
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£ ¢ areg.boot(y ~ x1 + x2 + x3, method='avas', B=300)
3

avas Additive Regression Model

areg.boot(x = y ~ x1 + x2 + 3, B = 300, method = "av:

Predictor Types

type
x e

0.440
0,42

Apparent R2 on tramsformed Y scale
Bootstrap validated R2

Coefficients of standardized transformations:

Intercept x1 x2 x3
-3.4431116-16  9.7020600-01 1.2243200+00 9.8811500-01
Residuals on transformed scale:

Hin 1 Median 30 Wax
-1.877152+00 -5.2521940-01 -3.7322000-02 5.339122-01 2.1726806+00

8.673617e-19
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fit « ols(y ~ x1sx2%x3)

# run, and print results:

fastbu (fit, optional_arguments)

# typically used in simulations:

z « fastbu(fit, optional_args)

# least squares fit of reduced model:
1n.fit (X[, z$parms.kept], Y)
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1p « predict(f) # Compute linear predictor from full model
# Insert sigma=1 as otherwise sigma=0 will cause problems
a < ols(1p ~ sz + sg + log(ap) + sbp + dbp + age + Wt +
hg + okg + pf + bm + hx + rx + dtime, sigma=i,
data=psub)
# Specify silly stopping criterion to remove all variables
s + fastbu(a, aics=10000)
betas ¢ s$Coefficients # matriz, rous=iterations
x + cbind(1, £$x)  # design matriz
# Compute the series of approzimations to lp
ap « X %*% t(betas)
# For each approz. compute approzimation R'Z and ratio of
# likelihood ratio chi-square for approzimate model to that
# of original model
m < ncol(ap) - 1  # all but intercept-only model
r2 ¢ frac + numeric(m)
fullchisq « f$stats['Model L.R.']
for(i in 1:m) {
1pa ¢ apl,il
r2[i] ¢ cor(lpa, 1p)"2
fapprox ¢ lrm(cvd ~ lpa, data=psub)
frac(i] + fapprox$stats['Model L.R.'] / fullchisq
}  # Figure 11.6:
plot (r2, frac, type='b',
xlab=expression (paste ('Approximation ', R2)),
ylab=expression (paste ('Fraction of ',
chi’2, ' Preserved')))
abline (h=.95, col=gray(.83)); abline(v=.95, col=gray(.83))
abline (a=0, b=1, col=gray(.83))
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+ PBsXs + PeX; + XY,
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F) = PoXo + BsX5 + B
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# Figure 12.4

top ¢ theme(legend.position='top')

pl « ggplot (13, aes(x=age, y=survived, color=cut2(sibsp,
0:2))) + stat_plsmo() + b + ylim(0,1) + yl + top +
scale_color_discrete (name='siblings/spouses ')

p2 « ggplot (13, aes(x=age, y=survived, color=cut2(parch,
0:2))) + stat_plsmoO) + b + ylim(0,1) + yl + top +
scale_color_discrete (name='parents/children')

gridExtra::grid.arrange (pi, p2, ncol=2)
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plot(an)  # Figure 11.1
s « f$stats
gaoma.hat « (s['Model L.R

- s['d.f.'])/s['Model L.R.']

dd + datadist(psub); options(datadist='dd')
ggplot (Predict (f), sepdiscrete='vertical', vnames='names ',
rdata=psub,
histSpike.opts=1list (frac=function(f) .1xf/max(f) ))
# Figure 11.2

plot (summary (f), log=TRUE)  # Figure 11.3
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bmi : Body Mass Index [kg/m? ]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4629 01994 1 28.59 20.02 21.35 24.12 27.60 31.88 36.75 40.68

lowest : 13.18 14.59 15.02 15.40 15.49
highest: 61.20 6281 65.62 71.30 84.87

leg : Upper Leg Length [cm] i
1 missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4474 155 216 1 38.39 32.0 33.5 36.0 38.4 41.0 43.3 44.6
lowest : 20.4 24.9 25.0 25.1 26.4, highest: 49.0 49.5 49.8 50.0 50.3

arml : Upper Arm Length [cm] BT 1 P R
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4502 127 156 1 37.01 32.6 33.5 35.0 37.0 39.0 40.6 41.7
lowest : 24.8 27.0 27.5 29.2 29.5, highest: 45.2 45.5 45.6 46.0 47.0

arme : Arm Circumference [cm]
1 missing unique Info Mean .05 .10 .25 .50
4499 130 290 1 32.87 25.4 26.9 29.5 32.5 35.8 39.1 41.4

17.9 19.0 19.3 19.5 19.9, highest: 54.2 54.9 55.3 56.0 61.0

lowest.

waist : Waist Circumference [cm] "
n missing unique Info Mean .05 .10 .25 .50 .75 .90
4465 164 TI6 1 97.62 T4.8 78.6 86.9 96.3 107.0 117.8 125.0

59.7 60.0 61.5 62.0 62.4
16000 160.6 162.2 162.7 168.7

tri : Triceps Skinfold [mm] o St
ing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4205 334 342 1 18.94 7.2 8.8 12,0 18.0 25.2 31.0 33.8
lowest : 2.6 3.1 3.2 3.3 3.4, highest: 39.6 39.8 40.0 40.2 40.6

sub : Subscapular Skinfold [mm] ot .
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95
3974 655 329 1 20.8 8.60 10.30 14.40 20.30 26.58 32.00 35.00

lowest : 3.8 4.2 4.6 4.8 4.9, highest: 40.0 40.1 40.2 40.3 40.4

gh : Glycohemoglobin (%] _ailll
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95
4629 o 63 0.99 5.533 4.8 5.0 5.2 5.5 5.8 6.0 6.3

lowest : 4.0 4.1 4.2 4.3 4.4, highest: 11.9 12.0 12.1 12.3 14.5

albumin : Albumin [g/dL] ot
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4576 53 26099 4.261 3.7 3.9 4143 454748
2.6 2.7 3.0 3.1 3.2, highest: 4.9 5.0 5.1 5.2 5.3

lowest.
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Brer = [Balty = te-1)+Bslta — 1)+ o+ Pra(tia = 1))/ (11 — 1),
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= fo+BiXy+ 1) +B;
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= Bo+PiXi+F:
= Pi+psXa

+BX1 %]
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K,0 otherwise
5= 1if T=L,0 otherwise
X;=1if T= M0 otherwise.
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CHT=K) = fo+fy
CYIT=L) = fo+ps
C¥|IT = M) = fo+ps
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print (cph(Surv(gh) ~ res(age,5) + log(ht) + log(wt), data=v),

Tatex=TRUE)

Cox Proportional Hazards Model

cph(formila = Surv(gh) ~ rcs(age, 5) + log(ht)
+ log(ut), data = w)

Model Te

Tests.

Discrimination]

Obs  4620[LR % 1
Events  4629|dL.f.
Center 8.3792(Pr(> y*)
Score x? 1
Pr(> x*)

120.20|

6
0.0000
258.07]

0.0000

92 0.0054
0.0148 0.0274
0.0093 0.0862

0321 0.1131
3.0477 0.2779
653 0.0701

SE._Wald Z Pr(> [Z])

724 < 0.0001
0.54  0.5888
011 09144
-0.28  0.7767
10.97 < 0.0001

04 < 0.0001
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=Po+PriX +PaX - a) a<X<b
=fo+PIX+PaX - ) +fsX~b) b<X<c
=Po+PiX +PaX —a)
HPX=b) +fX =) <X
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# For each predictor that only interacts with cohort, show
# the differing effects of the predictor for predicting
# Pr(v=0)" and Pr(Y=i given ¥ ezceeds 0) on the same graph

dd$limits ['Adjust to','cohort'] « 'Y>1'

v ¢ Cs(waz, bul.conv, drowsy, agitated, reffort, ausc,
feeding, abdominal, hydration, hxprob, pustular,
crying)

yeql ¢ Predict(full.pen, name

¥l ¢ c(-1.5, 1.5)

ggplot (yeql, ylim=yl, sepdiscrete='vertical') # Figure 14.§

, ref.zero=TRUE)

dd$limits ['Adjust to','cohort'] ¢ 'all' # original default
all « Predict(full.pen, name=v, ref.zero=TRUE)
ggplot (all, ylim=yl, sepdiscrete='vertical') # Figure 14.9
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£ ¢ lrm(y ~ x1 + x2 + ..., data=df, x=TRUE, y=TRUE)
¥ ¢ which.influence(f, .4)
nam ¢ names (w)
for(i in 1:length(nam)) {
cat("Influential observations for effect of”,
nam(i],"\n")
print (af [w([11],1)
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plot (anova(a)) # Figure (7.5)

ylm « ylin(25, 60)
Pl ¢« gegplot (Predict(a, week, treat, conf.int=FALSE),
adj.subtitle=FALSE, legend.position='top') + ylm
P2 « ggplot (Predict(a, twstrs0), adj.subtitle=FALSE) + ylm
p3 « ggplot (Predict(a, age, sex), adj.subtitle=FALSE,
legend.position='top') + ylm
gridExtra::grid.arrange (pi, p2, p3, mcol=2)  # Figure (7.6)

latex (summary (a),file='', table.env=FALSE) # Shous for week 8
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sigmas ¢ c(.5, .76, 1, 1.25, 1.5, 1.75,

ns + seq(25, 300, by=25)

nsim 1000
i
P

2.5, 3, 4)

xs seq(-1.5, 1.5, length=200)
pactual + plogis (xs)

dn ¢ list(sigma=format (sigmas), n=format (ns))
maxerr ¢ Ni ¢ array(NA, c(length(sigmas), length(ns)),
require (rms)

e 0
for(s in sigmas) {
e 1
i+ o0
for(n in ns) {
Je g
nl ¢« maxe « 0
for(k in 1:nsim) {
x ¢ rnorm(n, 0, )
P+ plogis (x)
y « ifelse(runif(n) < P, 1, 0)
a1l ni + sun(y)
beta ¢ lrm.fit(x, y)$coefficients
phat « plogis(beta[i] + beta[2] * xs)
maxe ¢ maxe + max(abs(phat - pactual))
3
ni ¢ ni/nsim
maxe ¢ maxe/nsim
maxerr [1,j] « maxe
Nili,3] ¢ a1
3
¥
xrange ¢ range (xs)
simerr ¢ 1list(Ni, maxerr, sigmas, ns, nsim, xrange)

maxe + reShape (maxerr)
# Figure 10.4
xYplot (maxerr ~ n, groups=sigma, data=maxe,
ylab=expression (paste ('Average Maximum ',
abs (hat (P) - P))),
type='1', lty=rep(1:2, 5), label.curve=FALSE,
abline=1ist (h=c(.16, .1, .08), col=gray(.85)))
Key(.8, .68, other=list(cex=.7,
title=expression (vrnmrnn~nsigna)))

dn)
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dd + datadist(ac)
# describe distributions of variables to rms
options (datadist="'dd")

# Generate right-censored survival time variable
years ¢ d.time/365.25
units (years) ¢ 'Year'
S « Surv(years, death)

# Show mormal inverse Kaplan-Meier estimates

# stratified by dzgroup

survplot (npsurv (S ~ dzgroup), conf='none',
fun=qnorm ,logt=TRUE)  # Figure 19.3
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require (rms)

getHdata (prostate)
Tevels (prostate$ekg) [levels (prostateSekg) %in%

c('old MI', 'recent MI')] « 'NI'
# combines last 2 levels and uses a new name, MI

prostate$pf.coded ¢ as.integer (prostateS$pf)

# save original pf, re-code to 1-4

levels (prostate$pt) ¢ c(levels(prostate$pf)[1:3],
levels (prostate$ps) [3])

# combine last 2 levels

w < transcan(~ sz + sg + ap + sbp + dbp + age +
Wt + hg + okg + pf + bm + hx, imputed=TRUE,
data=prostate, pl=FALSE, pr=FALSE)

attach (prostate)

sz« impute(w, sz, data=prostate)
sg + impute(w, sg, data=prostate)
age « impute(w, age,data=prostate)
wt <+ impute(w, wt, data=prostate)
ekg + impute (v, ekg,data=prostate)

dd + datadist(prostate); optionms(datadist='dd')

units (dtime) « 'Monmth'
S « Surv(dtime, status != 'alive')

£ ¢ cph(S ~ rx + rcs(age,d) + rcs(wt,4) + pf + hx +
rcs(sbp,4) + rcs(dbp,4) + ekg + rcs(hg,4) +
rcs(sg,4) + rcs(sz,4) + rcs(log(ap),4) + bm)

print (£, latex=TRUE, coefs=FALSE)
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sf « function(y)
c('Y>1'=qlogis (mean(y
'Y >2'=qlogis (mean(y
'Y>3'=qlogis (mean(y
'Y >4'=qlogis (mean(y

1),
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f + lrm(survived ~ (sex + pclass + rcs(age,5))"2 +
rcs(age ,5) +sibsp, data=t3)
print (f, latex=TRUE)
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statnames ¢ names (R)[6:11]
w ¢ reshape(R, direction='long', varying=list(statnames),
v.mames='x', timevar='stat', times=statnames)
w$p « paste('p', wSp, sep='='")
require (lattice)
s < with(w, summarize(abs(x), 1list(p, method, stat),
smean.cl.boot ,stat.name="'mae'))
Dotplot (method ~ Cbind (mae, Lower, Upper) | stat+p, data=s,
xlab='Mean lerror|')
s ¢ with(w, summarize(x"2, 1list(p, method, stat),
smean.cl.boot , stat.name='mse'))
Dotplot (method ~ Cbind (sqrt(mse), sqrt(Lower), sqrt (Upper)) |
statsp, data=s,
xlab=expression (sqrt (MSE)))
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cal ¢ calibrate(f, B=200, bu=TRUE)
plot(cal)  # Figure 11.5
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# Figure 10.13:
bplot (Predict(f, cholesterol, age, mp=40), perim=perim,
1fun-wireframe, zlim=zl, adj.subtitle=FALSE)

1ex(f)
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cph(Survobject ~ predictor) ]
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£ ¢ lrm(sigdz ~ sexsrcs(age,4) + rcs(cholesterol ,4) +
rcs(age,4) %ia% res(cholesterol ,4), data=acath)
latex (anova(f), file='', size='smaller',
caption='Singly nonlinear cubic splime surface',
label='tab:anova-ria') #Table 10.8
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full
1rm(y ~ cohort*(ageg+(rcs(temp,5) + res(rr,5)) +
res(waz,4) + bul.conv + drowsy + agitated + reffort +
ausc + feeding + abdominal + hydration + hxprob +
pustular + crying + fever.ill + stop.breath + labor),
data=Sc.expanded , x=TRUE, y=TRUE)
# a=TRUE, y=TRUE are for pentrace, validate, calibrate below
perf « function(fit) { # model performance for Y=0
pr ¢« predict(fit, type='fitted')[cohort == 'all'l
s + round(somers2(pr, ylcohort 'all'D), 3)
pr < 1 - pr  # Predict Prob[Y > 0] instead of Prob[Y = 0]
£ ¢ round(c(mean(pr < .05), mean(pr > .25),
mean(pr > .5)), 2)
£ < paste(£{1], ', ', £[2], ', and ', £[3], '.', sep='")
1list (somers=s, fractions=1)

}
perf.unpen ¢ perf (full)

print (full, latex=TRUE, coefs=5)





OEBPS/A69956_2_En_3_Figh_HTML.gif





OEBPS/A69956_2_En_14_Chapter_IEq3.gif
max|






OEBPS/A69956_2_En_14_Chapter_IEq4.gif
max|






OEBPS/A69956_2_En_14_Chapter_IEq5.gif
max|






OEBPS/A69956_2_En_14_Chapter_IEq6.gif
xp





OEBPS/A69956_2_En_14_Chapter_IEq1.gif
0.05-0.04=001





OEBPS/A69956_2_En_14_Fige_HTML.gif
£1 ¢ 1rm(Y ~ ageg*(rcs(temp,5)+rcs(rr,6)+rcs (hrat,4)) +
res(uaz,4) + bul.conv + drowsy + agitated +
reffort + ausc + feeding + abdominal,
data=Sc, x=TRUE, y=TRUE)

# o=TRUE, y=TRUE used by resid() below

print (1, latex=TRUE, coefs=5)
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x ¢ with(prostate,
cbind (stage, rx, age, wt, pf, hx, sbp, dbp,
ekg.norn, hg, sz, sg, ap, bm))
# If no missing data, could use cor(apply(z, 2, rank))
r ¢ rcorr(x, type="spearman")$r  # rcorr in Hmisc
maxabsr « max(abs(rlrow(r) != col(r)]))

p < nrow(r)
plot (c(-.35,p+.5),c(.5,p+.25), type='n', axes=FALSE,
xlab='',ylab='')  # Figure 8.1
v ¢ dimnames(r)[[1]]
text (rep(.5,p), 1:p, v, adj=1)
for(i in 1:(p-1)) {
for(j in (i+1):p) {
lines (c(i,1),c(j,j+r[i,j]/maxabsr/2),
1wd=3, lend='butt')
lines (c(i-.2,1i+.2),¢(j,j), lwd=1, col=gray(.7))

b
text(i, 1, v[i], srt=-45, adj=0)
3
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m « lrm(is.na(age) ~ sex * pclass + survived + sibsp + parch,
data=t3)

print(nm, latex=TRUE, needspace='2in')
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require (rms)

S ¢ with(prostate, Surv(dtime, status != "alive"))
# two-column response var.

pes « prin.rauSscores # pick off all PCs
aic « numeric(16)
for(i in 1:16) {
ps « pesl,1:i]
aicli] « AIC(cph(S ~ ps))
}  # Figure 8.5
plot (1:16, aic, xlab='Number of Components Used',
ylab='AIC', type='1l', ylim=c(3950,4000))
£ ¢ cph(S ~ sz + sg + log(ap) + sbp + dbp + age + Wt + hg +
ekg + pf + bm + hx, data=imputed)
abline (h=AIC(f), col='blue')
£ ¢ cph(S ~ rcs(sz,5) + rcs(sg,5) + rcs(log(ap),5) +
res(sbp,5) + res(dbp,5) + rcs(age,3) + res(ut,5) +
res(hg,5) + ekg + pf + bm + hx,
tol=1e-14, data=imputed)

abline (h=AIC(f), col='blue', lty=2)
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getHdata (valung)
with(valung, {
hazard.ratio.plot (1 + (cell =
=25, subset=cell != 'Large',
pr=TRUE, pl=FALSE)
hazard.ratio.plot (1 » kps, Surv(t, dead),
pr=TRUE, pl=FALSE) })

25,

'Squamous '), Surv(t,

dead),
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g « function(v) vlc('Intercept','Slope'),'index.corrected']
k ¢ rbind(g(v1), g(v2), g(v3))
co + c(2,5,4,1)
plot (0, 0, ylim=c(0,1), xlim=c(0,1),
xlab="Predicted Probability",
ylab="Estinated Actual Probability", type="n")
legend (.45,.35,c("age, sex", "age, sex stepdown”,
"age, sex, x1-x5", "ideal"),
1ty=1, col=co, cex=.8, bty='n")
probs ¢+ seq(0, 1, lemgth=200); L ¢ qlogis (probs)
for(i in 1:3) {
P ¢ plogis(k[i, Intercept'] + k[i,'Slope'] * L)
lines (probs, P, col=colil, lwd=1)
3}

abline (a=

, b=1, col=col4], lwd=1) # Figure 10.17
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f « orm(gh ~ rcs(age,5) + log(ht) + log(wt),
family=loglog, data=w)
print(f, latex=TRUE)

-log-log Ordinal Regression Model

orm(formula = gh ~ rcs(age, 5) + log(ht) + log(wt), data = w,
family = loglog)

Model Likelihood | Discrimination _|Rank Diserim.
Ratio Test Indexes Indexes
Obs 4629[LR x’ 1126.94| R* 0.217|p 0.486|
Unique ¥ 63|d.f. 6lg 0.627]
Yos 5.5|Pr(> x*) < 0.0001|g, 1.872]
max | 255 |Score 2 1262.81{[Pr(Y > Yo.5) — 3] 0.153
1x10-°_|Pr(> x?) < 0.0001

Cocl _S.B._Wald Z Pr(> |Z])
age  0.0398 0.0055 7.29 < 0.0001
age’ 00158 0.0275 057 05657
age” -0.0072 0.0866  -0.08 09333

700309 0.1135 027 0.7853
bt -3.0680 0.2789 -11.00 < 0.0001
Wt 12748 00704 _18.10 < 0.0001

aic « NULL
for(mod in 1ist(gh ~ 5) + rs(log(bai) ,5),
e~ 0,5) + rcs(log(ht) ,5) + r
8h ~ rcs(age.5) + res(log(ht) 4) + ros(log(we) .4)3)
aic « claic, AIC(orm(aod, fasmily=loglog, data=w)))
print (aic)

(1] 25910.77 26910.17 26906.03
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require (rms)

getHdata (support) # Get data frame from web site
acute ¢ support$dzclass %in’ c('ARF/MOSF','Coma')
latex (describe (support [acute,]), file='')
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gc ¢ orm(gh ~ rcs(age,5) + re + rcs(leg,3) +
res(waist,4) + tri + res(sub,4),
family=loglog, data=w, x=TRUE, y=TRUE)

gb « bootcov(ge, B=300)

bootclb « Predict(gh, age, boot.type='basic')
bootclp « Predict(gb, age, boot.type='percentile')

multimp « Predict(g, age)

plot (Predict (gc, age), addpamel=function(...) {

with(bootclb, {1lines(age, lower,
1lines (age, upper,
with(bootclp, {1lines(age, lower,
1lines (age, upper,
with(multinp, {1lines(age, lower,
1lines (age, upper,
1lines (age, yhat,

col

col="'blue')
col="blue)})
col='blue', lty=2)
col='blue’, 1ty=2)})
col='red')

co! red')

‘red)} ) ),

col.fill=gray(.9), adj.subtitle=FALSE)  # Figure 15.12
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x + seq(0, 1, length=300)
for(nk in 3:6) {
set.seed (nk)
knots ¢ seq(.05, .95, length=nk)
xx ¢+ rcspline.eval (x, knots=knots, inclx=T)
for(i in 1 : (nk - 1))
xx[,1] « (xx[,1] - minCxx[,i1)) /
(max (xx[,11) - min(xx[,11))
for(i in 1 : 20) {
beta ¢ 2+runif (nk-1) - 1
xbeta « xx 4*% beta + 2 * runif(1) - 1
xbeta ¢ (xbeta - min(xbeta)) /
(max(xbeta) - min(xbeta))
G == 1) {
plot (x, xbeta, type="1", lty

xlab=expression (X), ylab='', bty="1")
title (sub=paste (nk,"knots"), adj=0, cex=.75)
for(j in 1 : nk)

arrows (knots [j], .04, knots[j], -.03,

angle=20, length=.07, ld=1.5)

¥

else lines(x, xbeta, col=i)
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# Get 2-row design matriz for obtaining predicted values
# for ¢ = 1 and 5
X “ cbind(Intercept=1,

predict (f, data.frame(x1=c(1,5)), type='x'))
Xdif + X[2,,drop=FALSE] - X[1,,drop=FALSE]
xaif

Intercept pollxt, 2)xi pol(xi, 2)x1"2
o .

2 2

b « bootcov(f, B=1000)
boot.log.odds.ratio ¢ b$boot.Coef %+% t(Xdif)
5d(boot . log.odds . ratio)

1) 2752108

# This is the same as from summary(b, w=c(1,5)) as summary
# uses the bootstrap covariance matriz
summary (b, x1=c(1,6))[1, 'S.E.']

(11 2.752103

# Compare this s.d. with ome from information matriz
summary (f, x1=c(1,5))[1,'S.E."]

(1) 2.988373

# Compute percentiles of bootstrap odds ratio
exp(quantile (boot.log.odds.ratio, c(.025, .975)))

2.5% o7.5%
2.7950320400 2.0671460+05

# Automatic:
summary (b, x1=c(1,5))[' 0dds Ratio',]

Low High Difs. Effact s.E.
1.0000000+00 5.0000000+00 4.0000006+00 4.4439326+02 s
Lower 0.95  Upper 0.95 Type

27950326400 2.0671460405 2.000000e+00

print (contrast (b, list(x1=5), list(x1=1), fun=exp))
Contrast  S.E.  Lower  Upper 2 Pr(>lzl)

11 6.09671 2.752103 1.027843 12.23909 2.22  0.0267

Confidence intervals are 0.95 bootstrap nompa

etric percentile intervals

# Figure 9.4
hist (boot.log.odds.ratio, nclass=100, xlab='log(OR)',
main='')
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quire (pcaPP)

s « sPCAgrid(ptrans$transformed, k=10, method='sd',
center=mean, scale=sd, scores=TRUE,

maxiter=10)

lines', main='', ylim=c(0,3))

plot (s, type
addscree (s)
s$loadings

# Figure 8.6

# These loadings are on the orig. transcan scal

Loadings :
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.0 Comp.10
s 0.2i8

=
abp
avp
age
hg
ks
»f
b
bx

0950
0620
0634
~o.707
o0.707

~0.305

1.000
1.000
1.000
1.000
1.000
~o0.301
1.000

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Com

S8 loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.060

Proportion Var 0,083 0,083 0083 0083 0083 0.083 0.083

Cumulative Var 0,053 0,167 0230 0.333 0417 0500 0.583
Comp.9 Comp.10

S8 loadings 1.000  1.000

Proportion Var 0,083 0083

Cumulative Var 0.750  0.833

0.522
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set.seed (191)

x1 ¢ rnorm(100)

y & x1 + rnorm(100)

pens « df « aic + c(0,.07,.5,2,6,15,60)
all « nl « listO

for(pemalize in 1:2) {
for(i in 1:length(pens)) {
£ ¢ ols(y ~ res(x1,5), penmalty=
list (simple=if (penaliz

nonlinear=pens [i]))

af[i] +  f$stats('d.f.']

aicli] « AIC(f)

nam ¢ paste(if (pemalize == 1) 'all’ else 'ml’,
' penalty:', pens[il, sep='')

nam ¢ as.character (pens[i])

p ¢ Predict(f, x1=seq(-2.5, 2.5, length=100),
conf.int=FALSE)

if (penalize == 1) alll[nam)] « p else nll[naml] « p

1)pens [i] else 0,

b
print (rbind (df=df, aic=aic))
¥
0,1 L2 [$5) 8] (51 Lol
ar 40000 3.213591 2.706069  2.30373  2.029382  1.822758
aic 27006653 269.154045 268.222855 267.56594 267.288988 267.552915
LN
ar 1.513609
aic 270.805033
0,1 .2 0,3 (41 L5 (61
4t 4.0000 3.219149  2.728126  2.344807  2.109741  1.960863
aic 270.6653 269.167108 268.287933 267.718681 267.441197 267.347475
[95]
ar 1.es4d2t

aic 267.892073

all « do.call('rbind', all); allStype « 'Pemalize ALl'

nl « do.call('rbind', ml) ; nlStype ¢ 'Penalize Nomlinear'

both ¢ as.data.frame(rbind.data.frame(all, nl))

both$Penalty ¢ both$.set.

ggplot (both, aes(x=xi, y=yhat, color=Penalty)) + geom_line () +
geon_abline (col=gray(.7)) + facet_grid (~ type)

# Figure 9.6
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SCr : Creatinine [mg/dL] b
n missing unique Info Mean .05 .10 25 .50 .75 90 .95
4576 53 167 108887 0.58 0.62 0.72 0.84 0.99 1.14 1.25

lowest.
highest:

0.34 0.38 0.39 0.40 0.41
5.98 6.3¢ 9.13 10.98 15.66

dd « datadist(w); options(datadist='dd')
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med ¢+ Quantile(fl)
meant ¢ Mean (f1)

haz ¢ Hazard(f1)

surv  « Survival (1)

latex (surv, file='', type='Sinput ')

surv « function (times = NULL, 1p = NULL,
parms = -2.15437773933124)
<
1/(1 + exp((logb(times) - 1p)/exp(parms)))
»

# Plot estimated hazard functions and add median
# survival times to graph
survplot (f1, group, what="hazard") # Figure 18.12
# Compute median survivel time
m « med(lp=predict (fl,

data.frame (group=levels (kpratsS$group))))
o

i 2
216.0857 240.0328

med (1p=range (f1$1inear.predictors))
(1) 216.0857 240.0328

n « format(m, digits=3)
text (68, .02, paste("Group 1 median: ", m[1],"\n",
"Group 2 median: ", ml2], sep=""))
# Compute survival probability at 210 days
xbeta  predict(fl,
data.frame (group=c("Group 1","Group 2")))

surv (210, xbeta)

1 2
0.5612718 0.7599776





OEBPS/A69956_2_En_5_Fig3_HTML.gif
Jopipasd

Rank





OEBPS/A69956_2_En_17_Figo_HTML.gif
14






OEBPS/A69956_2_En_18_Figb_HTML.gif





OEBPS/A69956_2_En_11_Figa_HTML.gif
require (rms)

gethdata (prostate)
prostate
within (prostate, {
levels (ekg) [levels (ekg) %in%
c('old MI', 'recent MI')] « 'NI'
ekg.norm ¢ 1s(ekg %in% c('mormal’, 'benign'))
levels (ekg) ¢ abbreviate(levels (ekg))
pfn « as.numeric (pf)
levels (pf) ¢ levels(pf)[c(1,2,3,3)]
cvd + status %in% c("dead - heart or vascular”,
"dead - cerebrovascular")
rxn = as.mumeric(rx) })
# Use tramscan to compute optimal pre-transformations
ptrans ¢«  # See Figure 8.3
transcan(~ sz + sg + ap + sbp + dbp +
age + wt + hg + okg + pf + bm + hx + dtime + rx,
inputed=TRUE, transformed=TRUE,
data=prostate, pl=FALSE, pr=FALSE)
# Use transcan single imputations
imp ¢+ impute (ptrams, data=prostate, list.out=TRUE)

Isputed missing values with the following frequenci
and stored them in variables with their original nam

sz sg age wt ekg
5 11 1 2 8

NAvars « all.vars(~ sz + sg + age + ut + ekg)

for(x in NAvars) prostate[[x]] « imp[[x]]

subset + prostate$status 4in% c("dead - heart or vascular”,
"dead - cerebrovascular”,"dead - prostatic ca")

trans ¢ ptrans$transformed [subset,]

psub ¢ prostate [subset,]
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for (

e
##
e
Be
X

LX
Y

#
#
fo:

}
3y o#

P in c(15, 30)) {

For each p create the true betas, the design matriz,
and realizations of binary y in the gold standard

large sample
ta ¢ rep(.5, p) # True betas

+ matrix(runif (npop*p), nrow=npop) - 0.5

+ matxv(X, Beta)

+ ifelse(runif(npop) < plogis(LX), 1, 0)
For each simulation create the data matriz and

realizations of y
r(j in 1:reps) {

## Make training sample
x ¢ matrix(runif(n*p), nrow=n) - 0.5

L + matxv(x, Beta)

y « ifelse(runif(m) < plogis(L), 1, 0)
f « lrm(y ~ x, x=TRUE, y=TRUE)

beta ¢ f$coef

forecast + matxv(X, beta)

## Validate in population

v ¢+ val.prob(logit=forecast, y=Y, pL=FALSE)[
c("Dxy","Intercept,"Slope

D

for(method in methods) {

repmeth 1

if (method %in% c('Boot 40','632a 40','632b 40'))
B « 40

if (method
B « 200

if (method
B « 10
repmeth + 4

}

if (method
B« 4
repmeth 10

b3

if (method
B « 10
repmeth 20

in% c('Boot 200','632a 200','632b 200'))

'10-fold x 4') {

'4-fold x 10') {

'10-fold x 20") {

}

if (method '4-fold x 50') {
B« 4
repmeth + 50

b

z ¢ val(f, method, B, repmeth)
k ¢ which(R$sim == j & R$p == p & R$method == method)
if (length(k) != 1) stop('program logic error')
Rk, names(z)] « z - v
Rlk, c('B', 'repmeth')] ¢ c(B=B, repmeth=repmeth)
} # end over methods
# end over reps
end over p
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£ ¢ update (fasr, y=TRUE)
which # Table 1
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4
psm(S ~ rcs(age,k)+sex+dzgroup+pol (num.co,2)+scoma+
pol (adlsc ,2)+race+rcs (meanbp ,k)+rcs (hrt ,k)+

res (resp,k)+res (temp,k)+rcs (crea,3)+res(sod,k)+
res(wble.i,k)+rcs(pafi.i,k), dist='lognormal')
plot (anova(£))  # Figure 19.7

ko
£ e
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£ « cph(S ~ strat(group), surv=TRUE)

# For both strata, eval. S(t) at combined set of death times

times « sort(unique(days[death == 11))

est ¢ survest(f, data.frame(group=levels(group)),
times=times, conf.type="nome")S$surv

cumhaz ¢ - log(est)

plot (times, cumhaz[2,] / cumhaz[1,], xlab="Days",

ylab="Cumulative Hazard Ratio", type="s")
abline (h=1, col=gray(.80))
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na.patterns ¢ naclus(titanic3)
require (rpart) # Recursive partitioning package

who.na ¢ rpart (is.na(age) ~ sex + pclass + survived +
sibsp + parch, data=titanic3, minbucket=15)

naplot (na.patterns, 'ma per var')

plot (who.na, margin=.1); text(who.na) # Figure 12.8

plot (na.patterns)





OEBPS/A69956_2_En_5_Fign_HTML.gif





OEBPS/A69956_2_En_17_Chapter_IEq29.gif
Sk,






OEBPS/A69956_2_En_17_Chapter_IEq28.gif
SEMy





OEBPS/A69956_2_En_10_Figzg_HTML.gif





OEBPS/A69956_2_En_10_Fig22_HTML.gif
Actual Probability

1.0

08

06

0.4

02

0.0

2oy 33
Zhoor 333
Foam
-
8 e
o 357
o
o
& o
&

% — - doal

- Logsc catiraton
Nonparamatic.
&' Grouped obsenvatons

0l b,

0.0 02 04 06 0.8 1.0
Predicted Probability






OEBPS/A69956_2_En_15_Figa_HTML.gif
gethdata (nhgh)

W « subset(nhgh, age > 21 & dx==0 & tx==0, select=-c(dx,tx))
latex (describe (v), file='')
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surv ¢+ Survival(f.ia)
surv.f ¢ function(lp) surv(3, lp, stratum='sex=Female')
surv.m ¢ function(lp) surv(3, lp, stratun='sex=Male')
quant ¢ Quantile(f.ia)

med.f ¢ function(lp) quant(.5, lp, stratum='sex=Female')
med.m ¢ function(lp) quant(.5, lp, stratum='sex=Male')
at.surv ¢ (.01, .05, seq(.1,.9,by=.1), .95, .98, .99, .999)
at.med « c(0, .5, 1, 1.5, seq(2, 14, by=2))

n  nomogram(f.ia, fun-list(surv.m, surv.f, med.m,med.f),
funlabel=c('S(3 | Male)','S(3 | Female)',
'Median (Male)','Median (Female)'),
fun.at=1ist(c(.8,.9,.95,.98,.99),
c(.1,.3,.5,.7,.8,.9,.95,.98),
c(8,10,12),¢(1,2,4,8,12)))
plot(n, col.grid=FALSE, lmgp=.2)
latex(f.ia, file='', digits=3)
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=ussubs ,

cal ¢ calibrate(full.pen, B=200, clust
subset=cohort=="'all")
err + plot(cal) # Figure 14.11

n=5553  Mean absolute error=0.017  Mean squared error=0.00043
0.9 Quantile of absolute error=0.038
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require (Hmisc) ]

getHdata(prostate) # Download and make prostate accessible
# Convert an old date format to R format
prostate$sdate + as.Date(prostate$sdate)

d « describe (prostate[2:17])
latex(d, file='')






OEBPS/contact.gif





OEBPS/A69956_2_En_17_Fig1_HTML.gif
Sty

1.0

08

0.6

04

0.2

0.0

0.2

04

06

08

1.0





OEBPS/A69956_2_En_20_Fig10_HTML.gif
Scaled Schoenfeld Residual

0.0 01

0.1

ocss Smaother, sp
Super Smoother

095 CL,






OEBPS/A69956_2_En_21_Figf_HTML.gif
z.dose « z[,"rx"] # same as saying z[,1] - get first column
z.other « z[,-1]  # all but the first column of z

f.ia < cph(S ~ z.dose * z.other)  # Figure 21.4:
latex (anova(f.ia), fil ', label='tab:coxcase-anova2')
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£ « orm(ht ~ rcs(age,4)#sex, data=w) # Prop. odds model
qu ¢+ Quantile(f); med ¢ function(x) qu(.5, x)

ggplot (Predict (f, age, sex, fun=med, conf.int=FALSE),
Predicted Median Height, cm')
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£2
£3
£4
5

T

lrm(y ~ res(x,4) + x2 + x3)
update (f, subset=sex=="male")

update (£, .~.-x2) # remove w2 from model
update (f, .~. + rcs(x5,5))# add res(z5,5) to model
update (£, y2 ~ .) # same terms, new response var.
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require (rms)

set.seed (7)

n + 400
x1 ¢ runif(n)

x2 ¢« runif(n)

x3 ¢ factor (sample(c('a','db','c'), n, TRUE))

y ¢ exp(xi + 2+abs(x2 - .5) + .3+(x3=='b') + .5+(x3

.5xrnorm (n))
# For reference fit appropriate OLS model
print (ols(log(y) ~ x1 + rcs(x2, 5) + x3), coefs=FALSE,
latex=TRUE)
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phat ¢« predict(f.mi,
combos ¢
expand.grid (age=c(2,21,50) , sex=levels (t3$sex),
pclass=levels (t3$pclass),
5ibsp=0), type='fitted')
# Can also use Predict(f.mi, age=c(2,21,50), sez, pclass,
# sibsp=0, fun=plogis)Syhat
options (digits=1)
data.frame (combos, phat)

age  sex pelass sibep phat
© 2 female  ist 0 0.97
2 21 tst 00.98
3 50 1st 0 0.97
i 2 1st 0 0.88
s 21 1t 0 o0.a8
6 50 1st 0 0.27
7 2 2nd 0 1.00
s 21 2nd 0 090
s 50 20d 0082
0 2 20d 0 1.00
121 2nd 0 0.08
12 50 2 0004
32 sra 0 o085
121 srd 0 057
15 50 srd 0 037
6 2 sra 0081
1721 sra 0013
18 50 srd 0 0.06

options (digits=5)
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ys + seq(.8, 20, length=200)
ytrans ¢« Function(f)$y  # Function outputs all transforms
plot (log(ys), ytrans(ys), type='l')  # Figure 16.2

abline (In(ytrans (ys) ~ log(ys)), col=gray(.8))
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w « rcorrcens(S ~ age + mum.co + scoma + meamnbp + hrt + resp +
temp + crea + sod + adlsc + ublc + pafi + ph +
dzgroup + race)

plot (v, main='") # Figure 19.6
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group « c(rep('Group 1',19),rep('Group 2',21))

group « factor(group)

dd ¢« datadist(group); options(datadist='dd')

days

©(143,164,188,188,190,192,206,209,213,216,220,227,230,

234,246,265,304,216,244 142,156 163,198, 205,232,232,
233,233,233,233,239,240, 261,280,280 ,296 , 296,323,204 , 344)

death ¢ rep(1,40)

death [¢(18,19,39,40)] + 0

units(days) ¢ 'Day’

df « data.frame(days, death, group)

S « Surv(days, death)

£ + npsurv(S ~ group, type='fleming')
for(meth in c('exact', 'breslow', 'efron')) {
g + cph(S ~ group, method=meth, surv=TRUE, x=TRUE, y=TRUE)
# print(g) to see results

3
f.oxp ¢ psm(S ~ group, dist='exponentiall)
fu ¢ psm(S ~ group, dist='ueibull')

phforn « pphsm(fu)

co  gray(c(0, .8))
survplot(f, lty=c(1, 1), lwd=c(1, 3), col=co,
label.curves=FALSE, conf='none')
survplot (g, lty=c(3, 3), lud=c(1, 3), col=co, # Efron approz.
2dd=TRUE, label.curves=FALSE, conf.type='mome')
legend(c(2, 160), c(.38, .54),
('Nonparametric Estimates', 'Cox-Breslow Estimates'),
lty=c(1, 3), cex=.8, bty='n')
legend(c(2, 160), c(.18, .34), cex=.8,
c('Group 1', 'Group 2'), lud=c(1,3), col=co, bt:

iy
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£ ¢« full.approx
fScoefficients + -f$coefficients
£$linear.predictors ¢ -f$linear.predictors

n ¢ nomogram(f,
temp=32:41, rr=seq(20,120,by=10),
waz=seq(-1.5,2,by=.5),
fun=plogis, funlabel='Pr(Y>0)',
fun.at=c(.02,.05,5eq(.1,.9,by=.1),.95,.98))

# Print n to see point tables

plot(n, lmgp=.2, cex.axis=.6) # Figure 14.10

newsubject ¢

data.frame (ageg='[ 0, 7)', rr=30, temp=39, waz=0, drowsy=5,
reffort=2, bul.conv=0, ausc=0, feeding=0)

xb ¢+ predict(f, newsubject)
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ggplot (Predict (£, sil (10,15,20,50), conf.int=FALSE)

## Figure 1
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sg : Combined Index of Stage and Hist. Grade
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95
491 11 110961031 8 8 9 10 11 13 13

567 8 910 11121314 15
Frequency 3 8 7 67 137 33 114 26 75 5 16
% 12114 28 7 23 515 1 3

ap : Serum Prostatic Acid Phosphatase |

n missing unique Info Mean .05 .10 25 .50 .75 .90 .95
502 0 128 1 12.180.300 0.300 0.500 0.700 2.975 21.689 38.470
lowest : 0.09999 0.19998 0.29999 0.39996  0.50000

highest

316.00000 353.50000 367.00000 596.00000 999.87500

bm : Bone Metastases
' missing unique Info Sum Mean

502 0 2041 820.1633
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options(na.action="na.omit")# don't report frequency of NAs
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# Table 10.5:

latex (anova(f), file='', size='smaller',
caption='Crudely categorizing age into tertiles',
label='tab:anova-tertiles ')
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0 + Mean(f)

qu + Quantile(f)

med  + function(x) qu(.5, x)

P90+ function(x) qu(.9, x)

tq + Rq(formula(f), data=w)

£990  « Rq(formula(f), data=w, tau=.9)

pmean ¢ Predict(f,  age, cont.int=FALSE)
pmed ¢+ Predict(f,  age, conf.int=FALSE)
P90 Predict(f,  age, fun=p90, conf.int=FALSE)
pmedqr ¢ Predict(fq, age, conf.int=FALSE)

p90qr <+ Predict(£q90, age, conf.int=FALSE)

z « rbind('orm mean'=pmean,'orm median'=pmed,'orm P90 '=pgo,
QR median '=pmedqr, 'GR P90 '=p90qr)
geplot (z, groups='.set. ',
adj.subtitle=FALSE, legend.label=FALSE)

print (fastbu (f, rule='p'), estimates=FALSE)

Deleted Chi-Sq d.f. P Residual d.f. P a1c
arml  0.16 1 0.6924 0.16 1  0.6924 -1.84
sex 045 1 0.5019 0.61 2  0.7381 -3.39
e 572 2 00572 6.33 4 0.1759 -1.67
armc 332 2 0.1897 9.65 6  0.1400 -2.35
Factors in Fimal Model

(1) age re  leg waist tri sub

set.seed (13) # so can reproduce results
v ¢« validate(f, B=100, bw=TRUE, estimates=FALSE, rule='p')

Backvards Step-down - Original Model

Delsted Chi-Sq d.f. P Residual d.f. P a1c
arsl  0.16 1 0.6924 0.16 1  0.6924 -1.84
sex 0.5 1 0.5019 0.61 2  0.7381 -3.39
ut 572 2 00572 6.33 4  0.1750 -1.67
armc 332 2 0.1897 9.65 6  0.1400 -2.35
Factors in Fimal Model

(1) age re  leg waist tri sub

# Show number of variables selected in first 30 boots
latex(v, B=30, file='', size='small')
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require (Hmisc)

getHdata (support)

sfdn ¢+ as.integer (support$sfdm2) - 1

sf « function(y)

c('Y>1'=qlogis (mean(y > 1)), 'Y>2'=qlogis(mean(y > 2)),

'Y>3'=qlogis (mean(y > 3)))

s « summary(sfdm ~ adlsc + sex + age + meambp, fun=sf,

data=support)

plot (s, which=1:3, pch=1:3, xlab='logit', vmames='names',

main='', width.factor=1.5) # Figure 13.
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Srv « Surv(dm.time,cdeathni)

cox ¢ cph(Srv ~ pi, x=T, y=T)

cox.zph(cox, "rank")  # Test for PH for each column of X

res  resid(cox, "scaledsch”)

tine ¢ as.numeric(names(res))

# Use dimnames (res)[[1]] if more than one predictor

£ « loess(res ~ time, span=0.50)

plot(f, coverage=0.95, confidence=7, xlab="t",
ylab="Scaled Schoenfeld Residual’, ylim=c(

Lines (supsmu(tine, res),lty=2)

legend(1.1,.21,c("loess Smoother with span=

"Super Smoother"), lty=

,.28))

50 and 0.95 C.L.",
) byt
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