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Preface

The idea that guided the first French edition of the present book was to give to
newcomers in Fluid Dynamics a presentation of the field that was anchored in
Physics rather than in Applied Mathematics as it had been the case so often in
the past. Presently, however, connections with Physics are getting stronger and this
is fortunate. Indeed, Physics is, etymologically, the science of Nature and fluids
occupy a major place in Nature. They are everywhere around us and their motion
(their mechanics) influences our everyday life, at least through the weather. Any
physicist can hardly escape being fascinated by the sight of some remarkable fluid
flows like breaking waves or the gently travelling smoke ring.

The connection between Fluid Mechanics and Applied Mathematics is certainly
understandable by the very small number of equations that control a fluid flow.
This is fascinating for an applied mathematician, especially if keen on the theory of
partial differential equations. Actually, a few decades ago, expertise in asymptotic
expansions, singular perturbations, and other mathematical technics was a necessary
condition to make progress in the theory of fluid flows. But the pressure of maths
has certainly lessened in the recent times because of the strong (exponential) growth
of numerical simulations. It is now easier to experiment numerically a fluid flow and
get a detailed description of the solutions of Navier—Stokes equation. Interpretation
of the results may challenge the intuition of the physicist rather than the skill of the
mathematician. But even in the pioneering times, when theoretical investigations
of fluid flows were at the strength of the pencil, famous physicists like Newton,
Maxwell, Kelvin, Rayleigh, Heisenberg, Landau, Chandrasekhar, and others made
essential contributions to the field of Fluid Dynamics. As noted by Heisenberg
himself, the theory of turbulence awaits to be written, and this is still the case.

The present book is based on the lectures I delivered at Paul Sabatier University
in Toulouse during the last two decades. It is intended to beginners in the field
and aims at providing them with the necessary basis that will allow them to attack
most of Fluid Dynamics questions. I have tried, as much as possible, to illustrate
the concepts with examples taken in natural sciences, often in Astrophysics, which
is my playground. Some exercises are offered at the end of each chapter. The
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vi Preface

reader may thus check his/her understanding of the text. Some of the exercises
are also meant to extend the subject in a different way. In that respect, I also
give some references for further reading. As far as maths are concerned, the last
chapter proposes some brief reminders or introduction to the mathematical tools
that are used in the text. With the solutions of the exercises, the book should be
self-contained.

As far as teaching is concerned, the first four chapters constitute the bulk of
a Fluid Mechanics introduction to third year students. The four following chapters
were typically taught to fourth year students, while part of the last ones are currently
taught to students about to start a Ph.D. As the reader will note, some sections are
tagged with @. They can be skipped at first reading and present other illustrations
of the subject of the chapter.

Ending this short preface, I would like to thank the many colleagues who have,
by various means, contributed to the achievement that a book writing represents. I
would like to specially thank Alain Vincent and Hervé Willaime who provided me
with original data of turbulent flows. I have much benefitted from the remarks of
Arnaud Antkowiak, Pierre-Louis Blelly, Boris Dintrans, Katia Ferriere and Thierry
Roudier. They helped me very much at improving various parts of the work. I
cannot forget that this adventure of writing started, thanks to the support and help
of José-Philippe Pérez. I know that my wife Genevieéve and my children Clément
and Sylvain will forgive me for the many hours spent outside the real world. The
realization of the present book owes much to the kind support of Dr. Ramon Khanna
of Springer; I thank him very much for his faith in the project. Finally, I should thank
the many students who attended the performance written below, their questions were
always beneficial, their enthusiasm always stimulating and their fear challenging for
the teacher.

Toulouse, France Michel Rieutord
May 2014
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Chapter 1
The Foundations of Fluid Mechanics

1.1 A Short Historical Perspective

The first step in Fluid Mechanics was certainly carried out by Archimedes (—287,
—212) who was a mathematician and a physicist in Antiquity. He formulated a
now well-known theorem which says that a body immersed in a fluid supports an
upward push equal to the weight of the displaced fluid. This is the first result in
the theory of fluid equilibria. Knowledge did not evolve much until the works of
Evangelista Torricelli (1608—1647) and Blaise Pascal (1623—-1662). Torricelli did a
famous experiment when he put upside down a tube full of mercury. The liquid went
down a little and left a column of mercury 76 cm high. Hence, it was demonstrated
the existence of atmospheric pressure, the weight of air and the existence of vacuum,
much discussed at the time. Pascal gave a full account of all these phenomena in his
treatise L’équilibre des liqueurs published in 1663. The static of fluids was almost
set up. Fluid dynamics started with the work of Leonhard Euler (1707-1783) who
formulated for the first time the equation of motion of an inviscid fluid. Daniel
Bernoulli (1700-1782) contributed to the study of such fluids with theorems on
energy conservation that revealed fundamental properties of fluid flows.

The next important step has been the formulation of the effects of viscosity. This
was done during the nineteenth century with the work of Henri Navier (1785-1836),
Georges Stokes (1819—1904) and Jean-Louis-Marie Poiseuille (1799-1869). Let
us note that Isaac Newton (1642—1727) already showed the existence of viscosity
with experiments and left his name associated with a kind of fluids (the most
common ones like air and water) now known as the Newtonian fluids. Navier—Stokes
equation, which controls the dynamics of viscous fluids, was first formulated by
Navier in the case of a fluid with constant viscosity.

Then, fluid mechanics took various ways. We shall mention only the main ones.
Studies of flows stability started with the works of Helmholtz (1868) and Lord
Kelvin (1880). Heat transport was studied by W. Prout (1834), Rumford (1870),
A. Oberbeck (1879), H. Bénard (1900), J. Boussinesq (1903) and Lord Rayleigh
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(1916). Turbulence focused the interest of O. Reynolds (1883), L. Prandtl (1920),
A. Kolmogorov (1940), etc.

Presently, fluid dynamics is even more diversified, but some old problems resist:
turbulence remains one of the main unsolved problem of classical physics.

1.2 The Concept of a Fluid

1.2.1 Introduction

Fluids gather a very large number of forms of matter which, as far as the most
common are concerned (liquids and gases), can be characterized by the ease with
which one can deform them. This point of view expresses the difference between
the “solid state” and the “fluid state” which are both “mechanical states”. Common
experience assumes that such a difference is obvious, however we shall see that a
more detailed inspection somehow blurs the difference between solids and fluids.
In fact, this difference is contained in a law, known as the rheological law, which
states how the matter reacts to (is deformed by) a stress (a force per surface unit).
Generally speaking, matter is considered as fluid if the internal (shear) stresses only
depend on velocity gradients.

We shall come back on these concepts, but let us give a simple example to
appreciate what is behind this definition. We consider a cork floating on water in
a container. The cork is in A and we wish to move it to B. Because water is a fluid,
the force we need to apply on the cork just depends on velocity gradients. It can be
made as small as we wish; we just need to move the cork more slowly.

From the point of view of thermodynamics, we may say that the states A and
B and cannot be distinguished: the energy and entropy variations needed to make
the system passing from one state to the other can be made vanishingly small. On
the contrary, if we did a similar experiment of a solid, some work would have been
needed and the energy of the states A and B would differ.

1.2.2 Continuous Media

To describe the motion of a fluid, obviously we cannot (and do not wish to!) describe
the motion of all its molecules or atoms individually. We are only interested in their
mean motion. This means replacing the set of atoms or molecules which constitutes
the fluid by a medium that behaves as this mean motion. Such an assumption is
valid when the scale L, which we are interested in, is large compared to the mean
free path £ of atoms or molecules. The ensuing approximation is measured by the
Knudsen number

~
)
Il

(1.1)

~ e~
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which needs to be small compared to unity. The cases where Kn > 1 is the subject
of the dynamics of rarefied gases based on the kinetic theory of gases. In general,
it is not included in fluid mechanics. An introduction to the relation between fluid
dynamics and gas kinetics is given in Chap. 11.

Thermodynamics and the dynamics of continuous media share many similarities
in their description of matter. Indeed, in these two approaches, the microscopic
components of matter are ignored and only mean values are retained. The drawback
of such a way of doing is that some quantities can only be obtained by experiments,
like heat capacity in thermodynamics or viscosity in fluid mechanics, the equation of
state in thermodynamics or the rheological law in fluid mechanics. Their theoretical
determination needs a more detailed approach based on the statistical properties of
the microscopic components of matter (see Chap. 11).

1.3 Fluid Kinematics

The first step needed to understand the motion of fluids is to find the right tools that
will allow us to describe a fluid flow. This is the role of fluid kinematics that study
fluid motion without worrying about its causes.

1.3.1 The Concept of Fluid Particle

Very often, we shall use the concept of fluid particle or fluid element. This is an
idealized view of a piece of fluid: it is so small that fluid properties are uniform
inside. However, it is big enough so as to contain a large number of atoms
or molecules, allowing us to assume that the fluid is locally in thermodynamic
equilibrium (hence the temperature is defined). Such a particle is not a point mass:
it owns a surface which authorizes contact forces with other particles.

1.3.2 The Lagrangian View

A first way for describing the fluid motion is to give the trajectories of all the
fluid particles. Such a description is the Lagrangian one. It may be summarized
by the set of trajectories of all fluid particles that were in the domain D;, at t = fo.
Mathematically, it is the set

D, = {X(I,XA) | Xy € Dto,l > t()}

Such a description is used in some specific studies where it provides simplifications.
However, generally speaking, its use is not very popular because of some intrinsic
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difficulties in the expression of stresses. We refer the reader to the end of this chapter
for a more detailed presentation.

1.3.3 The Eulerian View

The most natural way to represent the motion of a fluid is certainly the intuitive one
used to describe the flow of water in a river. In such a case, we would say that the
stream is fast in one place at a given time and hardly noticeable in some other place
and some other time. Thus doing, one describes the velocity field as a function of
space and time. Actually, if the vector function

v(x,y,z,t)

is known, then everything is known about the fluid flow. The use of the velocity field
as a function of position and time gives the Eulerian description of the flow. This is
the most popular way of doing and we shall use it almost all the time from now on.

1.3.4 Material Derivatives

Quite often, we shall consider the time evolution of some quantity, like ¢, which is
attached to a fluid particle that one follows.
To express the variations of ¢, we introduce the derivative

D¢
Dt

also called material derivative or Lagrangian derivative (see Sect. 1.10). ¢ may
be any quantity (scalar, vector, tensor) depending on space coordinates and time
¢ = ¢(x,y,zt). When we attach ¢ to the motion of a fluid particle, the coordinates
X, y, z are functions of time

¢ = ¢(x(@), y(1),2(2). 1)

where x(t), y(t), z(¢t) represent the trajectory of the fluid particle. Now, the total
variation of ¢ is

¢ ¢ ¢ ¢
= —_ Y _— - d
(8t+v ax+Vyay+VZaz) !
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where we observed (dx/dt, dy/dt, dz/dt) are just the xyz-components of the velocity
of the fluid particle that we are following. Thus,

Dy _dp _ dp . dp 3¢

- o, 00,0 12
Dr = o T Vax TV TV (1.2
or
D¢ d¢
D = o POV (4

The operator D /Dt therefore symbolizes a differentiation along a curve, namely
along the trajectory of a fluid element. We shall see that this quantity appears very
often in the equations governing fluid flows. The term (v- V)¢ is called the advection
term and represents the transport of the quantity ¢ by the velocity field v. In a
steady flow, it represents the variations of ¢ along a streamline (a curve which is
everywhere tangential to the velocity field, see Sect. 1.3.7).

Another illustration of the role played by the advection term is given by the case
where ¢ is conserved by each particle. Thus,

D
D _y
Dt

In such a case, an observer measuring ¢ at a given point as a function of time will
see the variations of ¢ corresponding to the passing particles displaying their value
of ¢. Formally, this means

d¢

2 — _(v-V

5 = (V- V)
where the second equation shows that the temporal variations of ¢ at a given point of
space is only due to the advection term characterizing the transport. If v is uniform
then any function ¢ (r — vt) is such that D¢/Dt = 0.

1.3.5 Distortion of a Fluid Element

An important aspect of the motion of fluid particles is their proper motion. Indeed,
we mentioned above that, although of vanishingly small size, fluid particles own
a surface and a volume. Thus, they can be distorted by a non-uniform flow. To
visualize this effect, it is convenient to consider a fluid particle of parallelepipedic
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Fig. 1.1 Evolution of a fluid 5 +9 €
element

shape which we may characterize by a vector & (see Fig. 1.1). If we express the
variation of & with time we find

E+0E =&+ v(x+ &)t —v(x)ét
Assuming that & is very small compared to x, we have
Vx+ &) =v(x) + (§-V)v+ O
at first order and thus
06 = (§-V)vét (1.4)
Using indicial notations'
8& =§&;0,v; 6t
In this expression we discover the tensor “velocity gradient” whose components

are 0;v;. As any second order tensor, it can be decomposed into its symmetric and
antisymmetric parts:

1 1
Bivj = E(E),-v,- + ajv,-) + 5(3,‘\/’]’ — ajv,-) = Sjj + aijj

These two parts play very different roles. Let us first focus on the antisymmetric one.
We note that it is represented by only three components (a2, d23, a3;). Actually,

'We shall often use these notations which are very handy. In Chap. 12 “Mathematical comple-
ments”, we give a summary of what is needed to go ahead with these notations. Let us recall here
that we always use the implicit summation on repeated indices. Thus a - b = Z?=1 a;b; is just
noted a; b; .
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these components are related to the curl of the velocity field. Indeed,

1 1 1
a; = z(0;v; — 0;v;) = =(8abj — 8udj) 0k vi = = €ijmEnmuOi v
2 2 2
where we introduced the Kronecker symbol §; and the completely antisymmetric
tensor € (its components are just =1 or 0, but see Chap. 12 for basic properties).
Therefore,

1
aj = EE[jm(V X V)m (1.5)

This expression shows that the three components (aj», a»3, as;) are just the com-
ponents of the curl of v up to a factor 1/2, since € is either zero or unity.
Expression (1.5) is useful to understand the physical meaning of [a], and con-
sequently that of the curl. We may uncover it by calculating the variation of &
associated with [a] only, namely

8& = §ja;dt = %Gjimgj(v X V)t = (%(V X V) x S) 8t

i

This expression shows that the variation of a fluid element associated with [«] is just
a solid body rotation at the angular velocity

Q= lV XV
2
This result gives us the physical interpretation of the vector V x v, also called the
vorticity and enlights the wording curl for the operator V x.

Since a solid body rotation does not distort our parallelepipedic fluid element, its
deformation must be contained in the remaining part of the velocity gradient tensor,
namely [s]. This symmetric part of the velocity gradient tensor is called the rate-
of-strain tensor. The distortion effect of [s] on a fluid element can be explicited by
considering the variations of the length of the vector &. Indeed,

8(E%) = 2£:88 = 26:E;0,v;8t = 2&&; 51

where we used the fact that &&;a; = O since a;; is antisymmetric and §;§; is
symmetric. Thus, only [s] contributes to the variation of the length of & and thus
to the distortion of the fluid particle. In order to appreciate more completely the
effects of the deformation it is useful to express the variations of & in a basis where
[s] is diagonal. Such a basis always exists because [s] is symmetric. In this new basis
the variation of & associated with [s] is

88 = &;s;6t = &;5;8t
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where no summation is assumed on the indices in the last expression. This equation
shows that the fluid element is stretched in the i-direction when s; > 0 or
destretched when s; < 0. It is then easy to compute its volume variation at first
order due to the velocity field:

86 | 8& 8%

8V = (&1 + 881) (&2 + 852) (63 + 8&3) — 16283 = £16:83 (5—1 + % + g) + O(88%)

= £16:5(s11 + 520 + 533)8t + O(88%)
But 511 + $22 + $33 is just the trace of [s] and we have
Tr(s) =s;=V-v,

so that the relative volume variation of the fluid element is

S—V = (V.v)dt (1.6)

Vv
This result shows that the dilation or contraction of fluid elements is associated
with the trace of the rate-of-strain tensor, which is also the divergence of the
velocity field. Hence, expanding elements appear in flows with positive divergence
while contracting elements are where divergence is negative. Note that this result is
independent of the chosen basis as the trace of a tensor is invariant in basis changes.

1.3.6 Incompressible Fluids

An important model for the description of fluid flows is the so-called incompressible
fluid. For such a fluid the density is assumed constant. This assumption is very
popular as it much simplifies the equations of motion (and the physics of the fluid).
In addition it is quite a good approximation for liquids which are only slightly
compressible. Moreover, we shall see later that even gas flows can be modeled
by such a fluid provided the velocity is small compared to sound velocity (see
Sect. 3.2.5).

From (1.6) we see that if the volume of a fluid element does not (or cannot) vary,
then

Vv=0 (1.7)
Fluid particles neither expand nor contract. This is the main constraint that must be

met by a fluid whose density variations can be ignored. We shall find this relation
again when studying the implications of mass conservation.
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1.3.7 The Stream Function

In the foregoing section, we found out that the flow of an incompressible fluid must
meet the constraint V - v = 0. Let us now consider a further simplified case when
the fluid flow is two-dimensional. If x and y are cartesian coordinates in this plane,
V .v = 0Oreads

vy | vy

=0.
ax dy

It is easy to show (see exercise 3) that (1.7) implies the existence of a function
¥(x, y,t) such that

_ v _v
V“‘_ay’ Y= T

(1.8)

called the stream function. The expression of a two-dimensional flow is therefore
contained in that of a unique scalar field, namely the stream function. This wording
explicits the fact that isolines of the stream function are always tangential to the
velocity field and therefore trace out the velocity field lines or the streamlines.
Indeed, along a streamline

0 0
dy =0 — a—wdx+a—wdy=0 — —vdi+vdy=0
X y

vxdx] 0 <= vparallel todl

vy dy

When the flow is three-dimensional this idea can be generalized but two stream
functions are needed. This is easily understood if one remembers that in three
dimensions the velocity field has three components that are constrained by one
equation (1.7). Hence, one is left with two independent quantities. Without loss
of generality, one can write

v=Vx(ya)+V xVx(ya)

In this expression the choice of a is not imposed. In spherical geometry one usually
choose the radial vector r. The first term is then called the foroidal velocity field
because the field lines are on a torus. The second term is the poloidal field; its field
lines are generally not confined on a surface except in the axisymmetric case where
they can be drawn in a meridian plane ¢ = Cst.
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1.3.8 Evolution of an Integral Quantity Carried by the Fluid

In the following, we shall meet the time evolution of a quantity (mass, momentum,
energy) associated with a fluid domain D (volume, surface, line). In the case where
the points of the fluid domain have a velocity equal to that of the fluid at every
instant, the domain is called a material domain. It is always made of the same fluid
particles. In other words this domain is a kind of macroscopic particle.

We shall later need the expression of the material derivative of a quantity f
integrated over a material domain V(¢). So, we first express

d
— r,t)dvV
it L, f(x,0)

as a function of the local derivatives of f. For this, we write

) / fe+dri+dyav' — [ fendv
V(t+di) 0

— ,0)dVvV =

dt V() f(r ) dt

(1.9

We develop the first integral to first order and since dr = vdt, we obtain

f+dr,t +dt) = f(r,t) + l;—]:dt

However, volume V(¢ + dt) is slightly different from volume V'(¢) become the
velocity field distorts it. To take into account this distortion, we shall still integrate
over V() but with a distorted elementary volume dV’. From (1.6) we know that

dV' =dV +dVV - -vdi =dV(l + V-vdi) .

Using this expression in (1.9), we finally get

(D—f+fv-v)dv=/m (%+V-(fv))dv

d
dt S(r0dv = / Dt at
(1.10)

dt Jy V@)

The same exercise can be repeated with a contour entrained by the fluid. Let us
evaluate

d
— A(r,t) - dl
dt C(1)
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As above, we need considering the variations of the fluid element d1, which is
modified at time ¢ + dt just as & in (1.4). Hence,

dV = dl+ (d1- V)vdr

and thus

4 A(r,t)-dl:sﬁ

DA
(—-dl+A-(dl-V)v) (1.11)
dt Je C(t)

Dt

which is more handy if we use indices

4 A(r,t)-dl:¢

DA; )
=L A0y ) dl (1.12
dt Jeq cm( Dt ) )

This expression can be simplified by noting that
Aja,-vj :ai(AjVj)—VjaiAj and 8,~A,~—8,-Aj :Gjik(VXA)k

Hence, it turns out that

04

(_f_(vx(vXA)),-) d (1.13)

d
- A(r,z)-dl_yg -

dt Je c®

1.4 The Laws of Fluid Motion

In the foregoing section we presented the quantities that are used to describe a
fluid flow. In this new section we shall express the laws of Physics that govern
the evolution of these quantities. They are derived from the general principles
expressing the conservation of mass, momentum and energy.

1.4.1 Mass Conservation
1.4.1.1 The Equation of Continuity

We consider a fixed volume of fluid V' whose mass is

M = pdV.
W)
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Its variation with time is given by the mass flux density pv crossing the surface (S)
bounding the volume (V). Let dS be the surface element oriented by the external
normal n so that dS = ndS. Hence

M 9
_:_/ ov- dS / —pdV:—/ V.pvadv (1.14)
dt (5) (v) 0t )
dp
— P yv.pv)av=0 (1.15)

Note that the minus sign in (1.14) comes from the orientation of the surface (S):
when v is parallel to dS the mass M decreases. Equation (1.15) being true for any
volume the integrand must be vanishing and we have

dp

V.pv=0 1.16
3t+ pv (1.16)

which expresses locally the conservation of mass. This equation is often referred to
as the continuity equation. One may also write it using the material derivative of p,
namely

P vy (1.17)

which shows that the density of a fluid element varies because of its volume variation
expressed by V - v, since its mass is constant.

Equations (1.16) and (1.17) can also be derived directly from (1.10) using a
volume attached to fluid particles and setting f = p. One may remark that the
flux term f( 5PV dS disappears then.

As expected, when p =Cst, all these equations lead back to (1.7), namely the
case of incompressible fluids.

1.4.1.2 Material Derivative with Mass Conservation

In most cases physical quantities like energy, momentum, are not attached to the
volume of elements but to their mass dm = pdV. This implies that when writing
the balance between losses and gains for a fixed volume as in (1.14), we always face
integrals taking into account the flux of the quantity carried by the mass flux across
(S). In general, if ¢ is such a physical quantity and Sy its volumic sources, we have

Variations of ¢ in V = ¢ carried by v through S + Sources of ¢
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or, mathematically,

d
— pop dV = —/ ppv-dS + / S¢ dV
dt J) (s) )

which can be rewritten as

/ ap—d)dv_—/ V~(p¢v)dV+/ Sy dV
) 0t ) )

¢

<~ +p
%) (¢ 8t

) AV =— [ (¢V-pv+pv-Ve)dV + | S4dV
) )

While using the equation of continuity, we find that

0
/ —¢dV+/ pV-V¢dV=/ Sg dV (1.18)
o W) W)
or
p— dv = / Sy dV (1.19)
/ ) Di w !
As (1.15) this relation is valid for any volume V' and is therefore valid locally as
D¢
— =38 1.20
Py ¢ (1.20)

We shall see that the equations of momentum, energy or entropy all share this
structure. ¢ is then a velocity field (the momentum per unit mass), the internal
energy or the entropy per unit mass.”

Let us now rederive (1.20) using a volume V(¢) attached to the fluid. From its
definition, this volume contains the same fluid particles at any time. So,

Variations of ¢ in V(t) = Sources of ¢

or, mathematically, it reads

1 o dV:/ Sy dV
dt Jyq V)

20One may often find in literature the terminology “specific entropy” which also means entropy per
unit mass.
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From (1.10)

d D(po) )
— dVv = _— V-
dt Jyq pe /V(t) ( Dt LA

av / (2 4 ovv) + o 22 av
= — -V —_—
vo LP\Dr TF PDi

Using the equation of mass conservation (1.17),

<[ pav —/ 222 4y (1.21)
dt V(t) V(t) Dt '

We immediately find (1.20). This derivation is much faster than the preceding one
and we shall prefer it in the following.

1.4.2 Momentum Conservation
1.4.2.1 The Stress Tensor [o]

Before expressing momentum conservation, we need precising the way fluid
elements interact. Contact forces are specific to the mechanics of continuous media.
Their existence shows again the fact that fluid particles are not point masses but
small volumes with a surface on which contact forces can be exerted. Let us consider
an elementary surface dS on which an elementary force df is applied. These two
vectors are related in a very general way by

df = [o]dS
or with indices

df; = oydS;
We thus define the stress tensor [0] and at the same time the stress T = [o]n applied
on a given point of the surface whose normal is n. Thus defined, the stress is a force

per unit surface. One then makes the hypothesis that [o] depends only on the local
properties of the flow.?

3This implies in particular that the stress tensor is independent of the surface on which the stress is
computed. It is independent of its orientation n and its curvature radii. That would not be the case
if the given surface is the seat of surface tension at the interface between a gas and a liquid. Some
additional terms must be taken into account (see (1.70)).
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Let us show now that [o] is a symmetric tensor. If S is a surface covering some
volume (V), we note that the resultant of stress forces on S can also be written as
the resultant of volumic forces since (see Sect. 12.2):

/ Gidej =/ ajCTijdV
(S) )

Hence, one can always associate a volumic force with a surface stress. If we consider
a fluid element, the above identity just says that the resultant of contact forces on a
fluid particle is equal to the divergence of the stress tensor. Let us now consider the
torque exerted by the stress forces on the volume. We have

m= [ (exd), = [ (r x [0]dS),
(S) $)

m; =/ €ijkX j O dS) =/ 01 (ejjrx jorg)dV (1.22)
(S) V)

But this torque can also be expressed with the volumic force associated with the
stress:

m; = (r x Div[o]); dV = / €k X j 000 dV (1.23)
) )

where we introduced the vectorial divergence Div of a symmetric tensor which is
such that

(Divlo]); = 90 = 905
The equality of expressions (1.22) and (1.23) implies that

0; (eijkxjokl) = €jjkX; 00y — Eijk81j0k1 + €ijrx; 0joy = €ijk X j 0,01

< €jkOkj = 0

which is equivalent to saying that the stress tensor is symmetric as shown in Chap. 12
(see (12.5)), so

—— (1.24)

The symmetry of [0] has been obtained after equating (1.22) and (1.23). This
implicitly assumes that the fluid does not contain any torque density.
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1.4.2.2 The Equation of Momentum

We are now in a position of using the conservation of momentum for some arbitrary
fluid volume. The variation of momentum of a fluid volume thus reads

d
— pvdV:/ de—i—/ [0]dS
dt J) ) )

or, with words,

Variation of total momentum = Resultant of volumic forces
+ Resultant of stresses applied on (S)

Using the theorem of divergence and (1.21), we find

Dv

2V v = / £4V + / Div[o]dV
) Dt ) )

or, locally,

DY Divie] +f (1.25)
— = Div|o .

PDi

This equation is just Newton’s second law applied to a fluid element of unit volume.

We note in passing that the expression of acceleration

Dv v
a=_-=- +(v-V)v
is nothing but the material derivative of the velocity. This expression of the
acceleration can be obtained in a more intuitive manner by considering a fluid
particle whose trajectory is (x(¢), y(¢), z(¢)). Its velocity at time ¢ where the particle
is at (x, y, z) is just the fluid velocity v(x, y, z, t). The velocity along the trajectory
is thus v(x(¢), y(¢), z(¢), ) while its acceleration, also along the trajectory, is

dv ovdx odvdy dvdz ov

U oaxdl dydr Tazar ot

Since at the given point (‘é—’t‘, %, %) = v, we may write
dv ov n av N av N ov  odv V) Dv
— = —4+vy—4+v,—+—=—+(v-V)y= —
dt T ox 79y 0z ar ot Dt

which shows that the material derivative of the velocity is indeed the acceleration of
the fluid particle.
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The term (v- V)v can also be written (v-V)v = (VX v) xv+ V%V2 (see (12.42))
which gives another expression for the acceleration, namely

Dv  Ov 1,
Dr = o1 +(va)xv+V2V (1.26)

Now if we look back to (1.25), we see that the acceleration of a fluid element is
controlled by two volumic forces, namely f and Div[o].

The volumic force f is specific to the problems at hands. Such a force may be
the gravitational force (usually arising through buoyancy), the Laplace force if the
fluid is electrically conducting (see Chap. 10) or an inertial force like the Coriolis
one (see Chap. 8).

Div[o] is the volumic force due to stresses. Unlike f it is always there (except in
very special cases like the one describe in Sect. 1.10.2) and represents contact forces
between fluid elements. It depends on the nature of the fluid. Its expression needs a
full discussion that will be presented in Sect. 1.5.

1.4.3 Energy Conservation

The equation translating the conservation of energy expresses the first principle of
thermodynamics with a fluid element. The energy balance reads:

d 1
— p(—v2+e)d\/=/ f-vdV+/ viaidej—/ F-dS+ | QdV
dt v 2 W) ($) (8) )

where e denotes the specific internal energy,* F is the (surface density of) heat flux

and Q the power of local heat sources. These sources may come from chemical

reactions (burning), from nuclear reactions (in the central part of stars) or from a

phase transition (latent heat release in water vapour condensation for instance).
Using words, the latter equation would read:

The variation of energy (kinetic and internal) per unit of time =
the power of volumic forces + the power of stresses
+ the heat flux through S + the power of local heat sources

Transforming surface integrals into volume ones and using (1.21), we get

D3V +e)
/ p2l Ty —/ V-FdV+/ f-vdV+/ 9;(viopdv+ | Qav
Dt
) ) ) ) )

4The existence of internal energy for a fluid element assumes that the fluid is locally at
thermodynamic equilibrium. We shall come back on this point thoroughly when we discuss the
constitutive relations.
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the volume being any volume, the equation is valid locally, hence:

D(3v* +e)
P =V F v+ 0, (vi0y) + Q (1.27)

1.4.3.1 The Equation for Internal Energy
The foregoing equation of energy combines the internal and kinetic energies.
However, the evolution of kinetic energy is governed by the sole equation of

momentum. Indeed, taking the scalar product of (1.25) with v, we find

D(%vz)
Dt

=f'V+V,'3jCTij (1.28)

which is just the expression of the kinetic energy theorem applied to a fluid element:
the change of kinetic energy of a fluid element comes from the work of applied
forces. Subtracting the evolution of kinetic energy from (1.27), we find the evolution
of internal energy:

De

,OEZ—V-F-FGUBJ'W-FQ (129)
which expresses locally the first principle of thermodynamics: the variation of
internal energy of a fluid particle is equal to the heat received (—V - F + Q) plus the
work of the stresses 0;;0;v;. We should note that this work depends solely on the
local rate-of-strain tensor [s] since [o] is symmetrical, 030 v; = 0y;sjj.

1.4.3.2 The Equation for Entropy

Instead of using the internal energy to express the conservation of energy, it is often
useful to choose the entropy. This is easily derived from the equalities relating the
various thermodynamic quantities

de = Tds — PdV = Tds + Pdp/ p*

These equations link total derivatives and thus apply to all partial derivatives with
respect to time and space. Hence they can be combined to yield a relation between
material derivatives:

De Ds P Dp
—=T—=+ =5— (1.30)
Dt Dt p* Dt
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Combined with mass conservation (1.16), it gives

Ds
This equation expresses that the variation of entropy of fluid elements is the result
of heat sources inside the elements plus the heat flux coming from the neighbouring
elements, plus some heat generation due to (viscous) stresses (but see Sect. 1.6.2).

1.4.4 The Constitutive Relations

The foregoing (1.16), (1.25), (1.29) or (1.31) need now to be completed by the
expression of the stress tensor [o] and the heat flux F as functions of the quantities
used to describe the fluid (velocity, temperature, density, ...). Such relations are
called the constitutive relations and are specific to the microscopic nature of the
fluid. They will describe the thermodynamic, the mechanical and the thermal
behaviour of the fluid. The constitutive relation(s) describing the mechanical
behaviour is called the rheological law. It may also include solids. As we shall see
below, the frontier between fluids and solids is not as neat as common sense would
say.

1.5 The Rheological Laws

1.5.1 The Pressure Stress

In order to give an expression for [0], we shall first consider the case of a
homogeneous and isotropic fluid in thermodynamic equilibrium. The isotropy of the
fluid and the fact that the stress tensor depends only on the local properties of the
fluid demands that the eigenvalues of [o] (which is always diagonalizable because
of its symmetry) are identical in the three directions of space (Fig. 1.2). Hence, we
can write:

0 = —PS,] (132)

where P is a scalar function that we shall identify to pressure. One may wonder
whether such a definition gives the same function to which we are used to in
Thermodynamics, namely the intensive variable associated with the volume. To
check this point, we just need to consider the equation of internal energy (1.29)
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Fig. 1.2 The pressure force

)

neglecting F and Q. The variation of internal energy e for a small volume AV
during 8¢ is

AVpSe = 0;0;v; AVSt = —PV -vAVS1 = —P§(AV)

where we used (1.6). Since pAV is just the mass Am of the small volume,
8(AV)/Am is the variation of the specific volume (the volume occupied by a unit
mass). Hence, the foregoing relation, taken in the limit AV — 0, leads to the
differential relation —P = % where v is the specific volume. This expression is
the well-known one of Thermodynamics.

From (1.32) we also find out the volumic force associated with the pressure.

Taking the divergence of [o] yields:
f,‘ = 8jo,;,~ = —8,;,~8]~P = —8,-P = —(VP),‘

This expression shows that the volumic pressure force is the opposite of the pressure
gradient: pressure forces push the fluid elements towards the low pressure regions
as expected. The International System unit of pressure is the Pascal but many others
are still in use (see box).
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The units for pressure (or stress)

Pressure and more generally the stress is expressed in pascals, however other units are often
used; we give here a short memo of this little zoo.

e The pascal (Pa) is the official unit of the International System; this is the stress exerted by a
force of 1 Newton on 1 square metre. This is a rather small quantity since the atmospheric
pressure is of the order of 10° Pa.

» The bar = 10° Pa is the appropriate multiple close to the atmospheric pressure.

e The millibar =100Pa was the unit used in meteorology; it is now replaced by the
hectopascal.

e The barye = 0.1 Pa is the pressure unit in the CGS system and represent the stress of one
dyne per square centimeter.

e The atmosphere = 101,325Pa is an old fashion unit which is the mean atmospheric
pressure at sea level.

* The kilogram force per square centimetre is also an old fashion unit, which has been much
used in engineering. This is the pressure exerted by the weight of a one kilogram mass on
one square centimeter; thus 1kgf/cm? 2~ 98100 Pa which is approximately 1 bar.

* The pound per square inch = psi is the British equivalent of the kgf/cm?. 1 psi = 6894.7 Pa

* Lastly, the torr ou millimetre of mercury : This is the pressure exerted by a 1 mm thick
layer of mercury in the Earth gravity field. 1 torr = ppggl mm = 13595 * 9.8 * 0.001 =~
133, 3 Pa. 760 torr ~ 1 atm.

1.5.2 The Perfect Fluid

The foregoing discussion brings us to the case of an ideal fluid whose stress tensor
would be composed solely of the pressure term. Such a fluid is called a perfect fluid
or an inviscid fluid. We shall see below that it is actually a convenient idealization
of real fluids.

If we write the momentum equation for such a fluid, it reads

Dv_ yp (1.33)
Por = ’

which is known as Euler equation. Here, all the extra volumic forces, which are
problem dependent, have been removed.

Perfect fluids are also endowed with the property that they do not allow any heat
flux. Hence, F is vanishing. If no heat source is present (Q = 0), the equation of
internal energy (1.29) now reads

De
—__ —_PV. 1.34
Y \4 (1.34)
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and that of entropy

Dy (1.35)

Dt '
This latter relation shows us that the entropy of fluid particles in a perfect fluid
remains constant. We find here the first conservation law specific to perfect fluids.
This point will be developed in Chap. 3.

1.5.3 Newtonian Fluids
1.5.3.1 The Viscosities

Everybody has experienced the slow flow of honey compared to water. The two
fluids being of similar density, the pull of gravity on fluid particles is similar and
therefore the very different flowing behaviours they show must be associated with
some intrinsic property. Such a property is manifestly related to the ability of fluid
particles to slide on each other. Water particles slide much more easily than honey
ones! This feature of the fluid is commonly called viscosity. Physically, we see
that this property characterizes the interactions between fluid elements or, in other
words, contact forces. As such, they are surface forces and thus should be included
in the stress tensor, added to the pressure. Hence, the stress tensor components
should read:

_ visc
o = =P8 + 0}

In order to find out the expression of this new term, we shall consider a fluid in
equilibrium (both mechanical and thermodynamic). We perturb this equilibrium
so that the fluid moves. We assume that the perturbation is small enough so that
the fluid particles remain close to the thermodynamic equilibrium. We need now
to find out which quantity is appropriate to measure the disequilibrium. At first
glance, one may say that the velocity is the appropriate quantity. This is not the case
(unfortunately!) because we note that if the velocity field is uniform, then a simple
change of the reference frame will make it vanishing and thus fluid elements are
still in equilibrium. Hence, non-uniformity of the velocity field is essential. We may
thus think to the derivative of the velocity field, namely 9;v;. This is still not the
good quantity. Indeed, we have seen in Sect. 1.3.5 that the velocity gradient tensor
is composed of two parts, the symmetric and antisymmetric ones, which describe a
very different evolution of the fluid particles. The antisymmetric part describes the
local rotation of fluid particles: it can be zeroed by the use of a rotating frame. We are
thus left with the symmetric part of the velocity gradient tensor, the so-called rate-
of-strain tensor, which cannot be nullified by any change of frame. The rate of strain
thus appears as the most simple measure of the fluid mechanical disequilibrium at
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the level of a fluid particle. We therefore write

0jj = ftj(skl)

The six functions fj; are unknown and depends, a priori, on the local properties of
the fluid. One way to simplify the problem is to use our assumption of the fluid being
close to equilibrium. In such a case, the rate of strain is small and the functions can
be expanded around zero:

oij = f;(0) + Lijusu + -+ (1.36)
with
o
Lo = (L) (137)
981/ (151=0)

fi7(0) is the value of the stress when the rate of strain is zero. It is obviously equal
to —PJ;;, namely to the stress at equilibrium, which comes only from the pressure.
The rank-4 tensor L characterizes also the equilibrium properties of the fluid. As
before we assume that the fluid is isotropic. Since L is symmetric with respect to
permutation of i and j and k and /, the only rank-4 tensor sharing these properties
is of the form:

Liju = a(Subj + 8i8ir) + b8ijdu (1.38)
where a and b are two scalar coefficients specific to the fluid. We thus find
05 = — P38 + 2as; + bsud;
or
0;j = —P&; +a(@iv; + 9;vi) + b(9kvk)3;

In general, one gives the following equivalent form of [o]:
2
0 = —P5ij + MU a,'Vj + 8jvi — g(aka)&'j + C(aka)(S,:j (1.39)

where we seta = pand b = ¢ — 2/3u. p is called the dynamic shear viscosity
while ¢ is the dynamic volume viscosity or bulk viscosity (sometimes also called
second viscosity). These two coefficients are expressed in pascal second (Pa-s) also
called the poiseuille. We may note that Pa s = kg m~! s~!'. Now, we note that

2
Tr (a,'Vj + iji — g(Bka)SU) =0
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so that it is natural to introduce
2
Cjj = 8,-vj + iji — g(ak\/k)gij . (1.40)

These are the components of the shear tensor [c] which corresponds to a deforma-
tion without change of volume.

All the fluids which verify the rheological law (1.39) are called the Newtonian
fluids. Despite the severe simplifications that have been done, this constitutive
relation is verified by a large number of gas or liquids. This comes from the fact
that it depends solely on very general properties of the fluid at equilibrium, namely,
isotropy and closeness to local thermodynamical equilibrium. In Sect. 1.9.1 we’ll
discuss the limits of these hypothesis and will introduce the non-Newtonian fluids.

We shall also very often use another viscosity coefficient, namely the kinematic
viscosity defined as

_ M
y = —
P

2 1

which is expressed in m~-s™".

1.5.3.2 The Microscopic Side

We introduced viscosity by considering the friction of fluid elements on each others.
However, one may wonder what is going on at the microscopic level. Let us first
remark that friction implies an exchange of momentum: we can slide indefinitely
on the ground if we do not lose our momentum. Viscosity thus characterizes this
exchange of momentum between fluid particles. Such an exchange is of course due
to atoms or molecules which carry that quantity in their thermal random motion.

A simple dimensional argument gives us the order of magnitude of kinematic
viscosity. Indeed, such a coefficient is dimensionally the product of a velocity
by a length. At the microscopic level, typical velocity and length scales are the
mean thermal velocity and the mean free path (see Chap. 11 for a more detailed
introduction). These scaling imply that the kinematic viscosity of a gas increases
with temperature and decreases with density. Conversely, the viscosity of liquids
tends to decrease with temperature or increase with density, since in this case the
exchange of momentum is rather due to attractive interactions than to collisions.
Thus, for a given fluid, viscosity is minimum near the liquid—gas phase transition.
The foregoing arguments show that the less viscous fluids will be found with low
temperature gases.’

3The fluids with very low viscosities are extremely interesting experimentally as they allow us
to reach very high Reynolds numbers in a small size experiment. This is the reason why many
experiments have been realized with helium near its critical point (2.2 bars and 5.2 K). In these
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Table 1.1 Transport coefficients and Prandtl numbers of some common fluids at a temperature of
20 °C (data are from various sources)

Fluid u (Pas) v (m?s™h) ¥ (Wm™'K™ P
Air 1.810° 1.51073 0.026 0.71
H, 8.910° 1.0 10~ 0.19 0.69
Water 1.01073 1.0107° 0.6 7.0
Ethanol 121073 1.5107° 0.18 16
Glycerin 1.3 1.01073 0.28 10*
Olive oil 0.1 1.01074 0.17 1,400
Mercury 1.551073 1.14 1077 8.7 0.025

In Table 1.1 we give values of the viscosities of some common fluids. We did not
include values of the bulk viscosity. The reason is that this quantity has been scarcely
measured; such a measurement is indeed difficult. One needs a flow without shear
and with large values of V - v. This is realized using sound waves. For nitrogen,
Lighthill (1978) finds { ~ 0.8x. On the theoretical side, using an approach based
on Boltzmann equation, one can show that bulk viscosity is zero for monatomic
gases (at least in the Boltzmann description).

In many cases, however, ¢ is just neglected and speaking of viscosity
refers to the shear viscosity p. This approximation is usually known as Stokes
hypothesis. We see that it is certainly well verified by monatomic gases and
liquids.

1.5.3.3 The Momentum Equation and Navier-Stokes Equation

The expression of the rheological law for Newtonian fluids allows us to give an
explicit form of the momentum equation for these fluids. It reads

Dv
P = VP 4+V(V- V) + VX (vxVu)+puAv—vAp+V((u/3+)V-v)+£
(1.41)

conditions indeed, helium reaches its minimum viscosity. It is not a liquid, thus atoms interactions
are weak and while still a gas, the velocity of atoms is minimized. The kinematic viscosity obtained
in such conditions is v >~ 2 1078 m?/s.

We shall not discuss the case of superfluids which needs to be approached from the
side of quantum mechanics and refer the reader to the book of Guyon et al. (2001) for an
introduction.
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This equation may also be written

D 1
pF: =_VP —i—,u(Av—i— EVV-V) +2(Vu - V)v

2
+VMXVXV+(V§—§VM)V'V+f (1.42)

This is Navier—Stokes equation. This equation much simplifies for a fluid with
constant density and constant viscosity. One then obtains the so-called Navier®
equation:

Dv
— =-VP A 1.43
&y + uAv (1.43)

where we discarded external body forces f. This equation is used either when density
variations are negligible or, if they are not, as a first step before attacking the
complications due to compressibility.

1.6 The Thermal Behaviour

1.6.1 The Heat Flux Surface Density

The next constitutive relation to be addressed is that prescribing the heat flux density
as a function of the other variables. The heat flux essentially appears when the
temperature field is non-uniform.” This means that the temperature gradient is the
appropriate quantity to measure the distance to thermal equilibrium. We shall write:

F=F(VT)
As for the mechanical constitutive relation, we also assume that the fluid elements

are not far from equilibrium and therefore that the temperature gradient is small; we
can thus expand to first order the heat flux density, namely

Fi(VT) = Fi(0) — x;0,T

SHenri Navier (1785-1836) published this equation in 1822 in Mémoire sur les lois du mouvement
des fluides, in Mém. de I’ Acad. des Sciences.

7Other processes like gradients of chemical species may also generate a heat flux but these
processes usually give a weak effect that will be neglected in this book.
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(5,m)
i =—
’ 8(8jT) 3, T=0

is the tensor of thermal conductivities. If the fluid is isotropic, conductivity is the
same in all directions and we can write y; = x§;. Noting that at equilibrium the
flux is vanishing, we have F; (0) = 0. We find the well-known Fourier law, namely

where

F=—yVT. (1.44)

The minus sign has been introduced so that the thermal conductivity is positive. As
shown in the next section, the sign of this quantity is controlled by the second law
of Thermodynamics. As we introduced the kinematic viscosity for the momentum
diffusion, it is also convenient, as far as heat transport is concerned, to introduce the
heat diffusion coefficient or thermal diffusivity

K= 2 (1.45)
Pep

which is also expressed in m?/s. The ratio between the kinematic viscosity v and
this quantity is

Y
P =

— (1.46)
K

and called the Prandtl number which is specific to each fluid. Note however that this
number may vary with temperature and density since diffusion coefficients usually
depend on the thermodynamic state of the fluid.

1.6.2 The Equations of Internal Energy and Entropy

With the foregoing Fourier and Newtonian rheological laws, we are in a position to
write a complete equation for internal energy or entropy. If we consider (1.29) and
replace F and [o] by their respective expression, we find that

D
ijZV-(){VT)—PVN—}-D-i-Q (1.47)

where

vis 2
D= oy qajv,- =0;v; (u(a,-v,- +0;vi — g(akvk)&‘j) + é'(Bkvk)&j)
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represents the viscous dissipation. This term may also be written as
D = (s + ay) (1ey + £ @0vi)dy) = sy (e + E@ivi)dy)

because a;ic;; = 0 and a;;8; = Tr[a] = 0. Using the definition (1.40) of c;;, it turns
out that

2
2S,:,' = Cjj + g(akvk)&'j s

which implies

1

2
D = E (Cij + g(Bka)SU) ([LCij + g(ak\/k)&j)

Developing this expression and using the fact that the trace of [c] is zero (Tr[c] =
5,']'(,’,:,' =O), we find

D = Sejey + @)’ (1.48)
or, explicitly
D = ik +k + chy + 2], + 2¢h + 23] + LV - ¥)?
Later, we shall use the more condensed expression
D= %(V:V)2+§(V-V)2 (1.49)
Now, the entropy equation is deduced from (1.31), namely
Ds
’OTE =V-(xVT)+D+Q (1.50)
This expression may be used to show that the Second Principle of Thermodynamics
implies the positivity of transport coefficients like the viscosities and the thermal
conductivity. For this purpose, we need considering a volume attached to the fluid
particles. The Second Principle says that the entropy of this mass increases more

than the entropy produced either by the internal heat sources or by the external heat
flux. In mathematical terms this is expressed by

d F
— pstE/ (——)-dS+/ ng
dt Jy so\ T viy T
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Using (1.21) and (1.50), this inequality may be rewritten as
dv
/,[ﬂVDHT+D}—zO
V@) T

As it must be verified for any velocity or temperature field, it implies that
x=0,  pu=0 =0

These inequalities show that the irreversibility of thermodynamic transforma-
tions is intimately associated with the diffusion phenomena that are represented by
these coefficients.

To summarize, the equations of motion of a Newtonian fluid are

dp
— 4+ V.pv=0 1.16
o1 + V-pv (1.16)

Dv
P = —VP V- V) +VX(vXV)+pUAV=VAu+V((/3+E)V-v)+f
(1.41)
De
Py =V (VT) = PV-v+D+Q (1.47)
or
Ds

’OTE =V-(yVT)+D+Q (1.50)

These equations are however still incomplete. We need to specify the thermo-
dynamics relations, which relate the pressure, density and temperature, internal
energy, etc. since the fluid is assumed to be locally at (or asymptotically close
to) thermodynamic equilibrium. These are those characterizing the thermodynamics
including the equations of state. We present them now.

1.7 Thermodynamics

In the foregoing sections we discussed the constitutive relations related to the
mechanical and thermal behaviours. They told us the way the fluid behaves when
it is slightly perturbed from equilibrium. We now complete them with the relations
which specify the actual local thermodynamic equilibrium.
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Let us recall that a medium in thermodynamic equilibrium is characterized by a
relation like

e=e(s,V,N,...) (1.51)

which expresses internal energy as a function of the various extensive quantities of
the system (entropy, volume, number of particles, etc.). From this general relation,
one derives the equations of state:

de
T=—
ds
p_d¢ (1.52)
av
de
Tep = ——
"TON

which defines the intensive quantities of the system, the temperature 7', the pressure
P or the chemical potential 7.

1.7.1 The Ideal Gas

The expression of internal energy of an ideal gas as a function of extensive
variables is

o\
e = e (—) expl(s — s0)/c1} (1.53)
Po

Two classical relations come out of this expression:

PV = nRT (1.54)
and
1 P . Cp
e=¢T =———, with y=— (1.55)
y—1p Cy
where R = kgN is the ideal gas constant, or the macroscopic expression of

Boltzmann constant kg using Avogadro number A. n is the mole number and ¢,
(resp. c;) is the specific heat capacity at constant volume (resp. pressure).
Equation (1.54) may be written as

P = RypT (1.56)
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which is more convenient in fluid mechanics. R« = R/M where M is the mass of
a mole of gas. Specific enthalpy reads

while various expressions of entropy can be derived from

P dp
Tds = de— —dp =dh+ —
P P

For instance:

s = ¢, In(T/To) — R« In(p/po) + 50 (1.57)
s = ¢, In(T/Ty) — RuIn(P/Py) + 5o (1.58)
s = ¢y In(P/Py) — cp In(p/po) + o (1.59)

1.7.2 Liquids

If we focus on liquids, thermodynamics is simplified because liquids are little
compressible. In most cases, the density variations mainly come from temperature
variations. A simplified model consists in retaining only such a relationship like

p = po(1 —a(T —Tp)) (1.60)

which is completed by e = ¢T. « is the thermal dilation coefficient and ¢ = ¢, ~
Cp.

1.7.3 Barotropic Fluids

A symmetrical case to that of liquids appears when the density is solely a function
of pressure

p=p(P) or P=P(p) (1.61)

In most cases this is not an equation of state of the fluid, but an approximation well
verified in certain circumstances.

Two examples are frequently met: the cases of an isothermal or of an isentropic
ideal gas. For these very cases, pressure is just a function of density:

P =kp or P = Kp?”
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Such a dependence arises when temperature or entropy variations can be neglected.

In the general case, such relations do not exist. The flows are called baroclinic
because isobars and isotherms are inclined with respect to each other. Barotropicity
and baroclinicity may have important consequences on the nature of the flows as it
will be shown in Chaps. 2, 3 or 7.

1.8 Boundary Conditions

The laws of fluid motion that we have established are partial differential equations.
Their solutions are completely defined when boundary conditions and initial
conditions are given. These conditions describe the various interactions (mechanical
or thermal) of the fluid with the outside, which can be a solid, another fluid, the
vacuum or the fluid itself.

1.8.1 Boundary Conditions on the Velocity Field

Two types of boundary conditions are usually met by fluid flows. They describe
respectively the interaction fluid—solid and fluid—fluid. They are called the no-slip
and free-surface boundary conditions.

1.8.1.1 On a Solid Wall

The boundary conditions generally assumed at the frontier between a solid and a
fluid is that the velocity of the fluid equals that of the solid.® If the solid is at rest,
the fluid velocity must vanish on the boundary

v=20 on the bounding surface (1.62)

This boundary condition is usually referred to as the no-slip boundary condi-
tion. This condition may be interpreted as if the fluid stick to the solid. This
hypothesis is far not obvious. Actually, it has been much debated by the end
of the nineteenth century. The question was largely solved by G.I. Taylor in
1923 when he studied the stability of a fluid flow between two rotating cylinders
(the so-called Taylor—Couette flow). The agreement between theory (using these

8This assumption means, among other things, that the solid is impermeable which is not always the
case. If the solid is a porous medium, some mass flux may occur through the boundary. Actually,
flows through porous media are very much studied because of their numerous applications like oil
or gas extraction.
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boundary conditions) and experiment showed that the no-slip hypothesis was
certainly quite relevant.’

We may note that if the fluid is perfect (no viscosity), no adherence is possible on
the wall. Of the three conditions (1.62), only a single one remains, namely v-n = 0
where n is the normal to the solid wall. The component of the velocity perpendicular
to the wall vanishes, while the other components are unspecified.

1.8.1.2 On a Free Surface

The other type of boundary conditions on the velocity is the one called the free
surface or free interface. This is the condition to be used when the fluid defines
itself the surface, just like the sea surface is defined by that of the water. Let

S(r,t) = Cst
be the equation of this surface. At any point of this surface

aS aS aS 9S
dS=0= —dt+dx— + dy— + dz—
ot + x8x+ y3y+ “oz

Similarly as (1.3), (dx/dt, dy/dt, dz/dt) represents the velocity of the surface, which,
by definition, is also the fluid velocity. Hence, a first boundary condition is

0S aS 0S aS

B_t+vx8x +vy5+vz3_z:0 on S(r,t) = Cst

or

D—S =0 on S(r,t) = Cst (1.63)
Dt
This last relation shows that the material derivative of the surface is zero at the
surface. In other words, the surface is fixed for a fluid particle at the surface, or, a
fluid particle initially at the surface remains attached to it.

We note that this boundary condition is purely geometrical. We did not use any
physical law to write it down. In many situations, it is simplified because the surface
is time-independent. In such a case it reads

v-VS =0

° A rather complete account of the history of the quest of the correct boundary conditions at a solid
wall may be found in Goldstein (1938, 1965). The irony of the story is that scientists are presently
looking for materials that let the fluid slipping on the walls. This is especially important when
dealing with small pipes in microfluidic (see Tabeling, 2004).
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But VS is a vector perpendicular to the surface. Setting n as the unit normal, the
preceding relation is just

v-n=0 (1.64)

expressing that the flow is tangential to the surface at the fluid boundary.

At this stage it is worth pointing out that this condition, much simpler than (1.63),
is often used even if the surface is not strictly steady. This approximation is
physically acceptable when the time scales or the length scales of the problem at
hands are far larger than the ones arising from surface waves (capillarity or gravity
waves).

As may be guessed, condition (1.63) is not sufficient to fully specify the solution
of a problem. We need now expressing the continuity of the stress when crossing
the surface. In other words, on each side of the surface the stress must be the same
(up to the sign). For instance, if the surface separates the fluid from the vacuum, we
write

[clIn =0 on S(r,t) = Cst

Together with (1.63), this relation constitutes the free-surface boundary conditions.
If we compare to (1.62), we may note that these boundary conditions are four. The
additional equation is in fact the one that determines the surface S(r,¢) which is
also an unknown of the problem. We shall dwell on this problem more thoroughly
when discussing the propagation of surface waves in Chap. 5.

1.8.1.3 The Stress-Free Boundary Conditions

In many situations the bounding surface is known and it is useful to assume that the
fluid slips freely along the boundary, either because this boundary separates fluids
of very different densities, or because in a first approach of a complex problem,
one wishes to avoid boundary layers generated by a solid—fluid interface or waves
allowed by a moving surface.

A fluid freely slipping on a surface does not exert any tangential stress.
Mathematically, this is expressed by

nx(ojn)=0 on S (1.65)

This vectorial condition in fact amounts to two scalar conditions and needs to be
completed by the kinematic one (1.64). Conditions (1.65) together with (1.64) now
give three scalar conditions, just like (1.62). These conditions are known as stress-
free or free-slip conditions.
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1.8.2 Boundary Conditions on Temperature

The foregoing boundary conditions described the dynamics of the interaction of the
fluid with its environment. They are related to the momentum equation and mass
conservation. We should now ask for the conditions which are associated with the
equation of energy. Such conditions express the way energy is exchanged through a
bounding surface. Since we restrict our discussion to the case where the boundary
does not allow for mass exchanges, fluxes of energy are only of microscopic origin,
namely from thermal conduction. Generally speaking, these conditions require the
continuity of temperature and energy flux, namely

T=T, ad n-F=n-F,. (1.66)

For a fluid with constant conductivities, the second condition is also a condition on
the temperature gradient.

When we study the equilibrium or the motion of fluids in presence of temperature
gradient, we shall use the notion of perfect conductor. Such a medium is an
idealization of a material that can accept any heat flux. Thus, when a fluid is in
contact with a perfect conductor its temperature is fixed to that of the conductor.

The other extreme case is also useful: it is the perfect insulator. For this medium
the heat flux is set to zero (or fixed to a given value), while the temperature can take
any value. An example is given in Chap. 7.

1.8.3 Surface Tension

Free surface boundary conditions are often taken at the interface of two immiscible
fluids. A complete description of free-surface boundary conditions thus calls for
the introduction of surface tension. This phenomenon is the consequence of the
fact that some energy must be spent to increase the surface of contact between two
immiscible fluids. Only liquids own a surface tension at their boundaries because
the liquid phase is characterized by an attractive interaction between the molecules
(a van der Waals type force). The energy of the liquid is therefore minimized when
each of its molecule is surrounded by other similar molecules. Those molecules on
the boundary have a higher energy. Hence, a larger bounding surface demands more
energy.

If we introduce y, the ratio of the energy variation to the surface variation, namely

dE = ydS, (1.67)
we note that y is both an energy per unit surface and a force per unit length. Let

us therefore consider a surface, delimited by a contour C, taken on the surface
separating two immiscible fluids. If we decompose dS into dldn, dl being locally
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parallel to C and dn perpendicular to it, ydldn can be interpreted as the work done
by a force ydle, to extend the surface by Ldn (L is the length of C). Thus, the
surface supports a resulting force

R = 95 ydle,
©)

where e, is the outer normal unit vector of C. The use of the divergence theorem in
two dimensions (see Sect. 12.2.3) allows us to transform this integral into

R:/ Vy ds (1.68)
)

which shows now that variations of surface tension are sources of a surface force, or,
in other words, of a stress. This stress has the peculiarity of being purely tangential,
which implies that if the surface separating two Newtonian fluids experiences
variations of the surface tension, some flow will appear for no static constraint can
compensate this stress. Such a phenomenon is at the origin of Marangoni—Bénard
convection which is an instability coming from the dependance of y with respect to
temperature (see Sect. 6.3.5 for a detailed presentation).

The foregoing discussion focused on a first effect of surface tension. Indeed,
we restricted the surface variation dS to the local tangent plane of C. This is just
like the case where one pulls on a piece of rubber to increase its size. However,
another simple way of extending the surface exists: this is by pushing it in a direction
perpendicular to its actual surface. An easy way to make this idea quantitative is to
consider a drop of liquid. If its radius varies of dR its surface varies of dS = 87 RdR,
and the energy dE = y8mRdR must be spent. As above, this energy may also be

interpreted as the work of the surface tension I = 8w Ry, which has a surface
density
¢ 8wR 2y
= —VYe, = —e
4R TR

It works like a normal stress. Hence, inside a liquid drop at equilibrium, the pressure
is slightly higher than outside the drop since

2y
- ext:_Pint"'?

2y
— Pint:Pext"i'?

as demanded by the continuity of normal stress.
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The foregoing formula is however specific to the sphere. With more general
surfaces, two radii of curvature (R and R;) are necessary to describe the surface
variations associated with a normal motion. This leads to the famous Laplace
formula

1 1
Py = Pext+V(R_+R_) (1.69)
1 2

which is demonstrated in Landau and Lifchitz (1971) for instance.

Finally, the two effects of surface tension that we just described can be gathered
in a single formula which states the dynamic boundary condition at a liquid—gas
interface

[o1igIn + ¥ (i + L) n+ Vy = [04n (1.70)
Ry R
Here, n is the normal of the surface that is oriented from the liquid to the gas.
Curvature radii are positive if the centre of curvature is inside the liquid.
We shall come back to surface tension in a few occasions: first, for some aspects
of fluids equilibria, and then when considering the propagation of surface waves.

1.8.4 Initial Conditions

Finally, we should say a few words about the boundary conditions on time, in
other words the initial conditions. The equations of motions are all of first order
in time. This means that the initial state of the fluid completely determines its future
evolution. This is true only in principle. The example of meteorology just shows that
the behaviour of the fluid is unpredictable beyond a few days, essentially because
the initial state is always imperfectly known and imperfections are amplified by the
nonlinearities of the equations of motion.

1.9 More About Rheological Laws: Non-Newtonian Fluids *

1.9.1 The Limits of Newtonian Rheology

We have seen that the (mechanical) perturbations with respect to the thermodynamic
equilibrium could be characterized by the rate-of-strain tensor [s]. We then admitted
that such perturbations were small enough so as to justify a Taylor expansion of the
stress tensor with respect to the rate of strain. We need now to precise what we mean
by “small”.
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While we introduced [s], and more generally dv, we in fact introduced a
macroscopic time scale T,. Indeed, if L and V' are respectively a typical length
scale and a typical velocity scale of the flow, the rate-of-strain tensor introduces

L
Tm == V
as a new time scale since |s;| = V/L. This time scale expresses the rate at which

a deformation is imposed to the fluid. But a material which is moved away its
equilibrium state tends to come back to it on a relaxation time scale T, through
processes of microscopic origin. This time scale is of course specific to the fluid.
The Newtonian behaviour is therefore the asymptotic limit when the relaxation time
scale is vanishing. We now see that a new non-dimensional number has arose with
the ratio of the macroscopic and microscopic time scales. This is known as the
Deborah number:

The Newtonian limit is thus De = 0 while the opposite limit De = +o0 would
rather describe a solid. Between these two extremes a huge variety of rheological
laws exist, which we shall briefly present now.

1.9.2 The Non-Newtonian Rheological Laws

In the foregoing presentation of the Newtonian rheological law, we show from rather
general arguments that o;; = fj;(sx). Thus doing, we did not take the most general
expression (so as to keep the argument as simple as possible). However, now that
we realized that the small parameter was the relaxation time of the fluid, we may
anticipate that the stress sustained by a fluid element is not only a function of the
actual rate of strain but may also be a function of the strain itself (or the past rate of
strain!); hence one would rather write:

! ds
o5 = f; (/ skldt/,skl,d—:l,...) (1.71)
—00

where the dots designate either integral or derivatives of higher orders. Equa-
tion (1.71) is however not fully satisfactory yet. Indeed, the important strain is the
one which the fluid element experiences during its trajectory. We thus see that in
this perspective, the Lagrangian formulation is interesting for the description of
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non-Newtonian fluids. Finally, [o] is usually not an explicit function of [s] and
therefore one should solve something like

! Do, ! Ds
g ,¢ ledl‘/,(ffkl,—kl,... =F ,¢ Skldt/,skl,—kl,...
. Dt ’ Dt

(1.72)

In this horrendous expression, _(ﬁi o Skidf’ means an integral along the path followed
by the particle. In fact, this equation underlines the theoretical difficulties to be faced
when modelling the motion of non-Newtonian fluids. This is one of the reasons why
experiment is an important tool for the investigation of rheological laws.

In order to get a broad idea of these laws, we shall now review the main ones
which have emerge throughout the exploration of non-Newtonian fluids.

1.9.3 Linear Viscoelasticity

Let us assume that (1.72) is linear with respect to each function and that the
coefficients are constants. We thus write

DCT,'j D"Gij

4ot Dy
oo a
Dt " Ditn

Dym

aopoi; + a; =b0S,'j + o+ by

which is the general law of linear viscoelasticity. Let us further simplify this relation
by retaining only ao, by, b; so that

DS,’j
= s 40 20 1.73
%= H (s] o Dt ) ( )

When the fluid element faces a constant stress, its deformation is
sj=—(1—e"/7)

This expression shows that the rate of strain follows the stress with a delay of order
7,. This is Kelvin’s model."”

10Tn fact such a model rather applies to solids. The rate of strain is then replaced by the strain
itself. Kelvin’s solid does not react instantaneously to a stress and reaches its equilibrium after a
relaxation time ,.
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Another model is Maxwell’s one. In some sense it is the symmetric of Kelvin’s.
The roles of stress and strain are exchanged. One sets b} = 0 and a; # 0 or

4+, 20 (1.74)
Ojj Tr———— = S} .

ij Di HSij

For a given rate of strain, the stress is delayed of 7. As an example, let us imagine
a situation where the fluid is smoothly flowing. Suddenly, the shear is suppressed.
The stress disappears only progressively according to

0jj = pLSije_t/rr (175)

Typically, a fluid element “remembers” its past deformation and imposes a stress
to its neighbourhood. Such fluids have some “memory”. They are very common.
Honey and jam are typical examples of our everyday life. Everybody has seen the
droplet of honey rising up after the flow being cut. The stress does not vanish
immediately after the flow being stopped and is able to move the fluid up. Such
a behaviour is understood as the results of the intrication of macromolecules
constituting the fluid.

The foregoing model, devised by Maxwell is certainly much simplified and needs
to be complemented by nonlinear effects that we now discuss.

1.9.4 The Nonlinear Effects

Nonlinear effects play a major part in the dynamics of non-Newtonian fluids. To
appreciate their influence, it is useful to consider very simple flows. Let us consider
the basic shear flow

ve =y/T

where T is the time scale imposed by the shear. For a Newtonian fluid the stress-
tensor components would read

Oxx = Oyy = Ozz = —P
Oy =u/T, 0y,=0,;=0
The normal stress on a surface is the same in every direction (and equal to the
pressure). Non-Newtonian fluids can generate an anisotropy controlled by the

direction of the shear. This anisotropy is defined by two new quantities:

O—xx_o-yy:le UXX_UZZ:NZ (1.76)
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As this anisotropy is not depending on the sign of the velocity and therefore on the
sign of s,,, N1 and N, are even functions of s,,; hence

Ny (041 (sxy)2 + O((Sxy)4)

N, = 052(Sxy)2 + O((sxy)4)

for low values of the shear. This is a nonlinear effect from the beginning. Experi-
mentally, it turns out that Ny 3> |N;| and N, < 0. The raise of such anisotropies
due to shear is also called the Weissenberg effect and may have some spectacular
effects (see the box).

Now, nonlinearities may come simply from the relation

Oxy = f(Sxy)

In general this relation is written oy, = [L(Sxy)Sxy SO as to emphasize the dependence
of shear viscosity on shear. Fluids for which p increases with s,, are called shear-
thickening fluids while fluids with the opposite behaviour are shear-thinning fluids.
The nonlinearity of the relation may be interpreted as the demonstration of a change
in the fluid structure.

In this category, one finds essentially diphasic fluids as for instance fluids
containing solid particles or polymeric solutions. The actual behaviour of the
fluid depends on the volume occupied by each phase. Clearly, such fluids have a
relaxation time which is not macroscopically small.!!

1.9.5 Extensional Viscosities

The foregoing discussion may seem a little restrictive. Many flows are not mere
shear flows. Moreover, Newtonian fluid flows may also generate normal stresses.
Let us consider the following two-dimensional flow:

ve=x/T, v,=—=y/T, v,=0 (1.77)

also shown in Fig. 1.4. It is associated with the following stress tensor components:

o =2u/T, oy =-=2u/T, 0y=0 (1.78)

"Note that in the case of a fluid containing solid particles, the relaxation time is the characteristic
time needed by a solid particle to reach the local fluid velocity when their initial velocities differ.
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Fig. 1.3 The open-syphon
effect due to extension
viscosities in a 0.75 %
aqueous solution of
polyethylene oxide (credit
Barnes et al. 1989)

Within rheology, new viscosities are associated with these types of flows. These are
the extensional viscosities which may have unusual effects (see Fig. 1.3). They are
defined using three types of motions:

* The planar extension is shown in Fig. 1.4. One sets

O — 0y = up(T)/T

where w p is the planar extensional viscosity. For small values of the rate of strain
(T — o0), we should recover the Newtonian fluid; therefore, from (1.78)



1.9 More About Rheological Laws: Non-Newtonian Fluids ®

Fig. 1.4 Flow corresponding

=

Fig. 1.5 Uniaxial extension

W

b

JAim pp(T) = 4
* The uniaxial extension (see Fig. 1.5) flow has the following form
ve =x/T, v,=—-y/2T, v,=—z/2T
One then sets
Oxx — Oy = Oy — 0, = Re(T)/T (1.79)

In the Newtonian limit, it turns out that g = 3.
* The biaxial extension flow (see Fig. 1.6) is canonically

ve=x/T, v,=y/T, v,=-2¢/T
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Fig. 1.6 Biaxial extension 7

and one introduces pgp such that
Oxx — Oz = Oyy — 0y = pupp(T)/ T
One may notice that this latter motion can be obtained from the uniaxial

extension flow by changing the sign of the rate of strain. This means that the
two viscosities are related by

wes(T) = 2ue(=T/2) (1.80)

Non-Newtonian fluids in your kitchen!

We already mention honey and jam as typical common examples for the viscoelastic behaviour.
But there are other examples which are worth mentioning: for instance consider the egg white.
This is certainly a strange fluid. Visco-elasticity may easily be noticed but with slightly unusual
tools one may put into evidence the Weissenberg effect, namely the rise of normal stresses after
imposed shear strain. Just take an electric drill equipped with a rod and let the rod rotating in
the egg white. You will note that instead of being expelled from the rod, like water, this fluid
climbs along the rod. The shear imposed by the differential rotation generates normal stresses
strong enough to overcome gravity.

Corn flour (Maizena™) mixed with a small amount of water gives another yet very non-
Newtonian fluid. We suggest the following experiment. Let us mix 15 g of this flour with 2 cm3
of water in a plate. When the mixture is smooth enough, let your finger slowly moving through
this fluid. You will notice that the liquid just flows around it like any other viscous fluid.
However, if you now increase the speed of your finger, you will immediately notice that the
fluid thickens very strongly (be careful of not throwing away the plate!). This fluid may even
be rolled between hands as a solid ball, but it will flow immediately after you cease rolling it.
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1.9.6 The Solid—Fluid Transition

When a solid is stressed by increasing constraints, there is a first threshold beyond
which the deformation is no longer reversible. This threshold marks the limit of
elasticity. It is called the yield stress. With a still increasing stress the plastic
behaviour of the solid leaves the place to a fluid behaviour when a new threshold
(that of plasticity) is overcome.

This schematic behaviour shows up at very high values of the stress for most
of the solids, however there exist some materials where these critical stresses are
very low. For instance, a paint should behave as a fluid so as to be easily spread
but as a solid for very small stresses so as not to drain when spread over a wall.
All such fluids (or solids!) are called Bingham12 fluids (or Bingham plastics). Their
relaxation time is zero or infinite according to the value of the stress with respect to
a critical stress. This is an ideal view of course!

1.10 An Introduction to the Lagrangian Formalism ®

We briefly sketched out in Sect. 1.3.2 the idea of the Lagrangian description of
fluid motion. We showed that it consists in describing the set of trajectories of fluid
particles as we would do with a set of point masses. One thus no longer describes a
velocity field but a field of displacements & indexed by the initial position of each
particle. If x is the current position of the particle, we have:

x(q.7) =q+&(q,1) (1.81)

The displacement &€(q,?) is a function of the initial position ¢ and time. The
relation (1.81) may be interpreted as a mapping: it makes the correspondence
between the Eulerian coordinate x and the Lagrangian one . Such a relation
makes sense only if it is one-to-one. Particles cannot collide! This constraint is
expressed by the fact that the Jacobian of the transformation (1.81) cannot vanish.
This quantity is

J = Det[M] (1.82)
where [M] is the matrix

0x; 0&;
O O (1.83)
o g

2Named after Eugen C. Bingham (1878-1945) who proposed the first mathematical description
of these fluids.
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1.10.1 The Equations of Motion
1.10.1.1 The Eulerian and Lagrangian Variations

We first need to introduce the notion of Eulerian and Lagrangian variations of some
quantity ¢ (a scalar, vector, tensor).

The Eulerian variation of a quantity is the one obtained at a fixed Eulerian
coordinate, so at a fixed x. Therefore, this variation is simply

8p = p(x,t +6t) —p(x,1) = %—(f&

Following the same idea, the Lagrangian variation requires a variation at a fixed q.
We shall denote it A¢. It turns out that

d
Ap = $(a.1 +80) — $la) = $la.0) + & Vo + S8t~ pla.0)

where we introduced &€ as the displacement of the particle during 6z. The two
variations are related of course:

Ap =06¢p+&-Vo (1.84)
Now if we observe that
Ay D¢
§t Dt

we understand why the operator [% has also been called the Lagrangian derivative.

Relation (1.84) gives also the variation of a vectorial or tensorial quantity,
however only if the projection basis is constant. In such a case, however, the
formulation is not fully Lagrangian as the basis is not local. A more consistent
formulation includes a frame dragging by the fluid. In this context, the Lagrangian
variation of a vector reads

AV =8 +E 90 — v 9

One subtracts to the variation of each components the variation due to the changing
frame. The quantity &/ 9;v' —v/3;&" is called the Lie derivative of the velocity. This
formulation allows an expression of the equation of motion in the most complex
situations such as General Relativity or non-Newtonian fluids.

This is of course very specialized matter and we refer the reader to a reference
like Friedman and Schutz (1978) for a discussion of this formalism.
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1.10.1.2 Density Evolution

In the Lagrangian formulation the evolution of density is not controlled by a partial
differential equation. One just needs to compute the Jacobian of the transformation
relating the initial and final positions. Indeed, the conservation of the mass of each
particle implies that

dm = pd>q = p'd*x = p'Jd’q
— o =p/J (1.85)

This formula also shows that if the fluid is incompressible then p is a constant and
J = 1: [M] is a unitary matrix.

1.10.1.3 Momentum Evolution

Unlike density, the evolution of momentum is not easily obtained from the
Lagrangian formulation. The main difficulty comes from the fact that the force field
which applies to a fluid particle is generally a function of the instantaneous position
of the particle, namely its Eulerian coordinates. A change of coordinates is thus
necessary to express all the terms with the Lagrangian coordinates. For instance, a
perfect fluid in a gravitational potential obeys

, %€ ,
o = VP =0 Vg, (1.86)

where ¢, is the gravitational potential and Vy indicates that derivatives of the
gradient are taken with respect to the Eulerian coordinates x. If we now express
every term with the Lagrangian coordinates q, we need to use the matrix [M] to
make the coordinate change. Since V4 = [M ]V, the Lagrangian form of the Euler
equation is

/ aZS —1 / -1
Py = M7 VeP — ' [M]7' Vs (1.87)

This formulation is uneasy to use unless for some specific problems where
simplifications occur.
1.10.2 An Example of the Use of the Lagrangian Formulation

The following example taken from cosmology shows that it is sometimes a wise idea
to use the Lagrangian coordinates. The primordial gas which led to the formation of
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galaxies is usually modeled as a fluid without viscosity and pressure, solely subject
to gravitational forces. Neglecting the expansion of the Universe, the evolution of
the fluid is given by

%% -1

a5 = —[M]7 Vg, (1.88)

ot
If we restrict this equation to one dimension, its solution can be derived immediately.
Indeed, in this case particles cannot cross and experience a constant gravitational
pull related to the mass staying on left and right of the particle. Thus, gravitational
acceleration is now a Lagrangian invariant and (1.88) leads to the solution

1
X = q + up(q)t + Eg(Q)Iz (1.89)

1.11 Exercises

1. Express the vorticity of the velocity field £2e; x r; what is its peculiarity?

2. What are the components of the rate-of-strain tensor in cartesian coordinates for
the velocity field £2e, x r? What can be concluded? Same question for v = Ar.
Are these flow fields compatible with incompressibility?

3. Show that (1.8) implies V - v = 0. Show the reciprocal (more difficult). How
can we express v, and vy as a function of the stream function v in plane polar
coordinates? Same question for a flow field with two components, v, and v, in
cylindrical coordinates (meridional motion).

4. Retrieve the equation of continuity from (1.10).

5. Show that if all the components of the rate-of-strain tensor are zero then the
velocity field is the sum of a rigid rotation and a translation.

6. Show that the evolution of the kinetic energy of a viscous fluid inside a fixed
volume V, not submitted to any force field, is

dE,
c—_ [ pav=-E / (cicy)dV (1.90)
dt ) 2Jwy

where the second equality is valid only for incompressible fluids.

7. Give a demonstration of the relation (1.80) between uniaxial and biaxial viscosi-
ties.

8. Show the equivalence of the two forms of the viscous force in (1.41) and (1.42).
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Further Reading

The fundamentals of fluid mechanics may be found in many books. The reader
may find an interesting presentation in Batchelor (1967), Faber (1995), Landau and
Lifchitz (1971, 1989), Paterson (1983), Ryhming (1991). For a presentation in the
general framework of the mechanics of continuous media one may consult Sedov
(1975). As for non-Newtonian fluids, the monograph of Barnes et al. (1989) is a
good introduction. The Lagrangian formalism is discussed in papers like Friedman
and Schutz (1978) while the Lie derivative is developed in the book of Schutz
(1980). Some notes about the history of the discovery of heat convection may be
found in Chandrasekhar (1961).
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Chapter 2
The Static of Fluids

The equilibrium of a fluid is certainly the most simple fluid “flow”. However, not
moving is not that easy for a fluid and we shall learn here, among other things, which
conditions need to be satisfied for a fluid to remain in equilibrium.

2.1 The Equations of Static

Ifweletv =0, B_at = 0and 0;; = —pd;;in (1.25) and (1.29), we find that mechanical

and thermal equilibrium are governed by:

—VP +f=0 @.1)
V-(xVT)+ Q=0 2.2)

where f is an applied volumic force field and Q a heat source density. We
immediately note that if f is zero then pressure is uniform.

The first important result from the above equations is that a static solution exists
if, and only if, the external force can be derived from a potential. Thus, we may set
f = —V¢,,, and solve for the pressure

P + ¢6X[ == CSt .

This solution shows that isobars are identical to equipotential surfaces. We now
know that if f is not the gradient of a potential no static solution exists. The fluid
flows.

Equation (2.2) gives the temperature field. If the thermal conductivity is constant
or a smooth function of the space coordinates, this equation has a solution.
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In most cases, f is proportional to the density p. Equations (2.1) and (2.2) need
then to be completed by the equation of state:

P =P(p.T)
The solution of the problem may be quite difficult, all the more that in general

x=xp,T)

2.2 Equilibrium in a Gravitational Field

The most common problem of fluid statics is certainly the one of a fluid at rest in a
gravitational field. In this case

f=—pVe, = pg

where ¢, is the gravitational potential. The equation of mechanical equilibrium is
then

VP 4 pVe, =0 (2.3)
which implies

1
Vx(-VP)=0 <<= VpxVP=0
P

This identity shows that isochore surfaces (i.e. surfaces where p is constant) need to
be identical to isobar surfaces for a static solution to exist. This condition leads to

P = P(p)
where we recognize the case of a barotropic fluid.

The foregoing result shows that a fluid in static equilibrium is necessarily
barotropic. Now, we also note that

1
VP 4+ Ve, =0
I

but because P = P(p), then p~'VP =V [dP/p,!

'We should observe that V [ dP/p = ((% / t%) VP = %VP_
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d
=4 V(/7P+¢g)=0

dP

A relation which determines the isobaric surfaces as a function of equipotentials.

2.2.1 Pascal Theorem

If we consider a fluid of constant density in a uniform gravity field, ¢, = gz, the
equation of mechanical equilibrium gives the relation

P 4+ pgz = Cst (2.5)

also known as Pascal? theorem. This relation shows that, in such a case, pressure
only depends on the altitude z. We also see from this result that, in fluids at rest in
a uniform gravity field, the difference of pressure between two points is just pgh,
where £ is the difference in their altitude.

A very direct application of this theorem is the barometer. For instance, the
mercury barometer (see Fig. 2.1) is based on the fact that a column of mercury 76 cm
high imposes a pressure difference similar to the atmospheric pressure at sea level.

T/

Fig. 2.1 The principle of a mercury barometer: the density of mercury is 1.36x10* kg/m3 so that
pgh equals the atmospheric pressure (101,325 Pa) for h=76 cm. The void left by mercury is filled
with mercury vapour but its pressure at room temperature is only 0.16 Pa, which is negligible
compared to atmospheric pressure

2Blaise Pascal (1623-1662) was a French scientist and writer. As far as Physics is concerned, he is
famous for his work on fluid’s equilibria, de I’Equilibre des liqueurs and de la Pesanteur de I’air
(the weight of air).
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2.2.2 Atmospheres

Planetary atmospheres are a first application of the equilibria of fluids. The static
solution is of course an approximation of an atmosphere. The Earth atmosphere
is well known to be in constant evolution, with winds, clouds, etc. However, its
mean vertical profile is not far from the static equilibrium. Here, we shall restrict
ourselves to two very simple examples of atmosphere models: the isothermal and
the isentropic ones. The latter will be compared to the actual Earth atmosphere.

2.2.2.1 The Isothermal Atmosphere

In some circumstances it is useful to simplify a model of atmosphere by assuming
it being of constant temperature. Using the equation of state of ideal gases P =
Rs«pT, which we combine with (2.4), we find the pressure profile

P(z) = Poe—z/zo

where 70 = R«T/g is called the scale height of the atmosphere. This expression
shows that pressure, and hence density, decrease exponentially in an isothermal
atmosphere. From the expression of z, we also see that the extension of such an
atmosphere increases with temperature.

2.2.2.2 The Isentropic Atmosphere

The Earth atmosphere is far from being isothermal; everyone hiking in mountains
has noticed that air temperature decreases with altitude. This is because the
atmosphere of our planet is not very far from an isentropic state as we shall see
now.

Thermodynamics gives a relation between the differential of enthalpy, entropy
and pressure, namely

dh = Tds + dP/p .
For an isentropic fluid, ds = 0 and thus
dh =dP/p

This relation implies a similar one on all the partial derivatives so that we also have
Vh = VP /p. Mechanical equilibrium reads VP = pg, hence

Vi=g (2.6)
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Fig. 2.2 Temperature and density profiles for the standard Earth atmosphere

This equation shows that the enthalpy gradient is just the local gravity. If the gas is
ideal, then 7 = ¢, T and

vr =2 2.7
Cp

which demonstrates that the temperature gradient is, like gravity, constant and
directed towards the ground. This means that temperature decreases with altitude.
Now, (2.7) can be easily solved since g = —ge,. We find

T = To(1 —z/20) (2.8)

where we introduced the ground temperature 7 and, as before, the scale height
which is now zop = ¢,To/g. This quantity is only slightly different from the
isothermal case if we take T = Tj. Pressure and density are derived from the
relation P!™7T? = Cst valid for an isentropic ideal gas. They read

P = Py(1 —z/z0)"/™V (2.9)
p = po(l —2z/z)"/¥~D (2.10)

These expressions show that the isentropic atmosphere has a finite height, given by
20, unlike the isothermal atmosphere which is infinite. If we take standard values
for the parameters, namely Ty = 289K, g = 9.81 m/s? and ¢, = 1/2R, we find
Zo =~ 30km. In fact, the atmosphere of the Earth is much more extended because
isentropy is only approached in the troposphere (see Fig. 2.2 and the box on the
standard atmosphere).

The gradient of temperature is found to be —g/c, = —9.8K/km, which
represents a faster decrease than the actual atmosphere, which is close to —6.5 K/km.
This comes from the simplifications that we adopted: in our model, the atmosphere
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is dry and in an isentropic state: there is no heat exchange between the fluid
elements. Water vapour and heat exchanges reduce the temperature drop.

The standard atmosphere

The standard atmosphere has been defined for the needs in aeronautics and corresponds
approximatively to the annual mean at a latitude of 40 degrees in North America.
This atmosphere is defined up to an altitude of 86 km and is constructed with the
temperature gradients defined in each layer of the model. Air is assumed to be an
ideal gas with a mole mass of 28,9644 g, and located in a uniform gravity field with
g = 9.80665 m/s>.

Table 2.1 The standard Layers Altitudes in km | VT in K/km
atmosphere
Troposphere |0—11 —6.5
11-20 0
Stratosphere | 20 — 32 +1
32-47 +2.8
47 -51 0
Mesosphere | 51 -71 —2.8
71 -86 -2.0

On ground (altitude z = 0 m), temperature is 15 °C (288.15 K) and pressure is 101325 Pa.
Temperature decreases as 6.5 K/km up till 11 km, which is the upper limit of the troposphere.
There, the temperature is 216.65 K (—56.5 °C). At this altitude the stratosphere begins and the
temperature is first approximatively constant: this is the tropopause. The stratosphere contains
two other layers like the famous ozone layer (20-32 km), and extends up to 47 km. Beyond and
up to 86 km, one finds the mesosphere also divided into three layers (see Table 2.1). We should
note that in the stratosphere, temperature increases and reaches a maximum of —2.5 °C near
50 km. This heating is essentially due to the absorption of solar UV radiation by the ozone
molecules.

Beyond 86 km, we find the thermosphere where temperature increases again but density is so
low that some part of the gas is always ionized. We touch here the ionosphere which extends
up to 400 km, but this latter boundary is highly variable and rather fuzzy.

2.2.3 A Stratified Liquid Between Two Horizontal Plates

We now consider the equilibrium of a liquid inserted between two horizontal
metallic plates. Such a device is used to study thermal convection in the laboratory
(see Chap. 7). Here we shall describe the situation when the equilibrium of the fluid
is stable and no convection occurs. To simplify we imagine that the two metallic
plates are defined by the planes z = 0 and z = d, infinite horizontally. We also
surmise that the metallic plates are perfect heat conductors and therefore impose the
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temperature to the fluid at these two heights. We denote these temperatures by 75
and 7; (bottom and top).

Liquids are weakly compressible; we introduced with (1.60) their simplified
equation of state which we now use. Hence,

p = po(1 —a(T —Tp))

where o > 0 is the dilation coefficient which we assume to be constant. The thermal
conductivity y of the liquid is also assumed to be constant. With these assumptions
the equations of mechanical and thermal equilibrium read:

dp
~VP +pg=0 T2 P8
=
V- (xVT) =0 T _,
d?
where g = —ge, is the gravity. These equations can be easily solved and give the

temperature, density and pressure profiles:
T@ =T+ (Ti —Tp)z/d
p() = pp(1 —a(Ti = Tp)z/d)
P(z) = Py — ppgz + ppga(Ty — Tp)Z%/2d

The remarkable property of this system is that the temperature increase (or
decreases) linearly with the altitude z. The stable situation corresponds to the
increasing temperature. In this case light fluid is above dense fluid. The opposite
case is obtained with a top plate cooler than the bottom one. As we shall see in
Chap. 7, such a situation may be unstable if the temperature drop is strong enough.
In such a case thermal convection takes place.

2.2.4 Rotating Self-gravitating Fluids *®

Newton was the first to wonder about the shape of a rotating self-gravitating fluid.
He was indeed interested in the shape of the Earth. This problem has then been
tackled by the most renown mathematicians and physicists like Laplace, Jacobi,
Riemann, Poincaré, Cartan, Chandrasekhar among the most famous. Recently, these
results have been used in the theoretical approach of the dynamics of elliptical
galaxies which may be viewed as a fluid of stars (see Binney and Tremaine, 1987).

Here we shall focus on the simplest of these kinds of problem: that of a fluid of
constant density, self-gravitating and rotating uniformly like a solid body.
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We first assume that the shape of such a system is that of an axisymmetric oblate
ellipsoid and we look for the expression of its flatness as a function of its total mass
M and angular velocity §2. We shall verify afterwards that our assumption is indeed
consistent with the solution.

It may be shown that the gravitational potential inside an ellipsoid of uniform
density is given by

&(r,z) = —nGp(Ia* — Ays> — A32?)

where a is the equatorial radius and also the semi-major axis of a meridional section.
(s, ¢, z) are the cylindrical coordinates. We denote by e the eccentricity of this
meridional section. Constants I, A; and A3 are defined by

V1 —e2 )
] =2— arcsine
e

A =

V1 —e? (arcsine_\/l_—ez)’ A =2v1 —e2 ( 1 arcsine)
V1—e? e

e? e e?

In a rotating frame the momentum equation reads:
—VP —pVP — pVe. =0

where ¢, = —%.stz is the centrifugal potential. This equation shows that inside
the body P 4 p® + p¢, is a constant. Since the pressure is vanishing at the surface,
we have at this place

1
@ +¢. =Cst <= 7Gp(As> + A3?) — 59232 — Cst

which can be transformed into

S2 ZZ

2GpAs | wGpA, —27/2

Cst

This equation describes the surface of the fluid. Since we assumed it to be an
ellipsoid, we write it

SZ ZZ

=1

a? b2

where a and b are the semi-major and semi-minor axis of the meridional ellipse,
respectively. By simple identification, we get the relations
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a’> = Cst x 1GpAs

2.11
b? = Cst x (nGpA, — 2%/2) @11

Taking the ratio of these quantities (to eliminate the constant) and remembering that
a’® = b? + ¢? in an ellipse, where ¢ is the distance between the center and a focus,
while ¢ = ae, we find

92
27 Gp

= A — A3(1 —¢?) (2.12)

Using the expression of A; and A3, one may notice that the eccentricity (or the
flatness) of the ellipsoid depends only on the ratio £2%/p.

The volume of an ellipsoid is 4T”abc, where a, b and ¢ are the three semi-major
axis of the ellipses defining this volume. Because density is constant, the volume is
easily related to the mass and (2.12) may be rewritten as:

262%a®>  arcsine VA
- (3262 - Y1—¢
3GM e’

2 (2.13)
This equations gives the eccentricity as a function of rotation for a given density. It
needs a numerical solution. However, by plotting the right-hand side as a function
of e, like in Fig. 2.3, we immediately see that the solution is not unique: For each
ratio £22/p two eccentricities are possible. A low one and a high one. The latter is
in fact always that of an unstable configuration.

As Newton did at his time, we now focus on the case of slow rotation and
therefore on small eccentricities. An expansion of the right-hand side of (2.13)
yields the relation

%3 _de

GM 5

where we used the flatness instead of the eccentricity. The flatness is defined as

—b
g=1 =1-V1-e2x~e?)2
a

Observing that the surface gravity of the sphere is g = GM/a?, we find the
expression of &, namely

_ 502%
=i

&

Applying this formula to the case of the Earth, where M = 5.974 x 10** kg, a =
6.378 x 10°m, g=98 m/s? and 2 = 27 /24h, we obtain
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Fig. 2.3 The curve gives the value of the eccentricity of a MacLaurin ellipsoid when £22/p,
is known. The maximum, reached at e = 0.929956, shows that beyond some critical angular
velocity (such that %) > 0.2246657) no solution exists. In fact, an analysis of the stability
of the configurations demonstrates that all solutions with e > 0.9529 are unstable, but if
0.81267 < e < 0.9529 stable solutions exist only for an inviscid fluid. For rotations which give an
eccentricity larger than 0.81267, stable solutions for a viscous fluid are triaxial Jacobi ellipsoids

1

EEarth = E

which is only slightly larger than the actual flatness eee = 1/298. The difference
comes from the fact that the Earth is not homogeneous: central parts are much denser
that the outer ones (the core of the Earth is essentially composed of iron, with a
mean density of 10,500kg/m?® whereas the mantle is made of silicates and has a
mean density of p ~ 4,550 kg/m?). This central condensation of the mass makes the
shape of the Earth closer to that of a sphere.

2.3 Some Properties of the Resultant Pressure Force

When fluids are in equilibrium, one of the local body forces is the pressure gradient.
This mathematical expression of the pressure force, which thus derives from a
potential, implies some simple properties when it is integrated over a given volume.
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2.3.1 Archimedes Theorem

Let us consider a solid fully immersed in a fluid that is in equilibrium in a uniform
gravity field g. We wish to compute the resultant of pressure forces exerted on its
surface. By definition this is simply

F,.s = —/ PdS
(S)

where the differential element dS is oriented towards the exterior of the solid.
To evaluate this integral, we may observe that we can substitute to the solid an
equivalent volume of fluid without changing the equilibrium of the fluid around the
solid. Indeed, there exists an equilibrium distribution of pressure inside the volume
occupied by the solid that perfectly matches the outer distribution of pressures. It
is obtained by a mere continuation of the isobar surfaces inside (S) (see Fig.2.4).
Then, using the theorem of divergence (see (12.8)), the foregoing surface integral
can be transformed into a volume integral, like

Fres = — / VP dv
W)
Then, using the equation of mechanical equilibrium (2.3), we obtain
Fps = _g/ pdV = —Mfg
W)

where M ¢ is the mass of the fluid substituted to the solid. Archimedes theorem can
now be stated:

Fig. 2.4 Two equilibria of the fluid: with and without the solid
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The resultant of pressure forces exerted on a volume V immersed in a fluid at
equilibrium is equal and opposed to the weight of the displaced fluid.

This theorem can be applied in many situations. Note that p need not be constant.
However, we see that it is crucial that the solid is completely surrounded by a fluid
in mechanical equilibrium. This is because pressure needs to be continuous at the
surface of the solid; some example where this is not the case are given in exercises.

2.3.2 The Centre of Buoyancy

A practical problem when considering the resultant of pressure forces is to know
where to apply it. This is by definition the centre of buoyancy. When the buoyancy
force is applied to it, it gives the same torque with respect to any point. In
mathematical words, we need first the expression of the torque of pressure force
with respect to an arbitrary point O:

—/ r x PdS
(S)

where r = OM, M being the current point. Let us play with this integral using
(12.9) and (12.39); we rewrite it as

/ Vx(Pr)de/ vp xrde/ pgxrdV:gx/ prdV
W) ) W) W)

where we now see the appearance of a new point Cp, defined as

1
oC, = — / ordV
My Jw)

We thus find that

— —
/ —OM x PdS = OC, x (—M ;g) (2.14)
)

which means that the torque exerted by pressure forces is the same as the one exerted
by the resultant of pressure forces applied to the barycentre of the displaced fluid.
Two remarks are now in order:

* The torque of the buoyancy force is not modified if we apply this force on a point
different than C; provided that the new point is on a line defined by g and C,.

* The point where the buoyancy force is applied exist only if the fluid is in
equilibrium and if the pressure varies continuously around the solid (otherwise
(2.14) is not valid).
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Fig. 2.5 Push on a dam

2.3.3 The Total Pressure on a Wall

The resultant pressure force exerted on a wall may easily be computed if one notices
that the projection of the element dS on a plane whose normal is e;, is just dS; =
dS - e;. Hence,

Ezei-/ PdSZ/ PdSi
(8) (Si)

where the integral is computed on the projected surface (S;). If this surface is a
rectangle of width L and height H, like in Fig.2.5, and pressure is only a function
of z, we find that

0
F. = / (Pam — pg2)Ldz = LH (Pum + pgH/2) = LH P(—H/2)
—H

for an incompressible fluid.

2.4 Equilibria with Surface Tension

In Chap. 1 we pointed out that surface tension is a source of normal stress at the
surface of liquids. This stress is at the origin of some specific figures of equilibrium
that we shall investigate in broad lines (we refer the reader to more specialized work
for a detailed discussion, e.g. de Gennes et al. 2004).
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2.4.1 Some Specific Figures of Equilibrium
2.4.1.1 The Soap Bubble

This is certainly the most simple fluid equilibrium which involves surface tension.
There, only pressure opposes to surface tension. Neglecting any effect of gravity,
the equilibrium of a liquid in the thin film which makes a soap bubble is given by

2y 2y
Pair_?: ligs Pliq_

p: atm

where P, is the air pressure inside the bubble. Because the envelope is very thin,
R ~ R’ and

4y
Pint ~ Patm + ?7

a formula which permits the measurement of surface tension of some liquid—gas
interfaces.

2.4.1.2 The Catenoid

Let us imagine now a liquid film where pressure is the same on each side of the film.
In such a situation

1 1 1 1
AP=0=p(—+ — —  —4—=0
y(Rl +R2) Ry +R2

This equation defines a surface called the catenoid which is such that the sum of its
radii of curvature is always zero; one radius is always negative (see Fig.2.6).

Fig. 2.6 The catenoid
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2.4.2 Equilibrium of Liquid Wetting a Solid

The most spectacular effects of surface tension are certainly those associated with
the wetting of solids. For instance, water raises in glass tube while mercury goes
down (see Fig.2.7). These different behaviours are the consequence of both the
surface tension and the wetting properties of the solid by the liquid. These properties
may be condensed in a single quantity ¢, called the wetting or contact angle, in
Young theory.> His theory assumes that the contact line gas—liquid—solid results
from the equilibrium of three surface tensions: liquid—gas, liquid—solid and solid—
gas. The angle between the liquid—gas and solid-liquid surfaces is called the
contact angle ¥ (see Fig. 2.8). This theory gives a simple approach to very complex
phenomena.
The equilibrium of the contact line yields Young formula:

Yeg COS T + Yog = Vg (2.15)

- ) - 2

Fig. 2.7 Upward or downward displacement of a liquid due to the joint action of wetting and
surface tension

Fig. 2.8 The contact angle is ¢ but for the sake of clarity we show & — &

3Thomas Young (1773-1829) is well-known for his work in interferometry but he also studied the
surface tension of liquids and the wetting of solids in 1805.



66 2 The Static of Fluids

If (Y5 — Yes)/vee = 1, the contact angle is very small and the liquids wets the
solid; if, on the contrary, (ys; — Ves)/Vee =~ —1, the contact angle is close to 180°
and the liquid only weakly wets the solid. These two extreme cases are shown in
Fig.2.8. Now, what happens if (Y5, — yes)/Vee > 1?7 Actually, no equilibrium is
possible and the liquid spreads completely until it makes a very thin film: this is
total wetting.

2.4.2.1 Jurin’s Formula

Many of us have experienced the raise of water in a thin glass tube. This is a joint
effect of surface tension and wetting. The contact angle imposes a negative curvature
to the water’s surface and thus a depression in the water inside the tube. Water thus
raises.

We may easily determine this elevation of the liquid inside the tube if we assume
that the meniscus has the shape of a spherical cap. Let r be the radius of the tube
and ¢ the contact angle, then the radius of the spherical cap is R = r/ cos . We
infer the pressure difference between the liquid and the gas:

2 ¥
Py = p,_ 2yCos?

and the height of the raise

_ 2ycos?
pgr

h (2.16)

This is Jurin’s formula.* We should stress here that this formula is an approximation
valid for small values of the radius only. It is not valid for large radii since the
meniscus is no longer spherical.

Jurin’s formula shows that capillary rise is maximum for a total wetting (¥ = 0)
but may be negative for a pair of liquid—solid such that cos® < 0. For instance,
water, whose surface tension is y = 0.0728 J/m? at 20 °C may rise or sink by 15 mm
in a tube of 1 mm radius.

2.5 Exercises

1. About buoyancy

(a) Anice cube floats in a glass of water. When the ice melts, what does the level
of water in the glass do?

4J. Jurin (1684—1750) was an English physician and physicist.
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(b) Same question if the ice cube contains a piece of metal inside (but still floats)?

(c) And with a piece of cork?

(d) Explain why a balloon filled with some light gas (less dense than ambient air)
that starts to rise, will reach a well-defined altitude while a submarine, which
starts to sink, sinks to the bottom of the sea.

(e) In acar, a child holds a balloon filled with helium at the end of a string. When
the car starts, how does the balloon move?

2. We consider a container filled with two immiscible liquids (oil and water for
instance) and in a uniform gravity field.

(a) The two fluids being at rest, how do they settle in the container?

(b) What is the shape of the curve P(z), the pressure as a function of the altitude
7 (z = 0 being the bottom of the container)?

(c) Oil and water densities are respectively poi = 600kg/m?® and pyaer =
1,000kg/m®. A wooden sphere of density pwooa = 900kg/m? is left in this
mixture; where is the equilibrium position of the sphere and what is the
fraction of its volume inside water?

3. We consider a U-tube filled with water up to 10 cm from its bottom. The cross
section of the tube is 1 cm?. We then add 2 cm? of oil in one of the branches of
the tube (o1 / Pwater = 0.6).

(a) At which height is the free surface of the 0il?
(b) At which height is the interface oil-water?
(c) What is the height of water in the other branch?

4. A wooden sphere of density p and radius R is closing a circular hole of radius r
at the bottom of a basin filled with water as shown in the figure below.

air

H | water

air

(a) Determine the force exerted by the sphere on the bottom of the basin.
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(b) Give a numerical value using pwaer = 1,000kg/m3, p = 850 kg/m3, H =
0.7m, R=02m,r =0.1m, g= 9.8 m/s2.

(c) If the level of water is tunable, is there a value of this level which is such that
the sphere rises to the surface before its top emerges?

5. We wish to compute the flight altitude of a balloon filled with hydrogen and
left in the atmosphere assumed isentropic. Let M), be the mass of the balloon
(the nacelle and the envelope), V} its volume assumed to be fixed and My its
mass of hydrogen. We recall that p.; = po(1 — z/z0)"/~" for the isentropic
atmosphere

(a) Which condition needs to be verified for the balloon to fly?
(b) If this condition is fulfilled, find the altitude of the flying balloon.

6. We now assume that the envelope of the balloon is opened in its lower part. At
take-off, a fraction of the volume of the envelope is filled with hydrogen which
is in thermal equilibrium with the surrounding air. The volume of the envelope is
assumed constant.

(a) What can we say about the pressure of hydrogen in the balloon?

(b) Show that the mass of hydrogen must exceed some critical value so that the
balloon takes off?

(c) Explain why the balloon reaches a well-defined altitude and give its expres-
sion.

7. Compute the temperature gradient at the equator of Jupiter assuming that
its atmosphere is isentropic. The chemical composition is 85 % of molecular
hydrogen and 15 % of helium. Jupiter’s mass is 1.9x 10?” kg, its radius 71,492 km
and its rotation period 9.84 h.

8. A funnel is made of a tube with a very small cross section connected to a cone of
aperture angle «. The funnel is put on a plane and filled with a liquid of density
p as shown below.
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(a) Compute the vertical component of the resultant of pressure forces as a
function of «, of the height & of the liquid inside the funnel, H, p and g
the gravity.

(b) We suppose the funnel is filled up to height H ; show that the funnel must have
a minimum mass M, to be equilibrium. Express this mass as a function of the
mass of the liquid M;. What does happen if the mass of the fluid is larger?

9. A polytropic model for the Sun

(a) We assume that a star is a ball of gas in hydrostatic equilibrium. We recall that
pressure P(r) and gravity g(r) at a distance r from the centre verify:

_ GM(r) dP

= d o=
g(r) e an Ir rg

where p(r) is the density at  and M (r) is the mass inside the sphere of radius
r. We also assume that the gas verifies a polytropic equation of state, namely

P = Kp't/n

where K is a constant and n is the polytropic index of the gas. Setting p =
pc0", with p. being the central density and 6 a non-dimensional function that
varies between 0 (at the surface) and 1 at the centre, show that 6 obeys the
following differential equation

d do
e e

called Emden equation, where £ = r/ry with

n+ DK
o= | ————
4nGp§_1/"

(b) Show that pressure may be written
P=P0o"

(c) Show that if mass and radius of the star are known then we may deduce its
central density with

__&
Pc = 39{ (p)

where £ is the first root of function 6 and 6] is the value of the derivative of
this function at £;. {p) is the mean density of the star (its mass divided by its
volume).
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(d)

(e

®
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Show that central pressure reads

_ 471G,0§r§
T on+1

c

We now model the Sun by a polytrope of index n = 3.37. The numerical
solution of Emden equation gives &, = 8.686 and —35—911, = 113.77. Since the
mass of the Sun is 2 x 10" kg and its radius is 696 x 10° m, deduce the central
density and pressure of the Sun according to this model.

To derive the central temperature, we now assume that the solar plasma is
an ideal gas. This gas is a mixture of protons, helium ions and electrons
(other elements are neglected). We suppose that the mass fraction of helium
is Y =28 %. Show that the mole mass of this mixture is

4
© 8-5Y

grams per mole. Deduce the central temperature of the Sun according to that
model. Compare with the values obtained from more realistic models: p, =
1.62 10°kg/m3, P, = 2.5 10'°Pa, T, = 1.57 10’ K.

Further Reading

For a deeper insight in the problems of wetting and capillarity, we refer the reader
to de Gennes et al. (2004).
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Chapter 3
Flows of Perfect Fluids

3.1 Equations of Motions

In the first chapter we introduced the perfect fluid as a fluid that does not conduct
heat and for which the fluid elements interact only through pressure. We then derived
the equations of motion of such a fluid:

dp
P v .pv=0 1.16
3t+ pv (1.16)
Dv_ _yp (1.33)
Por T '
Ds
= 3.1
D (3.1)

These equations express mass, momentum and energy conservation, respectively.
The momentum equation is also called Euler’s equation and the third equation shows
that the motion of fluid particles takes place at constant entropy. In other words
a particle of perfect fluid only sustains reversible adiabatic transformations in the
course of its motion.!

10n condition, of course, that the functions are continuous, i.e. that the fluid particles do not cross
a shock wave.

© Springer International Publishing Switzerland 2015 71
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3.1.1 Other Forms of Euler’s Equation

Euler’s equation (1.33) can be rewritten in several forms. Firstly, using the vector
relation (v- V)v=(V xv) xv+ V%vz, we obtain Lamb’s form:

9 1 1
Y VX (VXV)—-VP—V=y? 3.2)
ot P 2

But Crocco’s form is often more interesting. Let us introduce the enthalpy £, the
total derivative of which is connected to that of pressure and entropy by

1
dh = Tds + —dP
P

This expression relates the differential forms of the three functions (pressure,
enthalpy and entropy). It also relates the partial derivatives and therefore the
gradients. Thus we can write:

1
Vh=TVs+ -VP
P

which leads to Crocco’s equation:

a 1
a—::vaxv—i—TVs—V(h—i-Evz) (3.3)

The quantity i + %vz is sometimes called the total enthalpy.

3.2 Some Properties of Perfect Fluid Motions

The form of equations (3.1) and (3.3) confers certain conservation properties on the
motion of a perfect fluid and we shall study the simplest aspects of these. These
properties are summarized by two theorems (Bernoulli and Kelvin) which express
the conservation of mechanical energy and of angular momentum.

3.2.1 Bernoulli’s Theorem
3.2.1.1 Statement and Proof
Let us consider a steady flow. It is governed by the equations:
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1
vx (VxV)+TVs—V(h+ Evz) =0 (3.5)
v:-Vs =0 (3.6)
where we dismissed all the time derivatives as required by steadiness. The last

equation shows that entropy is constant along the streamlines. If we now project
the momentum equation (3.5) onto the vector v, we obtain

1
V-V(§V2+h)=0

1
Ev2 +h = Cst (3.7)

so that

along a streamline.

This result constitutes Bernoulli’s Theorem in its fundamental form. It may be
generalized to the case where the fluid flow is driven by a potential forcef = —pV¢.
In this case

1
Ev2 +h+¢ = Cst (3.8)

along a streamline. This theorem simply expresses the conservation of mechanical
energy per unit mass along a streamline. We notice that in this expression, enthalpy
plays the role of a potential energy. If the fluid is incompressible (3.8) leads to

1
Epv2 + P+ pgp =Cst (3.9)

and pressure plays the role of a potential. The quantity % pv? is called the dynamic
pressure.
If the fluid is an ideal gas,

h=_V &
y—1lp
and (3.8) now reads
1 P
V4L s —cCux (3.10)
2 y—1p

also called Saint-Venant’s relation.
Finally, it should be noted that the constant in (3.7) or (3.8) is specific to each
streamline (see exercises).
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3.2.2 The Pressure Field

The steady Euler’s equation
pv-Vv=—-VP (3.11)

leads to an interesting property of the pressure field associated with steady flows.
Let us consider a streamline. We denote by s the curvilinear abscissa of a point on
this curve and by e, the tangent vector in s. We immediately see that v-V = vd/0s,
therefore

a(vey) av , 0

-V)v = =v—e, —. 12
v-V)yv=vy % vase‘ Vas 3.12)
Now

deg

= RYa

as n/R

where R is the radius of curvature of the streamline at s and n a unit vector
perpendicular to e, (see Sect. 12.3). If one projects (3.11) on e,, one obtains

aP a [V

—_— _IO_ JE—

as ds \ 2
which leads to Bernoulli’s theorem as we have seen above. However, if we project
(3.11) along n, we have

JP V2
= % (.13)

where n is the coordinate along n. This equation expresses the equilibrium that
exists between the local centrifugal force % and the normal component of the
pressure gradient when the flow is steady. This equation also shows that the pressure
does not vary in the direction perpendicular to a streamline if the streamline is
straight (infinite radius of curvature).

Finally, we note that the relation (3.13) also applies to an unsteady flow because
the term g—: does not have a component along n; in this case it is necessary to replace
the streamlines by the trajectories of fluid particles and R; is the radius of curvature

of such a trajectory.
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3.2.3 Two Examples Using Bernoulli’s Theorem

Waterfalls have been used for a very long time as a source of energy. In this example
we calculate the maximum power available from a waterfall of height H having a
volume flux ¢g. We assume that water is an incompressible perfect fluid and that the
flow is steady. Along a streamline we have, after Bernoulli’s theorem:

1, P
~v* + — + gz =Cst (3.14)
2 p
We suppose that the origin of z is at the foot of the waterfall and that the water
arrives at the entrance of the fall with a vanishing velocity (originating in a lake, for
example).

By applying (3.14) along a streamline lying on the surface of the water, one can
obtain the velocity of water at the foot of the waterfall:

PLHWI Patm

1
“V+—+4+0=0+
p

+ gH
) &

where Py, is the atmospheric pressure. We get

v=+2¢H (3.15)

also called Torricelli’s law. This relation shows that the velocity at the foot of the
waterfall is that of a free particle falling from a height H. The available power here
is simply the flux of kinetic energy:

1
Py =g x 5pv* = qpgH

For a height H of 10m and a flow rate ¢ of 10 m3/s, the available power is around
10° W. This is of course a theoretical limit and the study of a realistic case must take
losses into account. Nevertheless the performance of hydraulic installations is high
(actually higher than 90 %) and the preceding calculation provides a good order of
magnitude.

Experts in hydraulics often rewrite (3.14) in the form

V2

P
— +—+z=H; (3.16)
2g  pg

In this expression where the terms are all homogeneous to a length, permitting
an immediate graphical representation (Fig.3.1), the constant H represents the
hydraulic head or load and

P
h=—+z
pg
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a Dpiezometric line / energy grade line b
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Fig. 3.1 (a) A representation of the hydraulic grade line in a pipe for a perfect fluid. With a real
fluid the energy grade line would be inclined towards the downstream side since Hy > Hp.
(b) The Pitot tube

the piezometric height.
In a real fluid, the head (or energy) line and the piezometric (or hydraulic grade)
line are inclined towards the downstream side and the difference

vi P v, P
HA—HB=(ﬁ+p—;+ZA)—(£+£+ZB)

on the load line represents the head loss between points A and B. The head loss
measures the loss of mechanical energy of the flow.

Finally, we note that the power lost (or received) by a flow between two points is
proportional to the product of the mass flux and the difference of load A H between
the two points.

Another simple application of Bernoulli’s Theorem is that of an apparatus called
the Pitot tube,” permitting the measurement of velocity within a flow. This apparatus
is sketched out in Fig.3.1b. The principle of the device consists in estimating the
difference in pressure between the stagnation point A and a point B along the tube.
One admits that the holes for measuring pressure do not disturb the flow, and that
the difference of elevation of the measurement points is negligible. If we consider
the streamline ending in A, Bernoulli’s theorem says that

1 2
PAZPOO"_E/OV

where P is the pressure at infinity. The pressure in B is however the same as Poo.
We may see that by considering the streamline that passes through B: noting that the
velocity in B is the same as at infinity (the fluid is inviscid), Bernoulli’s theorem says

2H. Pitot (1695-1771) was a French physicist who invented this device around 1732 in order to
measure the velocity of water in a river or the speed of a ship.
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that pressure must also be the same as at infinity. Hence Pp = P.. However, we
may also note that pressure in B is also the same as the pressure along the straight
line BB’ because all the streamlines are straight lines there (see Sect. 3.2.2). Hence,
far enough from the Pitot tube, we find streamlines along which the pressure is
uniform (like the velocity) and equal to Ps. This line of argument is interesting
because it applies to real fluids also, and shows that the Pitot tube may measure the
velocity even if a slight viscosity of the fluid modifies the flow in the neighbourhood
of the solid, as it actually does. So we can write

1
Py= Pp+ Epv2 and v=+2(Ps— Pg)/p
If the difference in pressure is measured by a U-shaped tube, P4—Pp = (p¢—pr)gh

where p; and ps are respectively the densities of the liquid and the fluid that one
supposes obviously non-mixable (for example, air—water, water—mercury, etc.).

3.2.4 Kelvin’s Theorem
3.2.4.1 Statement
Let (C) be a contour moving with the fluid not intersecting any surface of

discontinuity: if the fluid is barotropic and subject solely to forces deriving from
a potential, then the circulation of the velocity along this curve is constant.

3.2.4.2 Proof

The circulation I" along a contour (C) moving with the fluid (i.e. made of fluid
particles, see Fig. 3.2) is defined as

) :ﬁ()v(x,t}-dl

Fig. 3.2 Example of a
contour moving with the fluid (C) at t+dt
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We calculate the derivative of this quantity with respect to time with the help of the

relation (1 1 2) .
d[ C(t) Dt 1 Vi J Vi J

D .
= —dl,-+9§ V(*/2) - dl
C(1)

whence

r D
ar _ 95 =Y. a (3.17)
dt C(1) Dt

because the second integral always vanishes. We thus obtain

d—Fz—sﬁ (lVP+V¢)-dl:—9S (lVP)-dl
dt co \p c \p

Since the fluid is barotropic P = P(p) and

1 P
VP =V dap
P P

where i’ = [ %P is a quantity that we can identify as the specific enthalpy if the
fluid is isentropic. Finally

d—F:—gg Vh'-dl=0
dt c()

and thus

re = _(ﬁ v(x,1) - dl = Cst (3.18)
C(t)

3.2.4.3 Interpretation

Following Stokes’ theorem, this result (3.18) can also be written as
/ V xv-dS = Cst (3.19)
(S(t)

where S(¢) is the surface delineated by the contour C(¢). The flux of vorticity across
a surface moving with the fluid is constant.
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If we consider an infinitesimal cylinder of fluid based on a contour C(t), the
angular momentum of this fluid particle is

1 1
L= I(EV X V) ocmS(EV X V)

where we have used the fact that the moment of inertia / is proportional to the base
S of the cylinder and that %V x v is nothing but the local rotation of the fluid element
(see Chap. 1). Kelvin’s theorem (3.18) implies the constancy of S %V X v and thus
the constancy of the angular momentum L of the fluid particle of mass m.

Kelvin’s theorem shows that in the motion of an inviscid fluid, the angular
momentum of the fluid particles is conserved.

3.2.5 Influence of Compressibility

Bernoulli’s theorem also allows the determination of the circumstances in which the
compressibility of a gas has either a negligible or important role.

To see this, we need considering the flow of an ideal gas and Saint-Venant’s
relation. We apply it to a streamline that connects points far upstream where the
velocity of the fluid is Vo, the pressure P and the density peo, to a stagnation
point on a solid surface where the pressure and density are respectively P,, and p,,.
Then

oy ¥ P ¥ P (3.20)
2 Y—1po v—1pm

We shall see in Chap. 5 that % is simply the square of the local sound speed.
The ideal gas flowing as a perfect fluid, fluid elements evolve isentropically and
therefore P o p”. From this relation and (3.20), we deduce the expression of the
density at the stagnation point as a function of that far upstream. One obtains

1

— 1\ 2\ 71
P = pos (1 - (VT) c%’) (3.21)
o0

This expression shows that, at low velocity, the changes in density induced by the
flow are of the order of v2,/c2,, which is the Mach number of the flow squared.
From this particular case, we actually obtain a general result, namely that one can
consider a fluid as incompressible as long as its velocity is very small in comparison
with the sound speed. For example, the air flow around a car moving at 100 km/h
causes variations of density less than a percent, which are therefore negligible in
first approximation.
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3.3 Irrotational Flows

3.3.1 Definition and Basic Properties

A flow is called irrotational if
Vxv=20

or, equivalently, if there exists a function @ such that
v=Vo.

This type of flow is also called a potential flow and @ is the velocity potential.

Let us consider the case of irrotational flows of perfect fluids, whose motion
is driven by a force field derived from a potential ¢,.,,. We look for the equations
satisfied by the velocity potential @. Euler’s equation is transformed in the following
way:

DV _ _yp_,vg

IODI_ 14 ext

o 1 1
V| —+=-vV*|=—-VP -V,
(3t +2V) p e

We note that in order for this equation to make sense we require that
1
Vx-VP =0 VpxVP =0,
P

namely that P = P(p), as has been seen in the previous chapter. So we can
introduce &’ such that VA’ = %VP. Hence,

2 1
V(—+—v2+h’+¢m) =0

a2
or
0 1
T EVZ + 1+ e = Cst (3.22)

We note the similarity of this expression with that obtained for Bernoulli’s
Theorem, but we must pay attention to the fact that in this new equation the
constant is the same in all the volume occupied by the fluid and thus identical for
all streamlines. Moreover, the expression is also valid for unsteady flows.



3.3 TIrrotational Flows 81

To (3.22), we add the equation of continuity

9

P V. (pVE) =0

ot

This last equation takes a special form for incompressible fluids where p = Cst,
since

A® =0 (3.23)

is simply Laplace’s equation.
We observe that the potential @ is defined to within a function of time: since @
and @ + f(¢) give the same velocity field.

3.3.2 Role of Topology for an Irrotational Flow

Topology plays a very important role in irrotational flows. Let us first take an
illustrative example. We consider a fluid which occupies all space except a cylinder
of infinite length with a radius a centered on the axis O,. The motion of fluid around
the cylinder is given by its velocity field

a’e, 4>
v=8x = —e,
s s

which is derived from the potential @ = az.qu (s,¢,z are the cylindrical
coordinates). One will note that this potential possesses a special property: it is not
single valued; at a given point, ¢ can take an infinite number of values like ¢ +2nm.
The immediate consequence of this property is that the circulation I" along a closed
curve can take many values depending on the chosen curve. In fact, if the curve
does not enclose the cylinder I" = 0. If, on the other hand, it encloses it n times
I =2nn82 #0.

This example illustrates the effect of topology on circulation. The space occupied
by the fluid here is doubly connected: there exist two irreducible paths® to connect
two points in this space.

Double connectivity implies that the solutions to Laplace’s equation are entirely
defined only when the circulation around the regions not belonging to the fluid space
is given.

3That are paths which cannot be reduced from one to the other by a continuous deformation within
the space occupied by the fluid or, equivalently, the surface bounded by the two paths does not
belong entirely to this space.
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Fig. 3.3 Examples of doubly connected domains: in two-dimensions (a) any obstacle creates a
doubly connected region; in three-dimensions a toroid (b) or an obstacle which is infinite in one
dimension implies double connectivity

Two examples of doubly connected spaces are shown in Fig.3.3. One may
note that the presence of an obstacle in a two-dimensional flow renders the space
occupied by the fluid doubly connected.

3.3.3 Lagrange’s Theorem

If the flow of a barotropic fluid subjected to forces deriving from a potential is
irrotational at time ty then it is (irrotational) at all other times.

In order to prove this theorem we shall suppose the volume occupied by the fluid
to be simply connected. According to Kelvin’s theorem,

¢ v-dl = Cst
cw)

at any time. But at £,

vC 9§v'dl:9§V(b~dl:O
C C

The equality is true for any curve (C) and, from Kelvin’s theorem, at all time .

We have therefore
?§V~dl://va~dS:O
c N

for any surface S and any time ¢, thus

< Vxv=0, V¢t or v=Vo, V¢
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This result is important because it justifies the irrotationality of a large number
of flows: in particular if an inviscid fluid is initially at rest and is set in motion by
the action of a force deriving from a potential, one can state that the flow will be
irrotational because v = 0 is an irrotational flow.

3.3.4 Theorem of Minimum Kinetic Energy

For an incompressible flow of a perfect fluid, the irrotational solution is unique
and is that of minimum kinetic energy.

The uniqueness (to within an additive constant) of the solution follows from
Laplace’s equation satisfied by the potential @. The solution is unique when the
boundary conditions are specified. As for Lagrange’s theorem, we consider only the
case where the fluid occupies a simply connected space. If n is the outward normal
at the surface bounding the fluid, the flux of v across the surface is zero and the
potential therefore satisfies

n-vod =0

on it. This boundary condition is called Neumann’s boundary condition. Together
with Laplace’s equation it defines a unique solution for v (for @ the solution is
defined up to an additive constant). We now show that this solution is that of
minimum energy. For this purpose we consider an irrotational flow v = V& such
that V- v = 0 as well as another flow v’ such that V - v/ = 0 but which is not
necessarily potential. The kinetic energies associated with each of these flows are:

1 1
E, = —p/ v’dV and E! = —p/ v2dv
2 1% 2 |4

Their difference is

1
E —E = EP/V(VQ —vH)av

however
VvV =W -v)242v-(vV —vV)

therefore

1
Eé—EC:Ep/v(v/—v)de—i-p/Vv-(v/—v)dV
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but
/Vv'(v —v)dV = /V(v —v)-VodV = /VV'(QD(V —v))dV = /(S)(b(v —-v)dS =0

because v and v’ both satisfy the boundary condition v-n = v/ -n = 0. We find the
result

1
Z—&=EQLW—ﬂ%VZO

This theorem is also due to Kelvin.

3.3.5 Electrostatic Analogy

Laplace’s equation is encountered in numerous problems in Physics, in particular in
electrostatics where it gives the variations of electrostatic potential in the absence of
a charge density. Nevertheless, it is not the electric field that one uses as an analog
of the velocity field, but rather a quantity which is proportional to it, like the current
density j. Ohm’s law states that in a conductive medium, j = oE, o being the
conductivity assumed constant. In making this analogy we actually substitute the
flow of fluid for a flow of charges. The “obstacles” are thus the insulated regions.
The situation is easily summed up in the following table:

Fields v j=0E

Vxv=0<=v=V® VxE=0<=j=Vy,
Equations V.v=0 V-E=0
AD =0 A¢; =0

v = 0 at infinity j = 0 at infinit
Boundary = 0" () at the surface ! ¢

conditions j-n = 0 at the surface of the
of the obstacle insulated region

This is the direct analogy. We shall later encounter the inverse analogy where the
analog of electrostatic potential is the stream function.
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3.3.6 Plane Irrotational Flow of an Incompressible Fluid
3.3.6.1 Equation for the Stream Function

We have seen in Sect. 1.3.7 that a two-dimensional flow can be described with the
help of a scalar function called the stream function . If the velocity is derived from
a potential then v also satisfies Laplace’s equation. Indeed, V x v = 0 implies that

vy, vy

dx  dy

while v, = 0y//dy and v, = —0v/0x, therefore
Ay =0 (3.24)

It may then be shown (see exercise) that the streamlines (yy = Cst) are orthogonal
to the “equipotentials of velocity” (¢ = Cst).

3.3.6.2 Inverse Analogy

In view of the preceding relation we can make an analogy between the electrostatic
potential and the stream function since they both satisfy the same equation. The
two functions will be identical if they satisfy the same boundary conditions. For
the velocity, these are simply {» = Cst along the boundaries and thus for the
electrostatic potential we will require that ¢, = Cst along the bodies and these
will be identified to perfect conductors (this is indeed the inverse of the preceding
analogy!).

) v E xe,
Fields " e
Vxv=0,v=Vx(ye,) Vx(Exe)=0
8 f
Equations Ay =0 Agp, =0
f f
V.-v=0,v=Vo V-E=0, E=V¢,
Boundary v=0  atinfinity E=0 atinfinity
conditions ¥ = Cst  on an obstacle ¢. = Cst on a conductor
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3.3.6.3 The Complex Potential

The existence of two harmonic functions* describing the flow allows the study
of two-dimensional irrotational incompressible flows in a very thorough manner,
thanks to the complex potential. We give here only the broad lines of this approach
and refer the reader to the classical works for more details (see for example
Batchelor 1967).

We thus introduce the complex function

f=¢+iy (3.25)

called the complex potential. Besides Laplace’s equation, this function satisfies

af . of

—_— — .2

P + i 3 0 (3.26)
because

d¢ oy

_—_=s— = vx

ax dy

3_¢ - _3_1// —

dy  ox Yy

Equation (3.26) is also called Cauchy’s conditions. It implies that f = f(x + iy),
thus f is only a function of the complex variable z = x + iy.
We then introduce the complex velocity defined by

_df _of .
W—d—z—a—vx—lvy
The interest in introducing the complex potential rests essentially in the ability to use
conformal transformation. This type of transformation is defined by an analytical
function G with non-zero derivative in a domain of the complex plane, which
associates with each point z of the first domain a point 7' of the image domain,
such that

7 =G(2)
This transformation is called conformal because it conserves angles.

Let us seek the equation for the streamlines (the curves ¥ = Cst) in the
image plane. ¥ = Cst is the equation of streamlines in the original plane, thus

4 A harmonic function is a solution of Laplace’s equation.



3.3 TIrrotational Flows 87

¥(G~!(Z)) = Cst is the equation in the image plane. ¥ o G~! is the new stream
function. More generally, if F(z) is the complex potential of the flow F o G~! is
the complex potential in the image plane. We derive from this, the new complex
velocity:

, _dFoG™'  w(2)
== (3.27)

w

In order to illustrate the power of this transformation, we shall use the example of
Joukovski’s transformation, namely

G(Z) =7+ R*/7 (3.28)

This function is indeed analytic throughout the plane except at the origin.

We now consider a uniform flow past a flat plate represented by a segment of
length 4 R on the x axis. The velocity is simply v = Ve, and the associated complex
potential is

(@) =Wz

Let z be the transform of a system of coordinates 7’ by the conformal transforma-
tion G, so that z = G(Z). Substituting this in the above equation we have

F(GE)) = VG()

anew complex potential which is f oG; but since f is simply the identity (to within
a multiplicative constant), G is in the new potential.

In choosing the Joukovsky’s transformation for G, we can seek new streamlines
and, in particular, the new shape of the obstacle in the (x’, y”) plane. For that purpose
it suffices to take the imaginary part of (3.28)

. . r/2 _ R2
Vv =Im( + R*/Z) =Im(r'e'® + R*/r'e”?) = — sin 6’
which gives the new streamlines. Among them we find those bounding the obstacle:
here it consists of the circle ¥’ = R, the inverse transform of the line Im(z) = 0.
The inverse of Joukovski’s transformation therefore takes us from the (trivial)
flow past a flat plate to that past a circle (less obvious). Thus, we determine very
easily the flow past more or less complicated forms. For example, starting from the
flow past a circle, by shifting a direct Joukovsky transformation we obtain the flow
past a wing profile, also called a Joukovsky profile (see Fig. 3.4).
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-4 -2 0 2 4 -4 -2 0 2 4 —4 -2 0 2 4

Fig. 3.4 Illustration of possible transformations of a flow past a flat plate. In this example we have
first applied an inverse Joukovski transformation which has produced the flow past a circle; then,
by application of the slightly shifted Joukovski transformation (7 = z + ¢ + (1 + ¢)?/(z + ¢))
one obtains the flow past a wing profile (note that if ¢ = 0 the flow past the flat plate is recovered;
here ¢ = —0.17)

3.3.7 Forces Exerted by a Perfect Fluid
3.3.7.1 d’Alembert’s Paradox
Statement:
The steady irrotational flow of an inviscid incompressible fluid around a solid body
does not exert any force on it.
Proof:
We assume that the volume occupied by the fluid is simply connected. The solid is
supposed to have a constant velocity V. The potential satisfies Laplace’s equation
and the boundary conditions
n-V¢=n-V; on § (3.29)
¢ =01/rY) if r— oo
The second boundary condition results from the properties of the solutions of

Laplace’s equation (see the mathematical supplement). The force exerted on the
solid is just the sum of pressure forces

F = —/ PdS
(S)
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Using (3.22) we write

1 )
P =Poyp——p — p—
00 ZPV p 9t
where P, is the pressure at infinity assumed constant. We calculate first of all the
term d¢/d¢ while remarking that in a region attached to the solid ¢ = ¢(x’, y’,7)
where

X'=x-Via, y =y =z

oo 99

eV =V, V
ot " ox sV
thus
1 2
F=-p| vdS—p | (V,-v)dS (3.30)
2" Jisy (s)

Now we examine each component of each of these integrals. In particular,

/ VvidS; = / Vv2dS;
(S) (SUS)

where we have introduced a surface S, at infinity which closes the volume of fluid.
This is possible and interesting since lim, ., v = 0. We have

1 1
—/ vzdSi:/ ~9;v2dV = (vaxv—i—v'Vv)idV:/ v;idjv;dV
2 J(sUSoo) )2 V) ")

:/ aj(vjv,-)dV:/ V,‘deSj

) (SUSs0)

:/ V,‘deSj :/ V,‘VdeSj = VS]/ Vide
(S) (8) ($)

where we used the boundary conditions (3.29). The second integral in (3.30) also

reads
Vs/ deSi .
(8)
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Finally

F;

—pVAj (/ (deS,‘ — V,‘de)) = —pVSj (/ (8ivj — 8jvi)dV)
(8) )
:—pVA:,' (/ (8,8]¢>—8]8,¢)dv) =0
V)

whence the result.

This shows that a solid body moving in an inviscid fluid is not subjected to any
force from the fluid if its motion is uniform. Viscosity is therefore paradoxically an
essential element to insure, via the circulation that it induces, the lift of a wing, for
example.

3.3.7.2 Case Where the Obstacle is Accelerated

The case of an accelerated body is quite different from the foregoing one and is
worth discussing. In a referential attached to the accelerating solid, the flow is now
unsteady and subject to an entrainment inertial force but the velocity potential still
satisfies A® = 0. Therefore the dependence of @ with respect to time comes from
the boundary conditions at infinity where the velocity will be supposedly uniform
and of the form —U()e,. One can show from this that the potential of the velocities
can be written @ = U(¢) f(r). The force which is applied to the solid is still the
result of the pressure forces, that is

F = —/ PdS
(8)

Noting that the entrainment inertial force (—pa, = —pV¢,) is derived from a
potential, the momentum equation (3.22) reads

a®+12+P+¢ Cst
— + v+ — =Cs
ot 2 P ¢

which leads to the following expression for the force exerted on the solid:

0P 1
F = / (p¢>e + p—) ds + / —pv2dS (3.31)
) dt (5)2

where we have separated the term of kinetic energy since it is zero as we shall see

now. Indeed,
/ VidS = / vidS
(S) (SUS0)
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because in enclosing the volume by a sphere of infinite radius, the integral remains
unchanged since v = U(t)e, + O(1/r?). From the calculations of the preceding
paragraph, the foregoing integral also reads

/ vv-dS
(SUSoo)

This integral is zero because of the boundary conditions on the solid and because of
the form of the velocity at infinity. Finally, the expression for the force is

0P
e[ (22 40)as
p(s) 5 o)

so that

F=pU@) | (f+2dS (3.32)
(S)

where we have made use of ¢, = U (f)z assuming a motion along the z-axis.

This integral is non-zero in general. This expression therefore shows that a solid
having accelerated motion amidst the fluid, even if inviscid, sustains a force from the
fluid. This force is at the origin of all swimming strokes: propulsion in the water is,
in fact, efficient only if the solid accelerates with respect to the fluid. For this reason
the motion of the fins of a fish is in perpetual acceleration (oscillating motion).

As an example we may calculate the force sustained by a sphere accelerated
within of a perfect fluid with constant density. To determine the function f in (3.32)
we must solve Laplace’s equation in this particular case. In three dimensions and in
this geometry we use the expansion of the solution in Legendre’s polynomials.

= —U(t)rcos@+z fil) Py(cos §) (3.33)

where we have taken into account the boundary condition at infinity and the fact that
the flow is axisymmetric with respect to the z-axis. The boundary conditions on the
sphere, assumed to have radius R, give the functions A;(¢). Atr = R,v-e, = 0so
that

+o0
(82) =0= —U(t)cos@—i—Z—WPz(COS@)
=0

t+2
or J.—g R
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This expression shows’ that the A, are all zero except A, and
Ai(t) = —-R*U@1)/2 (3.34)

Finally, from (3.33)

&(r,0,t) = U(r) (—r - R—3) cos 6

2r2

and from (3.32)

. 2 .
F = —,o/ U()R/2cosfdS <+ F = —TﬂR?’pU(t)ez
(8)

The factor 27” R3p is a mass. It is often called the added mass because if we exert
a force upon the sphere, the latter reacts as if its mass had increased by this quantity
(which is equal in this case to half of the mass of the displaced fluid).

3.3.7.3 Drag and Lift of Two-Dimensional Flows

In the foregoing example we assumed that the volume occupied by the fluid was
simply connected and therefore its flow was without circulation. In two dimensions,
however, the presence of an obstacle makes the fluid “volume” automatically doubly
connected and therefore, even if the flow is irrotational, one can have circulation
along certain contours.

We shall now consider the same problem as in Sect.3.3.7.1 but in two dimen-
sions. We assume that the curves surrounding the obstacle possess a circulation I".
Let us consider a region attached to the solid and assume that the velocity is uniform
at infinity:

Voo = Vo€,

The solution that we are looking for is a solution of Laplace’s equation which
satisfies n - V@ = 0 on the contour of the solid and V@ = Ve, at infinity. The
general solution of this type of problem is:

etn9

D=V cos@—i—F@—FiA
= ror 2 = " opn

SWe just need to project the equation on Legendre’s polynomials and to use their orthogonality
with respect to the scalar product .[;)” Py(cos 0) Py (cos 0)d cos 0 o §y.
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,,,,,, pressure force

-~ Momentum flux

Fig. 3.5 At equilibrium, the sum of the forces and momentum flux is zero, hence Fops/fuia +
Foress + Finom. lux = 0. The force applied to the solid is —Fopst/fuia = Fpress + Fmom. flux

where the sum represents the multipolar terms that must be added in order to account
for the precise shape of the solid.
The associated velocity field is

r
v=V® = TVjcosfe, + (— — VysinB)eyg + ---
2wr

If we wish to find the force which is exerted on the solid, a simple method
consists in writing the balance of forces and momentum flux that are exerted on
a circle surrounding the obstacle at a distance R (see Fig. 3.5). The momentum flux
on entry is given by

I'Vop

2
- / pvv,RdO = ——Le, (3.35)
0

while the resultant of the pressure forces is

2
F,=— / Pe,Rd6
0

which we calculate using Bernoulli’s theorem for an irrotational flow. Equa-
tion (3.22) yields

1 r
P=P—=p* and V=Vi——Vysinf+--
2 nr
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where the dots represent the multipolar terms. The calculation of the integral does
not present any difficulty; we find that

I'Vop
2

F,=- e, (3.36)
When we let R tend to infinity, the multipolar terms contribution vanishes and only
one term remains. Finally, adding (3.35) and (3.36) we find the total force

F = —I'Vope, = —pI x V, (3.37)

where I' = I'e,. The force just found is called Magnus’ Force. We see that
depending on the sense of the circulation (which is connected to the shape or to
the sense of rotation of the body when there is viscosity), the force is directed
either upwards or downwards. It is this same force which is responsible for the
trajectory of ping-pong balls or tennis balls when they are sliced, and for the lift on
wings. Formulae (3.35)—(3.37) are obtained in a two-dimensional space so that the
forces are actually forces per unit length. Equation (3.37) leads to the true Magnus
force exerted on cylinder of length L by a simple multiplication by L, namely
F=—pLT xV,.

We further note that this force is perpendicular to the motion, consequently there
is no resistance to the forward motion or drag force.

We could stop here and say that we need the effects of viscosity to calculate the
circulation and therefore the lift. Quite surprisingly, this calculation is not necessary
for the following reason: when we take into account the effects of viscosity we
superimpose upon the irrotational flow the boundary layer corrections which allows
the complete solution to verify all the boundary conditions (see next chapter).
Actually, we may easily realize (see appendix at the end of this chapter) that the
irrotational flow around the profile of a wing has a singularity in the velocity (which
becomes infinite) at the trailing edge if the circulation is not adapted. The real flow
(with viscosity), which should have for limit this singular irrotational flow, would
be very unstable. The problem resolves itself when we observe that for a given
circulation, this singularity disappears. This particular value of I" is that which
brings the second stagnation point® to the trailing edge (see Fig. 3.6). This condition
is usually called Kutta’s Condition.” For a wing profile where the angle of attack is
o, we find (see appendix) that:

I = nlV,sina (3.38)

where £ is the wing chord (i.e. it’s width).

Point on the solid where the fluid’s velocity is zero.

"This condition was also found independently by Joukovski in 1906 and is also called sometimes
Joukovski’s Condition.
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Leading edge
a eading ecge Trailing edge

fﬂ

First stagnation

Second stagnation

point X
point

Fig. 3.6 (a) A and B are the two stagnation points. On this figure, the circulation is zero and the
second stagnation point is located upstream of the trailing edge where the velocity has a singularity.
In (b) the circulation is such that the trailing edge and the second stagnation point coincide; the
velocity is finite everywhere

3.4 Flows with Vorticity

After the irrotational flows, the following step takes us naturally towards flows that
own vorticity. These flows are more complex than the preceding ones because the
distribution of vorticity is affected by the flow that the vorticity produces. The
problem therefore becomes largely nonlinear (we no longer have the equation of
the velocity potential A@ = 0) and consequently only a small number of problems
have analytical solutions. We now present the most classic examples.

3.4.1 The Dynamics of Vorticity

In all what follows we call @ = V x v the vorticity. The equation of this quantity is
obtained by taking the curl of Euler’s equation (1.33) which is made explicit using
the following vector equality

VX (v:-Vv)=VXx(wxV)=(v:-V)o — (0 -V)v+ (V- V)
We thus find that the vorticity satisfies:

D 1
=2 (@-V)V=(V-Vo + 5Vpx VP (3.39)
Dt P

This equation calls for several comments. In the first place, we note that the
variations of @ in a fluid particle result from three different sources:

1. (@ - V)v which is a term of stretching-pivoting: in order to understand its effect,

we take the following simple example where w is parallel to e, and v represents

a shear along z (see Fig. 3.7). The equation %—‘;’ = (@ - V)v becomes %—‘;’ = w?TZ'
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Fig. 3.7 Evolution of the vorticity field subject to a shear flow: from (a) to (b) the vorticity gains
a component along the velocity field

It shows that, following each fluid particle, vorticity is created parallel to v as
Fig. 3.7b shows. We will find again such a term when we analyse the evolution
of the magnetic field in a fluid with electrical conductivity (Chap. 10).

2. —(V - v) . We have seen in Chap. 1 the physical meaning of V - v; it represents
the volume variations of the fluid elements. This term thus translates the variation
in vorticity associated with these variations of volume: if the particle contracts
its vorticity increases. Vorticity is created in the same direction and in proportion
to the existing one.

3. %Vp x V P is the baroclinic torque. This term does not exist (we noted it many
times) if P = P(p). When it is present, the fluid elements can acquire vorticity,
and thus angular momentum, because the pressure force then exerts a torque on
them (see Fig. 3.8).

Let us now come back to the barotropic case where P = P(p). Equation (3.39)
simplifies into
Dw
— =(@-V)v-wV-v 3.40
o — @ Vv-oe (3.40)
This equation shows that if initially, ® = 0 then @ remains zero: vorticity cannot
be created. This result is, of course, another version of Lagrange’s Theorem (see
Sect. 3.3.3).
In two dimensions, equation (3.40) takes a very remarkable form if the fluid is
incompressible. Indeed, in this case the right-hand side is zero and

Dw

— =0 3.41
D (3.41)

where @ = w, is the only non-zero component of .
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\

Vp

Fig. 3.8 Generation of vorticity by baroclinicity. Density increases towards the bottom of the
sphere, thus the pressure force per unit mass (LIV P) is larger than i V P. The resulting specific

pressure force thus exerts a torque on the fluid element

This equation shows that in this case @ is a Lagrangian invariant. It implies
Kelvin’s theorem, but also

D n
Y e— w"dS = Cst (3.42)
Dt ()

for all n, S corresponding to a surface advected by the fluid. We shall return to this
equation when we study turbulence in two dimensions.

3.4.2 Flow Generated by a Distribution of Vorticity: Analogy
with Magnetism

Let’s imagine that the distribution of vorticity is given in the space occupied by the
fluid. It is then easy to find the distribution of the associated velocity; it is sufficient
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to solve the equation for v
VXv=w

where @ is given. This equation, which is linear, strongly resembles Ampere’s
equation:

VXBZ/L()j

where B is the magnetic field, j the volumic current density and ¢ the permittivity
of vacuum. Ampere’s equation can be solved quasi-analytically, but for this we must
use the vector potential A such that B = V x A. The transposition of these results
to fluid mechanics demands therefore V - v = 0, that is to say, that we need to
restrict ourselves to incompressible fluids. In such a case, just as we solve Ampere’s
equation with

ya
Ar) = L0 / R LORPRPNPY
. Joy Ir —1||

and

o Py
__ko (r r)XJ(r)dx’dy’dz/
4 Sy e =7

which is Biot and Savart’s law, we have for the velocity field:

1 r-r)xeo) ,,
4 Joy =03

v(r) = (3.43)

Contrary to the magnetic case, this solution is not the end of the problem because
the velocity field thus created modifies the vorticity field by way of the equation
(3.40). Problems therefore have simple solutions if the distribution of vorticity is
invariant by the advection that it generates. In particular, we can look for a necessary
condition for steady flows to be possible. From Euler’s equation, assuming that v is
independent of time, we get

L, dpP
® XV =—-Vgq, q==v+ | —

5 ; (3.44)

where we assumed the fluid to be barotropic. According to this equation
v-Vg=-Vg=0,

which means that the flow lines and the vorticity lines are on the surfaces g = Cst.
If the flow is two-dimensional, the velocity is expressed with a stream function
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such that
v=Vx(ye,), w =V xVx(ye,)=—Ave,.
We can then transform (3.44) into
AYyVYy =Vg = VAYyxVy =0
which shows that

Ay = F(y) (3.45)

where F is an arbitrary function. We are now going to tackle some examples in this
category.

3.4.3 Examples of Vortex Flows
3.4.3.1 Vortex Sheets

The first example of vortex flows is also the simplest; it concerns the shear layer
also called the vortex sheet: it corresponds to a simple discontinuity in the tangential
component of the velocity field, as shown in Fig. 3.9a. It is easy to see that a contour,
such as that drawn in Fig. 3.9a, has a circulation; if the length of the longer side is
L, the circulation is given by I = (V, — V) L.

We shall see in Chap. 6 that such a sheet is always unstable. This instability
produces individualized vortices such as the vortex ring when the vortex sheet rolls
up as indicated in the sketch of Fig. 3.9b under the impulsive motion of the piston.

a b Detached ring Vortex sheet

Vortex lines

- °  ©

— Contour with Vortex

\'A circulation sheet

Piston

Fig. 3.9 (a) Vortex sheet. (b) Schematic view of the formation of a vortex ring from a vortex sheet
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3.4.3.2 Rankine’s Vortex

This is the most simple of the vortex flows. It is made up of a cylindrical kernel
in which the vorticity is uniform, and out of which the flow is irrotational. The
associated velocity field is then
® = we, s<a = v=1oxr sc<a
(3.46)
w=0 s >a - v:“’z—‘few s >a
where a is the radius of the cylinder and (s, ¢, z) are the cylindrical coordinates. We
observe that the velocity field is purely azimuthal (only the component along e, is
non-zero) and therefore the distribution of vorticity does not change with time. The
velocity field on the outside of the core has been chosen such that the velocity is
continuous at r = q.
Rankine’s vortex is a very simplified model of the flow generated by a cyclone.
We easily show that the pressure passes through a minimum in the centre of such a
vortex (see exercises).

3.4.3.3 Hill’s Vortex

Another exact solution of Euler’s stationary equation consists in distributing the
vorticity within a sphere in the following manner:

wr sin 6 . .
w = €y if r<a, w=0 if r>a
a

where (r, 6, @) are the spherical coordinates. We thus formulate Hill’s vortex which
moves at constant velocity without being deformed (see Fig. 3.10). We can explain
this property by first examining the velocity field of this vortex.

The components v, and vy of the velocity field obey the two following equations:

190 1 0v, o .
;a—r(rve) — ;% = ;r sm@
(3.47)
J 5, 1 0Jsinfvy
R UL Ry i T

which express respectively V X v = @ and V - v = 0. We are looking for a solution
to this system in the form:

v, = f(r)cos@ and vy = g(r)sin6



3.4 Flows with Vorticity 101

T

X
o
T

T T T T T T T T I T T

Fig. 3.10 Meridian streamlines associated with Hill’s vortex. The dotted lines represent the
irrotational flow

The equation of continuity yields:

1d
gr) = _Zd_r(rzf)

The other equation gives the equation verified by f:

d? 2 2
—(r —2f =2wr/a
drz( f=2f /
the solution of which is:
f(r)y= —ﬁr2 +A+B/r?
5a

The two constants A and B are such that the velocity is regular at the centre of the
sphere (so that B = 0) and that the radial velocity vanishes at r = a. Thus we get:

vy = 2(a2 —r?)cosh and Vg = 2(2r2 —a®)sinf for r<a
5a 5a

(3.48)
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We note that on the bounding sphere vg = wa/5sin6 # 0. Outside the sphere
the flow is irrotational and the constants of integration must be adjusted such that
the velocity field be continuous on the sphere and regular at infinity. The velocity
potential being solution of Laplace’s equation we find that

&(r,0) = (A'r + B'/r*)cos 6

The boundary conditions v, (a) = 0 and vg(a) = wa/5 sin 6 allow the calculation
of A" and B’ and we thus infer the velocity field:

2 3 2 1 3
v,zll:(—l—}-(%))cose and vezll;l(l—ii(%))sin@ for r>a

(3.49)

The remarkable feature in these expressions is the existence of a non-zero velocity
at infinity. This velocity represents the velocity of the vortex with respect to the fluid
at infinity; it is uniform and along the vortex axis. Its magnitude is:

_ 2wa

=T (3.50)

The equations for the velocity field also provide the expression for the stream
function inside and outside the vortex. For an axisymmetric flow, one notes that:

= ! 3_1# and =— ! 3_1//
' [ 2in6 06 Y= T sing or

whence, the following two expressions:

2 2 3
v=2L(@=r?)sin? 6 ifr<a and y=22 (—1+(C—l))sin29 if r>a
r

10a 15

These two stream functions give the shape of the streamlines shown in Fig. 3.10.

3.4.3.4 The Vortex Ring

The vortex ring is a spectacular figure of a fluid motion usually known as the smoke
ring (see Fig.3.11). In fact this is a vortex filament that is closed on itself and
forms a circular ring, hence the name. Around it, the flow is irrotational and can
be calculated with the formula (3.43). The ring being axisymmetric, the velocity
is the same at all of its points and thus its motion is a uniform translation. The
exact calculation of its velocity can be performed if one assumes a finite interior
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Fig. 3.11 Vortex ring
obtained with smoke in the
air. The ring structure shows
the origin of its formation,
namely the roll-up of a vortex
sheet; the Reynolds number is
10* (from Magarvey and
MacLatchy, 1964, ©
Canadian Science Publishing
or its licensors)

radius, but is quite lengthy and we shall limit ourselves to deriving an approximate
expression of it. The velocity induced by the filament is, according to (3.43),

1 rxXo
A4

= — av 3.51
4 ) r3 ( )

where we have located the origin of the coordinate system on the filament (see
Fig.3.12). The ring is assumed to be a torus of major radius R and minor radius a,
with a < R. One can note that

r(6) = 2Rsin 0, ®(0) = w(cos Oe, + sin Hey)

and

dV = wa*Rdo’
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Fig. 3.12 Sketch of the
vortex ring. Note that with
this representation the
equation of the circle is

r =2Rsinf

where 0’ is the angle measured from the centre of the torus so that ' = 7 — 26.
Hence,

wa* [T db e
8R J, sinf ©

If one recalls that

ﬂ = Intan6/2
sin

it appears that the integral diverges at 0 and . In fact, we have not accounted in this
calculation for the fact that the core section is finite and that this effect is important
for the points near the origin. An exact integration would involve elliptic integrals
which are cumbersome to deal with. We thus simply estimate the order of magnitude

of the integral by assuming that the integration domains is [¢, 7 — €] with ¢ ~ a/R.
One finds

r
VA R In(2R/a)e,

while the exact formula is:

r 8R 1
V= —— (ln —_— = —) e, (3.52)
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These two expressions have the same asymptotic behavior as R — oo ora — 0.
Our derivation indicates that the logarithmic singularity is due to the regions that are
the closest to the calculation point.

3.5 Problems

1. Streamlines and velocity equipotentials
Show that for an irrotational plane flow of an incompressible fluid, the stream-
lines are orthogonal to the potential lines.

2. Flow in a narrowing duct

The flow is assumed steady and horizontal between points A and B. Show that
along the z-axis, hydrostatic equilibrium is satisfied. Derive from this equilibrium
the relation between P4 and & 4. Calculate the difference i 4 — hp in terms of V4
and Vp, assuming an incompressible fluid. What relation holds between V4 and
Vg and the cross sections of the pipe S4 and Sp?

3. Rankine’s vortex
Let v be the velocity field of a fluid of constant density p:

v =sS2e, s<a
— 042
vV=2RQae,/s s>a

where (s, ¢, 7) are the cylindrical coordinates.

(a) Show that the flow is irrotational outside the cylinder of radius a.

(b) Give the expression for the pressure in each of the subdomains. At infinity,
P = Py.

(c) What can be said about the quantity %vz + P/p in each of the subdomains?
What can be concluded?

(d) Calculate the minimum pressure at the centre of a storm with winds blowing
at a maximum velocity of 50 m/s (180 km/h).

(e) If the vortex is located over the ocean, find from the previous results the
shape of the ocean surface.
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4. Purge of a tank

(a) Lets consider a water tank (assumed to be an inviscid, incompressible fluid),
of cross section S with initial level ho. A valve of cross section s (s < S)
located at the bottom of the tank is open.

i. Show that the flow is irrotational.
ii. Assuming quasi-steady flow, derive the differential equation governing
h(t), and solve it. Find the time it will take to empty the tank.
iii. Show “a posteriori” that the time derivatives are indeed negligible.

(b) One now adds to the reservoir a horizontal pipe of length £, and of very small
cross section compared to that of the tank. The tank is filled to level iy which
is kept constant with time. The fluid is initially at rest. At # = O the valve at
B (see figure) is opened.

i. Derive the equation of motion of the fluid in the pipe. One assumes that
the pressure in the exit jet is equal to the atmospheric pressure; solve the
differential equation governing the exit velocity. Let’s denote by voo =
vV 2 g h().

ii. The city water utility pressure is 6 bars; if the length of the connecting
pipe from the main pipe to the sink is 10 m, what is the transient time
when you open the tap?

A

hg

B

5. A U-tube contains an incompressible fluid subject to the gravity field g = —ge,.
The tube diameter is constant and very small compared to its length. The fluid
level at equilibrium is z = h¢ and the free surface is at atmospheric pressure. p
is the fluid density.

(a) We are interested in the small oscillations of the fluid height about the
average value ho; these oscillations occur for example when the tube is
slightly shaken. The fluid is assumed perfect. Explain why the fluid motion is
necessarily irrotational. What can be said about the velocity inside the tube?

(b) If @4 and @ are the values of the velocity potential at the first and second
free surfaces of the fluid, L the length of the wetted part of the tube and V
the fluid velocity, show that

Py—Pp =LV
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©

Derive from this the differential equation governing the time dependent
height perturbation §% of the fluid in one of the branches of the tube.

6. Motion of a liquid near an air bubble

AN /

/ | N

We assume that the liquid has a radial motion: v = v(r, t)e,.

(a)
(b)
(©)

(d)
(e)

®

Show that the liquid’s flow is irrotational.

Derive the expression for v(7, ¢) in terms of the bubble radius R(¢).

We assume that the air inside the bubble is an ideal gas which follows an
isentropic transformation when the bubble radius varies. Neglecting the air
flow, give the expression of the pressure inside the bubble in terms of the
radius.

Give the evolution equation of R(¢) (let Py be the value of the pressure at
infinity and R the radius of the bubble when p = Py).

If one supposes that the bubble radius oscillates slightly about the equilib-
rium value Ry, derive the expression for R(¢). What is the frequency f of
such small oscillations?

Numerical application: calculate f for Ry = Il mm and Ry = 5mm; we
give Yair = 1.4, pyaer = 103kg/m?, Py = 10° Pa.

7. Show that the potential vorticity of an inviscid compressible fluid, defined by
® / p, is governed by the equation

H (3) —0 (3.53)
0

where H is the “Helmholtzian” defined by

H(a) = % +v-Va—(a-V)yv (3.54)
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Appendix: Flow Past a Plane at Incidence

When we discussed the complex potential, we remarked that the Joukovski trans-
formation can be used to transform a circle into a flat plate. In a previous example,
we used the Joukovski transformation to find the flow past a circle from the (trivial)
solution of the flow past a flat plate when the velocity is parallel to it.

Now we can do the opposite. Indeed, it is less obvious to find the solution of the
flow with circulation I" past a flat plate at incidence « with respect to the flow
at infinity. Conversely, if we consider the circle, we have seen that the velocity
potential is:

R? R?cos 6
® =VRe(z+—)=V (rcos@ + ﬂ)
z r

It is easy to add circulation to this flow since a potential vortex will still satisfy
the boundary conditions; it is also possible to rotate the incoming flow velocity by

an angle o with respect to the axes. With these changes, the velocity potential now
reads:

o=V (rcos(e_a) + re—a " R%cos(6 —a))

2nV r

This is nothing but the real part of the complex velocity potential:
—ia I 2 i
F(2)=Vze "+ —1Inz+ VRe'Y/z
2im

where we have overlooked the constants. From this expression, one obtains the
complex velocity in the image plane:

) r VRZ ia RZ -1
W = (Ve"“ + _re ) (1 — —) (3.55)

2imz 2 22

This expression is particular in the sense that it provides the velocity components
in the image plane (where the obstacle is a flat plate at incidence) in terms of the
coordinates in the initial plane (where the obstacle is a circle). To obtain w’ in terms
of 7/, it would be necessary to invert the relation 7/ = z + R?/z and to substitute the
result into (3.55). But our goal is somewhat different: we only wish to examine the
singularities in the flow past the obstacle and find the condition for I" to eliminate
them.
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The points with z on the flat plate correspond to z being on the circle, that is
7= Re', 0 € [0,2x]. Along the flat plate w’ is given by:
Fe_i9
2imR

w(0) = (Ve_i“ + — Vei(oc—ZG)) (1- e—2i9)_1

. r . . L
— (Ve—t(a—Q) + SR _ Vet(a—@)) (619 _e—le) 1

= (Vsin(@—a)—MLR)/siné’

This expression is singular at 6 = 0 and 6 = x if I" is arbitrary. The trailing
edge corresponds to 8 = m; we see that the singularity disappears if the circulation
is chosen such that:

I' =47RV sina

One recovers here the expression (3.38) remembering that the plate length is 4R.
One notices that the flow at the leading edge is also singular, but this singularity can
be eliminated by rounding the profile as shown in Fig. 3.4c.

Further Reading

The theory of irrotational flows is often well developed in standard textbooks; one
can refer to Batchelor (1967). With regards to the dynamics of vorticity, further
developments to the notes presented here will be found in Saffman Vortex dynamics
(1992) or in Ting and Klein Viscous vortical flows (1991). On the properties of the
Euler equation, extended material is proposed in Zeytounian Mécanique des fluides
fondamentale (1991).
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Chapter 4
Flows of Incompressible Viscous Fluids

As it was shown in Sect. 3.2.5, the density variations in a fluid flow decrease with
the square of the Mach number (the ratio of the fluid velocity to the sound speed).
Hence, for many fluid flows, and especially for those of liquids, incompressibility
is an excellent approximation. Moreover, it simplifies very much the equations of
motion. This simplification provides us with the easiest context to study the effects
of viscosity that we have neglected until now.

Thus, in this chapter we study the effects of viscosity using solely incompressible
fluids. We first discuss the laws of similarity, which appear thanks to viscosity, then
we deal with two limits: that of flows with a strong viscous force and that of flows
with a slight viscous effect. Next, we review some classical solutions of Navier
equation, and we end the chapter with a short study of forces exerted on solids by
viscous fluid flows.

4.1 Some General Properties

4.1.1 The Equations of Motion

We have seen in the first chapter that the flow of an incompressible fluid with
constant viscosity is governed by only two equations: the equation of continuity
and the Navier—Stokes equation, namely

V.v=0
Dv 4.1)
— = —VP 4+ uAv
p Dt M
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Indeed, the third equation, the energy equation, uncouples completely from the
two others. An important consequence of this uncoupling is that the pressure does
not have a dynamic role. It doesn’t drive the flow but is driven by the flow. This
property follows from the fact that the velocity field is entirely determined by

V-v=0
V x (E —VAV) =0 4.2)
Dt

and the boundary conditions
v=v, on (S)

where S is the boundary (supposedly solid with a velocity vs) which delimits the
fluid. The pressure is thus entirely determined, up to a constant, by

VP =pav—p2Y
THAVTR Dt

Another important property of this system of equations is that, if the viscosity of
the fluid is large enough, the solution is unique. “Large enough” means larger than
some critical value below which the system has several solutions. Physically, this
shows up with the raise of an instability in the original solution. We shall discuss
this point later on, but presently we just note that this phenomenon is a consequence
of the nonlinear character of the equations.

4.1.2 Law of Similarity

A fluid flow always involves the dynamic time scale, which is the typical time that
it takes for a fluid particle to cover the distance L, namely

Ta= 3 4.3)

where V is the typical velocity of the fluid. If the fluid is viscous then another time
scale comes about; this is

L2
T, =— 4.4)
v
also called the viscous diffusion time. The origin of this definition is the following: if
we consider a very slow flow, the quadratic term v- Vv in the Navier—Stokes equation
is very small compared to other terms. Neglecting this term and taking the curl of
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the momentum equation, we get the linearized equation of the vorticity @ = V X v,
namely

— =VA 4.5
5 = Ve 4.5)
This is the diffusion equation (see Sect.12.6.4 for a presentation of its basic
properties). Schematically, if @ varies on a length scale L, then Aw ~ @/L? and
0w /3t ~ vw/L* which shows that @ evolves on a time scale of order L?/v.

The dynamic and viscous time scales are compared through the non-dimensional
ratio

Re= =2 (4.6)

also called the Reynolds number. It characterizes the ratio between two transport
velocities: the macroscopic (dynamic) transport and the microscopic (diffusive)
transport. This non-dimensional number is the only parameter intervening in the
equations of motion of an incompressible viscous fluid. Indeed, if we make the
following change in the variables:

v="Vu, P =pV?p, r=1Lx and t:vt

then, u, p, X, 7 represent respectively the non-dimensional velocity, pressure, spatial
coordinates and time. The equations of motion read

V-u=0

8u+ \% Vp+ 1A
—_ u- u=— —_— u
it P Re

%))

Save for the parameters that may be added in the boundary conditions, the solution
u depends on just one quantity, which is the Reynolds number. All the flows having
the same Reynolds number are identical up to a constant scale factor: they are said
to be similar. This conclusion is true only if the solution is unique, that is to say, if
the viscosity is large enough or if the Reynolds number is small enough.

Let us consider a simple example of the use of the similarity between flows. A
solid represented by a cube of 1 cm side moves in air at a speed of 1 cm/s. The air
flow is exactly the same as one around a cube of 1 m side moving at 0.1 mm/s. A
practical application of the similarity relation is the use of reduced models to study
some complex flows.
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4.1.3 Discussion

System (4.7) gives us the first example of the flow equations written with non-
dimensional variables. The use of non-dimensional variables is the rule in Fluid
Mechanics. Thus doing, we are able to compare the various scales that intervene in
a fluid flow. The foregoing example is very simple, but as we progress, we shall see
that many non-dimensional numbers come into play. These numbers are crucial to
compare the flows to each others and eventually evaluate the difficulties to compute
them.

Finally, let us observe that perfect fluids correspond to the limit of infinite
Reynolds numbers. However, this limit is singular because, as viscosity vanishes,
second order derivatives disappear from the equations thus making some boundary
conditions unmatched. This singularity is at the origin of the boundary layers, which
appear when the Reynolds number is very large (see Sect. 4.3).

We shall further explore the dynamics of viscous fluids with the help of two
limiting cases: the one of very viscous fluids and the one of nearly inviscid fluids.
In other words, we shall study the two limits: the very small and the very large
Reynolds numbers. We begin with the first case, which is the easiest one.

4.2 Creeping Flows

Creeping flows are all the flows for which the inertia of the fluid is negligible. Their
Reynolds number is therefore very small compared to unity.

Examples of such flows come from the very viscous fluids (magma, for instance)
or from the flows with very small scales (lubrication, microfluidic,.. . ).

4.2.1 Stokes’ Equation

We consider the momentum equation in (4.7) and multiply it by the Reynolds
number while carrying out the substitution p — p/Re. We get

Re% 4+ Reu-Vu=-Vp+ Au
Setting Re = 0, we get Stokes’ Equation :
—Vp+Au=0 4.8)
We may observe that, by taking the limit Re=0, we eliminated the time derivative

of the velocity. Does this mean that all flows with very small Reynolds number are
stationary? Not quite, of course! It means that if the appropriate time scale is L/ V
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then the temporal variations are truly negligible and the flow is steady. But we can
easily envision a flow where there is a time dependent forcing. In this case, the time
scale of this forcing is a new independent parameter which controls the amplitude
of the term dv/dt.

Stokes equation can take two other equivalent forms for an incompressible fluid:

Vp+Vxw=0 or Aw =0 4.9

where @ = V X v is the vorticity. We also note, by taking the divergence of (4.8),
that the pressure verifies Laplace’s equation:

Ap =0

The essential property of these equations is their linear character. The solutions thus
own all the properties associated with linearity. For instance, an interesting property
is the reversibility : if v is a solution then —v is also a solution. Any fluid particle
goes back to its initial position if the forcing is reversed (the nonlinear terms break
this symmetry).

Another important consequence of the linearity of Stokes’ equation is the
uniqueness of the solution for a given set of boundary conditions. Below, we
demonstrate this property by showing that the solutions obey a variational principle.
The unicity of the solutions also resolves the problem of stability: the solutions are
always stable.

Finally, note a third possible form of Stokes’ equation:

Div[o] =0 or dj0;; =0 (4.10)

where [0] is the stress tensor. This form is more general than the previous ones since
it does not make use of the explicit form of the stress tensor.

4.2.2 Variational Principle ®

Equation (4.10) can be obtained with the help of a variational principle, such as
the least action principle. This means that the solutions of (4.10) render extremum
a functional of the velocity field defined on the space occupied by the fluid. This
functional is just the viscous dissipation.

In order to show this result, we shall consider a Newtonian fluid inside a given
volume, limited by a surface (5), where the velocity is given as on a solid wall. On
this surface the variations of the velocity §v vanish. The dissipation in this volume
is given by:

- L -v)?
D_/(V)(zcljc,,+§(V V))dV
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where we do not assume incompressibility. A variation of D associated with the
variations of v is easily obtained by a functional derivation of the integral with
respect to the velocity field:

8D = / {regdey +20(V -v)(V - 8v)} dV (4.11)
V)

According to the rheological law of Newtonian fluids pc; = oy — ¢V - v where
[0"] is the viscous stress tensor. Moreover, 6¢; = 0; hence, the foregoing expression
may be rewritten as

oD :/ {o38c; +20(V-v)V - 8v}aV
")

The expression (1.40) of ¢;; and the symmetry of the viscous stress tensor allows us
to simplify the preceding expression. Thus

6D = 2/ O',:jai(SdeV
W)

Using the equation of motion (4.10) together with the divergence theorem, we finally
obtain

6D = 2/ O',:,'5de5i =0 (412)
(S)

This last integral is zero because of the boundary conditions imposed on §v. The
dissipation is therefore at an extremum for the velocity field verifying Stokes’
equation. We now show that this extremum is a minimum. For this, we observe that
the dissipation is a linear function of the squared gradient of velocity. Symbolically,
we can write that

D(v) = L[(9v)*]
where L is a linear operator. We have shown that
8D = 2L ((dv)(dév)) =0

Now we make the difference between the dissipation associated with the field v
solution of the equations and that associated with the field v + §v where év is a
variation. We have:

D(v+8v) — D(v) = L([0(v + 8v)]*) — L ((3v)?)
= L ((3v)* + (38v)* + 2(dv)(38v)) — L ((dv)?)
=L ((88\/)2) = D(v) >0
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This result shows that whatever the variation of v made around the true solution, the
dissipation increases. This quantity is therefore a minimum for the true solution.

Let us now show that this implies the uniqueness of the solution. For that, it
is convenient to take two solutions and show that they are in fact identical. Let v,
and v, be two such solutions; their dissipation being at the minimum is therefore
identical. From the foregoing results, we necessarily have

L ([0(v; —v)]*) =0

The operator £ being only an integration, we infer from the preceding equation
that the integrant is zero everywhere within the fluid d(v; —v;) = 0. In fact (v —v,)
symbolizes all the components of the shear tensor and the divergence; we therefore
have:

cij(vi—v2) =0 and V-(vi—=vy) =0
From these two equations we derive a third one, namely
S,:,'(Vl — V2) =0

which means that the symmetric part of the velocity gradient tensor is zero. We
have seen in Chap. 1 that this implies that v; — v, is the combination of a solid
body rotation and a translation. But v and v, satisfy the same boundary conditions,
thus, in general, the rotation and the translation are both zero. Thus, v; and v, are
identical.

The preceding results are not valid when the Reynolds number is large. In this
case the solution is not unique and does not produce a minimum of dissipation.

4.2.3 Flow Around a Sphere

As a first example we shall consider the flow of a viscous fluid around a sphere
moving slowly. We assume that the fluid fills the whole space and that the flow is
steady. The Reynolds number, based on the velocity of the sphere and its diameter,
is very small compared to unity so that we can use Stokes’ equation. Returning to
the dimensional variables, we have

V-v=0

4.13
0=—-VP + uAv (4.13)

Using a reference frame whose origin is at the centre of the sphere, the boundary
conditions are

v=0 at r=R and v—Ue, when r — o
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Note that —Ue, is the velocity of the sphere in a rest frame. We use the spherical
coordinates. Since the flow is axisymmetric around the z-axis, the velocity and the
pressure only depend on r and 6. Moreover, v has no component along e,,.

In order to solve system (4.13) we expand the functions on the basis of
Legendre’s polynomials in the following manner:

vy = ) ue(r) Pe(cos 0)
ve = Yo ve(r) G (4.14)
P =3, pe(r)Pi(cos )

Legendre’s polynomials satisfy the differential equation

1 d . dPy

Using the equation of continuity, we derive the relation between u;(r) and vy (r)

00 + yve(r) = %djr”‘

We also find that

Ag(rug)
VXxv=— XZ: mﬂ(cos 0)e,.

and

Aq(rug) 1d (”AK(VW)) P,
dr

= — V = r
Av V x (Vxv) . Py(cosH)e +r W+1)) ao

A, being the operator

1d> Ll +1)
_ 14 e+

Ay =
T rar r?

As Legendre’s polynomials form an orthogonal basis as well as their derivative, we
easily find that

d
=L = A/ r
:

_ d V‘A((}’u[)
pu(r) = m (—Z(Z n 1))

(4.15)
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which yields
A¢Ae(rug) =0 (4.16)
The general solution of this equation is in the form of the powers of r; namely
ue(r) = Ar 7 + B ot + D2

In order to find these four constants, we need four boundary conditions; v,.(R) =
vg(R) = 0 imply

u((R) = VZ(R) =0, Ve

while at infinity we have

v — Ue, = U(cos e, —sinfey), as r — o0
One may verify that this last condition leads to
lim u;(r) =U and lim wup2,(r) =0
r—00 r—00

The boundary conditions implies that all the coefficients, except those of u;, are
zero. More explicitly, we have

cC D
ui(r)y = A+ Br* + —+ 3 (4.17)

Using the conditions at infinity we find A = U and B = 0, while with those on
the sphere it turns out that

C = —3UR/2, D =UR/2

Since Pj(cos 8) = cos 6, we finally obtain

_ 3R | R
V,~—UCOS9(1—7+F)

vg = —U sin @ (1 — 3R R—3) (4.18)

ar T w3

3uUR
p:—gfﬁ cos 0
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Fig. 4.1 Streamlines in the meridional plane of the Stokes’ flow around a sphere in uniform
motion in a viscous fluid

The velocity field can be expressed with a stream function v describing the
streamlines in the meridional plane as shown in Fig.4.1. The expression of the
stream function is

1 3R R?
= - rZ in? 1 - ~ 2
) 2U sin” 0 P + s
since
= L and = 1y
V= r2sin6 00 Yo = rsin@ or

From the expression of the velocity, we also infer the expression of the vorticity
field:

3UR
Vxv= —Fcoseew (4.19)

which will be used later on to compute the drag force exerted on the sphere.
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4.2.4 Oseen’s Equation

Stokes’ equation has been derived for vanishing Reynolds numbers. However, in
any experiment, even if the Reynolds number is very small, it is finite. This makes
Stokes’ equation invalid far from the solid. This strange property comes from the
nature of the solutions of Stokes equation, which is a kind of Laplace equation. The
solutions of Stokes’s equation that vanish at infinity are power laws of the distance
(like (4.17) for instance). For these solutions, the length scale characterizing the
velocity variations grows with r. Indeed, a typical length scale of the velocity field
VisL = (dInV/dr)™", thus if V ~ 1/r" then L ~ r/n. The consequence of
this growing scale is that nonlinear terms decrease more slowly than viscous ones
as they contain only first order derivatives. The distance by which nonlinear terms
overtake the linear one can be guessed from an order of magnitude estimate

— L ~Re™!

1 1 1
(u-Vyu~ ReAu:> 7~ T?Re
where the Reynolds number is computed from the dimensions of the object. The
foregoing result shows that this critical length goes to infinity as the Reynolds
number vanishes.

Hence, the computation of flows extending to distance larger than Re™' must
take into account the corrections imposed by nonlinear terms. For instance, if we
wish to compute the flow around a solid body moving at constant speed in a very
viscous fluid, we may set u = Uy + du (U is the fluid velocity at infinity in a
frame attached to the solid) and first solve Stokes equation. However, at distances
larger than Re™!, corrections from nonlinear terms are important. These are taken
into account by keeping the leading order of these terms. Hence, in these regions,
one has to solve

1
(Uso - V)bu = —-Vp + R—ASu (4.20)
e

which is Oseen’s equation. Although this equation seems more complete than
Stokes one, it is not valid close to the solid as the flow is not close to a uniform
velocity field. Thus, Oseen’s equation is useful to complement Stokes’ equation
when the fluid’s domain is larger than Re~!; in this case the solution of both
equations must be matched together, which may be delicate. Of course, if the domain
is not that large, Stokes’ equation is sufficient.

4.2.5 The Lubrication Layer

We end this section with the study of another type of flows at very small Reynolds
number, namely the case of the lubrication layer, which was analysed for the first
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hy

Lha

¢

Fig. 4.2 Schematic view of a lubrication layer. In the reference frame of the solid S the ground
moves to the right at speed U entraining the fluid to flow in the same direction

time by Reynolds in 1886. The flow in a lubrication layer has numerous applications,
especially in tribology (the study of friction). The lubricating effect of a thin fluid
layer between two solids is shown by an experiment of everyday life: that of a sheet
of paper, which glides practically without friction on a smooth floor. A thin layer
of air forms between the floor and the paper, making an air cushion, which reduces
drastically the friction. We may also observe that in the same conditions of incidence
and velocity, but far above the floor, the sheet of paper has not a sufficient lift to
compensate its weight, and falls.

In order to understand the fundamentals of lubrication, we shall consider the
simple system illustrated in Fig.4.2. A solid with a length £ glides with a velocity
U above a fixed solid plane. An incompressible viscous fluid flows between the two
solids, forming the lubrication layer. The Reynolds number of this flow, based on
the thickness of the fluid film, is supposedly very small:

Uh
— K1
v

We assume the contact surface of the solid S to be plane and slightly inclined as in
Fig.4.2. As shown, the thickness / varies linearly with the abscissa; we thus set

h(x) =hy + (ha—h)x/€  and o= (h —hy)/l < 1.

In order to analyse the flow, we use a frame attached to the moving solid. The
boundary conditions are therefore

v=Ue, at z=0 and v=0 at z=h(x)

The flow is stationary and with a very small Reynolds number. It therefore satisfies
Stokes’ equation (4.13). Using the x-component of the momentum equation, we get

JoP 9%,

- —* =0, 4.21
e +u 02 (4.21)

where we neglected the x-dependence of the velocity field. Terms coming from
this dependence are O(w) or smaller, thus (4.21) is just the zeroth order in «. At
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this same order we see that G, = dP/dx is independent of x. Solving for the
z-dependence gives the following form of v, :

h—z

x:U
" I

+ ﬂ(z —h)z (4.22)
2p

This solution is the superimposition of two exact solutions of the Navier—Stokes
equation: Couette’s flow

u=UMh—2)/hes
and Poiseuille’s flow
u=Gpzz—h)/2n e,

that we shall discuss in Sect. 4.4.1.

In the expression of the velocity, G, is an unknown. However, it may be related
to the volume flux Q which is the same at any x since the fluid is incompressible.
Neglecting the third dimension, we have

h Uh  G,h?
Q_/O el = T o

which leads to

dP  12u (Uh
Gp=—=—|—=— 4.23
Pdax w3 (2 Q) (4:23)

If the solid S is completely immersed in the same fluid (as the sheet of paper), the
pressure on the two ends is identical. Rewriting (4.23) as

G, 1dP _1dhdP _ adP _6U 120

W pde  wdedh  wdh K2R3
and integrating between /1 and h,, we can express the volume flux as a function of
the parameters of the problem. We find

h
0= Uh1 fzhz (4.24)

We can then give the expression of the pressure field in the domain [0, £] :

6pU(hy — h(x))(h(x) — hs)

PO = b = o+ hoyh ()2

(4.25)
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where P, is the pressure at the ends of the solid. Using this expression, in which we
insert 4(x) = h; — ax, we can observe that

§P = P(x) — P, < x(£ —x)/(h; — ax)?,

showing that the pressure reaches a maximum in the neighborhood of £/2. The
maximum value of the pressure may be expressed as a function of the parameters of
the problem, namely

6ulUal

SPmax = 5 3
(h1 + ha)?

(4.26)

This result shows that the pressure strongly increases when the thickness of the
fluid layer vanishes. Furthermore, the total pressure force can be derived from F; =

foz 8Pdx. After little algebra,' we find

o6ulU hy hy — hy
F,= Y {m (h_z) R hz} 4.27)

It is interesting to compare this lift force to the total shear stress exerted upon the
moving solid, which is just the drag force. By using a similar calculation, we find

t dvy 2uU (_ hy —hy hy
¢ /0 M&Z " o { hy + hy n(hz)} (4-28)

so that

hi—hy h
Fdrag _ {3111+hz —In (I_L)}
Fin 3 hi—h
i {ln (hz) 2h11+hi}
Since o < 1, the horizontal force is very much smaller than the vertical one. This

is why a large mass can be moved effortlessly with bearings. An example is given
in exercise.

(4.29)

I'The reader may note that after an integration by part

¢ _ top_
/ x(l —x) gy = 1 {—2x dx
0

(hy—ax)?  alty b —oax

while

-2 C(p—
/ X _/ {Z 2h1/a+z§dx
hy —ax 0 hy —ax o
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4.3 Boundary Layer Theory

In the foregoing section we considered flows with very low Reynolds numbers, fully
dominated by the viscous force. Now, we shall examine the opposite limit, that of
laminar flows at large Reynolds numbers.

4.3.1 Perfect Fluids and Viscous Fluids

Contrary to the low Reynolds number flows, the present ones are not always stable.
Beyond some critical Reynolds number, several solutions are possible. However,
this critical value may be large compared to unity. Thus it is often the case that the
flow is stable even if Re > 1. This is the typical situation that we shall investigate
now.

A convenient example to bear in mind is the one of a flow around a solid body.
Let us think of a car or an airplane moving at constant speed. In the frame attached
to the solid, the fluid shows a uniform velocity field in the far distance of the body.
We assume that the Reynolds number, based on the typical size of the object, is large
compared to unity. Such a set-up was already discussed in the case of perfect fluids
(see Sect.3.3.7). There we argued that the flow was irrotational, so that there exist
¢ such that v = V. It is interesting to note that such kind of solution is almost
acceptable for a viscous fluid. Indeed, for an incompressible fluid (V - v = 0), the
viscous force associated with a potential flow is zero, since:

AV =V(V-v) = VXV xVp=0

However, this solution is not fully acceptable since it does not meet the no-slip
boundary conditions on the solid. The fluid sticks to the solid and we can surmise
that close enough to it, the viscous force dominates over the other forces, which is
clearly not possible if the flow remains irrotational.

To specify what is meant by “close enough”, we have to go back to the
momentum equation (4.7). If the viscous force is important in some region of the
flow, then, in this place

Au 2 O(Re)

since other terms are supposedly of order unity. Such an inequality can be realized
in only two ways: either u is very large compared to unity or its spatial variations are
very rapid. The first possibility can be eliminated thereof since close to the solid the
velocity cannot grow much as it vanishes on the boundary. The second possibility is
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“Perfect” flow

Boundary layer

Fig. 4.3 Geometry of a boundary layer flow

therefore the right one. The function u varies very rapidly in the vicinity of the solid.
If ¢ is the characteristic scale of the velocity field, the viscous force is dominating if

L aur Lt o) e e=00/VRe)
Re Re &2
since we assumed that u ~ O(1).?

We thus find that around a solid body in a large Reynolds number flow, there is a
very thin layer of thickness ¢ = 1/+/Re <« 1 where the viscous force may control
the flow. This is the boundary layer. At a distance of a few times &, the viscous force
is usually negligible and the fluid behaves as if perfect. This example shows us that
high Reynolds number flows may be split into regions with very different dynamics:
(7) the boundary layers controlled by viscosity (or other diffusion processes in more
general situations) and (i) the “remaining” where Euler’s equation is sufficient to
describe the flow. This is schematically illustrated in Fig. 4.3.

Before closing this heuristic introduction to boundary layers, let us mention
that regions where viscous force is important are not systematically attached to
boundaries. It turns out that in some cases strong shear layers occur in the middle
of the fluid. They are no longer boundary layers but detached (shear) layers.
Let us also underline that the technique of splitting the fluid domain into various
subdomains is not specific to fluid mechanics but is in fact a way of obtaining an
approximate solution of (partial) differential equations that are too difficult to be
solved analytically.’

2Here is a very simple example of such a property: sin(x/¢) is O(1) but ﬁ sin(x/¢e) is O(1/&?).
3An example where we determine the solution of a differential equation using boundary layer
theory is given in Sect. 12.4.
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4.3.2 Method of Resolution

The preceding discussion has shown that a small parameter ¢ <« 1 is naturally
introduced in this problem. A way of taking advantage of this peculiarity is to
expand the solutions into powers of ¢ and write:

u=up+eu +euy+--- (4.30)

Furthermore, we can take advantage of the partition of the flow into the boundary
layer and the inviscid outer flow. In the boundary layer viscosity is important
and the full equation need to be solved. However, the shape of the flow is rather
simple as it is parallel to the boundaries. On the other hand, the outer flow
does not need viscosity, which may be neglected at zeroth order. Hence, in both
domains the solution can be simplified. The strategy is therefore obvious: in each
domain solutions are expanded according to (4.30). Each order is solved in each
domains and the solutions are matched together. This technique is called asymptotic
matching. The final result is an asymptotic solution valid up to some higher order
correction in &”. We shall now detail all these steps.

4.3.3 Flow Outside the Boundary Layer

Outside the boundary layer, the derivatives are all of order unity. Thus using the
expansion (4.30) and identifying each order in &, we get

uy - Vuy = —Vpg
V-ou =0 (4.31)
u-n=0 on S

at zeroth order, and

up-Vu; +u;-Vuy = -Vp, (4.32)
V. u = 0

at first order. We do not write the boundary conditions yet; they need further
discussion and will be introduced at the end of the next subsection. Note that at
second or higher orders, viscous terms need to be taken into account, even if we are
outside the boundary layer.

In the simple case where the zeroth order velocity field is irrotational, equation
may be simplified

ADy =0

n-Vd, =0 on S (4.33)
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4.3.4 Flow Inside the Boundary Layer

The foregoing equations give solutions that are not valid close to the boundaries of
the fluid. There, the viscous force is important. Viscous terms make the equations
of higher order, but, as noted above, the geometry of the flow is simpler, as almost
parallel to the boundary. To take advantage of this property, it is natural to introduce
three curvilinear coordinates (xi, x», x3) where x3 = Cst is the equation of the
boundary. In order to simplify the following discussion, we shall assume that the
bounding surface of the fluid is just the z = 0-plane. Plain cartesian coordinates are
thus sufficient.

As in the “inviscid domain”, we expand the unknowns in powers of the small
parameter €. We use the tilde to denote boundary layer quantities; hence, the
boundary layer flow is expressed:

il =g + ety + &ty + -+

Boundary layer quantities are characterized by their rapid variations in the direction
perpendicular to the boundary. Partial derivatives should therefore be ordered as

9/0x, 0/0y « 9/0z (4.34)

This inequality can be made more quantitative since we know the thickness of the
boundary layers, namely . Thus, a typical boundary layer function f reads

Fe ()

One usually introduces the stretched coordinate 7 = z/¢, so that f = f (x,7,2).
With this new coordinate, the inviscid region, which is at z = O(1), is now rejected
at infinity, since for a fixed z, 7 — oo as ¢ — 0.

The thickness of the boundary layer, and thus the stretched coordinate, is such

that % = (O(1); hence, normal variations of the boundary layer functions, namely

d, f, are all of order ¢~1. Besides, the horizontal variations of the fields (velocity and
pressure) are controlled by those in the perfect domains. Indeed, the solutions in the
boundary layer match those of the perfect domain at each point on the bounding
surface, thus horizontal variations in the boundary layer are the same as those just
outside of it. In the perfect domain, all the scales are of order unity, therefore
horizontal gradient in the boundary layer are also of order unity; thus inequalities
(4.34) mean

3, f = O(1), 3, f =0Q0), and  0,f = O(s)



4.3 Boundary Layer Theory 129

Let us now consider the equation of mass conservation. Using (4.30) together
with V - v = 0, we find that the lowest order is O(¢™"). It yields

3129,2 —0.
0z
This equation implies that
up, =0 (4.35)

since the velocity is zero on z = 0. This result shows an important property of
boundary layers: the component of the velocity that is perpendicular to the layer is
much smaller than the one parallel to it; it is at least of the next order in ¢.

The following order of the equation of continuity reads

aﬁo,x ai‘tl,z

ox 0z

=0 (4.36)

The Navier—Stokes equation develops in the same way and the first terms, of zeroth
order, yield the two equations

~ 3ﬁo,x ~ 3120,x _ aﬁO 82’20,)(
tox =g Tl = =50 T 7m
(4.37)
dpo
0=
PR

(4.36) and (4.37) are known as Prandtl’s equations of the boundary layer. These
equations show that the pressure does not depend on the coordinate Z; in other words,
it is determined, like ity ;, by the flow outside the boundary layer. This implies that

in (4.37) %" is given by the “perfect fluid flow”, so that

9o _ o
ox ox

Prandtl’s equations can be rearranged in the following way. We derive u; , from
(4.37), and we substitute it into (4.36). Thus

~  Jug.x 9po + 9o,

~ —Uox 5y 0x 072
i, = — ' (4.38)
9z
and
~ ~ 350.)( 317() aZEO.X
I 0 [ —Uox—¢ — 5 T =
X +— X - X 0z =0 (4.39)
3x BZ uo,x

0z
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This last expression shows that the boundary layer equations are nonlinear and of the
third order. Three boundary conditions are thus necessary to determine the solution.
These are:

. ﬁoqx:OatZ:O,
* Iy —> Uy, whenz — 400,
e u,=0atz=0.

We observe that the limit value of it; ; when z — 400 is not specified. It cannot
be since i ; obeys a first order equation (4.36). In general, lim;_, | o 1} ; # 0 so that
there exist a mass flux between the boundary layer and the perfect fluid domain. The
value of i) ; plays in this way the role of the boundary value for the first order terms
in the perfect domain. Thus, system (4.32) is completed by the boundary condition

u(z=0)= _lim u, (4.40)

z—>+o0

4.3.5 Separation of the Boundary Layer

We may observe that (4.38), which gives 1 ., becomes singular if, at some point on
the boundary layer,

Ol
0z

=0 (4.41)

Boundary

layer Separated

Stagnation boundary layer

point

/

Recirculation

vortex

When approaching such a point, the vertical variations of iy, are on an
increasingly larger scale, in other words the boundary layer becomes thicker up
to the point of being “infinite”. One says that there is a separation of the boundary
layer. Let us note that the boundary layer becomes infinitely thick with respect to
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the coordinate z. It does not mean that the boundary layer is overrunning all the
fluid domain, but simply that its true scale is no longer ¢ but a much greater scale.
For example, if the thickness is e? and that it is developed in spite of everything
in powers of ¢, the thickness will be O(1/ 8%) in the coordinate 7 and therefore
infinite when ¢ is vanishing. Thus, at the point of separation, %, ; diverges but in the
neighbourhood of such a point #; ; is no longer of order unity and the expansion in
powers of ¢ is no longer valid.

Equation (4.41) determines the position of the point of separation when solving
Prandtl’s equation. In fact, it is not necessary to solve this equation in order to know
the position of this point. Indeed, if a'g‘l’" = 0, then, using boundary conditions,
upx = 0. As the tangential velocity in the boundary layer is also the tangential
velocity of the perfect fluid on the solid, we find that the separation of the boundary
layer occurs close to a (downstream) stagnation point of the perfect fluid flow (see
figure).

4.3.6 Example of the Laminar Boundary Layer: Blasius’
Equation

We shall now illustrate the foregoing general theory with a very classical example
which is Blasius flow. This is the boundary layer flow generated by a thin horizontal
plate parallel to the flow at infinity (see Fig.4.4). Far from the plate the pressure is

2.0
Z 4

W 05| 1
0.0 ! R I

X 0 2 4 6 8 10

Fig. 4.4 Left: Shape of the boundary layer on a plate in a uniform flow. Right: View of the
functions F (dotted line), f (solid line) and f’ (dashed line)
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uniform. Equations (4.36) and (4.37) thus reduce to

~ ai;lO,x ~ a”'MtO,x 32;{0,):
U, Ul =z = p
T ox <9z 072

(4.42)
O,y Ol

=0
0x 07

Despite their apparent complexity, these equations admit analytical solutions when
one imposes self-similarity. Indeed, we may set

z
b(x)

Z

) and ﬁl,sz(x)g(@) (4.43)

g = Uf (
where U is the velocity at infinity. Such a velocity profile is said to be self-similar,
because for all x, its shape is identical and given by f. Then, we introduce the
similarity variable n = z/b(x) and rewrite the equations. The equation of mass
conservation (4.42b) gives

V(x)g'(n) = Unf'(nb'(x) (4.44)

The primed functions designate the derivatives. This equation shows that if self-
similar solutions exist then V(x)/b’(x) is a constant. Dimensionally, this constant
is a velocity that can be set to U without loss of generality.

Turning to the momentum equation, we find

J"==Ub()b ()nff' + b(x)V(x)gf’ (4.45)

As before, this equation admits self-similar solutions if b(x)b’(x) and b(x) V(x) are
constants. We therefore set

b(x)=+~Lx = bbb =1L1)J2 and b(x)V(x) = UL/2
b(x) is the thickness of the boundary layer. The preceding expressions show that
this quantity grows like the square root of the distance to the leading edge of the

plate. We shall return further on to the physical interpretations of this result.
Finally, (4.45) is rewritten as

=5 & = i)

where U and L are dimensionless constants, which represent a velocity and a length
scale respectively. We use them as the velocity scale and length scale, which is
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equivalent to setting U = L = 1. By using (4.44), which we now write g’(n) =
nf'(n), we thus deduce a first form of Blasius’ equation :

f” /_ 1 "o 1, 1
(%) =35 = 1 =31 [ 100 (446

Another classical form of Blasius’ equation may be found by introducing a stream
function like F = / fdn. Equation (4.46) yields then

2F" + FF" =0 (4.47)

This equation is completed by three boundary conditions:

e F’(0) =0, (v, = 0 on the plate),
e F'(z— 400) = 1, (velocity is constant at infinity)
e F(0) =0, (v, = 0 on the plate).

The functions f or F need to be determined numerically* and are shown in
Fig.4.4.

The solution of Blasius’ equation allows us to show two general phenomena of
boundary layers: The flow in a boundary layer vanishes exponentially in the outer
region and there is a flux of matter between the boundary layer and the rest of the
fluid. This is the so-called boundary layer pumping. We can demonstrate this last
point by recapitulating the asymptotic form of f” for the large values of 7. In this
case, f' ~ exp(—n*/4) and we get the component of the velocity v, by way of the
equation of mass conservation g’ = 7f’, which we integrate taking into account
that lim, ., g = 0. Hence,

g~ e /4

4We can get an idea of the shape of the function f(n) by considering the asymptotic limits  ~ 0
and n — oo.

Near the origin, (4.46) and the boundary conditions impose that f(0) = f”(0) = f"7(0) = 0;
hence, a Taylor expansion yields

2
~ o 4 7
f(m) =~ an i + 0@

where @ = f/(0) =~ 0.332058 (this value is determined by the boundary condition f(00) = 1).
This expression shows that the profile of the velocity is almost linear just before reaching the
asymptotic value where f(n) = 1. In this region (n >> 1), the function f verifies approximately
f” = —nf’/2 whose solution for f’ is Gauss function and thus for f the error function:

flay=4et = fo)~ef() 00
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so that v, is negative far from the boundary; everything happens as if the boundary
layer “breathes” the exterior fluid.

4.4 Some Classic Examples

We continue our tour of flows with incompressible viscous fluids by a short review
of the very classic examples, which are either very simple solutions of the Navier—
Stokes equation or just very common flows.

4.4.1 Poiseuille’s Flow
4.4.1.1 Stationary Regime

One of the simplest cases of steady flows is that of a viscous fluid in a very long
cylindrical pipe. In this case the velocity has just one component that is parallel to
the pipe axis and which we identify to the z-axis. We also assume that the flow is
axisymmetric. These two symmetries imply that the velocity field may be written as
v = v(r, z)e,. Using mass conservation, we find that dv/dz = 0 so that v = v(r)e,.
This velocity field belongs to the class of plane-parallel shear flows: it has just
one component, which varies in a direction perpendicular to it. As a consequence,
the velocity gradient is orthogonal to the velocity itself and thus the nonlinear term
(v V)v is zero. The momentum equation reads

-Vp+puAv=20

and we find Stokes equation again. We note, however, that in this case the Reynolds
number is not necessarily small. If we project this equation along e, and e, we find

that:
ap dap pa av
o d r_=27 (.22
ar 0 an 0z r or 4 ar

The pressure is therefore independent of r and if we differentiate the second
equation with respect to z, we see that the pressure gradient is necessarily constant.
We call this gradient G, and integrate the equation of v, which leads to

v(r) = —f—;(Rz —r?) (4.48)
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where the constants of integration have been chosen so that v(0) is finite and v(R) =
0. Solution (4.48) is Poiseuille’s flow.> The velocity profile is parabolic. We see in
this expression that the flow is in the opposite direction to the pressure gradient. The
fluid flows from the high pressures toward the low pressures.

Such a velocity profile may also be found for the laminar flow of a viscous fluid
between two infinite flat plates staying at a distance d from each other. If a pressure
gradient G, is set up along, say, the x-axis, then

v(2) = —ﬂz(d —-2)
7

which is also a parabolic profile with a maximum velocity of z = d /2.

4.4.1.2 Transients to a Poiseuille’s Flow

We shall now briefly examine the way the Poiseuille flow sets up. For this, we
consider two situations. The steady flow inside a pipe but close to the inlet, and
the transient flow occurring in an infinitely long pipe when a pressure gradient is
abruptly set up.

* When a viscous fluid enters a pipe, the Poiseuille flow is not immediately
set up, especially if the Reynolds number is large. Indeed, at large Reynolds
numbers, a boundary layer appears. Such a layer is very similar to the one
described by Blasius’ equation. It thickens as the square root of the distance to
the entrance as illustrated in Fig. 4.5. When the thickness of the layer has reached

L

AN

Boundary layers

Fig. 4.5 Boundary layers at the inlet of a cylindrical pipe

3Sometimes called the Hagen—Poiseuille flow. Hagen studied it in 1839 and Poiseuille in 1840.
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the radius of the pipe, Poiseuille flow is almost established. Using the results of
Blasius boundary layer, we can estimate the distance from the entrance at which
Poiseuille flow appears. The thickness of the layer is given by

D
e:mﬁ

In this expression, D is the diameter of the pipe. From the boundary layer theory,
we know that the boundary layer thickness scales like D/+/Re, so that using
the result of the Blasius flow we find the above expression (which only gives an
order of magnitude). We thus see that Poiseuille flow appears at a distance from
the entrance which is typically Re/2 times the diameter.

— We now consider the case of an infinite pipe in which a pressure gradient is
suddenly set up. Such a situation occurs when one rapidly opens a tap or a sluice
gate. In this case, the velocity field evolves according to

Gk L2 ()

at ror rﬁ

If we solve this equation numerically, we find a result similar to that of Fig. 4.6. In
this figure we clearly see the boundary layers at early times and their progressive
diffusion towards the interior up until the formation of the parabolic profile.
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Fig. 4.6 Time evolution of the velocity and vorticity during a transient leading to the Poiseuille

flow between two plates. The equation g—: = —g—i + % with dp/dx = —1 has been integrated
numerically, giving the velocity while vorticity is w, = dv/dz
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4.4.1.3 Generation of Vorticity

The set-up of Poiseuille flow in the foregoing examples comes from a single
phenomenon: the diffusion of vorticity from the walls. The case of the time evolution
is very clear: just after the pressure gradient is set up, at # = 0.001, vorticity is zero
everywhere except near the bounding planes. As time passes, it diffuses slowly to
the interior until the steady state is reached. This shows the key role played by the
no-slip boundary conditions in the generation of vorticity. These conditions prevent
the flow from remaining irrotational.

In the other example, vorticity also diffuses from the walls, but it is simultane-
ously advected by the main stream. These two effects combine, and give birth to the
square root law that we met in analysing the Blasius layer. Indeed, the diffusion of
a quantity proceeds with the square root of time (see the discussion of the diffusion
equation in the maths complements) : if § is the distance to the wall at which
the vorticity takes a given value, then § J/I. But ¢ is such that z = V#; thus
8 o< y/z/ V. We thus find again the square root law of Blasius boundary layer. It is a
consequence of advection and diffusion acting simultaneously.

4.4.2 Head Loss in a Pipe

When we studied the motion of perfect fluids, we introduced the notion of head
losses which we connected to energy dissipation. We are now in a position to
estimate these losses in some simple cases.

4.4.2.1 Regular Head Losses

We begin with the case of the Poiseuille’s flow of an incompressible fluid. We can
easily calculate the head loss between two points separated by a distance L and
belonging to the same streamline. Since the kinetic energy is constant along each
streamline (this is mandatory because of mass conservation and incompressibility),
the loss of mechanical energy P + % ov? comes from the pressure gradient G P
Thus, over a distance L, the loss is G, L; the head therefore decreases linearly in
the downstream direction. One says that the head loss is regular.

More quantitatively, if the volume flux in the pipe is Q and the volumic
mechanical energy is E,,(x), x being the coordinate along the streamline, the power
dissipated between the two points is just:

D= (E,(x)—E,(x+L1))0
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Since E,, = % pv2+ P and since the velocity does not depend on x, we find that D =
LG, Q. We may verify that this expression also comes out of a direct calculation of
the viscous dissipation, and that D does not depend on the velocity profile inside
the pipe, but just on the pressure gradient.

4.4.2.2 Singular Head Losses

Let us now imagine the case of a pipe flow at the place where the pipe’s cross section
abruptly increases, just as shown in the above figure. Such a change in the pipe,
provokes the separation of streamlines from the wall and gives birth to a jet. Further
downstream, this jet reconnects to the wall of the pipe. In between, we find a region
of “dead water” where recirculation vortices stand. The flow is quite complicated
there, but an evaluation of the losses and gains of momentum, between the upstream
and downstream sides, allows us to find out the head loss due to this singularity of
the cross section. Such kinds of head losses are called singular. Other examples of
singularities are pipe junctions, pipe bends, etc.

To understand the effect of the abrupt change of pipe section, we consider a fixed
control surface (shown with dashed lines in the figure). The difference between the
in and out momentum flux is compensated by the pressure difference in A and B.
In B the pressure is uniform in the cross section since streamlines are all parallel
to the pipe boundaries (see Sect. 3.2.2), however in A this is less obvious. In fact it
is almost uniform there also. The reason is similar as for B: in a cross section of
the jet, pressure does not vary because of its almost parallel streamlines; it is equal
to the one just outside it. Thus, provided the pressure is constant in the dead water
region (this is approximate of course), we may assume that the pressure is constant
all over the section in A. Thus we write

(Pa— Pp)Sp = pV3Sp —pViSa
But since the volume flux is conserved, V4S54 = V3 Sp, and thus we get

Py— Pp = pVp(Vp —Vy) (4.49)
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This result is sometimes called Bélanger’s Theorem. We show now that some
energy is lost in the crossing of the enlargement; for this we calculate the difference

1 1
A= (Pa+5pV]) = (Po+50V3).
From the preceding formula we get
1 2
A= EP(VA —Vg) >0 (4.50)

This difference is thus always positive: there is always a head loss due to the sudden
change of cross section.

We examined here the case of an abrupt enlargement of the cross section; in the
opposite case of a cross section narrowing abruptly, some head loss also exists but
not as large. This is because no jet forms, so that recirculating vortices are much
smaller.

4.4.3 Flows Around Solids

Flows around solids constitute a wide class of flows with numerous applications.
They are sometimes called external flows to underline the differences with pipe
flows which are therefore internal flows. We shall describe these kinds of flows
with the vorticity field, considering examples with increasingly high Reynolds
numbers.

When the Reynolds number is small compared to unity, vorticity fills the whole
space, although decreasing like 1/r? as shown by (4.19) in the case of the sphere.
When the Reynolds number is large compared to unity, we have seen that it is
confined inside the boundary layer. However, this confinement is not complete: the
boundary layer always separate somewhere on the downstream side of the solid and
forms the wake. Thus, far from the solid, the vorticity may be found in the wake
only.

When we discussed Stokes’ equation in Sect.4.2.1, we noticed the symmetry
of the solutions between upstream and downstream sides. We observed that the
nonlinear terms break this symmetry. Here, we see that this symmetry breaking
actually occurs through the raise of the wake on the downstream side.

The shape of a wake much depends on the Reynolds number. In Fig. 4.7, we see
that the wake consists of two recirculating vortices. When Re = 50, these vortices
separate from the solid and form a vortex streak also called von Karman streak (see
Fig.4.8). Finally, if Re 2 1000, the wake becomes turbulent (e.g. Fig. 4.9).
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Fig. 4.7 A glimpse at unsteady recirculating vortices behind a cylinder at Re~ 330 (photo of the
author)

Fig. 4.8 Vortex street in the wake of Juan Fernandez islands imprinted in the clouds (Landsat 7
image, NASA)

Fig. 4.9 Turbulent wake behind a cylinder at Re=2000 (ONERA photograph in Werlé and Gallon
1972).
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The computation of such flows is solely possible with a direct numerical
resolution of the Navier—Stokes equation (together with mass conservation) and only
when the Reynolds number is not too large (presently less than a few thousands).
Such flows are extremely complex.

4.5 Forces Exerted on a Solid

When the flows are known, the stresses they exert on the boundaries can be
computed. We therefore continue our investigations on viscous fluids by a look at
forces that they may apply on solid bodies.

4.5.1 General Expression of the Total Force

The total force exerted on a solid by a viscous fluid flowing around it is the sum of
all the stresses applied to its surface, namely

F=| [6]dS
(S)

where the surface element d'S is directed outside the solid.
To illustrate this formula we take the simple example of Poiseuille flow for which
we have an explicit expression of v. In this case, the expression of [o] is

—p 0 pl:
ol=1 0 —p O
pGe 0 —p
now dS = —2mRdze, since the surface must be oriented towards the fluid which

exerts the stress. The resultant force is therefore

9
F = —/ 0 dS = —pu2nRL (ﬁ) e,
(M) I /=g
R

“Bz

where L is the length of the tube and R its radius. But (%) = G,R/2u so that
R

the fluid entrains the tube with a force F = —7R?>G pLe; in the same direction as
the flow. We observe that viscosity has disappeared from the expression of the force
which means that this force can be obtained without knowing the details of the flow,
simply by an integral balance (see exercises).
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4.5.2 Coefficient of Drag and Lift

The expression of the force exerted on a solid is rarely accessible by direct
calculation, in particular when the Reynolds number is large compared to unity.
It is then necessary to resort to numerical calculation and/or to modelling (if
there is turbulence). However, even if we totally ignore the form of the flow it is
always possible to connect this force, may be just dimensionally, to the fundamental
quantities of the flow. This is why one introduces non-dimensional coefficients
which concentrate our ignorance about the flow.

When the Reynolds number is large, the pressure field due to the inertia of the
fluid is the main source of stresses exerted on a solid moving in a fluid. When we
studied the motion of perfect fluids, we saw that pressure at an upstream stagnation
point was %,ov2 (also called dynamic pressure ); multiplying this pressure by a
surface typical of the solid, we get an order of magnitude for the force. This may be
expressed in the following way:

1 SXCX
F= EpV2 S,Cy
S:C.

where p is the density of the fluid, V' the velocity of the solid, and S,, S, and S are
the surfaces projected on planes perpendicular to each axis (see Fig. 4.10).

If the solid moves along Ox, Cy is called drag coefficient, C. lift coefficient, while
C,, rarely utilized, could be called coefficient of lateral lift.

These coefficients depend on the shape of the body and on the Reynolds number:
a well-shaped body has a smaller C, than an ill-shaped one. When the Reynolds
number is very large (2 10°), these coefficients are almost constant.

The dependence on the shape of a body is most easily shown with the case
of a wing. In this example, the coefficients much depend on the incidence of the
wing: for small values the lift increases with the sine of this angle. But if this angle
exceeds some critical value, the lift drops abruptly: the boundary layer separates
from the wing near the leading edge. Streamlines are no longer curved and the
resulting pressure drop, which is responsible of the lift, disappears. In addition, the
drag strongly raises: this is known as the wing stall. This situation is illustrated in
Fig.4.11.

4.5.3 Example: Stokes’ Force

To conclude this section, we examine the case of the sphere in uniform motion in a
viscous fluid when the Reynolds number is very small. The solution that we obtained
in Sect. 4.2.3 allows us to calculate the expression of the resultant force. This force
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Fig. 4.10 Schematic views of the various projections of a solid on a plane

Fig. 4.11 Flow around an inclined plate at stall ((©) ONERA photograph, Werlé 1974)
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expresses as
F = / [o]e,dS = [ (0, cos® —o,4sinO)R*sin OdOdgpe,
(S) 4n

where we have used the symmetry of the flow around Oz. The boundary conditions
on the sphere allow us to write:

0,(R) = —p(R) and org(R) = p (BE)L;)
r=R

By using the solution (4.18) and after evaluation of the integrals we get
F, =6muRU (4.51)

which is the expression of Stokes’ force. This formula may be used in various ways,
but an interesting one is the measurement of the dynamic viscosity of Newtonian
fluids. Indeed, if we let a ball falling in a viscous fluid, provided its radius is small
enough, its velocity quickly reaches a constant value. This value results from the
balance between the weight (minus the buoyancy force) and the viscous friction
(Stokes force). The result is that dynamic viscosity is given by

p=(m-—mys)g/(6nRV)

where V' is the velocity of the falling ball, m is its mass and m ; the mass of the
displaced fluid. g is the local gravity. Since Stokes’ formula is valid only at very
low Reynolds number, it is necessary to check that this condition is verified once
the viscosity is determined. For instance, a small glass ball, weighing 0.02 g, left
in glycerin, falls with a constant speed of 1cm/s. This corresponds to a Reynolds
number ~0.04. However, if the same experiment is made with water, we would
expect, from Stokes formula, a final velocity of 10m/s and a Reynolds number of
20,000, which is certainly not consistent with the use of Stokes equation.

From Stokes formula, we may also compute the drag coefficient of a sphere at
low Reynolds numbers. We find

C. — 6ruRU 24
o %pUan2 " Re

using a Reynolds number based on the diameter of the sphere.

Thus, the C, coefficient decreases like the inverse of the Reynolds number. At
infinite Reynolds number it is zero which is reminiscent of d’ Alembert’s paradox,
but in this limit, again, Stokes’ formula is not valid!

The variations of the sphere’s C, with Reynolds number has been well studied
experimentally. Figure 4.12 reproduces the curve derived from experiments like in
Fig. 4.13. We see the decrease in 1/Re for the small numbers, then a plateau and
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Fig. 4.12 Variation of the C, coefficient of a sphere with the Reynolds number (solid line). The
dashed line shows the law C, = 24 /Re valid at small Reynolds numbers

Fig. 4.13 View of the turbulent wake of a sphere at Re=15,000 (© ONERA photograph,
H. Werlé)
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an abrupt jump which correspond to the transition of the boundary layers towards
turbulence. It is usually admitted that beyond this value C remains constant.

4.6 Exercises

1. Find the expression of the force exerted by a Poiseuille flow in a cylindrical pipe
using an integral balance. L is the length of the pipe, R its radius and G, the
applied constant pressure gradient.

2. Lubrication layer: show that if the solid inclination is very small, i.e. that | =
ha(1 + ¢), then

h
F drag x~ 3_zFlift

Compute the force needed to push a solid of 10° kg at constant speed on an oil
film 1 mm thick if the length of the contact surface is 1 m (the contact surfaces
are assumed to be perfect planes).

3. Flow of a viscous fluid on a slope

z

The fluid layer, as shown in the above figure, meets free-slip boundary conditions
on the top plane and no-slip ones on the bottom plane. The planes make an angle
« with the horizontal. The fluid is incompressible and of kinematic viscosity v.
The flow is steady.

(a) Determine the velocity profile assuming that v = V(z)e.
(b) Find the volume flux through a cross section S.

4. The Taylor—Couette flow or cylindrical Couette flow
We consider a viscous fluid contained between two rotating cylinders of radii R;
and R,, respectively. Their angular velocity is £2| and 2.



References 147

(a) We look for a solution like v = v(s)e,. What are the symmetries of this
solution? Show that v(s) is the solution of a linear equation. Solve it and
give the solution verifying the boundary conditions.

(b) What is the torque exerted by the interior cylinder on the outer one.

(c) How can we measure the viscosity of a fluid with such a device?

5. Falkner—Skan equation: We take the Prandtl equations of the laminar boundary
layer (4.37), but we look for solutions more general than the Blasius ones. We
set gy = U(x)f(n) and u;, = V(x)g(n), where 7 is still the self-similarity
variable and U(x) the x-component of the velocity at infinity.

(a) Give the expression of dpy/0dx as a function of U(x).
(b) Show that the existence of such solutions implies that U(x), V(x) and b(x)
verify:

20bb = ¢4, U'b* = ¢, and Vb = c3

where ¢y, ¢, ¢3 are constants.

(c) Derive the general form of U(x) and b(x).

(d) Show that if one chooses ¢1/2 + ¢, = 1 (why is that always possible?), then
F = [ fdn verifies Falkner—Skan equation:

2
F" + FF" — m—fl(F’2 =0 (4.52)

where m is a constant to be related to ¢y, ¢3, c3.
(e) For which value of m is the boundary layer thickness constant? How can we
find the Blasius equation again?

Further Reading

The matter of this chapter belongs to the very base of Fluid Mechanics and therefore
may be found in all the books aimed at introducing Fluid Mechanics; for instance,
Batchelor (1967), Faber (1995), Guyon et al. (2001), Landau and Lifchitz (1971-
1989), Paterson (1983), Ryhming (1985, 1991).
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Chapter 5
Waves in Fluids

5.1 Ideas on Disturbances

Disturbances play an important role in Physics and notably in Fluid Mechanics.
Indeed all flows in Nature are constantly subjected to perturbations of various
origin: thermal noise, variations of boundary conditions, etc. If the flow is stable,
these disturbances are always damped: otherwise, some of them grow, up to the
disappearance of the initial flow replaced by, perhaps, more stable one. The study of
the stability of a flow therefore begins with the study of perturbations. However,
before addressing the case of flow stability in the next chapter, we shall first
concentrate on the simplest manifestation of disturbances, namely the waves. Their
existence is indeed the first evidence that an equilibrium (or a steady state) has been
slightly perturbed.

5.1.1 Egquation of a Disturbance

Let us begin with the simple case of a disturbance affecting the steady flow V of an
incompressible fluid. The fluid is in a domain D delimited by a solid wall dD on
which V = 0. The motion is generated by a force f. The equations of the original
steady flow are simply

pV-VV =—VP + uAV +f
V.-V=0 6.1
V=0 on 0D
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Given that (6P, §v) is a disturbance of this flow, the total field (P + §P,V + §v)
must also be a solution to the equations of motion

p(%dr(vwv)-vwwv)) = —V(P +8P) + pAV +8v) + £
V- (V+48v)=0

V+4ov=20 on 0D
(5.2)

We develop these terms and subtract (5.1), which leads to the following equations
for the disturbances:

1 )i
00V ——
P\ +V-Viv+48v-VV +8v.-Vév | = —VEP + pnAdv

(5.3)
V-5v=0

sv=20 on oD

Terms I and I show that the disturbances do not obey the same equations as the
original flow. Their evolution is indeed a function of the flow on which they appear
and this dependence is the result of the nonlinearities of the original equations.

5.1.2 Analysis of an Infinitesimal Disturbance

The study of disturbances is done in successive steps. The first of these consists
in analyzing the case of disturbances whose amplitude is infinitesimal: indeed, for
these disturbances the equations are linear and therefore easy to resolve (in theory!).
Two situations can thus occur: either we are seeking the evolution of disturbances
in a homogeneous region of the flow (whose properties are independent of the local
coordinates) and we make an analysis using plane waves, also called local analysis,
or we are facing important spatial variations and we must do a global analysis (this
is the case if the boundary conditions play a role).

5.1.2.1 Local Analysis

Local analysis is the easiest one because the form of the disturbances is known in
advance. Let us consider the system (5.3); by linearizing it, we have
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a8
p(—v +V~V8V+8v-VV) = —V34P + vAdv

ot
V.év=0 54
fv=10 on aD
for which we seek a solution of the plane wave type, namely
§v =68vo '@ TED  and P =Py €@K (5.5)

where k is the wave vector. Observing that the operators V and 3% are transformed
in the following manner:

V = ik and — —iw,

ot

we immediately get the system

i(@~+Kk-V)8vo + (8vo - V)V = —8Pyik — vk2v
(5.6)
k- SV() =0

The solution (5.5) and the relation (5.6) that follows are valid only if V and VV are
almost constant. This is obviously not the case in general: but if we limit ourselves to
a small area of the flow, then these quantities are almost constants and the derivation
that we did does make sense. This is the reason for which it is called local analysis.
It is valid only if the wavelength A of the disturbance is very small compared to the
scale of the variations of V or VV; in other words

VI IV }
A < Min |:—, 5.7
IVVI vy
Let us continue our analysis and give a matrix form to relation (5.6), namely
Dy, ny D,; iky SVO,X
D, Dy, D,, ik, dvo,y —0 (5.8)

D, D, D ik, 8o,
kx ky kz O 8P()

This system has a non-zero solution if the determinant of the matrix is vanishing.
Since each component D;; of this matrix is a function of k and w, we finally get the
dispersion relation of the waves:

det[D] = D(w.k) =0 (5.9)
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We note that the dispersion relation is an implicit relation between w and k. We shall
see in the next chapter that this form of the relation has important consequences as
far as stability is concerned.

5.1.2.2 Global Analysis

When one cannot neglect the boundary conditions or the heterogeneities of the
disturbed system, one cannot impose the plane wave form to the disturbances. Their
partial differential equations (5.4) need to be solved directly.

If the solution V, which we analyse, is stationary, we can look for disturbances
in the form

Sv(r,1) = vy (r)et (5.10)

Such a solution is called an eigenmode of the system. It is associated with the
eigenvalue A, which is a complex number in general. The search for the eigenmodes
of a system is also called modal analysis.

If we note that the system (5.4) may be written

L(v) = Abv in D

dv=20 on dD .11
the search of the eigenmodes is equivalent to finding the eigenfunctions of the
operator £ verifying the boundary conditions. Simultaneously, we determine the
associated eigenvalues which give the point spectrum (the set of eigenvalues) of
the operator L. If the operator is compact! then the spectrum is discrete and each
eigenvalue can be identified by a triplet of quantum numbers (£, m, n).

The resolution of such a problem is difficult in general and must be carried out
numerically. In the examples that we shall consider, we shall combine the local
analysis and the global analysis so as to reduce the partial differential equation to
ordinary differential equations. This is possible when the system owns symmetries.

5.1.3 Disturbances with Finite Amplitude

When the amplitude of the disturbances cannot be neglected, the problem becomes
very complicated because of the nonlinearities of the equations. Several strategies
are then possible.

I'To say it in a simple way, compact (linear) operators are like matrices of finite dimension although
the space on which they act is a space of functions and therefore of infinite dimension.
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e The amplitudes are finite but small: we can develop the solution into powers of
the amplitude.

» Several, very different, scales intervene in the problem and we are able to make
a multi-scale expansion of the solution.

An example of each of these strategies will be given in Chap. 7 using the case of
thermal convection.

5.1.4 Waves and Instabilities

In the following we analyse the simple case of disturbances that are neither amplified
nor damped (or very little). They are waves which freely propagate in the fluid.
When an amplification appears, ones speaks rather of an instability, the study of
which is postponed to the following chapter.

5.2 Sound

5.2.1 Egquation of Propagation

Sound waves are the simplest and the most frequent of the disturbances which
propagate in a fluid. In order to study them, we assume that the undisturbed fluid is at
rest, i.e. V. = 0. With regard to (5.3), we must take into account the compressibility
of the fluid: sound does not exist in an incompressible environment!

We make the following expansion:

P = Py+ 6P

T =Ty+ 6T (5.12)
p=po+dp

v=0+44v

We assume moreover that the fluid be perfect and initially at constant pressure,
density and temperature. By neglecting all the nonlinear terms we get

i)
a_f +poV -8V =0 (5.13)

from the equation of continuity,

35
poa—tv — V5P (5.14)
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from the equation of momentum and

d8s
— =0 5.15

5 (5.15)
from the equation of entropy. This last equation can be used immediately. Indeed,
this equation implies s = f(x, y,z); butat t = 0 (or before the disturbance starts)
ds = 0, and therefore the disturbance stays isentropic. We can thus write a relation

between the fluctuations of p and P:

§P = (a—P) 8p (5.16)
¥ /s

where the partial derivative of the pressure is taken at constant entropy. Now, if we
take the time derivative of (5.13) and combine it with (5.14) and (5.16), we get the
following wave equation:

1 928p _ , (0P

¢s is naturally identified with the speed of propagation of the disturbance. We easily
verify by exercise that §P and §v obey the same wave equation.
If the gas is ideal, the speed of sound can be expressed as

P
=202 yro1y (5.18)

0o

where y and Ry are defined in Sect. 1.7.1 This equation shows that, for an ideal gas,
¢s depends only on temperature. Let us calculate an order of magnitude of the speed
of sound in the air at 300 K. For y = 1.4, R, = 8.314/0.029 J/kg and T, = 300 K,
we find ¢; = 347 m/s. We observe that sound propagates faster in hot gases and
with small molecular mass. In hydrogen at 300 K, M = 0.002 kg/mole, the sound
speed is ¢, = 1321 m/s thus almost four times faster than in the air.

The sound speed is of the same order of magnitude as the rms” velocity of the
molecules of the gas. Pressure is indeed due to collisions between molecules and
pressure disturbances cannot go much faster than the molecules themselves!

5.2.2 The Dispersion Relation

In the medium that we have chosen the sound waves have a very simple dispersion
relation; assuming

(6P, 8p, 8v) x exp(iwt —ik-r)

2For “root mean square”; this is the typical dispersion of molecules velocities in a gas.
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we easily obtain the dispersion relation
o = 2 (5.19)

which shows that the waves are not dispersives since the phase velocity w/k is
independent of k.

Let us now consider the orientation of the velocity field associated with the wave,
and the wavevector k. We take back (5.14) which we transform into

pol w8v = ik§P (5.20)

This last relation shows that the velocity vector is parallel to the wave vector. One
says that the wave is longitudinal.

5.2.3 Examples of Acoustic Modes in Wind Instruments

The study of sound waves naturally leads to the vast domain of acoustics. We shall
just outline the subject by examining the acoustic oscillations associated with wind
instruments.

5.2.3.1 The Flute

The flute is one of the oldest instruments and its principle is one of the simplest.
It is based on the oscillation of an air column in a cylindrical pipe. In order to
study this oscillation, we neglect the viscosity of the air and assume its motion to be
one-dimensional. Taking the axis of the tube parallel to Ox, with the origin at one
extremity and the other at x = L, we write that the velocity, the pressure, etc. are
the superimposition of two plane waves propagating in opposite directions, namely

V. = Aei(wt—kx) +Bei(wt+kx)
. =
8[7 — A/ei(wt—kx) + B/ei(wt-f—kx)
At the extremities of the tube, the pressure is fixed (it is the atmospheric pressure),
so that the pressure disturbance vanishes there.> These two boundary conditions

allow us to write

Sp=0 at x=0 = A'=-B
Sp=0 at x=1 = Ale™ 4 Bl =

3This is an idealization of course. In reality the fluctuations of pressure do not exactly vanish, but
their amplitude is very small compared to the one inside the tube.
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from which comes the relation

nmw
(5.21) gives the wavelength of the acoustic modes of a fluid in a cylindrical cavity
open at both ends, namely

2L
A==
n

The reader has certainly observed that we just determined an eigenmode of the
air column since we took the boundary conditions into account. This example shows
the utility of the local analysis, which, in some cases, is easily extended to the global
one.

The frequency F of these modes is immediately obtained from the dispersion
relation w = kc¢g with w = 27 F. We have therefore

ncs

F,=— 5.22
Y (5.22)
Let us apply this result to a flute in which the lowest note (n = 1) is the C at
261.6 Hz. Its length should be (if ¢; = 347 m/s) L= 66.3 cm, to be compared
to the length of a modern transverse flute in C which is 67 cm. We also note that
the next harmonic, n = 2, vibrates at a frequency exactly two times higher than the
fundamentaln = 1. Hence, if the player is able to excite the second harmonic, a new
set of notes with a frequency twice higher, i.e. at the next octave of the fundamental,

is available.

5.2.3.2 The Clarinet
The clarinet is another interesting instrument because it uses different boundary
conditions: one of the extremities is closed and we must set the velocity to zero

there.* We have

Sp=0 at x=0 = A = _B
sfv=0 at x=L = Ae~*L 4 Bl —

Now, additional relations between A, A’, B and B’ are necessary. These relations
are given by (5.20), thus

A’ = pocs A and B’ = —pycsB

“This doesn’t imply that §p = 0 because (5.20) doesn’t apply to a superimposition of plane waves.
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which implies that A = B. Moreover,

2n +1
CosKL =0 e g=ntbT o N (5.23)
2L
The frequencies of the different harmonics are thus
FOZC_S, Fl:&’___’ Fn:w,”_
4L 4L 4L

Let us apply this result to a real instrument like the B-flat clarinet. The fundamental
is the D at 146.8 Hz. The calculation of its theoretical length is 59 cm to be compared
to the real length of 60 cm. Contrary to the flute, the first harmonic (n = 1) is not the
next octave, but a frequency that is three times the fundamental one (n = 0), namely
the A at 440 Hz (for the player this is an octave plus a fifth or a perfect twelfth).

Because of this dispersion relation of the modes, this instrument is necessarily
more complex to make. Other examples, like the oboe and the bassoon are studied
in the exercises.

5.3 Surface Waves

A second category of very common waves in our environment is that of surface
gravity waves, namely all the waves which agitate the surface of water planes.
Contrary to sound waves, these waves are very dispersive, i.e. their phase and group
velocity strongly depends on the wavelength. We would have a hard time making
music if sound waves behaved that way!

5.3.1 Surface Gravity Waves

In order to understand the way in which these waves propagate, we must return to the
boundary conditions ruling a free surface. We have seen in Chap. 1 (Sect. 1.8.1.2)
that the surface obeys the kinematic condition

aS
—+v-VS§=0 (5.24)
ot

where S = Cst is the equation of the given surface. To this condition we add

the dynamic one, which imposes the continuity of the stress when we cross the
surface. As we neglect viscosity, this last condition amounts to the continuity of the
pressure. We shall also neglect the effects of surface tension which will be examined
separately.
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In order to treat this problem we make several simplifying hypotheses: we first
assume that the fluid is incompressible and that its motion is vorticity free. This
latter assumption means that the flow is driven by forces derived from a potential.
To be more precise, we consider the case of an interface between air and water and
simultaneously treat the motion of the two fluids. The equations which govern these
motions are (3.22) and (3.23):

A, =0

0o 1, P, o (5.25)

-V e = LS

at 2 w » gZ

AD, =0

i N S Cst 0
—-— + v, + — =Cs

ot 2% pa &<

where the indices a and w refer to air and water respectively. We first look for one-
dimensional solutions that propagate in the x-direction:

® = P(g)e™ ! (5.27)
Laplace’s equation then implies
82¢ 2 kz —kz
3_z2_k(p:0 - ® = Ae™ + Be (5.28)

5.3.1.1 In Deep Water

We assume, as a first step, that the air occupies the upper half-space z > 0 while the
water occupies the lower half-space z < 0. In this case

&, = Age™™  and D, = A,eN (5.29)

Let us now consider the boundary conditions. The surface verifies an equation of
the form

S(r,t) =z—2z(x,t) =0

from which we derive that VS = e, — %ex.
If we now assume that the amplitudes of motions are small, we find from (1.63),

that

— aZS

v, = o at z=0 (5.30)
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neglecting second order terms. Finally, on the surface the velocity potential verifies

00 0z

- = at z=0 (5.31)

as given by (5.24) for small amplitude motions. We apply this relation to the air and
the water and thus

k®,(0) = —iwz, = —k®,(0) (5.32)

which shows incidentally that A,, = —A,. We now use the linearized equation of
dynamics and the second boundary condition (continuity of pressure). Atz = 0 we
have

_ia)pw@w + Pw8Zs + SPW =0

5.33
—iwp, Py + Pa8%s + 8P, =0 ( )

by subtracting these two equations and by using (5.32) together with the fact that
0P, = 6P,, we get the sought-after dispersion relation:

a)2 _ Pw — Pa

= gk (5.34)
Pw + Pa

If we neglect the influence of the air we simply have:

w = /gk (5.35)
We easily derive from this expression the phase and group velocities, namely

w Pw—Pa 8 dw 1
_o_ Pa§ _ow _ 1 5.36
Tk otk ET 9k 2 (5.36)

These two relations show that the waves are dispersive: the waves with long
wavelength are the fastest.

5.3.1.2 In Shallow Water
If the depth of the water is not infinite (and especially if it is smaller than the
wavelength of the waves), the dispersion relation is much simplified.

Taking the bottom into account, which we assume to be flat and located in z =

—H, we have to modify the solution (5.28) so that the boundary condition:

v, =0 at z=—H
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is verified. We easily find that it implies that
®,(z) = 24,¢ " cosh[k(z + H)] = A/, cosh[k(z + H)]
Using this relation at the surface, it turns out that
Al ksinh(kH) = —iwz, = —kA, (5.37)

which replaces (5.32). The equation of pressure allows us, after minor calculations,
to find the new dispersion relation

2 (e — pg) tanh(kH )
= k. 5.38
© Pe + pq tanh(kH) & (5.38)

If we neglect the density of the air, it simplifies into
w? = gktanh(kH) (5.39)

We find again the foregoing relation, (5.35), when A < H because then kH > 1
and tanh(kH) ~ 1. On the other hand, if we take the opposite case where A > H,
that is in the case of a shallow layer, then tanh(kH) ~ kH and the dispersion
relation (5.39) becomes

w? = gHK® (5.40)

The phase velocity is

Vo = \/gH

identical to the group velocity: the waves are no longer dispersive.
Some example of the use of these results may be found in the list of exercises.

5.3.2 Capillary Waves

When discussing the case of surface gravity waves, we voluntarily ignored the role
of surface tension. We may wonder whether this simplification was justified or not.
In order to evaluate the effects of this new phenomenon, we just need to modify the
dynamic boundary conditions. Indeed, now

1

1
Pwater = Luir + Y (R_l + R_z)
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As before we linearize these equations and simplify the problem to two dimensions,
thus R, = oco. With the linear approximation we have

1 0%z,

R ox2

(see 12.12 in the complements of Mathematics). This equation allows us to write

9z,
Pwa er — Pair - 5.41
The relations (5.33) are thus transformed into
—10(py @y — paPa) + (P — pa)gz, + yk’z; = 0 (5.42)
from which we derive the following dispersion relation:
w — Ma k3
=P Py Y (5.43)
Pw + Pa Pw + Pa
which is also written under the form
0? = gk + L& (5.44)
o

when we neglect the density of the air. In this last relation, we have of course
assumed the depth of the liquid to be infinite (the case of finite depth is proposed
as an exercise). It shows that the effects of surface tension are expected at short
wavelengths. They dominate if

Zk3>gk = A< A =27 s
p %4
For water, we find that A, = 1.7 cm. We may observe that when the surface

tension dominates, the waves are also dispersive.

5.4 Internal Gravity Waves

Gravity waves or internal gravity waves (in order to distinguish them from surface
gravity waves) are present in all the fluids that are stably stratified by gravitation
(see Chap. 2 sect. 2.2.3 for a presentation of a stratified fluid). This type of situation
is encountered frequently in our environment. For example, in a lake where the cold
water is found at the bottom and the warm water, lighter, close to the surface. Such a
situation is stable. All disturbances of this equilibrium give birth to waves which are
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the internal waves of gravity. For such waves the restoring force is the buoyancy
force which has a privileged (vertical) direction. Hence, these waves propagate
anisotropically.

In order to get more familiar with these waves, we consider the following
idealized situation: a quasi-incompressible fluid (such as water) is in equilibrium
under the effect of gravitation. Its temperature is supposed to increase in a linear
manner with z (see Chap. 2, sect.2.2.3). We suppose moreover that the variations
of density associated with the variations of temperature are negligible except those
generating the buoyancy force (this is the Boussinesq approximation that we shall
thoroughly describe in Chap. 7).

Neglecting the effects of diffusion (viscosity and thermal conduction) and the
nonlinear terms, the equations of disturbances are now

a6 1 8
ot o P
T
& +6v-VIy, =0 (5.45)
ot
V-6v=0

Ty is the temperature of the equilibrium configuration that we assume to vary
linearly with z. We set

T0=T00+,BZ with ,3>0
If the fluid is a liquid (see 1.60),

)
L—T
P

where « is the dilation coefficient of the fluid.
We are looking for a solution in the form of plane waves, thus setting

8f = foexp(iowt —k-r),
we transform (5.45) into

iwévog =ikp/p + aéTyge,
iw8Ty + Bévo, =0 (5.46)
k- 8V0 =0

Taking the dot product of the first equation with k, we find that i pk?> = —ap8Togk..
We combine this equation with i wév, = ik, p/p + a8Tpg and i w6 Ty + Béve, = O,
in order to finally obtain the following dispersion relation:
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k2 + k2
w? = NZ% (5.47)

where we have set N = ,/afig. N is a frequency, called the Brunt-Viisdld
frequency . Its interpretation is simple: it is the frequency of the oscillations of a
fluid element when it is slightly moved from its position of equilibrium. Often, it is
written in an equivalent manner as

N2 = gdp

 pdz

We note that if the density gradient is of the opposite sign (density increases with
height), this frequency is imaginary. This situation corresponds to an instability (the
Rayleigh-Taylor instability—Sect. 6.3.2.1- or thermal convection—Chap. 7).

The dispersion relation (5.47) shows that the waves are anisotropic. If 6 is the
angle between the wavevector k and e_, then (5.47) reads

w? = N?sin’ 0

This relation clearly shows that the frequency of the wave depends on the direction
of propagation and never exceeds N. In particular, such waves do not propagate
vertically. We can calculate the group velocity

k2/ k3
ve=Vio=N|0 = N(k’e; — kk)/k> = N
—k.ky/ k3

k x (e; x k)

e (5.48)

where we used cylindrical coordinates (e; is the radial unit vector). From this
relation, it turns out that v, - k = 0: Energy propagates perpendicularly to the
phase. Such a property, stemming from the anisotropy of the background, is also
shared by inertial waves (see Chap. 8).

We note that these waves are transversal, namely k - §v = 0. This property is
the consequence of mass conservation V - v = 0 and is shared by all the waves
propagating in an incompressible fluid.

5.5 Waves Associated with Discontinuities

Until now we neglected the nonlinear terms in the equations of disturbances. We just
considered waves of infinitesimal amplitude. However, is this approximation always
relevant? To answer this question we need to estimate the relative importance of
nonlinear terms to linear ones. Linear and nonlinear terms are not unique, forcing
us to be more specific. We shall therefore take the pressure term —V3P as typical
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of the linear part and the inertial one, p(§v - V)Jv, typical of nonlinear ones. Hence,
nonlinear effects are important when

V6P ~ p(§v- V)dv

If the characteristic scale of motion is L (namely the wavelength), then the foregoing
criterion becomes

§P ~ p(8v)?

saying that the kinetic energy of the fluctuations is of the order of the pressure
disturbances. If we consider sound waves, from (5.20) it turns out that

wpdv = k8P = pvydv ~ §P,
where vy is the phase velocity. The criterion is now
v ~ vy (5.49)

Nonlinear effects are therefore important when the velocity of the fluid, associated
with the passing wave, is of the same order as the wave velocity. In fact,
writing (5.49), we introduced a dimensionless number

vV

M= —
Vo

(5.50)

which is just a Mach number. The most famous of these numbers is the ratio of the
fluid velocity and the speed of sound. This is the number which is referred to when
one speaks about the Mach number without any precision. The foregoing discussion
shows that it may be defined for any type of waves.

5.5.1 Propagation of a Disturbance as a Function of the Mach
Number

The difference between a flow with M < 1 and a flow with M > 1 is not just
quantitative: it is also qualitative. The propagation of perturbations is very different
in these two cases.

Let us consider a source of low amplitude waves (sound waves or gravity waves
for instance) moving at a speed V' while emitting waves that propagate with a phase
velocity ¢ in the fluid. Using a reference frame attached to the source, the space
filled by the fluid appears very differently when the Mach number is changed. If this
number is smaller than unity, waves can reach any point in this space; in the opposite
case they are confined to the Mach cone (see Fig.5.1). The transition M = 1 defines
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~— Mach cone

ct

Fig. 5.1 The Mach cone formed by a source of periodic perturbations moving with a supersonic
speed

the raise of a partition of space. Now, if we consider the example of a plane flying
at a supersonic speed, air disturbances are of finite amplitude and usually produce a
discontinuity.

These discontinuities are the consequence of the nonlinear evolution of the
waves. In the case of a supersonic flight, the discontinuity is just the supersonic
“bang”, and in other words the shock wave. We shall see below that shock waves
are part of a more general phenomenon which gathers all the waves resulting from
a discontinuity. The other common example is the one of crunching water waves.

5.5.2 Egquations for a Finite-Amplitude Sound Wave

The first step needed to study shock waves, is to write down the equations governing
the evolution of a finite-amplitude sound wave. To simplify the matter, we restrict
our discussion to the one-dimensional case. Although much simplified, this model
represents fairly well the formation and propagation of a shock wave in a shock tube
as we shall see below.

The equations of momentum and mass conservation are :

dp  dpu
L
o " ox

(5.51)
du du 1dp

5“’5_ p 0x
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In addition, we assume that the gas is isentropic so that p o p?. The sound speed
v/ ¥P/p is a convenient variable. If we note that

dp 2 dc dp 2y dc
—_=— and —_—=
pv—lec p v—lec

then, (5.51) may be written as

34_ i 2c + %—0
ot ”ax y—1 Cax_

(5.52)
d n ad n 2¢ dc 0
ot 0x y —10x
which may be mixed to yield:
+ u+c) 9 r=0
— 4 (u i =
at ax
(5.53)
(5 + (u—c)a—)s =
where we introduced
n c
r==
2 y—1
(5.54)
u c
§ == —
2 y—1

called the Riemann invariants.

5.5.3 The Equations of Characteristics

Equation (5.53) are nonlinear and may be difficult to solve. Fortunately, these
are a little simpler and often called quasi-linear equations. They can be solved
qualitatively at least. For this purpose, we use the theory of characteristics. The
reader who may not be familiar with this approach of partial differential equations,
may have a look to Sect. 12.6.2 first.

The first result of characteristics theory to be used is the following. If r and s are
solutions of (5.53), then r is constant along the characteristic curves of equation

d
d—): —ute (5.55)
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Fig. 5.2 Schematic view of a Compressed Fluid
shock tube fluid at rest
— i
u= U\ u=0
L () Cy
Piston Shock wave

while s is constant on the other characteristic curves

dx

— =u—c 5.56

il (5.56)
If the (5.53) were linear, the characteristic curves could be determined directly
from (5.55) and (5.56); the initial conditions completely specify the solution. Here,
u and ¢ are unknown; nevertheless, we shall see that one can determine the shape of
characteristics and understand the evolution of the solutions.

5.5.4 Example: The Compression Wave

We consider the following system: a piston inside a tube (of infinite length) starts
at ¢t = 0 and reach a constant velocity after a time #,. The set-up is schematically
drawn in Fig.5.2.

Initially, the fluid is atrest: u = 0 and ¢ = ¢p onthe t = 0 line (see Fig. 5.3). The
characteristics of s have a slope j—; = —1/cp on the x-axis (the t = 0 line), which
they cut (see Fig.5.3). But s(x,0) = —co/(y — 1) is constant on the axis at = 0
and therefore it is constant everywhere in a region of the (x,t) plane bounded by
the piston trajectory. Using the definition of s on the piston where the gas velocity

is U, we find that
y—1
c=cy+ TU > Co (5.57)

Since the gas is isentropic and ideal ¢ oc p’~1/2, density increases when one gets
closer to the piston.
In the same region we can write the other Riemann invariant as

2c
y—1

r=us0+ (5.58)
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Fig. 5.3 Characteristic lines t Piston

in the (x, ¢) plane. The solid trajectory Shock wave
lines show r-characteristics

and the dotted lines show the \

s-ones

N "
Characteristic lines

where 59 = —co/(y — 1). Thus, we find that characteristics associated with r are
straight lines. Indeed, on its characteristic, r is constant and therefore ¢ is constant
from (5.58). Thus, u is also constant from the definition of r, (5.54). Hence, along
an r-characteristic, u 4 ¢ is constant showing that these curves are straight lines.

Let us now consider characteristics emitted by the piston. They are straight lines
verifying:

dr 1
dx Co—f-VT_HU

The slope of these lines decreases with time since U increases. Consequently, the
straight lines will cross somewhere. The function r is then no longer single valued
and a discontinuity appears: the shock forms.

We may estimate the time by which the shock has formed. It is given by the
point where the characteristic emitted at ¢t = 0 (with a slope 1/c¢¢) crosses the one
when the piston reaches its asymptotic velocity after a time #,. The slope is then
1/(co + (y + 1)U/2). We find that in this case the shock forms after a time ¢, such
that

2cot,
y+1HU

c

Qualitatively, the formation of the discontinuity may be understood in the following
manner: The acceleration of the piston increases the density in its vicinity. Sound
waves move more rapidly in this denser region. A shock appears when the sound
waves emitted in the compressed region overtake the ones emitted at # = 0, leading
to a steepening of the wave front (see Fig.5.4).

We would infer from the last formula that a shock forms whatever the conditions.
This not the case of course. Indeed, our discussion neglects the dissipative effect as
well as the finite length of the tube. If we still assume the infinite length of the
tube, we may say that the shock will appear only if 7. is short enough, shorter that
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te
to
t1

Fig. 5.4 Schematic evolution of density during the formation of a shock: note the steepening of
the wave front. Similar shapes may be found for the pressure and temperature

tq ~ d*/v where v is the kinematic viscosity of the fluid. Inequality #. < t; implies
that

£>COV

t, ™~ d?

showing that the piston acceleration must be large enough. Let us give a numerical
example to fix ideas: if we take a cylindrical tube with a diameter of 3 cm, filled
with air, then % > 5 m/s2. Thus, the piston needs to accelerate about half that of
terrestrial gravity.

5.5.5 Interface and Jump Conditions

When the shock is formed, it may be described as a pure discontinuity. Indeed, its
thickness is only a few mean-free paths which may be neglected macroscopically.
However, not all the variables are discontinuous. For instance, the mass flux must
be the same on each side of the shock. Thus, in a frame attached to the shock

P1VI*M = prVy-N (5.59)

where indices 1 and 2 refer to the upstream and downstream quantities. Let us
first give some precisions about the up- and downstream regions. The flow goes
from the upstream to the downstream, of course. The upstream region is the
one of low pressure and supersonic velocity whereas the downstream one is of
high pressure and subsonic velocity. The supersonic region may sometimes be
qualified as “before” the shock since the shock wave may be seen as propagating,
supersonically, in the low pressure region. The foregoing case of the shock tube is
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clear in this respect: the shock wave propagates in a fluid at rest. However, standing
on the shock wave, we would see low pressure supersonic air rushing into the high
pressure subsonic region!

The next interface condition which must be met at a discontinuity demands the
balance of forces. More precisely, the flux of momentum through the shock wave
must compensate the pressure jump. Hence,

pim—+p1vivi-n= pon+ povy Vo - N

Finally, the energy flux must also be continuous, thus

%v% +h = %v% + hy

where £ is the enthalpy of the fluid. Let us demonstrate this latter relation, where
the reader might wonder why the enthalpy comes into play. For this purpose we
consider a cylindrical control surface whose generatrix lines are parallel to the flow
and the ends of which are on each side of the shock. The energy flux entering the
cylinder is just

1
(zv*+e)pv-n

2 1
In a steady state, it differs from the outgoing flux by the power of forces applied on
this volume. In our case we just need to consider pressure forces and their power
—pv - n. Thus,

= —pv-n|; + pv-nl,

1
— (zv*+e)pv-n
2 2

1
(Ev2 +e)pv-n

1

After some rearrangements,

1 1
(—v2+e+£)pv-n =(—v2+e+£)pv-n
2 P 2 P

1 2

Taking into account mass conservation, we find that

1
v+ e+ 2
2 P
must be continuous; we note that 1 = e + p/p is just the enthalpy.

Actually, the demonstration could be far shorter if we used Bernoulli theo-
rem (3.7), which shows that

1,
— h
2v+

is constant along a streamline.
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5.5.6 Relations Between Upstream and Downstream Quantities
in an Orthogonal Shock

The foregoing relations are much simpler when the velocity field is orthogonal to
the shock wave. The shock is said to be normal to underline the difference with the
general case of an obligue shock. The conditions are now

P1VI = P2V2
P+ p1vi = pa+ pav3 (5.60)
hy + v%/Z =hy + v%/Z

They may be used to rewrite the downstream quantities (index 2) as a function of
the upstream ones. Using the upstream M, and downstream M, Mach numbers, one
may show (see the demonstration at the end of the chapter) that

_ (y=DMI+2
V) = Vi —(y T 1)M12 (5.61)
_ (y+ M2
P2 = P —()/ “OMZ42 (5.62)
M,
M, = (5.63)
VO + (7 = (0 /92)2 = M7 /2
Jpi=1+ 2?1y (5.64)
P2/ P1 = V+1 1 :

These relations allow us to determine the state of the fluid after crossing a shock
wave. The upstream flow being supersonic, M; > 1, we immediately find the
following inequalities:

V2 <V, P2 > p1, P2 > D1

After crossing the shock wave the fluid slows down and is compressed. Pressure and
density increase. Using (5.60c), which we rewrite
2

2
Vv 1%
72—’11 ! 2

Cp

we also see that temperature increases. Obviously the downstream flow is subsonic
and M, < 1. This inequality is not clear in (5.63), but becomes as such when this
equation is transformed using the ratio of velocities (5.61). One then finds
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4 e 1
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Fig. 5.5 Interaction of a plane shock wave with a cylinder. In (2), (5) and (6), we observe the
evolution of the incident, reflected and refracted shock waves. We also observe (in 5 and 6)
the appearance of a line joining the intersection point of the three waves and the cylinder; this
is a “contact surface” where the pressure is continuous but where there is still an entropy and
temperature jump

(y —1)ME+2
2yM?—y + 1

M, (5.65)

showing the equivalence M| > 1 <= M, < 1 (Fig.5.5).

To summarize, when going through a shock wave, a supersonic flow becomes
subsonic and pressure, density, temperature increase. The temperature rise is not
only the consequence of compression, but also that of the strong dissipation which
occurs within the shock wave. Macroscopically, the velocity gradient are infinite
but the volume of the dissipative region is vanishing; one may expect that a finite
dissipation implies an increase of entropy.

Recalling the entropy expression (1.59), we can derive the entropy jump:

Y
52 —s1 = ¢y In(pa/ p1) —cpIn(p2/p1) = ¢, In [& (&) }
P1 \ P2

We may show that the entropy jump is always positive as expected in a dissipative
process. For this purpose, we first express the entropy jump as a function of M;. It
turns out that

— 2y 2 _ (y —HM? +2\"
AS_CVIH[(HHl(Ml 1))( o + DM} )]
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Let us use a Taylor expansion of this function in a neighbourhood of the threshold
M, = 1 up to the third order. Setting e = M? — 1 < 1, we have

As = As(1) + As'(1)e + As”(l) + As’”(l) + O(eh
One may show that As(1) = As’(1) = As”(1) = 0 and that

y(y — 1)

As"'(1) = 4e,
s7(1) G2

hence

2y(y — 1)

As = ¢,
STO3G0 1)

(M} —1)* + O (5.66)

This expression shows that the entropy of the fluid increases when passing the shock,
as soon as M| > 1. However, the jump is very small if M| is not very different from
unity. This leads to a classification of shocks into weak and strong ones (see below).

Let us now show that the entropy jump is an increasing function of the Mach
number. Setting m = M2, we compute ds/dm. We have

lds d 2y y—-1m-+2
i an (1 =) v ()

1 ds 2y 2y
cydm  y+142ym—1) (y—1m?2+2m

2y(y — 1)(m — 1)?
m(y +142y(m—1))(y —1)m+2)

Thus ds/dm > 0 when m > 1. We also note that if M; goes to infinity, As also
tends to infinity as In M.

5.5.7 Strong and Weak Shocks

The strength of a shock is usually measured by its pressure jump (p, — p1)/ p1. We
may note that this quantity is proportional to M 12 and is not bounded. This is not the
case for the density or velocity jumps. When M| — oo

P2 y+1 V) y—1
- - — and - —
et y—1 vi v+l
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The weak shocks are defined as those where the variation of entropy is negligible.
This distinction between weak and strong shocks is possible because of the very
slow variation of entropy in the neighbourhood of M| = 1. If, for instance, M| =
1.1 then As/s ~ 6 x 107>, If we neglect entropy variations less than 10%, shocks
are weak as long as M| < 1.46.

5.5.8 Radiative Shocks

Some stars like cepheids or “RR Lyrae” show periodic variations of their luminosity
(see Fig.5.6). These variations are understood as the signature of radiative shock
waves that propagate inside these stars as a result of the breaking-up of some
acoustic waves. Radiative shock waves are much more powerful than the foregoing
strong shocks. They are also called hypersonic shock waves because M 12 > 1.
They occur in a low-density and hot medium. After the shock, matter is ionized by
collisions but free electrons recombine with ions while emitting mainly ultraviolet
radiations. Part of these photons propagate towards the upstream region and pre-
heat the gas (see Fig.5.7). This phenomenon makes the shock almost isothermal:
the downstream gas cools efficiently by radiating photons after its compression.
This is very different from the previous shocks where we assumed that the gas was
evolving adiabatically after the shock. If we remember that pressure is proportional
to density for an ideal isothermal gas, namely P o p, the adiabatic index would
be y = 1. Thus, the compression ratio (y + 1)/(y — 1) may raise to infinity if the
gas supports a quasi-isothermal compression. This ratio should be of order of M 12
In actual stellar models, typical shocks have a compression ratio of order 30. They
are obviously in the hypersonic regime. Such shocks have been reproduced in the
laboratory only very recently, thanks to the development of powerful lasers that can
deposit a lot of energy in a very small volume.

Delta Cephei

Mag

+4.0 £o; e e,

1
e

' a,’“ o a,FE

0.5 1.0 15
Phase

Fig. 5.6 Lumosity variations of the cepheid star § Cephei. Its oscillation period is 5.37 days. The
luminosity of the star varies by more than a factor two between minimum and maximum. This
variation comes from an acoustic oscillation of the star. Its large amplitude leads to the formation
of a radiative shock wave (source ThomasK Vbg)
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Fig. 5.7 Schematic view of a radiative shock in a star according to Gillet (2006)

5.5.9 The Hydraulic Jump

Another, very common type of discontinuity wave is the discontinuity of water depth
in breaking water waves like in Fig. 5.8: this is the hydraulic jump (see the schematic
view in Fig. 5.9). A connection can be easily made with sound waves if we consider
waves propagating in shallow water. In this case, indeed, wave velocity is +/gh
showing that in a similar way as in Fig. 5.4, the wave front steepens inevitably since
the wave velocity increases like V. In this case there is a direct analogy between
depth % and temperature T of an ideal gas where the sound wave propagates.’
However, the analogy, cannot be pushed too far, since gravity waves are necessarily
two dimensional because of the incompressibility of the fluid. Another complication
comes from the fact that these waves are naturally dispersive. The equality of phase
and group velocity is only true asymptotically for wavelengths long compared to the
depth. We shall see below that these dispersive effects can stop the steepening of the
wave front and give rise to a solitary wave.

SGenerally, we use the density as the analog of the depth [just compare (5.67) et (5.60a)], but the
analog of the hydraulic jump is a shock wave in gas where y = 2 in which case 7 and p are
proportional.
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Fig. 5.8 Hydraulic jumps from braking waves on a sand beach (Picture from the author)

v] @7 ?2 h2

I E—

h,

Fig. 5.9 A schematic view of a hydraulic jump

Let us examine the jump conditions of a hydraulic jump. Considering the fluid as
incompressible, the conservation of the mass flux when crossing the hydraulic jump
implies that:

V1h1 = V2h2 (567)

in the most simple set-up where the velocity is assumed to be constant in the whole
cross section of the flow.

The conservation of momentum leads to the same reasoning as for shock waves.
The variation of the momentum flux must be compensated by the total pressure
forces. Hence,

hy ha
p(Vihy —viha) + / p(z)dz — / p(2)dz =0
0 0

Since we neglect vertical motions, the hydrostatic balance controls the z-dependence
of the pressure. Thus,

p=pg(h—2)
where we assumed a zero pressure above the fluid. It yields

hy h2 hy h2
/ p()dz=pg=-  and / p(R)dz = pg =
o 2 A 2
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From these relations, a second jump condition connecting upstream and downstream
quantities® can be derived:

Vihy + ght/2 = V3hy + gh3/2 (5.68)

With (5.67), we find out the ratio between upstream and downstream depth:

hy, y/1+8F—1

mn i — (5.69)

In this expression we introduced the Froude number:

Vi
vV ghy

This number quantify the ratio between the fluid velocity and the speed of waves. It
is the analog of the Mach number for acoustic waves. When this number is larger
than unity, the flow is supercritical or torrential. On the contrary, when Fr < 1, the
flow is said to be subcritical or fluvial. One may show as an exercise, that if the flow
is supercritical in the upstream region, it is subcritical in the downstream region.
Hence, we have the following equivalence:

Frl =

Fry gl < Fn,

VIA

(5.70)

The first observation of a solitary wave

“I believe I shall best introduce this ph&nomenon by describing the circumstances of my own
first acquaintance with it. I was observing the motion of a boat which was rapidly drawn along
a narrow channel by a pair of horses, when the boat suddenly stopped - not so the mass of
water in the channel which it had put in motion; it accumulated round the prow of the vessel in
a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of
water, which continued its course along the channel apparently without change of form or
diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually diminished, and after a chase of one or two
miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first
chance interview with that singular and beautiful ph&nomenon which I have called the Wave
of Translation, a name which it now very generally bears;" From “Report on waves", Rep. 14th

Meet. Brit. Assoc. Adv. Sci., York, 319-320 par S. Russell (1844).

% As for the shock waves, we use a frame attached to the discontinuity. Upstream and downstream
regions are defined similarly.
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As it may be guessed, the hydraulic jump is a dissipative structure: the hydraulic
load decreases through a hydraulic jump. To show this, let us consider a streamline
on the plane z = 0 and compare the energy per unit mass upstream and downstream.
For this purpose we just need to check that

1 1
Ev% +gh, > Ev% + gh,

Using expressions (5.86), demonstrated in the exercises, the preceding inequality
implies

hy hy\ hi+hy
—_ - — hi—hy, >0
(hl hz) 1 + ny 2=

& (hh—h)*>0

which is always true.

5.6 Solitary Waves *®

Nonlinear effects have not always dramatic consequences such as the formation of a
discontinuity. The steepening of the wave front can indeed be compensated by some
dispersion effects which tend to spread the wave packet. When this balance occurs,
one may observe a solitary wave which is remarkable for its stability.

The first observation of a solitary wave was made by Scott Russell in 1834 (see
box and Fig. 5.10) on a surface gravity wave. In Sect. 5.3.1 we saw that these waves
are dispersive. It is just in the asymptotic case of long wavelengths compared to
the depth, that dispersion disappears. This property allows a control of the effects of
dispersion by tuning the ratio of the wavelength to the depth. Another possible small
parameter is obviously the amplitude of the wave. We shall see that when these two
possibly small parameters are linked through a simple relation, one obtains a new
equation, first derived by Korteweg and de Vries in 1895, which governs the motion
of solitary waves.

5.6.1 The Korteweg and de Vries Equation

We first set again the general equations governing surface waves, still neglecting the
effects of viscosity. We concentrate on the propagation of a wave in a one-dimension
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water basin of depth /. The motion is assumed irrotational and the velocity potential
verifies:

AD =0
0P +—1v2+-P + gz = Cst e
a 2 0 8=

This system is completed by the following boundary conditions:

0P
v, =—=20 at z=0
0z
)
§+V~st:vz
at z=nh+4 z,(x,1)
P=0

where the pressure above the fluid has been set to zero. We first rewrite this system
using non-dimensional variables. /gh is a natural scale for the velocities and & for
the lengths. Thus we set

V= \/Eu, ® = h+/gho, t=+h/grt and zs = h{
We then get

Ap =0 (5.72)

Fig. 5.10 Repetition of Russell’s observation of a solitary wave in Union Canal of Edinburgh
during a conference at Heriot-Watt University (Nature, 3 August 1995)
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a, 0
3_-( + u- Vé‘s —_ B_Z
at z=14¢(x,1) (5.73)
ap 1 ) B
E‘FE(V@ +&4&=0
8_(]5 =0 at z=0 (5.74)
0z

where we substituted to the boundary condition P = 0 the equation of momentum
taken on the surface, with the constant set to zero.

The next step is slightly delicate. We wish to introduce the small parameters and
to consider the situations that are weakly nonlinear and weakly dispersive. Since the
solitary wave seems to be a steady solution in some appropriate reference frame,
we look for slowly evolving solutions in a new frame. We therefore introduce the
following new form for the solutions:

L=l (1.%)  and ¢ =e'2(. %)
where we set:
F=e(x=1), T=¢

Theses new functions and new variables are sensitive to large scale or long time-
scale variations only: x and t need to vary a lot to yield significant variations on X
and 7. With these new variables (5.72) now reads:

2 %9

T 1.2 2 575

02 w2 (5.75)
while (5.73) yields

Az, 09
E +u-Vi = 9z

0¢, 0T N 0¢, 0% N A, dp (0%\° 09
0T 0t  0X dt  0X 0X \ ox 0z

where we took into account that X depends on 7. We now deduce:

0t 0x 0x 0x 0z

~ ~ ~\ 2 ~\ 2
g op 1[04 e [0 -
5%‘&%(5) +§(ﬁ) T4 =0

at z=1+4¢&l(x,1)

(5.76)
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and

3—¢ =0 at z=20 5.77)
0z

We then make the expansion of ES and ¢ in powers of &:

$=Y (EzDe"  and L= LE D
n=0

n=0
The first step consists in solving (5.75) for ¢. The first orders give:

Ppo 0 Ppr | P 0 Phy | P

=0, 0 _ Yl _o,...
072 072 0x2 02 0x2

Using the boundary conditions in z = 0, we easily find a new expression for 43,
namely:

$(F.2.7) = co+ e(c1 — cl2/2) + ({24 — ¢/ 2 )2 4 &) + O()

where ¢, c1, ¢, are functions of X and 7. The primes indicate the derivatives with
respect to X. The first boundary condition, taken at order ¢, gives:

% _

— =
ox 0
and at order &%

BCO ’ 850 3§1

4
37 Hehgr —gx = b+’ /6— ]

Concerning the second boundary condition, it gives

d Co

S = ¢} and Fa ci+c(()3)/2+c62/2+§120

These equations are used to obtain the equation controlling {,, which we rename ¢.
We thus find:

o 3,00 18C
a7 T2t toae ¢ G719

known as Korteweg and de Vries equation (or also KdV equation).
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5.6.2 The Solitary Wave
This equation is solved by looking for a solution of the form { (¥ — 7). Hence,
3 1
/ / "
-+ ¢+ -¢"=0
{450+ L
which we integrate once, and get:
3 2 1 "
L+ -"+-0"=4
{4+ 28+t

The constant of integration A is set to zero as we are interested in solutions vanishing
at infinity. Multiplying this equation by ¢’ and integrating again, we find:

1 2 1 3 1 2
- _PB4+ =7 =0
2§ +4§ +12§

As before, the constant of integration has been set to zero. This equation can be
solve analytically since the variables can be separated.

dg

tV1-¢/2

Despite of its look, the integration of the left-hand side is very easy if we set

= V6(% — 1)

— 2 .
"~ cosh?®

ﬁz—\/g(fc—%).

1/ cosh ¥ is called the hyperbolic secant, and noted sech. Back to the dimensional
variables, we have

we immediately find that

zs = h(1 + €0)

= h 4 2he sech? [\/%(x -1+ 8)‘1,'):|

We now introduce the wave amplitude a = 2he, the dimensional length and time

scale:
Z =h+asech2|:\/%{x—\/g_h<l+2a—h)t}:| (5.79)



5.6 Solitary Waves *® 183

Fig. 5.11 This graph shows 2.0
three solitary waves of
amplitudes a, a/2, a/4
respectively

0.5 B

o0 L. o v e
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The solitary wave thus moves at a speed of:

e = \/g_h<1 n Za—h) (5.80)

This velocity is only slightly different from the velocity of a gravity wave moving
in shallow water if we take the total height ¢ ~ /g(h + a).
We also observe that the horizontal scale of the wave (the width of the “bump”)

is given by
[ah3
L= ﬂ (5.81)
3a

We show in Fig. 5.11 the shape of the solitary wave for three amplitudes.

5.6.3 Elementary Analysis of the KdV Equation

The properties of the KdV equation are numerous and we could write a full book on
it! Here, we content ourselves with an elementary analysis so as to appreciate the
role of the various terms involved in this equation. Let us first focus on the linear
term 3°¢/dx3. Eliminating nonlinear terms, the KdV equation reads

& 1¢

which we modify by changing of reference frame, namely ¢(x,7) = {'(x — 7, 7).
The equation for ¢’ is
g Ay 193 —0
dr  dx  60dx3
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A solution of the plane wave type gives the following dispersion relation:
w=k—k/6

It can be compared to (5.39) which is the dispersion relation of gravity waves in a
basin of finite depth. If we expand (5.39) for the long wavelengths, it turns out that

k%h? k2h?
wzzghkz(l—T) — a)N\/—k( )

which is exactly the foregoing relation up to some dimensional coefficients. We see
that the dispersive term 93¢ /x> comes from the finite depth of the fluid.

We may now have a look to the way this term contributes to the spreading of
the wave packet. For this purpose, we use a frame attached to the waves and the
relation (5.82).

Let {o(x) be the shape of the wave packet initially. We suppose that this shape
is a kind of bell curve such that its Fourier transform 20 exists. Taking the Fourier
transform of (5.82), it turns out that

é-(k ‘L') é- ik*t/6

hence

+oo s
é-(x’ ‘L') — / Coeth-l—lk t/6dk
—00

This expression is nicer if we observe that PLER

function Ai(x), i.e.

is the Fourier transform of Airy’s

3 +oo .
ezk /3 — / Ai(Z)e_lkde
—00

After some easy manipulations, it turns out

2\ /3 ptoo
= () [ s s

If the initial wave packet is strongly peaked and may be assimilated to a Dirac peak,

then
2\ /3 . X
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Fig. 5.12 (a) A plot of Airy’s function. Schematically, this function behaves as cos x/(—x)'/*
when x — —o0 and as e=2*"*/3 when x — ~+o00. (b) The convolution of Airy’s function and a

gaussian £o(z) = e~ 107

Airy’s function and its convolution by a gaussian are shown in Fig. 5.12. With this
figure, we note that energy is dispersed in the domain | — oo, 0] through a set of
oscillations. The expression (5.83) shows the spreading of the wave packet: its width
increases like 7!/3 (in fact the width of oscillations) whereas its amplitude decreases
as t71/3,

Let us now examine the role of the nonlinear term. We leave aside the linear term
and rewrite the KdV equation as

& 3. 0¢

= L2 =0 5.84
dr 27 0x (>:84)
This equation is of the same type as the one verified by Riemann’s invariant. Thus
we write the equation of characteristics, namely

dx 3

dv 2§

which are straight lines since ¢ is constant on such a line. If, at initial time,

has a bell shape, the construction of characteristics issued from the wave front

immediately shows that a discontinuity will appear after a finite time (see Fig.5.13).
Equation (5.84) is in fact of the same type as a famous equation in Fluid

Mechanics, namely

du du 0%u

5 Ma = Uaxz (585)
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Fig. 5.13 A schematic view
of the formation of a Discontinuity
discontinuity through Burgers
equation

which is called Burgers equation. This equation is just the equation of momentum
of an incompressible fluid in which one would have neglected the pressure force.
When viscosity is neglected (and time and length are appropriately scaled), (5.85)
and (5.84) are equivalent. The foregoing reasoning shows that the solutions of
Burgers equation without viscosity always form discontinuities.

5.6.4 Examples

Similarly as the observation of Scott Russell, there exist some natural phenomena
where solitary waves appear. We shall mention two of them: the tidal bores and the
tsunamis.

The tidal bore is the wave that propagates in an estuary, shallow enough, when
the tide rises. This wave is usually first breaking and can be describe as a hydraulic
jump. Getting upstream this hydraulic jump decreases and may give birth to a train
of waves, which, like the wave observed by Russell, have a very long life time and
are also solutions of the KdV equation: these are cnoidal waves. Tidal bores are very
spectacular at the equinoxial high tides. In Europe, famous ones are in the Gironde
in France and in the river Severn in England (see Fig. 5.14).

Tsunamis (“thunderstorm” wave in Japanese) designate the tidal waves which
break on the coasts of the Pacific ocean (where they are the most common). Their
origin is generally related to an earthquake. The seismic wave gives momentum
to a large mass of water which may generate a solitary wave. Such a wave can
cross the Pacific ocean without much damping. For instance, it is well-known that
earthquakes occurring along the Alaska coast can generate a few hours later a
tsunami on the Hawaiian shores. The wave has an horizontal scale which may reach
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Fig. 5.14 The hydraulic jump made by the tidal bore of river Severn (photographed by D. H.
Peregrine, in An Album of Fluid Motion, van Dyke 1982).

a hundred nautical miles (180 km). In this case, taking into account the depth of
the Pacific ocean (5 km), the amplitude may be estimated to 5 m from (5.81). Its
velocity may also be computed; it is close to /gh, which gives 800 km/h. Thus it
crosses half of the Pacific ocean (4,800 km) in 6 h. When it arrives on a shore the
steepening of the wave front may generate a water wall up to 20 or 30 m high.

5.7 Exercises

. The bassoon and the oboe are two instruments whose air column is conical. Using

the fact that a cone is a part of a sphere, rewrite the equation of disturbances and
show that the eigenmodes obey the same dispersion relation as those of the flute.
Compute the length of a bassoon whose gravest note is at 58.27 Hz (third B flat).
Compare the result to its real length of 295 cm.

. What is the frequency variation of the fundamental mode of a flute when the air

temperature varies from 10 to 30 °C. Compare it to the change of frequency in
a half-tone interval. The variation of the length of the tube is neglected and we
recall that an octave is divided into twelve equal half-tones (tempered scale).

. In a harbour along the coast of the Atlantic ocean, waves arrive periodically with

a period of 15 s. What is their wavelength? their phase velocity? How long would
it take for them to cross the Atlantic ocean (4,800 km)? We assume that the ocean
is infinitely deep.

. How long does it take for a wave of very long wavelength to cross the Atlantic

ocean whose width is 4,800 km and depth 5 km? We give g = 9.81 m/s’.
Show that the Atlantic ocean is a resonant cavity for the tides; what are the
consequences?
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5. Derive the dispersion relation of capillary waves in the shallow water approxi-
mation.
6. a) From the jump conditions of a hydraulic jump, show that upstream and
downstream velocities are of the form:

hy (hy + hy and _ hy (hy + hy

(5.86)

b) Show that on each side of a hydraulic jump, Froude numbers are related by

1+ 8Fr—1

2

—-3/2

Fl’z = Frl

Derive the equivalence (5.70).
7. Show that the following quantities

too +o0
/ ¢(x, 7)dx and / &2 (x, T)dx

are conserved by the KdV equation. What is the physical interpretation of these
conservation laws?

Appendix: Jump Conditions

We give here the demonstration of the relations (5.61)—(5.64) relating upstream and
downstream quantities in a normal shock. Let us recall that the enthalpy of an ideal
gas is:

(5.87)

The energy relation can thus be written
f + (v = Dvi/2 = xypa/p1 + ¥ (y — )vi/2
where we introduced x = v,/v;. The conservation of momentum (5.60b) reads now
p2=pi+pvil—x)
Combining the two foregoing equations, we find

Y+ Dx* =20y + 1/ M)x +2/M} +y—1=0
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This second order equation necessarily has x = 1 as a solution (why?). Thus,
factorizing it we get straightforwardly

x—D((y+D)x—=2/M}—y+1)=0

which gives the non-trivial solution sought after. From (5.60a), we derive (5.62),
relating the densities.

The relation between upstream and downstream pressures comes from (5.60b)
which we divide by p;. Thus

2 2 2
Pr_y P 1_&(2) =1+V_v21(1_2)
pP1 P1 P1 \V1 (e Vi

The desired expression is obtained using (5.61).
The relation on Mach numbers (5.63) comes from the equation on enthalpy.
Using (5.87), we find

-1
c% = cf + _()/ )(v2 2)

Dividing this expression by v3 we get (5.63).

Further Reading

The monograph “Waves in Fluids” of Lighthill (1978), cannot be ignored, but, at
a less ambitious level, general books on fluid mechanics may be useful. As far as
shock waves are concerned the reader may consult the monograph of Courant and
Friedrichs (1976), Supersonic flow and shock waves, while the study of solitary
waves may be followed up with the introduction of Drazin and Johnson (1989) and
the more mathematical approach of solitons by Newell (1985).
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Chapter 6
Flows Instabilities

The study of the stability of flows is one of the cornerstones of Fluid Mechanics: the
subject is so large that it would deserve a whole book to be reviewed. Leaving aside
such an ambitious goal, we shall concentrate, in this chapter and the following one,
on the fundamentals, although, here and there, making some excursions in more
specialized topics.

The importance of instabilities, or stability questions, comes from their relation
to turbulence and mixing. An unstable flow is a necessary path to a turbulent one.
Turbulence is indeed a fundamental process in Fluid Mechanics because it controls
in many circumstances the fluid transport properties. The conditions within which
turbulence sets in, can be appreciated only when the questions of stability are settled.
Often, this is not sufficient, but always necessary.

6.1 Local Analysis of Instabilities

When we discussed the equations of perturbations, we found that a simple way to
understand their evolution was to consider them as plane waves and analyse their
dispersion relation. Owing to the simplicity of the approach, we again start with this
type of analysis.

6.1.1 Definitions

First of all, let us recall that the local analysis is only valid if the wavelength of
disturbances is very small compared to the scales of the velocity field as given by
expression (5.7).
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If, for some wavevectors k belonging to a subset of R?, the dispersion relation
gives a frequency @ with a negative imaginary part, then there are waves whose
amplitude grows exponentially with time. This is called the absolute or temporal
instability. It is the most frequent case, but the opposite one also exists: if, for some
real values of the frequency, the wavevector is complex, then we face a spatial or
convective instability.

The existence of these two types of instabilities is tied to the implicit nature of the
dispersion equation: D(w, k) = 0. Two types of explicit solutions are thus possible:

w(Kk) or k(w)

The first are called “temporal branches” when k € R?3, while the second ones define
the “spatial branches” if w € R. For example, the dispersion relation

w+2k—-k>=0

possesses one temporal branch @ = k? — 2k, which is stable, and two spatial
branches k = 1 & /1 + @ which can generate a spatial instability.

6.1.2 The Gravitational Instability

A simple example of an absolute instability comes from Astrophysics with the
gravitational instability, which is at the origin of star formation. To make things
as simple as possible, we consider an unbounded fluid of uniform temperature and
pressure. We assume that it is an ideal gas of adiabatic index y. The sound waves
propagate with a velocity

cs = v yPo/po

where Py and py are respectively the pressure and density of the undisturbed
medium.
The linearized equations satisfied by the disturbances of the medium are:

aép

il V-v=0
ot + poV -V

av

— = —VéP — pyV§®
Po Y Po ©6.1)
§P = c2ép
ASD = 4nGop
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where we have taken into account the fluctuations in the gravitational field generated
by the fluctuations of density (the last equation of the system). For plane wave
solutions

i(wi+kr) i@k opo (6.2)

8p = 8poe vV = vpe
we find the following dispersion relation:
? = c2k? — 47 Gpy (6.3)

This relation clearly shows a temporal instability since all the perturbations with a

wavenumber smaller than
4G
ky =] L (6.4)
cS

are unstable and grow exponentially. The associated wavelength A; = 27 /k; is
called Jeans’ length and the associated criterion, Jeans’ criterion. The dispersion
relation (6.3) also shows that there is no spatial instability:

cszk2 =+ 4nGpy >0, Vo eR;

thus k is always real.

In order to fix ideas, let us calculate Jeans’ length in the case of the Earth’s
atmosphere. We assume it to be a mass of air at Py = 10°Pa and Ty = 20°C.
Then, ¢; = 343m/s and pp= 1.2 kg/m3 giving A; = 6.8 10*km. The Earth’s
atmosphere, much smaller (in thickness) than this length, is not, therefore, in danger
of gravitational collapse! On the other hand, an interstellar cloud of a hundred solar
masses,! with a temperature of 50 K and a diameter of two light-years can be wiped
out gravitationally (see exercises).

The example of the Earth’s atmosphere is interesting as it points out the limits
of the local analysis: if the dimensions of the fluid domain are smaller than the
wavelength of the disturbances we are interested in, the local solutions are invalid
because of boundary conditions.

6.1.3 Convective Instability

Such an instability is usually found in shear flows, for instance in a boundary
layer. Perturbations are amplified in the downstream direction and may transform
a laminar flow into a turbulent one (see Fig. 6.14 for the growth of a perturbation in

"'A solar mass, symbolized by M, is equal to 2 x 10°° kg.
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Fig. 6.1 Sketch of an t t
absolute (left) and convective
(right) instability in the
(x,1)-plane

the downstream direction). This instability can also be regarded as the growth of an
absolute instability advected by the background flow as shown in Fig. 6.1.

To further illustrate this mechanism, we shall consider a model problem based on
the perturbations of Burgers flow.? The background flow is uniform and disturbances
are only on the velocity field and one-dimensional; thus §u = du(x, t)e, and

adu dbu 9%8u

—-— — =V
ot dx dx2
where v is the kinematic viscosity. The dispersion relation of the Fourier modes is
iw+ikU = —vk*

This relation immediately shows that the temporal branch is stable since, for a given
k, the temporal dependence exp(i wt) leads to an exponential decay.

Let us now extract the spatial branches of this dispersion relation. We easily find
that two branches exist, namely

iU 4iwv
ky=—[1x4/1+ U2

2v

To discuss its properties, it is convenient to consider the limiting case of a small
viscosity such that wv <« U?2. Thus,

w iU o  2ive?
ey =-2 42 d k=2 e
=gty AR

2Burgers equation is given by (5.85).
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To see whether these branches correspond to growing or decaying perturbations, it
is useful to write the resulting velocity field, namely

i 2w
(x—Ut)—?x

L U _ JE—10)
@O and wT =wpe U

ut = u(')" e?v
These expressions show that a given phase of ut propagate to negative values of
x, therefore its amplitude decreases rapidly as exp(Ux/v). On the other hand the
phase of u™ propagates to positive values of x, and its amplitude also decreases (but
slower, as exp(—vw?x/U?)) as the perturbation moves to high values of x. In this
example, we see that if some disturbance is forced at a given frequency w at x = 0
say, it will propagate upstream and downstream, but both waves will be damped.
Thus the flow is stable.

6.2 Linear Analysis of Global Instabilities

Although local analysis is very handy to get a first impression of the stability of a
steady flow, it is often limited in its applications because of the boundary conditions.
To deal with this constraint, we need moving to the global analysis, which is often
difficult. A medium way is to take into account the boundary conditions only in
one direction. Although still quite idealized, the resulting solutions are usually very
instructive on the physics of the flow. With this approach, we shall investigate
selected examples of instabilities, which will enlight us, at the same time, on the
properties of rotating fluids, shear flows, etc.

6.2.1 Centrifugal Instability: Rayleigh’s Criterion

Let us consider a perfect incompressible fluid filling the gap between two cylinders
of radii R, and R,. The fluid rotates with the prescribed angular velocity profile
£2(s). We wish to know the conditions to be met by this rotation law, for this flow
to be stable or unstable. The original flow, U = s£2(s)e,, is a solution of Euler’s
equation and satisfies V- U = 0.

To simplify the analysis, we assume that the cylinders are infinitely long. Thus,
boundary conditions are only imposed in the radial direction and we are allowed
to make a local analysis in the z-direction. We further restrict the disturbances to
the axisymmetric ones; we thus write the perturbations of the velocity and pressure
fields as

u(s,z.1) = u(s)e® M, P(s,z.1) = pp(s)e™TH (6.5)

where p is the fluid density.
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6.2.1.1 Equations for the Perturbations
The momentum equation leads to the following equations for p(s) and u(s):
Au+ U-Vu+ (u-V)U=-Vp (6.6)
which we rewrite as
Au—282(s)uges + (82(s)us + (w- V)U(s))e, = =Vp . 6.7)

with cylindrical coordinates (s, ¢, 7).
Finally, taking mass conservation into account, we get the four following
equations:

d
Aug — 282(s)uy, = _d_p
s

Aty + D1 (s)us =0
(6.8)
Au, = —ikp

1d
——(sus) + iku; =0
s ds

where we have introduced

1d(s*2
451(5):; (ils )‘

The second equation gives the expression of u, as a function of u,. The third and
fourth ones relate p and u;. Altogether they lead to a single equation for u; now
denoted u, namely

d [1d(su) ) K,
where
1 d(s*82)?
(s = 200, = L 42 (6.10)
s ds

is proportional to the radial derivative of the angular momentum £ = s2§2 of the
fluid particles in the original flow. k(s) is called the epicyclic frequency. We shall
comment later about its physical meaning.
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Setting, A = 1/A2, the differential equation (6.9) has the general and interesting
form:

Lu = AK>®(s)u (6.11)

Supplemented with the boundary conditions # = 0 at s = R; and s = Rj, this
is the classical Sturm-Liouville problem in the theory of differential equations. We
refer the reader to the maths complements in Chap. 12 to get acquainted with the
basic properties of Sturm-Liouville problems and proceed to the consequences for
our problem.

6.2.1.2 The Rayleigh Criterion

First of all, let us compare (6.11) with the general equation (5.11): it is of the same
form. Thus, in order to determine the stability of the flow U, we “just” need to know
the spectrum of the operator k~2®(s)~' L, which gives the set of allowed values
of A. Usually, this is not an easy game; however, because of the Sturm-Liouville
nature of the eigenvalue problem, the answer is straightforward. For such problems
indeed, it may be shown that the eigenvalues are discrete, real and of the sign of
—k2®(s) if this function keeps the same sign in the interval of definition [R, R»].
If @ changes sign the eigenvalues are of both signs.

These properties of the Sturm-Liouville problems allow us to conclude on the
stability of the flow. Indeed, if @(s) > 0, all the eigenvalues A are negative, which
means that all the eigenvalues A are purely imaginary. Thus perturbations are just
neutral; the flow is stable. On the other hand, if there exist an interval where @
is negative, then there exist some eigenvalues A that are positive, implying the
existence of real positive A, and thus the existence of amplified disturbances making
the flow unstable.

The foregoing result shows that the flow under consideration is unstable when,
somewhere, the specific angular momentum ¢ decreases with » (making @ < 0).
In this case, some axisymmetric disturbances grow exponentially. The opposite
situation, where @(s) > 0, does not mean that the flow is stable; it means that
axisymmetric disturbances are not amplified, however, some non-axisymmetric
ones could be growing.

We thus find a sufficient condition for an instability (@ (s) < 0 somewhere)
or a necessary condition for stability ((s) > 0 everywhere). This criterion was
discovered by Rayleigh and named after him.

6.2.1.3 The Rayleigh Criterion: A Heuristic Derivation

The foregoing argument is rather mathematical and little intuitive. However, the
result may be explained on more physical grounds as follows. Let us consider two
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annular fluid elements of radii s; and s, with s; < 5. Their angular momentum is
respectively £; and £,. Their total kinetic energy is

1/ 6
E. =—-(2 4+ _2)
L) (512 53

Now let’s suppose that the position of these two fluid elements is inverted: their
angular momentum and mass are conserved, but the kinetic energy of the two

elements is now
1/ 0
E =2 + 2
kT2 (s% st
Making the difference between these two expressions, we find

1 11
Ek—E//c:E(e%—ﬁ%)(s—z—s—z)
2 1

If the angular momentum increases outwards then £, > £, and E; < E, therefore
the change imposed is energetically unfavorable: the situation is stable. If, in the
opposite case, the angular momentum decreases outwards then £, < ¢ and E; >
E;: some energy is released if the position of the fluid elements are interchanged.
The system cannot stay in its initial configuration and will evolve towards a new
state of lower energy.

6.2.2 Shear Instabilities of Parallel Flows

Parallel shear flows represent a vast category of flows that are very common in
Nature and often at the origin of turbulence. A parallel shear flow is basically very
simple: its velocity field is like:

V =U(z)e,. (6.12)

It has only one component, taken here in the x-direction, which is a function of only
one coordinate normal to the direction of the flow, here z. We only consider steady
flows. We note that, if the density of the fluid is independent of the coordinate in
the velocity direction then, the equation of continuity is automatically satisfied. To
further simplify, we restrict our discussion to the case of incompressible fluids.

The stability of parallel shear flows has an interesting property formulated
by Squire’s theorem: the most unstable disturbances of these flows are two-
dimensional. This greatly simplifies the analysis of the stability of such flows.
We shall therefore start by proving this theorem before presenting some famous
examples of shear instabilities.
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6.2.2.1 Squire’s Theorem

Statement: To every unstable disturbance of a parallel shear flow of an incompress-
ible fluid there corresponds a more unstable two-dimensional disturbance.

Proof: We begin by proving this theorem in the inviscid case. We assume that the
perturbations are in the following form:

f(l', l) — f(z)eikxx+ikyy+)»t (6.13)

where the Fourier form is in the homogenous directions of the flow. The perturba-
tions satisfy

B B
a—v + U(z)a—v F0U' (e, = —VP

! x (6.14)
V-v=0

After substitution by (6.13) and projection along the three axes, we find

A+ ik Uy +v.U'(2) = —iky P
A+ ik Uy, = —ik, P

(A + ik U)v, = —DP

Dv, + ikcvy + ikyvy, =0

(6.15)

where we have set D = 3% We now make Squire’s transformation and set

X ~ .k
k= R4k, k=keotky.,  P=P

X

The equations are now

ke i
O + ik, U)o + fvZU/(z) = —ikP

bl

(6.16)

(A + ikyU), = ——DP

?T‘tl

Dv. +ikv =0
which can again be written as

(A +ikU)p +v.U'(z) = —ik P
(A +ikU)y,=-DP (6.17)
Dv,+ikv=0
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by introducing A= A]j‘—Y. Noting the similarity of (6.17) and (6.15) withk, = v, =
0, we conclude that, if the flow is unstable, namely if Re(1) > 0, for every three-
dimensional disturbance, we can construct a two-dimensional disturbance (v, v, 13)
that grows faster, since Re(A) > Re(A).

The case with viscosity is treated in a similar manner. While observing that for
the disturbances (6.13), the Laplacian is changed into D? — k?, we rewrite (6.15) in
the form

(A + ikeU = v(D? = k)]s + v.U'(2) = ik, P
A + ik, U —v(D* — k?)]v, = —ik, P

~ 6.18
[A + ik, U —v(D? — k?)]v. = —DP ( )
Dv, + ikyvy + ikyvy, =0
We apply Squire’s transformation
(A +ikU — 5(D? - k)5 + v.U'(z) = —ik P
A+ ik(~J —9(D?*—k»)v,=—-DP (6.19)
Dv,+ikv=20
where v = vk£ > v. Thus, with every three-dimensional disturbances, we can

associate a two-dimensional disturbance, for which the Reynolds number is smaller.
Consequently, the critical Reynolds number, above which a given perturbation
grows exponentially, can be decreased by applying Squire’s transformation to that
perturbation. Hence, the perturbations, which give the lowest critical Reynolds
number of shear flows, are the two-dimensional ones.

6.2.3 Rayleigh’s Equation

In order to complete our study of parallel shear flows, we now transform (6.15)
into an ordinary differential equation for the stream function of the disturbances,
since, thanks to Squire’s theorem, we can restrict our study to two-dimensional
perturbations only. Accordingly, we set

vxza—w:Dw and vZ:—a—w:—ikw
0z ox

where k = k, and k, = 0. We then transform (6.15) into

(A + ikU)k*y = D [(A + ikU)Dyr — ikyU']
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then finally into
(A + ikU)(D* —k*)y — ikU"y = 0 (6.20)

which is Rayleigh’s equation.

6.2.3.1 Criteria of Stability

We can infer from Rayleigh’s equation a necessary condition for instability, that is
to say, a condition so that Re(A) > 0 is possible. We return to (6.20) and assume
that the fluid is bounded by two planes located in z = a and z = b. By integrating
the equation over this domain after multiplication it by ¥*, the complex conjugate
of ¥, we find

b ) 5 b //|w|2
*(D* —k*)ydz — ik dz=0.
/0‘“ WZ’/aHikUZ

Since v, = 0 on each bounding plane, integration by parts yields

b 5 k2 5 P b U”IWZ
D dz+1i dz=20 6.21
[ vt s Ry ik [ (621)
The imaginary part of this equation leads to
b |w|2U//
Re(Mk ———dz=0 6.22
o) / A+ kU™ (6:22)

which shows that a necessary condition for the existence of an instability is that
the integral be zero. This condition implies that U” changes sign at least once in
the interval [a, b]. Reciprocally, this condition shows that if a velocity profile has no
point of inflexion, then Re(A) = 0 and the flow is stable with respect to infinitesimal
disturbances.

This condition is evidently not sufficient: even if Re(A) # 0, this quantity is not
necessarily positive!

Rayleigh proved this result in 1880. In 1950 Fjgrtoft found a more constraining
version of it. He showed that a necessary condition for instability was that

U'U-U;) <0

at some point in the flow where U; is the velocity at the inflexion point. We propose
the proof of this theorem as part of the exercises.
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6.2.4 The Orr-Sommerfeld Equation

The Orr—Sommerfeld equation is the variant of Rayleigh’s equation including vis-
cosity. We obtain this equation after several manipulations of (6.19), by expressing
vy and v, with the help of the stream function. Orr—Sommerfeld equation has the
following form:

(A + ikU —v(D* —k?)) (D* —k»)y = ikU"y (6.23)

which we complete with the no-slip boundary conditions at the walls (planes z = 0
and z = d), namely

Yy=Dy =0 at z=0 and z=d

We shall not discuss the solutions of this equation because it would bring us too far,
and refer the interested reader to the book of Drazin and Reid (1981). We shall give
a few comments only.

Shear flows, like boundary layers, jets, wakes, mixing layers, etc. are usually
the seat of strong turbulence, which is a consequence of shear instabilities. The
Orr—Sommerfeld equation offers a nice model to study these instabilities and its
solutions have therefore numerous applications.

Many cases have been studied. The simplest ones are those at low Reynolds num-
ber, which can be investigated by perturbation methods on the diffusion equation.
However, they are not the most interesting since applications usually require the
other extreme: a very high Reynolds number. As we saw in Chap. 4, this implies the
existence of boundary layers, but not only. Indeed, from Rayleigh equation, to which
Orr—Sommerfeld reduces at infinite Reynolds number, we observe that something
special must occur when

A+ikU=0

or when ¢ = £ = -—U. This equality means that the phase velocity of the
perturbations is equal and opposite to the fluid velocity; the phase perturbation
stands still in the reference frame. At this place, the coefficient of the second
derivatives of i vanishes. A singularity of the perturbed flow shows up: this is a
critical layer. In such a layer, viscosity smooths out the singularity, which usually
consists in a discontinuity of the parallel component of the velocity field (see
Sect. 6.3.3 for instance). Critical layer are also called detached shear layers; their
thickness, like the one of boundary layers, scales like some fractional power of the
viscosity (v'/? and v!'/* are the most common cases). They are important in the
global dynamics of a fluid layer as they are strong dissipative structures.

Ending the chapter, we shall use Orr—Sommerfeld equation to introduce
algebraic instabilities that represent another path to turbulent flows.
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6.3 Some Examples of Famous Instabilities

6.3.1 Example: The Kelvin—Helmholtz Instability

The Kelvin—Helmholtz instability is a shear instability that appears when two fluid
layers of different densities, slide one on the other.

In order to analyse this instability, we shall consider the setup of an air flow on
top of a water plane. The two fluids are assumed to be inviscid. The air occupies the
z > 0 half-space, while the water fills the remaining space. The air is assumed to
be moving at a constant velocity Ve, with respect to the water. To be complete, we
also take into account the surface tension y between the two fluids. Thus, except
for the air motion, the set-up is exactly the same as the one use in Sect. 5.3, when
studying surface waves.

As in Sect. 5.3, we assume the perturbations of the velocity field to be irrotational,
namely §v = V@,. We thus rewrite the second equation of (5.26) directly as:

0P, n 0®, n 3P,
ot ax Pa

+ g8z = cst (6.24)

Since the potential @, still satisfies Laplace’s equation, (5.29) is always satisfied
because we are still looking for solutions in the form of (5.27). On the other hand
the boundary condition (5.30) is modified on the air side, indeed

aZS aZS aZs
Ve water = 7 and Vz,air =

ot

o T

Fig. 6.2 The great red spot of Jupiter as viewed by the Galileo probe. Note the vortices around it.
They come from the shear instabilities forced by this flow (Credit NASA)
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(5.32) is therefore replaced by
k Prarer(0) = —iwzy and k®,0) =i(w—kV)zs
Since we take surface tension into account we have
8P, = 8P, + ykz
according to (5.40). Finally, we derive the following dispersion relation
@*(Py + pa) = 20pakV — (pu — pa)gk — yk* + pak?V? = 0 (6.25)
The temporal branches can be easily extracted:

_ kVp, VA

(CFS
Pw + Pa

and A= (py+ pa) K’y + (pw — pa) gkl — K>V papy,
(6.26)

The expression of w4+ shows that the instability arises when A < 0, that is when

Pw + Pa

aprw

V2> [yk + (v — pa)%] .

Since the term in brackets has a minimum when k = ky;, = +/(ow — pa)€/Y, We
see that the flow will be unstable if, and only if, the velocity V is greater than the

critical velocity given by:

2 2)\'? 14
Verie = p_ + — [vg(pw — pa)] (6.27)

w a

With typical values of a water-air interface, namely p, = 1,000kg/m?, p, =
1.2kg/m3, g = 9.81 m/s? and y = 0.072N/m, we find V. = 6.4m/s. The
wavelength of the most unstable mode, namely that for which k = k,;,, is
Aerie = 1.7 cm, which is the length where the capillary effects are of the same
order of magnitude as those of gravity (see Sect. 5.3.2).

6.3.2 Instabilities Related to Kelvin—Helmholtz Instability

Formula (6.25) actually contains many interesting cases that we shall discuss
now.
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6.3.2.1 Rayleigh-Taylor Instability

If in (6.25) we set V' = 0, we immediately find the dispersion relation of gravity or
capillary waves (5.43). Now, let us assume that we manage to put the water above
the air. This situation is likely unstable. In fact, since

a — Pw k k3
wz:(p Pw)8k +y ’ 6.28)

Pe + Pa

we see that this is not necessarily the case. In order for the situation to be unstable,

it is necessary that k < /(p,» — ps)g/v, namely that the perturbations with a
wavelength greater than A.,;; = 27w +/y/(pyw — pa)g can grow.

The foregoing instability, which appears when a layer of fluid covers a layer of
a less dense fluid in a gravitational field, is known as Rayleigh—Taylor instability. It
usually occurs in Nature when a fluid layer is heated from the bottom. The instability
then leads to a fluid flow known as thermal convection, which we shall study in detail
in Chap. 7.

Now, the instability shown by (6.28) can be illustrated by a simple experiment.
Taking a bottle filled with water, we turn it upside down, maintaining the cork on the
orifice. Removing it delicately, we observe that if the diameter of the bottleneck is
small enough,3 the water remains in the bottle. If the diameter is too large, however,
the stability of the equilibrium can be restored by increasing artificially the surface
tension: a piece of paper laid on the interface will do the job.

Finally, let us note that if the surface tension is zero, for example if both fluids
are gases, then the equilibrium is always unstable.

Figure 6.3 shows the development of Rayleigh—Taylor instability in a numerical
simulation of a supernova explosion. This instability plays an important role in the
mixing of elements yielded by this stellar explosion.

6.3.2.2 The Instability of the Mixing Layer

Another example that is easily derived from (6.25) is the one where the two fluids
are identical. Thus, p, = p,, = p.

The configuration thus obtained is the famous “vortex sheet” presented in Fig. 3.9
where the velocity sustains a discontinuity that usually develops into vortices
(see Fig. 6.2). From (6.25) we see that such a configuration is unstable for all
wavelengths since

w=>1xi)kvV/2.

3We may expect that if the diameter of the bottleneck is smaller than 1.7 cm, the equilibrium is
stable. However, we should keep in mind that the value was derived for pure water; impurities
decrease the surface tension and lead to a smaller value of the critical wavelength.
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Fig. 6.3 Growth of the
Rayleigh—Taylor instability in
the wake of the shock wave
associated with a supernova
explosion. The four quadrants
show the concentration of
helium, oxygen, nickel and
silicium. The numerical
simulation has been made by
Joggerst et al. (2010)

Ni Si

The growth rate increases with the wavenumber without bounds apparently. This
dispersion relation comes from the discontinuity of the velocity field. In real
systems, the discontinuity has some thickness (due to viscosity) and the growth rate
reaches a maximum for perturbations with a wavelength similar to the thickness of
the vortex sheet.

6.3.3 Disturbances of the Plane Couette Flow

The plane Couette flow is a shear flow for which the profile is linear:

Uiz)=z/T (6.29)
where T is a constant homogenous to a time. A discussion of the perturbations of
this flow is interesting. Setting A = iw with @ € R and substituting (6.29) in
Rayleigh’s equation we find

(w 4+ kU)(D*> —kHy =0 (6.30)
If we assume that (w + kU) # 0, then ¥ is given by

Y = Ash(kz+ Q)

If the flow takes place between two planes situated at z = 0 and z = d, at
which the disturbances vanish, then v = 0 throughout. Therefore, in order that
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the perturbations exist, it is necessary that w + kz/T = 0 in the interval [0, d]. In
other words, the disturbances are such that

w € [—kd/T, 0]

so that their spectrum is continuous.
The form of the solutions is always given by (6.30), but the solutions have a
discontinuity in z = z. = —wT/ k. Actually, we have

¥(z) = Ashkz, if 0<z<gz
V(z) = Bshk(z—d), if zo<z<d

At z = z., ¥ is continuous because v, is continuous, which is imposed by mass
conservation. Therefore, we have

sh kz,
U shk(ze — d)
Let us now calculate v, = D1/ on each side of z.. We easily verify that v, (z7) #
vy(z}). The component v, is discontinuous at this point. This discontinuity illus-
trates a property of linear operators, which connects the existence of a continuous
spectrum to that of discontinuous eigenfunctions.

This discontinuity of the perturbed v, means that the plane Couette flow is likely
unstable to finite-amplitude disturbances. Indeed, such a perturbation will contain
a vortex sheet, which is always unstable. This inference has been actually verified
experimentally and numerically.

6.3.4 Shear and Stratification

To conclude this section on famous unstable shear flows, we now study the case
where the fluid is stably stratified in the vertical direction. In this way, we can
examine the case where shear instabilities are opposed by a positive temperature
gradient that inhibits vertical motions but allows the propagation of internal gravity
waves. This situation is often met in natural systems, for instance a lake over which
a wind is blowing. The wind entrains surface water and thus imposes some shear
flow in the lake. But lake water is often stably stratified with cold (dense) water
below (light) warmer water. Because of this stratification, shear flow instabilities
may be inhibited, and thus the mixing of waters in the lake.

In order to study the evolution of disturbances in such a system, we return to
(6.14) modified to take the buoyancy force into account and completed by the
equation of temperature (5.45b).
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Staying with the two-dimensional case and using the same notations as before,
we now have:

(A + ikU)v, + U'v, = —ikP
(A + ikU)v, = —DP + agT
A+ ikU)T +v,0,Th =0
Dv, + ikvy, =0

6.31)

where T is the temperature fluctuation, « the coefficient of thermal expansion (see
1.60) and Ty is the background temperature profile of the fluid in equilibrium. We
also introduce the Brunt—Viisild frequency N such that N> = «agd.T, and the
stream function v such that v, = D and v, = —iky. We can then cast the
preceding system into a single equation for :

k*N?
A+ ikU

(A + ikU)[D? — K}y — ikU"y = v (6.32)

also called the Taylor-Goldstein equation. If we set the Brunt—Viisila frequency to
zero, we recover Rayleigh equation. As for this equation, we shall derive a criterion
of stability when the flow is bounded by two horizontal plates. We could, as for
Rayleigh’s equation, multiply the equation by the conjugate of ¥ and integrate z
between the two boundaries. We would then get

b b -kU//W/Iz b N2|w|2
2 k2 wl? / L — k2
/a”d‘”' HEWDES | Gt aup®

By requiring the cancellation of the imaginary part of this equation, we find the
following necessary condition for the instability of the flow:

s 20k + kU)kN?
A%+ (A1 + kU)?

where we set A = Ag + iA;. Unfortunately, this equation is not a criterion of the
flow itself, unlike Rayleigh’s one, since it depends on the eigenvalue. The way to
obtain a true criterion on the flow was discovered by L. Howard in 1961. It consists
in making use of the function

_ 2
R ey

which obeys

U?/4—N?> ikU"
DKA+%MDM+[H AimU —’2 —k%k+%w}X=0 (6.33)




6.3 Some Examples of Famous Instabilities 209

which we can multiply by y* and integrate between a and b. Taking the real part of
the result, we thus find

b 2] 2
U~“/4—N
AR/ {ID)(I“rkzl)(lz—k2 / X’ dz=0
a

|A + ikU|?
In this equation the integral can vanish if, and only if, U"?/4 — N2 > 0, or if

N2 1

Ri=gn=3

(6.34)
Ri is called the Richardson number. Equation (6.34) is generally called the
Richardson’s criterion. We see that it is a necessary condition for instability. For
certain particular flows it is also sufficient. This criterion shows that when the
stratification is sufficiently large, that is to say when the Brunt—Viisild frequency
is sufficiently high, the flow is stable.

This criterion, like Rayleigh’s criterion, can be recovered on heuristic arguments,
which allow a more physical understanding. To do this, we shall take two fluid
elements respectively at z and z + 6z. In order to exchange them, some work against
the buoyancy force must be provided, namely

W = —gépdz

The energy will be taken from the reservoir of kinetic energy, which stays in the
original flow. We then make the following transformation:

Z+ 6z ,0+5,0U+8U_) 0 U+ adU
b4 P U p+p U+ (1—-a)sU

where « is a free number between 0 and 1. We see that this transformation conserves
the mass and momentum at first order. Let us now calculate the difference of kinetic
energy 6 E. between the initial and final states. We have

28E. = pU? 4 (p 4+ 8p)(U + 8U)*—p(U + a8U)>—(p + 8p)(U + (1—)8U)?
= 2a(1 — a)psU?* + 2aU8pSU

We observe that if « < 1 then (1 — o) < 1/4, and the maximum is reached at
a = 1/2, so that

1
28E, < 5,0(8U)2 +2U8USp . (6.35)
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Because of these constraints, stability is insured if
1 2
Zp(SU 4+ UsUép < —gdpdz

that is to say if the maximum variation of the kinetic energy is smaller than the work
needed to exchange two fluid elements. Finally, there is stability if

1 (dU)2 _ 8 (d,o) U dp dU

4\dz) = p\dz p dz dz
We shall see later that in many circumstances, stratified flows can be computed
using the Boussinesq approximation, which implies the neglect of p variations while
maintaining constant the product gép, (buoyancy force must not disappear!). Thus,
the second term of the right-hand side is usually negligible compared to the first;

in this way, we recover Richardson’s criterion, which was discovered in 1920 (see
Richardson 1920).

6.3.5 The Bénard-Marangoni Instability ®

At the turn of the twentieth century Bénard (1874—1939) discovered that a thin film
of liquid heated from below exhibits some vortical cellular motions. For almost
60 years, these fluid flows have been interpreted as the result of thermal convection,
an instability driven by the buoyancy force (this is the subject of our next chapter).
However, Pearson (1958) showed that when the fluid layer is very shallow, buoyancy
effects are dominated by surface tension effects that are able, as we shall see, to
destabilize the fluid at rest.*

To understand this phenomenon, we consider a fluid layer of thickness d, infinite
in the x and y directions. In the z direction, i.e. across the layer, some temperature
gradient is imposed, for instance by heating the bottom boundary. In the equilibrium
situation, we thus have

Teq =To+ IBZs

for the temperature field. We assume that the density variations are negligible
altogether, thus perturbations of the velocity field v, of the pressure field §p and
of the temperature field §7T', verify

“The name of Carlo Marangoni (Pavia 1840-Firenze 1925) is generally associated with this
instability as he was the first physicist to describe fluid flows driven by surface tension gradients
(with a paper in Annalen der Physik in 1871).
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V.v=0

av 1

8T

W +v- VTeq =k AST

These equations need to be completed by boundary conditions. On the bottom plane,
we impose no-slip boundary conditions for the velocity and a fixed temperature; thus

v=_0 and T =0 on z=0

On the top boundary the fluid (a liquid) meets another fluid (a gas). Surface
tension is therefore important, and above all its temperature dependence. Since the
temperature fluctuations are assumed very small, a linear law is valid and sufficient;
we take

y(T) = vo(1 +yrT) (6.37)

where y and yr are given by the nature of the liquid-gas interface. Usually, yr < 0
since surface tension decreases with temperature.’

We also assume that the deformation of the interface is negligible (y, is large
enough), and neglect the effects of gas motion. In these circumstances, the boundary
conditions on the liquid at the interface are that the vertical velocity of the liquid
vanishes there and that no horizontal stress applies on this surface. From (1.70), it
turns out that:

v-e, =0 and ([otigle; — Vy) x e, =0 (6.39)

3Surface tension comes from the binding energy of molecules due to their mutual interactions in
a liquid. We may expect that at the critical temperature, which is the temperature where the gas
and liquid phases are undistinguishable, the surface tension disappears. This remark lead L. E6tvos
(1848-1919) to propose that surface tension varies with temperature like

y =k(T,—T)/V*?

Here k is a universal constant for the liquids, V' is the volume of one mole and 7, is the critical
temperature. This law, which is known as Eo6tvos rule, is only approximate, but suggests that
y decreases linearly with temperature, as actually observed experimentally. For instance, the
following fit

y = 731021 — 0.0023(T —291)] N/m (6.38)

matches rather well the variations of surface tension of water in the range 273-373 K, as illustrated
in Fig. 6.4.
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Fig. 6.4 Temperature variations of the surface tension of pure water; the dashed line shows the
linear fit given in the text

One condition remains to be specified: that on the temperature at the interface.
There, we should impose the general conditions between two conducting materials,
namely (1.66), with the additional point that air is a transparent medium where
energy may be carried out by radiation. Assuming that the liquid radiates like a
black body into the gas, boundary conditions at the interface read:

T, aT,
/=T, and —y— =o0T}'—y,—=
g X 9z 1~ Xg 9z
where o is Stefan constant. If we now consider the temperature perturbations around
a steady state, these perturbations verify:

98T, 08T,
§T) = 8T, and ol 4g6m =80
0z X1 0z

Usually, the thermal conductivity of liquids is much higher than the one of gases (see
Table 1.1) so that we can safely neglect the right-hand side of the second condition.
q =40 Tl3 / x1 is a parameter which measures the efficiency with which the heat flux
permeating the liquid is radiated. If the liquid is a good conductor then the gradient
of temperature fluctuation must be small near the boundary. Hence, we shall take

asT
3—+q5T=O on z=d (6.40)
<
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as the boundary condition on the temperature of the liquid at the interface. The
remaining condition §7; = &7, is useful only in the case we are interested in the
gas temperature fluctuations.

‘We have now prescribed all the equations and boundary conditions, which control
the fate of perturbations. We shall rewrite them using non-dimensional variables. We
choose the thickness of the layer as the length scale and d 2/« as the time scale. The
temperature scale is naturally given by d | 8|. Furthermore, as we are making a global
analysis of stability, we impose that disturbances evolve as exp(At); hence we write
the equations of motion:

V-u=0
Au=—-Vp+ PAv (6.41)
AT —u, = AT

since we take B < 0. P is the Prandtl number of the liquid. Using the equation of
continuity together with the u = 0 conditions, we derive the following boundary
conditions on the z = 0 plane:

_ Oug

uz—a—zzo and T=0 on z=0 (6.42)

On the z = 1 plane, we should first make the stress condition (6.39) more explicit;
it yields

avz+avx B 35T_0 3vz+3vy 3 BST_O onz =1
124 I 9z Yoyt X 124 3y 9z Yoyr 3y = =

These conditions are completed by v, = 0. Using dimensionless variables, and mass
conservation, the three top boundary conditions give

0. P N (PT LT (6.43)
= . —_ a _— —_— = .
" 922 X2 9y

where we introduced the Marangoni number:

dz
Ma = Yolyr!|B| (6.44)
UK
Finally, the boundary condition on temperature at z = 1 reads
aT
— +BiT =0 (6.45)

0z
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where Bi is the Biot number®

40T3 (d)d
Bi = dole(d)d
X

The system (6.41) can be further reduced to two equations controlling the vertical
velocity and the temperature fluctuations; namely:
AAu=PAAu

6.46

{ AT =u+ AT (6.46)

where u = u,. Since the fluid layer is infinite in the x and y directions, we may
express the functions f(x,y,z) = f(z) exp(ikyx + ikyy) and set k> = k; + k3.
Thus,

P(D? —k*)?u = AM(D*> — k*)u

6.47
{(Dz—kz)T—i-u:/\T (©.47)

where D = 9d/0z. This is a system of sixth order, which is completed by the six
boundary conditions:

u=Du=T=0 at
{u:Dzu—i-kzMaT:DT—}-BiT:O at (648)
The stability of the fluid layer is determined by the set of eigenvalues A. It may
be shown that the A’s are all real negative numbers when the Marangoni number is
zero, hence the system is stable. When this number is increased, the real part of the
least-damped mode vanishes for some critical value Ma, of the Marangoni number.
We assume that the associated eigenvalue remains real (the instability is assumed
not to be oscillatory). Thus doing, when Ma = Ma,, A = 0, and we can determine
the solutions at the threshold of instability.
The solution of (D? — k?)?u = 0 verifying u(0) = Du(0) = u(1) = 0is

u(z) = A[sinh(kz) + (k cothk — 1)zsinh(kz) — kz cosh(kh)]

5The Biot number is the ratio of two heat transfer coefficients. The heat transfer coefficient is a
flux surface density divided by a temperature; for instance, y;/d is the heat transfer coefficient of
the liquid layer, while 0T is that of the vacuum.
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We also find that

k coshk—sinh k
k sinh k

1(3 inh(k
T(z) = 11 5° cosh(kz)+ (12 cosh(kz)—z o k( Z)) —7” sinh(kz)
k?sinh? k + (Bi + 1)A(k)

~ k2 sinhk(k coshk + Bisinh k)

sinh(kz) }

where A(k) = k2 + k sinh k coshk + sinh? k. This solution verifies the boundary
conditions 7'(0) = 0 and DT (1) 4+ BiT' (1) = 0. Using these two solutions we can
express the Marangoni number as a function of the wavenumber k, as:

8k(k — sinh k cosh k)(k cosh k + Bisinh k)

Ma(k,Bi) =
( ) k3 coshk — sinh® k

(6.49)

This function, plotted in Fig. 6.5 for various values of Bi, determines the minimum
value of Ma beyond which the instability sets in. We note that, in the ideal case
where Bi = 0, the critical value of the Marangoni number is Mayj = 79.607
reached at a wavenumber of k. = 1.993.

As we mentioned it at the beginning of this section, this instability has long been
confused with the Rayleigh—Bénard instability, which is driven by the buoyancy

400 [

200 [

Ma

100 [

Fig. 6.5 Ceritical curves for Marangoni-Bénard instability for various values of the Biot number
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force. However, as we shall see now, when the thickness of the layer is small enough,
the surface tension instability dominates over the buoyancy driven one.

Anticipating on the following chapter, we note that the Rayleigh—Bénard insta-
bility is controlled by the Rayleigh number

_ alplgd*
VK

Ra

which critical value, in similar conditions,’ is 669.

The dependence of the Rayleigh number with the fourth power of the thickness of
the layer, shows that for increasing values of d, the supercriticality of the Rayleigh—
Bénard instability is growing faster than that of the tension driven instability, which
grows only with the square of the thickness.

We may compute the thickness where the two instabilities are of similar strength.
The critical thickness for the tension driven instability is

(Macmpwc)l/ 2
dy = | 228
Yolyr Bl

Ragivk ) /4
dy = ———
aglpl
for the buoyancy driven one. For a given fluid under a similar temperature gradient,
these two thicknesses are equal at:

dre = Racril)’0|yT|
bt — i
\/ Maiigp

As a numerical illustration, let us consider the case of pure water around 20 °C.
At this temperature o« = 2.07 x 107K, and using the linear fit of the surface
tension (6.38), we find that the critical thickness is 2.6 cm. Hence, a water layer a
few millimeters thick is destabilized by surface tension when heated from below.

whereas it is

6.4 Waves Interaction ®

Another way to tackle instabilities is to interpret their development as the conse-
quence of the interaction of two waves with energies of opposite sign. The total
energy of the system stays constant but the amplitude of the two waves can increase

"This means the same boundary conditions on the bottom plate and on the top plate, stress-free and
fixed-flux conditions (this is for the case Bi = 0).
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indefinitely (in a linear regime, of course!). This approach has been introduced
in Fluids Mechanics by Cairns (1979), who adapted technics devised in plasma
physics.

6.4.1 The Energy of a Wave

There is no universal definition of the energy of a wave. Following Cairns’ work,
we shall define it as the work needed to make its amplitude increase from zero to a
given finite value Ay. We assume that the passing wave causes a small displacement
of matter, which we denote by

E(x,1) = A(r)e' @' Fon) (6.50)

The associated pressure disturbance has a similar form. The function A(t) is
assumed to vary slowly: the amplitude of the wave increases very progressively.
We express this “slowness” by claiming that

LdA o —  f~imé
Ad wo ~1wo§ .

In order to define the work done to raise the wave, we assume that the displace-
ment (6.50) is the result of the action of the pressure forces, which act on both
sides of a surface. As long as the wave is not established, the pressure on both sides
differs; thus the work reads

+o00 .
w =/_ (p2— poédi

or, in complex notations,

1 oo : ' oo
W = ERe{/_ (P2—P1)*§dt} =Re{%/_ (p2— p)édt

(o¢) (o]

In a linear problem, all quantities are proportional and therefore we can write

_ i(wot—kox)
{pl Di(w, ko) A(r)e! 00 (6.51)

P2 = Da(w, ko) A(t)e! o' —Ho¥)
let

(p2 — p1)* = D(w, ko) A(r)e ™ (@0 —Ho)
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where D(w, k) = Dy(w,k) — Di(w, k). When the wave is established, p; = p,
and D(w, k) = 0 is the dispersion relation of the waves system.
Let us calculate the Fourier Transform of (p, — p1)*; we have

Ap(w) = / D(w, ko) A(t)e @ k09 it gy — D(w, ko)e™* A(w — wo)

Since A varies slowly with ¢, A (w — wy) differs from zero only at low frequencies,
that is to say for w — wy & 0. In the neighbourhood of wy, we have

oD
D(a),k) = D(a)o,ko)+(w—w0) (%) 4+ .

with D(wy, ko) = 0, therefore
(p2— (1) = 0¥ / A — w0)D(@. k)e " dw -

taking into account our remark about A, this integral is approximated by

oD . - )
(p2—p) () = (%) ¢! kox—awo?) /(a) —wo)A(w — wo)e—t(w—wo)tdw
wo
= — a_D ei(kox—wof)@
o/, dt

From which we find that

oD +oo dA* oD
W @ (D / Re(AL yar =22 (22 |aop
2 \ow /), J - dt 4 oo/,

The energy of a wave is therefore defined by

wo aD 2
E=—|— A 6.52
2 (Bw )wo| ol (6.52)

6.4.2 Application to the Kelvin—-Helmholtz Instability

We now apply the preceding calculations to the Kelvin—Helmholtz instability
studied previously.

The dispersion relation (6.25) shows that two waves corresponding to w4 are
possible. We easily calculate their energy
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Fig. 6.6 Change of the dispersion relation with the background velocity in a set-up prone to
Kelvin—Helmbholtz instability. We see that as the background velocity gets close to the critical
velocity, a negative energy branch narrows the positive energy one. In the third plot, where V' > V.,
unstable modes have imaginary frequencies and their wavenumber belongs to the interval limited
by the dotted lines

oD

bt = ox (aa)

) = 2w+ (w+ — pkV) = +204 VA
oy

It therefore follows that for every k > 0, w4 > Oand &4 > 0. If V < Ve
then w— < 0 and &_ > 0; the energy of the two waves are of the same sign.
However, if V' < V., there appears a band of wavenumbers k for which w— > 0 and
thus associated with negative energy waves. Moreover, there exists a wavenumber
(k ~ 3), such that the two waves are close to resonance, i.e. w+ >~ w_. As illustrated
in Fig. 6.6c, this resonance is at the origin of the band of unstable waves.

6.5 The Nonlinear Development of an Instability

Up to now we have studied the evolution of disturbances with infinitesimal
amplitudes and noted their exponential growth in the case of instability. Obviously,
this growth cannot continue indefinitely because the increasing amplitude inevitably
leads to non-negligible nonlinear terms. Their role might simply be to trigger the
damping of the instability and to insure a new equilibrium: this is the most simple
case that we shall find again in thermal convection in Chap.7. In general, the
situation is more complex: for example, it often happens that a group of modes
are unstable because of the set-up. The question we are faced with then is to know
towards which solution the system is evolving: is it systematically towards the mode
with the highest growth rate? or is it that the nonlinear terms will decide the choice
of the final solution which, if it exists, should be stable? It is also possible that no
stable solution exists. If the system is chaotic, it wanders indefinitely without ever
returning to a point (in the phase space) previously visited.
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The nonlinear development of instabilities is a vast field, which would deserve
an entire book. The object of this section is thus more modest: we shall examine a
few of the simplest cases from which we can shape our intuition about the possible
developments of an instability.

6.5.1 Amplitude Equations

When we discussed global instabilities, we expressed the growth of disturbances in
the form:

Jdu
g = L(u)

by choosing a time dependence in e*’. We generalize this approach by writing
u(r,t) = A()uo(r) (6.53)
where A(?) is the amplitude of the mode uy. If A4 is very small, we always have
A(t)uo = A(1)L(uo)
but since uy is an eigenmode, L(uy) = Aug, A thus evolves according to
A(r) = LA(1) (6.54)
Such an equation is called an amplitude equation. This one is the simplest and its
solution A = Age*’ is already known to us.

Now, let us suppose that u is always in the form (6.53), but that its growth is
determined by a nonlinear equation that we may write

A(t) = f(A) (6.55)

But for small amplitudes, we have

f(A) = f(0)+ f'(0) A+

f ”2(0) 24 7O s (6.56)

6

Since A is the amplitude of a disturbance, A = 0 should be the equilibrium solution
such that f(A = 0) = 0; therefore, f(0) = 0. Further identification shows that
f’(0) = A. Hence, we rewrite the preceding equation as:

A() =24 + S0, J7O //;(0)A3

5 NP (6.57)
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We can still progress in the determination of the coefficients of the Taylor expansion
of f by using the symmetries of the system. Imagine that the system is invariant in
the symmetry A — —A, i.e. if A is a solution, —A is also a solution, then it is
obvious that f(—A) = — f(A) because of the linearity of d,. In this way all the
even derivatives of f are zero and (6.57) shortens to:

Ay =24+ —~ fm( LEI (6.58)

Setting £ = — f""(0)/6, the preceding equation is known as Landau equation:
Alt) = A4 — £A® (6.59)

and L is the Landau constant of the system(cf. Landau and Lifchitz 1971-1989,
Sect. 27).

6.5.2 A Short Introduction to Bifurcations

Landau equation describes the behaviour of many systems in Physics, especially
in Fluid Mechanics (we shall meet it again when discussing thermal convection in
Chap. 7). Thus, it is worth a little study, which will also allow us to introduce the
basic ideas of bifurcation theory. First of all, we shall assume that £ > 0.

Assuming £ > 0, (6.59) is easily solved: after dividing it by A4, it is solved for
1/A?, which gives

Ao

Ar) =
\/(1 — AZL/A)e=2M + A2L/A

where Ay is the amplitude at ¢+ = 0. Figure 6.7 shows a plot of this solution.
By writing Landau equation in the form

dA

A—LADA,
I =( )

we observe that the solution saturates thanks to the term in A®: the increasing
amplitude causes a reduction of the effective growth rate (A — £A?). The final
amplitude is such that A — £LA? = 0, or

A
A=A,y = \/; (6.60)

We see that this solution exists only if A > 0. In the opposite case, A — 0. This
situation can be summed up by a bifurcation diagram (Fig. 6.8) that outlines the
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Fig. 6.8 Bifurcation diagrams for Landau equation in the supercritical and sub-critical cases. Solid
lines indicate stable branches while dashed lines are for unstable ones

equilibrium solutions,® namely the values of A such that f(4) = 0 when the control
parameter A is varied. The control parameter is also known as the order parameter
in reference to phase transitions, where bifurcations are also playing an important
role. In fluid flows, this parameter is usually a number like the Reynolds one.

We now return to Landau equation and its possible equilibrium solutions.
f(A) = 0leads to

A
M—-—LA =0 = A=0 or A::t\/;

8The equilibrium solutions are also called fixed points in the language of dynamic systems.
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These three solutions constitute the different branches of the diagram. It is then
necessary to examine their stability. For this, we perturb Landau equation by writing
A = Ay + 8A4; thus,

dsA
—— = (A—=3LA%2)84
dt ( )

The stability of each branch is given by the sign of 7 = A — 3£A3q. If A,y = 0,

7 = A: the branch is stable if A < 0 and unstable if A > 0. If 4., = /A/L, the
system is in the bifurcated state and its perturbations evolve according to

dsA

= —2A64 (6.61)
dt

Therefore, when this branch exists (if A > 0), it is stable (—2A < 0).

The bifurcation controlled by Landau equation is called a pitchfork bifurcation.
When £ > 0, it is supercritical. If A passes from negative values to positive ones,
the system bifurcates from a solution that has become unstable (4., = 0) towards a
new stable solution (4., = /A/L). The bifurcation takes place at the critical value
A=0.

In some systems, the critical value of A is not zero but purely imaginary A =
iw: at the bifurcation point the system oscillates with a frequency w. This kind of
bifurcation is called a Hopf bifurcation. The behaviour of the system is very similar
to the Landau one and we propose its study as an exercise.

Let us now return to Landau equation and consider the case where Landau
constant is negative. In this case, non-zero equilibrium solutions exist only if A < 0.
The bifurcation is called sub-critical and we note from (6.61) that the bifurcated state
is always unstable (Fig. 6.8). The evolution from these branches cannot be described
by Landau equation (except in an initial phase where the amplitudes are small),
because the nonlinear cubic term strengthens the instability rather than reducing it.
We should then extend the development of f to the next order in amplitude, namely
the one in A4°. This brings us to the consideration of a somewhat more complex
system, where we can find a finite amplitude instability.

6.5.3 Finite Amplitudes Instabilities *®

We shall now analyse a system having a sub-critical bifurcation at A = 0 taking into
account the 4°-term. The dynamics of the system is assumed to be controlled by the
following equation:

dA

- = A +2LA4% — A (6.62)
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where the coefficient of 4° has been set to —1 for simplicity (its negative value
is necessary for the instability to saturate). We could also, as we did for Landau
equation, explicitly solve this equation but this is not really necessary because the
drawing of the bifurcation diagram as well as the analysis of the stability of the
different branches allows a good understanding of the dynamics of such a system.

The points of equilibrium are the five solutions that cancel out the right-hand side
of (6.62), namely

A=0 and A=\ LE VL + A =14 (6.63)

We thus find the axis A = 0 plus a fourth-degree curve (see Fig. 6.9). In order to
find the stability of the different branches, we must determine the sign of the rate of
growth

T=A+6LA% 54"
for each equilibrium solution. The case of A = 0 is immediate. If A # 0, we can

use the equilibrium equation A + 2£A4% — A* = 0 to eliminate A; recalling the
expressions of A4 given by (6.63), it turns out that

T(Ax) = F4A>V/ L2+ A

eq

1k ]
Fig. 6.9 Bifurcation diagram X \ 1
for a system endowed with a [ i
subcritical bifurcation L \:
obeying (6.62). Dashed lines [ ]
indicate unstable branches, =] S A R

solid ones show stables -2 -1 0 1 2
branches (we set £ = 1) N
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then t(A4+) < 0 and A4 is stable whereas A_ is unstable since t(A4_) > 0. The
existence of the solutions for A4 obviously depends on A and we may verify that

o A, existsif A > —[2,
o A_existsif —£2 <A <0.

Several conclusions about the dynamics of the system can now be drawn. If A <
—L2, branch A = 0 is absolutely stable: whatever the disturbance might be, the
system will return to this equilibrium. If 0 > A > —£? three stable solutions are
possible: 0 and £A4 4. The system “will choose” according to initial conditions but
henceforth we can note that if the solution A = 0 is disturbed strongly enough, we
can make it bifurcate towards the other stable branches £ A . Although stable with
respect to infinitesimal perturbations the solution A = 0 is unstable with respect to
disturbances of finite amplitude, provided that this amplitude is large enough (the
same applies to the branch A4). We can illustrate this property by noting that the
equation of the dynamical system (6.62) can be written using a potential V; (4) such
that

dA _ i(A)
dr 94

The diagram of V) (A) for different values of A shows the “valleys” of stabilities and
the “peaks” of instability (see Fig. 6.10).

Finally, if A > 0, A = £ A are the only stable solutions. Figures 6.9 and 6.10
summarize the properties of this system.

il
iy
altidhy l',"l:,"ll',"ll',"ll"

ittt
sttty

v(A)

"'
N
n,'".','

Fig. 6.10 Left The potential V3 (4) = AA4%/2—LA*/2— A®/6 for various values of A. The dashed
line shows a value of A such that 0 > A > —£? where the potential has three local minima. Right
A view of the surface V' (4, 1)
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6.6 Optimal Perturbations ®

6.6.1 Introduction

In the foregoing sections we categorized flow disturbances into two families: those
of infinitesimal amplitude which are controlled by a linear operator and those of
finite amplitude which require the solving of a nonlinear problem. However, on
the latter perturbation we discussed only the possible role of a finite amplitude
in the context of amplitude equations. We may thus wonder if, like in dynamical
systems of Sect. 6.5.3, there exist flows that are stable with respects to infinitesimal
perturbations but unstable with respect to some finite amplitudes ones and also
wonder how these finite amplitude perturbations are generated. These questions lead
us to present a recent progress of Fluid Mechanics that bridges the gap between the
two aforementioned categories of disturbances.

Let us first come back to small amplitude perturbations. We decided of the
stability of the flow when these perturbations were exponentially damped, that is to
say when their temporal evolution was controlled by the e* -factor with Re(1) < 0,
the instability criterion being the existence of a perturbation with a positive growth
rate. This condition for instability is sufficient of course but not necessary as we
shall see. We can indeed imagine the existence of other perturbations that are not
described by the eigenvalues of the disturbances operator, like algebraically growing
disturbances. One may even imagine situations where a flow is stable as far as
perturbations like f(r)e’’ are concerned, but that would be transformed into an
unstable one by some slowly growing disturbances. This is precisely what has been
uncovered in the years 1980: some flows well known to develop turbulence but
otherwise known to be stable with respect to small amplitude perturbations have
been revealed as the seat of slowly growing perturbations that in the end completely
destabilize them. These perturbations are now known as optimal perturbations: the
linear analysis shows that they can be strongly amplified before disappearing, but
during the course of their growth they might transform the original flow into another
one that is exponentially unstable.

This scenario shows that finite amplitude disturbances may be spontaneously
generated by some small amplitude noise. The existence of optimal perturbations
explains why a flow like the cylindrical Poiseuille flow, which is stable linearly for
any Reynolds number, shows turbulence bursts when this number is over ~ 103,
In this section we shall introduce the reader to this new page of Fluid Dynamics, a
page that has started being written 25 years ago.

6.6.2 Plane-Parallel Flows

Squire theorem told us that two-dimensional perturbations of plane-parallel flows
were the most unstable. But three-dimensional ones have other properties, unnoticed
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for a long time, that might also efficiently control the stability of flows as we shall
see.

Let us reconsider the disturbances that might affect a plane-parallel flow v =
V(z)e, and let us assume that the fluid is bounded only in the z-direction. We are
now considering perturbations of the same shape as (6.13) but we do not impose an
exponential time dependance. Thus we write:

f@e0) = f(z e+ (6.64)

for the general form of the perturbations. System (6.18) has now the more general
shape:

[0; + ik U — v(D? — k?)]vy +v.U'(z) = —ik, P
[0; + ik, U — v(D?* — kz)]vy = —ik, P

[0; + ik,U —v(D?* —k*)]v. = —DP

Dv, + ikyvy + ikyvy, =0

(6.65)

where k* = k2 + k§ and D = 0.. Eliminating pressure and the components v, and
v, we re-derive Orr—Sommerfeld equation for the vertical velocity v;:

[0; + ik, U(z) — v(D* — k?)|(D?* = k*)v, — ik U"v. = 0 (6.66)

We may check that this new form of Orr—Sommerfeld equation gives back (6.23)
which we derived previously. Since we now consider three-dimensional perturba-
tions, it is necessary to complete it with an equation for the spanwise v, component
of the velocity. Following tradition, we write the equation verified by the vertical
component of the vorticity w, = d,v,—0d,v,. Using the first two equations of (6.65),
we easily find that

[0, + ik, U(z) —v(D* — k)], + U’ (2)ik,v, = 0 (6.67)
also called Squire equation. These two equations form a coupled system whose cou-
pling coefficient is proportional to k, which represents the variation of perturbations

in the third spanwise dimension.
Let us now write Squire and Orr—Sommerfeld equations in the following

symbolic form:
9 (Av, Dy 0 v,
— =0 6.68
ot (a)z) * (ikyU’ D, w, (6.68)

where we introduced the differential operators

A=D>—k*> D, =ikU@)—v(D>—k?), D4=Dy(D?*—-k>
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In order to understand the properties of the solutions of this system, it is useful to
study a much simpler problem but which shares many of the properties of (6.68).

6.6.3 A Simplified Model

System (6.68) is a differential system where space and time coordinates are coupled.
We shall uncouple these variables by forgetting space variations and focusing on
time evolution. For that, we consider the following simple system:

d _
a(x\_ e 0 X (6.69)
dt \y 1 —2¢ y

where ¢ is the model parameter. We look for the temporal evolution of x (¢) and y(¢)

whose initial values are (xo, yo). The resolution of these two differential equations

is straightforward and we find the general solution:
x(t) = xpe™®

6.70

o6 = e sfere-s + 2 ©10

We might observe that at long times (# — +00), these solutions vanish for any
initial conditions. The short time evolution, that is when e < 1 is on the contrary
sensitive to initial conditions. An expansion of the solution to first order in & gives

x(t) = xo(1 — et + O(£))
y(t) = xo(t — %gﬂ + O(?) + yo(1 — 2et + O(e?))

These expressions show that x (¢) starts decreasing and this is indeed what says the
general solution. However, this is not the case for y(¢). The first order expansion
shows that if xo > y, the solution y first increases at a rate controlled by x.
Obviously, if initial conditions are such that xo < yo then y(¢) also decreases.

Let us now consider initial conditions where y(¢) is increasing with time and
search the time 7,, where y is maximum. Using the general solution, we easily find
that the maximum of y is reached at time

1 (1+€y0/)C0)
tw = ——1In [ — =220
€ 2

as long as €yy/xo > —1. If we assume that xo ~ y¢ and ¢ < 1, we see that

In2
ty o~ —
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so that the growing of y lasts longer when & is smaller. y then reaches the
amplitude

X0

Im = 4e
This amplitude is therefore the larger, the longer is the growth. This expression also
shows that even if initial perturbations are small, they can be strongly amplified if
they are optimally chosen. We shall note however that this condition is not very
severe: in the simple case that we are studying we just need to avoid the case xy <
vo. Figures 6.11 and 6.12 illustrate the growth of the y component in the optimal
case for various values of €.

In general the amplification is measured by the energy gain, that is to say by a
quadratic function of the amplitude. In our case this gain is simply

x(t)* + y(1)?

G(t) =
X3+ 53

6.71)
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Fig. 6.11 Growth of y(¢) for the solution (6.70) for various values of ¢ with 0.1 < ¢ < 0.01
when xo = 1 and yo = 0. In this case if < In2/¢ the function is strictly increasing with time. It
reaches its maximum 1/4¢ att =1n2/¢
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For our optimal perturbations verifying xo >> yo, the gain reaches a maximum
close to

6.6.4 Back to Fluids: Algebraic Instabilities

In view of the foregoing example it is interesting to reconsider system (6.68). We
note that if perturbations are such that k, < 1, k, = O(1) and that v is small, we
qualitatively retrieve the foregoing system. The two diagonal operators are ‘small’
while the coupling term is of order unity. More rigorously, if k,/k, ~ 1/Re «
1 we should expect that perturbations are amplified with a gain O(Re?). This is
precisely what is found when one solves the full problem of disturbances verifying
Orr—Sommerfeld and Squire equations. Table 6.1 illustrates the characteristics of
optimal perturbations for a few classical plane-parallel flows. The analogy with the
simple system is clear if we set ¢ = 1/Re.

The foregoing example shows us the possible existence of perturbations with
shear flows whose growth is algebraic. If Re > 1, the growth is not limited
neither in time neither in amplitude, but like exponentially growing disturbances the
nonlinear terms will stop (or modify) this growth. However, algebraic growth is slow
compared to an exponential growth. Therefore these perturbations are important
when all the eigenmodes are damped. This new type of perturbations redefines the
concept of flow stability. Indeed, as soon as these perturbations are able to reach a
nonlinear regime they modify the basic flow and represent a true instability of it.

6.6.5 Non-Normal Operators

This non-trivial property of disturbances originates from the nature of the operators
that govern their time evolution. Such operators like those of Orr—Sommerfeld—

Table 6.1 The energy gain of a few classical shear flows with the characteristics of the associated
optimal disturbances given by the streamwise k, and spanwise k, wavenumbers (data are from
Schmid and Henningson 2001)

Flow Gain (1073) tmax ki k,
Plane Poiseuille 0.20 Re? 0.076 Re 0 2.04
Plane Couette 1.18 Re? 0.117 Re 36/Re 1.6
Cylindrical Poiseuille 0.07 Re? 0.048 Re 0 1

Blasius 1.51 Re? 0.778 Re 0 0.65
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Fig. 6.12 Time evolution of
the solution (6.70) when

e =0.01, xo =1 and

yo = 0. Note that the scale in
x is strongly dilated
compared to that of y

O|||||||||J|||||||||||||||||||
00 05 1.0 15 20 25 30

Squire (6.68) are said to be non-normal: their eigenfunctions do not make an
orthogonal basis (or not even a basis) of summable functions.

Let us consider again our simplified model and compute the eigenvectors
associated with the two eigenvalues —e¢ and —2¢ of the operator. We easily find
that these two vectors read:

w=(1) ()

We note that X - X, = 1. The two eigenvectors are never orthogonal, whatever the
value of ¢. In addition, when ¢ — 0, the two vectors are no longer independent and
the matrix can no longer be diagonalized.

In fact it is precisely because the two eigenvectors are never orthogonal that short
time growth is possible.

To see this property, we briefly examine the case where the system (6.69) is

replaced by
d(x\_ (- 0 x
di\y) \0 =2)\yp

that is to say when the coupling between components is suppressed. Solutions are
then
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x(t) = xpe™®

6.72
V() = yoe (6.72)

The energy of these solutions is E(1) = x}

derivative is

e 2! 4 y2e™*! and its temporal

E(t) = —2exge " —deyle ™",

which is strictly negative. These solutions are therefore strictly decreasing. Associ-
ated eigenvectors are obviously orthogonal.

This remark shows that the coupling term is absolutely essential for the transient
growth of y(¢) to exist.

6.6.6 Spectra, Pseudo-Spectra and the Resolvent
of an Operator

6.6.6.1 Some Definitions

In order to better understand the nature of non-normal operators, it is necessary to
get acquainted with some properties of differential operators.

A first important characteristic of a differential operator is its spectrum. The
spectrum o (L) of the linear operator L is the set of complex numbers A such that

Ald— L

is not invertible (Id is the identity operator). Its complementary set in C is called the
resolvent set p(L). It is the set of numbers where the operator

Ry=XId—L0)7!,

called the resolvent of L is defined.

The spectrum is divided in three parts: the point spectrum o,(L) or the
eigenvalue spectrum, the continuous spectrum o. (L) and the residual spectrum. The
residual spectrum o, (£) is what remains of the spectrum when the point spectrum
and the continuous spectrum have been removed.

The point spectrum is the usual set of eigenvalues. It is defined as the set of
complex numbers such that

Ald— L
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is not an injection, namely a function in the image set of the operator may have more
than one antecedent by this operator. If we consider the null function, we retrieve
the usual property

L) =Arf

of an eigenfunction associated with an eigenvalue A. The continuous spectrum is the
set of complex numbers where A/d — L is injective but not surjective (the operator
is not invertible when A belongs to the spectrum). The continuous spectrum is not
an eigenvalue spectrum and should not be confused with a continuous spectrum of
eigenvalues like that of the Rayleigh operator (6.20), which is a set of continuous
eigenvalues (i.e. belonging to the point spectrum).

Besides the spectrum, another useful concept is that of the norm of an operator.
It is based on the norm of the functions at hands. In Fluid Mechanics, interesting
functions are square-integrable functions, namely such that

/a ' f(x)?dx

exists. [a, b] is the interval of definition of the function. Such an integral is usually
related to the kinetic energy of the system. We thus introduce the norm

b
1f1 = [ /(0 Pdx

of a function f. The norm of an operator is defined as

el
”‘C”_“}a"( T )

Mathematics show the following property: for complex numbers z not belonging to
the spectrum of £

1

-1
=071 2 Seo@)

(6.73)

Namely, the norm of the resolvent is larger than the inverse of the distance to the
spectrum.

We can now introduce the pseudo-spectrum o, (L) of the operator L, or rather the
e-pseudospectrum, which is the set of complex numbers z such that

lc=L)7' =& (6.74)
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6.6.6.2 Physical Interpretation of the Pseudospectrum

Let us consider an operator whose spectrum is only composed of eigenvalues.
The norm of its resolvent R, goes to infinity when z approaches an eigenvalue.
z enters the e-pseudospectrum when the resolvent norm gets over ¢ !. The &-
pseudospectrum of an operator L is therefore a part of the complex plane limited
by a contour defined by & and which surrounds the eigenvalues (see Fig. 6.13).

Normal operators have a pseudospectrum that is in a neighbourhood of the
eigenvalues while non-normal operators have a pseudospectrum that extends far
away from the eigenvalues.

To give a picture, we may say that non-normal operators have an ill-defined
spectrum in the sense that high values of the resolvent occupy large parts of the
complex plane. On the contrary a normal operator has a pseudo-spectrum that
remains in the neighbourhood of the eigenvalues.

Let us now examine the relation between the non-normality of an operator and
the amplification of some disturbances. In order to do so, we consider the following
problem:

W:L(f) and f=fox) at t=0

Im(z)

Fig. 6.13 Isocontours of the
distance to the eigenvalue
spectrum of the Davies
operator % + (ax® — bx*),
witha = 3 + 3/ and

b =1/16. Thisis a
Schrodinger equation with a
complex potential. As
indicated by (6.73), the
e-pseudospectrum is inside a
contour associated with the
value 1/¢
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We shall use the Laplace transform on time, f, of function f":

- o0
Fop = [ fnera
0
Applying Laplace transform to the equation determining f, we get

/ AN / " L(preran
0 0

ot

so that

f=0p-07"% (6.75)

The solution for f is then derived from the inverse Mellin—Fourier transform,
namely

1 c+ioo »
fmozf—/ Fx. p)ePdp
ZZJT c—ioo

where c is real and larger than the largest real part of the eigenvalues of L.

The foregoing formula shows that the transient response is controlled by the
resolvent of £ applied to the initial conditions fy. If the long time evolution of
f is a damping, that is if the eigenvalues of £ are all in the half-plane Re(z) < 0,
the transient response can nevertheless be large if the operator is non-normal and
the initial conditions chosen properly. Indeed, (6.75) shows that the non-normality
of the operator is not sufficient. Adapted f; are also needed, meaning an optimal
choice.

Before ending this section it is interesting to consider another property of the
pseudo-spectrum in relation with the stability of flows. Indeed, the pseudospectrum
might also be viewed as the union of the spectra of all the operators £ 4+ £ where
€]l < e.In other words, if we consider all the possible perturbations of the operator
L by any operator of norm less than ¢, the union of all the spectra of these operators
defines a part of the complex plane that is identical to the e-pseudospectrum of
L (Trefethen and Embree 2005). It may well be that £ 4+ £ has unstable modes,
namely that perturbing the operator generates exponentially growing modes. This
is to say that non-normal operators are sensitive operators: a small change may
strongly modify their spectrum.

We here touch finite amplitude perturbations: the small change of the operator (of
order ¢ for its norm) may be viewed as a finite-amplitude disturbance that slightly
modifies the background flow. If the operator is normal, nothing happens, but if it is
non-normal the new flow may be prone to some exponentially growing modes.

The concept of pseudo-spectrum has many other implications, especially in the
numerical calculation of the eigenvalues of matrices where it is associated with the
influence of round-off errors (e.g. Valdettaro et al. 2007). We shall stop here the
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discussion of this subject which would turn into pure mathematics and refer the
reader to specialized literature (e.g. Trefethen and Embree 2005).

6.6.7 Examples of Optimal Perturbations in Flows

After this mathematical digression, it is time to reconsider fluid flows. One may
wonder if these perturbations actually exist and if they have been observed. As
may be guessed from Table 6.1, plane-parallel shear flows are the best candidates
for showing such perturbations. The most remarkable example is certainly that of
streaks that appear in a boundary layer flow of Blasius type. Figure 6.14 shows the
formation of these structures. We note that the flow varies rapidly in the spanwise
direction y and slowly in the streamwise direction x. This is just the condition
ky/k, < 1.

We may understand the appearance of streaks if we go back to Orr—Sommerfeld
and Squire (6.66 and 6.67). If we set v = 0 and k, = 0 then we get

Oiuy, = U (Qu, (6.76)
(D* —k3)0u; =0 (6.77)

the solution of which are of the form

O0ru, = Ae kv 4 Befie

Fig. 6.14 Streaks as a
consequence of the lift-up
effect in a Blasius boundary
layer. The flow is from left to
right. Note that the
disturbance generating the
streaks is characterized by a
spatial periodicity in the
spanwise direction and that
the streaks are themselves
unstable at some downstream
position (Photo by Elofsson
and Matsubara, in Elofsson
1998)




6.7 Exercises 237

but boundary conditions at infinity and at z = 0 (namely on the bounding plane)
imply that u, = 0 at these two places so that d,u, = 0, or that u, = Cst = u,(t =
0) = ug. The first equation (6.76) gives us the time evolution of u,:

uy = U'(2)ule™” t (6.78)

Hence a disturbance of the vertical velocity, characterized by the wavenumber &k,
generates a local increase of the velocity of the flow in the streamwise direction.
This effect is now known as the lifi-up effect. We indeed observe that u,, may be
written

uy = U'(z) Aze™”

where Az = ugt is the displacement of matter in the z direction induced by the
initial perturbation uge‘k«"y . U’(z) Az is just the first variation in z of the background
flow:

Uiz+ A2) = U(x) + U' () Az

The initial perturbation has therefore lifted by Az the background flow and yielded
in z + Az the flow field U(z) + u, with u, = U’(z)ul t €7 . This disturbance thus
generates streaks of high and small speed whose wavelength is determined by the
condition of optimal growth. If the initial conditions are that of a flow disturbed by
some white noise, these perturbations emerge in the end.

The lift-up effect has been first described by the work of Ellingsen and Palm
(1975). This is the first mechanism that has been recognized as being associated with
optimal perturbations. However, there exist other mechanisms like Orr mechanism
where a vorticity disturbance controls the dynamics (see Farrell and Ioannou 1993).

6.7 Exercises

1. The interstellar cloud: We consider a sphere of radius R filled with an ideal gas of
constant density and constant temperature. Establish the condition on the radius
which governs the stability of the sphere according to Jeans criterion. Propose
a physical interpretation of this criterion. Make a numerical application for an
interstellar cloud composed of molecular hydrogen, with a mass of 100 Mg and
a temperature of 50 K. What is the stability of this cloud if its diameter is 1 or 10
light-years?

2. Let us consider the flow of an inviscid and incompressible fluid such that

v =s58(s)e,
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a) Recall the condition, on §2(s), of the stability of this flow with respect to
axisymmetric disturbances.
b) We now study the stability of the following flow:

2=0 s=7n
R=A+B/s> n<s<l1 (6.79)
2 = 20/s% s>1

where the constants A and B are such that §2(s) is continuous in the whole
domain occupied by the fluid.

We are interested in the non-axisymmetric two-dimensional disturbances.
The pressure and the velocity perturbations are of the form

f(s)eim<p+)kt

while v, = 0.
Give the linearized equations controlling the evolution of disturbances.
¢) What boundary conditions are met by the disturbances at the interfaces at
s=nands =17
d) Show that the radial velocity u of the perturbations verify the same differential
equation in the three regions and that it can be written

d(su) )
ds( s ) m°u (6.80)

Note that in each domain, B(Ya 2 — 2as where a is either zero or equal to A.

e) Give the expression of u(s) in each subdomain (one should look for solutions
of the type s%).

f) Determine the form of the pressure perturbations in each domain.

g) Show that the eigenmodes verify the following dispersion relation

im$20\* n?m —1 m m?
A = 02 - 6.81
(+52) = oo (8D

h) Show that the modes m = 1 and m = 2 are always stable.
3. Fjgrtoft Theorem. Extract the real part of (6.21) and show, using (6.22), that
equation

Ky PU"(U - A)
A + ikU|?

b
/ [(Ile“rkzlwlz)Jr }dzzo (6.82)

must be verified for any A. Deduce Fjgrtoft theorem.
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Further Reading

There are two well-known monographs on flow stability. The one of Drazin
and Reid (1981), Hydrodynamic stability and the one of Chandrasekhar (1961),
Hydrodynamic and hydromagnetic stability. Drazin and Reid’s one is more modern
and pedagogical in its presentation. It also discusses the question of nonlinear
stability. However, the one of Chandrasekhar is very complete, especially detailed
in the derivation and makes a large use of variational principles. For a very recent
introduction to instabilities, the reader may also consult Hydrodynamic Instabilities
by Charru (2011).

On the applications of dynamical systems to Fluid Mechanics, we suggest Order
within chaos by Bergé et al. (1984), and also Instabilities, Chaos And Turbulence:
An Introduction To Nonlinear Dynamics And Complex Systems, by Manneville
(2004). As far as optimal perturbations are concerned, the reader may deepen the
subject with the monograph of Schmid and Henningson (2001) and the recent review
of Schmid (2007).
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Chapter 7
Thermal Convection

7.1 Introduction

Thermal convection is the transport of internal energy by the motion of a fluid.
Two types of convection are usually distinguished: free or natural convection and
forced convection. Natural convection is a fluid flow whose origin is always a
thermal imbalance: it disappears when the temperature gradients vanish. In forced
convection, on the other hand, the flow persists even if the temperature gradients'
are eliminated. In this chapter we shall concentrate on natural thermal convection,
which we simply call thermal convection. To begin with let us give some examples.

The most familiar example is doubtless that of the motion of water in a
container heated from below. Well before boiling (i.e. before the appearance of
steam bubbles), one may notice upward and downward motions in the liquid. These
motions are easily interpreted in a qualitative manner. The water heated at the
bottom of the container is lighter and rises to the surface, where it cools, falls down,
reheats and ascends again etc. In this cycle, the water carries the heat from the
bottom to the top of the layer. This is the phenomenon of natural thermal convection.
With this example, we understand that convection plays an important role in heat
exchanges realized or experienced by the fluids, in particular because it turns out to
be much more effective than thermal conduction.

Convection occurs at various scales, but it is mostly at the largest scales that it
easily arises. We shall see that, in many cases, an imposed temperature gradient
triggers fluid motion if the size of the fluid domain is large enough. In other words,
fluid motion is more efficient to transport heat on the large scale than on the small
scales where conduction dominates. This is why insulating materials that use air
as the insulating component (because of its small conductivity), are made of fibers

IPresent wording tends to replace the terminology “forced convection” by advection. In this case,
temperature is more like a passive scalar and does not, or little, influence the fluid flow.
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(like glass wool for instance). Fibres reduce the scale of fluid flows and hamper heat
transport.

On much larger scales, like in the Earth atmosphere, thermal convection is very
common: clouds (like cumulus) keep their droplets of water because of rising flows
of thermal convection. Thermals, so praised by sail plane flight amateurs are also
an example of fluid flows generated by temperature gradients. At still larger scales,
thermal convection is the main heat carrier in the core of massive stars or in the
envelope of solar type stars. In giant planets, like Jupiter, the radial heat flow is
mainly insured by convectively driven fluid flows.

In the following we first retrieve basic properties of hydrostatic equilibrium of a
fluid submitted to vertical temperature gradient. Then, we introduce the Boussinesq
and anelastic approximations that much simplify the analysis. We complete the
case of equilibria by examining the so-called baroclinic situation which renders
equilibrium impossible. We proceed with the heart of thermal convection, namely
the Rayleigh—Bénard instability and its nonlinear development. As an illustration of
large-scale instabilities, we present the case of fixed-flux convection (a section that
may be skipped at first reading). Finally, the route to turbulent convection is briefly
discussed.

7.2 The Conductive Equilibrium

7.2.1 Egquilibrium of an Ideal Gas Between Two Horizontal
Plates

In Chap. 2 we saw that a fluid in hydrostatic and thermal equilibrium verifies:

—VP +pg=0
V-(xVT)+ Q=0 (7.1)
P=PpT) and x=xpT)

In order to simplify the derivation as much as possible, we shall consider an ideal
gas with no heat source (Q=0), and for which we can neglect the variations of
thermal conductivity. Furthermore, we suppose that the fluid is contained between
two horizontal plates at a distance d apart. The upper plate has a temperature 7, and
the lower one 7; (see Fig.7.1).

The temperature field verifies:

AT =0
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Fig. 7.1 A schematic view of z

the system - Cold plate

at temperature T3,

/_ Hot plate
at temperature 7

Assuming that the equilibrium configuration is independent of the horizontal
coordinates x and y, we have

d’T
-0 — T=az+b
dz?

The boundary conditions 7 (0) = 7; and 7'(d) = T, determine the two constants a
and b whence
Toy(x) =T + (T, — T))z/d (1.2)
which can also be written:
Toy(z) = T)(1 — z/20) where 20=d/0-T,/T) (7.3)

2o is the temperature scale height. The hydrostatic (7.1) and the ideal gas equation
of state P = R.pT lead to the expressions of P and p, namely

Pey(z) = P (1 —z/20)" (7.4)
Peg(z) = pr(1 —z/20)""" (7.5)

where the exponent m is given by:

gd

m= —————

7.2.2 The Adiabatic Gradient

The solution (7.2) shows that in adjusting the temperature of the plates, we can
choose the temperature gradient in the fluid. Among all the possible gradients, there
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is one which plays a special role: namely that for which the fluid is isentropic. It
may be derived from the thermodynamic relation:

dh = Tds + dP/p

where s and & are respectively the specific entropy and specific enthalpy. If the gas
is isentropic, then ds = 0 and dh = dP/p so that Vh = p~!V P = g. For the ideal
gas, h = ¢, T and thus

L = (VD) (7.6)
)4

VT =
¢

which is called the adiabatic gradient. Its name is due to the fact that a fluid particle
moved adiabatically of Az experiences a temperature change of

T
(—) Az
dZ ad

We shall see below that the adiabatic gradient is tightly related to the threshold of
the Rayleigh—Bénard instability.

7.2.3 The Potential Temperature

In atmospheric sciences the concept of potential temperature is often used. This
temperature is defined as follows

PO R« /cp
Tyt =T (?) (1.7)

We note that if the gas is isentropic, this new temperature is constant. In fact, for an
ideal gas (see Sect. 1.7.1), we have

T\ { Po\*/er
s=cpln 70 ? + 5o

Tpor = Toe(s_so)/"p (7.8)

whence

The potential temperature thus only depends on the entropy of the fluid. This shows
that for a perfect fluid
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Ds DT,y

Dt Dt

so that the potential temperature is conserved for each fluid particle when diffusion
phenomena are neglected. A little manipulation of the foregoing expressions shows
that

Ty,
;' (VT —VT.) (1.9)

V Tp()f ==

The potential temperature gradient measures the gap between the actual temperature
gradient and the adiabatic gradient.

7.3 Two Approximations

The dynamics of a fluid whose motion is controlled by the temperature field is
governed by three partial differential equations. Its analysis is therefore much
more involved than the “simple” flow of an incompressible fluid. However, all
the additional physics connected to the temperature field does not have the same
importance in the dynamics of the system. Very often, notably when one deals
with liquids, equations can be much simplified. These simplifications come out
of approximations derived from asymptotic expansions. The most popular one
is the Boussinesq approximation, which was introduced qualitatively by Joseph
Boussinesq at the beginning of the twentieth century in a treatise, Théorie analytique
de la chaleur, (1903). Another one, called the anelastic approximation, is slightly
less restrictive and very useful in Astrophysics and Geophysics. Since we shall try
to keep our analysis as simple as possible, these approximations will be extremely
useful to us. We thus present them both.

7.3.1 The Boussinesq Approximation: A Qualitative
Presentation

When studying thermal convection in liquids, one is tempted to neglect the
variations of density. Liquids are indeed weakly compressible. However, such a
simplification cannot be done blindly because density variations are important in
the buoyancy force, which may drive the flow. Hence, J. Boussinesq suggested
to neglect all the density variations except in the buoyancy term. Thus, according
to this simplification, the perturbations of a hydrostatic and thermal equilibrium
described by (7.1) should be controlled by



246 7 Thermal Convection

Dv
— =—VéP + 6§ A
th +0pg + nAv
DT
T—FV'VT(;([:KAST
(7.10)
V.v=0
1)
—pz—aé’T
0

Using the thickness of the layer d as the length scale and the associated diffusion
time for the time scale, i.e. d2/«, these equations are often written in the following
dimensionless form

Vu=0

Du

oy —Vp + PRafe, + P Au (7.11)
DO

2 = A

Dt

where 0 and p are the dimensionless disturbances of temperature and pressure. P is
the Prandtl number (see 1.36) and we introduced the Rayleigh number, defined by

a|Tu - Tllgd3
KV

Ra =

where o is the coefficient of thermal expansion. In fact, the Rayleigh number
measures the temperature gradient imposed by the boundary conditions.

As proposed by Boussinesq, the density fluctuations appear only in the buoyancy
term. Moreover, they only depend on the temperature fluctuations (not on the
pressure ones). We also note that the diffusion coefficients are assumed to be
constant.

If these simplifications seem to be reasonable for a liquid, we may wonder to
what extent they can be applied to a gas. To answer this question, we need a more
rigorous derivation of (7.10) starting from the complete equations.
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7.3.2 The Asymptotic Expansions

Let us return to the equations of motion (1.13), (1.32) and (1.37), assuming that the
transport coefficients, viscosity and conductivity are constant.”
We thus assume that the fluid is governed by the following equations:

%—%—V-pv:o
P2 = —VP +pg+ pu[Av+ iV(V-V)]

(7.12)
p2 = YAT —PV-v+D

pT 8 = pBe + PV.-v

where D is the viscous dissipation. We shall also write this quantity 5(V : v)? to
emphasize its quadratic nature and its dependence on velocity gradients. (7.12) is
also completed by the equations of state of an ideal gas:

P = RupT

7.1
e=qo¢T (7.13)

First of all, we rewrite the equations (7.12) by subtracting the equilibrium solution
(7.3), (7.4), (7.5) and by introducing the fluctuations of p, P, T associated with the
fluid motion. The new equations are:

G4V [(peg +8p)¥] = 0
(Peg + 8p)2Y = —VSP + Spg + [Av + 1V(V - v)]
(eq + 8p)cy (BSE + v - VT,,) = YAST — (Pey + 8P)V -V + L(V : v)?

pT2 = pc, 2L 4+ PV.-v

P = Ru(TegSp + pegST + 8p8T)
(7.14)

As usual, we move to dimensionless variables. We thus introduce the following
scales:

2Taking into account their variations with thermodynamic variables would not change the results
or the method, but would make the whole derivation more obscure. For this very reason, we shall
also neglect the second viscosity (.
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Lengthscale .. ...c..ouini i e e e e d
VeloCity SCale. . .ttt |4
TIME SCAle. . ..\ttt e d/v
Temperature SCale . . ... ...ttt e T«
Density scale. ... ..o e D
Entropy scale. . ... Cp
We write

Poy = RupsTu Py,  peg = pxpo, Teq = Tubo
v="Vu, 6P =p.V?p, 8T =Tibi, 8p = pspi
M= pxpV, X = pxCppK, P = po+ P1
and then obtain
L4V - [(po + p1)u] = 0

o= —1Vp — 2 e + 3 (Au+ {VV -u)
DO fu- VO = yig A0 — CDEMINY Ly gy ME (G )’ (7.15)

po gt = 288 + UZD(Py+ yM?p))V -u

YM?pi = pobi + Oop1 + p161
where

& & &
- =5 and M"?* =
Cx YR Ty cpTx

M?* = =@y -1)M?

In these expressions, cx is the speed of sound at temperature 7% and M is therefore
a Mach number. From these equations, we note that in order to recover (7.10), we
need:

We now deduce under which conditions the equations of fluid motion at the
Boussinesq approximation can be derived.
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Condition @ will be satisfied if the equilibrium configuration is such that the
variations in temperature are equally small. Equation (7.2) leads to

|Tu_Tl|
e —

B0 =60 | 1
0 oo( T

) . with Oy = T;/ T«

We therefore require that

|TM_TI|
&= —-

<1
T;

Choosing px = p;, we find from (7.5) that
po=1+0()
Condition @ requires the choice of the temperature scale T to be such that the

temperature fluctuations §7 are of order unity and therefore of the order of the
imposed temperature difference |7, — 7;|. We therefore choose

Tx = |T,— Tl
which immediately implies that
oo = O(1/¢)
but that
Vo, = 0(1)

In order that the fluctuations of density be controlled solely by temperature, (7.15-d)
requires that

p10o = O(pot) =  p1 = 0O(e)
and that
M? <1

In this way we recover conditions @ and ® and we see that a second infinitesimal
parameter, M 2, appears. In this case

0
pr=—2-+O()
Boo
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and the fluid velocity must be small compared to that of sound. We note that 1/69 =
O(e) is the coefficient of isobaric expansion of the fluid.?
Let us now rewrite (7.15) at leading order for each equation:

V-u=0

Du — —1Vpi — %%ez + 2 (Au+ 3VV )

DA 4 u- Vo =y A6, (7.16)
OB =SB

0 = pob1 + Bopr

We note that the velocity scale is still arbitrary. If we choose, asin (7.11), V = «/d,
the buoyancy term is O(sgd®) = O(RaPr).

Finally, we observe that we did not pay attention to the diffusion terms ; Au
and - Af. These terms are in fact retained in Boussinesq’s approximation and their

presence or absence can only result from new approximations. We can now rewrite
(7.16) as

V.u=0
% = —Vp, + PRabe;, + PAu

(7.17)
D,#HT‘ —u, = yA6,

01 + Ooop1 =0

which is identical to (7.11) if we recall that for liquids y ~ 1.

The foregoing analysis shows that thermal convection of an ideal gas will be like
that of a liquid if (i) the velocities stay small compared to that of sound and (ii) if
the scale height of the equilibrium configuration is large compared to the vertical
size of the volume occupied by the fluid.

Mathematically, the equations of motion at the Boussinesq approximation come
from a series expansion using two small quantities: the square of the Mach number
and the relative density variation across the layer, i.e. «|T, — T;|.

3We can make the connection with the coefficient « introduced for the liquids: we have §p/p =
—adT, let py/pg = —aT«0; = —6, /6y, therefore « = 1/600oT« = 1/T;.



7.3 Two Approximations 251

7.3.3 Anelastic Approximation *®

When one deals with thermal convection in stars or in the atmosphere of a planet,
the Boussinesq approximation is too restrictive because its second hypothesis
is usually not verified. The scale height is not large compared to the vertical
dimension of the system. However, the conditions of subsonic flows are still
realized. The approximation, which consists in allowing only the condition of very
subsonic motions, is called the anelastic approximation. In this approximation, as
in Boussinesq’s one, the sound waves are filtered out. The term anelastic means that
the “elasticity” of the fluid, which allows the propagation of sound waves, has been
neglected.

Working out the equations of fluid motion within this approximation is basically
simpler than the foregoing one; we just need to expand the solutions into powers of
the Mach number. Assuming V' = M c,, we observe from (7.15) that the buoyancy
term reads

_ﬂﬁ = L =0O(M™?)
o M2c2 7z .M?
where we noticed that the thickness and the scale height z of the layer are of the
same order of magnitude. Since the buoyancy term should be of order unity, it turns
out that

S=om), p=0m
The equation of state results in
6 = O(M?)
At zeroth order, the heat equation leads to
pou-Vly=—(y —1)PyV -u (7.18)
while the equations of continuity and momentum, at the same order, yield

V- [pou] =0 (7.19)

Du 1V _pigd v

1
— = —= Au+ -V(V-u
Dt 00 b poc2” Mc*d|: +3 ( )i|
where we set p; = M?p}.
This system needs to be completed by the O(M?) term, either of the energy
equation

DO; _ kpo (y —Dpo v
Dt 'V

Y
AB) — -y V- —(V:u)?.
1 —vy—1)piV-u+ > Vd( u)

Po
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or, of the entropy equation

Ds;|

(y —Dv
0 Dt

2vd

0 (V:u)?

K
= — A0 +
va~ !
The equation of state is also necessary:

yp1 = pob] + Oop}

where we set ] = 6;/M? and 5| = 51/M?>. Combining (7.18) and (7.19) leads to
an interesting result, namely

u-Vso=0 — 0,50 =0 (7.20)

It means that the equilibrium solution must be quasi-isentropic, or that the temper-
ature gradient of the equilibrium must be close to the adiabatic gradient. This result
may be understood if we realize that our hypothesis (low Mach number) means
that the velocity stays small with regard to that of sound, which means that the
forcing of the flow is weak. Thus, when convection arises, the temperature gradient
is close to the adiabatic one, according to Schwarzschild’s criterion (see below
in Sect. 7.5.1). The consequence of this result is that we must take the isentropic
solution as the reference solution. This solution is always stable as we shall see
in Sect. 7.5.1. When convection appears, the temperature gradient is superadiabatic
and is imposed by the boundary conditions. In order to be able to make use of
the anelastic approximation, we should include within the disturbances (p1, 0;), the
difference between the (unstable) equilibrium solution and the isentropic solution
(which is certainly a solution to static equations).

Finally, setting Re = Vd/v, the equations of the flow at the anelastic approxima-
tion are:

V- (pou) =0

(7.21)
Ds’ 1 y—1

Gol = — A0 + L2 (V )

" Dr TPt e VW

Yp1 = pob] + Oop|

where we introduced the Péclet number Pe, which is nothing but the Reynolds
number where the kinematic viscosity is replaced by thermal diffusivity. This
number is

vd
Pe = — ="PRe
K
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(7.21) also show that the pressure fluctuation plays a part in the dynamics, as it
influences the buoyancy.

The preceding result has another consequence. If a flow strongly disturbs a
static solution which is far from the isentropic solution, then the fluid velocity
is necessarily comparable to that of the sound. Indeed, when the mixing due to
convection is important, the entropy distribution tends to be homogeneous. Hence,
if the initial state is far form an isentropic state, variations of the thermodynamic
variables may be of the order of the initial values, namely 8p ~ peq, 6T ~ T
and 8P ~ P,,. Since pressure variations induced by the flow are ~ pv?, it turns
out that v> ~ P./p ~ Ry«T,, ~ cZ. Hence, the fluids velocity is not small
compared to that of the sound. This argument underlines the restriction of the
anelastic approximation, namely that the variations of the thermodynamic variables
must remain small compared to the values of the static solution. The use of the
anelastic approximation is therefore not always possible: for instance in the surface
layers of the Sun, the mean pressure and density drop to very small values leading
to small values of the sound speed. In this case convective velocities get close to
sonic values and reshape the mean density and pressure profiles.

In the case where the nonlinear effects are negligible, the anelastic approximation
eliminates the sound waves thus assuming that the density fluctuations are not
modified by the pressure ones.

7.4 Baroclinicity or the Impossibility of Static Equilibrium

We noted in Chap. 2 that the equilibrium of a fluid in a gravitational field can only be
achieved if P = P(p), namely when the fluid is barotropic. Usually, P = P(p, T)
but in some situations 7 = T'(p) and thus P = P(p). The example of an ideal
gas between two horizontal plates is typical of a non-barotropic fluid that is in a
barotropic configuration. Using (7.4) and (7.5), we see that

Pap% and Tocpﬁ.

Equilibrium is therefore possible.

If this condition is not satisfied, a torque density appears and produces vorticity:
the fluid cannot stay at rest. In order to illustrate this type of situation, called
baroclinic, we now study an example where the static equilibrium does not exist
if the temperature gradient is non-zero.

7.4.1 Thermal Convection Between Two Vertical Plates

Let us consider a system where the fluid is contained between two vertical plates
with different temperatures. This situation, where the temperature gradient is
perpendicular to the gravity, occurs in a double-paned window: the interior pane is



254 7 Thermal Convection

warm and the exterior pane is cold (or vice-versa). We show below that the captive
air between the two panes develops a flow that attempts to re-establish thermal
equilibrium between the two panes by transferring the heat from the warm one to
the cold one.

In order to ease the analysis of this system, we consider a set-up where the
Boussinesq approximation can be applied. Furthermore, we assume the bounding
panes to be infinite in size and of uniform temperature, 7, and 7, respectively.
These temperatures are taken only slightly different so that the flow is of small
amplitude and may be described by linear equations. This will allow us to write the
solution of the problem as a disturbance of the equilibrium state that exists when
T. = T,,. We further simplify by considering only the steady state.

Considering (7.10), eliminating the time derivatives and the nonlinear terms, we
find

—V3P + 8pg + nAv =20

V- VT, = kAT

(7.22)
V.v=0
)
L
p
In our case VT,, = 0 since the temperature is constant at equilibrium. The

temperature field §7 is therefore a solution of Laplace’s equation. Let x be the
coordinate perpendicular to the plates, we then have §7 = §T (x) and the solution
of Laplace’s equation immediately yields:

ST (x) = —(T,, — T.)x/d

We have placed the warm plate at x = —d /2 and the cold one at x = d /2. The
expression of the temperature gives the expression of the density perturbation:

a(Tw - Tc)pO
= X

3p 7

The velocity field therefore satisfies:

(Tw - Tc)pOg
——Xe€

/LAV—V(SPZO[ 7 . and V.v=0

which is just Stokes’ equation with a forcing term. We look for a solution which
depends only on x; in this case V - v = 0 implies that vy, = 0. As a consequence
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06P/0x = 0 and 06P/0z = G,, G, being a constant. The z-component of the
momentum equation gives v,:

G
v.(x) = AX + Z—sz +Bx+C (7.23)

where B and C are two constants of integrationand 4 = W. The boundary

conditions v,(#d /2) = 0 imply that B = —Ad?/4 but no constraint is imposed on
the constants C and G,. We can lift this degeneracy by imposing that the mass flux
across a plane z =Cst be zero. This condition is, in fact, realized when the domain
occupied by the fluid is finite; it expresses as

2
/ v.(x)dx =0

—d)2

which implies that G, = C = 0. Finally, the velocity field has the following form:

O5(Tw - Tc)/oOg

2 452 7.24
2ad x(d x7) (7.24)

v (x) = —
The form of this solution is simply that of a parallel shear flow which does not
transfer heat since v - VST = 0 (see Fig.7.2). In a realistic case, the streamlines
are closed curves and a heat transfer exists. However, if the temperature difference
is large enough the preceding flow is unstable and produces turbulence. In this case
the convective heat transfer is quite significant. We see that the design of double-
paned windows should achieve a compromise between a great thickness, d, which
reduces the losses by conduction (by lowering the temperature gradient) and a
small thickness, which inhibits the development of instabilities and losses by fluid
motions.

Warm Cold

Fig. 7.2 The flow generated
by a horizontal temperature
gradient within the air of a
double-paned window
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7.5 Rayleigh-Bénard Instability

As we pointed it out while introducing the chapter, thermal convection is essentially
the result of an instability that develops thanks to an unstable temperature gradient.
Since this is an important source of fluid motion in Nature, we shall analyse it
in some details. However, before tackling the associated mathematics, we first
study a qualitative approach which leads to the Schwarzschild criterion, famous
in Astrophysics for locating the convection zones of stars.

7.5.1 Qualitative Analysis of Stability: Schwarzschild’s
Criterion

Like in Sect. 7.2.1, we shall first consider an ideal gas at rest between two horizontal
plates in a uniform gravity field. We further assume that

(T.—T))/d > —g/cp (7.25)

namely, that the temperature gradient is sub-adiabatic. This means that the temper-
ature decreases more slowly with altitude than in the case the gas were isentropic.

Let us now consider a fluid element located at an altitude z, and that we artificially
displace, by Az, as it could result from a spontaneous fluctuation of the system.
Assuming that the displacement is sufficiently fast so that no heat exchange with
the surrounding medium takes place, the element undergoes an adiabatic expansion;
its temperature changes to

Tu(zi + Az) = Ta(z) + Az (_CE)
P
while that of the surrounding medium is
Tu - T
TenV(Zi + AZ) = Tenv(Zi) + Az (Tl)

Noting that 7¢(z;) = Tenv(z;) and using (7.25), we find that
Az>0 = Tu(zi + A7) < Teny(zi + Az)
Az<0 = Tu(z + Az) > Teny(zi + A2)
In other words, if a fluid element is artificially raised (alternatively, moved down),

it will be colder (alternatively, warmer), than its environment. During this motion
the fluid particle is always in pressure balance with its environment. Thus a colder
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element is denser than the environment while a warmer one is less dense. The
foregoing inequalities show that the buoyancy force pulls the fluid element back
to its original equilibrium position. The fluid’s equilibrium is stable.

Let us now consider the opposite case where

(T, —T)/d < —g/c, (7.26)

The temperature gradient is now termed as super-adiabatic. The temperature
decreases faster with altitude than if controlled by the adiabatic gradient. The
difference in temperature between the fluid element and the surrounding medium
is now reversed with respect to the preceding case:

AZ > 0 - Tel(Zi + AZ) > Tenv(zi + AZ)

AZ < 0 - Tel(Zi + AZ) < Tenv(zi + AZ)
This time an element which is displaced upwards will be warmer than the ambient
medium and the buoyancy force will enhance this motion. Similarly, a displacement

downwards is also amplified by the buoyancy force. Disturbances are thus amplified
and the equilibrium of the fluid is now unstable (see Fig.7.3).

vT
VT vT VTaa

T T

Fig. 7.3 An illustration of Schwarzschild’s criterion: (a) the sub-adiabatic case: a fluid element
moved from A to B (upwards) becomes colder than the surrounding fluid which is at temperature
B’ (according to the orientation of the temperature axis, B is below B’). It is brought back to
its initial position by the buoyancy force. Similarly, a fluid element moved from C to D (thus
downward) is hotter than the surrounding fluid and is pushed upwards by the buoyancy force. Thus,
this temperature profile is stable. (b) The super-adiabatic case: a fluid element moved (downwards)
from A to B becomes colder than its environment whose temperature is that of B’. The buoyancy
now helps this motion and the fluid element continues downwards. Similarly, an initial rise from
C to D let the fluid element warmer than its environment and the buoyancy force also helps this
motion. The fluid equilibrium is now unstable
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The foregoing analysis shows the crucial role played by the adiabatic gradient.
When the temperature gradient is equal to the adiabatic gradient the equilibrium is
neutral: disturbances are neither damped nor amplified. The criterion

9.T — (0.T)ag >0 <  stability (7.27)

is called Schwarzschild’s criterion. Note that if we use the potential temperature
(7.7), Schwarzschild’s criterion reads

0:Tpot = 0 <~ stability (7.28)
or, since potential temperature only depends on entropy,
d;s >0 — stability (7.29)

Schwarzschild’s criterion determines the stability of the equilibrium of a perfect
fluid. Indeed, in the preceding discussion, we neglected thermal conductivity and
viscosity. The thermal conductivity, by reducing the differences in temperature,
and the viscosity, by inhibiting the displacement, both contribute to the damping
of perturbations. However, taking into account, quantitatively, these effects is not a
simple game: a conventional stability analysis, as those of Chap. 6, is needed and
this is our next step in the study of convection.

7.5.2 Evolution of Disturbances

Our first effort will be to derive the equations governing the evolution of perturba-
tions under the influence of diffusion but in a simplified set-up where the Boussinesq
approximation is valid with the further assumption (to be removed later) of a two-
dimensional velocity field. We thus return to (7.11) and consider a 2D velocity
like:

“x(xa Zyt)
u|0
u(x,z,1)

This allows us to introduce the stream function v such that

w _ v

_ - 7
a2 T o (7.30)

Uy =



7.5 Rayleigh-Bénard Instability 259
observing that
u=Vx(ye,) =Vy xe,, Vxu=—-Avye,

and taking the curl of the momentum equation, we obtain the system

IAY 30

— PRa— — PAAY = J[AY, ]
Jat dx
(7.31)
0 oy _
E_ﬁ_w =J[0.y]

where we note that the nonlinear terms appear in the form of a Jacobian, namely

of dg 0dg df
Jlfigl= L2 280
[/:¢] ox 0z 0x 0z

At first, we consider disturbances of infinitesimal amplitude; their evolution is
governed by linear equations

94y — PRa% —PAAY =0
0t ox
(7.32)
a0 Iy
T AH =
Jdt  Ox =0

To solve such a system we develop the solutions in Fourier modes as follows:
w — wk (Z)eikx-l-)d , 0 = ek (Z)eikx+kt (733)

If we observe that

then (7.32) becomes

(D? — k2)(P(D? — k) — M)y + ikPRaby = 0
(7.34)
(D2 — k%= 2)6 + ik =0
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7.5.3 Expression of the Solutions

The vertical profile of the perturbation, ¥ (z) and 6 (z), is therefore given by the
solutions of the sixth order linear differential system (7.34). These solutions are in
the form:

¥ : D
(2)-5 ()

where {&, },=16 are the roots of the polynomial
(@ = k> =) ((@* = k)P =2 (@®> —k*) + k*PRa=0 (7.36)

The solutions of this third degree equation in o> give the expressions of the roots as
a function of A. We then require that the solution satisfy the boundary conditions.
Coefficients A4,, being non-zero, the determinant of the 6 x 6 system thus formed
must be zero. This yields the dispersion equation A(k) of the modes of the system.
By examining the dependency of A as a function of k and Ra, we can find the
condition of existence of unstable modes for which Re(A) > 0. This method is the
general one. It is quite arduous as we easily imagine.

We shall avoid momentarily these difficulties by considering a case where we can
shortcut this general way. This is possible when the fluid meets stress-free boundary
conditions on both bounding plates. This configuration is certainly not the most
realistic but it is very educational.*

We recall that for such conditions, the two surfaces are fixed planes and
disturbances satisfy:

v, =0
at z=0,z=d (7.37)
Oy, =0y, =0
for the velocity. We further assume that the bounding plates are perfect conduc-
tors so that their temperature is fixed and no perturbation is allowed there (see
Sect. 1.8.2). Thus
=0 at z=0,z=d (7.38)

for the temperature.

4We could, however, approach such a set-up by confining, for example, an oil layer between a layer
of mercury in z < 0, and a layer of liquid sodium in z > d!
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Noting that o,, = 0 at a fixed z implies that d,0,, = 0 on the same plane, using
mass conservation V - v = 0, we find that aivz - agvz = 0 at the bounding plate.
Since v, = 0 there, the stress-free boundary conditions imply that

32y,
9% _0 at z=0,z=d (7.39)
02

We can now derive the boundary conditions satisfied by ¥, on the planes z = 0,
z = d. According to (7.30) we find

Ve =Dy =0 at z=0,z=4d (7.40)

By using the differential equations (7.34), we find that all the even derivatives of
are zero on the 7 = 0,z = d planes and that the same is true for 6;:

Dy = D™ =0 at z=0,z=d (7.41)

for all m € IN. Recalling that ¥, and 6 are linear combinations of exponentials, we
note that (7.41) imposes a severe constraint on the solution. Actually, the functions

sin(nrz), nelN

are the only linear combination of exponentials that verify these conditions.
Therefore we have no choice, v, and 6, must be written like

V(@) =Y Awsin(nrz)  and  6;(zx) = Y Busin(nnz)

where n is a (positive) non vanishing integer.

7.5.4 Criterion of Stability

The foregoing results give the value of o without solving (7.36). Actually, setting the
value @ = nx in (7.36) yields an equation for A, the frequency of the eigenmodes.
Setting

62 — 7t2 l’l2 4 k2

(7.36) is changed into

kR
A2+€2(73+1)A_73( £23_£4) =0
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whose solutions are

P+ 1) 4P k?Ra
Ai_T(—li\/l+e4(P+l)2( 5 —e)) (7.42)

We observe that the eigenmode associated with A_ is always damped since
Re(A-) < 0. On the other hand, the other mode can be amplified. If

k*Ra

7 —0*>0

then, Re(A+) > 0. This inequality shows the existence of a critical Rayleigh number
Ra, which is such that if Ra > Ra, some perturbations grow. This critical Rayleigh
number depends on the wavenumber of the perturbation and we easily get from the
previous inequality that

6

Ra. (k,n) = %

In Fig. 7.4, we plot Ra, (k, n) for the first values of n, thus showing a few critical
curves. Among them, the n = 1 is the most important, since its minimum gives
the true critical Rayleigh number below which every disturbance is damped out. We
shall evaluate this minimum from the function

(2 + k2)?

Rac(k.n = 1) = 7

A simple calculation shows that its minimum value occurs at the wavenumber

(7.43)

108

10

103

102 . !
0.1 1.0 10.0 100.0
k

Fig. 7.4 Critical curves of the most unstable modes
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which is the critical wavenumber. The value of the Rayleigh number is:

2774
Ra, = f ~ 657.51

Thus if Ra < Ra, all modes are damped and the fluid layer is in stable equilibrium,
while if Ra > Ra,, there is at least one growing mode starting thermal convection.

7.5.5 The Other Boundary Conditions *®

What happens if we apply more realistic boundary conditions to the velocity field?
For example those existing in a laboratory experiment where the fluid is confined
between two solid plates on which the velocity vanishes? In this case (7.37) is
replaced by

ve=v,=v,=0 at z=0,z=d (7.44)
These conditions lead, like the preceding ones, to two conditions on v;:
v,=0,y,=0 at z=0,z=d (7.45)

We have seen before that v, is a linear combination of exponentials; in the present
case, there is no simple linear combination that satisfies these boundary conditions.
We must, therefore return to (7.36) and its general solution. Equation (7.36) is a
third degree polynomial equation in &, which solutions have no simple expressions
in general. However, we just wish to determine the effects of the new boundary
conditions on the critical Rayleigh number. For this, we set Ra = Ra, and A = 0.
It may be shown indeed that A vanishes at the stability threshold. This property,
which we demonstrate in the box below, is known as the principle of the exchange
of stability (Chandrasekhar 1961). The three roots in o? of (7.36) are then easily
found.

af ==k (R—1), o33 =k (1+ Re*™?) (7.46)

where we have set R = Ra'/3k~%/3, Let us assume that R is greater than unity and
therefore that all o are complex. Noting that o, is the complex conjugate of o3, we
write

ap = +ia, oy =Z4o, et a3 =tao* (7.47)

The general solution of the problem is thus

()-(0) (5w
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that we can also write as

(g) = Ajcosaz + A sinaz + Aschaz + Al che™z + Ay shaz + Af sha™z

(7.48)

In this expression we grouped the complex conjugate terms since the solution is
real.

We now require that this solution satisfy the boundary conditions on the planes
z = 0 and z = 1. It is advantageous to shift the boundaries to z = £1/2 so
that we can benefit from the symmetries of the functions of expression (7.48). The
cosine part of the solutions is symmetric with respect to z = 0 while the sine part
is antisymmetric. If we write the boundary conditions in z = +1/2, by adding and
subtracting the equations, the symmetrical and antisymmetrical parts separate. For
the symmetrical part, let us write

§)= (g )emaet (g, ) bz () enee
= cosaz + chaz + cha™z.
(9 D1 @ p2 % D3 s

The boundary conditions then lead to the following equations:

picosa/2 + pycha/2 + pscha*/2 =0
pigicosa/2 + pagacha/2 + psgzcha*/2 =0 (7.49)
—piasina/2 + prasho/2 4+ psa*sha*/2 =0

This system has a non-trivial solution if and only if its determinant is zero, namely

1 1 1

q1 q> q3 =0
—atana/2 otha/2 a*tha™*/2

after some simple rearrangements. We get the expression of the g; with (7.34),
namely

_ ik _ i
7= o} +k2 kR
ik i —in/3
= —-— —_e
P k2 — o3 kR
i -
93 ! _ _l_ezn/3

T k- (@)? kR
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which allows us to simplify the determinant as

1 1 1
1 (iv3-1)/2—-(iv/3+1)/2|=0 (7.50)
—atana/2  otho/2 a*tha*/2

Note that a and « are two functions of Ra, and k. By using the preceding equation
we can determine for each value of k the corresponding value of Ra,. We can then
draw the critical curve Ra. (k) whose form is similar to that of Fig.7.4. Of course
the solution of (7.50) can only be found numerically.

The critical curve Ra, (k) goes through a minimum when

k =k, =3.11632355 and Ra, = 1707.76178 (7.51)

We note that the critical Rayleigh number is higher than in the preceding case: this
agrees with intuition since the friction on the walls demands a greater forcing in
order to start the flow. We also observe that the streamlines are quasi-circular since
A2 =m/k. &~ 1 (see Sect.7.6).

In the foregoing calculation we focused on the modes which are symmetric
with respect to the mid-layer plane. To be complete we should now examine the
antisymmetric modes. The equation giving the critical Rayleigh number of these
modes as a function of k is of the same form as (7.50) where it suffices to replace the
tangents with cotangents. Its solution shows that the curves Ra. (k) have an absolute
minimum at k, = 5.365 where Ra, = 17610.39. Clearly, antisymmetric modes
are more difficult to destabilize and the true critical Rayleigh number is therefore
Ra, = 1707.76178.

The calculation of antisymmetric modes is, however, not denied of interest
because it allows us to obtain the critical Rayleigh number when one of the
boundaries is no-slip and the other is stress-free. Indeed, we showed that on a
bounding plane with stress-free conditions all the even derivative of i are zero.
This is precisely the property of an antisymmetric solution at mid-layer, at z = 0.
Thus the antisymmetric mode between z = —1/2 and z = 0 is the same as the
solution meeting a no-slip boundary at the bottom and a stress-free one at the top.
Conversely, if we know the solution meeting no-slip boundary conditions on the
bottom and stress-free one on the top, we may obtain the antisymmetric solution
by antisymmetrizing it. Thus the critical Rayleigh number associated with mixed-
type boundary conditions will lead to the one associated with no-slip boundary
conditions and anti-symmetric modes if we double the thickness of the layer and
the temperature difference (so as to preserve the temperature gradient). Therefore

a(2AT)g(2d)* 16aAng3
KV o KV

Ra.(antisym.) = 17610 =

16Ra, (no — slip/stress — free)
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which gives Ra, (no-slip/stress-free) = 1100.65, an intermediate value between the
two preceding cases. The critical wavenumber is half of the antisymmetric modes.
Indeed, the dimensional wavenumber is the same as the one of antisymmetric modes
but the nondimensional one is scaled with a thickness which is half-size. Thus,

k(antisym.)/d _ k.(antisym.)
1/d/2) 2

which is also intermediate between the no-slip and stress-free values.

k. (no — slip/stress — free) = = 2.68

The principle of the exchange of stabilities »

The idea of an exchange of stability at a critical value of a parameter, like the Rayleigh
number, is due to Poincaré. It has been popularized by Chandrasekhar in his monograph on
hydrodynamic stability. The principle is of course a theorem. It says that at the threshold of
stability perturbations are stationary, i.e. non-oscillatory so that A(Ra.) = 0.
To show this result, we start from (7.34) and set y = (D? — k2)v. It turns out that:
(D?—k*)x + ikRab = &y
(7.52)
(D?— k20 +iky =20
We complete this system by the following boundary conditions:

¥ =0, Dy =0 or D>y =0, =0

From the definition of y, we get

| | |
( w*Dz)(dz=/0 |)(|2dz+k2/( XV rdz
) )

We then multiply the first equation of (7.52) by ¥* and integrate over the thickness; using the
preceding equality we now get:

1 1 1
A
[ ixpdetikRa [0yt 2 DU+ k=0
0 0 P Jo
Similarly, using the equation of temperature, we get
1 1 1
/ (ID6*> + k2|6|2)dz—ik/ vO*dz + A/ 160%dz = 0
0 0 0
‘We now multiply this equation by Ra and add it to the foregoing one; we obtain:
1 1
/ (Ra(|DOI* + K2161*) + | xI*) dz — ZkRa/ Im(0y *)dz
0 0
Al 2 20,12 2
+7—> (IDy|* + k*|x|* + RaP|0|*)dz = 0 (7.53)
0

This last equality shows that when Ra is positive then Im(1)=0 since every term of (7.53) is

real except A and the coefficient of A cannot be zero. Thus if Ra = Ra, then A = 0.
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7.6 Convection Patterns

In the foregoing section, we presented the physical conditions which lead to the
development of thermal convection. We may now wonder about the shape of the
flows that replace the unstable hydrostatic equilibrium. Thus after discussing the
eigenvalues of the problem (i.e. the growth rate of the instability), we shall now
focus on the eigenmodes. Actually, since we are still dealing with linear quantities,
we may easily, for a while, consider three-dimensional perturbations.

7.6.1 Three-Dimensional Disturbances

Let us assume that the disturbances have the form

u= uo(z)elr+ikxx+ikyy

Equation (7.11), when linearized, read

Auy = —ikep + P(D? — k®)u,

Auy = —ikyp + P(D?* — k?)u,

Au, = —Dp + RaP0 + P(D? — k?)u. (7.54)
Du; + ikyuy + ikyu, =0

(D?—k* =10 = —u,

where we setk =, /k2 + k;. If we use Squire’s transformation (see Chap. 6), then
we set

ki =keu, +kyu,
and we easily show that the preceding system leads to

At = —ikp + P(D? — k*)it
Au. = —Dp + RaPO + P(D? — k*)u,

7.55
Du, +iku =0 (7.33)
(D?—k*>—1)0 = —u,
By eliminating i, we find the two following equations
2 _ 12y _ 2 _ 127, — 2
[P(D*—k*) —Al[D* — k*lu, = k*PRab (7.56)

(D> — k2= )0 = —u,

which are strictly identical to (7.34) if we replace u, by i k.
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The conclusion of these little calculations is that the three-dimensional distur-
bances have exactly the same critical Rayleigh number as their two-dimensional
counterpart. This number does not depend on the orientation of the wavevector k.

If then we increase the Rayleigh number beyond critical value, we destabilize
all the modes which have a wavevector of modulus k.. The flow which appears,
depends on the wavevectors selected in the final solution. This selection depends on
the horizontal boundary conditions and on the stability of various possible solutions.
We shall not discuss this thorny and wide subject, and will restrict ourselves to
describing several solutions that are observed in Nature.

7.6.2 Convection Rolls

Convection rolls are nothing but the two-dimensional solutions. Let us write the
temperature perturbation as

0(x,z) = Asinmzcosk.x

From this expression and the last equation of (7.56) we derive u, and then u, from
the equation of continuity. Hence, it follows

3An? . 3An?
7 cos zsink.x and u, =

This solution is illustrated in Fig. 7.5.

Uy = — sinmwzcos k.x

7.6.3 Other Patterns of Convection

In order to get other patterns of convection, it is sufficient to combine in a linear
manner several wave vectors of different directions. Let us consider a temperature
disturbance of the form:

8T = A(cosk.x + cosk.y)sinmz

1.0
0.8

0.6
0.4

0.2
0.0

Fig. 7.5 Shape of isotherms for roll convection near the threshold of stability. Boundary condi-
tions are stress-free for the velocity and fixed temperature
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Fig. 7.6 Square (a) or hexagonal (b) convection cells viewed with their isotherms. Dotted lines
are for 7 < 0 and solid lines for T > 0

This is the linear combination of two perpendicular waves of the same amplitude. If
we look for the points of the maximum of 67, these are

2mm 2nn

Xnm = nm =
ke ™7k,

where m and n are integers. These maxima draw a network of squares. The
convection flow thus appears as a set of square cells covering the horizontal plane
(see Fig. 7.6a). Another pattern is however possible, if we use a symmetry frequently
found in Nature, namely the invariance by rotations with a 27/3 angle. This
symmetry indeed leads to hexagonal patterns. We retrieve a convection flow with
this symmetry by superimposing three waves whose wave vectors make an angle of
27 /3 between them:

2r 4

K=k 1 P C k. |83
c k] c . 2T Cc . 47

0 s 3 s 3

This leads to the following field for the temperature fluctuations:

8T = Asinmz [coskcx ~+ cos(ke(—x/2 + yx/g/Z)) ~+ cos(k.(x/2 + y«/§/2))]
(7.57)

As expected, the isotherms of this solution, taken in a plane at constant z, display
hexagonal cells as shown in Fig. 7.6b.
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7.7 The Weakly Nonlinear Amplitude Range

When we impose a Rayleigh number greater than the critical value, all the
disturbances belonging to the unstable band grow exponentially. But those of
wavelength A, grow the fastest. Therefore, we may expect that these modes control
the dynamics of the system. Thus if we wish to have a first view on the dynamics of
thermal convection we may focus our attention on these modes and try to determine
how their amplitude saturates at a finite value. For this we should take into account
the nonlinear terms that we have overlooked until now.

7.7.1 Periodic Boundary Conditions

In order to simplify as much as possible the following analysis, we again restrict
ourselves to the two-dimensional case, with which we are now well acquainted. In
addition, we also “isolate” the mode of wavelength A, by imposing to our system
periodic horizontal boundary conditions. Indeed, in this case all the functions satisfy
f(x) = f(x 4+ L), where L is the length of our periodic “box”. From (7.33) this
implies that

so that the possible horizontal wavenumbers k now form a discrete set. It is then easy
to choose a box length and a Rayleigh number so that only one mode is unstable.
For example, if we take L = 2+/2 and Ra = 1.5(277*/4) the mode corresponding
to k = k. = m/~/2 is the only unstable one.

These boundary conditions may seem rather artificial, but more realistic bound-
ary conditions would not change the situation dramatically. The form of the
horizontal base functions would no longer be e, but some other functions
adapted to the horizontal boundary conditions, and also characterized by a typical
wavenumber similar to k. The periodic boundary conditions are the most convenient
for taking into account the finite horizontal size of a physical system.

Finally, we note that if the size of the system grows, the number of modes in the
unstable spatial frequency band also grows. Thus, for a given Rayleigh number, the
number of unstable modes grows with the size of the system (see Fig.7.7).

7.7.2  Small Amplitudes

Solving the nonlinear equations is usually feasible only numerically. However, much
can be learnt from the weakly nonlinear case which is accessible to analytic work.
Here, we shall focus on this latter case and introduce two restrictions:
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Ra Ra

\ \
T [~

k k

Fig. 7.7 (a) The case of a small-size system: for the imposed Rayleigh number, a single mode is
unstable. (b) The case of a system of larger size. For the same imposed Rayleigh number now nine
modes are unstable

* The Rayleigh number is slightly supercritical Ra = (1 + ¢)Ra,
 The amplitudes of the perturbations are small and O(¢’).

At first, the small parameters ¢ and &’ seem to be independent, but we shall see
below that the consistency of the solutions imposes a relation between them.

Recalling the results of the linear analysis (7.42), we find that the two eigenvalues
have now the following form:

op
Prl

L= + O(e?) (7.58)

Ao=—LP+1)+ 0() (7.59)

Thus, near the threshold, the growth rate of the instability is proportional to Ra —
Ra., or

_ 2P Ra-—Ra,

~ P+1 Ra

+

The first approximation implies that the instability grows on an O(¢~!) time scale,
which is large compared to unity.
Let us write the instable mode as follows:

Y(x,z,t) = ¥y (t) sinwz sin kx (7.60)
0(x,z,t) = 6011(t) sinmz coskx )

We shall denote it also (611, ¥11). K = k. = 27/ L is its wavenumber. We aim at

obtaining the differential equations verified by the amplitudes v, (z) and 6y, ().
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Let us start by computing the nonlinear terms with (7.60). We find
J[0,¢] = J[611(¢) sinwzcos kx, ¥y (¢) sin wzsinkx]=—111(¢)011 (¢ )k /2 sin 27z
J[¥, AY] = J[Y11(¢) sin wzsin kx, A(Y1(¢) sin 7z sin kx)]=0
We see that the first nonlinear role played by (y(z), 611(¢)) is to excite the

harmonic characterized by (k, = 0, k, = 27), or, in our notations (¥, 8p2). Using
(7.31), we find that the evolution of this harmonic is governed by:

dyro
dt

+47 P =0
(7.61)
_‘C+4]{2902:—(kﬁ/2)1/f11 11

We should notice here that v, is always damped very quickly and it would just be
the same for 6y, if the nonlinear forcing were absent. If the forcing term evolves
on a time scale large compared to unity, the derivative dfy,/dt is always small
compared to 4726,; thus we may write

k
002 = —8—%1911 (7.62)
P

In this case the mode (2, 82) is said to be a slaved mode. 1t closely follows the
evolution imposed by the mode (11, 811) as long as this evolution is slow. We thus
understand the reason why we chose a slightly supercritical Rayleigh number: the
growth of the unstable mode last on a long time scale compared to unity. Finally, we
also observe that 0y, is O(&’?). Moreover, since Vo, is rapidly damped, we can set it
to zero hereafter.

We may seek for other nonlinear effects. The most important comes from the
interaction between (¥, 611) and (0,6¢;). This interaction modifies the evolution
of 0;;. Indeed,

J[ 0o sin 27z, Yy sinmwzsinkx] = —mwkOp Yy (sin 37z —sinwz) coskx  (7.63)

thus

do
d_: — ki + (2% + k*) 00 = wkbpyn

Moreover, (7.63) shows that the mode (63, ¥13) is excited as well, and thus interact
with other modes, etc. Hence, we see that a whole chain of mode is excited.
However, this chain can be truncated thanks to the small amplitude hypothesis. At
this stage of the analysis, it is necessary to evaluate the order of magnitude of each
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term. Each nonlinear interaction increases the order of the term, and if we keep only
terms up to the third order in ¢’, three equations are necessary:

d
‘”t“ — PRak /62601, + Py =0
do
d_: — kyny + €201 = nkOnyn (7.64)
do
d—zz + 47700 = —k7 /211011

7.7.3 Derivation of the Amplitude Equation

The three equations (7.64) are those which control the dynamics of the system just
above the threshold of instability. They contain three modes: two are stable and one
is unstable. The following manipulations aim at isolating the amplitude equation
controlling the amplitude A(7) of the unstable mode. The two other modes are
slaved to the unstable one.

We first insert the solution (7.62) into the second equation of (7.64). The system
changes into

d
j{“ — PRak /€0y, + Py =0
(7.65)
do
— kY + £ = K00y /8
T
We now write this new system in a compact form like:
dX
— =[L]IX+N (7.66)
dt

where

(v _ (—Pe? PRak /> _ k(oo
X_(en)’ [L]_( k 0 ) N= 8(911%21)

For the moment, we leave aside the nonlinear terms N. The solution of the remaining
linear system may be written as

(1//11) _ ( 1 )Aehrf 4 ( 1 )Be)‘t (7.67)
O q+ q-
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where ( ! ) and ( ! ) are two eigenvectors associated with the eigenvalues A_
- q+

and A, of the matrix [L]. Setting A(t) = Ae*+* and B(r) = Be’—", (7.67) looks

like
DGO o
_ , 68
(911 4+ q- ) \ B(7) (7.68)
where
k k k k
“Ernre-et% =i p =T tO0

Equation (7.68) is just a change of the projection base. Let

[M] = (q1+ ql_) = M= q+ 1q— (_qi_ —11)

A
B

If weset A = ( ), (7.66) has the following shape

d
(M52 = [LIMIA + N

Multiplying by the inverse of [M], we transform [L] into its diagonal form. Hence,

we get
d (A _(A+ 0\ (A kK _.( 0
wo(5)= () () =50 (o)

which may be rewritten more explicitly as

dA Pk
- = - (A+ B)*(g+A+g_B
I + 8(7>+1)( + B)(q+A +q-B)
(7.69)
dB Pk
— =A_B+——"(A+ B)*(q+A+g_B
I +8(P+1)( + B)*(g+A + q-B)

To solve this system, some remarks are in order. First, we have assumed a slightly
supercritical Rayleigh number so that A is O(g) and A— is O(1). If B were alone,
it would be damped very quickly, but the slow growth of A let B “survive”. Now,
since A evolves slowly we may assume (and check later) that B does so. B changes
on the same time scale as A, therefore % is negligible compared to A_B. Just as
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002 above, B is a slave mode. We are now left with a polynomial equation of cubic
order in B, still difficult to solve. However, if we assume that the amplitude of B is
very small compared to that of A4, the solution is straightforward:

Pk>

B=—1""
8(P + 1)2(2

A3 — 0(813)

Such a solution is consistent with our hypothesis B < A, which turns out to be the
right one.” Finally, A(t) verifies the differential equation

dA
— = A A—LA. (7.70)
dt
This is Landau equation that we introduced in Chap. 6. The Landau constant can be
computed explicitely, namely

Pk?

L=_1%
81+P)

0

It is positive, showing that the bifurcation is supercritical. The diagram of this
bifurcation is given in Fig. 7.8.

Let us now come back to the relation between ¢ and ¢’. For consistency, each term
in (7.70) needs to be of the same order of magnitude (otherwise one of them could

Acq

A=0 Rac

Fig. 7.8 The bifurcation
diagram

3Other solutions may exist where B is not small compared to A, but they are uninteresting for us
as we are focusing on the case where A grows first and B follows.
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be suppressed); recalling that 4 is O(¢) and that it evolves on a time scale O(1/¢),
% and A A are both O(e¢’) whereas LA is O(&’®). Hence, in order that all terms
be of the same order (in the ¢, ¢’ expansion), it is necessary that & = O(/¢). This
relation enlights the link between the smallness of the growth rate and that of the
amplitude.

Using the asymptotic amplitude, we have

Aoy = V24 (7.71)

From which we derive the amplitude of the slave mode 6,
£
Op2(z) = ——ssin2nz
T

This mode gives the modification of the temperature profile when thermal convec-
tion sets in. This new profile has a steeper gradient near the boundaries and a weaker
one in the middle of the layer. As shown in Fig. 7.9, thermal layers appear near the
walls. We now understand the mechanism by which the instability saturates. On the
one hand the flow reduces the temperature gradient in the central part of the layer,
thus locally lowering the Rayleigh number, on the other hand, a stronger gradient
near the wall arises but it is not destabilizing since it applies to a thinner layer (recall
that Ra varies like d?).

1 . 0 N T T T

0.8 —

0.6 - 8

&l N

Fig. 7.9 The temperature 0.4 I nmo 11 _
profile above the threshold; L AN |
the amplitude ¢ = 0.5 has L : ]
been strongly exaggerated so | AN i
as to clearly show the three 0.2 AN |
layers appearing in the “l AN i
convecting fluid. The I and III | AN i
zones show the thermal | S\
“boundary layers” while the ool v o0 Y
middle layer II is a region 0.0 0.2 0.4 0.6 0.8 1.0

with a quasi-adiabatic profile z
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7.7.4 Heat Transport: The Nusselt Number

We can now compute the heat flux between the two plates and compare it to the
situation where the fluid is at rest. The ratio of these two fluxes is called the Nusselt
number. Following this definition, we write

c,Tv—xVT)-dS
Heat flux with convection _ /(5)(p r V)

Nu

u= " .
Heat flux without convection

[ xv1-as
(S)

Let us compute this number when the Rayleigh number is slightly supercritical.
Since T, is solely a function of z, the Nusselt number depends only on horizontal
means which we define as:

fds
s
(fy=28__
[ i
($)
Using dimensionless quantities and noting that d.6,, = —1, then
Nu = ((0 + Oug)u. — 8.6 + 6.,)) (1.72)
so that
Nu =1+ (Qu;) — 9602
but
kz 2
(Ouz) = keOniyni (1 —cos2mz)/4 = Z@z (1 —cos27z)
Finally,
Nu=1+2¢ (7.73)

Showing that, near the threshold of instability, the Nusselt number increases linearly
with ¢ or equivalently with the difference Ra — Ra,.
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7.8 Fixed Flux Convection ®

7.8.1 Introduction

In all the foregoing matter, we considered that the plates limiting the fluid are
perfect heat conductors, so that their temperature remained constant (fixed by a
thermostat). Hence, we demanded that the temperature fluctuations vanished on the
boundaries.

In the case of a laboratory experiment the boundary conditions are not so
simple. As mentioned in Sect. 1.8.2 the only conditions that have to be satisfied
are

dT ¢ _ dT
g T

szTs

where the index f refers to the fluid and the index s to the solid. However, the
temperature field in the solid is not known and needs to be computed as well. The
general case is thus quite tedious and we refer the reader to the work of Hurle et al.
(1966) for a detailed study.

Here, we shall concentrate on the limit y,/y s — 0 which is the case where the
solid is a very poor heat conductor compared to the fluid. This case corresponds to
the ideal insulator. Hence, after studying the ideal conductor case, we now explore
the other extreme. From a physical point of view, it means that the temperature
field in the solid is fixed (or evolve on a very long time scale compared to that of
the fluid). Thus, the temperature gradient, and therefore the energy flux, is fixed in
the solid and the temperature fluctuations at the interface do not propagate inside
the solid. Hence, one imposes that the temperature gradient does not fluctuate,
or that

a0
— =0 (7.74)
0z

on z = 0, 1. We note that in such conditions the Nusselt number remains fixed to
unity.

The interesting point of this system is that the convective instability occurs
with a vanishing critical wavenumber. Hurle et al. (1966) indeed noticed that as
Xs/xr — 0O then k. — 0. Convection sets in at a scale all the larger that the
solid is less conductive. It is then possible to find out a weakly nonlinear solution
taking advantage of the fact that the horizontal scale is very large compared to
the height. The resolution of this problem is a typical example of a multi-scale
analysis.



7.8 Fixed Flux Convection *® 279

7.8.2 Formulation

We start again from the equation of motion (7.31) and introduce the small parameter
¢ such that:

v =¢e¢p, 0, =edy, 0 = ¢*9,, Ra=Ra.+ ,uzsz
where u measures the rate of supercriticality. Thus doing, we rescaled the horizontal
lengths, introducing the scaled variable X = ex of order unity. We also rescaled the
time and introduced the new time variable T = &*#. Hence, we can focus on very
large horizontal scales and very long time scales. The choice of the &* factor in

the time scale is justified a posteriori by the consistency of the solutions. The two
equations of (7.31) now read:

£°0:9%¢ + " (0: D*¢ + dx 0y Dp — 93 pD¢) + > (IxpD*¢p — 9. D*¢D¢) =
P[(Ra. + p?e?)dx0 + D¢ + 262953, D*¢ + &% 4]

49,0 4 &* (0xpDO — 0,0D¢) = 20xp + (D* + £20%)0

Here, the functions depends on the three variables (7, X, z). The boundary condi-
tions at 7 = :t% are®

DO =0
for the temperature and
u.=edyp =0 and o0,=0<= D¥*p=0

for the velocity. Note that we chose the stress-free boundary conditions; for no-slip
conditions we would ask u, = Oor D¢ = 0.

7.8.3 The Chapman—Proctor Equation

We now develop the solution in powers of the small parameter up to the fourth order,

9290+5292+8494+"', ¢:¢0+82¢2+54¢4+...

%We place the boundaries at 7 = :I:% rather than at z = 0, 1 so as to be able to use the symmetry
or the anti-symmetry of the functions with respect to the z = 0 plane.
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Note that with the choice made on the amplitudes and the horizontal scales, the
velocity field is O(g), or

d ad
u= ——I'//ex + —weZ = —eDge, + *dxpe,
0z ox
whereas the temperature field remains O(1).
At zeroth order, the equations of motion reduce to

D*0y=0 and  Ra.dxby + D*po =0
which lead to the following type of solution
Oy = f(Xs T) and do = RaCP(Z)f/(Xs T)

where D*P(z) = —1. f(X.7) is an unknown function which needs to be
determined; f'(X, 7) is its derivative with respect to X . We note that the boundary
conditions on 6y are automatically satisfied whereas those on the velocity demand
that P(:i:%) = 0 and P’(:t%) = 0 for no-slip conditions or P”(:i:%) = 0 for stress-
free ones. These last two conditions and the differential equation allow us to specify
completely the function P (z). In the no-slip case

Let us now consider the g2-order of the temperature equation. We have
D*0, = —Ra.DPf”? — (Ra,.P + 1) f” (7.75)
This equation is interesting as it has a solution only if the right-hand side verifies

a solvability condition. Indeed, if we integrate the equation on z, then the left-hand
side is zero whereas the right-hand side implies:

+1/2 -1
Ra, = — ( / P(z)dz)
-1/2

giving the value of the critical Rayleigh number. This expression leads to the
numerical values Ra,=720 in the no-slip case and Ra,=120 in the free-slip one,
values which were first derived by Hurle et al. (1966).
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The equation (7.75) can now be solved. We find
0= H(X, )+ W[+ 0@ "
where we introduced W(z) and Q(z) such that
W” +Ra.P' =0 and 0”"+Ra,P+1=0
These new functions verify the boundary conditions Q'(=+ %) =W (x %) = 0 since

DO = 0 on the boundaries. We infer that W/ = —Ra.P.
The &2-order of the momentum equation leads to

D¢y =— 2 f' —Rac [ fy + W(f) +(Q +2P") f"]
Ra2
4 —Sc[pp" _ pIp" £
P L 177
which is solved in the same way as the equation for 6,; we find
¢2 — /‘Lsz/ + Racszl + Uf/// + Sf/f//
with
4 " 4 Raf 1" 1 pl
D*U = —Ra.(Q +2P") and  D*S :—2RaCW+?(PP’ —P'P")
The boundary condition u, = 0 imposes that
U(x1/2) = S(£1/2) =0

The last step consists in writing the fourth order &*-term of the temperature equation.
Integrating this equation on z between + %, we obtain

O f + 42"+ BfY +C () +D(f ") =0 (7.76)

which is the Chapman—Proctor equation. It controls the horizontal dynamics
of small-amplitude convection at fixed flux (Chapman and Proctor 1980). The
constants A, B, C, D are given by

1 1/2
A= —, B:—/ (U + 0)dz.
Ra, -1/2

1/2 1/2
C = —Ra’ / P2dz, D= (Ra.PQ' — S —2W)dz
—1/2 —1/2
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The evaluation of the foregoing integrals is not straightforward. Let us illustrate
their derivation in the case of stress-free conditions on both boundaries. Because of
the symmetry of the set-up D = 0. The calculation of B is a little tedious. We first
remark that

1/2 1/2 1/2
—/ Udz=/ UD4sz=/ PD*Udz
—1/2 —1/2 —1/2

Then, the differential equation verified by U implies that

1/2
B = / (2Ra.(DP)* — (DQ)?) dz

1/2
Noting that
5 9
D — 5 _ 3 _
0=z o + T
we finally obtain
1091
= ——~0.197
5544
In the same way, one can derive that
155
126

7.8.4 Properties of the Small-Amplitude Convection

Chapman-Proctor’s equation gives a good description of the dynamics when the
temperature gradient is slightly supercritical.

To start with, let us examine the linear case and search for a solution proportional
to e*; if 4 = 0 (i.e. Ra=Ra,), then the growth rate of a disturbance is just
—Bk* and the critical wavenumber is k = 0 as expected. If the Rayleigh number
is now slightly supercritical, we may linearize (7.76) and find the dispersion
relation

A = k*Ap* — Bk (7.77)
which shows that the wavenumber of the fastest growing mode is

m

ky = ———o
" J/2BRa,

(7.78)
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This results shows that the fastest growing mode is not necessarily the one with the
critical wavenumber. In the present case, the mode with the critical wavenumber
(k = 0) has a zero growth rate!

We should also note that the transition from the hydrostatic state to the convective
one is independent of the Prandtl number. The growth rate is real so that convection
is steady (no oscillation).

Let us now examine the nonlinear régime. If the boundary conditions are identical
on the top and bottom plates, the solution is symmetric with respect to the mid-layer
z = 0 plane. The integrand defining D is antisymmetric and thus D should be zero
in this case. The Chapman—Proctor equation therefore simplifies in this case and
may be written

4

d.g + Ap*g”" + BgW +C(g°) =0

where we took the derivative of the equation and set g = f’. Now, introducing the

new variable u = \/g ﬁ and changing the time scale as well as the X -scale, we find

the Cahn—Hilliard equation:
u = —u" — Bu® + ()" (7.79)

where B = BC'?/A%?u°. This equation was uncovered by John Cahn and
John Hilliard in 1958 when they studied the dynamics of the phase separation
phenomena.’

We note that this equation, as the Chapman—Proctor one, is richer than Landau
equation which allowed us to study the nonlinear evolution of disturbances leading
to convection rolls. The Landau equation indeed controls the time evolution of the
amplitude of perturbations (whose structure is fixed by the linear analysis), while
the two foregoing equations control both the time evolution and the spatial structure
of the solutions (being partial differential equations). They are much simpler than
the original ones, but still contain a rich variety of solutions. For instance, one can
solve the Cahn—Hilliard equation in a stationary case (the solution is expressed with
elliptic integrals) and then study the stability of these nonlinear solutions. Chapman
and Proctor have shown that, in a periodic box, the stable flow is made of very
flattened contra-rotating rolls.

7Cahn and Hilliard (1958).
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7.9 The Route to Turbulent Convection

7.9.1 The Lorenz Model

System (7.64) has been derived using the hypothesis of a slightly supercritical
Rayleigh number. However, if we “forget” this restriction, we have at our disposal a
set of three nonlinear equations which control a very rich variety of solutions, actu-
ally. They may give us interesting informations on the development of convection
when we increase the Rayleigh number, if the modes that are dynamically active
remain limited to these three ones.

In order to show the parameters which control this system, it is useful to make
the following change of variables:

V2 V2
I//.11 = X? 911 = B Y
wk wk?Ra
(7.80)
28 )
Bpp = ————Z, =t/L
02 wk?Ra v=t/
We thus find the equation of the Lorenz system:
dX
— =P -X
o ( )
dy
—=X-Y-XZ (7.81)
dt
dz
— = —-bZ+ XY
dt
where we set
Ra 21\’
r Ra, an ( 7 ) ( )
since Ra, = £°/k>. Three parameters control the Lorenz system: the Prandtl

number P, the reduced Rayleigh number r and b which measures the aspect ratio
of the convection cells (the ratio between their height and their width).

As the Landau equation, this system has one or three fixed points (points of
“equilibrium”), namely

X=Y=z=0 if r<l
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Fig. 7.10 Three representations of the time evolution of the Lorenz system in a chaotic régime: (a)
X(t) shows the evolution of the X variable, especially the growth of the amplitude due to the Hopf
bifurcation and the start of the chaotic régime. (b, ¢) give for the same time interval, the evolution
of the system in the phase space showing evidence of a strange attractor

or

X=Y=7Z=0
or if r>1
X=Y==4,b(r-1) and Z=r—1

The first fixed point (X = Y = Z = 0) turns unstable when the critical value
r = 1 is overpassed. The new fixed point is linearly stable in the interval [1, r.[
with r. = 24.74. At r = r. there is a subcritical Hopf bifurcation and the system
evolves towards a chaotic state where one finds the famous Lorenz attractor. This
situation is illustrated in Fig.7.10 where we clearly see the exponential growth
and the beginning of a chaotic sequence. The subcritical nature of the bifurcation
indicates that one may find a chaotic state® when r < r.. A study of the stability of
the branch X = Y = +,/b(r — 1) shows that the chaotic state disappears when
r < 13.926 (if b = 8/3 and P = 10).

7.9.2 The Domain of Very Large Rayleigh Numbers

In nature thermal convection usually appears with very large Rayleigh numbers
because of the large size of the systems. For instance, at the Sun’s surface, the
convective cells (see Fig.7.11) are controlled by a Rayleigh number larger than
10?°. Hence, many studies have explored the properties of thermal convection when
Ra > Ra,.

8This is a metastable chaos.
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Fig. 7.11 Convection at the
Sun’s surface: the rising gas is
hot and appears brighter than
the cold downflowing gas.
The temperature difference

between the hot and “cold” . J o 4 i s
gas is about 200 K around an "w Cvas Podil g Wit

. - » s s -l .
average of 5,800 K. This : LA v S & | % “o - -2
gives the granular aspect to : - Sk ‘ &7 \ :s
the surface. Solar convection ' oA KN 4 » " -»

cells are thus called granules.
Their size is about 1,000 km
and their lifetime less than
10 min (Credit T. Roudier,
Lunette Jean Rosch -
Observatoire Midi-Pyrénées)

When one progressively increases the Rayleigh number, for instance by increas-
ing the temperature difference, the foregoing solutions are destabilized and after a
few bifurcations a chaotic régime may set in. If the temperature difference is still
increased, convection reaches a turbulent régime: a continuous spectrum of spatial
and temporal scales appears.

Although the turbulent régime is very complicated (see Chap. 9), we may expect
that some simple laws govern the mean quantities. For instance, the heat flux is
a typical quantity of interest when one deals with turbulent convection. We may
wonder whether there exists any asymptotic law governing this quantity when
Ra — oo. This question is still open, but some simple models may give us a first
description of this asymptotic state. One of them (see Fig.7.12) considers that the
essential part of the temperature drop across the layer occurs in thin boundary layers
attached to the bounding plates.

The thickness § of the boundary layers is such that these layers are stable with
respect to the convection, thus

BagAT
VK

~ Ra,

SO

8 Ra, 173
d (Ra)

3
but, by definition Ra = £-%¢4T
VK
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Fig. 7.12 Schematic view of 7
turbulent convection between
two plates

Boundary layer

S

Quasi—isothermal
turbulent region

The Nusselt number is proportional to the ratio of the total flux with convection
and the flux without convection. We use this number to measure the heat flux. We
note that the flux without convection is proportional to AT/d whereas the flux
with convection is proportional to AT /§. Indeed, the boundary layers carry by
conduction the whole heat flux. We thus write

d Ra '3
Nux — ~
$ (Rac)

which shows that the Nusselt number grows like the one-third power of the Rayleigh
number.

Many experiments have attempted to find out the actual scaling law and
eventually confirm the foregoing approach. For instance, Niemela et al. (2000)
explored the relation between Nu and Ra using helium. While varying Ra between
10 and 10", they found that

Nu ~ 0.124 Ra%3!

in this range of Rayleigh numbers (see Fig.7.13). But more recently Ahlers et al.
(2012) using another gas (sulfur hexafluoride) found this law solely when Ra < 10'3,
suggesting that beyond this value variations of the Prandtl number (see Fig.7.13)
influence the scaling law.
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Fig. 7.13 Nusselt number
versus Rayleigh number in .
. . 107 4
the experiment of Niemela
et al. (2000)
10° 4
=
=
10° 4
‘10: - 1 Ll 1 1 1 1 1 1 1 1 T
10° 10”7 10° 10 10" 10" 10" 10" 10™ 10" 10" 10"

Ra

7.10 Exercises

1. a) Using the differential form of the enthalpy, show that for an ideal gas in
equilibrium in a gravity field g,

T
VT — (V1) = — Vs
Cp

b) Derive (7.9).

2. From the values of the temperature gradient in the stratosphere what can we
say about the convective stability of this layer? Use the values of the standard
atmosphere given in table 2.1.

3. In the case of convection between two vertical plates described in Sect.7.4.1,
compute the Reynolds number of this flow. Give the numerical values, taking
T.— Ty =20K,d=1cm, (T. + Tr)/2 = 283K, v = 107> m?%/s (case of air)
and g=9.8 m/s?>. What do you conclude?

4. Compute the maximum Reynolds number of thermal convection near the thresh-
old when using stress-free boundary conditions.

5. For the Lorenz system, show that the solution X = ¥ = Z = 0 is unstable
whenr > 1.

6. Here is a practical exercise: In a pan with, preferably, a white bottom, dispose a
thin layer of oil (sunflower for instance) of 2 or 3 mm thick. Add a small amount
of cocoa powder (less than half a tea spoon), an mix vigorously so as to obtain
an homogeneous mixture. Put the pan on a cold electric heater and wait for the
fluid be at complete rest. Then turn on the heater at minimum power, after a few
minutes, a network of (nearly) hexagonal cells appear.
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Further Reading

For all the questions around the problems of linear convective instability in various
configuration (with rotation, magnetic field or in spherical geometry), one should
consult Hydrodynamic and hydromagnetic stability by S. Chandrasekhar. To a lesser
extent, this problem is also discussed in Hydrodynamic stability by Drazin and Reid
(1981). More about the Lorenz attractor may be found in Order within chaos by
Bergé et al. (1984). Another side of thermal convection not discussed in this book,
namely heat transfer associated with fluid flows, may be found in Convection Heat
Transfer by Bejan (1995).
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Chapter 8
Rotating Fluids

8.1 Introduction

The most spectacular effect of rotation on a fluid flow is certainly the huge
hurricanes surging up in the Earth’s atmosphere when the waters of the ocean are
warm enough. These huge flows, so typical in pictures of the Earth, would not exist
if the Earth were not rotating. They owe their existence to the Coriolis acceleration.

In this chapter we wish to introduce the reader to the fundamentals of fluid
dynamics in a rotating frame. Rotating fluids are indeed those fluids whose motion
is essentially a solid body rotation supplemented by a small velocity field. Thus,
even if hurricanes generate terrific winds, let say with speeds of 60 m/s, this is still
small compared to the Earth rotation velocity (460 m/s). Such a velocity field is thus
conveniently analysed in a rotating frame. As we shall see, all the novelties come
from the Coriolis force, which deeply modifies the dynamics, imposing the quasi-
bidimensionality of steady flows, generating new sorts of waves, new boundary
layers, etc.

8.1.1 The Equation of Motion

The basic change in the equations governing a fluid flow in a rotating frame comes
from the existence of inertial forces associated with the Coriolis and centrifugal
accelerations. Thus, the equation of momentum is the only one to be modified. Its
expression is easily derived from Newton equation, which controls the motion of a
point mass particle. Let r be the position of the particle; it evolves according to

d*r

T
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in a galilean frame. When the frame rotates at an angular velocity € the same
equation reads

2
p(%+29x%+ﬂx(ﬂxr)):f

This equation also gives the trajectory of a fluid particle according to the Lagrangian
approach. Going back to the eulerian formalism, the preceding equation is trans-
lated into

p(%—f-ZSva—}-SZx(Slxr)):f 8.1

which gives the evolution of the velocity field. This expression could have been
derived directly from the one we met in the first chapter; however, this derivation is
lengthy and left to the reader as an exercise.

8.1.2 New Numbers

The importance of rotation may be appreciated if we use the right non-dimensional
numbers. For this, we first introduce a length scale L, a velocity scale V' and a
time scale that we relate to rotation. This time scale is (262)~!. 282 is known as
the Coriolis frequency. In order to concentrate on the effects of rotation, we shall
consider a simple fluid like the incompressible viscous fluid.

The momentum and continuity equation read:

D
p(Fj—FZSZXV—i—Slx(SZxr)):—VP—}-,LLAV (8.2)
Vv=0 (8.3)
where we left aside an eventual gravity force. If we observe that
1 2
Lx(Rxr)= _V[E(Sl X))

namely, the fact that the centrifugal acceleration may be derived from a potential,
then, we can rewrite the momentum equation as:

Dv
O + 2@ xv=—VII +vAv 8.4)
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where IT = P/p — %(ﬂ x r)? is called the reduced pressure. We are now in a
position to use non-dimensional quantities and we find:

0
a—u—i-ezxu—l—Rou-Vu:—Vp—i-EAu (8.5)
T

where we set 2 = 2e; and p = I1/(2§2LV). Two numbers appeared:
v |4
R

2QL? °T 0L (8.6)

which are respectively the Ekman number and the Rossby number. We note that the
Ekman number measures the ratio of the viscous force to the Coriolis one, while the
Rossby number shows the importance of the nonlinear advection terms with respect
to the Coriolis acceleration.

When a fluid flow, in some inertial frame, is essentially a solid body rotation, we
should write V = & xr+v where ||v|| < || xr||. Since ||v|| is just the magnitude
of the flow in the rotating frame, we see that flows dominated by rotation are such
that their Rossby number is very small compared to unity.

We may observe that the Rossby and Ekman numbers decrease when the scale
of the flow increases. Rotation is therefore expected to be important in the large
scales. Let us consider two examples: a wind of 20 m/s in the Earth atmosphere is
dominated by the Earth rotation when it affects a scale larger than 140 km. For these
scales, the Rossby number is less than unity. An ocean current, like the Gulf Stream,
is even more affected by rotation since its speed is much lower, typically 1 m/s. For
this value, rotation is important for all scales larger than 7 km. This shows that an
oceanic current, spanning thousands of kilometers, is very much dominated by the
effects of rotation.

Now, if we turn to the Ekman number, it is usually extremely small. For instance,
a water flow with a scale of 7 km, has an Ekman number around 10™1°. This implies,
as we shall see, the existence of very thin boundary layers.

8.2 The Geostrophic Flow

8.2.1 Definition

The geostrophic flow is a steady flow where the viscous force and the nonlinear
terms play a negligible part. The momentum equation is therefore reduced to

2R xv=—-VP 8.7

This is called the geostrophic balance. The pressure gradient balances the Coriolis
force.
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8.2.2 The Taylor-Proudman Theorem

The geostrophic flow has one remarkable property: it is independent of the
coordinate parallel to the rotation axis. Indeed, let us take the curl of (8.7); we find

VXxQ22xv) =0 < (R -V)y=0 — ?:0 (8.8)
Z

where we used (12.41). The velocity field therefore only depends on the coordinates
in the plane orthogonal to 2. This result is known as Taylor—Proudman Theorem.

8.2.3 The Expression of the Geostrophic Flow
The geostrophic (8.7) can easily be solved. One finds:

1
V= ﬁpez x VP + F(x,y)e, (8.9)

In this expression F(x,y) is an arbitrary function to be determined with the
boundary conditions. This solution shows that the pressure also depends solely on
the plane coordinates. The pressure plays the role of a stream function since isobars
are also streamlines.

To further illustrate the properties of geostrophic flows, let us consider the case
where the rotating fluid is bounded by a surface defined by:

z— f(x,y) =0 if z>0
1
{Z—Fg(x,y):O if z<0 (8.10)

The outgoing (unnormalized) normal vector is

{n=n‘mp=V(Z—f(X,Y))=ez—Vf (8.11)
n=n; =-V(+g(xy)=—e-Vg '

from which we derive the equality:
Ny, — Ny + V(f —g) = 2e;

However, on the bounding surface ny,, - v = 0 or n;, - v = 0, but since v does not
depend on z, the foregoing equality may be used everywhere. Thus, taking the scalar
product with v, we find

v, =2F(x,y) =v-V(f —g)
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which we report in (8.9). This yields

1

1
V= m [nsup_ninf—‘r V(f _g)] xVP + EV' V(f _g)ez

This new expression may be simplified if we note that

v-V(f —g) = (exVP)-V(f —g)/(282p);
since V(f — g) x VP is parallel to e,. It turns out that

1
V= Hp(nmp —ny) X VP (8.12)

This expression may further be arranged as follows. If we take the scalar product of
(8.12) with n;,r, we find

(Mg X Njyr) - VP =0
but ng, xn;y = V(f 4+ g) xe; + V f x Vg, so that
(Vhixe) VP =0 << VPxVh=0
We introduced & = f + g and observed that V f x Vg and Vi x VP are along

e.. One should note that & (x, y) is just the height of the container at (x, y). The
foregoing relation shows that the pressure only depends on /. Noting that ny,, +

n;,; = —Vh, (8.12) may be rewritten in its final form:
1 dpP 8.13)
V= —— | 5 )| D X Ny, .
220 \an )

This solution is valid only if the normal vectors are continuous in the x, y-plane. It
may be observed that v is parallel to the curves of constant height since v- Vi = 0
because n;,r x ny, = e; x Vh. These curves are also called geostrophic contours.
Since they are streamlines they must be closed.

Another property of the geostrophic flow is that it possesses circulation around
the rotation axis. Indeed, along a geostrophic contour

1 dpP ¢
vdl=——|— ||y, X ng,,||dl # 0 (8.14)
??o 22p (dh) ©

Thus, in general, the geostrophic flow owns angular momentum.
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8.2.4 Examples
8.2.4.1 The Geostrophic Flow in a Sphere

To give a simple illustration of the foregoing results, we now take the case of a
geostrophic flow in a spherical container, which is typical of planetary or stellar
situations. In this case, geostrophic contours are just circles of constant latitude and
the velocity is constant on cylinders centered on the rotation axis.

Expliciting the results of the previous section, we note that for a sphere of radius
R, the equations of the boundary are such that

f=g=VR —x>—)?
Letting s> = x2 + y2, the direction of the velocity is

2s
Ny X Ngyyp = ——F——— €y
: R2_ 42

which confirms that the velocity is purely azimuthal. If we now observe that & =
2+/R% — 52, the solution (8.13) gives

1 oP 815
V= 282p 0s G (8.15)
This relation could have been derived directly from (8.7), of course.

Solution (8.13) is more interesting when one deals with a more complicated
geometry, like a spheroid for instance. One just needs to derive 4 and normal vectors
from the shape of the surface boundary.

Let us note that if the sphere is truncated, like in Fig. 8.1b, some geostrophic
contours are no longer closed. This ruins the existence of the geostrophic solution
which disappears. As shown by Greenspan (1969), no steady state is possible, and
the geostrophic flow is replaced by a set of Rossby waves, which form a subset of
inertial modes (see below for their detailed presentation).

8.2.4.2 The Vortex of an Emptying Reservoir

When a reservoir like a bath tube is emptied, a strong vortex is often observed above
the exit. The question of whether the rotation of this vortex is controlled by the
Coriolis force due to the Earth rotation is often raised. Should the vortex rotate
in opposite directions when one makes the experiment in the northern or southern
hemisphere?
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Fig. 8.1 (a) Geostrophic contours on a sphere. (b) A truncated sphere: some geostrophic contours
are not closed (like C”)

The answer is negative because the Coriolis force imposed by the Earth rotation
is much too weak to be effective compared to other forces. To make things clear,
it is useful to appreciate the orders of magnitude associated with such a flow. First,
we may observe that the scale at which the Rossby number passes below unity for
a flow whose typical velocity is 10 cm/s, is 700 m. Thus, unless the bath tube is of
the size of a lake, the Rossby number will be very large, letting the (v -V)v term a
thousand time greater than the Coriolis acceleration.

Another way of understanding this question is to suppose that the flow is
geostrophic (it is indeed almost steady, and viscous effects are small). In such a
case, the amplitude of the fluid velocity would be V' ~ |V P|/2£2. We may estimate
the pressure gradient by noting that on the bottom of the bath tube the pressure
varies between pgh + P, and Py, far from the exit and at the exit. Taking /=10
cm, we find a fluid velocity of 20,000 km/s which is absurd.

So what’s going on in reality? The key point is to be found in the initial
conditions. In general, the fluid is not strictly at rest when one empties a bath tube.
With respect to the exit, the water owns some residual angular momentum. When
the emptying is started, conservation of this momentum implies an amplification
of the rotation near the exit. Actually, the convergence of the streamlines on exit
strongly amplifies the vorticity. Thus, a flow which was not perceptible to the eye
before the reservoir is emptying, shows up neatly when the exit is open. The low
pressure at the vortex centre makes this structure clearly visible.
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8.3 Waves in Rotating Fluids

We continue our exploration of the properties of rotating fluids by focusing on the
waves that are specific to them.

8.3.1 Inertial Waves

Inertial waves owe their existence to the Coriolis force which is their restoring
force. We recall that the existence of the Coriolis force is the consequence of the
conservation of angular momentum. If this force were absent, the free motion in a
rotating frame would not conserve the angular momentum.

To fully appreciate its effects, it is useful to consider the motion of a particle
which is solely driven by this force. Its velocity verifies

d
—V+2Slxv:0
dt

This equation is easily solved and yields:
vy = Vg cos(2821) and vy = v sin(2£21)

if we choose that v; = vy and v, = 0 at ¢t = 0. A further integration gives the
trajectory:

X = X0+ 2‘}—;2 sin(2£2¢) and Yy =Yo— 2‘}—;)2 cos(252t)

This shows that particles have a circular motion. The Coriolis force brings the
particles back to their initial position after making a circular trajectory with a radius
Vo / 282.

Let us now focus on the dispersion relation of these waves. We take (8.5) and set
E=Ro=0. As needed, we assume that the pressure and velocity perturbations are
plane waves, namely:

(p’ V) — (p7 V)Oei((ut—k-x)

Incompressibility implies that
k-v=0 (8.16)

which shows that these waves are transversal. The equation of momentum, i wv +
282e, xu = ik P, leads to
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20e, - (u x k) = ik>P
iwv, = ik, P (8.17)
iwk xv=282%k,yv

from which we derive the following dispersion relation:

2 2 k2
o= (282) k—zz (8.18)
This relation shows that the frequency of inertial waves is bounded by 2£2, since
k, < k. Inertial waves are thus long period waves whose shortest period is half the
rotation period.

The dispersion relation also shows that these waves propagate in a very

anisotropic way. This is shown by the phase velocity:

1) k
vy = —e = 22—k 8.19
o= Lo pE (8.19)
This expression shows that no propagation is possible if it is restricted to a plane
perpendicular to the rotation axis rotation. Propagation preferentially occurs along
the rotation axis.
Now let us consider the group velocity. We find

k x (e, x k)

v, = Vio(k) =28 0

(8.20)
This expression shows that v, - k = 0 : like for internal gravity waves, energy
propagates perpendicularly to the phase!

8.3.2 Inertial Modes

If the fluid domain is bounded, the equations of motion need to be completed by the
boundary conditions u - n = 0. The inertial modes are the oscillation modes of a
rotating inviscid fluid contained in a reservoir. Setting @ as the mode frequency, the
associated flow verifies

iovu+e, xu=—-VP
V-u=0 (8.21)
u-n=20 on S

which we wrote with non-dimensional variables following (8.5). Now, let w, and
wy, be two distinct eigenfrequencies, then
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/ u,-utdv =0 (8.22)
)

i.e. inertial modes are orthogonal with respect to this scalar product. This property

is a consequence of (8.21) when it is written for two different modes of frequency
w, and w,,. Indeed,

iogu, +e,xu, =—VP,

8.23

{ —iwyu,); +e xut=—-VP* (8:23)

Taking the scalar product of the first equation with the complex conjugate u,: and
the second equation with u,,, adding the results and integrating over the whole fluid
volume leads to

i(w, —a)m)/ u, -um*dV—i—/ [uy-(e; xw,) +u,-(e;xuy)]dV =0
) )

where we used the boundary conditions to eliminate the pressure term. The last two
terms are of opposite sign so that we are left with (8.22) since w,, # w,.

Another important property of inertial modes is that, like their wavy counterpart,
their frequency is less that 262 or, for the scaled w, less than unity. This result comes
from the momentum equation when projected on u* and integrated over the fluid’s
volume. It turns out that

/ Im[(u* x u) - e,]dV
W)

/ R7A%
)

Schwarz inequality, [Im[(u* x u) - e.]| < |[u* x u| < |u|?, leads to

/ [Im[(u™ x u) - e,]|dV
¥) <1 (8.24)

/ D1R%A%
)

For some simple containers, the spectrum, namely all the possible values of w,
can be computed. In this case, the eigenvalues are dense in the interval [0,1]. This
means that for any real number in this interval, we may find a frequency w as close
to this number as we wish (see the box “The inertial modes in the sphere” for a
detailed example).

o] <
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8.3.3 The Poincaré Equation

If we now take the divergence of (8.21), the system can be reduced to a single
equation on the pressure, namely

AP — ——=0 8.25
w? 972 (8.25)

This equation is known as Poincaré’s equation since the work of Elie Cartan (1922).
This equation is completed by the boundary condition u - n = 0, which can be
reexpressed with the pressure as:

—o'n-VP +(m-e)(e.-VP)+iw(e,xn)-VP =0 (8.26)

The Poincaré equation completed with the foregoing boundary condition is
peculiar as it constitutes a mathematically ill-posed problem. Indeed, since w < 1,
this equation is of hyperbolic type, like the wave equation. However, unlike the wave
equation, boundary conditions are imposed to the solutions of the Poincaré equation.
This makes an ill-posed problem in the sense of Hadamard. In the general case,
solutions own many singularities which endow inertial modes with very unusual
properties as illustrated in Fig. 8.2.

Nr=560 L=2000 M=0 E=8.0x10""" #=0.350 CL=if

Fig. 8.2 A singular inertial mode: this figure shows the kinetic energy of an inertial mode inside a
spherical shell. This meridian cut shows that the mode is concentrated along a periodic path of the
characteristics of the Poincaré equation (this periodic path is called an attractor). When viscosity
decreases (here the Ekman number is 8 X 10719), the mode gets more focused around the attractor
and becomes singular at a vanishing viscosity (see Rieutord et al. 2001, for more details)



302

8 Rotating Fluids

Let us write the Poincaré equation (8.25) as

PP (1=’ PP _
ay? w? 02

2P
0x?

(8.27)
The boundary condition v - n = 0 yields
1 P
l——)z—=0
+ ( a)z) b4 Py
(8.28)

when cylindrical coordinates are used. It is
derived by using

aP 1 oP

1
n=————_(re, +ze,)
2+ 22

1 ( opP laP)
io— +

Vs =

11— w2 ds | s 0p
(8.29)
1 0P
V= T (8.30)
iw 0z

The dispersion relation of inertial modes in a
full sphere has been first obtained by Bryan
(1889), who proposed to change the
z-coordinate into

, iw
I =——Fz
V1—w?

so that Poincaré equation turns into Laplace’s
one. With this new system of coordinates, the
bounding sphere of radius R becomes:

2, 2 ”
XAy =1 (8.31)

R2 B2
with B2 = 1312 R?. This is the equation of a

one sheet axisymmetric hyperboloid. To
solve Laplace equation, we need to use a
coordinate system which is appropriate to
this new geometry. These coordinates are
those of the oblate ellipsoid Angot
(1949,1972).

This coordinate system uses the following
surfaces:

The inertial modes in the sphere

X242 2 1
atcos® y  a?sin’y
X242 2
a?cosh®§  a?sinh?§
where we identify
R ,
a* = sin® y = o’

1—w?’

The ellipsoidal coordinates £, y, ¢ are related
to the cartesian ones by

x = acosh&cos ycosg
y = acosh§ cos ysing
7 = asinhsin y

(8.32)

and the solutions of the Laplace equation are
of the form:

PE x.9) =Y A P["(sin )

Im
13,"' (i sinh £)e™”

where the P;" are the Legendre polynomials.
Noting that

1 —w?
7= aisinh&sin y
we can set 4. = i sinh & and n = a sin y; then

s = x>+ y2 = /(> = )1 — p?)

(8.33)
anda = 1/(1 — »?) if we set R = 1. The

solution is therefore:

P=Y" AP (1) Prgue

Im

&= P=) A P"(IV1— 0?) P (u)e™

Im
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The inertial modes in the sphere

The boundary conditions (8.28) need to be dpry’
. Y ons (8.28) (1 — o)=L = mPy (8.35)
rewritten with the variables (7, n). We find do
T W _ @=1—p?): which permits the computation of the
O iz na frequencies of inertial modes in the sphere. If
we consider the case of axisymmetric modes,
o _ s i _ p’—a®)Va>—1 . . y Py
s A E A m = 0, this relation is now simply —- = 0

(8.34)  or w = #1. The eigenfrequencies are thus

with A = ?72 _ aQH/Q. Using these relations the roots of the Legendre polynomial

0
on the sphere, at n = ﬁ, we finally P,l (w) = 1— a)z%. All these roots are
obtain the dispersion relation: between —1 and 1 (which meets the

constraint (8.24)) and when £ —> +00,
these root form a dense set in this interval.

8.3.4 Rossby Waves

Rossby waves constitute a wave category which is very important in planetary
atmospheres. They are often called planetary waves.'

Let us restart the derivation of the dispersion relation for inertial waves but
with the assumption that the fluid is contained in a very thin layer like the Earth
atmosphere. We set the z-axis along the vertical, the x-axis towards East (parallel to
the Earth rotation) and the y-axis to the North. We look for a purely two-dimensional
wave solution, where vertical motions are negligible compared to the horizontal
ones. The dispersion relation of such waves cannot be derived from the one of
inertial waves since we now impose the condition v, = 0. The simplification by
v, which is needed to derive (8.18) is no longer possible. Thus, the derivation needs
to be started ab initio. The equations of the flow are:

iov+22(y) xv=-VP

8.36

V.v=0 ( )

When writing this system, we explicitly mention the dependence 2 = 2 (y) since

the local rotation vector depends on the latitude. We underline that since we restrict

the motions to the horizontal ones, the horizontal part of £ does not play any role;
we just need to consider the component of 2 along the z-axis. We thus write:

iov+282(y)e, xv=—-VP

'See Longuet-Higgins (1964).
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where £2(y) = £2sin A(y) , A being the latitude. We have

oP
iwvy —2802(y)vy = ~or
X

oP
iwv, +282(y)vx = o (8.37)
Y
vy n vy 0
ox dy

Eliminating the pressure by taking the curl, we find the vertical component ¢ of the
vorticity:

Yy

This equation shows that the relation between 2 and the latitude is essential. Now
a standard approximation, called the B-plane approximation, consists in setting %
to a constant value. In atmospheric sciences, f is called the gradient of the planetary
vorticity (2d §2 /dy). With this assumption, we easily find the dispersion relation of
Rossby waves:

2k ds2
w=—F— (—) (8.39)
ki +k; \ dy
This relation shows that wk, < 0 since % > 0. Rossby waves thus propagate to the

x < 0, that is to say to the West, opposite to the Earth rotation. They are retrograde
waves. The group velocity

ee,
V=270 (62 = KDe, + 2.k, ) /1

shows that energy has no preferred direction.

The form of the dispersion relation of Rossby waves shows why we could not
have derived it from the one of inertial waves: the variation of £2 is crucial. In
particular, we note that if the velocity field of the perturbation is a plane wave,
this is not the case for the pressure fluctuation because %—i # ik, P. In fact,
Rossby waves are rather a class of inertial modes which meet some constraints like
bidimensionality. This is why, when a container does not admit closed geostrophic
contours, the geostrophic flow is replaced by an infinite sum of Rossby waves,

namely by inertial modes which are quasi 2D and of very low frequency.”

2A detailed discussion of this question may be found in Greenspan (1969).
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8.3.4.1 Planetary Modes

Let us now generalize the foregoing results by considering the Rossby waves over
the whole sphere. We still consider that they propagate in a very thin fluid layer
covering a sphere, but we abandon the B-plane approximation. Such modes are
usually called planetary modes.

Because the velocity field is two-dimensional, we may use a stream function to
describe the flow. We thus introduce y (6, ¢), which is such that

v=Vx(xe)
We derive the equation for y by applying the e, - Vx operator to (8.21). We get
ive,-VxVx(ye)+e -Vx(e,xu)=0

which leads to

a
ia)A)(+—X =0
dg

on a sphere of unit radius. It is natural to decompose the stream function y on the
set of spherical harmonics, which is a complete base for the functions defined on
the sphere. Thus, setting

X = ZXZmYZm
Lm

we find that an eigenmode is represented by a single spherical harmonic to which
corresponds the eigenfrequency

m

Wem = m (8.40)

We derived this dispersion relation using the spherical harmonics differential
equation AY" = —£(£ 4 1)Y;" (see 12.31).

The expression of wy, shows that the (angular) phase velocity —w/m =
—1/€(¢ + 1) is always negative.> Thus, like Rossby waves, planetary modes
propagate to the West. Figure 8.3 illustrates the wind pattern generated by these
waves in the Earth atmosphere.

3We recall that we set y proportional to e! (@' +7¢),
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g
Cold air,

T ..
. -

Fig. 8.3 Rossby waves in the Earth atmosphere: in shaping the interface between cold air and
warm air, Rossby waves have a determining influence on the weather at mid-latitudes. Credit: City
University of New York

8.4 The Effects of Viscosity

Until now we neglected the viscosity. We showed, while introducing the rotation
time scale, that viscous terms are controlled by the Ekman number, which value
is usually very small. Hence, the effects of viscosity are important only in places
where the gradient of velocity is strong, namely in boundary (or shear) layers.

As above, we shall consider the limit of vanishing Rossby numbers so as to
(again) neglect the nonlinear terms. Then, boundary layers usually result from a
balance between viscous terms and the Coriolis term. They are called Ekman layers.
The boundary layer flow can be formally solved, as we shall see below, because the
equations governing the flow are linear, unlike the general boundary layers that we
studied in Chap. 4 (like the Blasius flow for instance).

8.4.1 The Method

In order to simplify the discussion, we shall concentrate on the steady case only,
namely on the geostrophic flow (an example of the unsteady case can be found
in Rieutord 2001). The idea of the method is to divide the solution into small
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subsolutions which are easy to derive. For this, we first expand the solution into
powers of the small parameter ~/E, which is the thickness of the layer (just like
1/+/Re in Chap.4). We thus write

u=uy+vEu +Eu +..., p=po+vVEp +... (8.41)

Then, each order u, is split into two parts: the boundary layer part i, and the interior
part u,,. The derivation of each of these terms is much simpler than the full solution.
Summing them together allows us to obtain a solution valid up to the chosen order
(usually one or two).

8.4.2 The Boundary Layer Solution

The boundary layer solution is simpler than the general one because the flow is
along the boundary and the velocity variations are dominated by the gradients along
the normal to the wall (see Chap. 4).

Let n be the outer normal of the wall, and let us rewrite (8.5) with Ro = % =0.
We find

e, xu=-Vp+EAu (8.42)
We now make the decomposition
u = Uy + o, P =Do+ Do

There, uy is nothing but the geostrophic solution. ity and py are the corrections to add
to the geostrophic solution so that the boundary conditions are met. Since e, X 7y =
—VD, then

e, X ilg = —V o + EAiig (8.43)

where we neglected EAuy since it is O(E) while other terms are of order unity.
Let £ be the coordinate along the normal of the wall directed towards the
container’s interior. Projected along n (8.43) yields
ap ~
2 = (e. x it

&3

Since py is a boundary layer quantity, its variation along & is very fast. If VE is the
thickness of the layer as shown below, then 3 5o/9€ is O(1/+/E) but n - (e, x i) is
O(1). This implies that the normal derivative of py is zero. Hence, py is a constant
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across the boundary layer. We find here again the result derived from the Prandtl
equations, which control a general boundary layer (see 4.37b). Since the value of
Do is zero outside the boundary layer, py is vanishing everywhere. The pressure
correction in the boundary layer is therefore of the next order, that is O(+/E). We
thus have to write

p=Po+ VE@ + p)
Keeping only the O(1) terms in (8.43), we have

o, P

erIjl():

where we introduced the stretched coordinate ¢ such that £ = +/E¢. Taking the
cross product of this equation with n and observing that ity - n = 0, we find that
. 9%n x i1
—(n-e)uy = o (8.45)
On the other hand i1y = (iip-n)n + (n X itp) X N = (N X ity) X n since we are dealing
with boundary layer quantities. (8.44) may be rewritten as

ap 021
(n'ez)(nx ﬁo)—ez~(nx ﬁo)n = ai;ln_;r_ ?’420
- 9
= (n-e)(mxu) = 8_52 (8.46)

where we identified the vectors belonging to the tangent plane. Multiplying (8.46)
by i and adding it to (8.45), we deduce that

2

a—;z(n X Uy + i) = i(n-e)(m X iy + i) (8.47)

This equation is easily solved. We find

(n x ilg + ifig) = (n X i + i) 0 EXP (—;,/i(n : ez)) (8.48)
The integration constant (n x it 4+ iit);=o is given by the flow outside the boundary
layer. For instance, if the boundary conditions are u = 0 on the wall, then, the

solution must be such that ity + up = 0 on the wall. Hence (n X iy + iitg);=0 =
—(n X ug + i%o)wal, o that

(0 X i+ 17i0) = —(n X T + T wan exp (£ V/i(m - 2)) (8.49)
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The solution (8.48) calls for some comments: First let us note that the velocity
has a changing orientation within the boundary layer. Indeed, let us assume, for
instance, that n = e; and #y = Ue, on the wall. Then, (8.48) changes into

S ,
P2 e e (8.50)
ity = Ue™ sin¢
where we set ¢’ = £/+/2. The “complete” solution reads
u=u +u=U ((1 —cost’e e, +sint’e™ ey) (8.51)

To illustrate the shape of the velocity field, we draw the velocity vector as a function
of the “depth” ¢’. This yields a spiral known as the Ekman spiral (see Fig. 8.4).

A second comment about (8.48) concerns the thickness of the Ekman layer
which is

2E
|n'ez|

where L is the length scale. This expression shows that if the wall is parallel to
the rotation axis, the thickness of the Ekman layer is infinite. In fact, in this very
case, the analysis that led to (8.48) is no longer valid. This difficulty arises for
instance when one deals with the geostrophic flow inside a sphere. At the equator,
the boundary layer is singular: this is the equatorial singularity. It may be shown
that for latitudes within an equatorial band of latitudinal extension O(E'/?), the
thickness of the layer is O(E?/®). Thus, for a development in powers of E'/2, the
new thickness of the layer, scaling like E*/> appears to be of infinite size since
limg_, E?>/*~1/2 = co. More details may be found in the original paper of Roberts
and Stewartson (1963).

0.4f

:S%
Fig. 8.4 The Ekman spiral: B
on the boundary E
u(¢’ = 0) = 0, while outside 01k ‘ ‘ ‘ ‘ ‘ ]
the boundary layer 0.0 0.2 0.4 0.6 0.8 1.0 1.2

ll(f/ g OO) = €y Ux
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8.4.3 Ekman Pumping and Ekman Circulation

When we derived (8.48), we just solved the momentum equation, leaving aside mass
conservation. It may well be that V - &1y # 0. Fortunately, we need not throw away
our solution (8.48). Let us be more explicit. If x and y are the coordinates in the
tangent plane, the projection of (8.48) on this basis gives

(8.52)

i = —@ cos ¢’ +E(; sin¢)e ™t
i = (@) sin¢’ — ) cos et

where %’ and ﬁg are the x and y-components of the geostrophic flow taken on the
wall. We now compute the divergence of iy noting that V - iy = 0. We have:

~0 ~0 —0 —0
i aﬁ = (au" — aﬁ) sinf’e™ = —(n-V xg)sin¢’e™?
ox dy ay ox
This derivation is purely formal because we did not take into account the curvilinear
nature of the coordinates; however, it keeps the dominant terms. This expression
shows that the divergence is actually proportional to the normal component of the
vorticity of the geostrophic flow.

This divergence is generally non-zero and is compensated by a flow along n. Let

us denote this flow &'. It verifies

o0 du) o 0
B oy e
Setting R(x,y) = n-V X Ug,, then

~!
%—L; = R(x,y)sin¢’e™?

which is easily integrated, remembering that § = +/2E {’; it turns out
i = —VER(x,y) e cos (z’ _ %) (8.53)
The important point shown by this expression is the fact that this new component of

the boundary layer flow is of a higher order in powers of +/E, so that the foregoing
results are still valid, fortunately! We thus write

i =VEiy
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This new component of the boundary layer flow is very important for the large-
scale dynamics. We indeed observe that it is non-zero on the boundary at { = 0.
This means that in order for the boundary conditions to be verified at first order, the
boundary layer flow needs to be completed by an interior one of the same order. Let
us call this new interior flow u;. As Uy it verifies the geostrophic (8.7) but it meets a
different boundary condition. Indeed, we now demand that

(uy + ) m=0 (8.54)

on the boundary.

The new component of the boundary layer flow, i1}, is called the Ekman pumping.
This “pumping” is similar to the one we met with the Blasius flow. It may just be
either positive of negative, meaning that the layer either pumps in or out the matter,
depending on the sign of the local vorticity. This pumping forces the component u;
of the interior flow. This new component is known as the Ekman circulation. We
shall see below that despite its small amplitude, Ekman circulation is crucial to the
large-scale dynamics.

We have now all the pieces to write down the steady solution complete at first
order. With obvious notations, we may write it:

U = Ugeo + ;lgeo + ‘/E(’:lpump + ucirc) + O(E) (855)

8.4.4 An Example: The Spin-Up Flow

The spin-up flow is the large-scale flow that arises within a rotating fluid when an
exterior stress increases the angular velocity. For instance, when a liquid in some
container rotates as a solid body, like the container, at an angular velocity 2, a
sudden change of the angular velocity of the container, by A2, will generate a fluid
flow, that will lead to the new solid body rotation at 2 + AS. This transient flow
may be split in several steps one of which is quasi-steady and called the spin-up (or
spin-down) flow.

8.4.4.1 Spin-Up Driven by a Solid Plane

The simplest set-up to study a spin-up flow is to consider a viscous incompressible
fluid in the neighbourhood of a solid plane staying at z = 0. The plane rotates
uniformly at = §2e,. The viscous fluid is in the half-space z > 0. The rotation of
the plane is increased instantaneously by ASf2e,. After a transient of a few rotation
periods, Ekman layers have formed and a quasi-steady flow takes place.
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To study this flow we use a frame attached to the bounding plane. Far from this
plane the fluid rotates at the angular velocity —AS2e;. In this region, viewed from the
plane, there is a geostrophic flow vg, = —AS§2e, x r. This is our basic geostrophic
solution that needs to be completed by Ekman layers. Inserting this solution into
(8.49), we get the needed boundary layer corrections so that v = 0 at z = 0. Using
cylindrical coordinates (s, ¢, z), we get

ug = AQssin’e¢
/ 8.56
u, = AR2s(cos¢’e™ —1) (8.56)
This solution shows that the spin-up flow is diverging in the boundary layer (u; > 0),
which shows that this boundary layer “sucks” the outer fluid. Since the boundary is
plane we can use (8.53). Noting that n = e, and

R()C,y) =€;- V x (—2AQCZ X r) = -2A8
we deduce that
ii, = 2ARVE cos ({' —n/4)e™¢

This component of the boundary layer flow induces a pumping of the outer fluid into
the boundary layer because i;(0) # 0. Thus, in order that the boundary condition
u, = 0 be verified, the outer solution needs to be completed by an O(\/E ) solution
of the inviscid equations such that

u(g' =0) = —i.(¢' = 0)

In Fig.8.5, we show schematically the radial and vertical components of the
boundary layer flow. A solid body rotation should be added in thought.

Z

~]

“Rotation axis
Fig. 8.5 Meridian view of a
spin-up flow in the
neighbourhood of a rotating
plane. The radial component Pumping

of the flow only exists inthe EEEEEEN bbbt
boundary layer. To insure

mass conservation the T
boundary layer absorb some ~ “
mass from the interior. In a Radial flow
spin-dow flow all the flows
would be reversed
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The radial flow in the boundary layer is easily observable in a glass of water when
we try to dissolve some sugar by stirring the water with a tea-spoon. When we stop
stirring, we observe that the sugar gathers on the rotation axis of the water on the
bottom of the glass. This is the signature of the radial component of the boundary
layer flow, which is converging in the spin-down case, gathering the sugar at the
centre.

8.4.4.2 Spin-Up Within a Sphere

As a second example, we now consider a viscous incompressible fluid inside a
sphere whose angular velocity increases very slowly with time. In this ideal case
the spin-up flow is steady. Let £2 be the acceleration of the rotation, the natural
scaling of the velocity field is

2R
vV=—u
282
If we choose (2£2)™! as the time scale and the radius of the sphere R as the length
scale, the momentum equation written in a frame corotating with the sphere reads

ou
a—+R0(u~V)u+eru+err:—Vp+EAu

T
The acceleration term € x r that yields the term e, X r is sometimes called the Euler
force. The Rossby number is assumed to be vanishingly small since we focus on
very small accelerations. The nonlinear terms are therefore neglected and since we
look for steady solutions, we’ll have to solve

e,xu+e xr=-Vp+ EAu
V.u=0 (8.57)
u=20 on r=1

To solve this system, it is convenient to split the solution in the following way:
u = 2ze, — s€; + Ugeo(s) + it

where we used the cylindrical coordinates (s, ¢, z). The 2ze, — se; terms represent a
particular solution of vanishing divergence, that cancels the forcing term e, X r.
But this particular solution does not meet the boundary condition n - u = 0.
Unfortunately the geostrophic solution which is parallel to e, cannot help. The mass
flux of this particular solution on the bounding sphere needs thus to be compensated
by the boundary layer mass flux. The particular solution therefore represents the
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Ekman circulation part of the solution. Since this circulation is E'/? times smaller
than the geostrophic part, we conclude that g, is O(E - 2). It means that that Ugeo
diverges at zero viscosity, but this is not surprising since the sphere cannot entrains
an inviscid fluid!

Let us come back to the resolution of our problem. We note that the Ekman
pumping on the wall is such that

i +e -(2ze,—se) =0 = @i, =3sin’6 —2

where 6 is the polar angle of the spherical coordinates. On the other hand (8.15)
shows that uge,(s) = U(s)e, and induces a boundary flow given by (8.49)

g = —U(sinf) sinoe™
8.58
{ iy =—U(sinf) cosae™ (8.58)
where
cos 6
a=¢ 5

Here, we’ll assume that cos @ > 0 thus restricting our discussion to the Northern
hemisphere. We note that on the bounding sphere » = 1 and s = sin 6. Finally, the
geostrophic flow with its boundary layer correction reads

(8.59)

ug = —U(sinf) sinawe™
U(s) — U(sinf) cosae™

Uy

Mass conservation gives the relation between pumping and the foregoing flow. At
the leading order we have
du N 1 0
ar  sinf 00

(sin i) = 0 at r=1

Using the boundary layer variable ¢ = (1 — r)/+/E and the previous expression of
iy, we get

it _‘/Ei

& =030 (sinBU(sinB) sinaw e™*)

This equation is integrated between 0 and +o0 and leads to:

(¢ = 0) =

VE 98 (sin@U(sin0)
sin 6 960 2 cosb
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EY2 U(s)

0.0 0.2 0.4 0.8 0.8 1.0

B

Fig. 8.6 Left the analytic solution (8.60) of the geostrophic flow associated with the spin-up flow
in a sphere (solid line) and the numerical solution (pluses). The Ekman number is 10~7. The
difference between the two curves is less than a percent outside the Ekman layer. Right a meridian
view of the velocity field. The Ekman number is E = 4 X 10~* large enough to make the boundary
layer flow clearly visible

Since we know the expression of #,({ = 0), we get the differential equation for
U(sin 0). We finally get

U(sin0) = —\/%sinG (1 — sin? 9)3/4

valid on the sphere r = 1. The geostrophic flow therefore reads

Ugeo(s) = —\/%s (1-s)"e, (8.60)

using the cylindrical coordinate s = r sin 6.

We have plotted this solution together with the full numerical solution of (8.57)
in Fig. 8.6 (left) when E = 107", The difference between the analytic and numerical
solution is not noticeable. That would not be the case if we used E = 4 x 10~*
as in Fig. 8.6 (right) to better show the meridian flow. In fact, at E = 4 x 10~ the
boundary layer theory is not performing well (although E is small).

8.4.4.3 Conclusion: The Spin-Up Time

We have summarized in Fig. 8.7 all the components of a spin-up flow in a spherical
container, including the boundary layer singularity.

One remarkable property of the spin-up flow is that the Ekman circulation
controls the time scale of the spin-up. Indeed, this circulation insure the transport
of angular momentum from the walls to the interior. We may thus evaluate the time
scale of the process of synchronization between the fluid and the container. This is
typically the turnover time scale of the Ekman circulation. If L is the characteristic
size of the container, the amplitude of this circulation is 2L A/E. It leads to the
spin-up time scale:
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Fig. 8.7 Schematic view of a
spin-up flow within a sphere.
u is the geostrophic
azimuthal flow; i is the
meridional flow within the
Ekman layer and i is the
Ekman pumping forcing the
Ekman circulation u;
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This expression shows that the spin-up of the fluid is realized on a time scale much
shorter than the one imposed by viscous diffusion. Indeed,

(8.61)

L2 Q7! Q7!
Tvisc - = ——
v T E T VB

since E < 1.

This new time-scale may be revealed by a simple experiment using a glass of
water. If we make rotating the water within the glass, we can measure the time by
which the water has ceased to rotate after our forcing has been stopped. Using a
glass of water of 7cm in diameter, rotating the water at one round per second, we
find that the fluid flow has almost vanished 2.5 min after. Computing the diffusion
time scale, we find T = 0.035%/107° ~ 20 min, which is much larger. This spin-
down flow has a time scale, which we evaluate from (8.61), of 20 s, which is much
closer to our observation. Within such an experiment, nonlinear effects are quite
strong since the rotation ends at zero; however, orders of magnitude are correct,
especially if we take a mean rotation of half a round per second.

8.5 Hurricanes
8.5.1 A Qualitative Presentation
In the introduction to this chapter, we mentioned one of the most violent phenomena

in the terrestrial atmosphere, namely the hurricanes. We are now ready to explore
their dynamics in some details.
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First, let us observe that a low pressure region in the Earth atmosphere cannot
be filled up by the geostrophic flow that it triggers: the winds are orthogonal to
the pressure gradient. Thus, only non-geostrophic effects may fill up a low pressure
region. Because of their weakness, the lifetime of such a pressure field is quite long.

In the case of a hurricane, the low pressure field has an especially long life time
due to the existence of an energy source: the tropical ocean.

The dynamics of a hurricane can be understood with a simple model. One can
then derive the value of the central depression as a function of the temperature of
the ocean and of the upper atmosphere. However, before getting into these details,
we shall first give a qualitative description of the hurricanes.

Let us consider the air near the surface of a tropical ocean: the percentage of
water vapour may be quite high there, due to the important evaporation. Such a
mixture is unstable to convection (see Chap.7): a rising fluid element will face
an adiabatic expansion which triggers the condensation of water vapour, releasing
latent heat, which amplifies the rise. This process is at the origin of cloud formation
and is called wet convection.

The low pressure created by the rising elements forces a geostrophic wind,
which contributes to make the sea more rough. The fraction of water vapour within
the air thus increases. The boundary layer has a radial drift which tries to fill up
the depression. Within the centre of the depression air is forced to rise, releasing
more and more latent heat and thus making the pressure even lower. Thus, the
phenomenon amplifies. However, we may observe that there is a maximum value
to the fraction of water vapour in the air: this is the saturation.

Thus we understand why hurricanes appear only in the tropics: the hotter the air,
the larger the mass fraction of water vapour. At lower temperatures, the water vapour
content is not enough to maintain the winds. It is also clear that above a continent
a hurricane dies. Finally, computing the resulting Coriolis force on the ascending
air column, we find that the depression should drift to the West as usually observed.
This tendency is sometimes counteracted by an anticyclonic air mass.

8.5.2 The Steady State: A Carnot Engine

A hurricane is actually a true Carnot engine, running with a heat source, the ocean,
and a cold source, the upper atmosphere. The thermal energy of the ocean is partly
converted into mechanical energy: the wind.

In Fig. 8.8 we show the Carnot cycle followed by a fluid element. From A to B
the fluid is heated at constant temperature: its water vapour mass fraction increases.
From B to C, it follows an adiabatic expa