
[image: A978-1-4471-6642-9_CoverFigure_HTML.jpg]

Undergraduate Topics in Computer ScienceSeries EditorIan MackiePalaiseau CX, France

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for undergraduates studying in all areas of computing and information science. From core foundational and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and modern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored by established experts in their fields, reviewed by an international advisory board, and contain numerous examples and problems. Many include fully worked solutions.
More information about this series at http://​www.​springer.​com/​series/​7592
				

Kent D. Lee
Python Programming Fundamentals2nd ed. 2014
[image: A978-1-4471-6642-9_BookFrontmatter_Figa_HTML.gif]

Kent D. LeeLuther College, Decorah, IA, USA

ISSN 1863-7310e-ISSN 2197-1781
Undergraduate Topics in Computer Science
					ISBN 978-1-4471-6641-2e-ISBN 978-1-4471-6642-9
https://doi.org/10.1007/978-1-4471-6642-9
© Springer-Verlag London 2014

Preface
Computer Science is a creative, challenging, and rewarding discipline. Computer programmers, sometimes called software engineers, solve problems involving data: computing, moving, and handling large quantities of data are all tasks made easier or possible by computer programs. Money magazine ranked software engineer as the number one job in America in terms of flexibility, creativity, low stress levels, ease of entry, compensation, and job growth within the field [4].
Learning to program a computer is a skill that can bring you great enjoyment because of the creativity involved in designing and implementing a solution to a problem. Python is a good first language to learn because there is very little overhead in learning to write simple programs. Python also has many libraries available that make it easy to write some very interesting programs including programs in the areas of Computer Graphics and Graphical User Interfaces: two topics that are covered in this text.
In this text, students are taught to program by giving them many examples and practice exercises with solutions that they can work on in an interactive classroom environment. The interaction can be accomplished using a computer or using pen and paper. By making the classroom experience active, students reflect on and apply what they have read and heard in the classroom. By using a skill or concept right away, students quickly discover if they need more reinforcement of the concept, while teachers also get immediate feedback. There is a big difference between seeing a concept demonstrated and using it yourself and this text encourages applying concepts immediately to test understanding. This is vital in Computer Science since new skills and concepts build on what we have already learned.
In several places within this book there are examples presented that highlight patterns of programming. These patterns appear over and over in programs we write. In this text, patterns like the Accumulator Pattern and the Guess and Check Pattern are presented and exercises reinforce the recognition and application of these and other abstract patterns used in problem-solving. Learning a language is certainly one important goal of an introductory text, but acquiring the necessary problem-solving skills is even more important. Students learn to solve problems on their own by recognizing when certain patterns are relevant and then applying these patterns in their own programs.
Recent studies in Computer Science Education indicate the use of a debugger can greatly enhance a student’s understanding of programming [1]. A debugger is a tool that lets the programmer inspect the state of a program at any point while it is executing. There is something about actually seeing what is happening as a program is executed that helps make an abstract concept more concrete. This text introduces students to the use of a debugger and includes exercises and examples that show students how to use a debugger to discover how programs work.
There are additional resources available for instructors teaching from this text. They include lecture slides and a sample schedule of lectures for a semester long course. Solutions to all programming exercises are also available upon request. Visit http://​cs.​luther.​edu/​~leekent/​CS1 for more information.
Python is a good language for teaching introductory Computer Science because it is very accessible and can be incrementally taught so students can start to write programs before having to learn the whole language. However, at the same time, Python is also a developing language. Python 3.1 was recently released to the public. This release of Python included many performance enhancements which were very good additions to the language. There were also some language issues with version 2.6 and earlier that were cleaned up at the same time that were not backwards compatible. The result is that not all Python 2 programs are compatible with Python 3 and vice versa. Because both Python 2 and Python 3 are in use today, this text will point out the differences between the two versions where appropriate. These differences will be described by inset boxes titled [image: $$ \bf{Python\,2\rightsquigarrow 3}$$] within the text where the differences are first encountered.
It is recommended that students reading this text use Python 3.1 or later for writing and running their programs. All Python programs presented in the text are Python 3 programs. The libraries used in this text all work with Python 3. However, there may be some libraries that have not been ported to Python 3 that a particular instructor would like to use. In terms of what is covered in this text, the differences between Python 2 and 3 are pretty minor and either language implementation will work to use with the text.
Acknowledgments
I would like to thank Nathaniel Lee, who not only let his dad teach him, but was a great sounding board and test subject for this text. Thank you, Nathan, for all your valuable feedback and for your willingness to learn. I’d also like to thank my wife, Denise, for her ongoing support while I have written. Thanks Denise. I know it has been work for you too.

Credits
At times in this text Microsoft Windows is referred to when installing software. Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Mac OS X is referred to at times within this text. Mac and Mac OS are trademarks of Apple Inc., registered in the U.S. and other countries.
This book also introduces readers to Wing IDE 101, which is used in examples throughout the text. Wing IDE 101 is a free simplified edition of Wing IDE Professional, a full-featured integrated development environment designed specifically for Python. For more information on Wing IDE, see www.​wingware.​com. Wingware and Wing IDE are trademarks or registered trademarks of Wingware in the United States and other countries.

Suggestions
I welcome suggestions for future printings of this text. If you like this text and have suggestions for future printings, please write up your suggestion(s) and email them to me. The more complete your write up, the more likely I will be to consider your suggestion. If I select your suggestion for a future printing I’ll be sure to include your name in the preface as a contributor to the text. Suggestions can be emailed to kentdlee@luther.edu or kentdlee@gmail.com.

Contents

 1 Introduction
 1

 1.​1 The Python Programming Language
 2

 1.​2 Installing Python and Wing IDE 101
 3

 1.​3 Writing Your First Program
 7

 1.​4 What Is a Computer?​
 8

 1.​5 Binary Number Representation
 10

 1.​6 What Is a Programming Language?​
 13

 1.​7 Hexadecimal and Octal Representation
 15

 1.​8 Writing Your Second Program
 17

 1.​9 Syntax Errors
 18

 1.​10 Types of Values
 20

 1.​11 The Reference Type and Assignment Statements
 20

 1.​12 Integers and Real Numbers
 22

 1.​13 Strings
 24

 1.​14 Integer to String Conversion and Back Again
 25

 1.​15 Getting Input
 26

 1.​16 Formatting Output
 27

 1.​17 When Things Go Wrong
 30

 1.​18 Review Questions
 33

 1.​19 Exercises
 33

 1.​20 Solutions to Practice Problems
 36

 2 Decision Making
 39

 2.​1 Finding the Max of Three Integers
 43

 2.​2 The Guess and Check Pattern
 45

 2.​3 Choosing from a List of Alternatives
 46

 2.​4 The Boolean Type
 48

 2.​5 Short Circuit Logic
 51

 2.​6 Comparing Floats for Equality
 51

 2.​7 Exception Handling
 52

 2.​8 Review Questions
 54

 2.​9 Exercises
 55

 2.​10 Solutions to Practice Problems
 58

 3 Repetitive Tasks
 63

 3.​1 Operators
 65

 3.​2 Iterating Over a Sequence
 67

 3.​3 Lists
 69

 3.​4 The Guess and Check Pattern for Lists
 72

 3.​5 Mutability of Lists
 74

 3.​6 The Accumulator Pattern
 77

 3.​7 Reading from and Writing to a File
 78

 3.​8 Reading Records from a File
 80

 3.​9 Review Questions
 83

 3.​10 Exercises
 84

 3.​11 Solutions to Practice Problems
 86

 4 Using Objects
 91

 4.​1 Constructors
 95

 4.​2 Accessor Methods
 96

 4.​3 Mutator Methods
 96

 4.​4 Immutable Classes
 98

 4.​5 Object-Oriented Programming
 98

 4.​6 Working with XML Files
 99

 4.​7 Extracting Elements from an XML File
 101

 4.​8 XML Attributes and Dictionaries
 102

 4.​9 Reading an XML File and Building Parallel Lists
 103

 4.​10 Using Parallel Lists to Draw a Picture
 105

 4.​11 Review Questions
 107

 4.​12 Exercises
 107

 4.​13 Solutions to Practice Problems
 110

 5 Defining Functions
 115

 5.​1 Why Write Functions?​
 116

 5.​2 Passing Arguments and Returning a Value
 117

 5.​3 Scope of Variables
 118

 5.​4 The Run-Time Stack
 122

 5.​5 Mutable Data and Functions
 125

 5.​6 Predicate Functions
 126

 5.​7 Top-Down Design
 128

 5.​8 Bottom-Up Design
 129

 5.​9 Recursive Functions
 129

 5.​10 The Main Function
 131

 5.​11 Keyword Arguments
 134

 5.​12 Default Values
 134

 5.​13 Functions with Variable Number of Parameters
 135

 5.​14 Dictionary Parameter Passing
 136

 5.​15 Review Questions
 137

 5.​16 Exercises
 137

 5.​17 Solutions to Practice Problems
 140

 6 Event-Driven Programming
 145

 6.​1 The Root Window
 146

 6.​2 Menus
 147

 6.​3 Frames
 148

 6.​4 The Text Widget
 149

 6.​5 The Button Widget
 149

 6.​6 Creating a Reminder!
 151

 6.​7 Finishing up the Reminder! Application
 152

 6.​8 Label and Entry Widgets
 153

 6.​9 Layout Management
 155

 6.​10 Message Boxes
 156

 6.​11 Review Questions
 157

 6.​12 Exercises
 157

 6.​13 Solutions to Practice Problems
 160

 7 Defining Classes
 163

 7.​1 Creating an Object
 164

 7.​2 Inheritance
 169

 7.​3 A Bouncing Ball Example
 174

 7.​4 Polymorphism
 176

 7.​5 Getting Hooked on Python
 177

 7.​6 Review Questions
 180

 7.​7 Exercises
 180

 7.​8 Solutions to Practice Problems
 186

 8 Appendix A:​ Integer Operators
 189

 9 Appendix B:​ Float Operators
 191

 10 Appendix C:​ String Operators and Methods
 193

 11 Appendix D:​ List Operators and Methods
 197

 12 Appendix E:​ Dictionary Operators and Methods
 199

 13 Appendix F:​ Turtle Methods
 201

 14 Appendix G:​ TurtleScreen Methods
 213

 15 Appendix H:​ The Reminder! Program
 221

 16 Appendix I:​ The Bouncing Ball Program
 225

 Glossary
 229

 References
 235

 Index
 237

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_1

1. Introduction

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

The intent of this text is to introduce you to computer programming using the Python programming language. Learning to program is a bit like learning to play piano, although quite a bit easier since we won’t have to program while keeping time according to a time signature. Programming is a creative process so we’ll be working on developing some creative skills. At the same time, there are certain patterns that can be used over and over again in this creative process. The goal of this text and the course you are taking is to get you familiar with these patterns and show you how they can be used in programs. After working through this text and studying and practicing you will be able to identify which of these patterns are needed to implement a program for a particular task and you will be able to apply these patterns to solve new and interesting problems.
As human beings our intelligent behavior hinges on our ability to match patterns. We are pattern-matchers from the moment we are born. We watch and listen to our parents and siblings to learn how to react to situations. Babies watch us to learn to talk, walk, eat, and even to smile. All these behaviors are learned through pattern matching. Computer Science is no different. Many of the programs we create in Computer Science are based on just a few patterns that we learn early in our education as programmers. Once we’ve learned the patterns we become effective programmers by learning to apply the patterns to new situations. As babies we are wired to learn quickly with a little practice. As we grow older we can learn to use patterns that are more abstract. That is what Computer Science is all about: the application of abstract patterns to solve new and interesting problems.
PRACTICE is important. There is a huge difference between reading something in this text or understanding what is said during a lecture and being able to do it yourself. At times this may be frustrating, but with practice you will get better at it. As you read the text make sure you take time to do the practice exercises. Practice exercises are clearly labeled with a gray background color. These exercises are your chance to use a concept that you have just learned. Answers to practice exercises are included at the end of each chapter so you can check your answers.
1.1 The Python Programming Language
Python is the programming language this text uses to introduce computer programming. To run a Python program you need an interpreter. The Python interpreter is a program that reads a Python program and then executes the statements found in it, as depicted in Fig. 1.1. While studying this text you will write many Python programs. Once your program is written and you are ready to try it you will tell the Python interpreter to execute your Python program so you can see what it does.[image: A978-1-4471-6642-9_1_Fig1_HTML.gif]
Fig. 1.1The Python Interpreter

For this process to work you must first have Python installed on your computer. Python is free and available for download from the internet. The next section of this chapter will take you through downloading and installing Python. Within the last few years there were some changes to the Python programming language between Python 2 and Python 3. The text will describe differences between the two versions of Python as they come up. In terms of learning to program, the differences between the two versions of Python are pretty minor.
To write Python programs you need an editor to type in the program. It is convenient to have an editor that is designed for writing Python programs. An editor that is specifically designed for writing programs is called an IDE or Integrated Development Environment. An IDE is more than just an editor. It provides highlighting and indentation that can help as you write a program. It also provides a way to run your program straight from the editor. Since you will typically run your program many times as you write it, having a way to run it quickly is handy. This text uses the Wing IDE 101 in many of its examples. This IDE is simple to install and is free for educational use. Wing IDE 101 is available for Mac OS X, Microsoft Windows, and Linux.
When learning to program and even as a seasoned professional, it can be advantageous to run your program using a tool called a debugger. A debugger allows you to run your program, stop it at any point, and inspect the state of the program to help you better understand what is happening as your program executes. The Wing IDE includes an integrated debugger for that purpose. There are certainly other IDEs that might be used and nothing presented in this text precludes you from using something else. Some examples of IDEs for Python development include Netbeans, Eclipse, Eric, and IDLE. Eric’s debugger is really quite nice and could serve as an alternative to Wing should Wing IDE 101 not be an option for some reason.

1.2 Installing Python and Wing IDE 101
To begin writing Python programs on your own computer, you need to have Python installed. There were some significant changes between Python 2.7 and Python 3 which included a few changes that make programs written for version 3 incompatible with programs written for version 2.7 and vice versa. If you are using this book as part of an introductory course, your instructor may prefer you install one version or the other. Example programs in this text are written using Python 3 syntax but the differences between Python 2 and 3 are few enough that it is possible to use either Python 2 or 3 when writing programs for the exercises in this text. Inset boxes titled Python 2
[image: $$\leadsto $$]
3 will highlight the differences when they are first encountered in the text.[image: A978-1-4471-6642-9_1_Fig2_HTML.gif]
Fig. 1.2Installing Python on Windows

If you are running Windows you will likely have to install Python yourself. You can get the installation package from http://​python.​org. Click the DOWNLOAD link on the page. Then pick the appropriate installer package. Most will want to download the latest version of the Python 3 Windows x86 MSI Installer package. Once you have downloaded it, double-click the package and take all the defaults to install it as pictured in Fig. 1.2.[image: A978-1-4471-6642-9_1_Fig3_HTML.jpg]
Fig. 1.3Installing Python on Mac OS X

If you have a Mac, then Python is already installed and may be the version you want to use, depending on how new your Mac is. You can find out which version of Python you have by opening a terminal window. Go to the Applications folder and look in the Utilities sub-folder for the Terminal application. Start a terminal and in the window type python. You should see something like this:[image: A978-1-4471-6642-9_1_Figa_HTML.gif]

[image: A978-1-4471-6642-9_1_Fig4_HTML.jpg]
Fig. 1.4Installing Wing IDE 101 on Windows

You can press and hold the control key (i.e. the ctrl key) and press ‘d’ to exit Python or just close the terminal window. If you do not have version 3.1 or newer installed on your Mac you may wish to download the latest Python 3 MacOS Installer Disk Image from the http://​python.​org web site. Once the file is downloaded you can double-click the disk image file and then look for the Python.mpkg file and double-click it as pictured in Fig. 1.3. You will need an administrator password to install it which in most cases is just your own password.
While you don’t need an IDE like Wing to write and run Python programs, the debugger support that an IDE like Wing provides will help you understand how Python programs work. It is also convenient to write your programs in an IDE so you can run them quickly and easily. To install Wing IDE 101 you need to go to the http://​wingware.​com web site. Find the Download link at the top of the web page and select Wing IDE 101 to download the installation package. Be sure to pick Wing IDE 101 to download if you don’t want to pay for a license. If you are installing on a Mac, pick the Mac version. If you are installing on Windows, pick the Windows version. Download and run the installation package if you are using Windows. Running the Windows installer should display an installer window like that pictured in Fig. 1.4. Take all the defaults to install it.
If you are installing Wing IDE 101 on a Mac then you need to mount the disk image. To do this you must double-click a file that looks like wingide-101-3.2.2-1-i386.dmg. After double-clicking that file you will have a mounted disk image of the same name, minus the .dmg extension). If you open a Finder window for that disk image you will see a window that looks like Fig. 1.5. Drag the Wing IDE icon to your Applications folder and you can add it to your dock if you like.[image: A978-1-4471-6642-9_1_Fig5_HTML.jpg]
Fig. 1.5Installing Wing IDE 101 on a Mac

[image: A978-1-4471-6642-9_1_Fig6_HTML.gif]
Fig. 1.6Configuring Wing’s Python Interpreter

1.2.1 Configuring Wing
If you look at Fig. 1.8 you will see that the Python interpreter shows up as Python 3.1.1. When you install Wing, you should open it and take a look at your Python Shell tab. If you see the wrong version of Python then you need to configure Wing to use the correct Python Shell. To do this you must open Wing and go to the Edit menu. Under the Edit menu, select Configure Python
[image: $$\ldots $$] and type in the appropriate interpreter. If you are using a Mac and wish to use version 3.1 then you would type python3.1. Figure 1.6 shows you what this dialog box looks like and what you would type in on a Mac. In Windows, you should click the browse button and find python.exe. This will be in a directory like [image: $$C$$]:[image: $$\backslash \textit{Python31}$$] if you chose the defaults when installing.[image: A978-1-4471-6642-9_1_Fig7_HTML.gif]
Fig. 1.7Configuring Indent Guides

There is one more configuration change that should be made. The logical flow of a Python program depends on the program’s indentation. Since indentation is so important, Wing can provide a visual cue to the indentation in your program called an indent guide. These indent guides will not show up in this chapter, but they will in subsequent chapters. Go to the Edit menu again and select Preferences. Then click on the Indentation selection in the dialog box as shown in Fig. 1.7. Select the checkbox that says Show Indent Guides.
That’s it! Whether you are a Mac or Windows user if you’ve followed the directions in this section you should have Python and Wing IDE 101 installed and ready to use. The next section shows you how to write your first program so you can test your installation of Wing IDE 101 and Python.

1.3 Writing Your First Program
To try out the installation of your IDE and Python you should write a program and run it. The traditional first program is the Hello World program. This program simply prints “Hello World!” to the screen when it is run. This can be done with one statement in Python. Open your IDE if you have not already done so. If you are using Windows you can select it by going to the Start menu in the bottom left hand corner and selecting All Programs. Look for Wing IDE 101 under the Start menu and select it. If you are using a Mac, go to the Applications folder and double-click the Wing IDE icon or click on it in your dock if you installed the icon on your dock. Once you’ve done this you will have a window that looks like Fig. 1.8.
[image: A978-1-4471-6642-9_1_Figb_HTML.gif]

In the IDE window you go to the File menu and select New to get a new edit tab within the IDE. You then enter one statement, the print statement shown in Fig. 1.8 to print Hello World! to the screen. After entering the one line program you can run it by clicking the green debug button (i.e. that button that looks like a bug) at the top of the window. You will be prompted to save the file. Click the Save Selected Files button and save it as helloworld.py. You should then see Hello World! printed at the bottom of the IDE window in the Debug I/O tab.[image: A978-1-4471-6642-9_1_Fig8_HTML.gif]
Fig. 1.8The Wing IDE

The print statement that you see in this program prints the string “Hello World!” to standard output. Text printed to standard output appears in the Debug I/O tab in the Wing IDE. That should do it. If it doesn’t you’ll need to re-read the installation instructions either here or on the websites you downloaded Python and Wing IDE from or you can find someone to help you install them properly. An IDE is used in examples and practice exercises throughout this text so you’ll need a working installation of an IDE and Python to make full use of this text.

1.4 What Is a Computer?
So you’ve written your first program and you’ve been using a computer all your life. But, what is a computer, really? A computer is composed of a Central Processing Unit (abbreviated CPU), memory, and Input/Output (abbreviated I/O) devices. A screen is an output device. A mouse is an input device. A hard drive is an I/O device.
The CPU is the brain of the computer. It is able to store values in memory, retrieve values from memory, add/subtract two numbers, compare two numbers and do one of two things depending on the outcome of that comparison. The CPU can also control which instruction it will execute next. Normally there are a list of instructions, one after another, that the CPU executes. Sometimes the CPU may jump to a different location within that list of instructions depending on the outcome of some comparison.
That’s it. A CPU can’t do much more than what was described in the previous paragraph. CPU’s aren’t intelligent by any leap of the imagination. In fact, given such limited power, it’s amazing how much we are able to do with a computer. Everything we use a computer for is built on the work of many, many people who have built layers and layers of programs that make our life easier.
The memory of a computer is a place where values can be stored and retrieved. It is a relatively fast storage device, but it loses its contents as soon as the computer is turned off. It is called volatile store. The memory of a computer is divided into different locations. Each location within memory has an address and can hold a value. Figure 1.9 shows the contents of memory location 100 containing the number 48.[image: A978-1-4471-6642-9_1_Fig9_HTML.gif]
Fig. 1.9Conceptual view of a computer

The hard drive is non-volatile storage or sometimes called persistent storage. Values can be stored and retrieved from the hard drive, but it is relatively slow compared to the memory and CPU. However, it retains its contents even when the power is off.
In a computer, everything is stored as a sequence of 0’s and 1’s. For instance, the string 01010011 can be interpreted as the decimal number 83. It can also represent the capital letter ‘S’. How we interpret these strings of 0’s and 1’s is up to us. We can tell the CPU how to interpret a location in memory by which instruction we tell the CPU to execute. Some instructions treat 01010011 as the number 83. Other instructions treat it as the letter ‘S’.
One digit in a binary number is called a bit. Eight bits grouped together are called a byte. Four bytes grouped together are called a word. [image: $$2^{10}$$] bytes are called a kilobyte (i.e. KB). [image: $$2^{10}$$] kilobytes are called a megabyte (i.e. MB). [image: $$2^{10}$$] megabytes are called a gigabyte (i.e. GB). [image: $$2^{10}$$] gigabytes are called a terabyte (i.e. TB). Currently memories on computers are usually in the 1–8 GB range. Hard Drives on computers are usually in the 500 GB to 2 TB range.

1.5 Binary Number Representation
Each digit in a decimal number represents a power of 10. The right-most digit is the number of ones, the next digit is the number of 10’s, and so on. To interpret integers as binary numbers we use powers of 2 just as we use powers of 10 when interpreting integers as decimal numbers. The right-most digit of a binary number represents the number of times [image: $$2^0=1$$] is needed in the representation of the integer. Our choices are only 0 or 1 (i.e. we can use one [image: $$2^0$$] if the number is odd), because 0 and 1 are the only choices for digits in a binary number. The next right-most is [image: $$2^1=2$$] and so on. So 01010011 is [image: $$0*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 1*2^0 = 83$$]. Any binary number can be converted to its decimal representation by following the steps given above. Any decimal number can be converted to its binary representation by subtracting the largest power of two that is less than the number, marking that digit as a 1 in the binary number and then repeating the process with the remainder after subtracting that power of two from the number.

 Practice 1.1

What is the decimal equivalent of the binary number [image: $$01010101_2?$$]

 Example 1.1

There is an elegant algorithm for converting a decimal number to a binary number. You need to carry out long division by 2 to use this algorithm. If we want to convert [image: $$83_{10}$$] to binary then we can repeatedly perform long division by 2 on the quotient of each result until the quotient is zero. Then, the string of the remainders that were accumulated while dividing make up the binary number. For example,[image: $$ \begin{array}{cccl} 83 / 2 &{} =&{} 41 &{} { remainder}~1 \\ 41 / 2 &{} = &{}20 &{} { remainder}~1\\ 20 / 2 &{} = &{}10 &{} { remainder}~0\\ 10 / 2 &{} = &{}5 &{} { remainder}~0\\ 5 / 2 &{} = &{}2 &{} { remainder}~1 \\ 2 / 2 &{} = &{}1 &{} { remainder}~0\\ 1 / 2 &{} = &{}0 &{} { remainder}~1 \end{array} $$]

The remainders from last to first are [image: $$1010011_2$$] which is [image: $$83_{10}$$]. This set of steps is called an algorithm. An algorithm is like a recipe for doing a computation. We can use this algorithm any time we want to convert a number from decimal to binary.

 Practice 1.2

Use the conversion algorithm to find the binary representation of [image: $$58_{10}$$].

To add two numbers in binary we perform addition just the way we would in base 10 format. So, for instance, [image: $$0011_2 + 0101_2 = 1000_2$$]. In decimal format this is [image: $$3+5=8$$]. In binary format, any time we add two 1’s, the result is 0 and 1 is carried.
To represent negative numbers in a computer we would like to pick a format so that when a binary number and its opposite are added together we get zero as the result. For this to work we must have a specific number of bits that we are willing to work with. Typically thirty-two or sixty-four bit addition is used. To keep things simple we’ll do some eight bit addition in this text. Consider [image: $$00000011_2 = 3_{10}$$].
It turns out that the 2’s complement of a number is the negative of that number in binary. For example, the numbers [image: $$3_{10} = 00000011_2$$] and [image: $$-3_{10} = 11111101_2$$]. [image: $$11111101_2$$] is the 2’s complement of [image: $$00000011$$]. It can be found by reversing all the 1’s and 0’s (which is called the 1’s complement) and then adding 1 to the result.

 Example 1.2

Adding 00000011 and 11111101 together gives us[image: $$\begin{array}{r} 00000011 \\ + 11111101 \\ = 100000000 \end{array}$$]

This only works if we limit ourselves to 8 bit addition. The carried 1 is in the ninth digit and is thrown away. The result is 0.

 Practice 1.3

If [image: $$01010011_2 = 83_{10}$$], then what does [image: $$-83_{10}$$] look like in binary? HINT: Take the 2’s complement of 83 or figure out what to add to [image: $$01010011_2$$] to get 0.

 [image: A978-1-4471-6642-9_1_Fig10_HTML.gif]
Fig. 1.10The ASCII table

If binary [image: $$11111101_2 = -3_{10}$$] does that mean that 253 can’t be represented? The answer is yes and no. It turns out that [image: $$11111101_2$$] can represent [image: $$-3_{10}$$] or it can represent [image: $$253_{10}$$] depending on whether we want to represent both negative and positive values or just positive values. The CPU instructions we choose to operate on these values determine what types of values they are. We can choose to use signed integers in our programs or unsigned integers. The type of value is determined by us when we write the program.
Typically, 4 bytes, or one word, are used to represent an integer. This means that [image: $$2^{32}$$] different signed integers can be represented from [image: $$-2^{31}$$] to [image: $$2^{31}-1$$]. In fact, Python can handle more integers than this but it switches to a different representation to handle integers outside this range. If we chose to use unsigned integers we could represent numbers from 0 to [image: $$2^{32}-1$$] using one word of memory.
Not only can [image: $$01010011_2$$] represent [image: $$83_{10}$$], it can also represent a character in the alphabet. If [image: $$01010011_2$$] is to be interpreted as a character almost all computers use a convention called ASCII which stands for the American Standard Code for Information Interchange [12]. This standard equates numbers from 0 to 127 to characters. In fact, numbers from 128 to 255 also define extended ASCII codes which are used for some character graphics. Each ASCII character is contained in one byte. Figure 1.10 shows the characters and their equivalent integer representations.

 Practice 1.4

What is the binary and decimal equivalent of the space character?

 Practice 1.5

What determines how the bytes in memory are interpreted? In other words, what makes 4 bytes an integer as opposed to four ASCII characters?

1.6 What Is a Programming Language?
If we were to have to write programs as sequences of numbers we wouldn’t get very far. It would be so tedious to program that no one would want to be a programmer. In the spring of 2006 Money Magazine ranked Software Engineer [4] as the number one job in America in terms of overall satisfaction which included things like compensation, growth, and stress-levels. So it must not be all that tedious.
A programming language is really a set of tools that allow us to program at a much higher level than the 0’s and 1’s that exist at the lowest levels of the computer. Python and the Wing IDE provides us with a couple of tools. The lower right corner of the Wing IDE has a tab labeled Python Shell. The shell allows programmers to interact with the Python interpreter. The interpreter is a program that interprets the programs we write. If you have a Mac or Linux computer you can also start the Python interpreter by opening up a terminal window. If you use Windows you can start a Command Prompt by looking under the Accessories program group. Typing python at a command prompt starts a Python interpreter as shown in Fig. 1.11.[image: A978-1-4471-6642-9_1_Fig11_HTML.gif]
Fig. 1.11The Python shell

[image: A978-1-4471-6642-9_1_Fig12_HTML.gif]
Fig. 1.12Overlapping rectangles

Consider computing the area of a shape constructed of overlapping regular polygons. In Fig. 1.12 all angles are right angles and all distances are in meters. Our job is to figure out the area in square meters. The lighter lines in the middle help us figure out how to compute the area. We can compute the area of the two rectangles and then subtract one of the overlapping parts since otherwise the overlapping part would be counted twice.
This can be computed on your calculator of course. The Python Shell is like a calculator and Fig. 1.11 shows how it can be used to compute the area of the shape. The first line sets a variable called R1_width to the value of 10. Then R1_height is set to 8. We can store a value in memory and give it a name. This is called an assignment statement. Your calculator can store values. So can Python. In Python these values can be given names that mean something in our program. R1_height is the name we gave to the height of the R1 rectangle. Anytime we want to retrieve that value we can just write R1_height and Python will retrieve its value for us.

 Practice 1.6

Open up the Wing IDE or a command prompt and try out the assignment and print statements shown in Fig. 1.11. Make sure to type the statements into the python shell. You DO NOT type the [image: $$>>>$$]. That is the Python shell prompt and is printed by Python. Notice that you can’t fix a line once you have pressed enter. This will be remedied soon.

 Practice 1.7

Take a moment and answer these questions from the material you just read.

 	1.What is an assignment statement?

	2.How do we retrieve a value from memory?

	3.Can we retrieve a value before it has been stored? What happens when we try to do that?

Interacting directly with the Python shell is a good way to quickly see how something works. However, it is also painful because mistakes can’t be undone. In the next section we’ll go back to writing programs in an editor so they can be changed and run as many times as we like. In fact, this is how most Python programming is done. Write a little, then test it by running it. Then write a little more and run it again. This is called prototyping and is an effective way to write programs. You should write all your programs using prototyping while reading this text. Write a little, then try it. That’s an effective way to program and takes less time than writing a lot and then trying to figure out what went wrong.

1.7 Hexadecimal and Octal Representation
Most programmers do not have to work with binary number representations. Programming languages let programmers write numbers in base 10 and they do the conversion for us. However, once in a while a programmer must be concerned about the binary representation of a number. As we’ve seen, converting between binary and decimal isn’t hard, but it is somewhat tedious. The difficulty arises because 10 is not a power of 2. Converting between base 10 and base 2 would be a lot easier if 10 were a power of 2. When computer programmers have to work with binary numbers they don’t want to have to write out all the zeroes and ones. This would obviously be tedious as well. Instead of converting numbers to base 10 or writing all numbers in binary, computer programmers have adopted two other representations for binary numbers, base 16 (called hexadecimal) and base 8 (called octal).
In hexadecimal each digit of a number can represent 16 different binary numbers. The 16 hexadecimal digits are 0–9, and A–F. Since 16 is a power of 2, there are exactly four binary digits that make up each hexadecimal digit. So, [image: $$0000_2$$] is [image: $$0_{16}$$] and [image: $$1111_2$$] is [image: $$F_{16}$$]. So, the binary number [image: $$10101110$$] is [image: $$AE$$] in hexadecimal notation and [image: $$256$$] in octal notation. If we wish to convert either of these two numbers to binary format the conversion is just as easy. [image: $$1010_2$$] is [image: $$A_{16}$$] for instance. Again, these conversions can be done quickly because there are four binary digits in each hexadecimal digit and three binary digits in each octal digit.

 Example 1.3

To convert the binary number [image: $$01010011_2$$] to hexadecimal we have only to break the number into two four digit binary numbers [image: $$0101_2$$] and [image: $$0011_2$$]. [image: $$0101_2 = 5_{16}$$] and [image: $$0011_2 = 3_{16}$$]. So the hexadecimal representation of [image: $$01010011_2$$] is [image: $$53_{16}$$].
Python has built-in support of hexadecimal numbers. If you want to express a number in hexadecimal form you preface it with a [image: $$0x$$] to signify that it is a hexadecimal number. For instance, here is how Python responds to [image: $$0x53$$] being entered into the Python shell.[image: A978-1-4471-6642-9_1_Figc_HTML.gif]

[image: A978-1-4471-6642-9_1_Figd_HTML.gif]

Since [image: $$8 = 2^3$$], each digit of an octal number represents three binary digits. The octal digits are 0–7. The number [image: $$01010011_2 = 123_8$$]. When converting a binary number to octal or hexadecimal we must be sure to start with the right-most bits. Since there are only 8 bits in [image: $$01010011$$] the left-most octal digit corresponds to the left-most two binary digits. The other two octal digits each have three binary digits. Again, Python has built-in support for representing octal digits. Writing a number with a leading zero and the letter o means that it is in octal format. So [image: $$0o123$$] is the Python representation of [image: $$123_8$$] and it is equal to [image: $$83_{10}$$].

 Practice 1.8

Convert the number [image: $$58_{10}$$] to binary and then to hexadecimal and octal.

 [image: A978-1-4471-6642-9_1_Fig13_HTML.gif]
Fig. 1.13The Wing IDE

1.8 Writing Your Second Program
Writing programs is an error-prone activity. Programmer’s almost never write a non-trivial program perfectly the first time. As programmers we need a tool like an Integrated Development Environment (i.e. IDE) that helps us find and fix our mistakes. Going to the File menu of the Wing IDE window and selecting New opens a new edit pane. An edit pane can be used to write a program but it won’t execute each line as you press enter. When writing a program we can write a little bit and then execute it in the Python interpreter by pressing F5 on the keyboard or by clicking the debug button.
When we write a program we will almost certainly have to debug it. Debugging is the word we use when we have to find errors in our program. Errors are very common and typically you will find a lot of them before the program works perfectly. Debugging refers to removing bugs from a program. Bugs are another name for errors. The use of the words bug and debugging in Computer Science dates back to at least 1952 and probably much earlier. Wikipedia has an interesting discussion of the word debugging if you want to know more. While you can use the Python Shell for some limited debugging, a debugger is a program that assists you in debugging your program. Figure 1.13 has a picture of the Wing IDE with the program we’ve been working on typed into the editor part of the IDE. To use the debugger we can click the mouse in the area where the red circle appears next to the numbers. This is called setting a breakpoint. A breakpoint tells Python to stop running when Python reaches that statement in the program. The program is not finished when it reaches that step, but it stops so you can inspect the state of the program.
The state of the program is contained in the bottom left corner of the IDE. This shows you the Stack Data which is just another name for the program’s state. You can see that the variables that were defined in the program are all located here along with their values at the present time.

 Practice 1.9

Create an edit pane within the Wing IDE and write the program as it appears in Fig. 1.13. Write a few lines, then run it by pressing F5 on the keyboard or clicking on the Debug button. The first time you press F5 you will be prompted to save the program. Make sure you save your program where you can find it later.
Try setting a break point by clicking where the circle appears next to the numbers in Fig. 1.13. You should see a red circle appear if you did it right. Then run the program again to see that it stops at the breakpoint as it appears in Fig. 1.13. You can stop a program at any point by setting a
breakpoint on that line. When the debugger stops at a breakpoint it stops before the statement is executed. You must click the Debug button, not the Run button to get it to stop at breakpoints.
Look at the Stack Data to inspect the state of the program just before the word Done is printed. Make sure it matches what you see here. Then continue the execution by clicking the Debug button or pressing F5 again to see that Done is printed.

1.9 Syntax Errors
Not every error is found using a debugger. Sometimes errors are syntax errors. A syntax error occurs when we write something that is not part of the Python language. Many times a syntax error can occur if we forget to write something. For instance, if we forget a parenthesis or a double quote is left out it will not be a correct Python program. Syntax errors are typically easier to find than bugs in our program because Python can flag them right away for us. These errors are usually highlighted right away by the IDE or interpreter. Syntax errors are those errors that are reported before the program starts executing. You can tell its a syntax error in Wing because there will not be any Stack Data. Since a syntax error shows up before the program runs, the program is not currently executing and therefore there is not state information in the stack data. When a syntax error is reported the editor or Python will typically indicate the location of the error after it actually occurs so the best way to find syntax errors is to look backwards from where the error is first reported.[image: A978-1-4471-6642-9_1_Fig14_HTML.gif]
Fig. 1.14A syntax error

 Example 1.4

Forgetting a parenthesis is a common syntax error.[image: A978-1-4471-6642-9_1_Fige_HTML.gif]

 This is not valid syntax in Python since the right parenthesis is missing. If we were to try to run a Python program that contains this line, the Python interpreter complains that this is not valid syntax. Figure 1.14 shows how the Wing IDE tells us about this syntax error. Notice that the Wing IDE announces that the syntax error occurs on the line after where it actually occurred.

There are other types of errors we can have in our programs. Syntax errors are perhaps the easiest errors to find. All other errors can be grouped into the category of run-time errors. Syntax errors are detected before the program runs. Run-time errors are detected while the program is running. Unfortunately, run-time errors are sometimes much harder to find than syntax errors. Many run-time errors are caused by the use of invalid operations being applied to values in our programs. It is important to understand what types of values we can use in our programs and what operations are valid for each of these types. That’s the topic of the next section.

1.10 Types of Values
Earlier in this chapter we found that bytes in memory can be interpreted in different ways. The way bytes in memory are interpreted is determined by the type of the value or object and the operations we apply to these values. Each value in Python is called an object. Each object is of a particular type. There are several data types in Python. These include integer (called int in Python), float, boolean (called bool in Python), string (called str in Python), list, tuple, set, dictionary (called dict in Python), and None.
In the next chapters we’ll cover each of these types and discuss the operations that apply to them. Each type of data and the operations it supports is covered when it is needed to learn a new programming skill. The sections on each of these types can also serve as a reference for you as you continue working through the text. You may find yourself coming back to the sections describing these types and their operations over and over again. Reviewing types and their operations is a common practice among programmers as they design and write new programs.

1.11 The Reference Type and Assignment Statements
There is one type in Python that is typically not seen, but nevertheless is important to understand. It is called the reference type. A reference is a pointer that points to an object. A pointer is the address of an object. Each object in memory is stored at a unique address and a reference is a pointer that points to an object.
An assignment statement makes a reference point to an object. The general form of an assignment statement is:[image: A978-1-4471-6642-9_1_Figf_HTML.gif]

An identifier is any letters, digits, or underscores written without spaces between them. The identifier must begin with a letter or underscore. It cannot start with a digit. The expression is any expression that when evaluated results in one of the types described in Sect. 1.10. The left hand side of the equals sign must be an identifier and only one identifier. The right hand side of the equals sign can contain any expression that may be evaluated.
In Fig. 1.15, the variable R1_width (orange in the figure) is a reference that points at the integer object 10 colored green in the figure. This is what happens in memory in response to the assignment statement:[image: A978-1-4471-6642-9_1_Figg_HTML.gif]

[image: A978-1-4471-6642-9_1_Fig15_HTML.gif]
Fig. 1.15A reference

[image: A978-1-4471-6642-9_1_Fig16_HTML.gif]
Fig. 1.16Before

The [image: $$0x264$$] is the reference value, written in hexadecimal, which is a pointer (i.e. the address) that points at the integer object 10. However, typically you don’t see reference values in Python. Instead, you see what a reference points to. So if you type R1_width in the Python shell after executing the statement above, you won’t see [image: $$0x264$$] printed to the screen, you’ll see 10, the value that R1_width refers to. When you set a breakpoint and look at the stack data in the debugger you will also see what the reference refers to, not the reference itself (see Fig. 1.13).[image: A978-1-4471-6642-9_1_Fig17_HTML.gif]
Fig. 1.17After

It is possible, and common, in Python to write statements like this:[image: A978-1-4471-6642-9_1_Figh_HTML.gif]

According to what we have just seen, Fig. 1.16 depicts the state of memory after executing the first line of code and before executing the second line of code. In the second line of code, writing x = x + 1 is not an algebraic statement. It is an assignment statement where one is added to the value that x refers to. The correct way to read an assignment statement is from right to left. The expression on the right hand side of the equals sign is evaluated to produce an object. The equals sign takes the reference to the new value and stores it in the reference named by the identifier on the left hand side of the equals sign. So, to properly understand how an assignment statement works, it must be read from right to left. After executing the second statement (the line beginning with a pound sign is a comment and is not executed), the state of memory looks like Fig. 1.17. The reference called x is updated to point to the new value that results from adding the old value referred to by x and the 1 together.
The space for the two left over objects containing the integers 1 in Fig. 1.17 is reclaimed by the garbage collector. You can think of the garbage collector as your favorite arcade game character running around memory looking for unattached objects (objects with no references pointing to them—the stuff in the cloud in Fig. 1.17). When such an object is found the garbage collector reclaims that memory for use later much like the video game character eats dots and fruit as it runs around.
The garbage collector reclaims the space in memory occupied by unreferenced objects so the space can be used later. Not all programming languages include garbage collection but many languages developed recently include it and Python is one of these languages. This is a nice feature of a language because otherwise we would have to be responsible for freeing all of our own memory ourselves.

1.12 Integers and Real Numbers
In most programming languages, including Python, there is a distinction between integers and real numbers. Integers, given the type name
 int in Python, are written as a sequence of digits, like 83 for instance. Real numbers, called
 float in Python, are written with a decimal point as in 83.0. This distinction affects how the numbers are stored in memory and what type of value you will get as a result of some operations.
[image: A978-1-4471-6642-9_1_Figi_HTML.gif]

In Fig. 1.18 the type of the result is a float if either operand is a float unless noted otherwise in the table.[image: A978-1-4471-6642-9_1_Fig18_HTML.gif]
Fig. 1.18Numeric operations

Dividing the integer 83 by 2 yields 41.5 if it is written [image: $$81/2$$]. However, if it is written [image: $$83//2$$] then the result is [image: $$41$$]. This goes back to long division as we first learned in elementary school. [image: $$83//2$$] is [image: $$41$$] with a remainder of [image: $$1$$]. The result of floor division isn’t always an int. [image: $$83//2.0$$] yields [image: $$41.0$$] so be careful. While floor division returns an integer, it doesn’t necessarily return an int.
We can insure a number is a float or an integer by writing float or int in front of the number. So, float(83)//2 also yields 41.0. Likewise, int(83.0)//2 yields 41.
There are infinitely many real numbers but only a finite number of floats that can be represented by a computer. For instance, the number PI is approximately 3.14159. However, that number can’t be represented in some implementations of Python. Instead, that number is approximated as 3.1415899999999999 in at least one Python implementation. Writing 3.14159 in a Python program is valid, but it is still stored internally as the approximated value. This is not a limitation of Python. It is a limitation of computers in general. Computers can only approximate values when there are infinitely many possibilities because computers are finite machines.
You can use what is called integer conversion to transform a floating point number to its integer portion. In effect, integer conversion truncates the digits after the decimal point in a floating point number to get just the whole number part. To do this you write int in front of the floating point number you wish to convert. This does not convert the existing number. It creates a new number using only the integer portion of the floating point number.

 Example 1.5

Assume that you work for the waste water treatment plant. Part of your job dictates that you report the gallons of water treated at the plant. However, your meter reports lbs of water treated. You have been told to to report the amount of treated waste water in gallons and ounces. There are 128 ounces in a gallon and 16 ounces in a pound. Here is a short program that performs the conversion.[image: A978-1-4471-6642-9_1_Figj_HTML.gif]

In Example 1.5 the lbs were first converted to ounces. Then the whole gallons were computed from the ounces by converting to an integer the result of dividing the ounces float by 128. On line 4 the remaining ounces were computed after taking out the number of ounces contained in the computed gallons.
Several of the
 operations between ints and floats are given in Fig. 1.18. If you need to round a float to the nearest integer (instead of truncating the fractional portion) you can use the round function. Absolute value is taken using abs. There are other operations between floats and ints that are not discussed in this chapter. A complete list of all operations supported by integers and floats are given in Chaps. 8 and 9. If you need to read some documentation about an operator you can use the appendices or you can search for Python documentation on the internet or you can start a Python shell and type help(float) or help(int). This help facility is built into the Python programming language. There is extensive documentation for every type within Python. Typing help(type) in the Python shell where type is any type within Python will provide you with all the operations that are available on that type of value.

 Practice 1.10

Write a short program that computes the length of the hypotenuse of a right triangle given the two legs as pictured in Fig. 1.23 on p. 35. The program should use three variables, sideA, sideB, and sideC. The Pythagorean theorem states that the sum of the squares of the two legs of the triangle equals the square of the hypotenuse. Be sure to assign all three variables their correct values and print the length of sideC at the end of the program. HINT: Raising a value to the [image: $$1/2$$] power is the same thing as finding the square root. Try values 6 and 8 for sideA and sideB.

1.13 Strings
Strings are another type of data in Python. A string is a sequence of characters.[image: A978-1-4471-6642-9_1_Figk_HTML.gif]

This is a short program that initializes a variable called name to the string ‘Sophus Lie’. A string literal is an actual string value written in your program. String literals are delimited by either double or single quotes. Delimited means that they start and end with quotes. In the code above the string literal Sophus Lie is delimited by single quotes. The string A famous Norwegian Mathematician is is delimited by double quotes. If you use a single quote at the beginning of a string literal, you must use a single quote at the end of the string literal. Delimiters must come in matching pairs.
Strings are one type of sequence in Python. There are other kinds of sequences in Python as well, such as lists which we’ll look at in a couple of chapters. Python supports operations on sequences. For instance, you can get an individual item from a sequence. Writing,[image: A978-1-4471-6642-9_1_Figl_HTML.gif]

will print the first character of the string that name references. The 0 is called an index. Each subsequent character is assigned a subsequent position in the string. Notice the first position in the string is assigned 0 as its index. The second character is assigned index 1, and so on. Strings and their operations are discussed in more detail in Chap. 3.

 Practice 1.11

Write the three line program given in the two listings on p. 24. Then, without writing the string literal “house”, modify it to print the string “house” to the screen using string indexing. HINT: You can add strings together to build a new string. So,[image: A978-1-4471-6642-9_1_Figm_HTML.gif]

will result in name referring to the string “Sophus Lie”.

1.14 Integer to String Conversion and Back Again
It is possible in Python to convert an integer to a string. For instance,[image: A978-1-4471-6642-9_1_Fign_HTML.gif]

This program converts 83 to ‘83’ and back again. Integers and floats can be converted to a string by using the str conversion operator. Likewise, an integer or a float contained in a string can be converted to its numeric equivalent by using the int or float conversion operator. Conversion between numeric types and string types is frequently used in programs especially when producing output and getting input.
Conversion of numeric values to strings should not be confused with ASCII conversion. Integers may represent ASCII codes for characters. If you want to convert an integer to its ASCII character equivalent you use the [image: $$chr$$] conversion operator. For instance, chr(83) is ‘S’. Likewise, if you want to convert a character to its ASCII code equivalent you use the [image: $$ord$$] conversion operator. So ord(‘S’) is equal to 83.

 Practice 1.12

Change the program above to convert 83 to its ASCII character equivalent. Save the value in a variable and print the following to the screen in the exact format you see here.[image: A978-1-4471-6642-9_1_Figo_HTML.gif]

You might have noticed in Fig. 1.19 there is an operator called int and another called float. Both of these operators are also numeric operators and appear in Fig. 1.18. This is called an overloaded operator because int and float are operators that work for both numeric and string operands. Python supports overloaded operators like this. This is a nice feature of the language since both versions of int and float do similar things.[image: A978-1-4471-6642-9_1_Fig19_HTML.gif]
Fig. 1.19String operations

1.15 Getting Input
To get input from the user you can use the input function. When the input function is called the program stops running the program, prompts the user to enter something at the keyboard by printing a string called the prompt to the screen, and then waits for the user to press the Enter key. The user types a string of characters and presses enter. Then the input function returns that string and Python continues running the program by executing the next statement after the input statement.

 Example 1.6

Consider this short program.[image: A978-1-4471-6642-9_1_Figp_HTML.gif]

The input function prints the prompt “Please enter your name:” to the screen and waits for the user to enter input in the Python Shell window. The program does not continue executing until you have provided the input requested. When the user enters some characters and presses enter, Python takes what they typed before pressing enter and stores it in the variable called name in this case. The type of value read by Python is always a string. If we want to convert it to an integer or some other type of value, then we need to use a conversion operator. For instance, if we want to get an int from the user, we must use the int conversion operator.
[image: A978-1-4471-6642-9_1_Figq_HTML.gif]

 Practice 1.13

Assume that we want to pause our program to display some output and we want to let the user press some key to continue. We want to print “press any key to continue[image: $$\ldots $$]” to the screen. Can we use the input function to implement this? If so, how would you write the input statement? If not, why can’t you use input?

 Example 1.7

This code prompts the user to enter their age. The string that was returned by input is first converted to an integer and then stored in the variable called age. Then the age variable can be added to another integer. It is important to remember that input always returns a string. If some other type of data is desired, then the appropriate type conversion must be applied to the string.[image: A978-1-4471-6642-9_1_Figr_HTML.gif]

1.16 Formatting Output
In this chapter just about every fragment of code prints something. When a value is printed, it appears on the console. The location of the console can vary depending on how you run a program. If a program is run from within the Wing IDE, the console is the Python Shell window in the IDE. If the program is debugged from within Wing IDE 101, the output appears in the Debug I/O window.
When printing, we may print as many items as we like on one line by separating each item by a comma. Each time a comma appears between items in a print statement, a space appears in the output.

 Example 1.8

Here is some code that prints a few values to the screen.[image: A978-1-4471-6642-9_1_Figs_HTML.gif]

 The output from this is:[image: A978-1-4471-6642-9_1_Figt_HTML.gif]

To print the contents of variables without spaces appearing between the items, the variables must be converted to strings and string concatenation can be used. The [image: $$+$$] operator adds numbers together, but it also concatenates strings. For the correct [image: $$+$$] operator to be called, each item must first be converted to a string before concatenation can be performed.

 Example 1.9

Assume that we ask the user to enter two floating point numbers, [image: $$x$$] and [image: $$y$$], and we wish to print the result of raising [image: $$x$$] to the [image: $$y$$]th power. We would like the output to look like this.[image: A978-1-4471-6642-9_1_Figu_HTML.gif]

 Here is a program that will produce that output, with no spaces in the exponentiation expression. NOTE: The caret symbol (i.e.ˆ) is not the Python symbol for exponentiation.[image: A978-1-4471-6642-9_1_Figv_HTML.gif]

In Example 1.9, line 4 of the program prints three items to the console. The last two items are the = and the value that the answer variable references. The first item in the print statement is the result of concatenating str(base), the caret, and str(exp). Both base and exp must be converted to strings first, then string concatenation will be performed by the [image: $$+$$] operator because the operands on either side of the [image: $$+$$] are both strings.

 Practice 1.14

The sum of the first n positive integers can be computed by the formula[image: $$\begin{aligned} sum(1..n) = 1 + 2 + 3 + 4 + \cdots + n = n(n+1) / 2 \end{aligned}$$]

Write a short Python program that computes the sum of the first 100 positive integers and prints it to the screen in the format shown below. Use variables to represent the 1, the 100, and the result of the computation. Your program must compute the 5050 value. You cannot just print the result to the screen. You must compute it first from the 100.[image: A978-1-4471-6642-9_1_Figw_HTML.gif]

For advanced control of the format of printing we can use string formatting. String formatting was first used in the C language printf function back in the 1970s. It’s an idea that has been around a long time, but is still useful. The idea is that we place formatting instructions in a string and then tell Python to replace the formatting instructions with the actual values. This is best described with an example.

 Example 1.10

Assume we wish to re-implement the program in Example 1.9. However, in this version of the program, if the user enters more than two decimal places for either number we wish to round the numbers to two digits of precision when they are printed to the console. Assume we wish to round the answer to four decimal places when displayed. The following code will do this.[image: A978-1-4471-6642-9_1_Figx_HTML.gif]

Running this program produces the following output.[image: A978-1-4471-6642-9_1_Figy_HTML.gif]

 [image: A978-1-4471-6642-9_1_Fig20_HTML.gif]
Fig. 1.20Format specifiers

Line 4 in Example 1.10 prints the result of formatting a string. To use Python formatting, a format string must be written first, followed by a percent sign, followed by the replacement values. If there is more than one replacement value, they must be written in parentheses. Each time a % appears inside the format string it is replaced by one of the values that appear after the format string. How a value is formatted when it is placed in the format string is controlled by the format specifier. Figure 1.20 contains some specifiers for common types of data in Python. Every format specifier may include an optional width field. If specified, the width field specifies the actual width of the replaced data. If the width of the data being inserted into the format string exceeds the allotted width, the entire field is included anyway, stretching the width of the formatted string. String formatting can be very useful when generating a printed report of some data.

 Practice 1.15

Re-do Practice Problem 1.14 using format specifiers when printing instead of converting each item to a string. The goal is for the output to look exactly the same.[image: A978-1-4471-6642-9_1_Figz_HTML.gif]

1.17 When Things Go Wrong
As a programmer, you will soon discover that things can go wrong when writing a program. No programmer writes every program correctly the first time. We are all human and make mistakes. What makes a programmer a really good programmer is when they can find their mistakes and correct them. Debugging programs is a skill that can be learned and therefore can be taught as well. But, it takes lots of practice and patience. Fortunately, you will have many chances to practice as you work your way through this book.
Sometimes, especially when you are first learning to debug your programs, it can help to have someone to talk to. Just the act of reading your code to someone else may cause you to find your mistake. Of course, if you are using this text as part of a course you may not want to read your code to another class member as that may violate the guidelines your instructor has set forth. But, nevertheless, you might find that reading your code to someone else may help you discover problems. This is called a code walk-through by programming professionals. It is a common practice and is frequently required when writing commercially available programs.
There is no substitute for thorough testing. You should run your program using varied values for input. Try to think of values that might cause your program to break. For instance, what if 0 is entered for an integer? What if a non-integer value is entered when an integer was required? What happens if the user enters a string of characters when a number was required?
Sometimes the problems in our code are not due to user input. They are just plain old mistakes in programming caused either by temporarily forgetting something, or by our misunderstanding how something works. For instance, in this chapter we learned about assignment statements. You can store a value in the memory of a computer and point a named reference at the value so you can retrieve it later. But, you must assign a name to a value before you can retrieve it. If you don’t understand that concept, or if you forgot where you assigned a value a name in your program, you might accidentally write some code that tries to use that value before it is assigned a name. For instance, consider the program in Fig. 1.21. The program is trying to use the gallons variable which has not been assigned a value. The error message is on the right side of the window. The line where the error was first detected by Python is highlighted.
In the example in Fig. 1.21 the actual error is not on the line that is highlighted. The highlighted line is the line where Python first detected the error. This is a very common occurrence when debugging. Detection of an error frequently occurs after the location of the actual error. To become a good programmer you must learn to look backwards through your code from the point where an error is detected to find the location where it occurred. In this case, the gallon variable should have been written as gallons on line 3 but was incorrectly typed.[image: A978-1-4471-6642-9_1_Fig21_HTML.gif]
Fig. 1.21A run-time error

[image: A978-1-4471-6642-9_1_Fig22_HTML.gif]
Fig. 1.22An index out of range error

Another common error is the index out of range error. This can occur when trying to access a value in a sequence by indexing into the sequence. If the index is for an item that is outside the range of the sequence, an index out of range error will occur. For instance, if you have a string called x that is one character long and you try to access the second element of the string, your program will abort with an index out of range error. Figure 1.22 shows this happening in a snippet of code.
Once again, in the example in Fig. 1.22 the error did not occur on the line that is highlighted. The error occurred because the programmer meant to take the str(83) which would result in “83” as a string instead of the chr(83) which results in the string “S”. If the string had been “83” then line 3 would have worked and would have printed 3 to the screen.
When an error occurs it is called an uncaught exception. Uncaught exceptions result in the program terminating. They cannot be recovered from. Because uncaught exceptions result in the program terminating it is vital to test your code so that all variations of running the program are tested before the program is released to users. Even so, there are times when a user may encounter an error. Perhaps it has happened to you? In any case, thorough testing is critical to your success as a programmer and learning to debug and test your code is as important as learning to program in the first place. As new topics are introduced in this text, debugging techniques will also be introduced to provide you with the information you need to become a better debugger.

1.18 Review Questions
 	1.What does the acronym IDE stand for? What does it do?

	2.What does the acronym CPU stand for? What does it do?

	3.How many bytes are in a GB? What does GB stand for?

	4.What is the decimal equivalent of the binary number 01101100?

	5.What is the hexadecimal equivalent of the binary number 01101100?

	6.What is the binary equivalent of the number [image: $$-$$]62?

	7.What is the ASCII equivalent of the decimal number 62?

	8.What is a type in Python? Give an example. Why are there types in Python programs?

	9.How can you tell what type of value is stored in 4 contiguous bytes of memory?

	10.How can you interactively work with the Python interpreter?

	11.What is prototyping as it applies to computer programming?

	12.Name two different types of errors that you can get when writing a computer program? What is unique about each type of error?

	13.What is a reference in a Python program?

	14.Why is it that the result of 4.01[image: $$-$$]3.59 is 0.41999999999999993 when using at least some implementations of Python 3?

	15.What would you have to write to ask the user to enter an integer and then read it into a variable in your program? Write some sample code to do this.

	16.Assume that you have a constant defined for [image: $$pi = 3.14159$$]. You wish to print just 3.14 to the screen using the [image: $$pi$$] variable. How would you print the [image: $$pi$$] variable so it only display 3.14?

1.19 Exercises
 	1.Write a program that asks the user to enter their name. Then it should print out the ASCII equivalent of each of the first four characters of your name. For instance, here is a sample run of the program below. [image: A978-1-4471-6642-9_1_Figaa_HTML.gif]

	2.Write a program that capitalizes the first four characters of a string by converting the characters to their ASCII equivalent, then adding the necessary amount to capitalize them, and converting the integers back to characters. Print the capitalized string. Here is a sample of running this program. [image: A978-1-4471-6642-9_1_Figab_HTML.gif]

	3.You can keep track of your car’s miles per gallon if you keep track of how many miles you drive your car on a tank of gas and you always fill up your tank when getting gas. Write a program that asks the user to enter the number of miles you drove your car and the number of gallons of gas you put in your car and then prints the miles per gallon you got on that tank of gas. Here is a sample run of the program. [image: A978-1-4471-6642-9_1_Figac_HTML.gif]

	4.Write a program that converts US Dollars to a Foreign Currency. You can do this by finding the exchange rate on the internet and then prompting for the exchange rate in your program. When you run the program it should look exactly like this: [image: A978-1-4471-6642-9_1_Figad_HTML.gif]

	5.Write a program that converts centimeters to yards, feet, and inches. There are 2.54 cm in an inch. You can solve this problem by doing division, multiplication, addition, and subtraction. Converting a float to an int at the appropriate time will help in solving this problem. When you run the program it should look exactly like this (except possibly for decimal places in the inches): [image: A978-1-4471-6642-9_1_Figae_HTML.gif]

	6.Write a program that computes the minimum number of bills and coins needed to make change for a person. For instance, if you need to give $34.36 in change you would need one twenty, one ten, four ones, a quarter, a dime, and a penny. You don’t have to compute change for bills greater than $20 dollar bills or for fifty cent pieces. You can solve this problem by doing division, multiplication, subtraction, and converting floats to ints when appropriate. So, when you run the program it should look exactly like this: [image: A978-1-4471-6642-9_1_Figaf_HTML.gif]

	7.Write a program that converts a binary number to its decimal equivalent. The binary number will be entered as a string. Use the powers of 2 to convert each of the digits in the binary number to its appropriate power of 2 and then add up the powers of two to get the decimal equivalent. When the program is run, it should have output identical to this: [image: A978-1-4471-6642-9_1_Figag_HTML.gif]

	8.Write a program that converts a decimal number to its binary equivalent. The decimal number should be read from the user and converted to an int. Then you should follow the algorithm presented in Example 1.1 to convert the decimal number to its binary equivalent. The binary equivalent must be a string to get the correct output. The output from the program must be identical to this: [image: A978-1-4471-6642-9_1_Figah_HTML.gif]

 You may assume that the number that is entered is in the range 0–255. If you want to check your work, you can use the bin function. The bin function will take a decimal number and return a string representation of that binary number. However, you should not use the bin function in your solution (Fig. 1.23).

	9.Complete the program started in Practice Problem 1.10. Write a program that asks the user to enter the two legs of a right triangle. The program should print the length of the hypotenuse. If sideA and sideB are the lengths of the two legs and sideC is the length of the third leg of a right triangle, then the Pythagorean theorem says that [image: $$sideA^2 + sideB^2 = sideC^2$$]. Ask the user to enter [image: $$sideA$$] and [image: $$sideB$$]. Your program should print the value of [image: $$sideC$$]. [image: A978-1-4471-6642-9_1_Figai_HTML.gif]

[image: A978-1-4471-6642-9_1_Fig23_HTML.gif]
Fig. 1.23A right triangle

1.20 Solutions to Practice Problems
These are solutions to the Practice Problems in this chapter. You should only consult these answers after you have tried each of them for yourself first. Practice Problems are meant to help reinforce the material you have just read so make use of them.
1.20.1 Solution to Practice Problem 1.1

The decimal equivalent of the binary number [image: $$01010101_2$$] is 85.

1.20.2 Solution to Practice Problem 1.2

[image: $$\begin{array}{r} 58 / 2 = 29 ~{ remainder}~ 0\\ 29 / 2 = 14 ~{ remainder}~ 1 \\ 14 / 2 = 7 ~{ remainder}~ 0 \\ 7 / 2 = 3 ~{ remainder}~ 1 \\ 3 / 2 = 1 ~{ remainder}~ 1 \\ 1 / 2 = 0 ~{ remainder}~ 1 \end{array}$$]

So the answer is [image: $$00111010_2$$].

1.20.3 Solution to Practice Problem 1.3

 [image: $$-83_{10} = 10101101_2$$]

1.20.4 Solution to Practice Problem 1.4

The ASCII code for space is 32. [image: $$32_{10} = 00100000_2$$]

1.20.5 Solution to Practice Problem 1.5

We, as programmers, determine how bytes in memory are interpreted by the statements that we write. If we want to interpret the bits [image: $$01010011$$] as a character we write ‘S’ in our program. If we want the same bits to represent an integer, we write 83 in our program.

1.20.6 Solution to Practice Problem 1.6

There is no solution needed for this exercise. Try it out and if you have problems, talk to your instructor or someone who can help to make sure you get this working before proceeding.

1.20.7 Solution to Practice Problem 1.7

 	1.An assignment statement is written as [image: A978-1-4471-6642-9_1_Figaj_HTML.gif]

 where a variable is assigned the value of an expression.

	2.To retrieve a value from memory we write the name of the variable that refers to that value.

	3.If we use a variable before it has been assigned a value Python will complain of a name error, meaning the variable has not been assigned a value yet.

1.20.8 Solution to Practice Problem 1.8

The binary representation of 58 is 00111010. The number is [image: $$3A_{16}$$] and [image: $$72_8$$]. In Python syntax that would be [image: $$0x3A$$] and [image: $$0o72$$].

1.20.9 Solution to Practice Problem 1.9

There is no solution needed for this since it is in the text. However, you should make sure you try this so you understand the mechanics of writing a program using the IDE. If you can’t get it to work you should ask someone that did get it to work for help or ask your instructor.

1.20.10 Solution to Practice Problem 1.10

 [image: A978-1-4471-6642-9_1_Figak_HTML.gif]

1.20.11 Solution to Practice Problem 1.11

Here is one program that you might get as a result.[image: A978-1-4471-6642-9_1_Figal_HTML.gif]

1.20.12 Solution to Practice Problem 1.12

Here is one version of the program. Do you understand why + was used at the end of the print statement? [image: A978-1-4471-6642-9_1_Figam_HTML.gif]

1.20.13 Solution to Practice Problem 1.13

You cannot use input to implement this because the input function waits for the enter key to be pressed, not just any key. You could prompt the user though with “Press Enter to continue[image: $$\ldots $$]”.

1.20.14 Solution to Practice Problem 1.14

Here is a version of the program. It must have variables to 1 and 100 to be correct according to the directions.[image: A978-1-4471-6642-9_1_Figan_HTML.gif]

1.20.15 Solution to Practice Problem 1.15

 [image: A978-1-4471-6642-9_1_Figao_HTML.gif]

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_2

2. Decision Making

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

In this chapter we explore how to make choices in our programs. Decision making is valuable when something we want to do depends on some user input or some other value that is not known when we write our program. This is quite often the case and Python, along with all interesting programming languages, has the ability to compare values and then take one action or another depending on that outcome.[image: A978-1-4471-6642-9_2_Fig1_HTML.gif]
Fig. 2.1If statement

For instance, you might write a program that reads data from a file and takes one action or another based on the data it read. Or, a program might get some input from a user and then take one of several actions based on that input.
To make a choice in Python you write an if statement. An if statement takes one of two forms. It may be just an if statement. In this case, if the condition evaluates to true then it will evaluate the then statements. If the condition is not true the computer will skip to the statements after the if statement.[image: A978-1-4471-6642-9_2_Figa_HTML.gif]

Figure 2.1 depicts this graphically. An if statement evaluates the conditional expression and then goes to one of two places depending on the outcome. Notice the indentation in the if statement above. The indentation indicates the then statements are part of the if statement. Indentation is very important in Python. Indentation determines the control flow of the program. Figure 2.1 graphically depicts this as well. If the condition evaluates to true, a detour is taken to execute the then statements before continuing on after the if statement.
Generally, we want to know if some value in our program is equal to, greater, or less than another value. The comparison operators, or relational operators, in Python allow us to compare two values. Any value in your program, usually a variable, can be compared with another value to see how the two values relate to each other.[image: A978-1-4471-6642-9_2_Fig2_HTML.gif]
Fig. 2.2Relational operators

Figure 2.2 lists the
 operators you can use to compare two values. Each of these operators is written between the two values or variables you want to compare. They evaluate to either true or false depending on the two values. When the condition evaluates to true, the then statements are executed. Otherwise, the then statements are skipped.[image: A978-1-4471-6642-9_2_Fig3_HTML.gif]
Fig. 2.3Stepping into and over

 Example 2.1

An if statement is best described by giving an example. Assume we want to see if a number entered by a user is divisible by 7. We can write the program pictured in Fig. 2.3 to decide this. The program gets some input from the user. Remember that input reads a string from the user. The int converts the string to an integer. Then, the num variable is checked to see if it is divisible by 7. The % is called the modulo or just the mod operator. It gives us the remainder after dividing by the divisor (i.e. 7 in this case). If the remainder after dividing by 7 is 0 then the number entered by the user is divisible by 7.

An important feature of a debugger is the ability to step over our code and watch the computer execute each statement. This is called stepping over or stepping into our code. Figure 2.3 depicts how this is done. For now stepping into and stepping over code do relatively the same thing. To begin stepping through a program you press the Step Into button. Once the program is started, you press the Step Over button to avoid jumping to other code that your program might call. Stepping into and over code can be very useful in understanding exactly what your program is doing.

 Practice 2.1

Write a short program that asks the user to enter the name of a month. If the user enters “December” your program should print “Merry Christmas!”. No matter what you enter, your program should print “Have a Happy New Year!” just before the program terminates. Then, use Step Into and Step Over to execute each statement that you wrote. Run your program at least twice to see how it behaves when you enter “December” and how it behaves when you enter something else.

Sometimes, you may want your program to do one thing if a condition is true and something else if a condition is false. Notice that the if statement does something only when the condition evaluates to true and does not do anything otherwise. If you want one thing to happen when a condition is true and another to happen if the condition is false then you need to use an if-else statement. An if-else statement adds a keyword of else to do something when the condition evaluates to false. An if-else statement looks like this.[image: A978-1-4471-6642-9_2_Figb_HTML.gif]

If the condition evaluates to true, the then statements are executed. Otherwise, the else statements are executed. Figure 2.4 depicts this graphically. The control of your program branches to one of two locations, the then statements or the else statements depending on the outcome of the condition.[image: A978-1-4471-6642-9_2_Fig4_HTML.gif]
Fig. 2.4If-else statement

Again, indentation is very important. The else keyword must line up with the if statement to be properly paired with the if statement by Python. If you don’t line up the if and the else in exactly the same columns, Python will not know that the if and the else go together. In addition, the else is only paired with the closest if that is in the same column. Both the then statements and the else statements must be indented and must be indented the same amount. Python is very picky about indentation because indentation in Python determines the flow of control in the program.
In the case of the if-else statement, either the then statements or the else statements will be executed. This is in contrast to the if statement that is described in Fig. 2.1. When learning about if statements this seems to be where some folks get stuck. The statements that are conditionally executed are those statements that are indented under the if or the else.
In either case, after executing the if or the if-else statement control proceeds to the next statement after the if or if-else. The statement after the if-else statement is the next line of the program that is indented the same amount as the if and the else.

 Example 2.2

Consider a program that finds the maximum of two integers. The last line before the if-else statement is the y = assignment statement. The first line after the if-else statement is the print(“Done.”) statement.[image: A978-1-4471-6642-9_2_Figc_HTML.gif]

 Practice 2.2

Modify the program from practice Problem 2.1 to print “Merry Christmas!” if the month is December and “You’ll have to wait” otherwise. It should still print “Have a Happy New Year!” in either case as the last line of output. Then run the program at least twice using step into and over to see how it behaves when “December” is entered and how the program behaves when anything else is entered.

 [image: A978-1-4471-6642-9_2_Fig5_HTML.gif]
Fig. 2.5Max of three integers

2.1 Finding the Max of Three Integers
Any statement may be placed within an if statement, including other if statements. When you want to check multiple conditions there may be a need to put one if statement inside another. It can happen, but not very often. For instance, you may need to know if a value entered by a user is between two numbers. This could be written using two if statements, the outer if statement checking to see if the value entered is greater than some minimum, and the inner if statement checking to see of the value entered is less than some maximum. There are other ways to check to see if a value is between a maximum and minimum, but nested if statements can be used in this kind of circumstance.
Let’s consider another possibility. Suppose you are asked to write a program that finds the maximum of three integers. This can be accomplished by writing nested if statements. Figure 2.5 depicts the flow of control for such a program.
We could determine which of the three integers, x, y and z, was the greatest by first comparing two of them, say x and y. Then, depending on the outcome of that condition, we would compare two more integers. By nesting if statements we can arrive at a decision about which is greatest. This code gets a bit complicated because we have three if statements to deal with, two of which are nested inside the third statement.

 Example 2.3

While you wouldn’t normally write code like this, it is provided here to show how if statements may be nested. The code prints the maximum of three integers entered by the user.[image: A978-1-4471-6642-9_2_Figd_HTML.gif]

2.2 The Guess and Check Pattern
There is no way a good programmer would write a program that included the code that appeared in Example 2.3. It is too complicated. Instead, it would be much better to use a pattern or idiom called
Guess and Check. Using this pattern involves first making a guess as to a correct solution and storing that guess in a variable. Then, you use one or more if statements to check that guess to see if it was correct or not. If it was not a correct guess, then the variable can be updated with a new guess. Finally, when the guess has been thoroughly checked, it should equal the value we were looking for.

 Example 2.4

Consider the max of three program in Example 2.3. This could be rewritten using the guess and check pattern if we first make a guess as to the maximum value and then fix it if needed.[image: A978-1-4471-6642-9_2_Fige_HTML.gif]

The code in Examples 2.3 and 2.4 get the same input and print exactly the same thing. However, the code in Example 2.4 is much easier to understand, mainly because the control flow is simplified by not having nested if statements. Notice that no else clauses were needed in Example 2.4. So, the code is simplified by having two if statements instead of three. It is simplified by having no nested if statements. Finally it is simplified because there are no use of else clauses in either of the if statements.

 Practice 2.3

Use the guess and check pattern to determine if a triangle is a perfect triangle. A perfect triangle has side lengths that are multiples of 3, 4 and 5. Ask the user to enter the shortest, middle, and longest sides of a triangle and then print “It is a perfect triangle “if it is and “It is not a perfect triangle” if it isn’t. You may assume that the side lengths are integers. Let your guess be that the message you will print is “It is a perfect triangle”.

2.3 Choosing from a List of Alternatives
Sometimes you may write some code where you need to choose from a list of alternatives. For instance, consider a menu driven program. You may want to print a list of choices and have a user pick from that list. In such a situation you may want to use an if statement and then nest an if statement inside of the else clause. An example will help clarify the situation.

 Example 2.5

Consider writing a program where we want the user to enter two floats and then choose one of several options.[image: A978-1-4471-6642-9_2_Figf_HTML.gif]

Do you notice the stair step pattern that appears in the code in Example 2.5? This stair stepping is generally considered ugly and a nuisance by programmers. Depending on how much you indent each line, the code can quickly go off the right side of the screen or page. The need to select between several choices presents itself often enough that Python has a special form of the if statement to handle this. It is the if-elif statement. In this statement, one, and only one, alternative is chosen. The first alternative whose condition evaluates to True is the code that will be executed. All other alternatives are ignored. The general form of the if-elif statement is given here.[image: A978-1-4471-6642-9_2_Figg_HTML.gif]

There can be as many alternatives as are needed. In addition, the else clause is optional so may or may not appear in the statement. If we revise our example using this form of the if statement it looks a lot better. Not only does it look better, it is easier to read and it is still clear which choices are being considered. In either case, if the conditions are not mutually exclusive then priority is given to the first condition that evaluates to true. This means that while a condition may be true, its statements may not be executed if it is not the first true condition in the if statement.

 Example 2.6

Here is a revision of Example 2.5 that looks a lot nicer.[image: A978-1-4471-6642-9_2_Figh_HTML.gif]

 Practice 2.4

Write a short program that asks the user to enter a month and prints a message depending on the month entered according to the messages in Fig. 2.6. Then use the step into and over ability of the debugger to examine the code to see what happens.

 [image: A978-1-4471-6642-9_2_Fig6_HTML.gif]
Fig. 2.6Messages

2.4 The Boolean Type
Conditions in if statements evaluate to True or False. One of the types of values in Python is called bool which is short for Boolean. George Boole was an English Mathematician who lived during the 1800s. He invented the Boolean Algebra and it is in honor of him that true and false are called
Boolean values today [13].
In an if statement the condition evaluates to true or false. The Boolean value of the condition decides which branch is to be executed. The only requirement for a condition in an if statement is that it evaluates to true or false. So writing if True [image: $$\ldots $$] would mean that the then statements would always be executed. Writing such an if statement doesn’t really make sense, but using Boolean values in if statements sometimes does.

 Example 2.7

Consider a program that must decide if a value is between 0 and 1. The program below uses a Boolean expression to discover if that is the case or not.[image: A978-1-4471-6642-9_2_Figi_HTML.gif]

Because an if statement only requires that the condition evaluates to true or false, any expression may be used as long as the result of evaluating it is true or false. Compound Boolean expressions can be built from simple expressions by using the logical operators and, or, and not. The and of two Boolean values is true when both Boolean values are true as shown in Fig. 2.7. The or of two Boolean values is true when one or the other is true, or when both are true as depicted in Fig. 2.8. The not of a Boolean value is true when the original value was false. This is shown in Fig. 2.9.[image: A978-1-4471-6642-9_2_Fig7_HTML.gif]
Fig. 2.7The and operator

[image: A978-1-4471-6642-9_2_Fig8_HTML.gif]
Fig. 2.8The or operator

[image: A978-1-4471-6642-9_2_Fig9_HTML.gif]
Fig. 2.9The not operator

The three figures describe the truth-tables for each of the Boolean operators. A truth-table can be constructed for any compound Boolean expression. In each of the truth tables, [image: $$A$$] and [image: $$B$$] represent any Boolean expression. The tables show what the Boolean value of the expression A and B, A or B, and not A would be, given the values of [image: $$A$$] and [image: $$B$$] in the table. The and, or, and not logical operators can be strung together in all sorts of ways to produce complex Boolean expressions, but writing a program with complex Boolean expressions is generally a bad idea since it is difficult to understand the logic of complex expressions.Keeping track of whether to use and or or when not is involved in the expression is difficult and should be avoided if possible.
There are at least a couple of ways that negation (i.e. the use of the not operator) can be avoided in if statements. The statement can be rewritten to test the opposite of what you first considered. Another technique is to use the guess and check pattern. The following two examples illustrate how this can be done.

 Example 2.8

Consider a club where you must be under 18 and over 15 to join. Here is a first try at a program that tells you whether you can join or not.[image: A978-1-4471-6642-9_2_Figj_HTML.gif]

Does this program do the job? In fact, as it is written here everyone can join the club. The problem is with the choice of and in the Boolean expression. It should have been or. The correct program would be written as follows.[image: A978-1-4471-6642-9_2_Figk_HTML.gif]

While the program above is correct, it is still difficult to understand why it is correct. The problem is the use of negation with the or operator. A much better way to write it would be to remove the negation in the expression.[image: A978-1-4471-6642-9_2_Figl_HTML.gif]

 Example 2.9

The guess and check pattern can be applied to Boolean values as well. If you need to decide a yes or no question, you can make a guess and then fix it if needed.[image: A978-1-4471-6642-9_2_Figm_HTML.gif]

The technique used in Example 2.9 is especially useful when there are a number of conditions that must be checked to make sure that the yes or no answer is correct. In fact, when the exact number of conditions is unknown, this technique may be necessary. How the exact number of conditions to check can be unknown will become clearer in the next chapter.

 Practice 2.5

Write a program that determines whether you can run for president. To run for president the constitution states: No Person except a natural born Citizen, or a Citizen of the United States, at the time of the Adoption of this Constitution, shall be eligible to the Office of President; neither shall any Person be eligible to that Office who shall not have attained to the Age of thirty five Years, and been fourteen Years a Resident within the United States [7]. Ask three questions of the user and use the guess and check pattern to determine if they are eligible to run for President.

2.5 Short Circuit Logic
Once in a while using the guess and check pattern may not produce the desired results. There are situations where you may want to evaluate one condition only if another condition is true or false. An example should make this clear.

 Example 2.10

Consider a program that checks to see if one integer evenly divides another.[image: A978-1-4471-6642-9_2_Fign_HTML.gif]

Dividing top by bottom would result in a run-time error if bottom were 0. However, division by 0 will never happen in this code because Python, and most programming languages, uses short-circuit logic. This means that since both A and B must be true in the expression A and B for the expression to evaluate to true, if it turns out that A evaluates to false then there is no point in evaluating B and therefore it is skipped. In other words, Boolean expressions are evaluated from left to right until the truth or falsity of the expression can be determined and the condition evaluation terminates. This is exactly what we want in the code in Example 2.10.

 Practice 2.6

In Minnesota you can fish if you are 15 years old or less and your parent has a license. If you are 16 years old or more you need to have your own license. Write a program that uses short circuit logic to tell someone if they are legal to fish in Minnesota. First ask them how old they are, whether they have a license or not, and whether their parent has a license or not.

2.6 Comparing Floats for Equality
In Python, real numbers or floats are represented using eight bytes. That means that [image: $$2^{64}$$] different real numbers can be represented. This is a lot of real numbers, but not enough. Since there are infinitely many real numbers between any two real numbers, computers will never be able to represent all of them.
Because floats are only approximations of real numbers, there is some round-off error expected when dealing with real numbers in a program. Generally this round-off error is small and is not much of a problem unless you are comparing two real numbers for equality. If you need to do this then you need to subtract the two numbers and see if the difference is insignificant since the two numbers may be slightly different.
So, to compare two floats for equality you can subtract the two and see if the difference is small relative to the two numbers.

 Example 2.11

This program compares a guess with the result of dividing two floats and tells you if you are correct or not.[image: A978-1-4471-6642-9_2_Figo_HTML.gif]

Notice in the program in Example 2.11 that the abs function returns the absolute value of the float given to it so it doesn’t matter if the numbers you are comparing are positive or negative. The code will work either way. In this example, 0.001 or 1/10th of [image: $$1\,\%$$] difference was deemed close enough. Depending on your application, that value may be different.

 Practice 2.7

Use the guess and check pattern to determine if a triangle is a perfect triangle. You must allow the user to enter any side length for the three sides of the triangle, not just integers. A perfect triangle has side lengths that are multiples of 3, 4 and 5. Ask the user to enter the three side lengths and then print “It is a perfect triangle” if it is and “It is not a perfect triangle” if it isn’t.

2.7 Exception Handling
Sometimes things go wrong in a program and it is out of your control. For instance, if the user does not enter the proper input an error may occur in your program. Python includes exception handling so programmers can handle errors like this. Generally, if there is a possibility something could go wrong you should probably use some exception handling. To use exception handling you write a try-except statement.[image: A978-1-4471-6642-9_2_Figp_HTML.gif]

A try-except block may monitor for any exception or just a certain exception. There are many possible exceptions that might be caught. For instance, a ValueError exception occurs when you try to convert an invalid value to an integer. A ZeroDivisionError exception occurs when you try to divide by zero. In the general form shown above, the Exception is optional. That’s what the square brackets (i.e. []) mean. You don’t actually write the square brackets. They mean the exception is optional in this case. If the exception is omitted then any exception is caught.
Exception handling can be used to check user input for validity. It can also be used internally in the program to catch calculations that might result in an error depending on the values involved in the calculation. When a try block is executed if a run-time error occurs that the try-except block is monitoring then program control immediately skips to the beginning of the except block. If no error occurs while executing the try block then control skips the except block and continues with the statement following the try-except statement. If an error occurs and the except block is executed, then when the except block finishes executing control goes to the next statement after the try-except statement (Fig. 2.10).

 Example 2.12

Here is a bulletproof version of the program first presented in Example 2.10. This example does not use short-circuit logic. It uses exception handling instead. Notice the use of exit(0) below. This is a Python function that exits the program immediately, skipping anything that comes after it.[image: A978-1-4471-6642-9_2_Figq_HTML.gif]

 [image: A978-1-4471-6642-9_2_Fig10_HTML.gif]
Fig. 2.10Try-except statement

Try-except statements are useful when either reading input from the user or when using data that was read earlier in the program. Example 2.12 uses three try-except statements. The first two catch any non-integer input that might be provided. The last catches a division by zero error.

 Practice 2.8

Add exception handling to the program in practice Problem 2.6 so that if the user answers something other than their age that the program prints “You did not enter your age correctly”.

2.8 Review Questions

 	1.What is the difference between an if statement and an if-else statement? Be sure to state what the difference in meaning is between the two, not just the addition of the else keyword.

	2.What type of value is returned by the relational operators?

	3.What does it mean to Step Over code? What is that referring to?

	4.What is a nested if statement?

	5.How can nested if statements be avoided?

	6.What is the general pattern for Guess and Check?

	7.What is the Mathematician George Boole famous for?

	8.When is it difficult to determine whether and or or should be used in an if statement?

	9.What is short circuit logic? When does it apply? Give an example of when it would apply. Do not use the example in the book.

	10.What is the problem with comparing floats for equality?

	11.If an exception occurs on line 2 of while executing this code give the line numbers of this program in the order that they are executed. What is the output from the program? [image: A978-1-4471-6642-9_2_Figr_HTML.gif]

2.9 Exercises

 	1.Type in the code of Example 2.6. Execute the code using a debugger like the one included with the Wing IDE 101. Step into and over the code using the debugger. Enter a menu choice of 1. Using the line numbers in Example 2.6, which lines of the program are executed when you enter a 1 for the menu choice. List these lines. Do the same for each of the other menu choice values. If you run the program and enter a menu choice of 5, which lines of the program are executed. If you use the debugger to answer this question you will be guaranteed to get it right and you’ll learn a little about using a debugger.

	2.Write a program that prints a user’s grade given a percent of points achieved in the class. The program should prompt the user to enter his/her percent of points. It should then print a letter grade A, A[image: $$-$$], B[image: $$+$$], B, B[image: $$-$$], C[image: $$+$$], C, C[image: $$-$$], D[image: $$+$$], D, D[image: $$-$$], F. The grading scale is given in Fig. 2.11. Use exception handling to check the input from the user to be sure it is valid. Running the program should look like this: [image: A978-1-4471-6642-9_2_Figs_HTML.gif]

	3.Write a program that converts centimeters to yards, feet, and inches. There are 2.54 cm in an inch. You can solve this problem by doing division, multiplication, addition, and subtraction. Converting a float to an int at the appropriate time will help in solving this problem. When you run the program it should look exactly like this (except possibly for decimal places in the inches): [image: A978-1-4471-6642-9_2_Figt_HTML.gif]

 This is a modification of the program in Exercise 5 of Chap. 1. In this version of it you should print “yard” when there is one yard, and “yards” when there is more than one yard. If there are zero yards then it should not print “yard” or “yards”. The same thing applies to “feet”. Use an if statement to determine the label to print and if the label should be printed at all.

	4.Write a program that computes the minimum number of bills and coins needed to make change for a person. For instance, if you need to give $34.36 in change you would need one twenty, one ten, four ones, a quarter, a dime, and a penny. You don’t have to compute change for bills greater than $20 dollar bills or for fifty cent pieces. You can solve this problem by doing division, multiplication, subtraction, and converting floats to ints when appropriate. So, when you run the program it should look exactly like this: [image: A978-1-4471-6642-9_2_Figu_HTML.gif]

 This is a modification of the program in Exercise 6 of Chap. 1. In this version, only non-zero amounts of bills and change should be printed. In addition, when only one bill or coin is needed for a particular denomination, you should use the singular version of the word. When more than one bill or coin for a denomination is needed, the plural of the label should be used.

	5.Write a program that asks the user to enter an integer less than 50 and then prints whether or not that integer is prime. To determine if a number less than 50 is prime you only need to divide by all prime numbers that are less than or equal to the square root of 50. If any of them evenly divide the number then it is not prime. Use the guess and check pattern to solve this problem. Use exception handling to check the input from the user to be sure it is valid. A run of the program should look like this: [image: A978-1-4471-6642-9_2_Figv_HTML.gif]

	6.Write a program that converts a decimal number to its binary equivalent. The decimal number should be read from the user and converted to an int. Then you should follow the algorithm presented in Example 1.​1 to convert the decimal number to its binary equivalent. The binary equivalent must be a string to get the correct output. In this version of the program you must handle all 16-bit signed integers. That means that you must handle numbers from [image: $$-$$]32768 to 32767. In this version of the program you should not print any leading 0’s. Leading 0’s should be omitted from the output.
If you want to check your work, you can use the bin function. The bin function will take a decimal number and return a string representation of that binary number. However, you should not use the bin function in your solution.
The output from the program must be identical to this: [image: A978-1-4471-6642-9_2_Figw_HTML.gif]

	7.Write a program that prompts the user to enter a 16-bit binary number (a string of 1’s and 0’s). Then, the program should print the decimal equivalent. Be sure to handle both negative and positive binary numbers correctly. If the user enters less than 16 digits you should assume that the digits to the left of the last digit are zeroes. When run the output should look like this: [image: A978-1-4471-6642-9_2_Figx_HTML.gif]

 To handle negative numbers correctly you first need to detect if it is a negative number. A 16-digit binary number is negative if it is 16 digits long and the left-most digit is a 1. To convert a negative number to its integer equivalent, first take the 1’s complement of the number. Then convert the 1’s complement to an integer, then add 1 to the integer and negate the result to get the 2’s complement.
The conversion from bits to an integer can be carried out by multiplying each bit by the power of 2 that it represents as described in Sect. 1.​5 of Chap. 1.

	8.Converting numbers to any base can be accomplished using the algorithm from Example 1.​1. For instance, an integer can be converted to hexadecimal using this algorithm. Hexadecimal numbers are base 16. That means there are 16 possible values for one digit. Counting in hexadecimal starts 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, 10, 11, 12 and so on. The algorithm changes so that instead of dividing by 2 you divide by 16. The one gotcha is that if the remainder after dividing is greater or equal to 10 (base 10) then you should not append the base 10 value to the string. Instead you should append a, b, c, d, e, or f. You can use if statements to determine the correct value to append. Write a program that prompts the user to enter an integer and then prints its hexadecimal equivalent.
Traditionally, hexadecimal numbers start with a “0x” to identify them as hex, so your output should look like this: [image: A978-1-4471-6642-9_2_Figy_HTML.gif]

 Your program should handle any base 10 integer from 0 to 65535. There is a function called hex in Python that converts integers to their hexadecimal representation. You may not use this in implementing this program, but you may use it to see if your program is producing the correct output. For instance, calling hex(255) will return the string 0xff.
You should check the input that the user enters to make sure that it is in the valid range accepted by your program.

 [image: A978-1-4471-6642-9_2_Fig11_HTML.gif]
Fig. 2.11Grading Scale

2.10 Solutions to Practice Problems
These are solutions to the practice problems in this chapter. You should only consult these answers after you have tried each of them for yourself first. Practice problems are meant to help reinforce the material you have just read so make use of them.
2.10.1 Solutions to Practice Problem 2.1

 [image: A978-1-4471-6642-9_2_Figz_HTML.gif]

2.10.2 Solutions to Practice Problem 2.2

 [image: A978-1-4471-6642-9_2_Figaa_HTML.gif]

2.10.3 Solutions to Practice Problem 2.3

 [image: A978-1-4471-6642-9_2_Figab_HTML.gif]

2.10.4 Solutions to Practice Problem 2.4

 [image: A978-1-4471-6642-9_2_Figac_HTML.gif]

2.10.5 Solutions to Practice Problem 2.5

 [image: A978-1-4471-6642-9_2_Figad_HTML.gif]

2.10.6 Solutions to Practice Problem 2.6

 [image: A978-1-4471-6642-9_2_Figae_HTML.gif]

2.10.7 Solutions to Practice Problem 2.7

 [image: A978-1-4471-6642-9_2_Figaf_HTML.gif]

2.10.8 Solutions to Practice Problem 2.8

 [image: A978-1-4471-6642-9_2_Figag_HTML.gif]

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_3

3. Repetitive Tasks

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

When my children were very little I played with them and read books to them. If they were particularly entertained I would get the, “Do it again!”, command from them. And, of course, I did it or read it again. Who can say no to a three year-old when they are being so cute. They never seemed to grow tired of repetition when they found something entertaining. Eventually, I grew tired of it myself and would give them the, “One more time [image: $$\ldots $$]”, warning.
Computers are very good at doing repetitive tasks, often called iteration in Computer Science lingo. Computers don’t get tired and they don’t get bored. Usually, when a task is repeated, it is repeated for the same type of data over and over again. For instance, sending out paychecks is a repetitive job since each employee’s deductions must be computed and then a paycheck must be printed or electronically deposited. For large companies, this job would require many people since each person would only be able to compute the withholdings for a relatively small number of people. In fact, before the advent of electronic computers, the word Computer referred to people whose job it was to carry out these kinds of calculations. That certainly must have been a mundane and repetitive job. Electronic computers on the other hand don’t get tired, can work around the clock, and can work at lightning speed.Repeating a task in a programming language is often called iteration or a loop. In this chapter you learn about loops in Python. You learn how to write various kinds of loops and more importantly, you learn when to write various kinds of loops.
When doing a task over and over again it is probably the case that the data that the computer needs to do its job is located in some sort of list or sequence. Python has built-in support for lists. In addition, Python also supports strings, which are sequences of characters. Since so much of what computers do are repetitive tasks, it is important to know how to repeat code and how to manipulate strings and lists. This chapter explores the use of strings and lists. You learn that strings and lists are types of objects and discover what you can do with these objects. In Computer Science sequences and iteration go hand in hand.
So, what is a string? In the first chapter a string literal was defined as any sequence of characters surrounded by either single or double quotes. A string literal is used to represent a specific string object in Python. So a string literal is written in a Python program when you have a specific string object that you want to use in your program.
So what is an object? Every value in Python is an object. Types of objects include integers, floats, and strings. An object is a value along with methods that can either change the value of the object or give us more information about its value.

 Example 3.1

Consider the string literal “How are you?”. The letters in quotes are written to construct a string object. The string object has both a value, the string itself, and methods that may operate on that value. If we write the code below we get the reference called s pointing to the string object containing “How are you?” as shown in Fig. 3.1. [image: A978-1-4471-6642-9_3_Figa_HTML.gif]

We can interact with an object by sending messages to the object. We send a message by writing the object reference or variable name, followed by a dot (i.e. a period), followed by the method we want to call on the object. In parentheses we may pass some information to the method. The additional information are called
arguments. So, calling a method on an object that is pointed to by a reference with zero or more arguments looks like this:[image: A978-1-4471-6642-9_3_Fig1_HTML.gif]
Fig. 3.1A string object

[image: $$\begin{aligned} \textit{reference.method}(\textit{arguments}) \end{aligned}$$]

Sometimes it helps us to think about this interaction as sending messages to the object and getting the object to respond to these messages. So sending a message to an object or calling a method on the object are the same thing. Whatever we decide to call it, the result is the same. The object’s method does something for us.
Methods can either retrieve some information about an object or they can alter the object in some way. The lower and upper methods of the string class return a new copy of the string with the characters converted to lower or upper case. The strip method returns a copy of a string with leading and trailing blanks removed. All the methods on strings are provided in Chap. 10.

 Example 3.2

When the following code is executed, t refers to a new string “how are you?”. Notice the first letter of the string that t refers to is now lower case. To call the method called lower() on s you write s.lower().[image: A978-1-4471-6642-9_3_Figb_HTML.gif]

 Practice 3.1

Write a short program that asks the user to enter a sentence. Then print the sentence back to the screen with all lower case letters capitalized and all upper case letters in lower case.

Types in Python are sometimes called classes. The term class is just another name for type in Object-Oriented Programming languages. In Object-Oriented Programming (i.e. OOP) terminology a type is a class and a value is an object. These are just different names for the same thing in Python because every type is also a class and every value is an object.
Strings have many methods that can be called on them. To find out what methods you can call on a string you can use the internet and search for python string class or you can go to the Python Shell Window in the Wing IDE or some other IDE and type help(str). Remember that str is the name of the string class in Python. Chapter 10 contains a table of most of the available string operators and methods as well.

 Practice 3.2

Use Chap. 10 to help you write a program that asks the user to enter “yes” or “no”. If they enter a string with any capital letters the program should print a message that says, “Next time please use all lower case letters”.

3.1 Operators
If you take a look at Chap. 10 to peruse the string methods you will notice there are two kinds of methods described there. At the beginning of the appendix there are operators like [image: $$\mathtt{<=}$$]. These operators are just special methods in Python. They describe methods that are not written using the reference.method(arguments) format. Instead, the [image: $$\mathtt{<=}$$] method describes an infix operation that can be performed between two string objects to see if one string is less than or equal to another string object.

 Example 3.3

Consider the following code. [image: A978-1-4471-6642-9_3_Figc_HTML.gif]

The code in Example 3.3 asks the user to enter two strings and compares the two strings. If your name would appear first alphabetically it prints the first message, otherwise it prints the second message. The comparison of [image: $$s<=t$$] on the third line of code is possible because of the existence of the _ _le_ _ method for strings. This is a special method that you will see if you type help(str).
When reading Chap. 10 most of the operators are really methods that aren’t called in the usual way. These methods are sometimes called hooks, syntactic sugar, or just operators. A hook in Python is just a special way of calling a method. Most methods are called in the usual way by writing reference.method(arguments). In fact, even the special hook methods can be called in the usual way. So, comparing two strings, s and t, to see if one is less than or equal to the other could be written s._ _le_ _(t). Of course, it is more convenient and descriptive to use the operator format and write [image: $$s<=t$$] when comparing two strings. This is why it is called syntactic sugar. It is much nicer to write the comparison operator [image: $$s<=t$$] than to write s._ _le_ _(t). Syntactic sugar refers to the ability to write a part of a program in a pleasing way as opposed to having to always stick to writing code using the same rules.
Operators are methods that are not called using the reference.method(arguments) format. Figure 3.2 has examples of calling several of the string operators and some of the string methods. All the string methods can be found in Chap. 10. Chapters 8 and 9 describe operators on integers and floats that are similar to the string operators and are called in a similar fashion.

 Practice 3.3

Use Fig. 3.2 and Chap. 10 to help you write a program that asks the user to enter “yes” or “no”. If they enter “yes” then you should print “You entered yes”. and likewise if they enter “no”. However, make sure you accept “Yes”, “yEs”, or any other combination of upper and lower case letters for “yes” and for “no”. Identify the syntactically sugared methods that you are calling on the string class in your answer.

 [image: A978-1-4471-6642-9_3_Fig2_HTML.gif]
Fig. 3.2String operators and common methods

3.2 Iterating Over a Sequence
In Python, a string is sometimes thought of as a sequence of characters.
Sequences have special status in Python. You can iterate over sequences. Iteration refers to repeating the same thing over and over again. In the case of string sequences, you can write code that will be executed for each character in the string. The same code is executed for each character in a string. However, the result of executing the code might depend on the current character in the string. To iterate over each element of a sequence you may write a for loop. A for loop looks like this:[image: A978-1-4471-6642-9_3_Figd_HTML.gif]

In this code the [image: $$<$$]variable[image: $$>$$] is any variable name you choose. The variable will be assigned to the first element of the sequence and then the statements in the body of the for loop will be executed. Then, the variable is assigned to the second element of the sequence and the body of the for loop is repeated. This continues until no elements are left in the sequence.
If you write a for loop and try to execute it on an empty sequence, the body of the for loop is not executed even once. The for loop means just what is says: for each element of a sequence. If the sequence is zero in length then it won’t execute the body at all. If there is one element in the sequence, then the body is executed once, and so on.
For loops are useful when you need to do something for every element of a sequence. Since computers are useful when dealing with large amounts of similar data, for loops are often at the center of the programs we write.

 Example 3.4

Consider the following program.[image: A978-1-4471-6642-9_3_Fige_HTML.gif]

If the user enters how are you? the output is:[image: A978-1-4471-6642-9_3_Figf_HTML.gif]

Figure 3.3 depicts what happens when executing the code of Example 3.4. Each character of the sequence is printed on a separate line. Notice that there are blank lines, or what appear to be blank lines, between the words. This is because there are space characters between each of the words in the original string and the for loop is executed once for every character of the string including the space characters. Each of these blank lines really contains one space character.[image: A978-1-4471-6642-9_3_Fig3_HTML.gif]
Fig. 3.3A For Loop

 Practice 3.4

Type in the code in Example 3.4. Set a break point on the print(c) line. Run it with the debugger and watch it as it runs. Then answer these questions:	1.Does the string s change as the code is executed?

	2.What happens if the user just presses enter when prompted instead of typing any characters?

 Practice 3.5

Modify the code in Example 3.4 to print the characters to the screen as capital letters whether the user enters capital letters or not. For instance, it would print “HOW ARE YOU?” to the screen, with one letter on each line if “how are you?” were entered at the keyboard.

3.3 Lists
A list in Python is any sequence of values surrounded by square brackets (i.e. []). So for instance [0, 1, 2, 3] is a list.

So is [‘a’, 1,‘b’, 4.2]. Lists are any sequence of values inside square brackets. The items of the list can be of different types, although it is quite common for all values in a list to be of the same type. The list type is called list in Python as you might expect.
A list is a sequence too. A list can be iterated over using a for loop just like a string. Each element of the list is used to execute the body of the for loop once. Chapter 11 contains a table that outlines the methods and operators that apply to lists. There are several operations on sequences that are useful. For instance, len(s) returns the length of a sequence (the number of elements in the sequence). We can concatenate two sequences using [image: $$+$$]. So writing s [image: $$+$$] t returns a new string which is the juxtaposition of the strings referenced by s and t. We can get part of a sequence by slicing it. A slice is one or more contiguous elements of a sequence. It is created by using brackets and a colon. For instance, if s refers to the string “how are you?”, then s[0:3] is the string “how” and s[4:7] is the string “are”. You can even get a slice starting at the end of a sequence. So, s[[image: $$-$$]4:] gives you the last four items of a sequence, the string “you?” in this case. You can learn more about slicing in Chaps. 10 or 11. The length function, concatenation operator, and slicing apply to either strings or lists since they apply to all types of sequences in Python.

 Practice 3.6

Write a for loop that prints the following output.[image: A978-1-4471-6642-9_3_Figg_HTML.gif]

[image: A978-1-4471-6642-9_3_Figh_HTML.gif]

The list of integers starting from 0 and going to n [image: $$-$$] 1 is so useful there is a function in Python that we can use to generate such a list. It is called range. The range function can be called on an integer, n, and it will generate a list of integers from 0 to n [image: $$-$$] 1. For instance, range(5) generates the list [0, 1, 2, 3, 4].
The range function can be used to generate other ranges of integers, too. In general the range function is called by writing range([start,]stop[,increment]). For example, range(10, 110, 10) generates the list [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] and range(10, 0, [image: $$-$$]1] generates the list [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]. In Sect. 1.​13 we learned that writing s[0] referred to the first character in the string s. s[1] refers to the second character. Writing s[[image: $$-$$]1] returns the last element of s. The indexing operations apply to all sequences, not just strings. Using indexing and a for loop together we can write some interesting code.

 Example 3.5

This example uses indexing to print each of the characters in a string on separate lines. The output from this program is exactly the same as the output from Example 3.4. Contrast this code to the code that appeared in Example 3.4. [image: A978-1-4471-6642-9_3_Figi_HTML.gif]

Notice the use of the len function inside the call to the range function. When we wish to go through all the elements of a list and we need an index into that list, the len function can be used along with range to generate the proper list of integers for the indices of the list.

 Practice 3.7

Write a program that prints out the characters of a string in reverse order. So, if “hello” is entered, the program prints:[image: A978-1-4471-6642-9_3_Figj_HTML.gif]

To accomplish this, you must use a for loop over the indices of the list since you cannot directly go backwards through a sequence with a for loop. However, you can generate a list with the indices going from the last to first index.

Python includes a few methods that make it much easier to process strings in your programs. One of these methods is called split. The split method splits a string into words. Each word is defined as a sequence of characters separated by whitespace in your string. Whitespace are blanks, tabs, and newline characters in your strings. The split method splits a string into a list of strings.

 Example 3.6

Contrast the code found here with the code in Example 3.4. Notice that the for loop contains s.split() instead of just s.[image: A978-1-4471-6642-9_3_Figk_HTML.gif]

If the user enters “how are you?” the output is:[image: A978-1-4471-6642-9_3_Figl_HTML.gif]

 Practice 3.8

You can see what the split method does by setting some variable to the result of s.split(). For instance, the second line could be:[image: A978-1-4471-6642-9_3_Figm_HTML.gif]

 Modify the code to add this line and use splitWords in the for loop. Run the code in Example 3.6 using the debugger. Step into and over the code and watch the word and splitWords variables. Run the program several times with different input and make note of what splitWords ends up containing.
What is the type of the value that s.split() returns? What does the for loop iterate over?

Another useful operator on sequences is the in operator. This operator makes it possible to check to see if an item is in a sequence. For a string, this means you can ask, “Is a character in this string?”. For a list it means you can ask if an item is in a list.

 Example 3.7

Consider this code that determines if you like something similar to Sophus Lie. The in operator let’s you find an item in a list and returns True if it does and False otherwise.[image: A978-1-4471-6642-9_3_Fign_HTML.gif]

3.4 The Guess and Check Pattern for Lists
While the in operator works well to test for membership in a sequence, it won’t work in all situations. Sometimes we need to know if a value with some property other than equality is in a sequence. In these circumstances, the
guess and check pattern may be appropriate. The guess and check pattern that we learned about in the last chapter can be applied to sequences, too. You still make a guess at the beginning of the pattern, but then you fix your guess while executing a loop over each element in the sequence you are working with. An example will make things clear.

 Example 3.8

Assume we want to know if the user enters an even number in a list of numbers. Here is some code that will decide if one of those numbers is even. [image: A978-1-4471-6642-9_3_Figo_HTML.gif]

The code shown in Example 3.8 works by making a guess and then running through the list of possible counter-examples to fix the guess if needed. Notice the if containsEven appears after the for loop. It is not indented under the for loop. This is very important because other wise you would be checking if the property held for the entire list before you have even looked at the entire list.

 Practice 3.9

Type this code and run it using step into and over. Make sure you get the expected output. What would happen in Example 3.8 if the if containsEven statement were indented under the for loop?

 Practice 3.10

Imagine you work at a rehabilitation center for those that suffer from obsessive-compulsive disorders. You have to write a program that monitors your patients by looking for key words in their daily blogs that they are required to keep. The words are orderly, shopping, repeat, again, gamble, and bid. If any of these words appear in their blog entry then you should print “You really need to talk to someone about this”. Otherwise you can print, “Thanks for updating your blog”. Here is one possible interaction with this program.[image: A978-1-4471-6642-9_3_Figp_HTML.gif]

 Write this program using the guess and check pattern to see if any of the sensored words appear in their blog entry. Your blog entry will appear on the first line only. It was wrapped around to fit on the page here.

3.5 Mutability of Lists
Section 1.​11 on p. 20 introduced you to variables as references to objects. The mental picture of variables pointing at objects was not really all that important at the time. Now, it becomes more crucial that you have this mental picture formed in your mind. Up until this moment, the objects we’ve looked at were immutable. This means that once an object was created, it could not be modified. For instance, if x [image: $$=$$] 6 is written in a Python program, you cannot modify the 6 later on. You can modify the reference x to point to a new integer, but the 6 itself cannot be modified. Integers are immutable in Python. So are float, bool, and string objects. They are all immutable. Lists, however, are not immutable. A list object can be changed. This is because of the way list objects are constructed.

 Example 3.9

Consider the code given here. The code builds a list called question. The question object is pictured in Fig. 3.4. [image: A978-1-4471-6642-9_3_Figq_HTML.gif]

What we learned on p. 20 says that question is a reference to an object. However, all the elements of the list are also objects. The way a list is formed, the elements of a list are actually references that point to the individual items of the list. A list is really a list of references. Unlike strings, individual references within a list can be made to point to new objects using indexed assignment. It is valid to write:[image: A978-1-4471-6642-9_3_Fig4_HTML.gif]
Fig. 3.4A list object

[image: A978-1-4471-6642-9_3_Figr_HTML.gif]

Writing this changes a reference within the list object to point to a new object. This mutates the list object. A list object is mutable because of indexed assignment. It should be noted that indexed assignment is not valid on strings. Strings in Python are immutable and therefore attempting to use indexed assignment on a string will result in an error.

 Example 3.10

Assume we want to change the sentence contained in the list from “are you awake for this” to “for this I am awake”. But, we want to avoid creating any more string objects than necessary. The code below does this and prints [‘for’, ‘this’, ‘I’, ‘am’, ‘awake’] since answer is a list. Figure 3.5 depicts what answer looks like in memory after the code below has been executed.[image: A978-1-4471-6642-9_3_Figs_HTML.gif]

 Practice 3.11

Given what you now know about references, what would print if the question variable were printed after executing the code in Example 3.10? Run this code with the debugger.

 [image: A978-1-4471-6642-9_3_Fig5_HTML.gif]
Fig. 3.5A mutated list object

 [image: A978-1-4471-6642-9_3_Fig6_HTML.gif]
Fig. 3.6Using wing to inspect a list

In Example 3.10 the answer list started out with [‘are’, ‘you’, ‘awake’, ‘for’, ‘this’] and ended up containing [‘for’, ‘this’, ‘I’, ‘am’, ‘awake’]. It’s not a new list. The existing list was updated. In addition, as you just discovered, the variable question was also mutated because both question and answer refer to the same list. This can be seen in Fig. 3.6, which shows the code in Example 3.10 while it is being executed and just before answer [4] is assigned its new value. In Wing, and in many IDEs, it looks as if there are two separate lists, the answer and the question lists. However, if you look carefully, both lists have the same reference. They are both located at 0x644bc0. If you were to type in this code and execute it you would see that the two lists truly update in synchronization with each other. When one is updated, the other simultaneously updates.
Also worth noting is that sometimes you can see the reference value when using a debugger and other times you may not. For instance, in Fig. 3.6 you can see the two references to the question and answer list. However, you cannot see the references to any of the strings contained in the list. The creators of the Wing IDE chose not to show references for strings for two reasons: Including all the references would clutter up the debugger and make it harder to use and in the case of strings, references are not really necessary since strings are immutable. Nevertheless, it does not mean that the list does not contain references to the individual items. It does; the Wing designers have just chosen not to show them in this case.
The idea that variables are really references to objects is important when objects are mutable, like lists. Understanding how the code works depends on you having the correct mental picture. Lists are the only objects we’ve seen so far that are mutable. Objects of type integer, floats, booleans, and strings are not mutable. There are other types of objects that are mutable in Python including dictionaries.

3.6 The Accumulator Pattern
Iterating over sequences can be useful when we want to count something. Counting is a common occurrence in computer programs. We may want to count the number of people who are taking an Introduction to Computer Science, we may want to add up the amount of money made from ticket sales to a concert. The applications of counting could go on and on. To count we can use what is called the
Accumulator Pattern. This pattern works by initializing a variable that keeps track of how much we have counted so far. Then we can write a for loop to go through a list of elements in a sequence and add each element’s value to the accumulator. The pattern looks like this:[image: A978-1-4471-6642-9_3_Figt_HTML.gif]

This pattern is pretty abstract. With an example it should make some more sense.

 Example 3.11

Here is a program that counts the number of elements in a list. Of course, we could use the len(lst) function to give us the number of elements in the list, but this illustrates the accumulator pattern for us. This code counts the number of integers in a list. Actually, it counts the number of whitespace separated strings in the list since the code never converts the strings to integers.[image: A978-1-4471-6642-9_3_Figu_HTML.gif]

The Accumulator pattern can be used in a multitude of ways. It can be used to count by adding one each time through the loop, it can be used to count the number of items that satisfy some constraint. It can be used to add some number of items in the list together. It can be used to compute a product if needed.

 Practice 3.12

Modify the code in Example 3.11 to count the number of even integers entered by the user.

 Practice 3.13

Write a program that asks the user to enter an integer and computes the factorial of that integer, usually written [image: $$n!$$] in mathematics. The definition of factorial says that [image: $$0! = 1$$] and for [image: $$n>0$$], [image: $$n! = 1 * 2 * 3\ldots * n$$]. You can write this program by using the range function and the accumulator pattern to multiply all the numbers from 1 to [image: $$n$$] together. If you need to review how to use the range function you can refer to p. 69.

In the previous exercise it is worth mentioning that if written correctly not only will it compute [image: $$n!$$] when [image: $$n>0$$], but it will also compute [image: $$0!$$] correctly. When [image: $$0!$$] is computed, the body of the for loop is not executed at all. Take a look at your code or at the solution to the practice exercise to confirm this. This sometimes happens when writing code and is called a boundary condition. A boundary condition happens when there is a special case that causes the program control to take a slightly different path. In this case, computing [image: $$0!$$] is a boundary condition and the body of the for loop is not executed. When testing code you have written it is important that you consider your boundary conditions and that you test them to be sure that your program handles them correctly.

3.7 Reading from and Writing to a File
A file is a grouping of related data that can be read by a computer program. Files may be stored in many different places including the hard drive, a thumb drive, on a CD, at a network location, really any place where a program could have access to it. While files occur in many forms and sizes, a text file is a bunch of text written using an editor and usually stored on a hard drive. Files can be read and written from Python programs. Files are another type of sequence as far as Python programs are concerned and we can iterate over them just as we would any sequence. Files are sequences of strings, one string for each line of the file. To read from a file we open it and then iterate over the lines of the file.

 Example 3.12

A commonly used command in the Linux operating system is called cat which stands for catalog but actually prints the contents of a file to the screen. We can write a similar program in Python. Here is the code. For this to work, you must enter the name of a file in the same directory or folder as the program that you are running.[image: A978-1-4471-6642-9_3_Figv_HTML.gif]

 Practice 3.14

If you run the program in Example 3.12 you will notice an extra blank line between the lines of the file. This is because there is a ‘[image: $$\backslash n$$]’ newline character at the end of each line read from the file. You can’t see the newline character, but it is there. The print statement prints another newline at the end of each line. Modify the code in Example 3.12 to eliminate the extra line. Look at Chap. 10 for a method that will help you eliminate the extra newline character at the end of each line.

The program in Example 3.12 reads one line at a time from the file. The second line of the example opens the file for reading. To write a file it may be opened for writing by using a “w” instead of a “r”. You can also open a file with “a” for append to add to the end of an existing file.

 Example 3.13

The program below writes to a file named by the user. The file is opened and it is closed. Closing is important when writing a file so you know when the file as been completely written. Otherwise, in some situations, the data may still be in memory and waiting to be written out. Closing the output file insures that the data has actually made it to the file.[image: A978-1-4471-6642-9_3_Figw_HTML.gif]

When writing to a file you use the file.write method. Unlike the print function, you cannot write multiple items by separating them with commas. The write method takes only one argument, the string to write. To write multiple items to a line of a file, you must use string concatenation (i.e. the [image: $$+$$] operator) to concatenate the items together as was done in Example 3.13. When comma separated items in a print statement are printed, a space character is automatically added between comma separated items. This is not true of string concatenation. If you want a space in the concatenated strings, you must add it yourself.
If you have non-string items to write to a file, they must be converted to strings using the str function. Otherwise, you’ll get a run-time error when Python tries to concatenate a string to a non-string item. In Example 3.13 the age variable is an integer because of the int conversion on the third line. In the sixth line, one is added to the age and then the sum age [image: $$+$$] 1 is converted to a string so it can be concatenated to the string literals and then written to the file.

3.8 Reading Records from a File
It is frequently the case that a file contains more than one line that relate to each other in some way. For example, consider an address book program. Each entry in your address book may contain last name, first name, street, city, zip code, home phone number, and mobile number. Typically, each of these pieces of information would be stored on a separate line in a file. A program that reads such a file would need to read all these lines together and a for loop will not suffice. In this case it can be done if we use a while loop. A while loop looks like this:[image: A978-1-4471-6642-9_3_Figx_HTML.gif]

[image: A978-1-4471-6642-9_3_Fig7_HTML.gif]
Fig. 3.7A While Loop

The condition of the while loop is evaluated first. If the condition evaluates to true, then the body of the while loop is executed. The condition is evaluated again and if the condition evaluates to true, the body of the while loop is performed again. The body of the while loop is repeated until the condition evaluates to false. It is possible the body of the while loop will never be executed if the condition evaluates to false the first time as graphically depicted in Fig. 3.7.
A while loop is used to read
records from a file that are composed of multiple lines. A for loop will not suffice because a for loop only reads one line per iteration. Since multiple lines must be read, a while loop gives you the extra control you need. To read a multi-line record from a file we can use this pattern:[image: A978-1-4471-6642-9_3_Figy_HTML.gif]

This pattern can be illustrated by looking at part of an address book application where each address book record resides on 6 lines of a file.

 Example 3.14

Here is a program that counts the number of entries in your phonebook. This assumes that the file looks something like the following:[image: A978-1-4471-6642-9_3_Figz_HTML.gif]

To read this file and count the entries the code would look like this:[image: A978-1-4471-6642-9_3_Figaa_HTML.gif]

The code in Example 3.14 reads the first line of a record, or at least it tries to. Every opened file has a current position that is set to the beginning of the file when the file is opened. As lines are read from the file, the current position advances through the file. When the current position is at the end of the file, the program in Example 3.14 will attempt to read one more line on either line 4 or line 19, depending on whether the file is empty or not. When the current position is at the end and it attempts to read a line, the lastName variable will be a reference to an empty string. This is the indication in Python that the current position is at the end of file sometimes abbreviated EOF. When this happens the code exits the while loop and prints the output on line 21. If the lastName variable is not empty, then the code assumes that because one line was present, all six lines will be present in the file. The code depends on each record being a six line record in the input file called addressbook.txt.
When you read a line from a file using the readline method you not only get the data on that line, but you also get the newline character at the end of the line in the file. The use of the rstrip method on the string read by readline strips away any white space from the right end of the string. If you need to look at the data at all you probably don’t want the newline character on the end of each line of the record.
Whether you are writing code in Python or some other language, this Reading Records From a File pattern comes up over and over again. It is sometimes called the loop and a half problem. The idea is that you must attempt to read a line from the file before you know whether you are at the end of file or not. This can also be done if a boolean variable is introduced to help with the while loop. This boolean variable is the condition that gets you out of the while loop and the first time through it must be set to get your code to execute the while loop at least one.

 Example 3.15

As with nearly every program, there is more than one way to do the same thing. The loop and a half code can be written differently as well. Here is another variation that while slightly different, accomplishes the same thing as Example 3.14. [image: A978-1-4471-6642-9_3_Figab_HTML.gif]

Examples 3.14 and 3.15 do exactly the same thing. They each perform a loop and a half. The half part is one half of the body of the loop. In Example 3.14 this was reading the lastName variable before the loop started. In Example 3.15 this was the first half of the body of the while loop. Some may feel one is easier to memorize than the other. Some experienced programmers may even prefer another way of writing the loop and a half. The important thing is that one of these patterns should be memorized. You can use it any time you need to read multi-line records from a file.
William Edward Deming was a mathematician and consultant who is widely recognized as an important contributor to the rebuilding of Japan after the second world war [15]. One of his principles emphasized that you should not repeat the same process in more than one location. In Computer Science this translates to “You should avoid writing the same code in more than one location in your program”. If you write code more than once and have to make a change later, you have to remember to change it in every location. If you’ve only written the code once, you only have to remember to change it in that one location. Copying code within your program increases the risk of there being a bug introduced by changing only some of the locations and not all of them when new function is being added or when a bug is being fixed. This guiding principle should be followed whenever possible. Example 3.14 appears to violate this principle with one line of repeated code. That’s the tradeoff for not having to include an extra if statement in the body of the while loop as was done in Example 3.15.

3.9 Review Questions

 	1.Where did the term computer originate?

	2.What is a sequence in Python? Give an example.

	3.How do you call a method on an object? What is the general form? Give an example that’s not in the book.

	4.What is a class in Python?

	5.What is a type in Python?

	6.Definite iteration is when the number of iterations is known before the loop starts. What construct in Python is used for definite iteration?

	7.Indefinite iteration is what happens when the exact number of iterations is not known before the loop begins (but still may be calculable if you know the input). What construct in Python is used for indefinite iteration?

	8.How can you get at the last element of a list? Give two examples of expressions that return the last element of a list.

	9.If you wanted to print all the items of a list in reverse order using a while loop, how would you do it? Write some example code that demonstrates how this might be accomplished. Remember, you must use a while loop in your answer.

	10.How would you use the Guess and Check pattern to find a name in a phonebook? Write some code that searches a list of names for someone’s name. Is there a more efficient way of finding a name in a phonebook?

	11.Lists and strings are similar in many ways. One major difference is that lists are mutable and strings are not. What does that mean? Give an example of an operation that lists support but strings do not.

	12.Why does mutable data sometimes lead to confusion when programming?

	13.What is the accumulator pattern? Give an example of how it might be used.

	14.There are two ways to read from a file that are presented in the text. Describe both of them. When is one more appropriate than the other?

3.10 Exercises

 	1.Write a program that prints all the prime numbers less than 1,000. You can write this program by creating a list of prime numbers. To begin, the list is empty. Then you write two nested for loops. The outer for loop runs through all the numbers from 2 to 999. The inner for loop runs through the list of prime numbers. If the next number in the outer for loop is not divisible by any of the prime numbers, then it is prime and can be printed as a prime and added to the list of primes. To add an element, e, to a list, lst, you can write lst.append(e). This program uses both the guess and check pattern and the accumulator pattern to build the list of prime numbers.

	2.Write a menu driven program that works with an address book file as described in Example 3.14. You may want to consult Example 2.​6 to see how to print a menu to the user and get input from them. Your program should have three menu items, look up a name, add a contact, and quit. Interacting with your program should look something like this: [image: A978-1-4471-6642-9_3_Figac_HTML.gif]

 You will want to create your own address book file for this problem. Call the file “addressbook.txt”. You can create it by selecting New in your IDE and then saving it in the same directory as your program. You should call the file “addressbook.txt”. Don’t add a “.py” to the end of this text file. Be sure when you write to the file that you put a newline character at the end of each line. If you create your own file there should be a newline character at the end of each line. If you don’t do this then when you try to write another record to the file it may not end up formatted correctly. You can always open the text file with Wing to take a look at it and see if it looks like the format presented in Example 3.14.

	3.Write a program that asks the user to enter a list of numbers and then prints the count of the numbers in the list and the average of the numbers in the list. Do not use the len function to find the length of the list. Use the accumulator pattern instead. The program would print this when run. [image: A978-1-4471-6642-9_3_Figad_HTML.gif]

	4.Write a program that asks the user to enter a list of numbers. The program should take the list of numbers and add only those numbers between 0 and 100 to a new list. It should then print the contents of the new list. Running the program should look something like this: [image: A978-1-4471-6642-9_3_Figae_HTML.gif]

	5.Write a program that asks the user to enter a list and then builds a new list which is the reverse of the original list.

	6.Draw a picture of the variable references and values that result from running the code in Exercise 5.

	7.Write a program that asks the user to enter a list and then reverses the list in place so that after reversing, the original list has been reversed instead of creating a new list.

	8.Draw a picture of the variable references and values that result from running the code in Exercise 7.

	9.Write a program that asks the user to enter a list of integers one at a time. It should allow the user to terminate the list by entering a [image: $$-$$] 1. Running the program would look something like this. [image: A978-1-4471-6642-9_3_Figaf_HTML.gif]

	10.Write a program that computes a user’s GPA on a 4 point scale. Each grade on a 4 point scale is multiplied by the number of credits for that class. The sum of all the credit, grade products is divided by the total number of credits earned. Assume the 4 point scale assigns values of 4.0 for an A, 3.7 for an A[image: $$-$$], 3.3 for a B[image: $$+$$], 3.0 for a B, 2.7 for a B[image: $$-$$], 2.3 for a C[image: $$+$$], 2.0 for a C, 1.7 for a C[image: $$-$$], 1.3 for a D[image: $$+$$], 1.0 for a D, 0.7 for a D[image: $$-$$], and 0 for an F. Ask the user to enter their credit grade pairs using the following format until the enter 0 for the number of credits. [image: A978-1-4471-6642-9_3_Figag_HTML.gif]

	11.Example 1.​1 on p. 11 presented a nice algorithm for converting a base 10 integer to binary. It turns out that this algorithm works for both positive and negative integers. Write this algorithm one more time. This time, use a loop to avoid duplicating any code. Write the algorithm so it will convert any 32-bit signed integer to its binary equivalent. Thirty-two bit signed integers are integers in the range of [image: $$-2^{31}$$] to [image: $$2^{31}-1$$]. That would be integers in the range [image: $$-$$]2, 147, 483, 648 to 2, 147, 483, 647. Be sure to eliminate any leading 0s from the result before it is printed. Your loop should terminate when the number you are converting has reached zero (according to the algorithm) or when you’ve reached the requisite 32 bits for your number.

3.11 Solutions to Practice Problems
These are solutions to the practice problems in this chapter. You should only consult these answers after you have tried each of them for yourself first. Practice problems are meant to help reinforce the material you have just read so make use of them.
3.11.1 Solutions to Practice Problem 3.1

 [image: A978-1-4471-6642-9_3_Figah_HTML.gif]

3.11.2 Solutions to Practice Problem 3.2

 [image: A978-1-4471-6642-9_3_Figai_HTML.gif]

3.11.3 Solutions to Practice Problem 3.3
The else would be optional for this exercise.[image: A978-1-4471-6642-9_3_Figaj_HTML.gif]

3.11.4 Solutions to Practice Problem 3.4

 	1.Does the string s change as the code is executed?
No it does not.

	2.What happens if the user just presses enter when prompted instead of typing any characters?
The body of the for loop is not executed at all.

3.11.5 Solutions to Practice Problem 3.5

 [image: A978-1-4471-6642-9_3_Figak_HTML.gif]

3.11.6 Solutions to Practice Problem 3.6

 [image: A978-1-4471-6642-9_3_Figal_HTML.gif]

3.11.7 Solutions to Practice Problem 3.7

 [image: A978-1-4471-6642-9_3_Figam_HTML.gif]

3.11.8 Solutions to Practice Problem 3.8
The split method returns a list of strings. The for loop iterates over the list. Each time through the loop the word variable is referencing the next string in the list.

3.11.9 Solutions to Practice Problem 3.9
If the containsEven if statement were indented, then the for loop would check to see if containsEven were true or false each time through the loop. The program would print that the list did not contain an even number (even though it might) over and over again until an even number was found. Then it would print it did contain an even number over and over again. It would print one line for each element of the list.

3.11.10 Solutions to Practice Problem 3.10

 [image: A978-1-4471-6642-9_3_Figan_HTML.gif]

3.11.11 Solutions to Practice Problem 3.11
If the question variable were printed it would be the same as if the answer variable were printed. Both question and answer refer to the same list.

3.11.12 Solutions to Practice Problem 3.12

 [image: A978-1-4471-6642-9_3_Figao_HTML.gif]

3.11.13 Solutions to Practice Problem 3.13

 [image: A978-1-4471-6642-9_3_Figap_HTML.gif]

3.11.14 Solutions to Practice Problem 3.14

 [image: A978-1-4471-6642-9_3_Figaq_HTML.gif]

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_4

4. Using Objects

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

In this chapter we explore objects and code re-use. Python is an object-oriented language and learning to use objects can make programming fun and productive. In this chapter we’ll explore object-oriented programming by using the turtle module.
If we had to write every program from scratch, we wouldn’t be able to get very much done. Part of the fun of programming is using something someone else has written to solve a problem quickly. Another fun aspect of programming is writing code that others may want to use in their programs. In fact, programmers sometimes become famous among their peers by writing code that turns out to be very valuable: people like Yukihiro Matsumoto [2], who created the Ruby programming language, or Robin Milner [6] who described the type inference system used by Standard ML, or Guido van Rossum the creator of the Python Programming Language [10]. There are many, many computer scientists that could be named here.
Python makes it easy for programmers who want to share code with others to do just that. A
module is a file containing Python code. When a programmer needs to use code another programmer wrote, he or she can import the module containing the code they want to use into their program. Modules can be imported into other modules so one programmer can easily use code that another programmer wrote. One such module is called turtle. The turtle module includes code that helps us draw figures in the sand. A turtle can walk around a beach dragging his or her tail in the sand or raising that tail. When the tail is down, the turtle leaves a track. When the tail is up the turtle leaves no trail. With this simple analogy we can draw some pretty interesting pictures. The idea has been around since at least the late 1960s when Seymour Papert added turtle graphics to the Logo programming language [4]. Gregor Lingl, an Austrian high school teacher, has implemented a version of turtle graphics for Python that now is part of the Python programming environment.
To use a module it needs to be imported into your program. There are two ways to import a module. The decision of which to use is partly based on convenience and partly based on safety of your program. The safe way to import a module is to write import module where module.py is the name of a module. The module must be in the current directory or in one of the directories where your installation of Python knows to look. When importing a module in this way you must prefix any use of code within the module with the module name. If you want to call a function or use a type, t, that is defined in the imported module, you must write module.t. This is safe because there will never be the possibility of using the same name within two different modules since all names must be qualified with the module name. Using qualified names makes importing safe, but is not the most convenient when writing code.[image: A978-1-4471-6642-9_4_Fig1_HTML.gif]
Fig. 4.1A turtle object

 Example 4.1

Here is a program that imports the turtle code and uses it to draw a square.[image: A978-1-4471-6642-9_4_Figa_HTML.gif]

If you are going to try this code, DO NOT call it turtle.py. If you name your own program the same as a module name, then Python will no longer import the correct module. If you already did this you must delete the turtle.pyc file in your folder and rename your module to something other than turtle.py.
Example 4.1 imports the turtle module using import turtle. Once the module is imported, a Turtle object can be created. In this case, the programmer must write turtle.Turtle() to create an object of type Turtle. Because the Turtle type or class resides in the turtle module the fully qualified name of turtle.Turtle() must be written to create a Turtle object. Figure 4.1 shows the turtle reference pointing to a Turtle object just like integer variables are references that point to int objects and string variables are references that point to str objects. Initializing a Turtle object and making a reference point to it is just like creating any other object in Python.

 Practice 4.1

Write some code that uses a for loop to draw a square using the turtle module.

A more convenient way to import a module is to write from module import *. In this case we could import the turtle module by writing from turtle import *. This imports the turtle module as before but merges all the names of functions, types, and classes in the turtle module with the names of functions, variables, and types in your program.

 Example 4.2

Here is a program that draws a pentagon using the other form of import.[image: A978-1-4471-6642-9_4_Figb_HTML.gif]

Example 4.2 imports by merging the namespace of the turtle module and the program in the example. Both Examples 4.1 and 4.2 demonstrate how to call a method on an object. This means that any variables defined in the turtle module will be overridden if they are also defined in the code in Example 4.2. For example, we would want to be careful and not name something Turtle in our code since that would mean that we would no longer be able to create a Turtle object in our program. Redefining a name like this is not permanent though. The problem only exists within the program. Once the program terminates, the next time we import the turtle module, the Turtle class would be available again.
Not every class must be imported from a module. Python already makes the int, float, bool, and str classes available without importing anything. These classes are called built-in classes in Python. But, the Turtle class is not built-in. It must be imported from the turtle module.
In both examples the variable t is a reference that points to a Turtle object. The turtle object can be told to do things. Turtles understand certain messages or methods. We’ve already learned how to call methods on objects in Chap. 3. For instance, we’ve called the split method on a string object. Sending a message to a Turtle object is no different. For instance in Example 4.2 we sent the forward message to the turtle t passing 25 as the number of steps to move forward. The forward method, and other methods that turtles understand, are described in Chap. 13. Methods for the TurtleScreen class are described in Chap. 14.

 Practice 4.2

Write a short program that prompts the user to enter the number of sides of a regular polygon. Then draw a regular polygon with that many sides. You can use the textinput method described in Chap. 14 to get the input or you can just use input to get the input from the Debug I/O tab of Wing IDE 101.

While actual turtles are slow and perhaps not very interesting, turtle objects can be fun. A turtle object can be used in a lot of different ways. It can change color and width. It can be used to draw filled in shapes. It can draw circles and even display messages on the screen. Turtle graphics is a great way to become familiar with object-oriented programming. The best way to learn about object-oriented programming is just to have fun with it. Refer to Chap. 13 and use it to write some programs that draw some interesting pictures with color, interesting shapes, filled in polygons, etc.

 Practice 4.3

Use the turtle module to write a program that draws a 4WD truck like that pictured in Fig. 4.2. A truck consists of two tires and a top of some sort. You should use some color. You may use penup and pendown while drawing. However, don’t use goto once you have started drawing. The reason for this will become evident in the exercises at the end of the chapter.

You may want to change color, fill in shapes, etc. Be creative and try things out. Just be sure the last line of your program is screen.exitonclick(). Without the call to screen.exitonclick() the turtle graphics window may appear to freeze up.[image: A978-1-4471-6642-9_4_Fig2_HTML.gif]
Fig. 4.2A 4WD truck

4.1 Constructors
To create an object of a certain type or class we must write[image: A978-1-4471-6642-9_4_Figc_HTML.gif]

This creates an object of type
Class and then points the objectref variable at the object that was just created. Figure 4.1 shows what happens in memory as a result of executing the t=Turtle() line of code in Examples 4.1 and 4.2. Several things happen when we create an object. Python first reserves enough space in memory to hold the object’s data. Then, the object is initialized with the data that must be stored in it. All objects have some data associated with them. For instance, a Turtle object knows its current location on the screen, its direction, and its color, among other things. When a Turtle object is created, all the information is stored in the object. This is called constructing an object and it happens when we call the
constructor. So, when we write the following line of code or similar lines of code for other types of objects:[image: A978-1-4471-6642-9_4_Figd_HTML.gif]

we are instructing Python to create a Turtle object using the constructor and we make the variable t point to the turtle object that was just created. There are lots of constructors that are available to us for creating different types of objects in Python.

 Example 4.3

Here are some examples of objects being created using constructors. The types (i.e. classes) str, int, float, Turtle, and list each have their own constructors. In fact, sometimes a class has more than one constructor. Look at the float examples below. There are at least two ways to create a float object. You can either pass the constructor a string and it will convert the float in the string to a float object, or you can pass an integer to the float constructor.[image: A978-1-4471-6642-9_4_Fige_HTML.gif]

Except in a few special circumstances, a constructor is always called by writing the name of the class then a left paren, then any arguments to pass to the constructor, followed by a right paren. Calling a constructor returns an instance of the class, called an object. For a few of the built-in classes there is some syntactic sugar available for creating objects. In Example 4.3, the variables u and r are initialized to point to an integer object and a string object, respectively. Syntactic sugar makes constructing objects for some of the built-in classes more convenient and it is necessary in some cases. Without some syntactic sugar, how would you create an object containing the integer 6?

 Practice 4.4

Using Wing, or some other IDE, run the code in Example 4.2. Set a breakpoint at the line where screen is initialized. Then, look at the Stack Data and specifically at the t variable. Expand it out so you can see the state of the turtle and specifically the _position of the turtle. This is the (x,y) location of the turtle on the screen. When the turtle is at the peak of the pentagon from Example 4.2 what is its (x,y) location?

4.2 Accessor Methods
When we have an object in our program, we may wish to learn something about the state of that object. To ask for information about an object you must call an accessor method. Accessor methods return information about the state of an object.

 Example 4.4

To learn the heading of the turtle we might call the heading method.[image: A978-1-4471-6642-9_4_Figf_HTML.gif]

Calling the heading method on the turtle means writing t followed by a dot (i.e. a period) followed by the name of the method, in this case heading. The accessor method, heading, returns some information about the object, but does not change the object. Accessor methods do not change the object. They only access the state of the object.

 Practice 4.5

Is the forward method an accessor method? What about the xcor method? You might have to consult Chap. 13 to figure this out.

4.3 Mutator Methods

Mutator methods, as the name suggests, change or mutate the state of the object. Sect. 3.​5 introduced the mutability of lists. Mutator methods are called the same as accessor methods. Where an accessor method usually gives you information back, a mutator method may require you to provide some information to the object.[image: A978-1-4471-6642-9_4_Fig3_HTML.gif]
Fig. 4.3Two references to one object

 Example 4.5

Here are some calls to mutator methods.[image: A978-1-4471-6642-9_4_Figg_HTML.gif]

One misconception about object-oriented programming is that assigning one reference to another creates two separate objects. This is not the case as is demonstrated by the following code. This isn’t a problem if the object doesn’t change. However, when the object may be mutated it is important to know that the object is changing and this means that it changes for all references that point at the object.

 Example 4.6

Here is an example of one turtle with two different references to it. Both t and r refer the the same turtle.[image: A978-1-4471-6642-9_4_Figh_HTML.gif]

In Example 4.6 more than one reference points to the same Turtle object as depicted in Fig. 4.3. Writing r [image: $$=$$] t does not create a second Turtle. It only points both references to the same Turtle object. This is clear from Example 4.6 when one Turtle seems to pick up where the other left off. In fact, they are the same turtle.

 Practice 4.6

How would you create a second Turtle object for r if that’s really what you wanted?

4.4 Immutable Classes
Section 3.​5 first defined immutable classes. An immutable class is a type with no mutator methods. If an object has no mutator methods then it is impossible to tell if two references point to the same object or if they point to different objects. In fact it doesn’t really matter since neither reference can be used to change the object. This may happen frequently in Python for objects of type int, float, string, and bool. All these classes are immutable. These classes of objects can never be changed once they are created since they have no mutator methods!

 Practice 4.7

If strings cannot be changed, what happens in the following code? Draw a picture to show what happens in the following code.[image: A978-1-4471-6642-9_4_Figi_HTML.gif]

While string objects can’t be changed, references can be. That’s what happens in the exercise above. str objects never change once they are created. Immutable classes are nice to work with because we can forget about their being objects and references and just concentrate on using them without fear of changing the object accidentally.

4.5 Object-Oriented Programming
Turtles are fun to program because they make drawing easy by remembering many of the details of generating computer graphics for us. That’s really the motivation behind
object-oriented programming and using objects. What we’ve seen in this short chapter are all the mechanics for creating and using objects. Objects make our lives as programmers simpler. Every object maintains some state information, its data, and every object lets us either access that data through an accessor function or it allows its data to be changed by calling mutator methods. Many objects have both accessor and mutator methods.
The power of object-oriented programming is in the ability to organize the data in our programs into logical entities that somehow make sense. A turtle is a great way to embody many of the elements of graphics programming while giving us a way of visualizing how the turtle works by thinking about how a real turtle might leave marks in the sand.[image: A978-1-4471-6642-9_4_Fig4_HTML.gif]
Fig. 4.4Flower power by Denise M. Lee

4.6 Working with XML Files

Now that you know how to use objects and in particular how to use turtle graphics you can put it to use. There are many applications for Turtle graphics. It can be used to create more advanced drawing applications like the one pictured in Fig. 4.4.
The drawing application shown in Fig. 4.4 can save pictures in a file format called XML. XML stands for eXtensible Markup Language. Computer Scientists devised the XML format so data could be stored in a consistent format. Many applications store their data in XML format. Some that you might be familiar with include the Apple iTunes application or the registry in Microsoft Windows. Mac OS X uses it as well in its application structure. XML is popular because the definition of XML makes it possible to add additional elements to an XML file later without affecting code that was written before the new fields were added. This ability to add to an XML file without breaking existing code means there is a huge advantage to using XML as the format for data in practically any application. Being able to write code to extract data from an XML file is a very practical skill.
XML files have a fairly straight-forward structure but also contain a lot of formatting information that is not really part of the data. It would be painful to have to write code that reads an XML file and extracts just the information you need. Fortunately, it is because XML files contain this extra formatting information, often called meta-data, that it is possible for someone else to write code that we can use to read an XML file. That code is called an XML parser. Parsing refers to reading data and selecting out the individual components or elements of that data.
To parse an XML file you must import an XML parser. We’ll use the minidom XML parser in this text. The import statement looks like this:[image: A978-1-4471-6642-9_4_Figj_HTML.gif]

Once you have imported the XML parser you create an Document object by telling minidom to parse the XML file.[image: A978-1-4471-6642-9_4_Figk_HTML.gif]

That’s all there is to reading an entire XML file. Looking at Fig. 4.4 it should be clear that the picture is fairly complex. There are many colors and elements to the drawing. Just how is all that data organized?
An
 XML file starts with a line at the top that helps the parser identify the contents of the file as an XML file. The parser looks for a line that looks something like this.[image: A978-1-4471-6642-9_4_Figl_HTML.gif]

The rest of an XML file is composed of one or more elements. And, elements may be nested inside of other elements. Elements almost always consist of two tags with text or other elements nested between the tags. A
tag in an XML file is a string of characters that appears within angle brackets (i.e. a less than/greater than sign pair). For instance, this is one element from an XML file with a start-tag and end-tag and the text “PenUp” nested inside the element.[image: A978-1-4471-6642-9_4_Figm_HTML.gif]

Each start-tag has a matching end-tag that ends one element of an XML file. The [image: $$\mathtt < $$]Command[image: $$\mathtt > $$] is the start-tag of this element and the [image: $$\mathtt < $$]/Command[image: $$\mathtt > $$] is the end-tag. The matching end-tag always has the same name as the start-tag but is preceeded by a slash. An XML element may also contain attributes. The attributes appear within the XML element’s start-tag as shown here.[image: A978-1-4471-6642-9_4_Fign_HTML.gif]

This element contains the attributes x, y, width, and color. Each of these attributes has a value inside the quotes associated with the attribute.
Start-tags and end-tags almost always occur in matching pairs. However, there is one other type of element that consists of just one tag. An element with no nested elements may be written like this. [image: A978-1-4471-6642-9_4_Figo_HTML.gif]

There are no occurrences of empty elements like this in the graphics file in the following example. Most of the time XML elements consist of a start-tag and end-tag pair with possibly nested elements or text between the tags.

 Example 4.7

Here is an example of a file saved by a drawing program. This file contains one XML element called GraphicsCommands. Within this single XML element are many Command elements. These elements represent a subset of the drawing commands used to produce the picture in Fig. 4.4.[image: A978-1-4471-6642-9_4_Figp_HTML.gif]

4.7 Extracting Elements from an XML File
Each element in an XML document has a name. To extract an element you ask for all elements that match a given name. For the drawing application’s XML document format we start by getting the GraphicsCommands element.[image: A978-1-4471-6642-9_4_Figq_HTML.gif]

The code above returns a list of all elements at the top-level of the document that match the tag name GraphicsCommands. We know there is only one of these elements in the file, so we can get just the first one by using index 0 into the list.[image: A978-1-4471-6642-9_4_Figr_HTML.gif]

The graphicsCommand variable is set to the first, and only, of the matching DOM elements returned by the minidom parser. DOM stands for Document Object Model. Now that we have the graphicsCommand element we can get sub-elements from it. The sub-elements of it are the list of Command elements.[image: A978-1-4471-6642-9_4_Figs_HTML.gif]

Finally, if we wish to draw the picture stored in the file, we can traverse the Command elements with a for loop.[image: A978-1-4471-6642-9_4_Figt_HTML.gif]

4.8 XML Attributes and Dictionaries

In the XML file presented in Example 4.7 many of the Command elements have attributes. For instance, the BeginFill command has a color attribute. The GoTo command on lines 4–5 has attributes x, y, width, and color. These attributes provide information about each of their graphics commands. The attribute names of x, y, width, and color are called the attribute keys and their values are the strings to which each key is assigned.
To correctly draw the picture in one of these picture XML files, we must be able to access the attributes of a graphics command and use them when drawing the picture. It is possible to access the attributes of an XML element through an attributes dictionary.
A dictionary is a little like a list. You can use indexing to look up values within the dictionary just like you use indexing to look up values within a list. The difference is that instead of using only integers as the index values, you can use any value you like. To lookup an attribute in the attributes dictionary we use its key.

 Example 4.8

A list and a dictionary have similarities. Both data types hold a collection of values. The difference between a list and a dictionary are in the values used to index into them. In a list, the index values must be non-negative integers and the locations within the list are numbered sequentially starting at 0.
Within a dictionary there is no ordering of the index values. An index value, called a key when working with dictionaries, can be nearly any value. A dictionary is a list of key, value pairs. Each key is mapped to a value. Keys must be unique, values do not have to be unique in the dictionary.
Here is some code that creates both a list and a dictionary and demonstrates similar operations on the two datatypes.[image: A978-1-4471-6642-9_4_Figu_HTML.gif]

The output when this code is executed is as follows.[image: A978-1-4471-6642-9_4_Figv_HTML.gif]

Chapter 12 contains a complete listing of dictionary operators and methods.

4.9 Reading an XML File and Building Parallel Lists
Drawing
 a picture like the one in Fig. 4.4 is possible if the corresponding XML file is parsed and the graphics commands extracted from it. Imagine that not only do we want to read such a picture, we would like to be able to scale the picture to make it bigger or smaller. It is possible to do this if we store all the graphics commands in lists. We’ll store each graphics command and its attributes in separate lists. One list will hold all the graphic command names. Another will hold the color attribute of each graphic command. Still another will hold the x attribute of each command, and so on.
This technique of using multiple lists to hold data that are related to each other is called parallel lists. The lists are in a sense parallel to each other because each list contains information that is related to the others at the same index value within the list. Each index location within the six lists contains the six attributes of one graphics command. Since we will need to go through the data more than once if we are scaling the picture, it makes sense to store this information in parallel lists so we can go through it as often as we need.
If a particular graphic command, like BeginFill does not have an attribute, like x for instance, then a special value of None will be stored at that location in the list. In this way the parallel lists will all have the same length and all the related data for a graphics command will be stored at the same index location within all the lists. We’ll name these parallel lists for their attribute names with a List attached to the end. So the list of x attributes becomes xList for example. The graphic command list will just be called commandList.

 Example 4.9

Code to build these parallel lists is relatively simple. There are five attributes. Each of these attributes corresponds to one list. Line 14 of the code in this example deserves some further explanation. In this line the expression command.firstChild.data retrieves the text appearing between the start-tag and end-tag of an XML element. For instance, when examining the element from line three of the XML file in Example 4.7 the command.firstChild.data would be “BeginFill”. The text in between the tags tells the code in this example which graphics command is represented in each of the XML elements.[image: A978-1-4471-6642-9_4_Figw_HTML.gif]

The code above is very repetitive on lines 17–36 doing the same thing for each attribute. All that changes is the attribute name and the list to which the value is appended. This code could be rewritten to use two parallel lists of its own, one for the attribute names, and another for the attribute lists. So, we end up with two more lists, the attrributeList and the attributes list. This shortens the code considerably. This code does exactly the same thing as the code above.[image: A978-1-4471-6642-9_4_Figx_HTML.gif]

Notice the way the code above iterates over the attributes. Since the attributes list and the attributeList list are the same length the for i in range(len(attributes)) generates the index i into both parallel lists. When working with parallel lists you always use an indexed for loop like this or while loop so you have an index that you can use to index into any of the parallel lists.

4.10 Using Parallel Lists to Draw a Picture
Drawing the picture from the XML file means traversing the parallel lists that were built in Sect. 4.9. Each location in the list contains a graphics command like “GoTo” or “Circle”. The attributes for a command are stored at the same index in a parallel list. All that’s needed is to iterate over these parallel lists and execute the turtle commands that are required to draw the picture.

 Example 4.10

To draw the picture in one of the picture XML files it is only necessary to iterate over the parallel lists that were built in Sect. 4.9. The code below uses the colormode method. Passing 255 to this method means that colors will be set using hexadecimal numbers. Color hexadecimal number have 6 digits. The first two digits are for the amount of red. The second two digits are the amount of green. The third two digits are the amount of blue. Two hexadecimal digits can range from 00–FF, or 0–255 when converted to decimal values. With 256 different shades of red, green, and blue there are [image: $$256^3$$] different possible colors.
The use of screen.tracer(0) below means that the picture is drawn instantaneously without any screen updates. This makes the picture just appear when the screen.update() method is called. Update must be called to force the update of the screen since the setting tracer to 0 means no updates are done automatically.
Notice the use of the for i in range(len(commandList)) below. The parallel lists all have the same length. The only way to traverse all the lists simultaneously is by indexing into the list. So, i is used as the index into all the parallel lists.[image: A978-1-4471-6642-9_4_Figy_HTML.gif]

4.11 Review Questions

 	1.What are the two ways to import a module? How do they differ? What are the advantages of each method of importing?

	2.How do you construct an object? In general, what do you have to write to call a constructor?

	3.What happens when you construct an object?

	4.What is the purpose of an accessor method?

	5.What is the purpose of a mutator method?

	6.Does every class contain both mutator and accessor methods? If so, why? If not, give an example when this is not true.

	7.What does an XML file contain?

	8.How do you read an XML file in a program?

	9.What is an attribute in an XML file? Give an example.

	10.What type of value does the method getElementsByTagName return when it is called?

	11.What is a dictionary?

	12.What are parallel lists? Why are they necessary in some cases?

 [image: A978-1-4471-6642-9_4_Fig5_HTML.gif]
Fig. 4.5The plot of [image: $$g(x) = x ^ 4/4 - x ^ 3 / 3 - 3x^2$$]

4.12 Exercises

 	1.Write a program that plots the function [image: $$\begin{aligned} g(x) = x ^ 4/4 - x ^ 3 / 3 - 3x^2 \end{aligned}$$]

 You can use the setworldcoordinates method to plot the function on the screen from [image: $$-$$]20 to 20 on the x-axis and [image: $$-$$]20 to 20 on the y-axis. When you are done, if you did it right, you should have a screen that looks like Fig. 4.5. To plot the function the x values can go from [image: $$-$$]20 to 20. The y values can be found by using the definition of the function [image: $$g$$]. Be sure to include the dots for the units on the graph.

	2.Write the program described starting in Sects. 4.9 and 4.10. Create a sample XML file using the draw program found on the text’s website. Draw a picture and save it. The file will be in XML format. Save the XML file in the same directory or folder where you save your program. By saving the program and the XML file in the same directory your program will find the XML file when you run it.

	3.Write a program as described in the last exercise but after reading the XML file, prompt the user for a scale factor and scale the entire picture by the scale factor. Each (x,y) coordinate must be multiplied by the scale parameter. Draw the picture with its new scale.

	4.Write a program as described in last exercise. Get a scale factor from the user. However, this time also prompt the user for a new file name. Then write a new XML file with the new scale factor integrated into it. This can be done one of two ways. You can write the file with all new (x,y) coordinates, or you can add a scale attribute to the GraphicsCommands element.

	5.On the website for the text there are three files, Toyota4Runner.csv, NissanVersa.csv, and SuzukiS40.csv that all contain gas mileage information for their corresponding vehicles. Write a program that reads this data and plots average miles per gallon in one dimension and time in the other dimension. Since the first line of each file is not a record, but a description of the columns, you might want to use a while loop to read the data so you can throw away the first line before starting the while loop.
HINT: Since each field of the records is in double quotes you can read the line from the file and put square brackets around it as follows. [image: A978-1-4471-6642-9_4_Figz_HTML.gif]

 The call to the eval function will force the evaluation of the string. Calling eval like this returns a list of the elements; in this case a list of strings as the fields of the record. Using this technique will make parsing the input extremely easy.
You will want to create datetime objects for each fill up date. You must first import the datetime module to create datetime objects. For a discussion of datetime objects or you can read about them on the web. Search for “python datetime” to read about the datetime module on the web. You can get the number of days from two datetime objects by subtracting them and then using the difference as follows. [image: A978-1-4471-6642-9_4_Figaa_HTML.gif]

 It might first appear that the difference should be computed as lastDay - firstDay. However, this yields a negative number of days so the example in the listing above is correct when computing days.

	6.When looking at average EPA MPG for gas powered vehicles there is always a city MPG and a highway MPG, with highway MPG being greater. Since filling the car multiple times within a short amount of time would seem to indicate that a person is taking a trip, there should be a correlation between filling up over short amounts of time (i.e. highway miles) and the observed MPG. Use the Toyota4Runner.cvs or the NissanVersa.cvs files to plot days since last fill up and observed MPG. You will want to do this as a scatter plot. A scatter plot is simply a dot for each data point. A dot can be made using the dot method of the Turtle class. Observe the data that you find there and draw a regression line through that data. A regression line is a best fit line. It minimizes the total distance of points to the line.
To compute the days since last fill up you will probably want to use the datetime module. See the previous exercise for a discussion of datetime objects or you can read about them on the web. Search for “python datetime” to read about the datetime module on the web.
To draw a regression line you need to keep track of a few things.	The sum of all the x values

	The sum of all the y values

	The sum of all the [image: $$x^2$$] values

	The sum of all the x*y values

 Decide what your x and y axis represent. Compute the values given above. When you have gathered these values you need to use the values in the formula below. [image: $$\begin{aligned} y = \overline{y} + m (x - \overline{x}) \end{aligned}$$]

 where [image: $$\begin{aligned} m = \frac{\sum _{i=1}^{n} x_i y_i - n \overline{x}~\overline{y}}{\sum _{i=1}^{n} x_i^2 - n\overline{x}^2} \end{aligned}$$]

 All the values you need in the formulas are available in the values you kept track of above. [image: $$n$$] is the number of data points. [image: $$\overline{x}$$] is the average of the [image: $$x$$] values and likewise for [image: $$\overline{y}$$]. The sum of all the [image: $$x^2$$] values is the sum of the squares, NOT the square of the sum.
To plot the regression line you can choose two x values and then compute their corresponding y values given the formula [image: $$y = \overline{y} + m (x - \overline{x})$$]. This will give you the two end points of the regression line. Once you have the two end points of the line, use the turtle to draw the line between them. Plot this regression line to see the correlation between highway miles and MPG. While this program will compute a linear regression line, it should be noted that the correlation between number of highway miles and MPG is definitely NOT a linear function so observed results should be understood in that context.

	7.In practice Problem 4.3 you drew a truck using a turtle. You should not have used any goto method calls in that practice problem. In this exercise you are to draw trucks of random size at random places on the screen. To generate random numbers in a program you need to import the random module. You create a random number generator as follows: [image: A978-1-4471-6642-9_4_Figab_HTML.gif]

 Their are three methods that Random objects support that you may want to use:	rand.randrange(start, stop, step)—start default is 0, step default is 1. It returns a random integer in the range [start, stop) that is on one of the steps.

	rand.randint(start, stop)—start default is 0. It returns a random integer in the range [start, stop).

	rand.random()—Returns a random floating point number in the range [0,1).

 For this exercise you should repeatedly draw trucks at different locations on the screen. You can use the goto method to move to a randomly selected location on the screen. By default the screen goes from [image: $$-$$]500 to 500 in both directions so generating a screen location in the range [image: $$-$$]400–400 in both directions will work well.
Once you have moved to a random location on the screen, draw the truck as you did in practice Problem 4.3. However, to make the trucks different sizes, randomly generate a floating point number between 0 and 1 using the random method. This random number is a scale for your truck. Multiply each forward or circle argument by the scale when drawing the truck. By multiplying the forward and circle arguments by a number between 0 and 1 you are creating scaled versions of your truck from 0 (no truck at all) to 1 (a full-size truck).
NOTE: Do not multiply turns times the scale. All angles are the same in any scaled version of the truck.

4.13 Solutions to Practice Problems
These are solutions to the practice problems in this chapter. You should only consult these answers after you have tried each of them for yourself first. Practice problems are meant to help reinforce the material you have just read so make use of them.
4.13.1 Solution to Practice Problem 4.1

 [image: A978-1-4471-6642-9_4_Figac_HTML.gif]

4.13.2 Solution to Practice Problem 4.2

 [image: A978-1-4471-6642-9_4_Figad_HTML.gif]

4.13.3 Solution to Practice Problem 4.3

 [image: A978-1-4471-6642-9_4_Figae_HTML.gif]

4.13.4 Solution to Practice Problem 4.4
The turtle’s location is (12.0388, 38.18233) at the peak of the pentagon.

4.13.5 Solution to Practice Problem 4.5
The forward method is not an accessor method. The xcor method is an accessor method. It accesses the x coordinate of the turtle.[image: A978-1-4471-6642-9_4_Fig6_HTML.gif]
Fig. 4.6Concatenation of two strings

4.13.6 Solution to Practice Problem 4.6
You create a second turtle the same way you created the first.[image: A978-1-4471-6642-9_4_Figaf_HTML.gif]

4.13.7 Solution to Practice Problem 4.7
Figure 4.6 depicts what happens when the following code is executed. This is pretty much identical to what happens with the integers on p. 22 in Chap. 1.[image: A978-1-4471-6642-9_4_Figag_HTML.gif]

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_5

5. Defining Functions

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

Functions are something most of us are familiar with from Mathematics. A function [image: $$g$$] might be defined as[image: $$\begin{aligned} g(x) = x^4/4 - x^3/3 - 3x^2 \end{aligned}$$]

When a function is defined this way we can then call the function [image: $$g$$] with the value 6—usually written [image: $$g(6)$$]—to discover that the value returned by the function would be [image: $$144$$]. Of course, we aren’t only limited to passing [image: $$6$$] to [image: $$g$$]. We could pass [image: $$0$$] to [image: $$g$$] and [image: $$g(0)$$] would return 0. We could pass any of number into [image: $$g$$] and compute its result.
The identifier [image: $$g$$] represents the definition of a function and calling a function by writing [image: $$g(6)$$] is called function application or a function call. These two concepts are part of most programming languages including Python. In Python, functions can be both defined and called.

 Example 5.1

The function [image: $$g(x) = x^4/4 - x^3/3 - 3x^2$$] can be defined in Python as shown below. It can also be called as shown here. This program calls [image: $$g$$] and prints 144.0 to the screen.[image: A978-1-4471-6642-9_5_Figa_HTML.gif]

To call a function in Python we write [image: $$g(6)$$] for instance, just they way we do in Mathematics. It means the same thing, too. Executing [image: $$g(6)$$] means calling the function [image: $$g$$] with the value 6 to compute the value of the function call. A function in Python can do more than a function in Mathematics. Functions can execute statements as well as return a value. In Mathematics a value is computed and returned. There are no side-effects of calling the function. In Python (and in just about any programming language), there can be side-effects. A function can contain more than one statement just like our programs contain statements.

 Example 5.2

Here is a function that computes and prints a value along with some code that calls the function. Running this program prints “You called computeAndPrint (6,5)” followed by the value 149.0 to the screen. This function is passed two arguments instead of just one.[image: A978-1-4471-6642-9_5_Figb_HTML.gif]

5.1 Why Write Functions?
The ability to define our own functions helps programmers in two ways. When you are writing a program if you find yourself writing the same code more than once, it is probably best to define a function with the repeated code in it. Then you can call the function as many times as needed instead of rewriting the code again and again.
It is important that we avoid writing the same code more than once in our programs. Writing code is error-prone. Programmers often make mistakes. If we write the same code more than once and make a mistake in it, we must fix that mistake every place we copied the code. When writing code that will be used commercially, mistakes might not be found until years later. When fixing code that hasn’t been looked at for a while it is extremely easy to fix the code in one place and to forget to fix it everywhere.
If we make a mistake in coding a function, and then fix the code in the function, we have automatically fixed the code in every spot that uses the function. This principle of modular programming is a very important concept that has been around since the early days of computer programming. Writing code once leads to well-tested functions that work as expected. When we use a well-tested function we can be fairly confident it will work the first time. It also leads to smaller code size, although that is not as much of an issue these days.
Writing functions also helps make our code easier to read. When we use good names for variables and functions in our programs we can read the code and understand what we have written not only as we write it, but years later when we need to look at the code we wrote again. Typically programmers work with a group of three to eight other people. It is important for others in the group to be able to read and understand the code we have written. Writing functions can lead to nice modularized code that is much easier to maintain by you and by others in a group.

5.2 Passing Arguments and Returning a Value
When we write a function we must decide four things:	1.What should our function be called? We should give it a name that makes sense and describes what the function does. Since a function does something, the name of a function is usually a verb or some description of what the function returns. It might be one word or several words long.

	2.What should we give to our function? In other words, what arguments will we pass to the function? When thinking about arguments to pass to a function we should think about how the function will be used and what arguments would make it the most useful.

	3.What should the function do? What is its purpose? The function needs to have a clearly defined purpose. Either it should return a value or it should have some well-defined side-effect.

	4.Finally, what should our function return? The type and the value to be returned should be considered. If the function is going to return a value, we should decide what type of value it should return.

By considering these questions and answering them, we can make sure that our functions make sense before writing them. It does us no good to define functions that don’t have a well-defined purpose in our program.

 Example 5.3

Consider a program where we are asked to reverse a string. What should the function be called? Probably reverse. What should we give to the function? A string would make sense. What does reverse compute? The reverse of the given string. What should it return? The reversed string. Now we are ready to write the function.[image: A978-1-4471-6642-9_5_Figc_HTML.gif]

It is important to decide the type of value returned from a function and the types of the arguments given to a function. The words returned and given are words that give us a clue about what the function should look like and what it might do. When presented with a specification for a function look for these words to help you identify what you need to write.
The word parameter refers to the identifier used to represent the value that is passed as an argument to the function. Sometimes the parameter is called a formal parameter. When a function is called, it is passed an argument as in [image: $$g(6)$$] where 6 is the argument. When the function is applied the parameter called [image: $$x$$] takes on the value of 6. If it is called as [image: $$g(5)$$] then the parameter [image: $$x$$] takes on the value 5. In this way we can write the function once and it will work for any argument passed to the function. In Example 5.3 the argument is the value that t refers to, the value entered by the user when the program is run. The parameter, s, takes on the value that [image: $$t$$] refers to when the function is called in the print statement. The parameter passing mechanism makes it possible for us to write a function once and use it in many different places in our program with many different values passed in.

 Practice 5.1

Write a function called explode that given a string returns a list of the characters of the string.

 Practice 5.2

Write a function called implode that given a list of characters, or strings, returns a string which is the concatenation of those characters, or strings.

5.3 Scope of Variables
When writing functions it is important to understand scope.
 Scope refers to the area in a program where a variable is defined. Normally, a variable is defined after it has been assigned a value. You cannot reference a variable until it has been assigned a value.

 Practice 5.3

The following program has an run-time error in it. Where does the error occur? Be very specific.[image: A978-1-4471-6642-9_5_Figd_HTML.gif]

When we define functions there are several identifiers we write. First, the name of the function is written. Like variables, a function identifier can be used after it is defined. In Example 5.3 you will notice that the function is defined at the top of the program and the function is called on the last line of the program. A function must be defined before it is used.
However, the variables s, c, and result are not available where reverse(t) is called. This is what we want to happen and is due to something called scope. The scope of a variable refers to the area in a program where it is defined. There are several scopes available in a Python program. Mark Lutz describes the rules of scope in Python with what he calls the LEGB rule [3]. Memorizing the acronym LEGB will help you memorize the scope rules of Python.
The LEGB rule refers to Local Scope, Enclosing Scope, Global Scope, and Built-in Scope. Local scope extends for the body of a function and refers to anything indented in the function definition. Variables, including the parameter, that are defined in the body of a function are local to that function and cannot be accessed outside the function. They are local variables.
The enclosing scope refers to variables that are defined outside a function definition. If a function is defined within the scope of other variables, then those variables are available inside the function definition. The variables in the enclosing scope are available to statements within a function.

 Example 5.4

While this is not good coding practice, the following code illustrates the enclosing scope. The values variable keeps track of all the arguments passed to the reverse function.[image: A978-1-4471-6642-9_5_Fige_HTML.gif]

Accessing a variable in the enclosing scope can be useful in some circumstances, but is not usually done unless the variable is a constant that does not change in a program. In the program above the values variable is accessed by the reverse function on the first line of its body. This is an example of using enclosing scope. However, the next example, while it does almost the same thing, has a problem.

 Example 5.5

Here is an example of almost the same program. Instead of using the mutator method append the list concatenation (i.e. the [image: $$+$$]) operator is used to append the value s to the list of values. [image: A978-1-4471-6642-9_5_Figf_HTML.gif]

The code in Example 5.5 does not work because of a subtle issue in Python. A new variable, say v, is defined in Python anytime v [image: $$=$$] ... is written. In Example 5.5 the first line of the reverse function is values [image: $$=$$] values [image: $$+$$] [s]. As soon as values [image: $$=$$] ... is written, there is a new local variable called values that is defined in the scope of the reverse function. That means there are two variables called values: one defined in reverse and one defined outside of reverse. The problem occurs when the right-hand side of values [image: $$=$$] values [image: $$+$$] [s] is evaluated. Which values is being concatenated to [s]. Is it the local or the enclosing values. Clearly, we would like it to be the enclosing values variable. But, it is not. Local scope overrides enclosing scope and the program in Example 5.5 will complain that values does not yet have a value on the first line of the reverse function’s body.
The problem with Example 5.5 can be fixed by declaring the values variable to be global. When applied to a variable, global scope means that there should not be a local copy of a variable made, even when it appears on the left hand side of an assignment statement.

 Example 5.6

The string concatenation operator can still be used if the values variable is declared to be global in the reverse function.[image: A978-1-4471-6642-9_5_Figg_HTML.gif]

Example 5.6 demonstrates the use of the global scope. The use of the global keyword forces Python to use the variable in the enclosing scope even when it appears on the left hand side of an assignment statement.
The final scope rule is the built-in scope. The built-in scope refers to those identifiers that are built-in to Python. For instance, the len function can be used anywhere in a program to find the length of a sequence.
The one gotcha with scope is that local scope trumps the enclosing scope, which trumps the global scope, which trumps the built-in scope. Hence the LEGB rule. First local scope is scanned for the existence of an identifier. If that identifier is not defined in the local scope, then the enclosing scope is consulted. Again, if the identifier is not found in enclosing scope then the global scope is consulted and finally the built-in scope. This does have some implications in our programs.

 Practice 5.4

The following code does not work. What is the error message? Do you see why? Can you suggest a way to fix it?[image: A978-1-4471-6642-9_5_Figh_HTML.gif]

5.4 The Run-Time Stack
The run-time stack is a data structure that is used by Python to execute programs. Python needs this run-time stack to maintain information about the state of your program as it executes. A stack is a data structure that lets you push and pop elements. You push elements onto the top of the stack and you pop elements from the top of the stack. Think of a stack of trays. You take trays off the top of the stack in a cafeteria. You put clean trays back on the top of the stack. A stack is a first in/first out data structure. Stacks can be created to hold a variety of different types of elements. The run-time stack is a stack of activation records.
An
activation record is an area of memory that holds a copy of each variable that is defined in the local scope of a function while it is executing. As we learned in Example 5.5, a variable is defined when it appears on the left-hand side of an equals sign.
Formal parameters of a function are also in the local scope of the function.

 Example 5.7

In this example code the reverse function is called repeatedly until the user enters an empty string (just presses enter) to end the program. Each call to reverse pushes an activation record on the stack. [image: A978-1-4471-6642-9_5_Figi_HTML.gif]

In Example 5.7, each time the reverse function returns to the main code the activation record is popped. Assuming the user enters the string “hello”, snapshot 1 of Fig. 5.1 shows what the run-time stack would look like right before the result is returned from the function call.[image: A978-1-4471-6642-9_5_Fig1_HTML.gif]
Fig. 5.1The run-time stack

In snapshot 2, the activation record for reverse(“hello”) had been popped from the stack but is shown grayed out in snapshot 2 to make it clear that the top activation record is a new activation record. Snapshot 2 was taken right before the return result statement was executed for the second call to reverse.
Snapshot 3 shows what the run-time stack looks like after returning from the second call to reverse. Again, the grayed out activation record is not there, but is shown to emphasize that it is popped when the function returns. Finally, snapshot 4 shows what happens when the main code exits, causing the last activation record to be popped.
Each activation record holds a copy of the local variables and parameters that were passed to the function. Local variables are those variables that appear on the left-hand side of an equals sign in the body of the function or appear as parameters to the function. Recall that variables are actually references in Python, so the references or variables point to the actual values which are not stored in the activation records.
The run-time stack is absolutely critical to the implementation of modern programming languages. Its existence makes it possible for a function to execute and return independently of where it is called. This independence between functions and the code that calls them is crucial to making functions useful in our programs.

 Practice 5.5

Trace the execution of the code in Example 5.2 on paper showing the contents of the run-time stack just before the function call returns.

 [image: A978-1-4471-6642-9_5_Fig2_HTML.gif]
Fig. 5.2The run-time stack in the wing IDE

The run-time stack is visible in most debuggers including the Wing IDE. To view the activation records on the run-time stack you have to debug your program and set a breakpoint during its execution. Figure 5.2 shows the Wing IDE running the program from Example 5.4. A breakpoint was set just before the reverse function returns: the same point at snapshot one in Fig. 5.1. In Wing you can click on the Stack Data tab to view the run-time stack. The drop-down combobox directly below the Stack Data tab contains one entry for each activation record currently on the run-time stack. In Fig. 5.2 the [image: $$<$$]module[image: $$>$$] activation record is selected which is Wing’s name for the Main activation record. When an activation record is selected in the Stack Data tab, its local variables are displayed below. In Fig. 5.2 the t and values variables are displayed from the Main activation record. The program is currently stopped at line 10 but the reverse function was called from line 18 so that line is highlighted since we are displaying the activation record corresponding to the code reverse was called from.

 Practice 5.6

Trace the execution of the code in Example 5.2 using the Wing IDE to verify the contents of the run-time stack just before the function call returns match your answer in practice Problem 5.5.

5.5 Mutable Data and Functions
If you consider Fig. 5.1, it
 should help in understanding that a function that mutates a value passed to it will cause the code that called it to see that mutated data. The program presented in Example 5.7 does not mutate any of the data passed to the reverse function. In fact, since strings are immutable, it would be impossible for reverse to mutate the parameter passed to it. However, Example 5.4 mutates the values list. The result of appending to the list is seen in the code that called it. Lists are not immutable. They can be changed in place. In Example 5.4 the reference to the values list is not changed. The contents of the values list is changed. The changed contents are seen by the main code after the function returns.
As another example, consider a reverse function that doesn’t return a value. What if it just changed the list that was given to it. If the parameter to the list function was called lst, then writing lst[0] [image: $$=$$]“h” will change the first element of the list lst to the string h. That’s what is meant by mutating a data. A new list is not created in this case. The existing list is modified. If a list is passed to a function and the function mutates the list, the caller of the function will see the reversed list. That’s what the append method does. It mutates the existing list as well.
When a function is called that mutates one or more of its parameters, the calling code will see that the data has been mutated. The mutation is not somehow undone when the function returns. Since strings, ints, floats, and bools are all immutable, this never comes up when passing arguments of these types. But, again, lists are mutable, and a function may mutate a list as seen in the next example.

 Example 5.8

Consider the following code that reverses a list in place. It does not build a new list. It reverses the existing list.[image: A978-1-4471-6642-9_5_Figj_HTML.gif]

Notice that the reverseInPlace function in Example 5.8 does not return anything. In addition, when reverseInPlace is called it is not set to some variable, nor is the return value printed. It is just called on a line by itself. That’s because it modifies the list passed to it as an argument.

 Practice 5.7

Why would it be very uninteresting to call reverseInPlace like this? What would the next line of code be?[image: A978-1-4471-6642-9_5_Figk_HTML.gif]

In practice Problem 5.7 the value printed to the screen is None. None is a special value in Python. It is returned by any function that does not explicitly return a value. All functions return a value in Python. Those that don’t have a return statement in them to explicitly return a value, return None by default. Obviously, printing None wouldn’t tell us much about the reverse of [1, 2, 3, 4, 5].

 Practice 5.8

What would happen if you tried to use reverseInPlace to reverse a string?

5.6 Predicate Functions
A predicate is an answer to a question with respect to one or more objects. For instance, we can ask, Is x even?. If the value that x refers to is even, the answer would be Yes or True. If x refers to something that is not even then the answer would be False. In Python, if we write a function that returns True or False depending on its parameters, that function is called a Predicate function. Predicate functions are usually implemented using the Guess and Check pattern. However, applying
 this pattern to a function can look a little different than the pattern we learned about in Chap. 2.

 Example 5.9

Assume we want to write a predicate function that returns True if one number evenly divides another and false otherwise. Here is one version of the code that looks like the old Guess and Check pattern.[image: A978-1-4471-6642-9_5_Figl_HTML.gif]

In Example 5.9 the guess and check pattern is applied to the function evenlyDivides. Observing that the function returns True or False it could be rewritten to just return that value instead of using a variable at all as in Example 5.10.

 Example 5.10

In this example the value is just returned instead of storing it in a variable and returning at the bottom. This is equivalent to the code in Example 5.9 because it returns True and False in exactly the same instances as the other version of the function. NOTE: If [image: $$y \mathtt \% x == 0$$] then the return True is executed. This terminates the function immediately and it never gets to the statement return False in that case. If [image: $$y \mathtt \% x == 0$$] is false, then the code skips the then part of the if statement and executes the return False.[image: A978-1-4471-6642-9_5_Figm_HTML.gif]

Since the function in Examples 5.9 and 5.10 returns True when [image: $$y \mathtt \% x == 0$$] and False when it does not, there is one more version of this function that is even more concise in its definition. Any time you have an if statement where you see if c is true then return true else return false it can be replaced by return c. You don’t need an if statement if all you want to do is return true or false based on one condition.

 Example 5.11

Here is the same program one more time. This is the elegant version. [image: A978-1-4471-6642-9_5_Fign_HTML.gif]

While the third version of the evenlyDivides function is the most elegant, this pattern may only be applied to predicate functions where only one condition needs to be checked. If we were trying to return write a predicate function that needed to check multiple conditions, then the second or first form of evenlyDivides would be required.

 Practice 5.9

Write a function called evenlyDividesList that returns true if every element of a list given to the function is evenly divided by an integer given to the function.

5.7 Top-Down Design
Functions may be called from either the main code of a program or from other functions. A function call is allowed any place an expression may be written in Python. One technique for dealing with the complexity of writing a complex program is called Top-Down Design. In top-down design the programmer decides what major actions the program must take and then rather than worry about the details of how it is done, the programmer just defines a function that will handle that later.

 Example 5.12

Assume we want to implement a program that will ask the users to enter a list of integers and then will answer which pairs of integers are evenly divisible. For instance, assume that the list of integers 1, 2, 3, 4, 5, 6, 8, and 12 were entered. The program should respond:[image: A978-1-4471-6642-9_5_Figo_HTML.gif]

To accomplish this, a top down approach would start with getting the input from the user.[image: A978-1-4471-6642-9_5_Figp_HTML.gif]

Without worrying further about how evenlyDivisible works we can just assume that it will work once we get around to defining it. Of course, the program won’t run until we define evenlyDivisible. But we can decide that evenlyDivisible must print a report to the screen the way the output is specified in Example 5.12. Later we can write the evenlyDivisible function. In a top-down design, when we write the evenlyDivisible function we would look to see if we could somehow make the job simpler by calling another function to help with the implementation. The evenlyDivides function could then be defined. In this way the main code calls a function to help with its implementation. Likewise, the evenlyDivisible function calls a function to aid in its implementation. This top-down approach continues until simple functions with straightforward implementations are all that is left.

5.8 Bottom-Up Design
In a Bottom-Up Design we would start by defining a simple function that might be useful in solving a more complex problem. For instance, the evenlyDivides function that checks to see if one value evenly divides another, could be useful in solving the problem presented in Example 5.12. Using a bottom-up approach a programmer would then see that evenlyDivides solves a slightly simpler problem and would look for a way to apply the evenlyDivides function to the problem we are solving.

 Practice 5.10

Using the last version of the evenlyDivides function, write a function called evenlyDivisibleElements that given an integer, x, and a list of integers, returns the list of integers from the given list that evenly divide x. This would be the next step in either the bottom-up design or the top-down design of a solution to the problem in Example 5.12.

 Practice 5.11

Write the function evenlyDivisible from Example 5.12 using the evenlyDivisibleElements function to complete the program presented in Example 5.12 and practice Problem 5.10.

5.9 Recursive Functions
Sections 5.7 and 5.8 taught us that functions can call other functions and that sometimes this helps make a complex problem more manageable in some way. It turns out that not only can functions call other functions, they can also call themselves. This too can make a problem more manageable. If you’ve ever seen a proof by induction in Mathematics, recursive functions are somewhat like inductive proofs. In an inductive proof we are given a problem and told we know it is solvable for a smaller sized problem. Induction says that if we can use that smaller solution to arrive at a bigger solution, then we can conclude every instance of that problem has a solution. What makes an inductive proof so powerful is that we don’t have to worry about the existence of a solution to the smaller problem. It is guaranteed to exist by the nature of the proof.
Recursion in functions works the same way. We may assume that our function will work if we call our function on a smaller value. Let’s consider the computation of factorial from Mathematics. [image: $$0! = 1$$] by definition. This is called the base case. [image: $$n!$$] is defined as [image: $$n * (n - 1)!$$]. This is the recursive part of the definition of factorial.

 Example 5.13

Factorial can be written in Python much the same way it is defined in Mathematics. The if statement must come first and is the statement of the base case. The recursive case is always written last.[image: A978-1-4471-6642-9_5_Figq_HTML.gif]

 Practice 5.12

What would happen if the base case and the recursive case were written in the opposite order in Example 5.13? HINT: What happens to the run-time stack when a function is called?

A function is recursive if it calls itself. Recursion works in Python and other languages because of the run-time stack. To fully understand how the factorial function works, you need to examine the run-time stack to see how the program prints 120 to the screen.

 Practice 5.13

Recalling that each time a function is called an activation record is pushed on the run-time stack, how many activation records will be pushed on the run-time stack at its deepest point when computing factorial (5)?

 Practice 5.14

Run the factorial program on an input of 5 using Wing or your favorite IDE. Set a breakpoint in the factorial function on the two return statements. Watch the run-time stack grow and shrink. What do you notice about the parameter n?

Many problems can be formulated in terms of recursion. For instance, reversing a string can be formulated recursively. To reverse a string we only need to reverse a shorter string, say all but the first letter, and then tack the first letter onto the other end of the reversed string. Here is the beautiful part of recursion. We can assume that reversing a shorter string already works!!!

 Example 5.14

Here is a recursive version of a function that reverses a string. Remember, the base case must always come first. The base case usually defines the simplest problem we could come up with. The result of reversing an empty string is pretty easy to find. It is just the empty string.[image: A978-1-4471-6642-9_5_Figr_HTML.gif]

 Practice 5.15

Write a recursive function that computes the [image: $$n$$]th Fibonacci number. The Fibonacci numbers are defined as follows: Fib(0) [image: $$=$$] 1, Fib(1) [image: $$=$$] 1, Fib(n) [image: $$=$$] Fib(n [image: $$-$$] 1) [image: $$+$$] Fib(n [image: $$-$$] 2). Write this as a Python function and then write some code to find the tenth Fibonacci number.

5.10 The Main Function
In most programming languages one special function is identified as the main function. The main function is where everything gets started. When a program in Java runs, the main function is executed first and the code in the main function determines what the program does. The same is true in C, C[image: $$++$$], Pascal, Fortran, and many other languages. In Python this is not required by the language. However, it is good programming practice to have a main function anyway.
One advantage to defining a main function is when you wish to write a module that others may use. When importing a module a programmer probably does not want the main function in the imported module to run since he or she is undoubtably writing their own main function. The programmer writing the module that is imported may want to write a main function to test the code they are providing in the module. Python has some special handling of imported modules that allow both the provider and the importer of a module to get the behavior they desire.
By writing a main function, all variables defined in the main function are no longer available to the whole program module. An example might help in explaining why this might be important.

 Example 5.15

This code works, but it is accessing the variable l in the drawSquare function from the enclosing scope. It is generally a bad idea to access the enclosing scope of a function except in some specific circumstances. Of course, this was a mistake. It should have been length that was used in the drawSquare function.[image: A978-1-4471-6642-9_5_Figs_HTML.gif]

While the code in Example 5.15 works, it is not desirable because if a programmer changes the main code he or she may affect the code in the drawSquare function. For instance, if the programmer renames l to length at some future time, then the drawSquare function will cease to work. In addition, if drawSquare is moved to another module at some point in the future it will cease to work. A function should be as self-contained as possible to make it independent of where it is defined and where it is used.
The problem in the code above is easy to miss at first. You could easily think the program is fine since it does what it is supposed to do. The problem is due to the fact that up to this point we have not used a main function in our programs. Python programmers sometimes write a main function and sometimes do not. However, it is safer to write a main function and most experienced Python programmers will stick to the convention of writing one.

 Example 5.16

Here is the draw square program again, this time with a main function. When the Python interpreter scans this file, two functions are defined, drawSquare and main. The if statement at the end of the program is the first statement to be executed.[image: A978-1-4471-6642-9_5_Figt_HTML.gif]

When a program has a main function in Python, the convention is to write an if statement at the end of the program that starts everything executing. There is a special hook in Python that controls how a Python program is started. When a program is imported as a module the special variable called _ _name_ _ is set to the name of the module. When a program is NOT imported, but run as the main module of a Python program, the special variable _ _name_ _ is set to the value “_ _main_ _”. When running the code in Example 5.16 the if statement’s condition is True and therefore main is called to get the program started. However, this code implements a useful function, the drawSquare function. It might be the case that some programmer would like to use this function in their code. If this code resides a file called square.py and a programmer has a copy of this module and writes import square in their code, then when this module loads the _ _name_ _ variable will be set to the name of the module and not “_ _main_ _”. If you run this code as a program then the main function gets called. If you import this module into some other program, then the main function does not get called. When a module is written that is intended to be imported into other code, the main function often contains code to test the functions provided in the module.
In Example 5.16, if the programmer were to mistakenly write turtle.forward(l) instead of turtle.forward(length), Python would complain the first time the draw Square function was called. It would say that l is undefined. This is much more desirable since we would like to catch errors like that right away as opposed to some later time.

 Example 5.17

Here are a few lines from the turtle.py module that would be executed when the turtle module is run as a program instead of being imported. [image: A978-1-4471-6642-9_5_Figu_HTML.gif]

5.11 Keyword Arguments
Up to this point we have learned that arguments passed to a function must be in the same order as the formal parameters in the function definition. For instance, in Example 5.16, to call the drawSquare function we would write drawSquare(t,l) as is done in the main function of the example.
It turns out that Python allows programmers to call functions using keyword arguments as well [5]. This is not possible in every language, but this is one of the very powerful features of Python. A formal parameter in the function definition is the name given to a value that will be passed to the function. For instance, in Example 5.16 the formal parameters to drawSquare are turtle and length. These two names are also keywords that may be used when calling drawSquare. The drawSquare function can be called by writing drawSquare(length[image: $$=$$]l,turtle[image: $$=$$]t) using the keyword style of parameter passing.

5.12 Default Values
When the keyword style of parameter passing is used, some keyword values may or may not be supplied depending on what the function does. In this case, a function definition can supply a default value for a parameter.

 Example 5.18

Here is the drawSquare function with a default length value for the side length of the square. This means that the following calls to drawSquare would all be valid.[image: A978-1-4471-6642-9_5_Figv_HTML.gif]

5.13 Functions with Variable Number of Parameters
Python functions may have a variable number of parameters passed to them. To deal with this a special form of parameter is defined in Python by writing an asterisk in front of it. Writing *args as a formal parameter defines args as a list (see [5]). Every argument that is passed starting at args position will be passed in a list that args will refer to.

 Example 5.19

Consider a function called drawFigure that draws a figure by making a series of forward and left moves with a turtle. Since there could be a variable number of forward and left turns, they are represented by the formal parameter *args which is a list of all the arguments after the named turtle argument.[image: A978-1-4471-6642-9_5_Figw_HTML.gif]

5.14 Dictionary Parameter Passing
Using keyword/value pairs to pass values to functions is much like building a dictionary. A dictionary is a set of keys and associated values. For instance, you can assign width[image: $$=$$]20 and height[image: $$=$$]40 in a dictionary. Chapter 12 describes the operators and methods of dictionaries.

 Example 5.20

Here is a dictionary called dimensions with keys width and height.[image: A978-1-4471-6642-9_5_Figx_HTML.gif]

As an added convenience for programmers, a dictionary of keyword/value pairs may be specified as a parameter to a function [5]. The dictionary is automatically defined as the set of all keyword/value pairs passed to the function. A keyword/value dictionary parameter is defined by writing two asterisks in front of the parameter name.

 Example 5.21

Here is a drawRectangle function that gets its width and height as keyword/value arguments. The function definition specifies a dimensions keyword/value dictionary argument. The code below shows how it can be used.[image: A978-1-4471-6642-9_5_Figy_HTML.gif]

5.15 Review Questions

 	1.What is the difference between defining a function and calling a function? Give an example of each and describe what happens when a function is both defined and called.

	2.What are two reasons to write functions when possible in your code?

	3.What is an argument and what is a formal parameter?

	4.What is scope and what is the name of the rule for determining the scope of a variable? Describe what each letter means in the acronym for determining scope.

	5.What is an activation record? When is one pushed and when is it popped?

	6.How do activation records and scope relate to each other?

	7.If a function is called and passed a string it can make all the changes it wants to the string but when the function returns the changes will be lost. This isn’t necessarily the case if a function is passed a list. Why?

	8.What is a predicate function? What programming pattern is a predicate function likely going to use?

	9.What is the difference between top-down and bottom-up design?

	10.What is a recursive function? What two things must a recursive function contain?

	11.Why is a main function beneficial in a program? Give two reasons a main function might help in the implementation of a module.

	12.What is a keyword parameter/argument? How does it differ from a regular argument?

	13.What is a dictionary? How can a dictionary be used in parameter passing?

5.16 Exercises

 	1.Write a program that contains a drawTruck function that given an x,y coordinate on the screen draws a truck using Turtle graphics. You may use the goto method on the first line of the function, but after that use only left, right, forward, and back to draw the truck. You may use color when drawing if you would like to.

	2.Modify the program in the previous exercise to add a scale parameter to the drawTruck function. You should multiply the scale times each forward or back method call while drawing the truck. Then use the drawTruck function at least three times in a program to draw trucks of different sizes.

	3.Write a program that contains a function called drawRegularPolygon where you give it a Turtle, the number of sides of the polygon, and the side length and it draws the polygon for you. NOTE: This function won’t return a value since it has a side-effect of drawing the regular polygon. Then write some code that uses this function at least three times to draw polygons of different sizes and shapes.

	4.Write a predicate function called isEven that returns True if a number is even and False if it is not. Use the function in a program and test your code on several different values.

	5.Write a function called allEvens that given a list of integers, returns a new list containing only the even integers. Use the function in a program and test your code on several different values.

	6.Write a function called isPalindrome that returns True if a string given to it is a palindrome. A palindrome is a string that is the same spelled backwards or forwards. For instance, radar is a palindrome. Use the function in a program and test your code on several different values.

	7.Write a function called isPrime that returns True if an integer given to the function is a prime number. Use the function in a program and test your code on several different values.

	8.A tuple is a sequence of comma separated values inside of parens. For instance (5,6) is a two-tuple. Write a function called zip that is given two lists of the same length and creates a new list of two-tuples where each two-tuple is the tuple of the corresponding elements from the two lists. For example, zip([1, 2, 3],[4, 5, 6]) would return [(1, 4),(2, 5),(3, 6)]. Use the function in a program and test your code on several different values.

	9.Write a function called unzip that returns a tuple of two lists that result from unzipping a zipped list (see the previous exercise). So unzip([(1, 4),(2, 5),(3, 6)]) would return ([1, 2, 3],[4, 5, 6]). Use the function in a program and test your code on several different values.

	10.Write a function called sumIt which is given a list of numbers and returns the sum of those numbers. Use the function in a program and test your code on several different values.

	11.Write a recursive function called recursiveSumIt which given a list of numbers, returns the sum of those numbers. Use the function in a program and test your code on several different values.

	12.Use top-down design to write a program with three functions that capitalizes the first letter of each word in a sentence. For instance, if the user enters “hi there how are you” the program should print back to the screen “Hi There How Are You”. Don’t forget to define at least three functions using top-down design. Write comments to show what function you wrote first, followed by the second function you wrote, followed by the third function you wrote assuming you employed a top-down design.

	13.Use bottom-up design to write a program with three functions that capitalizes the first letter of each word in a sentence. For instance, if the user enters “hi there how are you” the program should print back to the screen “Hi There How Are You”. Don’t forget to define at least three functions using bottom-up design. Write comments to show what function you wrote first, followed by the second function you wrote, followed by the third function you wrote assuming you employed a bottom-up design. HINT: The answer to this problem and Exercise 12 should only differ in the order that you wrote the functions. The solutions should otherwise be identical.

	14.Write a function called factors that given an integer returns the list of the factors of that integer. For instance, factors(6) would return [1, 2, 3, 6].

	15.Write a function called sumFactors that given an integer returns the sum of the factors of that integer. For instance, sumFactors(6) would return [image: $$12$$] since [image: $$1+2+3+6=12$$].

	16.Write a function called isPerfect that given an integer returns True if the number is the sum of its factors (not including itself) and False otherwise. For instance, 6 is a perfect number because its factors, 1, 2, and 3 add up to 6.

	17.Write a function called sumRange that given two integers returns the sum of all the integers between the two given integers inclusive. For instance, sumRange(3,6) would return 18. Use a second function in the definition of sumRange to show that you can employ some top-down design to decompose this problem into a simpler problem and then use that simpler solution to solve this problem. HINT: Look for a function in these exercises you might use in defining sumRange.

	18.Write a function called reverseWords that given a string representing a sentence, returns the same sentence but with each word reversed. For instance, reverseWords(“hi there how are you”) would return “ih ereht woh era uoy”. Use another function in the definition of this function to make the task of writing this program simpler.

	19.Write a function called oddCharacters that given a string, returns a string containing only the odd characters of the given string. The first element of a string (i.e. index 0) is an even element. oddCharacters(“hi there”) should be “itee”.

	20.Write a function called oddElements that given a list, returns a list containing only the odd elements of the list. The first element of a list (i.e. index 0) is an even element. oddElements ([1, 2, 3, 4]) should be [2, 4]. What do you notice about this and the previous problem?

	21.Write a function called dotProduct that computes the dot product of two lists of numbers given to the function. Use the zip function in your solution.

	22.Review Exercise 2 from Chap. 3. Use top-down design to write at least two functions that implement an addressbook application as described there. When you write it this time use the technique of parallel lists introduced in Chap. 4. The program should read all the records from the file and place the contents of the fields of each record in parallel lists so the file does not have to be read more than once in the application. But, be sure to write the contents of the parallel lists to the file when the user chooses to quit. Otherwise, you won’t be able to add entries to the address book.

	23.Write a program that computes a users GPA on a 4 point scale. Each grade on a 4 point scale is multiplied by the number of credits for that class. The sum of all the credit, grade products is divided by the total number of credits earned. Assume the 4 point scale assigns values of 4.0 for an A, 3.7 for an A[image: $$-$$], 3.3 for a B[image: $$+$$], 3.0 for a B, 2.7 for a B[image: $$-$$], 2.3 for a C[image: $$+$$], 2.0 for a C, 1.7 for a C[image: $$-$$], 1.3 for a D[image: $$+$$], 1.0 for a D, 0.7 for a D[image: $$-$$], and 0 for an F. Ask the user to enter their credit grade pairs using the following format until the enter 0 for the number of credits.
In this version of the program you should read the data from the user and build parallel lists. Then, write a function called computeWeightedAverage that given the two parallel lists computes the average and returns it. Use this function in your program. [image: A978-1-4471-6642-9_5_Figz_HTML.gif]

5.17 Solutions to Practice Problems
These are solutions to the practice problems in this chapter. You should only consult these answers after you have tried each of them for yourself first. Practice problems are meant to help reinforce the material you have just read so make use of them.
5.17.1 Solution to Practice Problem 5.1

 [image: A978-1-4471-6642-9_5_Figaa_HTML.gif]

5.17.2 Solution to Practice Problem 5.2

 [image: A978-1-4471-6642-9_5_Figab_HTML.gif]

5.17.3 Solution to Practice Problem 5.3
The error is variable referenced before assignment. It occurs on the first line, the second occurrence of x. At this point x has no value.

5.17.4 Solution to Practice Problem 5.4
The error message is below. The problem is that the len function’s name was overridden in the local scope by the len variable. This means that within the local scope of the length function, len cannot be called as a function. The error message says that an int is not callable.[image: A978-1-4471-6642-9_5_Figac_HTML.gif]

5.17.5 Solution to Practice Problem 5.5
Figure 5.3 shows the contents of the run-time stack just before the return from the function. There are no variables in the main activation record.

5.17.6 Solution to Practice Problem 5.6
Refer to Fig. 5.3 to compare to what you see using your IDE.[image: A978-1-4471-6642-9_5_Fig3_HTML.gif]
Fig. 5.3The run-time stack for Example 5.2

5.17.7 Solution to Practice Problem 5.7
None is returned by the function since it does not explicitly return a value. So printing None is not very interesting, But, more importantly, since the list is reversed in place then how should the list be accessed? There is no reference stored to the list once the function returns so the garbage collector comes along and reclaims the space throwing away the work that was just done. The correct way to call it is shown in Example 5.8.

5.17.8 Solution to Practice Problem 5.8
The reverseInPlace function cannot be used to reverse a string since indexed assignment is not possible on strings. In other words, strings are immutable. The line of code lst[i] [image: $$=$$] lst[len(lst)-1-i] is the line of code where the program would terminate abnormally.

5.17.9 Solution to Practice Problem 5.9

 [image: A978-1-4471-6642-9_5_Figad_HTML.gif]

5.17.10 Solution to Practice Problem 5.10

 [image: A978-1-4471-6642-9_5_Figae_HTML.gif]

5.17.11 Solution to Practice Problem 5.11

 [image: A978-1-4471-6642-9_5_Figaf_HTML.gif]

5.17.12 Solution to Practice Problem 5.12
Each time a function call is made an activation record is pushed on the stack. Each activation record takes some space. Without the base case first, the program would repeatedly call the factorial function until the run-time stack overflowed (i.e. ran out of space). This is called infinite recursion even though it will not continue indefinitely.

5.17.13 Solution to Practice Problem 5.13
There would be 7 activation records at its deepest point, one for the main activation record, and one for each of the arguments recursively passed to factorial(5): 5, 4, 3, 2, 1, 0.

5.17.14 Solution to Practice Problem 5.14
When you run the program you should notice that there are 6 different n variables, each with a different value from 5 to 0. This is why it is important to understand the run-time stack and how it works when dealing with recursion. Recursive functions cannot work without the run-time stack.

5.17.15 Solution to Practice Problem 5.15
Here is the solution. However, you would never, ever, write such a program and use it in a commercial setting. It is too slow for anything but small values of n. There are much better solutions to finding fibonacci numbers that are available.[image: A978-1-4471-6642-9_5_Figag_HTML.gif]

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_6

6. Event-Driven Programming

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

When a program runs in Python the Python interpreter scans the program from top to bottom executing the first statement that is not part of a function definition. The program proceeds by executing the next statement and the next. Sequential execution is redirected by iteration (i.e. for and while loops) and function calls. Nevertheless, the program sequentially executes until Python interprets the last statement at which point the program terminates.

In an event-driven program sequential execution is in response to events happening while the program is executing. Event-driven programs arise in many areas of programming including Operating Systems, Internet Programming, Distributed Computing, and Graphical User Interfaces, often abbreviated GUI programs. An event-driven application begins as a sequential program executing one statement after another until it enters a never-ending loop. This loop, sometimes called the event dispatch loop looks for an incoming event and then dispatches that event to an event handler. Events come in a wide variety of flavors including:	An interrupt indicating the completion of a disk operation

	A network packet has become available

	A network connection has become unavailable

	A button was pressed in a GUI application

	A menu item was selected in a GUI application

	An incoming request has been received by a web server.

		
In an event-driven program, the event dispatch loop looks for events like these. Each event will generally have its own event handler. An event handler is a function that is called to process the event. Each time an event is found, the corresponding event handler is called to process the event. Once the event is processed, the program returns from the event handler to the event dispatch loop to look for the next event. This process repeats forever or until some event is dispatched that causes the program to terminate. For example, if a user chooses to exit a GUI application, the event handler may tell the the event dispatch loop to quit and exit.

 Tk is a powerful Application Programming Interface, or API, designed to make GUI programming easy on a variety of operating systems including Mac OS X, Windows, and Linux [11]. An API is a set of classes, or types, and functions that can be useful when implementing a program. In the case of Python, the Tkinter API was designed to allow Python programs to work with the Tk package to implement GUI programs that will run on Windows, Mac OS X, or Linux [5]. The Tkinter API is included in a module called tkinter. The module is included with most distributions of Python and may be imported to use in your Python programs.
Tk programs use widgets to build a GUI application. The term widget has been used at least since the 1980s to refer to any element of a GUI application including windows, buttons, menus, text entry fields, frames, listboxes, etc. There are many different widgets available in tkinter. Typically, any element you can see (and some you can’t see, like frames) in a GUI application is a widget. The next sections will introduce several widgets while building a Reminder! note application.
6.1 The Root Window
To begin using the Tk API you open a root window. Tk applications can have more than one open window, but the main window is called the root window. It is opened by calling a function called Tk().

 Example 6.1

Here is code to open a Tk window. [image: A978-1-4471-6642-9_6_Figa_HTML.gif]

				

 [image: A978-1-4471-6642-9_6_Fig1_HTML.gif]
Fig. 6.1A Tk root window

The code in Example 6.1 opens a window as pictured in Fig. 6.1. The call to the title method sets the title of the window. The call to resizable makes the window a non-resizable window. The Tkinter.mainloop() calls the Tk event dispatch loop to process events from the windowing application. Even with a simple window like this, the call to mainloop is required because there are events that even a simple window must respond to. For example, when a window is moved on the screen it must respond to its redraw event. Redrawing the window is done automatically by the Tk code once the mainloop function is called.
[image: A978-1-4471-6642-9_6_Figb_HTML.gif]

6.2 Menus
A menu can be added to the application by creating a Menu widget and adding it to the root window. On Windows and Linux the menu will appear right at the top of the window. On a Mac, the menu appears at the top of the screen on the menu bar. This menu contains a File->

				Exit menu item that quits the application when selected.

 Example 6.2

Here is the code that, when added right before the call to mainloop, creates a File menu with one menu item to exit.[image: A978-1-4471-6642-9_6_Figc_HTML.gif]

				

When adding a menu, you associate a command (i.e. a function) with each menu item added to the menu. The Exit menu item is associated with the quit function which calls the root’s destroy method. Notice the quit function has no parameters. Most event handlers do not have parameters but do have access to the enclosing scope.

 Practice 6.1

Write a Tkinter program that creates a main window with a menu that says Help. Within the Help menu item should be another menu item that says About. When the About menu is selected, your program should print “About was Selected” to the screen.

6.3 Frames
A Frame is an invisible widget that can be used as a container for other widgets. Frames are sometimes useful in laying out a GUI application. Layout refers to getting all the widgets in the right place and making them stay there even when the window is resized. We don’t have to worry about resizing the window in the Reminder! application so layout will be a little easier.

In Fig. 6.2 there is a Frame widget. The frame is invisible. The text entry area is inside the frame and so is the New Reminder! button. Frames can be useful to group widgets together. They can also have a border around them. The border around this frame is 5 pixels wide. Adding the frame with a border gives a little edge to the window.

 Example 6.3

This is the code that creates the frame for the Reminder! application.[image: A978-1-4471-6642-9_6_Figd_HTML.gif]

					[image: A978-1-4471-6642-9_6_Fig2_HTML.gif]
Fig. 6.2The main Reminder! window [9]

				

When the frame is created the first parameter to the Frame constructor is the window that the frame is to be packed into. This is true of every widget. The first parameter to the constructor when creating a widget is the widget it belongs to. In this way, widgets can be nested inside of widgets to form the GUI application. So, the mainFrame frame is a part of the root window. Recall that in Example 6.1 the variable root was set to the root Tk window.
Packing the mainFrame means to add it into the root window and make the contents of the frame visible. While a frame itself is invisible, by packing it the contents of the frame will be visible once the window is drawn. Packing is one method of making a widget visible. Other methods of making widgets visible are discussed in Sect. 6.9.

 Practice 6.2

Create a frame and pack it in a root window.

6.4 The Text Widget
The Text widget is a powerful multi-line editing window that can embed graphics and other objects within it. In the Reminder! application it holds the message to be posted. The Text widget in this application is added to the mainFrame. By creating a Text widget and packing it into the main frame the user can enter text into it. The widget handles all the text entry itself without any intervention by the programmer.

 Example 6.4

Here is the code to create a Text widget in the Reminder! application.[image: A978-1-4471-6642-9_6_Fige_HTML.gif]

				

 Practice 6.3

Create a text widget of 3 rows and 20 columns and place it in your practice GUI’s frame.

6.5 The Button Widget
The Button widget is used to get button press input from a user. Buttons appear in the native button format of the operating system you are using so they may not look exactly like the button displayed in Fig. 6.2. Since a button must respond to being pressed, when you create a button you specify an event handler to handle the button presses. An event handler is added to the button in the same way a command was added to a menu item in Sect. 6.2.

 Example 6.5

Here is the code to create a Button and its associated event handler.[image: A978-1-4471-6642-9_6_Figf_HTML.gif]

				

Example 6.5 shows a button being created, being added to the main frame, and then being packed within the frame. The keyword argument text specifies the text to go on the button. The keyword command is used to specify a parameterless function to call when the button is pressed. The function post is a parameterless function and is defined in the same scope as the Button. Normally, a function is not defined within the scope of another function. However, in Tk programming it is much more common. Event handlers are almost always nested functions. By nesting the event handler in the main function, it has access to all the variables defined in the main function. In this example the post function needs to have access to the root variable as well as the notes and reminders variables. By defining post within the same scope as the root variable, the post function can use these values as needed. Since the function post cannot have any parameters as dictated by Tkinter API, the post function must access the root variable from the enclosing scope. To see the whole program in context refer to Chap. 15.[image: A978-1-4471-6642-9_6_Fig3_HTML.gif]
Fig. 6.3A Reminder!

			
The post function gets the contents of the text field, called note, by using the get method on the note. Calling the get method with “1.0” and tkinter.END gets the text from beginning to end. The winfo_rootx() and winfo_rooty() methods get the x and y coordinates for the upper left corner of the root window. The post function then passes that information along with a couple of lists called notes and reminders to the addReminder function. The addReminder function adds a new reminder note to the screen as appears in Fig. 6.3.
Notice that when a command like post is provided to a button it is not written post(). This is because we are not calling post when the button is created. Instead, we are specifying that when the button is pressed the post function should be called. By providing the function name post to the button widget it can remember to call that function when it is pressed.

 Practice 6.4

Create a button that says “Now!” on it. Connect it to a command that prints “Oh, now you’ve done it!” to the screen.

6.6 Creating a Reminder!
To create a Reminder! window another top level window is created. To do this, the button calls the addReminder function. There are two parts to a reminder, the window itself and the Text widget within the window. A list of reminder windows is maintained in a list called notes. A list of the text widgets is maintained in a list called reminders. These lists are parallel lists. This means that the first entry in both lists corresponds to the first reminder, the second element in both lists is the second reminder and so on. Parallel lists were first introduced in Sect. 4.​9 on p. 103. Both the window and the Text widget are needed to maintain the information about a reminder in the program.

 Example 6.6

Here is the code that adds reminders to the screen. The notes and reminders lists keep track of the windows and Text widgets.[image: A978-1-4471-6642-9_6_Figg_HTML.gif]

				

To add a reminder to the screen a toplevel window is created, the new window is not resizable and is positioned over the top of the existing window using the geometry method. Calling geometry on a window with a string like “+10+10” positions the window at (10,10) pixels measured from the upper left corner of the screen. Since the root window’s coordinates were passed to the function, the new window is positioned approximately on top of the root window.
The text is copied into the reminder. Then the window and the Text widget are copied into the notes and reminders lists, respectively. The last line of the method adds an event handler for the window deletion event. If the reminder window is closed, the user is getting rid of that reminder. In that case, the reminder window and corresponding Text widget are removed from the notes and reminders lists. The remove method looks for a matching element of the list and removes it. The only matching element of a window or Text entry widget is the original window or widget added to the list.
The deleteWindowHandler function is a case where accessing the enclosing scope is exactly what we want. We can’t pass parameters to the deleteWindowHandler function, but we can access the notes, reminders, reminder, and notewin variables from the enclosing scope to remove the window from the program when it is closed.

6.7 Finishing up the Reminder! Application
There is only a little more code needed to finish the Reminder! application. It is more interesting if the reminders are saved to a file when the program is closed. Then the reminder windows can be redisplayed when the program is started again. The application saves the information in a file called reminders.txt. The file starts with the X,Y coordinate of the root window on the screen. Then, each reminder record starts with an X,Y coordinate of the reminder window followed by some text on multiple lines followed by a line of underscores and periods in a pattern that should never be seen by accident. The application reads from the file until this special line is found and then makes a reminder out of the text it just read. Then it continues reading the file looking for the next reminder.

 Example 6.7

Here is the code that reads and writes the reminders.txt file.[image: A978-1-4471-6642-9_6_Figh_HTML.gif]

				

The code in the try...except block attempts to read the information when the application starts. This code is located in the main function of the application. When the window deletion event occurs for the main window, the appClosing handler is called. The appClosing function writes the file, overwriting any file that was read when the application started. The complete code for the Reminder! application can be found in Chap. 15.

6.8 Label and Entry Widgets
Assume we wish to enhance the Reminder! application by allowing the user to set the title of each reminder. Instead of the reminder note just having Reminder! as its title, it could have a user-defined title. So when the New Reminder! button was pressed for the application in Fig. 6.4 a new window would appear with “Don’t forget trash!” as its title. This can be done by adding a label and an entry widget to the application.[image: A978-1-4471-6642-9_6_Fig4_HTML.gif]
Fig. 6.4A titled Reminder! application

			
The Label widget is the text “Title:” that appears in the figure. The Entry widget is the one line text field. While a Text widget can handle multiple lines, an Entry widget holds just one line of text.

 Example 6.8

Here is the code for the Entry and Text widgets in this application.[image: A978-1-4471-6642-9_6_Figi_HTML.gif]

				

A new frame is created because it will need to contain the two elements on one line in the application. Without a new frame, the “Title:” label would be packed above the Entry widget. Within the titleFrame frame, the titleLabel and titleText widgets are added using the grid layout instead of the pack layout. In a grid layout you specify which row and column of the grid the widget should be placed in. The columnspan argument specifies that the titleText widget should span 2 of the three columns of the row.
A StringVar is an object with a get and a set method. The titleText Entry widget is created specifying a textvariable called noteTitle which is required to be of type StringVar. To retrieve the text of the Entry widget we can write noteTitle.get() and to set the text of the widget we can write noteTitle.set(“Whatever Text We Want”). StringVars make it easy to set and retrieve text from an Entry widget.
There is a little more code to write to complete the extension of this application to include the title information in the reminders and in the text file that stores the reminders. This code is left as an exercise.

 Practice 6.5

Add a label that says “What do you want?” to the practice Tk application from this chapter.

6.9 Layout Management
When widgets are packed or gridded in an application, their appearance within the application is called their layout. Sometimes, when widgets are placed within an application they appear in the right place when the application starts, but if the window is resized, they don’t look right. Understanding something about layout management can help you correctly plan your application’s layout and avoid these kinds of problems.

Packing widgets places them one above another in what is sometimes called a flow layout. Each widget appears above the next when packed. The Tk packer is responsible for packer layout management. There are some options that can affect how packing is done. Normally the packer places one widget above another in a flow layout. But these options let the programmer have some control about how that flow is managed.

 	
							fill = You can specify that if a widget can use the extra space, then it should fill the available space. Valid values for fill are tkinter.X, tkinter.Y, or tkinter.BOTH. X means to fill in the horizontal direction, Y means to fill in the vertical direction, BOTH means to fill in both directions. For a label to fill in the horizontal direction you would write: [image: A978-1-4471-6642-9_6_Figj_HTML.gif]

 The bg and fg parameters set the background and foreground color, respectively.

	
							side = This specifies which side to flow from. For example, writing titleLabel.pack(side=tkinter.LEFT) will flow from the left rather than the top. Other valid values are TOP, BOTTOM, or RIGHT.

The Tk gridder is responsible for grid layout management. Grid layout allows widgets to be placed in a specific column and/or row of a container widget. As we have seen, it is possible for one widget to span more than one column or row in a grid. The rowspan parameter sets the number of rows a widget should span. The columnspan option was used in Example 6.8. It is also possible to tell the gridder how it should use the space within a row and column. Normally a widget is centered within the available space. But, if the widget can use it, the gridder can be told to expand the widget to take up the available space. The sticky option tells the gridder to stick the widget to one or more sides of the available area. The tkinter.E and tkinter.W constants stand for east and west. By adding east and west together in Example 6.8 the entry widget will expand to the full width of its allowable size. In that example it has no affect on the layout, since the window cannot be resized anyway, but nonetheless it demonstrates its use.
While packing and gridding are the two most common forms of layout management, there is also a placer. The placer places widgets explicitly within the X,Y plane of the application. The packer, gridder, and placer are the three layout managers for Tkinter. Each of these layout managers have more options available for layout that are not discussed here but can be found by searching for “tkinter layout management” on the internet.

 Practice 6.6

Make the entry widget and the button widget in your practice application appear next to each other at the bottom of the window.

6.10 Message Boxes
Sometimes it is necessary to pop up a message box in a GUI application to warn the user of some invalid operation they are trying to perform. Sometimes the application just needs to provide some quick feedback, like “Job Completed” or some other status. Tk provides a few message boxes for these occasions. To use the message boxes you must import tkinter.messagebox.
Here are three examples.

 	
 tkinter.messagebox.showinfo(“Invalid Entry”, “Type a reminder first.”)

This displays an informational box with an informational icon. You can change the icon displayed in the box by specifying the icon = parameter. More information is available online. The dialog box appears on the screen and the application waits for OK to be pressed.

	
 tkinter.messagebox.showwarning(“Invalid Entry”, “Type a reminder first.”)

This works the same as the showinfo dialog box but displays a warning icon instead of an informational icon.

	
 answer = tkinter.messagebox.askyesno(“Really?”, “Are you sure you want to create a blank reminder?”)

This displays a dialog with Yes and No buttons. If Yes is pressed, the function call returns True. If No is pressed, the function returns False.

[image: A978-1-4471-6642-9_6_Figk_HTML.gif]

There are other dialogs available including a color chooser and file chooser. There are also several other options that are possible with each of these dialogs. Again, more information can be found online.

 Practice 6.7

When the button of your practice application is pressed, take the information in the entry widget and display it in a message box of your choice with some appropriate text to go with it.

6.11 Review Questions

 	1.How are a event-driven program and simple sequential program the same?

	2.What distinguishes an event-driven program from a sequential program?

	3.What is an API?

	4.Name two APIs that are available in Python. What does each API do for you as a programmer?

	5.What is a widget?

	6.When writing a Tkinter application, what is the purpose of the call to mainloop?

	7.What is the purpose of a frame in Tkinter?

	8.What does the term layout refer to in a GUI application? Be complete in your answer.

	9.What is the purpose of the StringVar class in Tkinter applications?

	10.Why are event handlers generally defined within the scope of the main function?

	11.What are two methods of arranging widgets in a Tkinter application? Describe the differences between the two methods.

6.12 Exercises

 	1.Extend the Reminder! application so that each Reminder! is given the title assigned in the main application window. For example, if the New Reminder! button is pressed for the application as it appears in Fig. 6.4, the reminder window would appear as shown in Fig. 6.5. Be sure to clear both the text and the title from the root application window after the New Reminder! button is pressed.

	2.Implement a GUI front-end to the address book application. The GUI should be similar to that presented in Fig. 6.6. Each of the buttons in the application should work as described here.

 	(a)The add button should add a new entry to the phonebook. This must append an entry to the phonebook. The event handler for this function should look something like this (depending on how you write the rest of your program). [image: A978-1-4471-6642-9_6_Fig5_HTML.gif]
Fig. 6.5A titled Reminder!

												[image: A978-1-4471-6642-9_6_Fig6_HTML.gif]
Fig. 6.6A GUI for the addressbook application

												[image: A978-1-4471-6642-9_6_Figl_HTML.gif]

											

	(b)The update button should update an existing entry or display a message saying the entry was not found. Update must find an entry that matches the first and last name displayed in the GUI. If found, the entry in the file is updated to reflect the new information found in the GUI. You find an entry by matching the first and last name in the address book so updating the name will not work. In that case a new entry needs to be added and the old one deleted. If the entry is not found a warning message should be displayed.
Since entries cannot be deleted from files, to update an entry you must open a new file for writing. Then you copy all the entries to the new file that don’t match the entry to be updated. Once you find the entry to be updated you write the GUI information to the new file. Finally, you must write the rest of the non-matching entries to the new file. After you are done, you can remove the old file and rename the new file to the addressbook.txt file name. The following lines of code will delete the addressbook.txt file and rename a file called __newbook.txt to addressbook.txt. [image: A978-1-4471-6642-9_6_Figm_HTML.gif]

											

	(c)The delete button deletes an existing entry. To delete an existing entry the last and first name should match the entry being deleted. Since you cannot delete a record from a file, you must create a new file, writing all records to the new file except for the one to be deleted. Then remove the old file and rename the new file to addressbook.txt. See the description of the update button implementation to see how to delete and rename the files.

	(d)The find button finds the entry with the same first and last name as typed. It should at least work when both last and first name are supplied by the user. However, you can extend this by making it work if the last name is empty. Then it should match only on first name. Likewise, if the first name is empty then it should only match on last name. In either case it should display the first matching entry in the address book.

	(e)The next button displays the next address after the current entry and wraps around to the beginning when the last entry was displayed.

	3.Implement a GUI front-end for the addressbook application as described in Exercise 2, but use parallel lists to hold the fields of each record instead of reading from and writing to the file immediately. You should write code to read the entire file when the application starts and it should be written again when the application closes.
Each of the buttons should be implemented but instead of reading or writing to the file, the buttons should use the parallel lists as the source of the addressbook entries.

	4.Using the Reminder! application code from Appendix 15 as a reference, rewrite the code so that the reminders are read from an XML file when the application starts and are written to an XML file when the application terminates. To write an XML file you open a text file for writing and you write the data and the XML tags for each XML element.

	5.Implement a GUI front-end for the addressbook application but in this version of the application define an XML file format to hold the data. Then, write the program to read the XML file when the application starts and write the XML file when the application terminates. Use parallel lists to hold the fields of each record while the application is running. To write an XML file you open a text file for writing and you write the data and the XML tags for each XML element.

6.13 Solutions to Practice Problems
These are solutions to the practice problems in this chapter. You should only consult these answers after you have tried each of them for yourself first. Practice problems are meant to help reinforce the material you have just read so make use of them.
6.13.1 Solutions to Practice Problem 6.1
				

 [image: A978-1-4471-6642-9_6_Fign_HTML.gif]

6.13.2 Solutions to Practice Problem 6.2
				
The window will probably resize to a very tiny window when run because there isn’t anything in the frame yet.[image: A978-1-4471-6642-9_6_Figo_HTML.gif]

				

6.13.3 Solutions to Practice Problem 6.3
				

 [image: A978-1-4471-6642-9_6_Figp_HTML.gif]

6.13.4 Solutions to Practice Problem 6.4
				

 [image: A978-1-4471-6642-9_6_Figq_HTML.gif]

6.13.5 Solutions to Practice Problem 6.5
				

 [image: A978-1-4471-6642-9_6_Figr_HTML.gif]

6.13.6 Solutions to Practice Problem 6.6
				

 [image: A978-1-4471-6642-9_6_Figs_HTML.gif]

6.13.7 Solutions to Practice Problem 6.7
				

 [image: A978-1-4471-6642-9_6_Figt_HTML.gif]

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_7

7. Defining Classes

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

Python is an object-oriented language. This means, not only can we use objects, but we can define our own classes of objects. A class is just another name for a type in Python. We have been working with types (i.e. classes) since the first chapter of the text. Examples of classes are int, str, bool, float and list. While these classes are all built in to Python so we can solve problems involving these types, sometimes it is nice if we can solve a problem where a different type or class would be helpful.
Classes provide us with a powerful tool for abstraction. Abstraction is when we forget about details of how something works and just concentrate on using it. This idea makes programming possible. There are many abstractions that are used in this text without worrying about exactly how they are implemented. For example, a file is an abstraction. So is a list. In fact, integers are abstractions, too. A turtle is an abstraction that helps us implement Turtle graphics programs. Instead of worrying about how a line gets drawn in a window, we can just move the turtle along the line with its pen down to draw the line. How is this done? It’s not important to us when we are using a Turtle. We just know it works.
So, classes are a great tool for programmers because when a programmer uses a class they don’t have to worry about the details. But, sometimes we might be able to save time and implement a class that could be useful to us and maybe to someone else as well. When we use a class we don’t worry about the details of how an object works. When we implement a class we must first decide what the abstraction is going to look like to the user of it and then we must think about how to provide the right methods to implement the abstraction. When defining or implementing a class, the user is either yourself or another programmer that is going to use the class when they create some objects of the class you defined.
Classes provide the definitions for objects. The int class defines what integers look like and how they behave in Python. The Turtle class defines what a turtle looks like and all the methods that control its behavior. In general, a class defines what objects of its type look like and how they behave. We all know what an integer looks like. Its behavior is the operations we can perform on it. For instance we might want to be able to add two integers together, print an integer, and so on. When we define our own classes we do two things.[image: A978-1-4471-6642-9_7_Fig1_HTML.gif]
Fig. 7.1A Turtle object

	A Class defines one or more data items to be included in the objects or instances of the class. These data items are sometimes called the member data or instance variables of the class. Each instance, or object, will contain the data defined by the class.

	A Class defines the methods that operate on the data items or member data in objects of the class. The methods are functions which are given an object. A method defines a particular behavior for an object.

To understand how objects are created we can look at an example. In Chap. 4 we learned how to create Turtle objects and use them to do write some interesting programs.

 Example 7.1

When we execute the code below, Python creates a Turtle object pointed to by the reference t as shown in Fig. 7.1. [image: A978-1-4471-6642-9_7_Figa_HTML.gif]

We have already learned that we could make the turtle go forward 50 units by writing turtle.forward
(50). The forward function is a method on a Turtle. It is part of the turtle object’s behavior. As another example, consider a Circle class. A circle must be drawn on the screen at a particular location. It must be given a radius. It might have a fill color and it might have a width and color for its outline.
7.1 Creating an Object
When an object is created there are two things that must happen: the space or memory of the object must be reserved, and the space must be initialized by storing some values within the object that make sense for a newly created object. Python takes care of reserving the appropriate amount of space for us when we create an object. We must write some code to initialize the space within the object with reasonable values. What are reasonable values? This depends on the program we are writing.[image: A978-1-4471-6642-9_7_Fig2_HTML.gif]
Fig. 7.2A circle object

 Example 7.2

To create a circle we might write something like this.[image: A978-1-4471-6642-9_7_Figb_HTML.gif]

Creating a circle called shape creates an object that contains the data that we give the constructor when the circle is created. The constructor is called when we write the class name, followed by the arguments to pass to the constructor. In this case, the call to the constructor is Circle (x, y, radius, width=3, color=“red”, outline=“gray”). The constructor takes care of putting the given information in the object. Figure 7.2 shows what the data looks like in the object after calling the constructor.
The data in an object doesn’t get filled in by magic. We must write some code to do this. When programming in an object-oriented language like Python we can write a class definition once and it can be used to create as many objects of that class as we want. To help us do this, Python creates a special reference called self that always points to the object we are currently working with. In this way, inside the class, instead of writing the reference shape we can write the reference self. By using the reference self when writing the code for the class, the code will work with any object we create, not just the one that shape refers to. We are not stuck just creating one circle object because Python creates the special self reference for us. We can create a shape and any other circle we care to create by writing just one Circle class.

 Example 7.3

The first method of a class definition is called the constructor and is named __init__. It takes care of filling in the member data inside the object. The self reference is the extra reference, provided by Python, that points to the current object. This method gets called in response to creating an object as occurs in the code in Example 7.2.[image: A978-1-4471-6642-9_7_Figc_HTML.gif]

In Example 7.3 notice that the formal parameters nearly match the arguments provided when the circle object is created in Example 7.2. The one additional parameter is the extra self parameter provided by Python. When the constructor is called, Python makes a new self local variable for the __init__ function call. This self variable points at the newly created space for the object. Figure 7.3 shows the run-time stack with the self variable pointing at the newly created object. The picture shows what memory looks like just before returning from the __init__ constructor method. There are two activation records on the run-time stack. The first is the activation record for the function that creates the shape by executing the code in Example 7.2. The second activation record is for the __init__ function call (i.e. the call to the constructor). When the program returns from the constructor the top activation record will be popped and the self reference will go away.[image: A978-1-4471-6642-9_7_Fig3_HTML.gif]
Fig. 7.3A circle object

To implement a class we must write the word class, the name of the class, and then the methods that will operate on the objects of that class. By convention, the first method is always the constructor. Generally other methods follow and must be indented under the class definition. The class definition ends when the indentation under it ends.

 Practice 7.1

Decide what information you would need to implement a Rational class. Rational numbers are numbers that can be expressed as a fraction with an integer numerator and denominator. Then write a class definition for it including a constructor so you can create Rational objects.

 Practice 7.2

Assume we want to implement a class for rectangles. A rectangle is created at a particular (x, y) location specifying the lower left corner of the rectangle. A rectangle has a width and height. Write a class definition for the Rectangle class so that a rectangle can be created by writing box = Rectangle(100, 100, 50, 30) to create a rectangle at (100, 100) with a width of 50 and a height of 30.

If we have a circle object, it would be nice to draw it on a turtle graphics screen. In addition, we may want to change its color, width, or outline color at some point. These are all actions that we want to perform on a circle object and because they change the object in some way they will become mutator methods when implemented. In addition, we may want to access the x, y, and radius values. These are implemented with accessor methods. The mutator and accessor methods must be defined in the class definition.

 Example 7.4

Here is the complete code for the Circle class.[image: A978-1-4471-6642-9_7_Figd_HTML.gif]

When a method is called on an object the variable is written first, followed by a dot (i.e. period), followed by the method name. So, for instance, to call the getX method on the shape you would write shape.getX(). When you look at the definition of getX there is one parameter, the
 self parameter. When you call getX it looks like there are no parameters. Python sets self to point to the same object that appears on the left side of the dot. So, in this example, the self parameter points at the shape object because shape was written on the left hand side of the dot. The picture in Fig. 7.3 applies to calling the getX method as well. When getX is called, an activation record is added to the stack with the self variable pointing at the object. This is true of all classes in Python. When implementing a class the first parameter to all the methods is always self and the object that is on the left hand side of the dot when the method is called is the object that becomes self while executing the method.

 Practice 7.3

Complete the Rectangle class by writing a draw method that draws the rectangle on the screen. When drawing a rectangle allow the color of the border and the color of the background to be specified. Specify these parameters with default values of black and transparent respectively. Make these parameters keyword parameters with the names outline and color (for background color).

7.2 Inheritance
A class is an abstraction that helps programmers reuse code. Code reuse is important because it frees us to solve interesting problems while allowing us to forget the details of the classes we use to solve a problem. Code reuse can be achieved between classes as well. When objects are similar in most respects but one is a special case of another the relationship between the classes can be modeled using inheritance. A subclass inherits
 from a superclass
. When using
 inheritance, the subclass gets everything that’s in the superclass. All data and methods that were a part of the superclass are available in the subclass. The subclass can then add additional data or methods and it can redefine existing methods in the superclass.
Inheritance in Computer Science is like inheritance in genetics. We inherit certain physical characteristics of our birth parents. We may look different from them but typically there are some similarities in hair color, eye color, height and so on. We probably also inherit behaviors from our parents, although this may come from social contact with our parents and isn’t necessarily genetic. Inheritance when applied to Computer Science means that we don’t have to rewrite all the code of the superclass. We can just use it in the subclass.
Inheritance comes up all over the place in OOP. For instance, the Turtle class inherits from the RawTurtle class. The Turtle class is essentially a RawTurtle except that a Turtle creates a TurtleScreen object if one has not already been created.

 Example 7.5

Here is the entire Turtle class.[image: A978-1-4471-6642-9_7_Fige_HTML.gif]

While the code in Example 7.5 is difficult to completely understand out of context, the Turtle class only consists of a constructor, the minimum amount that can be provided in a derived class. The constructor creates the screen if needed and then calls the RawTurtle’s constructor. Every class, whether a derived class or a base class, must provide its own constructor. When Python creates an object of a certain class, it needs the constructor to determine how the object is initialized. So, the class Turtle in Example 7.5 truly contains the minimal amount of methods possible for a derived class.
Essentially a Turtle and a RawTurtle are identical. It also turns out that Turtles (and RawTurtles) are based on Tkinter. A TurtleScreen contains a ScolledCanvas widget from Tkinter. To create a RawTurtle object we must provide a ScrolledCanvas for the Turtle to draw on.

 Example 7.6

Here is the constructor definition for a RawTurtle.[image: A978-1-4471-6642-9_7_Figf_HTML.gif]

Because turtle graphics is based on Tkinter, we can write a program that contains widgets including a canvas on which we can draw with turtle graphics! The constructor in Example 7.6 shows us that if we provide a canvas the RawTurtle object will use it. So, we could write a little drawing program that draws circles and rectangles on the screen and integrates other Tk widgets, like buttons for instance.
To begin building a draw application we’ll put a ScrolledCanvas on the left side of a window and some buttons to control drawing on the right side. Since we’ve been looking at a Circle class, we’ll start by drawing circles on the screen. It would be nice to provide the radius for the circle. We can do that with an entry field and a StringVar object as was seen in the last chapter.[image: A978-1-4471-6642-9_7_Fig4_HTML.gif]
Fig. 7.4A drawing application

 Example 7.7

Here is some code that creates a ScrolledCanvas widget, a RawTurtle that draws on the canvas, and a Tkinter application that incorporates both. Figure 7.4 shows what the application window looks like when it is run. Notice the use of the class definition for DrawApp. Encapsulating all the tkinter application code in a class means that self can be used to store variables that need to be globally available to the application. In particular, the shapeSelection variable in the object is used and set in multiple places in the class. The main function simply creates a DrawApp object and then calls mainloop to make the tkinter application start listening for events.[image: A978-1-4471-6642-9_7_Figg_HTML.gif]

The program in Example 7.7 is missing the Circle class which was defined in Example 7.4. The program waits for the Circle button to be pressed once. Then, after each mouse click, a circle is drawn on the ScrolledCanvas on the left side of the window.
Both a Circle and a Rectangle share a lot of common code. It makes sense for that common code to be in one base class that both classes inherit from. If a Shape class were defined that contained the shared code, then it would only have to be written once, which is a requirement of elegant code.

 Example 7.8

Here is a Shape class that defines the code that is common to both Circles and Rectangles.[image: A978-1-4471-6642-9_7_Figh_HTML.gif]

With the Shape base class defined in Example 7.8 the definition of Circle can be simplified.

 Example 7.9

Here is the code for the derived Circle class. Notice the call to super() below. Super refers to the superclass, in this case the Shape class. The superclass is the class that is above it in the type hierarchy. Using super() when referring to the superclass is a good idea because the code still works even if the type hierarchy is changed at some point in the future.[image: A978-1-4471-6642-9_7_Figi_HTML.gif]

The Circle class still is the only class that will know how to draw a circle. And, of course, shapes don’t have a radius in general. All the other code that isn’t circle specific is now moved out of the Circle class.

 Practice 7.4

Rewrite the Rectangle class so it inherits from the Shape class and use it in the draw program downloaded from the text’s website.

7.3 A Bouncing Ball Example
A RawTurtle can move around the screen either with its pen up or its pen down. With its pen up, if we can imagine the turtle as something other than a little sprite, it can be essentially any object that we want it to be in a two dimensional world. The creators of the turtle graphics for Python realized this and added code so that we could change the turtle’s picture to anything we would like. For instance, we might want to animate a bouncing ball. We can replace the turtle’s sprite with an image of a ball.
Turtle graphics can do animation because it can be told to perform an action after an interval of time. A timer can be set in turtle graphics. When the timer goes off, the program can move the ball a little bit. If the interval between timer going off and moving the ball can be small enough that it happens several times a second, then to the human eye it will appear as if the ball is flying through the air.
A ball is a turtle. However, a turtle doesn’t remember in which direction it is moving. It would be nice to have the ball remember the direction it is moving. At least somewhere in the program the ball’s direction must be remembered and it makes sense for the ball to remember its own direction in an object-oriented design of the problem. Figure 7.5 depicts what a ball object should look like. A ball is a turtle, but it is a little more than just a turtle. Again, this is an example of inheritance.
With the ball inheriting from the RawTurtle class we’ll automatically get all the functionality of a turtle. We can tell a ball to goto a location on the screen. We can access the x and y coordinate of the ball by calling the xcor and ycor methods. We can even change its shape so it looks like a ball. As we’ve seen, for the Ball class to inherit from the RawTurtle class, the derived Ball class must implement its own constructor and call the constructor of the base class.[image: A978-1-4471-6642-9_7_Fig5_HTML.gif]
Fig. 7.5A ball object

 Example 7.10

In Chap. 16 the Ball class inherits from the RawTurtle class. To create a Ball object we could write[image: A978-1-4471-6642-9_7_Figj_HTML.gif]

This creates a ball object as shown in Fig. 7.5. Here is the Ball class code.[image: A978-1-4471-6642-9_7_Figk_HTML.gif]

When we are using the ball object in Fig. 7.5 we refer to it using the ball reference. When we are in the Ball class we refer to the object using the self reference as described earlier in this chapter. In Fig. 7.5 the Turtle part of the object is greyed out. This is because the insides of the RawTurtle are available to us, but generally it is a bad idea to access the RawTurtle part of the object directly. Instead, we can use methods to access the RawTurtle part of the object when needed.
The constructor needs to initialize the RawTurtle part of the object as well as the Ball part of the object. To create a RawTurtle we could write turtle = RawTurtle(cv). However, writing this won’t work to initialize the RawTurtle part of the object. A line of code like this would create a new RawTurtle object. Remember, a Ball is a RawTurtle so we don’t want to create a new RawTurtle object. Instead, we want to initialize the RawTurtle part of the Ball object. To do this, we explicitly call the RawTurtle constructor by writing RawTurtle.__init__(self,cv). This calls the RawTurtle’s constructor. In this case we call the constructor by writing the class name followed by a dot followed by the constructor’s name __init__. Since self is a Ball and a RawTurtle, we pass self as the parameter to RawTurtle’s constructor. This line of code initializes the RawTurtle part of the object. Then the Ball specific initialization occurs next.
The Ball class contains one more method, the move method. This is a new method not defined in the RawTurtle class. A Ball can move on the screen while a RawTurtle can not. A Ball moves by (dx,dy) each time the move method is called. The bouncing balls are animated by repeatedly calling the move method on each of the balls in the ballList defined in the main function of the program. Chapter 16 contains the complete code for the bouncing ball example.

7.4 Polymorphism
Polymorphism is a term used in object-oriented programming that means “many versions” or more than one version. When a subclass defines its own version of a method then the right version, either the subclass version or the base class version of the method, will be called depending on the type of object you have created. To best understand this it helps to look at an example.
Let’s assume we wanted to modify the bouncing ball example so some balls bounce according to a simulated gravity instead of simply bouncing in space forever. It turns out this is very easy to do. We can have Ball objects bounce in space forever and GravityBall objects bounce according to a simulated gravity. Since GravityBalls are nearly the same as Balls we’ll use inheritance to define the GravityBall class. The only real difference will be in the way the GravityBall moves when it is told to move.

 Example 7.11

This code uses the Ball class and relies on polymorphism to get GravityBalls to bounce the right way.[image: A978-1-4471-6642-9_7_Figl_HTML.gif]

 Practice 7.5

Take the bouncing ball example and add the GravityBall class to it. Then, modify the program to create some GravityBalls and watch them bounce. The original Ball objects continue to bounce around as if they were in space. The GravityBall objects behave differently. Polymorphism makes this work. What is it about polymorphism that makes this work the way we want it to?

7.5 Getting Hooked on Python
A hook is a means by which one program allows another program to modify its behavior. The Python interpreter is a program that allows its behavior to be altered by means of certain hooks it makes available to programmers. Consider the Rational class described earlier in this chapter. With the definition you came up with (or the provided solution in practice Problem 7.1) we can create Rational numbers. However, we can’t do much more than create them at the moment. Without some more code, our rational implementation doesn’t really do us much good.

 Example 7.12

Here is some code that creates a Rational number and prints it to the screen. When run, this program prints something like [image: $${ {<__main__.Rational object at 0x113bc70>}}. $$] It prints the name of the module and the class and the value of the reference when printed to the screen.[image: A978-1-4471-6642-9_7_Figm_HTML.gif]

If we needed rational numbers in a program, it would be nice if they printed nicely when they were printed to the screen. This can be done using a hook in Python for string conversion. When an object is converted to a string, Python looks for the existence of the __str__ method in the class. If this method exists, Python will use it to convert the object to a string representation. If this method exists in the class, then it must return a string representation of the object. The method must also have only one parameter, the self parameter.

 Example 7.13

If this method is added to the Rational class definition in Example 7.12, then when the Rational [image: $$4/5$$] is printed, it prints as [image: $$4/5$$].[image: A978-1-4471-6642-9_7_Fign_HTML.gif]

The addition of the __str__ to the Rational class makes using rational numbers a bit easier because we can quickly convert it to a string when we want a nice representation of it. You can force the __str__ method to be called by calling the str built-in function in Python. So, writing str(x) will force a string version of x to be constructed using the __str__ method. The presence of the __str__ method doesn’t mean that rational numbers will always be converted to a string when printed. Sometimes, the Python interpreter isn’t interested in producing a strictly human-readable presentation of an object. Sometimes a Python readable representation is more appropriate.

 Example 7.14

Consider the following code. When Rational objects are in a list they do not print using the __str__ method. Running this code prints [image: $${ {[< __main__.Rational object at 0x113bcd0>,}}$$]
[image: $${ {< __main__.Rational object at 0x113bc70 >] }}$$] to the screen.[image: A978-1-4471-6642-9_7_Figo_HTML.gif]

In Example 7.13 the __str__ was added and rational numbers printed nicely, but Example 7.14 shows that the Python interpreter does not use __str__ when printing a list of rationals. When printing a list, Python is producing a string representation of the list that would be suitable for Python to evaluate later to rebuild the list. If Python tried to read a number like [image: $$4/5$$] in the list, it would not know what to do with it. However, there is another hook that allows the programmer to determine the best representation of an object for Python’s purposes.

 Example 7.15

The __repr__ method is a Python hook for producing a Python representation of an object. With the addition of the method below to the Rational class started in Example 7.12, Python will print [Rational(4,5), Rational(9,12)] when the code in Example 7.14 is executed.[image: A978-1-4471-6642-9_7_Figp_HTML.gif]

So, what is the difference between converting to a string and converting to a Python representation? A string version of an object can be in whatever format the programmer determines is best. But, a Python representation should be in a format so that if the built-in Python function eval is called on it, it will evaluate to its original value. The eval function is given an expression contained in a string and evaluates the expression to produce the Python value contained in the string. The appropriate representation for most programmer-defined classes is to use the same form that is required to construct the object in the first place. To construct the rational number [image: $$4/5$$] we had to write Rational(4,5). For the eval function to correctly evaluate a string containing a Rational, the eval function should be given a rational in the Rational(numerator,denominator) form, not the [image: $$numerator/denominator$$] form.
There is another Python hook that controls how sorting is performed in Python. For any type of object in Python, if there is a natural ordering to those objects, Python can sort a list of them.

 Example 7.16

Here is some code that sorts a list of names, alphabetically. This code, when run, prints the list [‘Freeman’, ‘Gorman’, ‘Lee’, ‘Lie’, ‘Morgan’] to the screen.[image: A978-1-4471-6642-9_7_Figq_HTML.gif]

If we attempt to sort the list lst from Example 7.14, Python will complain with the following error message: builtins.TypeError: unorderable types: Rational
[image: $$() { {<Rational}}$$](). While we have an understanding of rational numbers, Python has no way of understanding that the class of Rational numbers represents an ordered collection of values. To tell Python that it is an ordered collection, we have to implement the __lt__ method. To compare any two rational numbers, we must first make sure they have a common denominator. Once we have a common denominator, the numerator of the two rational numbers must be converted to units for the common denominator. It turns out we don’t really need the common denominator at all. We just need the converted numerators. The __lt__ method must return True if the object self references is less than the object that other references and it must return False otherwise.

 Example 7.17

The following __lt__ method, when added to the class in Example 7.12 converts the two numerators to their common denominator form so they can be compared.[image: A978-1-4471-6642-9_7_Figr_HTML.gif]

Once the __lt__ method of Example 7.17 is added to the Rational class, Python understands how to sort them. The sort function sorts a list in place as shown in Example 7.16. If sort is called on the list lst from Example 7.14, Python reorders the list so it contains [Rational(9,12), Rational(4,5)].

7.6 Review Questions

 	1.What is another name for a class in Python?

	2.What is the relationship between classes and objects?

	3.What is the purpose of the __init__ method in a class definition?

	4.Computer scientists say that objects have both state and behavior. What do state and behavior refer to in a class definition?

	5.How do you create an object in Python?

	6.In a class definition, when you see the word self, what does self refer to?

	7.What is a superclass? Explain what the term means and give an example.

	8.What is the benefit of inheritance in Python?

	9.What does it mean for polymorphism to exist in a program? Why would you want this?

	10.How do the __str__ and the __repr__ methods differ? Why are they both needed?

	11.To be able to sort an ordered collection of your favorite type of objects, what method must be implemented on the objects?

7.7 Exercises

 	1.Go back to the original Reminder! program and redo it so that the Reminder! program contains a class called Reminder that replaces the parallel lists of reminders and notes with one list of reminders. This list should be a list of Reminder objects. A Reminder object keeps track of its x,y location on the screen. It also has some text that is provided when it is created. A Reminder must take care of creating the Text and Toplevel objects so a note can be displayed. Finally, the methods defined on a Reminder include undraw (to withdraw the window), getX to return the X value of the window location, getY similarly gets the Y value of the window location. The getText method should return the text field. Finally, the setDeleteHandler should set the handler to be called when a reminder is deleted. Write this class and modify the Reminder! application to use this new class.
Here is an outline of the Reminder class definition. You need to finish defining it and alter the program to use it. [image: A978-1-4471-6642-9_7_Figs_HTML.gif]

 Your job is to fill in the function definitions and then use the class in the Reminder! application.

	2.Modify your address book program to use a class for address book cards. Call the new class AddressCard. An address card contains all the information for an address book entry including last and first name, street, city, state, zip, phone, and mobile phone number. To use the AddressCard class you need to modify the program so it stores all AddressCards in a list. The program should read all the addresses when it starts and make one AddressCard object for each address in the file. You will also write all the cards in the list to a file when the program terminates. Look at the code in Chap. 15 to see how this can be done.
You will want to include three hook methods in your AddressCard class. The __str__ method should be included to convert an AddressCard to a string. To do this you will want to return a string representation of the object as discussed in the chapter. The AddressCard entry should convert to a string as follows: [image: A978-1-4471-6642-9_7_Figt_HTML.gif]

 Your __str__ method should return a string that looks just like this. When you print your addresses to the file when the application closes, you can use the str function to convert each AddressCard object to a string. Don’t forget the newline characters at the end of each line.
The second special method is the __lt__ method. This method compares two AddressCard objects as described for Rationals in the chapter. Your __lt__ method should return True if the last name, first name of self is less than the last name, first name of the other AddressCard.
A third special method is the __eq__ method. This method compares two AddressCard objects and is used by the index method on lists. If self is equal to other then True should be returned. If self is not equal to other then False should be returned. Here is how you might write this function. [image: A978-1-4471-6642-9_7_Figu_HTML.gif]

 Each of the event handlers must be rewritten to use the new list of addresses. For instance, here is how the Find event handler might be written to use the index method on lists that is now possible with the definition of the __eq__ method. [image: A978-1-4471-6642-9_7_Figv_HTML.gif]

 Finally, you should use the list sort method to keep the address book sorted at all times.

	3.In this exercise you are to implement a game of Blackjack using the turtle package. Blackjack is a simple game with simple rules. In this exercise you get practice using Object-Oriented Programming to implement a fairly complex program.

 Rules of the Game

Blackjack is played by dealing two cards to each player and the dealer. The player’s cards are face up. The dealer’s first card is face down and the second is face up.
The goal is to get to 21 points. Each face card is worth 10 points. The Ace is worth 1 or 11 points depending on which is better for your hand. All other cards are worth their face value.
The player bets first. Then he/she asks for cards (hits) until they are satisfied with their score or they go over. If they have not gone over, the dealer then draws cards until the dealer hand is 17 or over. If the dealer goes over 21, the player wins. Otherwise, the player wins if his/her score is greater than the dealer’s score.
If the player gets a blackjack (21 with only two cards) then the player gets paid at a 3:2 ratio. Otherwise it is a 1:1 ratio payback.

 Writing the Game

You should write this game incrementally. That means, write a little bit and test that little bit before going on. You don’t want to debug this whole program after writing all the code.
You will need to implement a Card class. A Card object can inherit from RawTurtle. When you create a Card object you will want to give it an image for the front and back. The images can be downloaded from the text website. Download the cards.zip file, and then unzip it in the same folder where you will write your program. The cards folder should be a subfolder of the folder where you write your program.
The card images are named 1.gif, 2.gif, and so on. The back image is labeled back.gif. Images 1, 2, 3, 4 are the Aces. Images 5, 6, 7, 8 are the Kings and so on. To get the correct rank for a card you can use the formula [image: $$14 - val / 4$$] where val is the value of the card name. If the formula determines the rank is 14 it should be changed to 11. Ranks from 10–13 should be changed to 10.
The Card class will have at least four methods. You may want to define more. Here is a suggestion for the methods you should write.

 	isFaceDown—This method returns true if the card is face down. It returns false if the card is face up.

	setFaceDown—This method sets the Turtle shape to be the back of the card and remembers that it is now face down.

	setFaceUp—This method sets the Turtle shape to be the face of the card and remembers that the card is now face up.

	getBlackJackRank—This method returns the Blackjack rank of the card.

The main part of the program is placing buttons on the screen and handling the different button presses. Figure 7.6 shows what the application might look like during the playing of a hand. Figure 7.7 shows what the application might display at the end of that hand. Message boxes can be used to display the outcome of a hand.

	4.Complete the Asteroids game available on the text web site as shown in Fig. 7.8. The Asteroids video game was originally designed and written by Atari. It was released to the public in 1979. In the game the player controls a spaceship that navigates space and blows up asteroids by shooting at them.
When an asteroid is hit, the player scores points and the asteroid splits into two smaller asteroids. The largest asteroids are worth 20 points. Each medium asteroid is worth 50 points. The smallest asteroids are worth 100 points each. When the spaceship hits a small asteroid it is obliterated into dust and it disappears completely from the game.
If an asteroid collides with the spaceship, the spaceship is destroyed, the asteroid that collided with it is destroyed (resulting in no points) and the player gets a new spaceship. The game starts with four spaceships total (the original game started with only three).
Code is available on the text’s web site. The downloadable code makes the ship turn left when 4 is pressed. The ship will also move forward when 5 is pressed. Complete the program by implementing the game as described above. Some lessons are available on the text’s web site that will guide you through many of the additions to the program described here. To make the game a little more interesting you should add one new level to this program. The second level should have 7 asteroids instead of 5 and you should get one more life if you have less than 4 when level 2 starts.

	5.In Chap. 4, XML documents were introduced. The example in that chapter was of drawing a picture contained in an XML file. To do this, several parallel lists were constructed to hold the data of the XML file. However, there were lots of None values placed in the lists because not all attributes applied to all graphics commands.
A much better way of organizing the XML data would be to create a class for each different kind of graphics command. So a BeginFillCommand class would contain just the color attribute needed for the BeginFill graphics command. Likewise, the class associated with each different type of command would hold the attributes needed just for that command. Then, a draw method could be written for each class that draws or uses a turtle for the desired side-effiect. Each draw method should be passed a turtle. The BeginFillCommand’s draw method would use the turtle to set the fillcolor and then would invoke the begin_fill turtle method.
Rewrite the XML drawing program from Chap. 4 by defining a class for each type of graphics command along with a draw method for each of them that given a turtle draws or otherwise has the desired side-effect. Have the program read the XML file and create one list of these graphics command objects. Then use a loop to iterate through these commands, drawing each of them to the screen. Once completed you will have eliminated all the parallel lists from the program and written it with a much more object-oriented approach.

 [image: A978-1-4471-6642-9_7_Fig6_HTML.gif]
Fig. 7.6A Blackjack hand

 [image: A978-1-4471-6642-9_7_Fig7_HTML.gif]
Fig. 7.7The end of a Blackjack hand

 [image: A978-1-4471-6642-9_7_Fig8_HTML.gif]
Fig. 7.8Asteroids!

7.8 Solutions to Practice Problems
These are solutions to the practice problems in this chapter. You should only consult these answers after you have tried each of them for yourself first. Practice problems are meant to help reinforce the material you have just read so make use of them.
7.8.1 Solutions to Practice Problem 7.1

A numerator and denominator are needed.[image: A978-1-4471-6642-9_7_Figw_HTML.gif]

7.8.2 Solutions to Practice Problem 7.2

 [image: A978-1-4471-6642-9_7_Figx_HTML.gif]

7.8.3 Solutions to Practice Problem 7.3

 [image: A978-1-4471-6642-9_7_Figy_HTML.gif]

7.8.4 Solutions to Practice Problem 7.4

Download code and try it out. Here is the Rectangle class in case you had trouble with defining it. [image: A978-1-4471-6642-9_7_Figz_HTML.gif]

7.8.5 Solutions to Practice Problem 7.5

Create some GravityBall objects and add them to the ballList. That’s all that needs to be done to have gravity balls and regular balls bouncing around with each other. The object on the left hand side of the dot in the ball ball.move is where polymorphism is at work. If ball is pointing to a Ball object, it behaves as a Ball would. If ball is pointing to a GravityBall object, then ball.move is the GravityBall move method. It’s not the name on the left hand side of the dot, its the object that the name refers to that controls which methods are called.

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_8

8. Appendix A: Integer Operators

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

This documentation was generated from the Python documentation available by typing help(int) in the Python shell. In this documentation the variables x, y, and z refer to integers (Table 8.1).Table 8.1Integer operators

	Operator
	Returns
	Comments

	x [image: $$+$$] y
	int
	Returns the sum of x and y

	x [image: $$-$$] y
	int
	Returns the difference of x and y

	x*y
	int
	Returns the product of x and y

	x/y
	float
	Returns the quotient of x divided by y

	x//y
	int
	Returns the integer quotient of x divided by y

	x % y
	int
	Returns x modulo y. This is the remainder of dividing x by y

	[image: $$-$$]x
	int
	Returns the negation of x

	x&y
	int
	Returns the bit-wise and of x and y

	x | y
	int
	Returns the bit-wise or of x and y

	x ˆ y
	int
	Returns the bit-wise exclusive or of x and y

	x [image: $$\ll $$] y
	int
	Returns a bit-wise shift left of x by y bits. Shifting left by 1 bit multiplies x by 2

	x [image: $$\gg $$] y
	int
	Returns a bit-wise right shift of x by y bits

	˜ x
	int
	Returns an integer where each bit in the x has been inverted. [image: $$x + ~x = -1$$] for all x

	abs(x)
	int
	Returns the absolute value of x

	divmod(x, y)
	(q,r)
	Returns the quotient q and the remainder r as a tuple

	float(x)
	float
	Returns the float representation of x

	hex(x)
	str
	Returns a hexadecimal representation of x as a string

	int(x)
	int
	Returns x

	oct(x)
	str
	Return an octal representation of x as a string

	pow(x, y[, z])
	int
	Returns x to the y power modulo z. If z is not specified then it returns x to the y power

	repr(x)
	str
	Returns a string representation of x

	str(x)
	str
	Returns a string representation of x

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_9

9. Appendix B: Float Operators

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

This documentation was generated from the Python documentation available by typing help(float) in the Python shell. In this documentation at least one of the variables x and y refer to floats (Table 9.1).Table 9.1Float operators

	Operator
	Returns
	Comments

	x [image: $$+$$] y
	float
	Returns the sum of x and y

	x [image: $$-$$] y
	float
	Returns the difference of x and y

	x*y
	float
	Returns the product of x and y

	x/y
	float
	Returns the quotient of x divided by y

	x//y
	float
	Returns the quotient of integer division of x divided by y. However, the result is still a float

	x % y
	float
	Returns x modulo y. This is the remainder of dividing x by y

	abs(x)
	int
	Returns the absolute value of x

	divmod(x, y)
	(q,r)
	Returns the quotient q and the remainder r as a tuple. Both q and r are floats, but integer division is performed. The value r is the whole and fractional part of any remainder. The value q is a whole number

	float(x)
	float
	Returns the float representation of x

	int(x)
	int
	Returns the floor of x as an integer

	pow(x, y)
	float
	Returns x to the y power

	repr(x)
	str
	Returns a string representation of x

	str(x)
	str
	Returns a string representation of x

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_10

10. Appendix C: String Operators and Methods

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

This documentation was generated from the Python documentation available by typing help(str) in the Python shell. In the documentation found here the variables s and t are references to strings (Table 10.1).Table 10.1String operators and methods

	Operator
	Returns
	Comments

	s+t
	str
	Return a new string which is the concatenation of s and t

	s in t
	bool
	Returns True if s is a substring of t and False otherwise

	s==t
	bool
	Returns True if s and t refer to strings with the same sequence of characters

	s>=t
	bool
	Returns True if s is lexicographically greater than or equal to t

	s<=t
	bool
	Returns True if s is lexicographically less than or equal to t

	s>t
	bool
	Returns True if s is lexicographically greater than t

	s<t
	bool
	Returns True if s is lexicographically less than t

	s!=t
	bool
	Returns True if s is lexicographically not equal to t

	s[i]
	str
	Returns the character at index i in the string. If i is negative then it returns the character at index len(s)[image: $$-$$]i

	s[[i]:[j]]
	str
	Returns the slice of characters starting at index i and extending to index j[image: $$-$$]1 in the string. If i is omitted then the slice begins at index 0. If j is omitted then the slice extends to the end of the list. If i is negative then it returns the slice starting at index len(s)[image: $$+$$]i (and likewise for the slice ending at j)

	s [image: $$*$$] i
	str
	Returns a new string with s repeated i times

	i [image: $$*$$] s
	str
	Returns a new string with s repeated i times

	chr(i)
	str
	Return the ASCII character equivalent of the integer i

	float(s)
	float
	Returns the float contained in the string s

	int(s)
	int
	Returns the integer contained in the string s

	len(s)
	int
	Returns the number of characters in s

	ord(s)
	int
	Returns the ASCII decimal equivalent of the single character string s

	repr(s)
	 	Returns a string representation of s. This adds an extra pair of quotes to s

	str(s)
	str
	Returns a string representation of s. In this case you get just the string s

	s.capitalize()
	str
	Returns a copy of the string s with the first character upper case

	s.center(width[, fillchar])
	str
	Returns s centered in a string of length width. Padding is done using the specified fill character (default is a space)

	s.count(sub[, start[, end]])
	int
	Returns the number of non-overlapping occurrences of substring sub in string s[start:end]. Optional arguments start and end are interpreted as in slice notation

	s.encode([encoding[, errors]])
	bytes
	Encodes s using the codec registered for encoding. encoding defaults to the default encoding. errors may be given to set a different error handling scheme. Default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors

	s.endswith(suffix[, start[, end]])
	bool
	Returns True if s ends with the specified suffix, False otherwise. With optional start, test s beginning at that position. With optional end, stop comparing s at that position. suffix can also be a tuple of strings to try

	s.expandtabs([tabsize])
	str
	Returns a copy of s where all tab characters are expanded using spaces. If tabsize is not given, a tab size of 8 characters is assumed

	s.find(sub[, start[, end]])
	int
	Returns the lowest index in s where substring sub is found, such that sub is contained within s[start:end]. Optional arguments start and end are interpreted as in slice notation.

	 	 	Return [image: $$-$$]1 on failure

	s.format(*args, **kwargs)
	str
	
	s.index(sub[, start[, end]])
	int
	Like s.find() but raise ValueError when the substring is not found

	s.isalnum()
	bool
	Returns True if all characters in s are alphanumeric and there is at least one character in s, False otherwise

	s.isalpha()
	bool
	Returns True if all characters in s are alphabetic and there is at least one character in s, False otherwise

	s.isdecimal()
	bool
	Returns True if there are only decimal characters in s, False otherwise

	s.isdigit()
	bool
	Returns True if all characters in s are digits and there is at least one character in s, False otherwise

	s.isidentifier()
	bool
	Returns True if s is a valid identifier according to the language definition

	s.islower()
	bool
	Returns True if all cased characters in s are lowercase and there is at least one cased character in s, False otherwise

	s.isnumeric()
	bool
	Returns True if there are only numeric characters in s, False otherwise

	s.isprintable()
	bool
	Returns True if all characters in s are considered printable in repr() or s is empty, False otherwise

	s.isspace()
	bool
	Returns True if all characters in s are whitespace and there is at least one character in s, False otherwise

	s.istitle()
	bool
	Returns True if s is a titlecased string and there is at least one character in s, i.e. upper- and titlecase characters may only follow uncased characters and lowercase characters only cased ones. Return False otherwise

	s.isupper()
	bool
	Returns True if all cased characters in s are uppercase and there is at least one cased character in s, False otherwise

	s.join(sequence)
	str
	Returns a string which is the concatenation of the strings in the sequence. The separator between elements is s

	s.ljust(width[, fillchar])
	str
	Returns s left-justified in a Unicode string of length width. Padding is done using the specified fill character (default is a space)

	s.lower()
	str
	Returns a copy of the string s converted to lowercase

	s.lstrip([chars])
	str
	Returns a copy of the string s with leading whitespace removed. If chars is given and not None, remove characters in chars instead

	s.partition(sep)
	(h,sep,t)
	Searches for the separator sep in s, and returns the part before it, the separator itself, and the part after it. If the separator is not found, returns s and two empty strings

	s.replace (old, new[, count])
	str
	Returns a copy of s with all occurrences of substring old replaced by new. If the optional argument count is given, only the first count occurrences are replaced

	s.rfind(sub[, start[, end]])
	int
	Returns the highest index in s where substring sub is found, such that sub is contained within s[start:end]. Optional arguments start and end are interpreted as in slice notation.

	 	 	Returns [image: $$-$$]1 on failure

	s.rindex(sub[, start[, end]])
	int
	Like s.rfind() but raise ValueError when the substring is not found

	s.rjust(width[, fillchar])
	str
	Returns s right-justified in a string of length width. Padding is done using the specified fill character (default is a space)

	s.rpartition(sep)
	(t,sep,h)
	Searches for the separator sep in s, starting at the end of s, and returns the part before it, the separator itself, and the part after it. If the separator is not found, returns two empty strings and s

	s.rsplit([sep[, maxsplit]])
	string list
	Returns a list of the words in s, using sep as the delimiter string, starting at the end of the string and working to the front. If maxsplit is given, at most maxsplit splits are done. If sep is not specified, any whitespace string is a separator

	s.rstrip([chars])
	str
	Returns a copy of the string s with trailing whitespace removed. If chars is given and not None, removes characters in chars instead

	s.split([sep[, maxsplit]])
	string list
	Returns a list of the words in s, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done. If sep is not specified or is None, any whitespace string is a separator and empty strings are removed from the result

	s.splitlines([keepends])
	string list
	Returns a list of the lines in s, breaking at line boundaries. Line breaks are not included in the resulting list unless keepends is given and true

	s.startswith(prefix[, start[, end]])
	bool
	Returns True if s starts with the specified prefix, False otherwise. With optional start, test s beginning at that position. With optional end, stop comparing s at that position. Prefix can also be a tuple of strings to try

	s.strip([chars])
	str
	Returns a copy of the string s with leading and trailing whitespace removed. If chars is given and not None, removes characters in chars instead.

	s.swapcase()
	str
	Returns a copy of s with uppercase characters converted to lowercase and vice versa

	s.title()
	str
	Returns a titlecased version of s, i.e. words start with title case characters, all remaining cased characters have lower case

	s.translate(table)
	str
	Returns a copy of the string s, where all characters have been mapped through the given translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None. Unmapped characters are left untouched. Characters mapped to None are deleted

	s.upper()
	str
	Returns a copy of s converted to uppercase

	s.zfill(width)
	str
	Pad a numeric string s with zeros on the left, to fill a field of the specified width. The string s is never truncated

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_11

11. Appendix D: List Operators and Methods

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

This documentation was generated from the Python documentation available by typing help(list) in the Python shell. In the documentation found here the variables x and y are references to lists (Table 11.1).Table 11.1List operators and methods

	Method
	Returns
	Comments

	list()
	list
	Returns a new empty list. You can also use [] to initialize a new empty list

	list(sequence)
	list
	Returns new list initialized from sequence’s items

	[item [,item]+]
	list
	Writing a number of comma-separated items in square brackets constructs a new list of those items

	x+y
	list
	Returns a new list containing the concatenation of the items in x and y

	e in x
	bool
	Returns True if the item e is in x and False otherwise

	del x[i]
	 	Deletes the item at index i in x. This is not an expression and does not return a value

	x==y
	bool
	Returns True if x and y contain the same number of items and each of those corresponding items are pairwise equal

	x>=y
	bool
	Returns True if x is greater than or equal to y according to a lexicographical ordering of the elements in x and y. If x and y have different lengths their items are == up to the shortest length, then this returns True if x is longer than y

	x<=y
	bool
	Returns True if x is lexicographically before y or equal to y and False otherwise

	x>y
	bool
	Returns True if x is lexicographically after y and False otherwise

	x<y
	bool
	Returns True if x is lexicographically before y and False otherwise

	x!=y
	bool
	Returns True if x and y are of different length or if some item of x is not == to some item of y. Otherwise it returns False

	x[i]
	item
	Returns the item at index i of x

	x[[i]:[j]]
	list
	Returns the slice of items starting at index i and extending to index j[image: $$-$$]1 in the string. If i is omitted then the slice begins at index 0. If j is omitted then the slice extends to the end of the list. If i is negative then it returns the slice starting at index len(x)[image: $$+$$]i (and likewise for the slice ending at j)

	x[i]=e
	 	Assigns the position at index i the value of e in x. The list x must already have an item at index i before this assignment occurs. In other words, assigning an item to a list in this way will not extend the length of the list to accommodate it

	x+=y
	 	This mutates the list x to append the items in y

	x*=i
	 	This mutates the list x to be i copies of the original x

	iter(x)
	iterator
	Returns an iterator over x

	len(x)
	int
	Returns the number of items in x

	x*i
	list
	Returns a new list with the items of x repeated i times

	i*x
	list
	Returns a new list with the items of x repeated i times

	repr(x)
	str
	Returns a string representation of x

	x.append(e)
	None
	This mutates the value of x to add e as its last element. The function returns None, but the return value is irrelevant since it mutates x

	x.count(e)
	int
	Returns the number of occurrences of e in x by using == equality

	x.extend(iter)
	None
	Mutates x by appending elements from the iterable, iter

	x.index(e,[i,[j]])
	int
	Returns the first index of an element that == e between the the start index, i, and the stop index, j[image: $$-$$]1. It raises ValueError if the value is not present in the specified sequence. If j is omitted then it searches to the end of the list. If i is omitted then it searches from the beginning of the list

	x.insert(i, e)
	None
	Insert e before index i in x, mutating x

	x.pop([index])
	item
	Remove and return the item at index. If index is omitted then the item at len(x)[image: $$-$$]1 is removed. The pop method returns the item and mutates x. It raises IndexError if list is empty or index is out of range

	x.remove(e)
	None
	remove first occurrence of e in x, mutating x. It raises ValueError if the value is not present

	x.reverse()
	None
	Reverses all the items in x, mutating x

	x.sort()
	None
	Sorts all the items of x according to their natural ordering as determined by the item’s _ _cmp_ _ method, mutating x. Two keyword parameters are possible: key and reverse. If reverse [image: $$=$$] True is specified, then the result of sorting will have the list in reverse of the natural ordering. If key [image: $$=$$] f is specified then f must be a function that takes an item of x and returns the value of that item that should be used as the key when sorting

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_12

12. Appendix E: Dictionary Operators and Methods

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

This documentation was generated from the Python documentation available by typing help(dict) in the Python shell. In the documentation found here the variable D is a reference to a dictionary. A few methods were omitted here for brevity (Table 12.1).Table 12.1Dictionary operators and methods

	Method
	Returns
	Comments

	dict()
	dict
	New empty dictionary

	dict(mapping)
	dict
	New dictionary initialized from a mapping object’s (key, value) pairs

	dict(seq)
	dict
	New dictionary initialized as if via

	 	 	D [image: $$=$$] {}

	 	 	for k, v in seq

	 	 	D[k] [image: $$=$$] v

	dict(**kwargs)
	dict
	New dictionary initialized with the name [image: $$=$$] value pairs in the keyword arg list. For example: dict(one [image: $$=$$] 1, two [image: $$=$$] 2)

	k in D
	bool
	True if D has key k, else False

	del D[k]
	 	Deletes key k from dictionary D

	D1[image: $$==$$] 2
	bool
	Returns True if dictionaries D1 and D2 have same keys mapped to same values

	D[k]
	value type
	Returns value k maps to in D. If k is not mapped, it raises a KeyError exception

	iter(D)
	iterator
	Returns an iterator over D

	len(D)
	int
	Returns the number of keys in D

	D1![image: $$=$$]D2
	bool
	Returns True if D1 and D2 have any different keys or keys map to different values

	repr(D)
	str
	Returns a string representation of D

	D[k][image: $$=$$]e
	–
	Stores the key,value pair k,e in D

	D.clear()
	None
	Remove all items from D

	D.copy()
	dict
	A shallow copy of D

	D.get(k[,e])
	value type
	D[k] if k in D, else e. e defaults to None

	D.items()
	items
	A set-like object providing a view on D’s items

	D.keys()
	keys
	A set-like object providing a view on D’s keys

	D.pop(k[,e])
	v
	Remove specified key and return the corresponding value. If key is not found, e is returned if given, otherwise KeyError is raised

	D.popitem()
	(k, v)
	Remove and return some (key, value) pair as a 2-tuple; but raise KeyError if D is empty

	D.setdefault(k[,e])
	D.get(k,e)
	Returns D.get(k,e) and also sets d[k] [image: $$=$$] e if k not in D

	D.update(E, **F)
	None
	Update D from dict/iterable E and F

	 	 	If E has a .keys() method, does: for k in E: D[k] [image: $$=$$] E[k]

	 	 	If E lacks .keys() method, does: for (k, v) in E: D[k] [image: $$=$$] v

	 	 	In either case, this is followed by: for k in F: D[k] [image: $$=$$] F[k]

	D.values()
	values
	An object providing a view on D’s values

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_13

13. Appendix F: Turtle Methods

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

This documentation was generated from the Python documentation available by typing[image: A978-1-4471-6642-9_13_Figa_HTML.gif]

in the Python shell. In the documentation found here the variable turtle is a reference to a Turtle object. This is a subset of that documentation. To see complete documentation use the Python help system as described above.[image: A978-1-4471-6642-9_13_Figb_HTML.gif]

[image: A978-1-4471-6642-9_13_Figc_HTML.gif]

[image: A978-1-4471-6642-9_13_Figd_HTML.gif]

[image: A978-1-4471-6642-9_13_Fige_HTML.gif]

[image: A978-1-4471-6642-9_13_Figf_HTML.gif]

[image: A978-1-4471-6642-9_13_Figg_HTML.gif]

[image: A978-1-4471-6642-9_13_Figh_HTML.gif]

[image: A978-1-4471-6642-9_13_Figi_HTML.gif]

[image: A978-1-4471-6642-9_13_Figj_HTML.gif]

[image: A978-1-4471-6642-9_13_Figk_HTML.gif]

[image: A978-1-4471-6642-9_13_Figl_HTML.gif]

[image: A978-1-4471-6642-9_13_Figm_HTML.gif]

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_14

14. Appendix G: TurtleScreen Methods

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

This documentation was generated from the Python documentation available by typing

[image: A978-1-4471-6642-9_14_Figa_HTML.gif]

 in the Python shell. In the documentation found here the variable turtle is a reference to a Turtle object and screen is a reference to the TurtleScreen object. This is a subset of that documentation. To see complete documentation use the Python help system as described above.[image: A978-1-4471-6642-9_14_Figb_HTML.gif]

			[image: A978-1-4471-6642-9_14_Figc_HTML.gif]

			[image: A978-1-4471-6642-9_14_Figd_HTML.gif]

			[image: A978-1-4471-6642-9_14_Fige_HTML.gif]

			[image: A978-1-4471-6642-9_14_Figf_HTML.gif]

			[image: A978-1-4471-6642-9_14_Figg_HTML.gif]

			[image: A978-1-4471-6642-9_14_Figh_HTML.gif]

			[image: A978-1-4471-6642-9_14_Figi_HTML.gif]

		

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_15

15. Appendix H: The Reminder! Program

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

 [image: A978-1-4471-6642-9_15_Figa_HTML.gif]

© Springer-Verlag London 2014
Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-1-4471-6642-9_16

16. Appendix I: The Bouncing Ball Program

Kent D. Lee1
(1)Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

 [image: A978-1-4471-6642-9_16_Figa_HTML.gif]

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_Equ1.gif
80 =
0 = x4 -x7)3 =32

OEBPS/A978-1-4471-6642-9_5_Figf_HTML.gif
def reverse(s)

The following line of code will not work
values = values + (2]

Use the Accumulator Pattern
result =<+
for < in =

result = ¢ + result

" Feturn result

8 # The values variable is defined in the enclosing scope of
4 ¢ the reverse function.
s values = (1

7t = Input(*Please enter a string:)
s while t.otrip() 1=
o Print ("The reverse off, t,"is®, reverse(t))

t = Input(“Enter another string or press emter to quit: ')

print("You reversed these strings:®)

for val in values:
" print (val)

OEBPS/A978-1-4471-6642-9_3_Figg_HTML.gif

OEBPS/A978-1-4471-6642-9_8_Chapter_TeX2GIF_IEq2.gif

OEBPS/A978-1-4471-6642-9_1_Fig8_HTML.gif
000\ wing 0K heomorid y Uses leckent Documents TeschingntroToGomp
e £t souce ebup oot indow tep
seee ® OIS T IR

3 e wasy

oo} sewen suc ozt

[————— g —

tta wortat 1 bython 311 (31170343, g 20 209, 13
(6803 lapte Tne. B 50931
Type “heie, omrighe,

= » | e »

5 Une 2 Co10- Dobugger o debg roces cteng for connecons

OEBPS/A978-1-4471-6642-9_11_Chapter_TeX2GIF_IEq3.gif

OEBPS/A978-1-4471-6642-9_2_Figq_HTML.gif
try:
top = int(input(~Please enter the numerator:®))
except ValueError: # This try-except catches only ValueErrors
print ("You didn’t enter an integer.")
exit(0)

ey
bottom = Int(Input(*Please enter the denominator:®))

except: # This try-except catches any exception
Print("You didn’t enter an integer.")

exit (0)
try:
if top & bottom == 0:
PrInt("The numerator is evenly divided by the® + \

“denominator .)
else s
Print("The fraction is not a whole number.®)
except zeroDivisionError:
print (*The denominator cannot be 0.%)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq95.gif
sideA? + side B = sideC?

OEBPS/A978-1-4471-6642-9_1_Figan_HTML.gif
start = 1
end = 100

sumofiums = end * (end + 1) // 2

BEHET (° mim v+ SEP (BLREE)+, ; “+$E (und)+ *) i v SEF (aumd LN]}

OEBPS/A978-1-4471-6642-9_1_Figai_HTML.gif
Please enter the length of the first leg: 3
Please enter cthe length of cthe second leg: 4
she Recuh of thi Bubotstuis 3 .o

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq59.gif

OEBPS/A978-1-4471-6642-9_4_Figp_HTML.gif
1 <?xml version="1.0" encoding="UTF-8° standalone="no" ?>
2 <Graphicscommands >

) <Command color="#804000">BeginFill </Conmand>

B <comnand x=+299.0" 45.0% wideh=r1.0"

s color="#804000">GoTo </ Command >

. <command x=*302.0° y="-297.0" wide

color="#804000">GoTo </ Command >
<comnand 301,07 y=+-298.0" widel
color="#804000">GoTo </ Command >
o <Command x=*-300.0% y=*-53.0" width=*1.0"
color="#804000">GoTo </ Command >
<command >EndFill </ Conmand >
<command color="$004080">BeginFill </Connand >
" <comnand 300.0% y=r300.0" wideh=r1.0"
color="#004080">GoTo </ Command >
<command x=v299.0 ys+299.0% widthat1.0%
color="4#004080">GoTo </ Command >

. <command x="300.0 y="-45.0" width="1.0"
o color="$004080">GoTo </ Command >

n <conmand >EndFill </ Conmand >

" <Conmand > Penup </ Command >

8 <command x='0.0* y=+0.0" width=*1.0"
5 color="#000000">GoTo </ Command >
<conmand > PenDown </ Conmand >
<command radius="10.0" width='10"
color="#££££EE>Circle </ Connand >
<command radius="20.0" width=r10"
color="#££0080">Circle</Connand >
<command x='2.0* y=+-4.0* width="10.0"
color="#££0080">GoTo </ Conmand >
<Command x="2.0% y=+-5.0" widcl
. color="#££0080">GoTo </ Command >
N <command x="2.0* y=-6.0" widcl
color="#££0080">GoTo </ Command >
¥y </eraphicscommands >

i

SRERY

10,0+

10,0+

'

OEBPS/A978-1-4471-6642-9_6_Figo_HTML.gif
malarrans & tkinter.Frame(rost ,herderwidthal, padnas.,pedyes)
AR R« Bl £)

OEBPS/A978-1-4471-6642-9_1_Figc_HTML.gif
Kent ‘s Mac> python
Python 3.1.1 (r311:74543, Aug 24 2009, 18:44:04)

[60C 4.0.1 (Apple Inc. build 5493)] on darwin

Type “help", copyright®, -credits® or *licemse® for more info
S>> 0xs3

03

>>> 00123

83

OEBPS/A978-1-4471-6642-9_7_Fig5_HTML.gif
oall ()

self. ‘ R RawTurlle Part

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq7.gif
gx) = x4 — 33 =357

OEBPS/A978-1-4471-6642-9_7_Chapter_TeX2GIF_IEq10.gif
14 —val/4

OEBPS/A978-1-4471-6642-9_3_Figz_HTML.gif
Lie
sophus

2234 valdres Rra
becorah, 1A 52101
7775551234
777-554-4765

Lee

700 College Drive
Decorah, 1a 52101
777555 1212
777-554-0789

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq48.gif
10102

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq72.gif

OEBPS/A978-1-4471-6642-9_5_Figac_HTML.gif
Traceback (most recent call last):

File */Applications/WingIDE.app/...", line 8, in <module>
File */Applications/WingIDE.app/...%, line 3, in length
pass

builtins.TypeError: ’int’ object is not callable

OEBPS/A978-1-4471-6642-9_12_Chapter_TeX2GIF_IEq12.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq5.gif

OEBPS/A978-1-4471-6642-9_10_Chapter_TeX2GIF_IEq1.gif

OEBPS/A978-1-4471-6642-9_4_Figac_HTML.gif
mport turtle

¢ = cturcle.Turele()

screen = t.getscreen ()

for k in range (s
©.foruard (25)
€.1efe(90)

sorwnh. sxbtoncliok i

OEBPS/A978-1-4471-6642-9_7_Chapter_TeX2GIF_IEq7.gif
4/5

OEBPS/A978-1-4471-6642-9_6_Figt_HTML.gif
import tkinter.messagebox

def pressedre ()¢
Print(~oh, now you've dome itir)
ckinter.messagebox . showino (~Okey dokey®, \
“Well let me get®snote.get (1.0, tkinter.END)s \
Eor ol

OEBPS/A978-1-4471-6642-9_7_Fige_HTML.gif
class Turtle(RawTurtle):

teRawTurcle auto-creating

Wwhen a Turtle object is
fron come Turcle mechod
object is automatically

(scrolled) canvas.
created or a function derived
is called a Turclescreen
created

_pen = wone
Zscreen = wone
def _init_(self,
shape=_crG [“shape*],
undobuffersize=_CFG (*undobuffersize-],
visible=_CFG(*visible®]):
If Turcle._screen is wome:
Turtle._screen = screen()
Rawrurtle._init_(self, Turtle._ screen,

shape=shape ,
undobuffersize=undobuftersize
visiblesvisible)

OEBPS/A978-1-4471-6642-9_1_Figh_HTML.gif
x = 1
¢ do someching with x
iy

OEBPS/A978-1-4471-6642-9_7_Figj_HTML.gif
ball

Ball (6.

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq79.gif

OEBPS/A978-1-4471-6642-9_2_Figad_HTML.gif
age = int(input("Please enter your age:"))
resident = Input(\

*Are you a natural born citizen of the U.S. (yes/no)?")
years - Int(imput(\

"How many years have you resided in the U.5.77))

eligible = True
it oage < 35

eligible = False

It resident 1=tyes®:
eligible = False

It years < 14
eligible = False

it eligivle:
print (*You can run for presidemt!®)

else
PEIEL (*Hoi abe et ligible s ron P Srewideatt s

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq44.gif

OEBPS/A978-1-4471-6642-9_4_Figk_HTML.gif
xmldoc = minidom.parse(*flowerandbg.xml*)

OEBPS/A978-1-4471-6642-9_4_Figz_HTML.gif
o[t & TiORNS, 00.0°
vl bied

VB0 =0A =39, "1DI3S BM".,

OEBPS/A978-1-4471-6642-9_2_Fig3_HTML.gif
.20\ Wing IDE: satemen.py /Userseekent /Documents TeachingItroToComputing BookPrograms)

Fie £t Source Debug Tools Window telp
D & 8 @] &) a % @
New Open.._Save Save Al | Goto Defiriion Search | A Break Debug Stop
s
step Out
B B vopens

®

s

X

} o e

®

3

4
5@print("Program Done*)
»!

=}

(5453315 ytron shet[earch stack oata -
~ Options

Debug 10 (st stdout. stder) appears below

1 .

| v

Please enter an integer:

e
% Lne1cColor

OEBPS/A978-1-4471-6642-9_4_Figb_HTML.gif
from turtle impert *

= Turclen
creen = t.getscreen ()
foruard (25)
lefr(72.5)
foruard (25)
lefr(72.5)
-torwara (25)
Lefr(72.5)
-torwara (25)
Lefe (72.5)
- forwara (25)

«
«
s skt iok (3

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq102.gif
001000002

OEBPS/A978-1-4471-6642-9_7_Figo_HTML.gif
def main)
x = Racional(d,s)
v = Rational(s,12)

PP
SEIRL i Lot

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq28.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq19.gif

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq3.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq33.gif
232

OEBPS/A978-1-4471-6642-9_3_Figl_HTML.gif
how
you?

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq14.gif

OEBPS/A978-1-4471-6642-9_2_Fig11_HTML.gif
Grade | If Greater Than Or Equal To

>

93.33

]

90

|
4

8667

8333

50

7667

7333

70

66.67

6333

0

EEEFEEREE

0

OEBPS/A978-1-4471-6642-9_3_Figah_HTML.gif
sentence = jnput (“Please enter a sentence: °)
Print(-sere is the sentence with the case swapped.®)
BEERE CAUBSERES | BWRDEREE LE)

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq31.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq16.gif
10100113

OEBPS/A978-1-4471-6642-9_3_Figam_HTML.gif
s = input(°"Please type some characters and press enter:°)
for i in range (len(s)-1,-1,-1):
print(slil))

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq23.gif
n!

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq12.gif
8(6)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq25.gif
00000011

OEBPS/A978-1-4471-6642-9_5_Figa_HTML.gif
el 9oxds
Feturn xet4/4.0 - x03/3.0
arint (g(6))

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq21.gif

OEBPS/A978-1-4471-6642-9_2_Figv_HTML.gif
Please enter an integer less than 50: 47
47 is prime.

OEBPS/A978-1-4471-6642-9_6_Figf_HTML.gif
def post ():
print (-zosc")
addreminder (note.get ("1.0%, tkinter .END), \
oot .winfo_rootx ()45, root .winfo_rooty ()45,
notes, reminders)
note.delete(*1.0", tkinter . END)

tkinter.Button (mainFrame , text="New Reminderi®, \
S AREows) DRl i)

\

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq51.gif
12

OEBPS/A978-1-4471-6642-9_2_Figg_HTML.gif
<statements before if statement>
if <first condition

<first alternatives
elif <cecond comdition>:

<cecond alternatives
elif <third condition>:

<thira alternatives>
eloe:
11 alternatives
<statements after the if statement>

<catch-.

OEBPS/A978-1-4471-6642-9_12_Chapter_TeX2GIF_IEq6.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq1.gif

OEBPS/A978-1-4471-6642-9_3_Figb_HTML.gif
How are you?*
¢ = s.lower()
BERD 08

OEBPS/A978-1-4471-6642-9_4_Figu_HTML.gif
an empty list
an empty dictionary

The append method adds items to a list.
Lot .append (*Biking")

Lst.append (*Running")

Lst.append (*other*)

The next line adds Sporc/Running as a key/value pair
det(x) = *299.0%

detlnye) = t-45.0%

dct(colort] = "#804000"

we can iterace over a list by using a for loop
for i in range(len (1st)):
print(i, lsc(il)

we can iterate over a dictionary using a for loop
o go through cthe list of keys to the dictionary
for key in dct.keys ():

print (key, det(key])

OEBPS/A978-1-4471-6642-9_5_Figk_HTML.gif
print (reverseInPlace ([1,2,3,4.,5)))

OEBPS/A978-1-4471-6642-9_5_Figp_HTML.gif
s = input("Please enter a list of ints separated by spaces:")
lee = 0
For x in s.eplic():

1st.append (int (x))

evenlyDivisible (1st)

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq38.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq87.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq63.gif
1234

OEBPS/A978-1-4471-6642-9_6_Figa_HTML.gif
import sys
import tkincer

def main ()
oot = tkinter.Th()

root. title(~Reminder:®)
root.resizable (width=False, height

alse)

thinter.mainloop ()

i __name__ == __main__*:

main ()

OEBPS/A978-1-4471-6642-9_1_Figq_HTML.gif
Python 2~ 3

Python 2 included a way to get input also called input. This old version of the input
function was very confusing to use and was eliminated in Python 3. In Python 2 the
equivalent of Python 3's input was called raw_input. If you are writing a Python 2

program you may replace any call to input with a call to raw input. If you are using
Python 2, DO NOT use the input function. In Python 2 the value that the input
function returned partially depended on the variable names in your program! This
was a bad idea that led to much confusion in Python programs so almost no one
used it and hence it was eliminated in Python 3.(8]

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq80.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq36.gif

OEBPS/A978-1-4471-6642-9_2_Figl_HTML.gif
age = int(input(*Please enter your age:"))
i age > 15 and age < 18:

print ("You can join®)
elses

print (*You can’t join®)

OEBPS/A978-1-4471-6642-9_1_Figv_HTML.gif
base
exp

print(

float (Input (“Please enter a number:"))

float (input (“Please enter an exponent:®))
- base + exp

360 thase) & === & IIFLeED), v, SEEWOE)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq8.gif
210

OEBPS/A978-1-4471-6642-9_14_Figi_HTML.gif
Method Description

Example (for a TurtleScreen instance named screen):
>>> screenmainloop()

screen.numinput(title, prompt, default=None, minval=None, maxval=None)
Pop up a dialog window for input of a number:

Arguments: itle is the title of the dialog window,

prompt is a text mostly describing what numerical information to input.
default: default value

‘minval: minimum value for imput

‘maxval: maximum value for input

‘The number input must be in the range minval .. maxval if these are
given. If not, a hintis issued and the dialog remans open for
correction. Return the number input.

If the dialog is canceled, return None.

Example (for a TurtleScreen instance named screen):

>>> sereen.numinput("Poker", "Your stakes:", 1000, minval=10, maxval=10000)
screen. textinput(title, prompt)

Pop up a dialog window for input of a string.

Arguments: itle is the title of the dialog window,
prompt is a text mostly describing what information to input.

Return the string input
If the dialog is canceled, return None.

Example (for a TurtleScreen instance named screen)
>>> screen.textinput("NIM", "Name of first player:

OEBPS/A978-1-4471-6642-9_5_Figu_HTML.gif
ir

main__

et switchpen ()¢
if isdown():

a0
elses
pa0)

def demo1 ()+
“++Demo of
resec ()

det denoz ()
“++pemo of
speed (1)

aemo1 ()
aemo2 ()
exitonclick ()

old turele.py - module*"*

some new features

OEBPS/A978-1-4471-6642-9_6_Fig5_HTML.gif

OEBPS/A978-1-4471-6642-9_7_Chapter_TeX2GIF_IEq6.gif
4/5

OEBPS/A978-1-4471-6642-9_6_Figk_HTML.gif
Python 2~ 3

In Python 2 the module name for message boxes was tkMessageBox. In Python 3 the
module name became tkintermessagebox. If you are using Tkinter in Python 2.6 you writ

import tkMessageBox

to import the Tkinter message box module

OEBPS/A978-1-4471-6642-9_2_Figb_HTML.gif
<statements before if statement>
if ccondition

<then statementss
else:

<else statementss
cotatements after if statements

OEBPS/A978-1-4471-6642-9_5_Figag_HTML.gif
def recfib(n):
in e o0
return 1

ion e 1
return 1

retera f£ib(n-1)

+ tib(n-2)

OEBPS/A978-1-4471-6642-9_7_Fign_HTML.gif
def _str__(self):
Telera St (self.num)+=/=+8¢F (self .den)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq108.gif

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq8.gif

OEBPS/A978-1-4471-6642-9_13_Figa_HTML.gif
from turtle import ~
neip (Turtle)

OEBPS/A978-1-4471-6642-9_1_Figw_HTML.gif
100

050

OEBPS/A978-1-4471-6642-9_2_Fig7_HTML.gif
A B [AandB
False | False | False
False | True | False
True | False | False
True | True | True

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq55.gif
0100112

OEBPS/A978-1-4471-6642-9_7_Figt_HTML.gif
Sophus Lie
Abel avenue
Lavanger . Norway 554433
555 -555 5555
444-444-4444

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq3.gif
8(6)

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq6.gif

OEBPS/A978-1-4471-6642-9_4_Figad_HTML.gif
from turtle import *

¢ = Turele()
screen = t.getscreen ()
sides = inf (screen.textinput (*Polygon®, \
‘Please Enter the Number of Sides
for k in range(sides):
€. forward (200//sides)
©.lefc(360/sides)

screen. exitonclick ()

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq78.gif
ord

OEBPS/A978-1-4471-6642-9_4_Figg_HTML.gif
turtle.right (90)
turtle.begin_£i11 ()
suEsle . penu i}

OEBPS/A978-1-4471-6642-9_3_Figq_HTML.gif
gquestion = ([‘are’,’‘'you’,’'awake’, "for’,'this’)

OEBPS/A978-1-4471-6642-9_4_Fig1_HTML.gif
ATurte
Object

methods.
and data

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq13.gif
gx) = x4 — 33 =357

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq14.gif

OEBPS/A978-1-4471-6642-9_4_Figf_HTML.gif
import turtle
© = curele.Turele)

print (t.heading ())

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq41.gif
0000,

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq29.gif

OEBPS/A978-1-4471-6642-9_2_Figz_HTML.gif
month = input(°Please enter a month
it month

December ®
print ("Merry Christmas:®)
print (*Have a Happy New Year!®)

-

OEBPS/A978-1-4471-6642-9_3_Figp_HTML.gif
Pleass make your blog entry for today: I am geing to eat
breakfast, then I°11 make a bid on some iteme cthat I'm
shopping for.

¥ou reilly heed be Salk o semsine sbeit Ml

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq49.gif
Ale

OEBPS/A978-1-4471-6642-9_11_Chapter_TeX2GIF_IEq2.gif

OEBPS/A978-1-4471-6642-9_3_Figai_HTML.gif
answer = input(*Please answer yes or no: °)
if not answer.islower():
PESHE T MRt SEle Dlhonde WEEE AL3 LEweE SRis IeEEEE.T

OEBPS/A978-1-4471-6642-9_4_Figq_HTML.gif
geaphissConnsnds &
SRTESE » SOEE LRt P =t ashloatatimids)

OEBPS/A978-1-4471-6642-9_4_Figt_HTML.gif
for command in commands
Draw the command on the screen.
This code is omitted for mow

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq40.gif
-S>

OEBPS/A978-1-4471-6642-9_5_Fig1_HTML.gif
Snapshot 2

Snapshot 1 Snapshot 3
ey
ks Snapshot 4
vy ey (gl e
. ‘o

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq20.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq24.gif
11111101,

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq30.gif

OEBPS/A978-1-4471-6642-9_1_Figm_HTML.gif
Sophus*

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq13.gif

OEBPS/A978-1-4471-6642-9_1_Figad_HTML.gif
what fs the amount of US Dollars you wish to comvert? 31.67
what is the current exchange rate

(1 US Dollar equals what in the Foreign Currency)? 0.9825
ohe dmeunt i vhe FeEeboh Ckreher Ge £33 .03

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq7.gif
210

OEBPS/A978-1-4471-6642-9_12_Chapter_TeX2GIF_IEq11.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq39.gif

OEBPS/A978-1-4471-6642-9_5_Figg_HTML.gif
def reverse(s)
global values

#values.append(s)
values = values + (s

Use the Accumulator Paccern
resule =-*
for c in s

result = ¢ + resule

return resule

The values variable iz defined in the enclosing

¢ the reverse function.

values = ()
© = input(-Please enter a string: °)
while t.serip() 1=+

print(~The reverse of*, t,-is", reverse(c))

© = input(“Enter another string or press

print(~You reversed these scrings:®)
for val in values:
print (val)

enter

scope of

to quit:

OEBPS/A978-1-4471-6642-9_2_Figac_HTML.gif
ENyEs

A4

month = Input(°Please enter a month:")
It month =="January®:
msg ="Hello Snow!®
el month ==-February®:
msg ="More Snowi®
1l month ==-March-
msg ="No Nore Smow!®
elif month ==<april-
msg =*Almost Golf Time®
elif month ==-May
msg ="Time to Golf"
elif month ==-Juner
msg =*School’s Out®
el month ==-July®:
msg =*Happy Fourth®
el month ==-August®:
msg ="still Golfing"
el month ==-September®:
msg ="Welcome Back!®
el month ==-0ctober®
msg =*Fall Colors®
elf month
meg ="Turkey Day"
elif month =="December®:
meg ="Merry Christmas!®
else s

November ®:

mg ="You entered an incorrect month.®

BEFEE Lineg)

OEBPS/A978-1-4471-6642-9_6_Figj_HTML.gif
titleLabel = tkinter.Label(titleFrame, texi
bg=-green-, fg="blue-)
citlobabel . pack (2411 eEkinces . X)

Title:*°,

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq20.gif
85

OEBPS/A978-1-4471-6642-9_1_Fig3_HTML.jpg
Build.txt License.txt P Pythonmpkg J

ReadMe.txt

OEBPS/A978-1-4471-6642-9_12_Chapter_TeX2GIF_IEq5.gif

OEBPS/A978-1-4471-6642-9_6_Fig1_HTML.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq17.gif
8310

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq29.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq73.gif

OEBPS/A978-1-4471-6642-9_2_Figc_HTML.gif
x = int (input(“Please enter

v = int(input(~Please enter
sy

print (x,"is greater than
elses

print(y,"is greater than
print (*Done. *)

an integer:®))
another integer

v

or equal to®,x)

i)

OEBPS/A978-1-4471-6642-9_14_Fige_HTML.gif
Method Description

Example (for a TurtleScreen instance named screen
and a Turtle instance named turtle):

>>> screen.onclick(turtle.goto)
Subsequently clicking into the TurtleScreen will
make the tuitle move to the clicked point.

>>> screen.onclick(None)

event-binding will be removed

screen.onkey(fun, key)
Bind fun to key-release event of key.

Arguments:
fun — a function with no arguments
key - asiring: key (e.g. "a") or key-symbol (e.g. "space”)

In owder to be able to register key-events, TurtleScreen
must have focus. (See method listen.)

Example (for a TurtleScreen instance named screen
and a Turtle instance named turtle):

>>> def f():
turtle.fd(50)
turtle.1t(60)

>>> screen.onkey(f, "Up”)
>>> screen.listen()

Subsequently the tuitle can be moved by
#4## repeatedly pressing the up-awow key,
consequently drawing a hexagon

screen. onkeypress(fun, key=None)
Bind fun to key-press event of key if key is given,
orto any key-press-event if no key is given.

Arguments:
fun — a function with no arguments

ey - astring; key (e.g. "a") or key-symbol (e.g. "space”)

In owder to be able to register key-events, TurtleScreen
must have focus. (See method listen.)

Example (for a TurtleScreen instance named screen

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq13.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq34.gif

OEBPS/A978-1-4471-6642-9_5_Figt_HTML.gif
Imports always go at the top
import curcle

Function definitions go second
def arawsquare (turtle, length):
for k in range (4)
curtle. forward (length)
curtle.lefe (90)

main function definiction goes second to last.
def main ()

€ = turtle.Turtle)
screen = t.gecscreen ()
1= int(input(~Please enter a side length:

drawsquare (c,1)
sereen. exitonclick ()

the if stacemenc cthac calls main goes last
it __name__ “_main__-:
main ()

OEBPS/A978-1-4471-6642-9_2_Figm_HTML.gif
age = Int(input(“"Please enter your age:

member = True
i oage <= 15:
member = False

It age >= 18:
member - False
if member:
print(*You can join®)
else s
print{"You can’t join®

N

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq39.gif
0100112

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq2.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq56.gif
5316

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq24.gif
n>0

OEBPS/A978-1-4471-6642-9_5_Figj_HTML.gif
def reverseInPlace (lst)
for i in range(len (lsc)//2)
cmp = lscli)
Lsc(i) = lsc(len (lse)-1-1)
Lsttlen (1ot)-1-1)=tmp

s = input(-Please enter a semtence:
Lsc = s.split)
reverseInplace (1st)
print(~The sentence backwards is:®,end=
for word in lst

print (word, end=
print ()

)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq103.gif

OEBPS/A978-1-4471-6642-9_1_Fig16_HTML.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq52.gif
1+2+3+6=12

OEBPS/A978-1-4471-6642-9_CoverFigure_HTML.jpg
KentD. Lee

OEBPS/A978-1-4471-6642-9_3_Figc_HTML.gif
input (*Please enter a your name:")

© = input(*Please enter your mom's name:®)
e e s

Print ("Your name comes before your mom's name
else:

PPILL (*Your mom’'s mume vomes before your name.

i

N

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq35.gif

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq9.gif

OEBPS/A978-1-4471-6642-9_3_Fig7_HTML.gif
betore hie loop

yes

ater e

OEBPS/A978-1-4471-6642-9_7_Figx_HTML.gif
class Rectangle (shape):

et

inic(self,x,y,width, height,color="transparent ",

selt
self
self

self.

self

self.

self

outline="black*, edgewideh

vy

Lcolor = color
outline = outline
edgewiden = edgewiden
width = wideh

‘height = height

)

\

OEBPS/A978-1-4471-6642-9_2_Figw_HTML.gif
Please enter a number: 83
The binary equivalent of 83 is 1010011.

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq62.gif
00123

OEBPS/A978-1-4471-6642-9_7_Fig1_HTML.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq88.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq18.gif
8(6)

OEBPS/A978-1-4471-6642-9_13_Fige_HTML.gif
Method Description

>>> turtle.begin_fll(
>>> turtle.circle(60)
>>> turtle.end_fill()

turtle.end_poly()
Stop recording the vertices of a polygon. Current turtle position is
last point of polygon. This will be connected with the first point.

Example (for a Turtle instance named turtle):
>>> turtle.end_poly()

turtle.filling()
Return fillstate (True if filling, False else).

Example (for a Turtle instance named turtle):
>>> turtle.begin_ill()
>>> if turtle.filling():
trtle.pensize(S)
else:
rtle. pensize(3)

turtle.fillcolor(*args)
Return or set the fillcolor.

Arguments:

Four input formats are allowed:

- fillcolor()

Return the current fillcolor as color specification string,
possibly in hex-number format (see example).

May be used as input to another color/pencolor/fillcolor call.
- fillcolor(colorstring)

s is a Tk color specification string, such as "red" or "yellow"
- filleolor((r, g, b))

a tuple of r, g, and b, which represent, an RGB color,

and each of r, g, and b are in the range 0..colormode,

where colormode is either 1.0 or 255

fillcolor(r, g, b)

1, g, and b represent an RGB color, and each of r, g, and b
are in the range 0..colormode

If wrtleshape is a polygon, the interior of that polygon is drawn
with the newly set fillcolor.

Example (for a Turtle instance named turtle):
>>> trtle fillcolor(*violet)

>>> col = turtle.pencolor()

>>> turtle.fillcolor(col)

>>> turtle.fillcolor(0, .5, 0)

OEBPS/A978-1-4471-6642-9_3_Figa_HTML.gif
*"How are you?"

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq8.gif

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq9.gif

OEBPS/A978-1-4471-6642-9_4_Figab_HTML.gif
from random import *

cand = Random()

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq54.gif
00112 =346

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq11.gif
20

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq89.gif

OEBPS/A978-1-4471-6642-9_7_Figw_HTML.gif
class Rational
def _init_(self nw
celf.num = num

self .den = den

OEBPS/A978-1-4471-6642-9_3_Fig1_HTML.gif

OEBPS/A978-1-4471-6642-9_13_Figd_HTML.gif
Method Description

Return the current pencolor and the current fillcolor

as a pair of color specification strings as are returned

by pencolor and fillcolor.

color(colorstring). color(r.g.b)). color(rg.b)

inputs as in pencolor, set both, fillcolor and pencolor,

to the given value.

color(colorstring . colorstring2).

color(rl.gL.bl), (2,2.b2))

equivalent to pencolor(colorstring1) and fillcolor(colorstring2)
and analogously. if the other input format is used.

I wrtleshape is a polygon, outline and interior of that polygon
s drawn with the newly set colors.

For mor info see: pencolor, fillcolor

Example (for a Turtle instance named turtle):
>>>turtle.color(‘red, "green’)

>>> rtle.color()

('red’,"green’)

>>> colormode(255)

>>> color(40, 80, 120), (160, 200, 240))
>>> color()

(#285078", "#20c8f0")

turtle.degrees()
Set the angle measurement units to degrees.

Example (for a Turtle instance named turtle):
>>> turtle.heading()

1.5707963267948966

>>> turtle.degrees()

>>> turtle.heading()

90.0

turtle.dot(size=None, *color)
Optional arguments:
size — an integer > = 1 (if given)
color - a colorstring or a numeric color tuple

Draw a circular dot with diameter size, using color.
I size is not given, the maximum of pensize+4 and 2*pensize is used.

Example (for a Turtle instance named turtle):
>>> trtle.dot()
>>> turtle.fd(50); turtle.dot(20, "blue"); turtle.fd(50)

turtle.end_fill()
Fill the shape drawn after the call begin_ill().

Example (for a Turtle instance named turtle):
>>> turtle.color("black", "red")

OEBPS/A978-1-4471-6642-9_2_Fig4_HTML.gif
balora
statoment

Fasd

T,

tstatomant

OEBPS/A978-1-4471-6642-9_4_Figc_HTML.gif
<objectref > = <Class>(<args>)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq46.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq4.gif

OEBPS/A978-1-4471-6642-9_5_Figl_HTML.gif
y

evenlyDivides (x,y):
recurns true if x evenly divides y

dividesic = False

vex =0
dividestc = True

return dividesrc

it (input(Please enter an integer:®))
Int(Input(-Please enter another integer:®))

If evenlybivides (x.v):

print (x,-evenly divides<.y)

print (x, does not evenly divide®,y)

OEBPS/A978-1-4471-6642-9_1_Figz_HTML.gif
100

050

OEBPS/A978-1-4471-6642-9_6_Figi_HTML.gif
titleFrame = tkinter.Frame(mainFrame)
titlerrame .pack ()

noteTitle = tkinter.stringvar ()

titlelabel = tkinter.Label(titleFrame, text="Title
titleiabel .grid (rowsl, column=l, sticky-ctkinter.5)
titleText = tkinter.Entry(titleFrame,textvariable=noteTitle)

titleText .grid(row=1, colunn=2, columnspan=2, \
stickystkinter.s+tkinter .w)

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq40.gif
231 _q

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq26.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq18.gif
5810

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq32.gif

OEBPS/A978-1-4471-6642-9_11_Chapter_TeX2GIF_IEq1.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq28.gif

OEBPS/A978-1-4471-6642-9_1_Fig20_HTML.gif
Type | Specifier | Comments

nt % wd | Places an integer i a field of widih w if specified. %2d would place
an integer in a field of width 2. w may be omitted.

nt % wx | Format the integer in hexadecimal Pu
ified. w may be omitted.

int % wo Format the integer in octal. Put itin a field of width w if specified. w
may be omitied.

Tloat | %w.df | Formata Moating point number with total width v (including the dec-
imal point) and with d digits after the decimal point. Displaying the
entire number include the d digits takes precedence over displaying
in a field of w characters should w not be big enough. w and d may
be omitted.

Tloat | %w.de | Formata floating point number using scientific notation with d digits
of precision and w field width. Scientific notation uses an exponent
of 10 to move the decimal point so only one digit appears to the left
of the decimal point. w and d may be omitted.

Tows Place a string in a field of width w. w may be omitted.
%% | Include a Ysign in the formatted string,

OEBPS/A978-1-4471-6642-9_3_Figf_HTML.gif

OEBPS/A978-1-4471-6642-9_1_Figao_HTML.gif
start = 1
end = 100

sumofiums = end * (end + 1) // 2

print (>sum(8d. .sd)ssd s (stazt , end, sunofNums))

OEBPS/A978-1-4471-6642-9_1_Figi_HTML.gif
Python2~ 3

In Python 2 the floor division operator was specifically for floats. If both operands were
ints then nteger (i.c. floor) division was automatically used by writing the / operator. If
you are using Python 2 and want 1o use integer division then you must insure that both
operands are inis. Likewise, if you want o use floating point division you must insure

that at least one operand is a float. When using Python 2, to force floating point division
of x/y you can write:

z = float(x) / y

It should also be noted that in Python 2 the round function returned the same type as
its operand. In Python 3 the round function returns an int [8]

OEBPS/A978-1-4471-6642-9_7_Figd_HTML.gif
1 class circle:
2 # Thic ic the constructor for the class. It
y # cakes the daca provided as argumencs

i # and stores the data in the object.

s def _init_(self,x=0,y=0,radius=50, color="transparent =, \
. outline=-black",edgewidch

self.x = x
self.y = y
self.color = color
o self outline = outline
self.edgewideh = edgewidth
self.radius = radius

u # The draw mechod iz a mutator method, too. It does
s # not store anything in the object, but it uses the turtle
“ ¢ and therefore mutates the turtle object

" def draw (self, curcle)

" curtle.penup ()

o curtle.goto(self.x, self.y)

0 turtle.width (self.edgewidth)

" if celf.color 1= “transparemt®:

N turele. £illcolor (self.color)

5 curtle.color (self.outline)

u turtle. £illcolor (self.color)

s curtle.secheading (0)

. curtle. forward (self .radius)

n If celf.color 1= “transparent®:

" turcle.begin_£ill ()

» turtle.pendown ()

o for k in range(500):

" radians = (2+*math.pi)®(k/500.0)

N turtle.goto (math.cos (radians)*self.radiussselt.x, \
N math.sin(radians)*self.radius+self.y)
“ if self.color 1= “transparent:

s turtle.end_£i110

“ curtle.penup ()

5 turtle.goto(self.x, self.y)

" # The following chree methods are mucator mechods.

o # They each take a single value passed to the

" # mechod and store it in the object.

N def setEdgewidch (self widch):

N self.edgewidch = width

s def setFill (self,color):

“ self.color = color

“ def secoucline (self, color):

o celf.outline = color

" # The last three methods are accessor methods

@ # They return three of the fields of the object

N def gecx (self)

“ return celf.x

“ def gecr (self)

" Feturn celf.y

" def getmadius (self):

o returs self.radius

OEBPS/A978-1-4471-6642-9_1_Fig7_HTML.gif
p——

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq97.gif
sideB

OEBPS/A978-1-4471-6642-9_2_Figd_HTML.gif
% = int(input("Please enter an integer:"))
v = int(input(*Please enter another integer:®))
= = Int(input("Please enter a third integer:®))
iy sk
ity
print(z, "is greatest.®)
else s
print(y, "is greatest.®)
else s
[T
print(z, "is greatest.®)
else s
print(x, "is greatest.®)

print (*Done. *)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq107.gif
0072

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq15.gif

OEBPS/A978-1-4471-6642-9_5_Figx_HTML.gif
dimensions = {}
dimensions [*width®] = 20
slsineloni f-Bekahe =i @ €0

OEBPS/sidebar.gif

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq14.gif

OEBPS/A978-1-4471-6642-9_1_Figaa_HTML.gif
Please enter your name

Rserr
Aserr

value
value
value
value

7
101
110
i

Kent

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq10.gif

OEBPS/A978-1-4471-6642-9_7_Chapter_TeX2GIF_IEq1.gif
-Rationalob jectar0x113bc70 >.

OEBPS/A978-1-4471-6642-9_2_Fig9_HTML.gif
False

True

OEBPS/A978-1-4471-6642-9_15_Figa_HTML.gif
tkinter Toplevel ()

. atee)

notewin geomerey (%47 isbs ()55t iste (7))

N ceminder insert (tkineer oo, coxt)
e ceminder pack ()

w notes append (notenin)

N reminders . append (reninder)

o def dciecenindonandlor ()

= print (windoy pelecedt)

= [——

u notes cemove (notexin)

e notewin . protocol (*ANDELETE_WINDORT, deletewindownandler |

o aee mein)

= ek pose i)
N print (troset)

N addRemindes (note gt (7107, cxinter EN0), |

« oot winfo_rosts (145, zoot winfo_rasty ()15, notes, reminders)
“ note delete (11,07, thinter zup)

N oot = thinter.ThO

N oot title(tReminder ity

o ores = 1

“ cemindess - 11

w bar = tkincer memszost)

B bar . add_cascade (label=trilet, menustilewens)

o oot contig (menuzbar)

u nasnecane pack()

B hote = thinter Text (mainfreme,bg=tyellowt, width=30, heighe=1s)
B note.pack)

B tkinter Button (nainfreme, text=Thew Reminder!®, command=pest).pack ()
@ print (resding ceminders e £ilet)

© il - open (reminders . fntt, te)

“ X = int(file.resdiine (1)

h 4 - nt (fale.seadline (1)

“ oot geemetey (4histe (x) 47 4T sntr ()]

@ Line = file.resdline ()

@ while Line serip() t= ot

n = ame(1ine)

" 4 - it (file.ceadline ()

= line - £ile.sesdtine ()

" while line.strip () _—

K Tine = file resdiine ()

~ S ——

= addreminder (text,x, 7, notes reminders)

= tine - £ileosesdtine ()

- aee sppeioning ()

" print (Tapplicaricn closing?)

= Si3e - open("remindecs . tat®, ")

= E5de wrive (st (root wingox ()i Tiat)

= 52 write (str (ract winfoy ())eTin")

= for i+ in range (len(notes))

“ print (notes (1] wingo_sootx (1)

o print (notes (1] wingo_soots (1)

= print (ceminders 1] get (1107, tkincer eun))

o Eile wrive (str (notes 1) wingo_coorx (11471n%)

o Eide wrive (str (notes 1) wingo_coory (11471n%)

s Eile wrive (seminders 1] et (11.07, Ehinter gD)+t int)
o Prev— e

e P

e amap—

o oot quit)

o vsoexien)

w oot protocel (Twi_sELETE WINDOW ", sppClosing)

e tkinter .mainioap O

OEBPS/A978-1-4471-6642-9_7_Figr_HTML.gif
def _1t__(self, other):

#commonbenominator « self.den * other.den

selfmum = self.numerator +
otherium = other.numerator
#e88P% selfPun < etheciem

other.den
“ celf.den

OEBPS/A978-1-4471-6642-9_1_Fig15_HTML.gif
R1_widih

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq31.gif
=310

OEBPS/A978-1-4471-6642-9_2_Figi_HTML.gif
x = Int (input("Please enter a number:"))
If % >= 0 and x <= 1:
print(x, *is between 0 and 1°)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq74.gif
83//2.0

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq82.gif

OEBPS/A978-1-4471-6642-9_12_Chapter_TeX2GIF_IEq4.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq6.gif
210

OEBPS/A978-1-4471-6642-9_1_Figg_HTML.gif
Rl1_width = 10

OEBPS/A978-1-4471-6642-9_1_Fig9_HTML.gif

OEBPS/A978-1-4471-6642-9_1_Fig12_HTML.gif

OEBPS/A978-1-4471-6642-9_7_Figf_HTML.gif
class Rat

wTurtle (TPen, TNavigator):

- Animation part of the RawTurtle.

Puts

der

RauTurtle upon a Turtlescreen and provides tools

ens = 01

init(self, canvas=none,
shape=_crG ("shape*],
undobuffersize=_CFG[*undobuffersize~],

visibles_CFG[*visible®]):

for

OEBPS/A978-1-4471-6642-9_4_Figag_HTML.gif
“hello*®
« = x + tworld:
BELRT)

OEBPS/A978-1-4471-6642-9_3_Fig3_HTML.gif
Iog-of

OEBPS/A978-1-4471-6642-9_12_Chapter_TeX2GIF_IEq10.gif

OEBPS/A978-1-4471-6642-9_1_Figl_HTML.gif
int (name [0))

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq104.gif
3Ai6

OEBPS/A978-1-4471-6642-9_3_Fig6_HTML.gif
© © © \ Wing IDE: mutatelst py (/Users/leckent/Documents/ Teaching)IntroToComputing/ BookPrograms)
Ble Edt Source Debug Tools Window Help

® ® 8 @] ®) »
ew Open... Save Save Al | Goto Definiion Sesrch | R

aH ¥ © £l El g
resk Oebug Sop | Sepitc S Over Step Ot

|
1 question = [arer, ‘you-, “avake’, A
2 anser = question |
3 answerto) = answer (3] I
N
5

[Vonabie Tvawe
= s P ra——
wtor

S Dl

s
awake"

g
i
g
:
i

<«

<t dict OX10(B10; lemt>

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq34.gif

OEBPS/A978-1-4471-6642-9_5_Figz_HTML.gif
This program computes your GPA.
Please enter your completed courses.
Terminate your emtry by emtering 0 credits
creaics? 4

Grader A

credicas 3

Grade? B+

credice: 4

Grade? B-

credite? 2

crader ©

credits? o

vour GPA is 3.13

OEBPS/A978-1-4471-6642-9_7_Figa_HTML.gif
Turctle ()

OEBPS/A978-1-4471-6642-9_1_Fig23_HTML.gif
sideC
sideA

sideB

OEBPS/A978-1-4471-6642-9_1_Figac_HTML.gif
Please enter the miles you drove: 256
Please enter the gallons of gas you put in the tank: 10.1
You got 25.346536653465348 mpg on that tank of gas.

OEBPS/A978-1-4471-6642-9_1_Fig4_HTML.jpg
115) Setup - Wing IDE 10132

Welcome to the Wing IDE 101 3.2
Setup Wizard

Tis wil el Wi DE 1013221 on your computer.

s recommendedthat you cose f thes sppicaions beore
contrmng

ok Nest o contne, or Cance o ext St |

OEBPS/A978-1-4471-6642-9_10_Chapter_TeX2GIF_IEq6.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq27.gif
—8310

OEBPS/A978-1-4471-6642-9_2_Fig1_HTML.gif
balore f
atemen.

T,

Faiso

aer
it statement

OEBPS/A978-1-4471-6642-9_1_Fig10_HTML.gif
Binary | Dec | Char || Binary | Dec | Char || Binary | Dec | Char
0100000 | 32 | ., || 1000000 | 64 | @& [1100000 | 96 |
0100001 | 33 | ! 1000001 | 65 | A | 1100001 | 97 | a
0100010 | 34 | || 1000010 | 66 | B || 1100010 | 98 | b
0100011 | 35 | & || 1000011 | 67 | c || 1100011 | 99 | <
0100100 | 36 | & || 1000100 | 68 | D || 1100100 | 100 | d
0100101 | 37 | % || 1000101 | 69 | & || 1100101 | 101 | e
0100110 | 38 | & || 1000110 | 70 | F || 1100110 | 102 | £
0100111 | 39 | * 000111 | 71 | G | 1100111 | 103 | g
0101000 | 40 | (|| 1001000 | 72 | & || 1101000 | 104 | h
0101001 | 41 |) 1001001 | 73 | 1 | 1101001 | 105 | i
0101010 | 42 |~ || 1001010 | 74 | J | 1101010 | 106 | 3
0101011 | 43 + 1001011 |75 i3 1101011 | 107 k
0101100 | 44 | , 1001100 | 76 | L | 1101100 | 108 | 1
0101101 | 45 | - || 1001101 | 77 | M || 1101101 | 109 | m
0101110 | 46 | . || 1001110 | 78 | N || 1101110 | 110 | n
0101111 | 47 | / || 1001111 | 79 | © || 10111 | 111 | o
0110000 | 48 | 0 || 1010000 | 80 | ® || 1110000 | 112 | p
OIT0001 | 49 | 1 || 1010001 | 81 | © || 1110001 | 113 | g
0110010 | 50 | 2 || 1010010 | &: R || 1170010 | 114 | r
OT10011 | 51| 3 | 1010011 | 83 | § || 1110011 | 115 | s
0110100 | 52 | 4 || 1010100 | 84 | T || 1110100 | 116 | ¢
OTT0101 | 53 | 5 || 1010101 | 85 | © || 1110101 | 117 | w
OT10110 | 54 | 6 || 1010110 | 86 | v || 1110110 | 118 | v
OTT0111 | 55| 7 || 1010011 | 87 | w || 11011 | 119 | w
OTT1000 | 56 | 8 || 1011000 | 88 | x || 1111000 | 120 | x
OITI001 | 57 | 9 || 1011001 | 89 | v || 1111001 | 121 | y
OIT1010 | 58 | 1011010 | 90 | 2 || 1111010 | 122 | =
OITI01T | 59 | TOTTOTT [Of | [| [TI1011 | 123 | ¢
OTTI100 | 60 | < || 1011100 | 92 | \ || 1111100 | 124 | |
OITII01 | 61 | = || 1011101 | 93 |] TIT1001 | 125 |
OITIII0 | 62| > || 1011110 | 94 | ~ | TII110 | 126 | -
0111111 | 63 | 2 || 1011111 | 95 TI011 | 127 | o

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq49.gif

OEBPS/A978-1-4471-6642-9_14_Figa_HTML.gif
from turtls import *

help (Turtlescreen)

OEBPS/A978-1-4471-6642-9_4_Fig3_HTML.gif
ATurte Objct

OEBPS/A978-1-4471-6642-9_2_Figag_HTML.gif
1otrys

: age = int(input (*what is your age?"))
s exeept

B Print("You did not enter your age correctly.”)

s exit (0)

7 license = imput(\

s Do you have a fishing license in MN (yes/no)?")

5 parentlic = input(\

W *Does your parent have a fishing license (yes/no)?%)
i If (age < 16 and parentlic =="yes') or license =='yes":
N Print(“You are legal to fish in MN.")

u o oelse:
. print (*You are not legal to fish in MN

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq53.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq25.gif

OEBPS/A978-1-4471-6642-9_2_Fig6_HTML.gif
Month | Message
January | Hello Snow!
February | More Snow!
March_| No More Snow!
April | Almost Golf Time
May | Time to Golf
June | School's Out
July | Fiappy Fourth
August | Still Golfing
September | Welcome Back!
‘October | Fall Colors
November | Turkey Day
December | Merry Christmas!

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq1.gif

OEBPS/A978-1-4471-6642-9_8_Chapter_TeX2GIF_IEq3.gif

OEBPS/A978-1-4471-6642-9_8_Chapter_TeX2GIF_IEq1.gif

OEBPS/A978-1-4471-6642-9_10_Chapter_TeX2GIF_IEq7.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq5.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq53.gif
01012 = 556

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq96.gif
sideA

OEBPS/A978-1-4471-6642-9_2_Figaa_HTML.gif
month = Input(“Please enter a month
It momth ==December®

print(“Merry chr
elses

print("Yourll have to wait®)
print (*Have a Happy New Year!®)

OEBPS/A978-1-4471-6642-9_4_Fig6_HTML.gif
‘) ﬂ M

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq106.gif
0x3A

OEBPS/A978-1-4471-6642-9_5_Figo_HTML.gif
is evenly divisible by
is evenly divisible by
is evenly divisible by
is evenly divisible by
is evenly divisible by
is evenly divisible by 3
is evenly divisible by s
2 is evenly divisible by 1 2 3 4 6 12

s
H

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq16.gif

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq7.gif

OEBPS/A978-1-4471-6642-9_13_Figg_HTML.gif
Method Description

—or: goto((x, y)) # a pair (tuple) of coordinates
—or: goto(vec) # ¢.g. as returned by pos()

Move turtle to an absolute position. If the pen is down,
aline will be drawn. The turtle’s orientation does not change.

Example (for a Turtle instance named turtle):
>>> tp = turtle.pos()
>>>1p

(0.00.0.00)

>>> turtle.setpos(60,30)
>>> turtle.pos()
(60.00,30.00)

>>> turtle.setpos((20,80))
>>> turtle.pos()
(20.00,80.00)

>>> turtle.setpos(tp)

>>> turtle.pos()
(0.00,0.00)

turtle.heading()
Return the turtle’s current heading.

Example (for a Turtle instance named turtle):
>>> turtle.left(67)

>>> turtle.heading()

67.0

turtle.hideturtle()
Makes the turtle invisible.

Aliases: ht

1t's a good idea to do this while you're in the
middle of a complicated drawing, because hiding
the turtle speeds up the drawing observably.

Example (for a Turtle instance named turtle):
>>> turtle.hideturtle()

turtle.isdown()
Return True if pen is down, False if its up.

Example (for a Turtle instance named turtle):
>>> turtle.penup()

>>> turtle.isdown()

False

>>> turtle.pendown()

>>> turtle.isdown()

True

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq33.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq19.gif

OEBPS/A978-1-4471-6642-9_5_Fig3_HTML.gif
Fr|

y O
o S

Main Activation Record

OEBPS/A978-1-4471-6642-9_5_Figi_HTML.gif
def reverse(s):

Use the Accumulator Paccern
resule =+
for ¢ in e

result = c + result

return resule

input (“Please enter a scring:

while ©.scrip() tete

Print (“The reverse of<, t,-is", reverse(t))
t & SiPBE L Buter ancthsr stribg sr preas. sate: te sEiti

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq47.gif
256

OEBPS/A978-1-4471-6642-9_1_Figaf_HTML.gif
How much did
How much did

The person
the bills
tens
ives
quarters
aimes
nickels
Deniles

the item cost: 65.64

the person give you: 100.

change is §34.36
the change should be:

00

OEBPS/A978-1-4471-6642-9_1_Figr_HTML.gif
age = int(input(*Please enter your age:"))
olderage = age + 1
BEBRE E=WRit YUkt wow WL Be=, SIAREXES)

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq10.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq27.gif

OEBPS/A978-1-4471-6642-9_3_Figd_HTML.gif
<statements before for loop>

for <variables in <sequences:
<body of for loop>

cstatements after for loop>

OEBPS/A978-1-4471-6642-9_16_Figa_HTML.gif
bmpert thinter
impart candom

s scresmmaxx = 300
6 scrasmMaxr - 300
s ccreemminr - -300
Tais is a example of a class that uses inheritance.
This s indicated to Pychon by writing
class Ball(Rawrurele):
That says, class Ball inherits from RawTurtle, which
Little more than just = Rawrurcle. The Ball class alzo
maintains a dx and dy value that Ls the smount
Co move s it is animated.
s Ball(Rawrurele)

The __init
4 inicialize the object by storing data in the object. Anyeime
¥ self.varisble = value is written s value is being stored in
the object referred to by self. self always points to the
.
a

12 the CONSTRUCTOR. Its purpose i to

curront object
ef _inie _(se1, cv,ax,dy)

4 che Ball class constructor must call the Rawfurtle class
¥ constructor to initialize the Rawrurtle part of the cbject.
4 The Rawurtle class i called the BASE class. The Ball class
‘

base class parc of the object is always the firsc cthing
you do in the derived class's constructor

RavTurtle. _inic__(self,cv)

Then the resc of the object can be initialized
sele.penup ()
Zelt shape (*soccerball .gift)

sertlay = ay

The move method is a mutator method. It changes the data
of the object by adding something co the Ball's x and y
¥ posicion
et moveserr)

newx = self.xcor() + self.dx

nexy = selfiycor() + self.dy

The if stacements below make cthe ball
i nevx < scrasnwink
newx = 2 + screesMink - news
self.dx = -self.dx
I newy < screenmint
newy = 2 ¢ screenmint - newy
sele.ay = - selt.dy
i newx > screenmaxk:
IF newy > screenmaxt:
ewy = 2 + screenMaxt -
self.ay = -zelt.ay

Then we call a method on the Rawrurtle
to move co the new x and y position.
sele. goco (newx , newy)

once the classes and funceions have been defined we'll put our
¥ Bain fusction at the boteom of the file. Main isn’c necessarily
writcen lasc. It's simply puc at che bortom of che file. Nain
§ is nor s method. It s a plain function because it ir not

defined inside any class.

et main()

searc by creating a RawTurcle object for the window.
Foot « thinter Tk

root.title(*Bouncing Ballsit)

cv = scrolledcanvas (root ,600,600,600,600)

cv.pack (side = tkinter.1EFT)

© S Ravtareio (v

Eram < thinter.Frame (root)

Eram.pack (side = tkinter.RIGHT,fill=tkinter .80TH)

screen. secvorldcoordinates (screenHinX , screenMinY , screenNaxX , screenMaxt
0

screen.cracer (20)
screen.register_shape (*

occorball .gien)

4 The balliist is a list of all the ball cbjects. This
izt is nesded so the balls can be animstad by the
proge.

balliies = 01

¢ fore s the animation handler. It is called at
¢ overy ciner ovent.
et animate (
4 Tell all the balls to move
for Bail im maniiies
bail.move ()

set the cimer to go off again
Zcreen.ontiner (animate)

4 Tais code creates 10 bails heading
in randon directions
for & in range (10):

ax = random.random() * 3+ 1

4y = randon.random() * 3 1

¥ Here is how & ball object is created. We

¥ write ball - Ball(s,d)

4 fo create an instance of the sall class
and point the bail reference at that object
.

Thac way we can refer to the object by writing
ball.

ball « Bail(ev, ax,dy)

Each new ball fs added to the sall list so

it can be accessed by the animation handier.

balllist.append (bail)

This is the code for cthe quit Buccon handling. This
function will be passed co the quitutton zo it can
¥ be called by the quitsuceon when it waspressed.
et quicanaier O

4 close the window and quic

pring("Good sy

foot . destroy (1

root quit()

4 Here ts where the quitsuceon fs created. To create
4 an object we write

¥ objectreterence = Class(<Parameters to Constructors)

QuitButton = tkinter.Button(fram, text = "Quite, command=quitdandler)
auitautton.pack ()

4 This is another example of a method call. Ke've been doing
4 this a1 semester. It is an ontimer method call to the

¢ Turelescreen object referred to by screen.

zcreen. ontiner (animate)

tkintor matnioop ()

it

OEBPS/A978-1-4471-6642-9_7_Chapter_TeX2GIF_IEq8.gif
numerator [denominator

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq16.gif

OEBPS/A978-1-4471-6642-9_3_Figad_HTML.gif
Please enter a list of numbers: 1.0 10 3.5 4.2 10.6
There were 5 mumbers in the list.
he aviiss oF She GusBerE Wae 9,90

OEBPS/A978-1-4471-6642-9_14_Figd_HTML.gif
Method Description

Screen. getcanvas()
Return the Canvas of this TurtleScreen.

Example (for a Screen instance named screen):
>>> ¢v = screen.getcanvas()

>>>ev

<turtle.ScrolledCanvas instance at 0x010742D8>

screen.getshapes()
Return a list of names of all curnrently available tuitle shapes.

Example (for a TurtleScreen instance named screen):
>>> screen.getshapes()
["arrow’, "blank’, "circle’, ..., "ttle’]

screen.listen(xdummy=None, ydummy=None)
Set focus on TurtleSereen (in order to collect key-events)

Dummy arguments are provided in order
tobe able to pass listen to the onclick method.

Example (for a TurtleScreen instance named screen):
>>> screen.listen()

screen.mode(mode=None)
Set turtle-mode (standard’, "logo’ or*world") and perform reset.

Optional argument:
mode - on of the strings standard’, "logo” or *world"

Mode ’standard’ is compatible with turtle.py.

Mode *logo’ is compatible with most Logo-Turtle-Graphics.

Mode " world" uses userdefined "worldcoordinates’. *Attention*: in
this mode angles appear distorted if x/y unit-ratio doesn’t equal 1.
If mode is not given, return the current mode.

Mode Initial turtle heading positive angles

“standard” to the right (east) counterclockwise
*logo” upward (north) clockwise

Examples:
>>> mode('logo’) # resets turtle heading to north
>>> mode()

"logo’

screen.onclick(fun, btn=1, add=None)
Bind fun to mouse-click event on canvas.

Arguments:
fun — a function with two arguments, the coordinates of the
clicked point on the canvas.

num — the number of the mouse-button, defauls to |

OEBPS/A978-1-4471-6642-9_4_Figr_HTML.gif
geaphliosCenmand & v
O e S T

OEBPS/A978-1-4471-6642-9_1_Figx_HTML.gif
base
exp

float (Input (“Please enter a number:"))

float (input (“please enter an exponent:®))
- base + exp

Print (~81.2£°81.2f = 81.4£°%(base.exp, answer))

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq33.gif

OEBPS/A978-1-4471-6642-9_3_Figu_HTML.gif
s = input(“Please en!
lsc = s.oplic) # No
count = 0 # Here iz
for e in lot:

count = count + 1

[y —

ter a list of integers:®)
w lsc is a lisc of scrings

the beginning of the accumulator patcern

dounit , iategecs dn the Liit.

OEBPS/A978-1-4471-6642-9_13_Figm_HTML.gif
Method Description

turtle.write(arg, move=False, align="left", font=('Arial’, 8, "normal’))
Write text at the current turtle position.

Arguments:

arg — info, which is to be written to the TurtleScreen

‘move (optional) — True/False

align (optional) - one of the strings "left", "center” or right"
font (optional) - a triple (fontname, fontsize, fontype)

Write text - the string representation of arg - at the current
turtle position according to align (“left", "center” or right")
and with the given font.

1f move is True, the pen is moved to the bottom-right corner
of the text. By default, move is False.

Example (for a Turtle instance named turtle):
>>> turtle.write('Home = °, True, align="center")
>>> turtle.write((0,0), True)

turtle.xcor()
Return the turtle’s x coordinate.

Example (for a Turtle instance named turtle):
>>> reset()

>>> turtle.left(60)

>>> turtle.forward(100)

>>> print(turtle.xcor()

500

turtle.ycor()
Return the turtle’s y coordinate

Example (for a Turtle instance named turtle):
>>> reset()

>>> turtle.Jefi(60)

>>> turtle.forward(100)

>>> print(turtle.ycor()

86.6025403784

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq27.gif

OEBPS/A978-1-4471-6642-9_7_Figz_HTML.gif
class Rectangle (Shape):

def _inic_(selt,x,y, widch, height colors-cransparent ™,

outline=-black-,edgewidch=1):
super ()._init_(x,y,color, outline, edgewidch)

self.uwidth = wideh
self.height = height

et araw (self, turcle
curtle.penup ()
curtle.goto (self.x, self.y)
curtle. setheading (0)
turtle. pendown ()
curtle. wideh (self.edgenideh)
curtle.color (self.outline)
curtle. tillcolor (self.color)
if self.color 1= -ctransparent:

turtle.begin £i11 0
curtle.pendown ()
curtle. forward(self .width)
curtle.lefe (90)
curtle. foruard (self.height)
curtle.lefe (90)
curtle. forward(self.widch)
curcle. lefe (90)
turtle. forward(self.height)
curtle.lefe (90)
if self.color i- -transparent::
turtle.end_£ill ()

AocEle s patup i}

\

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq19.gif
00112 + 01012 = 1000,

OEBPS/A978-1-4471-6642-9_4_Figa_HTML.gif
import turtle

© = turcle.Turcle)
screen = t.getscreen()
©. forward (25)

©.lefe (90)
©.forward (25)
©.lefe (90)
©.forward (25)

€. lete (90)
©.forvard (25)
screen. exitonelick ()

OEBPS/A978-1-4471-6642-9_4_Figl_HTML.gif
<?xml version:

0* encoding="UTF-8" standalone="no" ?>

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq10.gif

OEBPS/A978-1-4471-6642-9_2_Figo_HTML.gif
top = float (input("Please enter the numerator:*))

bottom = Float (input (*Please enter the denominator:

guess = float (Input("Please enter your guess:®))

result = top/bottom
biggest = abs(result)

it abs(guess) > biggest:
biggest = abs (guess)

¥4 require the answer is within 1/10th Percent
of the correct value
it abs ((guess-result)/biggest) < .001
print ("You guessed righti®)
else s

)

print ("Sorry, that's wrong. The correct value was®,result)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq32.gif
25310

OEBPS/A978-1-4471-6642-9_7_Figi_HTML.gif
class circle(shape):

det

der

der

init(self, . radius=50, color="transparent ",
outline=*black®,widehel):

super ()._init_(x,y,color outline , width)

celf.radius = radius

draw (self, turtle):
Shape . draw (self, turtle)
curcle.penup ()
turtle.goto(self.x, self.y)
Curtle.widch(self.widch)
if self.color t- -transparent®
turtle. tillcolor (self.color)
curtle.color (self.outline)
curtle. fillcolor (self.color)
turtle.setheading (0)
curcle. forward(self .radius)
if self.color 1= “ctransparent®:
turcle.begin_£ill O
curtle.pendown ()
for k in range(500)
radians = (2+math.pi)®(k/500.0)

\

turcle.goto (math.cos (radians)*self.radiussselt.x,
math.sin(radians)*self.radius+self.y)

If celf.color 1= “transparenmt®:
curcle.end_£i110)

curtle.penup ()

curtle.goto(self.x, self.y)

getRadius (self):
return self.radius

\

OEBPS/A978-1-4471-6642-9_12_Chapter_TeX2GIF_IEq3.gif

OEBPS/A978-1-4471-6642-9_5_Figab_HTML.gif
defl implode(lst):
for o in lsc:

return s

print (implode ([‘h

OEBPS/A978-1-4471-6642-9_7_Fig3_HTML.gif
x (Coan)}

init y
act. rec. o
main outline

act. rec. edgeWidth (Zo0s)1

racus

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq54.gif

OEBPS/A978-1-4471-6642-9_1_Fig18_HTML.gif
Operation Operator | Comments
“Addition Xty ¥ and y may be floats or ints.
Subtraction X-y x and y may be floats or ints.
Multiplication X*y xand y may be floats or ints.
Division X7y | vand ymay be floats or ints. The résult s ahways a float.
Floor Xy xand y may be floats or ints. The result is the first
Division integer less than or equal to the quotient.
Remainder or X%y | xand y must be ints.
Modulo This is the remainder of dividing x by y.
Exponentiation | "y | xand y may be floats or ins.
This is the result of raising x to the y** power
Float float(x) Converts the numeric value of x to a float.
Conversion
Tnteger int(x) | Converts the numeric value of x (o an int.
Comversion ‘The decimal portion is truncated, not rounded.
Absolute abs(x) Gives the absolute value of x.
Value
Round round(x) | Rounds the float, x, to the nearest whole

number. The result type is always an int.

OEBPS/A978-1-4471-6642-9_1_Figa_HTML.gif
Kent ‘s Mac> python
Pychon 3.1.1 (r311:74543, Aug 24 2009, 18:44:04)

[GSC 4.0.1 (Apple Inc. build 5493)] on darwin

Type help", *copyright®, -credits® or *license® for more info.

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq11.gif

OEBPS/A978-1-4471-6642-9_7_Figl_HTML.gif
class GravicyBall (Ball):
def _init_(self,cv,dx,dy):
Super ()._inic_(cv,dx,dy)

s def move (self):
. # Graviey's effect is -1/2 g ¢*2. Time is
b # estimated at 1/100 of a second for each
B ¢ call to move.

o if abs(self.ay) < 0.2 and self.ycor() < 5
" selt.ay = o

o else:

N self.ay = self.dy - 0.195

W abs(self.ax) < 0.2:
self.ax = 0

else:

" # Friction reduces dx by a litcle bit

o self.ax = 0.999 + self.dx

2 Ball.move (self)

OEBPS/A978-1-4471-6642-9_7_Fig6_HTML.gif
0060 Sodtiodk
o 17
iee
0
[XY KXY I KX

OEBPS/A978-1-4471-6642-9_2_Figu_HTML.gif
How
How
The
The

much did
much did
person’s
bille or

I twenty

quarter
aime
Denny

the item cost: 65.64
the person give you:
change is $31.36

the change should b

100.00

OEBPS/A978-1-4471-6642-9_3_Figr_HTML.gif
<list reference >[<index>] = <value>

OEBPS/A978-1-4471-6642-9_3_Figo_HTML.gif
s = Input(“Please enter a list of integers:*®)
lsc = s.splic() # Now lsc is a lisc of scrings.

make a guess firsc
containsEven = False

che icerate over cthe list
for clement in lst:
% = int(element)
check your guess in the loop
and fix it if needed
TR

after che loop you know whether
your guess was correct or not
it containseven:

print(~The lisc contained an even number®)
else:

print(*The list did not coatain an even number

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq60.gif

OEBPS/A978-1-4471-6642-9_3_Figaj_HTML.gif
answer = Input(-Please answer yes or
if answer.lower ()---yes*
print (-vou entered yes.©)
elif ancwer.lower ()=="no":
print (-vou answered no.)
else:

print (*You answered neither yes or

Ty

OEBPS/A978-1-4471-6642-9_1_Figd_HTML.gif
Python2~: 3

Originally, octal numbers were written with a leading zero (i.c. 0123). In Python 3, octal
numbers must be preceded with a zero and the letter o (i.e. 00123).[8]

OEBPS/A978-1-4471-6642-9_7_Chapter_TeX2GIF_IEq9.gif
(< Rational

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq69.gif

OEBPS/A978-1-4471-6642-9_6_Figl_HTML.gif
def addaddress ():

: print tadds

B if lname.get (). strip()

s tkiessageRox . showwarning (*Missing Last Name®, \
“ “You must enter a non-empcy last name.®)

" return

5 if fname.get (). strip() == o+

o tkiessageRox . showwarning (*Missing First Name®, \
" “You must enter a non-empty first mame.)
N return

" file = open (*addressbook.txt®,at)
“ file.wrice (Iname.get (). scrip () +*\n)
0 file.wrice (fname.get().scrip()+*\n)
" file.wrice (street.get ().strip()+s\n")
o file.write(city.get().strip()+”, "sstate.get (). strip(+\
n “ezip.get (). strip(rint)
file.wrice (phone.get (). strip()+*\n)
file.wrice (mobile.get (). serip()+*\n")
" tile.close()
% tkessageBox . showinfo (*Entry Addedr, \
g «The entry was successfully added.®)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq26.gif
010011,

OEBPS/A978-1-4471-6642-9_2_Figa_HTML.gif
<statements before if statement>
if <condition

<then statements>
<statements after if statements>

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq81.gif

OEBPS/A978-1-4471-6642-9_1_Figal_HTML.gif
Rame @ 'Sophus Lie’
print (“The name is-, name)

vord = name (3] + name (1] + name[4] + name[5] +

name 19
AEDt tircshi

OEBPS/A978-1-4471-6642-9_3_Figag_HTML.gif
This program computes your GPA.
Please enter your completed courses.
Terminate your emtry by emtering 0 credits
creaics? 4

crade? a

credica: 3

Grade? B+

credice: 4

Grade? B-

crediter 2

srader ©

credite? 0

Your GPA is 3.13

OEBPS/A978-1-4471-6642-9_1_Figu_HTML.gif
Please enter a number: 4.5
Please enter an exponent: 3.2
4532 - 123.10623351

OEBPS/A978-1-4471-6642-9_14_Figg_HTML.gif
Method Description

call: register_shape("turtle.gi")
 register_shape("ti”, (0,0, (10,10), (-10,10)))

Example (for a TurtleScreen instance named screen):
>>> screen.register_shape("triangle”, ((5.-3),(0.5).(- 5:3)

screen.Teset()
Reset all Turtles on the Screen to their initial state.

Example (for a TurtleScreen instance named screen):
>>> screen.reset()

screen.screensize(canvwidth=None, canvheight=None, bg=None)
Resize the canvas the turtles are drawing on.

Optional arguments:

canvwidth — positive integer, new width of canvas in pixels
canvheight - positive integer, new height of canvas in pixels

bg - colorstring or color-tupel, new backgroundcolor

If 1o arguments are given, return current (canvaswidih, canvasheight)

Do not alter the drawing window. To obsecve hidden parts of
the canvas use the scrollbass. (Can make visible those parts
of a drawing, which were outside the canvas before!)

Example (for a Turtle instance named turtle):
>>> turtle.screensize(2000, 1500)
. g. 10 search for an erroneously escaped turtle ;-

screen.setworldcoordinates(lL, lly, urx, ury)
Set up a user defined coordinate-system.

Arguments:

11x - a number, x-coordinate of lower left corner of canvas
1ly - a number, ycoordinate of lower left corner of canvas
uix - a number, x-coordinate of upper right comer of canvas
Uty - a number, y-coordinate of upper right comer of canvas

Set up user coodinat-system and switch to mode *world" if necessary.
‘This performs a screen.reset. If mode *world” is aleady active,
all drawings are redrawn according to the new coordinates.

But ATTENTION: in user-defined coordinatesystems angles may appear
distorted. (see Sereen.mode()

Example (for a TurtleScreen instance named screen):
>>> screen.setworldcoordinates(-10,-0.5,50,1.5)
>>> for _inrange(36):

turtle.left(10)

turtle. forward(0.5)

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq11.gif

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq2.gif

OEBPS/A978-1-4471-6642-9_6_Fig6_HTML.gif
L ———

[——
E e Lo T —

m@ state[F] 2ip BZ10T]

bl _

OEBPS/A978-1-4471-6642-9_13_Figj_HTML.gif
Method Description

turtle.pendown()
Pull the pen down — drawing when moving.

Aliases: pd down

Example (for a Turtle instance named turtle):
>>> turtle.pendown()

turtle.pensize(width=None)
Set or return the line thickness.

Aliases: width

Argument:
width — positive number

Set the line thickness to width or return it. If resizemode is set

to "auto” and turtleshape is a polygon, that polygon is drawn with
the same line thickness. If no argument is given, current pensize
is returned.

Example (for a Turtle instance named turtle):
>>> turtle.pensize()
1

turtle.pensize(10) # from here on lines of width 10 are drawn

turtle.penup()
Pull the pen up no drawing when moving.

Aliases: pu up

Example (for a Turtle instance named turtle):
>>> turtle.penup()

turtle.radians()
Set the angle measurement units to radians.

Example (for a Turtle instance named turtle):
>>> turtle.heading()

%0

>>> turtle.radians()

>>> turtle.heading()

1.5707963267948966

turtle.reset()
Delete the turtle’s drawings from the screen, re-center the turtle
and set variables to the default values.

Example (for a Turtle instance named turtle):
>>> turtle.position()

(0.00,22.00)

>>> rtle.heading()

OEBPS/A978-1-4471-6642-9_4_Figo_HTML.gif
<Command type

PenUp* />

OEBPS/A978-1-4471-6642-9_2_Figr_HTML.gif
int (input ("Please
int (input ("Please

except:
print("vou entered an
print (*The product of the

enter an integer:®))
enter another integer:®))

invalia integer.)
bwo labegeis Le® V)

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq48.gif

OEBPS/A978-1-4471-6642-9_2_Fig10_HTML.gif
'

Satements
belore
y-except
statement

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq9.gif

OEBPS/A978-1-4471-6642-9_5_Figae_HTML.gif
def evenlyDivisibleElements (x,1st):
resule = 0

for e in lsc:
it evenlybivides (e, x):

result.append (e)

Pot0PE esult

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq75.gif
41.0

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq40.gif

OEBPS/A978-1-4471-6642-9_3_Figaf_HTML.gif
Enter a list

Please
Please
Please
Please
Please

enter
enter

of integers terminated by a
integer and press

the firsc
another integer: 4
another integer: 3
another integer: &

another

the list of integers

integer:
is 5438

1

1.

E

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq32.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq34.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq28.gif
0100112

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq24.gif

OEBPS/A978-1-4471-6642-9_6_Figh_HTML.gif
try:

Print(~reading reminders.cxe files)

file =

open (“reminders . txe", re)

x = Int(file.readline ())
v = int(file readline)
Foot. geometry (+47sstE (x) 4%+t SE (¥))

Line =

file.readline ()

while line.strip() 1= ==

=
line

int(line)
int(file.reaaline)

- file.readline ()
Line.strip ()

ext = text + line
line = file.readline ()

coxe

= ctexc.strip()

addreminder (text,x,y, notes , reminders)

line

except

= file.readline()

print ("reminders.txe not foundr)

def appclosing ()
print (-application Closing)

file =

open (“reminders . txct, twe)

£ile.write (str(root.winfo_x ())+\n")
£ile.wrice (str(root .winfo_y ())+"\n")

for i in range(len (notes)):
Print (notes(i).winfo_rootx (1)
Print (notes(i].winfo_rooty (1)
Print (reminders(i).gec(*1.07, tkinter.END))

file.
file.
file.

file

write (str (notes(i).winfo_xootx ())+"\n")
write (str (notes (i) .winfo_xooty ())+*\n")
write(reminders[i).get(*1.0%, tkinter.END)+"\n")
write(r_. Cemes\nn)

tile.close ()
root . destroy ()

root.quit () ¢ May or may not be necessary
sys.exic O

Toot . protecol (> WH_DELETE. WINDOW

appClosing)

OEBPS/A978-1-4471-6642-9_5_Figr_HTML.gif
def reverse(s):

Base case: Always FIRST

i

¢ Recursive cas
smaller problems

e works

ac index 1 of the string.

Feturn reverse (s(l

print (zeverse (*hello®))

n

+ 810}

for cthe

We may assume it works for
S0,

slice

scarcing

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq26.gif

OEBPS/A978-1-4471-6642-9_1_Figt_HTML.gif
Suphus how are yeur dsiagy
 batie bhat Tephis 56 feeldid well todu

OEBPS/A978-1-4471-6642-9_7_Figq_HTML.gif
nameList = ["Lee
nameList . sore ()
BEIAE LA LE BT

“Lie®, "Gorman®, "Freeman®, °Morgan-)

OEBPS/A978-1-4471-6642-9_2_Fige_HTML.gif
x = Int(input("Please

¥ = int(input("Please

= = int(input("Please

¥ Here iz our initial

maxNum = x

0y > maxtum: .
masiium = v

iz > maxium: v
maxium = z

enter an integer:"))
enter another integer:®))
enter a third integer:®))
quess

Fix our guess if needed

Fix our guess again if needed

print (maxiium, i greatest.t)

print (*Done. *)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq52.gif
00112

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq17.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq18.gif
n!

OEBPS/A978-1-4471-6642-9_12_Chapter_TeX2GIF_IEq9.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq105.gif
72

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq16.gif
8(6)

OEBPS/A978-1-4471-6642-9_1_Figo_HTML.gif
The ASCII character egquivalent of 83 is s

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq60.gif
010011,

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq21.gif
00000011

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq39.gif

OEBPS/A978-1-4471-6642-9_6_Figc_HTML.gif
def quit():
oot . destroy ()

bar = tkinter.Menu(root)

£ileMeny = tkinter.Menu (bar,tearoff=0)

£ilevenu.add_command (label="Exit*, command=quit)

bar.add_cascade (label="File*,menu=filenenu)

Eobt + s boliy tasnavienc

OEBPS/A978-1-4471-6642-9_2_Figj_HTML.gif
age = Int(input(*Please enter your age:"))
it (not age > 15) and (mot age < 18):
print("You can’t join®)
elses
print (*You can join®)

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq6.gif
264

OEBPS/A978-1-4471-6642-9_7_Figv_HTML.gif
def findAddress{):
print(-rina")

B card = addresscard (lname.get().strip(), \

s fname.get (). stxip (), street.get (). ocxrin(), \
. city.get (). strip(), state.get () strip(), \
B 21p.get (). scrip(), phone.get ().serip(), \
. mobile.get (). strip ()

o try
3 = addresses.index(card)
card = addresses (i)

“ street.set (card.gecstreet (1)
s cicy. set (card.geccicy (1)

“ state. set (card.gecstate ())

" 2ip . set (card.geczip ()

. phone. set (card.getphone ()

o mobile.set (card.gecHobile ()

» return

8 except:

N True

s messagebox . showwarning (*Not Found*, \

“ aShe sntry was meot Soundt®)

OEBPS/A978-1-4471-6642-9_5_Figw_HTML.gif
import turtle

def drawrigure (turtle, *args)

for i in range (o, len (args) . 2):
curtle. forward (args (11)
curtle. lefe (args (i+1])

def main()
€ = turtle.Turele)
screen = t.gecscreen ()
arawrigure (t,50,90,30,90,50,90,30,90)
screen. exitonclick ()
it __name__
main)

_main__*:

OEBPS/A978-1-4471-6642-9_13_Figc_HTML.gif
Method Description

turtle.begin_poly()
Start recording the vertices of a polygon. Current turtle p
is first point of polygon.

Example (for a Turtle instance named turtle):
>>> turtle.begin_poly()

turtle.circle(radius, extent=None, steps=None)
Arguments:
radius - a number
extent (optional) - a number
steps (optional) - an integer

Draw a circle with given radius. The center is radius units left
of the turtle; extent - an angle - determines which part of the
cirele is drawn. If extent is not given, draw the entire circle.

If extent is not a full circle, one endpoint of the arc is the
current pen position. Draw the arc in counterclockwise direction
if radius is positive, otherwise in clockwise direction. Finally
the direction of the turtle is changed by the amount of extent.

As the circle is approximated by an inscribed regular polygon,
steps determines the number of steps to use. If not given,

it will be calculated automatically. Maybe used to draw regular
polygons.

circle(radius) # full circle

—or: circle(radius, extent) # arc

—or: circle(radius, extent, steps)

—or: circle(radius, steps=6) # 6-sided polygon

cal

Example (for a Turtle instance named turtle):
>>> turtle.circle(50)
>>> turtle.cirele(120, 180) # semicircle

turtle.clear()
Delete the turtle’s drawings from the screen. Do not move turtle.
State and position of the turtle as well as drawings of other
turtles are not affected.

Examples (for a Turtle instance named turtle):
>>> turtle.clear()

turtle.color(*args)
Arguments:
Several input formats are allowed.
They use 0, 1, 2, or 3 arguments as follow:

color()

OEBPS/A978-1-4471-6642-9_12_Chapter_TeX2GIF_IEq2.gif

OEBPS/A978-1-4471-6642-9_5_Figm_HTML.gif
defl

evenlyDivides (x.y):
returns true if x evenly divides y
ity

return ralse

it (input(-Please enter an integer:®))
Int(input(-Please enter another integer:<))

If evenlybivides (x.v):

print (x,"evenly divides<,y)

print (x, does not evenly divide®,y)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq4.gif
\Python31

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq6.gif

OEBPS/A978-1-4471-6642-9_6_Fig3_HTML.gif
i
|

i

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_Equ3.gif
sum(lLn)=142+3+4 4 +n=nn+1)/2

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq36.gif

OEBPS/A978-1-4471-6642-9_1_Figy_HTML.gif
Please enter a number: 4.666666667
Please enter an exponent: 3.3333333333
£ 63°3.33 & i 035F

OEBPS/A978-1-4471-6642-9_1_Fig21_HTML.gif
) »
e £ Sorco Doty Toos indow bl
®

@

1 b = loattimpurt
2 aunces = toe o

[T e—————
Please enter the 1bs of ater trested: 66.7

OEBPS/A978-1-4471-6642-9_7_Figc_HTML.gif
class circle

det

init(self,x=0,y=0, radius=50, colo
outline=-black", edgewidch=1):

self.x = x

self.y =y

self.color = color

self outline = outline

self.edgewideh = edgewidch

self .radius = radius

cransparenc®,

\

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq8.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq59.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq91.gif
pi

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq76.gif

OEBPS/A978-1-4471-6642-9_4_Fign_HTML.gif
“Command x4°299.0° yo® =43.0° widtha®l.9®
$804000 * >GoTo </ Command>

color:

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq3.gif

OEBPS/A978-1-4471-6642-9_2_Figx_HTML.gif
Please enter a 16-bit binary number: 1010011
'he base 10 eguivalent of the binary number 1010011 is 83.

OEBPS/A978-1-4471-6642-9_1_Fig1_HTML.gif
Your The Screen,
Python Python - Keyboard,

Program Interpreter & Other 1/0

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq68.gif
81/2

OEBPS/A978-1-4471-6642-9_3_Figi_HTML.gif
input(-Please type

for i in range(len (z)
print(sril)

SEIEE = DeaE }

some characters

and press

")

OEBPS/A978-1-4471-6642-9_BookFrontmatter_Figa_HTML.gif
&) Springer

OEBPS/A978-1-4471-6642-9_10_Chapter_TeX2GIF_IEq4.gif

OEBPS/A978-1-4471-6642-9_5_Figd_HTML.gif
BEARE iiy

OEBPS/A978-1-4471-6642-9_1_Figj_HTML.gif
lbs = float (Input(“Please enter

ounces = bz * 15

gallons = int(ounces / 128)

ounces = ounces - gallons * 128

print(~That ‘s*,gallons , *gallons
ounces , "ounces of treated

the 1bs of water treated:"))

ands, \

o

OEBPS/A978-1-4471-6642-9_3_Figap_HTML.gif
int (input(*Please enter a non-negative

factorial = 1
for i in ramge (1, nel):
factorial = factorial * i

[P Pr—— factorial)

integer:

"

OEBPS/A978-1-4471-6642-9_9_Chapter_TeX2GIF_IEq1.gif

OEBPS/A978-1-4471-6642-9_1_Fig6_HTML.gif
800 eeenConfiguion
Python Executable. O Use defaut @ Custom

e

Pyongatn ®Use gefauk O Custom

insert || Remove | Edt | Viewas Text

Covionment (Use inherted environment +)

IntalDiectory @ Use dofauk O Custom

(900 @gancs) (Gawwly)

OEBPS/A978-1-4471-6642-9_8_Chapter_TeX2GIF_IEq5.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq55.gif

OEBPS/A978-1-4471-6642-9_6_Figm_HTML.gif
o%; remeve | *addresshosk . Cut)
B s ERRATL oo MRS o SHE™ ; " S easBal - BR8]

OEBPS/A978-1-4471-6642-9_2_Figs_HTML.gif
Please enter your percentage achieved in the class: 92.32
You earnmed am A- in the class.

OEBPS/A978-1-4471-6642-9_6_Figr_HTML.gif
titleLabel = tkinter.Label (mainFrame, \
texc=-What do you wanc?%)
CAELOnAMEL Bk b}

OEBPS/A978-1-4471-6642-9_2_Figab_HTML.gif
sideone = int
“Please enter
cidetwo = int

“Please enter length of middle

cidethree = 1

"Please enter length of longest

msg ="It is a perfect triangle.

it sideone ®
msg = "It

i sidetuo ®
msg = "It

It sidethree
meg = "It

it sideonett2
meg = "It
PESRE hineg)

(input (\

length of shortest

Cinput (1\

nt(input(\

3 1= 0:
is not a perfect
a perfect

v s
is not a perfect

+ sidetwotr2 1=
is not a perfect

side of triangle

triangle.

triangle.

triangle.

cidethreett2:

triangle.

side of triangle:®))

)

side of triangle:®))

OEBPS/A978-1-4471-6642-9_BookFrontmatter_TeX2GIF_IEq101.gif
Python2 -~ 3

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq1.gif

OEBPS/A978-1-4471-6642-9_7_Chapter_TeX2GIF_IEq3.gif
4/5

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq12.gif

OEBPS/A978-1-4471-6642-9_3_Fign_HTML.gif
activity = Inpat(“what 4o you like to do?=)

liesActivities = [*mach®, -hikes, walk+,

IT accivicy In liesaccivicies:

print (-Sopus Lie like to do that,
else:

it igeeld fer Yol

“gymnastics]

oot

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq47.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq20.gif

OEBPS/A978-1-4471-6642-9_3_Figak_HTML.gif
s = imput("Please type some characters and press enter:®)
for < in =
DL (6. BREEE Th

OEBPS/A978-1-4471-6642-9_7_Figh_HTML.gif
class shape

def _inic_(self,x=0,y=0,color="cransparent ",
outline="black®, wideh=1):
self.x = x
self.y = y

der

der

der

der

der

self.color = color
self.oucline = outline
self.widch = wideh

setwideh (self, wideh)
self.width = wideh

secFill (self, color):
self.color = color

secoutline (self, color):
celf.outline = color

getx (self):
return self.x

gety (self):
retura self.y

\

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq10.gif

OEBPS/A978-1-4471-6642-9_7_Fig7_HTML.gif
ooy fes
o
coileed “dleod T4

i

17

OEBPS/A978-1-4471-6642-9_4_Figi_HTML.gif
“hello*®
« = x + tworld:
BELRT)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq44.gif
Fis

OEBPS/A978-1-4471-6642-9_3_Figx_HTML.gif
<statements before while loop>
while <condition

<body of while loop>
<statements after the while loop>

OEBPS/A978-1-4471-6642-9_4_Figd_HTML.gif
Turctle ()

OEBPS/A978-1-4471-6642-9_3_Figs_HTML.gif
answer = guestiocn
ancwer (0] = answer (3]
answer [1] = answer [4]
answer [4] = answer [2]
answer (2] = '1'

answer [3]
SFIBt funewers

OEBPS/A978-1-4471-6642-9_3_Figaa_HTML.gif
phonebook = epen (*addressbook.txt®,"r")
numEncries = 0
reads the firsc line of the firsc record
Lastiame = phonebook.readline (). rstrip()
while lascwame =0+
when the file is completely read the lastName scring
will be empty. Since the lastName wasn't an empty
scring, read the resc of che record
firsciame = phonebook.readline ().rscrip ()
street = phonebook.readline ().rstrip()
citystatezip = phomebook.readline ().rstrip ()
homephone = phonebook . readline (). rstrip ()
mobilephone = phonebook.readline ().rscrip ()

Process the record by adding to the accumulator
nunEntries = numentries + 1

Read the first line of the next record
lastame = phonebook .readline (). rscrip()

eIt {*Ton have™, munEntries, sntries i3 yoor sddcess beok.

OEBPS/A978-1-4471-6642-9_11_Chapter_TeX2GIF_IEq6.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq45.gif
10101110

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq3.gif

OEBPS/A978-1-4471-6642-9_3_Fig4_HTML.gif
question (oss

OEBPS/A978-1-4471-6642-9_5_Figc_HTML.gif
def reverse(s)

Use the Accumulator Pattern

resule =

for ¢ in o
resule

© 4 resule
return resule

© = input(*Please enter a string: *)
PEIRLL*The Teverse of*, L, is*, reverswlt))

OEBPS/A978-1-4471-6642-9_4_Figae_HTML.gif
frem curtle fmport *
¢ = Turcle()
screen = t.gecscreen ()

. £illcolor (*black*)
¢.begin_fill ()
¢.circle (20)
¢.end_ill ()
. penup ()

c. forward (120)
¢ pendown ()
¢.begin_£il1 ()
¢.cirele (20)
¢.end_ill ()
.penup ()
c.lefe (50)

. forward (40)
¢.right (90)

. forward (30)
¢.right (180)

¢ . pendown ()

. fillcolor (*yellow®)
¢.begin_£i11 ()
c. forward (180)
¢.right (90)

. forward (30)
€. right (90)

. forward (50)
c.lefe (50)

. forward (30)
¢.right (90)

c. forward (30)
¢.right (45)

. forward (43)
¢ lefe (45)

. forward (30)
¢ right (90)

. forward (30)
¢.end_il1()
¢ he ()

serwen.. sxitoniidak &5

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq35.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq17.gif

OEBPS/A978-1-4471-6642-9_3_Figj_HTML.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq41.gif

OEBPS/A978-1-4471-6642-9_3_Figao_HTML.gif
s = Input(“Please enter a list of integers:*°)
lst = s.oplit() # Now lst fs a list of stringe.

count = 0 # Here is the beginming of the accumulator pattern
for e in loc:

ifintie) v 2
count = count + 1

PEIBLI*Thers were®, Goubt, even dutessrs ln the 1ist.*)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq61.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_Equ1.gif
reference.method(arguments)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq98.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq25.gif

OEBPS/A978-1-4471-6642-9_4_Figm_HTML.gif
<Command>PenUp</Command>

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq2.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq29.gif
111111012 = =319

OEBPS/A978-1-4471-6642-9_4_Figx_HTML.gif
import turcle
from xnl.don Import minidon
xmldoc = minidom.parse (- flowerandbg .xml
graphicscommand = \
xnldoc . getElementsByTagane (~Graphicsconmands *) (0]
commands = graphicsCommand .getElementsByTaghame (*Command)
commandvist = (]
xLise = 11
yiise = ()
widehtist = ()
colorList = 01
radiustist = ()
aceribucerist = (xbisc,yLisc, widehiise ,colorList,radiusist)
attributes = [*x-,-y",-width-, color®, radius*]
for command in commands :
commandList . append (command . £irstchild . data.stxip ()
ater = command.attributes

for i in range(len (attributes)):
ater = command.attributes
key = ateributes (i)
ifkey in acer:
ateributerist (i).append (attr (key).value)
else:
attributeList (i].append (None)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq12.gif
2l

OEBPS/A978-1-4471-6642-9_7_Fig8_HTML.gif

OEBPS/A978-1-4471-6642-9_12_Chapter_TeX2GIF_IEq1.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq7.gif

OEBPS/A978-1-4471-6642-9_13_Figl_HTML.gif
Method Description

turtle.showturtle()
Makes the turtle visible.

Aliases: st
Example (for a Turtle instance named turtle):

>>> turtle.hideturtle()
>>> turtle.showturtle()

turtlespeed(speed=None)
Return or set the turtle’s speed.

Optional argument:
speed — an integer in the range 0..10 or a speedstring (see below)

Set the turtle’s speed to an integer value in the range 0 .. 10.
If no argument is given: return current speed.

If input is a number greater than 10 or smaller than 0.5,
speed is set 10 0.

Speedstrings are mapped to speedvalues in the following way:
“fastest” : 0

“fast’ : 10

“normal’ : 6

slow’ : 3

“slowest” : 1
speeds from 1 to 10 enforee increasingly faster animation of
line drawing and turtle turning.

Attention:
speed =0 : *no* animation takes place. forward/back makes turtle jump
and likewise left/right make the turtle turn instantly.

Example (for a Turtle instance named turtle):
>>> turtle.speed(3)

turtle.undo()
Undo (repeatedly) the last turtle action.
Number of available undo actions is determined by the size of
the undobuffer.

Example (for a Turtle instance named turtle):
>>> for i in range(d).
turtle.fd(50); turtle.1(80)

>>> for i in range(8):
trtle.undo()

OEBPS/contact.gif

OEBPS/A978-1-4471-6642-9_5_Fign_HTML.gif
def evenlyDivides (x.y):
rFeturn v 8 x =o 0

int (input(-?lease enter an integer:))
int (input (*Please enter another integer

if evenlypivides (x.v):
Print (x, "evenly @ivides®,y)

else:
print (x, does not evenly divide®,y)

-

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq5.gif

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_Equ3.gif

OEBPS/A978-1-4471-6642-9_1_Figak_HTML.gif
sided = 6
sides = 8

sidec = (sideatsider + sideBt+2) ** 0.5
print (sidec)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq35.gif
231 _q

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq56.gif

OEBPS/A978-1-4471-6642-9_6_Figd_HTML.gif
mainFrans @ tkinter.Frameiroet ,berdecrwidthai, padxas.,padyes)
AR i o €]

OEBPS/A978-1-4471-6642-9_1_Fig13_HTML.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq20.gif
n>0

OEBPS/A978-1-4471-6642-9_1_Fig19_HTML.gif
Operation | Operator | Comments

Tndexing SIX] | Yields the ¥ character of the string 5. The index is zero
based, so s[0] is the first character.

Concatenation | s +1__| Yields the juxtaposition of the strings s and r.

Tength Ten(s) | Yields the number of characters in s

Ordinal ord(c) | Yields the ordinal value of a character c.

Value ‘The ordinal value is the ASCII code of the character.

Character chi(x) | Yields the character that corresponds to the

Value ASCII value of x.

String Su(x) | Yields the string representation of the value of x.

Conversion ‘The value of x may be an int, float, or other type of value.

Tnteger i) | Yields the integer value contained in the string 5. 1

Conversion does not contain an integer an error will occur.

Float floal(s) | Yields the float value contained in the string s. 1T s

Conversion does not contain a float an error will occur.

OEBPS/A978-1-4471-6642-9_2_Figt_HTML.gif
How many centimeters do you want to convert? 127.25
This is 1 yard, 1 foot, 2.098425 inches.

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq31.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq84.gif

OEBPS/A978-1-4471-6642-9_7_Figu_HTML.gif
class AddresscCard:

This method provides a means of comparing
the current object (i.e. self) with another

object. It is used by the index method on liscs
to discover if an object in a list -equals® the
object being searched for by the index method.

*
.
*
:
:

" def _eq_(self other)
N T (ype(other) 1= type(self):
raise “Invalid Comparison®

If celf.lascss,-eself.first == \
3 other.lastes,~+other. first

" return True

o 261885 Tales

OEBPS/A978-1-4471-6642-9_4_Figw_HTML.gif
I import turtle
> from xnl.dom import minidom

s xmldoc = minidom.parse (- flowerandbg .xml

4 graphicscommand = \

s xaldoc . getElemencoByTagiane (*Graphicsconmands *) (0]

o commands = graphicscommand.getElementsByTagName (*Command)

commandrise = (1
xuist = ()
yLise = 11

o widchiise = (]
colorList = (1

radiustise = [1

for command in commands:

" commandList .append (command. £irstchild.data.strip ()
s attr = command.attributes

“ W ocxe i oacer

" xList.append (attr [*x").value)

. else:

" xList.append (None)

n Boeys i acer:

" yiisc.append (acer [*y*).value)

8 elses

N yList.append (None)

o i cwiach in acer

s widthList .append (attr (*width*].value)
% else:

5 widchList . append (None)

s it ccolor in avcr:

" colorList .append (attr[*color®].value)
o else

" colorList .append (None)

N I cradiuse in acer:

N radiusiist.append (actr (*radius®].value)
“ else:

. radiusList .append (None)

OEBPS/A978-1-4471-6642-9_13_Figb_HTML.gif
Method Description

turtle.back(distance)
Aliases: backward bk

Argument:
distance - a number

Move the turtle backward by distance, opposite to the direction the
turtle is headed. Do not change the turtle’s heading.

Example (for a Turtle instance named turtle):
>>> turtle.position()

(0.00,0.00)

>>> turtle.backward(30)

>>> turtle.position()

(-30.00,0.00)

turtle.begin_fill()
Called just before drawing a shape to be filled.

Example (for a Turtle instance named turtle):
>>> twrtle.color("black”, "red")

>>> turtle.begin_fll()

>>> turtle.circle(60)

>>> trtle.cend_fill()

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq83.gif

OEBPS/A978-1-4471-6642-9_13_Figh_HTML.gif
Method Description

turtle.isvisible()
Return True if the Turtle is shown, False if it's hidden.

Example (for a Turtle instance named turtle):
>>> turtle.hideturtle()

>>> print(turtle.isvisible())

False

turtle left(angle)
Aliases: It

Argument:
angle - a number (integer or float)

“Turn turtle left by angle units. (Units are by default degrees,
but can be set via the degrees() and radians() functions.)
Angle orientation depends on mode. (See this.)

Example (for a Turtle instance named turtle):
>>> turtle.heading()

220

>>> turtle.Jefi(45)

>>> turtle.heading()

67.0

turtle.onclick(fun, btn=1, add=None)
Bind fun to mouse-click event on this turtle on canvas.

Arguments:
fun - a function with two arguments, to which will be assigned

the coordinates of the clicked point on the canvas.

num — number of the mouse-button defaults to 1 (left mouse button).
add - True or False. If True, new binding will be added, otherwise

it will replace a former binding.

Example for the anonymous turtl, i. . the procedural way:

>>> def um(x, y):
trtle Jefi(360)

>>> onclick(turn) # Now clicking into the turtle will turn it.
>>> onclick(None) # event-binding will be removed

turtle.ondrag(fun, btn=1, add=None)
Bind fun to mouse-move event on this turtle on canvas.

Arguments:
fun - a function with two arguments, to which will be assigned
the coordinates of the clicked point on the canvas.

OEBPS/A978-1-4471-6642-9_9_Chapter_TeX2GIF_IEq2.gif

OEBPS/A978-1-4471-6642-9_2_Figf_HTML.gif
float (input ("Please enter a number:

e

2y = float (input(~Please enter a second numbe:

4 print(*1) Ada the two numbers’)

s print(2) Subtract the two numbers”)

o Print(*3) Multiply the two numbers")

7 print(*4) Divide the two numbers')

9 choice = Int(input(“Please enter your choice:®))

W print(*The answer is:", end="")

8 IF choice == 1:
u print(x + v)
5 elser
“ It choice == 2:
" print(x - y)
. else s
o It choice == 3:
print(x * y)
else s
it choice == 4:
5 print(x / y)

, else:
. print (*You did not enter a valid choice.

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq67.gif
0x264

OEBPS/A978-1-4471-6642-9_1_Figp_HTML.gif
nane & IRBEE{*Pleass enter your namei®)
BEIRT T=¥he DAl Fon SHLECed MRe=, HuEv)

OEBPS/A978-1-4471-6642-9_6_Figg_HTML.gif
def addreminder (text,x,y,notes, reminders):
notewin = tkinter.Toplevel ()
notewin.resizable (widch=rFalse, height=False)
notewin. geometry (*+e+ St (x) 45+ s str (¥))

reminder = tkinter.Text (notewin by=-yellow®, \

0. height=15)

wiae)

reminder. inserc (tkinter.END, text)
reminder.pack ()

notes.append (notewin)
reminders. append (reminder)

def delecewindownandler (
print (“iindow Deleted-)
notewin.withdraw ()
notes. remove (notewin)
reminders . remove (reminder)

notewin.protocol (*WK_DELETE_WINDOW®, dsletewindowkandler)

OEBPS/A978-1-4471-6642-9_1_Figag_HTML.gif
Plesss enter an sight digit bimary cumber: OL0L00%1
rhe decimal equivalent of 01010011 s 83.

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq4.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq46.gif

OEBPS/A978-1-4471-6642-9_2_Figaf_HTML.gif
sideone = float (input(\
Please enter length of shortest side of triangle:®))
cidetws = float (input(\

"Please enter length of middle side of triangl

"

cidethree = float (input(\

Pleace enter length of longest side of triangle

ratio = sideone

msg ="It is a perfect triangle.

it abs ((ratio -
meg ="It is

it abs ((ratio -
meg "It is

print (msg)

’3

sidetwo / 4) / sidetwo) > 0.001:

not a perfect triangle.®

sidethree / 5) / sidethree) > 0.001:

not a perfect triangle.®

OEBPS/A978-1-4471-6642-9_6_Fig4_HTML.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq30.gif
11111101,

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_Equ2.gif
y=F+mx-%)

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq7.gif

OEBPS/A978-1-4471-6642-9_14_Figb_HTML.gif
Method Description

screen.addshape(name)
Same thing as screen.register_shape(name)

screen.bgcolor(*args)
Set or return backgroundcolor of the TurtleSereen.

Arguments (if given): a color string or three numbers
in the range 0..colormode or a 3-tuple of such numbers.

Example (for a TurtleScreen instance named screen):
>>> screen.bgeolor("orange")

>>> screenbgeolor()

“orange”

>>> screen.bgeolor(0.5,0,0.5)

>>> screenbgeolor()

“#800080°

screen.bgplc(picname=None)
Set background image or return name of current backgroundimage.

Optional argument:
picname — a siring, name of a gif-file or "nopic”.

OEBPS/A978-1-4471-6642-9_5_Figq_HTML.gif
def factorial (n):
[T
return 1

return n ¢ faccorial(n

print (factorial (5))

n

OEBPS/A978-1-4471-6642-9_3_Figab_HTML.gif
phonebook = opem (-addressbook .txt*"
numEneries = 0
cof = False
while not eof:
when the file is completely read the lastName string
will be empty. So will the other lines, but if the
laschame ic empcy then we know not to process the record.
lasthame = phonebook .readline (). rscrip ()

firscwame = phonebook.readline ().rstrip ()
street = phonebook.readline (). rstrip ()
citystatezip = phonebook.readline ().rstrip ()
homephone = phonebook .readline (). ratrip ()
mobilephone = phonebook .readline ().rstrip()

if lastName is empty then we didn’t really read a record.

if lastmame tec:
Process the record by adding to the accumulator
numEntries = numEntries o 1

else

eof = True
print (-You have*, numEntries,-entries im your address book.®)

OEBPS/A978-1-4471-6642-9_3_Figw_HTML.gif
filename = input(®Please enter the name of a file:*)
yourName = input (what is your name?

age = int(input (“How old are you? *))
outfile = open(filename, *w")

outtile.write(“Hello

“+ yourname +-.

outfile.write("Next vear you will be

S lhe sReEw i

years old\n®)

B

How are youz\n®)
Sestragesi) \

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq90.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq77.gif
chr

OEBPS/A978-1-4471-6642-9_3_Figae_HTML.gif
Plaase snter & list of numbers: 10.5 -8 1035 76 43.2 206
rhe numbers betweem 0 and 100 are: 10.5 76.0 83.2

OEBPS/A978-1-4471-6642-9_4_Figaa_HTML.gif
timePelta = firstDay = LastDay
days = CimeDelta.days

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq99.gif
0101012

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq51.gif
01012

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq13.gif
027+ 15204027+ 12°+0%27+0%22+ 12" +122°=83

OEBPS/A978-1-4471-6642-9_4_Fig4_HTML.gif

OEBPS/A978-1-4471-6642-9_3_Figt_HTML.gif
<accumulator> = <identity>
for <element> in <sequence>:
<accumulator> = <accumulator> <operator> <element >

OEBPS/A978-1-4471-6642-9_10_Chapter_TeX2GIF_IEq5.gif

OEBPS/A978-1-4471-6642-9_1_Figf_HTML.gif
<identifier> = <expression>

OEBPS/A978-1-4471-6642-9_7_Figg_HTML.gif
from curtle import *
from ckinter import *
import math

noselection = 0
cirele = 1

The circle class is omitted here.

elass Drawapp:
def _init_(self):
oot = Tk()
oot .title (*Draw:®)
self.shapeselection = noselection
ov = Scrolledcanvas (root,600,600,600,600)
cv.pack (side = LEFT)
aTurtle = Rawrurtle (ev)
screen = aturtle.getscreen ()
aTurtle.ht ()
screen.tracer (0)

ram = Frame(root)
Eran.pack (side = RIGHT, il

def circcommand () :
print (*in circcommand*)
self.shapeselection = circle

radiussnt = Stringvar ()
radiusiabel = Label (fram,text="Radius:*)
radiusiabel .grid (row=2, column=1, sticky=E)
radiusEntry = Encry(fram, cexcvariable=radiusent)
radiusEntry.grid (row=2, column=2, sticky=EW)
circlesutcon = Button(fram, ctext = "Circlet, \
command=circconmand)
circlesutcon.grid (xo

column=1, columnspan

def clickandler (x,v)

Print (*In clickHandler®)

If self.shapeselection == circle:
Pprint ("shape selection was circles)
radius = radiusEnt .get ()
it radius.scrip() ws vt

radius = 50

else
radius = float (radivs)

shape = Circle(x,y, radius,edgewidth=3, \
color='red*, outline="gray")

shape. draw (aTurcle)

screen. update ()

screen.onclick (clicknandler)

def main():
app = Drawapp ()
mainloop ()

I _name_ == *_main_*:

main ()

OEBPS/A978-1-4471-6642-9_4_Figj_HTML.gif
from xml.dom import minidom

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq18.gif
y=¥+mx-%)

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq41.gif

OEBPS/A978-1-4471-6642-9_8_Chapter_TeX2GIF_IEq4.gif

OEBPS/A978-1-4471-6642-9_7_Chapter_TeX2GIF_IEq2.gif
4/5

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq13.gif

OEBPS/A978-1-4471-6642-9_1_Fig22_HTML.gif
Flo €t Source Debug Toos Window tap
LN O

raxe

1 xm arten)
2 rintton
2 T e e
e
5 Driniy)

o

]
B8 8 v
buitins.ndexsrror: string

0

B

58050y ho s sear[stack ota |

ebug O (tan. stdout. sder sppears e
B

~oens

»

% wescoi0

OEBPS/A978-1-4471-6642-9_6_Figq_HTML.gif
def pressedIt ()
Print (-oh, now you've dome itir)

tkinter.Button (mainFrame ,ctext=Now!®, \
command=pressedIt).pack ()

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq70.gif

OEBPS/A978-1-4471-6642-9_14_Figf_HTML.gif
Method Description

and a Turtle instance named turtle):

>>> def f():
turtle.fd(50)

>>> screen.onkey(f, "Up”)
>>> screen.listen()

Subsequently the tuitle can be moved by
#4## repeatedly pressing the up-aow key,
or by keeping pressed the up-arrow key.
consequently drawing a hexagon.

screen.ontimer(fun, t=0)
Install a timer, which calls fun after t milliseconds.

Arguments:
fun —a function with no arguments.
t—anumber >=0

Example (for a TurtleScreen instance named screen):

>>> running = True

>>> def f():

if running:
turtle.fd(50)
turtle.(60)
screen.ontimer(f, 250)

>>> f() ### makes the turtle marching around
>>> running = False

screen.Tegister_shape(name, shape=None)
Adds a turtle shape to TurtleScreen’s shapelist.

Arguments:
(1) name is the name of a gif-file and shape is None.

Installs the corresponding image shape.

[mage-shapes DO NOT rofate when turning the turtle,

11 5o they do not display the heading of the turtle!

(2) name is an arbitraty string and shape is a tuple

of paits of coordinates. Installs the conresponding

polygon shape

(3) name is an atbitrary string and shape is a

(compound) Shape object. Installs the coresponding

compound shape.

To use a shape, you have o issue the command shape(shapename).

OEBPS/A978-1-4471-6642-9_3_Figm_HTML.gif
splitWords = s.split()

OEBPS/A978-1-4471-6642-9_3_Figal_HTML.gif
for i in range(S)
print (i)

OEBPS/A978-1-4471-6642-9_6_Fig2_HTML.gif

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq10.gif

OEBPS/A978-1-4471-6642-9_3_Figy_HTML.gif
<read first line from first record>

vhile <line> 1=+
<read the rest of the record>
<process the record>

<read the first line of the
<close the file>

OEBPS/A978-1-4471-6642-9_7_Figk_HTML.gif
Ball (RawTurtle)
def _inic_(self,cv,dx,ay)
Super (. _inic_(ev)

self.penup ()
self.shape (~soccerball .gif*)
self.ax = ax
self.ay = ay

def move (self)
news = self.xcor () + self.dx
newy = self.ycor() + self.dy

some code goes here to make it
off che walls

R U S ——

bounce

OEBPS/A978-1-4471-6642-9_5_Figad_HTML.gif
def evenlyDividesList (x,lst

for e in lsc:
it not evenlybivides (x,e):
return ralse

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq38.gif
8310

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq50.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq2.gif

OEBPS/A978-1-4471-6642-9_1_Figb_HTML.gif
Python2~ 3

Prior to Python version 3 print statements were different than many other statements in
Python because they lacked parentheses[8]. Parentheses were added to print statement
in Python 3. So,

print "Hello World!"

became

print ("Hello World!")

in Python 3 and later. A print statement prints its data and then moves (0 new line
unless the newline character is suppressed. Before Python 3 the newline was suppressed
by adding a comma to the end of the print statement.

print "Hello",
print " World!"

In Python 3 the same can be done by specifying an empty line end.

print ("Hello", end="")
print (" World!")

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq3.gif

OEBPS/A978-1-4471-6642-9_6_Figb_HTML.gif
Python2~-3

In Python 2 the module name for Tkinter was Tkinter. In Python 3 the module name
become rkinter. If you are using Tkinter in Python 2.6 you write:

import Tkinter

1o import the Tkinter module.

OEBPS/A978-1-4471-6642-9_7_Chapter_TeX2GIF_IEq5.gif
-Rationalob jectat0x113bc70 >]

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq36.gif

OEBPS/A978-1-4471-6642-9_2_Figk_HTML.gif
! age = Int(Input("Please enter your age:"))
© Af (not age > 15) or (mot age < 18):
. print (“You can’t join®)

. else:
; print (*You cam join®)

OEBPS/A978-1-4471-6642-9_13_Figi_HTML.gif
Method Description

‘num — number of the mouse-button defaults to 1 (Ieft mouse button).

Every sequence of mouse-move-cvents on a turtle is preceded by a
mouse-click event on that turtle.

Example (for a Turtle instance named turtle):
>>> turtle.ondrag(turtle. goto)

Subsequently clicking and dragging a Turtle will
move it across the screen thereby producing handdrawings
(if pen is down).

turtle.onrelease(fun, btn=1, add=None)
Bind fun to mouse-button-release event on this turtle on canvas.

Argument
fun - a function with two arguments, to which will be assigned

the coordinates of the clicked point on the canvas.

num — number of the mouse-button defaults to 1 (left mouse button).

turtle.pencolor(*args)
Return or sct the pencolor.

Arguments:

Four input formats are allowed:

- pencolor()

Return the current pencolor as color specification string,
possibly in hex-number format (see example).

May be used as input to another color/pencolor/fllcolor call.
- pencolor(colorstring)

s is a Tk color specification string, such as "red" or "yellow"
- pencolor(r, g, b))

a tuple of r, g, and b, which represent, an RGB color,

and cach of r, g, and b are in the range 0..colormode,

where colormode is either 1.0 or 255

- pencolor(r, g, b)

r.g. and b represent an RGB color, and each of . g, and b
are in the range 0..colormode

If wrileshape is a polygon, the outline of that polygon is drawn
with the newly set pencolor.

Example (for a Turtle instance named turtle):
>>> turtle.pencolor(’brown’)

>>> twp = (0.2,0.8,0.55)

>>> turtle.pencolor(tup)

>>> turtle.pencolor()

*#33cc8c”

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq42.gif

OEBPS/A978-1-4471-6642-9_2_Figae_HTML.gif
age = int (input(“What is your age?"))

license = input(\
"Do you have a fishing license in MN (yes/no)?")
parentlic = input(\

*Does your parent have a fiching license (yes/no)?7)

if (age < 16 and parentlic ==‘yes®) or license
Print(“You are legal to fish in MN.®)
else s
print (*You are not legal to fish in MN

ves©:

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_Equ1.gif
83/2
4172
20/2
10/2
512
212
12

remainder 1
remainder 1
remainder 0
remainder 0
remainder 1
remainder 0
remainder 1

OEBPS/A978-1-4471-6642-9_7_Figp_HTML.gif
def _repr__(self):
FOIRER ~BATASRAT I+ abe FaBLE . Al

eotr (sels.den)s=)"

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq100.gif
00111010,

OEBPS/A978-1-4471-6642-9_2_Figp_HTML.gif
<statements before try-except>
ery:

<try-block statements>
except [Exception]:

<except -block statements>
<statements after the try-except code>

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq42.gif
Oi6

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq30.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq85.gif

OEBPS/A978-1-4471-6642-9_4_Figv_HTML.gif
Biking
Running
other

45,0

299.0

olor #804000

& W s

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq57.gif

OEBPS/A978-1-4471-6642-9_1_Fign_HTML.gif
str(83)
print (x0))
i)
=it
d it (o)

OEBPS/A978-1-4471-6642-9_5_Figs_HTML.gif
Imports always go at the top
import curcle

Function definitions go second
def drawsquare (turtle, length):
for k in range(4):
curtle. forward (1)
turtle.lefe (90)

Main code goes at the end
€ = turtle.Turtle ()

screen = t.getscreen()

1= int(input(-Please enter a side length:®))
arawsquare (t,1)

secesh v exitenslick ()

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq14.gif

OEBPS/A978-1-4471-6642-9_7_Fig4_HTML.gif

OEBPS/A978-1-4471-6642-9_6_Fign_HTML.gif
import tkinter

def main ()
der about (
print (*About was Selected®)

oot = thinter.Tk()
root.title(~silly Program®)
" bar = tkinter.Menu (root)

fileMenu = tkinter.menu (bar,ctearoff=0)

£ileMenu.add_conmand (Label=-About *, conmand=about)
s bar.add_cascade (labels="Help®,menu=£ileenu)
“ root.contig (menu=bar)

s Af __name_. -

o main ()
" tkinter . mainloop ()

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq4.gif

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq5.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq16.gif

OEBPS/A978-1-4471-6642-9_1_Figs_HTML.gif
name = *Sophus*®
Print (name, ~how are you doing?")
SHIRE £=3 Hotd Chak, = Hiiks, =56 Lesliog WAk Solay.

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq66.gif
0x264

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq23.gif
=310 = 11111101,

OEBPS/A978-1-4471-6642-9_1_Fig2_HTML.gif
W Pyihon 311 Stup

e ubather o sl pyhon 5.1.4
for il users o this comy

windows

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq21.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq45.gif

OEBPS/A978-1-4471-6642-9_10_Chapter_TeX2GIF_IEq2.gif

OEBPS/A978-1-4471-6642-9_1_Figaj_HTML.gif
<variable > = <expression>

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq12.gif

OEBPS/A978-1-4471-6642-9_13_Figk_HTML.gif
Method Description
100.0
>>> turtle.reset()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
00
turtle.setheading(to_angle)
Set the orientation of the turtle to to_angle.

Al eth

Argument:
to_angle — a number (integer or float)

Set the orientation of the turtle to to_angle.
Here are some common directions in degrees:

standard - mode: logo-mode:

0-cast 0 - north

90 - north 90 - cast
180 - west 180 - south
270 - south 270 - west

Example (for a Turtle instance named turtle):
>>> turtle.setheading(90)
>>> turtle.heading()
90
turtle.shape(name=None)
Set turtle shape to shape with given name / return current shapename.

Optional argument:
name - a string, which s a valid shapename

Set turtle shape to shape with given name or, if name is not given,
return name of current shape.

Shape with name must exist in the TurtleScreen’
Initially there are the following polygon shape:
“arrow’, "turtle’, circle’, "square’, “triangle’, "classic’.

To learn about how to deal with shapes see Screen-method register_shape.

shape dictionary.

Example (for a Turtle instance named turtle):
>>> turtle.shape()

“arrow”

>>> turtle.shape("turtle”)

>>> turtle.shape()

"turtle’

OEBPS/A978-1-4471-6642-9_4_Fig5_HTML.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_Equ4.gif
58/2 =29 remainder 0
29/2 = 14 remainder |
14/2 = 7 remainder 0
7/2= 3 remainder |
3/2 =1 remainder 1
1/2= 0 remainder 1

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_Equ1.gif
80 =
0 = x4 -x7)3 =32

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq38.gif
nx(n-1!

OEBPS/A978-1-4471-6642-9_14_Figh_HTML.gif
Method Bescription

screen. title(titlestr)
Set the tile of the Turtle Graphics screen. The title appears in the title bar
of the window.

screen.tracer(n=None, delay=None)
Turns turtle animation on/off and set delay for update drawings.

Optional arguments:
- nonnegative integer
delay - nomnegative integer

If nis given, only each n-th regular sereen update is really performed.
(Can be used to accelerate the drawing of complex geaphics.)
Second arguments sets delay value (see RawTurtle.delay())

Example (for a TurtleScreen instance named screen):
>>> screen.tracer(8, 25)
>>> dist=2
>>> for i in range(200):
turtle.fd(dist)
turtle.t(90)
dist+=2
screen.turtles()
Return the list of turtles on the screen.

Example (for a TurtleScreen instance named screen):

>>> screen.turtles()

[<turtle. Turtle object at 0x00E11FB0>]
screen.update()

Perform a TurtleScreen update.
screen.window_height()

Return the height of the turtle window.

Example (for a TurtleScreen instance named screen):
>>> screen.window_height()
480

screen. window_width()
Return the width of the tuutle window.

Example (for a TurtleScreen instance named screen):
>>> screen.window_width()
640

screen.mainloop()
Stauts event loop - calling Tinter's mainloop function.

Must be last statement in a turtle graphics program.
Must NOT be used if a script is run from within IDLE in -n mode
(No subprocess) - for interactive use of turtle graphics.

OEBPS/A978-1-4471-6642-9_6_Figp_HTML.gif
note & thinter.TextmalanFrame; widthedo,helghtes)
note . Daelk {3}

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq8.gif

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq19.gif

OEBPS/A978-1-4471-6642-9_7_Fig2_HTML.gif

OEBPS/A978-1-4471-6642-9_1_Fig17_HTML.gif

OEBPS/A978-1-4471-6642-9_5_Figaf_HTML.gif
def evenlyDivisible (1st)

for e in lsc:
print(e, is evenly divisible by © end="")
elements = evenlyDivisibleElements (e, lst)
for £ in clements.
print (s, en

—

OEBPS/A978-1-4471-6642-9_13_Figf_HTML.gif
Method Description

turtle.forward(distance)
Aliases: fd

Argument:
distance — a number (integer or float)

Move the turtle forward by the specified distance, in the dircction
the turtle is headed.

Example (for a Turtle instance named turtle)
>>> turtle.position()

(0.00,0.00)

>>> turtle.forward(25)

>>> turtle.position()

(25.00,0.00)

>>> turtle.forward(-75)

>>> turtle.position()

(-50.00,0.00)

turtle.get_poly()
Return the lastly recorded polygon.

Example (for a Turtle instance named turtle):
>>> p = rtle.get_poly()
>>> turtle.register_shape("myFavouriteShape", p)

turtle.get_shapepoly()
Return the current shape polygon as tuple of coordinate pairs.

Examples (for a Turtle instance named turtle):
>>> turtle.shape("square”)

>>> turtle.shapetransform(4, -1, 0, 2)

>>> turtle.get_shapepoly()

((50, -20), (30, 20), (-50, 20), (-30, -20))

turtle.getscreen()
Return the TurtleScreen object, the turtle is drawing on.
So TurtleScreen-methods can be called for that object.

Example (for a Turtle instance named turtle):
>>> ts = turtle.getscreen()

>>>1s

<turtle. TurtleScreen object at 0x0106B770>
>>> ts.bgeolor("pink”)

turtle.goto(x, y=None)
Aliases: setpos setposition

Arguments:
X - a number or a pair/vector of numbers

¥~ a number None

call: goto(x, y) # two coordinates

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq50.gif
0100112

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq1.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq17.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq57.gif

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq1.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq14.gif

OEBPS/A978-1-4471-6642-9_1_Figah_HTML.gif
Pleass enter a number: @83
rhe binary equivalent of 83 Is 01010011.

OEBPS/A978-1-4471-6642-9_7_Figm_HTML.gif
class Rational:

def _inic_(self,num=0,dens1)
celf.num = num
self.den = den

def main0):
x = Rational(d,s)
print (x)

i _name_
main)

main":

OEBPS/A978-1-4471-6642-9_1_Figam_HTML.gif
x & CBE[83)
SEIES 1= The AECIE CHACACTEE SWrivalent of=,oidix),

OEBPS/A978-1-4471-6642-9_3_Figac_HTML.gif
1} Look wp & person by last name
2) Add a person to the address book.
3 Quit

Encer your choice: 1
Please enter the last name to look up

sophus Lie
2234 valdres ad
becorah, 1a 52101
nome : 777-555-1234
nobile: 777-554-4765

1) Look up a person by last name
2) Add a person to the address book.
3 Quit

Enter your choice: 3

OEBPS/A978-1-4471-6642-9_14_Figc_HTML.gif
Method Description

If picname is a filename, set the corresponing image as background.
If picname is "nopic”, delete backgroundimage, if present.
If picname is None, return the filename of the cuwent backgroundimage.

Example (for a TurtleScreen instance named screen):
>>> screenbgpic()

*nopic’

>>> screenbgpic("landscape.gif”)

>>> screenbgpic()

*landscape.gif’

screen.clear()
Delete all drawings and all turtles from the TurtleScreen.

Reset empty TurlleScreen to its initial state: white background,
0 backgroundimage, no eventbindings and tracing on.

Example (for a TurtleScreen instance named screen):
screen.clear()

Note: this method is not available as function.

screen. colormode(cmode=None)
Return the colormode or set it to 1.0 0r255.

Optional argument:
cmode - one of the values 1.0 or 255

1, g b values of colortriples have to be in range 0..cmode.

Example (for a TurtleScreen instance named screen):
>>> screen.colormode()

1.0

>>> screen.colormode(255)

>>> turtle.pencolor(240,160,80)

screen. delay(delay=None)
Return or set the drawing delay in milliseconds.

Optional argument:
delay - positive integer

Example (for a TurtleScreen instance named screen):
>>> screen.delay(15)

>>> screen.delay()

15

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq15.gif
8(6)

OEBPS/A978-1-4471-6642-9_12_Chapter_TeX2GIF_IEq8.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq4.gif

OEBPS/A978-1-4471-6642-9_1_Fig5_HTML.jpg

OEBPS/A978-1-4471-6642-9_3_Figv_HTML.gif
filename = input(“Please enter the name of a file
catfile = open(filename,z)
for line in catfile:
print(line)
catfile.close ()

"

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq23.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq37.gif
0100112

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq58.gif

OEBPS/A978-1-4471-6642-9_1_Fige_HTML.gif
print (R2_height

OEBPS/A978-1-4471-6642-9_5_Figaa_HTML.gif
def explode
lec = 0
for o in s:
15t append (c)
return Lot
print (explode (*hello®))

OEBPS/A978-1-4471-6642-9_2_Figh_HTML.gif
¥y

float (input ("Please enter a number:"))
float (input ("Please enter a second number:®))

4 print(*1) Ada the two numbers)
s print(2) Subtract the two numbers®)
& print(*3) Multiply the two numbers’)
7 print(*4) Divide the two numbers®)

choice = Int(input("Please enter your choice:®))

W print(*The answer is:", end="")

8 IF choice == 1:
u print(x + y)
s elif choice
“ print (x
¢ elif choice
" print(x * y)

o elif choice
print(x / y)

2 else:

print ("You did not enter a valid choice.®)

OEBPS/A978-1-4471-6642-9_2_Fign_HTML.gif
top.
bot.

it

int (Input(°Please enter the numerator:"))
tom = Int(input(-Pleace enter the denominator:®))

bottom 1= 0 and top % bottom == O:
Print("The numerator is evenly divided by the demominator

print (*The fraction is not a whole number.®)

-

OEBPS/A978-1-4471-6642-9_7_Chapter_TeX2GIF_IEq4.gif
[< __main__.Rationalob jectatOx113bcd0 >,

OEBPS/A978-1-4471-6642-9_4_Figs_HTML.gif
commands = graphicsCommand .getElementsByTagName (*Command®*)

OEBPS/A978-1-4471-6642-9_6_Fige_HTML.gif
note & tkinter.Temt (mainFrame ,bys
note . Dok (F

yollew?®, widthaly, height s13)

OEBPS/A978-1-4471-6642-9_2_Fig2_HTML.gif
Operator | Condition

< [Less Than

Greater Than

Tess Than or Equal ©©

Greater Than or Equal

Equal o

Not Equal to

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq86.gif

OEBPS/A978-1-4471-6642-9_7_Figy_HTML.gif
def draw(self,turtle):

curtle

curtle.
curcle.
curtle.
curtle.

curtle
curtle

penup ()
goto (self .x, self.y)
setheading (0)

pendown ()

width (self. edgewidth)
color (self.outline)
£illcolor (self.color)

if self.color :- *transparemt
turtle.begin_£i11 0

curtle.
curtle.
curtle.
curtle.

curcle

curtle.
curcle.
curtle.
curtle.

pendoun ()
foruard (self .wideh)
Lefe (90)
forward(self.height)
Lefe (90)
forward(self.width)
Lefe (90)
forward (self .height)
Lete (90)

if self.color :- *transparent:
turtle.end_£i11 0

turtle

penup ()

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq11.gif

OEBPS/A978-1-4471-6642-9_11_Chapter_TeX2GIF_IEq4.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq15.gif

OEBPS/A978-1-4471-6642-9_1_Fig14_HTML.gif
U WE Raimghnpy At Lsoocsman)

OEBPS/A978-1-4471-6642-9_2_Figy_HTML.gif
Please enter an integer: 255
The hexadecimal equivalent is Ox00ff

OEBPS/A978-1-4471-6642-9_5_Figh_HTML.gif
def length(L):
Ten = 1
for i in range(len (L))
Ten = den + 1

return len

print (length([1.2.3]))

OEBPS/A978-1-4471-6642-9_5_Figb_HTML.gif
def computeindPrint (x, y):
Val = x*t4/8.0 - x*43/3.0 -3 *x tx +y
Print("You called computeAndPrint (*+sir (x)+*, +sir(y)+")®)

return val

print (computeandrriat (6,5))

OEBPS/A978-1-4471-6642-9_2_Fig8_HTML.gif
A B _[AorB
False | Fabe | False
False | True | True

False | True
True | True | True

OEBPS/A978-1-4471-6642-9_5_Fig2_HTML.gif
{800 X wing IE: runtimestackexample,y Uses leskent/ Documents TeachingtzoToComputing Python3Program|
Ela Edk Source Dabog Tooks Vindow telp
® ® 6 @ [] Q@ r o % @
New Open... save save | Goto Dot Sewen | rum | resk Debog Stap
3 3 @
St o Step Over st Ot

) o

5| resttaco retc &
o A
108 rewm resite

n

12 ¢ The values varisble i defined in the enclosing scope of |
134 the reverse function.
1 vatues = 11

16 ¢ = oput(-Plesse enter a string
strip)

FpU(-Enter snother string or press enter o quit

21 princt-vou reversed these serings:
22 for it in vaterss
FY

] 2
foutu volryeon shtseurch] =
T Ta— D
= o 5
< locats <buins et 0103810, 7>
¥ buiens_ <buitos et oxzneso neizs>
T o
T wsesteeenDocuments TeschingsToCompuang
© lobals “buiios cx 0203810, en=7>
» _buksos_ <t it 0x28¢50; en=129> U

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_Equ2.gif
00000011
+11111101
= 100000000

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq65.gif
5810

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq6.gif
256°

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq43.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq22.gif
310 = 00000011

OEBPS/A978-1-4471-6642-9_1_Figae_HTML.gif
Now many centimsters de ysu want te convert? 137.35
rhis is 1 yards, 1 feet, 2.098425 inches

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq71.gif

OEBPS/A978-1-4471-6642-9_3_Figan_HTML.gif
entry = input(°Please make your blog entry for today:

found = False

for word In entry.split(
if word in (“orderly’,’shopping’

“gamble, *bid’)

True

repeat’,‘again’, \

found

it found:
print (*You really need to talk to somone about this.®)
else:
print (~Thanks for you emtry

OEBPS/A978-1-4471-6642-9_3_Fige_HTML.gif
input (“Please type
for o in s:

print (c)
»rit (=Done")

some characters and press enter

")

OEBPS/A978-1-4471-6642-9_3_Figk_HTML.gif
input(“Please type

for wora in s.splic():
print (word)

»Eint (> Dote")

some characters and press enter

")

OEBPS/A978-1-4471-6642-9_8_Chapter_TeX2GIF_IEq6.gif
X+ x=-

OEBPS/A978-1-4471-6642-9_4_Figh_HTML.gif
= Turtle ()

©. forward (s0)

1efe (50)

- torward (100)

‘Lef (50)
forward (50)

OEBPS/A978-1-4471-6642-9_4_Fige_HTML.gif
str (6)
= int(ren)

float (=6.5%)
float (6)
Turcle()

Cira b en)

-
= *hi there®

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq37.gif
n!

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq58.gif
0x53

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq15.gif
8310

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq9.gif
5(0)

OEBPS/A978-1-4471-6642-9_6_Figs_HTML.gif
bottomFrame = tkinter.Prame{root, borderwidthe=l,

padx=5, pady=5)
bottomFrame . pack ()

titlelabel = tkinter.Label (bottomFrame, \
text="what do you want?®)
titleLabel .grid (colunn=1, row=1)

tkinter.Button (bottomFrame, text="Nowi®, \
commandspressedIt) .grid {colunnez, rowsl)

Al

OEBPS/A978-1-4471-6642-9_3_Fig5_HTML.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq9.gif
210

OEBPS/A978-1-4471-6642-9_4_Fig2_HTML.gif

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq22.gif

OEBPS/A978-1-4471-6642-9_5_Figy_HTML.gif
import curtle

5 def drawmectangle (turtle, *+dimensions):
i wideh = 10

s heignt = 10

“ it -widch- in dimensions

i width = dimensions [*width+)

s if “height® in dimensions:

5 height = dimensions (*height]

o drawrigure (turtle,width,90, height 90, width,90, height ,90)
R def drawrigure(turtle, *args):

N for i in range (o, len (args) 2):
u curtle. forward (args (i])
s turtle. lefe (args (i+1])

¢ def main():

" € = turtle.Turtle ()
3 screen = t.getscreen()
n Arawrectangle (¢, widt

screen. exitonclick ()

it __name__
" main ()

__main__-:

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq101.gif
—8319 = 101011012

OEBPS/A978-1-4471-6642-9_10_Chapter_TeX2GIF_IEq3.gif

OEBPS/A978-1-4471-6642-9_2_Chapter_TeX2GIF_IEq2.gif

OEBPS/A978-1-4471-6642-9_1_Fig11_HTML.gif
Kent's Kac> python

Python 3.1.1 (r311:74543, Aug 24 2009, 18:44:08)

[6CC 4.0:1 Gapple Inc. build 5435 on darwin

Type "help' . “copyright”, "credits® or “license" for more inforsation.
RL_width = 10

X
printQR2_width
print (2_height)

totalarea = RLidth * R1_height + R2_vi
printCtotaTAres)

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq64.gif
8310

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq43.gif
1111,

OEBPS/A978-1-4471-6642-9_2_Fig5_HTML.gif
Tnué Falss.

Tie False T Falgo

prini('Done’)

OEBPS/A978-1-4471-6642-9_3_Chapter_TeX2GIF_IEq37.gif

OEBPS/A978-1-4471-6642-9_11_Chapter_TeX2GIF_IEq5.gif

OEBPS/A978-1-4471-6642-9_7_Figs_HTML.gif
class Reminder:

e T et xy cenes
D der undrawieet

U act seeiearny

" act secviaerty

©act getrexcseln):

def setpeletemandler (self, command):

OEBPS/A978-1-4471-6642-9_5_Figv_HTML.gif
def drawSquare (turtle, length
for k in range (4):

curtle. foruard (lengeh)
turtle.lefe (90)

0)

arawsquare (t,40)
arawsquare (t)
drawsSquare (lengths=30, turtlest)

OEBPS/A978-1-4471-6642-9_1_Figab_HTML.gif
Pleass enter a four charactsr striag: keat
he dteing vaplealised 9. GEwr

OEBPS/A978-1-4471-6642-9_12_Chapter_TeX2GIF_IEq7.gif

OEBPS/A978-1-4471-6642-9_3_Figaq_HTML.gif
filename = input(“Please enter the name of a file
cattile = open(filename,r)
for line in cacfile:
print (line.rscrip())
cattile.close ()

OEBPS/A978-1-4471-6642-9_4_Figy_HTML.gif
t = turtle.Turtle()

screen = t.getscreen()
screen.colormode (255)
screen. tracer (0)

for i in range(len (commandLise)):

command - commandList (i)

if command ==-PenUp*:
©.penup ()

elit comnand
. pendoun ()

elif command == *GoTo*
% = float (xLise(i))
v = float (yLise(i))

“penoun- :

widch = float (widchLise[i])

color = colorList (i)
©.wideh (width)
<. color (color)
©.goto (x,¥)

elif command

“circles:

radius = float (radiuspise (1))
width = float (widehList (1))

color = coloriist (i)
©.wideh (wideh)

¢ .pencolor (color)
©.cirele (radius)

elif command == *BeginFill®

color = colorList (1]
. fillcolor (color)
©.begin_£ill O

elif command == ~EndFill®:
c.end_£i110

else:

Print (~Unknown Command:

sereen.update ()
screen.exitonelick ()

. conmand)

OEBPS/A978-1-4471-6642-9_3_Fig2_HTML.gif
Operator Returns. Result Comments
SU90) St 90" Tor mostargument (ypes.
<hi(90) St Al 'ASCIT character equivalent of int
o7y it 90 ASCITint equivalent of character
S St hithere Same a5 5._add_()
“how”s*are"+"you” howareyou”
Sint ool False Same as 5. ()
e’ in “there” True
ool False Same a8 5. —eq ()
True
ool False. Same as
<= ool True same as s
St ool False sameass..
<t ool True Sameass.
Tents) int 7 Sameas s,
[E] St Sameast.
3] same ast.
b same as .
Supper() S does not change s
Ssrip0) Str Temoves surrounding whitespace
usplit) Tist T | splits on whitespace

All examples assume s = “hi, t = “there”, and u = how are you "

OEBPS/A978-1-4471-6642-9_4_Figaf_HTML.gif
from turtle import *

¢ = Turcleq)
screen = t.getscreen ()

c. forward (100)
cecondrurcle = Turtle ()
secondTurtle . left (30)
secondTurtle . forvard (100)
soreen., sxktonol sk

OEBPS/A978-1-4471-6642-9_5_Chapter_TeX2GIF_IEq22.gif

OEBPS/A978-1-4471-6642-9_1_Chapter_TeX2GIF_IEq92.gif
pi

OEBPS/A978-1-4471-6642-9_4_Chapter_TeX2GIF_IEq11.gif

OEBPS/A978-1-4471-6642-9_7_Figb_HTML.gif
x = 10

v = 30

radivs = 40

shape = Circle(x,y,radius,edgeiidth=3,
colorm-red*,outlines®gray -

OEBPS/A978-1-4471-6642-9_1_Figk_HTML.gif
nane & tSephus Lie*
BEMES =3 Palii BecUeqlan Sathehaviciae Y6+, bai

OEBPS/A978-1-4471-6642-9_3_Figh_HTML.gif
Python2~- 3

In Python 2 the range function returned a lst of integers. Because this was deemed
inefficient for large lists of integers, Python 3's range function returns a generator

which generates the list of integers as needed. This is called lazy evaluation and is
‘more efficient since cach new value is generated only when it is needed. To see the
st that range(n) generates in Python 3 you can write list(range(n)) which will
convert the generator to a lst that you can inspect.

OEBPS/A978-1-4471-6642-9_5_Fige_HTML.gif
def reverse(s)

values . append (s)

Use the Accumulator Paccern
resule =--
for c in s

result = ¢ + resule

return resule

The values variable is defined in the enclosing scope of

the reverse function.

values = (1
© = input(-Please enter a string: °)
while t.serip() 1=+

Print(~The reverse of*, t,vis", reverse(t))

nput (“Enter another string or prese

print(-You reversed these scrings:®)
for val in values:
print (val)

enter to quit:

